Metastasis is still an immense challenge in the treatment of cancer. Whilst recent years have seen great advances in cancer diagnosis and treatment, metastasis is still difficult to treat. For cancer cells to successfully detach from the primary tumor and spread around the body, cell-to-cell adhesion must break down. Tight junctions are the first cell adhesion complex to be dismantled during metastasis formation and are therefore fundamental for cancer development. The cellular structure of tight junctions has been increasingly described to be important in cancer disease progression and therefore it is identified as a potential target for treatment and means of drug delivery.
Several questions still need to be fully addressed to improve our understanding of the role of tight junctions in cancer metastasis. These include the underlying molecular mechanisms within the cancer cell itself, and also how these mechanisms influence other cell types involved in the metastatic process. Due to their prominent role in cancer development, individual tight junctions have been increasingly reported to be potential diagnostic markers or possible targets for therapy. Moreover, tight junction complexes are crucial to the efficacy of drug therapies, as they can regulate the permeability and bioavailability of the drugs, and penetration of barriers such as the blood-brain barrier.
The scope of this Research Topic is to synthesize the following themes into a cohesive body of work highlighting the importance of tight junctions to the metastatic process:
- mechanistic control of tight junction dynamics;
- influences growth factors/cytokines on tight junction protein complex expression;
- relevance of individual tight junction proteins in different cancer types;
- understanding tight junctions and drug availability;
- how tight junctions are related to different secondary site colonization;
- tight junction proteins as targets for treatment and as diagnostics.
This can be original manuscripts or excellent reviews to indicate state-of-the-art knowledge.
Please note: manuscripts consisting solely of bioinformatics or computational analysis of public genomic or transcriptomic databases which are not accompanied by validation (independent cohort or biological validation in vitro or in vivo) are out of scope for this section and will not be accepted as part of this Research Topic.
Metastasis is still an immense challenge in the treatment of cancer. Whilst recent years have seen great advances in cancer diagnosis and treatment, metastasis is still difficult to treat. For cancer cells to successfully detach from the primary tumor and spread around the body, cell-to-cell adhesion must break down. Tight junctions are the first cell adhesion complex to be dismantled during metastasis formation and are therefore fundamental for cancer development. The cellular structure of tight junctions has been increasingly described to be important in cancer disease progression and therefore it is identified as a potential target for treatment and means of drug delivery.
Several questions still need to be fully addressed to improve our understanding of the role of tight junctions in cancer metastasis. These include the underlying molecular mechanisms within the cancer cell itself, and also how these mechanisms influence other cell types involved in the metastatic process. Due to their prominent role in cancer development, individual tight junctions have been increasingly reported to be potential diagnostic markers or possible targets for therapy. Moreover, tight junction complexes are crucial to the efficacy of drug therapies, as they can regulate the permeability and bioavailability of the drugs, and penetration of barriers such as the blood-brain barrier.
The scope of this Research Topic is to synthesize the following themes into a cohesive body of work highlighting the importance of tight junctions to the metastatic process:
- mechanistic control of tight junction dynamics;
- influences growth factors/cytokines on tight junction protein complex expression;
- relevance of individual tight junction proteins in different cancer types;
- understanding tight junctions and drug availability;
- how tight junctions are related to different secondary site colonization;
- tight junction proteins as targets for treatment and as diagnostics.
This can be original manuscripts or excellent reviews to indicate state-of-the-art knowledge.
Please note: manuscripts consisting solely of bioinformatics or computational analysis of public genomic or transcriptomic databases which are not accompanied by validation (independent cohort or biological validation in vitro or in vivo) are out of scope for this section and will not be accepted as part of this Research Topic.