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Editorial on the Research Topic

New insights into brain imaging methods for rehabilitation of

brain diseases

This editorial on the Research Topic of Neurorehabilitation aims to concisely present

the contributions of each study within the broader context of neurorehabilitation research,

showcasing the collaborative effort to advance the field.

First of all the landscape of neurorehabilitation is enriched by the pioneering studies

of Wang et al., Zou et al., Yang et al., and their contemporaries, who collectively push the

boundaries of our understanding and treatment capabilities for neurological conditions.

These researchers harness a variety of innovative methods, from functional near-infrared

spectroscopy (fNIRS) to machine learning algorithms, to explore cognitive impairment,

motor function recovery, and beyond.

Wang et al.’s nomograms for predicting cognitive impairment post-TBI set a precedent

for personalized patient care. Zou et al. and Yang et al. further this narrative by utilizing

fNIRS to investigate cognitive impairment and the therapeutic potential of sensory tasks

in stroke rehabilitation. The collaborative work of Chen, Zhang, et al. introduces a

nuanced understanding of interhemispheric imbalance, advocating for individualized

neuromodulation strategies.

In parallel, Lin et al. review the promising effects of noninvasive brain stimulation on

dual-task performance, whereas Xiao et al. and Song et al. delve into the realms of music

therapy and ultrasonic neuromodulation, revealing new therapeutic avenues. The studies

by Yang et al. and Xia et al. emphasize the role of alternative therapies like acupuncture

and the physiological insights from acoustic startle priming, broadening the scope of

neurorehabilitation strategies.

Moreover, Liu L. et al.’s development of a rodent-specific TMS coil and Zhang et al.’s

identification of biological markers for post-stroke depression exemplify the integration of

technology and biology in research. Further contributions from Liu S. et al., Chen, Huang,

et al., and Zhao et al. focus on the practical applications of these findings in clinical settings,

from improving balance and gait in cerebral infarction patients to enhancing diagnostic

accuracy for Alzheimer’s disease.

The comprehensive analysis by Zhou et al. of oxidative stress in ischemic stroke

underlines the importance of addressing biochemical pathways in recovery. Finally, Shen

et al.’s study on the effects of focal muscle vibration therapy showcases the potential of

physical interventions in activating brain regions for motor function improvement.
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Collectively, these studies not only underscore the importance

of multidisciplinary approaches in neurorehabilitation but also

highlight the potential for significant advances in patient outcomes

through the integration of innovative research and clinical practice.

Below I will further comment on the unique contributions

made by different groups of contributing authors.

The study byWang et al. investigates the prediction of cognitive

impairment in patients in with mild-to-moderate traumatic brain

injury (TBI) through clinical and radiological parameters. They

developed nomograms based on identified risk factors, such as

age, Glasgow Coma Scale score, education level, hyperlipidemia,

temporal lobe contusion, traumatic subarachnoid hemorrhage,

very early rehabilitation, and ICU admission, to predict cognitive

impairment at 3 and 12 months post-injury. The nomograms

demonstrated good discriminative ability, indicating their potential

utility in clinical management and intervention planning for

TBI patients.

The study by Zou et al. investigates the functional connectivity

in post-stroke cognitive impairment patients using functional

near-infrared spectroscopy (fNIRS). It compares resting-state

functional connectivity among patients with post-stroke cognitive

impairment, patients without cognitive impairment, and healthy

controls. The findings reveal that patients with cognitive

impairment exhibit significantly decreased interhemispheric and

intra-right hemispheric functional connectivity, suggesting that

fNIRS could be a valuable tool in identifying patients at risk of

cognitive impairment following a stroke.

The study by Yang et al. focuses on the impact of a bilateral

plantar contact task on dorsolateral prefrontal activation in cerebral

infarction patients, under both open and closed eye conditions.

Using functional near-infrared spectroscopy (fNIRS), the research

found that performing the task with eyes open significantly

influenced dorsolateral prefrontal cortex activation, especially on

the paralyzed side. These findings suggest that cognitive-motor

therapies, which activate cognitive control brain regions through

sensory tasks, might be effective in rehabilitating motor functions

in cerebral infarction patients.

The study by Chen, Huang, et al. explores the use of functional

near-infrared spectroscopy (fNIRS) and transcranial magnetic

stimulation (TMS) to assess interhemispheric imbalance and its

correlation with motor function recovery after stroke. The research

demonstrates that combining TMS and fNIRS metrics provides

insights into the role of hemispheric activity in recovery, suggesting

potential for developing individualized neuromodulation strategies

for stroke rehabilitation.

The study by Lin et al. systematically reviews the effects of

noninvasive brain stimulation (NIBS) on dual-task performance

across different populations, including healthy young adults, older

adults, and individuals with Parkinson’s disease (PD) and stroke.

The research assesses both transcranial direct current stimulation

(tDCS) and repetitive transcranial magnetic stimulation (rTMS),

focusing on their impact on balance, mobility, and cognitive

function under single-task and dual-task conditions. The findings

suggest promising effects of tDCS and rTMS in improving dual-

task walking and balance performance across these diverse groups,

although the heterogeneity of the studies and limited data prevent

definitive conclusions.

In the groundbreaking study conducted by Xiao et al., the team

delves into the realm of music therapy, showcasing its profound

impact on patients in a minimally conscious state (MCS). This

ingenious and high-quality original research not only sheds light

on the significant improvements in autonomic nervous system

indicators and Glasgow Coma Scale scores but also leads to a

pivotal change in clinical practice. By comparing the outcomes

among patients receiving music therapy to those provided with

familial auditory stimulation or standard care, Xiao et al. reveal the

potential of music therapy as a superior rehabilitative intervention.

The research convincingly argues for the integration of music

therapy into the standard neurorehabilitation protocol, marking

a transformative step forward in enhancing the quality of life

and recovery prospects for MCS patients. This study stands as a

testament to the power of innovative therapeutic approaches in

revolutionizing patient care in neurorehabilitation.

The study by Song et al. explores the potential of ultrasonic

neuromodulation mediated by mechanosensitive ion channels,

highlighting its non-invasive, high-resolution, and targeted

approach as an alternative to drug-based and invasive therapies.

This perspective outlines the roles of various mechanosensitive ion

channels like Piezo and TRP channels in neuronal excitability and

biological effects induced by ultrasound, emphasizing the need for

deeper understanding and further research in this promising field.

The study by Yang et al. focuses on the effects of acupuncture

on brain function in patients with Cerebral Small Vessel Disease

Cognitive Impairment (CSVDCI). It utilized amplitude of low-

frequency fluctuation (ALFF) analysis in a randomized control trial

setting to assess changes in brain activity. The findings suggest

that acupuncture treatment significantly modulates the functional

activity of certain brain regions in CSVDCI patients, pointing

toward its potential utility in enhancing cognitive functions

through specific neural mechanisms.

The study by Xia et al. examines the effect of acoustic

startle priming (ASP) on the activation of the reticulospinal tract

(RST) and its influence on motor response time. Through an

innovative approach using functional near-infrared spectroscopy

(fNIRS), they observed increased activation in the right dorsolateral

prefrontal cortex and changes in frontoparietal activity during

ASP tasks. These findings suggest the involvement of the right

dorsolateral prefrontal cortex and frontoparietal network in

regulating the StartleReact effect and RST facilitation, providing

new insights into the neural mechanisms underlying motor control

and facilitation.

The study by Liu L. et al. introduces a novel rodent-

specific transcranial magnetic stimulation (TMS) coil equipped

with a custom shielding device to enhance focal stimulation. This

development aims to improve the spatial focus of TMS in animal

models, thereby facilitating more precise neuroscientific research.

Their findings demonstrate that the shielding device significantly

narrows the stimulated area without compromising the intensity

of the core magnetic field, potentially enabling more targeted brain

area stimulation in rodent studies of neurological disorders.

The study by Zhang et al. focuses on identifying biological

features associated with post-stroke depression (PSD) through

machine learning algorithms. By analyzing gene expression profiles

and employing weighted gene co-expression network analysis
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(WGCNA), the research identifies key genes and metabolic

pathways linked to PSD. The findings highlight the potential of

specific genes, SDHD and FERMT3, as diagnostic and therapeutic

biomarkers for PSD, offering new avenues for early diagnosis and

treatment strategies in stroke patients.

The study by Liu S. et al. explores the correlation between

balance function, plantar pressure distribution, and gait parameters

in patients with cerebral infarction in the basal ganglia region.

It focuses on analyzing how balance function influences plantar

pressure and hemiplegic gait, utilizing the Berg Balance Scale

among other measures. The findings indicate a significant

relationship between balance function and various gait and

pressure parameters, suggesting that interventions aimed at

improving balance could enhance gait performance and safety in

stroke rehabilitation.

The study by Chen, Huang et al. analyzed spontaneous

brain activity in patients with cerebral small vessel disease

(cSVD), using amplitude of low-frequency fluctuation (ALFF)

in different frequency bands. They found that cSVD patients

exhibited significantly lower ALFF, particularly in the cerebellum,

hippocampus, and occipital cortex compared to healthy controls,

suggesting these regions’ involvement in cSVD-related cognitive

decline. This research adds to the understanding of cSVD’s impact

on brain function and its association with cognitive impairment.

The study by Zhao et al. reviews advancements in diagnosing

Alzheimer’s disease (AD) and mild cognitive impairment (MCI)

using 11C-PIB-PET/CT imaging and common neuropsychological

tests. It highlights the critical role of early detection and diagnosis

through PET/CT imaging in identifying amyloid deposits, which

are significant in the pathology of AD and MCI. This approach,

combined with neuropsychological assessments, can improve

diagnostic accuracy, offering a pathway for early intervention and

potentially slowing disease progression.

The study by Zhou et al. provides a comprehensive analysis

of hub genes related to oxidative stress in ischemic stroke.

Through integrating datasets and employing machine learning

methods, they identify key genes and pathways associated with

oxidative stress, suggesting potential therapeutic targets. This

research underscores the critical role of oxidative stress in stroke

pathophysiology and highlights the promise of antioxidant therapy

in treatment strategies.

The study by Shen et al. uses functional near-infrared

spectroscopy (fNIRS) to examine the effects of focal muscle

vibration (FMV) therapy on cortical activity in hemiplegic

stroke patients. Specifically, it investigates how FMV applied

to the forearm flexor muscles influences cortical regions and

correlates with clinical characteristics. The results indicate FMV

can activate additional brain cortices, including the prefrontal

and sensorimotor areas, potentially supporting its use in stroke

rehabilitation to enhance motor function and neural plasticity.
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Background: Because it is one of the important pathways for promoting motor

recovery after cortical injury, the function of the reticulospinal tract (RST) has

received increasing attention in recent years. However, the central regulatory

mechanism of RST facilitation and reduction of apparent response time is not

well understood.

Objectives: To explore the potential role of RST facilitation in the acoustic

startle priming (ASP) paradigm and observe the cortical changes induced by

ASP reaching tasks.

Methods: Twenty healthy participants were included in this study. The reaching

tasks were performed with their left and right hands. Participants were instructed

to get ready after the warning cue and complete the reach as soon as they heard

the Go cue. Half of the testing trials were set as control trials with an 80-dB

Go cue. The other half of the trials had the Go cue replaced with 114-dB white

noise to evoke the StartleReact effect, inducing reticulospinal tract facilitation.

The response of the bilateral sternocleidomastoid muscle (SCM) and the anterior

deltoid was recorded via surface electromyography. Startle trials were labeled

as exhibiting a positive or negative StartleReact effect, according to whether

the SCM was activated early (30–130 ms after the Go cue) or late, respectively.

Functional near-infrared spectroscopy was used to synchronously record the

oxyhemoglobin and deoxyhemoglobin fluctuations in bilateral motor-related

cortical regions. The β values representing cortical responses were estimated via

the statistical parametric mapping technique and included in the final analyses.

Results: Separate analyses of data from movements of the left or right side

revealed significant activation of the right dorsolateral prefrontal cortex during

RST facilitation. Moreover, left frontopolar cortex activation was greater in

positive startle trials than in control or negative startle trials during left-

side movements. Furthermore, decreased activity of the ipsilateral primary

motor cortex in positive startle trials during ASP reaching tasks was observed.
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Conclusion: The right dorsolateral prefrontal cortex and the frontoparietal

network to which it belongs may be the regulatory center for the StartleReact

effect and RST facilitation. In addition, the ascending reticular activating system

may be involved. The decreased activity of the ipsilateral primary motor cortex

suggests enhanced inhibition of the non-moving side during the ASP reaching

task. These findings provide further insight into the SE and into RST facilitation.

KEYWORDS

acoustic startle, functional near-infrared spectroscopy, reticulospinal tract,
rehabilitation, frontoparietal cortex

Introduction

As part of the extrapyramidal system, the reticulospinal tract
(RST) consists of bundles of axons that convey signals from
the reticular formation in the brainstem to the spinal cord;
it participates in movement control in humans (Baker, 2011).
This descending pathway, together with the more well-known
corticospinal tract (CST), constitutes the major control system
of human voluntary movement (Brownstone and Chopek, 2018).
However, compared to our understanding of the function of the
CST, that of the RST has rarely been explored in humans. Based on
animal research, the RST is thought to control proximal and axial
muscles and be primarily responsible for locomotion (Matsuyama
and Drew, 2000) and postural adjustment (Schepens and Drew,
2004). However, some recent studies in humans have revealed
extensive participation of the RST in muscle contraction and motor
control (Smith et al., 2019; Glover and Baker, 2022), and it plays a
pivotal role in the remastering of motor control after brain injury
(Zaaimi et al., 2012; Jang et al., 2015). The ipsilateral innervation
(Boyne et al., 2021; Fisher et al., 2021; Ko et al., 2021) and abundant
plasticity of the RST (Glover and Baker, 2020) provide tremendous
potential for the recovery of motor function after CST impairment.

However, few methods or approaches have been developed
to measure RST function in humans. Currently, most studies on
human motor control by the RST utilize either the ipsilateral motor
evoked potentials (iMEPs) via transcranial magnetic stimulation
(Wassermann et al., 1994; Bawa et al., 2004; Maitland and
Baker, 2021), the muscle activation latency after acoustic startle
(Rangarajan et al., 2022) or a combination of the two (Smith et al.,
2019) to deduce its function from target muscles. Through the
cortical-reticulospinal pathway, transcranial magnetic stimulation
likely indirectly affects the RST and triggers iMEPs of the target
muscle (Fisher et al., 2012). The changes in activation latency
and amplitude of iMEPs are believed to reflex RST adaptation
during strength training and motor recovery from central nervous
system injury (Alagona et al., 2001; Atkinson et al., 2022). Typically,
iMEPs exhibit higher trigger thresholds and longer latencies than
contralateral MEPs in healthy subjects (Bawa et al., 2004). However,
in some patients with subcortical defects, a decreased threshold and
shorter activation latency were also observed (Alagona et al., 2001).
This phenomenon may be explained by the enhanced involvement
of the RST in motor control after stroke (Zaaimi et al., 2012;
Choudhury et al., 2019).

Acoustic startle stimuli are also widely used to explore the
function of the RST in movement. Using a loud sound (>110 dB)
as the start signal of a task can evoke the early initiation of prepared
movement at an extremely short latency (DeLuca et al., 2022). This
phenomenon is called the StartleReact effect (SE) and is recognized
as the result of the rapid transmission of motion commands mainly
via the RST (Carlsen and Maslovat, 2019). Despite not always
occurring simultaneously (Leow et al., 2018), early activation of
the sternocleidomastoid muscle (SCM) due to the startle reflex
is strongly correlated with early initiation of movement in this
paradigm (Maslovat et al., 2021). The SCM activation latency in the
time window of 30 to 130 ms provides a convenient marker of the
SE (Carlsen et al., 2011; van Lith et al., 2018). Therefore, analyses
that simultaneously incorporate SCM response time and limb
muscle activity enable better dissection of RST function in motor
control (Maslovat et al., 2021). With this approach, researchers have
revealed increased motor unit discharge (Skarabot et al., 2022),
additional muscle contraction (Fernandez-Del-Olmo et al., 2014),
a greater range of motion during motor initiation (McInnes et al.,
2020), and even better motor (Rahimi and Honeycutt, 2020) or
speech output (Swann et al., 2022) in stroke survivors. Given the
hardware demands and technical challenges of this approach, using
acoustic startle priming (ASP) to assess the characteristics and
adaptation of the RST for motor control may be an easier approach.

In some previous studies, auditory stimuli have been found
to modulate cortical excitability (Furubayashi et al., 2000; Lofberg
et al., 2014), providing input via the ascending reticular activating
system to the brain cortex (Saper et al., 2005). Furubayashi et al.
(2000) were one of the first to examine the effects of acoustic stimuli
on the cortex. Their study revealed transient inhibitory effects of
sound stimuli on the motor cortex in the resting state. Subsequent
studies further confirmed this inhibitory pathway derived from
the RST (Fisher et al., 2004; Kuhn et al., 2004). However, the
inhibitory effects detected in the resting state were completely
reversed during motor preparation. In people highly prepared for
action, corticospinal excitability was increased after loud auditory
stimuli (Marinovic et al., 2014). A recent study also revealed
that inducing the startle effect at the end of movement promotes
motor learning and improves task performance (Leow et al., 2021).
However, beneficial effects of ASP cannot be attributed to changes
in excitability during preparation. The acoustic stimuli did not
evoke significant changes in the ipsilateral motor cortex during
preparation in a dual-coil transcranial magnetic stimulation (TMS)
paradigm (Marinovic et al., 2015). A more recent study based on

Frontiers in Neuroscience 02 frontiersin.org9

https://doi.org/10.3389/fnins.2023.1112046
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-17-1112046 February 11, 2023 Time: 14:29 # 3

Xia et al. 10.3389/fnins.2023.1112046

a combined acoustic startle-TMS paradigm further validated the
above findings and disentangled evidence of the cortical effects
from the startle effect. The different MEP changes in the M1 at rest
and during motor preparation induced by acoustic startle may be
indirect and regulated by higher-level centers (Chen et al., 2022).
Due to the limitation of TMS paradigms, it may be necessary to use
imaging techniques to further verify the existence of this regulatory
center.

Although the exact neural mechanism by which loud sounds
induce the SE is unclear, it most likely involves some known
subcortical and cortical pathways in the brain (Marinovic and
Tresilian, 2016; Carlsen and Maslovat, 2019). In mammalian
studies, two neural pathways (the cortico-striato-pallido-pontine
network and an independent circuit from the central nucleus
of the amygdala to the pontine reticular nucleus) have been
found to participate in the modulation of prepulse inhibition
of the auditory startle reflex (Cano et al., 2021; Zhang et al.,
2022). Moreover, activity in the supplementary motor area
(SMA), supramarginal gyrus, cingulate cortex, anterior insula
and cerebellar lobule was also associated with startle stimuli
(Mueller-Pfeiffer et al., 2014). Two hypothetical cortical circuits
underlying ASP were proposed by Marinovic and Tresilian (2016)
i.e., the startle stimuli may transmit information through the
thalamus to the auditory cortex via the primary auditory pathway
and then through other motor cortices to the primary motor
cortex (M1) to form motor commands descending to the spinal
cord. Additionally, the stimulus signal can directly reach the
pontomedullary reticular formation (PMRF) and then the motor
cortex via the thalamus to complete motor output. With the
activation of these subcortical structures, the ascending reticular
activation system (ARAS) is likely to be activated, which arises
from the PMRF and has extensive connections with the frontal
and parietal cortex, including the sensorimotor network (SMN). In
addition, some high-level cortical modulation networks identified
from resting-state functional magnetic resonance imaging (fMRI)
(Yeo et al., 2011) also have confirmed connectivity with the ARAS
(Weng et al., 2017; Wijdicks, 2019). Among them, the triple-
network model (Menon, 2011) involving the default mode network
(DMN) (Buckner, 2013), the lateral frontoparietal network (FPN)
(Uddin et al., 2019), and the salience network (SN) (Menon and
Uddin, 2010) has received substantial attention. As part of the
central executive network, the FPN is located in the dorsolateral
prefrontal cortex (dlPFC) and posterior parietal cortex and is
involved in working memory, sustained attention, and problem
solving. However, the DMN, which includes regions in similar
areas, plays the opposite role. The DMN is active when an
individual is not focused on external stimuli. The SN acts as an
interface between the two networks; it integrates sensory, emotional
and cognitive information to balance external stimuli with internal
mental processes (Menon, 2011). These large-scale brain networks
cover most of the frontal and parietal cortex and some subcortical
regions.

Functional magnetic resonance imaging is an excellent
method of measuring cortical activity. However, its limited space
precludes large-scale arm and torso movements, as needed for
the ASP reaching paradigm that we developed (Xia et al.,
2021). Additionally, its magnetic field poses a large challenge
to recording equipment. Functional near-infrared spectroscopy
(fNIRS) provides another method of observing cortical activation

during motor tasks. It is a non-invasive neuroimaging technique
that detects changes in the oxygenation of hemoglobin in brain
tissue via differences in optical absorption (Chen et al., 2020). With
advances in data processing, it has been widely used to monitor
cortical activation during various cognitive and motor tasks (Chen
et al., 2020; Huo et al., 2021). Since fNIRS has less environmental
limitations and allows a large range of motion during recording,
it is a suitable method for dynamic observation of cortical activity
during RST facilitation in the ASP reaching tasks.

In the present study, we aimed to investigate the cortical
activation features associated with ASP during movement
preparation and further explore the location of potential regulatory
centers for the SE and RST facilitation. The bilateral prefrontal
cortex, frontal cortex, M1, premotor cortex and SMA were regions
of interest. The testing paradigm was consistent with our previous
experiment, in which participants were first prompted to enter
a state of high movement readiness and subsequently received
ASP (Xia et al., 2021). We hypothesized that some motor-related
cortices would show different activation in the presence of SE.
The results of this study will help to reveal the mechanisms of the
ASP-induced SE and RST facilitation. Regulatory centers necessary
for RST facilitation can guide future in-depth research.

Materials and methods

Participants

A total of 20 volunteers (7 females and 13 males, mean age:
26.26 ± 6.65 years, mean body mass index: 22.80 ± 2.57 kg/m2)
were invited to participate in this study. All participants were
healthy, right-handed, and had good tolerance for sudden 114-dB
stimuli. Before participation, all subjects signed informed consent
forms. Data from this study were part of a former project that
was approved by the Ethics Committee of Tongji Hospital (No.
TJ-IRB20210648) and preregistered (No. ChiCTR2100048222).

The sample size was estimated via G∗Power 3.1 software based
on the muscle activation latency of the AD after ASP. According
to a recent review (DeLuca et al., 2022), the effect size d was set
as 0.64, and 17 subjects were needed to detect significance with a
paired t test with a power of 0.8 and an α level of 0.05. Accounting
for a 15% drop-out rate, 20 subjects were needed.

Experimental procedure

The procedure for this test was exactly the same as that in our
previous study (Xia et al., 2021). Participants were asked to sit in
front of a blank blackboard in a quiet environment. First, the subject
was asked to place their upper limbs next to their trunk and keep
their whole bodies relaxed as much as possible. A pallet at 80% of
shoulder height was placed on the anterolateral side of the testing
limb at a distance of 120% of arm length. Subjects were asked
to perform the reaching tasks according to the auditory stimuli
from a headphone (Sennheiser HD25-I; Wedemark, Germany).
The left and right sides of the subject were tested separately. To
maintain sufficient attention during the testing process, three kinds
of reaching tasks containing 10 repetitions each were randomly
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assigned. These tasks included reaching to tap the center of the
pallet and reaching to grasp a tennis ball or a coffee takeaway cup
with the palm facing inward. Thus, each participant completed a
total of 30 trials on their left and right sides.

After 10 consecutive trials, the subjects were allowed to rest and
relax for 1 min. Each trial took approximately 23 s. In the first 5 s of
the trial, participants were verbally informed of the upcoming task
and then heard an 82-dB warning “beep” continuously for 0.5 s to
prompt them to be ready. After 2.5–3 s, a 40-ms Go cue was emitted
to initiate the aiming task. This sound clip was randomly placed in
the aforementioned 500-ms interval to prevent anticipation. Half
of the 30 trials were set as control trials, and their Go cues were
the same 40-ms “beep” as the warning cue. However, the other 15
trials (startle trials) used a 40-ms 114-dB white noise clip as the
Go cue. The order of control or startle trials was also randomized
before each test. A 15-s interval was set between every two trials
to allow full relaxation. To complete all reach tasks, participants
used their left and right hands to perform 30 trials with 80-dB
stimuli (control trials) and 114-dB stimuli (startle trials), with 15
trials each. The Psychtoolbox-3 package within MATLAB (2017b,
MathWorks, USA) was used to design and implement those tests.
A custom-written program was used to simultaneously trigger
the markers on the surface electromyography (sEMG) and fNIRS
systems as the Go cue was released.

Surface electromyography and data
preprocessing

The Ultium EMG system (Noraxon USA Inc., Scottsdale,
AZ, USA) was used to collect the sEMG signals with a
sampling rate of 2,000 Hz. Our experimental procedures followed
SENIAM recommendations. After the electrodes were connected
to the acquisition unit, they were placed on the muscle belly
of both (bilateral) SCMs and the anterior deltoid (AD) of
the movement side.

Raw sEMG data were processed in MATLAB (2017b,
MathWorks, Natick, MA, USA). After data segmentation, the data
were bandpass filtered (30–300 Hz) and then notch filtered at 50 Hz.
The Teager–Kaiser energy operation was applied to further process
the filtered data to achieve higher reliability of muscle onset (Solnik
et al., 2010). The threshold method was used to detect the muscle
onset time. The threshold was set as the mean + 3 SD of baseline
amplitude at a time window of 2,500–500 ms before the Go cue
on each trial. The time intervals from the Go cue to muscle onset of
SCMs and the AD were recorded as the reaction time and activation
latency, respectively, for further analysis.

Trials were first excluded if the AD reaction time did not occur
in the time window of 30 to 400 ms after the Go cue. For startle
trials, those with a reaction time of either SCM within 30 to 130 ms
after the Go cue were marked as a positive startle reaction (SCM+)
(van Lith et al., 2018). Similarly, those without obvious SCM
activation in this interval were marked as a negative startle reaction
(SCM−). In addition, taking into account the SCM+ incidence
in the previous study (Xia et al., 2021) and the requirements of
fNIRS data analysis, data from subjects with a disproportionately
low proportion of SCM+ trials (<3/15) were considered invalid and
excluded from the analysis.

Functional near-infrared spectroscopy
(fNIRS) and data preprocessing

During testing, changes in deoxyhemoglobin (HbR) and
oxyhemoglobin (HbO) concentrations were monitored via a
wearable fNIRS device (NIRSport2, Nirx Medical Technologies
LLC, Berlin, Germany). Subjects were asked to rest in a quiet
sitting position for more than 1 min before starting the test.
Forty valid NIRS channels with 16 dual-wavelength LED sources
(760 nm and 850 nm) and 16 detectors were placed to cover the
bilateral prefrontal cortex, frontal cortex, M1, premotor cortex
and SMA. The distance between the first source and detector
was 3.1 cm, and the exact distance of the other channels was
automatically calculated by nirsLAB software (version 2017.06,
NIRx Medical Technologies, Glen Head, NY, USA). The HbR and
HbO concentrations at each location were recorded at a sampling
rate of 6.1 Hz. The detailed locations of each source and detector as
well as the representative Brodmann area and MNI coordinates of
each channel are provided in Figure 1 and Table 1.

The fNIRS data were processed via nirsLAB software (version
2017.06, NIRx Medical Technologies, Glen Head, NY, USA).
During data processing, invalid error trials and tests marked during
sEMG data processing were excluded from subsequent analysis.
The two 1-min resting periods in each test were truncated. Data
from 5 s before to 35 s after the Go cue in each trial were retained
for analysis. Data from 100 s before the first trial to 50 s after
the last trial were also preserved as a baseline reference. The gain
setting (Zhang et al., 2018) and coefficient of variation were set
at 7 and 15%, respectively, to improve the signal-to-noise ratio.
Datasets with over 10 bad channels (out of 40 total channels) were
excluded from further analysis. Discontinuities and spike artifacts
were removed with a 5-SD threshold. Then, a bandpass filter at 0.01
to 0.09 Hz (Pinti et al., 2018) was used to filter the remaining data.
The intensity data were converted into optical density changes and
transformed to relative fluctuations of HbO/HbR concentrations by
using the modified Beer-Lambert law (Cope and Delpy, 1988). Both
the HbO and HbR signals were chosen for subsequent processing.
An event time window of 5 s after each warning cue in each
trial was set to calculate the hemodynamic response function
with HbO/HbR fluctuations based on a generalized linear model.
Within-subject statistical parametric mapping (SPM) was used to
estimate the β values of each fNIRS channel.

Statistical analyses

The tasks with the left and right hands were processed and
analyzed separately. Due to the similar sEMG responses (Xia et al.,
2021), the side differences in the three reaching tasks were neglected
in this study. The reaction time of SCM in each kind of trial of
each subject was averaged and reported as the mean with standard
deviation. The activation latency of AD in the control, SCM+

and SCM− trials was averaged for each separate left- or right-
side test and reported as the mean with standard deviation. The
Shapiro-Wilk test was used to evaluate the normal distribution
of variables. After confirming the homogeneity of variance, two-
way analyses of variances (ANOVAs) with Bonferroni post hoc
comparisons were used to identify significant difference in muscle
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FIGURE 1

The placement of sources and detectors for fNIRS detection in 10/10 EEG system. The red and blue circles represent the ordered sources and
detectors, respectively. The pink line between the two represents the active channel used for this study.

reaction time according to trial type and movement side. Two-
way ANOVAs with Bonferroni post hoc comparisons were used
to detect differences in β values of channels in the same model.
However, few significant differences in β values within different
trials were found. No difference was detected between the left
and right movement sides. A further one-way ANOVA for data
from each movement side was also performed. However, the only
significant differences among the three kinds of trials were in β

values from channel 17 on the HbR response. In addition, the large
standard deviations of β values from these channels revealed large
interindividual variability. Considering that this study involved a
within-subjects design, paired t tests with a Bonferroni correction
(P < 0.05/2 = 0.025) were chosen as an alternative method of
detecting within-individual differences in β values between pairs
among the 3 kinds of trials. SPSS 24.0 software (SPSS, Chicago, IL,
USA) was used for statistical analyses, and the significance was set
at P < 0.05.

Results

Characteristics of valid trials and
comparison of muscle activation latency

A total of 40 datasets from the left and right sides of 20
subjects were collected. Among them, 8 datasets were directly

excluded from subsequent analysis because there were fewer than
20% of SCM+ trials (3/15 trials). Similarly, two other datasets
were eliminated due to the number of bad channels in the
simultaneously collected fNIRS data (>10/40 channels). Of the
remaining 900 trials from 30 datasets, 32 trials were further
excluded due to apparent early movement initiation (AD reaction
time <30 ms) or delayed initiation (AD reaction time >400 ms).
Therefore, data from 30 datasets (15 from the left side to 15
from the right side) consisting of 429 control trials, 166 SCM+

trials, and 273 SCM− trials were included in the final analyses.
Supplementary Material 1 provides the proportion of SCM+

trials in the left- or right-side movements of each subject. The
mean positive startle rate (SCM+) was approximately 37.95%.
The mean SCM response times of the control and SCM+/− trials
were 201.62 ± 74.36 ms and 117.31 ± 52.69/141.28 ± 58.95 ms,
respectively. Two-way ANOVAs revealed a significant main effect
of trial type on SCM response time [F(2,825) = 111.76, P < 0.001],
and the post hoc Bonferroni comparisons also revealed significant
differences between control and SCM+ trials (P < 0.001) and
between SCM+ and SCM− trials (P < 0.001). No significant
difference was found between control and SCM− trials (P > 0.05).
Moreover, significant main effects of trial type (SCM+, SCM−,
or control) [F(2,867) = 77.88, P < 0.001] and movement side
[F(1,867) = 1.06, P = 0.025] on the AD reaction time were detected.
Significant differences between each pair of trials were found in
the post hoc Bonferroni comparisons (P < 0.01). The mean AD
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TABLE 1 Coordinates and cortical areas of the fNIRS channels.

Channel
no.

Source-
detector

10/10_EEG
_system

MNI coordinate Brodmann area Specificity (%)

X (mm) Y (mm) Z (mm)

1 S1-D1 F3-F5 −46 39 26 45–pars triangularis Broca’s area 72.56

2 S1-D2 F3-F1 −31 39 41 9–Dorsolateral prefrontal cortex 66.61

3 S2-D1 AF7-F5 −47 46 6 46–Dorsolateral prefrontal cortex 43.20

4 S2-D3 AF7-Fp1 −33 59 −2 11–Orbitofrontal area 32.71

5 S3-D2 AF3-F1 −23 52 32 9–Dorsolateral prefrontal cortex 48.44

6 S3-D3 AF3-FP1 −24 63 9 10–Frontopolar area 69.63

7 S3-D4 AF3-AFz −12 62 23 10–Frontopolar area 75.76

8 S4-D2 Fz-F1 −9 41 50 9–Dorsolateral prefrontal cortex 63.16

9 S4-D4 Fz-Afz 2 50 39 9–Dorsolateral prefrontal cortex 61.77

10 S4-D5 Fz-F2 10 41 50 9–Dorsolateral prefrontal cortex 68.93

11 S5-D3 Fpz-Fp1 −12 67 0 10–Frontopolar area 54.50

12 S5-D4 Fpz-AFz 1 64 14 10–Frontopolar area 87.48

13 S5-D6 Fpz-Fp2 13 67 0 10–Frontopolar area 54.46

14 S6-D4 AF4-Afz 13 61 24 10–Frontopolar area 72.47

15 S6-D5 AF4-F2 22 52 33 9–Dorsolateral prefrontal cortex 51.52

16 S6-D6 AF4-Fp2 25 63 9 10–Frontopolar area 68.78

17 S7-D5 F4-F2 30 40 41 9–Dorsolateral prefrontal cortex 68.37

18 S7-D7 F4-F6 48 42 22 46–Dorsolateral prefrontal cortex 82.10

19 S8-D6 AF8-Fp2 34 59 −2 10–Frontopolar area 31.08

20 S8-D7 AF8-F6 48 46 5 46–Dorsolateral prefrontal cortex 43.18

21 S9-D9 FC6-C6 66 −3 24 6–Pre-motor and supplementary motor cortex 66.08

22 S9-D10 FC6-FC4 56 12 33 6–Pre-motor and supplementary motor cortex 40.06

23 S10-D9 C4-C6 62 −20 37 2–primary somatosensory cortex 27.65

24 S10-D10 C4-FC4 52 −4 48 6–Pre-motor and supplementary motor cortex 56.87

25 S10-D11 C4-CP4 53 −35 52 40-Supramarginal gyrus part of Wernicke’s area 50.04

26 S10-D12 C4-C2 42 −21 62 4–Primary motor cortex 36.77

27 S11-D10 FC2-FC4 39 12 54 6–Pre-motor and supplementary motor cortex 38.21

28 S11-D12 FC2-C2 27 −4 68 6–Pre-motor and supplementary motor cortex 82.46

29 S12-D11 CP2-CP4 39 −49 60 40-Supramarginal gyrus part of Wernicke’s area 45.11

30 S12-D12 CP2-C2 28 −36 71 4–Primary motor cortex 31.56

31 S13-D13 FC1-C1 −26 5 68 6–Pre-motor and supplementary motor cortex 81.78

32 S13-D14 FC1-FC3 −38 12 55 6–Pre-motor and supplementary motor cortex 37.52

33 S14-D13 CP1-C1 −27 −36 71 4–Primary Motor Cortex 31.56

34 S14-D15 CP1-CP3 −39 −48 60 40-Supramarginal gyrus part of Wernicke’s area 41.82

35 S15-D13 C3-C1 −42 −20 62 4–Primary motor cortex 34.98

36 S15-D14 C3-FC3 −50 −3 50 6–Pre-motor and supplementary motor cortex 61.71

37 S15-D15 C3-CP3 −52 −34 52 40-Supramarginal gyrus part of Wernicke’s area 43.32

38 S15-D16 C3-C5 −60 −18 37 3–primary somatosensory cortex 23.83

39 S16-D14 FC5-FC3 −55 12 34 44–part of Broca’s area/
6–Pre-motor and supplementary motor cortex

47.81/35.96

40 S16-D16 FC5-C5 −62 −3 23 43–Subcentral area 47.13

reaction times of SCM± trials and control trials in the right-
side movements were 132.07 ± 39.97/157.84 ± 43.28 ms and
191.65 ± 72.02 ms, respectively. The mean AD reaction times
of SCM+/− trials and control trials in the left-side movements
were 134.91 ± 49.04/166.01 ± 47.46 ms and 203.76 ± 70.26 ms,
respectively. The activation latency of AD in SCM+ trials was
approximately 60 ms faster than that in control trials.

Comparisons of β values in fNIRS data
among control, SCM+, and SCM− trials

Thirty datasets (15 left-side and 15 right-side) from 17 subjects
were included in the analyses. The primary outcome was differences
in β values of the 40 channels among control, SCM+, and
SCM− trials.

Frontiers in Neuroscience 06 frontiersin.org13

https://doi.org/10.3389/fnins.2023.1112046
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-17-1112046 February 11, 2023 Time: 14:29 # 7

Xia et al. 10.3389/fnins.2023.1112046

TABLE 2 The results of β value comparisons among control, SCM+, and SCM− trials in the positive channels.

Channel Left and right
side tasks

HbO/HbR Trials β values (×10−5) Paired-T
t

Uncorrected
P-values

Mean SD SEM

Control −0.69 18.48 4.62 SCM+ vs. Control −2.98 0.009

11 Left HbR SCM+ 8.32 21.25 5.30 SCM+ vs. SCM− 2.98 0.009

SCM− −3.02 70.78 22.75

Control 24.03 271.12 70.00 SCM+ vs. Control −2.86 0.013

17 Right HbR SCM+ 156.61 350.21 90.42

SCM− −136.49 274.13 70.78

Control 1.72 19.15 4.79 SCM+ vs. SCM− −3.13 0.007

18 Left HbO SCM+ −12.43 35.50 8.88

SCM− −1.02 32.35 8.09

Control −46.78 920.95 246.14 SCM+ vs. SCM− −3.00 0.010

30 Left HbO SCM+ −280.33 833.95 222.88

SCM− 343 922.36 246.51

Control −171.48 272.07 90.69 SCM+ vs. SCM− −2.96 0.017

33 Right HbR SCM+ 9.28 273.11 91.04

SCM− −281.92 489.79 163.26

SD and SEM represent standard deviation and standard error of mean, respectively.

In the right-side movements, the one-way ANOVA revealed
a significant main effect of trial type [F(2,42) = 3.57, P = 0.037]
on the β values of the HbR response in channel 17. The post hoc
Bonferroni comparisons suggested significantly higher fluctuation
in SCM+ trials than in SCM− trials (P = 0.032). Although this
post hoc comparison did not reveal a significant difference between
SCM and control trials (P > 0.05), the difference between the two
kinds of trials was revealed via a paired t test after Bonferroni
correction (t14 = −2.858, uncorrected P = 0.013). Additionally, the
HbR responses in SCM+ trials of channel 33 were significantly
smaller than those in control trials (t12 = −2.961, uncorrected
P = 0.017). However, no differences were found in the other
pairwise comparisons after Bonferroni correction (P > 0.05). As
shown in Table 1 and Figure 1, channel 17 and channel 33 had
specificities of 68.37 and 31.56%, respectively, for the right dlPFC
and left M1. No differences were found in the β values of HbR
responses in other channels or in HbO responses in all channels
(P > 0.05).

In the left-side movements, paired t tests revealed a
significant difference in β values from HbR in channel 11
between SCM+ trials [(8.32 ± 21.21) × 10−5] and control trials
[(−0.69 ± 18.48) × 10−5] (t12 = −2.976, uncorrected P = 0.009).
A greater response was also found in SCM+ trials than in
SCM− trials [(−3.02 ± 22.75) × 10−5] (t11 = 2.976, uncorrected
P = 0.009). No difference was found between the SCM and control
trials (P > 0.05). Channel 11 had a specificity of 54.50% for the
left frontopolar area. In the comparison between SCM+ and SCM−

trials, paired t tests revealed significantly larger and smaller HbO
responses of SCM+ trials in channels 18 (t12 =−3.132, uncorrected
P = 0.007) and 30 (t12 = −3.002, uncorrected P = 0.010),
respectively. However, no differences were found in other pairwise
comparisons after Bonferroni correction (P > 0.05). The above two

channels correspond to the right dlPFC (specificity: 82.10%) and
the right M1 (specificity: 31.56%), respectively. The β values of the
3 kinds of trials for every positive channel of HbO/HbR responses
are provided in Table 2.

Each trial took approximately 23 s, so the event-related
fluctuations in HbO/HbR concentrations of approximately
0.043 Hz were likely to occur in the relevant cortex. The
representative results of the block-averaged hemodynamic
response in HbR/HbO concentrations of channel 11 (left
frontopolar area), channel 18 (right dlPFC) and channel 30
(left M1) during the left-side tests are provided in Figure 2.
Figures 2A, B show the hemodynamic responses in HbO/HbR
concentrations of channel 11 for control, SCM+ and SCM− trials
35 s after the warning cue. Figure 2B further shows the HbR
responses. There was a significantly greater response in SCM+

trials than in the other two trials according to paired t tests.
Figures 2C–F show the hemodynamic HbO/HbR responses and
the positive HbO responses, respectively, during the same period.

Figure 3 displays representative results from one subject and
one movement side of statistical parametric mapping analysis of
the fNIRS data (HbO and HbR) that were used in pairwise t test
(1: −1) of brain activation between SCM+ and SCM− trials. The
differences in activation of the frontal lobe and ipsilateral M1 are
shown.

Discussions

Previous studies investigated the facilitating effects of acoustic
startle stimuli on cortical and subcortical areas (Mueller-Pfeiffer
et al., 2014; Zhang et al., 2022). However, few studies investigated
the activation of the non-motor cortex and potential brain
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FIGURE 2

Temporal hemodynamic response of HbO and HbR in control, SCM+ and SCM− trials. (A,B) Show the hemodynamic responses in HbO/HbR
concentrations of channel 11 for control, SCM+ and SCM− trials 35 s after the warning cue. In panel (B) shows the HbR responses. (C,D) Show the
hemodynamic HbO/HbR responses and the positive HbO responses in channel 18, respectively. (E,F) Show the hemodynamic HbO/HbR responses
and the positive HbO responses in channel 30, during the same period.

networks. In contrast to commonly used methods of observing
brain activation under loud stimuli, we used the ASP motor task
to explore the various cortical effects of ASP from movement
preparation to movement initiation. As summarized by Marinovic
and Tresilian (2016) as the expected moment of motor initiation

draws near, preparatory activation of the movement response
circuits occurs, and acoustic stimulus-evoked activity can enhance
this activation. Sudden stimuli have activating or arousing effects
on the sensorimotor system, which could initiate command
generation. Moreover, the triggering effect may depend on the
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FIGURE 3

Topographic maps in the comparison among control and SCM+/−

trials of one subject. The beta images (HbO and HbR) of SCM+ and
SCM− trials were set as 1 and –1, respectively for the t-statistic map.

amplitude and timing of stimuli. Accordingly, the SE is likely
regulated by a higher-level network (Chen et al., 2022). Based on
our findings, the possible brain network mechanisms leading to
ASP are discussed below.

In the present study, we found that ASP reaching trials with
successful RST facilitation (SCM+ trials) evoked greater cortical
activation in prefrontal areas. This result is consistent with the
hypothesized existence of a regulatory center for ASP-induced
movements (Chen et al., 2022). Moreover, SCM+ trials from both
left- and right-side movements exhibited greater activation in the
right dlPFC than control or SCM− trials. Furthermore, consistent
with previous findings that there was no obvious activation of the
M1 after acoustic startle stimuli (Mueller-Pfeiffer et al., 2014; Chen
et al., 2022), we found a potential inhibitory effect of the startle on
the ipsilateral M1 during RST facilitation. The M1 ipsilateral to the
movement side showed a smaller HbR/HbO response during the
ASP reaching trials.

Additional ASP-induced activation of
prefrontal areas

Additional activation in the left frontopolar area (Brodmann
area 10) was found during the left-side ASP reaching tasks
in SCM+ trials. The anterior portion of the prefrontal cortex
in the human brain is involved in memory recall, decision-
making, and various executive functions (Ramnani and Owen,
2004; Koechlin and Hyafil, 2007). Previous studies have noted
that anterior prefrontal activity occurs in motor preparation for a
cued movement (Sahyoun et al., 2004). This cortical activity, which
represents the level of attentional focus and movement readiness,
is obviously closely related to the occurrence of the SE and the

reduced reaction time during RST facilitation (Carlsen et al., 2012;
Leow et al., 2018). These areas typically play an inhibitory role in
motor execution (Brass et al., 2001).

Moreover, the additional activation of the right dlPFC was more
prominent in SCM+ trials of both left and right ASP reaching
tasks. This result highlights the important role of the right dlPFC
in RST facilitation. It is well known that the dlPFC plays a
key role in motor planning, organization, and regulation (Kaplan
et al., 2016). Additionally, the FPN to which the dlPFC belongs
serves as a flexible hub to rapidly instantiate task states through
interactions with other control and processing networks (Marek
and Dosenbach, 2018). This network is activated during motor
sequence tasks and contributes to motor learning (Maruyama
et al., 2021). Simultaneous activation of the FPN and M1 during
motor preparation was also found (Maruyama et al., 2021). In
addition, the FPN was also found to receive projections from
the ARAS, which is primarily responsible for consciousness (Jang
et al., 2021). The connection strength between the FPN and ARAS
revealed a clear positive correlation with the state of consciousness.
Patients in a vegetative state showed a substantial reduction in the
connectivity strength between the PMRF and the frontal cortex
(Jang et al., 2021). More precisely, in the ARAS, one dopamine
signaling pathway arising from the ventral tegmental area has been
proven to play a facilitative role in the frontal cortex (Brown et al.,
2011). Additionally, supported by the ARAS, the signal from the
PMRF can also reach the motor cortex via the thalamus and cause
excitability of the motor cortex (Brown et al., 2011; Marinovic and
Tresilian, 2016). Thus, after activating the cochlear nucleus by loud
acoustic stimuli, an upward signal will reach the PMRF and then
activate the FPN and motor cortex.

In addition, the right dlPFC may also be involved in threat-
induced anxiety. Greater activity in the right dlPFC was found
in subjects who classified themselves as behaviorally inhibited
(Shackman et al., 2009). In our experiment, a 114-dB acoustic
stimulus was used for the Go cue of the prepared reaching task.
In addition to inducing the SE, it also induced a sense of threat and
anxiety.

Dissociable contributions of the right and left dlPFC to different
task demands have been investigated previously (Kaller et al., 2011),
and the right dlPFC may be more involved in the planning of simple
tasks such as ASP reaching. Moreover, some evidence also indicates
lateralization of the PFN. The left PFN may be more strongly related
to language function (Smith et al., 2009) rather than movement.
The right dlPFC is also better at reactive inhibition (van Belle et al.,
2014). Thus, activation of the right dlPFC did not appear to differ
between left and right ASP tasks.

Enhanced inhibitory effect of ASP on the
ipsilateral M1

Typically, activation of the M1 is unlikely to occur prior to
movement onset. The ipsilateral motor cortex (resting side) is in
an inhibited state during motor preparation and execution (Leocani
et al., 2000). In a study based on the dual TMS paradigm, Marinovic
et al. (2015) found that MEPs on the resting side were significantly
facilitated only after movement initiation of the acting side. There
is robust evidence that the ipsilateral M1 is significantly suppressed
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during this period. This inhibition of M1 activity ipsilateral to
the movement side may involve cortico-cortical and subcortico-
cortical circuits.

The interhemispheric inhibition of the two sides of the M1
or from the motor-related cortex in the contralateral hemisphere
has been well explored in previous studies (Ni et al., 2009; Perez
and Cohen, 2009). It is generally believed that the involvement
of transcallosal glutamatergic pathways links the pyramidal tract
with GABAergic interneurons (Reis et al., 2008). It has also been
noted that dysgenesis of the corpus callosum significantly affects
the function of the FPN (Hearne et al., 2019). Therefore, it can
be inferred that there is a potential connection between the FPN
and the corpus callosum. Since the corpus callosum plays a key
role in interhemispheric inhibition, the FPN may be indirectly
involved in this inhibitory regulation of the contralateral motor
cortex. However, the exact mechanism remains unclear.

In addition, the FPN may play a facilitating role in the
motor cortex responsible for the current movement. In some
sequential motor-learning tasks, the FPN and M1 contralateral
to the movement side exhibit simultaneous activation during the
preparation phase (Maruyama et al., 2021). This is explained as
internal reproduction and learning during the motor preparation
phase. After the hypothetical motor commands were generated
in one side of the M1, a well-timed activation signal from the
PMRF-ARAS triggered its early release, which was quickly output
to the periphery via the RST descending pathway (Marinovic and
Tresilian, 2016; Carlsen and Maslovat, 2019). This activation via the
ARAS is likely to induce a signal that ascends bilaterally but may be
ineffective for the contralateral M1, where no motor commands are
generated.

The inhibition of the excitability of the ipsilateral M1 in
this study may be attributable to our modification of the testing
paradigm. In those TMS tests (Marinovic et al., 2015; Chen et al.,
2019, 2022), all trials with loud startle stimuli were involved,
but our study suggested that approximately half of the startle
stimuli did not induce the SE. The occurrence of SE has been
confirmed to be highly related to the level of preparation (Leow
et al., 2018). Therefore, the absence of a clear definition of
successful induction of the SE may dilute the positive trials and thus
cause underestimation of this effect in the analyses. In addition,
this cortical activity might be task specific. The finger or arm
movements used in their tests may evoke lower cortical activation
when compared with the reaching tasks, which involve substantial
trunk and proximal joint movements. Since the measurement
channel for the M1 had low specificity in this study, further
confirmation is still needed. Furthermore, as suggested by other
researchers (Carlsen et al., 2003; Carlsen and Maslovat, 2019;
Maslovat et al., 2021), using SCM+ as a marker of successful
induction of the SE should be considered in future studies.

In addition, the SN, which is in the same triple-network model
as the FPN, may also influence activation. It is mainly responsible
for detecting salient events and initiating appropriate control
signals to other cortices or networks (Menon and Uddin, 2010;
Menon, 2011). In the present study, it seemed to produce a stronger
facilitation effect than control or SCM− trials on the right FPN
during RST facilitation. Since the regions of interest designated in
the present study did not include the anterior insula and anterior
cingulate cortex, regions in the SN, further verification is needed.

Interpretation of the negative fluctuation
in HbO/HbR signals

From previous studies, we know that the frontal cortex plays
an important role in premotor information processing and motor
task preparation (Sahyoun et al., 2004; Koechlin and Hyafil, 2007).
Activation of the frontal cortex occurs before task execution and
decreases with the advent of movement (Suzuki et al., 2008).
Moreover, our ASP paradigm clearly required a long preparation
period for the task, which was not limited to the time period starting
with the warning cue but also the period after receiving the task
information. During these tasks, the subjects need to get into a
highly prepared state before movement execution, which is closely
related to the delay of motion initiation (Leow et al., 2018). That
is, a spike in HbO/HbR changes for the block-averaged figures
generated in this study occurred in or near the baseline (time
window −5∼0 s), indicating high activation of the frontal cortex
as well as increased blood flow. As a result, HbO changes across
the channel exhibited task-related negative fluctuations, as Suzuki
et al. (2008) reported. The lagged negative fluctuations in HbO
signals may reflect different activation levels in the frontal cortex
among trials during the motor preparation period. Therefore,
a larger negative fluctuation after baseline may represent more
cortical activation during the period of motor preparation. We
interpreted the HbR fluctuation in channel 11, which had the
same negative trend as HbO, as a manifestation of blood flow
fluctuations. The effect of blood flow may be greater than that of
pure HbR fluctuations. Since the baseline from which the graph
(Figure 2) was generated was not highly consistent with the β value
calculation (resting state before and after the test), the results may
have included some variability.

Limitations

This study also has some limitations. First, not all signal
noise caused by vascular or blood pressure (Scholkmann et al.,
2022) was removed, but the current filter parameter settings cover
most physiological signals. Moreover, we performed within-subject
comparisons that may be able to circumvent the decreased test
power due to interindividual differences. In addition, there were
significant individual differences in HbO/HbR fluctuations; thus,
the contrast map of brain activation in a single subject may not be a
good way to explain our results. The subject whose brain activation
signatures best represented our findings was selected and presented.
Taking into account the reliability and presentability of the findings,
we retained the results before correction for multiple comparisons
in the SPM figures.

Furthermore, fNIRS itself has some inherent limitations. First,
the low sampling rate makes the final data unable to accurately
reflect the entire process and temporal order of cortical HbO/HbR
fluctuations. Cortical activity, motor initiation, and feedback
adjustment in the ASP reaching tasks are completed within tens of
milliseconds. EEG, which has a higher sampling rate may be a better
method to investigate the coherence between cortical signals and
muscular performance. Second, in setting the fNIRS data collection
channels, we failed to focus on the ipsilateral motor areas. The
setting channels displayed low specificity (31.56%) for the M1.
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An improved paradigm with short-separation channels may bring
better results (Yucel et al., 2021). Moreover, we initially explored the
feasibility of using fNIRS to analyze ASP in healthy people; further
exploration is needed to determine its application in patients with
brain injury. Some preliminary research has suggested that RST
facilitation under startle stimuli in patients with cortical injury may
be more pronounced and differ from that in healthy individuals
(DeLuca et al., 2022; Swann et al., 2022). More ASP movement
paradigms with greater sample sizes are needed.

Conclusion

In summary, this study found that activation of prefrontal
regions was significantly associated with the SE and RST facilitation
during ASP reaching tasks. Additional activation was most
pronounced in the right dlPFC in SCM+ trials during this
process. Moreover, enhanced inhibition of the ipsilateral M1 was
also observed. The above findings suggest a PMRF-ARAS-FPN
modulation system for motor output during RST facilitation. The
right dlPFC may play an important role in this process. These
results can inform future studies on RST facilitation from the
perspective of brain networks and support the development of
neuromodulation technology to support RST function via non-
invasive stimulation. Such novel rehabilitation strategies may
provide stroke survivors with additional benefits.
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Correlation analysis of balance
function with plantar pressure
distribution and gait parameters
in patients with cerebral
infarction in the basal ganglia
region
Sihao Liu, Huixian Yu*, Zhaoxia Wang and Pei Dai

Department of Rehabilitation Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing,
China

Objective: To analyze the correlation between balance function and gait

parameters of patients with basal ganglia infarction. And to observe the influence

of balance function on plantar pressure and hemiplegia gait based on the Berg

Balance Scale (BBS) score.

Methods: One hundred and forty patients with cerebral infarction hemiplegia in

the basal ganglia region (a study group, n = 140) and healthy people (a control

group, n = 140) were enrolled. The study group was evaluated with the BBS,

the 10 m walking test (10MWT), and the timed up-and-go test (TUGT). The gait

parameters and the peak plantar pressure were measured in both groups while

walking, and the differences between the groups were compared. In addition,

the characteristics of the plantar pressure curve of the hemiplegic and non-

hemiplegic sides during walking and the correlation between the 10MWT, the

TUGT, the plantar pressure peak, the gait parameters,and the BBS score were

analyzed in the study group.

Results: The peak plantar pressure of the forefoot and heel, stride length, lateral

symmetry, stand phase, swing phase, and dual stand phase of both sides in the

study group were significantly lower than those in the control group (P < 0.05).

The BBS score negatively correlated with the 10MWT, the TUGT, the peak plantar

pressure of the hemiplegic forefoot, midfoot, and the non-hemiplegic midfoot,

the anterior to posterior position (ant/post position), hemiplegic stand phase, and

the dual stand phase (P < 0.05). The BBS score positively correlated with the

hemiplegic swing phase and stride length (P < 0.05).

Conclusion: A correlation was found between the forefoot plantar pressure and

the stand phase of the hemiplegic limbs, the ant/post position, and the balance

function after basal ganglion cerebral infarction. This association can be used

in walking and balance assessment for stroke rehabilitation. Correcting forefoot

pressure or the front and ant/post position can improve balance function.
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stroke, walking function, balance function, plantar pressure, gait feature
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1. Introduction

Motor dysfunction often occurs after a stroke (Wang, 2022).
About 70% of stroke-affected patients have a walking dysfunction
that limits their daily life. Restoring walking ability is one of the
main demands of stroke-affected patients and their families, and
it is the most important and most commonly shared rehabilitation
goal (Mehrholz et al., 2018).

Balance dysfunction is one of the main factors influencing
walking in stroke-affected patients (Rahimzadeh Khiabani et al.,
2017). Due to the decline in sensory, exercise, or information-
processing ability, and muscle spasticity, decreased muscle
strength, and excessive energy consumption, patients experience
balance dysfunction and have a high risk of falling after a stroke (Li,
2022). Reportedly, 65% of stroke-affected patients have a history of
falling, which causes muscle tissue damage and ankle sprains and
affects their recovery process (Lee and Lee, 2019).

Abnormal gait in stroke-affected patients, including walking
parameters, transfer ability, and plantar pressure, differs from
healthy people and affects the recovery process (You et al., 2016).
However, clinically evaluating the balance function after stroke is
limited to dynamic and static assessment, and the balance function
is an indicator of patients’ ability to walk independently (Lee et al.,
2013). Most scholars characterize walking as a rhythmic movement,
and few studies have focused on the effect of balance function on
the dynamic plantar pressure and gait characteristics of hemiplegia
after stroke (Lee et al., 2020). Lewek et al. (2014) studied the
relationship between gait symmetry and balance function in stroke-
affected patients but only measured the correlation between the
walking weight distribution and stance time asymmetry and did not
further evaluate the gravity distribution and symmetry of patients
when walking. Obembe et al. (2014) suggested that balance function
during walking is associated with gait speed and cadence in stroke-
affected patients but did not explore the effect of balance function
on plantar pressure distribution during walking.

The balance characteristics of infarcts in different brain regions
are not identical, and failure to distinguish between stroke sites
may affect the results of the study. Cerebral infarction in the basal
ganglia area is common, and hemiplegia has a prominent gait
(Alexander et al., 2009). In the present study, evaluating the balance
function of patients with cerebral infarction in the basal ganglia area
reduced the disturbance of balance function from other intracranial
injuries. Gait analysis and plantar pressure analysis were used to
evaluate the patients’ walking function. Based on previous research,
the correlation between balance function and plantar pressure
during walking was explored, and the effect of balance function
after stroke in the basal ganglion area on the characteristics of
hemiplegic gait was further examined.

2. Materials and methods

2.1. Patients

One hundred and forty patients with cerebral infarction treated
in the Department of Rehabilitation Medicine of Beijing Tiantan
Hospital between January 2021 and August 2022 were enrolled as a
study group. Another one hundred and forty healthy people were

collected as a control group. There were no significant differences in
age, gender, height, or weight (Table 1). This study was approved by
the ethics committee of Beijing Tiantan Hospital, Capital Medical
University (KY2021-040-02).

The inclusion criteria were: (1) age 40–70 years old, (2) primary
basal ganglia area cerebral infarction diagnosed by magnetic
resonance imaging or computed tomography, (3) the onset of
the disease was >1 month ago, (4) no sensory impairments, (5)
no serious cognitive dysfunction (Mini-Mental State Examination
score >26), (6) could walk 10 m or more independently, and (7)
provided a signed informed consent form.

The exclusion criteria were: (1) cerebrovascular disease
progression and unstable vital signs; (2) other neurological or
mental diseases, such as stroke, brain trauma, or Parkinson’s
disease; (3) severe heart, lung, liver, or kidney dysfunction; (4)
sensory aphasia, cognitive impairment, or unable to cooperate with
the evaluation and examination; (5) fractures and arthritis affecting
the walking function of patients; or (6) proprioception disorders.

The suspension criteria were: (1) severe adverse reactions
or inability to continue, (2) deterioration of the condition or
serious complications, (3) failure to cooperate and to receive
required treatment, or (4) patients and their families requesting
withdrawal from the study.

2.2. Measurement

2.2.1. The 10-m walking test
The 10-m walking test (10MWT) measures the walking ability

of stroke-affected patients (Yeung et al., 2018). Patients were asked
to walk 16 m forward at their fastest speed in a state of natural
relaxation, after which the time they spent walking between the 3-m
and the 13-m points was recorded.

2.2.2. The timed up-and-go test
The timed up-and-go test (TUGT) measures metastatic ability

and postural control in stroke-affected patients (Dong et al., 2021).
The patients were seated in a chair, lean against the chair back, and
put their hands on the armrests, after which the researcher recorded
with the stopwatch from the moment the patient got up, walked for
3 m, turned around a cone, and returned to the chair. When the
patient sat back on the chair, the researcher stopped recording.

2.2.3. Berg Balance Scale
The Berg Balance Scale (BBS) measures the balance ability of

stroke-affected patients (Blum and Korner-Bitensky, 2008). It has
14 actions, each recorded with 0–4 points according to the degree
of completion, with a total score of 56 points. The higher the score,
the better the balance function. Patients were guided to complete
14 actions, such as independent sitting, from sitting to standing,
independent standing, and from standing to sitting.

2.2.4. Dynamic plantar pressure assessment and
gait analysis

The Zebris plantar pressure measurement system (Zebris FDM
1.12) was used to complete the evaluation. The participants had to
take off their shoes, stand on the running platform, and hold their
hands on the railings on both sides of the runway while a safety
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device was clamped on their chest. The runway was open, and the
participant was instructed to follow it. The speed of the running
platform gradually increased, and when it reached the speed at
which the participant was comfortable, the participant was asked to
release the railings, turn on the evaluation device, and then stop the
device after walking for 30 s. The device mainly recorded the data of
both lower limbs while walking, including the peak plantar pressure
(N/cm2) of the forefoot, midfoot, and heel, and the gait parameters.
The gait parameters included the proportions of the stand, swing,
and dual stand phases (%), and the step width (cm), stride length
(cm), and the center of plantar (COP) included the anterior to
posterior (ant/post) position (mm) and lateral symmetry (mm).

2.3. Statistical analysis

Graph Pad Prism 9.0 (Graph Pad Software, Inc.) was used
for the statistical analysis and graphing. Standard deviations and
means were used to describe measurement data that followed a
normal distribution. Baseline data analysis of mean ± standard
deviation or median and quartile were used for quantitative data.
The spacing was described, and the t test (or Wilcoxon test) was
used to compare this between the groups. The paired t test was
used for intra-group comparisons, the unpaired t test was used
for comparisons between the groups, and the chi-squared test was
used for gender comparisons between the groups. The Pearson
correlation coefficient was used to analyze the correlation between
the BBS, the TUGT, and the 10MWT in stroke-affected patients and
the correlation between the BBS score and the peak plantar pressure
and gait parameters of the bilateral limbs. Any P values < 0.05 were
considered statistically significant.

3. Results

3.1. Comparison of peak plantar pressure
and gait parameters in both groups

In the control group, there was no significant difference in
bilateral peak plantar pressure and gait cycle (P > 0.05). There
were no significant differences in step width and ant/post position
between the two groups (P > 0.05). In addition, the peak plantar
pressure of the forefoot and heel, stride length, swing phase in the
study group were significantly lower than those in the control group
(P < 0.05), while the stand phase, dual stand phase and the lateral
symmetry in the study group were higher than those in the control
group (P < 0.05) (Table 2 and Figures 1–3). The dynamic plantar
pressure model diagram like Figure 4. The model diagram of COP
just like Figures 5, 6.

3.2. Comparison of peak plantar pressure
and gait parameters between the
non-hemiplegic side and the hemiplegic
side in the study group

There was no significant difference in the peak plantar pressure
of the midfoot between the non-hemiplegic side and the hemiplegic
side (P > 0.05). However, the peak plantar pressure of the forefoot
and heel on the non-hemiplegic side and the non-hemiplegic
swing and stand phase were significantly higher than in the
hemiplegic side in the study group (P < 0.05) (Table 2 and
Figures 1–3).

TABLE 1 General situation of both groups.

Group Sex (n)
male/female

Age (years) Height (cm) Weight (kg)

Control group 96/44 58.5 ± 9.3 168.8 ± 7.5 65.2 ± 8.7

Study group 82/58 57.6 ± 10.2 168.5 ± 8.1 66.8 ± 8.6

P 0.082 0.463 0.691 0.116

TABLE 2 Comparison of peak plantar pressure and gait parameters in both groups.

Project Control group Study group

Left Right Non-hemiplegic Hemiplegic

Forefoot (N/m2) 36.86 ± 11.07 36.93 ± 10.28 23.83 ± 6.85* 20.17 ± 6.91*#

Midfoot (N/m2) 14.80 ± 4.03 15.04 ± 5.33 14.6 ± 6.52 15.74 ± 8.68

Heel (N/m2) 29.75 ± 16.07 29.53 ± 15.94 22.62 ± 7.14* 20.11 ± 7.45*#

Swing phase (%) 30.79 ± 6.26 30.99 ± 6.17 21.42 ± 6.41* 25.2 ± 6.05*#

Stand phase (%) 69.12 ± 6.85 69.25 ± 6.46 79.36 ± 6.68* 75.13 ± 6.39*#

Dual stance phase (%) 39.22 ± 12.71 57.41 ± 11.66*

Step width (cm) 14.03 ± 2.37 14.55 ± 3.94

Stride length (cm) 68.94 ± 18.34 36.52 ± 14.84*

Lateral symmetry (mm) 5.89 ± 3.72 14.49 ± 11.49*

Anterior to posterior position (mm) 150.6 ± 9.52 150.6 ± 28.15

Compared with the the control group, *indicates P < 0.05. Compared with the non-hemiplegic limb, #indicates P < 0.05.
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FIGURE 1

Peak plantar pressure in both group. There was no significant difference in bilateral peak plantar pressure in the control group (A) (P > 0.05). The
peak plantar pressure of the forefoot and heel on the non-hemiplegic side were significantly higher than in the hemiplegic side in the study group
(B) (P < 0.001). The peak plantar pressure of the forefoot and heel on the non-hemiplegic side of the study group was significantly lower than that in
the control group (C) (P < 0.05). The peak plantar pressure of the forefoot and heel on the hemiplegic side of the study group was significantly
lower than that in the control group (D) (P < 0.05). ∗Indicates significantly different.

3.3. Correlation analysis between the
Berg Balance Scale score and peak
plantar pressure and gait parameters in
the study group

The BBS and the 10MWT had a negative correlation (r =
−0.727, P < 0.001), as did the BBS and the TUGT (r = −0.738,
P < 0.001). The BBS score was not correlated with step width,
or lateral symmetry (P > 0.05), but it was negatively correlated
with the ant/post position (r = −0.444, P < 0.001) and positively
correlated with the stride length (r = 0.286, P < 0.001). The
BBS score was not correlated with the peak plantar pressure of
the non-hemiplegic forefoot, non-hemiplegic heel, or hemiplegic
heel (P > 0.05), but it was negatively correlated with the peak
plantar pressure of the hemiplegic forefoot (r = −0.398, P < 0.001),
hemiplegic midfoot (r = −0.353, P < 0.001), and the non-
hemiplegic midfoot (r = −0.502, P < 0.001). The BBS score was not
correlated with the non-hemiplegic stand phase, non-hemiplegic
swing phase (P > 0.05), but it was negatively correlated with the
hemiplegic stand phase (r = −0.36, P = 0.023), hemiplegic swing
phase (r = 0.338, P < 0.001) and the dual stand phase (r = −0.366,
P < 0.001) (Table 3 and Figures 7–9).

4. Discussion

The gait patterns caused by cerebral infarction in different
regions are dissimilar (Bhatt et al., 2018). This study mainly
observed the relation between balance function and gait after
cerebral infarction in the basal ganglia region.

Stroke-affected patients have abnormal gait, weakened physical
control, swaying trunk, asymmetrical weight-bearing of both lower
limbs, and reduced ability to shift their center of gravity, resulting in
unstable walking and an increased risk of falling (Saleh et al., 2019).

This study compared the plantar pressures in both groups.
The plantar pressure of the forefoot and heel of the hemiplegic
side of the study group was significantly lower than that of the
non-hemiplegic side. The bilateral plantar pressure of the study
group was significantly lower than that of the control group. The
plantar pressure of the midfoot in both groups did not change
significantly. These results indicate that the plantar pressure of
patients with basal ganglia cerebral infarction was abnormal, and
the non-hemiplegic side also showed abnormal plantar pressure
distribution due to the influence of the hemiplegic side.

This trial also compared the gait cycles of the two groups.
In the study group, the hemiplegic side swing phase was higher
than that of the non-hemiplegic side, while the hemiplegic side
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FIGURE 2

Gait cycle in both group. There was no significant difference in bilateral gait cycle in the control group (A) (P > 0.05). The non-hemiplegic swing and
stand phase were significantly higher than in the hemiplegic side in the study group (B) (P < 0.001). The swing phase in the hemiplegic side in the
study group was significantly lower than in the control group, while the stand phase in the hemiplegic side was higher than in the control group (C)
(P < 0.05). The swing phase in the non-hemiplegic side in the study group was significantly lower than in the control group, while the stand phase in
the non-hemiplegic side was higher than in the control group (D) (P < 0.05). The dual stand phase in the study group was higher than in the control
group (E) (P < 0.001). ∗Indicates significantly different.

stand phase was lower than that on the non-hemiplegic side. In
the study group, the swing phase was significantly lower while the
stand and dual stance phases were significantly higher than those in
the control group, indicating that the basal ganglia region stroke-
affected patients had abnormal gait and poor walking stability. To
avoid falls, the time taken for the forefoot to leave the ground to the
heel to land is shortened, resulting in prolonged unilateral support.
This study showed that the stride length of the patients in the study

group was significantly reduced compared with that of the control
group, and the lateral symmetry was significantly increased. This
indicates that stroke-affected patients have a short stride length and
a gait with poor left–right symmetry, and therefore suggests a high
risk of falling, even if they could walk independently.

In a meta-analysis, van Duijnhoven et al. (2016) reported that
giving patients balance training and exercise therapy, such as the
center-of-gravity metastasis, could improve their balance function
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FIGURE 3

Gait parameters in both group. The stride length in the study group was significantly lower than in the control group (A) (P < 0.05), while there was
no significant differences in step width between two groups (A) (P > 0.05). The lateral symmetry in the study group were higher than in the control
group (B) (P < 0.05), while there was no significant differences in ant/post position between the two groups (B) (P > 0.05). ∗Indicates significantly
different.

FIGURE 4

Dynamic plantar pressure model diagrams in both group. When healthy people walking, the plantar pressure on both sides were evenly distributed,
showing obvious symmetry (A). While stroke patients walking, bilateral plantar pressure were unevenly distributed, showing significant asymmetry
(B). Right side is the hemiplegic side in panel (B), and the peak plantar pressure of the forefoot and heel in the hemiplegic side were lower than those
in the non-hemiplegic side.

and walking ability. The current study showed that the BBS score
was negatively correlated with the 10MWT and the TUGT. This
indicated that the patient’s balance function was related to their
walking function, which follows previous studies. Chen et al. (2005)
argued that patients with hemiplegia have weak limbs during the
swing of the lower limbs on the hemiplegic side and need to provide
compensation from the non-hemiplegic side, which reduces the
speed; also, the 10MWT could reflect the dynamic changes in the
pace of patients with hemiplegia during walking. The present study
showed that better balance function of stroke-affected patients
was associated with the shorter time and faster pace required to

complete the 10MWT. The TUGT can assess the risk of falling
during walking in stroke-affected patients and the ability of sit to
stand transfer and posture control (Pérez-de la Cruz, 2021). The
better the balance function of patients, the stronger the posture
control ability, the higher the walking stability, and the lower the
risk of falling.

