
Coordinated by  

Omneya Mohamed

Edited by  

Dalia M. Dawoud, Blythe Adamson, Grammati Sarri, 

Amr Makady and Zaheer-Ud-Din Babar

Published in  

Frontiers in Pharmacology

Novel methods and 
technologies for the 
evaluation of drug 
outcomes and policies

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org/research-topics/49444/novel-methods-and-technologies-for-the-evaluation-of-drug-outcomes-and-policies
https://www.frontiersin.org/research-topics/49444/novel-methods-and-technologies-for-the-evaluation-of-drug-outcomes-and-policies
https://www.frontiersin.org/research-topics/49444/novel-methods-and-technologies-for-the-evaluation-of-drug-outcomes-and-policies
https://www.frontiersin.org/research-topics/49444/novel-methods-and-technologies-for-the-evaluation-of-drug-outcomes-and-policies


April 2024

Frontiers in Pharmacology frontiersin.org1

About Frontiers

Frontiers is more than just an open access publisher of scholarly articles: it is 

a pioneering approach to the world of academia, radically improving the way 

scholarly research is managed. The grand vision of Frontiers is a world where 

all people have an equal opportunity to seek, share and generate knowledge. 

Frontiers provides immediate and permanent online open access to all its 

publications, but this alone is not enough to realize our grand goals.

Frontiers journal series

The Frontiers journal series is a multi-tier and interdisciplinary set of open-

access, online journals, promising a paradigm shift from the current review, 

selection and dissemination processes in academic publishing. All Frontiers 

journals are driven by researchers for researchers; therefore, they constitute 

a service to the scholarly community. At the same time, the Frontiers journal 

series operates on a revolutionary invention, the tiered publishing system, 

initially addressing specific communities of scholars, and gradually climbing 

up to broader public understanding, thus serving the interests of the lay 

society, too.

Dedication to quality

Each Frontiers article is a landmark of the highest quality, thanks to genuinely 

collaborative interactions between authors and review editors, who include 

some of the world’s best academicians. Research must be certified by peers 

before entering a stream of knowledge that may eventually reach the public 

- and shape society; therefore, Frontiers only applies the most rigorous 

and unbiased reviews. Frontiers revolutionizes research publishing by freely 

delivering the most outstanding research, evaluated with no bias from both 

the academic and social point of view. By applying the most advanced 

information technologies, Frontiers is catapulting scholarly publishing into  

a new generation.

What are Frontiers Research Topics? 

Frontiers Research Topics are very popular trademarks of the Frontiers 

journals series: they are collections of at least ten articles, all centered  

on a particular subject. With their unique mix of varied contributions from  

Original Research to Review Articles, Frontiers Research Topics unify the 

most influential researchers, the latest key findings and historical advances  

in a hot research area.

Find out more on how to host your own Frontiers Research Topic or 

contribute to one as an author by contacting the Frontiers editorial office: 

frontiersin.org/about/contact

FRONTIERS EBOOK COPYRIGHT STATEMENT

The copyright in the text of individual 
articles in this ebook is the property 
of their respective authors or their 
respective institutions or funders.
The copyright in graphics and images 
within each article may be subject 
to copyright of other parties. In both 
cases this is subject to a license 
granted to Frontiers. 

The compilation of articles constituting 
this ebook is the property of Frontiers. 

Each article within this ebook, and the 
ebook itself, are published under the 
most recent version of the Creative 
Commons CC-BY licence. The version 
current at the date of publication of 
this ebook is CC-BY 4.0. If the CC-BY 
licence is updated, the licence granted 
by Frontiers is automatically updated 
to the new version. 

When exercising any right under  
the CC-BY licence, Frontiers must be 
attributed as the original publisher  
of the article or ebook, as applicable. 

Authors have the responsibility of 
ensuring that any graphics or other 
materials which are the property of 
others may be included in the CC-BY 
licence, but this should be checked 
before relying on the CC-BY licence 
to reproduce those materials. Any 
copyright notices relating to those 
materials must be complied with. 

Copyright and source 
acknowledgement notices may not  
be removed and must be displayed 
in any copy, derivative work or partial 
copy which includes the elements  
in question. 

All copyright, and all rights therein,  
are protected by national and 
international copyright laws. The 
above represents a summary only. 
For further information please read 
Frontiers’ Conditions for Website Use 
and Copyright Statement, and the 
applicable CC-BY licence.

ISSN 1664-8714 
ISBN 978-2-8325-4764-9 
DOI 10.3389/978-2-8325-4764-9

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org/
https://www.frontiersin.org/about/contact
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


April 2024

Frontiers in Pharmacology 2 frontiersin.org

Novel methods and technologies 
for the evaluation of drug 
outcomes and policies

Topic editors

Dalia M. Dawoud — National Institute for Health and Care Excellence,  

United Kingdom

Blythe Adamson — Flatiron Health, United States

Grammati Sarri — Cytel, United Sates

Amr Makady — Janssen Pharmaceutica NV, Belgium

Zaheer-Ud-Din Babar — University of Huddersfield, United Kingdom

Topic Coordinator

Omneya Mohamed — Baxter Internation Inc, United Arab Emirates

Citation

Dawoud, D. M., Adamson, B., Sarri, G., Makady, A., Babar, Z.-U.-D., Mohamed, O., 

eds. (2024). Novel methods and technologies for the evaluation of drug outcomes 

and policies. Lausanne: Frontiers Media SA. doi: 10.3389/978-2-8325-4764-9

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org/
http://doi.org/10.3389/978-2-8325-4764-9


April 2024

Frontiers in Pharmacology frontiersin.org3

05 Editorial: Novel methods and technologies for the evaluation 
of drug outcomes and policies
Blythe Adamson, Amr Makady, Grammati Sarri, Omneya Mohamed, 
Zaheer Babar and Dalia M. Dawoud

07 Generalizability of machine learning methods in detecting 
adverse drug events from clinical narratives in electronic 
medical records
Md Muntasir Zitu, Shijun Zhang, Dwight H. Owen, Chienwei Chiang 
and Lang Li

17 Reconstructing the value puzzle in health technology 
assessment: a pragmatic review to determine which 
modelling methods can account for additional value 
elements
Jeffrey M. Muir, Amruta Radhakrishnan, Andreas Freitag, 
Ipek Ozer Stillman and Grammati Sarri

29 Economic evaluations of artificial intelligence-based 
healthcare interventions: a systematic literature review of 
best practices in their conduct and reporting
Jai Vithlani, Claire Hawksworth, Jamie Elvidge, Lynda Ayiku and 
Dalia Dawoud

43 What could health technology assessment learn from living 
clinical practice guidelines?
Saskia Cheyne, Samantha Chakraborty, Samara Lewis, Sue Campbell, 
Tari Turner and Sarah Norris

49 Approach to machine learning for extraction of real-world 
data variables from electronic health records
Blythe Adamson, Michael Waskom, Auriane Blarre, Jonathan Kelly, 
Konstantin Krismer, Sheila Nemeth, James Gippetti, John Ritten, 
Katherine Harrison, George Ho, Robin Linzmayer, Tarun Bansal, 
Samuel Wilkinson, Guy Amster, Evan Estola, Corey M. Benedum, 
Erin Fidyk, Melissa Estévez, Will Shapiro and Aaron B. Cohen

61 Evaluating treatments in rare indications warrants a Bayesian 
approach
Emma K. Mackay and Aaron Springford

66 Revealing the dynamic landscape of drug-drug interactions 
through network analysis
Eugene Jeong, Bradley Malin, Scott D. Nelson, Yu Su, Lang Li and 
You Chen

80 Implementing competing risks in discrete event 
simulation: the event-specific probabilities and 
distributions approach
Fanny Franchini, Victor Fedyashov, Maarten J. IJzerman and 
Koen Degeling

Table of
contents

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org/


April 2024

Frontiers in Pharmacology 4 frontiersin.org

90 Indication and adverse event profiles of denosumab and 
zoledronic acid: based on U.S. FDA adverse event reporting 
system (FAERS)
Si Su, Liuqing Wu, Guibao Zhou, Lingling Peng, Huanzhe Zhao, 
Xiao Wang and Kuan Li

101 Diagnostics and treatments of COVID-19: two-year update to 
a living systematic review of economic evaluations
Jamie Elvidge, Gareth Hopkin, Nithin Narayanan, David Nicholls and 
Dalia Dawoud

121 Quantifying the impact of novel metastatic cancer therapies 
on health inequalities in survival outcomes
Karolina Zebrowska, Rosa C. Banuelos, Evelyn J. Rizzo, Kathy W. Belk, 
Gary Schneider and Koen Degeling

130 Advancing the use of real world evidence in health 
technology assessment: insights from a multi-stakeholder 
workshop
Ravinder Claire, Jamie Elvidge, Shahid Hanif, Hannah Goovaerts, 
Peter R. Rijnbeek, Páll Jónsson, Karen Facey and Dalia Dawoud

136 Applying the estimand and target trial frameworks to external 
control analyses using observational data: a case study in the 
solid tumor setting
Letizia Polito, Qixing Liang, Navdeep Pal, Philani Mpofu, 
Ahmed Sawas, Olivier Humblet, Kaspar Rufibach and 
Dominik Heinzmann

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org/


Editorial: Novel methods and
technologies for the evaluation of
drug outcomes and policies

Blythe Adamson1,2*, Amr Makady3, Grammati Sarri4,
Omneya Mohamed5, Zaheer Babar6 and Dalia M. Dawoud7,8

1Flatiron Health, New York, NY, United States, 2The Comparative Health Outcomes, Policy and
Economics (CHOICE) Institute, University of Washington, Seattle, WA, United States, 3Janssen-Cilag B.V.,
Breda, Netherlands, 4Cytel, London, United Kingdom, 5Baxter AG Scientific Office, Dubai, United Arab
Emirates, 6Department of Pharmacy, University of Huddersfield, Huddersfield, United Kingdom, 7Faculty
of Pharmacy, Cairo University, Cairo, Egypt, 8National Institute for Health and Care Excellence (NICE),
London, United Kingdom

KEYWORDS

methods, analytic, artificial intelligence, causal inference, health technology assessment
(HTA), HEOR

Editorial on the Research Topic
Novel methods and technologies for the evaluation of drug outcomes
and policies

Globally, providing quality, equitable healthcare by accelerating patient access to new,
promising health technologies while balancing the impact of their increased expenditures
remains a global challenge. In parallel, the landscape of techniques and tools available to
evaluate the safety and effectiveness of drugs is rapidly evolving with the advent of novel
technologies and methodologies, thereby re-inventing the way we evaluate health outcomes
and policies. This Research Topic of Frontiers in Pharmacology presents a compelling
collection of scientific papers that delve into these advancements, offering insights into the
latest developments in this dynamic field.

Artificial intelligence (AI) and machine learning (ML) methodologies are key themes
explored in three papers within this Research Topic. The study by Zitu et al. on the
generalizability of ML methods in detecting adverse drug events from clinical narratives in
electronic medical records is a testament to the potential of AI in enhancing drug safety
monitoring. Adamson et al. application of AI and ML in extracting real-world data from
electronic health records (EHRs) is a stride forward in oncology research. This approach
exemplifies how technology can enhance the curation of health records into valuable data
sources. Vithlani et al. systematically review the conduct and reporting of health economic
evaluations for AI-based healthcare interventions. Their work reveals the rapid growth in
this area and the necessity for specific reporting standards to enhance transparency and
decision-making in AI intervention evaluations. Some believe the increasing use of AI and
ML raises ethical concerns regarding data privacy, bias, and transparency.

There was vital discussion around dominant Research Topic in Health Technology
Assessment (HTA); integrating real-world evidence (RWE) in HTA, expanding analytical
approaches (cost-effectiveness, equity-informed analyses) to include considerations beyond
clinical and economic value drivers, and exploring new, reactive HTA approaches. Claire
et al. bring forward insights, drawn from a multi-stakeholder workshop, to address the slow
adoption of RWE in HTA compared to regulatory processes and the underlying reasons for
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staying behind. They emphasize the need for developing resources to
promote best practices for conducting RWE studies, comprehensive
training, stakeholder collaboration, and impactful research projects
to bridge this gap, thereby enhancing HTA’s evidence base for
informed healthcare decisions. Muir et al. review on integrating
additional value elements in HTA modeling methods is a call to
broaden the scope of health technology assessments. By
incorporating societal values and health equity, their work
advocates for a more holistic approach to evaluating new
therapies. In the same direction, Zebrowska et al. and team’s
groundbreaking work on quantifying the impact of novel
metastatic cancer therapies on health inequalities is a sobering
reminder of the disparities in healthcare by offering an example
of equity-informed analysis. Their study highlights how
advancements in treatments may inadvertently widen the survival
gap among different patient groups, emphasizing the need for more
equitable healthcare solutions.

Cheyne et al. draw parallels between “living” clinical practice
guidelines and HTA. Their reflections on incorporating continuous
evidence synthesis in HTA processes offer a new paradigm in
healthcare evaluation, ensuring that HTA remains responsive and
current in a rapidly evolving evidence landscape.

Moving to Research Topic on advanced RWD analysis
techniques in health economics and outcomes research (HEOR),
the selected articles presented solutions for evaluating effectiveness
and safety for new drugs in rare and very rare diseases and presented
case study applications in causal inference and
pharmacoepidemiology. Mackay and Springford advocacy for
Bayesian methods in evaluating treatments for rare indications
addresses a critical gap in HEOR. They argue for the use of
Bayesian approaches to overcome challenges in small sample
sizes and disconnected evidence networks, paving the way for
more nuanced and robust analysis in rare disease settings.
Franchini et al. Introduce an innovative approach in discrete
event simulation, focusing on event-specific probabilities and
distributions, especially in the context of censored data. Their
methodological advancements in modeling competing events
hold significant promise for more accurate and nuanced analysis
in pharmacoeconomic studies.

Causal inference principles applied by Polito et al. and team to
external control analysis in observational data is a noteworthy
contribution. By defining the estimand attributes and selecting
appropriate estimators, their study offers a refined approach to
evaluating long-term survival outcomes in metastatic non-small cell
lung cancer. Jeong et al. and team’s use of network analysis to elucidate
the dynamic landscape of drug-drug interactions offers a novel
perspective. Their work underscores the potential of computational
methods in identifying key research areas and informing clinical
practice. The analysis of the FDA Adverse Event Reporting System
by Su et al. offers a deep dive into the adverse event profiles of
Denosumab and Zoledronic acid. Their findings provide invaluable
insights for clinicians and policymakers, highlighting the importance of
ongoing safety monitoring in pharmacovigilance.

Finally, the living systematic review by Elvidge et al. provides a
crucial update on the economic evaluations of COVID-19
diagnostics and treatments emphasizing the need for a real time,
regularly updated decision-making. Two years into the pandemic,

their work synthesizes cost-effectiveness evidence for various
interventions, highlighting the importance of making informed
healthcare decisions in the rapidly changing landscape of
COVID-19 management as new data emerges. This study
underscores the ongoing need for living robust economic
evaluations in guiding healthcare strategies, especially in a
rapidly-changing pandemic setting.

This Research Topic not only reflects the recent trends in HEOR
and rapid advancements in drug evaluation and policy research but
also underscores the need for continuous adaptation and integration
of novel methods in healthcare decision-making. It remains a
potential challenge in accessing and implementing novel
technologies, particularly in resource-limited settings. From the
economic evaluations of emerging therapies to the cutting-edge
use of AI and ML in data analysis, these studies collectively push the
boundaries of current knowledge, paving the way for more
informed, efficient, and equitable healthcare systems.
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Generalizability of machine
learning methods in detecting
adverse drug events from clinical
narratives in electronic medical
records

Md Muntasir Zitu1, Shijun Zhang1, Dwight H. Owen2,
Chienwei Chiang1 and Lang Li1*
1Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH,
United States, 2Department of Internal Medicine, College of Medicine, The Ohio State University,
Columbus, OH, United States

We assessed the generalizability of machine learning methods using natural
language processing (NLP) techniques to detect adverse drug events (ADEs)
from clinical narratives in electronic medical records (EMRs). We constructed a
new corpus correlating drugs with adverse drug events using 1,394 clinical notes
of 47 randomly selected patients who received immune checkpoint inhibitors
(ICIs) from 2011 to 2018 at The Ohio State University James Cancer Hospital,
annotating 189 drug-ADE relations in single sentences within themedical records.
We also used data from Harvard’s publicly available 2018 National Clinical
Challenge (n2c2), which includes 505 discharge summaries with annotations of
1,355 single-sentence drug-ADE relations. We applied classical machine learning
(support vector machine (SVM)), deep learning (convolutional neural network
(CNN) and bidirectional long short-term memory (BiLSTM)), and state-of-the-art
transformer-based (bidirectional encoder representations from transformers
(BERT) and ClinicalBERT) methods trained and tested in the two different
corpora and compared performance among them to detect drug–ADE
relationships. ClinicalBERT detected drug–ADE relationships better than the
other methods when trained using our dataset and tested in n2c2
(ClinicalBERT F-score, 0.78; other methods, F-scores, 0.61–0.73) and when
trained using the n2c2 dataset and tested in ours (ClinicalBERT F-score, 0.74;
other methods, F-scores, 0.55–0.72). Comparison among several machine
learning methods demonstrated the superior performance and, therefore, the
greatest generalizability of findings of ClinicalBERT for the detection of drug–ADE
relations from clinical narratives in electronic medical records.

KEYWORDS

adverse drug events, electronic health records, machine learning, natural language
processing, relation extraction

1 Introduction

Adverse drug events (ADEs) are unintended harmful effects of taking medication (Hohl
et al., 2018), which is a leading cause of death in the United States (Classen et al., 1997;
Binkheder et al., 2022) and responsible for the hospitalization of 9,440,757 patients from
2008 to 2011, with an increasing trend over time (Poudel et al., 2017). The estimated annual
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cost of drug-related morbidity and mortality resulting from non-
optimized medication therapy was $528.4 billion, equivalent to 16%
of total US healthcare expenditures, in 2016 (Watanabe et al., 2018).
Patients with ADEs have demonstrated significantly longer hospital
stays and an almost two-fold greater risk of death than patients
without ADEs (Classen et al., 1997). Nevertheless, ADEs are mostly
preventable (Rommers et al., 2007), and early detection can
substantially reduce morbidity and, thereby, decrease associated
healthcare costs (Classen et al., 1997; Kaushal et al., 2006;
Handler et al., 2007).

ADEs are largely detected after marketing, so timely surveillance
at this time is important for patient safety (Botsis et al., 2011;
Polepalli Ramesh et al., 2014). Pharmacovigilance has traditionally
employed spontaneous reporting systems (SRSs), but as many as
90% of ADEs may remain unreported in this voluntary scheme
(Hazell and Shakir, 2006). In contrast, electronic health records
(EHR) represent a potentially great source for post-marketing
surveillance of drug safety, accommodating real-time clinical data
gathered from routine clinical care (Coloma et al., 2013). One study
revealed relevant ADE information, for example, in the structured
data of 9,020 of 31,531 patients (28.6%) with side effects of statin
documented in provider notes (Skentzos et al., 2011). Furthermore,
clinical notes in EHRs provide longitudinal information related to
drug-induced adverse events, but the manual review and extraction
of ADEs from enormous clinical narratives is labor intensive, and
clinical notes in EHRs vary from patient to patient, physician to
physician, and hospital to hospital. Therefore, an automated system
that utilizes artificial intelligence (AI) is needed to extract ADEs
from clinical notes, and attempts have been made to build such a
system.

The Medication and Adverse Drug Events Challenge
(MADE1.0) (Jagannatha et al., 2019) aimed to automatically
identify clinical concepts and relations from clinical narratives
that included ADEs. The Challenge included three tasks: 1)
naming the recognized entity (NER) and identifying the
medication and its route, dosage, duration, frequency, and
indication, as well as associated ADEs and their severity; 2)
identifying relations (RI) of medications with ADEs,
indications, and other entities; and 3) performing the NER
and RI tasks jointly. The Challenge released 1,089 fully de-
identified clinical notes from 21 randomly selected patients
with cancer at the University of Massachusetts Memorial
Hospital that included 2,612 drug–ADE relations. Methods
used to classify relations ranged from statistical machine
learning (ML)-based methods, such as support vector machine
learning (SVM), random forest, and others, to neural-network-
based bidirectional long short-term memory (BiLSTM). The
best-performing model for the classification of ADE–drug
name relations achieved an F-score of 0.72.

Another effort, the n2c2 Shared Task Challenge (Henry et al.,
2020), mirrored MADE1.0 and included similar tasks. The
n2c2 dataset comprised 505 discharge summaries taken from the
Medical Information Mart for Intensive Care-III (MIMIC-III)
clinical care database (Johnson et al., 2016). Records were
selected by searching ADEs in the International Classification of
Diseases (ICD) code descriptions of the records, which yielded a
total of 1,840 ADE-drug relations. Methods used for the relation-
classification task ranged from SVM to attention-based BiLSTM,

with the best-performing model for ADE-drug name relation
yielding an F-score of 0.85.

The use of data from a single EHR source in the two
challenges allowed NLP approaches developed from these
models to be data-specific. The model that performed the best
(Wei et al., 2020) in relation extraction for the n2c2 Shared Task,
for example, contained a post-processing technique that was
dependent on the n2c2 annotation guideline to improve the
performance of their BiLSTM conditional random field (CRF)
algorithm. This n2c2 paper (Wei et al., 2020) also suggested that
language models like BERT (Devlin et al., 2018) in the biomedical
domain may further improve the NLP performance, and it
remains to be an interesting topic for future research. In the
best-performing model (Chapman et al., 2019) from the MADE
1.0 Challenge, the best model was random forest. The paper
(Chapman et al., 2019) stated that generalizability of the best-
performing model was unclear.

Though transformer-based methods like BERT (Devlin et al.,
2018), BioBERT (Lee et al., 2020), and ClinicalBERT (Alsentzer
et al., 2019) have become popular in recent years, they have not
been applied to identify ADEs from the clinical notes of EHRs.
Therefore, it is critical to implement the same model on data from
different data sources to assess the generalizability of a model. No
study has been conducted yet that used EHRs from different data
sources to address the issue of generalizability. BERT-based
methods have performed better than other machine and deep
learning methods (Sun et al., 2019; González-Carvajal and
Garrido-Merchán, 2020; Minaee et al., 2022) in mining
biomedical texts, and methods that integrate biomedical
corpora, such as ClinicalBERT, outperformed BERT models
(Huang et al., 2019). In this article, we investigate the
performance of deep learning (CNN, BiLSTM) and
transformer-based (BERT and ClinicalBERT) methods, as well
as classical SVM, in clinical notes of two different EHR systems.

The preprocessing of data is important in NLP in clinical text
and challenged by the inherent variations in EHRs, and the
preprocessing of clinical text in EHRs, such as tokenization,
which breaks the text into meaningful elements and detects
sentence boundaries, is different and more challenging than the
processing of data in the literature (Griffis et al., 2016). Publications
often inadequately present the end-to-end data preprocessing
method, but in this paper, we sufficiently detail the end-to-end
data preprocessing for all NLP methods used.

Our primary goal is to address whether and how ADE NLP
algorithms developed from the n2c2 Shared Task can be
generalized to a drug-specific ADE in a different EHR. There
are two types of generalizability in the NLP algorithm
development for detecting drug-induced ADEs. First, we want
to know whether the NLP model developed in one dataset
maintains a comparable performance in a different dataset.
Second, if one NLP method has a better performance than the
others, will it maintain its supreme performance in a different
dataset? In this paper, we study both types of generalizability for
NLP algorithms designed for drug–ADE relationship detection.
We will use ADEs induced by immune checkpoint inhibitors
(ICI) (Nashed et al., 2021) as recorded in clinical notes as
examples for analysis. MADE1.0 (Jagannatha et al., 2019) data
were not available to us when we conducted this study.
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2 Materials and methods

2.1 Datasets

We used two datasets to analyze the generalizability of ADE
detection from EHRs; one was developed from the EHR system of
The Ohio State University James Cancer Hospital, and the second
was that of the n2c2 Shared Task (Henry et al., 2020).

2.2 ICI-OSU corpus

We built the ICI-OSU corpus by manually annotating
1,394 clinical notes of 47 randomly selected patients who
received immune checkpoint inhibitors (ICIs) from 2011 to
2018 at The Ohio State University James Cancer Hospital.
Supplementary materials contain a detailed annotation guideline
that we developed to assist the annotators with manual annotation.
Supplementary Table S1 contains the annotation guideline for entity
annotation, whereas Supplementary Table S2 contains the guideline
for relation annotation. Figure 1 shows different types of entity tags
and relation annotations.

The entities included drug names, mentions of ADEs, dates
drugs were taken, dates of ADEs, terms drawing causal relation
between a drug and an ADE, and grades of ADE intensity. It is worth
mentioning that reasons for drug administration were not
considered as ADEs. Supplementary Figure S1 shows the
difference between ADE and reason for drug administration with
an example. Relations were annotated for entities located within a
single sentence and across sentences. Two annotators with
informatics skills and knowledge in cancer clinical trials
independently annotated each note, and a third annotator
performed the validation for inconsistent annotations between
the two annotators. One annotator was a resident physician with
hands-on experience with EHRs; the second had a master’s degree in
biology with 7 years of experience in corpus development and
annotation; the third annotator, who performed the validation,
was a graduate student in biomedical informatics. The
institutional review board of The Ohio State University approved
this study (#2020C0145).

2.3 ICI-OSU data processing pipeline

Figure 2 illustrates the data processing pipeline we built that
feeds processed data to the ADE NLP models for generalizability
analysis.

In the first step, we collected the clinical notes of the targeted
patient. The ICI-OSU corpus contains the patient’s notes for the first
12 months from the date of the first ICI dose in the structured data.
The order of note dates is maintained to keep track of longitudinal
data, such as the date of first drug use, date of first ADE, and date of
drug discontinuation.

In the second step, we cleaned data using regular expression
techniques (Wang et al., 2019), which included but were not limited
to normalizing uneven spaces and drug names and manipulating
abbreviations. For drug name normalization, we used the DrugBank

FIGURE 1
Annotation example for different entities in the ICI-OSU corpus.

FIGURE 2
ICI-OSU data processing pipeline. Python and C++
programming were used at different steps to automate the process.

TABLE 1 List of drug names and adverse drug events. We used all possible
mentions of these drugs and ADEs in our study.

Drug ADE

Atezolizumab Colitis

Ipilimumab Pneumonitis

Nivolumab Thyroid

Pembrolizumab Abnormalities

Tremelimumab Rash/dermatitis

Avelumab Hepatitis

Durvalumab Myalgia/arthralgia

Cemiplimab Cardiotoxicity
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database (Wishart et al., 2008) as our primary source, and we built a
lookup table that contained all possible mentions (such as the
generic and brand name) of a drug. Supplementary Figure S2
shows a raw original clinical note, and Supplementary Figure S3
shows the cleaned data.

In the third step, we performed automatic screening for drugs
and ADEs, tagging predefined drug and ADE terms for follow-up
manual annotation. Table 1 delineates the drug names and the ADE
list of our study. We used the Common Terminology Criteria for
Adverse Events (CTCAE) (Freites-Martinez et al., 2021) and the
DrugBank database as our primary guidelines for ADE and drug
mentions, respectively. Then, we built a lookup table for screening
that contained all possible mentions of these drugs and ADEs found
in EHRs. We discussed with a physician and annotators who had
hands-on experience working with EHRs, thus enriching and
verifying our lookup table to ensure accuracy.

In the fourth step, we used the Apache clinical Text Analysis and
Knowledge Extraction System (cTAKES)™ (Savova et al., 2010), an
open-source NLP tool, to segment sentences in the EHRs, which is
one of the most challenging tasks because of variations, such as in
use of punctuation and abbreviations, that are unique to the recorder
(Griffis et al., 2016). To optimize cTAKES™ performance on
sentence segmentation, we also encrypted the unexpected line
breakers to be consistent with the cTAKES™ segmentation rules.
After segmentation, we decrypted the data to preserve their
originality. Supplementary Figure S4 shows the data’s appearance
after sentence segmentation in cTAKES™.

In the fifth step, we performed automatic de-identification using
de-identification software (Neamatullah et al., 2008) from
PhysioNet (Goldberger et al., 2000) followed by manual de-
identification by the annotators to ensure accuracy. The recall
value of PhysioNet was over 98% in the de-identification task on
our dataset. Supplementary Figure S5 shows the data after de-
identification.

In the sixth step, we performed automatic tagging, annotating
the drug name, mention of ADE, and date of ADE, to reduce the
burden of subsequent manual annotation. For drug and ADE
annotation, we performed exact matching of the data with our
predefined drug and ADE lists. We used a rule-based method to
annotate the dates in the clinical text automatically, and this
annotation was consistent with that of the web-based brat rapid
annotation tool (BRAT) (Stenetorp et al., 2012), which we used later
for manual annotation. Though automatic annotation greatly
reduced the burden of manual annotation, the annotators were
free to annotate any new form of a drug name, mention of ADE, or
date of ADE. The annotators could also correct anything incorrectly
tagged in automatic tagging. Supplementary Figure S6 shows the
automatically annotated notes.

In the seventh step, our annotators performed manual
annotation in BRAT following the well-defined guideline
mentioned previously and included in the supplementary
materials. Supplementary Figure S7 shows the manually
annotated notes.

In the eighth and final step, we extracted relevant annotation
information automatically after manual annotation to build our
corpus. Information extracted to prepare the data for machine
learning models included drug–ADE relations, drug–ADE pairs,
and neighboring words.We built an automatic system to extract that

information from the annotated corpus based on the input format of
the ML models. Due to the repetitive nature of EHRs, several
drug–ADE relations were repeated when the text between a drug
and an ADE, as well as the context, were exactly the same. We
removed those duplicates in the automatic extraction.

2.4 n2c2 Shared Task corpus

The n2c2 data consisted of information from 505 discharge
summaries taken originally from the MIMIC-III clinical care
database (Johnson et al., 2016). The data provider described
their process as first searching for ADEs in the ICD code
description of each record and then manually screening the
records with at least one ADE and dividing the data into a
training set comprising 303 annotated files and a testing set that
included 202 files (Henry et al., 2020). The n2c2 data contained
several clinical concepts and relations as well as drug and ADE
annotations, and we performed preprocessing as described
previously to prepare the data for the ML models, first
cleaning the n2c2 data, then segmenting sentences using
cTAKES™, and finally using our automatic system to extract
relevant annotations.

2.5 The definition of positive and negative
drug–ADE relations in the n2c2 and ICI-OSU
corpora

Like other researchers (Wei et al., 2020), we considered all
possible combinations of drugs and ADEs to build positive and
negative data for training and validating NLP models. Our
generalizability analysis focused on drug–ADE relations within
a single sentence; so, for example, for a sentence containing the
drugs d1 and d2 and the ADEs a1 and a2, the four possible
drug–ADE combinations are (d1, a1), (d1, a2), (d2, a1), and (d2,
a2). A drug–ADE relation was considered positive if the drug
induced the ADE. We collected the positive samples directly from
annotation to build the positive dataset. A relation was
considered negative if the drug did not induce the ADE and
was, therefore, not annotated in the corpus. We derived the
negative dataset from all the drug–ADE combinations by
subtracting the annotated positive set from the corpus. After
removing duplicates, we obtained 189 positive samples and
698 negative samples from our annotated ICI-OSU data. The
default n2c2 training and test data yielded 1,355 positive and
865 negative samples after duplicates were removed.

2.6 Machine learning deep learning models

We implemented several machine learning, deep learning, and
transformer-based models, including SVM (Joachims, 1998), CNN
(Kim, 2014), BiLSTM (Sherstinsky, 2018; Xu et al., 2019), BERT
(Devlin et al., 2018), and ClinicalBERT (Alsentzer et al., 2019), to
analyze the n2c2 and ICI-OSU datasets, and we trained these models
on one dataset and validated them on the other to analyze the
generalizability of their findings.
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2.6.1 Training and validation data
Training and validation data were speculated under the intra-

and inter-dataset settings. The intra-dataset setting comprised
training and validation data allocated from the same data source,
either n2c2 or ICI-OSU. When training and validating the model
on the same n2c2 dataset in the intra-set setting, we used the
default training and validation data of the n2c2 dataset given by
the data providers. Because the ICU-OSU dataset was relatively
smaller, we applied five-fold cross-validation to avoid overfitting
when we trained and validated our model on the same ICU-OSU
dataset in the intra-set setting. In the inter-set setting, training
was performed on one dataset, and its validation was performed
in the other. We also withheld 30 percent of the data from the
training set to serve as the internal validation set in the inter-
dataset setting.

2.6.2 Hyperparameter selection and embedding
In the deep learning and transformer-based models, we

studied different dropout rates ranging between 0.1 and

0.8 and learning rates (0.1, 0.01, 0.001, and 0.0001) with batch
sizes of 16, 32, and 64. In those models, we used embedding
(Mikolov et al., 2013) techniques and pre-trained word-
embedding models, such as Stanford’s global vectors for word
representation (GloVe) (300-dimensional) (Pennington et al.,
2014). In our transformer-based model, we also incorporated
biomedical domain knowledge.

2.6.3 Preparation of input data, feature selection,
and model implementation

We focused on the contextual features while building the
models. Because the text between a drug and an ADE contains
most of the contextual information regarding a drug–ADE relation,
we considered the drug name, the ADE, and the text between them
as the input for all models. However, feature selection varied from
model to model. Our SVM model, for example, used character-level
n-grams, whereas the CNN model considered n-grams at the token
level. Figure 3A shows how we extracted the input text from a
drug–ADE relation.

FIGURE 3
(A) Input text processing from single-sentence drug–ADE relation. (B–F) Implementation details of (B) SVM, (C) BiLSTM, (D) CNN, (E) BERT, and (F)
clinicalBERT models.
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2.7 Implementation of the support vector
machine model

We generated character n-grams from the first character of a
sample to the last character of the input text using a range of
values for n, converted those n-grams in term frequency (TF)-
inverse document frequency (IDF) (Qaiser and Ali, 2018)
vectorization, and then finally fed the feature vector into the
model to predict the output y (0 or 1). We searched a range of
values for c and gamma to obtain the best hyperparameter set and
used the radial basis function (RBF) kernel in our SVM model.
Figure 3B details the implementation of our SVM model with an
example bigram.

2.8 Bidirectional long short-term memory
(BiLSTM)

Understanding the context of a sentence is critical and
requires that classification of the sentence includes
information in both directions, from the beginning of the
sentence to its end and from its end to its beginning.
Previous studies showed promising results using BiLSTM to
extract contextual information (Xu et al., 2019). BiLSTM
algorithms can learn long-term dependencies and work in
both directions of text and learn contextual features in a
given time stamp. For our model, the input was a sequence
from the start to the end of an entity of a sample. Figure 3C
shows the architecture of the BiLSTMmodel. We performed text
vectorization on the input and then used the pre-trained word
embedding of GloVe (300d) (Pennington et al., 2014) in the
embedding layer. The BiLSTM layer was used over the
embedding layer, and finally, the dense layer was used,
producing the output, y.

2.9 Convolutional neural network (CNN)

We implemented the standard CNN model (Kim, 2014), in
which we focused on contextual information while extracting
features. The CNN model applies a filter to extract features from
text and uses those features to classify the text. As mentioned
earlier, we used the text between the start of an entity and its end
to analyze sequential words to learn features to extract. We used
multiple filters of different sizes (2, 3, and 4) to examine different
n-grams within the text. Figure 3D shows the architecture of the
CNNmodel. We built a sentence matrix, with rows indicating the
tokens of a sentence and columns indicating the features in which
we implemented pre-trained word embedding. Sn is the number
of tokens in a sentence; Sd is the feature dimension of a token;Wh

is the kernel size. We then applied weight filters for the
convolution operation and feature mapping and, finally,
applied max pooling and fully connected the output layer to
generate output. We used the rectified linear unit (ReLU)
activation function and the pre-trained word embedding of
GloVe (300d) in the embedding layer (Pennington et al., 2014).

2.10 Bidirectional encoder representations
from transformers (BERT)

The BERT (Lee et al., 2020)model is based on a transformer encoder
that uses a self-attention mechanism for sequence modeling (Vaswani
et al., 2017). For our classification task, the sequential information of the
text could be important. We selected a segment from the start to the end
of an entity of a sample and then used the tokenized segment as input in
the BERTmodel. The class token clswas addedwith the input. To obtain
embeddings for our text, we used the pre-trained transformer model
rather than an embedding layer. For our analysis, we used BERT-base,
which consists of transformer blocks of 12 layers with 12 self-attention
heads, a hidden size of 768, and 110M trainable parameters (Lee et al.,
2020). Figure 3E shows the architecture of the BERT model.

2.11 ClinicalBERT

The implementation of the ClinicalBERT (Alsentzer et al., 2019)
model was similar to that of our BERT model, but ClinicalBERT
incorporated pre-trained biomedical domain knowledge. We used the
model that was initialized on BioBERT (Lee et al., 2020) and trained on
all notes of theMIMIC-III dataset (Johnson et al., 2016). The model had
a batch size of 32 and a maximum sequence length of 128 (Alsentzer
et al., 2019). Figure 3F shows the architecture of theClinicalBERTmodel.

3 Results

Annotation performance: we performed annotation in two rounds.
In round one, we annotated 118 single-sentence positive drug–ADE
relations and 24 cross-sentence positive drug–ADE relations. In round
two, we labeled 163 single-sentence positive drug–ADE relations and
27 cross-sentence positive drug–ADE relations. Table 2 shows the
average inter-annotator agreement (IAA) results of our two rounds of
annotations.We calculated Cohen’s kappa (McHugh, 2012) to measure
IAA. The results indicate considerable disagreement between the two
annotators regarding the identification of drug–ADE relations, which is
probably attributable to the diverse nature of ADE mentions in clinical
notes. Supplementary Table S3 shows more annotation results and
findings details of our corpus. Our OSU-ICI corpus is the first drug
class-specific drug–ADE corpus. By specifically targeting ICIs, it also
becomes a golden standard for developing immunotherapy-induced
adverse event phenotypes.

TABLE 2 Agreement between annotators.

Type F-score

Drug 99.00%

ADE 95.12%

Grade 70.66%

Causal term 73.58

Drug–ADE 70.94
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3.1 Performance evaluation and error
analysis

To analyze the generalizability of findings among the models, we
trained and tested each model on the dataset of the same data source
(intra-data) and a different source (inter-data). Figures 4A, B show
the performance of the different models in the intra-dataset setting.
The CNN-based deep learning model performed the best, with an
F-score of 80% for the ICI-OSU dataset, whereas the transformer-
based ClinicalBERT model achieved the best F-score (87%) for the
n2c2 data. The SVM model was also competitive and showed stable
performance in the intra-dataset setting. Our results demonstrate
that we did not get the best performance from either the BERT or
ClinicalBERT model when training and testing on the ICI-OSU
dataset. This is probably because the transformer models usually
perform better on a large dataset, and the ICI-OSU dataset is small.
Figures 4C, D show the performance of the different models in the
inter-dataset setting, with the transformer-based models showing
superior performance. The ClinicalBERT model achieved the
highest F-score in both combinations of inter-data training and
testing, probably because of the incorporation of domain knowledge
as ClinicalBERT was trained on the MIMIC-III dataset. These
performances indicate the importance of incorporating domain
knowledge in models. Figure 5 shows the cluster map for the
results of different models in the inter-dataset setting. In this
NLP analysis of four combinations of training sets and test sets

from n2c2 and ICI-OSU datasets, it is evident that ClinicalBERT has
the best performance in three out of four combinations.

Figures 5A, B show the cluster map while training on the
n2c2 dataset and testing on the ICI-OSU dataset. The BERT and
ClinicalBERT models performed similarly for positive sample
prediction, whereas the SVM and BiLSTM models clustered together
with similar results. BiLSTM and ClinicalBERT models performed
similarly for negative sample prediction. Figures 5C, D show the
cluster map while training on the ICI-OSU dataset and testing on
the n2c2 dataset. The BERT and ClinicalBERT models performed
similarly for both positive and negative sample prediction, and the
SVM and BiLSTM models clustered together with similar results.
Comparison of the results of Figures 4 and 5 demonstrates the
better performances of the machine learning and deep learning
models in the intra-dataset setting and of the transformer-based
models in the inter-dataset settings. Along with the internal capacity
of the models to recognize patterns, the variable length of the datasets
might contribute to such performance. Supplementary Tables S4 and S5
further detail the results.

3.2 Factors contributing to error 1
(differences in data sources)

The n2c2 dataset was the more general of the two sets and looked
for all drug mentions in a clinical note, whereas the ICI-OSU dataset

FIGURE 4
Comparison of precision, recall, and F-score among different models in intra- and inter-dataset settings. (A, B) show the performance of the
differentmachine learningmodels when trained and tested on the same data source (intra dataset). (C, D) show the performance of the differentmachine
learning models when trained and tested on different data source (inter dataset).
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focused on ICI drugs and annotated a specific set of ADEs. The use of
these differing types of data challenged training on one source and
testing on the other.

3.3 Factors contributing to error 2
(differences in annotation guidelines and
causal terms)

The annotation guidelines for the two datasets differed. The
guideline for the n2c2 dataset, for example, looked for the closest
entity rather than causation to draw a relation, whereas the guideline
for the ICI-OSU dataset looked for the presence of causal terms to
identify a causal relation between entities.

4 Discussion

4.1 Incorporation of domain knowledge

We attempted to analyze the generalizability of ADE
detection from clinical notes using several machine
learning, deep learning, and transformer-based models and
observed promising performance, particularly when we
applied state-of-the-art transformer-based models. The
superior performance of ClinicalBERT indicated the
importance of incorporating domain knowledge when using
pre-trained data. Thus, future studies should incorporate more
domain knowledge to further enhance the performance of the
models.

FIGURE 5
Cluster maps of results comparing predicted labels with true labels for every sample of positive and negative classes in inter dataset settings. Yellow:
predicted and true label matched; blue: labels did not match. (A, C) shows the results for positive class. (B, D) shows the results for negative class.
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4.2 Cross-sentence relation

Our study focused on single-sentence drug–ADE relations, in
which the drug and ADE occurred in the same sentence, and after
sentence segmentation and annotation, we ended with only a few
cross-sentence relations. However, it is also important to identify
cross-sentence relations. Our primary challenge in identifying
cross-sentence relations was the imbalance within a dataset that
could pose a very large number of negative relations against a
very small number of positive relations. In addition, our
experience in manual annotation showed that a drug and ADE
could be distantly related across sentences with numerous
sentences in between. Nevertheless, limiting the number of
sentences between two entities to draw a relation could help
limit the search space to accommodate most of the positive
relations across sentences. It would also keep the number of
negative relations considerably low.

4.3 Variation in sentence length

Variations in sentence lengths, some only a few words and some
extraordinarily long, made it difficult to train the model and
contributed greatly to the error. The ICI-OSU dataset included
two positive samples consisting of 30 tokens each, where every single
model except BERT classified them incorrectly. BERT was able to
predict the true label of one of those two samples correctly. A lack of
similar training data probably contributed to the error. Having more
training data of similar length or building a separate rule-based
approach could facilitate the management of extraordinarily long
sentences.
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Health technology assessment (HTA) has traditionally relied on cost-effectiveness
analysis (CEA) as a cornerstone of evaluation of new therapies, assessing the
clinical validity and utility, the efficacy, and the cost-effectiveness of new
interventions. The current format of cost-effectiveness analysis, however, does
not allow for inclusion of more holistic aspects of health and, therefore, value
elements for new technologies such as the impact on patients and society beyond
its pure clinical and economic value. This study aimed to review the recent
modelling attempts to expand the traditional cost-effectiveness analysis
approach by incorporating additional elements of value in health technology
assessment. A pragmatic literature review was conducted for articles published
between 2012 and 2022 reporting cost-effectiveness analysis including value
aspects beyond the clinical and cost-effectiveness estimates; searches identified
13 articles that were eligible for inclusion. These expanded modelling approaches
mainly focused on integrating the impact of societal values and health equity in
cost-effectiveness analysis, both of which were championed as important aspects
of health technology assessment that should be incorporated into future
technology assessments. The reviewed cost-effectiveness analysis methods
included modification of the current cost-effectiveness analysis methodology
(distributional cost-effectiveness analysis, augmented cost-effectiveness analysis,
extended cost-effectiveness analysis) or the use of multi-criteria decision analysis.
Of these approaches, augmented cost-effectiveness analysis appears to have the
most potential by expanding traditional aspects of value, as it uses techniques
already familiar to health technology assessment agencies but also allows space
for incorporation of qualitative aspects of a product’s value. This review showcases
that methods to unravel additional value elements for technology assessment
exist, therefore, patient access to promising technologies can be improved by
moving the discussion from “if” to “how” additional value elements can inform
decision-making.
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cost-effectiveness analysis, value elements, health technology assessment, health policy,
societal value, health equity
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Introduction

Value in health technology assessment (HTA), which is the
foundation upon which decision-making regarding new drugs and
health technologies is made in several healthcare systems, has been
primarily based on balancing the clinical benefits to patients and/or
economic costs involved by introducing the new technology to the
healthcare system. Expansion of the concept of value in HTAs has
been the subject of recent research and debate mainly driven by
patients, carers and clinicians who recognize that the value of a new
technology is multidimensional (Caro et al., 2019; Reed et al., 2019).
This multidimensional nature is reflected in the latest definition of
HTA provided by the Professional Society for Health Economics
and Outcomes Research (ISPOR) Task Force which, in part, notes
that dimension of value for a health technology may be assessed “by
examining the intended and unintended consequences of using a
health technology” and that this evaluation should encompass a
comprehensive array of factors, including ethical, social, and cultural
issues (O’Rourke et al., 2020a; O’Rourke et al., 2020b).

To this end, several organizations and research groups have
developed value-based frameworks as an attempt to address the
limitations of current HTA decision tools (Zhang et al., 2022).
The ISPOR Strategic Task Force is leading an effort to reshape the
future of HTA by examining the definition of a technology’s value
and encouraging the integration of additional elements of value
not currently included in the technology submissions. The
findings regarding new concepts of value have been
summarized in the ISPOR Task Force’s “Value Flower”
(Lakdawalla et al., 2018). Some of the proposed elements
beyond the traditional clinical and cost-effectiveness analyses
include the value of: the reduction in uncertainty surrounding a
disease, the fear of contagion, the value of insurance, the severity
of disease, the value of hope, real option value, health equity, and
scientific spillovers (Lakdawalla et al., 2018). Indeed, the Second
Panel on Cost-effectiveness (Sanders et al., 2016) has
recommended the incorporation of reference cases in each
cost-effectiveness analysis (CEA) and an “impact inventory,”
i.e., a cataloguing of consequences of analysis decisions both
inside and outside of the healthcare sector. Previous research has
also shown that even though these expanded value-based
frameworks (generic or disease specific) provide the possibility
of incorporating additional benefits that technologies may bring
to patients and society and contextual factors to be considered
through deliberative processes, there are practical limitations for
their implementation in routine HTA decision-making (Willke
et al., 2018; Breslau et al., 2023). One of the main barriers for the
wider implementation of these value-based frameworks in
decision-making, especially when CEA is the pillar of HTA, is
the lack of consensus on how reliably and consistently these
elements can be applied across different disease indications and
technologies (Willke et al., 2018; Reed et al., 2019). Additionally,
the lack of consensus regarding methods to address these
concerns, the concerns of double counting of outcomes or
interdependent variables raised by this lack of consensus and
the historically narrow remit of HTA agencies (i.e., costs and
benefits are assessed from a healthcare systems or payer
perspective) represent significant barriers to widespread
adoption (Fornaro et al. 2021; Hendriks and Pearson, 2021;

Garrison et al., 2020). As a result, little traction has been
gained thus far for their wider implementation.

Traditionally, CEA evaluates the value of an intervention from a
clinical and cost perspective, determining value as a trade-off
between cost and health benefit (Canadian Institute for Health
Information (CIHI), 2022; Guidelines for the economic, 2017).
The structured nature of CEA contributes to its appeal, as it
offers a quantitative and reproducible method of analysis
standardized across different disease areas and technologies for
decision-makers, who are concerned largely with extracting the
maximum value for treatments provided for any given condition.
Herein, however, lies one of the major drawbacks of the traditional
approach to CEA: its restrictive nature fails to capture the additional
elements of values that do not fall precisely within these standard,
well-defined parameters (Willke et al., 2018; Garrison et al., 2019;
Neumann et al., 2022). The quality-adjusted life year (QALY), which
is considered by many in the HTA field as the cornerstone of
traditional CEA and one of the two drivers of CEA results (along
with survival), is seen by others as inherently flawed and based
largely on sometimes unfounded assumptions; as such, this
compromises its ability to provide a meaningful calculation of an
intervention’s value (Nord et al., 2009; Torbica et al., 2018; Caro
et al., 2019; Rand and Kesselheim, 2021).

With this background inmind, this research aimed to identify if the
additional elements of value previously described for consideration in
HTAs have been proposed in modified economic modelling techniques
or other deliberative approaches. In theory, various methodologies have
been suggested to remedy the drawbacks of the current CEA approach.
These methodologies range from slight alterations to QALY modifiers
that consider additional elements of value without dramatically altering
the current structure to completely new methodologies that attempt to
maintain the objectivity of the CEA approach while incorporating
expanded concepts of value (Asaria et al., 2016; Garrison et al., 2019). A
commentary by Caro et al., 2019 (Caro et al., 2019) provided a critical
summary of alternative approaches to QALYs that expand the measure
of benefit/value of new technologies and help further deliberations on
determining aspects of technology’s value. To supplement the
arguments noted in this commentary, and to continue the
discussion on how the new HTA era should focus on creating an
equitable, efficient, and high-quality health system (O’Rourke et al.,
2020a), this review aimed to identify and describe the expanded
economic analyses beyond the traditional CEA approach by
incorporating additional elements of a technology’s value in
modelling approaches.

Materials and methods

A pragmatic literature review using reproducible criteria was
conducted to capture relevant peer-reviewed articles. Reporting was
guided by the Preferred Reporting Items for Systematic Review and
Meta-Analyses statement (Page et al., 2021). The research question
followed the Sample, Phenomenon of Interest, Design, Evaluation,
Research (SPIDER) format (Library UoC, 2022): how have
assessments of value (beyond clinical and cost estimates) for
health technologies been incorporated in recent modelling
approaches and deliberative processes? A structured database
search for publicly available literature published in English from
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2012 to the present was conducted in Embase and MEDLINE on
24 March 2023 (see Appendix for complete search strategy). As the
HTA process is rapidly evolving across many countries and “value”
may be defined differently across cultures and healthcare systems,
the review was not restricted by geography. Prior to commencing
screening, a calibration exercise among reviewers was conducted on
a random sample of 50 articles. Screening of titles/abstracts was
carried out in the DistillerSR platform (Evidence Partners
Incorporated; Ottawa, Canada) by a single reviewer with a
second reviewer screening 15% of excluded articles as a quality
check. The same approach was used for full-text screening. Eligible
studies were required to meet all the following criteria: published
following a peer-review process; discussed current HTA value
frameworks in the context of CEA; provided new or expanded
definitions of value; and discussed new modelling approach (es) to
HTA. Studies that focused on disease-specific, value-based
frameworks, solely on patient experiences, or strictly on
economic modelling with no reference on how additional value
elements can be incorporated were excluded. No grey literature
sources or commentaries/editorials were considered for inclusion.
Conference abstracts were excluded given the limited information
provided.