The results revealed no significant correlation between the BBS
score and step width, but revealed positive correlation between the
BBS score and stride length in stroke-affected patients. Koch et al.
conducted a gait analysis of stroke-affected patients, finding these
patients had balance disorders and unstable walking. Still, they
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FIGURE 5

Lateral symmetry of center of plantar in both group. The normal center pressure trajectories distributed in a butterfly shape, with left-right symmetry
(A). The center pressure trajectory distribution of stroke patient was asymmetrical and shifting toward the hemiplegic side (B).

did not analyze the correlation between the balance function and
stride length and step width (Koch et al., 2019). This may suggest
that the gait characteristics of sensory and non-sensory disorder
balance dysfunction are different. Hong et al. (2020) reported that
the motor function of the hemiplegic lateral limbs in stroke-affected
patients was impaired, and to maintain better gait stability during
walking, the patient’s step width was significantly increased and
the stride length was reduced. However, the effect of non-sensory
balance function on stroke-affected patients was not ruled out.
Lewek et al. (2014) argued that the BBS score was correlated with

FIGURE 6

Anterior to posterior position of center of plantar. The anterior to
posterior pressure line start from the heel to the big toe. The normal
plantar pressure trajectory from anterior to posterior was almost
overlapped (A). The plantar pressure trajectory from anterior to
posterior in stroke patient was not exactly overlapping, mainly
concentrated in the midfoot, and was shorter than the healthy
people (B).

stride length, and walking step width could indicate the balance
ability in stroke-affected patients.

After a stroke, the asymmetric gait during walking activates
a compensation mode through muscle movement, posture, and
gait training, which is conducive to the emergence of normal gait
(Beyaert et al., 2015). Yang et al. (2018) reported that improving

TABLE 3 Correlations between the Berg Balance Scale score and peak
plantar pressure and gait parameters in the study group.

Project Berg Balance Scale score

r P

10-m walk test −0.727 <0.001

Timed up-and-go test −0.738 <0.001

Peak plantar pressure of
hemiplegic forefoot

−0.398 <0.001

Peak plantar pressure of
hemiplegic midfoot

−0.353 <0.001

Peak plantar pressure of
hemiplegic heel

−0.012 0.887

Peak plantar pressure of
non-hemiplegic forefoot

−0.073 0.392

Peak plantar pressure of
non-hemiplegic midfoot

−0.502 <0.001

Peak plantar pressure of
non-hemiplegic heel

0.057 0.501

Step width −0.105 0.219

Stride length 0.286 0.0006

Lateral symmetry −0.054 0.525

Anterior to posterior position −0.444 <0.001

Hemiplegic stand phase −0.36 0.023

Hemiplegic swing phase 0.338 <0.001

Non-hemiplegic stand phase 0.089 0.298

Non-hemiplegic swing phase −0.11 0.197

Dual stance phase −0.366 <0.001
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FIGURE 7

Correlations between the Berg Balance Scale score and gait parameters in the study group. The BBS and the 10MWT had a negative correlation (A)
(r = −0.727, P < 0.001). The BBS and the TUGT had a negative correlation (B) (r = −0.738, P < 0.001). The BBS score was not correlated with step
width (C) (P > 0.05). The BBS score was positively correlated with the stride length (D) (r = 0.286, P < 0.001). The BBS score was not correlated with
lateral symmetry (E) (P > 0.05). The BBS score was negatively correlated with the ant/post position (F) (r = −0.444, P < 0.001). *Indicates significantly
different.

the gait symmetry of stroke-affected patients can advance their
walking ability. Forghany reported that stroke-affected patients
acquired a pattern of bipedal asymmetry when walking, which
was related to limited walking. Hornby et al. (2019) believed that
improving the walking ability of stroke-affected patients made it
possible to improve gait symmetry, especially patients’ confidence
in obtaining balance.

The present study suggested that the balance function of
stroke-affected patients affects their gait symmetry. The balance
function mainly affects the support line of the ant/post position.
Better balance function of the patient may be associated with a
stronger ability to support the front and back positions and better
front–back symmetry, eventually resulting in a shorter length of
the support line in the front and back positions. No significant
correlation was found between equilibrium function and lateral
symmetry, which needs to be explored further.

The present study analyzed the correlation between the BBS
score and dynamic peaked plantar pressure. The results showed

there was no obvious correlation between the BBS score and non-
paralytic forefoot and heel, and hemiplegic midfoot and heel, but
a negative correlation with hemiplegic forefoot and midfoot and
non-paralytic midfoot was found. Rogers et al. (2020) suggested the
changes in plantar pressure during walking in patients to improve
walking ability should be explored. Forghany et al. (2015) reported
that the plantar pressure distribution of stroke-affected patients
is asymmetric. In the support phase, the lateral forefoot and heel
are under greater pressure, while the hemiplegic heel is under the
most pressure, and the midfoot and forefoot are under less pressure
(Forghany et al., 2015). Lou et al. (2020) found that, after the
patient’s walking ability improved, the peak plantar pressure in the
hemiplegic forefoot increased and the peak plantar pressure on the
non-hemiplegic heel was lower than before.

Few reports exist about the changes in balance function and
plantar pressure during walking. This study further explored the
changes in plantar pressure in patients with stroke balance function
during walking. It is believed that the balance function after stroke
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FIGURE 8

Correlations between the Berg Balance Scale score and peak plantar pressure in the study group. The BBS score was not correlated with the peak
plantar pressure of the non-hemiplegic forefoot (A) (P > 0.05), but it was negatively correlated with the peak plantar pressure of the hemiplegic
forefoot (B) (r =−0.398, P < 0.001). The BBS score was negatively correlated with the peak plantar pressure of the non-hemiplegic midfoot (C)
(r =−0.502, P < 0.001) and the hemiplegic midfoot (D) (r =−0.353, P < 0.001). The BBS score was not correlated with the peak plantar pressure of the
non-hemiplegic heel (E) (P > 0.05) and hemiplegic heel (F) (P > 0.05).

is closely related to the hemiplegic forefoot and midfoot and non-
paralyzed midfoot. When stroke-affected patients walk, due to
hemiplegic lateral foot inversion and toe flexion (Park et al., 2021),
the plantar pressure cannot be transferred to the inner side of the
forefoot in the support phase, the pressure is concentrated on the
outside of the forefoot, and the peak pressure on the forefoot is
higher. Patients with a better balance function can relieve the foot-
inverted mode. In the support phase, the contact area between the
forefoot and the ground becomes larger, resulting in a decrease in
the peak pressure of the forefoot. The higher the balance function,
the lower the peak pressure of the forefoot in the support phase.

In the present study, there was no obvious correlation between
the BBS score and the stance phase, swing phase of the non-
hemiplegic limbs, while the BBS score was negatively correlated
with the stance and swing phases of the hemiplegic limbs and dual
stance phase. Wang et al. (2021) reported that as the pressure of
hemiplegic forefoot in stroke-affected patients improved, the active
dorsiflexion of the hemiplegic foot was promoted, the center of
gravity was easier to move forward, the walking ability improved,
and the balance ability improved. In et al. (2017) improved the

patient’s knee extension ability, strengthened the contact area of
the feet in the stance phase, and strengthened the dorsiflexion to
reduce the time of the hemiplegic stance and swing phases, improve
the patient’s balance function, and improve their walking ability.
The present study’s findings are consistent with those of previous
studies. The better the balance function, the more sufficient the
center of gravity shift and the more adequate the ankle dorsiflexion
during the foot landing (Persson et al., 2011).

The characteristics of gait under balance dysfunction caused
by different reasons are dissimilar. The mature research is mostly
about gait characteristics under proprioception impairment, and
the effect of hemiplegic gait or balance function under abnormal
postural control on gait is unclear (Luque-Moreno et al., 2019). The
plantar pressure distribution during walking reflects the abnormal
gait of patients with walking dysfunction, the uneven distribution
of body weight, and the process of pressure changes in both limbs
(Lund et al., 2018). Abnormal distribution of plantar pressure
increases the risk of injury to the patient’s waist, knees, calves,
ankles, and feet, further increasing the risk of falls during walking
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FIGURE 9

Correlations between the Berg Balance Scale score and gait cycle in the study group. The BBS score was not correlated with the non-hemiplegic
stand phase (A) (P > 0.05), non-hemiplegic swing phase (B) (P > 0.05). The BBS score was negatively correlated with the hemiplegic stand phase (C)
(r = −0.36, P = 0.023), hemiplegic swing phase (D) (r = −0.338, P < 0.001). The BBS score was negatively correlated with dual stand phase (E)
(r = −0.366, P < 0.001).

training and affecting the recovery of the patient’s walking ability
(Yang et al., 2014).

Existing studies have shown that balance function affects
walking in stroke-affected patients (An and Shaughnessy, 2011),
and the plantar pressure distribution reflects the patient’s ability to
walk (Kimura et al., 2022). However, there are few studies exploring
balance function and plantar pressure, and the distribution of
balance ability and plantar pressure during walking in stroke-
affected patients is unclear (Bower et al., 2019). When stroke-
affected patients with balance dysfunction perform walking
training, their balance function affects their posture control,
transfer ability, and the length of the limb support and double
support phases of the hemiplegic side during walking, increasing
the asymmetry of their hemiplegic gait. This affects their gait
pace and stability and increases the risk of falling. Walking
training should pay attention to the plantar pressure distribution
of the forefoot and midfoot on the hemiplegic side and improve
the symmetry of the ant/post positions to progress the patient’s
walking ability. This provides a new direction for subsequent
rehabilitation treatment.

This study has certain limitations: (1) the small sample size
may mean the changes in different variables may have been too
small to be significant, impacting the final result and (2) there is
a difference between the running platform and a normal walking
mode, and the measurement of the plantar pressure may have
caused errors and affected the test results. In future research, the
sample size should be increased, the authority of the research
should be enhanced, and the patient’s walking ability should be
improved through the patient’s plantar pressure and front–back
position symmetry to provide a new direction to treat stroke-
affected patients.

5. Conclusion

After cerebral infarction in the basal ganglia, there is
typically asymmetry in the pressure of the forefoot and the
ant/post position, which significantly affects the balance
function. It is necessary to pay attention to the distribution
of hemiplegic forefoot plantar pressure, the control of gait phase,
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and the processing of the ant/post position to better improve
balance and posture control, reducing the risk of falling.
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Background: Cerebral small vessel disease (CSVD) is one of two cognition-

impairing diseases. Acupuncture (Acu) is a flexible treatment with few adverse

effects and is thus widely used to treat neurological problems.

Methods: We recruited a total of 60 patients and assigned them to two groups

(n = 30 each group). During the study, some participants were excluded by

quality control, and a total of 44 subjects (25 Acu and 19 controls) were

completed to investigate the therapeutic efficacy of acupuncture on CSVD

cognitive impairment (CSVDCI). The following demographic and clinical variables

were compared between the two groups: gender, age, education, smoking,

alcohol, Montreal cognitive assessment (MoCA), symbol digit modalities test

(SDMT), verbal fluency test (VFT), digit span task (DST), Boston naming test (BNT)

scores, and amplitude of low-frequency fluctuation (ALFF) under the typical band

(0.01–0.08 Hz). Mixed effect analysis was utilized to test for differences between

the two groups before and after the treatment.

Results: Following acupuncture treatment, the Acu group scored higher on

MoCA, SDMT, VFT, DST, and BNT compared to controls (P < 0.05). The brain

regions showing substantially greater ALFF values in the Acu group were the right

inferior temporal gyrus, left middle occipital gyrus, left superior occipital gyrus, left

insula, bilateral postcentral gyrus, right superior parietal gyrus, right cerebellum,

right precuneus, and right precentral gyrus (P < 0.005, no correction). The ALFF

values in the right inferior temporal gyrus (P = 0.027), left middle occipital gyrus

(P = 0.005), left superior occipital gyrus (P = 0.011), and right superior parietal

gyrus (P = 0.043) were positively associated with MoCA.

Conclusion: We found that acupuncture modulates the functional activity of

temporal, occipital, and parietal regions of the brain in CSVDCI patients.
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1. Introduction

CSVDCI is the most common cause of vascular cognitive
impairment (VCI), accounting for approximately 74% of all
occurrences (Rao et al., 2009). It is not commonly known that
CSVDCI is an important subtype of VCI due to its quiet onset
and lack of prominent clinical features (Brookes et al., 2014), also
representing the primary clinical manifestation of CSVD. CSVDCI
shows a similar pattern of cognitive decompensation to the VCI,
which is characterized by reduced executive function, attention,
and information processing speed, with relatively intact memory
function in the early stages and gradual development of dementia
(Chen et al., 2019). In addition, cognitive impairment worsens with
the development of the disease, which severely impacts patient
quality of life.

Early management of CSVDCI can enhance cognitive
performance and patient quality of life, while partially slowing
the course of cognitive decline. Several conservative treatments,
including the use of an acetylcholinesterase inhibitor and
N-methyl-d-aspartate (NMDA) receptor antagonist were proposed
for the symptomatic treatment of dementia (Arvanitakis et al.,
2019). However, a limited number of targeted drugs effectively
improved cognitive function in CSVDCI patients (Pantoni, 2010),
with minimal efficacy for dementia (Bath and Wardlaw, 2015).
Interestingly, acupuncture has been widely used in China as a
complementary alternative treatment for dementia, and also been
accepted for VCI treatment in Western medicine (Ji et al., 2021).
The main advantage of acupuncture is the lower incidence of
adverse effects that characterize pharmaceutical approaches (NIH
Consensus Conference, 1998; Kim et al., 2019). Importantly,
clinical randomized trials demonstrated the short-term impact of
acupuncture on cognitive function in VCI patients (Yang et al.,
2014; Yang et al., 2019; Huang et al., 2021).

With an increasing understanding of the etiological basis
of CSVD in the elderly population, inflammatory responses
have been associated with its development and progression
(Li et al., 2020). Wang et al. demonstrated that acupuncture
attenuates inflammation-related cognitive impairment in
experimental vascular dementia (VD) by inhibiting the miR-
93-mediated TLR4/MyD88/NF-κB signaling pathway (Wang
et al., 2020). In addition, acupuncture reduces oxidative stress
and inflammation associated with TXNIP, plays a neuroprotective
role in VD rats (Du et al., 2018), enhances cognitive function
and induces neuroprotective effects against inflammation in
CCH rats by activating α7nAChR and the JAK2-STAT3 pathway
(Cao et al., 2021).

Various ancient and modern acupuncture publications showed
the Shenting (GV24) and Baihui (GV20) are vital distal acupoints
associated with the cure of dementia, dizziness, headache, among
other brain diseases. Huang et al. (2015) conducted a meta-analysis
study that included 1,637 subjects with post-stroke cognitive
impairment (PSCI), and found that integrating Shenting and
Baihui acupuncture with computer-assisted cognitive training
significantly improves attention deficits in stroke patients. Similar
results were found in a randomized controlled trial of 2 × 2 factorial
design conducted by Yang S. et al. (2014).

Resting-state functional magnetic resonance imaging (MRI)
has been extensively employed to investigate the functional

mechanisms underlying a variety of neurological diseases, and may
also provide insights on the ability of acupuncture to improve
cognitive performance (Cai et al., 2018). Measurements such as
functional connectivity (FC) and degree centrality (DC) were
created to mimic the brain network (Park and Friston, 2013).
Zang et al. (2007) suggested ALFF to estimate regional brain
activity and found it could represent the activity of different brain
regions at the resting state. In addition, abnormal ALFF levels
were found in people with cognitive problems and abnormal brain
function, a powerful determinant of cognitive decline (Li et al.,
2021; Wang et al., 2021; Zhang J. et al., 2021), and different
brain regions, including the parietal, insular and cingulate regions.
This is significantly correlated with cognitive function in patients
with subcortical vascular cognitive dysfunction, which may lead
to decreased cortical activation (Li et al., 2015). CSVDCI patients
with cerebral microbleeds (CMBs) have altered spontaneous
brain activity of the default, sensorimotor, and fronto-parietal
lobe networks, that may impact potential neurophysiological
mechanisms of intrinsic brain activity (Feng et al., 2021).

Since 1990, an increasing number of studies used imaging to
explore the physio-pathological mechanisms of acupuncture for the
treatment of disease (Dhond et al., 2007). Acupuncture improves
cognitive function in patients with Parkinson and increases ALFF
values of the default network, visual network, and insular lobe.
This has led to the hypothesis that acupuncture can activate the
cerebellum-thalamus-cortex loop by regulating the spontaneous
activity of the brain in key regions, a neurophysiological
mechanism to improve cognitive dysfunction (Li Z. et al., 2018).
Moxibustion therapy can improve the cognitive function of
patients with mild cognitive impairment by adjusting the ALFF
values of the default, visual and subcortical networks (Lai et al.,
2022), and might thus reveal the brain regions involved in cognitive
function improvement through acupuncture.

Here, we examined the differences in ALFF values between
the Shenting/Baihui acupoints and conventional drug treatment
in CSVDCI patients, before and after treatment (in 12 weeks), to
uncover the associated neural mechanisms.

2. Materials and methods

2.1. Participants

CSVDCI patients were enrolled at the Zhongshan Hospital
of Traditional Chinese Medicine from July 1st 2017 to July
30th 2019. The protocol was approved by the research ethics
committee of the Zhongshan Hospital of Traditional Chinese
Medicine (reference: 2017ZSZY-LLK-219). We recruited CSVDCI
patients at the neurology outpatient and inpatient departments. All
participants signed an informed consent form prior to enrollment.

Patients with the following conditions were considered eligible:
(i) age between 40 and 80 years, (ii) comply with diagnostic imaging
criteria for cerebral small vessel disease and vascular cognitive
impairment, (iii) MoCA score between 10 and 26, (iv) not receiving
regular acupuncture treatment for the recent six months.

Patients with the following conditions were excluded: (i)
cognitive dysfunction caused by macrovascular, cardiogenic
cerebral embolism, (ii) patients with severe speech, vision,
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or hearing impairments or mental disorders that impact
cognitive examinations, (iii) cognitive dysfunction caused by
neuropsychological disorders (e.g., depression), (iv) illiterates that
could not cooperate with cognitive examinations, (v) prior alcohol
and drug abuse experience, (vi) combination of serious diseases,
including of the cardiovascular, hepatic, nephrology, endocrine
system and hematopoietic systems, (vii) participating in other
clinical trials.

The CSVD patients were diagnosed according to the
Neuroimaging Standards for Research into Small Vessel Disease
(Wardlaw et al., 2013). Specifically, the diagnostic standard for
imaging of CSVD included: (i) Recent small subcortical infarct:
Axial views showing an infarct diameter smaller than 20 mm,
which could be larger than 20 mm in the coronal or sagittal
views, (ii) Lacunes of presumed vascular origin: round or ovoid,
3–15 mm in diameter, distributed in subcortical regions, filled with
the same signals as cerebrospinal fluid (CSF), (iii) white matter
hyperintensity (WMH) of presumed vascular origin: abnormal
brain white matter (WM) signals, lesions of variable size, showing a
high signal on the T2-weighted or T2-weighted FLAIR images. (iv)
Perivascular space: the signal of perivascular space was the same as
that of the CSF in all MRI sequences. The shape was linear when
the image plane ran parallel to the blood vessels and round or oval
when running perpendicular to the vessels, usually smaller than
3 mm in diameter, (v) Cerebral microbleeds, which were defined as
the following changes in the images obtained with T2∗-weighted
gradient-echo sensitive to magnetizing effects. For example: (1)
small round or oval, clear boundary, homogeneity, lack of signal
focus; (2) diameter of 2–5 mm (maximum 10 mm) and lesion
surrounded by the brain parenchyma; (3) brain atrophy: reduced
brain volume not associated with specific focal lesions, such as
trauma and cerebral infarction.

The sample size was estimated using the Gpower3.1 software.
The MoCA total score was used as the main impact indicator. Based
on previous studies (Wang et al., 2016), which estimated the MoCA
difference for VCI patients treated with acupuncture as 5.5 ± 2.2,
and the MoCA difference for the control group as 3.1 ± 1.8. The
Gpower3.1 software estimated the effect value for acupuncture to
improve cognitive function in VCI patients to be 1.194045, whereby
we set the α value to 0.01, the Power (1-β) value to 0.9, and the effect
value to 1.194045, which was calculated using a sample size of 23
cases per group. With a shedding rate of 20%, we predicted a total
sample size of 56, with 28 cases per group.

A total of sixty patients were enrolled after screening for
eligibility, and were randomly allocated to either the acupuncture
or conventional treatment groups. At the baseline, all patients
underwent fMRI. We removed 11 and 5 patients from the
conventional and acupuncture groups, respectively, due to
excessive head motion or rejection of the second fMRI scan.

2.2. Protocol

This study represents a randomized controlled trial using
fMRI scans to assess the effect and mechanisms of acupuncture
treatment on CSVDCI. Participants completed fMRI scans and
cognitive function assessments at the baseline. We randomly
divided the participants into two groups, one receiving acupuncture

FIGURE 1

Workflow and group inclusion/exclusion criteria.

at the Shenting and Baihui acupoints combined with conventional
treatment, and the other receiving conventional treatment only.
After treatment, fMRI scans and cognitive function assessments
were performed again (Figure 1). The acupuncture treatment lasted
for approximately 40 min.

2.3. Blind

A random number generator with SPSS 22.0 statistical software
was used by a researcher specializing in random assignment to
derive 60 random numbers and generate a random assignment
sequence. The cards with the random numbers, groupings, and
interventions were then concealed in airtight, opaque envelopes
and kept securely by this researcher. This person was not allowed to
participate in the recruitment screening, outcome assessment and
statistical analysis of this study.

2.4. Treatment program

2.4.1. Acupuncture treatment
With the thumb and forefinger holding the needle handle,

the doctor alternately twists the needle body clockwise and
counterclockwise to make it rotate quickly (180–300 times/min),
and continues twisting for 2–3 min. After this, twist once every
10 min (following Deqi), and keep the needle for 40 min.
Participants received acupuncture treatment once a day, for five
days a week over a total of 12 weeks of intervention. Our selected
points are Shenting and Baihui. Shenting is on the head, 0.5 inch
straight up from the middle of the front hairline. The Baihui point
is located at the intersection of the median line at the top of the head
and the line connecting the tips of the two ears. The acupuncture
treatments were performed by Yang Xiaoyan, an associate chief
physician who practices acupuncture for more than 10 years.

Frontiers in Neuroscience 03 frontiersin.org35

https://doi.org/10.3389/fnins.2023.1125418
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-17-1125418 February 25, 2023 Time: 15:29 # 4

Yang et al. 10.3389/fnins.2023.1125418

TABLE 1 Demographics at the baseline.

Characteristics Acu-group
(n = 25)

Con-group
(n = 19)

P-value

Gender (M/F)a 13/12 9/10 0.761

Age (in years)b 61.9 ± 4.56 62.94 ± 2.83 0.375

Education (in years)b 9.48 ± 2.94 8.68 ± 2.05 0.321

Smoking (often/sometimes/never)c 4/3/18 3/3/13 0.836

Alcohol (often/sometimes/never)c 4/3/18 3/5/11 0.429

Values are presented as the mean ± SD. M, male; F, female; SD, standard deviation. ap-values
for the Pearson chi-square test. bp-values for two-sample independent t-test. cp-values for
the Mann–Whitney U test.

2.4.2. Conventional treatment
Conventional treatment included donepezil tablets to improve

cognition, aspirin to anti-platelet aggregation, atorvastatin calcium
tablets to regulate lipid levels, in addition to blood pressure
and blood glucose control according to the patient’s underlying
disease, and each patient participated in modern cognitive
rehabilitation training.

2.5. Cognitive assessment

Before and after the treatment, all participants completed
a cognitive assessment. (i) The MoCA includes eight cognitive
domains: visual-spatial and executive functions, naming, memory,
attention, language, abstraction, delayed recall, and orientation.
The total score and the score of each cognitive domain were
recorded following previous studies (O’Driscoll and Shaikh, 2017).
For education levels lower than 12 years, we added 1 point to
the total score. (ii) SDMT (Silva et al., 2018): participants were
asked to convert nonsensical symbols into numbers within 90 s,
while we recorded the number of correct answers, which were
given one point each. (iii) VFT (Sutin et al., 2019) consisted
of three parts, including semantic, phonetic, and motor fluency.
Participants were asked to say the corresponding words within
one minute as required, and the sum of the three groups of
correct numbers was the total score. (iv) DST (Leung et al., 2011)
consisted of two parts, digit forward and digit backward. During
the test, participants were asked to simultaneously remember
two numbers read by the researcher, with one digit per second
starting with the first set. (v) The BNT (Durant et al., 2021) test
provided 30 graphs, with the number of correctly named graphs

TABLE 2 Cognitive assessments at the baseline.

Characteristics Acu-group
(n = 25)

Con-group
(n = 19)

P-value

MoCAa 22.00 (6.00) 22.00 (6.00) 0.319

SDMTa 52.00 (14.00) 51.00 (10.00) 0.859

VFTa 21.00 (8.00) 20.00 (5.00) 0.243

DSTb 7.36 ± 1.97 6.47 ± 1.39 0.103

BNTb 17.96 ± 2.49 17.36 ± 2.38 0.431

MoCA, SDMT, and VFT values are presented as M(IQR); DST and BNT values are presented
as the mean ± SD. M, median; IQR, interquartile range; SD, standard deviation. ap-values for
the Mann–Whitney U test. bp-values for two-sample independent t-test.

representing the total score. We also collected information on
sociodemographic background, medication, and disease history.
The cognitive assessors were Huang Xiaohuang and Ling Shuiqiao,
both physicians are at the level of attending physician or higher
and have at least 5 years of training in cognitive aspects
of therapy.

2.6. Imaging data acquisition

All images were obtained using a GE 3T MRI scanner
with an 8-channel phased-array head coil. The participants
were requested to keep their eyes closed, relax but not fall
asleep, and minimize head movement during the scanning.
Functional images were collected with a gradient echo-planar
imaging (EPI) sequence with the following parameters: repetition
time (TR) = 2,000 ms, echo time (TE) = 30 ms, flip angle
(FA) = 90◦, field of view (FOV) = 240 mm × 240 mm,
slice thickness = 3.5 mm, inter-slice gap = 0.7 mm, data
matrix = 64 × 64, 33 interleaved axial slices coving the whole
brain, and 240 volumes acquired in about 8 min. In addition,
high resolution brain structural images were acquired using a
T1-weighed 3D BRAVO sequence with the following parameters:
TR = 8.0 ms, TE = 3.0 ms, FA = 12◦, data matrix = 256 × 256,
FOV = 256 mm × 256 mm, slice thickness = 1 mm, and 188
sagittal slices covering the whole brain. The conventional T1-
weighted and T2-weighted FLAIR images were acquired for clinical
assessment. All MRI images for each participant were acquired in
the same session.

2.7. Data pre-processing

The fMRI data were preprocessed using the DPARSF toolbox1

based on MATLAB. Before pre-processing the data, we visually
inspected both brain functional and structural images, and
excluded the datasets with significant signal dropouts, distortion,
and other quality problems. The pre-processing procedure
included: (1) removing the first 10 volumes to keep the
magnetization equilibrium; (2) performing slice-timing and head-
movement correction to remove effects caused by these factors;
(3) conducting a linear co-registration between functional and
structural images for each participant; (4) regressing the signals
of the WM and CSF, and head-movement parameters (Friston-
24 model); (5) performing a non-linear transformation between
structural and template brain images of the Montreal Neurological
Institute (MNI) space; normalizing functional images into the MNI
space with a 3 mm3

× 3 mm3
× 3 mm3 voxel size; and smoothing

with a Gaussian kernel of 5 mm full width at half maximum
(FWHM), and (6) performing temporal band-pass filtering for
the typical band (0.01–0.08 Hz). This study discarded the fMRI
data for subjects with head motion displacement > 3 mm or
rotation > 3◦ in any axis (x, y, and z-axis). Data pre-processing was
performed by Chen Sina.

1 http://rfmri.org/dpabi
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TABLE 3 Group differences before and after treatment.

Characteristics Acu-group (n = 25) Con-group (n = 19) P-value

Rank Percentage Rank Percentage

MoCA 2.0 (2.0) 10.53% 1.0 (2.0) 6.55% 0.015

SDMT 4.0 (2.0) 8.15 2.0 (1.0) 2.23 0.000

VFT 3.0 (1.5) 15.56 2.0 (2.0) 9.72 0.009

DST 2.0 (1.0) 35.52 1.0 (2.0) 32.85 0.005

BNT 2.0 (2.0) 10.86 1.0 (2.0) 7.90 0.015

Values are presented as M(IQR); P-values for the Mann–Whitney U test. Percentage means “Pre- and post-treatment difference/Pre-treatment value”. M, median; IQR, interquartile range.

FIGURE 2

Volumetric results of the subtracted ALFF values mix effect analysis between the acupuncture and control groups. Subtracted ALFF values before
and after the intervention was extracted separately from ACU and CON groups and mix effect analysis was performed to compute the difference for
the treatment effect. Warmer colors represent higher ALFF changes in the acu-group compared to the con-group. Peak coordinates refer to the
Montreal Neurological Institute (MNI) atlas. a, the right inferior temporal gyrus; b, the right precuneus; c, the left postcentral gyrus; d, the left
precentral gyrus; e, the right postcentral gyrus; f, the right superior parietal gyrus; g, the left middle occipital gyrus; h, the left insula; i, the right
cerebellum.

2.8. ALFF analysis

We first performed voxel-wise Fast Fourier Transform (FFT)
for each participant to convert the filtered time series into the
frequency domain to obtain the power spectrum. Since the power
at a given frequency is proportional to the square of the magnitude
of that frequency component, we calculated the square root of
the power spectrum at each frequency and the average square
root in the typical frequency band (0.01–0.08 Hz) at each voxel.
This averaged square root was taken as ALFF (Zang et al., 2007),
which was assumed to reflect the absolute intensity of spontaneous
brain activity.

2.9. Statistical analysis

2.9.1. Demographic and cognitive assessment
A χ2-test was used to test between-group differences in gender.

A t-test was used to test between-group differences in age. The

Mann–Whitney U test was used to evaluate the education level,
smoking, and alcohol consumption history between groups. The
statistical significance level was set at p < 0.05. Statistical analysis
was conducted using SPSS (version 22.0). Continuous variables
of MoCA without normal distributions were analyzed using the
Mann-Whitney U test. VFT, SDMT, BNT, and DST with normal
distribution were analyzed using an independent t-test.

2.9.2. ALFF and brain-cognitive correlation
The between-group differences test in ALFF was conducted

using PALM and implemented in the DPARSF toolbox (see text
footnote 1). In the calculations, a general linear model (GLM) was
applied, and gender, education, and age factors were regressed.
The significance level was set at P < 0.005. Permutation tests
and multiple comparison corrections were applied to all statistics.
Mixed effect analysis with a whole brain mask was utilized
while examining group differences, which involved a comparison
of the ALFF maps.
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TABLE 4 Comparison of the difference between the before and after ALFF values of the two groups.

Conditions Cluster size Brain region Peak t-values MNI

X Y Z

Con>Acu None cluster

Acu>Con 86 Temporal_Inf_R 4.00158 57 –21 –27

81 Occipital_Mid/Sup_L 4.14463 –33 –72 15

65 Insula_L 4.08554 –33 –9 12

48 Postcentral_L 3.94765 –57 0 39

45 Parietal_Sup_R 3.78277 27 –51 54

39 Cerebellum_R 3.35485 18 –63 –57

34 Precuneus_R 3.83540 6 –60 42

31 Precentral_R 3.88859 54 3 27

31 Postcentral_R 3.53786 66 –12 27

The significance threshold was set at P < 0.005 with no correction. Con-group (n = 19), acu-group (n = 25). Coordinates of the peak voxel are shown in the Montreal Neurological Institute
(MNI) space. The t-value corresponds to the peak voxel with a significant between-group difference in ALFF. Inf, inferior; Mid, middle; Sup, superior; L(R), left (right) hemisphere.

TABLE 5 Comparison of ALFF values before and after treatment in acu-group.

Group Conditions Cluster size Brain region Peak t-values MNI

X Y Z

Acu-group Post>Pre 2010 Frontal_Mid_R/L
Frontal_Sup_R/L
Frontal_Inf_R/L

6.3066 0 48 45

231 Caudate_L/
Putamen_L

4.3959 –21 3 9

This result was achieved by comparing the ALFF maps before and after treatment. L, left; R, right; Mid, middle; Sup, superior; Inf, inferior.

FIGURE 3

Acupuncture effects before and after treatment. Significant changes in ALFF values before and after acupuncture treatment in the acu-group.
Significantly increased (marked in warmer colors) ALFF values were found in the frontal cortex after acupuncture treatment. The red circle
represents the frontal lobe.

For each group, the ALFF maps were assessed using paired
t-test. The significance level was set at a corrected two-tailed P
value <0.05. Corrections for multiple testing were done using the
threshold free cluster enhancement (TFCE) and family wise error
(FWE) methods with the DPABI package.

Mean ALFF values of the obtained regions with significant
group differences were extracted. Pearson’s correlation analysis was
performed to examine the association between ALFF values and
MoCA changes. All statistical analyses were performed using SPSS
and a statistical significance level of P < 0.05.

3. Results

3.1. Demographics and acupuncture
effects on cognition

Table 1 shows the demographic characteristics of all
participants in each group. There were no significant differences
in demographic variables between the two groups (P > 0.05).
After statistical analysis, the results also showed no statistically
significant differences in MoCA, SDMT, VFT, DST, and BNT
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FIGURE 4

Correlations between brain measures and treatment performances. The x-axis represents the difference in MoCA scores before and after treatment,
while the y-axis represents ALFF values differences before and after treatment.

scores between the two groups of subjects at the baseline level
(P > 0.05). Further details are shown in Table 2. Compared with
pre-intervention, the acupunture group showed better improved
than the control group as measured by the MoCA, SDMT, VFT,
DST, and BNT scores after intervention (Table 3).

3.2. Acupuncture effects on regional
functional activity

3.2.1. Between-group analysis
Comparing the ALFF differences before and after the

intervention in the two groups, we found several brain regions
with significantly higher ALFF values in the treatment group
compared to controls, including the right inferior temporal gyrus,
the left middle occipital gyrus, the left superior occipital gyrus,
the left insula, the bilateral postcentral gyrus, the right superior
parietal gyrus, the right cerebellum, the right precuneus, and the
right precentral gyrus (P < 0.005). Details are shown in Figure 2
and Table 4.

3.2.2. Longitudinal analysis
Paired t-test results (TFCE and FWE multiple comparisons

corrected P < 0.05 and cluster size > 200 voxels) showed that,
when compared with pre-treatment, acupuncture at Shenting
and Baihui showed increased ALFF values in the bilateral
middle/superior/inferior frontal gyrus and the left caudate and
putamen (Table 5 and Figure 3). In the control group, we found
no significant differences before or after treatment.

3.3. Association between the changes in
ALFF and MoCA after acupuncture

Correlation analysis showed differences in ALFF values in
the right inferior temporal gyrus, left middle occipital gyrus, left
superior occipital gyrus, and right superior parietal gyrus in the
acupuncture group were significantly positively correlated with
change of MoCA (P < 0.05; Figure 4).

4. Discussion

We investigated cognitive function alterations (including
MoCA, DST, VFT, SDMT, and BNT) in CSVDCI patients
before and after acupuncture treatment, and performed neurology
mechanisms voxel-based analysis of MRI-derived ALFF maps.
According to our findings, and in contrast to conventional
treatments, acupuncture at Shenting and Baihui significantly
improved the cognitive function of patients. Importantly, we found
an increase in spontaneous activity in regional brain areas, such as
the right inferior temporal gyrus, left middle occipital gyrus, left
superior occipital gyrus, and right superior parietal gyrus.

By comparing ALFF changes with those observed in the control
group, we found that acupuncture combined with conventional
treatment increased ALFF values of the right inferior temporal
gyrus, left middle occipital gyrus, left superior occipital gyrus, left
insula, bilateral postcentral gyrus, right superior parietal gyrus,
right cerebellum, right precuneus, and right precentral gyrus in
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CSVDCI patients. This suggests that acupuncture at Shenting and
Baihui may improve cognitive function by enhancing neuronal
excitability in some brain regions of CSVDCI patients.

The inferior temporal gyrus is located in the temporal
lobe. The structures in the medial temporal lobe, including the
hippocampus, the internal olfactory and perirhinal cortex, and
parietal hippocampal cortex, are important elements of long-term
memory processing (Lech and Suchan, 2013). Wu et al. (2017)
found that the combination of acupuncture and conventional
treatment significantly improves motor and cognitive functions in
stroke patients, and increased Reho values in the middle temporal
gyrus. According to the authors, acupuncture may have a specific
mechanism of action. PET technology showed that acupuncture
points, such as Baihui, significantly increased glucose metabolism
in the temporal and frontal lobes, improving cognitive function
(Huang et al., 2007). Combined with our findings, the evidence
supports that acupuncture of Shenting and Baihui significantly
improve temporal lobe glucose metabolism levels, enhance energy
supply, and increase local neuronal activity in CSVDCI patients,
thus improving temporal lobe related cognitive functions.

Both the middle and superior occipital gyrus are part of the
occipital lobe, an essential component of the visual center that
transmits spatial information to the parietal lobe, which conveys
the integrated spatial information to the prefrontal lobe, eventually
forming spatial memory in the prefrontal area (Andersson et al.,
2019). Previous studies found that the size of the white matter
lesion volume in the occipital lobe in MCI patients is negatively
correlated with cerebral blood flow, suggesting that decreased
cerebral blood flow in the occipital lobe may lead to lesions in
occipital lobe structures and to a decrease in cognitive function
(Kim et al., 2020). According brain neuroimaging studies meta-
analysis (Cao et al., 2020), the occipital lobe plays a role in the
pathophysiology of dementia, suggesting it should be a target
region for scalp acupuncture for treating dementia. Acupuncture of
Shenting and Baihui improved executive function and visuospatial
localization in CSVDCI patients, and their improvement was also
correlated with improved spontaneous activity in the occipital
lobe region.

The parietal cortex is an interesting part of the association
cortex. Throughout modern neuroscience research, this region
has been associated with a wide range of sensory, motor, and
cognitive functions (Freedman and Ibos, 2018). Functional
magnetic resonance imaging has been widely used to study
the effects of acupuncture on neural activity. A study on
functional MRI in MCI patients suggested that acupuncture
increases functional connectivity between the parietal lobe and
other cognitively relevant areas (Tan et al., 2017). Conversely,
acupuncture increased Reho values of the parietal lobe in
MCI patients. Hence, it is possible that that acupuncture
also improves the regional homogeneity of different delicate
structures in the parietal gyrus and increases spontaneous
brain activity (Liu et al., 2014). Zhang J. et al. (2021) found
that acupuncture reorganizes cognition-related brain areas,
including the inferior frontal gyrus, and the temporal, parietal,
and occipital lobes, and modulates post-stroke function and
structural plasticity.

Acupuncture is widely used to cure post-stroke hemiplegia,
cognitive dysfunction, anxiety, depression, among others (Wang
et al., 2018; Du et al., 2020; Zhang et al., 2021). Li A. et al. (2018)

explored the activating effects of acupuncture on the brain of
healthy individuals using fMRI techniques and found it activates
the postcentral gyrus, the precuneus, and the temporal and occipital
lobes. Our results further validate these findings and reinforce the
fact that acupuncture positively impacts spontaneous activity in
various brain regions of CSDVDCI patients. Specifically, significant
brain responses were observed after acupuncture stimulation
at Shenting and Baihui, as well as improved ALFF values of
the right inferior temporal gyrus, left middle occipital gyrus,
superior occipital gyrus, and right superior parietal gyrus, which
were positively correlated with an improvement in cognitive
function.

5. Limitations

(1) The sample size was limited because this was a single-center
study and screening for contraindications to MRI scanning was
inadequate, resulting in some patients being unable to participate
in the examination due to e.g., the presence of dentures, excessive
head movement, and other factors. (2) In addition to cognitive
dysfunction, CSVDCI patients also present with limb dysfunction,
such as movement delays and mild hemiparesis, but our study did
not evaluate such patients.

6. Conclusion

Acupuncture of Shenting and Baihui effectively improves
cognitive brain function in CSVDCI patients. This may be related
to an increase in spontaneous activity in local brain regions and
changes in ALFF values at the right inferior temporal gyrus,
left middle occipital gyrus, left inferior occipital gyrus, and left
superior parietal gyrus.
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Objective: The ability of motor-inhibitory control is critical in daily life. The

physiological mechanisms underlying motor inhibitory control deficits remain

to be elucidated. Beta band oscillations have been suggested to be related

to motor performance, but whether they relate to motor-inhibitory control

remains unclear. This study is aimed at systematically investigating the relationship

between beta band oscillations and motor-inhibitory control to determine

whether beta band oscillations were related to the ability of motor-inhibitory

control.

Methods: We studied 30 healthy young adults (age: 21.6 ± 1.5 years). Stop-

signal reaction time (SSRT) was derived from stop signal task, indicating the

ability of motor-inhibitory control. Resting-state electroencephalography (EEG)

was recorded for 12 min. Beta band power and functional connectivity (including

global efficiency) were calculated. Correlations between beta band oscillations

and SSRT were performed.

Results: Beta band EEG power in left and right motor cortex (MC), right

somatosensory cortex (SC), and right inferior frontal cortex (IFC) was positively

correlated with SSRT (P’s = 0.031, 0.021, 0.045, and 0.015, respectively). Beta band

coherence between bilateral MC, SC, and IFC was also positively correlated with

SSRT (P’s < 0.05). Beta band global efficiency was positively correlated with SSRT

(P = 0.01).

Conclusion: This is the first study to investigate the relationship between resting-

state cortical beta oscillations and response inhibition. Our findings revealed that

individuals with better ability of motor inhibitory control tend to have less cortical

beta band power and functional connectivity. This study has clinical significance

on the underlying mechanisms of motor inhibitory control deficits.

KEYWORDS

EEG, motor inhibitory control, beta-band oscillations, functional connectivity, global
efficiency
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1. Introduction

Motor-inhibitory control refers to the ability that inhibits
inappropriate motor responses and expresses more appropriate
responses, which is considered as an important ability in daily life
(Chowdhury et al., 2017). The ability of motor-inhibitory control
can be measured by stop signal task (SST) (Aron, 2011; Bari
and Robbins, 2013; Schall et al., 2017), in which participants are
instructed to inhibit an already initiated action. Stop-signal reaction
time (SSRT) can be estimated based on the latency to inhibit
a prepotent response (i.e., stopping efficiency). Prolonged SSRT
suggests poor ability of motor-inhibitory control (Chowdhury
et al., 2017). It has been reported that SSRT tend to be prolonged
in conditions such as Parkinson’s disease (PD) (Jenkinson and
Brown, 2011), attention deficit/hyperactivity disorder (Lijffijt et al.,
2005) and schizophrenia (Badcock et al., 2002). The physiological
mechanisms underlying the motor inhibitory control deficits
remain less clear (Bari and Robbins, 2013).

As a common neuroimaging approach, electroencephalography
(EEG) has been widely applied in the field of neurophysiological
research. Ongoing spontaneous EEG oscillations are usually
categorized into five frequency bands, including delta, theta, alpha,
beta, and gamma bands. In particular, rhythmic activity in the
beta band (i.e., 15–30 Hz) is classically considered as being related
to sensorimotor functions (Pfurtscheller et al., 1996), but the
functional role of beta-band activity has not been fully elucidated.
Beta-band activity (i.e., EEG power) has been suggested as a
signature of an active process that promotes the existing motor
set whilst compromising neuronal processing of new movements
(specifically related to maintain the status quo). Excessive beta-
band activity has been associated with worse motor performance
(Gilbertson et al., 2005; Androulidakis et al., 2006, 2007). Although
some studies have reported positive correlations between beta band
activity and impulsivity (Threadgill and Gable, 2018; Wendel et al.,
2021), whether beta-band activity is related to the ability of motor
inhibitory control remains unclear. Based on the theoretical link
between motor inhibitory control and impulsivity, we speculate
that beta band activity is less in individuals with worse ability of
motor inhibitory control.

Functional connectivity stands for the synchrony of cortical
activity in anatomically distinct but functionally collaborating
brain regions (Vecchio et al., 2019). Unlike EEG power
reflecting oscillatory synchronization within local cortical
neuronal populations, functional connectivity represents neuronal
synchronization between distributed cortical regions (Silberstein
et al., 2005). Graph theory analysis is an approach that characterizes
functional brain network based on functional connectivity (Park
et al., 2014). Global efficiency refers to the average of interregional
efficiency between each pair of brain region over the whole brain.
As one of the most common metrics in graph theory analysis, global
efficiency represents the efficiency in transporting information
at a global scale (Park et al., 2014). Some studies investigated the
relationship between beta band functional connectivity and motor

Abbreviations: SST, stop signal task; SSRT, stop-signal reaction time; PD,
Parkinson’s disease; EEG, electroencephalography; IFC, inferior frontal
cortex; MC, motor cortex; SC, somatosensory cortex; AUC, area under the
curve; SD, standard deviation.

performance, reporting that individuals with greater beta band
functional connectivity tend to have worse motor performance
(Gilbertson et al., 2005; Silberstein et al., 2005). However, whether
there is a relationship between beta band functional connectivity
and motor inhibitory control remains unclear. Investigating the
relationship between beta band functional connectivity and global
efficiency would provide valuable information on understanding
the neural mechanisms of motor inhibitory control deficits.

In present study, we investigated the relationship between
beta-band oscillations and motor inhibitory control (i.e., SSRT).
We anticipated that beta band power, functional connectivity,
and global efficiency would be positively correlated with
SSRT. Our findings will have implications on understanding
physiological mechanisms of motor inhibitory control deficits and
possibly inform the development of new treatment for inhibitory
control deficits.

2. Materials and methods

2.1. Participants

A total of 30 healthy adults [8 males; mean age: 21.6 (SD = 1.5)
years] participated in this study. Written informed consent was
obtained prior to enrollment. All procedures were approved
by the Guangzhou First People’s Hospital Human Research
Ethics Committee.

2.2. Stop signal task

Stop signal task was used to assess the ability of motor-
inhibitory control (Verbruggen and Logan, 2008). A 13.5-inch
Dell laptop running E-Prime v.3.0 (Psychological Software Tools
Inc., Pittsburgh, PA, USA) was used to present stimuli and record
keypresses. At the beginning, participants were asked to read
instructions on the computer screen. On “Go” trials, a black arrow
was presented on the screen, and participants were instructed to
press the left-arrow key for a leftward pointing arrow with the
left index finger, and to press the right-arrow key for a rightward
pointing arrow with the right index finger. On “Nogo” trials, a red
arrow was presented on the screen, and participants were instructed
not to press any key. On “Stop” trials, a “Stop” signal (red arrow)
would occur after the “Go” signal (i.e., the black arrow turned red
after a delay). Participants were asked to stop their initial response
when the “Stop” signal occurred. Participants were instructed to
respond as quickly and accurately as possible to black arrows, and
not to delay their response to wait in case the “Stop” signal occurred
(Ding et al., 2021a).

On each trial, a fixation cross was presented for 300 ms,
followed by the “Go” or “Nogo” signal. The maximum response
time was set at 1,000 ms, and the intertrial interval was set at 500 ms.
On “Stop” trials, the “Stop” signal was presented after the onset of
the “Go” signal. At the beginning of the session, the “Stop” signal
occurred 250 ms after the “Go” signal. In the trials where response
inhibition was successful, the stop signal delay (SSD) was increased
by 50 ms on the next “Stop” trial. In the trials where inhibition
failed, SSD was decreased by 50 ms on the next “Stop” trial. This
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ensured an overall successful rate of inhibition [i.e., P (respond|
signal)] close to 50%. The experiment included 24 practice trials
and 400 experimental trials, consisting of 70% “Go” trials, 10%
“Nogo” trials, and 20% “Stop” trials, administered in a completely
random sequence. The details of SST were described in a previous
paper (Ding et al., 2021a).

The SSRT was estimated using the integration method with Go
omission replacement (Verbruggen et al., 2019; Ding et al., 2021a),
which has been suggested to be more accurate and have higher test-
retest reliability than other methods (especially the mean method)
for SSRT calculation (Ding et al., 2021a). With the integration
method, SSRT was calculated by the mean SSD subtracted from
the nth Go reaction time. Here, n stands for a point on the Go
reaction time distribution where the integral of the reaction time
curve is equivalent to P (respond| signal). Go omissions refers to Go
trials on which the participants did not respond before the response
deadline. In the cases of Go omissions, the SSRT was assigned with
the maximum reaction time (RT) (1,000 ms) to compensate for the
lack of responses (Verbruggen et al., 2019).

2.3. Electroencephalography (EEG)

2.3.1. EEG acquisition
Electroencephalography acquisition was performed after the

completion of SST. The participants were seated comfortably in
a sound-shielded, dimly lit room for resting-state EEG recording,
which lasted 13 min: 6 min with eyes closed, followed by 1 min
with eyes open, and 6 min with eyes closed. Scalp EEG signals
were recorded using a 128-channel HydroCel Geodesic Sensor Net
(Electrical Geodesics, Inc., Eugene, OR, USA) in a geodesic pattern
over the surface of the head with a vertex reference. It included 19
contacts at the equivalent 10–20 system locations. The EEG data
were digitized and amplified at a 2,000 Hz sampling rate with a
Geodesic EEG system 400 (Electrical Geodesics, Inc., Eugene, OR,
USA). An online bandpass filter (0.1–100 Hz) was applied and the
impedance for the whole net was kept below 10 k� throughout data
collection (Cai et al., 2021). The 12 min EEG recording with eyes
closed was exported after data collection for further analysis.

2.3.2. EEG analysis
Acquired EEG signal were analyzed off-line using

MATLAB2019b (Mathworks, Inc., Natick, USA). EEGLAB
toolbox (version 14.1.2b) was used for EEG data preprocessing
(Delorme and Makeig, 2004). After the EEG data were imported
in EEGLAB, the signal was sampled down to 1,000 Hz. Afterward,
the EEG data were filtered with a band-pass filter with cut-off
values ranging from 0.1 to 40 Hz and segmented in epochs lasting
1,000 ms. The independent component analysis was subsequently
performed to exclude components endowing eye (blink and
movement), cardiac, and muscular artifacts. The resulting data

were further visually inspected to exclude remaining “bad trials”
(i.e., amplitudes > 80 µV) and re-referenced using the average
signal of every scalp electrode as reference (Cai et al., 2021).

Power and functional connectivity analyses were conducted
using customed MATLAB scripts. Absolute power was calculated
by fast Fourier transform and averaged in 13–30 Hz for beta
band. As we were interested in assessing cortical activities in brain
areas including inferior frontal cortex (IFC), motor cortex (MC),
and somatosensory cortex (SC), six clusters of electrodes (three
clusters for each hemisphere) were selected according to 10–20
system nomenclature (Ding et al., 2022). The averaged power of all
electrodes in each cluster was calculated for statistical analysis.

Coherence was calculated using customed MATLAB scripts to
reflect functional connectivity between different cortical regions.
The Welch’s averaged, modified periodogram method (Welch,
1967), was performed to calculate the squared coherence between
each pair of electrodes in four frequency bands. All connectivity
matrices were Fisher’s z-transformed (Arun et al., 2020) to the
set of Gaussian distributed values and the z-scores were used for
further analysis. The averaged z-scores of each pair of electrodes
between brain regions of interest were calculated for statistical
analysis (Ding et al., 2021b).

GRaph thEoretical Network Analysis (GRETNA) toolbox was
used for graph theory analysis (Wang et al., 2015). A graph is based
on a set of nodes, and the connections between nodes are edges.
Nodes and edges together form the brain network. In the current
study, weighted and undirected networks were built based on
coherence (Vecchio et al., 2019). As there was no definite method
for selecting a single threshold, we integrated the metrics over the
entire threshold range (i.e., 0.1–0.4, with an interval of 0.05) to
obtain the area under the curve (AUC) to characterize the brain
network (Wang et al., 2015; Yan et al., 2017; Ding et al., 2021b).
Global efficiency characterizes information transferring ability in
the entire brain network (G) (Park et al., 2014). Global efficiency
was computed as the average of nodal efficiency across all nodes in
the brain network:

Eglobal(G) =
1

N(N − 1)

∑
j6=i∈G

1
D(i, j)

(1)

where D(i, j) is the shortest path length between node i and node j,
and N is the number of nodes in the network.

2.4. Statistical analysis

Statistical analysis was performed in Graphpad Prism (version
8.3.0). Data were found to meet the normality assumption using the
Kolmogorov–Smirnov test. Pearson correlations were performed
to investigate the relationship between physiological data and
behavioral data (i.e., SST measures). False discovery rate corrections
were applied for multiple correlations. All P-values presented in

TABLE 1 Behavioral data of SST measures.

Go accuracy
(%)

Nogo
accuracy (%)

P (Go
omissions) (%)

Go RT (ms) RT unsuccessful
stop (ms)

P (respond|
signal) (%)

SSD (ms) SSRT (ms)

96.88 (3.96) 95.00 (7.30) 1.51 (3.21) 458.92 (97.55) 411.91 (94.34) 46.25 (6.50) 203.81 (126.60) 240.14 (28.76)

Data are presented as mean (standard deviation). SST, stop signal task; RT, reaction time; SSD, stop signal delay; SSRT, stop signal reaction time.
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current study are those after the false discovery rate correction. For
all analyses, the statistical significance was set at P < 0.05.

3. Results

3.1. Behavioral data

Behavioral data of SST measures are summarized in Table 1.

3.2. Physiological data

3.2.1. Power analysis
Figure 1A shows the beta band power spectrum. Our data

revealed significant positive correlations between SSRT and cortical
beta power in left and right MC, right SC, and right IFC
(r’s = 0.49, 0.52, 0.45, and 0.55, P’s = 0.031, 0.021, 0.045, and
0.015, respectively) (Figures 1B–E), indicating individuals with
poor ability of response inhibition tended to have greater EEG
power in those brain regions. There was no significant correlation
between other SST measures and cortical beta power in any brain
region (P’s > 0.05).

3.2.2. Coherence
Figure 2A shows the matrix for beta band coherence between

pairs of electrodes in bilateral MC, SC, and IFC. Our data revealed
significant correlations between SSRT and coherence of each
pair of brain regions (P’s < 0.05) (Figures 2B, 3). There was
no significant correlation between other SST measures and beta
coherence (P’s > 0.05).

3.2.3. Graph theory analysis
Our data revealed significant positive correlation between beta

band global efficiency and SSRT (r = 0.59, P = 0.01) (Figure 4).
There was no significant correlation between other SST measures
and beta band global efficiency (P’s > 0.05).

4. Discussion

This study investigated the relationship between resting state
cortical beta activity and response inhibition. Our primary findings
are (1) beta band EEG power in bilateral sensorimotor cortices
and right inferior prefrontal cortex was positively correlated with
SSRT; (2) beta band coherence between bilateral sensorimotor and
inferior prefrontal cortices was positively correlated with SSRT; (3)
beta band global efficiency was positively correlated with SSRT.

4.1. Beta band activity

Beta band power in bilateral sensorimotor cortices and
right IFC was positively correlated with SSRT, suggesting that
individuals with better ability of response inhibition tend to
have less resting beta power. To our knowledge, no previous
study has investigated the relationship between resting beta power

and response inhibition. Prolonged SSRT has been observed in
many psychiatric conditions with impaired urge control (i.e.,
impulsivity), such as attention deficit/hyperactivity disorder (Lijffijt
et al., 2005) and schizophrenia (Badcock et al., 2002), suggesting
a theoretical link between motor-inhibitory control deficits and
impulsivity (Bari and Robbins, 2013; Skippen et al., 2019). Some
studies investigated the relationship between resting beta power
and trait impulsivity (assessed by questionnaires) and reported that
individuals with higher level of trait impulsivity tend to have greater
resting beta power (Threadgill and Gable, 2018; Wendel et al.,
2021). Our study for the first time investigated the relationship
between resting band power and the ability of inhibitory control
rather than impulsivity. In line with previous studies (Threadgill
and Gable, 2018; Wendel et al., 2021), our results revealed positive
correlations between resting beta power and response inhibition
and extended the relationship to another aspect of impulsivity.

The neural mechanisms underlying the relationship between
beta band oscillatory activity and response inhibition remains
unclear. Beta power has been suggested as a signature of an active
process promoting the existing motor set whereas compromising
neuronal processing of new movements (Androulidakis et al.,
2006, 2007; Pogosyan et al., 2009; Engel and Fries, 2010). It
has been reported that voluntary movements are slowed if
they are triggered during the period of enhanced spontaneous
beta band activity (Androulidakis et al., 2006, 2007), suggesting
spontaneous enhancement of beta band oscillatory activity
relates to impaired motor performance. Previous studies applied
transcranial alternating-current stimulation on MC and observed
increased resting beta activity accompanied by slowed hand and
finger movements (Pogosyan et al., 2009; Wach et al., 2013). Taken
together, these evidence suggest that beta band activity possibly
signals the tendency of the sensorimotor system to maintain the
status quo, and excessive beta band activity would slow down motor
performance (Engel and Fries, 2010).

Unlike previous studies investigating the relationship between
resting beta activity and velocity of voluntary movement (e.g.,
visuomotor tracking task) (Pogosyan et al., 2009; Wach et al., 2013),
our current study for the first time investigated the relationship
between resting beta activity and the ability of response inhibition.
Results from previous studies and the current study suggest that
excessive beta band activity slows down the velocity of both motor
tasks and response inhibition, even though the neural substrates
for motor execution and motor inhibitory control are different.
This indicates that excessive beta band activity may relate to an
overall slowdown of motor performance regardless of the type of
movement.

Interestingly, we observed a significant correlation between
SSRT and beta band power in bilateral sensorimotor cortex and
right IFC, but not in the left IFC. Our results are in line
with previous studies reporting that right IFC is an important
structure for motor inhibitory control (Aron, 2007; Cunillera
et al., 2014, 2016; Chowdhury et al., 2019). As most previous
studies (including our current study) included only right-handed
participants (Cunillera et al., 2014, 2016), how handedness
influences the laterality of motor inhibitory control has not been
systematically investigated. Therefore, cautions are needed when
generalizing the conclusion that the right IFC, rather than the left
IFC, is a critical area in the motor inhibitory network to left-handed
individuals.
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FIGURE 1

Correlations between beta band power and stop-signal reaction time (SSRT). The topographic map shows beta band power (A). Data are presented
as raw values of power. Scatter plots show the significant positive correlations between SSRT and beta band power in left motor cortex (MC) (B),
right MC (C), right motor somatosensory cortex (SC) (D), and right inferior frontal cortex (IFC) (E). As longer SSRT is associated with more poor ability
of response inhibition, individuals with poor ability of response inhibition tended to have greater electroencephalography (EEG) power in the above
brain regions.

FIGURE 2

Beta band coherence in each pair of brain regions of interest and the correlations with stop-signal reaction time (SSRT). (A) Beta band coherence
between bilateral motor cortex, somatosensory cortex, and inferior frontal cortex. Data are presented as z-scores of coherences. There were four
electroencephalography (EEG) channels included for each brain region of interest. (B) Illustration of correlations between SSRT and beta band
coherence in each pair of brain regions of interest. Solid lines stand for significant positive correlations between SSRT and beta band coherence in
the pair of brain regions. L stands for left, and R stands for right. SC refers to somatosensory cortex. MC refers to motor cortex. IFC refers to inferior
frontal cortex.

4.2. Beta band functional connectivity

Both beta band global efficiency and coherence between
bilateral sensorimotor cortices and IFC were positively correlated
with SSRT. Our findings suggest that in addition to beta
band oscillatory activity, beta band functional connectivity also
associates with response inhibition.

Unlike EEG power reflecting oscillatory synchronization
within local cortical neuronal populations, functional connectivity
represents neuronal synchronization between distributed cortical
regions (Silberstein et al., 2005). Oscillatory synchronization

between cortical areas has been increasingly recognized as a
critical mechanism in motor organization (Serrien and Brown,
2003; Serrien et al., 2003). Although the relationship between local
beta cortical oscillatory activity and impaired motor performance
has been extensively investigated (Androulidakis et al., 2006,
2007; Engel and Fries, 2010), fewer studies investigated the
relationship between beta band functional connectivity and motor
performance (Gilbertson et al., 2005; Silberstein et al., 2005).
Silberstein et al. (2005) reported a positive correlation between
beta band functional connectivity over distributed cortical regions
and motor impairment in PD patients. Gilbertson et al. (2005)
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FIGURE 3

Scatter plots for correlations between stop-signal reaction time (SSRT) and beta band coherence. Each scatter plot represents significant positive
correlation between SSRT and beta band coherence in the pair of brain regions. RS and LS refer to right and left somatosensory cortex, respectively.
RM and LM refer to right and left motor cortex, respectively. RIF and LIF refer to right and left inferior frontal cortex, respectively.

FIGURE 4

Correlations between beta band global efficiency and stop-signal reaction time (SSRT). (A) Beta band global efficiency at each threshold. Data are
presented as mean and standard error. (B) Significant positive correlation between beta band global efficiency and SSRT. Data are presented as areas
under the curves of global efficiency at all thresholds.

reported that the greater beta band corticomuscular coherence was
related to the worse motor performance in healthy adults. Although
response inhibition is different from other movement type, similar
correlations between beta band functional connectivity and motor

performance were observed (Gilbertson et al., 2005; Silberstein
et al., 2005), suggesting individuals with worse motor performance,
regardless of the movement type, tend to have excessive beta band
functional connectivity.
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We also observed the relationship between beta band global
efficiency and the ability of response inhibition. Global efficiency
exhibits the efficiency in transporting information at a global scale
between genetic brain areas, and greater global efficiency reflects
higher information transferring efficiency over the entire brain
(Vecchio et al., 2019). Our results suggest that individuals with
lower efficiency in transporting information in the brain tend to
have worse ability of response inhibition.

4.3. Clinical implications

Our current study is the first study to investigate the
relationship between resting-state cortical beta band activity and
response inhibition. We observed positive correlations between
beta band power, coherence and global efficiency and SSRT,
indicating individuals with stronger cortical beta band activity tend
to have worse ability of inhibitory motor control.

Cortical beta band activity has been reported to be elevated in
PD, and PD patients with greater beta band activity tend to have
worse motor performance (Silberstein et al., 2005; Jenkinson and
Brown, 2011). As PD is characterized as a loss of dopaminergic
neurons in basal ganglia, excessive beta band activity has been
associated with reduced cortical dopaminergic tone (Jenkinson and
Brown, 2011). Silberstein et al. (2005) reported a reduction in
cortical beta band activity after dopaminergic therapy accompanied
by motor improvement in PD patients, further supporting the
existence of a direct relationship between cortical beta activity and
dopaminergic tone. Based on this premise, the correlations between
beta band activity and response inhibition observed in the current
study suggest that dopaminergic neurons possibly play a role in
response inhibition.

Despite the extensive existing literature, there is still lack of
solid evidence indicating the involvement of dopaminergic neurons
in motor inhibitory control (Stinear et al., 2009; Swann et al., 2011;
Haynes and Haber, 2013; Benis et al., 2014; Aron et al., 2016;
Duque et al., 2017). Suppression an initiated motor output requires
both an increase in intracortical inhibition and a reduction in
excitatory input from thalamus to primary MC (Duque et al., 2017).
Efficient inhibitory control relies on a “hyper-direct” pathway from
the frontal cortex to the subthalamus nucleus in basal ganglia,
providing a mechanism for rapidly inhibiting the motor system in
a global manner (Nambu et al., 2002; Wessel et al., 2016; Wessel
and Aron, 2017). As an important neurotransmitter in the cortico-
basal ganglia network, dopamine possibly plays a critical role in
response inhibition (Lindenbach and Bishop, 2013; Schall et al.,
2017). Therefore, the current study provides additional evidence
suggesting that dopaminergic neurons are possibly involved in
motor inhibitory control.

4.4. Limitations

As a pilot study, the sample size of current study is small
(N = 30). In addition, our sample includes only young adults,
which is another limitation of current study. Cautions are needed
when generalizing our findings to other populations, such as aging
population and PD patients. Future studies are needed to test our
results in other populations with larger sample sizes.

5. Conclusion

This is the first study to investigate the relationship between
resting state cortical beta activity and response inhibition. This
study revealed positive correlations between cortical beta band
activity, coherence and global efficiency and SSRT, indicating
individuals with less cortical beta band activity and functional
connectivity tend to have better ability of motor inhibitory control.
Our findings have implications on development of new treatment
for the diseases with impaired motor inhibitory control.
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Machine learning algorithms
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associated biological features
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Risheng Cao6*, Binbin Yu1*, Yu Zheng1* and Yini Dang7*
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of Critical Care Medicine, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical
University, Taizhou, Zhejiang, China, 4Department of Rehabilitation Medicine, Shanghai Ruijin
Rehabilitation Hospital, Shanghai, China, 5Department of Neurological Rehabilitation, Wuxi Yihe
Rehabilitation Hospital, Wuxi, Jiangsu, China, 6Department of Science and Technology, The First
Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China, 7Department
of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China

Objectives: Post-stroke depression (PSD) is a common and serious psychiatric

complication which hinders functional recovery and social participation of

stroke patients. Stroke is characterized by dynamic changes in metabolism and

hemodynamics, however, there is still a lack of metabolism-associated effective

and reliable diagnostic markers and therapeutic targets for PSD. Our study was

dedicated to the discovery of metabolism related diagnostic and therapeutic

biomarkers for PSD.

Methods: Expression profiles of GSE140275, GSE122709, and GSE180470 were

obtained from GEO database. Differentially expressed genes (DEGs) were

detected in GSE140275 and GSE122709. Functional enrichment analysis was

performed for DEGs in GSE140275. Weighted gene co-expression network

analysis (WGCNA) was constructed in GSE122709 to identify key module genes.

Moreover, correlation analysis was performed to obtain metabolism related

genes. Interaction analysis of key module genes, metabolism related genes,

and DEGs in GSE122709 was performed to obtain candidate hub genes. Two

machine learning algorithms, least absolute shrinkage and selection operator

(LASSO) and random forest, were used to identify signature genes. Expression

of signature genes was validated in GSE140275, GSE122709, and GSE180470.

Gene set enrichment analysis (GSEA) was applied on signature genes. Based on

signature genes, a nomogram model was constructed in our PSD cohort (27

PSD patients vs. 54 controls). ROC curves were performed for the estimation of

its diagnostic value. Finally, correlation analysis between expression of signature

genes and several clinical traits was performed.

Results: Functional enrichment analysis indicated that DEGs in GSE140275

enriched in metabolism pathway. A total of 8,188 metabolism associated genes

were identified by correlation analysis. WGCNA analysis was constructed to obtain

3,471 key module genes. A total of 557 candidate hub genes were identified

by interaction analysis. Furthermore, two signature genes (SDHD and FERMT3)
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were selected using LASSO and random forest analysis. GSEA analysis found that

two signature genes had major roles in depression. Subsequently, PSD cohort

was collected for constructing a PSD diagnosis. Nomogram model showed good

reliability and validity. AUC values of receiver operating characteristic (ROC) curve

of SDHD and FERMT3 were 0.896 and 0.964. ROC curves showed that two

signature genes played a significant role in diagnosis of PSD. Correlation analysis

found that SDHD (r = 0.653, P < 0.001) and FERM3 (r = 0.728, P < 0.001) were

positively related to the Hamilton Depression Rating Scale 17-item (HAMD) score.

Conclusion: A total of 557 metabolism associated candidate hub genes were

obtained by interaction with DEGs in GSE122709, key modules genes, and

metabolism related genes. Based on machine learning algorithms, two signature

genes (SDHD and FERMT3) were identified, they were proved to be valuable

therapeutic and diagnostic biomarkers for PSD. Early diagnosis and prevention

of PSD were made possible by our findings.

KEYWORDS

post-stroke depression, metabolism, WGCNA, machine learning algorithms, GEO

Introduction

Stroke remains the second leading cause of death and may lead
to long-term disability in adults (GBD 2019 Stroke Collaborators,
2021; Sun et al., 2021). After the acute stage, most of stroke patients
suffer from physical and mental disabilities of varying degrees,
including hemiplegia, reduced energy, and disturbed sleep (Zhang
et al., 2013; Dong et al., 2021). Previous studies have shown that
about 30–40% of stroke patients develop post-stroke depression
(PSD) which is a mood disorder characterized by depression
and anhedonia, and is associated with decreased rehabilitation
motivation, reduced quality of life, poor functional outcome, as
well as increased cost of treatment and burden of family caregiver
(Li et al., 2020). One meta-analysis concluded that a hazard ratio
for post-stroke depression and all-cause mortality was 1.59 (Cai
et al., 2019). However, PSD is often concealed due to unrecognized
depressive symptoms and their decreased willingness of treatment
attendance (Klinedinst et al., 2012). Diagnosis of PSD is currently
based on clinical symptoms, and there is no reliable objective
parameter. Therefore, it is necessary to explore the new diagnostic
and therapeutic biomarkers for PSD in subacute period of stroke.

There is accumulating evidence that PSD and metabolism are
intimately related. Compared with non-PSD, stroke patients with
PSD have higher glutamate levels in the frontal lobe (Wang et al.,
2012). Previous studies found that a high level of homocysteine has
been identified as the qualifiable risk factor for ischemic stroke,
and elevated serum level of homocysteine is also significantly
associated with depression (Li et al., 2017; Zhou et al., 2018).
Jiang et al. (2021) demonstrated that gut microbiome may
participate in the development of PSD, the discriminating fecal
metabolites were mainly involved in lipid metabolism, amino acid
metabolism, carbohydrate metabolism and nucleotide metabolism.
These results indicated that metabolism plays an important role in
the pathological process of PSD.

Recently with the assistant of advanced sequencing
technologies and machine learning algorithms, intelligent hub gene

and signaling pathway detection becomes realistic. Several studies
based on weighted gene co-expression network analysis (WGCNA)
have reported changes in relevant key pathways and differential
expression of key related genes in post-stroke patients (Li et al.,
2020; Wang et al., 2020; Lin et al., 2021). Furthermore, Liu et al.
(2022) used WGCNA combined with the random forest model
and the least absolute shrinkage and selection operator (LASSO)
analysis to identify 10 key genes in patients with Alzheimer’s
Disease. However, these techniques have not been widely applied
in the investigation of metabolism biomarkers of PSD.

Upon the above concerns, this study employed multiple
bioinformatic approaches to find possible biomarkers. Firstly,
three gene expression profiles of stroke were obtained from GEO
database. Differentially expressed genes (DEGs) were detected.
WGCNA was constructed to identify disease related module genes.
Then, correlation analysis was performed to obtain metabolism
related genes. Interaction analysis was performed to obtain
candidate hub genes. Subsequently, signature genes were identified
by LASSO and random forest analysis. Gene set enrichment
analysis was applied on signature genes. Finally, a diagnosis model
was built in PSD cohort. In general, the findings of this research
may assist in the diagnosis and treatment of PSD as well as increase
our understanding of etiology of PSD.

Materials and methods

Data sources and processing

Three datasets (GSE140275, GSE122709, GSE180470) were
downloaded from Gene Expression Omnibus (GEO).1 The
GSE140275 dataset contained six patients, including three healthy
controls (HC) and three stroke patients. The GSE122709 dataset

1 http://www.ncbi.nlm.nih.gov/geo/
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FIGURE 1

Flow chart. GEO, Gene Expression Omnibus; WGCNA, weighted gene co-expression network analysis; PSD, post-stroke depression; ROC, receiver
operating characteristic; GO, gene ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; GSEA, gene set enrichment analysis.

included five HC and ten stroke patients. GSE180470 dataset
included three HC and three stroke patients. Expressions of three
datasets were all derived from human blood tissue. “Limma” and
“edgeR” package in R software was used to investigate differentially
expressed genes (DEGs) (Robinson et al., 2010; Ritchie et al., 2015),
which was specified as “P-value < 0.05 and log2 (fold change) > 1
or log2 (fold change) < –1.” For visualization, the volcano plots
were generated to show DEGs, while the top 25 upregulated and
the top 25 downregulated DEGs were displayed by heatmaps.

Functional enrichment analysis

Functional enrichment analysis was conducted to evaluate
major biological attributes of DEGs, specifically including Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway analysis using “ClusterProfiler” package in R
software. Threshold was set at P-value < 0.05. GO categories
comprised biological processes (BP), molecular functions (MF),
and cellular components (CC) (Zhu et al., 2022).

Weighted gene co-expression network
analysis (WGCNA)

Based on scale-free topology criterion, co-expression network
in GSE122709 dataset was constructed using “WGCNA” package

in R software to identify co-expression gene modules (Langfelder
and Horvath, 2008). Briefly, genes with read counts less than 10
and “NA” were filtered out, top 5,000 variant genes were selected.
Pearson’s correlations between each gene pair were calculated to
build an adjacency matrix. Afterward, a “soft” threshold power
(β) was estimated according to the criteria of scale-free topology
to construct a biologically important scale-free network. Dynamic
Tree Cut algorithm was then used to identify gene modules (Lin
et al., 2021). Module membership (MM) and gene significance (GS)
were estimated to connect modules with clinical characteristics.
Hub gene modules were designated as those with the highest
Pearson module membership correlation and P-value < 0.05 (Liu
et al., 2021).