Data extraction of included studies was carried out in a pre-specified
template by a single reviewer and validated by a second reviewer. Data

were extracted on publication characteristics, key themes, limitations in
existing CEA approaches, and new recommendations for incorporating
value within CEA. Each eligible article was evaluated based on three
broad criteria: did the article comment on the suitability of the current
HTA methodology; did the article discuss what aspects could or should
be added to the current approach; and did the article discuss new
methods for evaluating therapies? Included studies were categorized
based on their recommendations for HTA agencies. The three main
areas of methodology were: modifications to the current CEA approach
(modified CEA: mCEA), which can include variations such as multi-
criteria decision analysis (MCDA); and alternate approaches, such as
discrete choice experiments (DCE). Within these frameworks, several
sub-methodologies exist, such as distributional CEA (DCEA),
augmented CEA (ACEA) and extended CEA (ECEA) within the
mCEA framework; and different variations of current MCDA
methods (Table 1).

Results

Study eligibility

The database searches returned 3,614 records and after
removing duplicates, 2,528 unique records were screened at

TABLE 1 Summary of current traditional and expanded modelling approaches.

Modelling approach Description

CEA Traditional CEA Zamora et al., 2021 Uses the incremental cost-effectiveness ratio, which measures the costs incurred by the health system per
quality adjusted life year gain when a new treatment or medical technology is used

Modified CEA Augmented CEA Zamora et al., 2021 An extension of CEA that includes novel elements of value (e.g., insurance value, option value, and the
value of hope) and considers trade-offs among them. This approach attaches a monetary value to all
health gains

Distributional CEA Cookson et al., 2017; Diaby
et al., 2021

Focuses on the distributions of health effects (health gains/disease burden) associated with healthcare
interventions at both population (societal) and subgroup (e.g., sex, race/ethnicity) levels as well as the
distribution of health opportunity costs per equity-relevant sociodemographic variables and per disease
categories. Decision making considers the trade-offs between improving total population health and
reducing unfair health inequality.

Extended CEA Cookson et al., 2017 Assesses the distribution of both health benefits and financial risk protection benefits and considers
financial benefits of policies considering out-of-pocket payments in certain geographies

MCDA Traditional MCDA Baltussen et al., 2017 Involves a structured and rational decision-making approach informed by evidence on multiple criteria
that uses quantitative scores to choose, rank, select options

Modified
MCDA

Equitable MCDA Diaby et al., 2021 Explicitly considers multiple criteria including the impact of treatment on health equality

Qualitative MCDA DiStefano and Levin, (2019) Incorporates qualitative considerations into MCDA by considering decision makers’ opinions on the
importance of each criterion while prioritizing interventions and/or subgroups, as opposed to solely
relying on quantitative scores

Reflective MCDA Goetghebeur and Cellier, (2018) Focuses on compassionate care and assumes that decision makers reflect on the goals of the analysis and
whether those goals align with a compassionate care approach while considering both quantitative and
qualitative factors

Advance value tree Angelis and Kanavos, (2017) AmodifiedMCDA that uses three criteria levels to measure value across five domains (burden of disease,
therapeutic impact, safety profile, innovation level, and socioeconomic impact)

DCE Traditional DCE Ngorsuraches, (2021) Involves participants sequentially choose between hypothetical options to make decisions on choices of
treatment or healthcare service based on attributes such as efficacy, side effects, and costs

Modified DCE Latent class DCE Ngorsuraches, (2021) Incorporates a latent class model to derive the value of equity

Quantum choice DCE Ngorsuraches, (2021) Incorporates equity attributes for individual alternatives in choice tasks to derive the value of equity

Abbreviations: CEA, cost-effectiveness analysis; DCE, discrete choice experiment; MCDA: multi-criteria decision analysis.
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the title/abstract level, and 132 were selected for full-text
screening. Thirteen peer-reviewed studies that provided
recommendations on new approaches to HTA in the context
of CEA were included. Figure 1 shows the literature selection
procedure.

Description of included publications

Ten of the 13 included articles were literature review articles
offering expert opinion while three were reports from
multistakeholder workshops or committees. Six articles

FIGURE 1
PRISMA diagram detailing literature search results and subsequent review process.

FIGURE 2
The “Value Puzzle” illustrates the existing aspects of CEA (clinical efficacy, economic value, disease modifiers and unmet treatment needs) but also
highlights the missing aspects of the current system (health equity and societal values).
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specifically discussed at least one additional element to the current
HTA (clinical and cost-effectiveness) value paradigm. Societal values
and health equity were identified as the top two core pillars where
the current CEA paradigm is wanting, with authors across these
publications generally recommending an expansion of the definition
of value within CEA to include these broad aspects (Figure 2).

Societal values were the most identified elements, mentioned in
four articles (Dionne et al., 2015; Phelps and Madhavan, 2017;
Pearson et al., 2019; Diaby et al., 2021). Societal aspects encompass a
relatively broad spectrum of elements, but all authors agreed that the
impact of disease on the patient is central to these societal
considerations. For example, in the context of potentially curative
treatments (Pearson et al., 2019), considerations of disease severity,
its rarity, and the potential for a cure to extend life or limit the
burden of illness (especially in children), as well as the value of hope
and real option value offered by these treatments should be
considered. The impact of productivity is also considered an
important aspect to add to CEA (Dionne et al., 2015), as
patients’ contributions to society are directly related to their
health and wellness. Above all, the perspectives of all relevant
parties, labelled as the “5Ps” (patients, providers, payers,
producers, and planners) are encouraged to be considered by
decision-makers (Dionne et al., 2015; Phelps and Madhavan, 2017).

Health equity was identified in four articles (Dionne et al., 2015;
Cookson et al., 2017; Goetghebeur and Cellier, 2018; Diaby et al.,
2021) as an important factor that is largely lacking in the existing
HTA frameworks. Equity is defined by the World Health
Organization as: “the absence of unfair, avoidable or remediable
differences among groups of people, whether those groups are
defined socially, economically, demographically, or geographically
or by other dimensions of inequality (e.g., sex, gender, ethnicity,
disability, or sexual orientation)” (Organization WH, 2022; Sarri,
2022). Inequity is thus evident in circumstances where a deficit in
one of these areas affects access to affordable care, which is limited in
one or more marginalized groups. Cookson et al., 2017 (Cookson
et al., 2017) made equity the core of their argument for new
approaches in HTA analyses, focusing on the trade-offs required
to ensure health equity and the net equity impact of HTA decisions.
They argued that the tools for health equity analysis do exist
(i.e., who gains and who loses in policy decisions) and that
assessing the equity trade-offs should be incorporated into
existing CEA methods. Similarly, Goetghebeur et al., 2018
(Goetghebeur and Cellier, 2018) framed equity as central to an
approach based on the application of compassionate care concepts,
where ethical considerations are contemplated by decision-makers
tomaximize equity and sustainability. Diaby et al., 2021 (Diaby et al.,
2021) and Dionne et al., 2015 (Dionne et al., 2015) discussed equity
from the patient’s perspective, with patient demographics and a lack
of patient heterogeneity in clinical studies mainly contributing to
inequity in health assessment. The low representation of minority
groups in clinical studies is suggested to under-represent the effect of
therapies on these populations, thus contributing to decreased
availability of treatments for these patients. Consideration of
individual patient needs (i.e., patient preferences) and fairness in
how health-economic decisions are made (i.e., balancing population
and individual priorities while considering patient age, alternate
treatments, and equity across different jurisdictions and
populations) are additional dimensions of health equity domain

(Dionne et al., 2015). In summary, researchers have long argued for
societal values and equity considerations to be incorporated into
existing HTA frameworks. In the context of societal values, it was
argued that the impact of disease and its characteristics on patients
and their productivity should also factor into decision-making.
Similarly, patient preferences, addressing the needs of
underrepresented groups, and ensuring access to affordable care
are central to including equity considerations in HTA frameworks
(Dionne et al., 2015; Diaby et al., 2021; Sarri, 2022).

Summary of mCEA or new modelling
approaches

All eligible studies provided recommendations on new or
modified approaches to HTA and CEA, which are mainly
grouped as follows: mCEA; adoption of MCDA methods for
CEA; and methods taking alternate approaches, such as DCE
(Figure 3). The main theses and conclusions of the included
peer-reviewed articles are summarized in Table 2.

mCEA

Four articles (Kristensen et al., 2017; Pearson et al., 2019; Diaby
et al., 2021; Zamora et al., 2021) recommended mCEA as an
expanded CEA method to incorporate additional value elements,
albeit their suggestions differed considerably. Kristensen et al., 2017
(Kristensen et al., 2017) summarized the results of a decade-long
analysis of HTA methods by the European Network for HTA
(EUnetHTA), which recommends a tiered system that accounts
for typical domains such as effectiveness, safety, and health
economics but also includes domains addressing social, patient,
legal, and organizational elements. EUnetHTA identified nine core
elements that should be considered by HTA agencies and, as part of
its tiered approach, delineated between a rapid relative effectiveness
assessment (REA) for interventions requiring a short turnaround
and a full, comprehensive assessment for all other interventions. The
REA would focus on basic clinical elements (e.g., health problem
identification, intervention description, safety, and clinical
effectiveness), while the full assessment would add elements such
as costs, ethical analysis, organization impact, patient/societal
aspects, and legal aspects. The core elements are designed to be
interconnected, such that the costs/economics domain can draw
information from other domains (e.g., organizational or patients/
social aspects) to expand the calculation of cost and affordability.
This allows for a more comprehensive and nuanced analysis that
better incorporates non-traditional elements.

Diaby et al., 2021 (Diaby et al., 2021) offered two
recommendations on mCEA methods: the DCEA, and a two-part
appraisal that augments incremental cost-effectiveness ratio (ICER)
with a comprehensive benefits and value (CBV) score. DCEA refers
to a blanket approach to technology assessment that models health
distributions as a comparison of health gains vs. disease burden. This
approach allows for analysis of health interventions at the
population (i.e., societal) and demographic subgroup (e.g., sex,
race) levels, enabling an analysis of health gains in the context of
sociodemographic variables, which inevitably incorporates elements
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of equity as defined by these variables. Health gains and losses can
thus be analyzed based on individual sociodemographic variables
and/or by disease category. Under this proposed approach, decision-
makers are asked to make trade-offs between decisions that would
improve the overall health of the population and those that would
reduce inequity in healthcare availability among specific patient
subgroups. The two-part approach combines ICER threshold with a
CBV score, allowing for a more robust analysis that considers
quantitative and qualitative assessment factors. The CBV score is
a composite, qualitative rating calculated using elements such as
innovativeness, disease severity, and unmet need (Goldman et al.,
2010; Diaby et al., 2021) which provides a more holistic assessment
of the non-economic aspects of a given intervention.

Zamora et al., 2021 (Zamora et al., 2021) examined the potential
of ACEA to incorporate additional individual value elements such as
insurance value, option value, and the value of hope to the
traditional ICER approach. Any health gains from new elements
are measured in equivalent or risk-adjusted QALYs. A hierarchical
approach is then used to calculate the final aggregate impact of an
intervention, beginning with the incremental QALY and then
incorporating QALY equivalents for new elements. Ultimately,
final decisions on technologies’ value are made through
consideration of the trade-offs among the elements, as gains in
one area may be associated with losses in another. The ability to
quantify benefits/losses of an intervention in a common unit of
measure (QALY) creates a single denominator in the calculation,
which maintains an objective framework while incorporating
elements that may traditionally be considered subjective.
Additionally, the authors compared the ACEA and MCDA

approaches and found them to be fairly similar, such that the
choice between the two was largely pragmatic and thus their
research question was left unresolved.

Finally, Pearson et al., 2019 (Pearson et al., 2019) discussed a
more intervention-specific method that does not explicitly
incorporate non-economic factors. They suggested several
modifications, such as a sliding scale for the ICER, specifically
for curative treatments, where interventions can be compared
against a lower CEA threshold based on the projected short-term
budget impact of the intervention. They further recommended
adaptations including disallowing full credit for cost offsets for
any interventions no longer required after a condition is cured, if
that intervention itself was not cost effective; capping costs based on
patient willingness to pay; and using shared savings, such that cost
savings realized by curative treatments are shared between the
innovator and the healthcare system. Fundamentally, their
approach seeks to modify the calculations made during HTA but
maintain the ability to objectively calculate costs and cost-savings,
an approach not unlike that of MCDA in its desire to maintain a
level of objectivity in decision-making.

MCDA

Nine articles (Dionne et al., 2015; Angelis and Kanavos, 2017;
Baltussen et al., 2017; Phelps andMadhavan, 2017; Goetghebeur and
Cellier, 2018; Krahn et al., 2018; DiStefano and Levin, 2019; Diaby
et al., 2021; Zamora et al., 2021) recommended the adoption of some
version of MCDA as a method for future CEA. MCDA methods

FIGURE 3
Overview of approaches recommended in the literature.
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TABLE 2 Summary of eligible articles.

Author,
publication date

Modelling
approaches

Targeted value elements Themes noted

Diaby et al., 2021 MCDA, mCEA
(distributional), CBV score

Health equity The authors examine the current landscape regarding value
frameworks in HTA, with a focus on the impact of current
methodologies on health equity. They highlight the lack of
diversity among most patient populations in RCTs and the fact
that current frameworks largely ignore patient heterogeneity,
complex demographic factors, and access to care. Three
approaches are proffered to address these shortcomings: a 2-part
HTA incorporating traditional HTA methods with a CBV score;
a distributional CEA method; and equitable MCDA methods.

Ngorsuraches, (2021) DCE (latent, quantum) Health equity Drawbacks of the current HTAmethodologies are discussed and
two new methods of assessment, based on DCEs are provided.
One model utilizes a latent class model to address health equity
in value assessment; the other uses a quantum choice model.

Zamora et al., 2021 mCEA (augmented),
MCDA

Societal values (value of hope, value of
insurance)

A comparison between a modified CEA approach (augmented
CEA, ACEA) and an MCDA approach to HTA decisions is
explored including an examination of the trade-offs between
financial loss and healthcare gain. A context of insurer coverage
for healthcare innovations, i.e., new medical technologies, is
used.

DiStefano and Levin,
(2019)

MCDA (qualitative) Health equity The authors discuss current drug prescribing guidelines and how
the addition of CEA concepts in the guidelines may help
promote improved equity in health. They discuss several
concepts within traditional CEA methods, including MCDA
approaches, arguing that a qualitative MCDA approach may be
preferred. A qualitative approach forgoes the aggregation of
scores and allows decisions to include deliberations amongst
decision-makers.

Pearson et al., 2019 mCEA Societal values (real option value, value of hope,
value of insurance, value of potential cure)

The authors outline drawbacks of current “utilitarian” HTA
frameworks, including the inability of current methods to
account for social values such as disease severity and rarity,
burden of illness and the ability of curative treatments to extend
life, especially that of children. They suggest modifications to the
current CEA approach, such as adopting a “sliding scale” for the
ICER and capping drug prices based on willingness-to-pay
metrics.

Krahn et al., 2018 MCDA Social values (quality, evidence, effectiveness,
equity, population health, collaboration)

A summary of the OHTAC framework is presented. An audit of
the existing HTA methodologies is presented and
recommendations for future assessments are made, including a
focus on 4 key attributes: overall clinical benefit; consistency with
expected societal and ethical values; value for money; and
feasibility of adoption into the healthcare system.

Goetghebeur and Cellier,
(2018)

MCDA (reflective) Compassionate care A new approach to CEA based on MCDA methods is discussed.
Central to the approach is the concept of compassionate care, the
underlying impetus of healthcare. The method involves analysis
of quantitative (e.g., disease severity) and qualitative (e.g., health
system capacity) factors but also allows for an opportunity for
reflection on the goals of the analysis and whether those goals
align with a compassionate care approach.

Angelis and Kanavos,
(2017)

MCDA Disease burden, therapeutic value, safety,
innovation, socioeconomic value

The authors discuss the current CEA approaches, identify
drawbacks and present a new approach that includes evaluation
of the burden of disease, the level of innovation of the
intervention, its ease of use and its socioeconomic value. A
decision-tree model is utilized to provide guidance in decision-
making.

Kristensen et al., 2017 mCEA Organizational aspects, ethical aspects, patient/
social aspects

This study presents a new approach for CEA based on a 10-year
effort by the European HTA agencies. It discusses the application
of a model designed for both full and rapid assessments. Nine
domains are outlined, all of which are part of the full assessment
but only four of which are part of the rapid assessment.

Baltussen et al., 2017 MCDA Ethical issues The authors summarize the current landscape of CEA and
presents a new approach, utilizing MCDA methods. The new
method importantly includes stakeholder deliberation to

(Continued on following page)
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allow for consideration of multiple perspectives and sources of input
during decision-making with the aim to maintain an objective
framework where scoring and weighting can be used to guide the
process (Koksalan et al., 2011). Krahn et al., 2022 (Krahn et al.,
2018), summarized the findings of the Ontario Health Technology
Advisory Committee which recommend a framework that includes
four key attributes: consideration of overall clinical benefit,
consistency with societal/ethical values, value for money, and
feasibility. It is within this framework that they advocate for the
use of MCDA methods, citing the Evidence and Values Impact on
DEcision Making framework (EVIDEM) (Goetghebeur et al., 2008)
as an approach that is being increasingly explored and should be
considered in future HTAs. Goetghebeur (Goetghebeur and Cellier,
2018) extended this work to suggest the use of a reflective MCDA
approach, where decision-makers can reflect on and weight the
motivations of their decisions, bearing in mind that decisions should
be made in a patient-centric manner, with an eye toward the delivery
of compassionate care. Angelis et al., 2017 (Angelis and Kanavos,
2017) outlined a new value framework using MCDA methods as a
foundation, which incorporates several key aspects such as burden
of disease, therapeutic considerations, safety, innovation, and
socioeconomic considerations. Their resulting decision-tree
approach considers each of these elements, with subsequent
downstream decisions made based on each one; the final decision
is based ultimately on the cumulative impact of each element and

decision. Baltussen et al., 2017 (Baltussen et al., 2017) combined
MCDA methods with accountability for reasonableness concepts as
part of a new approach that they refer to as an “evidence-informed
deliberative process.” They categorized the traditional elements
assessed by HTA agencies (e.g., safety, effectiveness, budget
impact) as “general criteria” and advocated for the additional
consideration of “contextual criteria,” which encompass more
patient-centric or societal considerations. They recommended
consultation with the public on what contextual elements may be
important during an HTA. As such, a combination of quantifiable
criteria and non-quantifiable (i.e., qualitative) criteria should be
considered, with both ultimately being used as inputs into the
deliberative process. Phelps, et al., 2017 (Phelps and Madhavan,
2017), Dionne et al., 2015 (Dionne et al., 2015), and Zamora et al.,
2021 (Zamora et al., 2021) also advocated for the use of MCDA
methods as a way to maintain objectivity in decision-making, while
still taking into account societal elements such as patient preference/
autonomy and health equity. Diaby et al., 2021 (Diaby et al., 2021)
similarly suggested using MCDA methods as part of an “equitable
MCDA” approach, one that is transparent and results in clear and
consistent decisions. They suggested the importance of both the
consideration of multiple criteria as well as the impact of a given
treatment on health equality. Finally, DiStefano et al., 2019
(DiStefano and Levin, 2019) stressed the importance of
qualitative MCDA (Baltussen et al., 2019) which, by forgoing

TABLE 2 (Continued) Summary of eligible articles.

Author,
publication date

Modelling
approaches

Targeted value elements Themes noted

facilitate learning and combines MCDA methods with
accountability for reasonableness techniques into a new
approach dubbed an “evidence-informed deliberative process.”
The responsibilities of the various HTA parties in implementing
the new approach are discussed in detail.

Phelps and Madhavan,
(2017)

MCDA Patient-centered variables A summary of the shortcomings of the current CEA methods is
presented, highlighting several areas where current methods are
lacking. A new approach is recommended, based on MCDA
methods, which provides scores for aspects of decisions for
oncology patients such as the likelihood of hair loss or nausea
with certain treatments. The authors focus on the concept of
perspective and highlight the importance of perspective from
multiple perspectives, including that of the patient, the provider,
the payer, the producer (manufacturer) and the planner
(the “5Ps”).

Cookson et al., 2017 mCEA (distributional,
extended)

Health equity The authors focus on the costs and benefits of CEA in the context
of health equity and equitable access to treatment. A new
approach to CEA using extended CEA or distributional CEA as
the preferred methods of analysis is recommended. As part of
this approach, the roles of equity impact analysis and equity
trade-off analysis in decision-making are explored.

Dionne et al., 2015 MCDA Societal benefit, health equity, patient autonomy,
innovation

The authors identify several areas where the current CEA
methodology is lacking and discuss additional aspects that
should be included in future, including factors that address
societal values. Several factors are deemed important when
considering new aspects, including comparative effectiveness,
adoption feasibility, patient autonomy, societal benefit, equity,
innovation and disease prevention. A new methodology using
MCDA techniques is recommended and discussed in the context
of rare diseases and end-of-life decisions.

Abbreviations: ACEA, augmented cost-effectiveness analysis; CBV, comprehensive benefits and value; CEA, cost-effectiveness analysis; DCE, discrete choice experiment; HTA, health

technology assessment; ICER, incremental cost-effectiveness ratio; MCDA, multi-criteria decision analysis; mCEA, modified cost-effectiveness analysis; OHTAC, ontario health technology

advisory committee; RCT, randomized controlled trial.
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aggregation of scores, allows decisions to include deliberation
among decision-makers regarding the relative value of non-
economic elements, thus maintaining transparency and allowing
for more subjective incorporation of elements such as equity, rather
than integration of those elements into more traditional or mCEA.
This aims to maintain the objective nature of MCDA while allowing
for subjective consideration in the decision-making process.

DCE

One included publication specifically looked at the use of the DCE
model for future HTA decisions (Ngorsuraches, 2021). The authors
suggested that DCE allows for a qualitative analysis as part of the
decision-making process and, in the context of HTA, incorporates
patient preferences while all stakeholders involved (patients, providers,
policymakers) are asked to choose between two hypothetical
alternatives from a number of choice sets. As such, the prevalence
and importance of equity to each stakeholder is determined in the initial
stage, after which those equity elements can be incorporated into a
choice model which, when applied, can be used to establish the value of
equity. Two variations on the DCE approach include one which utilizes
a latent class model to address concerns about health equity in value
assessment, and another which utilizes a quantum choice model. The
author did not express a preference for one method over another but
noted that the use of either methods would address the inadequacies of
current methodologies and help address health disparities and
underrepresented patient populations.

Discussion

In most countries, HTA remains anchored by CEAs, the
cornerstone analysis when considering reimbursement of new
therapies. The objective nature of the traditional CEA is seen as
a benefit that lends itself to impartial decision-making although this
method did not entirely prevent discrepancies in decision-making;
however, there is increasing sentiment that the objective approach in
fact marginalizes the subjective aspects of the healthcare assessment.
The definition of “value” is a prime example of the drawbacks of the
current system, as there is a growing opinion that value in HTA
should be viewed through more than simply an economic lens.
Health gains are not straightforwardly assessed, and several
approaches have been proposed to define additional elements of
value beyond the clinical and cost gains. Lately, there is an increased
discontent with the inability of ICERs and QALYs to sufficiently
capture the benefits valued by patients and societies overall when a
new health technology is introduced (Caro et al., 2019). Although
mainly the discussion so far has focused on defining these additional
value elements, little effort has been put on demonstrating how these
additional considerations can be implemented in modelling
approaches to be used in the HTA context. To address this gap,
the current study examined recent modelling approaches that
included expanded or new definitions of value; two main
analytical approaches were identified and advocated by most
authors: a modification of the current CEA and the use of
advanced decision-making techniques such as MCDA, both of
which have merit. To date, however, no preferred method has

been established for HTA adoption although several concerns
have been raised regarding the implementation of MCDA as part
of HTA decision-making (Marsh et al., 2018).

Despite these efforts, consensus on the most efficient and
appropriate way to incorporate expanded definitions of value (and
added benefit value frameworks) into current HTA in general and
CEA methods in particular has remained elusive. One consensus
finding from this review was that the current approach to CEA is
lacking and that there are several elements–especially relating to the
current narrow definition of value in CEA–that should be added to
CEA methods going forward. These aspects represent missing pieces
of the “Value Puzzle” (Figure 2) and illustrate the challenges assessors
face in integrating these new factors into their decision-making. These
factors have been identified by several groups, including the ISPOR
Task Force, which summarized these concepts in the “Value Flower”
(Lakdawalla et al., 2018; Willke et al., 2018; Garrison et al., 2019;
Neumann et al., 2022). Generally, these missing aspects center around
an expanded definition of value, one which includes more qualitative
elements such as the ability of a treatment to provide hope to the
patient (the value of hope), the value associated with extending life
and opening possibilities for future treatments (real option value), the
value of scientific discoveries and their wide applicability (scientific
spillover), and more. These new elements reflect the prevailing
opinion that the current approach, with its focus on cost-
effectiveness and the use of metrics such as the ICER, is
inadequate. However, these additional value elements may not
transport at the same degree across disease areas and populations
(Shafrin et al., 2021). Indeed, many are of the opinion that the central
metric in these calculations–the QALY–is an inherently flawed metric
built upon assumptions (Hall, 2020) which marginalizes the sickest in
a population by presenting only an aggregate calculation of health
(Caro et al., 2019). Indeed, many jurisdictions have begun to move
away from the QALY, which has been outright rejected in Germany
and Spain (Institute for Quality and Efficiency in Healthcare IQWiG,
2022) and remains largely unused in the United States (Neumann and
Weinstein, 2010), France (Rumeau-Pichon and Harousseau, 2014),
and some Latin American countries (Brixner et al., 2017). It is thus
important to recognize the limitations of the QALY as a final, lone
decision metric and that its use represents a first albeit limited step in
the process of assessing value in pharmaceutical innovation. Clearly,
the lack of enthusiasm for traditional CEA methods among HTA
bodies and the feedback from patients necessitates a new approach to
decision-making.

The current study identified two main themes recommended to
address the shortcomings of the current system: adoption of either
MCDA methods or modification of the current CEA approach. The
former was advocated for in the majority of articles included in the
review and has been widely discussed in the CEA space as a viable
alternative for some time; however, it has failed to gain traction, at
least in part due to its overly mechanistic nature (Kennedy, 2009;
Baltussen et al., 2019) and tendency to ignore opportunity costs
(Campillo-Artero et al., 2018; Marsh et al., 2018; Baltussen et al.,
2019). Quite the reverse, the use of mCEA methods has been
suggested as a viable avenue for change that simultaneously
addresses concerns raised by Caro et al., 2019 (Caro et al., 2019),
who suggested the current CEA methods continue to be utilized by
HTA bodies mainly out of convenience, and due to the lack of a
viable, proven alternative. Thus, one of the draws to modifying
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current methods is the fact that it does not stray far from the status
quo. With infrastructure in place and decades of published decisions,
a major change in methodology may not be palatable for key
stakeholders. Some of the recommendations in the current review
slightly revised the current approach but did not recommend major
changes (Kristensen et al., 2017; Pearson et al., 2019; Diaby et al.,
2021). As such, these recommendations perhaps do not do enough
to address current concerns. Garrison et al., 2017 (Garrison et al.,
2017) proposed the use of ECEAmethods to incorporate the value of
“knowing” into CEA, which broadly incorporates several elements
identified as valuable in our review, including reducing uncertainty
and incorporating insurance value, real option value and scientific
spillover into CEA. Another approach that holds promise is the
ACEA approach (Zamora et al., 2021) which, like ECEA, combines
the known methodology while still incorporating robust definitions
of value including the value of hope, real option value, and insurance
value. Indeed, the summary of the ISPOR Special Task Force report
(Garrison et al., 2020) advocated for the use of ACEA methods as a
way to combine the known (and widely accepted) clinico-economic
aspects of traditional CEA with a comprehensive list of qualitative
elements reflecting the various definitions of value. That
recommended method would allow for the consideration of
additional value elements (insurance, disease severity, hope, and
real option value) while also allowing concepts such as equity and
the benefit of scientific spillover from new technologies to be
incorporated into deliberations. These additional value elements
can be part of the technologies scoping exercises and tailored to the
patients’ preferences. While more research is needed to refine the
methods, this approach shows promise and may best address the
documented shortcomings of the current approach.

Beyond methodology, HTA agencies face many other challenges in
their efforts to fairly evaluate new therapies. As environmental
awareness and concern grows worldwide, HTA agencies will be
required to include an evaluation of the impact of a health
technology’s production, use, and disposal. Toolan et al. (Toolan
et al., 2023) have recently summarized the challenges associated with
this effort and identified several approaches that HTA agencies may
adopt during their assessment, including republishing of data in the
public domain, considering environmental data in parallel with health
economic data, integrating environmental data into existing
methodologies, or specific evaluation of technologies that may have
minimal health benefits but claim environmental benefits with their use.
From a more patient-centric perspective, patients’ perspectives and
preferences have been suggested as important factors that warrantmore
attention in the HTA process. Several authors have referred to “The
5Ps” as important contextual considerations in HTA, namely, that the
perspectives of many stakeholders–patients, practitioners, payers,
producers and policymakers–must be part of any CEA (Phelps and
Madhavan, 2017; Slejko et al., 2019; Hall, 2020; van Overbeeke et al.,
2021). Incorporating patient preference and experience, and their
perception of the quality of life amidst their illness, offsets the
objective nature of the traditional CEA methods and theoretically
allows for a more comprehensive assessment (Sarri et al., 2021). For
example, factors important to the patient regarding the impact their
diagnosis will have on those around them (Vrinzen et al., 2022) or life
satisfaction should be considered in any assessment (Hall, 2020).
Furthermore, a patient’s preference can be reflected in their
willingness to pay for or undergo treatment based on whether that

treatment can offer them hope for recovery (Peasgood et al., 2022).
Several authors have noted that patients are more willing to pay for a
“hopeful therapy”, with patients with cancer identified as those who
prefer a therapy that has the possibility of a large therapeutic gain, even
when the average response to that therapy may be similar to other
options (Lakdawalla et al., 2012). As Hall comments: a patient who
adapts to illness may live longer but may be less able to fight off future
illness. Do the patient’s values change as they adapt to their disease?
And how does the QALY account for this adaptation (Hall, 2020)?
Administratively, the financial burden placed on healthcare systemswill
only continue to increase. Healthcare systems stretched thin by the
recent COVID-19 pandemic face ongoing challenges in integrating
costs for new therapies into an already strained system (Epstein et al.,
2020; Information CIfH, 2022; Youn et al., 2022). However, recent
trends such as the growing use of real-world evidence (RWE) in
healthcare research in general and with it a concomitant uptake in
the use of RWE in regulatory and HTA agency filings may provide the
opportunity to unravel existing health inequalities that directly fit in the
decision-making (Sarri, 2022). However, the potential of RWE to
capture the direction and magnitude of impact a new health
technology may have on health inequalities has not been fully
explored (Goetghebeur and Cellier, 2018). Proposed checklists to
guide HTA decision-makers include equity considerations in their
assessment may help on this front (Benkhalti et al., 2021). The
struggle for HTA staff to keep pace with evolving RWE
methodological complexities adds to the challenges facing these
agencies. This is especially true in cases of rare disease or where
ethical concerns prevent the designing of placebo-controlled, two-
armed studies (Thorlund et al., 2020; Ramagopalan et al., 2021;
Popat et al., 2022). All told, the challenges facing HTA bodies are
layered and complex. More case studies are needed to demonstrate how
reliably these holistic value aspects can be integrated into HTA,
although buy-in among assessors and researchers is also required, to
facilitate the widespread use of new and expanded methodologies and
the learnings from demonstration of case studies.

This study should be considered with the following
limitations. The pragmatic nature of the search, while
comprehensive, could have missed some relevant articles,
although the broad nature of the search may mitigate this
concern. Related is the decision to include only peer-reviewed
articles in data/theme collection. Commentaries and/or editorials
were excluded from this review, which may result in some valid
recommendations regarding these modelling techniques being
missed. However, any commentaries that were captured in the
search were reviewed for relevant opinions and referenced in the
discussion as appropriate. Finally, articles that focused on a
specific disease were excluded, as the aim was to provide a
broad overview of these modelling techniques. This may also
result in missing some articles that may have offered valuable
perspectives on this topic; however, the wider focus of the review
may make the findings more broadly applicable and initiate some
methodological discussion.

Conclusion

This research demonstrated that modelling methods are
being expanded from the traditional CEA approach to
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incorporate value elements with a more holistic view of what
matters most to patients and society. Although the methods
differ, a consensus exists on the need for HTA agencies to
redefine “value” with a wider lens that looks at more than just
the clinical and economic benefits of a new technology. Societal
factors and health equity scored highly as additional value
elements. Future efforts are needed to increase the confidence
of stakeholders in the importance of “testing” these expanded
CEAs approaches in case studies.
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Objectives: Health economic evaluations (HEEs) help healthcare decision makers
understand the value of new technologies. Artificial intelligence (AI) is increasingly
being used in healthcare interventions. We sought to review the conduct and
reporting of published HEEs for AI-based health interventions.

Methods: We conducted a systematic literature review with a 15-month search
window (April 2021 to June 2022) on 17th June 2022 to identify HEEs of AI health
interventions and update a previous review. Records were identified from
3 databases (Medline, Embase, and Cochrane Central). Two reviewers screened
papers against predefined study selection criteria. Data were extracted from
included studies using prespecified data extraction tables. Included studies
were quality assessed using the National Institute for Health and Care
Excellence (NICE) checklist. Results were synthesized narratively.

Results: A total of 21 studies were included. The most common type of AI
intervention was automated image analysis (9/21, 43%) mainly used for
screening or diagnosis in general medicine and oncology. Nearly all were cost-
utility (10/21, 48%) or cost-effectiveness analyses (8/21, 38%) that took a
healthcare system or payer perspective. Decision-analytic models were used in
16/21 (76%) studies, mostly Markov models and decision trees. Three (3/16, 19%)
used a short-term decision tree followed by a longer-term Markov component.
Thirteen studies (13/21, 62%) reported the AI intervention to be cost effective or
dominant. Limitations tended to result from the input data, authorship conflicts of
interest, and a lack of transparent reporting, especially regarding the AI nature of
the intervention.

Conclusion: Published HEEs of AI-based health interventions are rapidly
increasing in number. Despite the potentially innovative nature of AI, most
have used traditional methods like Markov models or decision trees. Most
attempted to assess the impact on quality of life to present the cost per QALY
gained. However, studies have not been comprehensively reported. Specific
reporting standards for the economic evaluation of AI interventions would help
improve transparency and promote their usefulness for decision making. This is
fundamental for reimbursement decisions, which in turn will generate the
necessary data to develop flexible models better suited to capturing the
potentially dynamic nature of AI interventions.
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1 Introduction

The use of artificial intelligence (AI) has significantly grown in
the healthcare sector. Exploiting its ability to streamline tasks,
provide real-time analytics, and process larger quantities of data
has contributed to its increased prominence (Panch et al., 2018).
Additionally, it may have the potential to deliver quality care at
lower costs. AI is being used to address challenges ranging from staff
shortages to ageing populations and rising costs (Dall et al., 2013).
The number of AI technologies approved by the US Food and Drink
Administration (FDA) was nearly 350 between 2016 and mid-2021,
compared to less than 30 in the preceding 19 years (Miller, 2021).

Several systematic reviews have been published that examine
health economic evaluations (HEEs) for AI in healthcare. The most
recent is Voets et al. (1 April 2021) (Voets et al., 2022), who searched
for publications from 5 years prior and included 20 full texts,
discussing the methods, reporting quality and challenges. They
found that automated medical image analysis was the most
common type of AI technology, just under half of studies
reported a model-based HEE, and the reporting quality was
moderate. Overall, Voets et al. concluded that HEEs of AI in
healthcare often focus on costs rather than health impact, and
insight into benefits is lagging behind the technological
developments of AI.

An up-to-date representation of the economic evidence base
may be insightful. Clearly, AI is a rapidly developing area in
healthcare, demonstrated by the National Institute for Health and
Care Excellence (NICE) recently incorporating AI technologies into
its Evidence Standards Framework (Unsworth et al., 2021; National
Institute for Health and Care Excellence, 2022). While some of this
rise may be attributable to changes in legislation, it indicates the
importance of AI in the current healthcare climate and the need to
have a contemporary understanding of its economic value.
Additionally, the COVID-19 pandemic has led to a rapid
increase in the digitalization of data and health services including
teleconsultations, online prescriptions and remote monitoring
(Gunasekeran et al., 2021). Therefore, we sought to update the
Voets et al. systematic review. We report updated results consistent
with the original review, by disaggregating the HEEs into costs,
clinical effectiveness, modelling characteristics and methodologies
to understand common techniques, limitations, assumptions, and
uncertainties. This update allows us to advance the discussion
around whether existing modelling methods and reporting
standards are suitable to appropriately assess the cost
effectiveness of AI technologies compared to non-AI technologies
in healthcare.

This review was undertaken to inform ongoing work within the
HTx project. HTx is a Horizon 2020 project supported by the
European Union lasting for 5 years from January 2019. The main
aim of HTx is to create a framework for the Next-Generation Health
Technology Assessment (HTA) to support patient-centred,
societally oriented, real-time decision-making on access to and
reimbursement for health technologies throughout Europe.

2 Data and methods

2.1 Literature search strategy

The search strategy included the period from 1 April 2021 to
17 June 2022, in order to update the original search conducted by
Voets et al. (Voets et al., 2022). The original search used the PubMed
and Scopus databases. For the present update, the original search
strategy was translated for use in MEDLINE, EMBASE, via the Ovid
platform, and Cochrane Central, via Wiley. These databases were
preferred due to their accessibility, and searching all 3 was
considered to provide comparable coverage to PubMed and
Scopus (Ramlal et al., 2021).

The search strategy was simplified into 2 concept pathways: 1.
“Artificial intelligence” and 2. “Health economic evaluations”. The
search queries in Supplementary Appendix SA show the strategies
divided into their respective databases. Subsequent terms in the AI
pathway included, “artificial intelligence”, “machine learning”, and
“data driven”. The second pathway included terms such as, “cost
effectiveness”, “health outcomes”, “cost”, “budget”. An English
language query was applied to the search strategy. The initial
database selection and search strategies were guided by NICE
information specialists. The review and search protocol were not
registered.

2.2 Inclusion and exclusion criteria

Studies were included if they were a HEE of an AI intervention
and a comparator, such as current standard of care or a non-AI
intervention. This included trial-based economic evaluations and
model-based studies. There were no exclusion criteria on types of
economic evaluation, such that cost-effectiveness analyses (CEAs),
cost-utility analyses (CUAs), cost-minimization analyses (CMA)
and budget impact analyses (BIAs) were included. We term all of
these as HEEs, which are defined as the “comparative analysis of
alternative courses of action in terms of both their costs and
consequences” (Rudmik and Drummond, 2013). CEAs evaluate
whether an intervention provides relative value, in terms of cost
and health outcomes, to a respective comparator. CUAs are a subset
of CEAs where the health outcome includes a preference-based
measure such as the Quality Adjusted Life Year (QALY). BIA studies
evaluate the affordability of an intervention for payers to allocate
resources. Included studies reported a quantitative health economic
outcome such as costs, or costs in relation to effectiveness. For the
exclusion criteria in the initial screening of titles and abstracts,
studies that were not original research or systematic reviews such as
commentaries, letters, and editorials were excluded. Overall, the
inclusion and exclusion criteria were consistent with Voets et al.
(Voets et al., 2022).

After duplicates were removed, 2 reviewers independently
screened titles, and abstracts. The reviewers discussed any
discrepancies, and where agreement could not be reached, an
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independent third reviewer was consulted. The same process was
followed for subsequent full-text screening.

2.3 Data extraction

The data extraction was initially completed by 1 reviewer, and
then validated by a second reviewer who independently extracted
and compared data from the included studies. The extraction
strategy was divided into three components, the first and second
components included the characteristics and the methodological
details of the studies. The former included aspects such as the
purpose of the AI technology, medical field, funding, care
pathway phase (prevention, diagnostics, monitoring, treatment)
and the type of AI (i.e., pattern recognition, risk prediction, etc.).
The second table of methodological details included aspects such as
the type of HEE, the comparator, and the outcome measure. The
third component was relevant only for model-based HEEs,
extracting parameters such as model states, time horizon, and
details of sensitivity analyses.

2.4 Data analysis

The extracted data were synthesised using a narrative approach
as heterogeneity between studies inhibited the utility of a
quantitative synthesis. Descriptive statistics were used to
summarize the characteristics of the retrieved studies, where
appropriate.

2.5 Quality assessment

The quality assessment of all included studies was conducted
using the NICE quality appraisal checklist for economic evaluations
(National Institute for Health and Care Excellence, 2012). This
checklist has been adopted in the literature of economic
evaluation reviews (Elvidge et al., 2022) and is used by NICE
when assessing HEE evidence for all public health guidelines.
Included studies with a decision-analytic model were quality
assessed independently by 2 reviewers using the methodological
checklist section of the quality appraisal checklist. The checklist has
11 individual questions to create an overall assessment of whether
there are minor-, potentially serious-, or very serious limitations that
affects the robustness of the results. Quality assessment was not used
as part of the exclusion criteria, as one of the research aims was to
explore the reporting standards.

Although it is not possible to fully remove the potential of
bias due to the subjective nature of the assessment, pre-set
criteria were created to minimize its effects. The criteria are as
follows: studies with very serious limitations included studies
that had significant modelling discrepancies that could materially
change the cost-effectiveness conclusion (e.g., the intervention
changing from dominant to dominated). Also, very serious
limitations are derived from a financial conflict of interest,
where the developer of the AI technology also funded the
HEE. Potentially serious limitations refer to methodological
uncertainties which may change the quantitative result (e.g.,

an increase in the cost-effectiveness ratio), however the
outcome could stay the same (e.g., the increase is not
meaningful). All other limitations were considered to be
minor limitations. The reviewers discussed any discrepancies
in their quality assessments, and if major disagreements
emerged, an independent third reviewer was consulted.

3 Results

3.1 Search results

The searches across the 3 databases yielded 4,475 records,
resulting in 3,033 unique records following deduplication
(Table 1). After screening titles and abstracts against the study
selection criteria 2,993 were excluded due to not relating to a human
health intervention, not reporting a HEE, not relating to an AI-based
intervention, or being a excludable study type (e.g., commentary).
Therefore, 40 studies proceeded to full-text screening. Of those,
16 were excluded based on the selection criteria, and 2 were excluded
as duplicates that had already been included in the Voets et al. review
(Voets et al., 2022). We excluded a further study due to unclear
reporting about whether it was a primary analysis or a review of
other economic models. Therefore, 21 studies remained which were
suitable for data extraction. See Figure 1 for the PRISMA flowchart
showing the inclusion and exclusion stages.

3.2 Overview of included studies

The general characteristics of the 21 included studies are
presented in Table 2. The majority were published in 2022.
There was a wide variation of AI interventions in different
medical fields. The most frequent were general medicine and
oncology (each 4/21, 19%), followed by ophthalmology and
respiratory medicine (each 3/21, 14%), cardiology (2/21, 10%),
and dermatology, mental health, radiology, sleep and analgesics
(each 1/21, 5%). The interventions spanned the screening (9/21,
43%), diagnosis (8/21, 38%), treatment (1/21, 5%) and monitoring
(3/21, 14%) stages of the clinical pathway. Themost common type of
AI evaluated was automated image analysis (9/21, 43%). Others were
risk prediction (6/21, 29%), pattern recognition (2/21, 10%),
personalized treatment recommendation (1/21, 5%), clinical
decision support (1/21, 5%) and combined risk prediction and
clinical decision support (2/21, 10%). Most studies were funded
by governments and industry (each 5/21, 24%), followed by
academia (3/21, 14%). Two (2/21, 10%) were jointly funded by
industry and academia and one (1/21, 5%) was funded by the
European Commission.

3.3 HEE characteristics

The 21 HEEs contained 10 (10/21, 48%) CUAs, 8 (8/21, 38%)
CEAs and 2 (2/21, 10%) BIAs. One (1/21, 5%) HEE reported results
as both a CEA and a CUA. Among the CEAs the outcomes ranged
from cost saved per patient screened, cost per death averted, cost per
DALY averted, cost per case prevented and cost saving per
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additional tooth retention year. The healthcare system perspective
was the most common. Of the 21, 10 (10/21, 48%) took a healthcare
system perspective, 6 (6/21, 29%) payer, 4 (4/21, 19%) societal and
1 study (1/21, 5%) took both a societal and health system
perspective. In some studies, the payer perspective represented
insurers, both public and private.

The time horizon for the 21 studies ranged from 8 weeks to
lifetime, with lifetime being themost common (5/21, 24%). One year
was the secondmost common time horizon (3/21, 14%), followed by
6 months and 5 years with two each (2/21, 10%). Time horizons of
8 weeks, 16 months, 3 years, 15 years, 20 years, 30 years, and
35 years were all present in one study each (1/21, 5%). In two
studies the time horizon was not reported (2/21, 10%). Most HEEs
with a time horizon longer than 1 year used a 3% annual discount
rate (7/13, 54%). Six studies discounted costs and health outcomes
differentially. Of these, 2 studies (2/13, 15%) discounted costs at 4%
and health outcomes at 1.5%, 2 (2/13, 15%) discounted the costs but
did not report discount rates for health outcomes, 1 (1/13, 8%) used
undiscounted costs but did not report discounting of health
outcomes, and 1 (1/13, 8%) did not report discount rates for the

costs but discounted health outcomes at 3%. Table 3 reports all the
methodological details of the included HEEs.

3.4 Modelling characteristics

Of the 21 HEEs, 16 (16/21, 76%) included a decision analytic
model. The modelling characteristics of these are summarized in
Table 4. The most commonmodel types were Markov models (6/16,
38%) and decision trees (4/16, 25%) with 3 (3/16, 19%) using a
short-term decision tree followed by a longer-term Markov
component. Of the remaining 3 studies, there was 1 cost
simulation, 1 Markov chain Monte Carlo simulation, and
1 hybrid decision tree and microsimulation model. Authors
typically justified their chosen model type by linking the decision
to the type of AI intervention, the outcome measure, and the time
horizon. Most Markov models used a cycle length of 1 year, and the
rest used 1 month or 1 day. Studies that used decision tree models
stated their primary reason for doing so was for their simplicity.

In terms of results, 7 (7/21, 33%) HEEs reported the AI
intervention was cost effective versus the comparator relative to
an appropriate threshold value, 5 (5/21, 24%) demonstrated that the
AI intervention was dominant, and 2 (2/21, 10%) demonstrated
equivalence. In 1 (1/21, 5%) study the AI intervention was cost
effective versus one comparator and dominant versus the other. In 2
(2/21, 10%) studies the AI interventions produced savings. Three (3/
21, 14%) studies did not state a preferred cost-effectiveness
threshold to determine if the result was cost effective. The AI
intervention was found to be cost ineffective in 1 (1/21, 5%) study.

Of the studies that reported sensitivity analysis (18/21, 86%),
17 reported one-way sensitivity analyses, though the remaining
study did conduct probabilistic sensitivity analysis. Seven (7/21,
33%) studies reported both one-way and probabilistic analyses,
while 4 (4/21, 19%) reported both one-way and scenario
analyses. Three studies (3/21, 14%) reported one-way,
probabilistic and scenario analyses.

3.5 Quality assessment

A summary of the results from the quality appraisal checklist is
shown in Table 5. The assessment resulted in 6 (6/21, 29%) studies
with very serious limitations, 11 (11/21, 52%) with potentially
serious limitations, and 4 (4/21, 19%) with minor limitations.
Initially the two reviewers disagreed on the assessment for two of
the studies (Ericson et al., 2022; Mital and Nguyen, 2022). Both were
upgraded for the reasons given below.

TABLE 1 Database search results.

Databases Date searched Database version Number of records retrieved

Medline (Ovid) 17th June 2022 Ovid MEDLINE(R) ALL <1946 to 16 June 2022> 1,876

Embase (Ovid) 17th June 2022 Embase <1974 to 2022 June 16> 2,529

Cochrane Central (Wiley) 17th June 2022 Issue 5 of 12, May 2022 70

4,475

FIGURE 1
PRISMA flowchart describing study selection and reasons for
exclusion during full-text screening.
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TABLE 2 Characteristics of the included studies.

Main
author

Year Population Location Description of AI
intervention

Medical
field

Care
pathway
phase

AI
technology

Funding

Adams et al.
(2021)

2021 A representative cohort
of 3,197 baseline
screening patients

United States Risk score predictor Oncology Screening Risk prediction Industry

Areia et al.
(2022)

2022 A hypothetical cohort of
100,000 individuals
aged 50–100 years

United States AI tools to detect
precancerous polyps
during colonoscopy

Oncology Screening Pattern
recognition

EU
Commission
and JSPS

de Vos et al.
(2022)

2022 Dutch Patients Holland Decision-making
support tool to
discharge patients
from ICU

General Diagnostic Clinical decision
support

None

Delgadillo
et al. (2022)

2022 Patients with common
mental health disorders

United Kingdom Decision-support tool
providing personalized
treatment
recommendations
(stratified care)

Mental health Treatment Personalised
treatment
recommendation

Industry and
Academia

Ericson et al.
(2022)

2022 Adult patients who were
not diagnosed with
sepsis at the time of
admission

Sweden Early detection of sepsis General Diagnostic Risk prediction Industry

Fusfeld et al.
(2022)

2022 Kidney transplant
recipients receiving a
for-cause biopsy

United States MMDx-Kidney
assesses the probability
of biopsy rejection or
injury

General Diagnostic Pattern
recognition

Industry

Huang et al.
(2022)

2022 Diabetes patients
without retinopathy

Rural China areas Automated retinal
image analysis system
for diabetic retinopathy
screening

Ophthalmology Screening Automated image
analysis

Industry and
Academia

Kessler et al.
(2021)

2021 High-risk Medicaid
members with multiple
chronic conditions

Southern
California,
United States

Risk score predictor
and decision-support
for pharmacists
offering medicine
management to high-
risk Medicaid members

General Monitoring Risk prediction
and decision
support

Government

MacPherson
et al. (2021)

2021 Adults attending acute
primary services

Malawi Computer-aided digital
chest x-ray (DCXR-
CAD) for HIV-TB
screening

Respiratory Screening Automated image
analysis

Academia

Mallow and
Belk (2021)

2021 Hypothetical cohort
undergoing elective
orthopedic procedures
that commonly have
opioids prescribed

United States Machine learning
algorithm analyzing
alleles involved in
reward pathway of the
brain to identify
patients with a higher
risk of opioid
use (OUD)

Analgesics Diagnostic Risk prediction Industry

Mital and
Nguyen (2022)

2022 Women aged 40–49 United States AI to read
mammography images
to predict breast cancer
risk

Oncology Screening Automated image
analysis

None

Morrison et al.
(2022)

2022 Theoretical cohort of
infants requiring ROP
screening

United States Artificial intelligence
(AI)based retinopathy
of prematurity (ROP)
screening. Both
assistive and
autonomous

Ophthalmology Screening Automated image
analysis

Academia

Nsengiyumva
et al. (2021)

2021 Patients with symptoms
suggestive of
pulmonary TB

Pakistan AI-based radiograph to
triage persons with
possible tuberculosis

Respiratory Diagnostic Automated image
analysis

Government

(Continued on following page)
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Studies deemed to have very serious limitations were those
where an issue in 1 or more quality criteria were highly likely to
materially change the cost-effectiveness conclusion for the AI
intervention. There were several key reasons which led to this
assessment for 5 of the included studies. In one there was an
acknowledged overestimation of cost data, representation issues
between the dataset and target population, and a short 6-month
horizon rather than the 12-month time horizon deemed best
practice by the American College of Radiology (Rosenthal and
Dudley, 2007). In another, adverse health effects were not
captured, which the authors suggested would increase the cost-
effectiveness estimate (Fusfeld et al., 2022). This study also had a
financial conflict of interest where research was funded by the
company which developed the AI intervention. This was true for
another 2 studies (Ericson et al., 2022; Szymanski et al., 2022). In

another study, the result changed from intervention dominant to
cost ineffective when input data, arising from multiple sources and
assumption, were varied during the sensitivity analyses (Ziegelmayer
et al., 2022).

Studies with potentially serious limitations tended to have a
paucity of appropriate input data. Instead, alternative sources, or
multiple sources were used with resulting generalizability issues. It
was common for studies to have assumptions for the cost and
effectiveness of the AI intervention, compliance, and the impact of
the AI intervention on the subsequent treatment pathway. Examples
of this are 1 study that assumed all patients would consent to a test
(Mallow and Belk, 2021); 1 study that used a primary outcome that
was patient reported (Delgadillo et al., 2022) and 1 study that
assumed the effectiveness of the AI intervention last for 10 years,
despite having data for only 5 years (Mital and Nguyen, 2022). These

TABLE 2 (Continued) Characteristics of the included studies.

Main
author

Year Population Location Description of AI
intervention

Medical
field

Care
pathway
phase

AI
technology

Funding

symptoms and
identification of those
who require further
testing

Salcedo et al.
(2021)

2021 Adults undergoing
active TB treatment

United States Monitors real-time
medication
consumption and
adherence for TB
treatment

Respiratory Monitoring Automated image
analysis

Government

Schwendicke
et al. (2022)

2022 31-year-olds, whose
proximal surfaces were
initially either good, or
in an E2, D1 or D2-3
lesion

Germany AI-based software to
detect proximal caries
lesions

Dentistry Diagnostic Automated image
analysis

None

Szymanski
et al. (2022)

2022 Adults aged 65 years or
older registered with
a GP

United Kingdom AF risk prediction
algorithm to improve
AF detection

Cardiology Screening Risk prediction Industry

Tseng et al.
(2021)

2021 Hypothetical cohort of
asymptomatic 65-year-
olds

US AI ECG algorithm to
detect asymptomatic
left ventricular
dysfunction

Cardiology Screening Risk prediction Academia

Turino et al.
(2021)

2021 Adults with newly
diagnosed obstructive
sleep apnea

Spain AI monitoring system
for improving CPAP
compliance

Sleep Monitoring Risk prediction
and decision
support

Government

van Leeuwen
et al. (2021)

2021 71,840 adults aged
66 years from a stroke
registry that received
CTA diagnosis work up
of acute stroke

United Kingdom AI software aiding
detection of
intracranial LVO in
stroke patients

Radiology Diagnostic Automated image
analysis

None

Xiao et al.
(2021)

2021 Asymptomatic adults
aged 65 years and above
for population
screening

China AI diagnosis of
glaucoma

Ophthalmology Screening Automated image
analysis

Government

Ziegelmayer
et al. (2022)

2022 60-year-olds with
20 pack years of
smoking history

United States AI convolutional neural
networks supported
low dose CT at initial
screening for lung
cancer

Oncology Diagnostic Risk prediction None

Atrial Fibrillation, AF; artificial intelligence, AI; continuous positive airway pressure, CPAP; CTA, computed tomography angiography; ECG, electrocardiography; European Union, EU; general

practice, GP; intensive care unit, ICU; japan society for the promotion of science, JSPS; LVO, large vessel occlusions; Molecular microscope diagnostic system, MMDx; Opioid use disorder,

OUD; retinopathy of prematurity, ROP; ROP; tuberculosis, TB.
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TABLE 3 Health economic details of included studies.

Main
author

HEE
type

Intervention Comparator Perspective Discount
rate

Time
horizon

Outcome
measure

Adams et al.
(2021)

CEA Combining Artificial
Intelligence and Lung-
RADS

Lung-RADS Payer NA 6 months Cost saving of AI-
informed management
per patient screened

Areia et al.
(2022)

CEA AI detection of polyps Screening without AI tools Societal 3% 30 years Cost saving of screening
with AI per individual

de Vos et al.
(2022)

CUA AI decision support tool
for ICU discharge
decision-making

Standard care discharge
decisions based on medical
expertise

Societal Costs 4%,
Health
outcomes 1.5%

1 year ICER- cost per QALY
gained

Delgadillo et al.
(2022)

CEA AI personalized
treatment
recommendation to
provide stratified care

Standard of care- stepped care Healthcare
system

NR NR Incremental cost of
stratified care per
patient and additional
case of reliable
improvement

Ericson et al.
(2022)

CUA/
CEA

AI detection of sepsis Standard care for sepsis
diagnosis

Healthcare
system

3% 1 year Cost savings per patient

Fusfeld et al.
(2022)

BIA Pattern recognition in
gene expression in biopsy

Histology biopsy alone Payer Costs 0%,
Health
outcomes NR

5 years Cost per patient and
savings per biopsy

Huang et al.
(2022)

CUA AI based DR screening No screening or
ophthalmologist screening

Healthcare
system and
societal

3% 35 years ICER- cost per QALY
gained

Kessler et al.
(2021)

CEA AI risk score predictor
and decision-support for
medication management

The same cohort pre-AI
intervention start

Payer NR NR Savings per member,
per month

MacPherson
et al. (2021)

CUA AI chest x-ray
interpretation providing a
probabilistic score for TB

Standard of care Healthcare
system

NA 8 weeks ICER- cost per QALY
gained

Mallow and
Belk (2021)

CUA AI prediction to decrease
risk of OUD

Current standard of care Payer 3% 5 years ICER- cost per QALY
gained

Mital and
Nguyen (2022)

CUA Automated
mammography image
analysis

Alternative screening strategies
including no screening,
screening guided by risk scores
(PRS) and screening guided by
family history

Healthcare
system

3% Lifetime ICER- cost per QALY
gained

Morrison et al.
(2022)

CUA Deep learning algorithm Telemedicine and
Ophthalmoscopy

Healthcare
system

Costs NR,
Health
outcomes 3%

Lifetime ICER- cost per QALY
gained

Nsengiyumva
et al. (2021)

CEA AI detection of TB No AI triage before
microbiologic testing. Current
standard of care- smear
microscopy or GeneXpert

Payer NA 1 year Incremental cost per
DALY averted

Salcedo et al.
(2021)

CUA AI monitoring for
tuberculosis treatment
adherence

Standard of care: DOT Societal NR 16 months ICER- cost per QALY
gained and NMB

Schwendicke
et al. (2022)

CEA AI detection for proximal
caries

Caries detection without AI Payer Costs 3%,
Health
outcomes NR

Lifetime ICER- cost per year of
tooth retention gained

Szymanski et al.
(2022)

BIA AI risk score predictor to
detect AF using data from
baseline risk factors

Standard care (opportunistic
screening and diagnosis) or
combined use of standard care
and AI

Healthcare
system

NR 3 years Budget impact in £

Tseng et al.
(2021)

CUA AI detection of ALVD No screening Healthcare
system

3% Lifetime ICER- cost per QALY
gained

(Continued on following page)
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studies did account for the key uncertainties in sensitivity analyses
and the effect was either minor or the initial assumptions were
shown to be robust. Some studies were assessed as having potentially
serious limitations due to unclear reporting, which reduced
transparency around key information such as whether a cost had
been applied for the AI intervention, how it would integrate with
clinical care, and who the anticipated user of the AI
intervention was.

4 Discussion

This paper systematically reviewed 21 HEEs of AI interventions.
The studies mainly evaluated AI-based automated image analysis
interventions for diagnosis and screening in general medicine,
oncology and ophthalmology. Nearly all were CUAs and CEAs
that took a healthcare system or payer perspective, and most had
lifetime time horizons. Some of the HEEs were trial-based analyses,
but the large majority were model-based which mostly used Markov
models. In terms of the HEE results, the AI interventions were cost
effective or dominant in just over half and all the studies performed
sensitivity analyses.

This study reports an updated search to the review conducted by
Voets et al. (Voets et al., 2022), providing a contemporary snapshot
of the HEE evidence base for AI health technologies Our update
captures an additional 15-month period in a time where AI health
based technologies are on the exponential rise, evidenced by the near
quadruple number of initial unique search results since April 2021
(Voets et al., 2022). It appears there has been no change in the most
commonly evaluated purpose of AI being used as a healthcare
intervention, as Voets et al. also found the most common to be
automated image analysis (Voets et al., 2022). Ophthalmology and
screening were the dominant specialty and phase of the care
pathway at which the AI intervention was used, and these were
also prevalent in this updated review. The prevailing type of HEE in
the original review was cost minimization with the preferred
outcome measure of cost saved per case identified. This was
common among our included studies, although we termed it

CEA, but CUA was the most common study type in this update.
There was a difference between the two reviews in how many of the
technologies were found to be cost saving. Voets et al. found the
majority were whilst this was true for only 2 studies in this review.
This could be due to differences in applying the terms ‘cost-saving’
and ‘cost-effective’ as a large proportion of studies in this updated
review were cost-effective.

Another difference was the fact that the large majority of HEEs
in our review were model-based, compared to 45% of those in Voets
(Voets et al., 2022). This could suggest a shift towards using models
to estimate future costs and benefits of AI technologies, permitting
longer time horizons than trial-based evaluations (the most
common time horizon is our review was lifetime, compared to
1 year in Voets). Furthermore, the increasing use of model-based
evaluations may suggest AI interventions are moving towards
traditional value assessment frameworks that are commonplace
in the health technology assessment of medicines. This increase
in model-based technologies may also explain the differences in
results regarding cost saving versus cost effective. Perhaps it is easier
or more expected to generate cost-effectiveness estimates when
using a model compared to non-model HEEs where it may be
more common to focus on costs.

Voets et al. (2022) found that the evidence supporting the
chosen analytical methods, assessment of uncertainty, and model
structures was underreported. Our quality assessment determined
that most studies had potentially serious limitations tending to arise
from the sources and assumptions regarding the input data. These
findings are consistent, which suggests that despite an increase in the
use of more sophisticated economic evaluation techniques, the
evidence supporting them remains limited. In some cases, the
uncertainty and lack of clarity for the reader were due to the
reporting of the HEE rather than the data quality. In numerous
studies it was hard to determine fundamentals such as whether a cost
had been applied for the AI intervention, how it would integrate with
clinical care and who the anticipated user of the AI intervention was.
As mentioned, not all of the studies we identified clearly stated how
the AI intervention would integrate with clinical care. Studies did
not typically thoroughly or transparently estimate subsequent care

TABLE 3 (Continued) Health economic details of included studies.

Main
author

HEE
type

Intervention Comparator Perspective Discount
rate

Time
horizon

Outcome
measure

Turino et al.
(2021)

CEA AI monitoring of CPAP
compliance

Standard of care Healthcare
system

NA 6 months Cost per hour of CPAP
compliance gained
per day

van Leeuwen
et al. (2021)

CUA AI software aiding
detection of intracranial
large vessel
occlusions LVO

Standard of care Societal Costs 4%,
Health
outcomes 1.5%

Lifetime Incremental cost,
incremental effects

Xiao et al.
(2021)

CEA AI detection of glaucoma No screening Healthcare
system

Costs 5%,
Health
outcomes NR

15 years Incremental cost of
PACG prevented

Ziegelmayer
et al. (2022)

CUA AI-based CT scan Stand alone low-dose CT scan Healthcare
system

3% 20 years ICER- cost per QALY
gained

Artificial Intelligence, AI; budget impact assessment, BIA; computerized tomography, CT; cost effectiveness analysis, CEA; cost utility analysis, CUA; diabetic retinopathy, DR; directly observed

therapy, DOT; Disability-adjusted life years, DALY; large vessel occlusions, LVO; left ventricular systolic dysfunction, LVSD; net monetary benefit, NMB; opioid use disorder, OUD; Primary

angle-closure glaucoma, PACG; reporting and data system, RADS.
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TABLE 4 Summary of economic evaluation parameters and outcomes.

Main
author

Model type Model states/tree
summary

Time
horizon,
cycle
length

Sensitivity
analysis

Outcome Result

Adams et al.
(2021)

Cost simulation NR 6 months NR USD 72 to USD 242 saved per
patient screened

Intervention cost-
effective

Areia et al.
(2022)

Markov model No colorectal neoplasia; low risk
adenomas, high risk adenomas,
localized, regional, or distant
CRC; and CRC-related death

30 years,
1 year

One-way and
probabilistic
analysis

0.1% absolute (6.9% relative)
reduction in colorectal
mortality vs. screening without
AI, USD 57 saving per
individual screened

Intervention cost-
effective

de Vos et al.
(2022)

Markov model ICU ineligible, ICU eligible,
General ward, Readmission
ICU ineligible, Readmission
ICU eligible, Discharged, Death

1 year, 1 day One-way,
probabilistic and
scenario analysis

EUR 18,507 per QALY gained
vs. standard care

Intervention cost-
effective

Delgadillo et al.
(2022)

Within trial analysis NR NR NR Incremental cost of stratified
care was £104.50 per patient

Intervention
potentially cost-
effective.
Threshold NR

Ericson et al.
(2022)

Decision tree True- and false-positive and
true negative detections for
sepsis

1 year One-way and
probabilistic
analysis

CEA: 356 ICU deaths averted,
EUR 2.8m saved/CUA:
negative ICER, higher effect,
lower cost

Intervention
dominant

Fusfeld et al.
(2022)

Decision tree Functioning initial transplant,
graft failure + re-transplant,
graft failure + dialysis, death
with functioning graft, death
after graft failure

5 years One-way and
scenario analysis

Savings of USD 19,721 per
biopsy over a 5 year period

Produces savings to
commercial payers
within 2 years

Huang et al.
(2022)

Markov model DR, Mild DR, Moderate DR,
VTDR, Stable DR, Blindness
and death

35 years,
1 year

One-way and
probabilistic
analysis

Using health system
perspective: USD 1,107.63/
QALY vs. no screening,
Dominant vs. ophthalmologist
screening. Using societal
perspective: USD 10,347.12/
QALY vs. no screening,
Dominant vs. ophthalmologist
screening

Intervention cost-
effective using both
perspectives

Kessler et al.
(2021)

Regression analysis NR Mean of
20.5 weeks

NR Saving of USD 554 per member
per month

Produces savings

MacPherson
et al. (2021)

Within trial analysis NR 8 weeks One-way
sensitivity analysis

USD 4,520.47 per QALY gained
vs. standard of care

Intervention not
cost-effective

Mallow and
Belk (2021)

Markov chainMonte
Carlo simulation
model

Alive and Dead. For those who
developed OUD: OUD,
treatment, remission, dead

5 years,
1 month

One-way,
probabilistic and
scenario analysis

USD 2,510 saving per patient,
0.02 QALY gain (private
insurers), USD 2,682 saving per
patient, 0.02 QALY gain (self-
insured employers)

Intervention
dominant using both
perspectives

Mital and
Nguyen (2022)

Hybrid decision tree/
microsimulation
model

No screening, Annual screening
for all, AI + no screening for
low risk, AI + biennial
screening for low risk, PRS + no
screening for low risk, PRS +
biennial screening for low risk,
Family history + no screening
for low risk, Family history +
biennial screening for low risk.
For all interventions any
deemed high risk moved to
annual screening

Lifetime,
1 year

One-way and
probabilistic
analysis

AI + no screening for low risk
dominated PRS + no screening
for low risk, family history +
biennial screening for low risk,
PRS + biennial screening for
low risk, AI + biennial
screening for low risk and
annual screening for all and
extendedly dominated family
history + no screening for low
risk. USD 23,755 per QALY
gained vs. no screening

Intervention cost-
effective vs. no
screening and
dominant vs. other
comparators

Morrison et al.
(2022)

Decision tree Ophthalmoscopy,
Telemedicine, Assistive AI,
Autonomous AI

Lifetime One-way and
probabilistic
analysis

Autonomous AI less costly and
as effective as telemedicine and
ophthalmoscopy. Assistive AI
USD 83,350 vs. telemedicine
and dominated
ophthalmoscopy

Intervention cost-
effective

(Continued on following page)
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TABLE 4 (Continued) Summary of economic evaluation parameters and outcomes.

Main
author

Model type Model states/tree
summary

Time
horizon,
cycle
length

Sensitivity
analysis

Outcome Result

Nsengiyumva
et al. (2021)

Decision tree Triage with AI-based CXR
followed by standard of care
with upfront smear or
GeneXpert

1 year One-way and
scenario analysis

USD 43/DALY averted vs.
smear as microbiologic test.
Dominant vs. GeneXpert as
microbiologic test

Intervention cost-
effective

Salcedo et al.
(2021)

Markov model On treatment, Completed
treatment, Defaulted

16 months,
1 month

One-way,
probabilistic and
scenario analysis

AI dominated DOT NMB:
USD 3,142, 4,057 and 4,973 at
WTP thresholds of USD 50,
100 and 150K respectively

Intervention
dominant

Schwendicke
et al. (2022)

Markov model Sound|E1-2|D1|D2-3, True or
false negative, No treatment,
Development or progression,
Restorative Treatment; True or
false positive, Treatment,
According to dentists’ decision
making in each group, Arrested,
Restorative treatment

Lifetime,
1 year

One-way
sensitivity analysis

AI and no AI showed identical
effectiveness and nearly
identical costs

Equivalence

Szymanski et al.
(2022)

Budget impact
model

Opportunistic screening or AI
screening, ECG assessment

3 years One-way and
scenario analysis

Standard care + AI generated
savings of £71,345,158 and
improved clinical outcomes vs.
standard care. AI alone
generated savings of
£80,441,386 but had worse
clinical outcomes vs. standard
care

Intervention
potentially cost-
effective.
Threshold NR

Tseng et al.
(2021)

Decision tree and
Markov model

No Screen, Screen with AI
algorithm; Treated ALVD,
Untreated ALVD,
Symptomatic, Untreated no
ALVD, Dead

Lifetime, NR One-way and
probabilistic
analysis

USD 43,351/QALY vs. no
screening

Intervention cost-
effective

Turino et al.
(2021)

Within trial analysis NR 6 months Probabilistic
sensitivity analysis

Mean increase of 1.14 h in daily
compliance with AI
intervention. Non-significant
difference in cost between
interventions

Intervention cost-
effective

van Leeuwen
et al. (2021)

Decision tree and
Markov model

Patients suspected of stroke
receiving CTA, Large vessel
occlusion, No or other vessel
inclusion; No IAT eligible, IAT
eligible; Occlusion detected,
Occlusion not detected; mRS
0–5, Death

Lifetime,
1 year

One-way and
scenario analysis

AI cost saving of USD
156,000 and gain of 0.01 QALY

Intervention
dominant

Xiao et al.
(2021)

Markov model Primary angle closure suspect,
primary angle closure, primary
angle closure glaucoma, PACG-
related unilateral blindness and
PACG- related bilateral
blindness

15 years,
1 year

One-way
sensitivity analysis

USD 1,464 per PACG case
prevented over 15 years.
Additional healthcare costs
from screening were not offset
by decreased disease
progression over 15 years

Intervention
potentially cost-
effective.
Threshold NR

Ziegelmayer
et al. (2022)

Decision tree and
Markov model

Decision; CT, CT + AI; Markov;
No BC true negative, No BC
false positive, BC undetected
false negative, BC after
resection, BC palliative, Death

20 years, 1 year One-way and
probabilistic
analysis

AI CT cost saving USD
67.62 vs. CT screening. AI CT
incremental QALY 0.01 vs. CT
screening

Intervention
dominant

*Self-reported as a simulation model. Artificial Intelligence, AI; asymptomatic left ventricular dysfunction, ALVD; bronchial cancer, BC; chest radiograph, CXR; colorectal cancer, CRC; CTA,

computed tomography angiography; Diabetic retinopathy, DR; intensive care unit, ICU; molecular microscope diagnostic system, MMDx; Net monetary benefit, NMB; not applicable, NA; not

reported, NR; opioid use disorder, OUD; Primary angle-closure glaucoma, PACG; polygenic risk scores, PRS; standard of care, SOC.
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TABLE 5 Summary of quality assessment of included studies.

Study Notable limitations identified Assessment

Adams et al. (2021) Strict assumptions regarding underlying parameters, such as an overestimation of costs, which directly determine the
intervention outcome. The 6-month time horizon was short of 12 months deemed best practice by the American
College of Radiology, also potentially impacting cost-effectiveness. Finally, the dataset used was not representative of
the target populations, notably “overrepresenting white persons and underrepresenting racial minorities"

Very serious limitations

Areia et al. (2022) Misrepresentation of population data from clinical trials to clinical practice. The overall death rate modelled was
lower than the actual. Assumption of compliance of tests and the linear relationship between cancer prevention effect
and increased ADR were made, however impact on cost-effectiveness is not severe

Potentially serious
limitations

de Vos et al. (2022) Short time horizon due to literature available for input parameters. Made assumptions from non-Dutch sources
which was controlled for with sensitivity analysis, but limits generalisability of results

Potentially serious
limitations

Delgadillo et al. (2022) There were weaknesses regarding the internal validity. The primary outcome was patient reported, and used a general
measure rather than disorder specific measures. The majority of patients were white which has generalizability
implications

Potentially serious
limitations

Ericson et al. (2022) Limitations arise from patients who should have been included for Sepsis, not included. The model base case was
purposely set to be conservative to not exaggerate the positive effects, however the assumptions made limits the
validity of the outcomes. Finally, the research and funding were funded by the company who developed the
intervention, creating potential for bias

Very serious limitations

Fusfeld et al. (2022) The model does not capture adverse events due to antirejection medication which they suspect MMDx would
increase leading to uncertainty in the result. There is also a potential conflict of interest where the research was funded
by the company which developed the AI technology

Very serious limitations

Huang et al. (2022) Limited data available from study population led to values derived from other countries which were accounted for in
sensitivity analysis. Data regarding sensitivity and specificity of the AI screening derived from one paper, but did not
greatly affect cost effectiveness in the sensitivity analyses

Minor limitations

Kessler et al. (2021) Retrospective observational study limits conclusions on causality. Clinical outcomes were not analyzed Potentially serious
limitations

MacPherson et al. (2021) Trial-based analysis with small number of events and short follow up resulted in less precise treatment estimates.
Study presence in the clinic may have modified health worker behaviour for standard of care. Alternative diagnoses to
TB were not investigated

Minor limitations

Mallow and Belk (2021) The model assumed all patients would consent to the test which excludes the costs and effects if patients refused. The
model also did not exhaust all features of the treatment pathways due to the high number of possibilities

Potentially serious
limitations

Mital and Nguyen (2022) Main limitation is the cost of using AI for breast cancer prediction is not yet known in clinical practice which led to
data retrieved from the European Society of Radiology. This was accounted for with one-way sensitivity analysis with
all results holding. Data for efficacy of AI intervention extrapolated beyond studied period

Potentially serious
limitations

Morrison et al. (2022) Speculative assumptions and imprecision in model inputs. However, the authors used conservative estimates and
performed sensitivity analyses. Model time horizon was lifetime despite the life expectancy in the population (very
premature babies) being unknown

Potentially serious
limitations

Nsengiyumva et al.
(2021)

The analysis examines the intervention in low HIV prevalence, the accuracy of results may vary in high prevalence Minor limitations

Salcedo et al. (2021) The model did not consider possible side effects or delays in appropriate care due to less nurse contact. Relatively
short time horizon that assumes equal quality of life post-treatment between arms

Potentially serious
limitations

Schwendicke et al. (2022) Range of sources for input data which will lead to a degree of bias, although accounted for in sensitivity analyses.
Lacked validity as in practice treatment decision would not be based on image analysis only

Potentially serious
limitations

Szymanski et al. (2022) Used an unvalidated threshold to determine AF risk and assumed 100% adherence to ECG assessment which lacks
external validity. Did not include cost of implementation. The study was funded by the AI developer

Very serious limitations

Tseng et al. (2021) The data estimates for the baseline (SOLVD) probabilities and effects were based on a study published 30 years ago
from the last RCT. The model was calibrated to use a prespecified threshold which was not varied in the sensitivity
analyses. There is also a conflict of interest where the research was funded by the organization which developed the AI
technology

Very serious limitations

Turino et al. (2021) Patients with severe chronic pathologies were excluded which could limit the generalizability of results and the
follow-up period is relatively short. The study collected EQ-5D data but did not report utility data

Potentially serious
limitations

van Leeuwen et al. (2021) Model relied on two key inputs that were assumptions: percentage of missed LVOs in practice, and the capability of
the AI to reducemissed LVOs. These were both varied in the sensitivity analyses and result did not change. Themodel
only included early presenters but IAT would also include late presenters which limits generalizability. The authors
also assumed that false positives would be neutralized by the reader and would not lead to unnecessary care

Minor limitations

(Continued on following page)
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and downstream health outcomes resulting from the use of an AI
intervention. Our findings from this literature review suggest this is
an area that needs to be better considered and reported.

AI-based interventions have the potential to be distinct from
traditional medical interventions if they can learn (from data)
over time. Theoretically, this means the relationship between the
intervention and outcome may not be fixed; an AI intervention
could get more effective over time, unlike the typical effect
waning assumption associated with medicines. This has
implications when considering future benefits and how to
extrapolate this over the time horizon of the HEE. The
prevailing model structures used in HEEs of AI interventions
to date—Markov models, decision trees, and hybrids of the
2—may limit the extent to which studies have been able to
capture and examine the dynamic nature of AI interventions.
Therefore, there is the possibility that the existing HEE evidence
base has not captured the true potential value of many AI
interventions due to limitations imposed by their model
structures, and only a third of our included studies explored
the impact of structural uncertainty in sensitivity analysis.
Furthermore, traditional, ‘simple’ models may not facilitate
easy modelling of downstream costs and benefits, by quickly
becoming slow or unwieldy. This, potentially, fails to show the
full benefit of the AI intervention, inhibiting implementation.
Guo et al. (Guo et al., 2020) acknowledge this through a paradox
of “no evidence, no implementation—no implementation, no
evidence”. More sophisticated types of model, that are less
restricted by the structural limitations that affect simple
decision tree and Markov models may be better placed to
capture full pathway effects in addition to potential time-
dependent effectiveness of AI-based interventions.

Simulation-based modelling presents the opportunity to
build flexible, sophisticated models that can overcome several
limitations of Markov models and decision trees. They can easily
incorporate the history of past events, model factors that can vary
between patients and have a non-linear relationship with
outcomes, and do not use discrete time intervals (Davis et al.,
2014). They can also track the path of each person over time and
estimate individual-level effects or mean group-level effects for a
population (Davis et al., 2014). These possibilities may lead to
models capable of addressing the potential dynamic nature of AI
interventions learning over time and the impact on linked
decision points and subsequent care in a clinical pathway. As
data on AI-based interventions continues to be collected and
reported, the ability to develop these models should improve.
One thing to note, however, is that for these models to underpin
reimbursement decisions HTA agencies would need to be able to

critique and utilize them. This may require new skills, knowledge
and experience and present other challenges. Utilizing these sorts
of models also leads to the debate of whether HTA should be
more ‘living’. This refers to regular and scheduled updates of
recommendations instead of the more traditional ‘one-off’
decisions. Living HTA presents opportunities as well as
challenges (Thokala et al., 2023) and is not yet common practice.

The usefulness of a published HEE for decision making depends
on how well it is conducted and reported. Reporting guidelines play
an important role in improving transparency and completeness and
as new technologies emerge, can help drive best practice. A
prominent reporting standard within the field of HEEs is the
Consolidated Health Economic Evaluation Reporting Standards
(CHEERS) (Husereau et al., 2022). This outlines minimum
reporting standards and was recently updated in 2022. It includes
a 28-item checklist covering methodological approach, data
identification, model inputs, assumptions, uncertainty analysis,
and conflicts of interest. It does not include any reporting items
that are specific to any AI components of the intervention, but the
authors did recognize that CHEERS could be more specific for
certain situations and welcomed opportunities to create additional
reporting guidance. An extension to CHEERS covering AI specific
items could improve the reporting, transparency and ultimately
decision making for AI interventions. This could also help mitigate
the paradox of poor reporting inhibiting adoption of AI
interventions.

The system-wide need and motivation for improving best
practice around data collection and transparency for AI health
interventions is evident. Extensions for AI technologies have
already been developed for other checklists. CONSORT-AI (Liu
et al., 2020) contains AI-specific items for the reporting of RCTs, and
it was done in collaboration with the SPIRIT-AI extension for trial
protocols (Rivera et al., 2020). Including AI-specific items in the
reporting of HEEs may be a logical step to contribute to this
standard setting and help to ensure that all relevant information
is available to decision makers.

4.1 Limitations

This study has some limitations. We updated the Voets et al.
systematic literature review, but searched different databases. It is
possible there may have been relevant studies within our search
window that we missed by not searching the same databases;
however, we believe the databases we searched should give at least
equivalent, and probably superior, sensitivity to the original
review. Indeed, the sensitivity of our search strategy is

TABLE 5 (Continued) Summary of quality assessment of included studies.

Study Notable limitations identified Assessment

Xiao et al. (2021) The predictive accuracy of the intervention came from the literature and may not be generalizable to the setting. Any
varying of this was not reported. There was a lack of robust data on the efficacy of treatment that followed a positive
screening result which was accounted for in the sensitivity analysis

Potentially serious
limitations

Ziegelmayer et al. (2022) Input parameters came from multiple sources including assumptions and numerous published studies, leading to a
degree of bias. Varying the specificity of the AI or CT and cost of AI greatly increased the ICER changing the result
from intervention dominant to not cost-effective

Very serious limitations
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evidenced by the large number of studies excluded at primary
screening (2,993) relative to the total number of unique records
(3,033). The sensitivity of HEE search filters is well known
(Hubbard et al., 2022). While this means our review is highly
likely to have identified all relevant published studies, it does
mean further updates may be labor intensive with lots of records
to screen to identify a relatively small number of relevant studies.

Our review specifically focused on economic evaluations and
whilst out of scope, some studies, such as those only reporting
patient reported outcome measures, may have been of interest to
readers. Additionally, a potential limitation is that our search
only covered the period from 1 April 2021 to 17 June 2022. This
relatively short search period remains informative due to the
rapid advent of AI in healthcare, but it also means that it is likely
that relevant economic evaluations have been published since our
review.

Another limitation relates to the subjective nature of the
NICE quality appraisal checklist. Although the checklist allowed
for a further level of analysis regarding the quality of the
economic evaluation, it should be used as a broad
interpretation rather than a critique of any given study.
Despite negating any potential bias by having 2 reviewers, it is
possible that different reviewers may have implemented the
checklist differently and produced different results.
Additionally, other, similar checklists exist (Philips et al.,
2004; Drummond, 2015; Adarkwah et al., 2016), and although
they broadly serve a similar purpose of understanding the
methodological limitations of HEEs, they may have resulted in
different or more nuanced quality assessments.

5 Conclusion

This updated review, while covering just a 15-month window,
found more economic evaluations of AI health interventions since
the last comprehensive systematic literature review which covered
the preceding 5 years. Many of the included studies were model-
based evaluations and the most common AI intervention was
automated image analysis used for screening or diagnosis in the
areas of general medicine and oncology. Most evaluations reported
the cost per QALY gained.

Overall, the reporting of the studies exhibited limitations. Only a
small number of studies were judged to have just minor limitations,
according to application of the NICE quality assessment checklist.
The majority had potentially serious or very serious limitations
resulting from conflicts between research funding and authorship,
uncertainty in input data changing the outcome of the evaluation,
and lack of transparent reporting of key elements, such as the cost of
the technology and how it will be implemented into clinical practice.
Specific reporting standards for the economic evaluation of AI
interventions would help to improve transparency,
reproducibility and trust, and promote their usefulness for
decision making. This is fundamental for implementation and
coverage decisions which in turn will generate the necessary data
to develop flexible models better suited to capture the potentially
dynamic nature of the AI intervention.
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What could health technology
assessment learn from living
clinical practice guidelines?
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A “living” approach to clinical practice guidelines is when the identification,
appraisal and synthesis of evidence is maintained and repeated at an agreed
frequency, with a clear process for when and how new evidence is to be
incorporated. The value of a living approach to guidelines was emphasised
during the COVID-19 pandemic when health professionals and policymakers
needed to make decisions regarding patient care in the context of a nascent
but rapidly evolving evidence base. In this perspective, we draw on our recent
experience developing Australian and international living guidelines and reflect on
the feasibility of applying living guideline methods and processes to a lifecycle
approach to health technology assessment (HTA). We believe the opportunities
and challenges of adopting a living approach in HTA fall into five key themes:
identification, appraisal and synthesis of evidence; optimising the frequency of
updates; embedding ongoing multi-stakeholder engagement; linking the
emergence of new evidence to reimbursement; and system capacity to
support a living approach. We acknowledge that the suitability of specific living
approaches to HTA will be heavily influenced by the type of health technology, its
intended use in the health system, local reimbursement pathways, and other
policy settings. But we believe that the methods and processes applied
successfully to guideline development to manage evidentiary uncertainty could
be applied in the context of HTA and reimbursement decision-making to help
manage similar sources of uncertainty.

KEYWORDS

clinical practical guidelines, health technolgy assessment, living systematic review (LSR),
regulatory policies and structures, reimbursement pathways, lifecycle HTA

1 Introduction

Health Technology Assessment (HTA) is a multidisciplinary process that uses explicit
methods to determine the value of a health technology at different points in its lifecycle, for
the purpose of informing decision-making that promotes an equitable, efficient, and high-
quality health system (O’Rourke et al., 2020) It is a formal, systematic process for translating
evidence into health policy. A full HTA typically includes the following domains: a
description of the health problem and its current standard of care; a description of the
proposed health technology or service; the comparative safety and effectiveness of the
proposed health technology or service (with these elements typically framed using the PICO
criteria—Population, Intervention, Comparator, Outcomes); an economic evaluation; a
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budget impact analysis; consideration of relevant organisational or
implementation aspects; and consideration of relevant ethical, legal,
and social aspects (EUnetHTA, 2016).

HTA is often reactive, occurring at a single point in time following
initial regulatory approval or in response to regulatory changes (e.g., the
expansion of approved indications) (CADTH, 2011; PBS Scheme,
2022). Full HTAs can take several months to years to complete. A
lifecycle approach toHTA, whereby evidence is frequently incorporated
and the HTA is dynamically updated, was first proposed in 2016 in
order to more fully realise the benefits of innovations in healthcare
(Husereau et al., 2016; Grammati et al., 2023). Since then a number of
initiatives around the world have been exploring how a lifecycle
approach to HTA can be implemented, for example, reassessments
are performed by HAS and NICE, and conditional approvals exist in
multiple countries such as the United Kingdom, the Netherlands and
France (Ibargoyen-Roteta et al., 2022).

A lifecycle approach is even more relevant as agencies around
the world are faced with assessing new, rapidl evolving classes of
health technology, such as cell and gene therapies (Husereau et al.,
2016). In this article, we share our recent experience developing and
implementing methods and processes for Australian and
international living guidelines and reflect on the opportunities
and challenges of applying a living guideline approach to lifecycle
HTA (Cheyne et al., 2023a).

2 Static versus living guidelines

The core methods for literature searching, evidence appraisal and
synthesis are similar for living and partial updating of traditional (static)
guidelines, but living guidelines involve a frequent and explicit approach
to keeping the guidelines up-to-date. This approach includes frequent
surveillance for newly published clinical studies, the prospective, ongoing
incorporation of those studies into the evidence base, and the use of pre-
agreed triggers for updating the corresponding evidence-based
recommendations (Akl et al., 2017; Cheyne et al., 2023a; Cheyne
et al., 2023b; Fraile Navarro et al., 2023; McDonald et al., 2023;
Synnot et al., 2023) The criteria for selecting living topics are: clinical
or policy priority of the question, important uncertainty in the existing
evidence, and high likelihood of emergence of new evidence where the
clinical/policy context is likely to change (Akl et al., 2017; Cheyne et al.,
2023a). The frequency of updating a living topic is determined by the
nature of the health problem, the flow of emerging evidence, the capacity
of the evidence review team to search, screen and appraise new evidence,
and the capacity of the Guideline Development Panel to meet and
determine the implications of the new evidence (Cheyne et al., 2023b;
McDonald et al., 2023) For example, searches for living COVID-19
guidelines were conducted on a daily basis during the height of the
pandemic, whereas searches for living stroke guidelines are conducted
every 3 months (Tendal et al., 2021; Hill et al., 2022).

The most tangible benefit of a living approach to guidelines is that
evidence-based recommendations for clinical care retain their
trustworthiness by remaining up-to-date. A less tangible (but no less
important) benefit of a living approach is the way it changes the context
for decision making: the knowledge that a decision can be revisited soon
(typically in weeks ormonths)means that GuidelineDevelopment Panel
members aremore likely tomake a decision on a recommendation in the
face of uncertain evidence, rather than make no decision.

3 Similarities and differences between
HTA and guidelines

Though intended for different purposes and audiences, HTA
and clinical practice guidelines share core components, particularly
those related to methods for the surveillance, appraisal, synthesis,
and contextualisation of clinical and patient evidence (Guyatt et al.,
2011; Higgins et al., 2022). Best practice in HTA and guideline
development places an emphasis on early and ongoing multi-
stakeholder involvement (Ibargoyen-Roteta et al., 2022). HTA
and guideline development both rely on deliberative processes to
translate evidence into recommendations for policy and practice.

However, there are important differences between HTA and
guidelines. These differences arise from the fact that HTA has a
broader scope than guidelines, is undertaken by industry as well as
by government and non-profit organisations, is less transparent
because of the inclusion of unpublished clinical data and
commercially sensitive pricing information, and needs to comply
with local regulatory and reimbursement pathways. This means that
it is more straight-forward to change a guideline recommendation
than it is to change an HTA decision. It also means that it cannot be
assumed that the methods and processes applied in living guidelines
are directly transferable to all HTA in all settings.

Despite the differences, HTA and guideline development are
interdependent activities that draw from the same knowledge base:
HTA often relies on guidelines to define current treatment pathways
and comparators; and guidelines need to be cognisant of the
regulatory and reimbursement status of treatments they
recommend. The need for harmonisation of HTA and guidelines
(e.g., as undertaken by NICE in the United Kingdom) is an
important area of health services research and has been described
by others, but is not the focus of the current article (Schünemann
et al., 2022). Early multi-stakeholder dialogue frameworks allow for
health technology developers to incorporate advice from HTA
agencies in their health technology planning and to directly
address uncertainty during technology development (Ibargoyen-
Roteta et al., 2022; Hogervorst et al., 2023).

4 Opportunities and challenges in
adopting a living guideline approach
for HTA

We see a number of opportunities and challenges for adopting a
living guideline approach in HTA (Table 1). The living guideline
approaches most obviously suited to HTA relate to the methods of
evidence assessment. The tools to support standard and living
systematic reviews are advancing rapidly, and the potential for
these to be incorporated within HTA methods have been described
by others (Grammati et al., 2023; Thokala et al., 2023). To date, most
evidence review within living guidelines has been limited to
randomised controlled trials (RCTs) of interventions. By contrast,
HTAs often include diagnostic, prognostic, economic and
epidemiological questions, in addition to intervention questions,
and the inclusion of non-randomised controlled data such as
longer term safety evidence from observational studies or registry
data. HTA is now often reliant on single-arm trials and “Real World
Evidence” and a number of organisations are exploring the use of such
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data in HTA (HAS Sante, 2021; NICE, 2022; Bakker et al., 2023). It
should be feasible, though, for a living approach to be adopted across
all types of evidence searching that occur within anHTA. For example,
living guidelines for COVID-19 diagnostics for antigen, serology and
molecular testing (Hanson et al., 2021) and living systematic reviews
are frequently conducted on these types of questions (Wynants et al.,
2020).

Similar and additional factors are likely to determine the frequency
with which HTA literature searches can be updated, including a
combination of the capacity of HTA teams to undertake more
frequent searching, and the frequency with which the respective
decision-making entities can meet to adjudicate on the new
evidence. One issue to be mindful of is that the frequency of
updating decisions does not outpace the ability of the health system
to respond. The frequency of guideline recommendation revisions is
effectively limited by the ability of healthcare providers to modify local
protocols and standards for care. However, the frequency of
reimbursement revisions will be limited by the frequency at which
decision-makers can consider updates, and the frequency with which
pricing and supply contracts between industry and payers can be varied.

As is for guidelines, it is unlikely that all HTA questions will be
suitable for a living approach. Given the organisational changes that
would be required to support a living approach to HTA, agencies may
wish to focus on technologies that promise a high benefit-to-risk ratio,
where the usual levels of RCT evidence are not available and where the
cost implications are significant (e.g., cell and gene therapies), or where

the pace of technological innovation is very high (e.g., digital health
technologies) or the policy context is changing rapidly (e.g., the use of
AI in diagnostics). In these situations, it should be possible to adopt a
concept known as early multi-stakeholder dialogue, which is a
prospective or intentional approach to HTA where manufacturers,
healthcare providers, clinicians and payers pre-agree i) the measures of
most relevance for the technology and the population(s) of interest,
and ii) how the pricing of the technology will vary based on those
measures (Schünemann et al., 2022). Any non-RCT data informing the
decision-making will need to be considered trustworthy by HTA
agencies and the payer (NICE, 2022). An illustration of this
approach is shown in Figure 1.

Conditional marketing authorization pathways or lifecycle
approaches to HTA have been introduced for cancer drugs and for
digital health technologies (Sabry-Grant et al., 2019). These pathways
incorporate some elements of a living approach by allowing the
flexibility to provide temporary access to treatments in limited
circumstances as more evidence accumulates (Hoekman et al., 2015;
Regier et al., 2022). The use of a living approach here may provide the
necessary flexibility in a more robust way, with an intention from the
outset to continue updating the HTA with new evidence until a higher
degree of certainty is reached, or to revise or rescind an access decision if
reliable evidence of a net positive effect is not eventually obtained.

A living approach to HTA could decrease research waste and
duplication of effort. The sharing of evidence summaries already
happens in clinical practice guidelines (NICE, 2021), and there are

TABLE 1 Opportunities and challenges for adopting a living guideline approach for HTA.

Opportunities Challenges

1. Evidence identification, appraisal and synthesis

• Preparing clinical evidence syntheses in standardised and shareable formats to
minimise duplication of effort across agencies. (e.g., the use of GRADE and MAGIC
for living guidelines has enabled the sharing of Evidence Profile tables between
countries)

• How and when to include unpublished clinical evidence
• How to include evidence for diagnostic, prognostic, economic, and epidemiological

questions
• How to store data securely whilst enabling sharing
• Copyright restrictions around data extracted from published evidence

2. Optimising the frequency of updates

• More frequent updates of the evidence could resolve uncertainty regarding the
technology, care pathways, patient group, uptake, market share, or economic
modelling, especially where conventional evidentiary standards have not been met.

• Reimbursement and procurement systems may not be designed for frequent
changes in pricing for a health technology

3. Embedding multi-stakeholder engagement

• Early identification and ongoing dialogue with all relevant stakeholders (as occurs
with a living Guideline Development Panel) would support planning and scoping
for HTA

• How to facilitate effective engagement and communication between stakeholders
with different perspectives or priorities (payers/government, industry, regulatory
bodies, healthcare providers, healthcare professionals, patients)

• How to share commercially sensitive information amongst this wider group of
stakeholders

4. Linking the emergence of new evidence to reimbursement

• Re-evaluation and value-based renegotiation in response to new evidence (especially
where conditional funding decisions have been made)

• Decision-makers may be more inclined to provide conditional reimbursement for
technologies if they are confident that decisions can be reversed if no definitive
evidence of effectiveness emerges

• Pricing negotiation and/or the implementation of new pricing agreements can be
protracted and may negate any reductions in time to market access

• The framework for renegotiation of pricing needs to allow for price increases as well
as price decreases or disinvestment (either complete de-adoption of technologies
that are not clinically effective or restrictions to ensure cost-effective use)

5. System capacity to support a living approach

• More certainty in the timing and scope of HTA which enables better workforce
planning for those undertaking the HTA.

• Fixed schedules for reimbursement decision-making
• Regulatory or legislative changes may be required to compel technology developers
to provide the required data

•Having sufficient methodological capacity on hand to ensure the timely inclusion of
new evidence as it emerges
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steps towards this happening between HTA agencies in Canada,
Europe, and Australia, (PBS, 2022; Hogervorst et al., 2023), however
in reality the confidentiality of pricing arrangements, and the potential
for price lowering or disinvestment at future reassessments, will limit
the extent of such sharing (Thokala et al., 2023).

5 Discussion

In this perspective we have discussed the aspects of HTA that are
most amenable to a living approach and where living guideline
evidence translation methods or processes can be transferred to
HTA. We also highlight what, in our view, is needed to support a
transition to living HTA (Box 1).

Box 1 What is needed to optimise the impact and reliability of a
living approach to HTA.

1. Development and/or testing of methods for the continuous
updating of non-RCT evidence.

2. Pilot studies for different technologies for different clinical
purposes, to understand what works, what does not work, and
why, and the importance of context (i.e., the local health system,
approaches to HTA, and health system financing).

3. Agreement on the HTA scenarios where a living approach is likely
to optimise market access, defined as a combination of shorter
time tomarket, with acceptable mitigation of safety risk to patients,
and acceptable cost and cost-effectiveness.

4. Agreement on the policy levers that will be required to support
partial or full disinvestment if technologies do not live up to their
promise.

5. Practical guidance on the organisational and resourcing
requirements for living HTA, and how to transition from reactive
HTA at a single point in time to responsive HTA throughout the life-
cycle of a technology.

The iterative nature of a living process allows for more nuance in
the face of uncertainty, and a willingness to support innovation at
early stages, knowing that decisions will be revisited and revised as
new evidence emerges. It could give decision-makers comfort in
making early conditional decisions for a technology/service, instead
of what might otherwise be a “no” decision in the face of uncertainty.
The “secret sauce” of a living guideline approach is the
organisational infrastructure and collaborative culture that needs
to be put in place to support it. It requires a commitment on the part
of the guideline developer to provide ongoing funding to resource
continuous evidence review activities, and a standing Guideline
Development Panel to deliberate on new evidence as and when it
emerges. Although a lot of HTA activity is undertaken as ‘one off’
evidence reviews, it should be possible for industry and HTA
agencies to re-orient some (if not all) of their resources to a
framework that supports the ongoing incorporation of new data
(e.g., from health administrative systems or clinical quality
registries). There is also additional efficiency to be gained by
aligning the methods and timing for living guidelines and
lifecycle HTA.

HTA agencies are under increased pressure to provide patients with
early access to promising health technologies, while accounting for the
often-incomplete picture of clinical and economic impact of a new
treatment during its initial technology assessment. Often, the evidence
available at the time of the first HTA is limited, and decision uncertainty
may be reduced with longer term data from trials, observational and
registry data. At the level of evidence review methods, further
innovation and testing of living methods is required for study
designs other than RCTs and for non-intervention questions,
particularly given the drive for HTA to rely more on innovative
clinical trial designs (e.g., platform and adaptive trials). Living HTA
could expand the approaches employed by living guidelines in two key

FIGURE 1
(A)Decision-making with a traditional approach to HTA for a technology that is eventually demonstrated to be safe, effective, and cost-effective. (B)
Decision-making with a living approach to HTA for a technology that is eventually demonstrated to be safe, effective, and cost-effective. (C) Decision-
making with a traditional approach to HTA for a technology that is eventually not demonstrated to be safe, effective, and cost-effective. (D) Decision-
making with a living approach to HTA for a technology that is eventually demonstrated to not be safe, effective, and cost-effective.
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ways: By 1) including pricing/cost considerations in the prioritisation
criteria for living topics, and 2) exploring how living searches for
economic and epidemiological data could feed in to economic
evaluations and budget impact analyses. The policy challenges of
adopting a living approach in HTA are more significant than for a
living approach to guidelines: the benefits of earlier patient access to
treatments need to be balanced against the potential for making
“wrong” decisions—reimbursing technologies that do not end up
being as safe, effective and/or cost-effective as anticipated. This
highlights the importance of developing trust between stakeholders
before living approaches are implemented, and finding a balance
between policy levers that “push” (e.g., requiring developers to
provide data on their technology) and “pull” (e.g., earlier market
access) towards a living approach.

The introduction of the living approach may result in the ability
to create a more harmonious and streamlined process between both
HTA and guidelines. In this perspective we have illustrated the HTA
domains where living guideline evidence translation methods or
processes are directly transferable to HTA, additional aspects of
HTA where a living approach is likely to be suitable (but where
methods and processes still need to be developed); and aspects of
HTA that are unlikely to be suitable for a living approach. However,
our experience is limited by primarily conducting living guidelines
and HTAs in an Australian context. Pilot case studies are needed
that 1) describe the experience of introducing different living
methods or processes within different HTA scenarios, 2)
determine benefits and challenges of these approaches, 3) further
developmethods for those areas of livingmethods that are specific to
HTA, such as economic analysis, and 4) place these experiences
within the local policy context so that broader themes can be
identified regarding the suitability of living methods and
processes for HTA in different countries.
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Background: As artificial intelligence (AI) continues to advance with
breakthroughs in natural language processing (NLP) and machine learning (ML),
such as the development of models like OpenAI’s ChatGPT, new opportunities are
emerging for efficient curation of electronic health records (EHR) into real-world
data (RWD) for evidence generation in oncology. Our objective is to describe the
research and development of industry methods to promote transparency and
explainability.