Screening for candidate hub genes

Based on R software, “WGCNA” package was used for
correlation analysis for genes in GSE122709 and seven genes
associated with metabolism with the following parameters: |
R| > 0.5, P < 0.001. Then, we identified candidate hub genes by
the intersection of DEGs, key module genes and metabolism related
genes. Finally, results were visualized by Venn diagram via online
tool Venny 2.1.02 (He et al., 2021).

2 https://bioinfogp.cnb.csic.es/tools/venny/index.html
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Identification for signature genes in
patients with stroke

We screened candidate hub genes by the intersection of DEGs,
key module genes and metabolism related genes. Subsequently,
two machine learning algorithms, least absolute shrinkage and
selection operator (LASSO) and random forest, were used to
identify hub gene. LASSO, a dimension reduction approach, shows
superiority in evaluating high-dimensional data in comparison
to regression analysis (Kang et al., 2021). The “glmnet” package
was used to implement LASSO analysis with a turning/penalty
parameter utilizing a 10-fold cross-validation. Furthermore, the
“random forest” package was used for performing the random
forest analysis which determined the optimal number of variables
by computing average error rate of candidate hub genes
(Mantero and Ishwaran, 2021). A random forest tree model
was built and the importance scores of each candidate hub
genes were identified. Genes with importance value >0.25 were
determined. The intersection genes of LASSO and random forest
analysis were used to pick signature genes of patients with
stroke.

Establishment of nomogram

The “rms” package was applied for incorporating signature
genes to establish a nomogram. The “score” is the score of the
relevant item below, and the “total score” is the sum of all the
elements above. Calibration curves were used for assessing the
predictive power of the model. Clinical usefulness of nomogram
was evaluated by decision curve analysis, which determines clinical
practicability of nomogram by quantifying the net benefits under
different threshold probabilities in the validation set. Furthermore,
we performed clinical impact curves to evaluate clinical utility of
the model (Xu et al., 2021).

Curve analysis of receiver operating
characteristics (ROC)

The “pROC” package was applied to create Receiver Operating
Characteristic (ROC) curves to determine the area under the curve
(AUC) for screening signature genes and evaluating their diagnostic
value (Robin et al., 2011). AUCs of 0.5–0.7 were considered with
low diagnostic accuracy, 0.7–0.9 were considered with moderate
accuracy, and >0.9 indicates high accuracy.

Gene set enrichment analysis (GSEA)

To functionally investigate the biological significance of
signature genes, GSEA (version 4.1.0) was performed in different
subgroups. KEGG gene sets were chosen as the gene set database
(Subramanian et al., 2005). Normalized enrichment score (NES)
and false discovery rate (FDR) were used to determine if differences
were statistically significant and cut-off values were FDR < 0.25,
P < 0.05, and | NES| > 1.

PSD validation cohort

This was a cohort study enrolled at the First Affiliated Hospital
of Nanjing Medical University from September 2020 to April
2022. It was approved by the Committee of Institutional Ethics
(Institutional Review Board, 2018-SR-339) and all participants
provided written informed consent prior to participation. Patients
eligible for inclusion in the study were: (1) aged older than
18 years; (2) diagnosed with ischemic stroke on brain MRI; (3)
with stable vital signs (Luft et al., 2004; Upreti et al., 2019). Patients
were excluded if (1) presence of severe cognitive impairment; (2)
participated in other clinical trials within 6 months (Shi et al., 2021;
Yu et al., 2022).

All participants underwent an initial clinical assessment,
including the collection of clinical and demographic information.
Depression symptoms in post-stroke patients were evaluated by the
Hamilton Depression Rating Scale 17-item (HAMD) at 1 month
after stroke by a trained neurologist (Lin et al., 2020; Qiao et al.,
2020). A score of 0–7 was considered normal, while a HAMD
score ≥8 is indicative of depression. Stroke severity was measured
using the National Institute of Health Stroke Scale (NIHSS) (He
et al., 2020). Modified Rankin Scale (mRS) was used to estimate the
functional disability (Liu et al., 2018). Independence and level of
activities of daily life (ADL) were evaluated with the Barthel index
(Kamal et al., 2020). For research purposes, a blood sample (10 ml)
was taken from each subject for further ELISA assessment when
they completed the HAMD assessment.

ELISA analysis

Concentration of signature genes in serum of stroke patients
were measured using ELISA kit (antibodies-online, Philadelphia,
PA, USA). Briefly, 100 µL standard or sample were added to each
well and incubated for 90 min at 37◦C. After washing two times,
100 µL Biotin-labeled antibody working solution was added and
incubated for 60 min for 37◦C. After plates were washed three
times. A total of 100 µL SABC Working Solution was added and
incubated for 30 min at 37◦C. Subsequently, 90 µL TMB Substrate
Solution was added and incubated 20 min at 37◦C. After the
incubation, 50 µL stop solution was added into each well to stop the
reaction. Finally, Absorbance value at 450 nm was read immediately
and calculation (Kaida et al., 2013; Zhou et al., 2015).

Statistical analysis

All statistical analyses in our study were implemented using
R software (version 4.1.2). The difference between the two groups
was analyzed by Student’s t-test. The correlation between genes in
GSE122709 and metabolism related genes was determined using
Pearson’s correlation test. All statistical P-values were two-sided,
and statistical significance was considered with P-value < 0.05.

Results

Detailed procedure of our study is shown in Figure 1.
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FIGURE 2

DEGs screening and functional enrichment analysis. (A) Volcano plot of differentially expressed genes in GSE140275. (B) Heatmap of differentially
expressed genes in GSE140275. (C) KEGG pathway analyses of upregulated mRNAs in GSE140275. (D) GO functional analyses of upregulated mRNAs
in GSE140275. (E) Volcano plot of differentially expressed genes in GSE122709. (F) Heatmap of differentially expressed genes in GSE122709.
(G) KEGG pathway analyses of downregulated mRNAs in GSE140275. (H) GO functional analyses of downregulated mRNAs in GSE140275. (I) KEGG
pathway analyses of mRNAs in GSE122709. (J) GO functional analyses of mRNAs in GSE122709. GO, Gene Ontology; KEGG, Kyoto Encyclopedia of
Genes and Genomes; DEGs, differentially expressed genes.

Identification of DEGs between HC and
stroke patients

To identify potential DEGs, expression profiles of GSE140275
and GSE122709 in GEO database were performed using “Limma”
package with P< 0.05 and | logFC| > 1 as threshold. A total of 1,724
DEGs were screened in GSE140275 including 861 upregulated
genes and 863 downregulated genes (Supplementary Table 1).
A total of 7,731 DEGs were obtained, of which 3,516 genes
presented upregulation and 4,215 genes presented downregulation
in GSE122709 (Supplementary Table 2). The volcano plots were
demonstrated in Figures 2A, E. The heatmap showed the top
25 upregulated and top 25 downregulated DEGs between healthy
control and stroke patients (Figures 2B, F).

Functional enrichment analysis of DEGs
in GSE140275

Functional enrichment analysis was carried out to investigate
the biological functions of DEGs in GSE140275. Among
upregulated DEGs, KEGG enrichment analysis demonstrated
that “autophagy,” “porphyrin metabolism,” and “glycine, serine
and threonine metabolism” were highly enriched (Figure 2C);
GO analysis showed that multiple metabolic pathways were
also significantly enriched in biological processes, such as

“monoacylglycerol metabolic process,” “acylglycerol metabolic
process,” and “glycerolipid metabolic process” (Figure 2D). The
results of KEGG showed downregulated DEGs were especially
enriched in “ribosome,” “protein export,” and “T cell receptor
signaling pathway” (Figure 2G). Additional GO analysis suggested
downregulated DEGs were significantly enriched in “structural
constituent of ribosome” in MFs, “ribosome” in CCs, and
“regulation of leukocyte mediated immunity” in BPs (Figure 2H).
Similarly, KEGG pathways analysis of GSE122709 showed that
“porphyrin metabolism”, and “glycine, serine and threonine
metabolism” were significantly enriched (Figures 2I, J), indicating
that metabolism played an important role in stroke.

Construction of the weighted gene
co-expression network

The GSE122709 dataset (five HC and 10 stroke patients)
was obtained for WGCNA analysis to identify modules of
highly correlated genes. A scale-free co-expression network was
constructed with the soft threshold to 20 and the mean connectivity
is relatively favorable (Figures 3A, B). We selected 0.25 as
clustering height limit to merge the strongly associated modules
(Figure 3C). Subsequently, 24 signature modules were identified
and labeled with different colors (Figure 3D). The correlation
between modules was computed, and the results were showed
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FIGURE 3

Construction of WGCNA co–expression network. (A) Scale-free fit index. (B) Mean connectivity. (C) Clustered dendrograms. (D) Clustering
dendrogram of genes, various colors represent different modules. (E) Correlation heatmap between modules. Red and blue represent positive and
negative correlations, respectively. (F) Clustering dendrogram of module feature genes. (G) Heatmap of module–trait correlations. Red and green
represent positive and negative correlations, respectively. HC, healthy control; WGCNA, weighted gene co-expression network analysis.

in Figure 3E. In addition, transcription correlation analysis
was performed and demonstrated that there was no substantive
connection between modules (Figure 3F). Finally, we calculated
the correlation between each module and clinical features. Results
indicated that the MEroyalblue module was negatively correlated
with HC (r = –0.83, P = 1e–04) and positively correlated with stroke
(r = 0.83, P = 1e–04), while the Megrey module was negatively
correlated with stroke (r = –0.93, P =5e–07) and positively
correlated with healthy control (r = 0.93, P = 5e–07) (Figure 3G
and Supplementary Table 3). Therefore, Meroyalblue and Megrey
modules were identified as clinically meaningful modules.

Identification of metabolism related
candidate hub genes

Based on KEGG pathway analysis in GSE140275, we extracted
porphyrin metabolism and glycine, serine and threonine
metabolism related genes (ALAS2, FECH, COX10, GCAT,
HMBS, PGAM2, and AOC2). Correlation analysis between seven
genes and all genes in GSE122709 dataset was conducted. A total
of 8,188 metabolism related genes were identified (| r| ≥ 0.5,
P ≤ 0.001). The heatmap of correlation analysis were shown in
Figure 4A. Subsequently, we interacted DEGs in GSE122709,
genes in Meroyalblue and Megrey modules, and metabolism
related genes, 554 common genes were obtained as metabolism
related candidate hub genes (Figure 4B). Functional enrichment
analysis revealed that metabolism related candidate hub genes were
enriched in “oxidative phosphorylation,” “ATP synthesis coupled
electron transport,” “cell-substrate junction,” and “carbohydrate
transmembrane transporter activity” (Figures 4C, D).

Selection of signature genes via machine
learning algorithms

Least absolute shrinkage and selection operator and random
forest algorithms were applied to identify signature genes from
554 metabolism related candidate hub genes. For LASSO analysis,
nine signature genes were selected from statistically significant
univariate variables (Figures 5A, B and Supplementary Table 4).
For random forest analysis, we set importance value to 0.25 as the
threshold and 130 signature genes were determined (Figures 5C,
D and Supplementary Table 5). The interaction analysis of LASSO
and random forest indicated that two signature genes were finally
screened out, including succinate dehydrogenase complex subunit
D (SDHD) and fermitin family member 3 (FERMT3) (Figure 5E).
Finally, correlation analysis of two signature genes and metabolism
related genes (ALAS2, FECH, COX10, GCAT, HMBS, PGAM2, and
AOC2) demonstrated that SDHD and FERMT3 were significantly
correlated with metabolism (Figure 5F).

Validation of signature genes

We further investigated the role of SDHD and FERMT3. The
expression of SDHD and FERMT3 was verified in GSE140275
and GSE122709. The results showed that SDHD was substantially
upregulated in the stroke group, while the same trend was seen in
expression of FERMT3 (Figures 6A, B). To further confirm the
reliability of our results, validation dataset (GSE180470) was used
to validate expression of SDHD and FERMT3. SDHD and FERMT3
were highly expressed in the stroke group (Figure 6C), suggesting
that these genes may play a significant role in stroke.
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FIGURE 4

Generation of metabolism related candidate hub genes. (A) Correlation heatmap between seven metabolism related genes and DEGs in GSE122709.
Red represents positive correlations, and blue represents negative correlations. (B) Venn diagram to identify candidate hub genes between
metabolism related genes, key modules genes and DEGs. (C) KEGG analysis of candidate hub genes. (D) GO analysis of candidate hub genes.
WGCNA, weighted gene co-expression network analysis; DEGs, differentially expressed genes; KEGG, Kyoto Encyclopedia of Genes and Genomes;
GO, Gene Ontology; BP, biological processes; CC, cellular components; MF, molecular functions.

FIGURE 5

Selection of signature genes. (A) Parameter selection was performed through LASSO regression. (B) Elucidation of LASSO coefficient profiles for
selected factors. (C) Random forest error rate versus the number of classification trees. (D) The top 20 relatively important genes. (E) Venn diagram
to identify signature genes between LASSO and random forest. (F) Heatmap of correlation analysis between two signature genes and metabolism
related genes (ALAS2, FECH, COX10, GCAT, HMBS, PGAM2, and AOC2). LASSO, the least absolute shrinkage and selection operator.

GSEA analysis of signature genes

Gene set enrichment analysis was performed for evaluating
signaling pathways involved in the signature genes. The
results showed that SDHD was significantly correlated

with “emotional lability,” “depression,” and “abnormal
fear anxiety related behavior” (Figure 6D). Meanwhile,
“depression,” “emotional blunting,” and “abnormal fear
anxiety related behavior” were detected for FERMT3
(Figure 6E). The results indicated that SDHD and FERMT3
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FIGURE 6

Validation and GSEA analysis of signature genes. (A) Expression level of SDHD and FERMT3 in GSE122709. (B) Expression level of SDHD and FERMT3
in GSE140275. (C) Expression level of SDHD and FERMT3 in GSE180470. (D) GSEA analysis of SDHD. (E) GSEA analysis of FERMT3. ∗P < 0.05;
∗∗∗P < 0.001. HC, healthy control; GSEA, gene set enrichment analysis.

played a key role for diagnosis of psychosocial state in
stroke patients.

Diagnostic efficacy of signature genes in
PSD patients

Based on GSEA analysis of two signature genes (SDHD and
FERMT3), we found that they have a significant correlation with
depression. Therefore, we collected 81 stroke patients who were
assigned into the PSD group (mean HAMD score = 14.74) and non-
PSD group (mean HAMD score = 3.41). There was no difference in
baseline clinical features between groups (Supplementary Table 6).
Meanwhile, expression of serum SDHD and FERMT3 in all patients
were detected by ELISA kit. SDHD and FERMT3 presented higher
expression in the PSD group than the non-PSD group (Figures 7A,
B), indicating their potential roles in diagnosis of depression in
stroke patients. To predict diagnostic performance of signature
genes in stroke patients with depression, the nomogram model
for the signature genes (SDHD and FERMT3) was built using
“rms” package (Figure 7C). Calibration curves demonstrated that
the difference between the real and predicted depression risks
was very minimal, indicating the nomogram model enabled an
accurate estimation (Figure 7D). In addition, decision curves
analysis demonstrated that the nomogram provided a greater
clinical benefit (Figure 7E). The ROC curve also showed that the
model was able to help clinicians accurately diagnose depression
of stroke patients (Figure 7F). Additionally, correlation analysis
between two signature genes and several clinical traits (HAMD,

NIHSS, BI, and mRS) indicated that SDHD (r = 0.653, P < 0.001)
and FERM3 (r = 0.728, P < 0.001) were positively related HAMD,
while SDHD also displayed a negative association with Barthel
index (r = –0.224, P = 0.044) (Figures 7G, H).

Discussion

In this study, we included three datasets (GSE140275,
GSE122709, GSE180470) with 27 patients for data analysis.
We first screened 1,724 DEGs in GSE140275 including 861
upregulated genes and 863 downregulated genes. Subsequent
KEGG enrichment analysis showed “porphyrin metabolism” and
“glycine, serine and threonine metabolism” were highly enriched.
Recent research reveals that stroke causes systemic complications,
including hyperlipemia, high blood viscosity, dysfunctional gut
microbiota, and a leaky gut (Yamashiro et al., 2017; Chen et al.,
2019a). Chen et al. (2019b) demonstrated that stroke would cause
gut microbiota dysbiosis, translocation of gut microbiota, and
disruption to the gut barrier. And supplementation of short chain
fatty acids (SCFAs), especially butyric acid, could remodel the gut
microbiota and treat stroke (Chen et al., 2019a). Moreover, with
the development of biology, metabolomics was applied to explore
biomarkers and mechanisms of stroke by identifying metabolic
alterations. Several studies reported the increase in ketone bodies
levels in rats with stroke compared with sham group (Chen et al.,
2019c; Wang et al., 2019). Fu et al. (2019) reported a decrease
in β-hydroxybutyric acid level in serum but an increase in brain
tissue in stroke rats, providing more energy for brain. These
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FIGURE 7

Performance of signature genes in PSD patients. (A) Expression level of SDHD in PSD and non-PSD groups. (B) Expression level of FERMT3 in PSD
and non-PSD groups. (C) Nomograms for the prediction of the PSD risk. (D) Scatter diagram of calibration plot for internal verification of the
nomogram model. (F) DCA curves of the nomogram model. (E) ROC curves of the nomogram model. (G) Correlation between expression of SDHD
and four clinical traits (HAMD, NIHSS, BI, and mRS). (H) Correlation between expression of FERMT3 and four clinical traits (HAMD, NIHSS, BI, and
mRS). PSD, post-stroke depression; DCA, decision curve analysis; ROC, receiver operating characteristic; AUC, area under the curve; HAMD,
Hamilton Depression Rating Scale 17-item; NIHSS, National Institute of Health Stroke Scale; BI, Barthel index; mRS, Modified Rankin Scale. ∗P < 0.05.

studies suggest that metabolism features strongly correlate with
prevention, diagnosis and treatment of stroke. Based on the role
of metabolism in stroke, we extracted seven genes related to
the “porphyrin metabolism” and “glycine, serine and threonine
metabolism” pathways, including ALAS2, FECH, COX10, GCAT,
HMBS, PGAM2, and AOC2. We then performed correlation
analysis between these genes enriched in these two pathways in
GSE140275 and all genes in GSE122709 to identify metabolism
related genes. A total of 8,188 metabolism related genes were
identified. Nevertheless, with the help of advanced bioinformatic
approaches genetic information could be further derived.

Weighted gene co-expression network analysis (WGCNA) is
a frequently applied method to identify co-expression pattern
at whole transcriptome level. Wang et al. (2019) performed
WGCNA analysis to investigate co-expression modules related with
osteosarcoma and found genes in brown module might be related
with carcinogenesis of osteosarcoma. In addition, there were several
studies screened key module genes related to stroke by WGCNA

analysis (Fan et al., 2022; Zheng et al., 2022). However, metabolism
related pathways and key genes in stroke are seldomly identified.
Therefore, we performed WGCNA analysis of GSE122709 to
identify 24 gene modules. No significant correlation between
dividing modules was found. Module-traits relationship analysis
indicated that Meroyalblue and Megrey modules were significantly
associated with stroke disease. After this step, we interacted DEGs
in GSE122709, genes in Meroyalblue and MEgrey modules, and
metabolism related gene and showed 554 metabolism related
candidate hub genes. Nonetheless, a single WGCNA analysis
had significant limitations and inaccuracies (Tzimas et al., 2019).
Currently, studies applied WGCNA were normally combined with
multiple machine learning algorithms to identify biomarkers for
disease prognosis and diagnosis. Zhao et al. (2022) identified four
core genes (BTN3A2, CYFIP2, ST8SIA1, and TYMS) as biomarker
for diagnosis of rheumatoid arthritis via comprehensive analysis
of WGCNA, LASSO, random forest, and support vector machine
analysis. By WGCNA, LASSO, and random forest algorithms,
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Fan et al. (2022) obtained five signature genes (UPP1, S100A9,
KIF1B, S100A12, SLC26A8) and emerged remarkable diagnostic
performance in pediatric septic shock. In the current study,
LASSO regression analysis and random forest algorithms found
two signature genes, then three validation datasets, including
GSE140275, GSE122709, and GSE180470, confirmed that SDHD
and FERMT3 were highly expressed in the stroke group.

SDHD, one subunit of succinate dehydrogenase (SDH), dual
roles in respiration by transferring electrons from succinate
to ubiquinone in the mitochondrial electron transport chain
(ETC) and catalyzing oxidation of succinate to fumarate in
the mitochondrial Krebs cycle (Cecchini, 2003; Sun et al.,
2005). Researchers reported mutations of SDHD in patients with
hereditary pheochromocytomas and hereditary paragangliomas
(Baysal et al., 2000). In vitro experiment performed by Bandara et al.
(2021) demonstrated that mutation of SDHD via CRISPR/Cas9
approach could suppress glycolysis and overall ATP synthesis in
HEK293. Overexpression of SDHD could significantly suppressed
cell proliferation in vitro and tumor growth of HCC cells
in vivo (Yuan et al., 2022). FERMT3 is a member of the
kindlin family of binding proteins containing the FERM domain
(Rognoni et al., 2016). FERMT3 mediates integrin activation and
integrin-ligand binding. Therefore, FERMT3 is closely related to
various biological activities, including cell adhesion, spreading,
cell survival, proliferation and differentiation (Rognoni et al.,
2016). Mutations of FERMT3 gene could cause leukocyte adhesion
deficiency type III (LAD III) (Kuijpers et al., 2009). Liu et al.
(2021) performed RNA sequencing in patients with triple-negative
breast cancer and identified FERMT3 as protective gene in
compound kushen injection treatment. Nonetheless, correlations
of FERMT3 and SDHD with stroke have not been previously
reported.

Post-stroke depression (PSD), the most common psychiatric
problem after stroke, is an independent risk factor of stroke
mortality (D’Anci et al., 2019). PSD is closely associated with worse
outcomes of physical and cognitive recovery, functioning, and
health related quality of life (Villa et al., 2018). It is worth noting
that PSD might halt or impede rehabilitation treatments. However,
the complex pathophysiology of PSD is still only partly known
till now. The current evidence indicates genetic factors as major
aetiopathological predictors for PSD. Yang et al. (2010) reported
that IL-18 level in serum on day 7 after admission might predict the
risk of PSD. Plasma levels of glutamate and glutamate oxaloacetate
transaminase at admission were also reported to be closely related
PSD within 3 months (Cheng et al., 2014). To further probe the role
of hub genes in stroke, we performed a GSEA analysis of signature
genes. The results demonstrated that SDHD and FERMT3 were
significantly enriched in depression. Then we validated our findings
in stroke patients with and without depression. We found increase
expression levels of SDHD and FERMT3 in stroke patients with
depression, compatible with our previous research inferences. In
addition, based on the two signature genes (SDHD and FERMT3)
that we identified, we successfully established a PSD diagnosis
for evaluating diagnosis value of SDHD and FERMT3 in our
PSD cohort. Nomogram model showed great predictive ability
and clinical usefulness. Meanwhile, AUC values of SDHD and
FERMT3 were 0.896 and 0.964. Our results suggested that SDHD
and FERMT3 might play essential roles in diagnosis of PSD.
Finally, we performed correlation analysis of two signature genes

and several clinical traits. We found that the SDHD and FERM3
were positively correlated with depression, which suggested that
SDHD and FERMT3 had certain therapeutic predictive value in
PSD. Moreover, SDHD was also found a negative correlation with
activities of daily living in this study. Considering the feature of this
parameters, it suggested that these two signature genes may also
serve as biomarkers to monitor the mental functional prognosis in
patients with PSD (van Hulsteijn et al., 2013).

The present study also has certain shortcomings. Firstly, we
collected data from public databases with small samples. There
could have been a selection bias. Large datasets of stroke patients
are limited, so we tried to minimize the bias of our results
by validating signature genes across multiple datasets. Secondly,
the metabolism related-pathways and -hub genes in stroke lack
literature support and required further confirmation. Thirdly,
although two metabolism related signature genes were identified
as potential predictors for PSD, larger patient cohorts should be
examined in the future to validate the correlation between two
signature genes (SDHD and FERMT3) with PSD. Then further
in vivo or in vitro studies should be carried out to validate diagnostic
value and potential therapeutic value.

Conclusion

In conclusion, we identified two signature genes (SDHD and
FERMT3) in peripheral blood of stroke patients by machine
learning. SDHD and FERMT3 were found to be significantly
associated with depression, and were identified as diagnostic and
therapeutic signatures by our stroke cohorts with and without PSD,
which could be a valuable reference for future clinical practice.
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Effects of noninvasive brain 
stimulation on dual-task 
performance in different 
populations: A systematic review
Xiaoying Lin 1,2†, Yanming Zhang 3†, Xi Chen 1, Lifen Wen 1, 
Lian Duan 4* and Lei Yang 1*
1 Department of Rehabilitation Medicine, The Second People’s Hospital of Kunming, Yunnan Province, 
China, 2 School of Rehabilitation, Kunming Medical University, Yunnan Province, China, 3 Department of 
Rehabilitation Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China, 4 Department of 
Manipulation, Yuxi Hospital of Traditional Chinese Medicine, Yunnan Province, China

Background: Increasing research has investigated the use of noninvasive brain 
stimulation (NIBS) on augmenting dual-task (DT) performance.

Objective: To investigate the effects of NIBS on DT performance in different 
populations.

Methods: Extensive electronic database search (from inception to November 20, 
2022) was conducted in PubMed, Medline, Cochrane Library, Web of Science 
and CINAHL to identify randomized controlled trials (RCTs) that investigated the 
effects of NIBS on DT performance. Main outcomes were balance/mobility and 
cognitive function under both single-task (ST) and DT conditions.

Results: Fifteen RCTs were included, involving two types of intervention 
techniques: transcranial direct current stimulation (tDCS) (twelve RCTs) and 
repetitive transcranial magnetic stimulation (rTMS) (three RCTs); and four different 
population groups: healthy young adults, older adults, Parkinson’s disease (PD), 
and stroke. For tDCS, under DT condition, significant improvement in speed was 
only observed in one PD and one stroke RCT, and stride time variability in one 
older adults RCT. Reduction in DTC in some gait parameters was demonstrated in 
one RCT. Only one RCT showed significant reduction in postural sway speed and 
area during standing under DT condition in young adults. For rTMS, significant 
improvements in fastest walking speed and time taken to Timed-up-and-go test 
under both ST and DT conditions were observed at follow-up in one PD RCT only. 
No significant effect on cognitive function in any RCT was observed.

Conclusion: Both tDCS and rTMS showed promising effects in improving DT 
walking and balance performance in different populations, however, due to the 
large heterogeneity of included studies and insufficient data, any firm conclusion 
cannot be drawn at present.

KEYWORDS

noninvasive brain stimulation, transcranial direct current stimulation, transcranial 
magnetic stimulation, dual-task, systematic review
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Introduction

Performing two tasks simultaneously (i.e., dual-task (DT) 
conditions) are common scenarios in many activities of daily 
living, for example, walking while talking, or while negotiating 
obstacles (Hillel et al., 2019). Therefore, how to improve the DT 
function is a topic of significance. Although a few systematic 
reviews have examined the efficacy of DT training on DT 
performance in different population (Delong and Wichmann, 
2015; Yang et al., 2018; De Freitas et al., 2020), the optimal strategy 
of improving DT function in different population is yet to 
be developed.

Performing DT activities is the result of interplay of different 
structures of the central nervous system: the dorsolateral 
prefrontal cortex (DLPFC), supplementary motor area (SMA), 
primary motor cortex (M1), and cerebellum (Vitorio et al., 2017). 
As compared to walking alone, additional attention and cognitive 
resources are required in these challenging conditions, thus 
making the two tasks compete for the limited cognitive resources 
(Tombu and Jolicoeur, 2003), which will lead to DT “costs” (i.e., 
decrements) in motor and/or cognitive task performance (Lundin-
Olsson et al., 1997; Yang et al., 2018). Among them, the DLPFC, a 
brain region that plays a critical role in executive functions, 
mainly mediates the cognitive process involved in dual-tasking 
(Weiss et al., 2015).

At present, there are two types of non-invasive brain 
stimulation (NIBS): transcranial magnetic stimulation (TMS) and 
transcranial direct current stimulation (tDCS), which uses 
electricity or magnetic flux to stimulate the intracranial neural 
tissues in a non-invasive way to regulate the excitability of central 
nerves and may induce lasting changes in neural plasticity, thus 
improving the function of subjects (Hara et  al., 2021). Recent 
NIBS studies have shown their promising potential in the 
rehabilitation of neurological diseases. For example, it has been 
found that TMS was effective when combined with conventional 
training in improving depression, cognitive function, upper limb 
motor function, balance and gait after stroke (Zhang et al., 2017; 
Begemann et al., 2020; Behrangrad et al., 2021; Hara et al., 2021; 
Xie et  al., 2021). tDCS has also demonstrated its effects on 
enhancing learning, working memory, executive planning, picture 
naming, and motor recovery in healthy young adults (Nitsche 
et al., 2003; Fregni et al., 2005; Dockery et al., 2009), as well as in 
the treatment of bipolar depression patients (D’Urso et al., 2023). 
Nevertheless, current studies that investigated the effects of NIBS 
on DT performance in different populations are scarce. Only 
several studies suggested that the NIBS may reduce the cost of 
performing a cognitive task when combined with a ambulation or 
postural control task in different populations (Wrightson et al., 
2015; Zhou et al., 2015; Manor et al., 2018).

To sum up, since the NIBS has demonstrated facilitating 
motor and cognitive process separately in different populations, 
it was postulated that NIBS would be  potentially useful in 
performing motor and cognitive tasks simultaneously, i.e., 
improving DT performance. However, whether using NIBS can 
address motor-cognitive interference in different populations is 
yet to be explored. Therefore, the aim of this systematic review 
was to investigate the effects of NIBS on DT performance in 
different populations.

Methods

This systematic review was conducted according to the PRISMA 
guidelines (Page et al., 2021).

Search strategy

Two independent investigators performed extensively searches 
using the following databases: PubMed, Medline, Cochrane Library, 
Web of Science and CINAHL. The literature search was performed 
using the keyword combination: [(NIBS) OR (TMS) OR (tDCS)] 
AND [(dual-task) OR (cognitive-motor)] AND [(walking) OR (gait) 
OR (balance)]. In addition, we also performed forward searches with 
Web of Science, and screened the reference list of each included 
publication so as not to miss any potential literature that met our 
criteria. The last search was conducted on December 20, 2022. Details 
of search strategy for the PubMed were provided in Appendix 1. 
Similar strategies were adapted to other databases.

Eligibility criteria

The inclusion criteria were constructed as follows: (1) Both groups 
received the same intervention, except that the experimental group 
received TMS or tDCS intervention, while the control group received 
sham stimulation or no stimulation; (2) The outcomes involved the 
measures of motor or cognitive performance under DT condition; (3) 
The study design was randomized controlled RCT (RCT). The exclusion 
criteria were: (1) Case reports, non-experimental results, letters to the 
editor, conference reports, dissertations and reviews; (2) The full text of 
the publication was unavailable, despite contacted the authors.

Assessment of methodological quality

The methodological quality of each included publication was 
assessed by using the Cochrane risk of bias tool (The Cochrane 
Collaboration), which is rated by the five dimensions: selection bias, 
performance bias, detection bias, attrition bias and reporting bias, with 
a full score of 121. A study that does not meet the six criteria items or 
has a fatal defect is considered to have a high risk of bias. For example, 
if the drop-out rate is greater than 50%, it is considered as a fatal defect.

Two independent investigators (LXY, ZYM) jointly analyzed and 
determined the risk of bias for each publications, any disagreement 
between them was discussed and resolved with the principal 
investigator (YL).

Data extraction and synthesis

Two independent investigators (LXY, ZYM) firstly screened the 
title and abstract of the searched publications. Then, the eligibility was 

1 https://training.cochrane.org/handbook/current
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further identified through full-text reading. If there was any 
disagreement, discussed and resolved with the third investigator (YL).

For the eligible publications, the first author extracted the general 
information about the study, e.g., participants’ characteristics, 
intervention protocols, and outcome measures. The primary outcomes 
extracted were walking (speed, step length, cadence, etc) and balance 
(center of pressure-related parameters) measures under both single - 
task (ST) and DT condition, as well as the corresponding DT-cost 
(DTC), while the secondary outcomes were cognitive performance 
under both ST and DT conditions, and other functions.

Due to the large heterogeneity of the included studies (different 
populations, different measures and small number of eligible studies), 
meta-analysis for each outcome was not performed. However, if the 
between-group comparison was significant, in order to facilitate the 
comparison across RCTs, we calculated the effect size (Hedges’ g) of 
gait, balance, cognition and other parameters under ST and DT 
conditions based on the original data given in the publications. For 
the follow-up results, we  calculated the Hedges’ g between the 
follow-up value and the pre-intervention value, in order to check 
whether the treatment effect still exists at the follow-up.

Result

Article selection and methodology 
assessment

The literature search process is shown in Figure  1, 1,023 
publications were generated from the electronic search. After screening, 
1,008 articles did not meet the inclusion criteria, thus were removed. 

Finally, 15 randomized controlled RCTs (RCTs) were identified in this 
review. The methodological quality of included RCTs was summarized 
in Table 1. The total risk of bias assessment score of the 15 included 
RCTs ranged from 7 to 10, indicating “low risks” (Table 1).

Participants’ characteristics and 
intervention protocols

The demographics were summarized in Table 2, involving two 
types of intervention techniques: repetitive TMS (rTMS) (three RCTs) 
and tDCS (twelve RCTs); and four different population groups: 
healthy young adults (four RCTs, N = 73), older adults (four RCTs, 
N = 100), PD (five RCTs, N = 132), and stroke (two RCTs, N = 63). The 
average age of participants ranged from 21.1 (1) to 82 (4) years.

rTMS protocols
Three RCTs investigated the effects of rTMS in healthy young 

adults, individuals with stroke and individuals with PD respectively, 
with different stimulation protocols. Goh et al. (2019, 2020) applied 
one single-session 5 Hz rTMS to healthy young adults and individuals 
with stroke. The stimulation targets of the experimental group were in 
the left DLPFC or SMA, while the control group was in the M1 (Goh 
et al., 2019, 2020). Chung et al. (2020) set the target over the leg area 
of bilateral M1 with three different groups (1 Hz, 25 Hz and sham 
stimulation) for 12 sessions.

tDCS protocols
The effects of tDCS were examined in 12 RCTs, involving four 

different populations, namely, healthy young adults, older adults, 

FIGURE 1

Flow chart.
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TABLE 1 Risk of bias.

Study Randomization 

adequate

Concealed 

allocation

Blind 

subjects

Blind 

therapists

Blind 

assessors

Was the drop-

out rate 

described and 

acceptable?

Were all 

randomized 

participants 

analyzed in the 

group to which 

they were 

allocated?

Free of 

selective 

outcome 

reporting?

Similarity of 

baseline 

characteristics

Cointerventions 

avoided or similar

Compliance 

acceptable

Timing  of 

the  

outcome 

assessments 

similar

Total risk 

of bias 

score

rTMS trials (N = 3)

Goh et al. 

(2020)
✓ – – ? – ✓ ✓ ✓ ✓ ? ✓ ✓ 7

Goh et al. 

(2019)
✓ – – ? ? ✓ ✓ ✓ ✓ ? ✓ ✓ 7

Chung 

et al. (2020)
✓ ✓ ✓ ? ✓ ✓ ✓ ✓ ✓ ? ✓ ✓ 10

tDCS trials

Zhou et al. 

(2014)
✓ ✓ ✓ ? ✓ ✓ ✓ ✓ ✓ ? ✓ ✓ 10

Wrightson 

et al. (2015)
✓ ✓ ✓ ? ✓ ✓ ✓ ✓ ✓ ? ✓ ✓ 10

Pineau 

et al. (2021)
✓ – ✓ ? ✓ ✓ ✓ ✓ ✓ ? ✓ ✓ 9

Zhou et al. 

(2015)
✓ ✓ ✓ ? ✓ ✓ ✓ ✓ ✓ ? ✓ ✓ 10

Manor 

et al. (2016)
✓ ✓ ✓ ? ✓ ✓ ✓ ✓ ✓ ? ✓ ✓ 10

Manor 

et al. (2018)
✓ ✓ ✓ ? ✓ ✓ ✓ ✓ ✓ ? ✓ ✓ 10

Schneider 

et al. (2021)
✓ ✓ ✓ ? ✓ ✓ ✓ ✓ ✓ ? ✓ ✓ 10

Schabrun 

et al. (2016)
✓ ✓ ✓ ? ✓ ✓ ✓ ✓ ✓ ? ✓ ✓ 10

Swank et al. 

(2016)
✓ ✓ ✓ ? ✓ ✓ ✓ ✓ ✓ ? ✓ ✓ 10

Mishra and 

Thrasher 

(2021)

✓ ✓ ✓ ? ✓ ✓ ✓ ✓ ✓ ? ✓ ✓ 10

Wong et al. 

(2022a,b)
✓ ✓ ✓ ? ✓ ✓ ✓ ✓ ✓ ? ✓ ✓ 10

Wong et al. 

(2022a,b)
✓ ✓ ✓ ? ✓ ✓ ✓ ✓ ✓ ? ✓ ✓ 10

✓ = yes; − = no; ? = unclear.
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TABLE 2 Characteristics of participants and intervention protocols.

Study Characteristics of participants Intervention protocols

Population 
and sample 
size (ratio of 
female)

Age (y) 
[Mean 
(SD)]

Disease 
onset 
duration 
(y)

EG CG Intervention 
period

Additional 
therapy

rTMS (N = 3)

Goh et al. 

(2019)

Young EG1: 9 

(55.6%) EG2: 10 

(60%)

29.3 (5.8) --

Site: EG1: DLPFC; EG2: SMA 

Parameters: 90% RMT, 5 Hz, 

ITI of 30s, 1,200 pulses

Site: the left M1 

Parameters: 90% 

RMT, 5 Hz, ITI of 30s, 

1,200 pulses

1 session NR

Goh et al. 

(2020)
Stroke 15 (33%) 57.7 (9.7) 22.8 (16.7)

Site: EG1: DLPFC; EG2: SMA 

Parameters: 90% RMT, 5 Hz, 

ITI of 30s, 1,200 pulses

Site: the left M1 

Parameters: 90% 

RMT, 5 Hz, ITI of 30s, 

1,200 pulses

1 session NR

Chung et al. 

(2020)

PD EG1: 17 (41%) 

EG2: 17 (47%) CG: 

16 (56%)

EG1: 62.7 

(6.8) EG2: 

62.1 (5.7) 

CG: 62.1 

(5.7)

EG: 5.2 (3.4) 

EG2: 7.5 

(4.9) CG: 6.9 

(3.3)

Site: the leg area of bilateral 

M1 Parameters: EG1: 25 Hz; 

EG2: 1 Hz; 80% RMT, ITI of 

50s, 1,200 pulses

Site: the leg area of 

bilateral M1 

Parameters: sham

4 days/week, for 

3 weeks (12 

sessions)

30 min of 

treadmill 

training.

tDCS (N = 12)

Zhou et al. 

(2014)
Young 20 (50%) 22 (2) --

Site: Anode: L-DLPFC; 

Cathoda: R- supraorbital 

region Parameters: 

1.1 ± 0.3 mA, 20 min

Site: Anode: 

L-DLPFC; Cathoda: 

R- supraorbital region 

Parameters: 0 mA, 

20 min

1 session NR

Wrightson 

et al. (2015)
Young 10 (NR) 23 (3.2) --

Site: EG1: Anode: PFC; EG2: 

Cathoda: PFC Parameters: 

1.5 mA, 15 min

Site: PFC Parameters: 

0 mA, 0.5 min
1 session NR

Pineau et al. 

(2021)

Young EG: 12 (25%) 

CG: 12 (25%)

EG: 21.6 

(1.6) CG: 

21.1 (1.0)

--

Site: Anode:L-DLPFC; 

Cathoda:R- supraorbital 

region Parameters: 2 mA/ 

30 min

Site: Anode:L-DLPFC; 

Cathoda:R- 

supraorbital region 

Parameters: 2 mA/ 

1 min

1 session NR

Zhou et al. 

(2015)
Older 20 (45%) 63 (3.6) --

Site: Anode: L-DLPFC; 

Cathoda: R- supraorbital 

region Parameters: 

1.4 ± 0.4 mA/ 20 min

Site: Anode:L-DLPFC; 

Cathoda:R- 

supraorbital region 

Parameters: 2 mA/ 

1 min

1 session NR

Manor et al. 

(2016)
Older 37 (67.6%) 61 (5.0) --

Site: Anode:L-DLPFC; 

Cathoda:R- supraorbital 

region Parameters: 

1.4 ± 0.4 mA/ 20 min

Site: Anode:L-DLPFC; 

Cathoda:R- 

supraorbital region 

Parameters: 2 mA/ 

1 min

1 session NR

Manor et al. 

(2018)

Older EG: 9 (55.6%) 

CG: 9 (55.6%)

EG: 82 (4.0) 

CG: 79 (4.0)
--

Site: Anode:L-DLPFC; 

Cathoda:R- supraorbital 

region Parameters: 

1.9 ± 0.3 mA/ 20 min

Site: Anode:L-DLPFC; 

Cathoda:R- 

supraorbital region 

Parameters: 

2.0 ± 0.1 mA/ 1 min

5 days/week, for 

2 weeks (10 

sessions)

NR

Schneider 

et al. (2021)
Older 25 (80%) 73.9 (5.2) --

Site: M1 + LDLPFC 

Parameters: 20 min

Site: M1 + LDLPFC 

Parameters: sham
1 session

EG: 

tDCS+walking; 

CG: 

sham+walking

(Continued)
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individuals with PD, and individuals with stroke. The anode was placed 
over the left DLPFC, left-M1, M1-LDLPFC, left cerebellum, or PFC, 
while the cathode were generally on the right supraorbital cortex (Zhou 
et  al., 2014, 2015; Wrightson et  al., 2015; Manor et  al., 2016, 2018; 
Schabrun et al., 2016; Swank et al., 2016; Mishra and Thrasher, 2021; 
Pineau et  al., 2021; Schneider et  al., 2021; Wong et  al., 2022a,b). 
Participants in most studies received only one session stimulation (Zhou 
et al., 2014, 2015; Wrightson et al., 2015; Manor et al., 2016; Swank et al., 
2016; Mishra and Thrasher, 2021; Pineau et al., 2021; Schneider et al., 
2021; Wong et al., 2022a,b). The intensities and duration of stimulation 
ranged from 1.1 to 2 mA, and 15 to 30 min, respectively.

Effects of rTMS on walking ability

Healthy young adults and individuals with stroke
No significant improvement in speed was observed in healthy 

young adults and individual with stroke under either ST or DT 
condition (Goh et al., 2019, 2020; Table 3).

Individuals with PD
Compared with the control group, significant improvements in 

fastest walking speed and time taken to TUG under both ST and DT 
conditions were only observed at follow-up in one RCT (Chung et al., 
2020; Table 3).

Effects of tDCS on walking ability

Healthy young adults
No significant improvements in speed or stride time variability 

under either ST or DT condition, DTC in speed, or in stride time 
variability was observed (Zhou et al., 2014; Wrightson et al., 2015; 
Table 3).

Older adults
Except the stride time variability under DT condition, none of gait 

parameters (speed, TUG, stride time) showed better improvement 
under ST or DT condition (Manor et al., 2018). On the contrary, some 

TABLE 2 (Continued)

Study Characteristics of participants Intervention protocols

Population 
and sample 
size (ratio of 
female)

Age (y) 
[Mean 
(SD)]

Disease 
onset 
duration 
(y)

EG CG Intervention 
period

Additional 
therapy

Schabrun 

et al. (2016)

PD EG: 8 (NR) CG: 

8 (NR)

EG: 72 (4.9) 

CG: 63 

(11.0)

EG: 6.9 (4.4) 

CG: 4.6 (3.9)

Site: Anode:L-M1; 

Cathoda:R- supraorbital 

region Parameters: 2 mA/ 

20 min

Site: Anode:L-M1; 

Cathoda:R- 

supraorbital region 

Parameters: 2 mA/ 

0 min

3 days/week, for 

3 weeks (9 sessions)

20 min of gait 

training

Swank et al. 

(2016)
PD 10 (NR) 68.7 (10.2) 7.9 (7.1)

Site: Anode:L-DLPFC; 

Cathoda:R- supraorbital 

region Parameters: 2 mA/ 

20 min

Site: Anode: 

L-DLPFC; Cathoda: 

R- supraorbital region 

Parameters: 1 mA/ 

0.5 min

1 session NR

Mishra and 

Thrasher 

(2021)

PD 20 (NR) 67.8(8.3) 4.8 (3.8)

Site: Anode:L-DLPFC; 

Cathoda:R- supraorbital 

region Parameters: 2 mA/ 

30 min

Site: Anode: 

L-DLPFC; Cathoda: 

R- supraorbital region 

Parameters: 2 mA/ 

1 min

1 session NR

Wong et al. 

(2022a,b)

PD EG1: 9 EG2: 9 

EG3: 9 CG: 9

EG1: 54.20 

(4.1) EG2: 

50.09 (2.4) 

EG3: 61.30 

(7.9) CG: 

58.30 (8.0)

EG1: 7.8 

(5.7) EG2: 

6.2 (3.3) 

EG3: 4.1 

(3.3) CG: 8.3 

(0.12)

Site: Anode: EG1: L- M1; 

EG2: L-DLPFC; EG3: 

L-Cerebellum; Cathode: 

R- supraorbital region 

Parameters: 2 mA/ 20 min

Site: Anode: L- M1; 

Cathode: 

Contralateral 

supraorbital ridge 

Parameters: 2 mA/ 

1 min

1 session
30 min of gait 

training

Wong et al. 

(2022a,b)

Stroke EG1: 12 

EG2: 12 EG3: 12 

CG: 12

EG1:54.3 

(16.1) EG2: 

53.3 (19.0) 

EG3: 59.2 

(12.7) CG: 

55.2 (14.0)

EG1:59.9 

(57.3) EG2: 

63.0 (40.8) 

EG3: 57.8 

(71.3) CG: 

57.4 (58.2)

Site: EG1: Anode: ipsilesional 

M1; Cathode: contralateral 

supraorbital ridge; EG2: 

Anode: ipsilesional M1; 

Cathoda:contralesional M1; 

EG3: Anode: contralateral 

supraorbital ridge; Cathode: 

contralesional M1 

Parameters: 2 mA/ 20 min

Site: Anode: 

ipsilesional M1; 

Cathode: contralateral 

supraorbital ridge 

Parameters: 2 mA/ 

1 min

1 session NR

CG: control group; EG: experimental group; L: left; NR: not reported; PD: Parkinson’s Disease; R: right.
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DTC measures, such as DTC in stride time, stride time variability, 
swing time variability, and step regularity demonstrated significant 
better improvement (Schneider et al., 2021; Table 3).

Individuals with PD
Except significant improvement in speed under DT condition was 

reported in one RCT only (Wong et  al., 2022a,b), no significant 
improvement in any gait parameter was identified in other RCTs 
(Schabrun et al., 2016; Swank et al., 2016; Mishra and Thrasher, 2021; 
Table 3).

Individuals with stroke
Only one RCT demonstrated the significant improvement in 

speed under both ST and DT condition, and cadence in ST condition 
(Wong et al., 2022a,b; Table 3).

Effects of tDCS on balance function

In five RCTs that investigated the balance function in healthy 
young adults and older adults, only one RCT showed significant 
reduction in postural sway speed and area during standing under DT 
condition (Zhou et al., 2014; Table 3).

Effects of NIBS on cognitive function

No significant effect on cognitive function was observed in 
healthy young adults or older adults (Goh et al., 2019, 2020; Table 3).

Effects of NIBS on other functions

Individuals with PD
Only one RCT reported that the rTMS could significantly improve 

the score of Movement Disorders Society-Unified Parkinson’s Disease 
Rating Scale part III (MDS-UPDRS III) at post-intervention and 
one-month follow-up, cortical silent period (CSP) at post-intervention, 
and short-interval intracortical inhibition (SICI) at one-month 
follow-up (Chung et al., 2020). No significant improvement in quality 
of life scores-39 was identified in the tDCS RCT (Swank et al., 2016). 
Only one trail demonstrated the tDCS could significantly lengthen CSP 
in DLPFC group (Wong et al., 2022a,b; Table 4).

Individuals with stroke
Significant improvement of CSP was demonstrated by one tDCS 

RCT only (Wong et al., 2022a,b; Table 4).

Discussion

Findings of this review

A total of 15 RCTs were included in this review, comparing the 
effects of NIBS with sham-stimulation in different populations. 
Significant improvements in DT walking (speed, time taken to TUG, 
cadence) and balance (postural sway speed and area) performance 
were only observed in 3 (Chung et al., 2020; Wong et al., 2022a,b) and 

1 (Zhou et al., 2014) RCTs, respectively. Similarly, reduction in DTC 
in some gait parameters (stride time, stride time variability, swing time 
variability, step regularity) was demonstrated in one RCT only 
(Schneider et al., 2021). In addition, due to the limited number and 
large heterogeneity of included RCTs, there was no evidence to suggest 
that NIBS was superior to sham-stimulation in improving DT walking 
and balance function.

rTMS effects on mobility function

Chung et al. showed that rTMS (25 Hz, 1 Hz, or sham) applying to 
the leg area of bilateral M1  in individuals with PD followed by 
treadmill training could significantly improve the time taken to TUG 
and fastest walking speed under both ST and DT conditions, and 
MDS-UPDRS III scores at post-intervention and follow-up. This was 
similar to the results of Yang et al. (2018) study. The meta-analysis by 
Yang et al. (2018) investigated the optimal therapeutic effects of rTMS 
parameters on mobility dysfunction and provided evidence supporting 
that rTMS could be  effective in improving mobility function in 
individuals with PD. Chung et al. (2020) and Yang et al. (2018) both 
concluded that high-frequency (25 Hz) rTMS could significantly 
improve cortical excitability in individuals with PD, this behavioral 
changes could be associated with increased cortical excitability. On 
one hand, rTMS can improve the neurological plasticity through the 
regulation of central nervous system (King and Tang, 2022); on the 
other hand, rTMS-primed treadmill training could strengthen 
synaptic connections in M1, which participates in the processing and 
storage of new information for motor consolidation, thereafter, 
leading to more stable and longer duration effect.

By contrast, in Goh et al. study, no significant improvement was 
identified in either healthy young adults or stroke under either ST or 
DT condition. This could be attributed to the only one-single session 
of stimulation was applied in their RCT, making no stimulation 
effect accumulated.

tDCS effects on mobility function

Significant improvements in gait parameters were demonstrated by 
only one RCT, respectively, in stroke (ST condition: speed, cadence; DT 
condition: speed) (Wong et al., 2022a,b) and PD (DT condition: speed) 
(Wong et al., 2022a,b). Only one RCT reported the significant findings 
in DT postural sway speed and area (Zhou et al., 2014). Therefore, there 
is insufficient data on the effect of tDCS on mobility in the four studied 
populations at present. Future research should further investigate the 
effects of tDCS on DT mobility function in different population with 
larger sample size and longer intervention period.

The DTC in gait parameters, such as, stride time variability, swing 
time variability and step regularity, were significantly reduced 
(Schneider et  al., 2021) in healthy young adults and older adults. 
Theoretically, under DT condition, cognitive resources would 
be  divided, leading one or both tasks deteriorated (Sigman and 
Dehaene, 2006). However, the DT interference in walking was 
improved after tDCS intervention, this phenomenon could be mainly 
due to the activation of DLPFC by tDCS, which promotes the speed 
of task processing in the brain (Filmer et al., 2013), i.e., improving the 
executive function, thereby reducing the DTC. The assumption was 

70

https://doi.org/10.3389/fnins.2023.1157920
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Lin et al. 10.3389/fnins.2023.1157920

Frontiers in Neuroscience 08 frontiersin.org

TABLE 3 NIBS: Effects on mobility outcomes.

Outcomes tDCS (N = 10) TMS (N = 3)

Under ST condition Under DT condition Under ST 
condition

Under DT 
condition

Walking function

Healthy young adults (N = 3)

Speeda (Pineau et al., 2021), 

Stride time variability 

(Wrightson et al., 2015): (NS)

Speeda (Zhou et al., 2014), DTC in speed 

(Zhou et al., 2014), DTC in stride time 

variability (Wrightson et al., 2015): (NS)

Speeda (Goh et al., 2019): 

(NS)

Speeda (Goh et al., 

2019): (NS)

Older adults (N = 3)

Speed (Manor et al., 2016, 

2018), TUG (Manor et al., 

2018), 4-m walking time 

(Manor et al., 2018), Stride 

time (Manor et al., 2018), 

Stride time variability and 

2-week-FU (Manor et al., 

2018): (NS)

Speed (Manor et al., 2016, 2018), Stride time 

(Manor et al., 2018), and their 

corresponding DTC: (NS) DTC in Stride 

time variability (Manor et al., 2018) and 

Double support time (Schneider et al., 

2021): (NS) Stride time variability (Manor 

et al., 2018): −0.61*; DTC in Stride time 

(Schneider et al., 2021): 1.14*; Stride time 

variability (Schneider et al., 2021): 4.04*; 

Swing time variability (Schneider et al., 

2021): 0.87*; Step regularity (Schneider 

et al., 2021): 0.46*

Stroke (N = 2)

Step time (Wong et al., 

2022a,b), Step length (Wong 

et al., 2022a,b), DTC in Speed 

(Wong et al., 2022a,b): (NS) 

Speed (Wong et al., 2022a,b): 

0.37* Cadence (Wong et al., 

2022a,b): 0.5*

Cadence (Wong et al., 2022a,b), Step time: 

(NS) (Wong et al., 2022a,b), Step length 

(Wong et al., 2022a,b), DTC in Speed (Wong 

et al., 2022a,b): (NS) Speed (Wong et al., 

2022a,b): 0.27 ~ 0.34*

Speeda (Goh et al., 2020): 

(NS)

Speeda (Goh et al., 

2020): (NS)

Parkinson’s disease (N = 4)

Speed (Schabrun et al., 2016; 

Mishra and Thrasher, 2021; 

Wong et al., 2022a,b), TUG 

(Schabrun et al., 2016; Swank 

et al., 2016; Wong et al., 

2022a,b), Cadence (Schabrun 

et al., 2016; Wong et al., 

2022a,b), Stride time (Wong 

et al., 2022a,b), Step length 

(Schabrun et al., 2016; Wong 

et al., 2022a,b), Double support 

time and 12-week 

FU(Schabrun et al., 2016): (NS)

Speed (Schabrun et al., 2016; Mishra and 

Thrasher, 2021), DTC in speed (Mishra and 

Thrasher, 2021; Wong et al., 2022a,b), TUGa 

(Schabrun et al., 2016; Swank et al., 2016), 

Cadence: (NS) (Schabrun et al., 2016; Wong 

et al. 2022a,b), Stride time (Wong et al., 

2022a,b), Step length (Schabrun et al., 2016; 

Wong et al., 2022a,b), Double support time 

and 12-week FU (Schabrun et al., 2016): 

(NS) Speed (Zhou et al., 2014): 0.65*

Fastest walking speed and 

1-month FU (Chung et al., 

2020): (NS) month FU 

(Chung et al., 2020): 0.51* 

TUG and 1-month FU 

(Chung et al., 2020): (NS) 

3-month FU (Chung et al., 

2020): −0.64*

TUG (Chung et al., 

2020): (NS) 1-month 

FU (Chung et al., 

2020): −0.67* 3-month 

FU (Chung et al., 

2020): −0.59*

Balance function (laboratory-based measures)

Healthy young adults (N = 3)

Postural sway speed and areaa 

(Zhou et al., 2014), Range AP 

and ML (Eyes open/closed) 

(Pineau et al., 2021), Mean 

velocity (Eyes open/closed) 

(Pineau et al., 2021): (NS)

ML/AP trunk RoM and their corresponding 

DTC (Wrightson et al., 2015; Pineau et al., 

2021), DTC in postural sway speed and areaa 

(Zhou et al., 2014), Mean velocity (open/

closed): (NS) (Pineau et al., 2021) Postural 

sway area and speeda* (Zhou et al., 2014)

Older adults (N = 2)

COP complexity indexa (Zhou 

et al., 2015), Standing postural 

sway area, speed and 2-week-

FU (Manor et al., 2016, 2018): 

(NS)

COP complexity index and its DTCa (Zhou 

et al., 2015), Standing postural sway area, 

speed and their corresponding DTC (Manor 

et al., 2018; Mishra and Thrasher, 2021): 

(NS)

a: Original data not reported.
*: Significant improvement in experimental group compared with control group, values are standardized effect sizes for significant results (Hedges’ g: 0.2 = small, 0.5 = medium, 
0.8 = large). 
AP: anterior–posterior; DTC: dual-task costs; ML: medio-lateral; NS: not significant; RoM: range of motion; TUG: timed up and go test.
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supported by the fact that the stimulation site of the 7 included RCTs 
in this review was all on the PFC (DLPFC) (Healthy young adults: 3 
studies; Older adults: 4 studies). Previous literature suggested that the 
DLPFC, particularly the left DLPFC, plays a critical role in regulating 
the execution of mobility-cognitive task, possibly due to its role in 
executive function (Beurskens et  al., 2014; Liu et  al., 2018). 
Alternatively, DLPFC is closely related to DT function. To sum up, 
tDCS applied to DLPFC seems to be able to decrease the DTC in gait 
parameters of healthy young adults and older adults.

Although the improvements in walking, balance, or cognition 
were generally not significant, many studies in recent years have 

shown that there was a tendency for NIBS to improve the modulating 
cortical efficiency in healthy young adults, older adults, individuals 
with stroke and individuals with PD (Cosentino et al., 2017; Ghosh 
et al., 2019; Bai et al., 2022). Theoretically, the behavioral or functional 
changes would occur after the plasticity changes. Since most RCTs in 
our review applied only one single-session stimulation (Zhou et al., 
2014, 2015; Wrightson et al., 2015; Manor et al., 2016; Swank et al., 
2016; Mishra and Thrasher, 2021; Pineau et al., 2021; Schneider et al., 
2021; Wong et al., 2022a,b) or short intervention period (2–3 weeks) 
(Schabrun et al., 2016; Manor et al., 2018), the plasticity changes could 
have not occurred. In addition, the basal ganglia, central to movement 

TABLE 4 NIBS: Effects on cognition and other outcomes.

Outcomes tDCS (N = 10) TMS (N = 3)

Under ST condition Under DT condition Under ST condition Under DT condition

Cognitive function

Healthy young adults (N = 3)

Serial subtractiona (Pineau 

et al., 2021), Error ratio: (NS) 

(Wrightson et al., 2015)

Serial subtractiona (Pineau 

et al., 2021), DTC in Error 

ratio: (NS) (Wrightson et al., 

2015)

Serial subtractiona (Goh et al., 

2020): (NS)

Serial subtractiona (Goh et al., 2020): 

(NS)

Older adults (N = 4)

MoCA (Manor et al., 2018), 

TMT (Part B − Part A) (Manor 

et al., 2018), Stroopa (Manor 

et al., 2016), Serial subtractiona 

(Manor et al., 2016): (NS)

Serial subtraction error rate 

(Zhou et al., 2015), DTC in 

Serial subtractiona (Mishra and 

Thrasher, 2021): (NS)

Stroke (N = 1)

Serial subtractiona (https://

training.cochrane.org/

handbook/current, see 

footnote 1): (NS)

Serial subtractiona (https://training.

cochrane.org/handbook/current, see 

footnote 1): (NS)

Parkinson’s disease (N = 3)
Words generateda (Wong et al., 

2022a,b): (NS)

Words generated (Swank et al., 

2016), DTC in Words 

generated (Wong et al., 

2022a,b), Serial subtraction 

(Swank et al., 2016; Schneider 

et al., 2021), DTC in Serial 

subtractiona (Schneider et al., 

2021): (NS)

Other functions

Parkinson’s disease (N = 3)

PDQ-39a (Swank et al., 2016), 

Resting motor threshold (Zhou 

et al., 2014), Motor evoked 

potentials (Zhou et al., 2014): 

(NS) CSP (Zhou et al., 2014): 

0.19*

Slope of RC (Goh et al., 2019), 

SICI (Goh et al., 2019): (NS) 

CSP: 0.55* (Goh et al., 2019) 

MDS-UPDRS III (Goh et al., 

2019):-0.62* ~ −0.32* 1-mon 

follow-up (Goh et al., 2019): 

−0.51* SICI: 1-mon FU (Goh 

et al., 2019): −0.33* 3-mon FU 

(Goh et al., 2019): (NS)

Stroke (n = 1)

Resting motor threshold 

(Schabrun et al., 2016), SICI 

(Schabrun et al., 2016): (NS) 

CSP (Schabrun et al., 2016): 

0.39 ~ 0.48*
a: Original data not reported.
*: Significant improvement in experimental group compared with control group; values are standardized effect sizes for significant results (Hedges’ g: 0.2 = small, 0.5 = medium, 
0.8 = large). 
CSP: cortical silent period; DTC:Dual-task costs; MDS-UPDRS III: Movement Disorders Society–Unifified Parkinson’s Disease Rating Scale part III; MoCA: Montreal Cognitive Assessment; 
NS: not significant; PDQ-39: quality of life scores-39; RC: recruitment curve; SICI: short-interval intracortical inhibition; TMT (Part B − Part A): Trail Making Test Part B minus Part A.
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disorders pathophysiology, could not be reached directly by tDCS or 
rTMS, but stimulation of appropriate cortical areas may affect activity 
in these circuits and may produce clinical benefit (Delong and 
Wichmann, 2015; Latorre et al., 2019).

NIBS effects on cognitive function

Overall, the effect of NIBS on cognitive function was not significant 
under either ST or DT condition in any population studied. This is quite 
different from the results of previous systematic review and meta-
analysis, despite the populations were different. In their review, tDCS 
could significantly improve attention/vigilance in different brain 
disorders (schizophrenia, depression, dementia, PD, MS, stroke, and 
TBI) (Begemann et  al., 2020), and both tDCS and rTMS shows 
promising positive effects in attention, memory, and working memory 
for post-stroke patients with deficits in cognitive function (Hara et al., 
2021). The inconsistency in findings may be mainly attributed to that 
only one single-session intervention (short period) adopted by most 
RCTs (Zhou et al., 2014, 2015; Wrightson et al., 2015; Manor et al., 2016; 
Swank et al., 2016; Goh et al., 2019, 2020; Mishra and Thrasher, 2021; 
Schneider et  al., 2021), leading to no intervention effect could 
be accumulated. However, since there is lack of data, the effects of NIBS 
on DT cognitive function need to be further explored.

Comparison of tDCS and rTMS effects on 
DT performance

Although tDCS showed significant improvement in DT walking 
speed in stroke (Wong et al., 2022a,b) and PD (Wong et al., 2022a,b) 
respectively in one RCT, while rTMS did not show any significant 
changes after intervention, the treatment effects of tDCS and rTMS 
were not comparable in different populations, due to the limited 
number of studies included in this review, different stimulation target, 
and the different intervention protocol adopted in each trail.

Limitations

Limitations of studies reviewed
Small sample size (9 ~ 20) (Zhou et al., 2014, 2015; Wrightson 

et al., 2015; Schabrun et al., 2016; Swank et al., 2016; Manor et al., 
2018; Goh et al., 2019, 2020; Mishra and Thrasher, 2021) and short 
intervention period (only one-single session) (Zhou et al., 2014, 2015; 
Wrightson et al., 2015; Manor et al., 2016; Swank et al., 2016; Goh 
et al., 2019, 2020; Mishra and Thrasher, 2021; Pineau et al., 2021; 
Schneider et al., 2021; Wong et al., 2022a,b) were adopted by most 
RCTs, making the results should be interpreted with caution.

Limitations of this systematic review
There are several limitations in our review. The publications were 

only screened in the English databases and may ignore potential 
publications in other languages. In addition, the meta-analysis was not 
performed due to the heterogeneity in stimulation parameters and 
populations studied of the included publications.

Conclusion

Both tDCS and rTMS showed promising effects in improving DT 
walking and balance performance in different populations, however, 
due to the large heterogeneity of included studies and insufficient data, 
any firm conclusion cannot be drawn at present. More well-designed 
studies with longer intervention period and larger sample size 
are needed.
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Repetitive TMS has been used as an alternative treatment for various neurological 
disorders. However, most TMS mechanism studies in rodents have been based 
on the whole brain stimulation, the lack of rodent-specific focal TMS coils 
restricts the proper translation of human TMS protocols to animal models. In this 
study, we designed a new shielding device, which was made of high magnetic 
permeability material, to enhance the spatial focus of animal-use TMS coils. 
With the finite element method, we  analyzed the electromagnetic field of the 
coil with and without the shielding device. Furthermore, to assess the shielding 
effect in rodents, we compared the c-fos expression, the ALFF and ReHo values 
in different groups following a 15 min 5 Hz rTMS paradigm. We found that a smaller 
focality with an identical core stimulation intensity was achieved in the shielding 
device. The 1 T magnetic field was reduced from 19.1 mm to 13 mm in diameter, 
and 7.5 to 5.6 mm in depth. However, the core magnetic field over 1.5 T was almost 
the same. Meanwhile, the area of electric field was reduced from 4.68 cm2 to 
4.19 cm2, and 3.8 mm to 2.6 mm in depth. Similar to this biomimetic data, the c-fos 
expression, the ALFF and ReHo values showed more limited cortex activation with 
the use of the shielding device. However, compared to the rTMS group without 
the shielding application, more subcortical regions, like the striatum (CPu), the 
hippocampus, the thalamus, and the hypothalamus were also activated in the 
shielding group. This indicated that more deep stimulation may be achieved by 
the shielding device. Generally, compared with the commercial rodents’ TMS coil 
(15 mm in diameter), TMS coils with the shielding device achieved a better focality 
(~6 mm in diameter) by reducing at least 30% of the magnetic and electric field. 
This shielding device may provide a useful tool for further TMS studies in rodents, 
especially for more specific brain area stimulation.

KEYWORDS

rTMS, high magnetic permeability material, electromagnetic shielding, finite element 
method, fluorescence imaging, fMRI
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Introduction

Transcranial magnetic stimulation (TMS) is a non-invasive 
procedure that uses a magnetic field to modulate neuronal activity 
(Salinas et al., 2016; Toledo et al., 2021). Repetitive TMS (rTMS) has 
been used as an alternative treatment for various neurological 
disorders, usually when other treatments are ineffective (Lefaucheur 
et  al., 2020). Although, the molecular mechanisms underlying 
TMS-induced neurorecovery have been systematically studied in 
rodent models (Xing et al., 2022), most TMS studies in rodents were 
based on the whole brain stimulation with the commercial coils (Roth 
et al., 2007; Vahabzadeh-Hagh et al., 2012; Guerra et al., 2020). The 
lack of rodent-specific focal TMS coils restricts the proper translation 
of human TMS protocols to animal models. However, neither intensity 
reduction nor miniature coil construction to increase the coil focality 
is perfect, because low-intensity is not sufficient to mimic the human 
stimulation conditions, while the miniature coil could not bear long-
term stimulation (Cohen and Cuffin, 1991; Rodger et al., 2012; Tang 
et al., 2016). Therefore, given the three important TMS parameters, 
i.e., pulse capacitor(C), high-voltage power (U) and inductance coil 
(Ls) are mutually interacted, it is not easy to make a TMS coil that is 
localized and with a high-magnetic and high-electric field.

Previous studies have reported that shielding device with high 
permeability material (silicon) may be useful to increase the coil focality 
approximately 50% without changing the coil type (Boonzaier et al., 
2020). However, the above shielding material was not able to withstand 
prolonged TMS stimulation due to overheating. Accumulating evidence 
suggests that “thin, light, wide and strong” absorbing materials were more 
suitable for the TMS electromagnetic shielding (Kim et  al., 2006). 
Meanwhile, other studies have shown that using highly permeable soft 
magnetic ferrite could improve focalization of the coil, whereas they only 
simulated the distribution of the electric field, and no in vivo data have 
been available to reveal the real neuron activation in TMS stimulation 
with or without the shielding device (Zhang et al., 2013; Zhao et al., 2015). 
As there is large discrepancies between in vivo and bionic simulation data, 
more work needs to be done to reveal the actual changes in the brain.

Therefore, in this study, in addition to the magnetic and electric 
field distribution analysis with the Finite element method (FEM), 
we further used the immunofluorescence (IF) and functional magnetic 
resonance imaging (fMRI) to assess the aftereffects of a 15 min 5 Hz 
rTMS paradigm in rats with or without the shielding device.

Materials and methods

The shielding device

Absorbing material, a sort of electromagnetic (EM) shielding 
material, is thin coating with light weight. It has a strong absorbing 
performance (Wen et al., 2014; Huang et al., 2021; Nuhiji et al., 2021; 
Du, 2022). Through magnetic loss, dielectric loss, or resistive loss, the 
absorbing material can reduce the EM field as required (Zhang et al., 
2020). The magnetic loss material (the ferrite, magnetic metal, alloys, 
etc.) and the conductive loss material (the carbon material, graphene, 
MXene, SiC, etc.) can convert the electromagnetic force into heat 
directly (Gao et al., 2020), while the dielectric loss of material, like the 
TiO2, MnO2, etc. will consume the electromagnetic and further 
convert it into heat (Qin et al., 2022). In this study, we used a composite 

absorbing material made by mixing magnetic powder and epoxy resin 
to make the custom-made shielding device. Furthermore, a 15 mm 
diameter hole was designed in the center of the shielding device to 
realize the focal stimulation. Specifically, the shielding device is circle 
with a 45 mm outer diameter and a 2 mm thickness (Figures 1A,B). 
The TMS coil center was tangentially attached above the right brain 
with the shielding device pasted on the back (Figures 1C–F).

Animals

Female Sprague–Dawley rats of clean grade (230–250 g) from 
Shanghai JSJ Company were used in this study. All the animals were 
housed in an environment with a temperature of 22–25°C, relative 
humidity of 65 ± 5%, and a light/dark cycle of 12/12 h and had free 
access to food and water. All animal studies (including the rats 
euthanasia procedure) were reviewed and approved by Fudan 
University Animal Welfare and Ethics committee (Ethical permit 
numbers: 2020 Huashan hospital JS-151).

rTMS treatment

The rats were randomly divided into three groups: the rTMS with 
the custom shielding group (rTMS+shileding), the rTMS with a plastic 
board group (rTMS), and the sham stimulation group (Sham). Before 
the rTMS stimulation, the rats were anesthetized with 1% isoflurane in 
oxygen air and then fixed in the stereotaxic apparatus. The magnetic 
stimulator (VISHEE-TMS-013, Nanjing VISHEE Medical Technology, 
Nanjing, China) with a circular coil (inner diameter: 15 mm, outer 
diameter: 45 mm) was used to deliver the rTMS. In this study, the coil 
material was the 38-turns oxygen-free copper used in many studies 
which generates a vertical electric field. When TMS stimulation was 
performed, the TMS coil was fixed to the stereotaxic apparatus, and the 
center of the coil was attached tangentially to the rat’s right lateral 
parietal association (LPtA) cortex (coordinates: ~3 mm lateral to the 
midline and ~ 3.36 mm caudal to Bregma). In addition, the center of 
the coil was hollowed, we could accurately locate the target coordinates 
to avoid displacement. For the rTMS+shileding group, the coil was 
attached with the custom shielding device which the inner radius was 
7.5 mm. Therefore about 4.5 mm of the left hemisphere was exposed 
under the device hole. Meanwhile in the rTMS group, the coil was 
attached with a plastic board of the same weight. For the sham group, 
the rats were administered with an identical manipulation without real 
TMS stimulation (instead, they received an auditory stimulus) 
(Figure 2). In our study, 5 Hz rTMS protocol consisted of stimulation 
for 2 s followed by rest for 13 s and was repeated 60 times, at 35% 
maximum stimulator output of 15 min (600 pulses).

Immunofluorescence staining

Approximately 1.5 h after the rTMS paradigm, the rats were 
perfused with 0.9% sodium chloride followed by 4% paraformaldehyde. 
The brain tissues were fixed with 4% paraformaldehyde for 12 h before 
transferring into a 30% sucrose solution. Coronal sections were cut on 
a freezing microtome. The sections (30 μm) were washed with PBS 
three times, followed by 0.3% Triton X-100 incubation for 10 min and 
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1% BSA for 1 h at room temperature. Samples were then incubated 
with rabbit anti-c-fos antibody (1:1000, 226003, synaptic system) at 
4°C overnight and then with donkey anti-rabbit IgG H&L (Alexa 
Fluor® 594) (1:1000, Abcam, USA) for 1 h at room temperature. A 
confocal laser-scanning microscope (Olympus, FV3000) was used to 
assess the c-fos expression in different groups.

MRI assessment

All the rats were further anesthetized with 1% isoflurane in oxygen 
air. The breathing and heart rate were monitored. The body temperature 
was kept by a water circulation system set at 37°C. In vivo whole-brain 
MRI images were acquired immediately after the rTMS (n = 5 per group) 
with an 11.7 T MRI scanner (Bruker, Ettlingen, Germany). A 4-channel 
surface array coil (Bruker BioSpin, Billerica, MA) was adopted to receive 
the magnetic resonance signals. The resting state functional MRI 
(rsfMRI) was acquired with a spin-echo echo-planer (SE-EPI) sequence: 
repetition time (TR) = 2000 ms, echo time (TE) = 12.8 ms, the field of 
view (FOV) =30 × 30 mm, and slice thickness = 0.5 mm. The anatomical 
image (T2 image) was acquired by a spin echo (Turbo-RARE) sequence. 
The T2 image sequence parameters were: TR = 5,000 ms, TE = 25 ms, 
FOV = 30 × 30 mm, and slice thickness = 0.5 mm.

MRI data analysis

The MRI data were analyzed by the Statistical Parametric Mapping 
software (SPM12, University College London, U.K.), FMRIB Software 
Library (FSL), ANTs, and DPABI (a toolbox for Data Processing & 

Analysis for Brain Imaging). All the raw images were enlarged by a 
factor of ten to correlate the image dimensions to human images by 
SPM12. The rat brain mask was obtained by the ITK-SNAP (a toolbox 
for Data Processing & Analysis for Brain Imaging) and FSL. The slice 
timing, realignment, and normalization were processed by the in vivo 
functional template (SIGMA) using ANTs. After normalization, all 
images were smoothed using a Gaussian Kernel of 4 mm (FWHM).

The amplitude of low-frequency fluctuation (ALFF) and regional 
homogeneity (ReHo) was calculated for the traditional low-frequency 
band (0.01–0.08 Hz) by DPABI. One-way ANOVA (two-tailed) multiple 
comparisons test was used to analyze the ALFF and ReHo values among 
the sham group, the rTMS group, and the rTMS+shielding group. The 
resulting statistical map was set at p < 0.05 (with correct).

Statistical analysis

GraphPad Prism 8 and Image-J software were used to analyze the 
c-fos staining data. Data were presented as mean ± SEM using 
unpaired two-tailed Student’s t-test. A value of p <0.05 was considered 
significantly different.

Results

The shielding device increases the TMS coil 
focality

In order to validate the high magnetic permeability material 
shielding effect, we analyzed the electromagnetic field of the coil by 

FIGURE 1

Schematic of TMS stimulation and shielding material. (A) Shielding device. (B) TMS coil. (C) The TMS coil with high magnetic permeability material. 
(D) The center of TMS stimulation at the blue dot. (E,F) Images of TMS stimulation on anesthetic rats.

77

https://doi.org/10.3389/fnins.2023.1129590
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Liu et al. 10.3389/fnins.2023.1129590

Frontiers in Neuroscience 04 frontiersin.org

TABLE 1 Tissue permittivity and conductivity.

Tissue 
name

Radius 
(mm)

Conductivity Relative 
permittivity

Scalp 10 0.31061 25,809

Skull 9.7 0.02038 30,382

CSF 8.9 2 109

GM 8.8 0.10696 26,640

WM 7.4 0.65578 57,359

CSF, Cerebrospinal Fluid GM, Gray Matter WM, White Matter.

the finite element method (FEM) software ANSYS. As shown in 
Figures 3A,B, a concentric sphere model was established to mimic the 
rat head model. The model consisted of 5 parts, including the scalp, 
the skull, the cerebrospinal fluid (CSF), the gray matter (GM), and the 
white matter (WM). The specific parameters are shown in Table 1, 
including the radius, the conductivity, and the relative permittivity. 
With the shielding device, the TMS magnetic field was more focused. 
As shown in Figures 4A,B, the whole magnetic field distribution was 
smaller than the non-shielding group. Figures 4C,D shown that the 
1 T magnetic field (green area), which is small enough to induce the 
neuron activity (Boyer et al., 2022), is 19.1 mm vs. 13 mm in diameter 
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FIGURE 2

The TMS coil and shielding device. (A) The shielding device. (B) The TMS circular coil. (C) The TMS coil with the shielding device. (D,G) The sham group. 
(E,H) the rTMS group. (F,I) The rTMS +shielding group.

A B

FIGURE 3

The rat head model. (A) Coronal section of rat head model. (B) The sphere shape of head model.
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(rTMS vs. rTMS+shielding), while the magnetic field over 1.5 T (red 
area) is 7.5 mm vs. 6.5 mm (rTMS vs. rTMS+shielding). Furthermore, 
compared with the rTMS group, the depth of 1 T magnetic field (green 
area) was reduced from 7.5 to 5.6 mm, while the magnetic field over 
1.5 T (red area) was reduced from 0.7 to 0.5 mm with the shielding 
device (Figures 4E,F). The electric field distributions of TMS coil with 

or without shielding device were significant differences, the results 
shown better focal stimulation in coil with shielding. Compare with 
the rTMS group, the area of electric field (read area) was reduced from 
4.68cm2 to 4.19cm2, while the maximum E values in the center was 
reduced 30%, from 83 V/m to 58 V/m with the shielding device 
(Figures 5A–D). In addition, the depth (red arrow) of electric field was 

A B

DC

FE

FIGURE 4

The magnetic fields of TMS coil with or without shielding device. (A) The sketch of the TMS coil without shielding device. (B) The sketch of the TMS coil 
with shielding device. (C) An overhead view of the magnetic field without the shielding device. (D) An overhead view of the magnetic field with the 
shielding device. (E) A coronal view of the magnetic field without the shielding device. (F) A coronal view of the magnetic field with the shielding 
device.
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FIGURE 5

The electric fields of TMS coil with or without the shielding device. (A) An overhead view of the electric field without the shielding device. (B) An 
overhead view of the electric field with the shielding device. (C) A coronal view of the electric field without the shielding device. (D) A coronal view of 
the electric field with the shielding device. (E) The area (green area) and depth (red arrow) of electric field distribution without the shielding device. 
(F) The area (read area) and depth (red arrow) of electric field distribution with the shielding device. The red dots represent the electric field (E = E_max) 
of the cortical surface, and the gray dots in the center of the sphere represents the electric field (E = E_max/2) of the brain.

reduced from 3.8 mm to 2.6 mm, as well as the volume reduced from 
1.78 cm3 to 1.09 cm3 (rTMS vs. rTMS+shielding; Figures 5E,F).The 
results indicated that a smaller focality with an identical core 
stimulation intensity was achieved in the shielding device. However, 
we should note that a different magnetic and electric field distribution 
occurred under the shielding material. A more vertical magnetic and 
electric field was produced by the device.

The shielding device reduces the 
rTMS-induced c-fos activation in the RSD, 
PtA, and S1 cortex

To further test the neuronal activity effect of TMS with shielding 
device in vivo, we  assessed the c-fos expression, an indicator of 
neuronal activity that peaks 1–3 h post-stimulus exposure (Olsen 
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et al., 2022). Compared with the sham group (Figure 6B), 1.5 h after 
one session (600 pulse) of rTMS increased the relative c-fos expression 
in the rTMS group (Figure 6C) in three regions (Figure 6A), i.e., the 
right RSD + MPtA (Sham vs. rTMS, p = 0.018), the right 

LPtA+S1Tr + S1DZ (Sham vs. rTMS, p < 0.0001) and the right S1BF 
(Sham vs. rTMS, p = 0.026). Moreover, the left RSD + MPtA, 
LPtA+S1Tr + S1DZ and S1BF also showed higher expression than the 
sham group. (Sham vs. rTMS, value of p is p = 0.004, p < 0.0001, 

A
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C

D

E F G

FIGURE 6

The c-fos expression in the cortex. (A) A schematic illustration of three different regions in the left and right cortex on a brain slice; the left cortex is 
under the shielding material, while the right cortex is exposed to the magnetic field. The scale bar is 2 mm. (B–D) Representative fluorescent images of 
three different regions in the left and right cortex of the sham group (B), the rTMS group (C) and the rTMS+shielding group (D). The scale bar is 100 μm. 
(E–G) Quantitative analyses of the c-fos expression in each group. Data are shown as the mean ± SEM (n = 3). *p < 0.05, **p < 0.01, ****p < 0.0001. RSD: 
retrosplenial dysgranular cortex; MPtA: medial parietal association cortex; LPtA:lateral parietal association cortex; S1Tr: primary somatosensory cortex, 
trunk region; S1DZ: primary somatosensory cortex, dysgranular region; S1BF: primary somatosensory cortex, barrel field.
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A B

FIGURE 7

The effective stimulation area of the TMS coil with the shielding device. (A) Coronal section; (B) sagittal section.The scale bar is 2 mm. S1: primary 
somatosensory cortex; PtA: parietal association cortex; RSD: retrosplenial dysgranular cortex; M1: primary motor cortex.

p = 0.023, respectively). Since the TMS coil was attached to the right 
hemisphere, in the rTMS+shielding group, the right cortex 
(unshielded region) was found to have a higher c-fos expression 
compared to the left cortex (shielded region), including the 
RSD + MPtA (right vs. left, p = 0.009), the LPtA+S1Tr + S1DZ (right 
vs. left, p < 0.0001) and the S1BF (right vs. left, p = 0.011; Figure 6D), 
while no difference was found between the two hemispheres in the 
sham group and rTMS group (p > 0.05; Figures 6E–G). The c-fos was 
the most expressed in the right RSD, PtA and S1 on the coronal 
section, and S1 and PtA on the sagittal section, while a low c-fos 
expression was detected around the area. This indicated that the 
effective stimulation area was approximately 6 mm in diameter with a 
shielding material (Figures 7A,B).

The shielded region shows less aftereffects 
following rTMS in brain structure and 
function

For assessment of the aftereffect of rTMS stimulation, fMRI was 
used to acquire high-spatial-resolution data. We measured the rsfMRI 
signals among the sham group, rTMS group, and rTMS+shielding 
groups. Compared to the sham group, the ALFF and ReHo values of 
the rTMS group showed that both the left and right hemispheres were 
activated by the rTMS, including the primary somatosensory cortex 
(S1), the secondary somatosensory cortex (S2), the striatum (CPu), 
the insular, the hippocampus, the thalamus and the hypothalamus 
(Figure 8A). However, compared to the sham group, the ALFF and 
ReHo values were significantly higher in the right cerebral hemisphere 
in the rTMS+shielding group. Different from the rTMS group, more 
right hemispherical area showed higher values in the rTMS+shielding 
group, like the retrosplenial dysgranular cortex (RSD) and parietal 
association cortex (PtA; Figure 8B). In addition, in comparison to the 
rTMS group, the ALFF and ReHo values in the right hemispheres 
were higher in the shielding group, including the piriform cortex (Pir) 
and S1, while in the left hemisphere, the values were obviously lower, 
like the S1 (Figure 8C).

Discussion

In the present study, we have developed a new TMS shielding 
device capable of enhancing the spatial focus of the TMS circular coils 
for rodents use. The new application was verified in the rat cortex, 
including the RSD, PtA, and S1. The electromagnetic field distribution 
and the neuronal activation results indicated a significant decrease in 
rTMS stimulation area in the anesthesia rats with the shielding device. 
In view of these findings, we provided a useful tool for further accurate 
TMS studies in rodents.

Compared with the previous shielding materials like silicon, 
we used a much thinner, lighter, and stronger absorbing material 
to shield the electromagnetic of the TMS coil. The material has 
better adhesion and anti-corrosion with low eddy current and 
good thermal conductivity. The material produces little heat after 
long-term TMS. Moreover, the material is flexible, which allows 
us to customize the shape to meet the needs of different 
stimulation paradigm. Furthermore, although previous studies 
have reported the highly permeable soft magnetic ferrite could 
improve the figure-eight coil focalization, the electric fields 
distribution of TMS coil has not been further validated on humans 
or animals (Zhang et al., 2013; Zhao et al., 2015). In our study, 
besides the magnetic and electric field distribution with the FEM, 
we also further validated the shielding effect in vivo with the fMRI 
and c-fos staining.

The inner diameter of the hole in the shielding device was 
15 mm, the effective stimulation area was only approximately 
~6 mm in diameter. Compared with the commercial rodents’ TMS 
coil (15 mm in diameter), TMS coils with shielding devices 
achieved a better focality (~6 mm in diameter). With the center of 
the TMS coil aligned with the following coordinates: ~3 mm 
lateral to the midline and ~ 3.36 mm caudal to Bregma, only the 
RSD, PtA, and S1 were activated. This indicated that more specific 
brain area stimulation may be achieved by the shielding device, 
especially for those diseases involving the above brain areas, like 
stroke or other neurodegenerative diseases. Although the previous 
study reported a stimulation with 1 mm diameter (Meng et al., 
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2022), the electromagnetic field may not be enough to provide 
continuous stimulation because of heating. As shown in 
Figures 4C–D, the 1 T magnetic field, which is enough to induce 
the neuron activity, was 19.1 mm vs. 13 mm in diameter (rTMS vs. 
rTMS+shielding), thus indicating a lower focality that was 
achieved with our shielding device. Moreover, without excessively 
changing the core stimulation, the magnetic field over 1.5 T (red 
area) was just 7.5 mm vs. 6.5 mm (rTMS vs. rTMS+shielding).
Similarly, the area of electric field was reduced from 4.68cm2 to 
4.19cm2, and the depth reduced from 3.8 mm to 2.6 mm (rTMS vs. 
rTMS+shielding). However, we  should note that a different 
magnetic and electric field distribution occurred under the 
shielding material with a more vertical magnetic and electric field 
into the brain tissue. This may well explain the fMRI data showing 

more hemispherical region activation in the shielding group, 
such as S1.

Furthermore, different from the c-fos results, we also observed 
multiple neuron activation in the subcortical regions and S2 besides 
the cortical activation, like the striatum (CPu), the hippocampus, the 
thalamus, and the hypothalamus, which may be  due to brain 
interconnection activation via transsynaptic way (Eldaief et al., 2011; 
Halko et al., 2014; Chen et al., 2020) since the primary somatosensory 
cortex (S1) sends a massive, topographically organized projection 
directly to the S2, striatum (CPu; Hur and Zaborszky, 2005; Aronoff 
et al., 2010; Sun et al., 2021; Whilden et al., 2021), while parietal 
association cortex (PtA) and retrosplenial dysgranular cortex (RSD) 
are also connected with the thalamus and hypothalamus (van Groen 
and Wyss, 1992). The activation of CPu and the deep nuclei of the 
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FIGURE 8

Statistical maps of a voxel of ALFF and ReHo analysis. (A) The ALFF and ReHo analysis between Sham (n = 5) and rTMS groups (n = 5). (B) Comparison of 
the ALFF and ReHo analysis between Sham and rTMS+shielding groups (n = 5). (C) Comparison the ALFF and ReHo analysis between rTMS and 
rTMS+shielding groups. S1: primary somatosensory cortex; S2: secondary somatosensory cortex; CPu: Striatum; Th: thalamus; Hy: hypothalamus; Am: 
amygdaloid; Ect: ectorhinal cortex; LP: lateral posterior thalamic nucleus; PtA: parietal association cortex; Hip: hippocampus; RSD: retrosplenial 
dysgranular cortex; M2: secondary motor cortex; Ent: entorhinal cortex; Pir: piriform cortex; VM: ventromedial thalamic nucleus. In: insular; Cg2: 
cingulate cortex, area 2.
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thalamus and hypothalamus may be due to the TMS stimulation in 
the S1 and other cortex.

The present study has several limitations. First, the ratio of the 
magnetic powder and epoxy resin, the TMS intensity and the 
frequency, the brain dielectric constants are all important variables 
that may affect the shielding effect, different models and TMS 
parameters may need accordingly adjustments. Secondly, we only 
explored the shielding effect by analyzing the neuronal activity and 
the BOLD response signals. However, motor evoked potential (MEP), 
a widely used tool to assess corticospinal conduction (Bestmann and 
Krakauer, 2015; Jiang et al., 2021; Wilson et al., 2021; Meng et al., 
2022), may be another way to assess the shielding effect. Although 
the shielding was applied, we could locate more accurate M1 hotpots; 
yet, as noted above, attention should be paid to the effective neuron 
activity in the human head with our material parameters. Different 
kinds of head models may probably need a different but specific 
shielding material.

In summary, this study reported a novel TMS shielding device. 
Compared to the conventional animal TMS coil, this new tool 
provides a more focal and effective electric field induced in the rat 
hemisphere and may be  used for future human translational 
TMS studies.
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The analysis of brain functional 
connectivity of post-stroke 
cognitive impairment patients: an 
fNIRS study
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1 School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 
Sichuan, China, 2 Department of Neurology, Sichuan Bayi Rehabilitation Center (Sichuan Provincial 
Rehabilitation Hospital), Chengdu, Sichuan, China

Background: Post-stroke cognitive impairment (PSCI) is a considerable risk factor 
for developing dementia and reoccurrence of stroke. Understanding the neural 
mechanisms of cognitive impairment after stroke can facilitate early identification 
and intervention.

Objectives: Using functional near-infrared spectroscopy (fNRIS), the present 
study aimed to examine whether resting-state functional connectivity (FC) of 
brain networks differs in patients with PSCI, patients with Non-PSCI (NPSCI), and 
healthy controls (HCs), and whether these features could be  used for clinical 
diagnosis of PSCI.

Methods: The present study recruited 16 HCs and 32 post-stroke patients. Based 
on the diagnostic criteria of PSCI, post-stroke patients were divided to the PSCI 
or NPSCI group. All participants underwent a 6-min resting-state fNRIS test to 
measure the hemodynamic responses from regions of interests (ROIs) that were 
primarily distributed in the prefrontal, somatosensory, and motor cortices.

Results: The results showed that, when compared to the HC group, the PSCI 
group exhibited significantly decreased interhemispheric FC and intra-right 
hemispheric FC. ROI analyses showed significantly decreased FC among the 
regions of somatosensory cortex, dorsolateral prefrontal cortex, and medial 
prefrontal cortex for the PSCI group than for the HC group. However, no significant 
difference was found in the FC between the PSCI and the NPSCI groups.

Conclusion: Our findings provide evidence for compromised interhemispheric 
and intra-right hemispheric functional connectivity in patients with PSCI, 
suggesting that fNIRS is a promising approach to investigate the effects of stroke 
on functional connectivity of brain networks.

KEYWORDS

stroke, post-stroke cognitive impairment, functional connectivity, functional near-
infrared spectroscopy, assessment

Introduction

Stroke, the third leading cause of mortality globally, continues to be a significant contributor 
to long-term disability and cognitive impairment (Feigin et al., 2021). Stroke-induced structural 
damage can have widespread effects on brain function beyond the focal lesion site (Griffis et al., 
2020). The risk of cognitive impairment after stroke is estimated to be five to eight times higher 
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than in the general population (Kulesh et al., 2018). A previous study 
found that, despite minimal or no physical impairment, nearly half of 
patients with a lacunar infarct had cognitive impairment after stroke 
(Jacova et  al., 2012). Moreover, post-stroke cognitive impairment 
(PSCI) is associated with an increased risk of recurrent stroke 
(Rostamian et al., 2014).

The assessment of cognitive function after stroke is challenging, 
as there is no agreed-upon gold standard for measuring PSCI. Several 
neuropsychological tests are commonly used, such as the Informant 
Questionnaire for Cognitive Decline in the Elderly (IQCODE), 
Oxford Cognitive Screen (OCS), Mini-Mental State Examination 
(MMSE), and Montreal Cognitive Assessment (MoCA) (Zhang and 
Bi, 2020). However, these tests may be  influenced by post-stroke 
complications (e.g., language impairment, mood disorders) and the 
timing of testing (Huang et al., 2022), which could limit their validity 
and reliability for diagnosing and predicting PSCI. Moreover, although 
various biomarkers for PSCI have been proposed in recent years, such 
as genetic polymorphisms, inflammatory markers, growth factors, 
oxidative damage markers, and metabolic markers (Mijajlovic et al., 
2017; Zhang and Bi, 2020), none of them have been widely accepted 
or validated.

Non-invasive neuroimaging techniques such as functional 
magnetic resonance imaging (fMRI) and functional near-infrared 
spectroscopy (fNIRS) have emerged as effective tools to explore the 
intrinsic functional organization of the human brain. Previous 
studies have shown a significant correlation between the 
hemodynamic responses measured by fNIRS and the blood oxygen 
level dependent (BOLD) responses obtained by fMRI, suggesting a 
close analogy between the two methods (Cui et al., 2011; Sato et al., 
2013). However, fMRI may not be feasible for some patients due to 
the severity of their illness or various contraindications (Pendlebury 
et al., 2015). Furthermore, the noise of the MRI scanner and the 
discomfort of immobilization may confound the natural frequency 
or quality of stimulus-independent thoughts (Pinti et al., 2020), 
which could affect the accurate assessment of cognitive impairment. 
fNIRS, on the other hand, has advantages over other neuroimaging 
techniques, such as higher spatial resolution than EEG/MEG, 
higher temporal resolution than fMRI, and lower sensitivity to body 
movement (Huo et al., 2021). Therefore, fNIRS may be a suitable 
alternative for investigating the neural mechanisms of cognitive 
impairment related to stroke.

Functional connectivity (FC) analysis is a common method to 
assess brain function (Zhang et al., 2022). The human brain is a 
complex and dynamic system that can be modeled as a network of 
structural or functional connections (Niu and He, 2014). FC 
quantifies the temporal correlation of neurophysiological events 
in spatially distinct brain regions and reveals functional 
interactions of specific brain areas and local networks (Auer, 
2008). Previous studies have shown that FC disruptions caused by 
lesions are strongly related to clinical impairments in various 
cognitive and behavioral domains (Baldassarre et al., 2016b). In 
the present study, we  used fNIRS to examine the changes in 
resting-state FC among certain brain regions involved in cognitive 
functions in stroke patients with and without cognitive 
impairment and healthy controls. We  aimed to improve the 
screening methods for PSCI risk and to elucidate the neural 
mechanisms of PSCI.

Materials and methods

Participants

Thirty-two stroke patients were recruited from Sichuan Bayi 
Rehabilitation Center in the present study. The inclusion criteria for 
stroke patients were as follows: (1) stroke that occurred 1–6 months 
prior to the first assessment (Dong et al., 2021), confirmed by clinical 
CT or MRI scanning during hospitalization; (2) age between 30 and 
70 years; (3) no history of previous clinical stroke, dementia, untreated 
psychiatric illness, uncorrected hearing or visual impairment, aphasia 
or neglect; and (4) able to follow instructions and consent to 
participate. Also, 16 age-matched healthy participants were included 
as a control group. The inclusion criteria for HC were: (1) no history 
of neurological or psychiatric diseases; (2) normal cognitive function. 
All participants were right-handed and provided written informed 
consent in accordance with the Declaration of Helsinki. The 
experimental protocol was approved by the ethics committee of the 
Sichuan Bayi Rehabilitation Center (CKLL-20220010).

Clinical assessment and diagnosis of PSCI

The stroke patients were divided to two groups: PSCI group and 
NPSCI group. The diagnostic criteria of PSCI were defined as follows: 
(1) the patient or a reliable informant reported cognitive impairment 
after stroke, or a clinician observed cognitive impairment after stroke; 
(2) the patient scored below the education-adjusted cutoffs on the 
MoCA test: ≤13 for illiterate individuals, ≤19 for those with 1–6 years 
of education, and ≤24 for those with 7 or more years of education (Lu 
et  al., 2011). An experienced therapist from the Department of 
Rehabilitation Medicine in Sichuan Bayi Rehabilitation Center 
administered the Chinese version of MMSE and MoCA (Jia et al., 
2021) to assess the cognitive function of all participants. Participants’ 
demographic and clinical characteristics are presented in Table 1.

Data acquisition

A multi-channel fNIRS system (NIRSport, NIRx Medical 
Technologies LLC) was used to measure the concentration change of 
oxyhemoglobin (HbO), deoxyhemoglobin (HbR), and total 
hemoglobin (HbT). The system recorded the absorption of near-
infrared light at the wavelengths of 760 and 850 nm with a sampling 
frequency of 7.8 Hz. The Modified Beer–Lambert law (MBLL) (Cui 
et  al., 2011) was used to calculate the changes in chromophore 
concentrations from the attenuation of light entering the head at 
multiple wavelengths. We  placed 16 emitters and 15 detectors 
alternately in each location according to the international 10–20 
electroencephalography (EEG) placement system, resulting in a total 
of 31 probes with 40 measurement channels (see Figure  1). The 
distance between an emitter and a detector pair was 3 cm. The area 
between the detector probe and emitter probe pair was defined as a 
“channel.” The middle optrode was placed on the FPz, and the lowest 
probes were positioned along the Fp1-Fp2 line. The emitters and 
detectors were symmetrically located in the prefrontal cortex (PFC), 
sensorimotor cortex (SMC), and premotor and supplementary motor 

87

https://doi.org/10.3389/fnins.2023.1168773
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Zou et al. 10.3389/fnins.2023.1168773

Frontiers in Neuroscience 03 frontiersin.org

cortex (PMC/SMA) regions on both hemispheres. Participants wore 
the fNIRS detection cap and sat in a chair. They were instructed to 
keep still with their eyes closed, relax their mind, and minimize their 
movement for at least 6 min for the resting-state recording (Guo 
et al., 2022).

Data preprocessing

Preprocessing of fNIRS data was performed using Homer2 
toolbox in Matlab 2013a (MathWorks Inc.). Noisy channels and 
unrelated time periods were manually identified and removed 
prior to converting the data into optical density data. Channels 
with motion artifacts were identified and corrected (Scholkmann 
et  al., 2010), and removed by performing cubic spline 
interpolation. A 3th order Butterworth band-pass filter with 
cut-off frequencies of 0.01–0.1 Hz was then applied to remove 
artifacts, including cardiac interference (~1.3 Hz) and respiration 
(~0.25 Hz) (Pinti et al., 2018). Finally, the modified Beer–Lambert 
equation was used to convert the optical density data into HbO 
and HbR concentrations.

Functional connectivity

According to the standard Brodmann brain localization, the 40 
channels were divided into 13 regions of interests (ROIs), including 
the left/right dorsolateral PFC (DLPFC), ventrolateral PFC (VLPFC), 
orbital PFC (OFC), primary somatosensory cortex (S1), primary 
motor cortex (M1), premotor cortex and supplementary motor area 
(PMC/SMA), and the medial PFC (MPFC). We averaged the HbO, 
HbR, and HbT of all channels in each ROI and then calculated the 
Phase-Locking Value (PLV) as the FC value to describe the linear 
correlation relationship of two-time domain signals. The formula used 

is as follows: PLV n
et t

n i xt yt= =
−( )1

1Σ φ φ , where n is the number of 

timepoints, φxt  represents the phase value of the signal X at time t, 
and 

φyt  is the phase value of the signal Y at time t. The value range of 
PLV is [0,1].

Data analyses

Demographic and clinical differences between PSCI patients, 
N-PSCI patients, and healthy subjects were analyzed using SPSS 
Statistics 26.0. The Shapiro–Wilk test confirmed that all variables were 
not normally distributed. The Mann–Whitney U-test was used to 
compare disease duration and the Kruskal-Wallis H test was used to 
compare age, education, MMSE and MoCA. Sex, stroke types, 
hemisphere of lesion, and lesion location were compared using 
Fisher’s exact probability method.

The fNIRS data were analyzed using MATLAB (2020a, 
MathWorks Inc.). One-way ANOVA was performed on the 
hemisphere-based FC and the ROI-based FC separately. False 
discovery rate (FDR) was used to correct the p-value. Bonferroni 
correction was used for the multiple comparisons. A difference with 
p < 0.05 was considered statistically significant.

TABLE 1 The demographic and clinical characteristics of all subjects.

Characteristics PSCI 
(n = 16)

NPSCI 
(n = 16)

HC 
(n = 16)

p-
value

Age (years) [median 

(IQR)]
62.0 (7.75)

54.5 

(11.75)
54.0 (6.5) 0.060

Gender [N (%)] 0.135

  Male 12 (75) 15 (94) 10 (63)

  Female 4 (25) 1 (6) 6 (37)

Education (years) 

[median (IQR)]
7.5 (6.00) 9 (9.75) 9 (5.25) 0.447

Stroke type [N (%)] 0.156

  Ischemic stroke 11 (69) 6 (38) —

  Hemorrhage stroke 5 (31) 10 (62) —

Disease duration (days) 

[median (IQR)]
60 (76.75) 90 (108) — 0.416

Hemisphere of lesion 

[N (%)]
1.000

  Left 6 (38) 6 (38) —

  Right 9 (56) 9 (56) —

  Bilateral 1 (6) 1 (6) —

Lesion location [N (%)] 0.452

  Frontoparietal lobe 4 (25) 4 (25) —

  Brain stem 3 (19) 1 (6) —

  Thalamus 2 (12) 0 (0)

  Basal ganglia 6 (38) 8 (50) —

  Multiple sites 1 (6) 3 (19)

MMSE [median (IQR)] 23.5 (5.75) 28.0 (1.00) 29.0 (1.75) <0.001

MoCA [median (IQR)] 16 (4.25) 24 (2.00) 26 (3.00) <0.001

PSCI, post-stroke cognitive impairment; NPSCI, post-stroke without cognitive impairment; 
HC, healthy controls; S, ischemic stroke; H, hemorrhagic stroke; MMSE, Mini-Mental State 
Examination; MoCA, Montreal Cognitive Assessment.

FIGURE 1

Configuration of fNIRS channels.
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Results

Demographic and physiological 
characteristics

The present study recruited 33 stroke patients in total. One PSCI 
patient was excluded from the analysis due to his poor channel signal 
quality. Therefore, the final sample consisted of 16 PSCI patients, 16 
NPSCI patients, and 16 HCs. Table 1 shows the demographic and 
clinical characteristics of the three groups. There were no significant 
differences in age, gender, education, stroke type, disease duration, 
hemisphere of lesion, and lesion location among the groups (p > 0.05). 
The PSCI group had lower MMSE and MoCA scores than the NPSCI 
group (p  < 0.001). The NPSCI and HC groups did not differ 
significantly in MMSE and MoCA scores (p  > 0.05, 
Bonferroni corrected).

Hemisphere-based functional connectivity

To examine the differences in connectivity patterns across 
hemispheres, we  analyzed the FC based on three hemoglobin 
concentrations: HbO, HbR, and HbT. The results showed that 
FCs based on HbO and HbT were not significantly different 
across the three groups (p > 0.05, FDR corrected). Figure 2 shows 
the main changes in FC between interhemispheric and 
intrahemispheric regions based on HbR. The results showed that 
the NPSCI and PSCI groups had significantly lower 

interhemispheric FC than the HC group (p = 0.005 and p = 0.013, 
respectively, Bonferroni corrected; Figure 2A). Additionally, the 
PSCI group had significantly lower FC within the right 
hemisphere than the HC group (p = 0.008, Bonferroni corrected; 
Figure 2B). There was no significant difference in FC within the 
left hemisphere among the three groups (p > 0.05, FDR corrected; 
Figure 2C).

Region-of-interest-based functional 
connectivity

Figure 3A displays the correlation matrix maps of HbR-based 
FC within the HC, NPSCI, and PSCI groups. There were significant 
differences among the three groups in S1.L-DLPFC.R (F = 7.48, 
p = 0.031, FDR corrected), S1.R-DLPFC.R (F = 14.04, p = 0.001, FDR 
corrected), S1.R-MPFC (F = 9.83, p = 0.011, FDR corrected), PMC/
SMA.L-DLPFC.R (F = 8.00, p = 0.028, FDR corrected), and PMC/
SMA.L-DLPFC.R (F = 8.00, p = 0.028, FDR corrected; Figure 3B). 
Post-hoc Bonferroni comparisons showed that NPSCI and PSCI 
groups had significantly lower FC in S1.L-DLPFC, S1.R-DLPFC.R, 
S1.R-MPFC (p < 0.05) than the HC group. In addition, as shown in 
Figure 3C, the NPSCI group showed significantly decreased FC in 
PMC/SMA.L-DLPFC, and the PSCI group showed significantly 
decreased FC in S1.L-S1.R. However, there was no significant 
difference between the NPSCI and PSCI groups in any region. 
Similarly, the FC based on HbO and HbT were not significantly 
different across the three groups.

FIGURE 2

The results of significant changes of hemisphere-based FC value between HC, PSCI and NPSCI groups based on HbR. (A) Interhemispheric FC. 
(B) Intra-right hemispheric FC. (C) Intra-left hemispheric FC. Group 1: HC group; group 2: NPSCI group; group 3: PSCI group. ∗p < 0.05, ∗∗p < 0.01.
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Discussion

In the present study, we used fNIRS-based resting-state FC to 
investigate the changes in brain network patterns in PSCI patients 
compared to HCs. Our main finding was that the PSCI group showed 
a significant reduction of interhemispheric FC relative to HCs, which 
was in line with previous fMRI studies. Siegel et al. (2016) proposed 
the “network phenotype of stroke injury,” based on resting-state fMRI 
data from 100 sub-acute stroke patients, which was characterized by 
decreased interhemispheric FC and increased intrahemispheric FC 
between normally anticorrelated networks. Similar decreases in 
interhemispheric FC have been reported in various behavioral 
domains after stroke, such as attention, language, motor function, 
memory, and vision (Baldassarre et al., 2014, 2016a; Tang et al., 2016; 
Tao and Rapp, 2020; Tao et al., 2022). Our finding adds more evidence 
to the notion that impaired interhemispheric communication may 
be a key feature of stroke.

The neural mechanism underlying the reduced interhemispheric 
FC after stroke remains unclear. One possible explanation is that the 
structural connections or mechanisms that facilitate the transfer of 
signals between the hemispheres may be damaged or dysfunctional 
(Siegel et al., 2016). An animal stroke model study showed that reduced 
interhemispheric FC was related to decreased transcallosal manganese 
transport from contralesional M1 to ipsilesional SMC (van Meer et al., 
2010). However, Siegel et al. (2016) found that lesion load only partially 
predicted the global average reduction in interhemispheric FC 
(r = 0.46), and that lesion location information did not improve the 
prediction. This finding suggests that interhemispheric FC disruption 
is a general consequence of stroke rather than a result of specific 
structural damage to the corpus callosum or thalamus. Tao and Rapp 
(2020) found that the interhemispheric FC of chronic post-stroke 
dysgraphia was significantly and positively correlated with spelling 
performance. Another study examined the predictive value of resting-
state FC measured by fMRI on the third post-stroke day for the 90-day 
functional outcome of patients. They found that patients with better 
functional outcome had higher interhemispheric FC than patients with 
worse outcome. These findings indicate that interhemispheric FC 
could be  a potential biomarker for the functional prognosis of 
stroke patients.

We also found that the PSCI group had lower FC within the right 
hemisphere than the HCs. There is abundant but inconsistent evidence 
for intra-hemispheric connectivity. Siegel et al. (2016) proposed the 
second stroke phenotype feature as increased FC between ipsilesional 
dorsal attentional network (DAN) and default mode network (DMN). 
They also found that this increased FC between ipsilesional functional 
networks was correlated with the decrease in interhemispheric 
FC. Similarly, increased correlations between regions within each 
hemisphere have been observed in monkeys after corpus callosum and 
anterior commissure separation (O'Reilly et  al., 2013). Puig et  al. 
(2018) suggested that structural neural adaptations may occur in more 
severe brain damage, with reduced interhemispheric connectivity 
leading to compensatory increase in ipsilateral connectivity, which 
may not be needed in patients with good prognosis. Tao and Rapp 
(2020) found that patients with chronic post-stroke dysgraphia had 
higher intrahemispheric connectivity in both the ipsilesional and 
contralesional hemispheres. However, several studies have reported 
lower than normal intrahemispheric FC in post-stroke aphasia (van 
Hees et al., 2014; Zhu et al., 2014; Nair et al., 2015). These results 
suggest that the effects of lesions on FC may differ across different 

functional networks within each hemisphere, and that the 
intrahemispheric FC patterns cannot be simply described as being 
overall higher or lower than normal. Therefore, we need to interpret 
this result with caution.

The analysis of ROIs showed that PSCI group had decreased FC 
in S1.L- S1.R, S1.L-DLPFC.R, S1.R-DLPFC.R, and S1.R-MPFC 
compared to HCs. Several fMRI studies have linked cognitive 
impairment to disruption of the default mode network (DMN) and 
the frontoparietal network (FPN) in stroke (Ding et al., 2014; Jiang 
et al., 2018; Rao et al., 2022). The DMN and FPN systems are both 
involved in spontaneous thought (Smallwood et al., 2012). The DMN 
is associated with stimulus-independent cognition and has two main 
hubs: the posterior cingulate cortex (PCC) and MPFC (Buckner and 
DiNicola, 2019). Jiang et al. (2018) found reduced connectivity within 
the DMN (especially the right MPFC and precuneus) in patients with 
acute brainstem ischemic stroke. The FPN is involved in cognitive 
control and mainly includes the middle frontal gyrus, dorsal anterior 
cingulate cortex, precuneus, caudate nucleus, and DLPFC (Andrews-
Hanna, 2012). The functional integration of the FPN and overall 
cognitive ability have a significant positive correlation, suggesting that 
the strength of functional integration of the FPN and the rest of the 
brain is crucial for supporting superior cognitive functioning (Marek 
and Dosenbach, 2018). A study of dynamic functional network 
connectivity analysis suggested that cognitive impairment after stroke 
may result from a functional disconnection between the primary and 
FPN-centered high-order cognitive control networks. Increased 
FPN-centered functional network connectivity might compensate for 
maintaining cognitive function (Rao et  al., 2022). The decreased 
functional connectivity of these regions may reflect functional and 
structural changes caused by stroke, which may impair the brain 
network integration and affect multiple cognitive domains.

Interestingly, the present study only found a significant difference 
in the connectivity derived from HbR during the resting state, and no 
significant results in the FC based on HbO and HbT. Nguyen et al. 
(2019) suggested that HbR might be  more specific to the brain 
functional connectivity during resting state because it is more closely 
related to the amount of oxygen consumed by the tissues. HbO, on the 
other hand, is mainly related to the oxygen inflow of the brain tissue 
and generally considered to be  the most reliable indicator for 
functional brain activation since it has a higher amplitude and is less 
affected by noise (Wolf et al., 2011). Previous studies on functional 
activation have shown that the BOLD signal has a stronger temporal 
and spatial correlation with HbR than with HbO (Huppert et al., 2006; 
Alderliesten et al., 2014). However, many studies have found either a 
slightly better correlation or a consistent correlation with HbO (Wolf 
et al., 2011; Duan et al., 2012; Sasai et al., 2012). Several resting-state 
FC studies based on fNIRS have reported that, compared to HbO, the 
more locally focused RSFC pattern of HbR, along with weaker RSFC 
strength, resulted in lower reliability (Lu et al., 2010; Zhang et al., 
2010; Wolf et al., 2011), although the difference in reliability between 
the fNIRS parameters was small. These conflicting results indicate that 
more research is needed to clarify the relationship between the fNIRS 
parameters and their impact on RSFC.

Our work offers a new insight into the mechanisms of cognitive 
deficits in stroke patients, but it has some limitations. First and 
foremost, we  recruited a relatively small number of individuals 
from a single institution. This ensured the quality of the data, but 
limited the statistical power and generalizability of the results. 
Moreover, the clinical characteristics of patients are quite 
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heterogeneous depending on stroke characteristics such as type, 
volume, number, location (cortical or subcortical), and severity. 
These variables could have certain effects on characterizing 
neurological outcomes. In addition, we did not find a significant 
difference between the PSCI and NPSCI groups, which may be due 
to the above limitations. Therefore, a large-sample multicenter 
longitudinal study is needed to further investigate the 
pathophysiology of PSCI, which could facilitate the prevention, 
diagnosis and treatment of PSCI.

Conclusion

We found reductions in interhemispheric and intra-right 
hemispheric FC, especially in S1.L-S1.R, S1.L-DLPFC.R, S1.R-
DLPFC.R, and S1.R-MPFC, in PSCI patients. These FC changes may 
be involved in the pathogenic mechanism of PSCI. Therefore, resting-
state fNIRS could be a promising technique to identify patients at risk 
of PSCI, to establish effective prevention strategies, and to guide 
clinical treatment.

FIGURE 3

The resting-state functional connectivity in deoxyhemoglobin. (A) Group-averaged resting-state functional connectivity matrix diagram. (B) ROI-based 
connections with significant inter-group differences (p < 0.05, FDR corrected). (C) The results of post-hoc comparisons (p < 0.05, Bonferroni corrected). 
Group 1: HC group; group 2: NPSCI group; group 3: PSCI group. The color bar indicates the statistical significance threshold.
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Ischemic stroke (IS), resulting from the occlusion of the cerebral artery and

subsequent interruption of blood flow, represents a major and critical threat

to public health. Oxidative stress (OS) has been confirmed to play a role in

the IS pathological process and neural death. Understanding the essential role

of OS-related genes in ischemic stroke is critical to understanding the current

perception of the pathophysiological process in IS. Herein, by integrating three

IS datasets (GSE16561, GSE22255, and GSE58294), we divided IS samples into

the low- and high-OS groups by calculating the OS score identified by the

oxidative stress gene set. The functional enrichment analysis of di�erentially

expressed genes (DEGs) between the low- and high-OS groups indicated that

DEGs were associated with hypoxia, the inflammatory response, and oxidative

phosphorylation pathways. Furthermore, nine hub genes (namely TLR1, CXCL1,

MMP9, TLR4, IL1R2, EGR1, FOS, CXCL10, and DUSP1) were identified through

the Girvan–Newman algorithm and cytoHubba algorithms. Nine hub genes

were highly expressed in IS samples and positively related to neutrophils and

macrophages. Drug-sensitive analysis targeting hub genes defined allopurinol and

nickel sulfate as potential candidates for impairing the neural death caused by

oxidative stress in IS. Finally, we employed fivemachine learningmethods to check

the e�cacy of the predictive model identified by nine hub genes. The results

showed that our model had superior power for predicting the OS activity of IS

patients. TLR4 was found to have excellent diagnostic value and a wide-spectrum

interactionwith other hub genes. Our research emphasized the impact of oxidative

stress on ischemic stroke, which supports the idea that antioxidants hold great

promise in ischemic stroke therapy.

KEYWORDS

oxidative stress, ischemic stroke, antioxidant, therapy, prognosis, hub genes

1. Introduction

Stroke is the main cause of death and long-term disability worldwide. Ischemic stroke

(IS) is the primary type of stroke, accounting for more than 80% of all types of strokes (Cui

et al., 2021; Jolugbo and Ariëns, 2021). Ephemeral or prolonged cerebral artery occlusion,

followed by hypoxia, can lead to neuronal apoptosis and death, resulting in focal brain

damage and functional defects, which are the major contributors to stroke-related morbidity

and mortality (Campbell and Khatri, 2020; Tao et al., 2020). IS blocks the blood and oxygen

supply to the brain, which induces a series of downstream metabolism events in the oxygen-

rich tissues and neural cells (An et al., 2021), of which neuronal apoptosis, inflammatory

response, angiogenic edema, and increased intracranial pressure occur. Recent studies have

shown that chronic inflammation and blood–brain barrier leakage damage brain tissues
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(Spychala et al., 2018). At present, the effective treatment

of ischemic stroke, including the intravenous injection of

recombinant tissue plasminogen activator and intravascular

thrombectomy, shows good therapeutic effects in recanalization

(Paul and Candelario-Jalil, 2021). However, two rapid reperfusion

methods are limited by extremely narrow treatment time windows,

and only a minority of patients obtain timely treatment due to the

strict contraindications (An et al., 2021). The pathophysiological

mechanism underlying IS remains poorly defined. Therefore, there

is an urgent need to delineate the mechanistic aspects and develop

new treatment methods for improving the clinical outcome of IS.

A growing body of evidence has found that there is a continuum

of intricate processes that play a role in neuronal death, such as

neuroinflammation, oxidative stress, excitotoxicity, and apoptosis,

in IS development (Li et al., 2017; Xiong et al., 2018; Qin et al.,

2022). Oxidative stress (OS) is defined as a dysfunction between

the generation of oxidants, reactive oxygen free radicals (ROS),

and their abolishing system, antioxidants, under the harmful

stimulation of internal and external environments (Ornatowski

et al., 2020). Numerous reports have discovered that OS is

associated with multiple diseases, as it produces excessive ROS that

overwhelms the antioxidant system’s maximum capacity (Zhang

et al., 2020; Forman and Zhang, 2021). The overwhelming ROS

levels hasten the oxidation of macromolecules, including nucleic

acids, membrane lipids, and proteins, which is a damaging signal

that leads to cellular dysfunction. Oxidative stress plays a crucial

role in the pathogenesis of stroke by triggering a cascade of events,

such as oxidative damage to lipids, proteins, and nucleic acids,

leading to cytotoxicity (ref PMID 23011809).

Additionally, it induces an inflammatory response and causes

neuronal apoptosis, leading to neurodegeneration, and cell death.

Moreover, it activates the autophagic pathway and damages

the blood–brain barrier, further exacerbating the severity of

the stroke (Ref PMID 29087944 and 36439687). Given the

devastating effects of oxidative stress in stroke, antioxidants have

been proposed as a potential therapeutic approach to alleviate

the pathological processes associated with this condition. The

macrophage-mimicking MnO2 nanoparticles can scavenge the

surplus ROS by recognizing adhesion molecules that interact

with the macrophage membrane protein. The reduced oxidative

stress signal modifies the inflammatory phenotypes by increasing

the M2-macrophage amount, which facilitates the survival of

injured neurons (Li et al., 2021). These findings have revealed that

oxidative stress exerts an overarching influence on IS initiation,

and antioxidant therapy could be a novel therapeutic approach for

treating the reperfusion injury associated with IS.

The current study investigated the crosstalk between oxidative

stress and IS progression and therapy. Three IS-associated GEO

datasets (GSE16561, GSE22255, and GSE58294) and the oxidative

stress gene set derived from the gene ontology website (http://

geneontology.org/) were enrolled in our analysis work. We

dissected the OS-related hub genes that play a crucial role in IS

development. Similarly, the immune cell features of hub genes

were also investigated, and we constructed a prognosis model for

evaluating the OS level. Furthermore, the potential drugs that target

OS hub genes were also identified. Multiple machine-learning

methods were used to check the efficacy of the prognostic model

created by the hub genes. Our research highlighted the major

influence of oxidative stress on ischemic stroke, providing novel

therapeutic opportunities for the treatment of IS.

2. Materials and methods

2.1. Data collection

Three IS GEO datasets, GSE16561 (24 control samples and 39

IS samples), GSE22255 (20 control samples and 20 IS samples), and

GSE58294 (23 control samples and 69 IS samples), were selected

for our analysis. The whole blood mRNA expression data in

ischemic stroke patients and survival data were downloaded from

the GEO website (https://www.ncbi.nlm.nih.gov/geo/). All the data

processing and analysis were implemented in the R project. The

original expression data were transformed into log2 format after

background correction. Finally, three datasets were combined, and

batch effects were eliminated by applying the “Combat” algorithm.

In addition, the OS-related gene set was collected from the gene

ontology database (http://geneontology.org/).

2.2. Identification of high- and low-OS
groups

The single sample gene set enrichment analysis (ssGSEA)

was employed to calculate the normalized enrichment

score (NES), which represents the relative degree of OS

level in each IS patient (Zhuang et al., 2021). Then, the

total IS samples were divided into the high- and low-OS

groups using hierarchical clustering based on the median

OS score.

2.3. Function enrichment analysis

The DEGs between the high- and low-OS groups were acquired

using the limma package in R with the significant criteria:

|Log FC| of >0.5 and a P-value of <0.05. Subsequently, the

hallmark pathway set and the Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathway set were obtained from the online

website (http://gsea-msigdb.org/) for the subsequent function

enrichment analysis. The Clue GO tool in the Cystoscape

software was introduced to visualize the pathway enrichment

results. We selected the gene set enrichment analysis (GSEA)

to explore the differential pathways between the high- and low-

OS groups.

2.4. Immune infiltration cell analysis

CIBERSORT was developed to calculate the content of

each immune cell subgroup by collecting the gene expression

features of 22 human immune cell subtypes via the deconvolution

method according to the principle of linear support vector

regression (Newman et al., 2015). CIBERSORT is a superior

method for the deconvolution analysis of complex mixtures

and expression matrices containing similar cell types. The
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FIGURE 1

The PCA analysis of data merging. (A, B) PCA analysis without or with correcting batch e�ect.

immune cell content of IS patients was evaluated by applying

the CIBERSORT algorithm. Moreover, the differences

in immune cells between the high- and low-OS groups

were analyzed.

2.5. Establishment of hub genes

The protein-protein interaction (PPI) network of the

aforementioned DEGs was obtained from the string website,

and the key node genes were analyzed. Subsequently, the

significant gene communities were identified using the

Girvan–Newman algorithm (Newman and Girvan, 2004). A

total of 12 genes in 18 significant gene communities were

found. Furthermore, we acquired the top 10 genes calculated

by three cytoHubba algorithms (MCC, MNC, and degree)

(Han et al., 2021). The overlapping genes between the 12

community genes and the top 10 genes were identified

as the hub genes. Nine hub genes were acquired for the

following analysis.

2.6. Correlation analysis of hub genes and
immune cells

Based on our metadata generated by three GEO datasets,

we investigated the expression differences of nine hub genes in

the normal group and IS samples. Subsequently, the correlation

between the gene expression of 9 hub genes and 22 immune cells

was analyzed using CIBERSORT.

2.7. Sensitive drug analysis of hub genes

The sensitive drug candidates of nine hub genes were

investigated using the DSigDB database in Enrichr (https://

maayanlab.cloud/Enrichr/).

2.8. Prognostic value analysis of hub genes

Five machine learning methods, including logistic, Bayesian

logistic, decision tree, random forest, and boosting, were used

to evaluate the predictive accuracy of the hub gene model

in diagnosing the IS samples with different OS statuses.

The predominant hub genes were screened out by boosting.

Furthermore, the receiver operating curves were used to examine

the predictive value of nine hub genes in estimating the OS level.

Finally, the correlation analysis between the nine hub genes and

each other was conducted to determine the key node hub genes.

3. Results

3.1. Identification of the high- and low-OS
groups in IS

First, we merged three IS-associated GEO datasets (GSE16561,

GSE22255, and GSE58294) into the metadata for the following

comparable analysis. The sample distribution pattern is shown

in Figure 1A before data merging, while Figure 1B displays the

PCA result after discharging the batch effect, suggesting that

the samples were mixed thoroughly. Single sample Gene Set

Enrichment Analysis (ssGSEA) indicated that 128 IS samples
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FIGURE 2

The identification of OS subtypes based on ssGSEA. (A) The hierarchical clustering heat map of the high- and low-OS groups. (B) The heatmap of

immune cell flirtation in two OS subgroups. *p < 0.05, **p < 0.01, and ***p < 0.001 indicated the statistical significance of data.

were divided into the high- and low-OS groups (Figure 2A).

The contents of neutrophils and macrophages in the high-OS

group were significantly increased, indicating that oxidative stress

influenced the neutrophils and macrophages in IS (Figure 2B).

3.2. GSEA and KEGG analysis between low-
and high-OS groups

We examined the differentially expressed pathways between

the high- and low-OS groups using GSEA. The investigation

from the hallmark gene sets showed that hypoxia, TNF signaling

through the NF-κB pathways, epithelial-mesenchymal transition,

and inflammatory response were significantly concentrated in

the high-OS group, while the oxidative phosphorylation and

interferon-γ response pathways were augmented considerably

in the low-OS group (Figure 3A). The KEGG pathway analysis

demonstrated that focal adhesion, regulation of the actin

cytoskeleton, the neurotrophic signaling pathway, apoptosis, and

leukocyte migration through endothelial cells, and the chemokine

signal transduction pathway were substantially enriched in the

high-OS group, suggesting that the high oxidative stress activity was

associated with inflammatory response (Figure 3B). The low-OS
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FIGURE 3

Function enrichment analysis. (A, B) The GSEA and the KEGG analysis of DEGs between the high- and low-OS groups.

group was characterized by the RNA processing pathways such as

spliceosomes and ribosomes (Figure 3B). As the level of oxidative

stress increased, the levels of hypoxia and inflammation in patients

with IS also increased.

3.3. Identification of hub genes

A total of 85 DEGs between the high- and low-OS groups

were collected (Figure 4A). The Clue GO enrichment analysis

indicated that these DEGs were significantly associated with

NAD+ nucleosidase activity and the CXCR chemokine receptor

binding signaling pathways (Figure 4B). The genes of significant

communities were obtained using the Girvan–Newman algorithm

and 18 gene communities, among which 12 vital genes were found

(Figure 4C). We also acquired the top 10 genes identified by the

three cytoHubba algorithms (MCC, MNC, and Degree). Taking

the section between 12 community genes and 10 top genes, nine

overlapping genes (namely TLR1, CXCL1, MMP9, TLR4, IL1R2,

EGR1, FOS, CXCL10, and DUSP1) were regarded as hub genes for

the following analysis (Figure 4D).
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FIGURE 4

The screening of hub genes. (A) A volcano map of DEGs between the high- and low-OS groups. (B) The KEGG analysis of DEGs. (C) The significant

gene community identified by GN. (D) The Venn diagram of hub genes.

3.4. Correlation of hub genes and immune
infiltration cells

First, we surveyed the overall gene expression pattern of

nine hub genes in IS samples and matched the normal groups.

The results showed that all hub genes other than CXCL10 were

enhanced in IS patients, suggesting that these hub genes played

a prompting role in IS initiation (Figure 5A). Most hub genes

were positively correlated with neutrophils, M0-macrophages, and

activated mast cells, representing a severe inflammatory response.

However, there was an overall inverse correlation between most

hub genes and T cells with distinct functional phenotypes

(Figure 5B).

3.5. The potential sensitive drug prediction
of hub genes

The top 10 sensitive drugs were found to be allopurinol,

nickel sulfate, phencyclidine, beta-escin, vanoxerine curcumin,

azacyclonol, benzene, trimipramine, and arsenenous acid

(Figures 6A, B). It was found that allopurinol and nickel sulfate

were sensitive to nearly all hub genes. Developing a novel strategy

based on allopurinol and nickel sulfate could improve the clinical

outcome of IS patients with the genetic hub gene features. Notably,

FOS, EGR1, DUSP1, and CXCL1 were discovered to have a strong

interactive relationship with the sensitive drugs compared with

other hub genes.
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FIGURE 5

Correlation analysis of hub genes and immune cells. (A) The gene expression of nine hub genes in IS. (B) Correlation matrix of nine hub genes and

immune infiltration cell amount. *p < 0.05, **p < 0.01, and ***p < 0.001 indicated the statistical significance of data.

3.6. Prognostic e�ect validation of hub
genes

Multiple machine-learning methods were employed to evaluate

the predictive accuracy of hub genes in distinguishing the IS

subtypes with different OS levels. The results from five machine

learning methods showed that the model composed of nine hub

genes could distinguish the high-OS group from the low-OS group

(Figure 7A). The prognostic model generated by nine hub genes

performed excellently in evaluating the OS status. Boosting results

showed that EGR1, TLR4, and TLR1 were three important factors

in the prognostic signature (Figure 7B). Among the nine hub genes,

TLR4 had the highest AUC value (Figure 7C). At the same time,

there was a good positive correlation between TLR4 and the other

eight hub genes (Figure 7D).

4. Discussion

The current study divided the IS samples into the low- and

high-OS groups according to the median oxidative stress score
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FIGURE 6

Top 10 sensitive drugs targeting hub genes. (A) The hub gene-drug network. (B) Top 10 sensitive drugs with the highest combined scores.

calculated using the ssGSEA method. In this study, we found

that hypoxia signaling was mainly enriched in the high oxidative

stress group compared with the low oxidative stress activity

group, suggesting the intricate interaction between hypoxia and

the OS response. A previous study reported that hypoxia is a

predominant driving factor in inducing oxidative stress (Pialoux

and Mounier, 2012). For example, hypoxia exposure mediates

oxidative stress in the brain region by reducing the biochemical

activity of antioxidant enzymes such as SOD, CAT, and GSH while

elevating oxidative stress markers such as MDA and TAC in the

hippocampus (Mohamed et al., 2019). The periodic aggregation of

HIF-1α induced by hypoxia promotes NADPH oxidase activation,

intensifying ROS export (Prabhakar and Semenza, 2012; Wang

et al., 2020).

Conversely, oxidative stress governs the hypoxia process. The

latest proceedings have certified that high-ROS concentration

stimulation increases HIF’s expression (You et al., 2021). As

previously described, OS swells the retinal cell inflammation

by activating the cGAS-STING signaling provoked by inflating

DNA damage and cytosolic leakage (Zou et al., 2022). We also

found that the inflammation signal pathway was augmented in

the high-OS group of IS patients, highlighting the prevailing

function of oxidative stress in controlling inflammation. Consistent

with our findings, the KEGG analysis revealed that leukocyte

transendothelial migration, the chemokine signaling pathway, and

chemokine receptor binding were augmented in the high-OS

group, demonstrating the active inflammatory response in the

context of high oxidative stress.

By performing the Girvan–Newman analysis, we identified

12 key genes in 18 predominant gene communities. We further

identified nine overlapping hub genes, including TLR1, CXCL1,

MMP9, TLR4, IL1R2, EGR1, FOS, CXCL10, and DUSP1, by taking

the intersection between the 12 community genes and the top

10 genes defined by three cytoHubba algorithms. Our analysis

revealed that these hub genes play crucial roles in the oxidative

stress process, which is often associated with inflammation

and thrombosis.

For instance, a previous study has shown that an excess

concentration of hepatic CXCL1 leads to an oxidative stress

response, as indicated by the increased activation of stress kinases

such as apoptosis signal-regulating kinase 1, which accelerates

the nonalcoholic steatohepatitis progression (Hwang et al., 2020).
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FIGURE 7

Predictive ability validation of hub genes. (A) The predictive accuracy of the prognostic model by five machine learning methods for the IS OS

subgroups. (B) The importance ranking of nine hub genes by boosting analysis. (C) The ROC curve of nine hub genes predicts the high- and low-OS

groups. (D) Correlation analysis of nine hub genes with each other.

TLR4 activation can increase the oxidative stress response and

enhance ROS generation in the activated macrophage cells in

thrombosis, while nattokinase treatment can reduce inflammation

and oxidative stress (Wu et al., 2020).

Additionally, our correlation analysis indicated that hub gene

expression levels were positively associated with the numbers of

neutrophils and macrophages, which are the major infiltration cells

in the inflammatory response (Martini et al., 2019). There was

a complex crosstalk between oxidative stress and inflammation

in ischemic stroke. We also found evidence that the deficiency

of S-adenosylhomocysteine hydrolase (SAHH) urges the EGR1

to recruit in the promoter region of the thioredoxin-interacting

protein (TXNIP), which increases TXNIP expression (Dai et al.,

2021). The excessive TXNIP signal promotes oxidative stress

and follows NLRP3 inflammasome motivation, contributing to

diabetic nephropathy progression (Dai et al., 2021). Our analysis

demonstrated that these hub genes are involved in the oxidative

stress process, with nearly all hub genes being upregulated

in IS samples relative to the normal groups. Taken together,

our findings suggest that developing anti-thrombotic drugs with

anti-inflammatory and antioxidative stress effects could be a

promising therapeutic strategy for ischemic stroke.

The management of acute ischemic stroke at present involves

the crucial process of mitigating the harmful effects of excessive

ROS during ischemia/reperfusion. One protective microglia

subtype in stroke-associated microglia is characterized by the

upregulation of an antioxidant enzyme, Peroxiredoxin-1 (Prdx1),

which induces the expression of stroke-protective molecules, such

as osteopontin and ferritin (Kim et al., 2022). Inhibiting Prdx1

expression significantly intensifies the infarction and inflammatory

responses by suppressing the antioxidant gene, such as Txn1 and

Mt2 expression (Kim et al., 2022). With antioxidants being a part

of current IS treatment, we sought to identify potential drugs

targeting hub genes. Among the 10 drugs found to be sensitive,

allopurinol and nickel sulfate were discovered to be sensitive

to almost all hub genes. Finally, we constructed a predictive

model depending on nine hub genes to evaluate oxidative stress

activity in ischemic stroke. The analysis from five machine learning

methods (logistic, Bayesian logistic, decision tree, random forest,

and boosting) showed that the predictive model consisting of

nine hub genes exhibited excellent performance. EGR1, TLR4, and

TLR1 were identified as the three key factors in determining the

oxidative stress subgroups, which is consistent with the results of

previous studies (Wu et al., 2020; Dai et al., 2021). We discovered
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that TLR4 had the highest AUC value and the strongest positive

correlation with the other eight hub genes. Increasing TLR4/NOX2

signaling activity triggers a severe oxidative stress response in

polystyrene microplastics-mediated uterine fibrosis (Wu et al.,

2022). Suppressing the TLR4/NOX2 signaling pathway significantly

decreases ROS export in cells and curbs the expression of fibrotic

and collagen-associated genes (Wu et al., 2022). Antioxidant

therapy targeting TLR4/NOX2 signaling could be an innovative

option for alleviating uterine fibrosis. Together with our data, these

findings highlight the critical role of TLR4 in oxidative stress and

antioxidant therapy.

5. Conclusion

In summary, our study provides valuable insights into the

role of oxidative stress in the pathological process of ischemic

stroke. Two IS subgroups were formed based on the high-

and low-OS levels. Significant differences were observed in the

expression levels of genes related to hypoxia and inflammation

between the two groups. Notably, nine hub genes which are

primarily associated with neutrophils andmacrophages were found

to be significantly upregulated in the IS samples. Using machine

learning algorithms, we developed a predictive model based on

nine hub genes. It can potentially facilitate the development of

novel therapeutic targets for improving the clinical outcome of

ischemic stroke. Our findings contribute to a better understanding

of the underlying mechanisms of ischemic stroke and may lead to

the development of more effective interventions for this clinically

important condition.
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China Rehabilitation Research Center, Beijing, China, 4 Department of Music Artificial Intelligence and 
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Introduction: Music therapy has been employed as an alternative treatment 
modality for the arousal therapy of patients with disorders of consciousness 
(DOC) in clinical settings. However, due to the absence of continuous quantitative 
measurements and the lack of a non-musical sound control group in most 
studies, the identification of the specific impact of music on DOC patients remains 
challenging. In this study, 20 patients diagnosed with minimally consciousness 
state (MCS) were selected, and a total of 15 patients completed the experiment.

Methods: All patients were randomly assigned to three groups: an intervention 
group (music therapy group, n = 5), a control group (familial auditory stimulation 
group, n = 5), and a standard care group (no sound stimulation group, n = 5). All three 
groups received 30 min of therapy five times a week for a total of 4 weeks (20 times 
per group, 60 times in total). Autonomic nervous system (ANS) measurements, 
Glasgow Coma Scale (GCS), and functional magnetic resonance—diffusion 
tensor imaging (fMRI-DTI) were used to measure the peripheral nervous system 
indicators and brain networks, and to evaluate patients’ behavior levels.

Results: The results reveal that PNN50 (p = 0.0004**), TP (p = 0.0003**), VLF 
(p = 0.0428**), and LF/HF (p = 0.0001**) in the music group were significantly 
improved compared with the other two groups. Such findings suggest that the 
ANS of patients with MCS exhibits higher activity levels during music exposure 
compared to those exposed to family conversation or no auditory stimulation. 
In fMRI-DTI detection, due to the relative activity of ANS in the music group, the 
ascending reticular activation system (ARAS) in the brain network also exhibited 
significant nerve fiber bundle reconstruction, superior temporal gyrus (STG), 
transverse temporal gyrus (TTG), inferior temporal gyrus (ITG), limbic system, 
corpus callosum, subcorticospinal trace, thalamus and brainstem regions. In the 
music group, the reconstructed network topology was directed rostrally to the 
diencephalon’s dorsal nucleus, with the brainstem’s medial region serving as the 
hub. This network was found to be linked with the caudal corticospinal tract and 
the ascending lateral branch of the sensory nerve within the medulla.

Conclusion: Music therapy, as an emerging treatment for DOC, appears to be integral 
to the awakening of the peripheral nervous system-central nervous system based 
on the hypothalamic-brainstem-autonomic nervous system (HBA) axis, and is 
worthy of clinical promotion. The research was supported by the Beijing Science and 
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Introduction

Minimal consciousness state (MCS) is a serious disorder of 
consciousness (DOC), which is different from vegetative state (VS) 
(Eapen et al., 2017). MCS is primarily characterized by a patient’s capacity 
to exhibit limited yet distinct self-awareness and environmental 
perception (Rasmus et al., 2019). In 2022, the International Society of 
Disorders of Consciousness defined MCS as “a state with small and clear 
behavioral evidence of severe conscious changes in the perception of the 
self and the environment”(Bodien et al., 2022; Bower et al., 2022). Studies 
have shown that patients with MCS have a relatively complete neural 
network under severe brain damage, which differs from persistent VS 
(Fischer et al., 2022; Fitzpatrick-DeSalme et al., 2022; Kondziella and 
Stevens, 2022). Neurobehavioral and imaging studies have revealed that 
there are significant differences in clinical manifestations and neurological 
symptoms between MCS and VS (Istace, 2022). However, owing to the 
variability of arousal levels and the dysfunction of sensory, motor, and 
language systems in patients with DOC, communication between patients 
and examiners is restricted, leading to a high incidence of misdiagnosis 
in clinical practice (Bellon et al., 2022; Ismail et al., 2022). At the same 
time, MCS has greater neurological rehabilitation potential than VS 
patients in terms of prognosis, and thus, is of great clinical value for 
multiple wake-promoting treatments for MCS patients (Bagnato, 2022).

The DOC patient assessment determines the level of awareness of 
a patient by identifying whether the response to the stimulus is 
reflexive, or comes from an active action in which part of the 
perceptual capacity is engaged (Young and Peterson, 2022). The 
current clinical assessment scales for early disturbance of 
consciousness include Glasgow Coma Scale (GCS) (Mehta and 
Chinthapalli, 2019), Coma Recovery Scale-revised (CRS-R) and other 
scales, which are used to differentiate VS from MCS (Giacino et al., 
2004). Moreover, neuroimaging assessment is also a significant tool 
for the diagnosis of DOC. Structural imaging techniques, including 
T1 and T2 weighted magnetic resonance imaging (MRI) and 
functional MRI (fMRI) (Sanz et  al., 2021), can facilitate the 
quantification of brain atrophy in patients with DOC (Fins, 2011). 
Such methods can also effectively identify the precise location of brain 
injuries, hypoxic–ischemic lesions, and diffuse axonal injuries 
(Humble et  al., 2018). Fractional anisotropy (FA) of key regions 
detected by diffusion tensor imaging (DTI) is a reference index for 
predicting the prognosis of DOC (Li et al., 2022). In general, CRS-R 
is used as the preferred tool for prognosis evaluation in clinical 
practice, and GOS-E is used as an auxiliary scale for prognosis 
evaluation (Annen et al., 2019).

At present, DOC lacks exact and effective treatment methods. 
Despite the lack of systematic research and sufficient evidence-based 
medical evidence, clinical research and attempts to treat DOC have 
been conducted in consideration of the large number of DOC patients 

and the considerable treatment demand. The main treatment methods 
include surgery, medication, hyperbaric oxygen therapy, 
neuromodulation therapy (invasive, non-invasive, etc.), physical 
therapy, and others. As an emerging rehabilitation modality in recent 
years, music therapy has shown significantly positive effects in 
promoting recovery for patients with consciousness disorders (Grimm 
and Kreutz, 2018; Bower et al., 2022; Liu et al., 2022). Music has a wide 
range of activation effects on the cerebral cortex, such as the bilateral 
frontal lobe, temporal lobe, parietal lobe and cerebellum, and the 
emotion-related frontal lobe, cingulate gyrus, amygdala and 
hippocampus are particularly responsive (Rollnik and Altenmüller, 
2014). The use of a patient’s favorite music for auditory stimulation is 
conducive to the recovery of consciousness (Magee et al., 2015).

Music, particularly songs that patients find appealing, frequently 
elicit emotional resonance (Hu et  al., 2021). One vital strategy in 
accomplishing music therapy is to select songs that patients enjoy and 
have them performed live by music therapists (Magee et al., 2014). The 
songs sung by the music therapist in the present study were chosen 
accurately based on the patients’ preferences and emotional 
engagement (Pool et  al., 2020). The effects of music intervention, 
including both active and receptive music therapy, had a positive 
impact on patients with DOC (Zhang et al., 2021). In the field of 
rehabilitation medicine, awakening treatment of DOC combined with 
music therapy, as a different treatment strategy, can effectively improve 
the consciousness state of patients with cerebral MCS (Arroyo-Anlló 
et al., 2013). Evidence has shown that music can activate the function 
of the default mode affective network in patients with DOC (Janelli 
et al., 2004; Riganello et al., 2015; De Luca et al., 2022). Despite such 
findings, there are difficulties in terms of drawing conclusions due to 
the few studies that did not use continuous quantitative measures and 
the lack of control groups to show the distinctive effects of music on 
patients with DOC. Three groups were used to compare the activation 
of autonomic nervous system and brain network in patients with MCS 
over 4 weeks: music therapy group (played by music therapist), the 
voices of family members (recorded), and a standard care group, to 
clarify the specific role of music therapy.

Subjects and methods

Twenty patients were recruited from China Rehabilitation Research 
Center, and the inclusion criteria were as follows: (1) MCS diagnosed by 
CRS-R and GOS-E (Giacino et al., 2004); (2) inpatients with a disease 
duration of at least 3 months; (3) aged 18–60 years old; (4) can tolerate the 
treatment in the supine position for more than half an hour; (5) no 
previous music education background; (6) informed consent was 
obtained from patients and their families. The exclusion criteria consisted 
of: (1) severe arrhythmia, malignant arrhythmia or other diseases, or 
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history of cardiac surgery; (2) orthostatic hypotension; (3) severe hearing 
impairment. The withdrawal and termination criteria were as follows: 
termination of treatment can occur if the patient’s condition changes due 
to discharge or voluntary withdrawal. A total of 15 subjects completed the 
experiment. Five subjects (n = 5) withdrew from the experiment due to 
transfer to another hospital or personal reasons. The characteristic data 
are presented in Table 1.

Patient recruitment was conducted from December 2019 to 
September 2022, the data of participants’ characteristics are shown in 
Table 1. Fifteen patients were randomly divided into three groups: the 
intervention group was the music therapy group (n = 5), the control group 
was the familial auditory stimulation group (n = 5), and the standard care 
group was the no auditory stimulation intervention group (n = 5). There 
were no significant differences in the ratio of male to female, age, time of 
injury and education among the three groups (p > 0.05).

Table 1 presents the distribution of group differences, gender, age, 
injury time and education background of the three groups of patients. 
The remaining data were expressed as standard deviation + mean and 
analyzed by paired t test. Experimental group: music therapy group; 
Control group: familial auditory stimulation group; standard care: 
standard care group. p > 0.05 indicates that there was no significant 
difference among the three groups.