Methods: We applied NLP with ML techniques to train, validate, and test the
extraction of information from unstructured documents (e.g., clinician notes,
radiology reports, lab reports, etc.) to output a set of structured variables
required for RWD analysis. This research used a nationwide electronic health
record (EHR)-derived database. Models were selected based on performance.
Variables curated with an approach using ML extraction are those where the value
is determined solely based on an ML model (i.e. not confirmed by abstraction),
which identifies key information from visit notes and documents. Thesemodels do
not predict future events or infer missing information.

Results: We developed an approach using NLP and ML for extraction of clinically
meaningful information from unstructured EHR documents and found high
performance of output variables compared with variables curated by manually
abstracted data. These extraction methods resulted in research-ready variables
including initial cancer diagnosis with date, advanced/metastatic diagnosis with
date, disease stage, histology, smoking status, surgery status with date, biomarker
test results with dates, and oral treatments with dates.
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Conclusion:NLP and ML enable the extraction of retrospective clinical data in EHR
with speed and scalability to help researchers learn from the experience of every
person with cancer.

KEYWORDS

electronic health records, cancer, oncology, real-world data, machine learning, natural
language processing, artificial intelligence

Introduction

A barrier to generating robust real-world evidence (RWE) is
access to research-ready datasets that demonstrate sufficient
recency, clinical depth, provenance, completeness,
representativeness and usability. Health outcomes must be
appropriately defined and consistently measured. For studies
using routinely collected electronic health record (EHR)-derived
data, a considerable amount of data preprocessing and labor-
intensive curation is required to create a dataset with clinically
meaningful variables and outcomes needed for analysis (Figure 1).

The challenge is that so much valuable information is trapped
within unstructured documents like clinician notes or scanned faxes
of lab reports, where extracting the relevant data is far from trivial.
The traditional approach to having clinical experts manually review
patient charts to abstract data is time consuming and resource
intensive (Birnbaum et al., 2020). This approach limits the
number of patients available for research purposes. Learnings can
quickly become outdated—for example as new biomarkers and
treatments emerge, the standards of care change, or new
indicators for social determinants of health are prioritized. In
other instances, answers to important research questions remain
infeasible due to limited sample sizes.

Artificial intelligence (AI) advances in the areas of natural
language processing (NLP) and machine learning (ML) have
created new opportunities to improve the scale, flexibility, and
efficiency of curating high-quality real-world data (RWD) in

oncology (Bhardwaj et al., 2017; Bera et al., 2019; Datta et al.,
2019; Koleck et al., 2019; Shah et al., 2019; Wang et al., 2019;
Bertsimas andWiberg, 2020; Karimi et al., 2021; Subbiah, 2023). The
definitions of foundational AI/ML terminology are provided in
Table 1. When using ML and NLP for RWE, current guidance
emphasizes transparency (NICE, 2022; Norgeot et al., 2020; Center
for Drug Evaluation and Research Center for Biologics Evaluation
and Research Oncology Center of Excellence; Padula et al., 2022;
Blueprint for trustworthy AI implementation guidance and
assurance for healthcare, 2022). The United Kingdom National
Institute for Health and Care Excellence instructs that “where
human abstraction or artificial intelligence tools are used to
construct variables from unstructured data, the methods and
processes used should be clearly described.” (NICE, 2022).

In response to guidance, the objective of this paper is to describe
the general approach for applied NLP andMLmethods that are used
by Flatiron Health to extract data from unstructured documents
stored in oncology care EHR. A key distinction in our terminology is
the use of “abstraction” meaning performed by humans and
“extraction” meaning performed by models. Out of scope for this
paper are other AI, ML, and NLP innovations and contributions
from Flatiron Health, such as: model-assisted cohort selection
(Birnbaum et al., 2019; Birnbaum et al., 2020); continuous bias
monitoring software (Birnbaum et al., 2023); automated mapping of
laboratory data (Kelly et al., 2022); prediction of future health events
(Chen et al., 2019); and point-of-care products to improve patient
care and clinical trials (Lakhanpal et al., 2021; Coombs et al., 2022).

FIGURE 1
Overview of data variables defined by structured and unstructured information in EHR.
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Materials and methods

Overview

We developed a set of research analysis variables using
information from the documents available in patient charts.
Variables were selected for exploration of ML extraction if
commonly required for retrospective observational studies in
oncology, but not consistently available in claims data or
structured EHR data, and high-quality training data were
available that had been manually curated by experts to produce a
large amount of abstracted data available for training models
(Haimson et al.).

The variables curated through our ML extraction approach are
those where the values are solely derived from the identification of
clinical details in the EHR documents by an ML model in
combination of NLP techniques and rules-based logic. It is
important to note that these values are not predictions or
inferences, but rather a direct extraction of information that is
clearly documented in the EHR.

EHR-derived data source

This study used the nationwide Flatiron Health EHR-derived
de-identified database. The Flatiron Health database is a

longitudinal database, comprising de-identified patient-level
structured and unstructured data (Birnbaum et al., 2020; Ma
et al., 2023). At the time of this research, the database included
de-identified data from approximately 280 US cancer practices
(~800 distinct sites of care).

Structured and unstructured data modalities are available in
the database. EHR structured data elements include, but are not
limited to, documented demographics (e.g., year of birth, sex,
race/ethnicity, etc.), vitals (e.g., height, weight, temperature,
etc.), visits, labs, practice information, diagnosis codes,
medication orders, medication administrations, ECOG
performance status, health insurance coverage, and
telemedicine (Figure 1). EHR unstructured data and
documents include, but are not limited to, paragraphs of
clinic visit notes, PDF scans of lab results, radiology images
with reports, pathology reports, and communications between
the patient and care team (Figure 2). For the purpose of this
paper, all the figures contain fictional representations of
documents, sentences, dates and patient IDs.

Patient population

The large general cross-tumor cohort includes all patients with
at least one International Classification of Diseases (ICD)-9 or ICD-
10 cancer code and at least one unique-date clinic encounter

TABLE 1 Key terms in machine learning.

Foundational machine learning (ML) definitions

• Class: One of the possible values that a binary or categorical variable can take

• Labels: The known classes associated with data used to train or evaluate an ML model

• ML-Extracted: Algorithmic extraction of data from documented evidence in the patient chart (either structured or unstructured) at the time of running the model. Techniques
include ML and natural language processing (NLP), in contrast to other data processing methods such as abstraction or derivation

• Model: An ML algorithm with a specific architecture and learned parameters that takes inputs (e.g., text) and produces outputs (e.g., extracted diagnosis)

• NLP: A field of computational systems (including but not limited to ML algorithms) that enable computers to analyze, understand, derive meaning from, and make use of
human language

• Score: A continuous output from a model that can be interpreted as the model-assigned probability that a data point belongs to a specific class

• Threshold: A cutoff value that defines classes when applied to continuous scores. Binary variables (e.g., whether a patient has had surgery) have a natural default threshold of
0.5, but different thresholds might be leveraged depending on the relative tolerance for false positives vs false negatives required

Performance metric definitions

• Sensitivity (Recall): The proportion of patients abstracted as having a value of a variable (e.g., group stage = IV) that are also ML-extracted as having the same value

• Positive predictive value (PPV) (Precision): The proportion of patients ML-extracted as having a value of a variable (e.g., group stage = IV) that are also human abstracted as
having the same value

• Specificity: The proportion of patients abstracted as not having a value of a variable (e.g., group stage does not = IV) that are also ML-extracted as not having the same value

• Negative predictive value (NPV): The proportion of patients ML-extracted as not having a value of a variable (e.g., group stage does not = IV) that are also abstracted as not
having the same value

• Accuracy: The proportion of patients where the ML-extracted and abstracted values are identical. For variables with more than 2 unique values (e.g., group stage), accuracy
within each class is calculated by binarizing the predictions (e.g., for Accuracy of group_stage = IV, all abstracted and ML-extracted values would be defined as either “IV” or
“not IV”

• F1 Score: Computed as the harmonic mean of sensitivity and PPV. For a binary classifier, the threshold that maximizes F1 can be considered the optimal balance of sensitivity
and PPV.
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documented in the EHR (reflected by records of vital signs,
treatment administration, and/or laboratory tests) on or after
1 January 2011. The distribution of patients across community

and academic practices largely reflects patterns of care in the US,
where most patients are treated in community clinics, but can vary
between cancer types.

FIGURE 2
Examples of unstructured documents from EHR that are used as inputs for ML-extraction of information (all dates and patient IDs are fictitious).

FIGURE 3
Technology enabled expert abstraction. Abbreviations: P&Ps, Policies and Procedures. All dates and patient IDs are fictitious.
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Clinical expert abstraction of variables for
model development

Critical information in patient charts has been manually
abstracted by trained clinical experts (i.e., clinical oncology
nurses or tumor registrars), following a set of standardized
policies and procedures. To abstract data from patient charts, we
use a foundational technology (Shklarski et al., 2020) that enables
clinical experts to more easily review hundreds of pages of
documents to determine patient characteristics, treatments, and
outcomes documented in the EHR (Figure 3).

Years of manual abstraction by a workforce of thousands of
abstractors at Flatiron Health have created a large and high-quality
corpus of labeled oncology EHR data. Clinically-relevant details
specific to each cancer type are abstracted from every form of clinical
documentation available in the EHR, including clinic visit notes,
radiology reports, pathology reports, etc. Abstractors are trained to
locate and document relevant information by following policies and
procedures tested and optimized for reliability and reproducibility
through iterative processes, and oversight is provided by medical
oncologists.

The abstraction process undergoes continuous auditing to
monitor abstractor performance, while proprietary technology
links each curated data point to its source documentation within
the EHR, enabling subsequent review. At the individual patient level,
this approach provides a recent and robust longitudinal view into
the clinical course, capturing new clinical information as it is
documented within the EHR.

Flatiron Health has abstracted sets of clinically meaningful
variables from more than 300,000 people with cancer to develop
disease-specific de-identified research-ready databases (Ma et al.,
2023). Limited by the capacity of human abstractors, there had
remained millions of patients with cancer in the Flatiron Health
database for whom no unstructured data had yet been curated to
create variables with the clinical depth needed to generate
meaningful insights. If a hypothetical variable required 30 min of
chart review by a clinical expert to abstract the information of
interest for 1 patient, then it would take a team of 100 full-time
abstractors more than 7 years to finish defining 1 variable for a
population of 3 million patients.

Overview of machine learning extraction
approach

The objective of this application of NLP andMLmethods was to
replicate the expert abstraction process described in the previous
section. When developing MLmodels for extracting information, all
of the clinical abstractor expertise that was incorporated into the
manual abstraction of variables is available to learn from through
training. Once iterated upon and placed in production, ML models
can automate information extraction from unstructured clinical
data sources in a way that mimics expert clinical abstractors. The
models expand on previously established technology infrastructure
that includes deep learning architectures (Rich et al., 2023), text
snippet-based modeling approaches (Birnbaum and Ambwani), and
extraction of patient events and dates (Gippetti et al.; Ballre et al.,
2022; Rich et al., 2022).

Alongside the manually-abstracted labels, we use NLP to pull
relevant textual information from charts to use as inputs to train
built-for-purpose ML models and model architectures for a given
extraction task. Through this process we can make our end variables
appropriate for disease-specific or pan-tumor (i.e., histology-
independent) applications. For example, by deciding whether or
not to use model training data sourced from curated disease-specific
cohorts or any-cancer cohorts, we can make our model’s output
variables built-for-purpose to be used in an analysis that generates
meaningful RWE for a specific research question.

A range of model architectures were evaluated and considered
for the purpose of information extraction for variables of interest.
The model output of variable classes ranged, including:

• binary (e.g., metastatic diagnosis Yes/No)
• categorical unordered (e.g., never smoker, history of smoking,
current smoker)

• categorical ordered (e.g., cancer stage I-IV)
• date (e.g., 02/05/2019 start of oral treatment X)

Date and classification can come from the same model, separate
models, or connected models.

Natural language processing to generate
model inputs

For each variable of interest, we begin with clinical experts
constructing a list of clinical terms and phrases related to the
variable. Since models are trying to extract explicit information
from charts, rather than infer it, only terms that are directly relevant
to a specific variable are included (e.g., when extracting a patient’s
histology, terms could include “histology,” “squamous,” and/or
“adenocarcinoma,” but do not include treatment or testing terms
from which the histology might be indirectly inferred).

Next, we use NLP techniques to identify sentences in relevant
unstructured EHR documents (e.g., oncology visit notes, lab reports,
etc.) that contain a match to one of the clinical terms or phrases. The
approach uses optical character recognition (OCR) systems to extract text
from PDFs, faxes, or scans containing images; the text is then searched
for relevant clinical terms. The contextual information surrounding the
clinical term is critical because the words at the beginning of a sentence
may change the interpretation of a key word at the end of a sentence.ML
models can understand if the clinical concept appears and under what
context—such as, if negativity, speculation, or affirmation exists in the
surrounding clinical terms (i.e., snippets). Where applicable, any
associated dates within these sentences are also identified. These
sentences are then transformed into a mathematical representation
that the model can interpret. The output of this document processing
is a broad set of features aimed at fully capturing document structure,
chronology, and clinical terms or phrases.

Machine learning model development

Features and labels
The features defined by NLP become the inputs provided to the

model to score the likelihood that a given patient document is
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associated with each class of a particular categorical variable (e.g.,
histology categories of non–squamous cell carcinoma, squamous cell
carcinoma, non–small cell lung cancer [NSCLC] histology not
otherwise specified). The final model output is the variable value
for each patient. The labeled dataset is commonly split into three
subsets: a training set, a validation set, and a test set. The training
and validation sets are used to build the model, which often involves
an iterative development process, while the test set is used to
evaluate the performance of the final ML model.

Model development
The training set comprises labeled data points that are used to

optimize the model’s parameter values. In an iterative process,
training examples are provided to the model, its outputs are
compared to the labels, and the parameter values are adjusted in
response to errors. By using manually-abstracted values as labels, the
objective of this process is for the model to learn what answer a
human abstractor would give when reading a specific clinical text.

The validation set is used to assess how well the model has
learned these associations. Because the model does not see any data
from patients in the validation examples during training, they can be
used to estimate how it will perform on new, unlabeled examples
once it is put into production. Validation performance is commonly
assessed using metrics such as precision, recall, and F1 score (See
Table 1 Key Terms in Machine Learning). These aggregate metrics,
combined with review of individual errors, inform decisions about
search terms, text preprocessing steps, and model architectures.
Experimentation continues until a final “best” model is identified.

When a ML model is trained to perform a classification task, it
outputs scores for each possible class for each data point. These
scores are between 0 and 1 and show the probability that a patient
belongs to each class, based on information in their electronic health
record. However, the scores may vary if the wording in the records is
unusual or if there is conflicting information. For example, if a
patient’s cancer stage is being restaged, there may be multiple
mentions of different stages in the record, and the model may
assign moderate scores to each stage if the restaging event is unclear.

To produce a discrete class value, the class with the highest score
is often chosen, but other approaches may optimize performance. In
particular, a probability threshold may be chosen such that a patient
will be classified into one class if and only if their score exceeds the
threshold. The optimal threshold depends on factors such as class
balance and is typically chosen empirically (Lipton et al., 2014).
When no class receives a sufficiently high score, another option is to
defer to abstraction to resolve uncertainty (Waskom et al., 2023).

We explored and experimented with a range of ML models and
architectures for the purpose of extracting specific variable
information from the EHR. Deep learning architectures included
long short-termmemory (LSTM), Gated recurrent units (GRU), and
bidirectional encoder representations from transformers (BERT)
(Hochreiter and Schmidhuber, 1997; Shickel et al., 2018; Devlin
et al., 2018). These models can learn thousands or millions of
parameters, which enable them to capture subtleties in the text.
They read sentences as a whole and use the words around a clinical
term to incorporate surrounding context when determining the
extracted class. When they receive very large texts as inputs, they can
figure out where the relevant information is and focus on this section
and its context.

For example, in LSTMs, words are passed into the model
sequentially; during each step through a sentence, the model has
access to memory (i.e., an internal state) that is impacted by the
previous word, in effect allowing the model to “remember” the
previous word (Figure 4). The LSTM block combines the new word
with the information that came before to derive a more contextually
rich representation of the word. For instance, when the LSTM reads
the word “Advanced,” it remembers (via the model’s internal state)
that it was preceded by the word “not” and is more likely to classify
the patient as “not advanced.”

Model evaluation and performance
assessment

Once iteration on the ML model is complete, final model
performance is measured on a test set that uses manually-
abstracted labels as the source of truth. Test sets are designed to
be large enough to power both top-level metrics and sub-group
stratifications on a “held out” set, that is, on data not used to train the
ML model or validate performance during prototyping. This allows
the test set to assess the model’s ability to correctly classify data
points that it has never seen before, which is typically referred to as
the “generalization” of the model.

Measuring performance is a complex challenge because even a
model with good overall performance might systematically
underperform on a particular subcohort of interest, and because
while conventional metrics apply to individual models, dozens of
ML extracted variables may be combined to answer a specific
research question. We use a research-centric evaluation
framework (Estévez et al., 2022) to assess the quality of variables
curated with ML. Evaluations include one or more of the following
strategies: 1) overall performance assessment, 2) stratified
performance assessment, and 3) quantitative error analysis, and
4) replication analysis. As variables curated with NLP and ML are
expected to be incorporated into the evidence generated that will
guide downstream decision-making, variable evaluation can also
include replication of analyses originally performed using abstracted
data. Replication analyses allow us to determine whether ML-
extracted data—either individual variables or entire datasets—are
fit-for-purpose in specific use cases by assessing whether they would
lead to similar conclusions.

Specific variable-level performance metrics are only
interpretable for cohorts with characteristics that are similar to
the test set, depending on inclusion criteria such as the type and
stage of cancer. As a result, we do not report them here.

Python was the primary coding language used in the
development of ML models described here. Institutional Review
Board approval of the study protocol was obtained before study
conduct, and included a waiver of informed consent.

Results

We successfully extracted key information from unstructured
documents in the EHR using the developed proprietary ML models
trained on large quantities of data labeled by expert abstractors. For
this paper, we are focusing the results on examples within NSCLC as
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they were the first applications we developed. A set of 10 MLmodels
output 20 distinct RWD variables for analysis, including initial
cancer diagnosis with date, advanced/metastatic diagnosis with
date, disease stage, histology, smoking status, surgery details,
biomarker test results, and oral treatments with dates. Language
snippets were the inputs for these models to produce a data point for
each patient for each variable as outputs, illustrated in Figure 5.

Datatables containing variables curated by an approach using
ML had the same appearance and functionality as variables curated
with an approach using technology-enabled expert human
abstraction (Figure 6).

Models had high performance when trained for disease-specific
applications as well as histology-independent (i.e., tumor agnostic)
patient cohorts. For example, the NSCLC specific Histology Type
model had a sensitivity of 96% and a PPV of 94% for extracting
non–squamous histology for patients with NSCLC. Detailed
performance metrics are out of scope for this paper. Beyond
satisfactory ML metrics, we found that in some cases ML-
extraction can achieve similar error rates as manual abstraction
by clinical experts (Waskom et al., 2023), and replication studies
suggest that research analysis relying on multiple variables can reach
similar results and conclusions when using variables curated by ML-
extraction compared with human experts (Benedum et al., 2022;
Sondhi et al., 2022; Benedum et al., 2023).

Approaches and learnings related to specific variables are
described below.

Application examples

We have developed ML models for a number of different
variables and use cases. A few of the more prominent models
and their associated use cases are described below.

Cancer diagnosis and dates
We successfully developed deep learning models focused on the

task of extracting initial, advanced, and metastatic cancer diagnosis

and the corresponding diagnosis dates. Historically, ICD codes have
been used as a proxy for diagnosis, as they are well captured in
structured EHR data due to their use in billing. However, we have
seen that the precision of ICD codes varies by disease, is not strongly
correlated with disease prevalence in the larger population, and can
be lower than 50%. With that in mind, extracting accurate diagnosis
information is imperative to understanding patient populations, as
errors at the diagnosis level propagate to all other variables. These
models build on prior foundational research on extracting
information from longitudinal clinic notes (Zhao et al., 2021;
Agrawal et al., 2018). The initial, advanced, and metastatic
variables are generated using multiple, distinct ML models. A
conceptual diagram of this approach used by the metastatic
variable is presented in Figure 7. We have found success
chaining the models together—providing the output of one
model as the input to the next—to prevent conflicting
predictions and improve overall accuracy. An early investigation
into model performance has been presented previously (Rich et al.,
2021).

Additional complexity exists when trying to identify patients
with rare cancers, primarily due to the low number of labels. We
have demonstrated that techniques such as generic token
replacement and leave-one-out validation can be effective in
combating these complexities—allowing our models to
successfully generalize to rare diseases, with few or no labels
provided during training from the target disease(s).

Disease stage and histology
We successfully developed a deep learning model to extract

cancer stage information and a second ML model to extract the
histology of the tumor. One example of how we used this approach
for a disease-specific application was training on patients with
NSCLC. This model was designed to extract main stage (I-IV)
and substage (letters A-C) granularity. Histology was extracted as
a non-ordered categorical variable with the possible variable values
of non–squamous cell carcinoma, squamous cell carcinoma, or
NSCLC histology not otherwise specified.

FIGURE 4
Illustration of deep learning bidirectional LSTM blocks applied sequentially to produce representations (aka, embeddings or encodings) that
encapsulate the information added to the sentence by each new word. Abbreviations: LSTM, long short-term memory.
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As cancer stage is documented similarly across solid tumor
diseases, we were able to scale our approach to extract disease stage
in a tumor-agnostic cohort with a similar deep learning architecture
but training data composed of patients with multiple cancer types.
While hematologic cancers have some important differences from
solid organ cancers when it comes to assigning stage (risk
stratification scores, no concept of metastatic disease, etc.), we
found success using a deep learning model to extract this
information for a number of hematologic cancers. Tumor
histology is not as straightforward to scale across cancer types, as
different cancers originate from different possible cell types (and
therefore have different histologies). This means that to date, we use
distinct histology models for each type of cancer. Performance
evaluations for disease stage and histology are conducted at each
category level and by cancer type as appropriate for use cases.

Smoking status
We successfully developed a deep learning model to extract

information in the patient chart that indicates whether or not the
patient has any lifetime history of smoking. The categorical variable

output has the possible values as history of smoking, no history of
smoking, or unknown. The most relevant sentences for this model
were most often found in social history paragraphs of text that is a
standard section in clinical encounter notes. Critical document
categories that enabled high accuracy of this model included
access to oncology clinic visit notes, radiology reports, surgery
reports, lab reports, and pulmonary test result reports. The
smoking status model was trained on a broad dataset of patients
that included many cancer types for whom we have abstracted
smoking status.

Surgery and surgery date
We successfully developed a deep learning model to extract

information about whether the patient had a primary surgical
procedure where the intent was to resect the primary tumor. As
these types of surgeries often happen in outpatient facilities or
hospitals, this valuable documentation lives in unstructured text
formats in the oncology EHR. We have abstracted surgery data in
certain disease cohorts but, because of the similarity in
documentation approaches across cancer types, we were able to

FIGURE 5
Sentences (fictional examples here) from EHR are inputs to deep learning models that produce a data variable value for each patient as an output.
Language snippets are only extracted around key terms fromwhich a variable might be extracted, and not around terms fromwhich it could be indirectly
inferred. Abbreviations: EHR, electronic health record; PD-L1, programmed death ligand 1. All dates and patient IDs are fictitious.
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train a model that is tumor agnostic. This allowed us to scale surgery
status and date in larger patient populations and in new disease
types.

Biomarker testing results and result date
We successfully developed and deployed models to generate

variables for biomarker testing, including extraction of the dates that
the patient had results returned (Figure 6). One part of the model is
able to identify whether or not a given document for a patient
contains a biomarker test result. A separate part of the model is able
to extract from the document the date a result was returned and the
biomarker result. Early efforts with a regularized logistic regression

model were presented previously (Ambwani et al., 2019) and more
sophisticated models have been developed since.

A model first cycles through every EHR document for a given
patient to understand whether or not the document contains
biomarker testing results. These models rely on access to lab
reports, including those saved in the EHR as a PDF or image of
a scanned fax. The models are able to process report documents
produced by different labs (e.g., Foundation Medicine, Caris,
Tempus, etc.,) in addition to the clinician interpretations in visit
notes.

A separate model then extracts the biomarker (e.g., included but
not limited to ALK, BRAF, EGFR, KRAS, MET, NTRK, RET, ROS1,

FIGURE 6
Illustration of a data table with variables curated by an approach using expert human abstractors (right) alongside a data table with variables curated
by an approach using deep learning models (left) shows opportunity for exchangeable utility in real-world data analysis. All dates and patient IDs are
fictitious.

FIGURE 7
Conceptual diagram of machine learning model for extraction of metastatic diagnosis and date.
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or PD-L1) and test result (e.g., positive, negative, or unknown). This
approach gives our ML models flexibility to extract biomarkers that
the model may not have seen before in training. For PD-L1, where
results are quantitatively reported, a separate ML model was
developed to extract percent staining, with classes of <1%, 1%–
49%, ≥49%, and unknown.

Since patients can receive biomarker testing multiple times
throughout the treatment journey and at multiple facilities, it is
possible that a given patient has more than one biomarker test result
and date. For each patient, this allows us to determine biomarker
status at different clinical milestones (e.g., advanced diagnosis date,
start of second-line treatment, etc).

Oral treatments and treatment dates
We successfully developed a deep learning model to extract

oral treatment information, including the treatment name, and
the span for which the treatment was administered. In contrast to
intravenous therapies such as chemotherapy or immunotherapy
in which each dose is ordered and administered to be given in the
clinic or infusion room, oral therapies are prescribed to patients
to be filled by an outpatient pharmacy, which is frequently
outside the clinic site. To have a complete understanding of
all cancer treatments received or delayed (e.g., postponed during
a hospitalization), it is necessary to enumerate the use of oral
treatments through review of unstructured clinician visit notes,
prescriptions, and communications with the patient or patient
representative. Important information to select within the
paragraphs of text include the treatment name, start date, and
end date. We previously published an initial framework (Agrawal
et al., 2018) for extracting drug intervals from longitudinal clinic
notes, prescriptions, and patient communication documents and
have developed more sophisticated and accurate methods since
then. We found the visit notes contained key pieces of
information about treatments being held or started when
patients were hospitalized.

The model is trained to select mentions of a specific list of
drug names used for oral treatment in the specific cancer type,
along with the start date and end date. These oral treatment
variables are generated using three distinct ML models. The list of
oral treatments of interest were specific to each disease and
defined by oncology clinicians. Expert abstraction from charts
includes policies and procedures for collection of treatment start
dates and discontinuation dates as both are needed to execute
many common RWE study designs. To be fit for purpose, ML
models were trained to extract both start and end dates of
treatments.

Discussion

This paper described one approach to curating real-world
oncology data variables from unstructured information in EHR
using NLP and ML methods. Model development was possible
with access to a large and high-quality corpus of labeled oncology
EHR data produced via manual abstraction by a workforce of
thousands of clinical expert abstractors over the course of several
years. We now have models that are able to meet or even exceed
human abstraction performance on certain tasks (Waskom et al.,

2023). Using a performance evaluation framework (Devlin et al.,
2018) for variables curated using the approach of ML extraction
we affirmed high quality and fitness-for-use in RWE generation.
We have shown that validations using the combination of
multiple ML-extracted variables in one RWD analysis
demonstrated no meaningful difference in RWE findings based
on replications with the Flatiron Health variables curated by ML
extraction compared with expert human abstraction (Forsyth
et al., 2018; Zeng et al., 2018; Jorge et al., 2019; Karimi et al., 2021;
Maarseveen et al., 2021; Benedum et al., 2022; Sondhi et al., 2022;
Yang et al., 2022; Benedum et al., 2023).

Crucial information about clinical details may be recorded only
within free-text notes or summaries in unstructured EHR
documents. Our models primarily rely on deep learning
architectures, because curating data from such sources usually
requires techniques that capture the nuances of natural language.
We select model architectures on a case-by-case basis depending on
what works best for each variable, but we have found that the quality
of the training data and labels can be just as, if not more, important
to success than the architecture used. Despite this, we do expect that
advances in generative AI and advancing LLM architectures will
make deeper and more nuanced clinical concepts accessible to ML
extraction, as LLMs are able to take into account a fuller context of
the patient data and rely less on having high quality labels for
training. The impressive generative abilities of models like gpt3 and
its ChatGPT application have demonstrated this, although the
generative framework itself may remain more suited for tasks
such as summarization (Adams et al., 2021) than for scalable
curation of structured real-world datasets.

The mission to improve and extend lives by learning from the
experience of every person with cancer is more important than ever.
With increasingly specific combinations of patient characteristics,
disease, and therapy, we need to learn from as many relevant
examples as possible to have statistically meaningful results. ML
expands the opportunity to learn from patients who have been
oppressed or historically marginalized in oncology clinical trials
(Adamson et al., 2019; Hooley et al., 2019). As oncology care rapidly
evolves, and the treatment landscape becomes more
personalized—targeting new biomarkers, finely tuned to
increasingly particular patient profiles—transparent fit-for-
purpose applications of ML will have increasing importance. This
will be valuable to gain trust with decision-makers in applications
such as postmarket safety surveillance. With high performance
models, we can truly learn from every patient, not just a sample.
It also creates an opportunity to improve the completeness of RWD
variables that were previously defined by only structured data
elements, reducing potential bias in evidence.

There are strengths and limitations to the EHR curation
approaches described here. Strengths include the large size,
representativeness, and quality of training data used; success
across a multitude of cancer types; and the explainability of
approach to finding clinical details in documents. Massive
volumes of high-quality expert abstracted data were a unique
advantage for training high-quality ML models. Researchers at
Stanford have confirmed similar capabilities with a different
EHR dataset—detecting the timeline of metastatic recurrence of
breast cancer (Banerjee et al., 2019). An example of a variable
that would be challenging for ML extraction could be
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microsatellite instability (MSI), where results are reported in a
wide range of formats. One of the formats is a graphic where the
result is reported visually on a sliding scale rather than in text
format. This would be difficult for a model that relies on
interpretation of text. The ML models described here were
trained for and applied only in a US population (Ma et al.,
2023). While the most suitable model architectures for each
variable may be transferable across country borders, a limitation
of this approach is that models must be re-trained with local
data for highest performance.

The capability to build ML models that can extract RWD
variables accurately for a large number of patients further enables
the possible breadth and depth of timely evidence generation to
answer key policy questions and understand the effects of new
treatment on health outcomes.
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Evaluating treatments in rare
indications warrants a Bayesian
approach

Emma K. Mackay* and Aaron Springford

Cytel, Toronto, ON, Canada

Evaluating efficacy and real-world effectiveness for novel therapies targeting rare
mutations or patient subpopulations with unmet needs is a growing challenge in
health economics and outcomes research (HEOR). In these settings it may be
difficult to recruit enough patients to run adequately powered randomized clinical
trials, resulting in greater reliance on single-arm trials or basket trial designs.
Additionally, evidence networks for performing network meta-analysis may be
sparse or disconnected when comparing available treatments in narrower patient
populations. These challenges create an increased need for use of appropriate
methods for handling small sample sizes, structural modelling assumptions and
more nuanced decision rules to arrive at “best-available evidence” on comparative
and non-comparative efficacy/effectiveness. We advocate for greater use of
Bayesian methods to address these challenges as they can facilitate efficient
and transparent borrowing of information across varied data sources under
flexible modelling assumptions, probabilistic sensitivity analysis to assess model
assumptions, and more nuanced decision-making where limited power reduces
the utility of classical frequentist hypothesis testing. We illustrate how Bayesian
methods have been recently used to overcome several challenges of rare
indications in HEOR, including approaches to borrowing information from
external data sources, evaluation of efficacy in basket trials, and incorporating
non-randomized studies into network meta-analysis. Lastly, we provide several
recommendations for HEOR practitioners on appropriate use of Bayesian
methods to address challenges in the rare disease setting.

KEYWORDS

Bayesian, statistical methods, health economics and outcomes research (HEOR),
evidence synthesis, real-world evidence (RWE), rare diseases, comparative effectiveness

Introduction

A core task of health economics and outcomes research (HEOR) is to compare the
effectiveness of two or more competing treatments. Over the past several decades,
researchers in HEOR have been working to realize the promise of a “big data” revolution in
which an excess of evidence can be brought to bear on any given decision problem (Berger and
Doban, 2014). However, due to advances in health technologies which target smaller populations
and/or very rare diseases we continue to see challenges of limited data and small sample sizes. In
response to these trends, we advocate for modern Bayesian approaches which can incorporate all
available information in a principled and transparent way. In our view, Bayesian approaches are
particularly valuable if primary data sources are insufficient to establish reliable and statistically
conclusive superiority of a novel treatment compared to the status quo. In these cases, the novel
treatments that are urgently needed by patients may be passed over if typical large-sample,
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dichotomous statistical significance thresholds are treated as an
unquestioned default by decision-makers.

While Bayesian methods have seen substantial uptake in the area of
meta-analysis–for example, in guidance from the UKNational Institute
for Health and Care Excellence’s (NICE) Decision Support Unit (DSU)
(Dias et al., 2011)–, we suggest that significant gains can also bemade in
rare disease settings where sample sizes and available evidence bases are
more limited. A goal of this paper is to provide examples and guidance
on how practitioners can incorporate external information using
Bayesian modelling to address some of the challenges of evaluating
efficacy/effectiveness that arise in health technology assessments (HTA)
of newly developed therapies for rare indications.We point to some key
applications in which we believe important gains can be made:
borrowing from external sources to augment a concurrent control
arm or to estimate a historical control rate for rare diseases;
incorporating disparate data sources (such as randomized controlled
trial (RCT) and non-randomized study (NRS) data) into a meta-
analysis; and applying Bayesian hierarchical models (BHM) to
partially pool information across heterogeneous data sources. In
each of these applications, common questions emerge: 1) What
relevant information can we draw on to improve existing analyses
and estimates? 2) When existing data are limited, what assumptions
might enable incorporation of external information, and are these
plausible? Or, when very strong assumptions are needed, what
would constitute “best-available evidence”? And 3) how can we
characterize the limitations of the analysis and assess sensitivity to
violations of key assumptions?

What are Bayesian methods and why use
them?

Bayesian inference defines a probability model for data which is
a function of parameters (the likelihood), and a probability model
for parameters before any data are observed (the prior). After data
are observed, the prior and the likelihood are used to calculate a
probability distribution for the parameters given the data (the
posterior). If there is information available which is related
directly to the model parameters, it can be included in the prior.
If there is information available in the form of additional data from
another source, it can be included in the likelihood. The posterior
distribution contains all available information about the model
parameters, and in practice is a very useful mathematical object.
For example, functions of the posterior such as the probability that
one treatment is superior to another, or the expected benefit of
selecting one treatment over another, or the distribution of predicted
patient outcomes in a given population, can all be obtained without
much additional computational effort. In the frequentist approach,
many of these derived quantities are not available, and even if they
are available their calculation is considerably more burdensome.

Because Bayesian methods lead to probability statements about
model parameters, they are vital to formal decision analysis and thus
HTA (see Spiegelhalter et al. (1999) and examples therein). Bayesian
inference leads to statements like: “there is a 95% probability that the
hazard ratio is between 0.6 and 0.84”; whereas frequentist inference
leads to statements such as: “if the trial were repeatedmany times, and a
95% confidence interval constructed for each, the true hazard ratio
would be within 95% of the intervals.” In anHTA context, we argue that

the former is not only more interpretable, but also more directly useful
for decision making. A more extensive comparison of Bayesian and
frequentist methods can be found in Spiegelhalter et al. (1999).

How can Bayesian borrowing help bolster
limited sample sizes in HEOR analyses?

Bayesian borrowing methods can incorporate information about
model parameters (e.g., the control arm response rate) from external
data in a transparentmanner. Thesemethods allow for down-weighting
of the external data to mitigate potential bias arising from different
parameter values in the current population compared to the external
populations. One established approach is to borrow information by
means of a power prior (Ibrahim and Chen, 2000; Ibrahim et al., 2015).
The power prior is formed by taking a prior for the parameter and
combining it with a discounted likelihood for the parameter on the
external data. The external data parameter likelihood is discounted by
raising it to the power of a discount parameter between 0 and 1. A
discount parameter value of 0 corresponds to no borrowing and a value
of 1 yields complete pooling of the datasets. Due to the challenge of
selecting a value for the discount parameter, one option for practitioners
is to vary the discount parameter and assess howmuch borrowing from
the external data is required before a specified decision threshold—or
“tipping point”—is reached (e.g., for concluding that a treatment is
effective). This sort of tipping point analysis has precedent in a
regulatory context when using Bayesian borrowing (US Food and
Drug Administration, 2018). Another option is to use dynamic
borrowing, in which the discount parameter is treated as a random
quantity with its own prior distribution. In theory, this approach allows
the amount of borrowing to depend on the degree of agreement in
observed outcomes between the current and external data sources. In
practice, there may not bemuch information available in the data about
the discount parameter, and results can be sensitive to the choice of
prior. Regardless, proper implementation of dynamic borrowing using a
power prior requires a normalization step (Neuenschwander et al.,
2009) which can be computationally challenging to implement. Ibrahim
et al. (2015) provide amore detailed overview of power priors, including
extensions such as commensurate priors, for interested readers.
Additionally, Viele et al. (2014) compare several approaches to
borrowing from historical data, including the use of power priors.

Another prior-based approach to Bayesian borrowing is to formulate
a meta-analytic predictive (MAP) prior for the parameter of interest
(Neuenschwander et al., 2010). As an example, suppose we want to
borrow information on the response rate for the control treatment. We
conduct a Bayesian meta-analysis (typically a random effects meta-
analysis) to obtain the posterior predictive distribution for the control
treatment response rate. This posterior then becomes the prior for the
response rate in our concurrent control arm—if there is one—or
represents the entirety of information available for this parameter if
there is no concurrent control arm. The posterior predictive distribution
is preferred because it incorporates heterogeneity in response rates across
trial populations, andwe seek to generalize from the external populations
to our current population. A narrower/more precise MAP prior in effect
represents a larger sample size being borrowed from the external data. In
cases where the generalization from external to current is insufficiently
conservative, robust MAP priors have been used (Schmidli et al., 2014).
Robust MAP priors are defined as a weighted mixture of the MAP prior
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and a vague prior. This approach is analogous to the power prior in that
placing more weight on the vague component in the mixture results in a
more diffuse prior distribution which imparts less information, down-
weighting the contribution of the external data.

Power prior and robustMAPpriormethods have different strengths
and weaknesses in practice. Power prior methods can be more
challenging to implement (especially when the discount parameter is
a random quantity), but they have a simple form and can easily be
adapted to incorporate disparate sources of external information. MAP
prior methods will be more familiar to those experienced with Bayesian
meta-analysis, and may be easier to explain and justify in many HEOR
settings. Both approaches can incorporate aggregate data and/or
individual patient data (IPD) from multiple sources, and both can be
used for tipping point analysis if desired (US Food and Drug
Administration, 2018; Best et al., 2021). In one prospective RCT
using robust MAP to reduce control group allocation, variance of the
robust MAP prior was inflated to achieve a target effective sample size
(Richeldi et al., 2022)—a practical approach to borrowing which could
also be applied to a power prior with fixed discount parameter.

How can we model structural relationships
between data sources while also accounting
for potential heterogeneity?

In cases where a structural relationship among data sources can be
assumed, Bayesian hierarchical models (BHMs) are another option for
partial pooling of information in which hierarchical dependencies of key
parameters are modeled explicitly (Gelman et al., 2013). BHMs assume
that some model parameters are related by virtue of being drawn from a
common distribution—i.e., that they are exchangeable—but that the
parameters of the distribution are themselves random quantities. For
example, response rates for a specific control treatment are often
assumed to be heterogeneous across data sources but nonetheless
may be interrelated. Under a BHM approach, information on the
control treatment response rate can be partially pooled across data
sources, with the amount of pooling dependent on the degree of
heterogeneity in response rates across data sources (less borrowing
occurs if response rates are very heterogeneous). This also has the
effect of shrinking parameter estimates towards the grand mean,
mitigating overfitting and improving inference for individual
parameters, particularly when data are limited (Gelman et al., 2013).

To illustrate the utility of BHMs in the HEOR space, we focus on
some recent applications to analyses of basket trials. Basket trial designs
include patients with multiple cancer types which share a common
targetablemutation or biomarker. In these basket trials, sample sizes tend
to be extremely limited, treatment responses are expected to vary among
tumour types, and control arms are often omitted. Murphy et al. (2021)
use a BHM approach in a single-arm basket trial setting for evaluating
response for NTRK fusion-positive patients receiving larotrectinib. Their
approach allows for partial borrowing of information on response rates
across tumour types to produce estimates of response for individual
tumour types, the overall basket of represented tumours, and for an
unrepresented histology. BHM approaches were also well-received in a
NICE technical appraisal for larotrectinib (UK National Institute for
Health and Care Excellence, 2020).

In the BHM approach to analysis of basket trials, exchangeability of
tumour types may be a clinically tenuous assumption (although perhaps

an acceptable approximation in light of data limitations if the BHM is
flexible enough to describe the data). Neuenschwander et al. (2016)
propose an exchangeable-non-exchangeable (EXNEX) model which
allows for relaxation of strong exchangeability assumptions, and we
envision future methodological developments in this area. Mackay
et al. (Mackay et al., 2022; Mackay et al., 2023) have recently proposed
an extension of BHM modelling for histology-independent therapies to
allow for indirect treatment comparisons (ITC) between multiple basket
trials. The approach allows for adjustment for potential confounding due
to differences in tumour type compositions between trials while preserving
limited precision/power bymeans of partial pooling. The reader is directed
to Murphy et al. (2022) for a more detailed discussion of modelling
approaches for histology-independent therapies in an HTA context.

While hierarchical models can be implemented under both a
Bayesian and classical frequentist approach, a key advantage of
Bayesian approaches is the ability to incorporate prior information
and perform probabilistic sensitivity analyses when faced with
challenging settings with limited available data. For example, use
of weakly informative priors can avoid issues of extreme overfitting
to the data. Additionally, it can be difficult to reliably estimate the
heterogeneity parameters for a hierarchical model when the number
of groups (e.g., tumour types) is very small. In these situations,
multiple prior distributions can be used to assess how sensitive
conclusions are to assumptions about the degree of heterogeneity in
outcomes across groups.

Beyond applications to basket trials, BHMs have been used to
incorporate disparate data sources, structural assumptions, and
borrowing approaches when no single source is sufficient for
inference and decision-making. For example, Heeg et al. (2022)
recently used BHMs to partially pool information on specific model
parameters across a class of immune-oncology therapies to improve
survival extrapolations from immature data.

Can we incorporate non-randomized
studies into meta-analyses while mitigating
risk of bias to address challenges in assessing
comparative efficacy/effectiveness?

Meta-analyses which synthesize the published evidence on
relative treatment effects generally rely on RCT evidence only.
However, when estimating real world effectiveness or efficacy/
effectiveness in key patient populations of interest, or when RCT
evidence is lacking due to the rarity of some indications,
incorporating information from non-randomized studies (NRS)
using real-world data becomes appropriate (Sarri et al., 2022).
Relevant NRS would include cohort studies comparing patient
outcomes by treatment using appropriate methods to mitigate
sources of bias (Faria et al., 2015)—particularly well-designed
synthetic control arm analyses (Thorlund et al., 2020) and target
trial emulations (Hernán and Robins, 2016). Sarri et al. (2022)
provide a structured framework for incorporating NRS into meta-
analyses—a process which includes assessing risk of bias in the
identified NRS and careful selection of methods to appropriately
down-weight the influence of NRS, to incorporate bias adjustments,
and to conduct sensitivity analyses to the modelling decisions.

Several promising approaches exist for incorporating NRS into a
network meta-analysis (NMA) or pairwise meta-analysis which are

Frontiers in Pharmacology frontiersin.org03

Mackay and Springford 10.3389/fphar.2023.1249611

63

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1249611


both conducive to down-weighting the NRS either statically or
dynamically, and to probabilistic sensitivity analysis. Schmitz et al.
(2013) highlight three approaches to incorporating NRS: 1) naïve
pooling of the RCT and NRS evidence, 2) incorporation of the NRS
using informative priors, and 3) use of a hierarchical model to capture
the potential heterogeneity in relative treatment effects between RCT
and NRS. They also outline how corrections for systematic and non-
systematic bias can be incorporated into approaches 2) and 3).

Schmitz et al. (2013) note that the bias in NRS relative treatment
effects (e.g., log-odds ratios, log-hazard ratios, etc.) can be modelled
using a Gaussian distribution where the mean and variance represent
systematic and non-systematic components of the bias, respectively.
This allows for incorporation of NRS data into the meta-analysis with
potential bias adjustment and down-weighting—either by means of a
bias-adjusted priors or through direct incorporation into the likelihood.
Efthimiou et al. (2017) highlight additional approaches than can be
taken to form priors from NRS data—such as down-weighting of the
parameter likelihood from the NRS data by means of a power prior or
mixture prior (e.g., robust MAP priors). Verde et al. propose a
hierarchical meta-regression (HMR) approach which can be used to
estimate a bias-correction term for study design or other study-level
covariates, and detect and down-weight outlier studies when there is
significant cross-study heterogeneity (Verde et al., 2016; Verde, 2017;
Verde, 2019). Additionally, HMRs can be used to extrapolate treatment
effects to specific populations when IPD is available for at least one
study or real-world data source.

Discussion

As new drug development is focusing more and more on narrower
indications, HEOR practitioners are increasingly faced with challenges
of limited data. These limitations arise from difficulties recruiting
enough patients to conduct adequately powered RCTs (leading to
more reliance on single-arm trials for regulatory and HTA
submissions), narrowing of indications or subpopulations of interest
leading to smaller numbers of relevant studies being identified in
systematic literature reviews (and greater risk of disconnected or
tenuous networks in NMAs), and more reliance on evidence from
ITCs that are unlikely to yield precise estimates of relative treatment
effects. Consequently, we present several recommendations for how
Bayesian methods (including many of the approaches outlined above)
can be used to help mitigate some of these pitfalls.

Firstly, since Bayesian approaches allow for weakly informative
priors to be specified before analyzing the data, use of sensible default
priors can mitigate some of the risks of model overfitting when data are
very limited without imposing overly strong assumptions. With weakly
informative defaults, the prior can be easily overwhelmed when
informative data are available. An example of this can be found in
the Keefe et al. (2021) meta-analysis of diagnostic tests where use of
weakly informative priors allows for the meta-analysis to be run even
when the model is overparametrized for some classes of diagnostic tests
(too few studies relative to the number of parameters). In these cases,
the prior is minimally updated (or not updated at all) and continues to
reflect agnostic beliefs as to whether the test is predictive. In cases where
more studies are available, the prior is updated to reflect the larger
evidence base.

Secondly, if strong modelling assumptions are needed to
synthesize the limited amount of available data, probabilistic
sensitivity analyses should be conducted to assess robustness to
deviations from these assumptions. For example, if it is infeasible to
conduct a random effects NMA due to too few studies in the
network, different heterogeneity assumptions can be assessed by
fitting modified random effects NMAs in which different strong
priors are used for the heterogeneity parameters, each reflecting a
plausible scenario. In this context, fixed effects NMA can be viewed
as a special case of random effects NMA, and use of informative
priors on heterogeneity parameters allows for sensitivity analysis
even when data are too limited to estimate these parameters.

Lastly, if precision/power are anticipated to be extremely limited
(e.g., in a rare disease setting), it may be worth considering a context-
appropriate decision rule rather than a default p-value threshold. For
example, if we are performing an ITC between two treatments that
have received regulatory approval based on single-arm trials, and it
is infeasible to conduct an adequately powered ITC, it may be
sensible to prioritize reimbursement of one drug over the other
based on the posterior probability of superiority (a quantity which is
directly available in Bayesian inference). This would arguably
constitute a “best-available evidence” standard in this example.

In summary, Bayesianmethods provide a principled framework for
quantifying the amount of evidence in favour of a particular conclusion,
are well-suited to combining information from multiple data sources
under various structural assumptions, and can facilitate probabilistic
sensitivity analyses to probe these structural assumptions. For these
reasons we believe that Bayesianmethods should play an increasing role
in health economics and outcomes research.
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Introduction: The landscape of drug-drug interactions (DDIs) has evolved
significantly over the past 60 years, necessitating a retrospective analysis to
identify research trends and under-explored areas. While methodologies like
bibliometric analysis provide valuable quantitative perspectives on DDI
research, they have not successfully delineated the complex interrelations
between drugs. Understanding these intricate relationships is essential for
deciphering the evolving architecture and progressive transformation of DDI
research structures over time. We utilize network analysis to unearth the
multifaceted relationships between drugs, offering a richer, more nuanced
comprehension of shifts in research focus within the DDI landscape.

Methods: This groundbreaking investigation employs natural language processing,
techniques, specifically Named Entity Recognition (NER) via ScispaCy, and the
information extraction model, SciFive, to extract pharmacokinetic (PK) and
pharmacodynamic (PD) DDI evidence from PubMed articles spanning January
1962 to July 2023. It reveals key trends and patterns through an innovative
network analysis approach. Static network analysis is deployed to discern
structural patterns in DDI research, while evolving network analysis is employed
to monitor changes in the DDI research trend structures over time.

Results: Our compelling results shed light on the scale-free characteristics of
pharmacokinetic, pharmacodynamic, and their combined networks, exhibiting
power law exponent values of 2.5, 2.82, and 2.46, respectively. In these networks, a
select few drugs serve as central hubs, engaging in extensive interactions with a
multitude of other drugs. Interestingly, the networks conform to a densification
power law, illustrating that the number of DDIs grows exponentially as new drugs
are added to the DDI network. Notably, we discovered that drugs connected in PK
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and PD networks predominantly belong to the same categories defined by the
Anatomical Therapeutic Chemical (ATC) classification system, with fewer
interactions observed between drugs from different categories.

Discussion: The finding suggests that PK and PDDDIs between drugs fromdifferent
ATC categories have not been studied as extensively as those between drugs within
the same categories. By unearthing these hidden patterns, our study paves the way
for a deeper understanding of the DDI landscape, providing valuable information
for future DDI research, clinical practice, and drug development focus areas.

KEYWORDS

pharmacokinetic drug-drug interaction, pharmacodynamic drug-drug interaction,
network analysis, natural language Processing, research trend

1 Introduction

Drug-drug interactions (DDIs) occur when the effect of one drug is
altered by the presence of another drug (van Mil, 2016). DDIs can be
broadly classified into two types: 1) pharmacokinetic (PK), which
occurs when one drug modifies the disposition (i.e., absorption,
distribution, metabolism, and/or excretion) of another drug (Nebert
andRussell, 2002;Nigam, 2015), and 2) pharmacodynamic (PD), which
occur when the pharmacological effects (on cells, organs, and systems)
of one drug are altered or additive by the presence of another (Niu et al.,
2019). These interactions can generate a wide range of outcomes, often
causing adverse effects and deteriorating patients’ health. Consequently,
DDIs have been the subject of numerous studies over the past several
decades, with progress in high-throughput screeningmethods, the rapid
growth of biomedical databases, and an increase in clinical studies
contributing to the discovery of novel DDIs and insights into their
underlying PK and PD mechanisms (Becker et al., 2007).

The vast amount of data generated by the numerous studies on
DDIs hasmade it challenging for researchers to analyze research trends
and evolutions, which makes it difficult to gain a comprehensive
understanding of the overall landscape of DDIs, identify under-
explored areas, discern research trends, and pinpoint areas of
focused interest. To address this issue, some studies have used
bibliometric analysis (Wang et al., 2022; Sun et al., 2022; Pirri et al.,
2020; KURUTKAN, 2023), a quantitative method that evaluates and
analyzes various aspects of scientific publications. Bibliometric
indicators such as the number of publications, citations, and
authors can provide a valuable quantitative overview of DDI
research. However, this approach has limitations in its ability to
capture the complex relationships between drugs and the evolving
nature of DDI research, despite its numerical precision and ease of use.

To thoroughly examine the DDI research landscape, we constructed
DDI networks based on evidence extracted from PubMed article
abstracts by natural language processing (NLP) models and analyzed
them using network analysis (NA). NLPmodels facilitate the automation
of information extraction from extensive unstructured text data, enabling
researchers to analyze large datasets more quickly and efficiently (Boyce
et al., 2012). Network analysis, on the other hand, serves as a powerful
model for analyzing complex interactions between drugs, providing a
more comprehensive picture of the structure and allowing researchers to
represent and explore complex data in a more intuitive and accessible
way (Jeong et al., 2017; Chen et al., 2020; Yan et al., 2021).

By utilizing DDI networks, we can gain a complete understanding
of the DDI research landscape and the chronological development of

the field. This approach provides a comprehensive view of the dynamic
landscape of drug-drug interactions and allows for the identification of
shifts in the DDI landscape. Our integration of NLP and NA allows
researchers to identify areas of focused interest and under-explored
areas, recognize emerging areas of concern or novel research
trajectories, and spot gaps in the field that may harbor potential yet
under-studied drug interactions. Ultimately, this approach may inform
decision-making in drug development, clinical practice, and DDI
research prioritization.

2 Materials and methods

2.1 Retrieving DDI evidence from PubMed
abstracts

We applied a three-step procedure to collect evidence on
DDIs from PubMed abstracts published between January
1962 and July 2023: 1) identification of candidate articles
about DDIs using a PubMed query (Figure 1A), 2) screening
of the articles containing sentences with drug entities using a
named entity recognition (NER) model (Figure 1B), and 3)
determination of eligible sentences about DDIs using a
relation extraction (RE) model (Figure 1C).

2.1.1 PubMed query
We designed a query in accordance with Duda et al. (2005) to

retrieve a set of DDI articles with high sensitivity, the broadest search to
include all DDI-relevant articles: “drug interactions” [TIAB] OR “drug
interactions” [MeSH Terms] OR “drug interaction” [TW] NOT food-
drug interactions [MeSH Terms] NOT herb-drug interactions [MeSH
Terms] NOT Review [PT] NOT Systematic Review [PT]. This query
was chosen to ensure that no pertinent documents were missed.

2.1.2 NER model
In order to search for evidence of DDIs in retrieved articles, it is

necessary to first identify drug entities within sentences. To
accomplish this, a NER model, a type of NLP model, that is,
used to identify and extract entities, is required for the efficient
and accurate detection of drug entities.

The SpaCy Python library is an open-source library designed to
support a variety of tasks such as POS Tagging, NER, and Dependency
Parsing (Honnibal and Montani, 2017). ScispaCy (Neumann et al.,
2019) is an extension of spaCy developed for biomedical, scientific, or
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clinical text. It has become the de facto standard for practical NLP due to
its speed, reliability, and near-state-of-the-art performance (SOTA).
Entity linker is a SciSpacy feature that maps entities mentioned in the
text to standard, canonical identifiers in a knowledge base or database.
These databases for biomedical texts could include UMLS (Unified
Medical Language System), RxNorm, and others. The linker conducts a
string overlap-based search (char-3grams) on named entities,
comparing them with the concepts in a knowledge base via an
approximate nearest neighbors search. We implemented RxNorm
entity linker in the ScispaCy, which contains ~100 k concepts
focused on normalized names for clinical drugs. The ScispaCy-large
model was used to perform NER, sentence tokenization, and entity-

linking features for every sentence from abstracts. Given that the
ScispaCy only provides CUI for RxNorm entities, we used the
MRCONSO.RRF file from UMLS Metathesaurus (Bodenreider, 2004)
to map CUI to RxCUI. Tominimize the chance of duplicating clinically
similar RxNorm concepts, we further linked RxNorm concepts to
RxNorm ingredients using the RXNREL.RRF file from UMLS
Metathesaurus. Finally, we extracted sentences containing at least
two drug entities for further analysis of potential DDIs.

2.1.3 RE model
To identify eligible evidence of DDIs from sentences containing at

least two drug entities, a RE model, a type of NLPmodel, that is, used to

FIGURE 1
The process of DDI evidence extraction and dynamic network analysis. (A) A custom query was employed to retrieve articles related to DDIs from
PubMed API. (B) Sentences with at least two drug entities from abstracts were extracted using the ScispaCy NERmodel. (C) The SciFive DDI REmodel was
applied to extract DDIs from DDI sentences. (D) A static network was constructed based on the entire extracted DDI sentences from 1962 to 2023. (E) An
evolving network analysis was conducted to examine the 36-year trend in DDI research.
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identify and extract the relationships between entities in text, was utilized
to find the DDI relationship within the sentences. The SciFive PubMed
Large model is a domain-specific text-to-text transfer transformer (T5)
model (Raffel et al., 2020) that is, pre-trained on PubMed abstracts using
1.2 million steps to optimize the pre-trained weights from the T5 model
in the context of biomedical literature. The DDI extraction 2013 corpus
is comprised of 792 texts taken from the DrugBank database and
233 Medline papers; it has been created for the SemEval
2013 DDIExtraction challenge, whose primary objective is to provide
a common framework for the evaluation of information extraction
techniques applied to the recognition of pharmacological substances and
the detection of DDIs from biomedical texts, and has been used as the
gold standard for evaluating DDI extraction task performance (Segura-
Bedmar et al., 2013). Two expert pharmacists with extensive experience
in pharmacovigilance annotated drug-drug interactions, covering both
pharmacokinetic and pharmacodynamic interactions. The five
classifications consist of four distinct types of interactions and one
type of non-interaction in the corpus, as follows: 1) No interaction: a
sentence does not represent an interaction between two drugs, 2) DDI-
mechanism: a sentence describes a pharmacokinetic mechanism, 3)
DDI-effect: a sentence describes the effect of the DDI or
pharmacodynamic mechanism, 4) DDI-advice: a sentence describes a
recommendation or advice regarding a drug interaction, and 5) DDI-int:
a sentence describes a drug interaction without providing any other
information. The SciFive PMC Large model achieved a level of
performance that was similar to SOTA on DDI relation extraction
using the DDI extraction 2013 corpus (precision: 83.88, recall: 83.45, and
F1 score: 83.63). We applied the pre-trained weights of the SciFive PMC
Large model distributed by the authors (Phan et al., 2021), and further
fine-tuned the model parameters using the DDI extraction 2013 corpus
to determine the reliability of each candidate DDI evidence. If a
candidate DDI sentence contained more than two RxNorm
ingredients, all possible drug-drug combinations were investigated,
implying that a single sentence could contain both a drug pair that
does not interact and a drug pair that does interact.

To validate the performance of the SciFive model, we randomly
selected extracted DDI evidence and manually annotated them with
the help of two reviewers (one with anM.S. in biomedical informatics
and one with a Ph.D. in computer science). Both reviewers had 3 years
of experience in drug-interaction research. The level of agreement
between the two reviewers was measured using Cohen’s Kappa.

2.1.4 Mapping RxNorm ingredients to ATC first
levels

RxNorm ingredients were mapped to first-level Anatomical
Therapeutic Chemical (ATC) classes using the RxNorm API (https://
mor.nlm.nih.gov/RxNav/) for drug classification purposes. The ATC
first level contains 14 major anatomical or pharmacological groups. If a
RxNorm ingredient had multiple ATC first levels, then all ATCs were
counted separately. If a RxNorm ingredient was unmapped to any ATC
first levels, then it was assigned to a “No ATC” group.

2.2 Network construction

2.2.1 Static networks
Based on all extracted DDI sentences from 1962 to 2023, we

constructed three static networks: 1) one for PKs, 2) one for PDs,

and 3) one for the complete set of DDIs, including PK and PD, as
well as those classified as DDI-advice or DDI-int (Figure 1D). In
such networks, each node represents a drug and each edge exists
between two nodes if there was at least one sentence from the
literature with evidence of a DDI between the two drugs.

2.2.2 Evolving networks
To model the dynamic changes in the DDI networks, we created

evolving networks of drugs based on DDIs extracted from each year
(Figure 1E). The network Ti+1 is an augmentation of the prior networkTi,
where i represents the year. For example, the network of 1988 represented
the addition of new drugs and DDIs published in 1988 to the network of
1987. Similarly, the network of 1989 expanded upon the 1988 network,
and this pattern continued in subsequent years. Due to a lack of sufficient
data to create yearly networks for years prior to 1987, we chose 1987 as
the earliest investigated year for the evolving network analysis. In
addition, we have excluded 2023 data from the evolving network
analysis due to lacking data for the entire year.

2.3 Network-level properties

In order to provide a more comprehensive understanding of the
structure of DDI research, we measured various network structural
properties in this study. These properties included the number of nodes
and edges, assortativity based on degree and ATC first level categories,
average local clustering coefficient, power law exponent γ, network
diameter, and the densification power law (DPL). The number of nodes
and edges was specifically measured to gain insights into the size of the
networks. The degree assortativity is the tendency for nodes of high
degree (resp. low degree) in a graph to be connected to high degree
nodes (resp. to low degree ones), while ATC-group assortativity is the
tendency for nodes to be connected to drugs in the same ATC
categories. The average local clustering coefficient measures how
close its neighbors are to form a clique. If the neighborhood is fully
connected, the clustering coefficient is 1, whereas a value close to
0 indicates that the neighborhood has few connections. The diameter of
a network is defined as the smallest distance between the two furthest
nodes in the network. This distance is determined by computing the
shortest path length between every node and all other nodes and
selecting the longest path length as the network’s diameter. A
smaller network diameter suggests that the drugs in the network are
more closely related and may have a higher potential for interactions,
while a larger diametermay indicate that the drugs aremore diverse and
less likely to interact. To determine whether the number of edges grows
faster than the number of nodes in the networks, wemeasured the DPL.
The DPL is a concept from the temporal graph evolution (Leskovec
et al., 2007) domain. This law indicates that the number of edges should
grow according to a power law over the number of nodes over time:

e t( )∝ n t( )a (1)
where e(t) and n(t) denote the number of edges and nodes,
respectively, of the graph at time t, and a is an exponent (a =
1 represents a constant average degree throughout time, whereas a =
2 represents to an extremely dense graph in which each node has
edges to a constant fraction of all nodes on average.) Numerous
studies have shown that many real-world evolving networks exhibit
a densification power law property (Leskovec et al., 2005; Leskovec
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et al., 2007; Qu et al., 2014; Qu et al., 2015). Network analysis was
conducted using the igraph package in R (Csardi and Nepusz, 2006).

2.4 ATC categories-level properties

Our analysis focuses on DDI networks at the level of ATC
classification groups. We aim to determine whether the observed
DDI interactions occur within the same therapeutic class or across
multiple classes. This approach allows us to investigate the potential
for interactions between drugs with similar or different mechanisms
of action andmay provide insights into the overall safety and efficacy
of drug combinations within specific therapeutic categories.

2.4.1 The Krackhardt E/I ratio
The Krackhardt E/I Ratio (Krackhardt and Stern, 1988), also

known as the E-I index, is a measure of homophily that quantifies
the extent to which one node is linked to similar or dissimilar nodes.
The E-I index is computed as:

E − I index � EL − IL
EL + IL

(2)

where EL and IL denote the number of external links and internal
links, respectively. The E-I index ranges from −1 to 1, and if it is
positive, it indicates that there are more external links than internal
links (heterophily). If the value is close to 0, it indicates that links are
distributed equally; and if it is negative, it indicates that there are
more internal links than external links (homophily).

2.4.2 Fisher’s exact test for ATC-ATC pairs
To determine the most interconnected pairs of ATC categories

(those with a higher chance of having DDIs between drugs from the two
categories compared to other categories), all possible ATC category-ATC
category combinations were extracted from the network and generated
in the 2-by-2 contingency table (Table 1). Numbers are assigned to one
of the contingency table cells based on the number of interactions
between ATC categories. For example, a denotes the number of
interactions between the #1 category and #2 category, and b denotes
the number of interactions that the #1 category has with ATC categories
other than the #2 category. A Fisher’s exact test with Bonferroni
correction was relied upon to determine significance. The ATC-ATC
pairs with p-values less than 0.05 after Bonferroni correction and odds
ratios greater than 1 were considered statistically significant.

2.5 Drug-level properties

While ATC-group-level analyses examine classes of drugs, drug-
level analyses focus on individual drugs. This approach provides a

more detailed understanding of specific drug interactions and is
essential for identifying key drugs in the DDI network. By examining
the interactions of individual drugs, we can gain insights into the
mechanisms of action that underlie drug interactions and identify
drugs that are more likely to be involved in multiple interactions.

2.5.1 Centrality measures
In network analysis, several types of centrality measures can be

used to understand the relative importance of drugs within the DDI
network. In this study, we concentrated on three centrality
measures: degree centrality, betweenness centrality, and
eigenvector centrality. The degree centrality is a simple centrality
measure that counts how many neighbors a drug has, finding drugs
that are likely to be the center and can quickly connect with the
wider network. The betweenness centrality measures the number of
times a drug lies on the shortest path between other drugs. This
measure shows which drugs are bridges between drugs in a network,
showing drugs that influence the flow in the DDI network.
Eigenvector centrality measures a drug’s influence based on the
number of links it has to other drugs in the network. A high
eigenvector score means that a drug is connected to many drugs
that themselves have high scores.

2.5.2 Emerging and declining drugs in the DDI
research field

To identify drugs that have recently emerged in DDI research,
we calculated the degree, betweenness, and eigenvector centrality
growth rates for each drug in the yearly networks over the past
5 years (2018–2022). Drugs with a rapid growth rate are likely to be
part of a new trend, attracting increased attention in recent years.
The growth rate (slope) was estimated using linear regression. To
identify the drugs that are receiving less attention in DDI research,
we analyzed the lowest increase or highest decrease rate in centrality
measures.

3 Results

3.1 The DDI sentences extracted from
PubMed

We retrieved 160,114 candidate articles from the PubMed API
through a search query designed for high sensitivity. Next, we

TABLE 1 Two-by-two contingency table for evaluating ATC 1-ATC 2 pairs.

ATC category #2 No ATC category #2

ATC category #1 a b

No c d

ATC category #1

TABLE 2 Structural network properties of the static PK, PD, and complete DDI
networks.

Structural network property PK PD Complete

Nodes 1,620 2,011 2,212

Edges 7,579 15,676 21,262

Assortativity (Degree) −0.151 −0.0754 −0.124

Assortativity (ATC 1st level) 0.087 0.123 0.111

Power law exponent 2.5 2.82 2.36

Avg clustering coefficient 0.23 0.26 0.290

Diameter 9 8 8
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applied ScispaCy for NER and extracted 174,224 sentences
(69,868 articles) that contained at least two drug entities from
the abstracts of the DDI articles. Finally, we used the SciFive
model to extract 2,212 unique drugs and 21,262 unique DDIs
(PK: 7,579, PD: 15,676) from 174,224 sentences. Among the
21,262 unique DDIs, 2,445 exhibited both PK and PD DDIs
(Supplementary Figures S1, S2). To validate the performance of
the SciFive model, we randomly selected 1,296 DDIs (36 for each
year from 1987 to 2022) from the 21,233 DDIs. The level of
agreement between the two reviewers was found to be extremely
high with κ = 0.95; p < 0.001. The SciFive model achieved F1 scores
of 0.892. All DDI sentences are provided in Supplementary Table S1.

3.2 Static network analysis

3.2.1 An analysis of static DDI networks reveals
scale-free structure, ATC category-based
assortativity, and degree-based dissortativity

Table 2 shows the structural properties of the static DDI
networks. All PK, PD, and complete DDI networks were scale-
free (2 < γ < 3), with power law exponents (γ) of 2.56, 2.77, and 2.36.
This indicates that a small number of drugs had many connections
to other drugs, while most drugs had relatively few DDIs.
Additionally, in the three networks, the ATC category-based
assortativities were positive, suggesting that drugs from the same
ATC category were more commonly investigated for DDIs than
those from different ATC categories. Moreover, all three networks
showed negative degree assortativity, meaning that few drugs were
frequently confirmed to have DDIs with a large number of other
drugs, each of which was rarely investigated to have a large number
of DDIs.

3.2.2 The average clustering coefficients reveal a
prevalence of real DDIs among neighbors in static
networks

The average clustering coefficients for the PK, PD, and complete
networks are 0.23, 0.26, and 0.29, respectively. These are
significantly higher than the clustering coefficients [0.005
(0.003–0.008), 0.007 (0.004–0.009), and 0.008 (0.006–0.011)] of
random networks generated by Erdős-Rényi algorithms with the
same number of nodes and edges. We performed 100 random
network simulations.

The larger clustering coefficients of the PK, PD, and complete
DDI networks suggest that about 30% of the potential connections
among a drug’s neighbors in the network are actual DDIs. This
means that, when examining the neighbors of a drug in the network,
there is at least a 30% chance of finding a real DDI between them.

3.2.3 Network diameter: comparing DDI static
networks to the six degrees of separation

The diameter of all three networks, ranging from 8 to 9
(Table 2), slightly exceeds the well-known six degrees of
separation observed in our world (Kleinfeld, 2002). The six
degrees of separation theory is a concept that suggests any two
people on Earth are, on average, separated by nomore than six social
connections, indicating that networks are both extensive and
interconnected. As more drugs and their DDIs are investigated

and added to the network, there may be a possibility of reducing the
diameter from its current range to 6.

3.2.4 ATC drug category E-I homophily index
indicates a higher likelihood of DDIs within the
same ATC drug category in static networks

The E-I homophily index values, which measure the degree to
which a drug forms DDIs with others in the same category, were
smaller than 1 (except for the V in the PD subnetwork) (Table 3).
This suggests a tendency for drugs to establish connections with
those belonging to the same group (homogeneous interactions).

3.2.5 Identifying ATC category pairs with the
highest likelihood of DDIs in static networks

The J-D (Antiinfectives for systemic use—Dermatologicals),
A-N (Alimentary tract and metabolism—Nervous system), and
M-N (Musculo-skeletal system—Nervous system) pairs were
significant and had the highest odds ratios in all three networks
(Table 3). Supplementary Table S2 presents all significant ATC-
ATC pairs in the static PK, PD, and complete DDI networks.

3.3 Evolving network analysis

3.3.1 Evolving power law exponent and
assortativity indicate stable scale-free structure,
ATC category-based assortativity, and degree-
based dissortativity over time

Figure 2 depicts the properties of network evolution. The power law
exponent (γ) of the PK DDI network remained stable between 2 and 3,
while in the PD and complete DDI networks, γ fluctuated until 2001 but
has stabilized between 2 and 3 since then (Figure 2A). The ATC
category-based assortativities increased over time, suggesting a growing
likelihood of DDIs among drugs within the same category (Figure 2B).
The degree assortativities declined over time, indicating an increase in
the dissortativity of the networks (Figure 2C).

3.3.2 Evolving network clustering coefficients
indicate an increasing prevalence of real DDIs
among neighbors

The average clustering coefficient gradually increased (within a
range of [0,1]) in the PK and complete DDI networks, while it
slightly decreased over time in the PD network. However, the
clustering coefficients of the PD network were consistently higher
than those in the PK and complete networks (Figure 2D). When
simulating 100 times with random networks containing the same
number of nodes and edges for each year, the average clustering
coefficients were not only low but also declined as networks
expanded. This finding suggests that DDI networks differ from
random networks and evolve towards an increased likelihood of
DDIs between neighboring drugs (Supplementary Figure S3).

3.3.3 Evolving network diameter narrows the gap
to six degrees of separation

Despite the growth in network size over time (Figures 2E, F), the
diameters, which represent the longest length of the shortest paths
between any two drugs, have experienced a slight decrease, moving
from a range of 8–9 to 7–8 (Figure 2G).
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3.3.4 Evolving node and edge counts indicate
densification power law in DDI networks

We observed growth in the size of the three networks (in terms
of node and edge counts) over the years (Figures 2E, F). The PK, PD,
and complete DDI networks exhibited a densification power law
with high densification exponents (1.84, 1.75, and 1.9, respectively),
signifying that these networks become increasingly dense as they
expand in size, thereby raising the likelihood of actual DDIs between
two drugs (Figure 3).

We observed that the A, C (Cardiovascular system), and N
categories consistently had the largest number of nodes (drugs) and
edges (DDIs) from 1987 to 2022 (Figures 4A, B). In contrast, the P
(Antiparasitic products, insecticides, and repellents) and H
(Systemic hormonal preparations, excluding sex hormones and
insulins) categories exhibited the smallest number of nodes and
edges during the same period. Notably, the number of drugs and
DDIs within the L (Antineoplastic and immunomodulating agents)

category experienced exponential growth since 2007, while the size
of all other ATC categories remained stable, exhibiting a steady
growth rate over the years.

3.3.5 Trends in ATC drug category E-I index scores
and their implications

The E-I index scores remained below 1 throughout the years
(Figure 4C). A significant decrease in the E-I index of the L category
was observed in the PD and complete DDI networks, suggesting an
increased focus on investigating DDIs within the L category, rather
than those involving drugs from L and other categories. The E-I
index score for the J category showed a marked downward trend in
the PK network. In all three networks, the E-I index scores for the C
category experienced the highest growth rate over the years,
indicating that the number of DDIs between drugs from the C
category and other categories has been increasing more rapidly than
the number of DDIs between drugs within the C category itself.

TABLE 3 Network properties at the level of ATC category in the static PK, PD, and complete DDI networks.

PK DDI network PD DDI network Complete DDI network

ATC 1st
level
code

Anatomical or
pharmacological

groups

Node Edge E-I
index

Sig.
paira
(OR)

Node Edge E-I
index

Sig.
Pair
(OR)

Node Edge E-I
index

Sig.
Pair
(OR)

A Alimentary tract and
metabolism

1,515 2,456 0.799 N (5.54) 2,495 4,596 0.797 N
(2.57)

3,118 6,354 0.801 N
(1.63)

B Blood and blood forming
organs

655 922 0.902 V (6.17) 1,369 2,096 0.846 D
(2.23)

1,661 2,788 0.857 D
(1.41)

C Cardiovascular system 1,537 2,362 0.699 B (5.1) 2,579 4,482 0.702 H
(2.11)

3,147 6,185 0.708 N
(1.22)

D Dermatologicals 688 1,007 0.904 J (5.23) 1,498 2,328 0.832 J (3.51) 1,813 3,061 0.851 J
(2.02)

G Genito urinary system and
sex hormones

453 571 0.897 H (6.57) 895 1,543 0.898 A
(1.69)

1,033 1,923 0.9

H Systemic hormonal
preparations, excluding sex
hormones and insulins

63 70 0.941 V (12.3) 118 152 0.96 B (2.1) 159 212 0.942

J Antiinfective for
systemic use

652 1,054 0.676 P (8.4) 763 1,071 0.808 D
(3.51)

1,112 2,025 0.746 S
(1.98)

L Antineoplastic and
immunomodulating agents

806 1,217 0.719 S (5.43) 1,673 3,175 0.393 P
(2.66)

1,940 4,066 0.496 P
(1.66)

M Musculo-skeletal system 332 430 0.928 N (5.39) 721 1,117 0.89 N
(2.33)

873 1,425 0.906 N
(1.7)

N Nervous system 1,665 2,209 0.66 A (5.54) 2,879 4,864 0.657 A
(2.57)

3,450 6,401 0.664 M
(1.7)

P Antiparasitic products,
insecticides, and repellents

58 68 0.875 J (8.4) 176 219 0.904 V
(3.83)

205 263 0.896 V
(2.58)

R Respiratory system 421 583 0.929 N (4.38) 807 1,239 0.887 C
(1.76)

987 1,698 0.896 A
(1.18)

S Sensory organs 875 1,463 0.895 L (5.43) 1,677 2,738 0.833 J (3.34) 1,966 3,812 0.86 P
(1.99)

V Various 133 146 0.972 H (12.3) 358 482 1 P
(3.83)

434 586 0.993 P
(2.57)

No ATC No ATC 349 408 0.95 800 1,140 0.942 990 1,463 0.944

aThe ATC-ATC, pair with the highest odds ratio and adjusted p-value <0.05.
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3.3.6 Evolving trends in the ATC category pairs with
the highest odds ratios

From the 1980s to the early 2000s, the R-P (Respiratory system -
Antiparasitic products, insecticides, and repellents) and P-S
(Antiparasitic products, insecticides, and repellents—Sensory
organs) pairs displayed the highest odds ratio in the PK DDI
network, indicating a higher likelihood of DDIs between drugs
from these categories compared to other categories. During the
same period, P-V (Antiparasitic products, insecticides, and
repellents—Various) and D-J pairs exhibited the highest odds
ratio in the PD and complete networks from 1987 to 2011
(Figure 5). From 2013 to 2018, the D-J pair had the highest odds

ratio in the PD and complete networks, while the H-V pair showed
the highest odds ratio in the PK network from 2014 to 2022.

3.4 Key influential drugs and trends in DDI
networks

3.4.1 Rifampin and Morphine: highly influential
drugs in static DDI networks

We found that rifampin ranked first in all three centralities in
the PKDDI network, while morphine exhibited the highest values in
all three centralities in the PD DDI network. In the complete DDI

FIGURE 2
Changes in the structural properties of the evolving DDI networks (PK, PD, and complete) from 1987 to 2022. (A) The graph demonstrates a stable
scale-free alpha (between 2 and 3) for the PK DDI network, while the PD and complete DDI networks show fluctuations until 2001. (B) The graph displays
a higher likelihood of DDIs among drugs in the same ATC category. (C) The graph indicates a decrease in degree assortativity. (D) The graph indicates an
increase in local clustering coefficients, especially in the PD network. (E,F) The graphs illustrate how the size of the network grows over time. (G)
Despite network growth, the diameters remained stable.
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network, rifampin had the highest degree and eigenvector centrality
values, while morphine showed the highest betweenness.

3.4.2 Cimetidine, morphine, ethanol, and rifampin:
highly influential drugs over time in evolving DDI
networks

Figure 6 displays the drugs with the highest degree, betweenness,
and eigenvector centralities for each year. In the PK DDI network
from 1987 to 2012, cimetidine demonstrated the highest degree and
eigenvector centrality, suggesting that it was extensively investigated
for DDIs with numerous other high-degree drugs. Additionally,
cimetidine exhibited high betweenness, serving as a connecting
point or bridge for various DDIs. Since 2015, rifampin has held
the highest degree, betweenness, and eigenvector centrality,
indicating its involvement in many DDIs and its interactions
with drugs that also have multiple DDIs. By contrast, morphine
maintained the highest degree and eigenvector centrality in the PD
and complete DDI networks from 1987 to 2022. Ethanol exhibited
the highest betweenness in the complete DDI network from 1987 to
2019, while in the most recent 3 years, rifampin emerged with the
highest betweenness in the complete DDI network.

3.4.3 Rifampin and fluoxetine: emerging drugs in
evolving DDI networks

In the PK and complete DDI network, rifampin exhibited the
highest growth rate across degree and betweenness centrality
measures. Meanwhile, fluoxetine showed the highest growth rate
in eigenvector centrality within the PD and complete DDI networks.

3.4.4 Declining attention on drugs in evolving
networks

The eigenvector centrality of cimetidine experienced the greatest
decrease in the PK network, while reserpine exhibited the least
increase in eigenvector centrality in the PD and complete networks
(Table 4). Supplementary Table S3 presents the rate of increase (or
decrease) for each drug’s centrality scores in the PK, PD, and
complete DDI networks.

4 Discussion

In this study, we employ NLP techniques to extract PK and
pharmacodynamic PD DDI evidence from PubMed articles,
subsequently characterizing key trends and patterns through
static and evolving network analyses. Our findings highlight the
scale-free nature of PK and PD networks, with a small number of
drugs serving as central hubs, engaging in numerous interactions
with other drugs. This observation suggests that the research has
focused on specific drugs and their interactions, which could guide
future studies to either further explore these central hubs or
investigate less-studied drugs. We demonstrate that these
networks conform to a densification power law, indicating an
exponential growth of DDIs as new drugs are introduced, and
emphasizing the increasing complexity of the DDI landscape.
Notably, our analysis reveals that drugs within PK and PD
networks predominantly belong to the same ATC categories,
with fewer interactions observed between drugs from different
categories. This insight suggests that DDIs between drugs from
distinct ATC categories might be under-explored in the existing
literature, warranting further investigation. Moreover, we identify
highly influential drugs within static and evolving DDI networks,
providing valuable information for future DDI research, clinical
practice, and potential areas of focus in drug development.

Our network analysis identified that drugs like rifampin and
morphine had high centrality measures, indicating their prominence
in DDI research. Rifampin is an antibiotic agent used for treating
tuberculosis and other bacterial infections. It is frequently
administered in conjunction with other antituberculosis drugs or
other families of drugs and has a significant potential for drug
interactions due to its well-known induction of drug metabolism
through cytochrome P450 (CYP)1A2, CYP2C8, CYP2C9,
CYP2C19, CYP3A4, and some glucuronidation pathways
(Venkatesan, 1992). It is difficult to predict which medications
will be affected by the selective enzyme-induction effect of
rifampin (Venkatesan, 1992). Morphine, on the other hand, is
the first-choice opioid for the management of cancer pain

FIGURE 3
The Densification Power Law. The number of edges is plotted against the number of nodes for the PK, PD, and complete DDI networks on a log-log
scale. All three networks exhibited a densification power law with a rapid rate of interaction growth (high densification exponents).
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according to the World Health Organization (WHO) guidelines
(Staff and Organization, 1996). The risk of DDIs is high in cancer
patients due to a large number of concomitant drugs

(Kotlinska-Lemieszek et al., 2014). In the static PD and complete
networks, the most researched DDI was morphine–naloxone. This
DDI was intensively studied between the 1980s and the early 2000s.

FIGURE 4
Changes in the size and homophily of the ATC first-level categories. (A) Change in the number of nodes. (B) Changes in the number of edges. (C)
Change in the EI-index was measured from 1987 to 2022. A drug may have multiple ATC first-level categories, or none (“No ATC”). The A, C, and N
categories were the largest, while the L category grew exponentially since 2007. E-I index scores less than 1 indicated intra-category DDIs, with the L
category’s E-I decreasing and the C category’s E-I increasing rapidly.
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Morphine is the classic opioid agonist that provides considerable
analgesia and respiratory depression (Sartain et al., 2003), while
naloxone is an opioid antagonist capable of reversing the powerful
opioid effects of morphine and inducing the opposite effect of
hyperalgesia and reversing respiratory depression (Westbrook
and Greeley, 1990). Morphine and naloxone were the most
notable opioid drugs studied in the past for pain modulation,
opioid tolerance, and opioid dependency, especially since
naloxone is considered an antidote for morphine and other
opioids (Westbrook and Greeley, 1990).

Our investigation also indicated dynamic changes in the DDI
research over time using an evolving network analysis, which the
traditional static network analysis is unable to provide. While the
PK, PD, and complete DDI networks were scale-free, they also
followed the densification power law, wherein the number of

DDIs grows faster than the number of drugs—networks become
denser over time. Despite the network size growth over time, the
average local clustering coefficient of all three networks remains
high, indicating that the DDI networks are developing small-
world network characteristics. This suggests that the drugs
studied in DDI research trends are becoming increasingly
interconnected and that the scientific community is becoming
more adept at examining and comprehending the complex
relationships between drugs. Degree assortativity has
decreased over the years, while ATC-group assortativity has
increased, suggesting that the number of connections between
drugs with a high and low degree has been increasing (decreased
degree assortativity), and the number of connections between
drugs in the same ATC categories has been increasing (increased
ATC assortativity).

FIGURE 5
The significant ATC-ATC pairs with the highest odds ratios in each year from 1987 to 2022. In the 1980s–2000s, R-P and P-S pairs in PK, and P-V and
D-J pairs in PD and complete networks had the highest odds ratios for DDIs. From2013–2018, D-J pairs in PD and complete networks andH-V pairs in PK
showed the highest odds ratios.
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Even though the A, C, and N categories still comprised the
majority of DDI research, the ATC-level analysis revealed that the
number of drugs and DDIs in the L category has increased
dramatically since 2002. This may be because combination
therapy, a treatment modality that combines two or more
therapeutic agents, is a cornerstone of cancer therapy (Bayat
Mokhtari et al., 2017). This also explains the decreasing trend in
the E-I index of the L category, which indicates that the DDIs
between drugs in the same L category have recently been

investigated. It is worth noting that the number of DDI studies
may be influenced by prescription frequency. For example,
According to Bodenreider and Rodriguez (2014), despite the fact
that the dataset was based on emergency room patients for 3 months
in 2011, the A, C, and N categories were the most commonly
prescribed drug categories, so the sheer number of DDIs found
in categories A, C, and N might be inflated due to the fact that these
drugs are more commonly prescribed, leading to more observations
and subsequent publications. However, we have found that high-

FIGURE 6
The drugs with the highest degree, betweenness, and eigenvector in PK DDI, PD DDI, and complete DDI networks in each year ranged from 1987 to
2022. The color in the cell represents the drug index. From 1987–2012, cimetidine exhibited the highest degree and eigenvector in the PK network, while
rifampin has dominated since 2015. Morphinemaintained the highest degree and eigenvectors in the PD and complete networks, with ethanol having the
highest betweenness until 2019 when rifampin surpassed it.

TABLE 4 The drugs with the highest average, as well as growth rate, in the three types of centrality (degree, betweenness, and eigenvector) over the last 5 years.

PK PD Complete

Largest increase Degree Rifampin Cisplatin Rifampin

Betweenness Rifampin Morphine Rifampin

Eigenvector Ketoconazole Fluoxetine Fluoxetine

Lowest increase (or largest decrease) Degree Chlordiazepoxide Trimethaphan Meprobamate

Betweenness Hexobarbital Oxygen Rimantadine

Eigenvector Cimetidine Reserpine Reserpine
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frequency prescribed drugs are not always investigated in DDI
research, and low-frequency prescribed drugs can also be highly
investigated for DDIs. For instance, the L category drugs were
prescribed at a very low rate, but our research showed that the
number of L category related DDI studies was very high in 2011.
Conversely, the H category drugs were frequently prescribed, but
their DDIs were rarely investigated in 2011. These findings suggest
that other factors, such as safety concerns or emerging research
interests, may play a role in driving DDI research beyond drug
prescription frequency alone.

Between 1987 to 2012, cimetidine had the highest degree,
betweenness, and eigenvector centralities in the PK DDI network,
but it was replaced by rifampin. Cimetidine has numerous drug
interactions due to its nonselective inhibition of cytochrome
P450 enzymes (Levine and Bellward, 1995). The introduction of
longer-acting H2 receptor antagonists with fewer side effects and
drug interactions has diminished the usage of cimetidine, and it is no
longer one of the most regularly used H2 receptor antagonists.
Similarly, the therapeutic applications of trimethaphan (a
vasodilator), which showed the lowest eigenvector increase in the
PK network, are extremely limited due to competition from newer
drugs with more selective actions and effects produced (Wilkins
et al., 2007).

Rimantadine demonstrated the greatest decrease in
betweenness in the complete network, which may be due to
the fact it is not recommended for use in the United States
since 2009 because of widespread antiviral resistance to this class
of antivirals among circulating flu A viruses (Bloom et al., 2010).
Colistin–meropenem was the most actively researched DDI in the
PD and complete DDI networks over the past 5 years. Numerous
studies demonstrated that the combination of different
antibiotics with colistin, such as meropenem produced
favorable results (Biancofiore et al., 2007). Recently,
researchers have questioned whether the colistin–meropenem
combination has a synergistic effect (better than monotherapy)
against bacteria (Soudeiha et al., 2017). The controversial
opinions expressed by researchers may have prompted the
recent active investigation of this DDI.

Despite its contributions, our study has several limitations. First,
although we employed the ScispaCy and SciFive models, the results
may include false positives and overlook articles due to false
negatives, as the model is not perfect. While we confirmed the
performance of the NLPmodels through manual evaluations of a set
of randomly selected DDIs, a thorough manual examination of all
DDI sentences would be necessary to improve the quality of the
results. Second, some relevant publications may have been excluded
from this study if they did not fall within the search criteria. For
instance, our conclusions are based on the assumption that all DDI
articles contained at least one sentence with at least two drug entities
in their abstracts. However, there may be DDI articles that lack such
a sentence or contain a sentence with at least two drug entities only
in the full text, and our study would not include these articles.
However, extracting DDIs from full-text articles with acceptable
performance is challenging for NLP models. Despite the existence of
advanced NLP models such as SciFive, knowledge graphs, and large
language models, their performance in extracting DDIs from full-
text articles is unknown. Furthermore, many sentences in full-text
articles describe or introduce DDIs from cited papers, which can

skew the results. Third, we acknowledge that the 5-year investigation
window size we chose to inform readers about recent DDI research
trends was arbitrary. Even though we believed that a 5-year period
could provide recent trends in DDI research because longer
timeframes could capture more historical trends and shorter
timeframes could not reveal trends adequately, the selection of a
5-year investigation window size may not fully represent the recent
DDI research trend. As a result, the recent trends in this paper
should be interpreted using the 5-year investigation window. Lastly,
the quality of DDI evidence extracted from the literature is
dependent on the quality of the original research, which may be
limited or inconsistent. This may lead to variability in the quality
and relevance of DDI evidence extracted from the literature,
potentially resulting in incomplete or biased analyses. Future
studies should focus on enhancing data quality, including the
manual curation of DDI evidence from published literature, to
develop high quality DDI networks. Incorporating the clinical
implications of DDIs into network analysis is also crucial. This
would highlight the clinical significance of these interactions,
providing insights that could be instrumental in optimizing
patient care.
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Background: Although several strategies for modelling competing events in
discrete event simulation (DES) exist, a methodological gap for the event-
specific probabilities and distributions (ESPD) approach when dealing with
censored data remains. This study defines and illustrates the ESPD strategy for
censored data.

Methods: The ESPD approach assumes that events are generated through a two-
step process. First, the type of event is selected according to some (unknown)
mixture proportions. Next, the times of occurrence of the events are sampled
from a corresponding survival distribution. Both of these steps can be modelled
based on covariates. Performance was evaluated through a simulation study,
considering sample size and levels of censoring. Additionally, an oncology-related
case study was conducted to assess the ability to produce realistic results, and to
demonstrate its implementation using both frequentist and Bayesian
frameworks in R.

Results: The simulation study showed good performance of the ESPD approach,
with accuracy decreasing as sample sizes decreased and censoring levels
increased. The average relative absolute error of the event probability (95%-
confidence interval) ranged from 0.04 (0.00; 0.10) to 0.23 (0.01; 0.66) for 60%
censoring and sample size 50, showing that increased censoring and decreased
sample size resulted in lower accuracy. The approach yielded realistic results in the
case study.

Discussion: The ESPD approach can be used to model competing events in DES
based on censored data. Further research is warranted to compare the approach
to othermodelling approaches for DES, and to evaluate its usefulness in estimating
cumulative event incidences in a broader context.
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discrete event simulation, competing risks modelling, censored data, frequentist
implementation, bayesian framework
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1 Introduction

Discrete event simulation (DES) is increasingly used to model
disease, treatment, and care delivery pathways in healthcare (Günal
and Pidd, 2017; Vazquez-Serrano et al., 2021). Given its event-based
handling of time and the ability to account for resource capacity
constraints, it is an effective and efficient individual-level (or
microsimulation) modelling technique for a range of decision
problems (Marshall et al., 2020). The increased flexibility of DES
compared to more traditional approaches, such as state-transition
modelling, also implies that certain decisions regarding the model
structure and methodologies used may not necessarily be applicable
to such traditional approaches and adjustments must be made when
implementing such a dynamic model (Karnon et al., 2012).

Competing risks or events are common in healthcare and
clinical studies (Pintilie, 2006; Koller et al., 2012; Coemans et al.,
2022) and refer to a situation where there are multiple possible
outcomes that can occur, and the occurrence of one outcome
precludes the occurrence of the others or changes their
likelihood. One of the advantages of DES is the ability to
implement competing risks using different approaches (Barton
et al., 2004; Karnon et al., 2012). In implementing decision-
analytic models, every transition in the model pathway typically
involves competing events. More specifically, if it is possible to move
to more than one model state from a certain state, the transitions to
these subsequent states are competing risks. For example, for a
model structure commonly used in oncology defined by three health
states (i.e., disease free, recurrence, and death), the possible
transitions to the recurrence or death state from the disease-free
state are competing risks. Similarly, in a model of patient flows in an
emergency department, discharging a patient after triaging by a
nurse may be a competing event relative to the patient being referred
to an emergency doctor for further investigations.

The ability to model competing risks using different strategies
allows the modeler to select the approach that best suits the available
evidence and context (Caro and Möller, 2014). Each strategy
necessitates defining a data analysis framework and the required
simulation steps, collectively referred to as a modelling approach. In
terms of competing risks, two broad approaches to time-to-event
estimation are commonly used. When considering competing risks,
there are two broad approaches to time-to-event estimation (Barton
et al., 2004). The first calculates individual time estimates for each
potential subsequent event and proceeds based on which event is
predicted to occur earliest. The second approach also generates an
overall time estimate for the next event but employs an additional
sampling process to identify the specific type of event likely to
happen. Importantly, the likelihood of each event type occurring can
be influenced by this initially sampled time-to-event.

These approaches can be broadly categorised into specific
modelling strategies (Barton et al., 2004; Degeling et al., 2019;
Degeling et al., 2022).

1. Strategy 1—Event-Specific Distributions (ESD): it involves
sampling times to each event and simulating the first event to
occur. It uses event-specific distributions to sample time-to-event
for each competing event and then selects the earliest to simulate.

2. Strategy 2—Event-Specific Probabilities and Distributions
(ESPD): the event type is sampled first based on specific

probabilities, followed by sampling the time-to-event from the
corresponding distribution. The resulting model is a mixture of
event-specific time-to-event distributions, weighted by their
probabilities.

3. Strategy 3—Unimodal and Multimodal Distribution and
Regression (UDR & MDR): the time-to-event is sampled first,
using either a unimodal or multimodal distribution. It then
employs a regression model to determine the specific event
that corresponds to the sampled time.

4. Strategy 4–using discrete time cycles with transition probabilities:
it operates in discrete time cycles and uses transition probabilities
for state changes. This strategy resembles a discrete-time state-
transition model (Siebert et al., 2012) more than a traditional
DES. While it can be useful in certain contexts, it sacrifices the
continuous-time advantages and complex event dependencies
that DES is designed to capture.

Previous research has focused on the ESD, ESPD, UDR, and
MDR modelling strategies in the context of uncensored individual
patient data (Degeling et al., 2019), demonstrating that accuracy
depended on the number of competing events, overlap of time-to-
event distributions for the competing events, and sample size. While
these studies have shown that the ESPD approach performs well and
is straightforward to implement for uncensored data (Degeling et al.,
2019), there is a methodological gap when it comes to censored data,
which is a common challenge in long-term studies and real-world
settings. The impact of data censoring on model accuracy has been
examined for the ESD and UDR approaches (Degeling et al., 2022),
but no framework currently exists for implementing the ESPD
approach in the presence of censoring.

The primary objective of this study is to adapt the ESPD
approach for handling censored data, which will offer several
advantages. Firstly, the ESPD approach has proven to be
effective and straightforward for uncensored data (Degeling
et al., 2019), yet its application is limited by the lack of a
framework to handle censored data. Given the commonality of
censored data in long-term and real-world studies, our study could
significantly expand the method’s applicability. Secondly, while
existing methods like ESD and UDR have frameworks to deal with
censored data, they do not offer the same advantages as the ESPD
in terms of ease of implementation and effective uncertainty
estimation around time-to-event parameters. Addressing this
limitation involves tackling technical challenges, one of which is
the current absence of a well-defined likelihood function tailored
for the ESPD approach in censored data scenarios, a gap that our
study aims to fill.

By addressing this methodological gap, we provide a more
versatile toolset for analysts in this field. On the practical side,
we offer implementations of this adapted ESPD approach in both
Bayesian and frequentist methods using R, thereby catering to a wide
range of statistical preferences and needs. The paper is structured to
provide comprehensive evidence for the tailored ESPD approach.
We start by defining the ESPD approach in the methods section,
followed by a simulation study for accuracy assessment. To
demonstrate its utility in real-world scenarios, a case study is
included for illustration. The paper concludes with a general
discussion that synthesises our findings and outlines directions
for future research.
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2 Methods

We follow standard notation for survival analyses, where T is the
event time or censoring time, a continuous random variable that is
distributed according to a particular probability density function
f(t), with cumulative distribution function 1) F(t) and survival
function 2) S(t) defined as:

F t( ) � P T ≤ t( ) � ∫t

0
f x( )dx (1)

S t( ) � P T > t( ) � 1 − F t( ) � ∫∞

t
f x( )dx (2)

Furthermore, let K � 1, . . . , k be the index set for k mutually
exclusive independent competing events and let Cj be the event
indicator which shows whether person i, i � 1, . . . , n experienced
event j, j � 1, . . . , k, or not. For notational simplicity we encode our
events with the vector c, i.e., if competing event j is experienced,
then cj � 1, ci,i≠j � 0.

Building on 1) and 2), we introduce the ESPD strategy. It offers a
two-step procedure for generating events in a competing risk
scenario. First, the type of event is selected based on some
(unknown) mixture proportions. Second, the time of occurrence
for the chosen event is sampled from a corresponding survival
distribution (e.g., Weibull, Gompertz, etc.). Effectively, this results in
times that are a mixture of m distributions, where m � k aligns
naturally with the k mutually exclusive independent competing
events described in the survival analysis framework. Additionally,
we allow both the mixture proportions and the survival distributions
to depend on covariates X, such as age, disease stage, etc., thereby
making the final model a multivariable mixture model.

To successfully implement the ESPD strategy in the context of
censored data, the next step is to define a robust likelihood function.
Unlike other methods like ESD or UDR, where frameworks for
handling censored data are already established, the ESPD strategy
lacks such a framework. As a result, our study introduces a tailored
likelihood function, to allow for more accurate and reliable
parameter estimation. This involves parameterising two critical
components: the mixture proportions or event risks i) and the
time-to-event distributions ii).

The first component involves modeling the type of event i).
Specifically, we employ a multinomial distribution with event
probabilities π � (π1, . . . , πk), such that ∑k

j�1πj �1. To allow
mixture proportions π to depend on some vector of covariates
Xπ , a linear relationship is assumed. The model for mixture
proportions is constructed using the sof tmax function, which
takes as input the product of the vector of covariates Xπ , and a
vector of coefficients βπ . We model it as follows:

π � sof tmax βπXπ( ) (3)
The relationship between event probabilities and covariates is

expressed by the sof tmax Eq 3. It serves to map the linear
combination of predictor variables to a probability set that always
sums up to 1. By ensuring this, the function guarantees a positive
probability distribution. These probabilities are subsequently used to
estimate the mixture proportions or event risks.

The linear combination of the covariates (known from the data)
and their coefficients (to be estimated) creates a score (or logit) for

each event, which can be represented as z � βπXπ . If we consider
two competing risks and two covariates, our score vector can be
detailed as z � [z1, z2], where z1 represents the score for the first
event (e.g., recurrence) and z2 is for the second event (e.g., death).

Further, the transformation using the sof tmax function for a

given score xi in a vector x can be given by σ(xi) � exi∑L

j�1e
xj
, where, L

corresponds to the total number of events, and e is the base of the
natural logarithm.

When the transformation is applied to the score vector z, the
resulting probabilities for the two events are π1 � ez1

ez1+ez2 and
π2 � ez2

ez1+ez2 . Within this context, π1 gives the probability of the
occurrence of the first event, while π2 provides the probability for the
second event.

For the second component ii), conditioned on the occurrence of
a specific event j, a particular survival function Sj(t, θj) is used to
model the time-to-event distribution 4):

P T > t
∣∣∣∣cj � 1( ) � Sj t, θj( ) � ∫∞

t
f j s, θj( )ds (4)

Different risks may have different distributions and the
parameter vectors for these distributions θj, j � 1, . . . , k can
incorporate dependence on (potentially risk-specific) covariates
as well.

For non-censored data 5), the probability of observing an event
of type j (cj � 1) at time t is:

P t
∣∣∣∣cj � 1( ) � πjf j t, θj( ) (5)

While for censored data 6), since no event is observed(∑k
j�0cj � 0), we know that whichever event got selected, the

corresponding “failure” occurred after the end of the experiment.
In other words, no event has occurred yet:

P t

∣∣∣∣∣∣∣∣∣∣∑
k

j�0
cj � 0⎛⎝ ⎞⎠ �∑k

j�1
πjSj t, θj( ) (6)

Ignoring covariates for simplicity, the combined likelihood (for
k competing risks) can be written as follows:

P t, c π, θ|( ) �∏k
j�1

πjf j t, θj( )[ ]cj︸�������︷︷�������︸
A

× ∑k

j�1πjSj t, θj( ){ }1−∑k

i�1ci⎡⎢⎣ ⎤⎥⎦
︸�����������︷︷�����������︸

B

(7)
Here, term in A applies if an event is observed, i.e., cj � 1 for

some j, while B will become 1 since 1∑k

j�1cj�0
� 0). If no event is

observed, i.e., ∑k
j�0cj � 0, only B will contribute.