Study design

The present study constituted a randomized controlled trial with 
a pre-and post-test experimental design that featured three separate 
groups, namely the experimental (n = 5), control (n = 5), and standard 
care group (n = 5). The study was conducted using a single-blind 
design, in which participants only knew they were participating in a 
clinical trial after signing an informed consent form, and a masking 
design was used for grouping information and data analysis. The study 
was conducted at CRRC from December 2019 to November 2022. 
This study was supported by the Beijing Science and Technology 
Project Foundation of China, No. Z181100001718066; and the 
National Key R&D Program of China No. 2022YFC3600300, No. 
2022YFC3600305. This research proposal has been approved by the 
Ethics Committee of CRRC (approval No. 2018–022-1) on March 12, 

2018 (Supplementary material), and informed consent 
(Supplementary material) was obtained from the participants, relatives 
or guardians before commencing the study. The study trial was 
registered with the Clinical Trial Registry (Registration No. 
ChiCTR1800017809) on August 15, 2018.

Procedure

After approval by the CRRC Ethics Committee and registration for 
clinical trials, subjects were initially screened by neurosurgeons. Patients 
who initially received a score on the GCS indicating moderate to severe 
impairment of consciousness were referred to the music therapy 
department following consultation. Potential participants were identified 
by music therapy investigators according to predetermined inclusion and 
exclusion criteria. Subsequently, the investigators confirmed the eligibility 
of the patients and invited their family members to participate in the study 
after obtaining their signed informed consent forms. Topics included 
study purpose, procedure, risks, benefits, confidentiality, and subjects’ 
rights. Upon enlistment, GCS scores were used to determine whether 
patients had impaired hearing function and computer-generated 
sequences (Excel 2013, Microsoft Office, Seattle, WA, USA) were used to 
randomly assign patients to one of the three groups. Participants in the 
intervention group received music therapy from a music therapist for 
4 weeks, while participants in the control group received familial auditory 
stimulation for 4 weeks, with no acoustic stimulation in the standard care 
group. The enrollment and assignment of participants is shown in 
Figure 1.

Figure 1 illustrates that 20 participants were enrolled in the study, 
15 participates completed the trial, and 5 participants withdrew: 
COVID-19 (n = 3), midway transfers (n = 1) or other personal reasons 
(n = 1). The experimental group (n = 5) received music therapy 
administered by a music therapist, whereas the control group (n = 5) 
was subjected to auditory stimulation provided by their respective 
family members. Meanwhile, the standard care group was given no 
auditory stimulation. Two rounds of evaluation were conducted 
during the whole period, namely T0 (baseline) and T1 (after 4 weeks). 
The data analysis included a sample of 15 patients who were in a 
minimally conscious state.

TABLE 1 Baseline characteristics of participants included in the present study.

Intervention group Control group Standard care Value of p

Mean ± SD Mean ± SD Mean ± SD

Minimally consciousness state
5 5 5 >0.05

(MCS)

Gender

Male 2 3 4 >0.05

Female 3 2 1 >0.05

Age 26.8 ± 11.21 50.8 ± 10.13 38.8 ± 15.07

Time since injury 7.53 ± 5.04 5.79 ± 4.41 8.15 ± 1.33

Education background

primary school 1 3 0 >0.05

junior high school 0 1 2 >0.05

Bachelor degree or above 4 1 3 >0.05
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FIGURE 1

Flow diagram, consort flowchart for participants’ recruitment and allocation.

108

https://doi.org/10.3389/fnins.2023.1182181
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Xiao et al. 10.3389/fnins.2023.1182181

Frontiers in Neuroscience 05 frontiersin.org

Interventions

The treatment intervention began after the subjects were 
enrolled. All patients in the experimental group received live 
music therapy the control group received sound auditory 
stimulation recorded by family members, and standard care group 
did not receive auditory stimulation. Each patient received 30 min 
of training five times a week for 4 weeks. Music therapy was 
performed by registered music therapists who were licensed to 
ensure the professionalism of the intervention. The familial 
stimuli were generated through recordings of family member 
voices, with the family members engaging in conversation 
pertaining to the patient’s past personal life experiences, and 
expressing such content directly to the patient.

The live music therapy supported by music 
therapist

In the intervention group, a music therapist performed a fixed 
program of musical therapy session (a set of songs edited in a fixed 
order). The song selection was based on the patient’s musical 
preferences. Sources of songs are: (1) Songs that are played most 
frequently in the mobile phone music app of patients; (2) The 
family members informed the music therapist of the patient’s 
favorite singer, and the music therapist selected the most famous 
songs of the singer for intervention. The standardized procedure 
for music therapy consisted of a fixed pattern lasting for a duration 
of 30 min, comprising (1) an opening piece, specifically the “Hello 
song” composed by the therapist with a duration of 2.5 min, 
followed by (2) a song content component that involved the 
selection of music with emotional significance to the subjects and 
their significant relationships (for example, parents, couples/lovers, 
children, grandparents, friends) from their past life experiences, 
with a total duration of 25 min. For instance, one subject had 
previously viewed the film “Hello, Li Huanying” with their mother 
before experiencing injury, and had a powerful emotional response 
to the theme song “Daylily Flower” played at the end of the movie. 
As a result, during the music sessions, the music therapist 
performed the song live for the patient, while simultaneously 
incorporating a section of lyrics that were thematically related to 
the mother based on the film’s premise. The music therapy 
procedure concluded (3) with the “Goodbye Song” (2.5 min), 
which featured lyrics composed by the therapist 
(Supplementary material).

Familial auditory stimulation supported by 
patients’ family members

The researchers communicated with the patients’ families to 
confirm the content and duration of the recordings. The recording 
content was related to the patients’ personal life experiences. The 
patients’ loved ones had a daily conversation around the theme of 
each “patient’s personal life,” and the conversation content was 
recorded in WMA or MP3 format for 30 min 
(Supplementary material).

Standard care group
The standard care group did not receive auditory stimulation, but 

the rehabilitation therapy and medication therapy were consistent 
with the experimental group and the control group.

Measurements

Before the intervention, all the participants were assessed at baseline 
by the researcher, using (1) automatic nerve system (ANS) testing for 
physiological examination of the peripheral nervous system; (2) the 
Glasgow Coma Scale (GCS) (Mehta and Chinthapalli, 2019) for behavioral 
assessment; and (3) Functional Magnetic Resonance Imaging-Diffusion 
Tensor Imaging (fMRI-DTI) (Gould et  al., 2021). Behavioral and 
radiological changes were observed at a second assessment 4 weeks later.

Automatic nerve system test

The ANS Bodyguard device (Version 3.1, Meiyang Limited, Beijing, 
China) was used to record the sympathetic and parasympathetic nervous 
system indicators as follows: (1) Percentage of the number of adjacent 
sinus beats with difference > 50 ms in total sinus beats, PNN50; (2) Total 
Power, TP; (3) Low Frequency, LF; (4) High Frequency, HF; (5) LF norm/
HF norm = LF/(LF + HF) × 100; (6) Very low frequency band, VLF. Low 
frequency and high frequency were obtained in the ranges of 0.04–0.15 Hz 
and 0.15–0.40 Hz, respectively (Gitler et al., 2022). The magnitude of high 
frequency and the ratio of low frequency to high frequency (LF/HF) 
corresponded to the intensity of vagal activity and sympathetic vagal 
balance, respectively. Specifically, the size of LF is involved in vagus and 
sympathetic nerve activity (Lee and Shields, 2022). The natural logarithms 
of powers (lnLF and lnHF) were used to evaluate the magnitude of each 
spectral component. The ratio of LF component to HF component (LF/
HF ratio) was calculated by dividing lnLF by lnHF (lnLF/lnHF).

Glasgow coma scale (GCS)

GCS is a behavioral assessment method for assessing the degree 
of consciousness of patients (Eapen et  al., 2017). The level of 
consciousness was assessed by evaluating eye opening, language, and 
movement. A higher score indicated a better state of consciousness. 
Specifically (1) the blink reflex was graded on a scale of self-opening 
(4′), opening eyes upon hearing one’s name (3′), opening eyes in 
response to a painful stimulus (2′), or no reaction (1′); (2) the language 
reflex was graded on a scale of accurate orientation and correct 
responses (5′), correct orientation but incorrect responses (4′), ability 
to speak but unable to answer (3′), ability to produce only sounds (2′), 
and inability to produce any sounds (1′); and (3) the motor reflex was 
graded on a scale of ability to follow commands (6′), ability to point 
to the site of pain (5′), retraction of limbs in response to a painful 
stimulus (4′), flexion of both upper limbs (3′), extension of limbs (2′), 
and complete relaxation of limbs (1′) (Mehta and Chinthapalli, 2019).

Functional magnetic resonance 
imaging-diffusion tensor imaging

Functional Magnetic Resonance Imaging (fMRI) uses magnetic 
resonance imaging to measure the hemodynamic changes caused by 
neuronal activity. Generally, fMRI has the scanning characteristics of 
high spatial resolution (2-3 mm) and high temporal resolution (within 
1 s, rapid imaging time is 30-100 mm). Such method can reveal the 
functional reorganization of different regions of the brain. Diffusion 
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tensor imaging (DTI), a type of fMRI technique that examines the 
connectivity and integrity of living tissue, is designed to visualize the 
direction of nerve fiber bundles in the white matter of the brain, 
resulting in a detailed tensor image of the central nervous system fibers.

The DTI index adopted in the present study was a parameter of 
fractional anisotropy (FA) of the reaction part. The value ranged from 
0 to 1, where 0 represents the maximum anisotropic dispersion and 1 
represents the maximum anisotropic dispersion. The method involved 
sensitive gradients applied in six different non-collinear directions 
with a slice thickness of 1 mm, using a 256 matrix scanning protocol 
and a 256 × 256 isotropic resolution of 1 square mm. Scans were 
performed at T1 and T2 to visualize the fiber tracts of water molecules 
in the X, Y, and Z directions of the brain.

Statistical analysis

Measurements of the three groups were collected at 2 time points 
before intervention (baseline, T0) and after intervention (4 weeks later, 
T2), being expressed in the form of mean ± standard deviation. 
Two-factor analysis of variance was used to observe the differences 
between differences groups, time effects, and the interaction effects 
between time and groups. SPSS 23.0 (SPSS Inc., Chicago, IL, USA, IBM 
Lenovo, BJIBM Lenovo, BJ, USA) was used for statistical analysis of the 
three sets of data to determine the specific effects of the intervention.

Results

The ANS index in the intervention group was 
significantly improved compared with the 
control group and the standard care group

The excitability of the ANS system in MCS patients was evaluated 
in respect of six aspects: (1) PNN50; (2) TP; (3) LF; (4) HF; (5) VLF; 
and (6) LF/HF. After 4 weeks of treatment, PNN50 was significantly 
higher in the intervention group (a) than in the control group (b) and 
the standard care group (c) (p = 0.0004, a > b > c, Figure 2A). TP in the 
intervention group was significantly higher than those in the control 
group and the standard care group (p = 0.0003, a > b > c, Figure 2B). 
For LF, there were no obvious differences between the three groups 
(p = 0.2401, a≒b≒c, Figure 2C), which was the same for HF (p = 0.1685, 
a≒b≒c, Figure 2D). VLF in the intervention group was significantly 
higher than those in the control group and the standard care group 
(p = 0.0428, a > b > c, Figure 2E). However, for the ratio of LF/HF, the 
intervention group showed considerably significant improvement over 
the control group and the standard care group (p = 0.0001, a > b > c, 
Figure 2F). The results are shown in Table 2 and Figure 2.

The GCS scores in the intervention group 
were significantly improved compared with 
the control group and the standard care 
group

The degree of consciousness of MCS patients was scored using the 
GCS. GCS can be evaluated in four domains: (1) blink reflex; (2) 

speech reflex; (3) limb reflexes, and (4) total GCS score. After 4 weeks 
of treatment, the blink reflex frequencies in the intervention group (a) 
and control group (b) were significantly higher than that in standard 
care group (c), and the score in the intervention group was higher 
than that in the control group (p = 0.0071, a > b > c, Figure 3A). The 
speech reflex frequencies of the intervention group and the control 
group were significantly higher than that of the standard care group 
(c), and the score of the intervention group was higher than that of the 
control group (p = 0.0063, a > b > c, Figure  3B). The limb reflex 
frequencies were significantly higher in the intervention and control 
groups than in the standard care group (c), where the intervention 
group scored higher than the control group (p = 0.0001 a > b > c, 
Figure  3C). The total GCS scores of the intervention and control 
groups were higher than that of the standard care group (c), where the 
intervention group had a higher score than the control group 
(p = 0.0001, a > b > c, Figure 3D). The results are shown in Table 3 and 
Figure 3.

Visualization effect of music therapy on 
brain network in the patients with MCS

After performing Pipeline for Analyzing braiN Diffusion 
imAges (PANDA) analysis using MATLAB and considering the 
246 brain regions (Fan et al., 2016), it was observed that compared 
with the control group, the dorsolateral area of the superior frontal 
gyrus (SFG), middle frontal gyrus (MFG), ventrolateral of middle 
frontal gyrus, orbitofrontal cortex, precentral gyrus, superior 
temporal gyrus, transverse temporal gyrus, inferior temporal 
gyrus, corpus callosum, parahippocampal, inferior parietal lobule, 
postcentral gyrus, insular gyrus, cingulate gyrus, basal ganglia and 
other regions exhibited a significant increase in Fractional 
Anisotropy (FA), Fiber Number (FN), and Path Length (Length). 
Table 3 shows the highlighted regions of interest (ROIs) of FA, FN, 
and length enhancement trends after music-based MIT 
intervention (Figure 4; Supplementary material).

Positive effects of music therapy on 
hypothalamic-brainstem-autonomic 
nervous system axis of autonomic nervous 
system-central nervous system in patients 
with MCS

After PANDA analysis using MATLAB and considering the 
accuracy of white matter fiber bundle shape tracking by DTI (Fan 
et al., 2016), it was identified that compared with the control group 
and the standard care group, neural fiber traces in the superior 
frontal gyrus (SFG), middle frontal gyrus (MFG), precentral gyrus 
(PrG), postcentral gyrus (PoG), superior temporal gyrus (STG), 
transverse temporal gyrus (TTG), inferior temporal gyrus (ITG), 
limbic system, corpus callosum, subcorticospinal trace, thalamus 
and brainstem regions were significantly increased in the 
experimental group. Figure 4 shows the results of the experimental 
group after music therapy compared with the control group and the 
standard care group. The results of the three groups are shown in 
Figure 4.
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Discussion

By autonomously regulating the nervous system according to 
the different auditory stimuli given, music can widely activate the 
brain network (Zatorre et al., 2007; Alluri et al., 2012; Särkämö 
et  al., 2013; Koelsch, 2014; Fan et  al., 2016) and increase the 
blood flow of intracerebral arteries, thereby providing a favorable 
environment for the overall recovery of the brain. The auditory 

complexity of music has an environmental enrichment effect 
(Engineer et al., 2004; Teppo et al., 2008) in patients with MCS, 
which has a behavioral and neurobiological level of facilitation in 
autonomic nervous system arousal in patients with DOC. Several 
prior studies have reported on neural reorganization of brain 
networks in patients with MCS following music-supported 
therapy. Additionally, other studies have provided further 
evidence of music therapy on central neural plasticity related to 

FIGURE 2

Comparison of results of ANS in MCS patients in three groups. (A) PNN50, (B) TP, (C) LF, (D) HF, (E) VLF, (F) LF/HF. **p < 0.01, significant difference; 
*p < 0.05, difference.

TABLE 2 The results of the ANS tests in patients with minimally conscious states across the study period for the intervention group (a), the control 
group (b), and the standard care group (c).

Intervention group (a) Control group (b) Standard care (c) p Intergroup 
comparison

(n = 5) (n = 5) (n = 5)

Mean ± SD Mean ± SD Mean ± SD

PNN50 (%) t1 11.92 ± 5.40 18.68 ± 11.91 31.89 ± 30.78 0.7475 a>b>c **

t2 45.39 ± 8.25 17.58 ± 9.10 4.73 ± 3.15 0.0004**

TP (ms2) t1 303.01 ± 175.37 196.74 ± 128.15 135.62 ± 65.06 0.2903 a>b>c **

t2 462.61 ± 110.49 134.07 ± 68.07 179.38 ± 128.13 0.0003**

LF (%) t1 161.67 ± 62.15 130.79 ± 93.49 123.92 ± 82.53 0.7436 a≒b≒c

t2 169.20 ± 68.99 132.45 ± 105.01 80.95 ± 54.33 0.2401

HF (%) t1 74.73 ± 24.38 102.59 ± 85.88 106.75 ± 94.90 0.3901 a≒b≒c

t2 72.18 ± 26.17 84.63 ± 73.11 30.15 ± 19.48 0.1685

VLF (%) t1 116.14 ± 62.27 57.36 ± 48.62 40.04 ± 30.91 0.5712 a>b>c *

t2 98.04 ± 8.99 62.44 ± 50.52 68.28 ± 64.92 0.0428*

LF/HF (%) t1 2.39 ± 0.39 1.68 ± 0.26 1.52 ± 0.64 0.0191 a>b>c **

t2 4.58 ± 1.52 1.91 ± 0.50 1.99 ± 0.68 0.0001**

Data were expressed as mean ± SD (n = 15), and two-way ANOVA was used to analysis the data. **p < 0.01, significant difference; *p < 0.05, difference. >, greater than or equal to;  
≒, approximately equal to.
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auditory and motion (Amengual et al., 2013; Grau-Sanchez et al., 
2013; Ripollés et al., 2016). The aim of the present study was to 
focus on two key points: firstly, investigating the activity of the 
autonomic nervous system based on the hypothalamus-pituitary–
adrenal axis in MCS patients stimulated by music. Secondly, 
observing the structural remodeling outcomes of neural networks 
in the brain when the peripheral nervous system is activated.

The ANS activity of MCS patients was 
increased in music therapy—based on the 
theory of hypothalamic brainstem 
autonomic nervous system

Music produces measurable cardiovascular and endocrine 
responses, indicated by reduced serum cortisol levels and inhibition of 

FIGURE 3

Comparison of results of GCS scores in MCS patients in three groups. (A) Blink reflex, (B) speech reflex, (C) limb reflex, and (D) GCS score. **p < 0.01, 
significant difference; *p < 0.05, difference.

TABLE 3 The results of GCS scores in patients with minimally consciousness states across the study period for the intervention group (a), the control 
group (b), and the standard care group (c).

Intervention group (a) Control group (b) Standard care (c) p Intergroup 
comparison

(n = 5) (n = 5) (n = 5)

Mean ± SD Mean ± SD Mean ± SD

Blink t1 2.02 ± 0.01 2.40 ± 0.49 2.20 ± 0.40 0.3084

t2 3.01 ± 0.63 3.40 ± 0.49 2.20 ± 0.40 0.0071** a > b > c**

Speech t1 1.01 ± 0.01 1.05 ± 0.50 1.25 ± 0.43 0.274

t2 1.80 ± 0.40 1.80 ± 0.40 1.50 ± 0.50 0.0063** a > b > c**

Motor t1 2.60 ± 0.49 2.40 ± 0.49 2.01 ± 0.01 0.784

t2 3.80 ± 0.40 1.50 ± 0.50 2.20 ± 0.40 0.0001** a > b > c**

Total t1 5.40 ± 0.49 6.40 ± 1.02 5.20 ± 0.75 0.2379

t2 8.60 ± 1.02 8.20 ± 0.75 5.60 ± 0.49 0.0001** a > b > c**

Data were expressed as mean ± SD (n = 15), and two-way ANOVA was used to analysis the data. **p < 0.01, significant difference; *p < 0.05, difference. >, greater than or equal to.
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cardiovascular stress reactions (Sihvonen et al., 2017). This theory relies 
on the musical effectiveness on the hypothalamic brainstem autonomic 
(HBA) axis, which is proposed in 2017, which states that music-induced 
activation of the parasympathetic nervous system and inhibition of the 
sympathetic nervous system, and induce improvement of arousal might 
therefore enhance recovery of cognitive functions in patients (Sihvonen 
et al., 2017). In the regulation of the autonomic nervous system (ANS), 
external stimuli are received through bodily receptors, serving as a 
crucial source for the modulation of the sympathetic and 
parasympathetic nervous systems. The autonomic nervous system is 
often referred to as the involuntary nervous system due to its lack of 
control by conscious awareness. In the control of ANS, signals from the 

outside world are received through body receptors, which is a significant 
stimulus source for the antagonism or inhibition of ANS sympathetic 
and parasympathetic nerves. In the present study, patients in the 
experimental group received music therapy through auditory means. 
The song selection was based on the patients’ personal life experiences 
and included their favorite songs prior to the onset of illness. The input 
form was auditory stimulation in the form of live singing of the songs 
by a music therapist. Patients in the music group received more varied 
sound signals than those in the control group who listened to family 
voices and the standard care group who received no auditory stimuli. 
Compared with the abstract content of familial conversation (better 
brain function is needed to recognize sound properties and understand 

FIGURE 4

Comparison of the neural fibers trace results of DTI on brain network of the three groups. EG: experimental group, music auditory stimulation group; 
CG: control group, familial auditory stimulation group, BG: standard care group, no auditory stimulation group. T1: baseline, before intervention; T2: 
1 month after intervention. R: right hemisphere; L: Left hemisphere. Blue: Superior–Inferior direction of the nerve fiber bundle; Red: Anterior–Posterior 
direction of the nerve fiber bundle; Green: Left–Right direction of nerve fiber bundles.
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the meaning of the conversation), the emotional experience brought by 
the melodic and harmonic richness of music is more concentrated in 
the thalamus and hypothalamus, which are the central starting point of 
the HBA axis. As such, after receiving auditory input from music, 
PNN50 and TP in the ANS in the music group were significantly 
increased. Decreased PNN50 indicates decreased parasympathetic 
excitability (Tak et al., 2010). Since patients in the standard care group 
were not treated with auditory stimulation other than standard care and 
nutritional neuro-medications, parasympathetic PNN50 decreased 
compared with patients in the other two groups who received auditory 
interventions, suggesting the possibility of autonomic nervous system 
disorders. Such findings indicate that while listening to the familiar 
music that made patients feel present, the experimental group exhibited 
an increase in sinus heart rate, myocardial sympathetic and vagal tone, 
as well as a decrease in balance. When the experimental group listened 
to familiar music, significant changes in VLF, LF/HF and other values 
of ANS showed that the experience generated during listening to music 
could induce immediate cardiovascular and endocrine responses, and 
such positive experiences were related to the fast reward circuit. 
According to the upward circulation of the HBA axis, after stimulation 
by music, ANS excitation could further result in activity of the brain 
stem and hypothalamus, thereby promoting the activity of the MCS 
brain network.

Music therapy activates the brain network 
or spare neural networks more broadly in 
MCS patients—based on the results of DTI 
analysis

According to the results of FA (anisotropy) in the analysis of fMRI-
DTI, the FA showed a significant increase in the macro structure of the 
right temporal lobe after music therapy intervention in the experimental 
group. Particularly, there was a noticeable trend of fiber bundle 
reconstruction in the internal sac and corpus callosum. In the 
experimental group, the increase in the FA value in the knee and 
pressure area of the corpus callosum was significantly correlated with 
the improvement in the GSC score. In addition, FA increased 
significantly in the posterior corpus callosum, corticospinal tract, 
cingulate tract, posterior branch of internal capsule, inferior fronto-
occipital tract and superior longitudinal tract. Such findings positively 
correlated with increased blinking and motor reflex in the experimental 
group. In the speech reflex of GCS between the music group and the 
familial group, the difference between the two groups was not 
significant, but it was significantly different from the standard care 
group. This behavior result is also verified in the results of DTI imaging. 
It is well known that auditory semantic understanding is in the ventral 
pathway of the left temporal lobe, while speech output is in the 
temporoparietal and frontal lobe regions that transmit auditory-motor 
signals. Songs expressing emotion can be understood as an emotional 
language to some extent. When the vocal music is sung live, the right 
middle and front of the superior temporal gyrus, and amygdala of the 
subjects were involved in the activity at the same time. Therefore, in the 
experimental group, both the bilateral temporal lobe and the ventral 
frontal parietal cortex based on semantic understanding and melody 
perception responded simultaneously, forming an automatic processing 
of auditory integrity-verbal motor output, hence inducing the occasional 
verbal phonological behavior. However, in the familial group, because 

the conversational communication is more integrated the semantic 
understanding area of the left superior temporal gyrus and the verbal 
motor output area of the frontal parietal lobe, the relative voice behavior 
feedback was also seen in the GCS score.

Because MCS patients are consistently characterized by abnormal 
white matter signals, after 4 weeks of quantitative stimulation with two 
different sounds, music and family conversation, definite changes in 
nerve fiber bundles in the ascending reticular activating system (ARAS) 
were evident in the music group (Figure 4; EG: T2). The musical stimuli 
given had the following characteristics: (1) the patient was familiar with 
the past and had emotional involvement; (2) music therapists sang live 
and helped patients to feel present. ANS HRV response increment 
through the connectivity of up and down neural fiber bundles. 
Compared with the other two groups, the bulbar, pons, and midbrain 
of the experimental group showed an obvious thickening trend. It is 
suggested that under the input signal of vocal activity, the enhancement 
of important physiological activities such as cardiovascular and 
respiratory strengthens the lateral branches of sensory nerves 
connecting the lower corticospinal tract and the ascending medulla in 
the brainstem and diencephalon (dorsal encephalon nucleus), which 
enhances the Brownian motion trajectory of water molecules, and thus 
remodels the nerve fiber bundle in the brainstem and the distal sub 
cerebral. (DTI 3D Video in Supplementary material).

For patients with MCS, the challenge of awakening consciousness 
is a widespread issue. Live music therapy, a non-invasive treatment 
primarily utilizing auditory input to the receptors and created by a 
music therapist, promotes physiological arousal of the HPA axis and 
ARAS activation in MCS patients. Such innovative treatment approach 
aligns with the growing trend of heart-brain integrated prevention 
strategies and offers a new avenue for the clinical treatment of 
consciousness disorders.

Limitations

The small sample size is one of the limitations of the present study. 
If a larger sample size can be included in future studies, so as to expand 
the number of subjects under three different conditions for comparison, 
there will be more evidence for clinical research.

Implications for clinical practice

In the present study, the clinical significance of live music therapy 
administered by music therapists for patients with MCS was 
demonstrated, and the potential therapeutic mechanisms were 
tentatively revealed. In the future, the hope is that an increasing 
number of music therapists will participate in clinical practice as part 
of a multidisciplinary team, under the guidance of medical 
professionals, with the aim of aiding in the awakening of 
DOC patients.

Conclusion

Live music therapy, administered by a professional music therapist, is 
more effective for MCS patients than listening to familial auditory 
stimulation, and is worth promoting in clinical practice in the future.
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Alzheimer’s disease (AD) is a critical health issue worldwide that has a negative 
impact on patients’ quality of life, as well as on caregivers, society, and the 
environment. Positron emission tomography (PET)/computed tomography (CT) 
and neuropsychological scales can be  used to identify AD and mild cognitive 
impairment (MCI) early, provide a differential diagnosis, and offer early therapies 
to impede the course of the illness. However, there are few reports of large-
scale 11C-PIB-PET/CT investigations that focus on the pathology of AD and MCI. 
Therefore, further research is needed to determine how neuropsychological test 
scales and PET/CT measurements of disease progression interact.

KEYWORDS

Alzheimer’s disease, PET/CT, mild cognitive impairment, neuropsychological test scale, 
amyloid

1. Introduction

Diagnosis and treatment of dementia is challenging and has an impact on both social care 
and global health. Dementia affects more than 50 million people worldwide and according to 
the most recent estimates, as the population ages, this number is predicted to quadruple (GBD 
2016 Dementia Collaborators, 2019). According to The World Alzheimer’s Disease Report, 
dementia is the third most serious health issue, with enormous financial expenses, after cancer 
and cardiovascular disease globally (Prince et al., 2015).

Alzheimer’s disease (AD) is a neurodegenerative disease that is the leading cause of dementia 
and accounts for 60–80% of dementia cases (Scheltens et al., 2021). The main pathological 
features include the formation of senile plaques by intracerebral Aβ protein deposition and 
intracellular neurogenic fiber tangles by tau protein hyper-phosphorylation (Carreiras et al., 
2013; Hansson, 2021; Tzioras et al., 2023). It has been shown that the prevalence of AD doubles 
approximately every 5 years after the age of 65 years (Hane et al., 2017). According to the latest 
global burden of Disease study, AD remains the fifth leading cause of death worldwide (GBD 
2016 Neurology Collaborators, 2019; 2022 Alzheimer’s disease facts and…, 2022).
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Mild cognitive impairment (MCI) is a transition stage between 
normal cognitive aging and dementia. Recent studies have shown that 
the prevalence of MCI in the global community exceeds 15% and that 
the prevalence of MCI increases with age (Bai et  al., 2022). The 
conversion rate from MCI to AD is approximately 15% per year 
(Hojjati et al., 2018). Intervention and treatment of patients at the MCI 
stage can benefit patients by slowing the progression of the disease and 
reducing the conversion rate of AD.

The current clinical diagnosis of AD is usually based on the 
patient’s medical history, symptoms, neuropsychological test scales, 
blood tests, cerebrospinal fluid tests, and imaging (Hane et al., 2017; 
Teunissen et al., 2022). Neuropsychological scales have been widely 
used in clinical settings (Espinosa et al., 2017). Moreover, with the 
development of computer and neuroimaging technologies, it is 
possible to identify AD early and noninvasively. In recent years, 
researchers have widely used amyloid and tau imaging using positron 
emission tomography (PET) for the differential diagnosis of dementia, 
especially for the diagnosis of AD (Jack et al., 2018). Nevertheless, 
there are few reports on the diagnosis of AD using 11C-PIB-PET/
computed tomography (CT) and the relevance of 11C-PIB-PET/CT 
combined with neuropsychological testing scales in AD and MCI 
disease progression and condition assessment. Currently, there is no 
established cure for dementia; however, there are treatments to 
impede cognitive decline or reduce dementia-related behavioral and 
psychiatric symptoms (Sharma, 2019). The application of PET/CT and 
neuropsychological examinations can improve the precision of early 
diagnosis of dementia and give patients the opportunity to intervene 
early, which is clinically important to prevent the onset of dementia 
and delay the progression of the disease (Oddo et al., 2004). This 
article reviews the progress of PIB-PET/CT with commonly used 
neuropsychological scales in MCI and AD.

2. Diagnosis of Alzheimer’s disease 
and mild cognitive impairment

Alzheimer’s disease is a progressive neurodegenerative disease 
characterized by cognitive impairment and affects activities of daily 
living (Rowe and Villemagne, 2011). Although the pathogenesis of AD 
has not been clearly elucidated, the most common mechanisms 
suggested include Aβ protein deposition, tau protein hyper 
phosphorylation, and processes involving inflammatory mechanisms, 
oxidative stress, mitochondrial mechanisms, and cerebrovascular 
mechanisms (Ferrari and Sorbi, 2021). These neuropathological 
changes are believed to start 15–20 years before the appearance of 
clinical symptoms of dementia (Trejo-Lopez et  al., 2022). Their 
transcendental pathophysiological characteristics can be  detected 
using cerebrospinal fluid evaluation or imaging techniques (Scheltens 
et  al., 2021). The primary clinical symptoms include decreased 
cognitive function, decreased brain function, progressive memory 
loss, and progressive loss of self-care and psychiatric symptoms as the 
disease worsens, causing a great burden on the family and society 
(Livingston et  al., 2017; Lane et  al., 2018). Estimations of AD 
prevalence suggest that biologically defined AD is three times more 
prevalent than clinically defined AD (Scheltens et al., 2021). Over the 
past 30 years, mortality rates for AD and other dementias in China 
have been on the rise and have increased significantly with age (Bai 
and Dong, 2021). Current medications for AD only temporarily 

alleviate memory symptoms and other cognitive changes, but do not 
stop or reverse AD progression (Dong et al., 2019).

MCI, which is the prodromal stage of AD, is an intermediate stage 
between normal cognitive aging and overt dementia, characterized by 
marked cognitive decline beyond normal aging, but not meeting 
clinical diagnostic criteria for AD, with relative maintenance of 
activities of daily living (Petersen, 2004). It is believed that MCI 
represents a significant step in the aging process and MCI may 
represent an early stage of dementia with a tendency to progress to 
clinically diagnosed dementia. Approximately, 10–15% of patients 
with MCI progress to AD annually (Petersen, 2000; Gauthier et al., 
2011) with a lifetime prevalence of 60–90% (Anderson, 2019). Some 
patients then remain stable (Diniz et al., 2008). Recent studies have 
shown that 12.2% of people over 55 years of age in China have MCI, 
and the prevalence of MCI increases with age (Lu et al., 2021).

New diagnostic criteria for AD and AD-derived MCI (Albert 
et  al., 2011;  McKhann et  al., 2011) include biomarkers based on 
neuroimaging or cerebrospinal fluid tests that can increase the 
sensitivity or specificity of the diagnosis (Zhang et al., 2014). The 
definitive diagnosis of AD can only be made by neuropathological 
examination, although neuropsychological and imaging examinations 
are still preferred methods for clinical diagnosis of AD (Tiwari et al., 
2019). The Mini Mental State Examination (MMSE) and Montreal 
Cognitive Assessment (MoCA) scores have substantial specificity and 
sensitivity in clinically diagnosing AD (Nasreddine et al., 2005; Chen 
et al., 2016). Physicians now widely use PET/CT examinations for 
early diagnosis and assessment of AD. PET/CT helps to accurately 
identify patients with MCI who may transition to AD or other forms 
of dementia.

3. PET/CT in Alzheimer’s disease and 
mild cognitive impairment

Some studies suggest that onset of AD is initiated with deposition 
of Aβ in the brain, followed by pathological changes in peripheral 
nerve cells and glial cells (Selkoe and Hardy, 2016). Aβ deposition 
begins before the onset of clinical symptoms, such as cognitive decline 
and behavioral changes (Jack et al., 2013; Zetterberg and Blennow, 
2013). Identifying and quantifying amyloid deposition in vivo is 
valuable in AD research, has been used in large synergistic studies, 
and has value in clinical settings (Brown et al., 2019). According to the 
2011 recommendations of the European and US National Aging and 
Alzheimer’s Societies to revise the diagnostic criteria for AD (Dubois 
et al., 2007, 2010; McKhann et al., 2011), the detection of Aβ deposits 
at the MCI stage may provide a basis for the early diagnosis of AD and 
timely intervention.

Molecular imaging methods are based on a visual depiction of 
functional or pathological changes in the brain for the clinical 
diagnosis of neurodegenerative diseases, and recently, amyloid and tau 
imaging techniques using PET have been widely used for the 
differential diagnosis of dementia and are important for the diagnosis 
of AD (Jack et  al., 2018), PET imaging is to measure glucose 
metabolism, β-amyloid plaques, and neurogenic fiber tangles in the 
framework of amyloid-tau-neurodegeneration (Jack et  al., 2018). 
Using radiotracers specific to β-amyloid plaques, PET imaging 
provides a useful tool for quantifying β-amyloid deposition in various 
brain regions.
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3.1. Amyloid study

There is growing evidence that amyloid-PET is a valuable support 
for clinicians, leading to changes in diagnosis and treatment planning 
based on traditional workups and increasing confidence in etiologic 
diagnosis. Commonly used tracers for Aβ-PET include 11C-Pittsburgh 
compound B (PIB) and 18F labeled tracers (18F-Flutemetamol, 18F- 
florbetapir and 18F-forbetaben) (Villemagne et al., 2012; Landau et al., 
2013). A multicenter study in 2019 involving 18,295 patients 
demonstrated that implementing PET scan led to higher diagnostic 
certainty (Rabinovici et  al., 2019). In 2004, the first study was 
conducted. 11C-PIB-PET/CT was first performed in 2004, and 11C-PIB 
was the first PET radioactive tracer capable of in vivo specific 
quantification of brain amyloid (Klunk et al., 2004; Cohen and Klunk, 
2014). It is currently the most widely used PET Aβ ligand for the early 
identification and diagnosis of AD. It can visualize the deposition of 
Aβ in the brain before the onset of clinical symptoms (Bateman et al., 
2012). Several studies have confirmed the correlation between PET/
CT measurements and histological evidence of deposited Aβ 
(Ikonomovic et al., 2008; Choi et al., 2012; Okazawa et al., 2020). 
Quantitative metrics such as the standardized uptake ratio (SUVR) 
and the distribution volume ratio (DVR) have been used to effectively 
differentiate healthy individuals from those with AD. Previous studies 
have shown that in patients with MCI and AD, 11C-PIB binding in the 
cerebellum is negligible and that the cerebellum is a better choice as a 
comparison region for PET quantification. SUVR of each brain region 
can be obtained by dividing the standard 11C-PIB uptake values in 
each brain region by the cerebellar uptake values (Herholz, 2003). 
However, the total scan and wait time for SUVR/DVR would add up 
to at least 1 h. Recent studies have found that the amyloid 
quantification index (AQI) can differentiate MCI from AD and predict 
the progression of MCI. AQI was calculated linearly by combining 
AQI_roi of the featured brain regions, and its coefficients were 
determined by linear regression. AQI measured the difference 
between PiB retention and brain tracer clearance with higher accuracy 
and sensitivity than SUVR and DVR (Shen et al., 2022). A combination 
of AQI with magnetic resonance imaging (MRI) can be used to predict 
the progression of MCI with higher accuracy than that with AQI alone 
(Patel et al., 2020). Most patients with AD’s 11C-PIB are positive and 
have an elevated cortical distribution volume ratio. Aβ imaging 
enables the study of the relationship between amyloid deposition and 
brain structure in patients with AD. Furthermore, it also aids in 
understanding the function of Aβ through normal aging and the 
changes that occur during the progression to AD. In addition, it aids 
in monitoring of the biological effects of anti-Aβ drugs on 
neurodegeneration and cognitive decline (Cohen et  al., 2012). 
Previous studies have shown that significant differences in PIB 
retention are observed in regions known to contain amyloid deposits, 
such as the frontal and parietal cortices and the striatum (Tryputsen 
et  al., 2015). Studies on 11C-PIB PET have shown strong cortical 
retention in almost all patients with AD (Rabinovici et al., 2007). 
Furthermore, 11C-PIB PET cortical preservation is associated with 
brain atrophy as measured using MRI (Chételat et al., 2010).

In MCI, 11C-PIB positivity is an important predictor of progression 
to AD, and Aβ-positive individuals are more likely to progress to 
AD. Presence of amyloid deposists can also predict eventual 
progression to MCI or AD in individuals with normal cognitive 
function. Therefore, it aids in early detection, early diagnosis, and 

interventions (Jansen et al., 2015; Brown et al., 2019). To date, the 
pathological relevance of large-scale 11C-PIB-PET/CT studies to detect 
MCI has been less explored. The conversion rate of MCI to AD has 
been reported to be between 8 and 16% per year (Mitchell and Shiri-
Feshki, 2009). 50–60% of the subjects with MCI are positive for 
11C-PiB-PET/CT, and 10 to 15% of Aβ-positive MCI eventually 
convert to AD each year (Rowe and Villemagne, 2011). A longitudinal 
study with a 3-year follow-up showed that 70% of 11C-PIB-positive 
patients with MCI eventually developed dementia (Okello et  al., 
2009). A systematic review that included 9 study cohorts with 300 
patients with MCI found that the estimated sensitivity of 11C-PIB-PET/
CT to identify patients with MCI who convert to AD was 96% (95% 
CI 87 to 99%) (Zhang et al., 2014). Ciarmiello et al. (2019) found a 
linear relationship between increased amyloid deposition and memory 
dysfunction, and proposed a SUVR threshold of 1.3 to identify MCI 
populations at risk of progression to AD. 11C-PIB uptake increases 
early in the progression to AD and then plateaus, with an S-shaped 
increase in Aβ load during the transition from normal aging to MCI 
and AD (Koivunen et al., 2011). Additionally, numerous studies have 
shown that patients with AD have significant bilateral retention of 
11C-PIB in the precuneus, temporal lobe, superior limbic gyrus, and 
cingulate gyrus, as well as in the right insula and nucleus accumbens 
(Cohen and Klunk, 2014; He et al., 2015; Byun et al., 2017; Wenjun 
et al., 2017).

Furthermore, previous studies have confirmed that 11C-PIB-PET/
CT has a sensitivity of 83.3–100% and a specificity of 41.1–100% to 
predict the transformation of MCI to AD (López-de-Eguileta et al., 
2020). Therefore, 11C-PIB-PET/CT is an important neuroimaging tool 
for the clinical diagnosis of AD, with high sensitivity. The ability to 
accurately quantify Aβ protein deposition at different stages of AD 
provides important imaging evidence for the early identification and 
diagnosis of AD and provides an important basis for early anti-Aβ 
therapy and efficacy testing. However, the short radioactive half-life 
has been a major limitation of 11C-PiB PET, preventing its widespread 
use, and therefore, other 18F-labeled PET tracers have been developed 
(Byun et  al., 2017). Recent studies have shown that the three 
18F-labeled tracers are also highly consistent in terms of diagnostic 
accuracy, and have 89–97% sensitivity and 63–93% specificity in 
differentiating AD from MCI with similar results in visual and 
quantitative analysis (Landau et al., 2014; Prestia et al., 2015). A meta-
analysis (Morris et al., 2016) found that the three 18F labeled tracers 
had better diagnostic accuracy in distinguishing patients with AD 
from healthy individuals. Recent studies have shown that 
18F-flutemetamol uptake is negatively correlated with scores on 
neuropsychological test scales, with higher tracer uptake associated 
with lower scores (Heurling et al., 2016).

Previous studies have found that the sites of Aβ deposition that 
are significantly different between AD and MCI are the inferior frontal 
gyrus (left), the superior frontal gyrus (left), the parahippocampal and 
perirhinal gyrus (left and right), the syrinx (left and right), the 
postcentral gyrus (left), the cuneus (right), the nucleus accumbens 
(left and right) and pallidum (right) (Klunk et al., 2004; Jack et al., 
2009; Koivunen et al., 2011; He et al., 2015). A recent study showed 
that in patients with MCI, visuospatial function is usually correlated 
with the degree of Aβ burden in the frontal regions, while in patients 
with AD, the Rey Complex Figure Test scores negatively correlated 
with SUVR in the frontal, temporal, parietal, occipital, anterior 
cingulate, posterior cingulate, and posterior cingulate gyri (Park et al., 
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2020). The frontal lobe is an important brain region for situational 
memory extraction and is closely related to memory function in 
humans, and the deposition of Aβ may lead to neuronal damage in the 
frontal areas, further leading to impaired memory function in patients 
with AD (Jiménez-Bonilla et al., 2019). Roh et al. (2011) showed that 
the basal ganglia regulate motor neural pathways in the brain and are 
involved in higher cognitive functions such as emotional expression 
and associative memory, while the nucleus accumbens is in the basal 
ganglia and can be altered in the early stages of AD, leading to an 
overall decrease in cognitive function. In addition, a recent study has 
shown that the cortical nucleus is involved in higher cognitive 
functions, such as emotional expression and memory. Furthermore, a 
recent study (Park et  al., 2020) found significant hemispheric 
asymmetries in these brain regions that correlate with 
neuropsychological scale scores, with a higher concentration on the 
left side, which can be associated with major cognitive deficits in 
patients. In conclusion, Aβ deposition may cause neuronal cell 
damage in the above brain regions, leading to cognitive impairment, 
but further pathological and neuroanatomical exploration of the 
specific disease mechanism is needed.

3.2. Synaptic vesicle glycoprotein 2A PET/
CT

Synapses are critical for cognitive function, and cognitive 
impairment is strongly associated with loss of synaptic density, which 
is observed in the early stages of clinical AD, accompanied by loss 
several presynaptic proteins (Robinson et  al., 2014). Therefore, 
evaluation of synaptic density is valuable in AD research and 
enhancing treatment efficacy. A new approach to imaging synaptic 
density using synaptic vesicle protein 2A (SV2A) has recently 
emerged, and several SV2A ligands have been developed and 
translated for human use. SV2A PET can directly display synaptic 
density in AD. 11C-UCB-J is a recently developed PET tracer (Carson 
et al., 2022) it was demonstrated that SV2A binding was extensively 
reduced in the medial temporal and neocortical regions of the brain 
of patients with early AD (Mecca et al., 2020). Chen et al. (2021) also 
obtained similar results, with 11C-UCB-J binding showing a similar 
reduction in the medial temporal lobe of patients with AD compared 
to healthy participants. Recent studies have found that patients with 
AD have higher tau deposition and lower hippocampal SV2A binding 
(Mecca et al., 2022). O’Dell et al. (2021) measured the volumetric ratio 
of the 11C-UCB-J distribution and Aβ deposition in 11C-PiB and 
observed a significant negative correlation between overall Aβ 
deposition and hippocampal SV2A binding in patients with 
MCI. Furthermore, low MMSE scores in patients with MCI are also 
reported to be associated with lower SV2A binding in structures such 
as the hippocampus, parahippocampal gyrus, and inferior and 
superior temporal gyri (Vanhaute et al., 2020). Studies have shown 
that a deposition of Aβ in the parahippocampal and peripheral gyrus 
of the left hippocampal is associated with impaired cognitive function, 
and that the parahippocampal and peripheral gyrus of the 
hippocampal is an important component of the medial temporal lobe, 
responsible for the extraction, encoding, and highly correlated with 
situational memory function (Burgess et  al., 2002). The 
sinohypothalamic gyrus is a cortex associated with the encoding of 
visual signals and is related to working memory processing and spatial 

localization. Impaired working memory processing and spatial 
localization in AD are also correlated with Aβ protein deposition in 
this region of the brain. Higher uptake of 18F-florbetapir is associated 
with a lower uptake of 11C-UCB-J, and both are associated with altered 
synaptic function in the occipital lobe (Coomans et  al., 2021). 
However, due to their small sample size, these studies are limited in 
their ability to investigate the effects of important demographic 
variables. Future studies with larger sample sizes and greater 
educational attainment may help better understand the interaction of 
these variables with AD.

3.3. FDG-PET

FDG-PET is used to reflect regional glucose depletion directly 
related to the local intensity of brain glutamatergic synaptic and 
astrocytic activity (Reivich et al., 1977). Regional changes in neuronal 
activity caused by neurodegeneration can be sensitively reflected by 
regional depletion of brain glucose (Drzezga et al., 2005). The decrease 
in brain metabolism detected with FDG-PET is a hallmark of 
neurodegeneration, and FDG-PET is useful for early diagnosis, as it 
can reveal the characteristic pattern of AD neurodegeneration in 
individuals with MCI who will transition to AD earlier. Normal 
FDG-PET can predict clinical stability over several years of follow-up 
(Iaccarino et al., 2019) and abnormal FDG-PET is associated with an 
increased risk of progressive cognitive deterioration (Caroli et al., 
2015). Several studies have shown that 18F-FDG PET is strongly 
correlated with patient symptoms and clinical severity, and it could 
be an ideal tool for disease staging and follow-up (Herholz, 2012). 
Studies have shown the added value of FDG-PET in predicting 
conversion to AD dementia in patients with MCI compared with 
conventional cerebrospinal fluid or MRI scans, especially for short-
term progression (Blazhenets et al., 2020). Shaffer et al. (2013) found 
that combining MRI, FDG-PET and cerebrospinal fluid testing 
significantly improved the accuracy of predicting AD transformation 
compared to clinical testing alone. A recent study found that 18F-FDG 
metabolism showed a similar degree of reduction in the medial 
temporal lobe of patients with AD (Chen et al., 2021). Ottoy et al. 
(2019) found that hypometabolism of the hippocampal volume based 
on NMR flattening and the posterior cingulate gyrus based on 
18F-FDG-PET was an accurate indicator of short-term conversion to 
AD dementia in patients with MCI at 80 and 83%, respectively, while 
the combination of neuropsychological tests (visuospatial construction 
skills), the hippocampal volume based on NMR flattening and 
18F-FDG-PET had a specificity of 96% and sensitivity was 92%. In 
summary, PET/CT studies combined with other neuroimaging, blood, 
cerebrospinal fluid, and neuropsychological tests can provide a deeper 
understanding of the pathogenesis and progression of AD.

4. Neuropsychological test scales in 
Alzheimer’s disease and mild cognitive 
impairment

Neuropsychological tests are currently an important and cost-
effective tool for diagnosing AD and MCI and differentiating subtypes 
of MCI (Espinosa et al., 2017). The most common neuropsychological 
tests used in clinical practice are the Clinical Dementia Rating (CDR), 
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MoCA, MMSE, Activity of Daily Living Scale (ADL) (Lim and Loo, 
2018). Hughes et al. (1982) developed CDR in 1982 and Morris (1993) 
published a revised version in 1993. The CDR provides a simple 
clinical assessment tool to grade the degree of cognitive impairment 
and activities of daily living clinically. The test takes approximately 
40 min to perform and assesses six items separately—memory, 
orientation, judgment and problem solving, social interaction, family 
life and hobbies, and independent living; the severity scale is graded 
as healthy, suspected dementia, mild dementia, moderate dementia, 
and severe dementia, with scores based on a decrease in a specific area 
because of impaired intelligence, and no scores based on other causes 
such as disability (Morris, 1993). CDR values of 0.5, 1, 2, 3 are 
considered suspected, mild, moderate, and severe dementia, 
respectively (Julayanont and DeToledo, 2022). CDR has important 
clinical applications in differentiating dementia from MCI. MoCA 
(Hoops et al., 2009) is a rating scale primarily used for rapid screening 
of MCI (O’Driscoll and Shaikh, 2017). The cognitive domains assessed 
include visual space, execution, naming, memory, attention, language, 
abstraction, and orientation, and the scale is more comprehensive 
than the MMSE. Nasreddine et al. (2005) proposed a threshold of 
26-point scale in 2005. They suspected patients with scores below 25 
had MCI and O’Driscoll and Shaikh (2017) adjusted the score with 1 
point for individuals with 12 years of education or less to account for 
educational effects. The MoCa test task is more complex but more 
sensitive than MMSE and takes approximately 10 min to detect 
patients with MCI and mild AD (Nasreddine et al., 2005; Hoops et al., 
2009; Horton et al., 2015).

MMSE (Nieuwenhuis-Mark, 2010) is a widely used clinical 
cognitive screening scale that includes items for orientation, 
memory, recall, naming, attention, executive and visuospatial 
items. It has a total score of 30, with higher scores showing better 
cognitive function. The MMSE is a simple 5–10-min test that 
assesses cognitive deficits due to lesions in the left hemisphere 
(Jia et al., 2021). However, the MMSE is limited by the fact that 
the scores are influenced by age, education, and cultural 
background (Anderson, 2019). At older ages (>75–80 years), 
MMSE scores are lower and can overestimate the severity of 
cognitive impairment. Furthermore, clinicians should interpret 
MMSE results with caution in patients with very low levels of 
education (for example, those who cannot read), as their total 
MMSE score may be lower for this reason. Despite their cognitive 
impairment, patients with higher education may obtain a higher 
MMSE score (Piersma et al., 2018). The Chinese MMSE stratifies 
the diagnosis of AD based on educational attainment: ≤19 points 
for the illiterate group, ≤22 points for the elementary school 
group, ≤23 points for the middle and high school groups, and 
≤26 points for the higher education group, with an average of 
≤23 points (Jia et al., 2021). Most studies in China and abroad set 
the MMSE scores of patients with MCI at 25–27, and the census 
scores are commonly set at 24–28 (Sachdev et  al., 2015). 
Additionally, the MMSE is a brief screening test that only 
superficially assesses the cognitive domains of visuospatial and 
executive functions (Tombaugh and McIntyre, 1992; 
Nieuwenhuis-Mark, 2010). The MMSE is more appropriate than 
the MoCA for patients with AD with more severe functional 
impairment (Nasreddine et  al., 2005). The MMSE memory 
assessment is simple and shows a high sensitivity in those with 

severe cognitive dysfunction compared to patients with early 
stage of the condition and those who show only situational 
memory impairment. The MoCA scale is better than the MMSE 
in assessing various cognitive functions and evaluating memory 
(Pinto et al., 2019). Several previous studies have found lower 
MMSE and MoCa scores in AD than in MCI, suggesting that 
cognitive impairment is more severe in patients with AD than in 
patients with MCI (McKhann et al., 2011; Lim and Loo, 2018).

Other neuropsychological scales commonly used in clinical 
practice include the Alzheimer’s Disease Assessment Scale (ADAS-
cog), the Revised Hasegawa’s Dementia Scale (HDS-R), the Memory 
Alteration Test (M@T) (Rami et al., 2007), and Quick Screen for Mild 
Cognitive Impairment (Qmci) (O’Caoimh et al., 2012). In addition, 
we have used the Hachinski Inchemic Score (HIS); the clock drawing 
test (CDT), and the global deterioration scale (GDS). A variety of 
cognitive tests have good diagnostic precision and MMSE, MoCA, 
and CDR are commonly used to assess the degree of dementia in 
patients. The HIS is often used to distinguish vascular dementia and 
mixed dementia. The M@T and Qmci tests are brief tests developed 
for the diagnosis of MCI and have high sensitivity (Breton et al., 
2019). The Hamilton Depression Scale (HAMD) and Hamilton 
Anxiety Scale (HAMA) were used to identifying and exclude patients 
with depression and anxiety, respectively. Park et al. showed that 
patients with early-onset AD had poor performance on the anterior 
and posterior finger, visual breadth, visual counts, Rey complex map 
tests, suggesting poorer attention and visuospatial function and 
specific cognitive dysfunction in patients with AD (Park et al., 2020). 
Each of the scales have specific strengths and limitations; Hence, 
using a combination of these scales can help improve the detection 
rate of AD and MCI, assess the efficacy of AD treatment, and guide 
rehabilitation. Combining neuropsychological testing scales with 
clinical history, symptoms, signs, imaging, and laboratory tests is 
essential for comprehensive and holistic clinical assessment.

5. Vignette and outlook

With the aging of the population, neurodegenerative diseases, 
primarily Alzheimer’s disease, have become a serious health risk among 
older individuals and a major global health problem, affecting the 
quality of life of patients and imposing a heavy burden on caregivers and 
society. Early diagnosis and treatment can slow cognitive decline and 
reduce the appearance of behavioral and psychiatric symptoms 
associated with AD. PET/CT provides certain imaging evidence to 
identify MCI that may progress to AD, and in combination with 
neuropsychological examination, can improve the accuracy of the early 
diagnosis of AD and give patients the opportunity to intervene early. 
Few large-scale 11C-PIB-PET/CT studies have been conducted to explore 
the pathology of AD and MCI, and researchers need to further explore 
the correlation between PET/CT combined with neuropsychological test 
scales in disease progression and assessment of AD and MCI.
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Background: Cognitive impairment is a common sequela following traumatic

brain injury (TBI). This study aimed to identify risk factors for cognitive impairment

after 3 and 12 months of TBI and to create nomograms to predict them.

Methods: A total of 305 mild-to-moderate TBI patients admitted to the First

A�liated Hospital with Nanjing Medical University from January 2018 to January

2022 were retrospectively recruited. Risk factors for cognitive impairment after

3 and 12 months of TBI were identified by univariable and multivariable logistic

regression analyses. Based on these factors, we created two nomograms to

predict cognitive impairment after 3 and 12 months of TBI, the discrimination and

calibration ofwhichwere validated by plotting the receiver operating characteristic

(ROC) curve and calibration curve, respectively.

Results: Cognitive impairment was detected in 125/305 and 52/305

mild-to-moderate TBI patients after 3 and 12 months of injury, respectively. Age,

the Glasgow Coma Scale (GCS) score, >12 years of education, hyperlipidemia,

temporal lobe contusion, traumatic subarachnoid hemorrhage (tSAH), very early

rehabilitation (VER), and intensive care unit (ICU) admission were independent

risk factors for cognitive impairment after 3 months of mild-to-moderate TBI.

Meanwhile, age, GCS score, diabetes mellitus, tSAH, and surgical treatment

were independent risk factors for cognitive impairment after 12 months of

mild-to-moderate TBI. Two nomograms were created based on the risk factors

identified using logistic regression analyses. The areas under the curve (AUCs)

of the two nomograms to predict cognitive impairment after 3 and 12 months

of mild-to-moderate TBI were 0.852 (95% CI [0.810, 0.895]) and 0.817 (95% CI

[0.762, 0.873]), respectively.

Conclusion: Two nomograms are created to predict cognitive impairment after 3

and 12 months of TBI. Age, GCS score, >12 years of education, hyperlipidemia,

temporal lobe contusion, tSAH, VER, and ICU admission are independent risk

factors for cognitive impairment after 3 months of TBI; meanwhile, age, the GCS

scores, diabetesmellitus, tSAH, and surgical treatment are independent risk factors

of cognitive impairment after 12 months of TBI. Two nomograms, based on both

groups of factors, respectively, show strong discriminative abilities.

KEYWORDS

traumatic brain injury, cognitive impairment, predictive factor, nomogram, radiological

parameters
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Introduction

New cases of traumatic brain injury (TBI) are estimated to

be 20 million per year, posing a heavy global burden of disease

(Injury and Spinal Cord Injury, 2019). Based on the Glasgow

Coma Scale (GCS) scores, TBI is classified as mild-to-moderate

(GCS, 9–15 points) and severe (GCS, ≤8 points). The incidence

of mild-to-moderate TBI is much higher than that of severe

TBI. Despite its low mortality, mild-to-moderate TBI still causes

multiple neurological deficits in survivors (Pavlovic et al., 2019).

Cognitive impairment, a common type of neurological

dysfunction after mild-to-moderate TBI, markedly worsens the

quality of life and the long-term neurological outcomes in survivors

(McHugh et al., 2006). Cognitive impairment after mild-to-

moderate TBI is usually manifested as the impairment of executive

function, memory, attention, speech, and naming (Miotto et al.,

2010; Panwar et al., 2019). Cognitive function can be recovered

in some TBI patients within 1–3 months post-TBI, but cognitive

impairment may stay for a long term in some cases (McHugh

et al., 2006). A previous study has reported that 19.2% of mild

TBI patients and 39.3% of moderate TBI patients still experience

cognitive impairment after 3 months of injury (Othman et al.,

2022). Draper and Ponsford (2008) have revealed that cognitive

impairment may persist in some patients even after 10 years of

TBI, the degree of which is positively correlated with the severity

of the injury.

Post-TBI cognitive impairment has been well-studied. At

present, therapeutic strategies mainly include medications,

rehabilitation exercises, and transcranial magnetic stimulation

(TMS) (Neville et al., 2015; Jenkins et al., 2019; Martinez-Molina

et al., 2022). However, efficient predictive factors for identifying

high-risk populations are scant, so intervention strategies are not

started promptly. In the present retrospective study, we analyzed

risk factors for cognitive impairment after 3 and 12 months of

mild-to-moderate TBI. Based on these factors, two nomograms

were created to predict cognitive impairment in mild-to-moderate

TBI patients after 3 and 12 months of injury.

Methods

Subjects

Mild-to-moderate TBI patients admitted to the Neurosurgery

Department, the First Affiliated Hospital with Nanjing Medical

University from January 2018 to January 2022 were retrospectively

recruited. The inclusion criteria were as follows: (i) aged over 16

years old and under 90 years old; (ii) an interval time <24 h from

TBI to admission; (iii) the lowest score of GCS at admission, 3 h

after admission, and 6 h after admission was≥9; and (iv) computed

tomography (CT) of the head performed within 6 h of admission

and 48 h before discharge. The exclusion criteria were as follows:

(i) death during hospitalization; (ii) severe compound injuries; (iii)

history of mental illnesses or cognitive impairments; (iv) hormonal

disorders during the course of disease; and (v) status epilepticus

during the course of the disease. Written informed consent was

obtained from all subjects or their guardians. This study was

approved by the Ethics Committee of the First Affiliated Hospital

of Nanjing Medical University (No. 2022-SR-354).

Data collection

The following data were recorded: (i) baseline characteristics,

including sex, age, and years of education; (ii) medical history,

including the history of hypertension, diabetes mellitus, and

hyperlipidemia; (iii) clinical characteristics of TBI, including the

GCS score and causes of injury; (iv) imaging features of TBI,

including injury site (right, left, and both); contusions in the

temporal, frontal, parietal, and occipital lobes; epidural, subdural,

or traumatic subarachnoid hemorrhage (tSAH); and subdural

effusion on discharge; and (v) treatment, including surgical

treatment, ICU admission, and very early rehabilitation (VER).

VER was defined as rehabilitation exercises that commenced within

3 days after admission or immediately after postoperative vital

signs were stable. The GCS score was selected and recorded as

the lowest score of GCS at admission, 3 h after admission, and 6 h

after admission. The computed tomography (CT) examination of

the TBI patient showed the presence of high-density shadow in the

subarachnoid space, which was defined as tSAH. Subdural effusion

was defined as effusion that appeared within 10 days of TBI with

a similar uniform low-density area, width >3mm, and CT value

<20 Hu. ICU admission was defined as treatment in the intensive

care unit during hospitalization regardless of the length of stay in

the ICU.

Assessment of cognitive impairment

The survivors of mild-to-moderate TBI patients were followed

up for 12 months after the injury. A widely used tool to detect

cognitive impairment with high sensitivity and specificity, the

Montreal Cognitive Assessment (MoCA), was performed at 3

and 12 months post-TBI. The MoCA score increased by 1 point

when traumatic brain injury patients had <12 years of education.

Ranging from 0 to 30 points, a lowerMoCA score indicated a worse

cognitive function (Nasreddine et al., 2005). In the present study,

cognitive impairment was defined as those with a maximal MoCA

score of 26 points.

Statistical analysis

Categorical variables were expressed as number of cases (n) and

percentage (%). Continuous variables in a normal distribution were

expressed as mean ± standard deviation (x ± SD); otherwise, they

were expressed as median (M) and interquartile boundary values

(P25, P75). Variables with a p-value of <0.10 in the univariable

logistic regression model were introduced into the multivariable

logistic regression model using the backward elimination method.

The odds ratio (OR) and the corresponding 95% confidence

interval (95% CI) and p-value were calculated. Nomograms were

created using an R package by incorporating variables with

a p-value of <0.05 identified using the multivariable logistic
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regression analysis. The discriminative ability of the nomogram

was assessed by plotting the receiver operating characteristic (ROC)

curve and calculating the C-statistics, which was equal to the

area under the curve (AUC). The C-statistics ranged from 0.5

to 1.0, and a higher C-statistics indicated better discrimination

of the nomogram. Internal validation of the nomogram was

performed within 1,000 bootstrap resampling. A linear calibration

curve indicated an acceptable goodness-of-fit of the nomogram.

Statistical analysis was performed using SPSS 23.0 and packages

of rms, readr, pROC, formula, and ggplot2 in R, and figures were

programmatically created using R 3.6.1. A p-value of <0.05 was

considered statistically significant.

Results

Clinical characteristics of subjects

A total of 365 patients with mild-to-moderate TBI were

recruited. After excluding 12 deaths and 48 subjects who were

lost to follow-up, 305 eligible patients were finally included in this

study, including 190 with mild TBI (GCS 13–15 points) and 115

with moderate TBI (GCS 9–12 points).

After 3 months of TBI, 125 (41.0%) patients developed

cognitive impairment. The incidences of cognitive impairment in

mild and moderate TBI patients after 3 months of injury were

28.9% and 60.9%, respectively. Later, 52 (17.0%) TBI patients still

suffered from cognitive impairment after 12 months of injury, with

incidences of cognitive impairment in mild and moderate TBI

patients of 8.4% and 31.3%, respectively.

Independent risk factors for cognitive
impairment after 3 and 12 months of
mild-to-moderate TBI

The univariable logistic regression analysis revealed that age

(P < 0.001), GCS scores (P < 0.001), >12 years of education (P

< 0.001), hyperlipidemia (P < 0.001), injury side (P = 0.005),

temporal lobe contusion (P < 0.001), subdural hematoma (P

< 0.001), tSAH (P < 0.001), surgical treatment (P = 0.016),

subdural effusion (P= 0.035), and ICU admission (P < 0.001) were

significantly correlated with cognitive impairment after 3months of

mild-to-moderate TBI (Table 1). In addition, age (P = 0.003), GCS

score (P < 0.001), >12 years of education (P = 0.047), diabetes

mellitus (P = 0.005), hyperlipidemia (P = 0.004), injury side

(bilateral sides vs. right side, P = 0.045), temporal lobe contusion

(P = 0.001), subdural hematoma (P = 0.003), tSAH (P < 0.001),

surgical treatment (P = 0.001), subdural effusion (P = 0.015),

and ICU admission (P < 0.001) were significantly correlated with

cognitive impairment after 12 months of mild-to-moderate TBI

(Table 2).

We later introduced variables with a p-value of <0.10

identified using the univariable logistic regression analysis into the

multivariable logistic regression analysis. Age (OR, 1.036; 95% CI

[1.012,1.059]; P = 0.003), GCS scores (OR, 0.807; 95% CI [0.681,

0.957]; P = 0.014), >12 years of education (OR, 0.223; 95% CI

[0.088, 0.566]; P = 0.002), hyperlipidemia (OR, 3.249; 95% CI

[1.520, 6.941]; P = 0.002), temporal lobe contusions (OR, 2.606;

95% CI [1.422, 4.776]; P = 0.002), tSAH (OR, 2.837; 95% CI

[1.506, 5.346]; P = 0.001), VER (OR, 0.166; 95% CI [0.060, 0.458];

P = 0.001), and ICU admission (OR, 2.285; 95% CI [1.070, 4.881];

P = 0.033) were independent risk factors for cognitive impairment

after 3 months of mild-to-moderate TBI (Table 1). In addition, age

(OR, 1.035; 95% CI [1.003, 1.068]; P = 0.031), GCS scores (OR,

0.777; 95% CI [0.637, 0.948]; P = 0.013), diabetes mellitus (OR,

4.443; 95% CI [1.259, 15.681]; P = 0.020), tSAH (OR, 2.449; 95%

CI [1.046, 5.735]; P = 0.039), and surgical treatment (OR, 2.473;

95% CI [1.031, 5.932]; P = 0.042) were independent risk factors

for cognitive impairment after 12 months of mild-to-moderate TBI

(Table 2).

Two nomograms to predict cognitive
impairment after 3 and 12 months of
mild-to-moderate TBI

Two nomograms were then created based on risk factors

identified using the multivariable logistic regression analysis to

predict cognitive impairment after 3 and 12 months of mild-to-

moderate TBI (Figures 1, 2). The total score was the sum of the

points for each covariate in the nomogram and corresponded

to the predicted probability of the outcome of interest. The

AUCs of the nomogram to predict cognitive impairment after

3 and 12 months of mild-to-moderate TBI were 0.852 (95% CI

[0.810, 0.895]) and 0.817 (95% CI [0.762, 0.873]), respectively,

suggesting a good discriminative ability of the two nomograms

(Figures 3, 4). The C-statistics of a nomogram to predict cognitive

impairment after 3 months of mild-to-moderate TBI was 0.834 by

internal validation using bootstrapping with 1,000 iterations. The

C-statistics of a nomogram to predict cognitive impairment after

12 months of mild-to-moderate TBI was 0.799 after bootstrapping.

The actual and predicted probabilities of cognitive impairment on

the Y-axis and X-axis were plotted, respectively. The calibration

curves showed an acceptable goodness-of-fit of the nomograms

(Figures 5, 6).

Discussion

Cognitive impairment is a common complication following

mild-to-moderate TBI, which may last for a long term. de Boussard

et al. (2005) have reported that 26% of mild TBI patients develop

cognitive impairment 3 months later. Consistently, Skandsen et al.

(2010) have illustrated that 43% of moderate TBI patients have

cognitive impairment at 3 months post-TBI. An observational

study in Malaysia has shown that 19.2% of mild TBI patients and

39.3% of moderate TBI patients presented cognitive impairment

after 3 months of injury (Othman et al., 2022). In the present

study, the incidences of cognitive impairment after 3 months of

mild and moderate TBI were 28.9% and 60.9%, respectively. Both

higher incidences, compared to those previously reported, may be

attributed to the differences in age, cause of injury, and injury site.

Few previous studies have focused on cognitive impairment 1 year

after mild-to-moderate TBI. Schneider et al. (2022) have reported
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TABLE 1 Univariable and multivariable logistic regression analyses on cognitive impairment after 3 months of mild-to-moderate TBI (n = 305).

TBI patients with
cognitive

impairment
(n = 125)

TBI patients
without cognitive

impairment
(n = 180)

Univariate analysis Multivariate analysis

OR (95% CI) P-value OR (95% CI) P-value

Age (years) 57.10± 12.43 49.69± 15.97 1.036 (1.019, 1.054) <0.001 1.036 (1.012, 1.059) 0.003∗

Male sex (n, %) 93 (74.4%) 127 (70.6%) 1.213 (0.725, 2.028) 0.462

GCS scores (points) 12 (10,14) 14 (12.25,15) 0.725 (0.647, 0.812) <0.001 0.807 (0.681, 0.957) 0.014∗

Causes of injury (n, %)

Falling injury 53 (42.4%) 75 (41.7%) 0.401

Traffic accident 66 (52.8%) 89 (49.4%) 1.049 (0.653, 1.686) 0.842

Blunt injury 6 (4.8%) 16 (8.9%) 0.531 (0.195, 1.445) 0.215

Years of education>12 (n, %) 13 (10.4%) 55 (30.6%) 0.264 (0.137, 0.508) <0.001 0.223 (0.088, 0.566) 0.002∗

Diabetes mellitus (n, %) 13 (10.4%) 10 (5.6%) 1.973 (0.836, 4.655) 0.121

Hypertension (n, %) 32 (25.6%) 36 (20.0%) 1.376 (0.800, 2.369) 0.249

Hyperlipemia (n, %) 39 (31.2%) 21 (11.7%) 3.434 (1.900, 6.205) <0.001 3.249 (1.520, 6.941) 0.002∗

Injury side (n, %)

Right side 23 (18.4%) 61 (33.9%) 0.005 0.372

Left side 39 (31.2%) 57 (31.7%) 1.815 (0.967, 3.404) 0.063 1.738 (0.763, 3.957) 0.188

Bilateral sides 63 (50.4%) 62 (34.4%) 2.695 (1.488, 4.882) 0.001 1.628 (0.732, 3.619) 0.232

Contusions (n, %)

Temporal lobe 82 (65.6%) 60 (33.3%) 3.814 (2.356, 6.175) <0.001 2.606 (1.422, 4.776) 0.002∗

Frontal lobe 67 (53.6%) 90 (50.0%) 1.155 (0.731, 1.825) 0.536

Parietal lobe 7 (5.6%) 22 (12.2%) 0.426 (0.176, 1.031) 0.058 0.468 (0.165, 1.329) 0.154

Occipital lobe 10 (8.0%) 9 (5.0%) 1.652 (0.651, 4.192) 0.291

Hematoma (n, %)

Epidural hematoma 21 (16.8%) 47 (26.1%) 0.571 (0.322, 1.015) 0.056 0.820 (0.359, 1.872) 0.637

Subdural hematoma 69 (55.2%) 60 (33.3%) 2.464 (1.541, 3.940) <0.001 1.226 (0.658, 2.284) 0.522

tSAH 92 (73.6%) 69 (38.3%) 4.485 (2.724, 7.383) <0.001 2.837 (1.506, 5.346) 0.001∗

Surgical treatment (n, %) 71 (56.8%) 77 (42.8%) 1.759 (1.109, 2.789) 0.016 1.736 (0.848, 3.553) 0.131

VER (n, %) 12 (9.6%) 31 (17.2%) 0.510 (0.251, 1.038) 0.063 0.166 (0.060, 0.458) 0.001∗

Subdural effusion (n, %) 24 (19.2%) 19 (10.6%) 2.014 (1.050, 3.862) 0.035 1.198 (0.519, 2.768) 0.672

ICU admission (n,%) 68 (54.4%) 53 (29.4%) 2.859 (1.776, 4.602) <0.001 2.285 (1.070, 4.881) 0.033∗

TBI, traumatic brain injury; OR, odds ratio; GCS, Glasgow Coma Scale; tSAH, traumatic subarachnoid hemorrhage; VER, very early rehabilitation; ICU, intensive care unit. ∗p < 0.05.

that 10.1% of mild TBI patients have cognitive impairment even

after 1 year of injury. Similarly, our data revealed that the incidence

of cognitive impairment after 12 months of mild-to-moderate TBI

was 17.0%, i.e., 8.4% in mild and 31.3% in moderate TBI patients.

We later created two nomograms to predict cognitive

impairment in mild-to-moderate TBI patients after 3 and

12 months of TBI, based on independent risk factors

identified using the multivariable logistic regression analysis.