In Eq 7, we presented the combined likelihood for handling an
arbitrary number k of competing risks. When covariates are involved
in the analysis, they would generally be incorporated into both π and
θ, so that each parameter can be parameterised with covariates.

Considering that many practical applications consider two
competing risks, k � 2, we also provide the simplified likelihood
function 8) for such case. The incorporation of covariates to the
likelihood function 8) is implemented in the accompanying R code
for both frequentist and Bayesian analyses.
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P t, c|π, θ( ) � π1f 1 t, θ1( )( )c1 × π2f 2 t, θ2( )( )c2
× π1S1 t, θ1( ) + π2S2 t, θ2( )( )1−c1−c2 (8)

When considering the two competing risks setting based on Eq 8,
there would be seven parameters to be estimated. These parameters,
encompassing coefficients in our expression for π, as well as associated
shapes and scales, are intrinsically linked to the observables t (time)
and c (event type). The latter are observations found in the study
dataset, while the parameters are to be estimated from the dataset. Our
goal is to determine the best-fit parameters that align with the
observed data. This entails solving an optimization problem to
obtain the maximum likelihood estimates from the dataset.

3 Results

3.1 Simulation study

A simulation study was performed to verify the accuracy and
performance of the ESPDmodelling approach. All files related to the
simulation study can be accessed on GitHub: https://github.com/
koendegeling/CompetingEvents_ESPD.

The considered hypothetical scenario included k � 2 competing
risks: recurrence (recur) and death before recurrence (death), and we
opted for parameter values that are consistent with practical, real-
world data, particularly in the oncology setting. The chosen
coefficients were selected to reflect realistic relationships between
disease stage and time-to-event risks, providing a credible
foundation for our model. Simulated patients had equal
probabilities of being diagnosed at disease stage IA, IB, or II, and
their age was normally distributed, with mean 60 years and a
standard deviation of 5 (normalised to mean 0). The true
parameter values used to simulate the population were:

log
πrecur

1 − πrecur
( ) � −0.4 + 0.4 stageIB + 0.8 stageII

Frecur t|θrecur( ) � Weibull t, θshaperecur � exp 0.7( ), θscalerecur(
� exp 2 − 0.2 stageIB − 0.6 stageII( ))

Fdeath t|θdeath( ) � Gompertz t, θshapedeath � 0.1, θratedeath(
� exp −3.5 + 0.1 age( ))

Based on these true parameters, a population (spop) of nsim �
1, 000, 000 individuals was simulated. Subsequently, the performance
of the ESPD approach was assessed for a range of scenarios defined by
the proportion of censored observations (pcensored � 0.0, 0.1, 0.3, 0.6)
and various sample sizes (nsample � 50, 100, 200, 500) using the
following procedure:

• For all combinations of pcensored and nsample:
• For nrun � 10, 000 iterations:
• Drawasample suncensored frompopulation spop according tonsample

• Censor sample suncensored according to pcensored to obtain
sample scensored

• Analyse scensored according to the ESPD approach
• Based on the estimated parameters, simulate a new sample ssim
of size nsim

• Assess the performance by comparing the outcomes of ssim to
the population spop

Censoring was performed through an independent process where
censoring times were sampled from an exponential distribution
defined by a censoring rate. If the sampled censoring time was
lower than that of the event, the observation was censored at the
censoring time. The censoring rate was increased incrementally until
the required proportion of censored observations was achieved.

Further, the performance of the approach was assessed in terms
of the probability of recurrence, as well as the mean and distribution
of the time-to-recurrence and time-to-death. The performance of
the event probability and mean time-to-events was quantified using
a range of error measures, for which lower values corresponds to a
better performance.

• Error (E) or bias: E � sim − pop
• Absolute error (AE): AE � |sim − pop|
• Relative error (RE): RE � sim−pop

pop

• Relative absolute error (RAE): RAE � |sim−pop|
pop

In which pop refers to the simulated population of individuals
with aforementioned characteristics, which is simulated based on
the true parameter values, while sim refers to the simulations based
on the parameter values as estimated by the ESPD approach.

Lastly, considering these measures do not consider the variance
and spread of the distributions of the time-to-events, we also
quantified the performance of these distributions by the Kullback-
Leibler divergence (KLD), or relative entropy, which is widely used to
assess the likeliness of distributions (Kullback and Leibler, 1951):

KLD f pop t( )
∣∣∣∣∣f sim t( )( )�∫∞

0
f pop x( )log f pop x( )

f sim x( )( )dx
�∫∞

0
f pop x( )× log f pop x( )( )− log f sim x( )( )( )dx

The KLD is a measure of the distance between probability
distributions. In general, the smaller the value of KLD, the closer
the simulated distribution is to the true population distribution, and
the better the model is at representing the data (Cover, 1999). Thus,
a smaller KLD indicates a better fit between the simulated and the
true distributions, whereas a larger KLD indicates a worse fit.

Given that none of the performance measures considers second-
order uncertainty and given that the frequentist implementation is
more computationally efficient in obtaining point-estimates compared
to the Bayesian implementation, the former was used in the simulation
study. Although the Bayesian implementation is illustrated for the case
study, a formal comparison of the two implementations in the
simulation study was beyond the scope of this study.

Overall, the ESPD approach performed well. We observed that
higher proportions of censoring and lower sample sizes both negatively
impacted the accuracy of the approach across all performance
measures. All results of the simulation study are available in Table 1.

Regarding the event probability, on average, there was no error
in the E or RE up to 30% censoring. For 60% censoring, the RE
ranged from −0.02 (95% confidence interval: 0.16; 0.13) for sample
size 500, to 0.05 (−0.44; 0.66) for size 50. The average RAE ranged
from 0.04 (0.00; 0.10) for multiple scenarios, to 0.23 (0.01; 0.66) for
60% censoring and size 50.

For the mean time-to-event, similar as for the event
probability, on average there was basically no error in the E or
RE up to 30% censoring. For 60% censoring, unrealistic results
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TABLE 1 Simulation study results, based on varying degree of censoring (Prop censor), and different sample size (Size). E: error (bias); AE: absolute error; Prob: probability; Prop: proportion; RE: relative error; RAE: relative
absolute error; TTR: time-to-recurrence; TTD: time-to-death.

Prop
censor

Size Prob
TTR.E

Prob
TTR.AE

Prob
TTR.RE

Prob
TTR.RAE

Mean
TTR.E

Mean
TTR.AE

Mean
TTR.RE

Mean
TTR.RAE

Mean
TTD.E

Mean
TTD.AE

Mean
TTD.RE

Mean
TTD.RAE

TTR.KLD TTD.KLD

0 50 0.00
(−0.14; 0.14)

0.06
(0.00; 0.16)

0.00
(−0.28; 0.28)

0.11
(0.00; 0.32)

−0.01
(−1.11; 1.16)

0.46
(0.02; 1.29)

0.00
(−0.22; 0.23)

0.09
(0.00; 0.26)

0.03
(−2.71; 2.86)

1.13
(0.04; 3.19)

0.00
(−0.22; 0.23)

0.09
(0.00; 0.26)

0.07
(0.01; 0.24)

0.07
(0.02; 0.23)

0 100 0.00
(−0.10; 0.10)

0.04
(0.00; 0.11)

0.00
(−0.20; 0.19)

0.08
(0.00; 0.23)

−0.01
(−0.79; 0.81)

0.32
(0.01; 0.91)

0.00
(−0.16; 0.16)

0.06
(0.00; 0.18)

0.01
(−1.95; 1.99)

0.79
(0.03; 2.23)

0.00
(−0.16; 0.16)

0.06
(0.00; 0.18)

0.04
(0.01; 0.13)

0.05
(0.02; 0.11)

0 200 0.00
(−0.07; 0.07)

0.03
(0.00; 0.08)

0.00
(−0.14; 0.14)

0.06
(0.00; 0.16)

0.00
(−0.55; 0.56)

0.22
(0.01; 0.63)

0.00
(−0.11; 0.11)

0.04
(0.00; 0.13)

0.00
(−1.39; 1.39)

0.57
(0.02; 1.59)

0.00
(−0.11; 0.11)

0.05
(0.00; 0.13)

0.03
(0.01; 0.08)

0.04
(0.02; 0.07)

0 500 0.00
(−0.04; 0.04)

0.02
(0.00; 0.05)

0.00
(−0.09; 0.09)

0.04
(0.00; 0.10)

0.00
(−0.34; 0.35)

0.14
(0.01; 0.39)

0.00
(−0.07; 0.07)

0.03
(0.00; 0.08)

0.01
(−0.86; 0.86)

0.35
(0.01; 0.98)

0.00
(−0.07; 0.07)

0.03
(0.00; 0.08)

0.03
(0.01; 0.05)

0.03
(0.02; 0.05)

0.1 50 0.00
(−0.15; 0.15)

0.06
(0.00; 0.17)

0.00
(−0.30; 0.29)

0.12
(0.00; 0.34)

0.01
(−1.17; 1.35)

0.51
(0.02; 1.46)

0.00
(−0.24; 0.27)

0.10
(0.00; 0.29)

0.06
(−2.91; 3.10)

1.22
(0.05; 3.48)

0.00
(−0.23; 0.25)

0.10
(0.00; 0.28)

0.08
(0.01; 0.29)

0.08
(0.02; 0.29)

0.1 100 0.00
(−0.10; 0.10)

0.04
(0.00; 0.12)

0.00
(−0.21; 0.20)

0.08
(0.00; 0.24)

0.00
(−0.83; 0.86)

0.34
(0.01; 0.97)

0.00
(−0.17; 0.17)

0.07
(0.00; 0.20)

0.02
(−2.06; 2.08)

0.85
(0.03; 2.40)

0.00
(−0.17; 0.17)

0.07
(0.00; 0.19)

0.05
(0.01; 0.14)

0.05
(0.02; 0.14)

0.1 200 0.00
(−0.07; 0.07)

0.03
(0.00; 0.08)

0.00
(−0.14; 0.14)

0.06
(0.00; 0.16)

0.00
(−0.58; 0.59)

0.24
(0.01; 0.68)

0.00
(−0.12; 0.12)

0.05
(0.00; 0.14)

0.01
(−1.48; 1.47)

0.60
(0.02; 1.70)

0.00
(−0.12; 0.12)

0.05
(0.00; 0.14)

0.03
(0.01; 0.08)

0.04
(0.02; 0.08)

0.1 500 0.00
(−0.05; 0.04)

0.02
(0.00; 0.05)

0.00
(−0.09; 0.09)

0.04
(0.00; 0.10)

0.00
(−0.36; 0.37)

0.15
(0.01; 0.41)

0.00
(−0.07; 0.07)

0.03
(0.00; 0.08)

0.02
(−0.90; 0.94)

0.37
(0.01; 1.04)

0.00
(−0.07; 0.08)

0.03
(0.00; 0.08)

0.03
(0.01; 0.05)

0.03
(0.02; 0.05)

0.3 50 0.00
(−0.16; 0.18)

0.07
(0.00; 0.20)

0.00
(−0.33; 0.36)

0.14
(0.01; 0.40)

0.38
(−1.35; 2.99)

0.94
(0.03; 2.99)

0.08
(−0.27; 0.60)

0.19
(0.01; 0.60)

0.08
(−3.98; 4.11)

1.59
(0.05; 4.78)

0.01
(−0.32; 0.33)

0.13
(0.00; 0.38)

0.12
(0.01; 0.45)

0.15
(0.03; 0.76)

0.3 100 0.00
(−0.12; 0.12)

0.05
(0.00; 0.13)

0.00
(−0.23; 0.23)

0.09
(0.00; 0.27)

0.02
(−0.95; 1.17)

0.42
(0.02; 1.23)

0.00
(−0.19; 0.23)

0.08
(0.00; 0.25)

0.06
(−2.43; 2.67)

1.03
(0.04; 2.94)

0.00
(−0.20; 0.22)

0.08
(0.00; 0.24)

0.06
(0.01; 0.19)

0.07
(0.02; 0.24)

0.3 200 0.00
(−0.08; 0.08)

0.03
(0.00; 0.09)

−0.01
(−0.16; 0.15)

0.06
(0.00; 0.18)

−0.01
(−0.68; 0.71)

0.28
(0.01; 0.78)

0.00
(−0.14; 0.14)

0.06
(0.00; 0.16)

0.11
(−1.58; 1.79)

0.69
(0.03; 1.95)

0.01
(−0.13; 0.14)

0.06
(0.00; 0.16)

0.04
(0.01; 0.10)

0.05
(0.02; 0.10)

0.3 500 0.00
(−0.05; 0.05)

0.02
(0.00; 0.06)

0.00
(−0.10; 0.10)

0.04
(0.00; 0.12)

0.00
(−0.42; 0.43)

0.17
(0.01; 0.49)

0.00
(−0.08; 0.09)

0.03
(0.00; 0.10)

0.07
(−0.99; 1.13)

0.43
(0.02; 1.21)

0.01
(−0.08; 0.09)

0.03
(0.00; 0.10)

0.03
(0.01; 0.06)

0.04
(0.02; 0.06)

0.6 50 0.02
(−0.22; 0.33)

0.11
(0.01; 0.33)

0.05
(−0.44; 0.66)

0.23
(0.01; 0.66)

3050.09
(−1.76; 24.99)

3050.68 (0.05;
24.99)

612.99
(−0.35; 5.02)

613.10
(0.01; 5.02)

−0.15
(−7.55; 9.81)

3.11 (0.11;
10.21)

−0.01
(−0.61; 0.79)

0.25
(0.01; 0.82)

0.26
(0.02; 1.00)

0.49
(0.03; 2.97)

0.6 100 0.00
(−0.17; 0.24)

0.08
(0.00; 0.24)

−0.01
(−0.34; 0.48)

0.16
(0.01; 0.49)

1.15
(−1.36; 5.45)

1.70
(0.03; 5.45)

0.23
(−0.27; 1.09)

0.34
(0.01; 1.09)

0.44
(−5.56; 6.83)

2.21
(0.08; 7.47)

0.04
(−0.45; 0.55)

0.18
(0.01; 0.60)

0.14
(0.01; 0.45)

0.23
(0.03; 1.52)

0.6 200 −0.02
(−0.13; 0.12)

0.05
(0.00; 0.14)

−0.03
(−0.25; 0.24)

0.10
(0.00; 0.29)

0.18
(−1.00; 2.42)

0.61
(0.02; 2.42)

0.04
(−0.20; 0.49)

0.12
(0.00; 0.49)

0.73
(−2.75; 5.34)

1.57
(0.06; 5.51)

0.06
(−0.22; 0.43)

0.13
(0.00; 0.44)

0.07
(0.01; 0.25)

0.10
(0.02; 0.41)

0.6 500 −0.01
(−0.08; 0.06)

0.03
(0.00; 0.08)

−0.02
(−0.16; 0.13)

0.06
(0.00; 0.17)

0.02
(−0.64; 0.78)

0.29
(0.01; 0.82)

0.00
(−0.13; 0.16)

0.06
(0.00; 0.17)

0.40
(−1.44; 2.53)

0.85
(0.03; 2.55)

0.03
(−0.12; 0.20)

0.07
(0.00; 0.21)

0.04
(0.01; 0.09)

0.05
(0.02; 0.14)
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were obtained for sample size 50. Other than that, for 60%
censoring, the average RE ranged from 0.00 (−0.13; 0.16) for
time-to-recurrence and size 500, to 0.23 (−0.27; 1.09) for time-
to-recurrence and size 100. Excluding the scenario of 60%
censoring and size 50, the average RAE ranged from 0.03 (0.00;
0.08) for multiple scenarios, to 0.34 (0.01; 1.09) for time-to-
recurrence under 60% censoring and for size 100.

In terms of the KLD, similar trends were observed. The KLD
ranged from 0.03 (0.01; 0.05) for multiple scenarios, to 0.49 (0.03;
2.97) for time-to-death for the scenario of 60% censoring and size
50. As the KLD values were relatively close to 0 for most scenarios,
this suggested that the ESPD model performed well in
approximating the true population distribution of time-to-events.
However, for the scenario with 60% censoring and sample size 50,
the KLD value for time-to-death was relatively larger than 0.1 and
higher compared to other scenarios, thus suggesting that the model
did not fit the data as well, which is a similar pattern observed with
alternative modelling strategies.

3.2 Case study

The overall aim of the case study is to provide users with an
understanding of the steps involved in implementing the ESPD
strategy in a simple example in R. This is provided for both
frequentist and Bayesian frameworks and considering Weibull
distribution only, for simplicity. In this section, we describe key
steps towards the ESPD Weibull implementation as an illustration,
and advice the reader to refer to the publicly available scripts for a
full description and detailed step-by-step implementation of the
strategy. Finally, so that users can fully apply the ESPD approach, we
also provide a custom R function that allows for fitting various
distributions, including other than Weibull, together with visual fits
and Akaike Information Criterion (AIC) scores. These files are also
accessible on the listed GitHub repository.

We use a publicly available dataset melanoma, available from the
boot package in R (Hinkley and Anthony, 1997; Ripley and Angelo,

2022). Themelanoma dataset was originally analysed by Andersen et al.
(1993) and consists of measurements made on patients with malignant
melanoma, which all had their tumour removed by surgery inDenmark
from 1962 to 1977 (Andersen et al., 1993). Several covariates are
available, as summarised in Table 2. In terms of outcomes, we
consider the following patient status: deceased, disease recurrence,
and alive without disease recurrence (i.e., censored).

In estimating the probability of recurrence and distributions of
the time-to-recurrence and time-to-death, we assume that.

• The mixture proportions are modelled based on covariates
age, sex, ulceration status, and tumour thickness,

• Weibull distributions are appropriate for the time-to-event
distributions, assuming a single shape parameter across all
groups, where the scale parameter is modelled based on the
same covariates as the mixture proportions.

3.2.1 Frequentist implementation
The first step is to define the log-likelihood function in R. The

step_by_step_frequentist notebook provides a thorough step-by-step
implementation of the log-likelihood from its simplest version to
incorporating censoring, followed by adding covariates, and finally
to considering two competing risks. We highly recommend users
who are unfamiliar with these concepts to go through the R code and
different steps in the notebook.

Box 1 defines the function in its complete form, which returns
the log-likelihood for a set of parameters given the data.

BOX 1 Definition of the log-likelihood function, incorporating the
competing events and covariates.

Here, vector t contains the event or censoring times, vector e
contains the event data (possible values: recur for disease
recurrence, death for deceased patients, or cens for censored
patients), and X is the covariance matrix. Furthermore, coefs

TABLE 2 Summary of the data used from the publicly available melanoma
dataset.

Variable N = 205 [n (%); median (IQR)]

Demographics

Sex (male) 79 (39%)

Diagnosis age (years) 54 (42, 65)

Tumour thickness (mm) 1.94 (0.97, 3.56)

Ulcerated tumour 90 (44%)

Outcomes

Time to last status assessment (years) 5.5 (4.2, 8.3)

Patient status

Deceased 57 (28%)

Recurred 134 (65%)

Censored 14 (6.8%)
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represents the vector of coefficients that are to be estimated, which
need to be defined through a single vector for most optimisation
functions. Therefore, the first step in the function is to extract the
coefficients for the different parameters from the coefs vector. For
each parameter that is modelled based on the 4 covariates, there are
5 coefficients: 1 for the intercept and one for each covariate. For the
shape parameters that are not modelled based on covariates, there
simply is one coefficient. Subsequently, the coefficients are
transformed into the parameters for the mixture distribution.
Transformations are required because the mixture proportions π

are modelled as a logistic regression model and the resulting log-
odds need to be transformed to probabilities. Similarly, the shape
and scale parameters of the Weibull distributions need to be non-
negative and are, therefore, typically modelled using coefficients that
are log-transformed. That way, the coefficients can have any
negative or positive value in the optimization process, whilst the
corresponding parameters will be non-negative. In R, the %*%
operator is used for matrix multiplications. This is used in the
code to apply covariate matrix X to the coefficients, resulting in
vectors of patient-specific parameter values, such as p recur,
shape recur, etc. For readability of the code, the log-likelihood is
obtained in 3 separate steps, one for each of the possible events.

The next step is to apply the ll_weibull_mix_cov function to the
data to find the optimal coefficients by maximizing the likelihood
function. For this we use the maxLik function of the maxLik package
(Henningsen et al., 2010), which was developed with this exact
objective in mind, and which conveniently returns the variance-
covariance matrix together with the coefficient estimates. In this
function, we need to specify the log-likelihood function, start values
for the coefficients, and any arguments that need to be passed on to
the function, which are t, e, and X in this case. Because we optimize
the function defined by coefficients and not the parameters on real
scale, we can simply specify a zero as the starting value for each
parameter. Once the optimization is performed, point estimates for
the coefficient values can be extracted from the optimization object.
This process is illustrated in Box 2.

BOX 2 Performing the maximisation of the likelihood function and
extracting the results.

Although this step-by-step implementation in R is relatively
straightforward, a general function that can be used to apply the
ESPD approach for modelling two competing events has been made

available with the tutorial on GitHub. The function is available in the
script ESPD_frequentist.R, providing all the functionality one may
require, such as allowing for different parametric families of
distributions for individual risks. Further information is available
in the corresponding script.

3.2.2 Bayesian implementation
The Bayesian implementation is fully detailed in the notebook

case_study_bayesian.Rmd, together with the Stan model weibull_
mix_cov.stan on GitHub. Stan is a probabilistic programming
language for specifying statistical models, providing full Bayesian
inference, approximate Bayesian inference and penalised maximum
likelihood estimation with optimisation (Team, 2023). In R, Stan can
be called through various libraries and in this implementation, we
use CmdStanR (Češnovar, 2022), which does not interface directly
with C++ and is thus user friendly for beginners. In Stan, a typical
simulation is a two-step process, by which we first fit the model on
existing data to obtain posterior estimates of all parameters, and
then sample from the resulting distribution to obtain a synthetic
dataset.

The Bayesian implementation inherently captures parameter
uncertainty in a principled manner through posterior distributions.
These distributions can be used directly to inform parameter values
in a probabilistic analysis of the simulation model (Briggs et al.,
2012).

3.2.3 Case study results
In this section, we highlight the application and interpretation of

Bayesian implementation outcomes. Though the conclusions are
applicable to the frequentist case, we believe this example presents
an educational opportunity for readers to compare optimisation
(Box 2) results in R. This demonstration’s objective is less about
unearthing groundbreaking findings and more about illuminating
the nuances of a practical implementation.

Our discussion focuses on Figure 1; Table 3. In Figure 1, the
posterior distribution of various model parameters is displayed. On the
x-axis, we see the parameter values, and the y-axis portrays their
density. These parameters are part of the Bayesian ESPD model for
competing risks, which uses Weibull distributions. Each event, be it
recurrence or death, has its parameters estimated individually. In these
plots, the parameters alpha (α) andmu (μ) are prominent, serving as the
fundamental shape and scale components of the Weibull distribution.
In contrast, beta (β) encompasses the regression coefficients tied to the
model’s covariates, and the pi (π) parameter defines coefficients for the
mixture proportions derived from the covariates.

By analysing the coefficients for both risks side-by-side, we
aimed to derive an intuitive understanding of their implications.
The relationship between these variables and event types can be
observed through their respective coefficient values. Specifically, the
magnitude and direction of their coefficient values in the model offer
insights into their relationships with the event types. A higher
coefficient value for a variable suggests a stronger association
with the outcome.

A particularly relevant observation from Figure 1 is the mixing
proportion intercept (πint) with its mean value hovering
around −1.5, indicating a higher likelihood of recurrence as
opposed to death. Figure 1 also underscores that ulceration and
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thickness are pivotal factors influencing the outcomes, which can be
seen based on the β coefficients. These coefficients depict how
changes in ulceration and thickness are associated with changes
in the hazard of the events. Furthermore, by examining the π
coefficients for these covariates, we can glean insights into their
influence on the likelihood of one event type over another, such as
recurrence versus death.

Examining the Weibull parameters (α and μ), we conclude that
the mean death time is shorter than the recurrence time. For a
complete view of the distribution, we suggest readers to simulate
times for death and recurrence based on mean Weibull parameters
with zero covariate effects and plotting a histogram. This can be
accomplished using the rweibull_cov function fromGitHub. Finally,
the likelihood of recurrence increases with the observation period
length.

In Table 3, we present the probabilities of recurrence for
censored individuals from the melanoma dataset, as sampled
from the Bayesian posterior distribution. Recurrence is frequently
the more probable outcome. The primary covariates influencing
both the event type and its timing are ulceration and thickness,
reflecting findings from Figure 1. Patients with a tumour thickness
significantly above the mean exhibit a heightened risk of death
before recurrence, indicating that thickness may be an indication of
melanoma severity.

4 Discussion

Competing risks data are common in medical research that aims
to investigate an outcome of interest and, hence, decision-analytic
models of healthcare pathways commonly include multiple
competing events. For example, in oncology, recurrence is a
competing risk to death prior to recurrence, which is typically
modelled based on background mortality. Here, we addressed a
methodological gap by defining and illustrating a modelling
approach for implementing the ‘event first, time second’ strategy
for modelling competing events in DES when the parameters are to
be estimated based on censored data. The resulting ESPD modelling
approach was mathematically defined for any number of competing
risks in Eqs 7, 8, and implementations in both the frequentist and
Bayesian framework were provided for two competing risks,
including when considering covariates. Finally, the approach was
evaluated in a simulation study and illustrated in a case study for
which the corresponding R code has been made available with this
manuscript.

The results of the simulation study indicate that the frequentist
implementation of the ESPD approach performs well under various
degrees of censoring and sample sizes. However, its accuracy
diminishes with decreasing sample sizes and increasing levels of
censoring (Table 1). These results are consistent with past studies on
implementing competing events in DES with uncensored and
censored data using alternative strategies (Degeling et al., 2019;
Degeling et al., 2022). Our findings reiterate the importance for
modellers to recognise that datasets characterised by high censoring
levels and small sample sizes might render the ESPD approach less
reliable for simulations, which also holds for other methods
previously investigated (Degeling et al., 2019). Although a formal
comparison of the frequentist and Bayesian implementations was

beyond the scope of the simulation study, the case study
demonstrated that both implementations yielded comparable and
realistic results. Further research may compare the frequentist and
Bayesian implementations more systematically to identify whether
either may be preferable in certain scenarios. Significantly, our study
introduces an additional method to the existing techniques for
addressing censoring, filling the gap where no method was
previously delineated for such censoring.

Further research is also warranted to quantitatively compare the
performance of the ESPD to previously defined modelling
approaches for implementing competing events in DES based on
censored data (Degeling et al., 2022), in line with previous work
focused on uncensored data (Degeling et al., 2019). This would also
inform selection between the different modelling approaches. Such
guidance is already available for the ESD, ESPD, UDR and MDR
approaches for scenarios in which they are informed by uncensored
data, as well as for the ESD and UDR approaches when informed by
censored data. Based on the previous work for uncensored data and
the results of our simulation study, we expect that the ESPD
approach will have good accuracy and be relatively
straightforward to implement and interpret when used for
censored data compared to the other approaches, but this is to
be confirmed in a comparative simulation study. In this context, it is
important to note that the interpretation of likelihood-based
measures, such as the AIC may be different between the
approaches. For the ESD approach, the likelihood only considers
the time-to-event for each event independently and not the type-of-
event, whereas the likelihood in the UDR approach considers the
likelihood of the time-to-event and event-type separately, and the
ESPD considers the time-to-event and event-type of all events
jointly. Regardless, despite high-level guidance on the selection of
different approaches being useful, validation of the results will
remain pertinent in the modelling process.

By demonstrating the implementation of the ESPD approach
using both the frequentist and Bayesian frameworks in R and Stan,
we enable novice and more advanced R users to leverage this
modelling strategy. The frequentist implementation allows for a
fast and relatively easy retrieval of the point estimates and the
variance-covariance matrix of the coefficient, especially with the
provided general functions that facilitates incorporation of
covariates and different distribution types. Whilst more
challenging to implement, some may argue that the Bayesian
version provides a more natural and principled way of
combining useful prior information into the estimate, which may
be more accurate than a frequentist estimate, if such information is
available. Furthermore, some consider the interpretation of a
Bayesian result more straightforward, as it provides a framework
about the unknown parameter conditional on the observed data,
rather than about the observed data conditional on the unknown
parameter. By providing both implementations, we provide
modellers with the freedom to use the framework they prefer.

The ESPD approach was developed for modelling competing
events in DES. However, the event-specific probabilities may also be
considered as cumulative event incidences in an epidemiological
context. The cumulative incidence of competing risks has generally
been modelled using cause-specific hazard models and sub-
distribution hazard models (Fine and Gray, 1999; Pintilie, 2006;
Lau et al., 2009; Austin and Fine, 2017). The ESPD approach may
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provide an interesting alternative to these models, where the
cumulative event incidences can be modelled directly as the
mixture proportions. This could be utilized for estimating
probabilities of treatment sequences from real-world data where
typically a substantial proportion of patients is still on treatment,
i.e., censored for the competing events of switching to a subsequent

treatment line and death without further treatment. This is relevant
for disease areas where patients typically receive multiple lines of
therapy, such as oncology.

In summary, our study has filled a methodological gap by
providing a tutorial and framework for modelling competing
events in discrete event simulations with censored data. The ESPD

FIGURE 1
Posterior distribution samples for the ESPD model. Weibull parameters: α, μ; Mixing proportion: π; Adjustment coefficients: β; Subscripts: p
(recurrence), d (death).

TABLE 3 Mean posterior probabilities for recurrence event for each censored individual.

Age Sex Thickness Ulcer Time to last status assessment (years) Probability of recurrence

76 Male 6.76 Present 0.03 0.35

56 Male 0.65 Absent 0.08 0.83

71 Female 2.90 Absent 0.27 0.80

60 Female 3.22 Present 0.64 0.59

64 Female 0.16 Present 0.97 0.68

72 Male 12.56 Present 1.35 0.29

86 Female 8.54 Present 2.26 0.44

64 Male 1.29 Absent 3.91 0.87

76 Female 1.29 Present 4.18 0.70

71 Male 4.84 Present 5.10 0.84

66 Female 0.65 Absent 5.71 0.88

49 Male 1.62 Absent 8.64 0.97

49 Male 6.12 Absent 8.72 0.99

54 Female 1.45 Absent 9.47 0.89
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approach, which samples the event first and time-to-event second,
was found to be accurate and produced realistic results in both
simulation and case studies. The ESPD approach has been
implemented in both a frequentist and Bayesian framework using
R, making it easily accessible for others to use and expand upon in
future research. Not only is the ESPD strategy applicable for
modelling competing events in DES, but it also has potential to be
used in other contexts to estimate cumulative event incidences. Future
studies should perform and report on cross-validation of the ESPD
approach compared to the other strategies, which will ultimately
ensure individual patient data are appropriately modelled.
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Objective: To investigate adverse events (AEs) associatedwith denosumab (Dmab)
and zoledronic acid (ZA), compare their association strengths, and explore
potential applications to provide clinical reference.

Methods: We collected data from FAERS from January 2004 to November
2022 and mined AE signals for Dmab and ZA using ROR values. We compared
signal intensity for same AEs and investigated off-label use.We also examined their
AEs in adjuvant therapy for breast and prostate cancer.

Results: 154,735 reports of primary suspect drugs were analyzed in the FAERS
database (Dmab: 117,857; ZA: 36,878). Dmab and ZA had 333 and 1,379 AE signals,
with 189 overlaps. The AEs of Dmab included death (ROR:3.478), osteonecrosis of
jaw (ROR:53.025), back pain (ROR:2.432), tooth disorder (ROR:16.18), bone pain
(ROR:6.523). For ZA, the AEs included osteonecrosis (ROR:104.866), death (ROR:
3.645), pain (ROR:3.963), osteonecrosis of jaw (ROR: 91.744), tooth extraction
(ROR: 142.143). Among overlap signals, Dmab showed higher strength in exostosis
of the jaw (ROR: 182.66 vs. 5.769), atypical fractures (ROR: 55.589 vs. 9.123), and
atypical femur fractures (ROR:49.824 vs. 4.968). And ZA exhibited stronger
associations in abscess jaw (ROR: 84.119 vs. 11.12), gingival ulceration (ROR:
74.125 vs. 4.827), increased bone formation (ROR: 69.344 vs. 3.218).
Additionally, we identified 528 off-label uses for Dmab and 206 for ZA, with
Dmab mainly used in prostate cancer (1.04%), breast cancer (1.03%), and arthritis
(0.42%), while ZA in breast cancer (3.21%), prostate cancer (2.48%), and neoplasm
malignant (0.52%). For Dmab in breast cancer treatment, AEs included death
(11.6%), disease progression (3.3%), and neutropenia (2.7%), while for ZA included
death (19.8%), emotional disorder (12.9%), osteomyelitis (11.7%). For prostate
cancer treatment, Dmab`s AEs were death (8.9%), prostate cancer metastatic
(1.6%), renal impairment (1.7%), while ZA`s included death (34.4%), general physical
health deterioration (19.9%), and hemoglobin decreased (18.9%).

Conclusion: Our analysis of FAERS database provided postmarketing surveillance
data and revealed different strengths of reported AE signals betweenDmab and ZA
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in some of their common AEs. It’s also worth noting that both drugs have potential
off-label applications, which could introduce new AEs. This highlights the necessity
for safety monitoring when using Dmab and ZA off-label.

KEYWORDS

denosumab, zoledronic acid, adverse events, off-label use, pharmacovigilance

1 Introduction

Denosumab (Dmab), the first and only one receptor activator of
NF-κB ligand (RANKL) inhibitor so far, was approved for
marketing by the U.S. Food and Drug Administration (FDA) in
2010 and Zoledronic acid (ZA) approved in 2001. They have similar
efficacy such as applying for prevention and treatment of
osteoporosis in postmenopausal females, osteoporosis in males,
glucocorticoid-induced osteoporosis, hypercalcemia of
malignancy, and preventing skeletal-related events (SREs)
secondary to solid tumors metastases (Greear and Bankole, 2022;
Hildebrand et al., 2022). However the mechanism differs between
the two (Baron et al., 2011), with Dmab exerting its anti-bone
resorption effect by attaching to RANKL which activate osteoclasts
through the binding with RANK, thereby suppressing bone
resorption (Jamal et al., 2011; Pang et al., 2020). Zoledronic acid,
on the other hand, binding of inorganic pyrophosphate to
hydroxyapatite crystals in bone, especially in the sites where bone
is remodeling actively, and thus play an anti-bone resorption role
(Drake et al., 2008). Dmab and ZA have two different drug
specifications each. Dmab is available as Xgeva (120 mg) for
preventing bone-related events in cancer patients and Prolia
(60 mg) for treating osteoporosis. Similarly, ZA has two different
specifications; Reclast (5 mg) for treating osteoporosis and Zometa
(4 mg) for cancer-related bone damage.

In the past decade, significant efficacy of both drugs has been
extensively documented, whereas, novel AEs not well studied were
gradually raised during the clinical application. Furthermore, novel
mechanisms as well as application also emerged. We hope this analysis
based on FAERS database will provide safety profile in support of
future studies in the application of Dmab and ZA. And to provide
reference directions for exploring their potential clinical applications.

2 Materials and methods

2.1 Data sources and procedures

The data for this retrospective pharmacovigilance study were
obtained from FAERS, a global spontaneous reporting system that
collects safety information on approved drugs and therapeutic
biologic products from various sources including manufacturers,
healthcare professionals, and consumers. FAERS is the primary
source of post-marketing safety monitoring and evaluation for
the FDA, and it provides signal detection and quantification of
the association between drugs and AEs (Tang et al., 2022). The
database contains seven categories of data including demographic
and management information, drug information, adverse events,
patient outcomes, report sources, treatment start and end dates, and
indication.

2.2 Data extraction and processing

To extract adverse event (AE) reports from the FDA Open-FDA
program, we utilized the online tool OpenVigil 2.1 (http://openvigil.
sourceforge.net/). Individual safety reports (ISRs) for Dmab and ZA
were extracted from the FAERS database. ISRs are the count of raw data
extracted by OpenVigil 2.1 and an ISR code represents an AE report.

The study retrieved data from FAERS covering the period
between January 2004 and November 2022. The search for Dmab
included its generic name “DENOSUMAB” and commodity names
“Xgeva,” “Ranmark,” and “Prolia,” while for ZA, the search included
its generic drug name “ZOLEDRONIC ACID,” “ZOLEDRONATE,”
and trade names “ACLASTA,” “RECLAST”, and “ZOMETA.”
Drugs irrelevant to the study and those with uncertain names
were excluded. Only drugs listed as the “primary suspect” were
included in the analysis as they were most likely associated with the
AEs (Verden et al., 2018; Omar et al., 2021).

2.3 AE signals detection

Disproportionality analysis was conducted to identify potential
safety signals for the drugs, with RORs as measures of association
(van Puijenbroek et al., 2002; Hauben, 2003; Tang et al., 2022). The
analysis of the association between drug exposure and adverse
events (referred to as “signals”) in OpenVigil relies on the use of
a 2 × 2 contingency table (Böhm, 2018; Noguchi et al., 2021) (Refer
to Table 1), which can be effortlessly generated within the platform.
The higher the ROR values, the stronger the correlation between the
drug and target AE. Significant signals were identified based on
criteria including AE reports >3, ROR and PRR >2.0, ROR lower
bound of 95% confidence interval (CI) value exceeds 1.0, and χ2 > 4
(Böhm, 2018; Shao et al., 2021; Tang et al., 2022). The equations and
criteria for the three algorithms are shown in Table 2. Data
processing was carried out using Microsoft Excel 2016 and
GraphPad Prism 9.

3 Results

3.1 AE reports and clinical information

The FAERS database contained 385,327 reports of primary
suspect drugs from its inception until October 2022, with
297,896 AEs associated with Dmab and 87,431 AEs related to
ZA. After removing duplicates, a total of 154,735 reports were
included, consisting of 117,857 AEs for Dmab and 36,878 AEs
for ZA. Process flowchart is shown in Figure 1.

The characteristics and clinical information are summarized in
Table 3. The majority of the reports for both drugs were from
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TABLE 1 Two-by-two contingency table.

Drug exposure No drug exposure Sums

Adverse event occurred DE dE E

No adverse event occurred De de e

Sums D d N

Note: D represents occurrence of drug exposure and E represents adverse event of interest, d represents no drug exposure and e represents no occurrence of the adverse event.

TABLE 2 Equation and criteria of three algorithms for signal detection.

Algorithms Equation Criteria

ROR ROR = (DE/De)/(dE/de) ROR ≥ 2

95%CI = eIn(ROR)±1.96
��������
1
DE+ 1

De+ 1
dE+ 1

de

√
95%CI > 1

DE ≥ 3

PRR PRR = (DE/D)/(dE/d) PRR ≥ 2

DE ≥ 3

χ2 χ2Yates = N * (| DE*de – dE*De | - N/2 )2/(D * d * E * e) χ2 ≥ 4

Note: ROR, reporting odds ratio; PRR, proportional reporting ratio; CI: confidence interval; χ2, chi-squared; DE, number of co-occurrences.

FIGURE 1
Flowchart of data mining process.
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females (76.19% for Dmab and 67.09% for ZA), and the median age
of the reports was 68 and 73 years for Dmab and ZA, respectively,
with a focus on the elderly population.

In order to make the changes more intuitive, we visualized the
AEsmetric data of each year with a line chart, as shown in Figure 2A.
The chart shows an increasing trend in AEs for both drugs year by
year, but a decline in 2012 and 2018 for ZA and Dmab, respectively.
In addition, we also visualized the serious AE outcome metric data
for the two drugs, as shown in Figure 2B. Serious AEs were mainly
attributed to death (15.42% for Dmab and 22.29% for ZA) and
hospitalization (9.22% for Dmab and 19.39% for ZA). Furthermore,

ZA had slightly higher proportions of life-threatening (2.05% vs.
0.44%) and disability (4.69% vs. 0.92%) according to the reports
from the database compared to Dmab.

3.2 Differences of overall AE signals between
dmab and ZA

We then conducted a disproportionality analysis using ROR to
detect AE signals, which led to the identification of 333 significant
AE signals related to Dmab and 1379 associated with ZA.

TABLE 3 Characteristics and clinical information.

Characteristics Reports (N, %)

Denosumab (n = 117,857) Zoledronic acid (n = 36,878)

Gender

Female 89,799 (76.19) 24,743 (67.09)

Male 14,136 (11.99) 10,083 (27.34)

Unknow 13,921 (11.81) 2052 (5.56)

Age

Median (IQR) 68 (59–77) 73 (65–81)

<18 176 (0.15) 47 (0.13)

18–40 789 (0.67) 427 (1.16)

41–65 16,929 (14.36) 7189 (19.49)

>65 48,510 (41.16) 9847 (26.70)

Unknow 51,452 (43.66) 19,368 (52.52)

Report countries

United States 88,883 (75.42) 12,431 (33.71)

Canada 6223 (5.28) 3894 (10.56)

others 22,667 (19.23) 16,109 (43.62)

Unknow 83 (0.07) 4444 (12.05)

FIGURE 2
Report years and serious AE outcome information of denosumab and zoledronic acid. (A): Number of reported AEs of denosumab and zoledronic
acid from 2004 to 2022. (B): The serious AE outcome indicators of denosumab and zoledronic acid.
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Interestingly, 243 new AE signals and 528 off-label use for Dmab
that were not registered in the FDA-approved specification were
found, along with 1139 new signals and 206 off-label uses for ZA.

The most common AEs associated with Dmab were death,
osteonecrosis of the jaw, back pain, tooth disorder, bone pain,
and hypocalcemia. For ZA, the most frequent adverse events
were osteonecrosis, death, pain, osteonecrosis of the jaw, and
tooth extraction. Among these, death and fall were not
mentioned in the drug labels for either Dmab or ZA. Top
l0 significant AE signals sorted by frequency for both drugs are
presented in Table 4.

As there were numerous shared AEs between Dmab and ZA, we
conducted a further comparison of the overlapping AE signals. Out
of the 189 identical positive AE signals between the two drugs,
29 AEs of Dmab exhibited stronger correlation than ZA, while
160 AEs of Dmab had weaker correlation than ZA, as determined by
the ROR value. Table 5 presents the AE signals with significant
differences in intensity between the two drugs. The AE signals of
Dmab with stronger correlation than ZA (d > 20) included exostosis
of jaw (ROR: 182.66 vs. 5.769), atypical fracture (ROR: 55.589 vs.
9.123), and atypical femur fracture (ROR: 49.824 vs. 4.968), while
the AE signals of ZA with stronger correlation than Dmab (d > 50)
were related to abscess jaw (ROR: 84.119 vs. 11.12), gingival
ulceration (ROR: 74.125 vs. 4.827), increased bone formation

(ROR: 69.344 vs. 3.218), and bone disorder (ROR: 68.221 vs.
3.189), among others.

3.3 Off-label use

While analyzing the data, we found off-label use was also a
significant signal. Therefore, we further analyzed the data on off-
label use. As we observed mixed reports of different specifications
for each drug, for example, Dmab had a 60 mg specification for giant
cell tumor and hypercalcemia of malignancy, while the 120 mg
specification was used for postmenopausal osteoporosis. Similarly,
ZA had two different specifications with mixed reports. Therefore,
we combined the FDA-approved indications for both specifications
of each drug and compared them with the indications in the
database to identify off-label uses. We found 528 types of off-
label use for Dmab and 206 types for ZA. Table 6 shows the top
10 off-label uses not mentioned in the drug instructions for both
drugs, which are frequently used for treating various tumors. Breast
cancer (1.03% and 3.21%) and prostate cancer (1.04% and 2.48%)
were the most commonly off-label use for both drugs in the
database. Other off-label uses for Dmab included arthritis
(0.42%), vitamin D deficiency (0.26%), spinal compression
fracture (0.25%), gastroesophageal reflux disease (0.24%), plasma

TABLE 4 Top 10 significant AE signals of Dmab and ZA.

AEs N ROR (95% CI) PRR (χ2)

Denosumab Death* 16,013 3.478 (3.42) 3.142 (23,699.174)

Osteonecrosis of jaw 6043 53.025 (51.377) 50.358 (193,469.11)

Back pain 2793 2.432 (2.342) 2.398 (2244.037)

Tooth disorder 1929 16.18 (15.414) 15.931 (23,239.1)

Bone pain 1878 6.523 (6.223) 6.435 (8106.468)

Hypocalcaemia 1805 23.173 (22.009) 22.834 (30,578.129)

Spinal fracture 1369 15.963 (15.073) 15.79 (16,337.329)

Pain in jaw 1314 9.335 (8.819) 9.242 (8831.068)

Fracture 894 6.768 (6.323) 6.725 (4076.903)

Tooth extraction 815 11.487 (10.681) 11.415 (6932.845)

Zoledronic acid Osteonecrosis 6980 104.866 (101.892) 85.207 (458,676.62)

Death* 5283 3.645 (3.539) 3.266 (8597.053)

Pain 4177 3.963 (3.836) 3.627 (8110.249)

Osteonecrosis of jaw 3696 91.744 (88.342) 82.649 (236,587.42)

Tooth extraction 2321 142.143 (135.258) 133.26 (214,317.12)

Bone disorder 2129 68.221 (65.038) 64.34 (110,354.49)

Pyrexia 1957 3.932 (3.756) 3.777 (4002.168)

Arthralgia 1895 3.364 (3.211) 3.242 (2953.963)

Pain in jaw 1792 44.097 (41.93) 42.002 (63,354.395)

Fall* 1543 3.039 (2.887) 2.953 (2001.728)

Note: *, The instruction does not mention; 95% CI: only show the low bound of ROR.
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cell myeloma (0.19%), rheumatoid arthritis (0.19%), and chronic
kidney disease (0.10%). Off-label uses for ZA included neoplasm
malignant (0.52%), renal cancer (0.45%), lung cancer (0.40%),
plasma cell myeloma (0.30%), plasma cytoma (0.19%), colon
cancer (0.08%), and osteoarthritis (0.07%).

We conducted a comparison of the AEs associated with Dmab
and ZA in off-label use for breast cancer and prostate cancer. After
comparing with the FDA-approved instructions and removing
similar AEs, we found 451 AEs in Dmab and 848 AEs in ZA for
breast cancer treatment. For prostate cancer treatment, we found

TABLE 5 AE signals with significant differences in ROR values between Dmab and ZA.

Item AEs Dmab ZA

ROR (95%CI) ROR (95%CI)

AE signals of Dmab stronger than ZA (d>20) exostosis of jaw 182.66 (138.708) 5.769 (2.146)

atypical fracture 55.589 (43.652) 9.123 (4.517)

atypical femur fracture 49.824 (44.731) 4.968 (3.29)

dental care 66.203 (58.259) 22.846 (17.792)

dental implantation 49.816 (42.49) 22.907 (16.979)

bone density abnormal 23.178 (20.97) 2.812 (1.848)

AE signals of ZA stronger than Dmab (d>50) abscess jaw 11.12 (8.861) 84.119 (71.047)

gingival ulceration 4.827 (3.115) 74.125 (58.52)

bone formation increased 3.218 (1.427) 69.344 (47.835)

bone disorder 3.189 (2.884) 68.221 (65.038)

gingival erosion 4.065 (1.909) 67.58 (45.849)

gingival erythema 2.791 (1.572) 65.051 (50.643)

dental fistula 5.062 (3.152) 66.826 (51.022)

periodontitis 4.408 (3.463) 62.003 (54.294)

oroantral fistula 3.718 (1.522) 60.457 (38.31)

bone callus excessive 11.324 (4.864) 65.817 (33.298)

bone scan abnormal 5.185 (3.029) 59.205 (42.901)

osteopetrosis 8.412 (3.654) 59.239 (31.974)

Note:d, difference of ROR, between denosumab zoledronic acid; 95% CI, only show the low bound of ROR.

TABLE 6 Top 10 off-label uses not mentioned in the drug instructions.

Denosumab (n = 117,857) Zoledronic acid (n = 36,878)

Indication N (%) Indication N (%)

Prostate cancer 1225 (1.04) Breast cancer 1184 (3.21)

Breast cancer 1215 (1.03) Prostate cancer 916 (2.48)

Arthritis 499 (0.42) Neoplasm malignant 190 (0.52)

Vitamin d deficiency 303 (0.26) Renal cancer 166 (0.45)

Spinal compression fracture 299 (0.25) Lung cancer 147 (0.40)

gastroesophageal reflux disease 286 (0.24) Plasma cell myeloma 111 (0.30)

Plasma cell myeloma 224 (0.19) Plasma cytoma 69 (0.19)

Rheumatoid arthritis 221 (0.19) Colon cancer 28 (0.08)

Other solid tumors* 640 (0.54) Osteoarthritis 25 (0.07)

Chronic kidney disease 116 (0.10) Other solid tumors* 280 (0.76)

Note: *, refers to a group of tumors that includes non-small cell lung cancer, bronchial carcinoma, gastric cancer, rectal cancer, lymphoma, and more.
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341 AEs in Dmab and 583 AEs in ZA that were not mentioned in the
drug instructions.

In breast cancer treatment, the top AEs associated with Dmab were
death (11.6%), disease progression (3.3%), breast cancer metastatic
(2.7%), neutropenia (2.7%), emotional disorder (2.3%), and pyrexia
(1.7%). For ZA, the most frequent AEs were death (19.8%), emotional
disorder (12.9%), osteomyelitis (11.4%), neoplasm progression (10.7%),
cardiac disorders (10.6%), and impaired healing (9.5%). Cardiac
disorders in patients with breast cancer treated with ZA included
tachycardia (3.04%), congestive heart failure (1.35%), arrhythmia
(1.01%), and palpitations (1.01%). Both drugs were associated with
varying degrees of mental illness such as emotional distress, depression,
and personality disorder, particularly in treating breast cancer, even
leading to suicidal ideation. Tables 7, 8 display the sixmost frequent AEs
in breast cancer and prostate cancer treatments, respectively, which
were not registered in the drug specifications.

In prostate cancer treatment, the top AEs associated with Dmab
were death (8.9%), prostate cancer metastatic (1.6%), and renal
impairment (1.7%), while for ZA, the most common AEs were death
(34.4%), general physical health deterioration (19.9%), and

hemoglobin decreased (18.9%). Additionally, ZA was also
associated with increased prostatic specific antigen (18.4%) and
cardiac disorders (13.6%), while Dmab was associated with
emotional disorder (1.6%) and cardiac disorders (1.3%).

4 Discussion

4.1 Descriptive analysis

In this study, we performed a pharmacovigilance analysis using
FAERS to investigate suspected AEs and off-label uses associated with
Dmab and ZA. The data covers a substantial timeframe from 2004 to
2022, during which these twomedications were administered in clinical
practice at different time periods. Notably, the reporting rate for AEs
can differ not only among various drugs but also for the same drug as
time progresses (Moore et al., 2007; Alatawi and Hansen, 2017).
Additionally, media attention, regulatory measures, Risk Evaluation
andMitigation Strategy, new indications, formulation changes, or shifts
in marketing approaches can impact the adverse events profiles

TABLE 7 Top 6 AEs not registered in specification related to breast cancer treatment.

Indication Denosumab (n = 1215) Zoledronic acid (n = 1184)

AEs N (%) AEs N (%)

Breast cancer Death 141 (11.6) Death 235 (19.8)

Disease progression 40 (3.3) Emotional disorder b 153 (12.9)

Breast cancer metastatic 33 (2.7) Osteomyelitis 135 (11.4)

Neutropenia 33 (2.7) Neoplasm progression 127 (10.7)

Emotional disorder a 28 (2.3) Cardiac disorders c 125 (10.6)

Pyrexia 21 (1.7) Impaired healing 112 (9.5)

Note: a. Emotional disorder in patients with breast cancer treated with Dmab included confusional state (0.74%), delirium (0.33%), disturbance in attention (0.25%), palpitations (0.25%),

irritability (0.16%), anxiety (0.16%), depressedmood (0.08%), hallucination visual (0.08%), major depression (0.08%), paranoia (0.08%) and psychotic disorder (0.08%). b. Emotional disorder in

patients with breast cancer treated with ZA, included emotional distress (3.04%), confusional state (2.53%), depression (1.86%), depressed mood (2.20%), suicidal ideation (0.84%), personality

disorder (0.68%), amnesia (0.59%), abasia (0.42%), mental disorder (0.17%), emotional disorder (0.17%), disturbance in attention (0.17%), suicide attempt (0.08%), mood altered (0.08%) and

depression suicidal (0.08%). c. Cardiac disorders in patients with breast cancer treated with ZA, included tachycardia (3.04%), cardiac failure congestive (1.35%), arrhythmia (1.01%),

palpitations (1.01%), left ventricular dysfunction (0.76%), cardiomegaly (0.59%), cardiac disorder (0.51%), cardiac failure (0.51%), myocardial infarction (0.42%), atrial fibrillation (0.34%), heart

rate decreased (0.34%), cardio-respiratory arrest (0.17%), endometrial hypertrophy (0.17%), cardiovascular somatic symptom disorder (0.08%), cardiovascular disorder (0.08%), and cardiac

discomfort (0.08%).

TABLE 8 Top 6 AEs not registered in specification related to prostate cancer treatment.

Indication Denosumab (n = 1225) Zoledronic acid (n = 916)

AEs N (%) AEs N (%)

Prostate cancer Death 109 (8.9) Death 315 (34.4)

Prostate cancer metastatic 20 (1.6) General physical health deterioration 182 (19.9)

Renal impairment a 26 (1.7) Hemoglobin decreased 173 (18.9)

Emotional disorder b 20 (1.6) Prostatic specific antigen increased 169 (18.4)

Cardiac disorders 16 (1.3) Cardiac disorders 125 (13.6)

Disease progression 13 (1.1) Malaise 113 (12.3)

Note: a. Renal impairment included renal failure (0.82%), renal impairment (0.33%), blood creatinine increased (0.33%), acute kidney injury (0.24%), renal failure acute (0.16%), renal disorder

(0.16%), and blood creatinine abnormal (0.08%). b. Emotional disorder in patients with prostate cancer treated with Dmab included nervousness (0.08%), anxiety (0.33%), abasia (0.16%),

irritability (0.16%), restlessness (0.16%), aggression (0.16%), agitation (0.08%), anger (0.08%), anxiety (0.08%), depressed mood (0.08%), depression (0.08%), and hallucination (0.08%).
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(Chhabra et al., 2013). Furthermore, both drug reporting trends exhibit
a Weber-like effect (Hoffman et al., 2014; Noguchi et al., 2021), where
AEs increase prior to marketing approval and subsequently decrease.
Consequently, these variations in usage timelines may have led to
different adverse event profiles, potentially impacting the results of our
data analysis.

Nonetheless, the current understanding of these drugs is not yet
fully comprehensive, and many AEs still require adequate attention.
To better understand the AE profile of these drugs, it is
recommended to collect as much clinical data as possible and
conduct more in-depth analysis and evaluation.

4.2 AE signals with higher ROR values

The most frequent AEs of Dmab were death, osteonecrosis of
jaw, back pain, tooth disorder, bone pain and hypocalcaemia and
those for ZA were osteonecrosis, death, pain, osteonecrosis of jaw,
and tooth extraction. The AEs identified in this analysis were
generally in line with the known AEs of these drugs, indicating
the validity of the study and suggesting that the findings may
accurately reflect real-world clinical practices.

It is known that Dmab and ZA share many similar AEs. In our
study, we conducted a comparative analysis to assess the signal strength
of AEs between these two drugs. Among the signals of Dmab stronger
than ZA (d > 20), the significant signals were exostosis of jaw, atypical
fracture, and atypical femur fracture, suggesting that Dmab may be
more prone to these AEs than ZA. Exostosis of jaw may be associated
with the widely recognized osteonecrosis of the jaw (ONJ), which is a
rare but serious side effect of anti-bone resorption inhibitors. Although
a study demonstrated that patients with bone metastases treated with
Dmab or ZA had similar incidences of ONJ (Nicolatou-Galitis et al.,
2019), a meta-analysis of patients with solid tumors found that the use
of Dmab was linked to a significantly higher risk of ONJ compared to
ZA (Boquete-Castro et al., 2016). It is important to note that the
incidence of ONJmay also be related to the dosage and duration of drug
exposure (Khan et al., 2015). Thus, long-term and high-dose use of
Dmab or ZA requires vigilance against ONJ. In contrast, the signals of
ZA stronger than Dmab (d > 50) were mostly related to oral problems,
which may also have potential implications for ONJ. Regular dental
examinations should be conducted when using Dmab and ZA.

4.3 Off-label use with higher frequency in
the database

Dmab and ZA, have been approved for preventing bone metastases
associated with solid tumors. However, our research has found that
these drugs are also frequently used in bone metastasis-free cancer. It
should be emphasized that in some reports, cases of non-bone
metastatic cancers may have been reported ambiguously without
clear indication of the presence or absence of bone metastasis,
thereby posing a limitation to the study. The theory of cancer
treatment may primarily base on preventing cancer treatment-
induced bone loss. Furthermore, some studies have shown that both
drugs have potential anti-cancer properties (Dedes et al., 2012;
Ubellacker et al., 2017; de Groot et al., 2018), but whether they have
a positive effect on fighting cancer remains a matter of debate.

Postmenopausal women with breast cancer have a higher risk of
osteoporosis due to the decrease in estrogen, as well as the effects of
chemotherapy, radiotherapy, endocrine therapy, and the tumor itself
(Guise, 2006; Chen et al., 2009; Gralow et al., 2013; Shapiro, 2020).
Endocrine therapies such as tamoxifen and aromatase inhibitors have
been shown to increase bone loss or fracture risk in both pre- and
postmenopausal women with early-stage breast cancer (Powles et al.,
1996; Sverrisdóttir et al., 2004; Aihara et al., 2010; Zaman et al., 2012;
Tseng et al., 2018). Dmab 60 mg is approved for aromatase inhibitor-
induced bone loss in women with breast cancer regardless of whether
there is bone metastasis, while ZA did not receive such approval.
Interestingly, ZA is reported to be used for preventing bone loss or
decreasing fracture in premenopausal women with breast cancer
(Gnant et al., 2015; Wilson et al., 2018). There is no clinical
evidence that Dmab is suitable for use this population. Evidence
suggests that Dmab or ZA could be applied as adjuvant therapy to
improve bone density in postmenopausal women with early-stage
breast cancer (Brufsky et al., 2009; Waqas et al., 2021). Note that
one phase 3 trial shows that Dmab did not improve disease-related
outcomes and did not support a role as an antitumor agent in early-
stage breast cancer for women with high-risk early breast cancer, in
addition to the benefits of delaying cancer bone-related events
(Coleman et al., 2020).

Antihormonal treatments for prostate cancer can also cause
bone loss. The FDA has approved Dmab (60 mg) for the treatment
of bone loss or preventing fracture in non-metastatic prostate
cancer, while ZA currently lacks FDA approval. Several small
randomized trials have shown that bisphosphonates can increase
BMD in patients with non-metastatic prostate cancer (Smith et al.,
2001; Smith et al., 2003; Klotz et al., 2013). Note that no benefit has
been shown among bisphosphonates in preventing fractures among
patients with nonmetastatic prostate cancer (Strum et al., 2018).

As for the treatment of osteoarthritis (OA), a study in rabbits
with experimental knee osteoarthritis showed that ZA had
protective effect on articular cartilage and subchondral bone (She
et al., 2017). An initial trial showed that ZA may be effective in
treating osteoarthritis (Aitken et al., 2018). However, we have not yet
found strong evidence that osteoarthritis can benefit from ZA.
Markers of bone turnover are increased in patients with
progressive OA, similar to those in patients with postmenopausal
osteoporosis (Bingham et al., 2006). Based on that mechanism, ZA
may have a prospective benefit for osteoarthritis. Regarding Dmab, it
has rarely been reported in osteoarthritis, but evidence suggests that
Dmab may be a potential new therapeutic option for treating
rheumatoid arthritis (Hu et al., 2021; Tanaka et al., 2021).

In conclusion, mining new indications from the database has the
potential to expand drug application range, promote drug research
and development, and improve clinical practice. However, it is
crucial to conduct further real-world research to validate these
new indications and ultimately benefit patients.

4.4 AEs with higher report frequency in
breast cancer and prostate cancer

According to the reports, disease progression was observed more
frequently in the treatment of breast cancer and prostate cancer with
Dmab or ZA. However, current evidence does not establish a definitive
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link between tumor progression and drug exposure. Our study also
found a high frequency of neutropenia among breast cancer patients
treated with Dmab, which is consistent with reports of neutropenia in a
phase III study of multiple myeloma patients treated with both Dmab
and ZA (Raje et al., 2018). Mental problems were also reported in breast
cancer patients treated with either drug, although drug-induced mental
disorders on Dmab or ZA are currently poorly documented. A case
report indicated that extreme anxiety and hypocalcemia after
denosumab treatment for cancer-related bone metastasis may have
contributed to depressive mood (Lin et al., 2015). Although atrial
fibrillation is a known AE to Dmab, our study also found a high
frequency of heart problems in ZA-treated patients. Previous studies
have reported an increased rate of heart failure in zoledronate-treated
patients (Black et al., 2007; Rubin et al., 2020), suggesting that more
clinical trials are needed to confirm the safety of ZA. Renal toxicity is a
potential AE of ZA treatment, although Dmab is considered relatively
safe for the kidneys. However, renal toxicity has been observed in the
treatment of multiple myeloma using Dmab (Raje et al., 2018). From
the pharmacokinetics perspective, Dmab is not metabolized by the
kidneys and theoretically has minimal damage to the kidneys, it is still
relatively safe.

5 Limitation

It’s important to acknowledge several limitations that raise
questions about its direct real-world applicability. Looking at the
FAERS database, there are several aspects to consider. First, the cases
registered in spontaneous reporting systems are only those of drug-
induced AEs, not the total number of patients treated with the drugs
(Noguchi et al., 2021; Marwitz and Noureldin, 2022; Crisafulli et al.,
2023), making it difficult to compare the incidence of AEs between
Dmab and ZA. Second, some reports may lack important
information such as outcome, indication, dose, age, and sex
(Shao et al., 2021; Tang et al., 2022), leading to potential bias in
the analysis. Additionally, the accuracy of the data may be
compromised due to the involvement of non-professional
reporters (Bian et al., 2021) and the absence of a standardized
reporting format. Furthermore, it should be noted that some
reported AEs may actually be different manifestations of the
same underlying condition, such as jaw exostosis, jaw abscess,
and exposed bone in jaw, all of which may be related to
osteonecrosis of the jaw. Although the study has attempted to
integrate such AEs, there is still a possibility of some omissions.
In addition, the presence of “notoriety effects” leading to increased
reporting of specific adverse events can limit the study due to
potential underestimation (Pariente et al., 2007; Noguchi et al.,
2021).

Regarding disproportionality analysis, it solely represents
statistical correlation between drugs and AEs and do not permit
the establishment of causal associations between reported AEs and
specific medications (Abe et al., 2015; Michel et al., 2017).
Furthermore, it comes with the limitation of false-positive signals
and suffers from the limitation of lower specificity (Noguchi et al.,
2021).

Also, the study’s failure to compare the impact of different
specifications on indications may lead to incomplete evaluation of
the drugs’ safety and efficacy. Additionally, it solely focuses on

potential off-label use, neglecting over-the-label use of different
specifications and their safety profiles, potentially overlooking
certain safety issues and differences in effectiveness. Furthermore,
the article may be affected by selection bias in data or inadequate
analysis methods, whichmay impact the accuracy of drug evaluation
and conclusions. The article may also not fully consider other factors
affecting drug use, such as individual differences among patients,
comorbidities, or the influence of other drugs.

However, the FAERS database gathers AE reports associated
with drugs and therapeutic biologic products, which is a valuable
resource to identify potential safety issues. Despite the
aforementioned limitations, disproportionality analysis is now a
validated method in the field of drug safety research and
surveillance (Montastruc et al., 2011). It has high sensitivity and
could serve as a foundation for generating hypotheses in future
research endeavors (Abe et al., 2015; Noguchi et al., 2021; Crisafulli
et al., 2023). Moreover, it can offer further insights into the influence
of regulatory and policy decisions on AE reporting (Marwitz and
Noureldin, 2022). Additionally, it’s worth noting that there is a
correlation between the risk of adverse reactions studied through
meta-analysis and disproportionality analysis in many cases (Khouri
et al., 2021).

6 Conclusion

In conclusion, our study found that both Dmab and ZA have
similar trends in AE distribution. However, Dmab is statistically
associated with a higher risk of jaw exostosis and atypical femur
fractures, while ZA has a statistical link to more oral problems. It is
important to note that both drugs have potential applications
beyond their approved indications, particularly in the treatment
of various cancers and osteoarthritis, and some new AEs may come
with those off-label use, including mental health disorders,
neutropenia and kidney damage, and heart problems. Given the
correlation between the analysis results from spontaneous reporting
systems databases and clinical safety studies (Khouri et al., 2021),
our findings highlight the importance of safety monitoring when
using Dmab and ZA off-label. Moreover, considering the limited
research focused on this specific aspect, our study may serve as a
reference point for future investigations, contributing to drug safety
vigilance efforts. Finally, due to the inherent limitations of
spontaneous reporting databases, which inevitably contain
potential biases, there is an urgent need for well-designed
comparative safety studies to validate these findings.
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Objectives: As the initial crisis of the COVID-19 pandemic recedes, healthcare
decision makers are likely to want to make rational evidence-guided choices
between the many interventions now available. We sought to update a systematic
review to provide an up-to-date summary of the cost-effectiveness evidence
regarding tests for SARS-CoV-2 and treatments for COVID-19.

Methods: Key databases, including MEDLINE, EconLit and Embase, were searched
on 3 July 2023, 2 years on from the first iteration of this review in July 2021. We
also examined health technology assessment (HTA) reports and the citations of
included studies and reviews. Peer-reviewed studies reporting full health
economic evaluations of tests or treatments in English were included. Studies
were quality assessed using an established checklist, and those with very serious
limitations were excluded. Data from included studies were extracted into
predefined tables.

Results: The database search identified 8,287 unique records, of which 54 full
texts were reviewed, 28 proceeded for quality assessment, and 15 were included.
Three further studies were included through HTA sources and citation checking.
Of the 18 studies ultimately included, 17 evaluated treatments including
corticosteroids, antivirals and immunotherapies. In most studies, the
comparator was standard care. Two studies in lower-income settings
evaluated the cost effectiveness of rapid antigen tests and critical care
provision. There were 17 modelling analyses and 1 trial-based evaluation.

Conclusion: A large number of economic evaluations of interventions for COVID-
19 have been published since July 2021. Their findings can help decisionmakers to
prioritise between competing interventions, such as the repurposed antivirals and
immunotherapies now available to treat COVID-19. However, some evidence
gaps remain present, including head-to-head analyses, disease-specific utility
values, and consideration of different disease variants.

Systematic Review Registration: [https://www.crd.york.ac.uk/prospero/display_
record.php?ID=CRD42021272219], identifier [PROSPERO 2021
CRD42021272219].

KEYWORDS

cost-effectiveness, COVID-19, diagnostics, economic evaluation, health technology
assessment, pharmacological, living review, cost-utility analysis
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1 Introduction

The novel severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) and its associated disease (COVID-19) pandemic
placed healthcare systems and wider economies under massive
strain in 2020 and 2021. Decisions about diagnostic tests and
treatments for the disease were made rapidly, forgoing
traditional, rigorous health technology assessments (HTAs) that
healthcare interventions are subjected to in many countries. Now
that the early pandemic crisis has passed, HTA organisations will
increasingly view COVID-19 as being equivalent to any other
condition, and seek to understand the cost effectiveness of tests
and treatments for it. Such evidence can support reimbursement
decisions and the efficient allocation of scarce healthcare resources.

In July 2021, the first iteration of a systematic literature review to
identify economic evaluations of tests and treatments for COVID-19
was conducted (Elvidge et al., 2022). Its objective was to identify up-
to-date cost-effectiveness estimates for COVID-19 tests and
treatments, and the methodological approaches, limitations and
uncertainties present in published economic evaluations. Since
then, the pandemic context, evidence base, and disease have
evolved considerably. The present study reports a timely two-year
update of the review, to provide a contemporary understanding of
the cost-effectiveness evidence for COVID-19 tests and treatments.

This study has been supported by Next-Generation Health
Technology Assessment (HTx), which is a Horizon 2020 project
supported by the European Union, lasting for 5 years from January
2019. Its main aim is to create a framework for the next-generation
of HTA to support patient-centred, societally oriented, real-time
decision making on access to and reimbursement for health
technologies throughout Europe.

2 Materials and methods

We performed an update of a previously published systematic
literature review to identify full economic evaluations of diagnostics
(e.g., tests) for SARS-CoV-2 and treatments (e.g., pharmaceuticals)
for COVID-19 (Elvidge et al., 2021; Elvidge et al., 2022). The date
range spanned the previous search date, 12th July 2021, to 3rd July
2023. The search strategy was consistent with the original search,
including citation checking of included studies and efforts to identify
relevant grey literature. Studies were included if they were full
economic evaluations, comparing both the costs and health
outcomes of 2 or more alternative tests for SARS-CoV-2 or
treatments for COVID-19.

Every identified title and abstract was screened against the
selection criteria by 2 reviewers (JE and NN/GH). For studies
that were identified as potentially relevant, full-text articles were
sought and assessed against the selection criteria by both reviewers.
Studies that met the selection criteria were quality assessed by both
reviewers, using the NICE economic evaluation quality checklist
(National Institute for Health and Care Excellence NICE, 2012).
Those judged to have very serious limitations were excluded. For
each included study, data extraction was conducted by 1 reviewer
using prespecified tables consistent with the original review.
Extracted data for each study were checked and validated by
another reviewer. At all stages, discrepancies between the

reviewers were resolved through discussion or, if needed,
adjudication by a senior reviewer (DD). Key study characteristics
are presented in Tables 1, 2, and findings in Table 3. Due to extensive
heterogeneity between studies, results were synthesised narratively
(Shields and Elvidge, 2020).

3 Results

3.1 Included studies

Search strategies and results per database are provided in
Supplementary Material. A total of 8,287 unique records were
identified for initial screening of titles and abstracts (Figure 1).
Of those, 8,233 were excluded, most commonly because they did not
report a primary economic evaluation. Therefore, 54 studies
proceeded to full-text review, with 28 meeting the inclusion
criteria. Six studies were also identified through searches of grey
literature: 1 through citation checking, which met our inclusion
criteria, and 5 HTA reports, of which 2 met our criteria. Two
reported on the same HTA and were considered to be duplicates,
and 1 was not available in English. A total of 31 studies proceeded to
quality assessment, of which 13 were excluded due to the presence of
very serious limitations (Table 4). Finally, 18 studies of acceptable
quality were included in this two-year update (Carta and
Conversano, 2021; Congly et al., 2021; Ruggeri et al., 2022a;
Ruggeri et al., 2022b; Dijk et al., 2022; Goswami et al., 2022;
Kelton et al., 2022; Lau et al., 2022; Metry et al., 2022; Park
et al., 2022; Rafia et al., 2022; Savinkina et al., 2022; Yeung et al.,
2022; Alamer et al., 2023; Arwah et al., 2023; Kowal et al., 2023;
Ruggeri et al., 2023; Shah et al., 2023).

Included studies evaluated interventions in community or
outpatient settings (5/18) (Goswami et al., 2022; Park et al., 2022;
Savinkina et al., 2022; Yeung et al., 2022; Ruggeri et al., 2023), where
patients are at risk of admission to hospital, or an inpatient hospital
setting (11/18) (Carta and Conversano, 2021; Congly et al., 2021;
Ruggeri et al., 2022a; Ruggeri et al., 2022b; Dijk et al., 2022; Kelton
et al., 2022; Lau et al., 2022; Rafia et al., 2022; Alamer et al., 2023;
Kowal et al., 2023; Shah et al., 2023); one study included both
settings (1/18) (Metry et al., 2022). One study evaluated point-of-
care tests in an unspecified health facility (1/18) (Arwah et al., 2023).
Of studies based in inpatient hospital settings, some were aimed at
specific populations and places within the care pathway, namely
moderate disease with non-invasive ventilation (3/12) (Ruggeri
et al., 2022a; Ruggeri et al., 2022b; Rafia et al., 2022) or critical
care (1/12) (Shah et al., 2023), though most had mixed or
unspecified populations (8/12) (Carta and Conversano, 2021;
Congly et al., 2021; Dijk et al., 2022; Kelton et al., 2022; Lau
et al., 2022; Metry et al., 2022; Alamer et al., 2023; Kowal et al.,
2023). Most studies (12/18) (Carta and Conversano, 2021; Congly
et al., 2021; Dijk et al., 2022; Goswami et al., 2022; Lau et al., 2022;
Metry et al., 2022; Rafia et al., 2022; Savinkina et al., 2022; Yeung
et al., 2022; Alamer et al., 2023; Kowal et al., 2023; Ruggeri et al.,
2023) took a healthcare system or payer perspective in their base-
case analyses, while 2/18 took a provider (e.g., hospital) perspective
(Ruggeri et al., 2022a; Shah et al., 2023), 2/18 took a partial societal
perspective (Kelton et al., 2022; Arwah et al., 2023), and 2/18 did not
explicitly report a perspective (Ruggeri et al., 2022b; Park et al.,
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TABLE 1 General characteristics of included studies.

Study Country
(currency)

Population/Setting Intervention(s) & comparator(s) Type of
evaluation

Quality
assessmentb

Alamer 2023 (Alamer
et al., 2023)

Saudi Arabia (SAR) 415 patients with moderate to severe
COVID-19 disease who were
admitted to two Saudi COVID-19
referral hospitals

Favipiravir, standard of care (SoC) CEA Potentially serious
limitations

Arwah 2023 (Arwah
et al., 2023)

Kenya (USD) Patients with suspected COVID-19
presenting at settings with access to
point-of-care testing

Two comparisons CUA Potentially serious
limitations

Rapid tests with delayed confirmatory
testing for negative, delayed testing

Rapid tests, clinical judgement

Carta and Conversano
2021 (Carta and
Conversano, 2021)

United States
(USD)

Hospitalised COVID-19 patients
(4 levels of respiratory support),
aged 60

Remdesivir, dexamethasone, remdesivir +
dexamethasone (R + D), SoC

CUA Potentially serious
limitations

Congly 2021 (Congly
et al., 2021)

United States
(USD)

Hospitalised patients, moderate
(oxygen) & severe (ICU), aged 60

Combinations of SoC, redemsivir and
dexamethasone, by severity

CUA Potentially serious
limitations

Dijk 2022 (Dijk et al.,
2022)

United States
(USD)

Hospitalised COVID-19 patients Hydroxychloroquine, remdesivir,
casirivimab + imdevimab (C + I),
dexamethasone, baricitinib + remdesivir
(B + R), tocilizumab, lopinavir + ritonavir
(L + R), interferon b1a, SoC

CUA Minor limitations

Goswami 2022
(Goswami et al., 2022)

United States
(USD)

Outpatient adults with mild to
moderate COVID-19 and 1 or more
risk factor for severe disease

Molnupiravir, SoC CUA Minor limitations

Kelton 2021 (Kelton
et al., 2022)

United States
(USD)

Hospitalised COVID-19 patients B + R, remdesivir CUA Potentially serious
limitations

Kowal 2023 (Kowal
et al., 2023)

United States
(USD)

Hospitalised COVID-19 patients,
stratified into equity-relevant
subgroups by race/ethnicity and
deprivation

Hypothetical treatment, SoC (per clinical
trials in 2020)

DCUA Potentially serious
limitations

Lau 2022 (Lau et al.,
2022)

Canada (CAD) Adult, hospitalized patients with
COVID-19

Remdesivir, SoC CEA Minor limitations

Metry 2022 (Metry
et al., 2022)

United Kingdom
(GBP)

In hospital or in community and at
high risk of hospitalisation

Hospital setting CUA Minor limitations

Baricitinib, B + R, C + Ia, lenzilumaba,
remdesivir, tocilizumab, SoC

Community setting

C + Ia, molnupiravira, nirmatrelvir +
ritonavir (N + R), remdesivir,
sotrovimab, SoC

Park 2022 (Park et al.,
2022)

Singapore (USD) 4 relevant scenarios of unvaccinated
patients by age group

C + I, SoC CEA Potentially serious
limitations

CUA

Rafia 2022 (Rafia et al.,
2022)

United Kingdom
(GBP)

Hospitalised COVID-19 patients
requiring oxygen or non-invasive
ventilation (NIV)

Remdesvir, SoC CUA Minor limtations

Ruggeri 2022 (Ruggeri
et al., 2022a)

Portugal (EUR) Hospitalised COVID-19 patients on
low-flow oxygen

Remdesivir, SoC CEA Potentially serious
limitations

Ruggeri 2022 (Ruggeri
et al., 2022b)

Saudi
Arabia (USD)

Hospitalised COVID-19 patients on
low-flow oxygen

Remdesivir, SoC CEA Potentially serious
limitations

Ruggeri 2023 (Ruggeri
et al., 2023)

Italy (EUR) Outpatients with COVID-19 not
having low-flow oxygen

C + I, SoC CEA Potentially serious
limitations

Savinkina 2022
(Savinkina et al., 2022)

United States
(USD)

Newly diagnosed COVID-19 positive
patients, including subgroups by high
& low risk of severe disease and
vaccination status (vaccine assumed to
be 75% effective at reducing hospital
risk)

N + R; SoC (no N + R); and 3 interim
stratgies with different levels of N + R

CEA Potentially serious
limitations

(Continued on following page)

Frontiers in Pharmacology frontiersin.org03

Elvidge et al. 10.3389/fphar.2023.1291164

103

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1291164


2022). Multiple studies were conducted in the United States (8/18)
(Carta and Conversano, 2021; Congly et al., 2021; Dijk et al., 2022;
Goswami et al., 2022; Kelton et al., 2022; Savinkina et al., 2022;
Yeung et al., 2022; Kowal et al., 2023), Saudi Arabia (2/18) (Ruggeri
et al., 2022b; Alamer et al., 2023) and the United Kingdom (2/18)
(Metry et al., 2022; Rafia et al., 2022), while single studies were
conducted in each of Canada (Lau et al., 2022), Italy (Ruggeri et al.,
2023), Kenya (Arwah et al., 2023), Portugal (Ruggeri et al., 2022a),
Singapore (Park et al., 2022) and Tanzania (Shah et al., 2023). Most
studies reported costs in US dollars (12/18), with 4/18 converting to
US dollars from the local currency (Ruggeri et al., 2022b; Park et al.,
2022; Arwah et al., 2023; Shah et al., 2023), while 6/18 reported costs
in the local non-US currency (Ruggeri et al., 2022a; Lau et al., 2022;
Metry et al., 2022; Rafia et al., 2022; Alamer et al., 2023; Ruggeri et al.,
2023).

Included studies evaluated one or more of the following
pharmacological treatments for COVID-19, usually in addition
to standard care: remdesivir (9/18) (Carta and Conversano,
2021; Congly et al., 2021; Ruggeri et al., 2022a; Ruggeri et al.,
2022b; Dijk et al., 2022; Kelton et al., 2022; Lau et al., 2022; Metry
et al., 2022; Rafia et al., 2022), casirivimab + imdevimab (3/18)
(Dijk et al., 2022; Park et al., 2022; Ruggeri et al., 2023),
baricitinib + remdesivir (3/18) (Dijk et al., 2022; Kelton et al.,
2022; Metry et al., 2022), dexamethasone (3/18) (Carta and
Conversano, 2021; Congly et al., 2021; Dijk et al., 2022),
nirmatrelivir + ritonivir (3/18) (Metry et al., 2022; Savinkina
et al., 2022; Yeung et al., 2022), molnupiravir (2/18) (Goswami
et al., 2022; Yeung et al., 2022), and tocilizumab (2/18) (Dijk
et al., 2022; Metry et al., 2022). The following medicines were
evaluated by single studies: baricitinib (Metry et al., 2022),
favipiravir (Alamer et al., 2023), fluvoxamine (Yeung et al.,
2022), hydroxychloroquine (Dijk et al., 2022), interferon beta-
1a (Dijk et al., 2022), lopinavir + ritonivir (Dijk et al., 2022),
remdesivir + dexamethasone (Carta and Conversano, 2021),
sotrovimab (Metry et al., 2022). One study (1/18) evaluated
lenzilumab alongside other treatments (lenzilumab,
molnupiravir and casirivimab + imdevimab) but did not
publish cost-effectiveness results for these other treatments
due to confidentiality (Metry et al., 2022). One study (1/18)
evaluated a hypothetical pharmacological treatment for
COVID-19, with an efficacy profile derived from the ACTT-1
(remdesivir) and RECOVERY (dexamethasone) trials, and a

price of $2,500 per course (Kowal et al., 2023). In all cases,
standard care without the pharmacological intervention of
interest was a comparator. One study (1/18) evaluated a test
for SARS-CoV-2 (Arwah et al., 2023), and one (1/18) evaluated
the cost effectiveness of different levels of critical care for the
treatment of severe COVID-19 in a lower-middle income
country setting (Shah et al., 2023). The comparators were not
treating COVID-19 in critical care services; treating COVID-19
with basic critical care in district hospitals, reflecting standard
care; essential critical care, defined as treating people with severe
and critical disease with advanced care such as supplemental
oxygen; and advanced critical care, where people with critical
disease are treated with life-sustaining therapies such as
mechanical ventilation.

Cost—utility analyses (CUAs) were reported by 12/18 studies,
quantifying costs and a preference-based measure of health (Carta
and Conversano, 2021; Congly et al., 2021; Dijk et al., 2022;
Goswami et al., 2022; Kelton et al., 2022; Metry et al., 2022; Park
et al., 2022; Yeung et al., 2022; Arwah et al., 2023; Kowal et al., 2023;
Shah et al., 2023). In most cases (9/12), quality-adjusted life years
(QALYs) were used (Carta and Conversano, 2021; Congly et al.,
2021; Dijk et al., 2022; Goswami et al., 2022; Kelton et al., 2022;
Metry et al., 2022; Rafia et al., 2022; Yeung et al., 2022; Kowal et al.,
2023); the rest (3/12) used disability-adjusted life years (DALYs)
(Park et al., 2022; Arwah et al., 2023; Shah et al., 2023). One of the
QALY-based analyses was a distributional CUA (Kowal et al., 2023),
and was a re-analysis of a study that was included in the initial
review (Sheinson et al., 2021). Cost-effectiveness analyses (CEAs)
were reported by 7/18 studies (Ruggeri et al., 2022a; Ruggeri et al.,
2022b; Lau et al., 2022; Park et al., 2022; Savinkina et al., 2022;
Alamer et al., 2023; Ruggeri et al., 2023). All CEA studies used deaths
averted as their non-preference-based measure of health. One study
(1/18) was a CEA conducted alongside a clinical trial (Lau et al.,
2022). All other studies (17/18) reported model-based analyses,
comprising decision trees (6/17) (Carta and Conversano, 2021;
Congly et al., 2021; Metry et al., 2022; Park et al., 2022;
Savinkina et al., 2022; Arwah et al., 2023); Markov models (6/17)
(Ruggeri et al., 2022a; Ruggeri et al., 2022b; Dijk et al., 2022; Kowal
et al., 2023; Ruggeri et al., 2023; Shah et al., 2023), some of which
were nested within a disease epidemiology model (3/17) (Ruggeri
et al., 2022a; Ruggeri et al., 2022b; Ruggeri et al., 2023); “hybrid”
models, with a decision tree to model acute disease followed by a

TABLE 1 (Continued) General characteristics of included studies.

Study Country
(currency)

Population/Setting Intervention(s) & comparator(s) Type of
evaluation

Quality
assessmentb

Shah 2023 (Shah et al.,
2023)

Tanzania (USD) Hospitalised critically ill adult patients
with COVID-19

Advanced critical care, essential critical
care, district-level critical care, no critical
care

CUA Potentially serious
limitations

Yeung 2022 (Yeung
et al., 2022)

United States
(USD)

Mild to moderate outpatients at high
risk of progression to severe disease

Molnupiravir, N + R, fluvoxamine, SoC
(pooled from key trials)

CUA Minor limitations

aIn Metry et al., the cost-effectiveness results for lenzilumab, molnupiravir and C + I were considered to be confidential and were therefore not made publicly available.
bMinor limitations indicates the study meets all quality assessment criteria, or fails 1 or more criteria but this is unlikely to change the conclusions about cost effectiveness. Potentially serious

limitations indicates the study fails 1 or more quality assessment criteria and this has the potential to change the conclusions about cost effectiveness.

Abbreviations: B + R, baricitinib + remdesivir; CEA, cost-effectiveness analysis; CUA, cost—utility analysis; C + I, casirivimab + imdevimab; DCUA, distributional cost—utility analysis; ICU,

intensive care unit; L + R, lopinavir + ritonavir; N + R, nirmatrelvir + ritonavir; NIV, non-invasive ventilation; SoC, standard of care.
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TABLE 2 Economic evaluation characteristics of included studies.

Study Analysis approach Perspective Time horizon Cost categories Cost
year

Discounting Health
outcomes

Efficacy data
source

Utility data source

Alamer 2023
(Alamer et al.,
2023)

Patient-level simulation Healthcare payer 5 months Favipiravir, inpatient care,
isolation room, personnel,
laboratory, tests

2020 NR Deaths averted Retrospective
comparative study using
propensity score
matching

NA

Arwah 2023
(Arwah et al.,
2023)

Decision tree Societal Patient care episode Testing, treatment, related
healthcare services,
isolation, travel, value of
time, informal care,
productivity loss

2021 3% DALYs averted Author assumptions and
observational evidence

Non-COVID sources

Carta and
Conversano 2021
(Carta and
Conversano,
2021)

Decision tree Healthcare 1 year Treatments, inpatient care
(by LoS), follow-up care

NR
(appears to
be 2020)

NA QALY RCTs. Remdesivir and
dexamethasone effects
assumed to be additive

Non-COVID sources

Congly 2021
(Congly et al.,
2021)

Decision tree Healthcare 1 year Treatments, inpatient care
(by DRG)

2020 NA QALY Meta analysis & RCT Non-COVID sources

Dijk 2022 (Dijk
et al., 2022)

Markov model Healthcare Lifetime Treatments, inpatient care,
rehabilitation

2020 3% QALY RCTs Non-COVID sources

Goswami 2022
(Goswami et al.,
2022)

Hybrid model: decision tree
followed by Markov

Healthcare Lifetime Molnupiravir, inpatient
care, outpatient care,
emergency care

2021 3% QALY RCT Primary vignettes study,
EQ-5D-5L
(United Kingdom n =
500) using US value set.

Kelton 2021
(Kelton et al.,
2022)

Hybrid model: decision tree
followed by Markov

Base case: partial
societal (hospital plus
indirect productivity
costs). Scenario: hospital
only

Base case: lifetime.
Hospital scenario:
hospitalisation
duration

Treatments, inpatient care
(base case: by LoS; hospital
scenario: less DRG
payments); post-discharge
care; long-term all-cause
care; lost work days

NR 3% QALY RCTs. “Data on file” cited
for the ACTT-2 trial

Non-COVID sources

Kowal 2023
(Kowal et al.,
2023)

Distributional reanalysis of
Sheinson 2021 model

Healthcare (payer) Same as Sheinson 2021

Lau 2022 (Lau
et al., 2022)

Trial-based Healthcare public payer To discharge or
death

Remdesivir, ICU & ward
stays, personnel, laboratory
and radiology, procedures,
surgeries

2020 None Deaths averted RCT NA

Metry 2022
(Metry et al.,
2022)

Hospital: partitioned
survival model Community:
decision tree model

Healthcare Lifetime Treatments, hospital care,
outpatient monitoring,
long COVID

NR NR QALY Living NMAs
(metaEvidence Initiative,
2022; The COVID-NMA
Initiative, 2021)

Non-COVID sources

(Continued on following page)
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TABLE 2 (Continued) Economic evaluation characteristics of included studies.

Study Analysis approach Perspective Time horizon Cost categories Cost
year

Discounting Health
outcomes

Efficacy data
source

Utility data source

Park 2022 (Park
et al., 2022)

Decision tree NR Duration of illness C + I, hospital care NR NA Deaths averted,
DALYs averted

RCTs Burden on illness study in
Malta, derived from non-
COVID disability weights

Rafia 2022 (Rafia
et al., 2022)

Partitioned survival model Healthcare Lifetime Treatments, hospital care NR 3.5% QALY RCT Non-COVID sources

Ruggeri 2022
(Ruggeri et al.,
2022a)

Markov model nested
within epidemiological
model

Hospital 20 weeks Remdesivir, inpatient costs
including ICU

NR NA Deaths averted RCT NA

Ruggeri 2022
(Ruggeri et al.,
2022b)

Markov model nested
within epidemiological
model with 3 scenarios:
Static, decreasing and
increasing infection rates

NR 20 weeks Remdesivir, inpatient costs
including ICU and IV

2020 NA Deaths averted RCT NA

Ruggeri 2023
(Ruggeri et al.,
2023)

Markov model nested
within epidemiological
model

Healthcare (payer) 20 weeks C + I, inpatient costs
including ICU

NR NA Deaths averted RCT NA

Savinkina 2022
(Savinkina et al.,
2022)

Decision tree model Healthcare 30 days N + R, admission cost NR NA Deaths averted High risk, not vaccinated:
RCT and observational
data. Not high risk or high
risk and vaccinated: RCT.

NA

Shah 2023 (Shah
et al., 2023)

Markov model Provider perspective 28 days Cost of critical care (limited
details)

2020 None DALYs averted Expert elicitation Non-COVID sources

Yeung 2022
(Yeung et al.,
2022)

Hybrid model: decision tree
followed by Markov

Base case: healthcare
Scenario:modified
societal

Lifetime Treatments, related care,
age-adjusted other
healthcare, productivity
costs (scenario)

2021 3% QALY RCTs. Manufacturer press
release cited for N + R
trial

Non-COVID sources

Abbreviations: DALY, disability-adjusted life-year; DRG, diagnostic-related group; EQ-5D-5L, Euroqol 5 dimension 5 level; ICU, intensive care unit; LoS, length of stay; MV, mechanical (invasive) ventilation; NA, not applicable; NMA, network meta-analysis; NR, not

reported; QALY, quality-adjusted life-year; RCT, randomised controlled trial.
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TABLE 3 Results of included studies.

Study Cost and health
outcome results

ICER/net benefit
of intervention(s)
vs. comparator(s)

Cost-
effectiveness
threshold (if
relevant)

Sensitivity &
scenario
analyses

Authors’
conclusions
regarding cost
effectiveness

Authors’
reported
limitations and
challenges

Alamer 2023
(Alamer et al.,
2023)

Favipiravir: $17,197*;
0.97 probability survival

-$4,534* per death
averted

No threshold reported Analysis replicated
with weighted
model using
propensity scores
and PSA completed
for weight and
unweighted analyses

Favipiravir was
associated with lower
cost than SoC in both
the unweighted and
the weighted models.
Favipiravir was also
associated with a
higher probability to
be discharged alive

Limiting to deaths
averted and time to
discharge may miss
important outcomes.
Extending to CUA
was not possible but
would be desirable

SoC: $35,331*; 0.93
probability survival

Report no agreed
thresholds in Saudi but
dominant

Favipiravir is less
costly and more
effective across all
analyses

Study did not explore
timing of treatment
which may be
important

Arwah 2023
(Arwah et al.,
2023)

Scenario 1 (access to
confirmatory testing)

Scenario 1 $1003 (stated as
Kenyan threshold)

Deterministic
sensitivity with key
parameters varied
and PSA

Using rapid testing as
a first-line tool, and
later confirmatory
tests of negatives
where available, was a
cost-effective strategy.
Otherwise, rapid
testing is preferred to
clinical judgement,
although it is less
costly and less
effective

Limited by
unavailable data on
outcomes for false
negative patients

Rapid testing with
delayed confirmatory
testing: $1,336,231, 1999
DALYs

$965 per DALY averted
(rapid testing more
costly and more
effective)

Cost-effectiveness
was sensitive to
changes in the
prevalence, changes
to sensitivity and
specificity of rapid
testing and
confirmatory testing

Delayed testing:
$1,107,118, 2236 DALYs

Scenario 2 Scenario 1:

Scenario 2 (no access to
confirmatory testing)

$1490 per DALY averted
(clinical judgement more
costly and more
effective)

Rapid testing had
probability of 52.5%
of being cost-
effective at threshold

Rapid testing:
$998,260.67, 2538
DALYs

Scenario 2:

Clinical judgement:
$1,261,230, 2361 DALYs

Rapid testing had
probability of 71%
of being cost-
effective at threshold

Carter &
Conversano 2021
(Carta and
Conversano,
2021)

SoC: $33,370, 0.767
QALYs

R + D dominates both
SoC and dexamethasone

$50K/QALY gained OWSA results
presented vs. SoC
only. All ICERs vs.
SoC robust except
when remdesivir
relative effect takes
lower bound
estimate (R + D:
$24.4K/QALY,
remdesivir: $261K/
QALY)

This analysis supports
the use of remdesivir
and/or
dexamethasone

Analysis is based on
limited evidence of
treatment
effectiveness

Remdesivir: $32,354,
0.773 QALYs

R + D vs. remdesivir:
$5,222/QALY

PSA results
consistent with base
case

R + D does not have
proven effectiveness

Dexamethasone: $33,556,
0.803 QALYs

Excluding R + D: Disease progression,
long-COVID and
different patient
characteristics not
explored

R+D: $32,540, 0.809
QALYs

Remdesivir
dominates SoC

Proxy utility data
used

Dexamethasone vs
remdesivir: $40.6K/
QALY

(Continued on following page)
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TABLE 3 (Continued) Results of included studies.

Study Cost and health
outcome results

ICER/net benefit
of intervention(s)
vs. comparator(s)

Cost-
effectiveness
threshold (if
relevant)

Sensitivity &
scenario
analyses

Authors’
conclusions
regarding cost
effectiveness

Authors’
reported
limitations and
challenges

Congly 2021
(Congly et al.,
2021)

Total costs & QALYs All ICERs for remdesivir
strategies are dominated
by giving dexamethasone
to all (moderate and
severe) patients

$100K/QALY gained Optimal strategy is
not sensitive to
OWSA

Dexamethasone for
all patients was the
most cost-effective
strategy
Dexamethasone for
severe cases would be
favoured at lower
decision thresholds

Analysis is based on
limited evidence of
treatment
effectiveness

(Strategies denoted by
treatment for moderate
disease, treatment for
severe disease.)

Dexamethasone for
severe only, vs. SoC:
$285/QALY

PSA: ICER for
dexamethasone (all
patients) is below
£100K/QALY with
98% probability

Fixed DRG costs do
not account for
different hospital stay
durations

1. SoC, SoC: $11.1K,
0.716

Dexamethasone for all
patients vs. severe only:
$1,718/QALY

No long-term health
outcomes

2. SoC, Dex: $11.1K,
0.726

Proxy utility data
used

3. Dex, Dex: $11.1K,
0.735

4. SoC, Rem: $11.8K,
0.710

5. Rem, SoC: $13.1K,
0.725

6. Rem, Dex: $13.1K,
0.734

7. Rem, Rem: $13.7K,
0.719

Dijk 2022 (Dijk
et al., 2022)

Incremental vs. SoC ICERs vs. SoC $100K/QALY gained Value of
information analysis

At a threshold of
$100K/QALY gained,
treatment with
remdesivir, C + I,
dexamethasone, B +
R and tocilizumab are
cost effective
versus SoC

Some parameters
were estimated from
non-COVID studies.
Effectiveness
estimates drawn from
single trials

Hydroxychloroquine
(Hyd): -$12,227, -0.263
QALYs

Hyd: $46,427 (SWQ) Decisions about
Dex, C + I, B + R, L
+ R and IF would
not change with

Analysis focuses on
the research and
approval health
policy questions, not
comparisons

Remdesivir (Rem): -$5,
+0.252 QALYs

Rem: Dominant further evidence

C + I: $696, +0.171
QALYs

C + I: $4,075 For Rem and Toc,
the value of further
evidence would not
outweigh the cost of
research

Dexamethasone (Dex):
$6856, +0.614 QALYs

Dex: $11,619 For Hyd, further
evidence to
investigate
decremental cost
effectiveness may be
worthwhile

B + R: $10,673, +0.775
QALYs

B + R: $13,772

Tocilizumab (Toc):
$35,849, +0.882 QALYs

Toc: $40,633

Interferon b1 (IF):
-$2,538, -0.472 QALYs

IF: $5,377 (SWQ)

L + R: -$1,404, -0.091
QALYs

L + R: $15,418 (SWQ)

Fully incremental NR
due to heterogeneous
SoC arms across trials
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TABLE 3 (Continued) Results of included studies.

Study Cost and health
outcome results

ICER/net benefit
of intervention(s)
vs. comparator(s)

Cost-
effectiveness
threshold (if
relevant)

Sensitivity &
scenario
analyses

Authors’
conclusions
regarding cost
effectiveness

Authors’
reported
limitations and
challenges

Goswami 2022
(Goswami et al.,
2022)

Molnupiravir: $8,795,
17.721 QALYs

Molnupiravir is
dominant compared
with SoC

$100K per QALY
gained

Results robust to
scenario and one-
way sensitivity
analyses. PSA:
Molnupiravir 100%
likely to have an
ICER below
threshold

Compared with SoC,
treatment with
molnupiravir can be
considered a cost-
effective option in the
management of
outpatients with
COVID-19 at risk of
progression to severe
disease in the US

Other outpatient
treatments for
COVID-19 not
included.
Appropriate utility
data were unavailable
and required primary
research

SoC: $9,690, 17.512
QALYs

Kelton 2022
(Kelton et al.,
2022)

Partial societal
perspective

Partial societal
perspective

$50K/QALY gained All ICERs robust to
OWSA, including
oxygen/NIV
subgroup

B + R is more cost
effective than
remdesivir alone for
patients hospitalised
because of COVID-19
in the US

Lack of data to inform
long-term burden of
COVID-19

Remdesivir: $372K, 11.7
QALYs

B + R vs. remdesivir:
$22.3K/QALY,
$17.9K/LYG

B + R more cost
effective if no
survival benefit (due
to future unrelated
medical costs
avoided)

Analysis does not
capture potential
readmissions or
resource capacity
constraints

B + R: $380K, 12.1
QALYs

Hospital perspective PSA: consistent with
deterministic

Data informing utility
values are limited

Note: >80% of costs
composed of other long-
term medical costs

B + R dominates
remdesivir

National average
DRG costs may lack
generalisability

Hospital perspective

B + R vs. remdesivir:
-$1,778, +0.0018 QALYs

Kowal 2023
(Kowal et al.,
2023)

Deterministic
incremental results

Deterministic results $150,000 per QALY
gained ($50K & $100K
in sensitivity analyses)

Population NHB by
threshold:

Funding COVID-19
treatments reduced
the population-level
burden of health
inequality by 0.234%
(or 130,000 QALYs)

Underreporting of
COVID-19 cases,
hospitalisations
deaths, and
potentially variable
reporting across
equity subgroups.
20% of the population
was not captured by
the DCUA

Average: Average: $28,600 per
QALY gained

$50K: 391,114
QALYs

Distributional CUA
of inpatient COVID-
19 treatments may
improve overall
health while reducing
health inqualities

No trial data were
identified that
reported subgroup
effects

Costs $12,741, QALYs
+0.445

Highest deprivation:
$28,000 per QALY
gained

$100K: 649,456
QALYs

Lack of quality-of-life
data at the subgroup
level

Lowest deprivation:
$29,800/QALY gained

Population NHB
remain positive up
to inpatient
treatment cost of
$60,100 per patient

Including inequitable
opportunity costs (NHB)

Total: 735,569 QALYs

Hispanic, highest
deprivation: 72,083;
lowest deprivation: 1,106

Black, highest
deprivation: 47,342;
lowest deprivation: 1,622
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TABLE 3 (Continued) Results of included studies.