Through a retrospective analysis of the clinical data of 305

mild-to-moderate TBI patients, we found that older age,

low GCS score, hyperlipidemia, temporal lobe contusion,

tSAH, and ICU admission were independent risk factors for

cognitive impairment after 3 months of mild-to-moderate

TBI, while >12 years of education and VER were protective

factors. In addition, older age, low GCS score, diabetes

mellitus, tSAH, and surgical treatment were independent

risk factors for cognitive impairment after 12 months of

mild-to-moderate TBI.

Age, GCS score, and tSAHwere all closely linked with cognitive

impairment at 3 and 12 months after mild-to-moderate TBI.

Leukoaraiosis and poor neuroplasticity in elderly patients can

increase the risk of cognitive impairment after TBI (Nguyen et al.,

2019). Both aging and TBI cause the loss of brain volume and

a decline of white matter integrity, and their additive effect,
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TABLE 2 Univariable and multivariable logistic regression analyses on cognitive impairment after 12 months of mild-to-moderate TBI (n = 305).

TBI patients with
cognitive

impairment
(n = 52)

TBI patients
without cognitive

impairment
(n = 253)

Univariate analysis Multivariate analysis

OR (95% CI) P-value OR (95% CI) P-value

Age (years) 58.40± 10.74 51.56± 15.55 1.034 (1.011, 1.057) 0.003 1.035 (1.003, 1.068) 0.031∗

Male sex (n, %) 41 (78.8%) 179 (70.8%) 1.541 (0.751, 3.161) 0.238

GCS scores (points) 11 (10.13) 14 (12.15) 0.701 (0.609, 0.808) <0.001 0.777 (0.637, 0.948) 0.013∗

Causes of injury (n, %)

Falling injury 21 (40.4%) 107 (42.3%) 0.848

Traffic accident 28 (53.8%) 127 (50.2%) 1.123 (0.603, 2.091) 0.714

Blunt injury 3 (5.8%) 19 (7.5%) 0.805 (0.218, 2.965) 0.744

Years of education>12 (n, %) 6 (11.5%) 62 (24.5%) 0.402 (0.164, 0.986) 0.047 0.367 (0.117, 1.156) 0.087

Diabetes mellitus (n, %) 9 (17.3%) 14 (5.5%) 3.573 (1.455, 8.772) 0.005 4.443 (1.259, 15.681) 0.020∗

Hypertension (n, %) 17 (32.7%) 51 (20.2%) 1.924 (0.999, 3.707) 0.051 0.972 (0.405, 2.331) 0.949

Hyperlipemia (n, %) 18 (34.6%) 42 (16.6%) 2.660 (1.374, 5.148) 0.004 2.224 (0.945, 5.230) 0.067

Injury side (n, %)

Right side 9 (17.3%) 75 (29.6%) 0.129 0.824

Left side 16 (30.8%) 80 (31.6%) 1.667 (0.695, 3.999) 0.253 1.376 (0.473, 4.004) 0.558

Bilateral sides 27 (51.9%) 98 (38.7%) 2.296 (1.019, 5.172) 0.045 1.121 (0.418, 3.009) 0.820

Contusions (n, %)

Temporal lobe 35 (67.3%) 107 (42.3%) 2.809 (1.495, 5.279) 0.001 1.637 (0.757, 3.540) 0.211

Frontal lobe 30 (57.7%) 127 (50.2%) 1.353 (0.740, 2.472) 0.326

Parietal lobe 1 (1.9%) 28 (11.1%) 0.158 (0.021, 1.185) 0.073 0.172 (0.021, 1.437) 0.104

Occipital lobe 6 (11.5%) 13 (5.1%) 2.408 (0.871, 6.661) 0.090

Hematoma (n, %)

Epidural hematoma 9 (17.3%) 59 (23.3%) 0.688 (0.317, 1.494) 0.345

Subdural hematoma 32 (61.5%) 97 (38.3%) 2.573 (1.393, 4.752) 0.003 1.222 (0.576, 2.590) 0.602

tSAH 41 (78.8%) 120 (47.4%) 4.131 (2.031, 8.401) <0.001 2.449 (1.046, 5.735) 0.039∗

Surgical treatment (n, %) 36 (69.2%) 112 (44.3%) 2.833 (1.495, 5.367) 0.001 2.473 (1.031, 5.932) 0.042∗

VER (n, %) 7 (13.5%) 36 (14.2%) 0.938 (0.392, 2.240) 0.885

Subdural effusion (n, %) 13 (25.0%) 30 (11.9%) 2.478 (1.189, 5.164) 0.015 1.700 (0.668, 4.327) 0.266

ICU admission (n, %) 34 (65.4%) 87 (34.4%) 3.604 (1.924, 6.750) <0.001 1.891 (0.791, 4.521) 0.152

TBI, traumatic brain injury; OR, odds ratio; GCS, Glasgow Coma Scale; tSAH, traumatic subarachnoid hemorrhage; VER, very early rehabilitation; ICU, intensive care unit. ∗p < 0.05.

notably, prolongs the negative influence of cognitive impairment

on elderly patients with TBI (Farbota et al., 2012; Arenth

et al., 2014; Kim et al., 2021). The hippocampus is a region

responsible for cognitive function, especially memory function.

Biological functions of the hippocampus can be largely impaired by

subarachnoid hemorrhage, the subsequent middle cerebral artery

spasm can reduce blood supply, block synaptic neurotransmission,

and damage plasticity (Tariq et al., 2010; Regnier-Golanov et al.,

2022). Neuroinflammation and oxidative stress in hippocampal

neurons secondary to subarachnoid hemorrhage also contribute

to cognitive impairment (Han et al., 2014; Hu et al., 2021). In

patients with aneurysmal subarachnoid hemorrhage, abnormal

changes in themicrostructure of the whitematter result in cognitive

impairment 3 months after the onset (Reijmer et al., 2018).

Cognitive outcomes vary a lot after contusion and hemorrhage

in different brain regions. Martin et al. (2017) have demonstrated

that the volume of frontal lobe contusion is not linked with

cognitive outcomes, while a larger volume of temporal lobe

contusion predicts a worse cognitive function after 6 months of

injury. A close correlation is identified between the hemorrhage

site and the incidence of dementia within 6 months of cerebral

hemorrhage rather than delayed dementia after 6 months (Biffi

et al., 2016). Our results showed thatmild-to-moderate TBI patients

with temporal lobe contusions had a higher risk of cognitive
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FIGURE 1

Nomogram predicting cognitive impairment at 3 months after mild-to-moderate TBI.

FIGURE 2

Nomogram predicting cognitive impairment at 12 months after mild-to-moderate TBI.

impairment at 3 months post-TBI, but cognitive impairment

at 12 months was not significantly correlated with the site

of contusion.

Hypertension, diabetes mellitus, and hyperlipidemia have not

been the focus of research concerning cognitive impairment

following TBI. Our data demonstrated that hyperlipidemia and
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diabetes mellitus were independent risk factors of cognitive

impairment 3 and 12 months after mild-to-moderate TBI,

respectively. The risk of cognitive impairment in patients with

diabetes mellitus is 1.5–2 times higher than that in patients without

diabetes mellitus (Cukierman et al., 2005). Lachmann et al. (2018)

have found that diabetes mellitus is linked with an increased risk of

postoperative cognitive impairment rather than hypertension. The

negative influence of diabetes mellitus on cognitive function can

be attributed to hippocampal atrophy and cerebral microvascular

damage (van Elderen et al., 2010; Hayashi et al., 2011; Vuletic

et al., 2013). Hyperlipidemia increases the incidence of carotid

intimal thickening, and meanwhile, TBI may accelerate the process

of atherosclerosis (Wang et al., 2018). A synergic effect of

hyperlipidemia and TBI causes carotid atherosclerosis, and the

subsequent cerebrovascular insufficiency or cerebral microinfarct

poses a long-term impact on cognitive function.

Mild-to-moderate TBI patients who were admitted to the ICU

were more likely to have cognitive impairment 3 months after TBI

than those without an ICU admission, which may be linked with

ICU-acquired delirium. A much higher incidence of delirium is

detected in patients admitted to the ICU, which in TBI patients,

can be as high as 60% (Wilson et al., 2023). Delirium is one of the

important causes of long-term cognitive decline (Goldberg et al.,

2020).

We further found that >12 years of education and VER

were identified as protective factors for cognitive impairment at

3 months after mild-to-moderate TBI, which, however, did not

influence cognitive function at 12months. A high level of education

provides a strong cognitive reserve to cope with TBI-induced

physical and psychological challenges (Almeida-Meza et al., 2022).

Cognitive impairment following TBI is found to be associated

with the level of apolipoprotein E ε4 (ApoE-ε4), which reduces

brain metabolism in the medial temporal and prefrontal lobe

of TBI patients (Hellstrøm et al., 2022). Interestingly, a high

FIGURE 3

ROC curves to validate the discrimination of the nomogram

predicting cognitive impairment 3 months after mild-to-moderate

TBI.

level of education is able to reverse the negative influence of

ApoE-ε4 on brain metabolism (Arenaza-Urquijo et al., 2015).

VER is an emerging concept of rehabilitation. Currently, clinical

data supporting the role of VER in TBI are controversial. In a

retrospective cohort study involving acute stroke patients in Japan,

VER is validated to reduce the disability rate of stroke (Matsui

et al., 2010). However, a multi-center randomized controlled

trial (RCT) illustrates that VER does not significantly improve

the quality of life and communication skills of stroke patients

FIGURE 4

ROC curves to validate the discrimination of the nomogram

predicting cognitive impairment at 12 months after

mild-to-moderate TBI.

FIGURE 5

Calibration curves of the nomogram for predicting cognitive

impairment at 3 months after mild-to-moderate TBI.
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FIGURE 6

Calibration curves of the nomogram for predicting cognitive

impairment at 12 months after mild-to-moderate TBI.

compared with conventional nursing care (Cumming et al., 2019;

Godecke et al., 2021). In the present study, VER protected cognitive

function inmild-to-moderate TBI patients possibly due to selection

biases resulting from differences in comorbidities of other injuries,

duration of disease stabilization, and the willingness to cooperate

with rehabilitation exercises. Rigorous-designed RCTs are needed

in future to analyze the clinical benefits of VER for mild-to-

moderate TBI patients.

We finally created two nomograms to predict risk factors

for cognitive impairment after 3 and 12 months of mild-to-

moderate TBI, in which conventional demographic, clinical, and

radiological data were incorporated. Both were accurate to predict

cognitive impairment after TBI, thusmaking it possible to design an

individualized and timely therapeutic strategy to prevent cognitive

dysfunction. There are several limitations in the present study. First

of all, we excluded TBI patients with severe combined injuries,

which limited the application of the prediction models. Second, we

did not retrospectively analyze electroencephalogram (EEG) data

and laboratory testing data in TBI patients, which may influence

the discriminative ability of the nomograms. Third, it was a single-

center retrospective study that lacked external validation. Our

findings should be further validated in multi-center clinical studies.

Conclusion

Age, GCS score, >12 years of education, hyperlipidemia,

temporal lobe contusion, tSAH, VER, and ICU admission are

independent risk factors for cognitive impairment after 3 months

of TBI; meanwhile, age, the GCS scores, diabetes mellitus,

tSAH, and surgical treatment are independent risk factors of

cognitive impairment after 12 months of TBI. Two nomograms,

based on both groups of factors, respectively, showed strong

discriminative abilities for cognitive impairment, which may

be used to assist clinical management of cognitive impairment

following TBI.
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Ultrasonic neuromodulation 
mediated by mechanosensitive 
ion channels: current and future
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Huijing Hu 1,2*
1 Institute of Medical Research, Northwestern Polytechnical University, Xi’an, China, 2 Research and 
Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, China

Ultrasound neuromodulation technology is a promising neuromodulation 
approach, with the advantages of noninvasiveness, high-resolution, deep 
penetration and good targeting, which aid in circumventing the side effects of 
drugs and invasive therapeutic interventions. Ultrasound can cause mechanical 
effects, activate mechanosensitive ion channels and alter neuronal excitability, 
producing biological effects. The structural determination of mechanosensitive 
ion channels will greatly contribute to our understanding of the molecular 
mechanisms underlying mechanosensory transduction. However, the underlying 
biological mechanism of ultrasonic neuromodulation remains poorly understood. 
Hence, this review aims to provide an outline of the properties of ultrasound, the 
structures of specific mechanosensitive ion channels, and their role in ultrasound 
neuromodulation.

KEYWORDS

ultrasound, neuromodulation, Piezo ion channels, transient receptor potential 
channels, mechanosensitive ion channels

Introduction

Ultrasound refers to sound waves with frequencies above 20,000 Hertz (Hz), which 
exceeds the human hearing range of 20 Hz–20 kHz. With its high frequency and short 
wavelength, ultrasound has linear propagation capabilities within a finite distance, high 
beam focusing and excellent directionality features (Dell'Italia et  al., 2022). Moreover, 
ultrasound is a noninvasive technique for neural regulation. It has high safety and can 
be employed in combination with magnetic resonance imaging. Exosomes produced by 
human astrocyte (HA) cells stimulated by ultrasound were comparable in terms of size 
distribution and morphology with those of untreated HA cells (Deng et al., 2021). Moreover, 
HE  staining conducted after 4 weeks of ultrasound treatment showed no major organ 
damage, which further affirmed the safety of ultrasound therapy in human. Neuroregulatory 
technology, such as transcranial ultrasound stimulation, transcranial magnetic stimulation, 
transcranial electrical stimulation, deep brain stimulation, and optogenetics, is a kind of 
therapeutic approach that implements either implantable or nonimplantable devices to 
alleviate patients’ symptoms. A comparison of these different neural regulation modes is 
shown in Table 1 below. It can effectively modulate the activity of the central, peripheral or 
autonomic nervous systems by either physical (e.g., light, sound, electricity, magnetism, 
etc.) or chemical (e.g., drugs) means (Jiang et al., 2019). Currently, ultrasound is frequently 
involved in treatment procedures as a physical factor. High-intensity ultrasound is typically 
recommended for tumor ablation, additionally, it has been applied to treat several 
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neurological diseases including Parkinson’s disease, essential 
tremor and obsessive–compulsive disorder (Sperling et al., 2018; 
Germann et  al., 2021; Iorio-Morin et  al., 2021). Low-intensity 
ultrasound is often used for neural regulation.

The effects of ultrasound mainly result from mechanical, 
cavitation and thermal effects (Darmani et al., 2022). Mechanical 
effects stem from ultrasound functioning as a mechanical wave, 
exerting radiation forces on biological tissues. Acoustic radiation 
force (ARF) can cause mechanical vibration and cell membrane 
deformation, and activate mechanosensitive ion channels in 
neurons, and discharge cells (Peng et al., 2020). On the other hand, 
thermal effects refer to biological tissue cells absorbing the energy 
of ultrasound, causing a subsequent temperature increase and 
mediating cell excitability. However, too high a temperature 
denatures enzymes and proteins, leading to decreased biological 
activity. Moreover, cavitation effects arise from the formation of 
small gas bubbles in tissue under positive and negative pressure 
phases of ultrasound oscillation stretching (Baek et  al., 2017; 
Blackmore et al., 2019; Feng et al., 2019). Currently, it is commonly 
surmised that the biological impacts of ultrasound are primarily 
attributed to its mechanical influence rather than its 
thermal attributes.

Mechanosensitive (MS) ion channels refer to a group of 
transmembrane channel proteins that can convert mechanical stimuli 
signals into electrical or chemical signals. Mechanically-sensitive 
channels exist widely in bacterial, archaea, and eukaryotic organisms 
(Martinac, 2004). In bacteria and archaea, mechanosensitive channels 

serve as protection and survival mechanisms. Their primary function 
is to release intracellular substances as an emergency valve to lower 
osmotic pressure when the extracellular environment becomes 
hypotonic such as during heavy rain (Ajouz et  al., 1998). The 
discovery of new families of mechanically activated ion channels, 
such as PIEZO, which have important in vivo physiological roles in 
mammals, opens new avenues for studying the role of 
mechanotransduction in human health and disease (Coste et  al., 
2010; Murthy et al., 2017; Kefauver et al., 2020). In 2016, Kubanek 
reported that ultrasound triggered a current via the heterologous 
expression of two pore domain potassium channels (K2P channels) 
including TREK-1, TREK-2, TRAAK and voltage-gated sodium 
channels (Nav1.5) in the Xenopus oocyte system (Kubanek et al., 
2016). Heterologous expression of TRP-4 channels in Caenorhabditis 
elegans neurons revealed that their motion behavior was provoked by 
ultrasound. These discoveries suggest that the mechanical force 
generated by ultrasound could open mechanosensitive ion channels 
in the cell membrane and induce ion flow, which can alter neuronal 
excitability and eventually result in biological effects.

Despite substantial recent progress in the identification and 
characterization of mechanically activated ion channels, a variety of 
biological processes that depend on mechanotransduction remain 
poorly understood at the molecular level, and the identities of many 
mechanosensors remain elusive. Here, this article will first review the 
structures of several mechanosensitive ion channels and then outline 
the progress in their research related to ultrasound to help bolster our 
understanding of mechanotransduction at the molecular level.

TABLE 1 Comparison of several neural regulation modes.

Transcranial 
ultrasound 
stimulation (TUS)

Transcranial 
magnetic 
stimulation (TMS)

Transcranial 
electrical 
stimulation (TES)

Deep brain 
stimulation (DBS)

Optogenetics

Whether it is 

invasive or not
Noninvasive Noninvasive Noninvasive Invasive Invasive

Depth of action Deep

Shallow, difficult to 

stimulate subcortical 

tissue

Shallow, difficult to 

stimulate subcortical 

tissue

Deep

The maximum stimulation depth 

of the two-photon optogenetic 

system is 400 μm.

Spatial 

resolution, 

precision

mm >1 cm cm μm Subcellular precision

The target/mode 

of action

Cortex (primary motor 

cortex (M1), 

somatosensory, primary 

visual cortex), deep brain 

(e.g., hippocampus, 

thalamus)

M1 area, SMA area, 

bilateral dorsolateral 

prefrontal cortex 

(DLPFC)

M1 area, DLPFC

Stereotactic implanted 

electrodes provide 

chronic electrical 

stimulation to specific 

targets in the brain

Specific neurons expressing the 

photosensitive protein can 

be induced via viral vector or 

transgenic means. When 

illuminated by different 

wavelengths and frequencies of 

light, these neurons become 

depolarized or hyperpolarized, 

leading to neuron excitation or 

inhibition.

Security

High and can be used in 

conjunction with 

magnetic resonance

rTMS has high safety, 

high frequency rTMS 

treatment may induce 

epilepsy (low probability).

Weak current do not 

induce action potential, 

will not induce seizures, 

high safety.

Batteries need to 

be replaced regularly, and 

there are surgical 

complications such as 

bleeding and infection.

Optical fiber implantation will still 

inevitably cause brain tissue 

damage and local bleeding to a 

certain extent, especially when 

large-diameter optical fibers are 

used for high-intensity light input.
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Mechanosensitive ion channels of large 
conductance

Structure of mechanosensitive ion channels of 
large conductance

Sukharev et al. (1994) discovered two types of mechanosensitive ion 
channels in E. coli, which were named based on their pore size: the 
mechanosensitive channel of large conductance (MscL) and the 
mechanosensitive channel of small conductance (MscS). Perozo et al. 
(2002) demonstrated that the open state of MscL is highly dynamic, 
supporting a water-filled pore of at least 25 Å, lined mostly by the first 
transmembrane helix (TM1), allowing passage of large organic ions and 
small proteins. The patch-clamp electrical recording technique showed 
that when the patches were subjected to suction or solution bathing the 
patch was diluted, and voltage-controlled (−clamped) patches of E. coli 
membranes produced giant steps in unitary current (Martinac et al., 
1987; Sukharev et al., 1993; Levina et al., 1999). MscS showed a single 
channel conductance of ~1 nS and demonstrated both pressure and 
voltage dependence, and selectivity for anions. While MscL with ~3 nS 
conductance when subjected to even stronger suction.

MscL is widely expressed in prokaryotic cells but is not present in 
eukaryotes. MscL has been extensively studied by scientists in recent 
years. Chang and colleagues indicated that the gating of MscL is 
primarily regulated by lipoprotein interactions (Chang et al., 1998). The 
composition of MscL comprises five identical subunits forming an ion 
channel, which is in turn regulated by membrane tension. The three-
dimensional structure of the Mycobacterium tuberculosis MscL homolog 
was determined through X-ray crystallography, to a resolution of 3.5 
angstroms. Each subunit consists of 136 amino acid residues, alongside 
two transmembrane α-helical regions (TM1 and TM2), and a loop 
region that links them on the extracellular side. The termini (N-terminal 
and C-terminal) are found on the cytoplasmic surface. The region 
responsible for pore formation by MscL results from TM1 of the five 
constituent subunits, and TM2 primarily associates with the cytoplasmic 
membrane lipid bilayer. MscL is a mechanically gated ion channel, 
featuring considerable conductance and no ion selectivity; 
physiologically, the protein structure resembles a cylinder. Additionally, 
MscL can be expressed stably in the cell membranes of eukaryotic cells.

Research on mechanosensitive ion channels of 
large conductance in ultrasonic neural modulation

The MscL channel is expressed in prokaryotes and its function in 
these cells has been extensively researched. However, the application 
and study of MscL in eukaryotes is just emerging. MscL channels can 
be expressed in eukaryotic cell lines including CHO and HEK293 
cells (Doerner et al., 2012). Through electrophysiological experiments 
and dye release experiments, the authors demonstrated the 
mechanosensitive function of the MscL channels. Ye et al. (2018) also 
confirmed the channel activity of MscL in HEK293T cells and 
neurons through electrophysiological experiments. However, MscL 
channels expressed in eukaryotic systems have a lower opening 
threshold and smaller conductance than those in prokaryotes. 
Therefore, the authors expressed the functional mutant I92L MscL in 
neurons. Fluorescent localization and electrophysiological 
experiments proved that MscL I92L can be expressed and inserted 
into the neuronal membrane and has channel activity. Furthermore, 
MscL I92L demonstrated greater sensitivity to mechanical 
stimulation than the wild-type MscL channel. This is exemplified by 
only 30 mmHg of force leading to significant channel opening.

Piezo ion channels

Structure of Piezo ion channels
Piezo ion channels refer to a group of channels discovered and 

named by Coste et al. (2010). Piezo1 (Fam38A) was identified as the ion 
channel essential for generating mechanosensitive potentials in the 
Neuro2A cell line through expression profile and RNA interference 
knockdown of candidate genes techniques. Only two types of Piezo 
families have been discovered so far, Piezo1 (Fam38A) and Piezo2 
(Fam38B). Piezo1 is a nonselective cationic channel that can be inhibited 
by GsMTx4 (tarantula venom), gadolinium (Gd), and ruthenium red 
(RR) (Copp et  al., 2016). Piezo2, a mammalian cognate of Piezo1, 
records mechanically sensitive electrical currents in separated dorsal 
root ganglion (DRG)neurons. Piezo1 channels mainly exist in 
nonsensory tissues, including the skin, lungs, kidneys, and bladder. On 
the other hand, Piezo2 channels occur mainly in sensory tissues such as 
the trigeminal ganglion (TG), DRG sensory neurons, and Merkel cells.

Each subunit of Piezo proteins is made up of over 2000 amino acid 
residues, and their molecules are relatively large, having a molecular 
mass of 1.2 × 10^6. Ge et al. determined that the full-length of the cryo-
electron microscopy structure is 2,547 amino acids, with a resolution of 
4.8 Å in mouse Piezo1 (Ge et al., 2015). The findings reveal that Piezo1 
consists of a triple helix structure, with extracellular domains comprising 
three distal blades and a central cap. There are 14 apparently resolved 
segments per subunit in the transmembrane region that form three 
peripheral wings and a central pore module that encloses a potential 
ion-conducting pore. The carboxyl terminal is responsible for the pore 
section of the ion channel, while the amino terminal receives mechanical 
stimulation that opens the carboxyl terminal pore.

Research on Piezo ion channels in ultrasonic 
neural regulation

Piezo1 activation plays an essential role in mechanical transmission 
via ultrasonic stimulation. Qiu et  al. (2019) conducted a study that 
revealed that the activation of heterologously expressed HEK293T cells 
and endogenous Piezo1 channels can be achieved through low-intensity 
and low-frequency ultrasound stimulation. This resulted in Ca2+ influx as 
well as increased nuclear c-Fos expression levels in primary neurons, 
although when pre-treated with a Piezo1 inhibitor the effect was inhibited 
in cells. Furthermore, the study demonstrated that ultrasonic stimulation 
significantly affected downstream Ca2+ signaling protein levels and 
induced the expression of important proteins such as phospho-CaMKII, 
phospho-CREB, and c-Fos in a neuronal cell line. These proteins are 
known to play significant roles in complex neuronal functions like 
learning, memory, and neuronal plasticity. Notably, the impact of 
ultrasonic stimulation on Ca2+ signaling protein levels was found to 
decrease with the loss of Piezo1 channel functions. In 2023, the authors 
also reported that Piezo1 knockout (P1KO) in the right motor cortex of 
mice significantly decreased ultrasound-induced neuronal calcium 
responses, limb movement, muscle electromyogram (EMG) signaling and 
C-Fos expression compared to the control. Central amygdala (CEA) 
neurons, having higher Piezo1 expression levels, displayed greater 
sensitivity to ultrasound than cortical neurons. Piezo1 is expressed in both 
neurons and astrocytes. The authors demonstrated that Piezo1 is 
expressed in different brain regions and that neuronal Piezo1 plays an 
important role in mediating ultrasound effects directly (Shen et al., 2021). 
The researchers also developed a Piezo1-targeted microbubble (PTMB) 
which can bind to the extracellular domains of the Piezo1 channel (Zhu 
et al., 2023).
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Transient receptor potential channels

Structure of transient receptor potential
The discovery of the transient receptor potential (TRP) channel 

initially occurred within the visual system of Drosophila melanogaster, 
and was based upon the peculiar behavior of mutant Drosophila in 
response to sustained light exposure. This resulted in the production of 
transient potentials as opposed to sustained peak potentials. TRP 
channels have been found to be highly conserved genes across a broad 
spectrum of species, ranging from Caenorhabditis elegans to humans. 
They exhibit prominent distribution within sensory neurons and play 
crucial roles in the modulation of external mechanical stimuli, including 
pressure and sound waves. Additionally, these channels are implicated 
in the generation of senses associated with touch, pain, hearing, taste, 
and vision (Voolstra et al., 2010).

TRP channels are nonselective cationic channels that are highly 
permeable to Ca2+ and Na+, with TRPM6 and TRPM7 being highly 
permeable to Mg2+. Nilius and Owsianik (2011) classified TRP ion 
channels into seven subtypes and two categories based on amino acid 
sequences and three-dimensional structures. The first category includes 
TRPC (TRP-canonical), TRPV (TRP-vanilloid), TRPM 
(TRP-melastatin), TRPA (TRP-ankyrin) and TRPN (TRPNompC), 
whereas the second category includes TRPP (TRP-polycystin) and 
TRPML (TRP-mucolipin). The TRP channel family consists of 
nonselective cationic channels that are made up of four tetramer 
monomers. These monomers contain a hexaxial transmembrane (TM) 
domain with a pore ring structure located between TM5 and TM6.

Research on transient receptor potential 
channels in ultrasonic neural regulation

TRP-4 channels are primarily expressed in four CEPs including 
CEPDL, CEPDR, CEPVL and CEPVR dopaminergic neurons and in 
two ADEs consisting of ADEL and ADER dopaminergic neurons, and 
DVA and DVC interneurons in a few C. elegans neurons. Ibsen et al. 
(2015) conducted a study in which they observed the effect of defective 
TRP-4 mutation in nematodes with respect to their response to 
ultrasound-combined microbubbles. The mutant nematodes exhibited 
a reduction in large reversal responses compared to the wild type. 
Subsequently, researchers transferred the TRP-4 gene to amphid wing 
‘C’ (AWC) neurons leading to its induction. This activation of TRP-4 
gene expression in AWC neurons was found to result in the accumulation 
of calcium ions under specific peak negative pressures (0.41 and 
0.47 MPa) of ultrasonic stimulation. This response was not observed in 
the wild-type AWC cells. Additionally, the decrease in contrarian motor 
behavior in C. elegans mutants with TRP-4 indicated that the induction 
of TRP-4 by ultrasonic stimulation (peak negative pressure < 0.5 MPa) 
might regulate the activity of neurons involved in reverse motor 
behavior, thereby leading to a reduction in reverse movement.

Two-pore-domain potassium channels

Structure of two-pore-domain potassium 
channels

The identification of the K2P channel first occurred in the human 
kidney, as its characteristic two pore regions prompted its labeling as a 
two-pore-domain potassium (K2P) channel. This particular form of 

channel is capable of activation along the entire range of physiological 
voltages, elucidating both the background potassium current and the 
baseline potassium current, and is not vulnerable to typical potassium 
channel blockers (Lesage et al., 1996).

Potassium channels are a diverse group of proteins that play a crucial 
role in regulating cellular activity and maintaining cellular homeostasis. 
These channels can be classified into three main types based on their 
structure and function: calcium-activated (KCa) potassium channels, 
two-pore-domain potassium channels (K2P) and inward-rectified 
potassium channels (Kir). Among these, K2P channels have gained 
particular attention in recent years due to their unique structure and 
function. Currently, K2P channels are categorized into six subgroups or 
“clades” each with distinct structural and functional characteristics. These 
six clades are: TWIK, TASK, TREK, TALK, THIK, and TRESK. Notably, 
only the TREK subgroup of K2P channels is known to be mechanically 
sensitive. Thus, understanding the distinct properties of each K2P channel 
subtype is critical for gaining insight into their role in physiological and 
pathological processes (Feliciangeli et al., 2015). Kv, KCa, and Kir are 
tetrameric channels, with each monomer having a single pore domain. 
However, K2P is a dimeric channel, and each monomer is composed of 
two pore regions. These channels consist of two pore domains (P1 and 
P2), two extracellular cap helices (C1 and C2), and four transmembrane 
domains (M1–M4) with both the amino and carboxyl terminus situated 
on the cytoplasmic side (Renigunta et al., 2015). K2P channels which are 
equipped with the capacity to perceive mechanical stimulation at the 
cellular membrane are classified as mechanically sensitive channels, 
namely TREK-1, TREK-2, and TRAAK. The high-resolution crystal 
structures of TWIK-1, TRAAK, and TREK-2 channels have been made 
available. These structures divulge the existence of multiple helices within 
the extracellular ring between TM1 and the P1, resulting in the formation 
of a physical obstruction that urges ions to exit via the side pore.

Research on two-pore-domain potassium 
channels in ultrasonic neuromodulation

Sorum et al. (2021) proposed that ultrasound has the potential to 
trigger the opening of mechanosensitive TRAAK channels through an 
increase in membrane tension. This study provides insight into the vital 
role of mechanosensitive channels in physiological responses to 
ultrasound and presents a promising avenue for gene targeting in the 
regulation of cellular auditory nerves. The authors observed that the 
application of short-pulsed, low-intensity ultrasound (10 ms, 5 MHz, 
1.2 W/cm2) led to a swift and robust activation of TRAAK channels in 
plaques of Xenopus oocytes expressing TRAAK as well as in cortical 
neurons of mice also expressing TRAAK. The K+ selective ultrasonic 
stimulation current featured a reversal potential that was proximal to 
the Nernst equilibrium potential for K+ (EK+ = −59 mV), comparable 
to the TRAAK currents for both base and pressure stimulation. In 
contrast, the study revealed that the non-mechanosensitive K2P ion 
channel TASK2 was not activated by ultrasound.

In addition to its role in neuromodulation, ultrasound also has 
various applications, such as reducing fracture healing time 
(especially in delayed healing and bone nonunion), preventing 
inflammatory loosening of prosthetics, and promoting tendon, 
ligament, and cartilage recovery. Furthermore, it can inhibit 
lipopolysaccharide-induced inflammation and reduce 
proinflammatory factors (Chan et al., 2010; Jeremias Júnior et al., 
2011; Loyola-Sánchez et al., 2012; Ren et al., 2013; Zhao X et al., 2017; 
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TABLE 2 Studies on several mechanosensitive ion channels in ultrasonic neuromodulation.

Types of 
mechanosensitive 
ion channels

Author Subject or site of 
ultrasonic stimulation

Main results References

MscL

Ye et al.

Primary cultured rat 

hippocampal neurons and 

functional gain mutation I92L 

and HEK293T cells

MscL was expressed in primary cultured rat hippocampal neurons and demonstrated to be activated by low pressure ultrasonic pulses. I92L 

countersensitizes the MscL to ultrasound, triggering action potentials at a peak negative pressure as low as 0.25 MPa.
Ye et al. (2018)

Qiu et al.
Neurons in the cerebral cortex or 

dorsomedial striatum of mice

Ultrasound triggered Ca2+ influx in 293T cells expressing MscL-G22S and activation of downstream neurons. Non-invasive ultrasound 

triggered neural activation in MscL-G22S expression regions, and c-Fos was significantly upregulated without widespread nonspecific 

activation. Rapid electromyographic response induced by ultrasound targeting MscL in M1 region of cortex; Ultrasound successfully 

activated MscL-expressing neurons in the deep DMS region.

Qiu et al. (2020)

Heureaux 

et al.

Wild-type MscL and G22S 

mutant activated, retinal pigment 

epithelial cells (RPE)

Ultrasonic-driven integrin-bound microbubbles can cause MscL opening. The activation of MscL induced by acoustic tweezing cytometry 

(ATC) depends on the functional connection of microbubbles with the intact actin cytoskeleton.

Heureaux et al. 

(2014)

Piezo

Pan et al.

HEK293T cells, Jurkat T-cells 

and primary T cell (peripheral 

Blood mononuclear Cells, 

PBMCs)

Successful expression of the ion channel Piezo1 in HEK293T cells and subsequent Ca2+ influx triggered the downstream pathway for gene 

expression. The Piezo1 gene was transferred into Jurkat T cell lines and PBMCs to create chimeric antigen receptors, transactivated to open 

channels and stimulate ultrasound response. ReCoM is effective in controlling CAR expression in T cells to guide the recognition and 

eradication of tumor cells for controllable cancer immunotherapy.

Pan et al. (2018)

Qiu et al.

HEK293T cells, mouse primary 

cortical neurons, mouse 

hippocampal cell line 

mHippoE-18 (CLU199), HeLa 

cells

The ultrasound alone activated both heterologous and endogenous Piezo1, initiating calcium influx and increased the expression of nuclear 

c-Fos in primary neurons, but not when pre-treated with Piezo1 inhibitor GsMTx-4. Ultrasound significantly augmented the expression of 

critical proteins including phospho-CaMKII, phospho-CREB, and c-Fos in neuronal cell lines. However, the downregulation of Piezo1 

notably decreased this effect.

Qiu et al. (2019)

Shen et al.
Neuro2A cell lines, rat 

hippocampal neurons

US energy can reach comparable levels of cytoplasmic Ca2+ transients at a peak negative pressure of 0.03 MPa in Piezo1-targeted microbubble 

(PTMB)-binding cells, whereas control cells typically require US intensity of 0.17 MPa. The cytoplasmic Ca2+ elevation was greatly reduced by 

chelating extracellular calcium ions or by using cationic ion channel inhibitors such as GsMTx-4, confirming that US-mediated calcium 

influx are dependent on the Piezo1 channels. Cavitation and heating effects of US hardly participate in the process of Ca2+ transients.

Shen et al. 

(2021)

Zhu et al.

Conditional knockout mouse 

model, central amygdala (CEA) 

neurons, cortical neurons

Piezo1 knockout (P1KO) in the right motor cortex of mice significantly decreased ultrasound-induced neuronal calcium responses, limb 

movement, muscle electromyogram (EMG) signalings and C-Fos expression compared to the control. CEA neurons, having higher Piezo1 

expression levels, displayed greater sensitivity to ultrasound than cortical neurons. Piezo1 expressed in both neurons and astrocytes. They 

demonstrated that Piezo1 expressed in different brain regions and neuronal Piezo1 played an important role in mediating ultrasound’s effects 

directly.

Zhu et al. (2023)

Zhang et al. MC3T3-E1 cells
Piezo1 can transmit LIPUS-induced mechanical signals to intracellular calcium. Ca2 + influx acts as a second messenger to activate ERK1/2 

phosphorylation and perinuclear F-actin filament polymerization, regulating MC3T3-E1 cells proliferation.

Zhang et al. 

(2021)
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Types of 
mechanosensitive 
ion channels

Author Subject or site of 
ultrasonic stimulation

Main results References

TRP

Ibsen et al. Caenorhabditis elegans

Low-pressure ultrasound (with peak negative pressures of 0.4–0.6 MPa) specifically activated neurons expressing the TRP-4 channel. 

Misexpressing TRP-4 in ASH and AWC sensory neurons resulted in an increase in large reversals, while misexpressing it in PVD neurons 

suppressed this behavior, a novel role for this neuron.

Ibsen et al. 

(2015)

Magaram 

et al.
Caenorhabditis elegans

Ultrasonic stimulation induced a reversal response in C. elegans by the pore-forming TRP-4 subunit and the DEG/ENaC/ASIC ion channel 

MEC-4. Under lower pressure (0.79 MPa), the expression of TRP-4 in AWC chemosensory neurons partially rescued the reversal of TRP-4 

(ok1605) and Mec-4 (u253) mutants, in contrast to ASH, which only reversed at a higher pressure (>0.92 MPa).

Magaram et al. 

(2022)

Oh et al.

Astrocyte, HEK293T, and 

HEK293T-piezo1 knockout 

(HEK-P1KO) cells

Low intensity low-frequency ultrasound (LILFU) induced neuromodulation by opening TRPA1 channels in astrocytes. The influx of Ca2+ 

caused a release of glial transmitters, including glutamate via Best1 channels. The released glutamate activated NMDA receptors in 

neighboring neurons and triggered action potential generation.

Oh et al. (2019)

Duque 

et al.

C57BL/6J mice, Npr3-cre mice, 

Npr3-cre mice, Bl/6 male mice, 

Balb/c mice, TRPA1 knockout 

mice

Human transient receptor potential A1 (hs TRPA1) is ultrasonically sensitive to mammalian HEK cells and rodent neurons in vitro and in 

vivo. Ultrasound evoked gating of hsTRPA1 specifically requires its N-terminal tip region and cholesterol interactions. hs TRPA1 enhanced 

ultrasound-induced calcium transients and activated ultrasound-induced action potentials in primary neurons in rodents. Unilateral 

expression of hsTRPA1 in mouse layer V motor cortical neurons leads to c-fos expression and contralateral limb responses in response to 

ultrasound delivered through an intact skull.

Duque et al. 

(2022)

Yoo et al. Primary cortical neurons

Ultrasound stimulation triggers calcium entry across the plasma membrane. TRPP1/2, TRPC1, and Piezo1 as mechanosensitive ion channels 

involved the ultrasound response. Overexpression of TRPC1, TRPP2, and TRPM4 increased the sensitivity of cortical neurons to ultrasound 

with reduced pulse intensities and durations, in the case of TRPM4 greatly accelerated the response kinetics.

Yoo et al. (2022)

Burks et al.

Female C3H, SV129 or 

TRPC1tm1Lbi/Mmjax (TRPC1 

knockout) mice, C2C12 muscle 

cells or TCMK1 kidney cells

Inhibiting VGCC or TRPC1 in vivo prevented COX2 upregulation and the migration of MSCs to kidneys and muscle in response to PfUS. A 

TRPC1/VGCC complex was observed in plasma membranes. The inhibition of VGCC or TRPC1 blocked pFUS-induced Ca2+ transients in 

TCMK1 and C2C12 cells. The mechanical activation of the Na+ TRPC1 current upstream of VGCC was found to be caused by the pFUS 

acoustic radiation force, instead of direct opening VGCC.

Burks et al. 

(2019)

TABLE 2 (Continued)
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mechanosensitive 
ion channels

Author Subject or site of 
ultrasonic stimulation

Main results References

K2P

Zhao et al. PC12 cells

Pre-treatment with LIPUS (1 MHz, 50 mW/cm2, 20% duty cycle and 100-Hz pulse repetition frequency, 10 min) inhibited MPP1-induced 

neurotoxicity and mitochondrial dysfunction in PC12 cells. LIPUS regulated the expression of antioxidant proteins, specifically thioredoxin-1 

and heme oxygenase-1, decreasing oxidative stress induced by MPP+. The prevention of neurocytotoxicity was observed through the 

activation of pathways that involved the phosphoinositide 3-kinase (PI3K)-Akt and extracellular signal-regulated kinase (ERK1/2). LIPUS 

protected neuronal cells from MPP + -induced cell death through the K2P channel- and stretch-activated ion channel-mediated downstream 

pathways.

Zhao L. et al. 

(2017)

Kubanek 

et al.
Xenopus oocytes

Focused ultrasound (10 MHz, 0.3–4.9 W/cm2) modulated the currents flowing through the ion channels averaged up to 23%, depending on 

channels and stimulus intensity. Repeated stimulation of the channel led to a reversible effect that decreased when the K2P channel was 

subjected to the blocking effect of BaCl2. At the single cell level that focused US modulates the activity of specific ion channels to mediate 

transmembrane currents.

Kubanek et al. 

(2016)

Sorum 

et al.

Xenopus laevis Oocytes, Pichia 

pastoris cells

Ultrasonic energy is transduced to TRAAK through the membrane in a manner analogous to canonical mechanical activation, likely 

increasing membrane tension to promote channel opening. Ultrasounic had an effect on modulation of neuronal expression TRAAK. These 

results suggest that mechanosensitive channels play a ctitical role in physiological responses to ultrasound and can be used as tools for 

acoustic neuromodulation of genetically targeted cells.

Sorum et al. 

(2021)

Prieto et al.
CA1 pyramidal neurons in acute 

rodent hippocampal brain

Focused high-frequency (43 MHz) ultrasound inhibits or enhances firing in a spike frequency-dependent manner. Ultrasound increases the 

threshold current of action potential firing, the slope of the frequency input curve, and the maximum firing frequency. Ultrasound mildly 

hyperpolarizes the resting membrane potential, reduces action potential width, and increases the depth of after-hyperpolarization. 

Ultrasound activates thermosensitive and mechanosensitive two-pore-domain potassium (K2P) channels through acoustic radiation force-

induced heating or mechanical effects. Finite element modeling shows that ultrasound affects the firing frequency of brain tissue by slightly 

raising the temperature (<2°C) and possibly through mechanical effects.

Prieto et al. 

(2020)

TABLE 2 (Continued)

(Continued)
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Jiang et al., 2019). Table 2 summarizes the research progress on the 
above mechanically sensitive ion channels related to ultrasonic 
neural regulation.

Summary

Mechanosensitive ion channels are mechanical force molecular 
sensors that are activated by mechanical stimuli and located on the cell 
membrane. These channels can quickly and efficiently convert 
mechanical stimuli into electrical and chemical signals. Stretching of 
mechanosensitive proteins can damage molecular binding sites, expose 
regulatory sites, and change the association or dissociation rates for 
protein binding (Ingham et al., 1997; Krammer et al., 2002; Cain et al., 
2021). MS channel opening can result in ion influx. Additionally, 
numerous diseases such as muscular dystrophy, and cardiac arrhythmias 
and et al. have been related to defects in activating MS ion channels 
(Sukharev and Sachs, 2012). However, the gating mechanism and 
physiological effects of these channels differ. We also do not know the 
connection between the structure and the function of these MS ion 
channels. Ultrasound usually activates more than one MS ion channel, 
but it is unknown which one is working or how they work together. Our 
understanding of the mechanisms and functions of ultrasound activated 
mechanosensitive ion channels remains limited.

We need to develop innovative research methods and conduct more 
thorough research on the mechanism of these channels and explore 
screening of mechanically sensitive ion channels or their mutants that 
can be accurately controlled in the future. Addtionally, these MS ion 
channels should be expressed in various nerve cells. In future studies, 
researchers should clarify the expression profile of each ion channel in 
neuronal cells, and then study their sensitivity to ultrasound 
modulation, so as to summarize and compare the differences in the role 
of various ion channels in ultrasound modulation.

To date, previous studies have demonstrated the structure of some 
specific MS ion channels and their investigated their roles in ultrasonic 
neuromodulation. Ultrasound offers several advantages, including 
non-invasiveness, convenient in vitro regulation, intracranial multipoint 
focusing, spatiotemporal controllability and accuracy. Basic clinical 
trials have demonstrated that ultrasound can improve specific behaviors, 
such as increased responsiveness in patients with chronic disorders of 
consciousness (Cain et al., 2021) and improved mood (Reznik et al., 
2020; Sanguinetti et al., 2020). However, further studies are needed to 
investigate how ultrasound acts on organisms, which mechanically 
sensitive channels it influences, and how different ultrasonic stimulation 

parameters produce varying effects. To gain a better understanding of 
ultrasonic neuromodulation efficacy, it is necessary to conduct these 
studies in various species and different disease models, and set different 
ultrasonic stimulation parameters to observe the applicability, 
persistence and timeliness of ultrasonic stimulation. It is also crucial to 
address the thermal and cavitation effects of ultrasonic stimulation and 
improve ultrasonic focusing resolution to increase the precision of 
ultrasonic regulation. Finally, innovative ultrasonic equipment should 
be  developed to enhance the efficacy and applicability of wearable 
ultrasonic equipment.
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The assessment of 
interhemispheric imbalance using 
functional near-infrared 
spectroscopic and transcranial 
magnetic stimulation for 
predicting motor outcome after 
stroke
Songmei Chen 1,2†, Xiaolin Zhang 1†, Xixi Chen 2†, Zhiqing Zhou 2, 
Weiqin Cong 1, KaYee Chong 2, Qing Xu 1, Jiali Wu 2, Zhaoyuan Li 1, 
Wanlong Lin 1* and Chunlei Shan 2,3,4,5*
1 Department of Rehabilitation Medicine, Shanghai No.3 Rehabilitation Hospital, Shanghai, China, 
2 School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China, 
3 Center of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western 
Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China, 4 Engineering Research 
Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, 
China, 5 Institute of rehabilitation, Shanghai Jiao Tong University School of Medicine, Shanghai, China

Objective: To investigate changes in interhemispheric imbalance of cortical 
excitability during motor recovery after stroke and to clarify the relationship 
between motor function recovery and alterations in interhemispheric imbalance, 
with the aim to establish more effective neuromodulation strategies.

Methods: Thirty-one patients underwent assessments of resting motor threshold 
(RMT) using transcranial magnetic stimulation (TMS); the cortical activity of the 
primary motor cortex (M1), premotor cortex (PMC), and supplementary motor 
area (SMA) using functional near-infrared spectroscopy (fNIRS); as well as motor 
function using upper extremity Fugl-Meyer (FMA-UE). The laterality index (LI) of 
RMT and fNIRS were also calculated. All indicators were measured at baseline(T1) 
and 1 month later(T2). Correlations between motor function outcome and TMS 
and fNIRS metrics at baseline were analyzed using bivariate correlation.

Results: All the motor function (FMA-UE1, FMA-UE2, FMA-d2) and LI-RMT (LI-RMT1 
and LI-RMT2) had a moderate negative correlation. The higher the corticospinal 
excitability of the affected hemisphere, the better the motor outcome of the 
upper extremity, especially in the distal upper extremity (r  =  −0.366, p  =  0.043; 
r  =  −0.393, p  =  0.029). The greater the activation of the SMA of the unaffected 
hemisphere, the better the motor outcome, especially in the distal upper extremity 
(r  =  −0.356, p  =  0.049; r  =  −0.367, p  =  0.042). There was a significant moderate 
positive correlation observed between LI-RMT2 and LI-SMA1 (r  =  0.422, p  =  0.018). 
The improvement in motor function was most significant when both LI-RMT1 and 
LI-SMA1 were lower. Besides, in patients dominated by unaffected hemisphere 
corticospinal excitability during motor recovery, LI-(M1  +  SMA  +  PMC)2 exhibited 
a significant moderate positive association with the proximal upper extremity 
function 1 month later (r  =  0.642, p  =  0.007).
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Conclusion: The combination of both TMS and fNIRS can infer the prognosis of 
motor function to some extent. Which can infer the role of both hemispheres 
in recovery and may contribute to the development of effective individualized 
neuromodulation strategies.

KEYWORDS

stroke, transcranial magnetic stimulation, functional near-infrared spectroscopy, 
laterality index, interhemispheric imbalance

1. Introduction

Stroke has a high incidence and high disability rate worldwide 
(Bejot et al., 2016). More than half of strokes have impaired upper 
limb motor function, which seriously affects the quality of life and 
places a huge burden on families and society (Avan et  al., 2019). 
Currently, the recovery of upper limb motor function remains one of 
the challenges of post-stroke rehabilitation (Bertani et al., 2017).

Recent years have seen the rapid development of non-invasive 
brain stimulation technologies. Repetitive transcranial magnetic 
stimulation (rTMS) is considered one of the effective methods to 
improve upper limb motor function after stroke (van Lieshout et al., 
2019; Ni et al., 2022). At present, there are two theoretical models for 
the clinical application of rTMS in motor rehabilitation for stroke. 
They are the bilateral hemispheric competition model that advocates 
inhibition in the unaffected hemisphere (UH) or excitation in the 
affected hemisphere (AH) (Lefaucheur et al., 2020) and the vicariation 
model that advocates excitation in residual brain area of the AH or the 
UH (Di Pino et al., 2014). Given that these two theoretical models are 
inconsistent in guiding rTMS therapy, there is no consensus on the 
use of excitatory or inhibitory modulation in the UH (Long et al., 
2018). Understanding the progression of interhemispheric imbalance 
in brain activation and its contribution to motor functional recovery 
is important for the development of effective neuromodulation 
strategies (Kinoshita et al., 2019). If we know which hemisphere plays 
a dominant role in the process of motor function recovery, we can 
adopt modulatory strategies to excite that hemisphere or inhibit the 
contralateral hemisphere. Therefore, it is clinically important to 
accurately determine the interhemispheric imbalance and to develop 
individualized neuromodulation strategies based on it.

On the other hand, there is no uniform standard regarding the 
target site of rTMS stimulation for stroke patients’ motor function 
recovery. The most common site is the primary motor cortex (M1), 
because M1 is the major motor output pathway in humans (Lam et al., 
2018; Lefaucheur et al., 2020). In addition, studies suggested that the 
secondary motor cortical areas, including the premotor cortex (PMC) 
and supplementary motor area (SMA), can also be used as modulatory 
targets. The PMC has fiber connections to M1 in both the ipsilateral 
and contralateral hemispheres. When the lesion is large over M1 area, 
the PMC can function instead of M1 (Buetefisch, 2015; Plow et al., 
2015). Similarly, functional connections exist between SMA and M1 
and SMA are also involved in corticospinal projections that may 
facilitate motor recovery after stroke (Matsunaga et al., 2005; Diao 
et al., 2017). Therefore, an in-depth understanding of the changes in 
the motor cortex during function improvement facilitates us to 
understand the mechanisms of functional recovery.

As a neuromodulation technique, transcranial magnetic 
stimulation (TMS) is not only a treatment therapy but also an 
assessment tool (Groppa et al., 2012). Single-pulse TMS assessment 
metrics such as resting motor threshold (RMT), and motor evoked 
potential (MEP) can evaluate the excitability of corticospinal motor 
neurons, and the functional integrity of the corticospinal tract (CST) 
(Andrews et al., 2022). It has been demonstrated indicators by TMS 
can be used as valid biomarkers to assess the recovery of neurological 
function (Kelley et al., 2014). Besides, another study measured RMT 
by TMS and calculated the laterality index (LI) of cortical excitability 
to confirm asymmetric functional changes in the cerebral hemispheres 
after stroke (Di Lazzaro et al., 2016). Studies have shown that the 
success of motor recovery after stroke is significantly determined by 
the direction and extent of cortical excitability changes in both 
hemispheres (Stinear et al., 2015; Veldema et al., 2021). Understanding 
the contribution of either cortical hemisphere to motor recovery may 
facilitate the development of effective individualized rehabilitation 
strategies (Kumar et al., 2016). So, the TMS assessment may identify 
the altered interhemispheric imbalance and guide selection of 
appropriate modulation protocol for stroke patients.

In addition to TMS, functional near-infrared spectroscopy 
(fNIRS) is a neuroimaging method for assessing brain function 
(Delorme et al., 2019). fNIRS can detect activation patterns in the 
cerebral motor cortex, reflecting changes in neural remodeling during 
the recovery of motor function after stroke (Huo et al., 2019). It has 
been shown that cerebral hemodynamic activity reflected by fNIRS 
can be a reliable neurobiomarker for the assessment of limb motor 
dysfunction in stroke patients (Wang et al., 2023). It is well known that 
stroke-induced motor deficits are associated with an interhemispheric 
imbalance of motor activation (Cunningham et al., 2015; Tang et al., 
2015; Kinoshita et  al., 2019). As motor function is restored, the 
balance of interhemispheric activation in the motor-related cortex 
changes (Tang et  al., 2015). Then, a study showed that assessing 
cortical activation asymmetry by fNIRS can help predict the response 
to rehabilitation treatment (Tamashiro et al., 2019). Thus, fNIRS also 
promises to be a convenient technique for investigating the neural 
mechanisms underlying the dysfunction, which will deepen our 
understanding of stroke rehabilitation and potentially translate this 
knowledge to improve the effectiveness of rehabilitation interventions.

Although TMS and fNIRS assessment techniques have been used 
in clinical research, they also have certain limitations. fNIRS is able to 
detect a wide range of cortical areas, but it is limited by spatial 
resolution, which prevents it from detecting deep brain regions (Ni 
et al., 2022). In contrast, TMS measures the corticospinal excitability 
by evoking MEP in the primary motor cortical (M1). It only reflects 
the functional integrity of the cortical downstream pathways 
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emanating from M1, but compensates for the inability of fNIRS 
assessment to access deep brain motor pathways. The combined use 
of both methods will help us to gain insight into the changes in brain 
function during motor recovery after stroke. Therefore, we conducted 
a longitudinal, multimodal study using the clinical scale, TMS, and 
fNIRS measures to find the relationship between motor function 
recovery and interhemispheric imbalance changes.

2. Materials and methods

2.1. Participants

The present study was approved by the ethics committee at 
Shanghai No.3 Rehabilitation Hospital (ethics No. SH3RH-
2021-EC-012), and was registered in the China Clinical Trial 
Registration Center (registration No. ChiCTR2200057378). All 
patients were informed about the nature of this study.

Thirty-one first-ever stroke patients (age 65.42 ± 10.15 years) 
participated in this study. The participants with stroke in this study 
were recruited from Shanghai No.3 Rehabilitation Hospital. The basic 
information of participants was presented in Table  1. Criteria for 
selecting the subjects were as follows: (1) first-ever stroke, (2) age of 
30 and 80 years, (3) clear consciousness and stable vital signs, (4) no 
cognitive impairment (mini-mental state examination score ≥ 24 
points). The exclusion criteria were: (1) contraindications to TMS 
(Najib and Horvath, 2014), (2) having visual and hearing impairment 
and cannot cooperate to complete the trials, (3) having severe heart, 
liver, or kidney dysfunction or malignancy, (4) other 
neurological diseases.

2.2. Experimental design

In this study, patients underwent clinical, neurophysiological, 
and neuroimaging assessments. The clinical assessment was 
performed using FMA-UE. The neurophysiological assessment was 
performed using RMT for corticospinal excitability. The 
neuroimaging assessment was performed using fNIRS to assess 
changes in motor cortical activation. The assessment metrics were 
labeled as 1 at baseline and 2 in 1 month later, such as FMA-UE1 
and FMA-UE2. All participants received conventional medical 
treatments and rehabilitative therapies during participation. The 
conventional rehabilitative therapies include physiotherapy and 
occupational therapy.

2.3. Assessments and procedures

2.3.1. Clinical assessment
FMA-UE was used to quantify the initial deficit and to follow up 

on the recovery of voluntary movements of the paralyzed limb after 1 
month. All clinical assessments were performed by a blinded 
specialized assessor at baseline and 1 month later. FMA-UE is a 
measure of upper extremity motor function for stroke patients with a 
total score of 66, which means that the lower the score, the more 
severe the degree of impairment (Gladstone et al., 2002). The distal 

portion of the tested upper limb in FMA-UE was recorded as FMA-d, 
while the proximal portion was recorded as FMA-p.

2.3.2. TMS assessment
All subjects were evaluated with TMS which was carried out by 

M-100 Ultimate Pulsed magnetic Stimulation Device (Shenzhen 
Yingchi Technology Co., Ltd., Shenzhen, China). The patients were 
asked to sit in a relaxed position, and the skin on which the electrodes 
were attached was defatted with 95% alcohol cotton balls. The 
recording electrode was located in the muscle belly of the first dorsal 
interosseous (FDI), the reference electrode was located in the tendon 
of FDI, and the ground electrode was located in the forearm. Detection 
was performed in a single-pulse stimulation mode. The evaluator held 
a figure-of-eight-shaped coil with BY90A model to deliver TMS to the 
motor cortex. The maximum magnetic field change rate on the coil 
surface was 16.09kT/s, the peak stimulus intensity was 1 T, the pulse 
rise time was 62.0 μs, and the bidirectional wave unilateral pulse width 
was 200 μs. The optimal location of the M1 was first found according 
to the international 10/20 EEG positioning system, and then the coil 
was moved in small steps in the hand region of M1 until the position 
where maximal MEPs were consistently obtained was found. The coil 
was placed on the scalp at this location with handles pointing 
backward and rotated approximately 45° from the midline. TMS 
intensity was expressed as a percentage of maximum stimulator 
output (%MSO). The minimum TMS intensity with MEP which was 
elicited in the contralateral FDI greater than 50 μV for at least 5 of 10 
consecutive single-pulse stimuli was recorded as RMT. RMT was 
measured on both hemispheres separately, inducing MEP in the 
contralateral FDI (see Figure 1). For patients without evoked MEPs, 
RMT in the AH was defined as 110 %MSO (Kemlin et al., 2019).

2.3.3. fNIRS assessment
The fNIRS data acquisition was performed using the NirSmart 

system (Danyang Huichuang Medical Equipment Co., Ltd., China) 
with a sampling rate of 11 Hz. Optical signals of two different 
wavelengths (730 nm and 850 nm) can be recorded in the continuous 
waveform in this system. There are 14 light sources and 8 detectors on 
the acquisition cap, with a total of 26 channels. The region covered by 
the probe involves the sensorimotor areas of the bilateral cerebral 
cortex. We predefined the regions of interest (ROIs), including M1, 
SMA, and PMC (See Figure 2A).

In this study, fNIRS data in the task state were collected. All 
patients were asked to sit quietly and relaxed. The assessor would 
communicate the entire task flow with the patients in advance and ask 
them not to speak during the task. The task paradigm was block-
designed, which consists of alternating 3 grasping tasks and 3 rests. 
Each task block lasted 25 s and each rest lasted 30s (See Figure 2B). 
During the task period, patients grasped actively or passively (if the 
patients were unable to grasp actively, the assessor helped the patients 
to grasp passively) (Du et al., 2019).

2.4. Data analysis

2.4.1. TMS data processing and analyses
To evaluate the hemispheric asymmetry of motor cortex 

excitability, we calculated the interhemispheric LI of the RMT. The LI 
of RMT was calculated as Formula (1).
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LI RMT RMT RMT

RMT RMT
AH UH

AH UH
( ) = −

+  
(1)

LI (RMT) represents the imbalance of corticospinal excitability in 
both hemispheres. Thus, a positive value indicates higher corticospinal 
excitability in the UH. The greater the difference from 0, the higher 
the degree of imbalance between the cerebral hemispheres (Di Lazzaro 
et al., 2016).

RMT was also expressed as a ratio (R = RMTAH/RMTUH) (Kemlin 
et al., 2019). The value after 1 month (recorded as R2) minus the 
baseline (recorded as R1) obtained the difference of R, i.e., d(R). 
d(R) > 0 indicates more changes in corticospinal excitability in the UH 

and d(R) < 0 indicates more changes in corticospinal excitability in the 
AH (Patel et al., 2020; de Freitas et al., 2022).

2.4.2. fNIRS data preprocessing and analyses
The fNIRS data were preprocessed using the Homer 2.0 toolkit 

under the MatlabR2013a operating environment. Data pre-processing 
includes conversion of the original signals, identification of artifacts 
and noise, as follows: data conversion to convert the raw signal into 
light intensity; identification of artifacts and correction; band-pass 
filtering of noise in the range of 0.01–0.1 Hz to eliminate possible 
respiratory and heart rate interference; conversion of the filtered light 
intensity into oxyhemoglobin (HBO) level according to the modified 

TABLE 1 Demographic data and clinical history of the patients.

Patient Sex Age (years) Stroke type AH Stroke 
duration 

(days)

BI FMA-UE1

1 F 59 Infarction L 95 90 17

2 M 47 Infarction L 26 90 54

3 M 69 Infarction L 178 25 6

4 M 66 Infarction L 47 45 10

5 M 66 Infarction L 81 45 12

6 M 77 Infarction L 441 55 41

7 M 66 Infarction L 165 40 4

8 F 72 Infarction L 32 45 37

9 M 38 Infarction L 10 95 64

10 F 76 Infarction L 209 75 10

11 M 66 Infarction R 62 40 25

12 M 66 Infarction R 96 40 27

13 M 66 Infarction R 80 45 32

14 F 66 Infarction R 35 40 0

15 M 57 Infarction R 16 40 0

16 M 48 Hemorrhage R 68 55 6

17 M 78 Infarction R 59 90 44

18 M 64 Infarction R 68 30 6

19 F 61 Infarction R 9 35 8

20 F 74 Infarction R 101 65 35

21 F 79 Infarction L 102 30 16

22 M 73 Infarction L 153 60 15

23 M 61 Infarction L 182 45 26

24 M 66 Infarction R 177 60 21

25 M 42 Hemorrhage L 29 45 0

26 M 73 Infarction L 32 60 19

27 F 72 Hemorrhage R 88 45 9

28 M 72 Infarction R 20 65 40

29 M 72 Hemorrhage R 224 55 40

30 F 65 Infarction R 51 70 22

31 M 71 Hemorrhage R 63 60 36

M, male; F, female; L, left; R, right; AH, affected hemisphere; BI, Barthel index; FMA-UE1, Fugl-Meyer assessment for the upper extremity score at baseline.
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Beer-Lamber law. We analyze the HBO level because it is reliable and 
sensitive to changes in cerebral blood flow (Kinoshita et al., 2019).

The preprocessed data are imported into NirSpark analysis 
software. Firstly, the three segment blocks of each data were averaged 
according to the mark to obtain accurate and stable data. The HBO 
concentration within 5 s before task onset was used as the baseline. 
The average HBO concentration during task performance minus the 
baseline concentration was the relative change in HBO concentration 
(∆HBO). The ∆HBO on the corresponding channel of the ROI on 
each hemisphere was extracted and the LI was calculated to assess the 
hemispheric imbalance to determine the relative hemispheric 
dominance induced by the grasping task on the hemiplegic side 
(Borrell et al., 2023). The LI of ∆HBO was calculated as Formula (2). 
According to the following published literature in the previous 
manuscript (Borrell et  al., 2023), the absolute value (ABS) in the 
denominator of the formula would prevent possible zero value.

 
LI HBO

HBO HBO

HBO HBO

AH UH

AH UH

∆( ) = ∆ − ∆
∆( ) + ∆( )ABS ABS

 
(2)

LI (∆HBO) value ranges from −1 to 1, and it reveals which 
hemisphere experiences a larger change during the task. Negative LI 
(∆HBO) values indicate UH dominant activity, while positive LI 
(∆HBO) values indicate AH dominant activity (Borrell et al., 2023). 
Thus, the LI (∆HBO) value of “−1” indicates complete UH 
dominance, and the LI (∆HBO) value of “+1” indicates complete AH 
dominance. In this study, we calculated the LI of M1, SMA, PMC, and 
M1 + SMA + PMC.

2.5. Statistics analysis

Statistical analyses were performed with SPSS V.24.0 software. 
Behavioral data at baseline and 1 month later were tested using a 
paired t-test if they conformed to a normal distribution, otherwise, a 
nonparametric test was used. We  evaluated the bivariate relation 
between the neuroimaging metrics and TMS metrics. To identify 
functionally relevant metrics, we calculated the correlation between 
FMA-UE and TMS (LI-RMT) and neuroimaging metrics (LI-M1, 
LI-SMA, LI-PMC). To explore the correlation between the indicators 
in the case of recovery dominated by different cerebral hemispheres 
(AH or UH), we additionally grouped the d(R) > 0 and d(R) < 0 groups 
according to d(R) and performed correlation analyses. Pearson’s 
correlation test was used if a normal distribution was consistent, and 
nonparametric Spearman’s correlation test was used otherwise. Data 
conforming to the normal distribution are denoted by mean ± SD, 
otherwise, M (P25, P75). All data used a two-sided calibration with a 
test level of α = 0.05. According to the previous study (Prion and 
Haerling, 2014), the interpretation of correlation coefficients are as 
follows: 0 to ±0.20 is negligible, ±0.21 to ±0.35 is weak, ±0.36 to ±0.67 
is moderate, ±0.68 to 0.90 is strong, and ± 0.91 to ±1.00 is considered 
very strong.

3. Results

All 31 subjects completed two assessments at baseline and 1 
month later. At the TMS assessment, a total of 20 subjects were 

FIGURE 1

A schematic representation of TMS assessment. RMT, resting motor 
threshold; MEP, motor evoked potential; AH, affected hemisphere; 
UH, unaffected hemisphere.

FIGURE 2

Schematic representations of fNIRS assessment. (A) fNIRS channels 
and region of interests (ROIs) map. SMA, supplementary motor area; 
PMC, premotor cortex; M1, the primary motor cortex. (B) Block 
design paradigm. Each task block lasted 25  s and each rest lasted 
30s. The 10s pre-task period was used as the baseline.
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unable to induce the MEP at baseline and 19 subjects were unable 
to induce the MEP 1 month later. In addition, 23 subjects required 
assistance to complete the grasping task at the fNIRS assessment.

3.1. Metrics of interhemispheric imbalance 
and clinical assessment of motor function

3.1.1. Relationship between motor function and 
hemispheric asymmetry of corticospinal 
excitability

For all patients, motor function was significantly improved 1 
month later compared to baseline (p < 0.05).

There was a significant moderate negative correlation between 
LI-RMT1 and FMA-UE2 as well as FMA-d2 (r = −0.366, p = 0.043; 
r = −0.393, p = 0.029), which means the higher the corticospinal 
excitability of the AH, the better the motor outcome of the upper 
extremity, especially in the distal upper extremity. Additionally, a 
moderate negative correlation was observed between LI-RMT2 and 
FMA-UE1 (r = −0.474, p = 0.007) (see Figure 3).

3.1.2. Relationship between motor functional 
recovery and interhemispheric imbalance in 
motor cortical activity

For all patients, LI-SMA1 exhibited a significant moderate negative 
association with both FMA-UE2 and FMA-d2 (r = −0.356, p = 0.049; 
r = −0.367, p = 042), which means the greater the activation of the 
SMA of the UH, the better the motor outcome, especially in the distal 
upper extremity (see Figure 4).

3.1.3. Relationship between motor function and 
combined fNIRS and TMS metrics

We calculated the mean value of LI-SMA1 + LI-RMT1. All patients 
were grouped according to the obtained mean, with one group being < 
mean (named g1) and the other group being > mean (named g2). There 
was a significant difference between g2 and g1. Compared with the g2 at 
the same time point, the function score of FMA-UE2 and FMA-d2 
increased faster in g1 (p = 0.023 and p = 0.029, respectively), as shown in 
Table 2 and Figure 5. Both of these imply that the two states of SMA and 
M1 of the patient at baseline could predict future functional recovery.

3.2. Relationship between TMS and fNIRS 
measure of interhemispheric balance

For all patients, there was a significant moderate positive 
correlation observed between LI-RMT2 and LI-SMA1 (r = 0.422, 
p = 0.018). Additionally, LI-RMT2 exhibited a negative association 
with LI-M11 (r = −0.383, p = 0.034) (see Figure 6).

3.3. Correlation of motor outcome based 
on interhemispheric asymmetry of 
corticospinal excitability

In the d(R) > 0 group, LI-PMC2 exhibited a significant positive 
association with FMA-UE2 (r = 0.575, p = 0.020). 
LI-(M1 + SMA + PMC)2 exhibited a positive association with FMA-p2 
(r = 0.642, p = 0.007). There was a negative relation between LI-M12 
and LI-PMC2 (r = −0.536, p = 0.031) (see Figures 7A–C).

FIGURE 3

Significant correlations of motor function with LI- RMT. (A) Negative correlation between FMA-UE at baseline and LI-RMT at 1 month later; (B) Negative 
correlation between LI-RMT at baseline and FMA-UE at 1 month later; (C) Negative correlation between LI-RMT at baseline and FMA-d at 1 month later.
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In the d(R) < 0 group, FMA-d2 had a negative relation with 
LI-RMT2 (r = −0.541, p = 0.037). However, no significant associations 
were found between fNIRS metrics and TMS metrics in the d(R) < 0 
(see Figure 7D).

4. Discussion

It is known that the anatomic structure of the left and the right 
brain is generally symmetrical (Tang et al., 2015). A functional balance 
exists between the two hemispheres of the healthy brain, regulated by 
interhemispheric inhibition. This balance is disrupted after the onset 
of stroke (Shen et al., 2022). However, the role of the motor cortex of 
both hemispheres in the recovery of motor function remains 
controversial, especially the UH (Ni et al., 2022). Some studies show 
that activation of the UH increases interhemispheric inhibition in the 
AH (Dionisio et  al., 2018; Lefaucheur et  al., 2020), while others 
suggest that activation of the UH plays a compensatory role for the 
inactivation of the AH (Bradnam et al., 2012; Bertolucci et al., 2018). 
Therefore, predicting motor function outcomes based on the 
asymmetry of cortical excitability and motor cortical activation is 
important for developing rehabilitation programs.

The RMT measured by TMS is a standard measure of corticospinal 
excitability, and the ∆HBO measured by fNIRS is used to assess brain 
activation (Lee et  al., 2019; Badran et  al., 2020). To date, no 
combination of the two assessment methods to assess the imbalance 
in brain asymmetry has been reported. Our study is the first to 

combine TMS and fNIRS for investigating motor function outcome 
after stroke. We calculated the LI of RMT and ∆HBO, which reflects 
the asymmetry between the cerebral hemispheres, and investigated its 
relationship with motor function recovery. Exploring the underlying 
neural mechanisms of functional recovery after stroke will help us to 
develop new rehabilitation interventions.

In the current study, the patients had recovery of hemiplegic 
upper limb motor function after one month. It may have been a 
spontaneous neurological recovery or benefited from conventional 
rehabilitation. In these patients, those who initially had better motor 
function subsequently also had corticospinal excitability lateralized to 
the AH. Similarly, the more corticospinal excitability was lateralized 
to the AH at baseline, the better motor outcome after a month of 
recovery time. The result is consistent with the common pattern of 
motor function recovery. The lateralization of corticospinal excitability 
reflected by LI-RMT to the AH indicates that the functional integrity 
of the affected CST is not completely disrupted. The CST in the AH 
plays an important role in motor function recovery in the hemiplegic 
limb. It has been shown that the surviving neurons on the AH 
contribute to axonal remodeling of the CST, which promotes motor 
recovery after stroke (Okabe et al., 2017). Our result suggests that 
functional integrity of the CST measured by TMS-induced MEP helps 
predict motor function outcomes, which is consistent with previous 
studies suggesting that MEP deficits in the AH are associated with 
poorer motor recovery after stroke (Chen et al., 2023).

However, TMS assessment is obtained by evoking MEP in M1. It 
can only reflect the excitability of the corticospinal pathway emanating 
from M1. Compared to TMS, fNIRS can measure the activation of the 
entire motor cortex. Our study suggests that combining fNIRS with 
TMS provides complementary information superior to that of imaging 
methods in isolation. We found that the patients with SMA activation 
lateralized to the UH at baseline had better motor outcomes.

The SMA is a secondary motor area that plays a pivotal role in 
complex hand movements (Shirota et al., 2012). SMA and M1 both 
have a direct influence on force production during fine manual motor 
tasks (Entakli et al., 2014). A previous study using fMRI also found a 
correlation between task-related brain activation patterns and final 
motor status. They found that greater brain activation in the SMA at 
baseline was associated with better motor outcomes after stroke (Du 
et al., 2018). This may be specific recruitment of SMA to provide 
motor control in order to produce motion output during the motor 

FIGURE 4

Significant correlations of motor function with LI of motor cortical activity. (A) Negative correlation between LI-SMA at baseline and FMA-UE at 1 
month later; (B) Negative correlation between LI-SMA at baseline and FMA-d at 1 month later.

TABLE 2 Comparison between g1 and g2 with FMA-UE and FMA-d at 
different times.

Group FMA-UE1 FMA-UE2 FMA-d1 FMA-d2

M (P25, P75) M (P25, P75) M (P25, P75) M (P25, P75)

g1 (n = 16) 24 (11.3,40) 36 (15.5, 45.8) 6.5 (0,14.5) 12 (3.0, 15.8)

g2 (n = 15) 12 (6, 26) 12 (8.0, 33.0) 0 (0, 7.0) 0 (0, 7.0)

Z −1.622 −2.278 −1.707 −2.187

p 0.105 0.023* 0.088 0.029*

g1, the group of the value from LI-SMA1 + LI-RMT1 < mean; g2, the group of the value from 
LI-SMA1 + LI-RMT1 > mean; *Significant median difference at p < 0.05.
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task. Previous studies found that better motor outcomes were 
associated with higher baseline activation in bilateral SMA (Du et al., 
2018; Xu et al., 2021), whereas we found that it was SMA activation 
lateralized to the UH that led to better motor outcomes, especially in 
distal upper extremity motor function. Our data support the critical 
role of SMA activation lateralized to the UH in stroke recovery.

Furthermore, the relationship between the lateralization of 
corticospinal excitability in TMS and the lateralization of motor 
cortical activation in fNIRS was analyzed. At baseline, if M1 activation 
was lateralized to the AH, the improvement in motor function was 
accompanied by lateralization of corticospinal excitability to the 
AH. It is consistent with the model that motor functional recovery 
after stroke is dominated by M1 neural remodeling in the AH 
(Buetefisch, 2015; Yang et al., 2021). If SMA activation was lateralized 
to the UH, recovery of motor function was accompanied by 

lateralization of corticospinal excitability to the AH. A previous study 
has shown that improved motor function after stroke might be highly 
correlated with the functional connectivity of the ipsilesional M1 to 
the contralateral SMA (Chen et al., 2021). In this case, the SMA in the 
AH may play a compensatory role.

Our study shows that a multimodal model combining fNIRS, 
TMS, and clinical assessment predicts motor outcomes after stroke. It 
may have important clinical implications in guiding neuromodulation 
rehabilitation strategies. Previous studies have shown that inhibitory 
or facilitative rehabilitation techniques can be  used based on the 
imbalance in interhemispheric cortical excitability (Du et al., 2019; 
Veldema et al., 2021). It is well known that M1 is the major motor 
output pathway for motor control (Lam et al., 2018) and is also the 
most commonly used stimulation target for neuromodulation (Hallett 
et al., 2017; Lefaucheur et al., 2020). However, our results show that 
activation of SMA lateralized to the UH is also associated with good 
motor outcome. Besides, the improvement in motor function was 
most significant when both the corticospinal excitability 
predominantly in the AH (LI-RMT1) and SMA activation 
predominantly in the UH (LI-SMA1) conditions were met at baseline 
(Figure  3). Thus, it is reasonable to assume that the best motor 
outcome may be obtained when stimulating the M1 of the AH is 
added with excitatory stimulation of the SMA of the 
UH. We hypothesize that the SMA of the UH may play a compensatory 
role in motor recovery, especially in the distal limb motor. So, the 
SMA may also be a suitable target for rTMS stimulation to develop 
specific rehabilitation methods. However, the underlying mechanism 
needs further clinical study.

In addition, we calculated R-values using the RMT measured by 
TMS, which reflects the interhemispheric imbalance of corticospinal 
excitability. According to the difference in R-values before and after 
one month, the patients were divided into two groups. In the d(R) < 0 
group, corticospinal excitability changes were dominated by AH, 
while in the d(R) > 0 group, corticospinal excitability changes were 
dominated by UH. In the group dominated by the AH, motor outcome 
of the distal upper limb was positively correlated with altered AH 
corticospinal excitability. In other words, good motor function of the 
distal upper limb depended on the degree of recovery of CST function 
emanating from the AH.

Notably, in the group dominated by UH corticospinal excitability, 
motor outcomes in the upper limb as well as in the proximal were 

FIGURE 5

The frequency of FMA-UE2 and FMA-d2 in different groups. (A) The 
frequency distribution map as FMA-UE at 1 month later; (B) The 
frequency distribution map as FMA-d at 1 month later.

FIGURE 6

Significant correlations of TMS with fNIRS metrics. (A) Positive correlation between LI-SMA at baseline and LI-RMT at 1 month later; (B) Negative 
correlation between LI-M1 at baseline and LI-RMT at 1 month later.
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associated with AH-dominated PMC activation. We hypothesize that 
the CST emanating from AH is severely impaired in this group, and 
therefore the corticospinal excitability emanating from UH is 
dominant. This also implies that the anterior CST emanating from the 
UH has enhanced conduction signals, which can innervate the 
ipsilateral hemiplegic limb. Moreover, this compensatory neural 
pathway innervates more proximal muscles than distal muscles (Wang 
et al., 2019). On the other hand, it has been demonstrated that PMC 
has fiber connections to M1 in both the ipsilateral and contralateral 
hemispheres and that PMC in AH can function instead of M1 (Dum 
and Strick, 1991; Kantak et al., 2012). Meanwhile, our results show 
that AH-dominant PMC activation is positively correlated with 
UH-dominant M1, suggesting that recovery in the motor may 
be accompanied by enhanced functional connectivity between these 
two brain areas. It also plausibly explains the positive correlation 
between motor outcome and AH-dominated PMC activation 
observed in the proximal of the upper limb in this group. 
We demonstrate from the interhemispheric imbalance of corticospinal 
excitability combined with the lateralization of cortical activation that 
multiple mechanisms may be  involved in the process of motor 
function recovery. These may include the compensation of the PMC 
within the AH and the compensating effect of the UH.

The structure of the brain is complex, and the connections 
between brain regions are also variable. Our study suggests that 
combining fNIRS with TMS provides complementary information 
superior to that of imaging methods in isolation. It helps to deepen 
our understanding of brain diseases and provides valuable information 
for further exploration of neural mechanisms.

However, due to the limited sample size in our study, stratified 
analysis could not be performed. It is the limitation of our present 

study. Future studies will need to enroll more post-stroke patients to 
conduct stratified analysis by disease duration, disease severity, and 
disease type.

5. Conclusion

In conclusion, the present study provided evidence that the 
interhemispheric imbalance between corticospinal excitability and 
motor cortex activation can be  a biomarker for predicting motor 
recovery. The combined assessment of TMS and fNIRS can infer the 
role of both hemispheres in recovery and contribute to the 
development of effective individualized neuromodulation strategies. 
Further studies should include more participants with stroke to obtain 
a reliable relationship between these features and motor function state.
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FIGURE 7

Correlation analysis of motor outcome in different groups based on hemispheric asymmetry of corticospinal function. In the d(R)  >  0 group, (A) Positive 
correlation between LI of PMC and FMA-UE at 1 month later; (B) Positive correlation between LI of M1  +  SMA  +  PMC and FMA-p at 1 month later; 
(C) Negative correlation between LI-M1 and LI-PMC at 1 month later. In the d(R)  <  0 group, (D) Negative correlation between FMA-d and LI-RMT at 1 
month later.
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Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized 
by pervasive deficits in social interaction, communication impairments, and 
the presence of restricted and repetitive behaviors. This complex disorder is a 
significant public health concern due to its escalating incidence and detrimental 
impact on quality of life. Currently, extensive investigations are underway to identify 
prospective susceptibility or predictive biomarkers, employing a physiological 
biomarker-based framework. However, knowledge regarding physiological 
biomarkers in relation to Autism is sparse. We  performed a scoping review to 
explore putative changes in physiological activities associated with behaviors 
in individuals with Autism. We  identified studies published between January 
2000 and June 2023 from online databases, and searched keywords included 
electroencephalography (EEG), magnetoencephalography (MEG), electrodermal 
activity markers (EDA), eye-tracking markers. We  specifically detected social-
related symptoms such as impaired social communication in ASD patients. Our 
results indicated that the EEG/ERP N170 signal has undergone the most rigorous 
testing as a potential biomarker, showing promise in identifying subgroups 
within ASD and displaying potential as an indicator of treatment response. By 
gathering current data from various physiological biomarkers, we can obtain a 
comprehensive understanding of the physiological profiles of individuals with 
ASD, offering potential for subgrouping and targeted intervention strategies.

KEYWORDS

autism spectrum disorder, physiological biomarkers, electroencephalography, 
magnetoencephalography, electrodermal activity markers, eye-tracking markers, 
neurodevelopmental deficits

1. Introduction

1.1. Definition and overview of autism spectrum disorder

Autism spectrum disorder (ASD) represents a neurodevelopmental condition characterized 
by pervasive deficits in social interaction, communication impairments, and the presence of 
restricted and repetitive behaviors. This intricate disorder impacts individuals across a wide 
spectrum, exhibiting varying degrees of severity and manifestations. According to the World 
Health Organization, it is estimated that the median prevalence of ASD children in studies from 
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2012 to 2021 worldwide is about 1 in 100 children, with a trend of 
increasing prevalence over time (Zeidan et al., 2022), and however, the 
1% prevalence may still underestimate the prevalence in low- and 
middle-income countries (Elsabbagh et al., 2012). And in Asia, ASD 
is probably more common than previously thought. The average 
prevalence of ASD before 1980 was around 1.9/10,000 while in China 
the median prevalence of ASD among only 2–6-year-old children who 
are reported from 2000 upwards was 10.3/10,000 (Sun and Allison, 
2010). Fundamentally, ASD involves aberrant patterns of brain 
development and functioning. Neuroscientific investigations have 
shed light on the underlying neural mechanisms associated with ASD, 
revealing alterations in brain connectivity, structural anomalies, and 
disruptions in neurotransmitter systems.

Impaired social interaction stands out as a prominent feature of 
ASD. Individuals with ASD commonly encounter difficulties in 
comprehending and responding to social cues, including facial 
expressions and gestures (Lord et al., 2018). Challenges in establishing 
and maintaining reciprocal relationships, coupled with deficits in 
empathetic understanding, further contribute to the observed social 
impairments in this disorder. Communication deficits also feature 
prominently in ASD. Language development may be delayed or absent 
in certain individuals, while others exhibit atypical speech patterns, 
such as repetitive or idiosyncratic language usage (Mitchell et  al., 
2006). Difficulties in understanding and employing nonverbal 
communication, encompassing gestures and body language, are also 
prevalent among individuals with ASD. Restricted and repetitive 
behaviors serve as defining characteristics of ASD (Harrop et  al., 
2014). These behaviors manifest in diverse forms, including repetitive 
movements, insistence on sameness, highly focused interests, and 
adherence to routines. Sensory sensitivities, ranging from 
hypersensitivity to hyposensitivity to sensory stimuli, are frequently 
observed in individuals with ASD.

The etiology of ASD is multifactorial, encompassing genetic and 
environmental factors. Advancements in genetic research have 
identified numerous genes associated with ASD, contributing to our 
understanding of the underlying biological mechanisms. Additionally, 
prenatal, and perinatal factors, such as maternal immune activation 
and exposure to environmental toxins, have been implicated in 
ASD development.

1.2. Significance of investigating 
physiological biomarkers in ASD research

The absence of a discernible biological signature for ASD, most 
likely attributable to its inherent heterogeneity, poses challenges in 
accurate prognosis, including the prediction of treatment response 
and even diagnosis, thereby complicating the clinical landscape (Shen 
et al., 2020). The field of ASD faces challenges due to the lack of robust, 
reliable, and valid biomarkers that can facilitate objective diagnosis 
and personalized treatment recommendations for patients. In this 
review, we  examine and assess the evidence supporting the most 
promising biomarkers in ASD. The candidate biomarkers under 
scrutiny encompass electroencephalography markers (EEG), 
magnetoencephalography markers (MEG), electrodermal activity 
markers (EDA), and eye-tracking markers. Our aim is to provide a 
scoping review of the prevalent views on abnormal physiological 
behaviors in individuals with ASD.

2. Methods

In this study, we conducted a scoping review using Google Scholar 
as well as PubMed with specific keywords. Subsequently, 
we implemented three rounds of meticulous screening to identify 
relevant studies. First, we got 1,544 records from January 2000 to June 
2023 by searching relative keywords on PubMed and Google Scholar, 
and we  removed 1,377 records because of duplication. Then 
we included 81 reports out of 167 records according our inclusion 
criteria: (1) utilization of a neurophysiological measure; (2) inclusion 
of an ASD group, encompassing individuals diagnosed with autism, 
ASD, Asperger syndrome, autistic disorder, or pervasive 
developmental disorder – not otherwise specified (PDD-NOS); (3) 
presence of a typically developing (TD) control group; (4) publication 
in English; and (5) peer-reviewed status. In the third screening 
process, we examined again based on the previous criteria, and further 
excluded 31 records further (8 records did not include ASD subjects, 
12 records were review, 8 records were non-relevant studies, 1 record 
was animal model, and 2 were duplicate records). Finally, 50 records 
were included and analyzed in this scoping review. This whole 
screening process was done by Jiatong Shan and Di Zhao separately 
and decision was moderated if there is a difference. As the third party, 
Yunhao rated each record included, and all included records have 
relatively high quality.

3. Results

3.1. Event-related potentials in ASD and its 
connection to abnormal sensory 
perception

Researchers employ event-related potentials (ERPs) to assess the 
processing of sensory stimuli, including social cues. No matter for N1, 
P1, MMN or P300 waves, the experimenters did not get a unified 
conclusion on the rules of ASD’s abnormal amplitude and latency. 
Some studies think that ASD patients are insensitive to stimuli, that 
is, the amplitude decreases and the latency increases; some studies 
show that ASD patients are too sensitive to stimuli, that is, the 
amplitude increases and the latency decreases. Different types of 
stimuli also lead to different results; and the result within the ASD 
group itself is different from that between ASD and the control group 
(Brandwein et al., 2015).

First, as for N1&P1, studies have shown that the amplitude of N1b 
is related to the severity of ASD symptoms, for example, the more 
severe the symptoms of ASD, the smaller the amplitude of N1b 
(Brandwein et al., 2015). However, a unified conclusion has not been 
reached in the comparison of P1&N1 waves between the ASD group 
and the control group. For example, some researchers believe that the 
N1b amplitude of the ASD group is smaller than that of the control 
group, which may be due to their insensitivity to sound, resulting in a 
smaller ERP amplitude (Bruneau et al., 1999); there are also results 
showing that the N1b amplitude of the ASD group is higher than that 
of the control group, and the latency is reduced. It was caused by the 
oversensitivity of the ASD group to sound stimuli (Oades et al., 1988). 
Both conclusions make sense somehow. In addition, it has been shown 
in the literature that the type of auditory stimulus also affects the 
amplitude of early auditory components in children with ASD. For 
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example, ASD children will not have an increased P1 amplitude under 
the stimulation of exaggerated verbal stimuli, while normal children 
tend to increase significantly. It may explain that ASD children lack 
the neural reinforcement of verbal grandiosity (Chen et al., 2021). This 
may also explain the inability of children with ASD to understand 
some emotional words and sentences. But no studies have shown 
whether this phenomenon persists as children with ASD grow up.

Second, as for the MMN wave, some literature has shown that 
ASD children respond poorly to changes in some emotional stimuli 
(such as fear), so they have reduced MMN wave amplitude and 
prolonged latency to fearful sound stimuli (Korpilahti et al., 2007; 
Yoshimura et al., 2018). However, the researchers also did not get a 
unified conclusion on the amplitude and latency of MMN. Another 
literature believes that the MMN latency of ASD patients is smaller, 
and the amplitude is larger, indicating that ASD patients are more 
sensitive to differential stimuli (Gomot et al., 2002; Ferri et al., 2003). 
There is also literature showing that there is no significant difference 
in the MMN amplitude of ASD and the control group (Ceponiene 
et al., 2003). Like the auditory early component, it has been shown that 
stimulus type also plays a role in the properties of the MMN. For 
example, MMN waves disappear when ASD children change 
consonants, suggesting that ASD children have abnormal insensitivity 
to consonants (Lepistö et al., 2005).

Third, as for the P3 wave (which reflects a shift toward stimuli that 
requires a change in attention), some results show that there is no 
change in P3a amplitude in adults with ASD but there is an increased 
P3a amplitude in children with ASD (Gomot et al., 2002; Ferri et al., 
2003), other results show that there is an increased P3a amplitude in 
adults (Iwanami et al., 2014). It seems that the amplitude of P3a is 
related to the subject’s age. Also, the type of stimulus is equally 
important. ASD children will only have a disappearance of P3a 
towards verbal stimuli, and they will not have a disappearance of P3a 
towards non-verbal stimuli (Ceponiene et al., 2003; Lepistö et al., 
2005). This suggests that deficits in children with ASD occur when 
verbal attention is diverted. In addition, some literature pointed out 
that the two parameters dP3a and fP3a in P3a should be analyzed 
separately. The dP3a latency of the ASD group was shorter than that 
of the control group, and the more severe the symptoms of ASD, the 
shorter the dP3a latency. And only in the ASD group, the latency of 
fP3a becomes smaller with age, and there is no such trend in the 
control group; the more severe the symptoms of the ASD group (such 
as rejection of physical contact, etc.), the smaller the latency of fP3a 
(Chien et al., 2018). It is certain that ASD severity seems to be related 
to the latency of P3a reduction.

Finally, as for the N170 wave, the range of subjects discussed in 
current papers is wide: from ASD patients, ASD + TSC (tuberous 
sclerosis), ASD + ADHD, to family members of ASD children. At 
present, the generally accepted conclusions are: (1) ASD patients have 
poor ability to process faces. Most of the literature points out that the 
N170 latency of the control group was shorter when processing faces 
than when processing objects, but there was no significant difference 
between the processing of faces and objects in ASD children (Tye 
et  al., 2015). The latency of N170 when processing faces in ASD 
patients is longer than that in the control group, and 6 literatures have 
reached this conclusion (McPartland et al., 2004; Webb et al., 2006; 
O'Connor et al., 2007; McPartland et al., 2011; Jeste et al., 2013; Tye 
et al., 2013); (2) 12 literatures point out that control group is more 
sensitive to upside-down faces than positive faces, and the latency of 

N170 is larger when observing upside-down faces, while ASD patients 
had no significant difference in N170 latency between upside-down 
and positive faces (Dawson et  al., 2002; McPartland et  al., 2004; 
Dawson et al., 2005; O'Connor et al., 2005, 2007; Webb et al., 2006; 
McCleery et  al., 2009; Batty et  al., 2011; Hileman et  al., 2011; 
McPartland et al., 2011; Webb et al., 2012; Tye et al., 2015); in addition, 
for the lateralization of brain processing faces, 8 literatures believed 
that normal subjects’ N170 is right-sided (reflected in larger amplitude 
and shorter latency in the right hemisphere), by contrast, ASD 
patients’ N170 is left-sided or no significant difference between two 
hemispheres (Schultz et  al., 2000; Pierce et  al., 2001; Carver and 
Dawson, 2002; McPartland et al., 2004; Senju et al., 2005; McCleery 
et al., 2009; Tye et al., 2013, 2015); (3) ASD patients also have abnormal 
eye direction. Some studies suggest that the N170 latency of ASD to 
averted gaze is longer than that of direct gaze, and the processing of 
direct gaze is faster, while the control group has no significant 
difference between the two kinds of gazes (Senju et al., 2005). Some 
other literature pointed out that there is no significant difference 
between averted gaze and direct gaze in the ASD group. While the 
control group process direct gaze much faster. An interesting 
phenomenon is that the parents of ASD children do not seem to show 
the effect of left hemisphere lateralization in facial expression 
processing. While their N170 amplitude is larger in their right 
hemisphere than in their left hemisphere (Márquez et al., 2019).

3.2. Resting-state EEG abnormalities in ASD 
and its connection to attention diversion 
and memory

First, the literature shows that there is no significant difference 
between the ASD group and the control group in the resting EEG with 
eyes-closed conditions (Mathewson et al., 2012); however, when the 
eyes are open and there is visual stimulation, there are some 
differences in the power and coherence of delta, theta, beta, gamma, 
alpha in the ASD group. There are 9 literatures that show that the 
delta, theta, beta, gamma energy of ASD patients is higher than that 
of the control group, and the alpha energy is lower than that of the 
control group (Chan et al., 2007; Klimesch et al., 2007; Murias et al., 
2007; Coben et al., 2008; Chan et al., 2009; Wang et al., 2013; Mably 
and Colgin, 2018; Brito et al., 2019; Neuhaus et al., 2021). And there 
are also 3 literatures showing that the alpha energy of the ASD group 
is higher than that of the control group (Cantor et al., 1986; Dawson 
et al., 1995; Mathewson et al., 2012). Because coherence and power are 
positively correlated, and phase synchronization is closely related to 
one’s ability to prepare for upcoming behaviors. For example, a lower 
alpha energy could explain a weaker ability to prepare for future 
behavior due to a lack in spike frequency or insufficient precision for 
ASD patients (Mathewson et al., 2012; Guyon et al., 2021).

Second, the degree of ASD symptoms is also a factor. Studies have 
shown that the more severe the ASD, the smaller the energy of gamma, 
delta, theta, and alpha, which is somewhat different from the above 
conclusions (Maxwell et al., 2015; Shephard et al., 2018). Gender is 
also a factor. As men grow older, the gamma energy decreases; and the 
stronger the social interaction ability of men with ASD, the lower 
theta, and alpha energies, but there is no such trend for women 
(Mathewson et al., 2012). Compared with the control group, the alpha 
frequency decreased more rapidly with age in the ASD group, which 
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also seems to explain the faster loss of ASD’s ability to shift attention 
(Dickinson et al., 2022).

Finally, about long-range connectivity, only two literature believed 
that the temporal and frontal lobes connections of ASD were enhanced 
(Courchesne and Pierce, 2005; Murias et al., 2007), 17 papers believed 
that the ASD brain connection was weakened (Castelli et al., 2002; 
Belmonte et al., 2004; Just et al., 2004; Courchesne and Pierce, 2005; 
Villalobos et al., 2005; Cavanna and Trimble, 2006; Mottron et al., 
2006; Boly et al., 2007; Just et al., 2007; Coben et al., 2008; Ben-Sasson 
et al., 2009; Weng et al., 2010; Marco et al., 2011; Cheng et al., 2015; 
Padmanabhan et al., 2017; Martínez et al., 2020; Wantzen et al., 2022). 
The scopes of insufficient connection involve frontal and bilateral 
temporal & occipital regions; and some higher-order regions which 
are related with neuron aging processes and pre-existing 
neuropathology; their default mode network (DMN), the 
sensorimotor network (SMN), the dorsal attention network (DAN) 
internal and inter-connection are also insufficient (Cheng et al., 2015; 
Padmanabhan et al., 2017; Wantzen et al., 2022). These deficiencies 
lead to memory loss, language deficits, decreased perception of 
environmental stimuli, and reduced ability to shift attention in ASD 
patients, which are some common behavioral symptoms in 
ASD subjects.

3.3. Magnetoencephalography markers

3.3.1. Introduction to MEG and its advantages in 
measuring neural activity

Since MEG has ability to extract detailed information on the 
phase and frequency of neural and relative to EEG, MEG has a high 
temporal resolution and moderate spatial resolution responses, some 
research literature uses MEG to study the power band of different 
frequencies both under resting state and task states in patients with 
ASD. Functional connectivity and complexity in patients with ASD 
were also studied. Among the selected articles, a total of 8 discussed 
the application of MEG in ASD, two of which were measured under 
resting state and the other six were measured under task state.

3.3.2. MEG  findings related to sensory processing 
in ASD

There are 4 literature which point out that ASD children have an 
abnormal visual processing pattern as well as right lateralization. 
Besides, all of them study gamma band. Because of different tasks, 
these literatures draw different conclusions of gamma response. One 
study of visual tasks (Kikuchi et al., 2013) show that ASD children 
have a significant rightward connectivity between parietotemporal 
areas, which is also pointed out by another two reports (Koshino et al., 
2005; Monk et al., 2009), via an excess of gamma band oscillation 
(Orekhova et  al., 2007). It indicates that ASD children have an 
abnormal cortical information processing pattern during visual 
perception and attention (Jensen et al., 2007; Wang, 2010; Kikuchi 
et al., 2013). Another non-verbal visual reasoning task also achieved 
similar conclusions (Takesaki et al., 2016). This study shows that some 
of ASD patients have a better performance in visual reasoning tasks, 
because they have an increased connectivity with the visual area/
stronger connectivity from the occipital area/increased gamma 
synchronization in V1 supragranular layers and influences V4 through 
feedforward projections (Khan et  al., 2015), and there is a right 

lateralization (Kikuchi et al., 2013). It shows that the magnitude of 
feedforward connectivity associated with visual information 
represents a neurophysiological index of autistic visual strengths 
(Grandin, 2009a,b).

Two other experiments on visual processing concluded that ASD 
children’s gamma power was smaller in emotional processing and 
maternal face processing. One used the mother’s face to compare with 
non-facial stimuli (Hasegawa et al., 2023), showing that when ASD 
children look at their mother’s face, their low-frequency (30–59 Hz) 
gamma power in the right banks of superior temporal sulcus, right 
fusiform gyrus, right pericalrine cortex decrease compared to TD 
group; their high frequency (61–90 Hz) gamma power in right banks 
of superior temporal sulcus, bilateral fusiform gyrus and bilateral 
pericalcarine cortex also decrease compared to TD group, also 
revealing the right-sided gamma anomaly in children with ASD and 
its problems in social communication and face-processing. Another 
study concludes that young people with ASD have increased response 
times when looking at emotional faces, The intrinsic mechanism is 
that gamma responses from right occipital cortex to occipital-fusiform 
areas and occipital pole is largely absent (Bentin et al., 1996; Bailey 
et al., 2005; Wright et al., 2012). The conclusion may reveal a potential 
mechanism that may explain difficulties in face and emotion 
processing in ASD.

For auditory abnormalities of ASD hearing, studies have shown 
that the latency of M100 increases, and the more severe the ASD 
symptoms, the longer the latency of M100 is (100 ms is bilateral 
primary/secondary auditory cortex time duration). Besides, the 
transient gamma-band evoked power of ASD children decreases. It 
shows that ASD children have a perturbed auditory cortex neural 
activity/reduced conduction velocity (Gage et al., 2003; Wilson et al., 
2007; Edgar et al., 2015a,b; Port et al., 2016). As for the factors of 
hemispheric laterality and age, another study showed that M100 was 
significantly delayed in the right hemisphere of ASD, and only the 
normal group had a decrease in M100 latency with increasing age, and 
ASD did not show this trend (Roberts et al., 2010). Only one study 
suggested that the M100 latency of ASD was smaller than that of TD 
(Ferri et al., 2003).

3.3.3. MEG -based connectivity studies in ASD
In an experiment of resting state activity, the functional connectivity 

(also the coherence between brain regions) of ASD and its complexity 
surprisingly compensate for each other, with one being higher and the 
other lower. ASD has a lower complexity in frontal regions in the delta 
band and occipital-parietal regions in alpha band and a higher 
complexity in parietal regions in the delta band, central and temporal 
regions in theta band, frontal-central boundary regions in the gamma 
band (Khan et al., 2013; Ghanbari et al., 2015). Comparatively, ASD has 
an increased short-range connectivity in frontal lobe in the delta band 
and increased long-range connectivity in temporal, parietal and 
occipital lobes in alpha band (Courchesne and Pierce, 2005; Barttfeld 
et al., 2011; Ghanbari et al., 2015). This is similar to the conclusion of 
another study that also studied resting state (Cornew et al., 2012). ASD’s 
relative delta power increases at frontal regions (Cantor et al., 1986; 
Murias et al., 2007) and alpha band power increases at temporal and 
parietal regions. In addition, results show that ASD has increased 
power of all delta and alpha band, theta band, beta and gamma band 
power (Orekhova et al., 2007; Cornew et al., 2012). Although a few 
studies believed that the alpha band power of ASD decreased (Cantor 
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et al., 1986; Murias et al., 2007), this may be related to the fact that the 
experiment was done in the opening-eye state. This suggests that 
resting-state oscillatory activity in ASD is location-specific and supports 
the conclusion that connectivity in these regions increases (Figure 1).

3.4. Electrodermal activity markers

Overview of EDA as a measure of sympathetic nervous system 
activity and its application in ASD research. Electrodermal activity 
(EDA) is a property of our human bodies which causes continuous 
variation in the electrical characteristics of the skin. Our skin 
resistance varies with the state of sweat glands which is controlled by 
the sympathetic nervous system. The skin conductance is related with 
psychological or physiological arousal. If the sympathetic branch in 
the autonomic nervous system is aroused, the sweat gland activity 
increases, the skin conductance also increases. So currently, it is 

mostly used in clinic to track ASD children’s both psychologically and 
physiologically induced autonomic changes. It shows that ASD 
children have an abnormal pattern of EDA as well as a reduced average 
EDA in ASD children’s resting autonomic regulation. Also, evidence 
shows that there is a relationship between EDA and sensory symptoms 
or emotional dysregulation like anxiety as well as some repetitive 
behaviors in ASD children.

3.4.1. Relationship between EDA markers and 
emotional regulation difficulties in ASD

The feasibility of using autonomic nervous system (ANS) activity as 
a marker of anxiety in ASD was explored in a study. Both typically 
developing children and children with ASD were examined, and 
significant changes in heart rate and electrodermal activity were observed 
during anxiety-inducing tasks. However, a differential pattern of 
response was found between the two groups, indicating an atypical 
autonomic response to anxiety in ASD characterized by sympathetic 

FIGURE 1

The screening process through this scoping review.
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over-arousal and parasympathetic under-arousal. Variability in 
sympathetic nervous system arousal was further examined in relation to 
symptom severity in children with ASD. The study revealed that EDA in 
high-anxiety ASD group is different from low-anxiety ASD group. 
Low-anxiety ASD group has a relatively higher arousal (elevated EDA 
magnitudes, faster latencies, slower habituation) and high-anxiety ASD 
group has a lower arousal (lower EDA magnitudes, slower latencies, 
faster habituation; Panju et al., 2015).

Additionally, the relationship between EDA, sensory symptoms, and 
repetitive behaviors in children with ASD was explored. Although 
parents reported higher levels of sensory symptoms and repetitive 
behaviors in their children with ASD, no significant differences in EDA 
measures were found between the ASD and typically developing groups. 
This indicates that the reported differences in symptoms may not 
be directly related to measured EDA arousal or reactivity (McCormick 
et al., 2014).

Finally, a study examined the changes in skin conductance level 
(ΔSCL) in toddlers with ASD and typically developing toddlers in 
response to anger, joy, and fear emotions. Toddlers with ASD exhibited 
attenuated ΔSCL in the fear condition, which may predict the emergence 
of internalizing and externalizing problems. The study suggests that 
ΔSCL can serve as a dimension associated with behavioral responses in 
negatively emotionally challenging events in young children (Vernetti 
et al., 2020). In conclusion, the reviewed studies provide evidence for 
atypical autonomic function in ASD, particularly in sympathetic activity. 
The findings underscore the heterogeneity within ASD and emphasize 
the role of anxiety, autonomic features, and individual variability in 
understanding the autism spectrum. EDA shows promise as a potential 
measure of physiological arousal, anxiety, and individual differences 
within ASD, although further research is needed to fully elucidate its 
clinical utility.

3.5. Eye-tracking markers

3.5.1. Importance of eye-tracking technology in 
studying social attention in ASD

Eye-tracking technology is the process of measuring either the 
point of gaze (eye positions) or the motion of an eye relative to the 
head (eye movement). Because eye-tracking technology can be used 
in both static tasks as well as dynamic tasks with videos and study 
abnormal ASD patients’ gaze pattern. Density including response 
time, fixation frequency, fixation duration, saccade amplitude can 
be studied in ASD group versus TD group. Several reviewed studies 
explain the potential relationship between ASD’s abnormal gazing 
pattern and their deficits in social attention and social motivation.

3.5.2. Eye-tracking findings in individuals with ASD
ASD patients have failure to develop normal social relationships, and 

they also have sensory-perceptual processing deficits that weaken their 
abilities to attend and perceive social stimuli in daily living contexts. 
These behavioral abnormalities have something to do with their deficits 
in interpreting dynamic and interactive social stimuli, especially in 
reduced gaze at the organs like eyes and mouth. They are less sensitive to 
their motherese which is opposite in TD group. ASD children have a 
central coherence weakness (CWW) as well as worse gaze shift in joint 
attention following others, which means they focus more on specific 
things instead of global social context as well as they fail to focus on their 
attention as normal people do.

3.5.3. Correlation between eye-tracking markers 
and social-communicative deficits in ASD

Different stimuli are studied in a study to test whether there is a 
significant difference between ASD group and TD group (Chevallier 
et al., 2015). Result shows that unlike static visual exploration task and 
dynamic visual exploration (faces and objects presented side-by-side), 
ASD children show a much less fixation time in the interactive visual 
exploration task (children are playing with objects) compared to TD 
group, which also indicates that ASD children have deficits in social 
attention because they have an abnormal gazing pattern in daily dynamic 
social stimuli depicting interaction.

Besides, in another study which explores the parts of face ASD 
patients prefer to gaze at (Jiang et al., 2019), ASD patients are 
relatively more sensitive to forehead, hair, ears, and chin which are 
irrelevant to emotion, and they are less sensitive to eyes and 
mouth compared to TD group. In general, ASD patients have a 
longer response time, fixation number (the number of fixations 
subjects make in each trial) and fixation duration, while they have 
a shorter in fixation frequency (the average number of fixation 
subjects make in each second of trial). This explains why ASD 
have difficulties in understanding others’ emotions and 
non-verbal communication.

Additionally, combining with results in fMRI, ASD children have a 
decreased eye-tracking related attention motherese with reduced 
activation in superior temporal area. However, TD group has the 
strongest response to motherese compared to mild and moderate affect 
speech. This indicates that ASD children have deficits in close 
relationship. Several studies propose mechanisms behind ASD patients’ 
deficits in social attention (Xiao et al., 2022). First one is CWW. This 
study analyzes ASD patients’ gazing pattern including what part of image 
and how long they gaze at, as well as let ASD patients to verbally report 
what they see on the screen. Results show that ASD children have more 
fixation number in localized AOIs instead of global picture. They cannot 
understand the whole picture of social context, failing to integrate social 
cues arising from the recognition of emotions in faces or from the 
environment in order to understand people’s interactions and 
relationship between social stimuli (Tsang and Chu, 2018; Tassini et al., 
2022). Second one is both delay in response and shorter fixation time to 
visual attention to social stimuli, suggesting ASD patients may 
misinterpret social information and subsequent social cognitive 
processing because of skipping registering important momentary social 
information (Tsang and Chu, 2018). The third one is a reduced ability to 
engage in joint attention. ASD patients have less gaze shifts and lower 
gaze accuracy following others’ attention. And the more severe ASD 
symptoms are, the less the gaze shifts are, and lower gaze accuracy is. 
ASD patients’ gaze accuracy is lower when only eye gaze information is 
available than both eye gaze and head movement are available. This also 
shows that ASD children have difficulties in communication and social 
cognition (de Belen et al., 2023).

4. Conclusion

4.1. Recap of physiological biomarkers in 
ASD

In our review, we screened over 160 literatures, and we focused 
on 50 literatures in details. Through EEG, MEG, EDA, and 
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eye-tracking, we conducted a complete and accurate review of ASD 
patients’ abnormal physiological biomarkers as well as their 
relationship with abnormal social behaviors. In general, ASD 
patients have abnormal latency, amplitude and power of EEG and 
MEG wave, suggesting they have abnormal sensory processing, and 
they also have an abnormal functional connectivity and complexity. 
Besides, ASD patients have an abnormal EDA and sympathetic 
nervous system activity, with higher possibility to have emotional 
regulation difficulties. ASD patients also have deficits in social 
attention with abnormal gazing pattern to faces and interpreting 
social context.

4.2. Potential applications and implications 
of these biomarkers in diagnosis and 
intervention

These biomarkers imply the abnormalities in social interaction, 
emotion, sensory processing in ASD patients’ daily life, which are 
what we expect. Through physiological biomarkers, researchers can 
find a bridge between neural abnormalities and behavioral deficits. 
For example, a low EDA level shows that patients have a high level 
of anxiety compared to the typical subjects; less fixation time to the 
interactive visual exploration tasks shows that patients have deficits 
in interaction and social communication; and a reduced MMN 
amplitude and a prolonged MMN latency show that patients have 
deficits in perceiving emotions. The potential applications of 
physiological biomarkers in ASD have bright future. For example, 
researchers can use these physiological biomarkers to detect early 
symptoms of ASD in children and do some interventions towards 
ASD. For example, early symptoms may include: no difference of 
N170 latency to upright and inverted faces; a lower complexity in 
frontal regions in the delta band and occipital-parietal regions in 
alpha band and a higher complexity in parietal regions in the delta 
band, central and temporal regions in theta band, frontal-central 
boundary regions in the gamma band, etc. Besides, researchers can 
use certain level of abnormalities in physiological biomarkers to 
grade the severity of ASD. For instance, the more severe ASD is, the 
smaller the latency of P3a is; the more severe the symptoms of ASD 
are, the smaller the amplitude of N1b is; and the more severe the 
ASD, the smaller the energy of gamma, delta, theta, and alpha 
are, etc.

4.3. Future directions for research and 
advancements in the field

Future research should focus more on the studies about EDA and 
eye-tracking because there are not so many pieces of records on these 
topics, which means that single and separate result may not ensure the 
generalizability of the conclusion. Besides, more unified results about 
EEG and MEG should be  made because currently, results really 
diverge on the amplitude and latency of magnetoencephalogram and 
electroencephalogram, increasing the difficulty of recognizing and 
treating ASD patients. More accurate devices, more rigorous 
measuring methods, and more subjects should be considered in the 
future studies.

5. Limitation

In this research, we did not include the studies of fNIRS and 
fMRI as our first proposed title is “A Scoping Review of 
Electrophysiological Markers in Autism.” However, it will 
be  complete to also study what have been done for fNIRS and 
fMRI. Besides, because we initially wanted to do a systematic review 
with all literatures in this field, we failed to focus on the novelty of 
studies, especially for the studies in latest 3 years. In the future, 
we will include more recent study results. Last but not least, we will 
modify our review format into a systematic review and do relative 
meta-analysis to provide a more complete and effective review in 
the future.
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Prefrontal activation in response 
to a plantar contact task under 
open and closed eye conditions in 
patients with cerebral infarction
Zhi-Quan Yang 1,2, Meng-Fan Wei 2 and Jia-Ning Xi 1*
1 Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China, 2 Beijing Zhongguancun 
Hospital/Zhongguancun Hospital, Chinese Academy of Sciences, Beijing, China

Objective: This study investigates the effect of a bilateral (paralyzed side, 
healthy side) plantar contact task on dorsolateral prefrontal activation in patients 
recovering from cerebral infarction under open and closed eye conditions.

Methods: We selected 10 patients with cerebral infarction, admitted to the 
neurorehabilitation center of Beijing Rehabilitation Hospital, affiliated with Capital 
Medical University, from January 2019 to July 2020, who met our established 
criteria. Under open-eye and closed-eye conditions, the paralyzed and healthy 
sides performed the plantar contact tasks separately. The dorsolateral prefrontal 
region was monitored simultaneously with functional near-infrared spectroscopy 
(fNIRS), and activation was analyzed according to the curve-type changes of 
oxyhemoglobin and deoxyhemoglobin changes in the dorsolateral prefrontal 
cortex with 560 near-infrared monitoring channels.

Results: After stratifying the data based on the eyes-open and eyes-closed 
conditions, some degree of heterogeneity was observed between the layers. 
Under the eyes-closed condition, the Pearson χ2 was 0.142, with a p value of 
0.706, indicating no significant impact of the eyes-closed condition on the 
activation of the dorsolateral prefrontal cortex during the plantar task, whether 
performed on the paralyzed or the healthy side.

In contrast, the Pearson χ2 value was 15.15 for the eyes-open condition, with a 
p value of 0.002. This suggests that carrying out the plantar task, either on the 
paralyzed or the healthy side, with eyes open significantly influenced the activation 
of the dorsolateral prefrontal cortex. Furthermore, activation of the dorsolateral 
prefrontal cortex was 1.55 times higher when the task was executed with the 
paralyzed side compared to the healthy side. This implies that the paralyzed side 
was more likely to activate the dorsolateral prefrontal lobe when performing the 
plantar contact task under eyes-open conditions.

Conclusion: Observations via fNIRS revealed that the plantar contact task elicited 
dorsolateral prefrontal cortex activation. Moreover, the activation effect was 
intensified when performed on the paralyzed side under eyes-open conditions. 
Therapeutic methods that leverage these findings—namely cognitive-motor 
therapies that promote the recovery of motor functions by activating cognitive 
control brain regions via perception (information construction)—may hold 
promise.

KEYWORDS

fNIRS, plantar contact task, cerebral infarction, dorsolateral prefrontal lobe, 
rehabilitative
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1. Introduction

Stroke is a disease caused by impaired cerebral blood circulation 
with a high rate of disability (Maenza et al., 2020). Studies indicate 
that approximately 90% of individuals recovering from stroke 
experience varying levels of functional impairment, with walking 
dysfunction among the most prominent (Hobbs and Artemiadis, 
2020). Hemiparesis (Bogousslavsky et al., 1996), the most common 
functional deficit among patients with cerebral infarction, often 
results in patients’ inability to walk independently, necessitating 
reliance on assistance from others or wheelchair use for mobility. 
Even those who regained independent walking face challenges such 
as decreased foot contouring ability, compromised lower limb 
stability, and diminished walking efficiency due to foot drop during 
the swing phase and foot lateral edge contact at the end of the stance 
phase. These complications contribute to reduced ambulatory 
capabilities and a significantly increased fall risk. This severely 
affects patients’ mobility, safety, and quality of life, acting as a major 
barrier for stroke survivors with hemiplegia to reintegrate into their 
families and society.

Regaining walking ability is a major task for motor function and 
activities of daily living (ADL) rehabilitation in hemiplegic stroke 
patients. In clinical practice, cognitive-motor therapy, which 
emphasizes perceptual input and cognitive-driven movement, has 
been increasingly practiced clinically in improving walking ability 
in patients with cerebral infarction, especially in tasks requiring 
attention and processing speed, such as multitasking and gait 
adaptation tasks (Montero-Odasso et  al., 2012). Some studies 
demonstrated the importance of cortical function for locomotion, 
as well as a greater emphasis on some methods to improve motor 
function by activating cognitive processes in the cortex (Fritz et al., 
2015; Pothier et al., 2018; Hazra et al., 2022). In addition, cognitive-
motor training, in which a cognitive task is performed alongside 
motor training, can more effectively strengthen the functional brain 
network connections between motor-cognitive brain areas and 
facilitate the activation of the cerebral cortex, thus promoting brain 
functional network remodeling and improving the patient’s 
functional impairment (Caetano et  al., 2017; Pang et  al., 2018). 
However, the mechanism of action may involve brain functional 
remodeling, motor relearning, and neural facilitation, but its 
neurophysiological mechanism is not established.

Hence, we designed a plantar contact task based on the therapeutic 
principles of cognitive-motor therapy and used a portable fNIRS 
technique to monitor its effects on dorsolateral prefrontal activation 
during the treatment to analyze and explore the possible mechanisms 
of perception (constructing information) to promote motor function 
recovery. We hypothesize that cognitive-motor therapy can promote 
the recovery of motor function in cerebral infarction patients by 
activating cognitive control of brain areas through perceptual haptics.

2. Research subjects and methods

2.1. Research subjects

We selected 10 patients with cerebral infarction, admitted to the 
neurorehabilitation center of Beijing Rehabilitation Hospital, affiliated 
with Capital Medical University, from January 2019 to July 2020, who 
met our established criteria. The inclusion criteria included: ① Patients 
who met the diagnostic criteria of cerebral infarction formulated by 
the Fourth Academic Conference on Cerebrovascular Diseases 
(Neurology CSo, 2015) and confirmed as the first onset by cranial CT 
or MRI examination; ② Aged between 18 and 65 years; ③ Duration of 
disease less than 6 months, stable vital signs, clear consciousness, and 
ability to follow instructions; ④ Absence of serious acute or chronic 
heart valve disease, cardiomyopathy, frequent recent attacks of angina 
pectoris, unstable angina pectoris, or other organic heart diseases; ⑤ 
The ability to maintain an independent sitting position with knees 
capable of more than 90 degrees flexion and feet capable of sliding 
backward; ⑥ Normal vestibular system function and proprioception.

The exclusion criteria included: ① Pregnant or lactating women; 
② Those with involuntary twitching, tremor, or other severe organic 
diseases and neurological diseases, who were unable to cooperate with 
the completion of the examination; ③ Aphasia; ④ Mental impairment, 
hearing impairment, comprehension impairment, or severe cognitive 
impairment; ⑤ History of orthopedic surgery, hip dislocation, 
unhealed fractures, or severe osteoporosis; ⑥ Presence of scoliosis and 
other spinal deformities; ⑦ Malignant tumors, bleeding tendency; ⑧ 
Patients with deteriorating conditions, with new infarct foci, or 
cerebral hemorrhage.

The study was approved by the Ethics Committee of Beijing 
Rehabilitation Hospital, Capital Medical University, and all study 
subjects provided written informed consent.

2.2. Research methods

2.2.1. Apparatus for fNIRS test
This study used a portable fNIRS brain imaging system, from 

Shimadzu, Japan (Figure  1). This system employs a 3-wavelength 
(780 nm, 805 nm, and 830 nm) absorbance meter algorithm to 
measure the changes in oxygenated hemoglobin (Oxy-Hb), 

FIGURE 1

Portable fNIRS brain imaging system.

Abbreviations: fNIRS, Functional near-infrared spectroscopy; ADL, Activities of 

daily living; Oxy-Hb, Oxygenated hemoglobin; Deoxy-Hb, Deoxygenated 

hemoglobin; NIR, near-Infrared; PFC, Prefrontal cortex; Fp, Frontopolar midline 

point; ROIs, Regions of interest; RDPFC, Right dorsolateral prefrontal cortex; 

LDPFC, Left dorsolateral prefrontal cortex; OR, Odds ratio.
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deoxygenated hemoglobin (Deoxy-Hb), and total hemoglobin 
concentrations. The light source of this system is a 3-wavelength near-
infrared (NIR) semiconductor laser, and the detector is an avalanche 
photodiode. The device is powered by a 15 V AC adapter or a lithium 
battery, and the external output includes a 3-bit digital signal and a 
10-bit analog signal. The dimensions are W253 × D222 × H68 mm 
(excluding protruding parts), and the weight is approximately 1,600 g 
(excluding the computer, battery, and fiber).

The equipment comprises an optical fiber, a probe, fNIRS 
detection equipment, and a laptop computer. The probe is color-
coded, with red representing an integrated LED light source head 
combining 780, 805, and 830 nm wavelengths, while blue indicates the 
near-infrared light detection head. The probe converts the NIR light 
signals detected during the experiment into electrical signals for 
further processing in the computer. The testing machine 
communicates wirelessly with the computer. During testing, the light 
source probe and detection receiving probe are secured using fiber 
optic cap jacks, forming a 2×8 array with 22 sampling channels 
(Figure 2). Each testing area, or sampling channel, is determined by 
the area between every two adjacent light source heads and 
receiving heads.

2.2.2. Test procedure
The experimental conditions were set to an ambient temperature 

of 15–30°C, with a temperature variation within 5°C/h, relative 
humidity of 45–85% (ensuring no dew or ice formation), and air 
pressure between 700 and 1,060 hPa.

The subjects were dressed in loose clothing and barefoot, though 
socks were allowed. They wore portable fNIRS head caps. Using 
continuous wave (CW) technology mode, we  monitored the 
dorsolateral prefrontal cortex (PFC) with a time resolution of 0.075 s 
and a 2.0–3.0 cm depth to measure the concentrations of Oxy-Hb and 
Deoxy-Hb.

For optode placement, 8 emitting optodes (red dots) and 8 
receiving optodes (blue dots) were positioned on the subject’s 
dorsolateral prefrontal lobe, maintaining a 3 cm spacing. The 
detection area was the region between the emitting and receiving 
optodes, constituting a total of 22 detection channels. We focused on 
the 14 channels covering the dorsolateral prefrontal lobe. The 
frontopolar midline point (Fp) was determined according to the 
international 10–20 electrode configuration method, ensuring the 
central emitting optode was positioned on the Fp point (Figure 2). 

Before the experiment, we cleared the patient’s hair from the scalp 
area where the optodes were placed. Following installation, an 
instrument self-test was performed to confirm the smooth 
optical path.

The procedure involved (1) the patient relaxing, sitting, and 
stepping on a small 6 cm diameter red elastic ball (Figures 3, 4) under 
Light NIRS monitoring; (2) while seated, the patient was asked to 
perform a plantar contact task, moving the ball from heel to toe and 
vice versa at a controlled speed, flexing and extending the knee joint, 
and feeling the trajectory changes of the ball under their foot; (3) the 
activation of the dorsolateral prefrontal lobe was tested under eyes-
open and eyes-closed conditions, with both the paralyzed and healthy 
side of the lower limb performing the task.

During the procedure, a professional staff member was present. If 
a patient experienced pain or the ball slid from under their foot, the 
test was paused, adjustments were made for comfort or to restore the 
ball’s position, and then the test resumed.

2.2.3. Observed indicators
The plantar contact task designed for this trial was based on 

cognitive-motor therapy principles designed to promote improved 
motor function in the affected knee and ankle by reconstituting the 
cognitive process of the plantaris minor (Cabral et al., 2022). Because 
of the limited number of optodes lined up for fixation and test optodes 
in the fiber optic cap used for testing, the cortical domain of the 
dorsolateral prefrontal area, a key brain region associated with many 
higher cognitive functions, was selected for fNIRS monitoring. The 
Brodmann areas were used as the basis for the localization of 
prefrontal cortical areas, while the 10–20 systematic map, frequently 
used in EEG for brain functional area localization, aided in 
determining the distribution of each channel at different regions of 
interest (ROIs). Among the channels, the right dorsolateral prefrontal 
cortex (RDPFC) was primarily covered by channels 1, 2, 8, 9, 10, 16, 
and 17. In contrast, channels 6, 7, 13, 14, 15, 21, and 22 mainly focused 
on the left dorsolateral prefrontal cortex (LDPFC). Subjects in the 
experiment were tested for a total of four separate testing sessions, 
included the plantar contact task on the paralyzed side of the eyes-
open condition, the healthy side of the eyes-open condition, the 
paralyzed side of the eyes-closed condition, and the healthy side of the 
eyes-closed condition, respectively (Figure 5). In this experiment, our 
primary attention was on 560 channels (ch; 14ch/case × 10 cases/
session × 4 sessions = 560ch).

FIGURE 2

Placement of optical poles and test area.
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2.2.4. Methods for analysis of brain activation
Oxy-Hb has been identified as the most sensitive indicator of 

regional cerebral blood flow among fNIRS signals (Hoshi et al., 
1985). Cognitive-related tasks are known to induce changes in brain 
rheological parameters, serving as a stable parameter for brain 
oxygenation. Activation of brain regions leads to dilation of local 

blood supply, increasing blood flow by approximately 30–50% and 
boosting blood oxygen consumption by around 5%. These changes 
prompt a hemodynamic response that often results in elevated 
levels of blood Oxy-Hb and decreased Deoxy-Hb levels (Suto et al., 
2004; Nakahachi et  al., 2008). Therefore, in this study, the 
relationship between the changes in the Oxy-Hb and Deoxy-Hb 
curves during the time phase of performing the plantar contact task 
was divided into four types (Figure 6), and subsequent statistical 
analyses were performed with the characteristic curve changes of 
all channels.

2.2.5. Statistical analysis
SPSS 26.0 software was used to complete the data processing. 

The total number of channels in this experiment was 560ch (14ch/
case × 10 cases/ session × 4 sessions = 560ch), and the effect on the 
activation of each channel in the prefrontal lobe was hierarchical 
listing information in the open-eye condition, paralyzed side versus 
healthy side, and the statistical inference of its independence test 
was made by stratified χ2 test. p < 0.05, statistically significant.

3. Results

3.1. Activation of each channel in the 
dorsolateral prefrontal lobe

The dorsolateral prefrontal cortex, a crucial cerebral region 
linked to numerous advanced cognitive operations, was chosen for 
fNIRS monitoring. This region comprised seven channels on the left 
and right sides, resulting in 14 channels. According to the four types 
of changes in the relationship between the main components of the 
Oxy-Hb and Deoxy-Hb curves during the execution phase of the 
plantar contact task, A + B (Type A and B in Figure  6) was 
considered activated, and C + D (Type C and D in Figure 6) was the 
inactive state. The number of each curve type is shown in Tables 1, 
2. 64 dorsolateral prefrontal channels were activated, 76 were 
inactivated in the paralyzed side, 33 dorsolateral prefrontal channels 
were activated, and 107 were inactivated in the healthy side during 
the open-eye and closed-eye conditions, respectively. In the 
closed-eye condition, the paralyzed side performed the task with 47 
activated and 93 inactive dorsolateral prefrontal channels and the 
healthy side performed the task with 50 activated and 90 inactive 
dorsolateral prefrontal channels.

3.2. Effect of open and closed-eye 
conditions on paralyzed versus healthy 
side performing the task

The stratified chi-square test was employed to compute the 
chi-square test results separately for the aggregate data under both 
open and closed eyes conditions (Table 3). The Test of Homogeneity 
of Odds Ratio (OR), utilized for determining the consistency of OR 
values across varying strata, is also called the test of homogeneity 
of OR values. The statistics associated with these two homogeneity 
tests and their test results are documented in Table  4. For the 
Breslow-Day method, χ2 was 9.259 with p = 0.002, while for the 

FIGURE 3

Plantar contact task (the patient was asked to perform a plantar 
contact task, moving the ball from heel to toe and vice versa at a 
controlled speed, flexing and extending the knee joint, and feeling 
the trajectory changes of the ball under their foot).

FIGURE 4

Red soft elastic sphere (diameter 6  cm).
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Tarone method, χ2 was 9.258 with p = 0.002. Both methodologies 
exhibited p < 0.05, which implies that post-stratification, according 
to whether the eyes were open or closed, there exists a degree of 

heterogeneity in the OR values between strata. Combining OR 
values at this time is inappropriate, and stratification is 
recommended for reporting.

FIGURE 5

The study protocol.

FIGURE 6

(A) Type A, Oxy-Hb upstream separated (activated). (B) Type B, Companion Oxy-Hb up (activated). (C) Type C, Companion Oxy-Hb downstream. 
(D) Type D, Oxy-Hb downstream separated. X-axis is time (ms),Y-axis is compound concentration (mmol/L).

TABLE 1 Number of each curve type for the relationship between Oxy-Hb and Deoxy-Hb in the dorsolateral prefrontal brain region under the eyes-
open condition.

Paralysis side Healthy side

Curve type Left dorsolateral 
prefrontal

Right dorsolateral 
prefrontal

Left dorsolateral 
prefrontal

Right dorsolateral 
prefrontal

A 4 6 0 0

B 24 30 22 11

C 34 24 17 36

D 8 10 31 23
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In the closed-eye condition, performing the plantar task on either 
the paralyzed or healthy side showed no significant effect on 
dorsolateral prefrontal activation (Pearson χ2 = 0.142, p = 0.706). In the 
eyes-open condition, we  found a statistically significant difference 
(Pearson χ2 = 15.15, p = 0.002) in dorsolateral prefrontal lobe activation 
between the paralyzed and healthy sides, suggesting that the side on 
which the plantar task is performed influences activation.

3.3. Activation of the dorsolateral prefrontal 
lobe in the eyes-open condition with 
paralysis versus the healthy side performing 
the task

The previous results indicated that the eyes-open condition was 
influential in the execution of the plantar contact task on the paralyzed 
side versus the healthy side. Therefore, after removing the eyes-open 
and eyes-closed factors, the relationship between the paralyzed side 
versus the healthy side in performing the task and the activation of the 
dorsolateral prefrontal lobe was tested using both Cochran’s and 
Mantel–Haenszel chi-square tests, the former being a modified version 
of the latter, and the results are shown in Table 5. p-values were found 
to be less than 0.05, indicating that the paralyzed side of the patient 
versus the healthy side differed in activation of the dorsolateral 
prefrontal lobe when performing the plantar contact task.

The Mantel–Haenszel odds ratio was estimated to be 0.646. In this 
study, the variables were set as follows: for ‘side’ (1 = paralyzed, 

2 = healthy) and for ‘activation’ (1 = unactivated/C + D, 2 = activated/ 
A + B). Hence, an OR of 0.646 indicates that dorsolateral prefrontal 
activation was 0.646 times higher on the healthy side than the paralyzed 
one during task performance. In other words, the dorsolateral prefrontal 
activation during task performance on the paralyzed side was 1.55 times 
greater than on the healthy side. In the eyes-open condition, the 
paralyzed side was more likely to activate the dorsolateral prefrontal 
during the plantar contact task.

4. Discussions

The role of cognitive function in motor tasks has gained increasing 
attention in research, and the significance of cortical function in the 
neuromodulatory mechanisms associated with walking has been 
highlighted. In this study, we examined the impact of a plantar contact 
task on the activation of the dorsolateral prefrontal cortex in patients 
with post-stroke hemiplegia under both eyes-open and eyes-closed 
conditions. The patients carried out the task at a self-determined pace, 
sequentially transitioning the ball from the heel to the toe by flexing 
and extending the knee joint and continuously experiencing the 
trajectory change of the ball on the foot sole. Based on the fNIRS 
observations, the execution of the plantar contact task was effective in 
activating the dorsolateral prefrontal lobe. This task requires sensory 
input to the plantar surface of the foot regarding the blob’s trajectory 
and movement, generating a perceptual experience. Patients in a stable 
sitting posture primarily innervated the knee and ankle joints of the 
lower limbs to control the small ball planetary, signifying substantial 
cognitive engagement in this motor process.

Cortical afferents to the frontal motor cortex come from three 
sources: parietal somatosensory cortex, prefrontal cortex, and cingulate 
cortex (Fuster, 1993; Yip and Lui, 2023). In contrast, previous studies 
in rhesus monkeys have shown that the prefrontal cortex, primarily 
responsible for cognitive functions, has interactive fiber connections 
with the optic cortex (striate area), temporal lobe, and parietal lobe. It 
has direct or indirect fiber connections with the basal forebrain, 
cingulate gyrus, and hippocampus, extending fiber projections to the 
basal ganglia and hypothalamus. The prefrontal cortex has a well-
developed granular layer IV that receives direct projections from the 
dorsomedial thalamic nucleus, the only neocortex with interactive fiber 
connections to this cortical information “portal. It is the only neocortex 
that interacts with this cortical information “portal.” This complex fiber 
connection pattern enables it to play a key role in perceiving abstract 
rules, working memory, attentional regulation, and cognitive functions 
such as planning and strategy of behavior, thinking, and reasoning 
(Kandel et al., 2000). Radiological studies have shown that cognitive 

TABLE 2 Number of each curve type for the relationship between Oxy-Hb and Deoxy-Hb in dorsolateral prefrontal brain regions under closed-eye 
condition.

Paralysis side Healthy side

Curve type Left dorsolateral 
prefrontal

Right dorsolateral 
prefrontal

Left dorsolateral 
prefrontal

Right dorsolateral 
prefrontal

A 12 15 7 18

B 13 7 20 5

C 18 14 33 17

D 27 34 10 30

TABLE 3 Pearson chi-square test results.

Item χ2 p

Closed-eye conditions 0.142 0.706

Eyes-open condition 15.15 0.000

TABLE 4 Odds ratio homogeneity test.

Methods χ2 p

Breslow-Day 9.259 0.002

Tarone’s 9.258 0.002

TABLE 5 Independence test of the conditions.

Methods χ2 p

Cochran’s 6.183 0.013

Mantel–Haenszel 5.729 0.017
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task training combined with motor training enhances the 
hemodynamics in the dorsolateral prefrontal cortex (Erickson et al., 
2007). Watanabe and Funahashi (2018) suggested that the parallel 
processing of multitask information mainly occurs due to the 
involvement of the dorsolateral prefrontal lobe, selectively activating 
different prefrontal cortex regions when processing various task 
modules. Stroke patients demonstrated enhanced activation of brain 
regions in the superior frontal gyrus, inferior frontal gyrus, bilateral 
cingulate gyrus, and right precentral gyrus associated with motor 
performance and learning, somatosensory, motor planning, and 
conflict information processing (Peters et al., 2019).

We also observed variability in dorsolateral prefrontal lobe 
activation related to whether the eyes were open or closed. After 
considering the stratified influences of open and closed eyes, in the 
closed-eye situation, the execution of the plantar contact task on the 
paralyzed side or healthy side did not affect dorsolateral prefrontal 
activation. In contrast, in the eyes-open condition, the execution of the 
plantar contact task on the paralyzed side or the healthy side was an 
important influence on dorsolateral prefrontal activation, and the 
dorsolateral prefrontal activation was 1.55 times higher on the 
paralyzed side than on the healthy side during the task. It is suggested 
that the change in motor control difficulty associated with performing 
the task on the paralyzed or healthy side with eyes open and external 
visual influences can enhance the activation of the cognitive control 
cortex represented by the dorsolateral prefrontal lobe. Studies have also 
probed motor cortical excitability by open versus closed eyes and 
similarly found that the stimulus–response curve obtained with eyes 
open was steeper than that obtained with eyes closed and that the 
closed-eye state may affect the recruitment of cortical circuits and thus 
reduce evoked motor output, which is also consistent with our results 
(Chen and Huang, 2018). In the eyes-open condition, the paralyzed 
side of the task is more activated to the dorsolateral prefrontal lobe and 
less activated to the healthy side. Compared to the healthy side, the 
increased difficulty of performing the plantar task on the paralyzed side 
necessitates greater activation of the cognitive control cortex. This 
allows for more robust information input to the regions of the brain 
processing the stimulus. Moreover, increasing the complexity of 
cognitive-motor tasks enhances the activation and interconnectedness 
of cortical networks (Rietschel et al., 2012). The plantar contact task 
involves visual conduction as well as proprioception in the eyes-open 
condition and proprioceptive conduction in the eyes-closed condition. 
It has been found that motor and cognitive tasks compete with each 
other for attentional resources and reorganize their allocation when a 
person is completing a cognitive-motor task. Allocating a portion of 
the resources fully devoted to cognition and proprioception to vision 
when eyes are open, the effective attentional resources allocated to the 
proprioceptive task are reduced (Snijders et al., 2007). Some scholars 
have argued (Walker et al., 2000; Ruffieux et al., 2015) that the visual 
system ensures the stability of the body by collecting information about 
its spatial position and other information, and that plantar tasks can 
be better accomplished. When the visual input is blocked when the 
eyes are closed, the visual feedback will be reduced, and the function 
of the vestibular system and proprioceptive system of the human body 
will be reduced. As a result, the human body’s postural adjustment 
ability decreases when performing tasks with eyes closed compared to 
eyes open, making it more difficult to complete the task. Some scholars 
have also found (Remaud et al., 2012; Kabbaligere et al., 2017) that 
visual, vestibular and cognitive functions are all important factors in 
the control of human position and movement. When a dual task is 

performed with normal visual input, the visual center will compensate 
for the completion of the cognitive task. It has also been found that 
brain activity recorded by electroencephalogram (EEG) is strongly 
modulated by the closed-eye state compared to the open-eye state. The 
use of fNIRS to measure cortical activity implies that a decrease in 
activity may reflect reduced utilization of a brain region (Lustig et al., 
2009; Cabeza et al., 2018), whereas an increase in activity may signal a 
compensatory recruitment mechanism (Cabeza et al., 2002; Schneider-
Garces et al., 2010). The higher the task difficulty, the greater the need 
for mobilization and recruitment within the compensable range for 
motor control, resulting in stronger activation of cognitive control 
brain regions (Qiao et al., 2020).

Interestingly, no type A curves were observed during the execution 
of the plantar contact task on the healthy side, with type A representing 
typical activation curve changes. This suggests that less difficult 
conditions are less likely to evoke a substantial blood oxygen response in 
the prefrontal lobe, leading to a typical activation pattern. Information 
from the occipital and parietal lobes related to vision and 
somatosensation forms perceptions translated into actual actions (motor 
output), primarily via the dorsolateral prefrontal cortex, which directly 
connects with the motor cortex (Miller and Cohen, 2001; Wallis et al., 
2001; Szczepanski and Knight, 2014). This is consistent with earlier 
theories proposing a hierarchical organization in the prefrontal cortex, 
with the anterior end controlling abstract cognitive abilities and the 
posterior end regulating motor functions (Badre and D'esposito, 2009). 
However, it has also been suggested that the frontopolar and medial 
prefrontal cortex are closely related to the limbic system of the medial 
temporal lobe (Medial temporal) and thus have a stronger role in long-
term memory, emotion, and motivation. Although various subdivisions 
of the prefrontal cortex control different aspects of cognitive function 
and play a major role in a specific function, they operate in concert when 
performing a specific task (Erickson et al., 2007). The most important 
neuromodulatory function performed by the dorsolateral prefrontal lobe 
is related to the inhibitory effect of this region on the amygdala and the 
hypothalamic–pituitary–adrenal axis. It usually relies on connections 
with other subcortical areas, which are then translated into action 
motivation via the limbic and mesocortical dopamine systems (Bigliassi 
and Filho, 2022). As stroke patients recover, external stimuli trigger 
endogenous neural repair mechanisms. These mechanisms are 
stimulated by motor training and cognitive behaviors, which together 
promote cortical activation. It promotes neural regeneration and 
increases the number of cortical neuronal synapses, which leads to faster 
information processing (Pang et al., 2018).

5. Conclusion

The execution of the plantar contact task, as observed through 
fNIRS, can effectively stimulate the dorsolateral prefrontal lobe. When 
combined with conditions of open and closed eyes, this activation 
effect can be enhanced by implementing the plantar task through the 
paralyzed side of the patient and moderately increasing task difficulty. 
Therapies rooted in such cognitive-motor techniques may provide a 
novel approach to promote motor function recovery through the 
perception and stimulation of cognitive control brain regions; however, 
their therapeutic impacts warrant further exploration. This study has 
certain limitations as it focused solely on the channels encompassing 
the dorsolateral prefrontal brain region and included a small patient 
population suffering from cerebral infarction.
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Altered brain spontaneous activity 
in patients with cerebral small 
vessel disease using the amplitude 
of low-frequency fluctuation of 
different frequency bands
Sina Chen 1, Ruiwang Huang 2, Mingxian Zhang 2, 
Xiaohuang Huang 1, Shuiqiao Ling 1, Shuxue Liu 1* and Nan Yang 1*
1 Zhongshan Hospital of Traditional Chinese Medicine, Zhongshan, Guangdong, China, 2 Center for Study 
of Applied Psychology, School of Psychology, South China Normal University, Guangzhou, Guangdong, 
China

Background: Previous studies showed that cerebral small vessel disease (cSVD) 
is a leading cause of cognitive decline in elderly people and the development 
of Alzheimer’s disease. Although brain structural changes of cSVD have been 
documented well, it remains unclear about the properties of brain intrinsic 
spontaneous activity in patients with cSVD.

Methods: We collected resting-state fMRI (rs-fMRI) and T1-weighted 3D high-
resolution brain structural images from 41 cSVD patients and 32 healthy controls 
(HC). By estimating the amplitude of low-frequency fluctuation (ALFF) under three 
different frequency bands (typical band: 0.01–0.1  Hz; slow-4: 0.027–0.073  Hz; 
and slow-5: 0.01–0.027  Hz) in the whole-brain, we analyzed band-specific ALFF 
differences between the cSVD patients and controls.

Results: The cSVD patients showed uniformly lower ALFF than the healthy 
controls in the typical and slow-4 bands (pFWE  <  0.05). In the typical band, cSVD 
patients showed lower ALFF involving voxels of the fusiform, hippocampus, 
inferior occipital cortex, middle occipital cortex, insula, inferior frontal cortex, 
rolandic operculum, and cerebellum compared with the controls. In the slow-
4 band, cSVD patients showed lower ALFF involving voxels of the cerebellum, 
hippocampus, occipital, and fusiform compared with the controls. However, there 
is no significant between-group difference of ALFF in the slow-5 band. Moreover, 
we found significant “group × frequency” interactions in the left precuneus.

Conclusion: Our results suggested that brain intrinsic spontaneous activity of 
cSVD patients was abnormal and showed a frequency-specific characteristic. 
The ALFF in the slow-4 band may be more sensitive to detecting a malfunction 
in cSVD patients.

KEYWORDS

spontaneous brain activity, amplitude of low-frequency fluctuation, cerebral small 
vessel disease, mild cognitive impairment, white matter hyperintensity, lacune, cerebral 
microbleed
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1. Introduction

Cerebral small vessel disease (cSVD) refers to an intracranial 
vascular disease that involves various pathological and neurological 
processes affecting brain blood vessels (Feng et al., 2021). The disease 
of cSVD exhibits a high prevalence, which largely exceeds that of 
large-vessel stroke (Dey et al., 2016). Up to 45% of dementia cases 
may be brought on by CSVD, which also causes 20% of all strokes 
worldwide, 25% of which are ischemic strokes (also known as lacunar 
strokes). It is responsible for roughly 20% of all strokes worldwide 
and 25% of ischemic strokes (also known as lacunar strokes), of 
which 20% result in disability for the patient (Pantoni, 2010). 
Moreover, cSVD is one of main factors leading to vascular cognitive 
decline and dementia (Cai et  al., 2015) and contributing to the 
pathogenesis of Alzheimer’s disease (AD) (Liu et al., 2018; Kim et al., 
2020). Recently, structural magnetic resonance imaging (MRI) 
techniques have been widely applied to identify brain structural 
neuroimaging markers associated with cSVD (Chen et al., 2019). 
Although originating from different pathogenesis, cSVD may 
commonly exhibit similar structural markers including small 
subcortical infarcts, vascular lacunes, vascular white-matter 
hyperintensity, cerebral microbleeds, perivascular space and brain 
atrophy (Staals et al., 2015; De Guio et al., 2016; Chen et al., 2019). In 
addition to tremendous endeavors made in the structural field, 
current studies pertaining to brain functional properties are 
progressively increasing.

The resting-state functional MRI (rs-fMRI) has been applied to 
investigate the relationship between cognitive impairment and brain 
functional activity using the amplitude of low-frequency fluctuation 
(ALFF) (Zang et al., 2007) in patients with cSVD (Zhou et al., 2020; 
Feng et  al., 2021; Li et  al., 2021; Mo et  al., 2023). Low-frequency 
oscillation ranging from 0.01 to 0.1 Hz has been identified as a 
representative indicator of brain spontaneous activity (Zou et al., 2008; 
Zuo et al., 2010), and the ALFF, the square root of the power spectrum 
of the frequency range, is supposed to reflect brain regional 
spontaneous activity (Zang et al., 2007). Moreover, the regional ALFF 
changes may function as diagnostic biomarker for cSVD (Feng 
et al., 2021).

Given the fact that different oscillatory bands usually have 
different generation mechanisms and different physiological functions 

(Buzsáki and Draguhn, 2004). The detection of different brain tissues 
may be more sensitive under a specific frequency spectrum (Zuo et al., 
2010; Qi et al., 2020; Sasai et al., 2021). Previous studies (Zuo et al., 
2010; Qi et  al., 2020) subdivided frequency spectrums of BOLD 
signals into several frequency bands such as the slow-6 (0.0052–
0.01 Hz), slow-5 (0.01–0.027 Hz), slow-4 (0.027–0.073 Hz), slow−3 
(0.073–0.198 Hz) and slow-2 (0.198–0.25 Hz) to compare frequency-
specific ALFF values in different brain regions. For example, the basal 
ganglia, thalamus, and precuneus were found to show higher ALFF 
value in the slow-4 band than that in the slow-5 band (Zuo et al., 
2010). Several studies showed a strong association between local brain 
abnormalities in psychiatric disorders and neural activity in specific 
frequency bands (slow-4 and slow-5 bands) (Wu et al., 2020; Liao 
et  al., 2021; Ren et  al., 2021). Wang et  al. (2021) compared the 
difference in ALFF between AD and aMCI patients under three 
different frequency bands. They suggest that ALFF in the slow-5 band 
may be able to help identify severe AD and aMCI. So far, little is 
known about the functional brain activity of cSVD patients with 
cognitive impairment in response to different frequency bands. 
Therefore, we attempted to study the characteristic performance of 
ALFF values in patients with cognitive impairment at different 
frequency bands.

This study addressed this problem by examining frequency-
dependent neural activity in cSVD patients during the resting state. It 
is the first study to undertake the spontaneous neural activity of 
specific frequency bands in cSVD. There are two primary aims of this 
study: 1. To investigate whether cSVD patients would show abnormal 
ALFF in regions associated with cognitive function; 2. To ascertain 
whether these abnormalities would be  associated with specific 
frequency bands. The present study detected the brain regions with 
ALFF alterations (0.01–0.1 Hz) in cSVD patients contrasting with 
controls. Based on the specificity of sub-bands, we attempted to reveal 
the brain regions with abnormal ALFF in slow-4 (0.027–0.073 Hz) and 
slow-5 (0.01–0.027 Hz), separately.

2. Methods

2.1. Subjects

We recruited 41 cSVD patients with right-handedness for this 
study from December 2016 to December 2018 from the inpatient and 
outpatient of the Neurology Department of Zhongshan TCM 
Hospital, Guangdong, China. Two experienced neurologists (XH, 
Huang; SQ, Ling) screened the participants based on the diagnostic 
criteria. In addition, we  also recruited 32 sex-matched healthy 
participants as the healthy controls (HCs). This study was approved 

Abbreviations: cSVD, Cerebral small vessel disease; AD, Alzheimer’s disease; MCI, 

Mild cognitive impairment; ALFF, Amplitude of low-frequency fluctuation; ReHo, 

Regional homogeneity; WMH, White matter hyperintensity; LA, Lacune; CMB, 

Cerebral microbleed; VFT, Verbal fluency test; DST, Digit span test; DSST, Digit 

symbol substitution test.

Highlights

 ‐ cSVD patients showed uniformly lower ALFF than controls at typical frequency band and 
slow-4 band.

 ‐ At The typical frequency band (0.01–0.1 Hz), cSVD patients Had lower ALFF In The 
cerebellum, occipital cortex, and hippocampus compared To healthy controls.
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by the Institutional Review Board (IRB) of Zhongshan TCM Hospital 
(ClinicalTrials.gov identifier: 2016ZSZY-LLK-028). Written informed 
consent for each patient and the healthy participant was obtained 
before the study. Table  1 lists the clinical and demographic 
characteristics of the participants.

The cSVD patients were diagnosed according to the 
Neuroimaging Standards for Research into Small Vessel Disease 
(Wardlaw et  al., 2013). Specifically, the diagnostic standard for 
imaging of cSVD included: (i) Recent small subcortical infarct: 
Axial views show an infarct diameter less than 20 mm, which can 
be larger than 20 mm in the coronal or sagittal view. (ii) Lacunes 
of presumed vascular origin: round or ovoid in shape, 3-15 mm in 
diameter, distributed in subcortical regions, filled with the same 
signals as cerebrospinal fluid (CSF). (iii) white matter 
hyperintensity (WMH) of presumed vascular origin: abnormal 
brain white matter (WM) signals, the range of lesions can vary in 
size, showing a high signal on the T2-weighted or T2-weighted 
FLAIR images. (iv) Perivascular space: the signal of perivascular 
space is the same as that of the CSF in all MRI sequences. The 
shape was linear when the image plane ran parallel to the blood 
vessels and round or oval when running perpendicular to the 
blood vessels, usually less than 3 mm in diameter. (v) Cerebral 
microbleeds: cerebral microbleeds are defined as the following 
changes in the images obtained with T2*-weighted gradient-echo 
sensitive to magnetizing effects, for instance, (1) small round or 
oval, clear boundary, homogeneity, lack of signal focus; (2) 
diameter in 2-5 mm, maximum 10 mm, and the lesion is 
surrounded by the brain parenchyma; (3) brain atrophy: reduced 
brain volume, but it was not associated with mainly specific focal 
lesions such as trauma and cerebral infarction.

The diagnostic criteria of vascular cognitive impairment (VCI) 
[37] indicate a continuum of clinical manifestations for cSVD patients. 
Mild VCI refers to impairment in at least one cognitive domain and 
mild to no impairment in instrumental activities of daily living 
(IADLs)/activities of daily living (ADLs) (independent of the motor/
sensory sequelae of the vascular event). Major VCI refers to clinically 
significant deficits of sufficient severity in at least one cognitive 

domain (deficits may be present in multiple domains) and severe 
disruption to IADLs/ADLs (independent of the motor/sensory 
sequelae of the vascular event).

The inclusion criteria for the cSVD patients were as follows: (a) 
the patients aged in a range of 40–80 years old, (b) the patients or 
legal guardians agreed and signed informed consents, (c) the patient 
was confirmed to satisfy the diagnostic imaging criteria for cSVD and 
the diagnostic criteria for VCI, and (d) the patient was in mild to 
moderate cognitive impairment with a mini-mental state examination 
(MMSE) screening score in 9–24 points. Patients meeting all these 
criteria were included in our study. The exclusion criteria for the 
patients included: (a) the cognitive dysfunction caused by 
macrovascular and cardiogenic cerebral embolism confirmed by 
examination; (b) non-vascular causes of WM degeneration and pure 
AD; (c) those who have been confirmed to have brain tumors, brain 
trauma, cerebral parasitic diseases, encephalitis and other diseases 
that can cause cognitive impairment; (d) patients with severe speech, 
vision, hearing or mental disorders that affect cognitive testing and 
cognitive training; (e) patients suffered from depression and other 
neuropsychological disorders resulting in cognitive impairment; (f) 
patients have the history of alcohol and drug abuse; (g) patients 
combined with severe heart, liver, kidney endocrine system, and 
hematopoietic system diseases; and (h) participating in other 
clinical trials.

2.2. Assessments

Each patient was requested to attend the clinical assessments, such 
as a medical history inquiry, a neurological examination, and a series 
of neuropsychological tests, which included the verbal fluency test 
(VFT), digit span test (DST), and digit symbol substitution 
test (DSST).

The VFT is a widely used neuropsychological scale mainly to 
measure cognitive, verbal, and executive functions (Vaucheret Paz 
et al., 2020). It consists of three subtests to detect semantic, speech, 
and motion fluency, respectively. (1) semantic subtest: ask the 
participants to say as many animals, vegetable, or fruit words as 
possible in one minute; (2) speech subtest: ask the participants to say 
as many words as possible, starting with “Fa” in one minute; (3) 
motion subtest: participants were asked to say as many words as 
possible in one minute about an event that could occur in a particular 
location (e.g., kitchen).

The DST (Leung et al., 2011) consists of two parts, a digit forward 
and a digit backward. During the test process, the participants are 
asked to remember two numbers simultaneously, read by the 
researcher with the speed of one digit per second starting with the first 
set. If the participants pass the 2-digit number, then the 3-digit 
number is measured, and so on. If the participant does not pass the 
8-digit number, the 8-digit number of the second set will be read, and 
when the participant passes the 8-digit number of the second set, the 
9-digit number will be read. If the participant fails to pass the 8-digit 
number of the second set, his score will be “7-digit.”

The DSST was used to evaluate multiple aspects of cognitive 
function, such as executive function, processing speed, attention, and 
working memory (Baune et al., 2018). According to the diagram at the 
top of the scale, the participants filled in the matching numbers under 
each symbol in the table below as quickly as they could. Rating 

TABLE 1 Demography characteristics for the patients with cerebral small 
vessel disease (cSVD) and the healthy controls (HCs).

cSVD 
(n  =  41)

HCs 
(n  =  32)

Value of p

Sex (M/F) 23/18 11/21 0.098a

Age (years old) 68 ± 7 (41–80) 42 ± 15 (25–76) <0.001b

Education level 15/19/5/2 4/6/3/19 <0.001c

DSST score 11.48 ± 9.08 N/A N/A

DST score 10.50 ± 2.56 N/A N/A

VFT score 17.63 ± 6.77 N/A N/A

Smoke (Y/N) 23/18 21/11 0.409b

Diabetes (Y/N) 15/26 7/25 0.174b

Hypertension (Y/N) 28/13 18/14 0.290b

Education included a primary school, junior high school, senior high school, university and 
over. N/A, not applicable. Y/N, Yes or No. Level of education refers to the number of people 
at each level of education: elementary, middle school, high school, and college. aThe value of 
p was obtained by a χ2-test. bThe value of p was obtained by a two-sample t-test. cThe value of 
p was obtained by a Wilcoxon test.
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instructions are that the number of correct answers in 90 s is the final 
score, not including the numbers filled in during the practice. The 
number of correct answers will be counted as the total score.

2.3. Imaging data acquisition

All images were obtained on a GE 3T MRI scanner with an 
8-channel phased-array head coil. The participant was requested to 
keep their eyes closed, relax but not fall asleep, and minimize head 
movement during the scanning. Functional images were collected 
with a gradient-echo echo-planar imaging (EPI) sequence with the 
following parameters: repetition time (TR) = 2,000 ms, echo time (TE) 
= 30 ms, flip angle (FA) = 90°, field of vision (FOV) = 240 mm × 240 
mm, slice thickness = 3.5 mm, inter-slice gap = 0.7 mm, data matrix 
= 64 × 64, 33 interleaved axial slices coving the whole brain, and 240 
volumes acquired in about 8 min. In addition, high-resolution brain 
structural images were acquired using a T1-weighed 3D BRAVO 
sequence with the following parameters: TR = 8.0 ms, TE = 3.0 ms, FA 
= 12°, data matrix = 256 × 256, FOV = 256 mm × 256 mm, slice 
thickness = 1 mm, and 188 sagittal slices covering the whole brain. The 
conventional T1-weighted and T2-weighted FLAIR images were 
acquired for clinical assessment. All MRI images for each participant 
were acquired in the same session.

2.4. Data pre-processing

The rs-fMRI data were preprocessed using the DPARSF toolbox1 
based on Matlab2012a (Mathworks, Inc., Massachusetts). Before 
pre-processing the data, we visually inspected both brain functional 
and structural images and excluded the datasets with significant 
signal dropouts, distortion, and other quality problems. The 
procedure of pre-processing included: (1) removing the first 10 
volumes to keep the magnetization equilibrium; (2) performing slice-
timing and head-movement correction to remove effects caused by 
slice acquisition time differences and head movements; (3) 
conducting a linear co-registration between functional images and 
structural images for each participant; (4) regressed out signals of the 
WM and CSF, and head-movement parameters (Friston-24 model); 
(5) performed a non-linear transformation between structural images 
and template brain images of the Montreal Neurological Institute 
(MNI) space, and normalized functional images into the MNI space 
with 3 × 3 × 3 mm3 voxel size and smoothed with a Gaussian kernel 
of 5 mm full width at half maximum (FWHM), and (6) performed 
temporal band-pass filtering for the typical band (0.01–0.1 Hz), the 
slow-4 band (0.027–0.073 Hz), and the slow-5 band (0.01–0.027 Hz), 
respectively. In this study, the fMRI data for subjects with head 
motion displacement >2 mm or rotation >2° in any axis (x, y, and 
z-axis) were discarded. In the calculation, we excluded the datasets 
for three participants because of their head-movement displacements 
exceeding 2 mm and the rotation exceeding 2°. A total of 41 cSVD 
patients and 32 HCs were finally included in the following analysis. 
There were also no significant group differences in the head motion 
between the two groups.

1 http://rfmri.org/dpabi

2.5. ALFF analysis

We first performed a voxel-wise Fast Fourier Transform (FFT) 
method for each participant to convert the filtered time series into the 
frequency domain to obtain the power spectrum. Since the power 
within a given frequency band is proportional to the square of the 
magnitude of that frequency component, we calculated the square 
root of the power spectrum within each frequency band and then 
averaged these square roots across three frequency bands: 0.01–0.1 Hz 
(typical band), 0.027–0.073 Hz (slow-4), and 0.01–0.027 Hz (slow-5) 
at each voxel. This averaged square root was taken as ALFF (Zang 
et al., 2007), which was assumed to reflect the absolute intensity of 
spontaneous brain activity.

2.6. Statistical analysis

2.6.1. Demographic
A χ2-test was used to test between-group differences in sex. A 

t-test was used to test between-group differences in age. The Wilcoxon 
test was used to test the education level between groups. The statistical 
significance level was set at p < 0.05. Statistical analysis was conducted 
using SPSS (version 21.0).

2.6.2. ALFF
The between-group difference in ALFF was conducted by PALM 

that is implemented in the DPARSF toolbox.2 In the calculations. A 
general linear model (GLM) was applied, and sex and age factors were 
regressed. A two-tailed non-parametric permutation test (5,000 times) 
was conducted to determine the differences between the two groups. 
For the multiple-comparison correction, we  used cluster-forming 
threshold and family-wise error (FWE) methods. The significance 
level was set at p < 0.05 (cluster-forming threshold >2.3, voxel-wise 
FWE <0.05).

A mixed effect analysis was performed on the two groups and 
their ALFF on the slow-5 and slow-4 band, using a two-way repeated 
measures analysis of variance (ANOVA) to investigate the effects of 
group and frequency band with age, sex, and head motions (mean FD) 
as covariates. Group (cSVD and HCs) was used as a between-subjects 
factor and frequency band (slow-4 and slow-5) as a repeated 
measurements factor. In addition, post hoc tests were performed 
between slow-5 band and slow-4 bands on the cSVD patients within 
brain regions showing group and frequency band interactions (Gu 
et al., 2019; Wang Z. et al., 2020). In addition, we also took a threshold 
of 50 voxels to remove small clusters, which meant only a cluster size 
>50 voxels were reported. For the multiple-comparison correction, 
we used threshold free cluster enhancement (TFCE) and family-wise 
error (FWE) methods. The significance level was set at p < 0.01 (voxel-
wise FWE < 0.01). The imaging results after the multiple-comparison 
correction were reported by the AAL atlas (Rolls et al., 2020).

To determine whether the ALFF value in each region varied with 
clinical measures, we performed the correlation analyses between the 
ALFF values for the significantly changed ALFF and each clinical 
variable (i.e., VFT, DSST, and DST). The threshold was set at 
ptwo-tailed < 0.05.

2 http://rfmri.org/DPABI
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3. Results

3.1. Demographic information

Table 1 lists the demographic information for both the cSVD and 
healthy controls, and clinical information for the cSVD group. No 
significant difference was found in sex between the two groups. The 
age and education level of the cSVD group were significantly higher 
than those of the healthy controls (p < 0.05).

3.2. ALFF in the typical frequency band 
(0.01–0.1 Hz)

Figure  1 displays clusters with significant between-group 
differences in ALFF. Compared with the controls, the cSVD patients 
showed significantly reduced ALFF in one cluster (cluster size = 3,019 
voxels). The locations of the cluster are listed in Table 2. Specifically, 
the cSVD patients had significantly lower ALFF than the controls in 
the left fusiform gyrus/hippocampus/insula/inferior occipital gyrus/

middle occipital gyrus/inferior frontal gyrus-medial orbital/rolandic 
operculum and the bilateral cerebellum.

3.3. ALFF in slow-4 and slow-5

Figure 2 shows the clusters with a significant difference in ALFF 
between the cSVD and controls for slow-4. For the slow-4, we found that 
the cSVD patients had significantly reduced ALFF in one cluster (voxel 
size = 1,383 voxels) in the left hemisphere, including the left cerebellum/
hippocampus/fusiform gyrus/inferior occipital gyrus. As for the slow-5, 
no clusters showed a significant between-group difference in ALFF. The 
detailed information for the clusters is also listed in Table 2.

3.4. Interaction effect between group and 
frequency band

We observed a significant interaction between the frequency band 
and group in the left calcarine, bilateral lingual, left cerebellum, 

FIGURE 1

The brain regions show a significant difference in the amplitude of low-frequency fluctuation (ALFF) between the cSVD patients and the healthy 
controls in the typical frequency band (p < 0.05, cluster-forming threshold and FWE corrected). We found that the cSVD showed lower ALFF values in 
the one cluster in the left cerebellum, left hippocampus/parahippocampal, and left inferior occipital gyrus (IOG) of the controls.
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bilateral precuneus, left cuneus, and right superior parietal gyrus 
(Table 3). Further post hoc tests showed significantly decreased ALFF 
values were identified in the left precuneus in the slow-4 band 
(Figures 3, 4).

3.4.1. Relationship between ALFF and clinical 
performance

For each of the significant clusters, no significant correlation was 
found between ALFF values and any neuropsychological scales 
(p > 0.05).

4. Discussion

This study identified the specific alteration pattern of ALFF in 
cSVD patients under different frequency bands through a voxel-based 
whole-brain analysis. We  found that the cSVD patients showed 
significantly lower ALFF in the cerebellum, hippocampus, and 
occipital cortex than the controls in the typical band and the slow-4 
band. Additionally, post hoc analysis indicated that cSVD was 
associated with a wide range of abnormalities in brain activity with 
related frequency bands.

FIGURE 2

The brain regions showed a significant ALFF difference in the slow-4 band between the cSVD patients and the HCs (p  <  0.05, cluster-forming threshold 
and FWE corrected). Hot (cold) colors represent higher (lower) ALFF in the HCs than in the cSVD patients.

TABLE 2 Brain areas showing significant differences in ALFF values under the typical (0.01–0.1  Hz) and slow-4 bands (0.027–0.073  Hz) between cSVD 
patients and HCs.

Frequency 
bands

Cluster size 
(Voxels)

MNI 
(x y z)

t Brain regions

Typical 3,019 –6 30 –3 5.09
Cerebelum_8_R/L, Fusiform_L, Hippocampus_L, Cerebelum_Crus1/2_L, Insula_L, Occipital_Mid/Inf_L, 

Cerebelum_Crus1_R, Cerebelum_4_5_L, Cerebelum_6_L/R, Frontal_Inf_Orb_L, Rolandic_Oper_L

Slow-4 1,383 –3 0 –15 5.43
Cerebelum_crus1/2_L, Cerebelum_8_L, Hippocampus_L, Occipital_Mid_L, Fusiform_L, Cerebelum_

crus1_L, Occipital_Inf_L

The significance threshold was set at p < 0.05, corrected for multiple comparisons using a cluster-forming threshold and the family-wise error (FWE) correction method. Coordinates of the 
peak voxel are shown in the Montreal Neurological Institute (MNI) space. The t-value corresponds to the peak voxel with a significant between-group difference in ALFF. The positive t-value 
represents a decrease (HCs > cSVD). Oper, operculum; Inf, inferior; Orb, orbital; Mid, middle; Sup, superior; L(R), left (right) hemisphere.
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4.1. ALFF differences between cSVD and 
HC

We found that cSVD patients showed reduced ALFF in the 
cerebellum compared with the controls (Figure 1). Although previous 
studies had noted that the cerebellum is widely believed to be responsible 
for motor skills (Baune et al., 2018), coordination, and balance of visual-
motor (Garfinkle et al., 2020), several studies (Koziol et al., 2014; Thomas 
et al., 2017; Seese, 2020) indicated that it is also involved in cognitive 
function and executive function. The decrease of microstructural 
integrity in the cerebellum of deep white matter hyperintensities patients 
was associated with dual-task gait speed. Dual-task gait speed was 
associated with three cognitive domains (global cognition, attention/
processing speed, and executive function) (Ghanavati et  al., 2018). 
Schaefer et al. (2014) applied rs-fMRI analysis methods (eigenvector 
centrality) in cSVD patients and showed reduced connectivity in 
frontoparietal networks, whereas connectivity increases in the 

cerebellum. Another important finding is a positive correlation between 
reaction time in the incongruent condition of the Stroop task with the 
eigenvector centralities of the cerebellar region. The functional 
connectome in cerebellar regions was increased while the functional 
connectome in frontoparietal cognitive networks was decreased; 
therefore, the author speculated that frontoparietal hypoconnectivity 
might be compensated by hyper-connectivity. For example, Li et al. 
(2018) found lower grey matter volume in the cerebellar in patients with 
early-onset AD than in healthy controls. Several studies (Li et al., 2013; 
Mascalchi et al., 2014) also found that MCI patients had reduced WM 
integrity. These studies of AD or MCI provided insight into MCI patients 
with brain structural or functional impairment in the cerebellum. 
Previous studies (Castellazzi et al., 2014) in MCI patients also reported 
that the FC of the cerebellum is lower than that in healthy controls and 
the cerebellar FC correlates positively with semantic fluency. Thus, 
we infer that the reduction of spontaneous activity in the cerebellum may 
be related to the cognitive dysfunction of cSVD patients.

FIGURE 3

The main effect for frequency band on ALFF. The color bar on the right indicates the statistical t-value. Blue cold colors represent lower ALFF. The 
results were obtained by two-way repeated-measures ANOVA (TFCE and FWE corrected, voxel p  <  0.01). TFCE, Threshold Free Cluster Enhancement.

TABLE 3 Significant interaction in ALFF between groups and frequency band.

Cluster Brain regions Cluster size 
(#voxels)

MNI (x y z) t scores

A Calcarine_L, Lingual_L, Lingual_R, Cerebelum_4_5_L, Cerebelum_Crus1_L, Cerebelum_6_L 769 –18 –72 12 4.83

B Precuneus_L, Precuneus_R, Cuneus_L, Parietal_Sup_R 289 –3 –57 60 4.93

The interaction between frequency band and group on ALFF. The clusters were obtained by a two-way repeated-measures ANOVA (p < 0.01, TFCE and FWE corrected). Oper, operculum; Inf, 
inferior; Orb, orbital; Mid, middle; Sup, superior; L(R), left (right) hemisphere; TFCE, Threshold Free Cluster Enhancement.
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FIGURE 4

The interaction between frequency band and group on ALFF for cSVD patients. The results were obtained by a two-way repeated-measures ANOVA 
(p  <  0.01, TFCE and FWE corrected) (A); and then a post-hoc pair t-test shown in the (B) (p  <  0.025, TFCE and FWE corrected), compared to the slow-5 
band, cold overlays indicate lower ALFF in cSVD patients in the slow-4 band. TFCE, Threshold Free Cluster Enhancement.
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This study also found aberrant spontaneous brain activity in the 
occipital cortex (Figure  1). In the pathological anatomy of cSVD, 
researchers found that cortical microinfarcts were presented more 
frequently in the parietal and occipital lobes, which were also related 
to the severity of cSVD (Ii et al., 2021). A comparison of our findings 
with those of other studies (De Marco et al., 2017; Marjańska et al., 
2019) confirms dysfunction of the occipital lobe during AD and 
MCI. Gray matter volume of different brain regions was associated 
with cognitive ability in cSVD patients, and gray matter volume in the 
occipital thalamus was positively correlated with Montreal Cognitive 
Assessment scores (Wang Y. et al., 2020). Lambert et al. (2016) did 
longitudinal research into symptomatic cSVD to investigate. They 
showed that the rate of white matter hyperintensity progression is 
associated with increases in cortical gray matter atrophy rates in 
occipital lobes. Chen et  al. (2020) found that the right inferior 
longitudinal fasciculus had a significantly negative correlation with 
total cognitive and episodic memory. It could be  that the cSVD 
patients showed a relative decline of spontaneous brain activity in the 
occipital cortex, which might be part of the underlying brain function 
mechanism of cognitive dysfunction.

In addition, the current study also found abnormal spontaneous 
brain activity in the hippocampus of cSVD patients, suggesting that the 
occurrence of cognitive decline in cSVD may relate to the decreased 
activity in the hippocampus. The hippocampus is closely related to 
memory function and spatial navigational ability and plays a crucial role 
in all forms of declarative memory (including recognition) (Wixted and 
Squire, 2011). Jokinen et al. (2020) studied the relationship between 
grey matter volume and clinical symptoms of cSVD. They found a 
positive correlation between hippocampal volume and Vascular 
Dementia Assessment Scale–Cognitive Subscale, executive function, 
and memory. A study evaluated the influence of negative and positive 
cSVD-hippocampal subfield atrophy on episodic memory and frontal 
executive function (Wong et al., 2021). Hippocampal subfield atrophy 
worsened with increasing SVD severity, and atrophy in the subiculum, 
CA1, CA4, molecular layer, and dentate gyrus of the hippocampal were 
essential to poor episodic memory and frontal executive function. Xi 
et al. (2012) found that the low-frequency oscillation amplitudes of the 
right hippocampus, parahippocampal gyrus, left middle temporal gyrus 
and right ventromedial prefrontal cortex of MCI patients were reduced. 
The ALFF values of the hippocampus and parahippocampal gyrus had 
a positive correlation with the neuropsychological scale score. The 
hippocampal ALFF value of cSVD patients is abnormally decreased, 
and it is positively correlated with the MoCA score in our research. 
Many studies have affirmed the role of the hippocampus in the field of 
cognitive function, which may be  a critical factor in the cognitive 
dysfunction of cSVD patients.

4.2. Group × frequency interaction

Different neurophysiological mechanisms have different 
physiological functions, including different oscillatory bands 
(Buzsáki and Draguhn, 2004). Previous studies had explored the 
differences in ALFF between brain areas in the slow-4 and slow-5 
bands (Xiao et al., 2018; Wang Z. et al., 2020). Neural oscillations of 
different frequencies in the human brain may be  sensitive to 
activities in different regions and can reflect different physiological 
functions of brain activities (Knyazev, 2007). Low-frequency 

oscillations are related to long-distance connections and the 
integration of large neuronal systems. In contrast, the high-
frequency oscillations synchronization constitutes a functionally 
important neuronal peak time relationship in brain activity (Arnulfo 
et  al., 2020). Connectivity between distal cortical regions is a 
valuable but expensive feature of cortical tissue and exists mainly 
between heterotypic (Oligschläger et  al., 2017). It is generally 
believed that the slow-5 band is the main contributor of resting-state 
fluctuations in healthy humans (Zuo et  al., 2010), and is more 
sensitive in the cortex (such as the temporal and Rolandic lobes). 
Our results are dissimilar to previous rs-fMRI studies in AD, 
showing more varied areas in the slow-5 band than the slow-4 band 
(Yang et al., 2020). Liu et al. (2014) also found that several temporal 
regions were more significant in the slow-5 band than the slow-4 
band in AD patients. Our results are similar to previous studies in 
patients with cognitive impairment, which suggested that most 
cortical areas had more robust low-frequency oscillations and higher 
functional activities in the slow-5 band.

We observed a significant group × frequency interaction effect on 
the ALFF value in the left precuneus. These findings showed that the 
ALFF changes in CSVD patients with cognitive dysfunction are related 
to frequency bands, and the neurophysiological mechanism is unclear. 
Thus, we conclude that certain pathologic conditions in the precuneus 
may increase the influence of specific frequency bands. However, 
studies have found that precuneus plays a central role in many highly 
integrated tasks, including visual space imagery, situational memory 
extraction, and self-processing operations (Cavanna and Trimble, 
2006). Hebscher et al. (2020) have also confirmed that the precuneus 
was closely related to human autobiographical memory. Luo et al. 
(2020) studied the functional connection between the precuneus and 
the cortical using resting-state fMRI and found that the human 
precuneus can be  subdivided into six symmetrical and connected 
parcels. The precuneus has four sub-regions and acts as a mediator in 
the interaction of the default mode, multi-faceted attention, and 
frontoparietal control network. Precuneus and posterior cingulate 
cortex together belong to the posterior default mode network (DMN). 
The DMN is a specific neuronal circuitry to global brain function. 
Damage to the DMN often occurs in diseases such as Alzheimer’s 
disease, Parkinson’s disease, Epilepsy and attention deficit hyperactivity 
disorder (ADHD) (Mohan et al., 2016). A meta-analysis compared 
amnestic mild cognitive impairment patients (aMCI) with healthy 
control suggested that aMCI is associated with widespread aberrant 
regional spontaneous brain activity, predominantly involving the 
default mode, salience, and visual networks. In contrast, the increased 
severity of cognitive impairment in aMCI patients was associated with 
more significant decreases in ALFFs in the cuneus/precuneus cortices 
(Pan et al., 2017).

These findings indicated that frequency-specific ALFF could 
supplement important information for disease diagnosis as well as 
supply a new perspective for our understanding of the pathology 
of CSVD.

5. Limitations

This study has several limitations. First, the number of samples is 
not large enough, and age differences across cSVD patients or 
between patients and healthy control groups were not well addressed. 
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Second, one of limitations of the present study is the 8-channel 
phased-array head coil employed for data acquisition, which 
represents the minimal number of channels. Using an advanced 
scanning sequence may need to be  considered in future studies, 
which may potentially enhance qualities of scanned images. Third, 
we did not classify the sub-type of cSVD although there are many 
types of imaging performance and various pathophysiology of 
cSVD. Future study needs to recruit more patients and distinguish 
between different imaging findings to evaluate the degree of 
impairment of brain function in different types to guide the 
treatment. Fourth, the current study used the rs-fMRI only. It would 
be better to use multi-modal neuroimaging data, such as arterial spin 
labeling (ASL) and diffusion tensor imaging (DTI). The combination 
of multi-modal neuroimaging and neuropsychological scales might 
help us understand cognitive dysfunction progression in cSVD more 
thoroughly. Finally, the healthy controls included in our study were 
different in age from the CSVD group. Because age is a high-risk 
factor for the development of cerebral small vessel disease, we had 
great difficulty in finding age-matched healthy controls.

6. Conclusion

This study analyzed spontaneous brain activity in cSVD patients 
and showed abnormal ALFF in distinct brain regions in patients 
compared with controls. These abnormal brain regions were found in 
the cerebellum, occipital, and hippocampus in cSVD patients. These 
findings could reflect the pathogenesis of specific clinical 
manifestations of cSVD, especially cognitive decline.
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Cortical activity associated with 
focal muscle vibration applied 
directly to the affected forearm 
flexor muscle in post-stroke 
patients: an fNIRS study
Xianshan Shen 1,2, Yang Yu 1,2, Han Xiao 1,2, Leilei Ji 1,2 and 
Jianxian Wu 1,2*
1 Department of Rehabilitation Medicine, The Second Affiliated Hospital of Anhui Medical University, 
Hefei, China, 2 Department of Rehabilitation and Sports Medicine, The Second Clinical College of Anhui 
Medical University, Hefei, China

Objective: The purpose of this study was to utilize functional near-infrared 
spectroscopy (fNIRS) to identify changes in cortical activity caused by focal muscle 
vibration (FMV), which was directly administered to the affected forearm flexor 
muscles of hemiplegic stroke patients. Additionally, the study aimed to investigate 
the correlation between these changes and the clinical characteristics of the 
patients, thereby expanding the understanding of potential neurophysiological 
mechanisms linked to these effects.

Methods: Twenty-two stroke patients with right hemiplegia who were admitted 
to our ward for rehabilitation were selected for this study. The fNIRS data were 
collected from subjects using a block-design paradigm. Subsequently, the 
collected data were analyzed using the NirSpark software to determine the mean 
Oxyhemoglobin (Hbo) concentrations for each cortical region of interest (ROI) in 
the task and rest states for every subject. The stimulation task was FMV (frequency 
60  Hz, amplitude 6  mm) directly applied to belly of the flexor carpi radialis muscle 
(FCR) on the affected side. Hbo was measured in six regions of interest (ROIs) 
in the cerebral cortex, which included the bilateral prefrontal cortex (PFC), 
sensorimotor cortex (SMC), and occipital cortex (OC). The clinical characteristics 
of the patients were assessed concurrently, including Lovett’s 6-level muscle 
strength assessment, clinical muscle tone assessment, the upper extremity 
function items of the Fugl-Meyer Assessment (FMA-UE), Bruunstrom staging 
scale (BRS), and Modified Barthel index (MBI). Statistical analyses were conducted 
to determine the activation in the ROIs and to comprehend its correlation with 
the clinical characteristics of the patients.

Results: Statistical analysis revealed that, except for right OC, there were 
statistically significant differences between the mean Hbo in the task state and 
rest state for bilateral SMC, PFC, and left OC. A positive correlation was observed 
between the muscle strength of the affected wrist flexor group and the change 
values of Hbo (Hbo-CV), as well as the beta values in the left SMC, PFC, and OC. 
However, no statistical correlation was found between muscle strength and Hbo-
CV or beta values in the right SMC, PFC, and OC. The BRS of the affected upper 
limb exhibited a positive correlation with the Hbo-CV or beta values in the left 
SMC and PFC. In contrast, no statistical correlation was observed in the right SMC, 
PFC, and bilateral OC. No significant correlation was found between the muscle 
tone of the affected wrist flexor group, FMA-UE, MBI, and Hbo-CV or beta values 
of cortical ROIs.
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Conclusion: FMV-evoked sensory stimulation applied directly to the FCR belly on 
the paralyzed side activated additional brain cortices, including bilateral PFC and 
ipsilesional OC, along with bilateral SMC in stroke patients. However, the clinical 
characteristics of the patients were only correlated with the intensity of ipsilesional 
SMC and PFC activation. The results of this study provide neurophysiological 
theoretical support for the expanded clinical application of FMV.

KEYWORDS

focal muscle vibration, stroke, cortical excitability, cortical activity, functional near-
infrared spectroscopy

1 Introduction

Stroke is a widespread disease that endangers the lives and health 
of the middle-aged and elderly. According to the Global Burden of 
Disease (GBD) study, stroke continues to be the second main reason 
for mortality and the third cause of both mortality and disability 
(measured by disability-adjusted life-years lost-DALYs) in individuals 
(Feigin et  al., 2022). After experiencing a stroke, roughly 26% of 
individuals continue to face disability in essential daily tasks, while half 
of them endure restricted mobility caused by hemiparesis (Kelly-Hayes 
et al., 2003). Stroke can induce altered muscle tone in the affected 
upper limbs and hands, decreased coordination, impaired sensation, 
muscle weakness, and impaired motor control, affecting activities of 
daily living and social participation. Scholars have commonly 
expressed their concern regarding how to enhance the effectiveness of 
limb function in patients with hemiplegic stroke. The main clinical 
treatments for post-stroke limb dysfunction include physical therapy 
(European and Rehabilitation Medicine Bodies, 2018), occupational 
therapy (Powell et  al., 2016), transcutaneous electrical nerve 
stimulation (Mahmood et al., 2019), functional electrical stimulation 
(Eraifej et  al., 2017), transcranial direct current stimulation (Van 
Hoornweder et al., 2021), repetitive transcranial magnetic stimulation 
(Starosta et al., 2022), motor imagery (Monteiro et al., 2021), virtual 
reality (Kim et  al., 2020), constraint induced movement therapy 
(Rocha et al., 2021), brain-computer interface technology (Xue et al., 
2021), and robotics (Bruni et  al., 2018), etc. These intervention 
strategies have limitations due to the need for trained professionals, 
lack of precision, consensus evidence, and high implementation costs 
(Wang et  al., 2020). Pursuing a safe and effective method for 
neurorehabilitation poses a significant and complex challenge.

Disruption of the sensory system after stroke plays an essential 
role in the motor dysfunction of hemiplegic limbs (Bolognini et al., 
2016). The loss of proprioception can impact the correction of motor 
errors, and stroke often leads to the loss of tactile sensation, which 
can affect the control of limb movements (Hughes et al., 2015). The 
motor recovery process after stroke may be attributed to the ongoing 
reorganization of neural networks, and inducing plasticity in neural 
networks may be facilitated by activating cortical or thalamic circuits 
(Zhou et al., 2022). From this perspective, one of the most effective 
modulators of cortical motor and somatosensory structures is 
repetitive sensory input (Ward and Cohen, 2004). In recent years, 
many scholars have applied vibration therapy (VT) to stroke 
rehabilitation, and related studies have shown that vibration therapy 
is effective for post-stroke limb dysfunction and spasticity (Moggio 

et al., 2022). Two categories of VT are whole body vibration (WBV) 
and focal muscle vibration (FMV). FMV is a therapeutic method 
using a mechanical device to provide vibrational stimulation to the 
belly of a specific muscle or its tendons. Studies have concluded that 
it is advantageous in facilitating the restoration of limb motor 
function in stroke patients during both the acute (Toscano et al., 
2019) and chronic phases of stroke (Marconi et al., 2011). However, 
there are currently no standardized protocols or regulations for using 
FMV. Additionally, there is still ongoing debate about its exact 
efficacy. Moreover, the specific mechanism of its application is yet to 
be  fully understood, necessitating further clinical research and 
verification. Cortical activation and neural network remodeling are 
the internal recovery processes in most neurological diseases; the 
activation and reconstruction of neurocircuitry is the natural 
procedure to achieve functional recovery. Available evidence suggests 
that FMV acts as a powerful proprioceptive stimulus, which 
modulates brain and spinal cord plasticity for clinical therapeutic 
effects (Viganò et al., 2023). Several studies have explored the cortical 
activation changes in stroke patients in response to FMV. Positron 
emission tomography (PET), electroencephalography (EEG), and 
functional magnetic resonance imaging (fMRI) have been used to 
investigate the neural mechanisms of focal vibration in healthy 
individuals (Naito et al., 1999; Golaszewski et al., 2002; Naito, 2004; 
Casini et al., 2006; Lopez et al., 2017). There have been limited reports 
on cortical activation changes in stroke patients in response to FMV, 
particularly in real-time. The advancement of noninvasive functional 
brain imaging technology provides us with an essential tool for 
detecting various brain function dysfunctions. The detection of fMRI 
is limited because the focal vibration therapies used in the clinic are 
metal devices. Fortunately, functional near-infrared spectroscopy 
(fNIRS) is a cutting-edge method of imaging the brain’s activity, 
possessing various benefits such as being safe, noninvasive, portable, 
resistant to motion and electromagnetic interference, offering 
excellent spatial and temporal resolution, as well as enabling 
prolonged monitoring (Wang et al., 2023b). The main objective of this 
study was to use fNIRS to identify changes in cortical activity caused 
by FMV, which was directly administered to the affected belly of the 
flexor carpi radialis muscle (FCR) of hemiplegic stroke patients. 
Furthermore, the study sought to investigate how these changes relate 
to the clinical characteristics of the patients, ultimately improving our 
understanding of the possible neurophysiological mechanisms 
involved in these effects. Moreover, the efforts described above will 
help provide a dependable reference for developing optimal protocols 
for focal vibration therapy.
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2 Materials and methods

2.1 Subjects

This study included 22 patients who had right hemiplegia after 
suffering a stroke and were admitted to the Second Affiliated Hospital 
of Anhui Medical University in 2022. The group consisted of 16 male 
and 6 female patients, with 18 of them having cerebral infarction and 
the remaining four having cerebral hemorrhage. Additionally, all 
patients were right-handed and had been suffering from the disease 
for a duration of 2 weeks to 1 year upon admission to the hospital (as 
shown in Table 1).

2.2 Inclusion and exclusion criteria

The following criteria were used for inclusion: (1) Patients had to 
meet the stroke diagnostic criteria revised by the World Health 
Organization definition (Stroke, 1989) and undergo cranial CT and 
MRI to confirm the stroke; (2) Patients must be more than 2 weeks 
post-stroke onset; (3) Vital signs needed to be stable; (4) Patients must 
have the ability to sit for at least 30 min; (5) Patients and their family 
members had to agree to participate in this study. The following 
criteria were used for exclusion: (1) Severe cognitive impairment; (2) 
History of previous brain injury or complicating neurodegenerative 
diseases; (3) History of mental illness; (4) Presence of serious diseases 
affecting the liver, kidney, hematopoietic system, endocrine system, 
and osteoarthritis; (5) Peripheral vascular disease in the upper 
extremities such as deep vein thrombosis, vasculitis, Raynaud’s 
disease, etc.

2.3 Methods for assessing clinical 
characteristics

Professor Lovett’s 6-point scale (0–5), developed at Harvard 
University, United  States, in 1916 assessed muscle strength. The 
subsequent information provides a brief overview of each level of 
muscle strength: Grade 0 indicates the absence of any muscle 
contraction. Grade 1 denotes the presence of slight muscle contraction 
without resulting in joint movement. Grade 2 suggests the ability to 

generate some muscle movement, albeit not against the force of 
gravity. Grade 3 signifies the capability to counter mild resistance, 
though incapable of overcoming significant resistance. Grade 4 
denotes the capacity to counter moderate resistance, yet insufficient 
to completely overcome maximum resistance. Finally, Grade 5 
signifies combatting maximum resistance and maintaining normal 
muscle strength (Hidayat et al., 2015).

Muscle tone was evaluated on a scale ranging from grade 0 (low) 
to grade 4 (severely increased), with grade 1 indicating normal muscle 
tone, grade 2 indicating slightly increased muscle tone, and grade 3 
indicating greater muscle tone.

The upper extremity function items of the Fugl-Meyer Assessment 
(FMA-UE) and the Bruunstrom Recovery Stage (BRS) were employed 
to assess the severity of post-stroke paralysis. FMA-UE is composed 
of 9 main items and 33 subitems, with each subitem graded on a scale 
of 0, 1, or 2. This results in 66 points, wherein higher scores indicate 
superior upper extremity function (Fugl-Meyer et al., 1975). BRS is a 
model that linearly describes the process of motor recovery in six 
different stages, each representing a different motor pattern and 
muscle control, and the motor recovery of most stroke patients after 
the disease onset conforms to the BRS pattern (Huang et al., 2016).

The Modified Barthel Index (MBI) was used to measure activities 
of daily living, which included 10 activities: eating, bathing, grooming, 
dressing, bed and chair transfer, ambulation (walking, wheelchair 
use), stair walking, bowel control, and urinary control. Each activity 
was rated on a graded scale, ranging from fully independent to entirely 
dependent, and the total score was 100.

2.4 Measurement of fNIRS

2.4.1 Probe positioning and measurement points
For this study, a fNIRS system called Nirscan-6000A, 

manufactured by Danyang Huichuang Medical Equipment Co., Ltd. 
in China, was used to detect changes in Hbo signals. This device has 
been previously used in previous studies (Deng et al., 2022; Lin et al., 
2022; Ma et al., 2023). The sampling rate for this study was set at 
11 Hz, and the wavelengths used were 730 nm, 808 nm, and 850 nm. 
The system’s design included 32 probes, consisting of 16 sources and 
16 detectors, following the 10/20 international standard line system. 
34 channels were present in these probes, covering the cortical regions 
of interest (ROIs). The left and right prefrontal cortex (PFC) had seven 
channels each, while the left and right sensorimotor cortex (SMC) had 
nine channels each. Each left and right occipital cortex (OC) had one 
channel, as shown in Figure 1.

2.4.2 Activation task
The fNIRS data was collected using a block-design paradigm. The 

stimulation task involved FMV of the flexor carpi radialis in the upper 
limb of the affected side (Celletti et al., 2020), which was administered 
using a deep muscle stimulation therapy device (ZEPU-K5000A, 
ZEPU Medical Equipment Co. Ltd., China), with the stimulation 
position located at the muscle belly of the flexor carpi radialis on the 
affected side. The stimulation was carried out at 60 Hz and an 
amplitude of 6 mm.

The fNIRS test was conducted in a quiet room with only the 
experimenter and participant present. The participant was instructed 
to ensure they had enough sleep and were in a normal mental state 

TABLE 1 Demographic and clinical characteristics of the patients.

Characteristics Subjects (N  =  22)

Age (years)b 63.05 ± 8.81

Gender, male/femalea 16/6

Infarction/hemorrhagea 18/4

Dominant arm (right/left)a 22/0

Right hemiplegia/left hemiplegiaa 22/0

Muscle strength (affected wrist flexor group)b 1.86 ± 1.32

Muscle tone (affected wrist flexor group)b 1.23 ± 0.92

BRS (affected upper limb)b 2.55 ± 1.22

FMA-UE (affected upper limb)b 16.59 ± 16.89

MBIb 55.45 ± 17.99

aThe number of participants; bMean ± standard deviation.
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before the test. They were also instructed to avoid consuming 
stimulating foods and drugs, such as tobacco, alcohol, tea, and coffee. 
The participant was seated in a bent-legged position, with their upper 
limbs naturally resting on soft pillows. Their elbows were bent, and 
their forearms were rotated outward. They were instructed to remain 
relaxed, not to move their head or speak, and to minimize distractions. 
The tester used simple and accurate verbal cues to initiate and 
conclude each task. The subjects received FMV on the affected FCR 
in the following order (block-design paradigm): 30 s of FMV followed 
by 30 s of rest. This pattern continued for 5 cycles. Throughout both 
the task and rest states, the fNIRS device was used to measure 
Oxyhemoglobin concentrations (hereinafter referred to as Hbo) in 
all channels.

2.4.3 Data analysis of fNIRS
This research used the NirSpark software to analyze the fNIRS 

data. Data preprocessing involved six steps: eliminating experimentally 
irrelevant time intervals, removing artifacts unrelated to the 
experimental data, transforming light intensity to luminous density, 
choosing band-pass filters (0.01–0.2 Hz) to filter out the noise and 
interfering signals, changing luminous density to blood oxygen 
concentration, and configuring the initial time of the hemodynamic 
response function (HRF) to −2 s and the end time to 60 s. The retained 
baseline state was from −2 s to 0 s, while the time of the single block 
paradigm was from 0 s to 60 s. Under the task state time setting of 30 s, 
the blood oxygen concentrations of the five blocking paradigms were 
superimposed and averaged to produce a blocking average result. The 
time-series data of Hbo was analyzed using a generalized linear model 
(GLM). The data was preprocessed for each channel and each subject. 
Subsequently, a t-test was conducted to compare the baseline and task 
statuses, with a significance level set at p < 0.05. The GLM facilitated 
the generation of an ideal hemodynamic response function (HRF) for 
each task. Following this, a comparison was made between the 
experimental and ideal HRF values to determine the corresponding 
range. The beta value, which shows the extent of cortical activation, 
served as an indicator for estimating the HRF prediction of the Hbo 
signal (Kawabata Duncan et al., 2019).

All participants completed the clinical scale assessment and fNIRS 
testing within 48 h of admission. Before completing the assessment, 
subjects had not received any rehabilitation therapy to ensure that 
such treatment did not influence the results. A highly skilled 
professional physiotherapist conducted the clinical scale assessment, 
while the fNIRS test was administered by a systematically trained 
master’s student.

2.5 Statistical analysis

The statistical analysis of the data was conducted using IBM SPSS 
(v.26.0). In order to examine the effects of cortical activity induced 
by FMV, t-tests were used to analyze the difference between the mean 
Hbo values of the task state and rest state in each cortical region of 
interest (ROI) at the group level. To determine if the sample data 
adhered to a normal distribution, the Shapiro–Wilk test was used. If 
the data followed a normal distribution, the paired samples t-test was 
utilized for statistical analysis to derive the T-value. On the other 
hand, if the sample data did not conform to a normal distribution, 
the Wilcoxon signed-rank test was applied to derive the Z-value. To 
gain further insight into the relationship between cortical activity and 
clinical characteristics, the change values of Hbo (Hbo-CV) in the 
task and rest states for each cortical ROI, along with the beta values 
and the patient’s clinical assessment data, were analyzed using 
Pearson’s correlation analysis or Spearman’s correlation analysis. 
Pearson correlation analysis was employed for sample data 
conforming to a normal distribution, while for sample data not 
conforming to a normal distribution, Spearman correlation analysis 
was used. A significance level of p  < 0.05 was regarded as 
statistically significant.

2.6 Protocol approvals

The study was conducted at the Department of Rehabilitation 
Medicine of the Second Affiliated Hospital of Anhui Medical 
University. The Ethics Committee of the Second Affiliated Hospital of 
Anhui Medical University approved the experimental methods 
(approval number YX2022-018F1) and ensured compliance with the 
ethical standards stated in the 1975 Declaration of Helsinki, with 
revisions in 2008.

3 Results

3.1 Effects of cortical activity induced by FMV

The fNIRS data were analyzed using the NirSpark software to 
capture the mean Hbo values for each cortical ROI in both the task 
and rest state for each subject. Statistical analysis indicated that, except 
for right OC, the differences between the mean Hbo in the task and 
rest states were statistically significant for bilateral SMC, bilateral PFC, 
and left OC. This suggests that the FMV treatment of the upper limb 
effectively activates the cortical regions of bilateral SMC, bilateral PFC, 
and left OC (Table 2; Figure 2). Figures 3A,B depict anatomical maps 
of cortical activation in two distinct phases, task state and rest state, at 
the group level. This visualization was plotted using the NirSpark 

FIGURE 1

Functional near-infrared spectroscopy (fNIRS) probe positioning and 
measurement points.
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software. Different colors on the images indicate these phases. The 
channel’s color corresponds to the mean Hbo level, with a redder tone 
indicating a higher mean Hbo and a bluer tone indicating a lower 
mean Hbo. Noteworthy color changes were observed in brain cortices 
such as bilateral SMC, bilateral PFC, and left OC, aligning with the 
findings of the aforementioned data analysis.

3.2 Correlation between the cortical 
activity and clinical assessment data

The Hbo-CV (change values of Hbo) in the task and rest states for 
each cortical ROI were calculated by subtracting the mean Hbo of the 
rest state from that of the task state. By analyzing the correlation 
between the Hbo-CV and the clinical assessment data, we can gain 
some insight into the association between the activation of different 
brain cortices and the patient’s clinical characteristics. Through 
Spearman correlation analysis, we found a positive correlation between 

the muscle strength of the affected wrist flexor group and the Hbo-CV 
in left SMC, PFC, and OC. However, no statistical correlation was 
found between muscle strength and Hbo-CV in the right SMC, PFC, 
and OC. The BRS (Bruunstrom Recovery Stage) of the affected upper 
limb showed a positive correlation with the Hbo-CV in left SMC and 
PFC, while no statistical correlation was observed in right SMC, PFC, 
and bilateral OC. No statistical correlation was found between the 
muscle tension of the affected wrist flexor group, FMA-UE, MBI, and 
the Hbo-CV of each cortical ROI (Table 3; Figure 4).

To gain a better understanding of the relationship between the 
patient’s clinical characteristics and the cortical activity produced by 
FMV, we conducted a Spearman correlation analysis using the beta 
values of each cortical ROI obtained from a GLM model and the clinic 
assessment. The results were consistent with the findings mentioned 
above. The muscle strength of the affected wrist flexor group showed 
a positive correlation with the beta values of left SMC, PFC, and 
OC. However, no statistical correlation was found in right SMC, PFC, 
and OC. The patient’s BRS on the affected upper limb exhibited a 
positive correlation with the beta values of left SMC and PFC. In 
contrast, no statistical correlation was found with the beta values of 
right SMC, PFC, and bilateral OC. Overall, no statistical correlation 
was observed between the patient’s affected wrist flexor group muscle 
tone, FMA-UE, MBI, and the beta values in each cortical ROI (Table 4; 
Figure 5).

4 Discussion

Several studies have used neurophysiological and 
neurofunctional imaging techniques, such as PET, fMRI, EEG, and 
TMS, to explore the neural mechanisms of focal vibration in healthy 
individuals. Naito et al. (1999) used PET scans to study the brain 
excitability of blindfolded subjects experiencing illusory arm 
movements through bicep tendon vibration. The study found 
significant excitability in contralateral motor areas and S1. 
(Golaszewski et al. (2002) used fMRI to study the cortical activity 
of healthy individuals during 50 Hz vibration of the right-hand 
palm. Results showed contralateral precentral and postcentral gyrus 
activation in all subjects, while some also exhibited ipsilateral 
activation. Naito (2004)) used fMRI to examine the cortical activity 
of focal vibration to produce a “motion illusion” in healthy subjects. 
The study found that the contralateral primary SMC, dorsal 
premotor cortex (PMd), supplementary motor area (SMA), 
cingulate motor cortex, and ipsilateral cerebellum were all activated. 
Casini et al. (2006) found that focal vibrating of the wrist tendons 
induced a “motor illusion” in healthy subjects, activating the 
contralateral primary SMC, SMA, and angular gyrus by using 
magnetoencephalography. Imai et al. (2014) used fNIRS to measure 
cortical activity during wrist tendon vibration at different 
frequencies in healthy subjects. They observed increased excitability 
in both cerebral hemispheres’ premotor cortex and parietal areas. 
An EEG-based study found that focal vibration applied to limb 
muscles modulated neurophysiological oscillations and increased 
contralateral S1-M1 excitability in healthy volunteers (Lopez et al., 
2017). A randomized controlled study was conducted by Marconi 
et  al. (2011) involving 30 hemiplegia patients who had suffered 
from a stroke. The experimental group, which received focal 
vibration stimulation in addition to physiotherapy, exhibited a 

TABLE 2 The difference between the mean Hbo values of the task state 
and rest state in each ROI at the group level.

Cortical 
ROI

Hbo (task 
state)

Hbo (rest 
state)

T Z P

LSMC 0.0275 ± 0.0312 0.0037 ± 0.0231 5.59 0.000***

RSMC 0.0274 ± 0.0353 0.0015 ± 0.0226 −4.01 0.000***

LPFC 0.0244 ± 0.0274 0.0117 ± 0.0204 3.61 0.002**

RPFC 0.0222 ± 0.0284 0.0095 ± 0.0232 3.11 0.005**

LOC 0.0312 ± 0.0521 0.0114 ± 0.0356 −2.516 0.012*

ROC 0.0094 ± 0.0504 0.0041 ± 0.0431 −0.633 0.527

Bold indicates statistical significance (*P < 0.05; **P < 0.01; ***P < 0.001). Hbo (Task state), 
the average concentration of oxygenated hemoglobin in the task state; Hbo (Rest state), The 
average concentration of oxygenated hemoglobin in the rest state; LSMC, the left 
sensorimotor cortex; RSMC, the right sensorimotor cortex; LPFC, the left prefrontal cortex; 
RPFC, the right prefrontal cortex; LOC, the left occipital cortex; ROC, the right occipital 
cortex; T, T-value derived from paired t-test; Z, Z-value in nonparametric statistical tests.

FIGURE 2

A bar chart with a summary date showing the activation of each 
cortical ROI. *p  <  0.05; **p  <  0.01; ***p  <  0.001. LSMC, the left 
sensorimotor cortex; RSMC, the right sensorimotor cortex; LPFC, the 
left prefrontal cortex; RPFC, the right prefrontal cortex; LOC, the left 
occipital cortex; ROC, the right occipital cortex.
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TABLE 3 The correlation coefficient between the Hbo-CV and clinical characteristics for each cortical ROI (N  =  22).

Hbo change value (Hbo-CV)

LSMC RSMC LPFC RPFC LOC ROC

Muscle strengtha 0.501* 0.392 0.516* 0.291 0.553** 0.249

Muscle tonea 0.298 0.247 0.24 −0.044 0.109 0.157

BRSb 0.491* 0.35 0.490* 0.335 0.397 0.081

FMA-UEb 0.256 0.139 0.334 0.143 0.238 −0.054

MBI 0.308 0.139 0.266 0.015 0.367 0.084

LSMC, the left sensorimotor cortex; RSMC, the right sensorimotor cortex; LPFC, the left prefrontal cortex; RPFC, the right prefrontal cortex; LOC, the left occipital cortex; ROC, the right 
occipital cortex; aaffected wrist flexor group; baffected upper limb; Bold indicates statistical significance (*P < 0.05, **P < 0.01).

lower resting motor threshold (RMT), an increased motor evoked 
potential (MEP) index, and an increased short-interval intracortical 
inhibition (SICI) compared to the control group, which only 
received physiotherapy. Another EEG study found that focal 
vibration (75 Hz) of the biceps brachii muscle on the affected side 
of subacute stroke can enhance contralateral S1-M1 excitability and 
alter the functional brain network (Li et al., 2019). An EEG study 
by Li et  al. (2022) found that applying focal vibration (87 Hz, 
0.28 mm) on the triceps of chronic stroke patients resulted in 
bilateral activation of the SMC. In summary, the majority of the 
studies mentioned above were conducted in healthy subjects due to 
the design of the study protocol and the experimental conditions, 
and the studies focused mainly on the SMC. Most of the studies 
found that focal vibration activated the contralateral sensorimotor 
cortex in healthy subjects, and there was only one EEG study (Li 
et  al., 2022), which found that focal vibration activated the 
sensorimotor cortex bilaterally in stroke patients. The present study 
using fNIRS demonstrates that directly applying FMV on the 
affected FCR in stroke hemiplegic patients can immediately activate 
more brain cortex, such as the bilateral PFC and ipsilateral OC, in 
addition to the bilateral SMC. Based on the above findings, it is 
stated that hyperactivation of muscle proprioceptors induced by 
FMV can produce long-term potentiation (LTP) -like plastic 
changes that do not involve the sole ipsilesional sensorimotor 

cortex but probably entail a whole motor network relearning 
achieved through the plasticity-based modulation of the effective 
connectivity (Viganò et al., 2023).

Previous neuroimaging studies have reported contralateral brain 
activation in healthy subjects during active hand movements (Rao 
et al., 1993; Sabatini et al., 1993; Bonnal et al., 2023) In contrast, stroke 
patients more often experience increased excitability in both cerebral 
hemispheres during active movements of the affected hand (Marshall 
et al., 2000; Staudt et al., 2002; Rehme et al., 2011; Favre et al., 2014). 
The activation of bilateral sensorimotor areas induced by FMV was 
comparable to the results of some previous studies using fMRI or EEG 
which observed the activation of brain areas induced by motor imagery 
(Veverka et al., 2012), active movement (Veverka et al., 2014) and 
passive movement (Manganotti et al., 2010) as a task for the affected 
hand. Therefore, FMV, which acts as a potent proprioceptive stimulus, 
has some similar effectiveness to the activation of the brain produced 
by the movement-as-task paradigm. Previous studies on the activation 
of brain functions by FMV in stroke patients have rarely reported PFC 
and OC activation. This study showed that FMV applied to the flexor 
muscle of the forearm activated the bilateral PFC and the contralateral 
OC in addition to the bilateral SMC. Earlier studies have suggested that 
FMV applied to the limb can create “motor illusion” that can produce 
effective motor control and facilitate motor learning (Naito, 2004) 
(Imai et al., 2014). The PFC is an anterior region of the brain associated 

FIGURE 3

An anatomical view of cortical activation during two different phases, the task and the rest stages, is represented using different colors. (A), Rest stage; 
(B), task stage.
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with cognitive control and executive functions (Friedman and Robbins, 
2022). We hypothesize that the PFC may be involved in the perception, 
interpretation, and cognitive processes of the motion illusion produced 
by FMV to help understand how it is consistent with prior motion 
experience and intrinsic modeling. The OC is located in the posterior 
part of the brain and is primarily involved in the processing of visual 
information (Barton and Brewer, 2013). However, when FMV induces 
motion illusions, the OC may play a role in generating internal visual 
images, motion simulation, and pictorial motion illusions. Motion 
illusions induced by vibration can activate the processing of visual 
information in the occipital lobe, which in turn enhances and supports 
the perception of motion illusions.

Spasticity is one of the frequent complications after stroke, which 
affects the motor performance and rehabilitation process of stroke 
patients. The exact mechanism of post-stroke spasticity is not fully 
understood. Studies have shown that, among the downstream 
conduction tracts, the ventral medial reticulospinal tract from the 

pontine reticular formation and the vestibulospinal tract from the 
vestibular nucleus contribute to the increase in muscle tone; The dorsal 
reticulospinal tract from the bulbar reticular formation inhibited the 
excitability of the stretch reflex. The cerebral cortex modulates the 
stretch reflex by excitation of the bulbar reticular formation through 
the cortical reticular tracts (Trompetto et al., 2014; Naro et al., 2017; 
Bruni et al., 2018). The positive effect of FMV in reducing hemiplegic 
upper and lower limb spasticity in stroke patients has been confirmed 
by several reviews (Murillo et al., 2014; Alashram et al., 2019; Yang, 
2020). A previous study applied FMV directly to the spastic muscles 
(Biceps brachii, Wrist flexor muscles, and Finger flexor muscles) of 
post-stroke hemiplegic patients and found that it was effective in 
decreasing spasticity of the target muscles as well as improving upper 
extremity function (Noma et  al., 2009). The study discovered that 
vibratory stimulation resulted in a decrease in both the F-wave 
amplitude and the F/M ratio, which indicates a decline in motor neuron 
excitability. The current work discovered by fNIRS that FMV of the 

FIGURE 4

A dot plot showing the correlation between Hbo-CV and clinical assessment information for each cortical ROI. rs, Spearman correlation analysis 
correlation coefficient. LSMC, the left sensorimotor cortex; LPFC, the left prefrontal cortex; LOC, the left occipital cortex; muscle strength was 
assessed in the affected wrist flexor groups; Brunnstrom Recovery Stage was evaluated on the affected upper limb.

TABLE 4 The correlation coefficient between the beta value and clinical characteristics for each cortical ROI (N  =  22).

Beta value

LSMC RSMC LPFC RPFC LOC ROC

Muscle strengtha 0.488* 0.286 0.575** 0.27 0.553** 0.249

Muscle tonea 0.326 0.15 0.332 0.112 0.109 0.157

BRSb 0.433* 0.224 0.574** 0.181 0.397 0.081

FMA-UEb 0.187 0.036 0.32 −0.03 0.238 −0.054

MBI 0.385 0.046 0.298 −0.114 0.367 0.084

LSMC, the left sensorimotor cortex; RSMC, the right sensorimotor cortex; LPFC, the left prefrontal cortex; RPFC, the right prefrontal cortex; LOC, the left occipital cortex; ROC, the right 
occipital cortex; aaffected wrist flexor group; baffected upper limb; Bold indicates statistical significance (*P < 0.05; **P < 0.01).
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spastic muscle of the hemiplegic upper limb (wrist flexor muscle), leads 
to elevated cortical activity. The increase in sensorimotor cortical 
activation could indicate an improvement in inhibitory circuits, which 
helps to decrease spasticity (Vazquez et  al., 2018). The possible 
mechanism is the aforementioned alteration of cortical activity, 
followed by excitation of the bulbar reticular formation through the 
corticoreticular bundle, as a result of a modulatory effect on the stretch 
reflex. The study found no correlation between the initial levels of 
muscle spasticity and the intensity of cortical activation induced by 
FMV. This suggests that there is no significant causal relationship 
between the level of muscle spasticity and the intensity of activation in 
the individual cerebral cortex following a stroke. Some articles suggest 
that FMV helps reduce spasticity by rebalancing interhemispheric 
interactions through the activation of bilateral S1-M1 (Li et al., 2022). 
Future longitudinal studies are necessary to better understand the 
relationship between FMV-induced spasticity relief and cortical 
activation when applied directly to the affected flexor muscles.

One previous meta-study found that the intensity of upper limb 
impairments in stroke patients was strongly linked to the level of 
activation in the ipsilesional M1 during movement of the paralyzed 
hand, as measured using fMRI (Rehme et al., 2012). The authors were 
inspired by the results of the above studies, and a search of the 
database did not reveal any relevant studies on the relationship 
between the activation of functional brain regions and movement 
performances in stroke patients as detected by fNIRS or fMRI studies 
using sensory stimulation as a task. In this study, we used fNIRS (a 
block-design paradigm) as a detection tool to perform a correlation 
analysis between the excitation intensity of cortical ROI and the 
clinical data of stroke patients using the FMV applied to the affected 
FCR (target muscle) as a task. The results revealed that the muscle 
strength grades of the target muscles were statistically positively 

correlated with the activation intensity in the ipsilesional ROIs, and 
not in the contralesional ROIs. The above results suggest that the 
muscle strength of the target muscles of the affected limb is closely 
related to the integrity of the sensory-motor nerve pathway and the 
functional status of the ipsilateral cortex of the lesion, which is also in 
accordance with the rules of traditional structural and functional 
anatomy. The outcomes of the ongoing study demonstrated that the 
BRS of the affected upper limb was positively correlated with the 
activation intensity of the ipsilesional SMC and LPFC, while it was not 
statistically correlated with the activation intensity of the contralesional 
SMC, PFC, and bilateral OC. The above results suggest that good 
activation of ipsilesional SMC and PFC induced by FMV-evoked 
sensory stimulation predicts a better motor recovery of the affected 
limb in stroke patients, which in part reflects the patient’s motor 
performance ability. This is somehow in line with the results of a 
previous meta-analysis that used fMRI and PET scans to study active 
or passive sensorimotor tasks involving the upper limb (Favre et al., 
2014). A recent fNIRS study found that touching the affected shoulder 
in stroke patients can activate both sides of the motor cortex, the 
intensity of this activation was correlated with the baseline clinical 
characteristics of the patients. The authors attributed this result to 
functional compensation in uninjured brain regions (Zhang et al., 
2023). This functional compensation is seen both within the affected 
hemisphere and between the unaffected hemispheres (Viganò et al., 
2023; Zhang et al., 2023).

The design of an intervention program for focal vibration therapy 
mainly includes the settings of device parameters (such as frequency, 
amplitude, intensity, etc.), vibration duration, the targeted site for 
vibration action (such as flexor, extensor, muscle belly, tendon, etc.), 
and the varied timing in relation to stroke onset for recruited 
patients. it is widely reported that FMV’s capability of inducing 

FIGURE 5

A dot plot showing the correlation between beta value and clinical assessment information for each cortical ROI. rs, Spearman correlation analysis 
correlation coefficient. LSMC, the left sensorimotor cortex; LPFC, the left prefrontal cortex; LOC, the left occipital cortex; muscle strength was 
assessed in the affected wrist flexor groups; Brunnstrom recovery stage was evaluated on the affected upper limb.
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synaptic plasticity using the proprioceptive pathway depends on 
vibration parameters that can deeply affect clinical results in RCT 
(Wang et al., 2020; Avvantaggiato et al., 2021; Viganò et al., 2023). 
Those aspects probably explain the absence of statistical correlations 
found in the present study between FMA-UE and MBI and the 
activation intensity of all cortical ROIs. Focal vibration stimulates the 
muscle spindle, and impulses are transmitted via Ia afferent fibers to 
alpha motor neurons and Ia inhibitory interneurons in the spinal 
cord. This afferent pathway produces an involuntary contractile 
response in the vibrated muscle, also known as a tonic vibration 
reflex (TVR), and a so-called “reciprocal inhibition” in the antagonist 
muscle, which inhibits spasticity in the antagonist muscle (De Gail 
et al., 1966; Hagbarth and Eklund, 1966). Therefore, there have been 
many previous studies of vibratory stimulation of antagonist muscles 
of spastic muscles to reduce spasticity in hemiplegic limbs (Bishop, 
1975; Desmedt, 1983; Ageranioti, 1990; Casale et  al., 2014; 
Constantino et al., 2014; Annino et al., 2019). Clinical observations 
have shown that vibration stimulation applied directly to spastic 
muscles produces an initial TVR in stroke patients, with significant 
relief of spasticity after several minutes of continuous stimulation 
(Noma et al., 2009). Hence, in recent years, many studies have used 
focal vibration to directly stimulate the spastic muscles (flexor 
muscles) in stroke patients, and have also achieved good efficacy 
(Noma et al., 2009; Marconi et al., 2011; Aprile et al., 2020). In recent 
years, the vibration frequency of local vibration applied to stroke 
rehabilitation ranges from 30 to 300 Hz, and the amplitude ranges 
from 0.01-10 mm (Wang et al., 2020, 2022; Viganò et al., 2023). It has 
been shown that vibrations of approximately 10 Hz or higher than 
220 Hz do not produce a reliable and vivid “motion illusion.” 
Vibrations without the illusion of motion tend to activate the sensory 
areas of the brain, whereas vibrations with the illusion of motion 
activate the motor areas in addition to the sensory areas of the brain, 
and illusory limb movements activate the motor areas normally 
involved in executing and controlling limb movements (Naito, 2004). 
Previous studies have reported that in studies of vibration 
interventions for patients with spinal cord injury, multiple sclerosis, 
and other movement disorders, vibration amplitudes of 
0.01 mm–2 mm, which were used for stroke rehabilitation, were 
comparable to vibration amplitudes of 0.005 mm to 10 mm (Murillo 
et al., 2014; Souron et al., 2017; Yang, 2020). Based on the above 
reasons, the present study adopted a treatment protocol of direct 
focal vibration (frequency: 60 Hz; amplitude: 6 mm) to the spastic 
muscles of the upper limb in stroke, using a therapeutic device 
(ZEPU-K5000A, ZEPU Medical Equipment Co., Ltd., China) that is 
widely used in neurological rehabilitation institutions in China, and 
which can induce “motion illusions” and TVR. In my clinical work, 
I  found that applying this device to the flexor muscles of the 
hemiplegic upper limbs of stroke patients can reduce muscle 
spasticity and improve motor function of the upper limbs (ready for 
submission), without any side effects. A recent study using this same 
device in the treatment of hemiplegic stroke patients also showed 
that it was effective in improving upper limb motor function (Wang 
et al., 2023a). However, the decision on the selection of the above 
vibration parameters is still debated. It has been suggested that 
different vibration frequencies may preferentially activate different 
cortical areas (Chung et al., 2013; Avvantaggiato et al., 2021). Most 
literature currently uses vibration frequencies between 80 and 
120  Hz, with 100 Hz being the most common. This frequency is 

believed to more easily induce plastic changes in the brain and spinal 
cord through cortical hyperactivity and motoneuron excitability, 
respectively; The optimal vibratory stimulus amplitude is <0.5 mm, 
as it activates Ia afferents via primary muscle spindle discharge. 
Higher amplitudes cause overflow, leading to TVR via amplified Ia 
inputs from persistent stimulation, which is still unclear if it is 
necessary for clinical effects (Viganò et  al., 2023). Randomized 
controlled studies with different vibration frequencies and amplitudes 
are necessary in the future to further understand their effects on 
cortical activity and clinical function in stroke patients.

In addition, there are some other limitations of this study that can 
lead to bias in the results. First, the number of subjects was relatively 
small, the type of stroke (cerebral hemorrhage or cerebral infarction) 
was not restricted, and the exact location and size of the lesions were 
inconsistent, although the lesions were in the left cerebral hemisphere 
in all subjects. Therefore, more stroke patients must be recruited, the 
type of stroke needs to be  limited, and the results can be  better 
validated by controlling for the site and size of the injury in the 
patients. Second, adaptive neuroplasticity declines with time since 
acute stroke and improvement in clinical function peaks 3–6 months 
after stroke (Kwakkel and Kollen, 2013; Viganò et al., 2023). However, 
the duration of illness of the subjects recruited for this study ranged 
from 2 weeks to 1 year, which can also lead to bias in the results, so it 
would be preferable to recruit patients with acute or subacute stages 
of stroke as study subjects in future studies. Third, the current study 
used a block-design paradigm to detect changes in cortical activity, 
with the task being 30 s of FMV, which actually observed cortical 
activity during the FMV-induced TVR, not involving the cortical 
activity or brain networks after a TVR lasting several minutes, which 
needs to be added to future studies as well. Finally, assessment of 
functional activation of motor-related systems as an imaging 
biomarker has been suggested as a predictive method for prognosis 
after stroke (Zhang et  al., 2022). The present study analyzed the 
correlation between FMV-induced changes in cortical activity and 
baseline clinical characteristics and did not perform a correlation 
analysis of changes in distant clinical characteristics. Therefore, 
further studies are necessary to confirm whether the prognosis of 
stroke patients can be predicted by analyzing FMV-induced changes 
in cortical activity.

5 Conclusion

The application of FMV-evoked sensory stimulation directly to 
the muscle belly of the FCR on the paralyzed side of the upper limb 
in stroke patients activated additional brain cortices, such as bilateral 
PFC and ipsilesional OC, in addition to bilateral SMC. This suggests 
that FMV induces neural plasticity across multiple brain regions. 
However, only the intensity of ipsilesional SMC and PFC activation 
showed a correlation with the clinical characteristics of the patients. 
The results of this study provide neurophysiological theoretical 
support for the expanded clinical application of FMV. Furthermore, 
the fNIRS test, which utilized a block-design paradigm of FMV, has 
the potential to be  used as an objective assessment tool for 
hemiplegic stroke patients. Further studies are necessary to confirm 
whether the prognosis of stroke patients can be predicted by fNIRS 
detection of altered cortical activity induced by sensory stimuli 
evoked by FMV.
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