Study Cost and health
outcome results

ICER/net benefit
of intervention(s)
vs. comparator(s)

Cost-
effectiveness
threshold (if
relevant)

Sensitivity &
scenario
analyses

Authors’
conclusions
regarding cost
effectiveness

Authors’
reported
limitations and
challenges

White, highest
deprivation: 113,982;
lowest deprivation:
27,450

Lau 2022 (Lau et
al., 2022)

Remdesivir: $28,276*,
0.809 deaths averted

Dominant Thresholds of $0,
$14,914*, $37,286* and
$74,571* used for
interpreting PSA

Results similar
across deterministic
scenarios. Major
drivers of cost
effectiveness were
inpatient care and
remdesivir costs

Remdesivir plus SoC
is likely the preferred
treatment strategy
compared with usual
care alone, for
hospitalised adults
with COVID-19

Short time horizon
may miss
downstream costs
and later events

Placebo: $28,357*, 0.771
deaths averted

Remdesivir
dominant in 58% of
PSA simulations
and below $74,571*
in 82%

Data from RCT may
not reflect routine
clinical practice

Metry 2022
(Metry et al.,
2022)

Total costs* & QALYs In hospital, on oxygen: $27.5K* /QALY gained Treatments are
more cost effective
when duration of
long COVID was
shorter, and in
younger patients. In
the community
setting, a higher risk
of hospitalisation
makes early
treatment more cost
effective

In hospital, all
treatments evaluated
had scenarios where
the ICER vs. SoC was
below the threshold

The decision problem
has evolved, so
studies do not reflect
the current
conditions.
Therefore, many
assumptions were
required. No head-to-
head studies of
interventions were
identified.
Confidential results
not published for
lenzilumab,
molnupiravir or
casirivimab +
imdevimab

In hospital, on oxygen: SoC: reference In the community
setting, N + R may be
cost effective
compared with SoC

SoC: $30,436, 4.61 T: $9,254*

Toc: $35,146, 5.12 Rem: dominated

Rem: $38,202, 5.08 Bar: $18,812*

Baricitinib (Bar):
$41,572, 5.46

B + R: dominated

B + R: $41,974, 5.32 In hospital, no oxygen:

In hospital, no oxygen: SoC: reference

SoC: $13,316, 5.79 Bar: $7,564*

Bar: $16,073, 6.29 Rem: dominated

Rem: $16,487, 6.07 B + R: dominated

B+R: $17,509, 6.21 In the community, high
risk:

In the community, high
risk:

SoC: reference

SoC: $1,448, 13.42 N + R: $8,484*

N+R: $2,483, 13.53 Sot: dominated

Sot: $4,924, 13.48 Rem: dominated

Rem: $6,039, 13.45

Park 2022 (Park
et al., 2022)

Incremental results (costs
and DALYs averted)

Treatment with C + I vs.
SoC:

1.15 gross national
income per DALY =
$74K in 2021

Results were robust
to sensitivity
analyses setting the
relative risk
reduction to the 95%
CI bounds

All strategies
considered were cost
effective using the
specified threshold

Study prior to
widespread
circulation of delta
and omicron disease
variants. Efficacy and
cost effectiveness of C
+ I may differ by
variant

Treatment with C+I vs
SoC:

Dominant Treating people aged
≥60 was the most cost
saving strategy

(Continued on following page)
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TABLE 3 (Continued) Results of included studies.

Study Cost and health
outcome results

ICER/net benefit
of intervention(s)
vs. comparator(s)

Cost-
effectiveness
threshold (if
relevant)

Sensitivity &
scenario
analyses

Authors’
conclusions
regarding cost
effectiveness

Authors’
reported
limitations and
challenges

Treat ages ≥80:
-$0.08 m, 38

Dominant

Treat ages ≥70:
-$0.1 m, 66

Dominant

Treat ages ≥60:
-$0.34 m, 161

$800/DALY averted

Treat ages ≥50:
+$0.17 m, 198

Rafia 2022 (Rafia
et al., 2022)

Total costs* and QALYs
(probabilistic)

If remdesivir has a
survival effect:

$27.5K* /QALY gained ICERs most affected
by time horizon,
baseline survival
with SoC, and
inclusion of
unrelated costs. At
analysis price,
remdesivir mortality
HR must be 0.915 or
higher to be cost
effective

Remdesivir is likely to
be cost effective only
if it prevents death,
and this is highly
uncertain within the
supplemental oxygen
population

Rapidly changing
context means some
parameter estimates
and assumptions out
of date

If remdesivir has a
survival effect:

ICER vs. SoC: $17,056* PSA: ICER below
threshold with 74%
probability if it
confers a survival
benefit, else 0%

Model cannot track
individual patients

SoC: $12,920, 6.35 If remdesivir has no
survival effect:

Analyses conducted
at list prices, may not
reflect true prices
paid

Remdesivir: $17,549, 6.62 ICER vs. SoC: >$1M. Potentially some
double counting of
COVID-19 disutilityIf remdesivir has no

survival effect:

SoC: $14,190, 6.35

Remdesivir: $16,481, 6.35

Ruggeri 2022
(Ruggeri et al.,
2022a)

Incremental results NR NR Results sensitive to
Rt; admission, ICU
and mortality rates;
remdesivir
treatment effect.
However,
conclusions remain
the same

The ability of
remdesivir to decrease
ward LoS and ICU
admissions would
produce signifcant
cost savings for
hospitals, a more
manageable hospital
capacity in a public
health emergency,
and a faster recovery
for hospitalised
patients who require
supplemental oxygen

Infection forecasts
were informed by
various sources,
including historical
data and expert
opinion, and are
therefore uncertain.
Potential side effects
of remdesivir were
not included23,579 cases: PSA: results not

reported in detail,
but remdesivir
appears to be cost-
incurring (i.e., not
dominant) in a
significant
proportion of PSA
results

Costs -$27.8 m*

Deaths averted 165.9

Calibrated to 1,000 cases:

Costs -$1.2 m*

Deaths averted 7.0

(Continued on following page)
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TABLE 3 (Continued) Results of included studies.

Study Cost and health
outcome results

ICER/net benefit
of intervention(s)
vs. comparator(s)

Cost-
effectiveness
threshold (if
relevant)

Sensitivity &
scenario
analyses

Authors’
conclusions
regarding cost
effectiveness

Authors’
reported
limitations and
challenges

Ruggeri 2022
(Ruggeri et al.,
2022b)

Incremental results NR NR Results sensitive to
Rt values, ICU and
mortality rates,
baseline
hospitalisation and
remdesivir mortality
effect, but
conclusions remain
the same

In Saudi Arabia,
remdesivir plus
standard of care has
the potential to
reduce healthcare
resource use,
mortality, and costs
when compared with

Some infection
forecasts were
informed by expert
opinion, and are
therefore uncertain.
Many inputs
informed by targeted,
rather than
systematic, literature
review, including
only 1 RCT.
Treatment-related
adverse eventsnot
captured

Static infection rate
(178,405 cases):

Rt = 0.8 (decreasing;
109,087 cases): costs
-$154.7 m1, DA 815

standard of care alone
across a range of
plausible local
epidemiological
scenariosCosts -$174.81 m Calibrated to 1,000

cases: costs -$1.4 m,
DA 7.5

Deaths averted (DA) 1.2 Rt = 1.2 (increasing;
247,724 cases): costs
-$377.3 m, DA
1,582

Calibrated to 1,000 cases: Calibrated to 1,000
cases: costs -$1.5 m,
DA 6.4

Costs -$979,836 PSA: remdesivir is
dominant in 93% of
simulationsDeaths averted 6.7

Ruggeri 2023
(Ruggeri et al.,
2023)

Incremental results NR NR Results sensitive to
Rt; admission, ICU
and mortality rates;
C + I effect on
admissions.
However,
conclusions remain
the same

[With C + I] hospitals
can achieve important
cost savings while
patients can
experience a more
favourable disease
course [including
reduction in death]

Epidemiological
model based on
estimated parameters,
including Rt. Limited
clinical evidence
about C + I (1 RCT).
True price of C + I in
Italy is not known,
therefore this analysis
uses the US price.
Dominant COVID-
19 variants at the time
of publication (alpha
and delta) are not the
variant that C + I is
likely to be active
against (omicron;
prevalence 4.76%)

194,451 cases: PSA: C + I
dominant in more
than 90% of
simulations

Costs -$82.4 m*

Deaths averted 1,535

Calibrated to 1,000 cases:

Costs -$423,730*

Deaths averted 7.9

Savinkina 2022
(Savinkina et al.,
2022)

Base-case (high) effect
scenario, calibrated to
1,000 patients:

Base-case (high) effect
scenario:

$10,000 to $5 m
per DA

ICERs, low-effect
scenario:

For almost every
scenario prescribing
N + R to
unvaccinated patients
at high risk of severe
COVID-19 was cost
saving. This group
should almost always
be treated if treatment
is available

Analysis does not
consider drug supply,
budgetary
constraints, non-
adherence,
contraindications to
N + R, other active
treatments,
differential costs in
different vacc and risk
groups, or
transmission
dynamics

No N + R: $221K, 0.77
deaths

No N + R: baseline No N + R: baseline

N + R for unvacc high
risk: $182K, 0.51 deaths

N + R for unvacc high
risk: dominant

N + R for unvacc
high risk: $319K
per DA

N + R for all high risk:
0.29 deaths, $273K

N + R for all high risk:
$397K per DA

N + R for all high
risk: $2.6 m per DA
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TABLE 3 (Continued) Results of included studies.

Study Cost and health
outcome results

ICER/net benefit
of intervention(s)
vs. comparator(s)

Cost-
effectiveness
threshold (if
relevant)

Sensitivity &
scenario
analyses

Authors’
conclusions
regarding cost
effectiveness

Authors’
reported
limitations and
challenges

N + R for all high risk
and unvacc low risk: 0.22
deaths, $348K

N + R for all high risk
and unvacc low risk:
$1.0 m per DA

N + R for all high
risk and unvacc low
risk: $5.3 m per DA

N + R for all: 0.18 deaths,
$566K

N + R for all: $5.0m
per DA

N + R for all:
$22.1m per DA

Cost results reported
for various OWSA
values (but
ICERs NR)

Shah 2023 (Shah
et al., 2023)

Not reported
(incremental only)

Advanced CC vs none: $101 per DALY
averted (conservative
threshold for
Tanzania)

Probability of
essential and
emergency care
being cost effective
is 96% and 99%
compared to no care
and district level
care at Tanzanian
threshold

Essential and
emergency critical
care is likely to be
highly cost effective in
low-resource settings

Analysis relies on low
quality sources for
parameters due to
scarcity of data, does
not include needs of
moderate patients,
and did not reflect
availability of
regional and referral
hospitals

$186 per DALY averted In deterministic
analyses, results
were most sensitive
to effectiveness of
essential and
emergency care in
preventing severe
cases becoming
critical, unit costs of
advanced care

Markov model
cannot capture pace
of change of
treatment even within
24 h cycle

Essential CC vs none: Triangular
distributions used
may be less
appropriate but
reflect uncertain
nature of data

$37 per DALY averted

Advanced CC vs district:

$144 per DALY averted

Essential CC vs. district:

$14 per DALY averted

Yeung 2022
(Yeung et al.,
2022)

Costs and QALYs ICERs vs. SoC $50K-150K per QALY
gained

PSA (healthcare
perspective),
probability ICER <
$50K, $100K,
$150K:

At their current
prices, each
intervention is
estimated to meet
standard cost-
effectiveness levels in
the US healthcare
system, even under a
scenario with a lower
hospitalisation risk
that may reflect the
Omicron wave

Analysis
underpinned by
immature evidence
base and
heterogenous trial
designs, including
non-US settings and
different prevalent
COVID-19 variants

Healthcare perspective Healthcare perspective Mol: 31%, 69%, 84% Modified societal
perspective has
limited scopeMolnupiravir (Mol):

$298.5K, 15.938
Mol: $61K N + R: 97%,

100%, 100%

N + R: $298.5K, 15.964 N + R: $21K Flu: 100%,
100%, 100%

Fluvoxamine (Flu):
$297.8K, 15.939

Flu: $8K Key scenarios,
(ICERs vs. SoC):

SoC: $297.7K, 15.925 Modified societal
perspective (approx.)

Unvaccinated
population:
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long-term Markov component (3/17) (Goswami et al., 2022; Kelton
et al., 2022; Yeung et al., 2022); partitioned survival models (2/17)
(Metry et al., 2022; Rafia et al., 2022); and a patient-level simulation
(1/17) (Alamer et al., 2023). A potential financial conflict of interest
in favour the intervention under evaluation was reported by 6/
18 included studies (Ruggeri et al., 2022b; Goswami et al., 2022;
Kelton et al., 2022; Lau et al., 2022; Ruggeri et al., 2023).

3.2 Cost effectiveness

3.2.1 Treatments: inpatient hospital setting
For evaluations based in inpatient hospital populations, with

or without supplemental oxygen, 8/12 studies were CUAs that
specified one or more willingness-to-pay thresholds to determine
cost effectiveness of evaluated interventions. Dexamethasone was
found to be cost effective compared with standard care (Carta
and Conversano, 2021; Congly et al., 2021; Dijk et al., 2022); this
conclusion was robust to sensitivity analyses, and a value of
information analysis indicated there would be no value in further
research (Dijk et al., 2022). Remdesivir was also generally cost
effective versus standard care (Carta and Conversano, 2021;
Congly et al., 2021; Dijk et al., 2022; Rafia et al., 2022),
though 1 study noted that this result was highly sensitive to
whether it confers a survival benefit or not (Rafia et al., 2022). If it
does, the reported ICER was around $17,000 per QALY gained,
rising to over $1 million per QALY gained if it does not reduce the

risk of death. Its mortality hazard ratio should be at least 0.92 for
it to be cost effective. Further, 1 study found that using
dexamethasone for all hospitalised patients dominated any
strategy that involved remdesivir (Congly et al., 2021).
Baricitinib in addition to remdesivir was found to be cost
effective versus standard care in 2 studies (Dijk et al., 2022;
Metry et al., 2022), and this was robust to sensitivity analyses.
In a US study (Kelton et al., 2022), it had an ICER of around
$22,000 per QALY gained compared with using remdesivir alone,
in a partial societal analysis, and was dominant from a hospital
perspective. However, this was in conflict with a fully incremental
analysis from a United Kingdom healthcare perspective (Metry
et al., 2022), that suggested barcitinib monotherapy was the most
cost effective treatment for hospitalised patients, with ICERs of
around $7,500–19,000 per QALY gained depending on the
patient’s need for oxygen. The conflicting results may be
explained by healthcare resource cost differences between the
US and United Kingdom, or the studies’ different sources for
relative effectiveness data; one (Kelton et al., 2022) made use of
data on file from a single trial (ACTT-2), while the other (Metry
et al., 2022) used outputs from published “living” network meta
analyses (metaEvidence Initiative, 2022; The COVID-NMA
Initiative, 2021). In a study that compared treatments with
standard care but not with each other (Dijk et al., 2022),
casirivimab + imdevimab and tocilizumab were estimated to
have ICERs of around $13,000 and $40,000 per QALY gained,
respectively, while hydroxychloroquine, interferon beta-1a and

TABLE 3 (Continued) Results of included studies.

Study Cost and health
outcome results

ICER/net benefit
of intervention(s)
vs. comparator(s)

Cost-
effectiveness
threshold (if
relevant)

Sensitivity &
scenario
analyses

Authors’
conclusions
regarding cost
effectiveness

Authors’
reported
limitations and
challenges

Modified societal
perspective

Mol: $43K Mol: $48K

Mol: $301.4K, 15.952 N + R: $26K N + R: $15K

N + R: $302.3K, 16.006 Flu: $20K Flu: $4K

Flu: $300.8K, 15.954 Lower
hospitalisation risk
(e.g., Omicron
variant):

SoC: $300.2K, 15.925 Mol: $74K

N + R: $34K

Flu: $21K

Abbreviations: Bar, baricitinib; B + R, baricitinib and remdesivir; CC, critical care; CUA, cost—utility analysis; C + I, casirivimab + imdevimab; DALY, disability-adjusted life-year; DA, DALY

averted; DCUA, distributional cost—utility analysis; Dex, dexamethasone; DRG, diagnostic-related group; Flu, fluvoxamine; HR, hazard ratio; Hyd, hydroxychloroquine; ICER, incremental

cost-effectiveness ratio; ICU, intensive care unit; IF, interferon beta-1a; L + R, lopinavir + ritonivir; Mol, molnupiravir; N + R, nirmatrelvir + ritonavir; NR, not reported; QALY, quality-

adjusted life-year; RCT, randomised controlled trial; Rt, disease reproduction rate; R + D, remdesivir and dexamethasone; SoC, standard of care; Sot, sotrovimab; SWQ, south-west quadrant (of

the cost-effectiveness plane, i.e., lower cost and lower effectiveness); Toc, tocilizumab.

Notes: (Elvidge et al., 2022) This study (Ruggeri et al., 2022b) reports the cost results for “static” and “decreasing” infection rate scenarios the other way around, such that the cost in the “static”

scenario is lower than the cost under decreasing infection rates. This appears to be an error, therefore we have swapped the cost results.

*Cost conversions to USD listed below. The OECD exchange rate for the reported price year is used (Exchange rates indicator, 2023).Where no price-year is explicitly reported, we have assumed

the relevant exchange rate is the year prior to the year of publication.

• Alamer 2023 (Alamer et al., 2023): 1 USD = 3.750 SAR (2020).

• Lau 2022 (Lau et al., 2022): 1 USD = 1.341 CAD (2020).

• Metry 2022 (Metry et al., 2022), Rafia 2022 (Rafia et al., 2022): 1 USD = 0.727 GBP (2021).

• Ruggeri 2022 (Ruggeri et al., 2022a): 1 USD = 0.845 EUR (2021).

• Ruggeri 2023 (Ruggeri et al., 2023): 1 USD = 0.950 EUR (2022).
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lopinavir + ritonivir were found to be cost saving but detrimental
to health outcomes (QALYs). The resulting southwest-qaudrant
ICERs were around $46,000, $5,500 and $15,000, respectively,
which, at the specified threshold of $100,000 per QALY gained,
imply the cost savings would not be sufficient to offset the
health outcomes foregone. Value of information analysis
identified that further research to examine disinvestment in
hydroxychloroquine may be worthwhile, though it is not
widely used.

One QALY-based evaluation of inpatient pharmacological
treatment (Kowal et al., 2023) was a distributional re-analysis of
a study previously included in this review (Sheinson et al., 2021).
Treatment was found to be more cost effective in more deprived
populations, with an ICER of $28,000 per QALY gained in the most
deprived group and $29,800 in the least deprived group. Including
the existing inequitable distribution of opportunity costs in the US
health system, population-level net health benefits would remain
positive up to a treatment cost of $60,100 per patient.

The one other CUA in the inpatient setting (Shah et al., 2023)
evaluated using different levels of critical care to treat people with
COVID-19, and used DALYs averted as the health outcome. At a
specified conservative threshold in Tanzania of $101 per DALY

averted, using essential critical care (e.g., supplemental oxygen)
for people with COVID-19 was cost effective compared with no
critical care, with an ICER of $37 per DALY averted, and district-
level critical care ($14 per DALY averted). The equivalent ICERs
for using advanced critical care (e.g., mechanical ventilation
critical disease) were above the threshold, at $186 and $144,
respectively.

There were 4 CEAs evaluating treatments in the inpatient
setting, with all using deaths averted as the health outcome. Two
studies used the same economic model with country-specific input
data, and found remdesivir to reduce deaths and costs compared
with standard care in Portugal [7 deaths averted and $1.2 m saved
per 1,000 cases (Ruggeri et al., 2022a)] and Saudi Arabia [6.7,
$980,000 (Ruggeri et al., 2022b)]. One trial-based analysis
reached similar results in the setting of Canada (Lau et al., 2022);
it was dominant in 58% of probabilistic sensitivity analysis (PSA)
simulations, and the ICER was below $100,000 for death averted in
82%. Favipiravir was evaluated by 1 study (Alamer et al., 2023), and
was also found to reduce deaths and costs in Saudi Arabia, with a
saving of $4,500 per death averted.

3.2.2 Treatments: outpatient and community
setting

For patients treated in the outpatient and community setting, at
risk of progressing to severe disease requiring inpatient or critical
care, 4 studies compared active treatments with standard care only.
Among them, casirivimab + imdevimab was found to have an ICER
of $800 per DALY averted in 1 study (Park et al., 2022)–below the
specified $74,000 per DALY threshold in Singapore–and to reduce
deaths and save costs in Italy in another study (Ruggeri et al., 2023).
The conclusions of both studies were robust to sensitivity analyses
undertaken; in the latter case, casirivimab + imdevimab was
dominant in over 90% of simulations. One study estimated that
molnupiravir would dominate standard care, generating
incremental QALYs and reducing costs (Goswami et al., 2022).

In the only identified study that explicitly compared different
strategies for using a treatment in subgroups defined by vaccination
status (Savinkina et al., 2022), base-case results suggested that
nirmatrelivir + ritonivir would dominate standard care for
unvaccinated high-risk groups. However, that result was sensitive
to the relative effect estimate, with a plausible lower-bound effect
leading to an ICER of over $300,000 per death averted. Nirmatrelivir
+ ritonivir would be less cost effective if used in vaccinated and low-
risk groups, with the ICER rising to $5 m per death averted if used
for all patients. In a US HTA analysis (Yeung et al., 2022), it had an
ICER of $21–26,000 per QALY gained versus standard care,
depending on the perspective chosen, and in a United Kingdom
fully incremental analysis conducted for HTA (Metry et al., 2022),
the ICER was around $8,500 per QALY gained (remdesivir and
sotrovimab were dominated). The US HTA study also found
fluvoxamine would be cost effective compared with standard care
relative to typical US thresholds (ICER: $8–20,000 per QALY
gained), while molnupiravir had an ICER of $61,000 per QALY
gained from a healthcare perspective, and $43,000 per QALY gained
from a partial societal perspective that captured productivity costs.
Therefore, the perspective would be a relevant factor for healthcare
decision makers using the specified conservative threshold of
$50,000 per QALY. In a scenario focusing on an unvaccinated

FIGURE 1
PRISMA diagram for study selection.
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TABLE 4 Studies excluded due to having very serious limitations.

Study Comparators & type of evaluation Summary of very serious limitations that affect
reliability of study conclusions

Beshah 2023 (Beshah
et al., 2023)

Non-invasive ventilation, mechanical ventilation Lifetime horizon, but no long-term outcomes included. Insufficient
information about source of baseline outcomes. Relative effectiveness
and resource use inputs sourced from a single non-randomised study
without adjustment for selection bias. Limited analysis of uncertainty

CUA

Chow 2022 (Chow et al.,
2022)

Statins, SoC Health outcome is not defined and cannot be accurately inferred from the
information reported. Relative effectiveness and resource use inputs
sourced from non-randomised studies only. Unit costs are informed by
World Health Organisation cost codes, generalisability to the study
setting is unclear. No analysis of uncertainty reported

CUA

Gandjour 2022
(Gandjour, 2022)

Off-the-shelf self tests, personal protective measures + no testing The design and appropriateness of the model structure are unclear (no
schematic). Downstream effects of test results are not considered. Only
costs associated with the test appear to have been included, and the unit
price source is not reported. An ICER is reported, but the component
incremental costs and QALYs are not. Many parameters are not
subjected to uncertainty analysis

CEA

Jovanoski 2022
(Jovanoski et al., 2022)

Casirivimab + imdevimad, SoC Some modelling assumptions and cost data sources may overstate the
impact of the intervention. ICERs are reported, but the component
incremental costs and QALYs are not. Minimal analysis of uncertainty is
reported. There is a potential conflict of interest

CUA

Kilcoyne 2022 (Kilcoyne
et al., 2022a)

Lezilumab, SoC Time horizon (28 days) is too short to capture all relevant cost and health
outcomes. Hospitalisation costs are sourced from a modelling study,
when national schedules of costs are available. Estimates of clinical
effectiveness are drawn from a single manufacturer funded RCT.
Absolute values of intervention effect are used, which imposes the
assumption of independent prior distributions in the treatment and
comparator arms, which is unlikely. A joint measure of cost-effectiveness
is not presented. A probabilistic sensitivity analysis is not performed.
There is a potential conflict of interest

CEA.

Kilcoyne 2022 (Kilcoyne
et al., 2022b)

Lezilumab, SoC Time horizon (28 days) is too short to capture all relevant cost and health
outcomes, though a scenario analysis extends the time horizon to 1 year.
Absolute values of intervention effect are used, which imposes the
assumption of independent prior distributions in the treatment and
comparator arms. A joint measure of cost-effectiveness is not presented.
A probabilistic sensitivity analysis is not performed. There is a potential
conflict of interest

CEA.

Krylova 2021 (Krylova
et al., 2021)

Favipiravir, umifenovir No time horizon; clinical outcomes are directly dependent on the source
of effectiveness evidence used (17 or 28 days). No long-term or
downstream outcomes included. For one comparison, different RCTs are
used to inform effectiveness, without adjustment for potential
confounding. Substantial use of assumptions to inform resource use
parameters. No uncertainty analysis

CEA

Ohsfeld 2021 (Ohsfeldt
et al., 2021)

Baricitinib, SoC Absolute values of intervention effect are used, which imposes the
assumption of independent prior distributions in the treatment and
comparator arms. Extensive use of unpublished “data on file”,
assumptions and other various sources to inform resources use and cost
parameters. Limited justification for ranges used in sensitivity analysis.
There is a potential conflict of interest

CEA, CUA.

Oksuz 2021 (Oksuz et al.,
2021)

Remdesivir, SoC Time horizon (“a COVID-19 episode”) is unclear but is likely to be too
short to capture all relevant cost and health outcomes. Baseline, relative
effectiveness and resource use outcomes from unadjusted real-world data
(n = 78). PSA distributions are not reported. There is a potential conflict
of interest

CUA

Petrov 2022 (Petrov et al.,
2022)

Anakinra, baricitinib, kanakinumab, levilimab, olokizumab, netakimab,
sarilumab, secukinumab, tocilizumab, tofacitinib

The cited clinical evidence is insufficient to justify the assumption of
equal effectiveness required by the chosen cost-minimisation approach.
It is inappropriate to compare the studied interventions because are
intended for different patient populationsCBA

Schallner 2022 (Schallner
et al., 2022)

Intensive care, non-intensive care Baseline outcomes for the standard care comparator arm (instant death)
were arbitrary researcher assumptions, with no support from experts or
data reported. Relative effectiveness inputs sources from a single, small
study with a historical control. Costs associated with standard care not

CUA

(Continued on following page)
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patient population, in whom the effects of COVID-19 may be more
severe, the US HTA (Yeung et al., 2022) found that nirmatrelivir +
ritonivir, fluvoxamine and molnpiravir would be more cost effective
versus standard care (with healthcare perspective ICERs of $15,000,
$4,000 and $48,000 per QALY gained, respectively).

3.2.3 Diagnostic tests
The single study that evaluated a diagnostic test (Arwah et al.,

2023) found that rapid antigen tests, plus a delayed nucleic acid
amplifying test (NAAT) used in a confirmatory way, had an ICER of
$965 per DALY averted compared with typical standard care in
Kenya: delayed NAAT alone. This would be cost effective by a close
margin relative to the specified local threshold of $1,003 per DALY;
in PSA, the probability of the ICER being below the threshold was
53%. The ICER was sensitive to the underlying disease prevalence
and the accuracy of rapid and confirmatory tests. In a scenario where
NAAT is not available, rapid testing was estimated to dominate a
“no testing” strategy that relies on clinical judgement.

4 Discussion

4.1 Principal findings

This updated systematic review indicates that pharmacological
treatments that have been repurposed for to treat COVID-19 in
recent years have the potential to be cost effective. In particular, the
use of the low-cost corticosteroid dexamethasone—which has
become routine practice to treat severe COVID-19 in an
inpatient setting—appears to be clearly cost effective. Remdesivir
and baricitinib, potentially in combination, appear to be promising
candidates to treat severe disease, too. Limited cost-effectiveness
evidence in the inpatient setting for casirivimab + imdevimab,
tocilizumab, hydroxychloroquine, interferon beta-1a and
lopinavir + ritonivir suggests the latter 3 treatments may produce
worse health outcomes than standard care without a commensurate
cost saving to be considered by decision makers.

In the outpatient and community setting, there is some evidence
that casirivimab + imdevimab, fluvoxamine and molnupiravir may

be cost effective over standard care. Results from 3 studies indicate
that nirmatrelivir + ritonivir may be a cost effective treatment in the
community setting among patients at high risk of hospitalisation
(such as unvaccinated people), though the one fully incremental
analysis among them does not include casirivimab + imdevimab,
fluvoxamine or molnupiravir in the published results. The 2 studies
that evaluated non-pharmacological interventions were both in
lower-income settings. They suggested that rapid antigen tests
may be cost effective where there is slow existing testing
infrastructure, and certainly where there is none; and using the
most advanced forms of critical care to treat COVID-19 might be
difficult to justify, on cost-effectiveness grounds, in a resource-
limited setting.

Compared with the first iteration of this review (Elvidge et al.,
2022) conducted in July 2021, this update has identified economic
evaluations of a much larger set of interventions for COVID-19.
Previously, the evidence base was limited to evaluations of
monotherapy and combination therapy use of dexamethasone
and remdesivir, which were early candidate interventions for the
treatment of COVID-19 in hospital. While we have identified
additional cost-effectiveness evidence regarding these treatments,
other pharmacological interventions have received marketing
authorisation to treat the disease since 2021, and it is logical that
healthcare decisions makers will be interested in understanding
which of them offer value for money. Here, we have identified
such evidence for antiviral therapies (casirivimab + imdevimab,
favipiravir, lopinavir + ritonivir, molnupiravir, nirmatrelivir +
ritonivir), immunotherapies (baricitinib, sotrovimab, tocilizumab)
and various other repurposed medicines (fluvoxamine,
hydroxychloroquine, interferon beta-1a).

We identified 1 study evaluating the cost effectiveness of a test
for SARS-CoV-2, representing 6% of our included studies (1/18)
compared with 29% in the initial review (2/7). It is likely that this
reflects the changing pandemic context over time, such that
comparing alternative testing strategies is no longer a prominent
concern, relative to assessing the value of the growing number of
available treatment options. The study evaluating rapid antigen tests
was one of 2 included studies evaluating non-pharmacological
interventions; the other estimated the value of using scarce

TABLE 4 (Continued) Studies excluded due to having very serious limitations.

Study Comparators & type of evaluation Summary of very serious limitations that affect
reliability of study conclusions

considered (instand death would not be costless). Limited analysis of
uncertainty reported

Subhi 2023 (Subhi et al.,
2023)

Remdesivir, favipiravir, SoC No long-term outcomes are included. Source of baseline outcomes
appears to be a trial conducted in a different setting. Relative effectiveness
estimates for favipiravir rely on researcher assumptions. Indirect
comparison between remdesivir and favipiravir is a naïve comparison.
Resource use inputs informed by expert elicitation. Details of the experts
and elicitation process are not reported. There is a potential conflict of
interest

CEA

Wai 2023 (Wai et al.,
2023)

Molnupiravir, nirmatrelvir + ritonavir, SoC Time horizon (28 days) is too short to capture all relevant cost and health
outcomes. Baseline outcomes and relative effectiveness outcomes sources
from a single non-randomised study. Unclear how resource use inputs
were recorded and how cost inputs were sourced. No analysis of
uncertainty reported

CEA

Abbreviations: CBA, cost-benefit analysis; CEA, cost-effectiveness analysis; CUA, cost—utility analysis; ICER, incremental cost-effectiveness ratio; QALY, quality-adjusted life-year; RCT,

randomised controlled trial; SoC, standard of care.
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critical care resources to treat people with COVID-19. Notably, both
studies were conducted in lower-income settings (Kenya and
Tanzania, respectively). This suggests testing strategies and the
allocation of scarce hospital resources for COVID-19 remain a
prominent concern for healthcare decision makers in settings
where the most effective and newly licensed pharmacological
interventions are less likely to be available.

The context around COVID-19 has changed substantially since
the first iteration of this review. However, it does not appear that
economic evaluations have adapted their methods to reflect these
changes. This is likely to limit their scope to inform decision-
making. First, vaccination programmes have been successful
across the world and the vast majority of people, particularly in
high and middle income countries, have now received at least one
dose of a vaccine (Mathieu et al., 2020). Despite this, there appears to
be limited consideration within economic evaluations of the impact
of vaccination on disease severity and implications for cost
effectiveness. Some identified studies did report scenario analyses
in unvaccinated populations who are more likely to experience
severe symptoms, and one (Savinkina et al., 2022) study from the
US explicitly compared alternative strategies for using nirmatrelivir
+ ritonivir in different patient subgroups defined by their
vaccination status and risk of hospitalisation. This approach is
likely required to properly define who would benefit from
treatments, but has not become widespread. Second, there are
several reasons that parameters derived from studies completed
at different stages of the pandemic may not be generalisable to the
present day. These include pressures and constraints on hospital
care during acute phases of the pandemic, differing approaches to
standard care and changing disease variants. One study (Yeung
et al., 2022) reported a scenario analysis in the context of a
hypothethical variant with lower baseline risk of hospitalisation,
though this did not consider differential treatment effectiveness for
different variants. Differential efficacy between variants has been
observed in practice, and means cost-effectiveness evaluations may
need to increasingly examine value for money in specific
subpopulations (Coronavirus COVID-19 Update, 2022). While
some studies did note that the changing composition of COVID-
19 over time may limit the generalisability of their cost-effectiveness
conclusions (Metry et al., 2022; Park et al., 2022; Ruggeri et al., 2023),
this appears to be an underconsidered issue. Third, there are now
treatments that are established as best-practice due to the emergence
of results from large-scale platform trials. Indeed, within this review
dexamethasone is highlighted as a low-cost option that is effective
for patients with respiratory support. However, there have been
limited attempts to compare established treatments with each other.
There is a need for more fully incremental cost-effectiveness
analyses that compare alternative options simultaneously, rather
than indirectly through how they compare with standard care. This
may require measures of relative effectiveness to be derived from
network meta analyses, such as used Metry et al. (2022), rather than
data from local sites or individual trials.

In terms of the analytical methods used, most included studies
were model-based analyses, which is consistent with the first
iteration of this review. The modelling methods used remained
similar. Time horizons varied from short term to lifetime; decision
tree, Markov, and hybrid model structures were prominent; the
utility weights used by CUAs were often generalised from non-

COVID sources; and the known long-terms effects of disease (“long
COVID”) were generally not captured. However, it is notable that
some models may be overrepresented in the evidence base, due to
repeated adaptations or reanalyses of the same model. In particular,
remdesivir was evaluated in settings of Portugal (Ruggeri et al.,
2022a) and Saudia Arabia (Ruggeri et al., 2022b) using a common
model with country-specific inputs; casirivimab + imdevimab was
evaluated in Italy (Ruggeri et al., 2023) using essentially the same
model; and an existing CUA of a hypothethical treatment was
reanalysed through a distributional lens (Kowal et al., 2023).

4.2 Strengths and limitations

This update to our “living” systematic review is
methodologically consistent with the first publication (Elvidge
et al., 2022), and so the same issues concerning the search
strategy and generalisability of findings apply here. Our review
aimed to provide a comprehensive account of available evidence
and as such, a large number of unique records were identified by the
database search (8,287); this is due to the known sensitivity of search
terms used to identify economic evaluations (Hubbard et al., 2022).
This increases the sensitivity of the search, reducing the likelihood of
missing relevant studies, but it also means future updates will
continue to require a labour-intensive screening process. In
addition, like before, we chose to exclude studies that met our
selection criteria but were judged to have very serious limitations
that may materially affect the conclusions about cost effectiveness.
This follows the process used in NICE clinical guideline
development (National Institute for Health and Care Excellence
NICE, 2012), to avoid conflating results across studies of varying
quality, and was predefined in our study protocol (Elvidge et al.,
2021). In this update, it led to the exclusion of 13 potentially relevant
studies (Table 4). While 2 reviewers conducted this quality
assessment, discussing and resolving any disagreements, we
recognise that this is necessarily subjective; other reviewers may
have reached different quality assessment decisions, or simply
included all studies that met the selection criteria. There may
also be included studies which did not meet the bar for
exclusion, but which have analytical flaws or are based on
parameters that are biased or do not reflect best available
evidence and this may impact their findings. Further, we
excluded public health interventions (e.g., lockdowns, face masks)
and vaccinations from our review. The economic value of such
interventions may still be of interest to some healthcare decision
makers, for example where vaccine coverage is relatively low.
Finally, our review is, like any, at risk of publication bias. Several
of the included studies exhibit a potential conflict of interest. We
cannot know whether those analyses would have reached
publication if they had demonstrated negative conclusions about
the intervention, nor how many such analyses exist and were not
published.

4.3 Implications for future research

After 3 years’ worth of cost-effectiveness research for
COVID-19 interventions, there are some new and some
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persistent evidence gaps that would benefit from further thought.
Head-to-head economic evaluations of interventions are in the
minority of the identified studies. There are now several
treatments available in both the pre-hospital and hospital
settings, and fully incremental analyses that compare options
simultaneously may be valuable for decision making. The cost
effectiveness of tests and treatments may be influenced by what
happens later in the clinical pathway, and so a whole-disease
model that reports fully incremental results would be a valuable
resource. In the context of a continuously evolving disease, and
with variable standard care and vaccination uptake in different
settings, a whole-disease model could allow for rapid re-analyses
in light of new evidence or changes in the prevailing conditions.
In general, researchers should routinely reflect on the potential
implications of vaccination status and disease variants for the
generalisability of their conclusions. Further, these authors
recommend that researchers routinely conduct detailed
sensitivity analyses examining potential cost effectiveness
under a wide range of baseline outcomes and relative
effectiveness. Such analyses may help to ‘future-proof’ their
studies to ensure they remain useful under different prevailing
coditions. There remains a need for robust evidence about the
health-related quality of life impact of COVID-19 in the short and
long term, to support the conduct of CUAs. Finally, several
identified studies were CEAs that used deaths averted as their
health outcome with relatively short time horizons. This may be
reasonable in some circumstances, and particularly if one
intervention appears both more effective and have lower costs.
However, in general, decision makers should be aware that where
a treatment has an effect on survival, short-term analyses will not
fully capture all relevant differences in outcomes between it the
comparator.

5 Conclusion

This updated review of economic evaluations of tests and
treatments for COVID-19, covering the period from July
2021 and July 2023, provides a contemporary summary of the
cost-effectiveness evidence. Compared with the first iteration of
the review (up to July 2021), we have identified 18 additional studies
of acceptable quality that healthcare decision makers, such as HTA
and payer organisations, may consider to inform their COVID-
related decision making. In particular, the evidence may support
prioritisation between the numerous antiviral therapies and
immunotherapies. Conclusions about some treatments, such as
dexamethasone (cost effective) and hydroxychloroquine (not cost
effective), support current standard practice. An evidence gap
remains for a whole-disease model that can support holistic
decision making about multiple tests and treatments at linked
decision points in a fully incremental way.
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Quantifying the impact of novel
metastatic cancer therapies on
health inequalities in survival
outcomes
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Kathy W. Belk2, Gary Schneider2 and Koen Degeling1*
1Healthcare Consultancy Group, London, United Kingdom, 2Healthcare Consultancy Group, New York,
NY, United States

Background: Novel therapies in metastatic cancers have contributed to
improvements in survival outcomes, yet real-world data suggest that
improvements may be mainly driven by those patient groups who already had
the highest survival outcomes. This study aimed to develop and apply a framework
for quantifying the impact of novel metastatic cancer therapies on health
inequalities in survival outcomes based on published aggregate data.

Methods: Nine (N = 9) novel therapies for metastatic breast cancer (mBC),
metastatic colorectal cancer (mCRC), and metastatic non–small cell lung
cancer (mNSCLC) were identified, 3 for each cancer type. Individual patient
data (IPD) for overall survival (OS) and progression-free survival (PFS) were
replicated from published Kaplan-Meier (KM) curves. For each cancer type,
data were pooled for the novel therapies and comparators separately and
weighted based on sample size to ensure equal contribution of each therapy
in the analyses. Parametric (mixture) distributions were fitted to the weighted data
to model and extrapolate survival. The inequality in survival was defined by the
absolute difference between groups with the highest and lowest survival for
2 stratifications: one for which survival was stratified into 2 groups and one
using 5 groups. Additionally, a linear regression model was fitted to survival
estimates for the 5 groups, with the regression coefficient or slope considered
as the inequality gradient (IG). The impact of the pooled novel therapies was
subsequently defined as the change in survival inequality relative to the pooled
comparator therapies. A probabilistic analysis was performed to quantify
parameter uncertainty.

Results: The analyses found that novel therapies were associated with significant
increases in inequalities in survival outcomes relative to their comparators, except
in terms of OS formNSCLC. FormBC, the inequalities in OS increased by 13.9 (95%
CI: 1.4; 26.6) months, or 25.0%, if OS was stratified in 5 groups. The IG for mBC
increased by 3.2 (0.3; 6.1) months, or 24.7%. For mCRC, inequalities increased by
6.7 (3.0; 10.5) months, or 40.4%, for stratification based on 5 groups; the IG
increased by 1.6 (0.7; 2.4) months, or 40.2%. For mNSCLC, inequalities decreased
by 14.9 (−84.5; 19.0) months, or 12.2%, for the 5-group stratification; the IG
decreased by 2.0 (−16.1; 5.1)months, or 5.5%. Results for the stratification based on
2 groups demonstrated significant increases inOS inequality for all cancer types. In
terms of PFS, the increases in survival inequalities were larger in a relative sense
compared with OS. For mBC, PFS inequalities increased by 8.7 (5.9; 11.6) months,
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or 71.7%, for stratification based on 5 groups; the IG increased by 2.0 (1.3; 2.6)
months, or 67.6%. For mCRC, PFS inequalities increased by 5.4 (4.2; 6.6) months, or
147.6%, for the same stratification. The IG increased by 1.3 (1.1; 1.6) months, or
172.7%. For mNSCLC, inequalities increased by 18.2 (12.5; 24.4) months, or 93.8%,
for the 5-group stratification; the IG increased by 4.0 (2.8; 5.4) months, or 88.1%.
Results from the stratification based on 2 groups were similar.

Conclusion: Novel therapies for mBC, mCRC, and mNSCLC are generally
associated with significant increases in survival inequalities relative to their
comparators in randomized controlled trials, though inequalities in OS for
mNSCLC decreased nonsignificantly when stratified based on 5 groups.
Although further research using real-world IPD is warranted to assess how, for
example, social determinants of health affect the impact of therapies on health
inequalities among patient groups, the proposed framework can provide important
insights in the absence of such data.

KEYWORDS

oncology, inequality, overall survival, progression-free survival, health disparities,
colorectal cancer, non-small cell lung cancer, breast cancer

Introduction

Disparities and inequalities in cancer survival outcomes exist,
and they have been well-documented in equity-informed literature.
Studies that examine survival disparities in patients undergoing
oncology care have found that treatment improved overall survival
(OS); however, social determinants of health (SDOH), such as Black
race, low income, lack of insurance, and low educational attainment,
have been associated with poorer OS outcomes (Acharya et al., 2016;
Austin et al., 2016; Cui and Finkelstein, 2022; Fabregas et al., 2022;
Lee and Singh, 2022; Namburi et al., 2022; Tran et al., 2022; Alnajar
et al., 2023). For example, one study found that the percentage of
individuals with survival <1 year after diagnosis in Black individuals
and White individuals was 41.4% and 22.2% for lung cancer, 9.8%
and 7.1% for colorectal cancer, and 2.9% and 0.7% for breast cancer,
respectively (Cui and Finkelstein, 2022). Another study showed that
patients with advanced lung cancer living in the most materially
deprived areas had the shortest median survival time (Qureshi et al.,
2023). Hamers et al. (2020) found that, out of all patients diagnosed
with stage IV colorectal cancer between 2008 and 2016 in the
Netherlands Cancer Registry, OS improved only for those
patients who were already doing well compared with others.
Further, Asaria et al. (2015) demonstrated that, compared with
no screening, a UK bowel cancer screening program improved
health across the distribution but widened health inequality
between the healthiest and least healthy participants.

There are several methodologic approaches to quantifying
inequalities within healthcare from a health economic
perspective. These include distributional cost-effectiveness
analysis, extended cost-effectiveness analysis, equity-based
weighting, multiple criteria decision analysis, and mathematical
programming (Ward et al., 2022). A challenge in the use of these
methods is that they are mostly informed by granular patient-level
data on the relationship between SDOH and health outcomes.
SDOH operate at individual, community, and population levels
to impact health outcomes (Sengupta and Honey, 2020) and include
but are not limited to socioeconomic factors, clinical factors,
behavioral factors, environmental factors, and biological factors

(American Association for Cancer Research, 2022). However,
such data are often not available, which limits the feasibility of
performing these types of equity-informed health economic
analyses.

To facilitate equity-informed analyses in the absence of
individual patient data (IPD), this study aimed to develop and
apply a framework for quantifying the impact of novel metastatic
cancer therapies on health inequalities in survival outcomes based
on aggregate data. The framework was applied to estimate the
impact of novel therapies on OS and progression-free survival
(PFS) outcomes in metastatic breast cancer (mBC), metastatic
colorectal cancer (mCRC), and metastatic non–small cell lung
cancer (mNSCLC).

Materials and methods

Framework

The proposed framework defines the distribution of health in terms
of survival of the different patient groups that can be stratified in
Kaplan-Meier (KM) curves. This analysis focuses on 2 stratifications: a
distribution based on 2 groups and a distribution based on 5 groups of
survival. Although the number of groups in which survival will be
stratified is a somewhat arbitrary choice, the 5-group stratification was
used here because this number of groups is often used to define
distributions across populations, for example, based on
socioeconomic quintiles (Cookson et al., 2017). The 2-group
stratification was additionally applied to investigate and demonstrate
that results may change when a different number of groups is used, and
to illustrate that even this most basic stratification can provide
meaningful insights. Figure 1A illustrates the stratification based on
5 groups. The distribution of health can subsequently be obtained from
the median survival within each group, as illustrated in Figure 1B, C.
Given that most survival data are censored, this step may involve
parametric survival modeling to extrapolate survival curves.

For both the 2-group and 5-group stratifications, the inequality
in survival for a certain treatment was defined by the absolute
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FIGURE 1
(A) illustration of the definition of the patient groups for the 5-group stratification of survival; (B) illustration of the median survival in each group; (C)
illustration of the resulting health distribution based on the median survival in each group; (D) illustration of the definition of the health inequalities.

TABLE 1 Intervention and comparator combinations included in the analysis.

Novel therapy (intervention) Comparator Clinical trial References

mBC

Neratinib + capecitabine Lapatinib + capecitabine NALA Saura et al. (2020)

Tucatinib, trastuzumab, and
capecitabine

Placebo, trastuzumab, and capecitabine HER2CLIMB Curigliano et al. (2022)

Margetuximab + chemotherapy Trastuzumab + chemotherapy SOPHIA Rugo et al. (2021)

mCRC

Encorafenib + cetuximab +
binimetinib

Investigator’s choice - either cetuximab + irinotecan or cetuximab + FOLFIRI
(control)

BEACON Tabernero et al. (2021)

Regorafenib Placebo CORRECT Grothey et al. (2013)

Trifluridine/tipiracil Placebo TERRA Xu et al. (2018)

mNSCLC

Osimertiniba First-generation or second-generation EGFR-TKI FLAURA PFS: (Soria et al., 2018)

OS: (Ramalingam et al.,
2020)

Nivolumab Docetaxel CHECKMATE
078

Wu et al. (2019)

Pembrolizumabb + ipilimumab Chemotherapy KEYNOTE-042 Mok et al. (2019)

aAlthough Soria et al. (2018) included OS, data, the follow-up period was not sufficient (35% survival not reached), hence Ramalingam et al. (2020) was used.
bPD-L1 TPS, of >50%.
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difference in survival between the highest and lowest groups. This is
shown visually in Figure 1D. To consider the health distribution
across all patient groups for the 5-group stratification, the survival
inequality was additionally defined based on the regression slope of a
simple linear regression model fitted to the outcomes of all 5 groups,
referred to as the inequality gradient (IG).

The impact of novel therapies on survival inequalities can then
be defined by the absolute and relative change in the survival
inequality (i.e., absolute difference in survival between the lowest
and highest groups and the IG) relative to their comparators.

Application of the framework

To quantify the impact of novel metastatic cancer therapies on
health inequalities through the above framework, it was applied to novel
therapies for mBC, mCRC, and mNSCLC. These metastatic cancer
types were selected based on their incidence and the availability of novel
therapies that met the inclusion criteria. For each cancer type, 3 novel
drugs were identified based on the following 5 criteria: a) US Food and
Drug Administration drug approval between January 2015 and January
2023; b) availability of results from a Phase III randomized controlled
trial (RCT); c) at least 100 patients in each arm of the RCT; d) published
KM curves for OS and PFS; and e) sufficient follow-up such that the OS
and PFS were lower than 35% at the end of follow-up, to reduce the
impact of structural assumptions in any survival extrapolations. Table 1
provides an overview of the novel therapies that were selected and their
comparators.

For each treatment, IPD for OS and PFS were replicated from the
KM curves and summary statistics using the method by Guyot et al.
(2012). Beyond visual inspection, the replication processwas validated by
analyzing the replicated IPD and comparing the results with those
reported in the corresponding publications. Subsequently, for each
cancer type separately, the IPD for the 3 novel therapies were
pooled, as were the data for the 3 comparators, with weighting
applied based on the corresponding sample sizes such that each
therapy contributed equally to the analysis. Although the framework
can be applied to evaluate the impact of specific drugs, data of multiple
interventions were pooled because the purpose of this work was to
illustrate the proposed framework and not to perform such head-to-head
comparisons. The studies used in this analysis used a common criterion,
namely, the RECIST v1.1, for OS and PFS definitions. This allowed for
straightforward aggregation of individual studies. It must be noted that
this is not always the case, and caution must be exercised when pooling
data derived from studies that use different criteria for survival outcomes.

Parametric survival modeling was performed to obtain the
complete survival distributions for the pooled sets of novel
therapies and comparators. Standard parametric distributions and
mixtures of 2 distributions were explored, considering the following
distributions: exponential, Gamma, Gompertz, log-logistic, log-
normal, and Weibull (Gray et al., 2021). Relative modeling of the
treatment effects, for example, through parameterization of the
distributions’ scale/rate parameter as hazard ratio, was not
considered because that would result in increased survival
inequalities by definition. More specifically, applying a single
relative effect for the interventions compared with the
comparators will result in larger absolute change for groups with
a higher baseline and, hence, increase inequalities. To reduce the TA
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potential impact of structural uncertainty on the outcomes, the same
type of distribution was used for the pooled novel therapies and their
comparators for each cancer-outcome combination. As the selection
of an inappropriate survival model can strongly bias survival
estimates and lead to inaccurate results (Gray et al., 2021), an
algorithm was defined to select the survival distribution used in
the analyses. First, 10-year relative survival rates from the
Surveillance, Epidemiology, and End Results (SEER) database
were used to define an upper threshold for survival
extrapolations (14.8% for mBC (National Cancer Institute
Surveillance, Epidemiology, and End Results Program, 2022a),
10% for mCRC (National Cancer Institute Surveillance,
Epidemiology, and End Results Program, 2022b), and 3.3% for
mNSCLC (National Cancer Institute Surveillance, Epidemiology,
and End Results Program, 2022c)). This study allowed for a 10%
relative increase of these survival rates to account for novel therapies
that may increase survival compared with the treatments used
during the SEER data-capture period. Second, the survival
distributions for which both the pooled novel therapies and
comparators did not exceed the extrapolation threshold were
ranked based on their combined Akaike information criterion
(AIC) for each distribution type, where a lower AIC indicated a
better fit. Finally, the survival distribution with the lowest AIC was
selected after a visual inspection to ensure that it was realistic and
did not substantially underestimate survival, for example. See the
Supplementary Material for an illustration of the selection algorithm
and the results of its application for the different cancer types and
outcomes.

Analyses and availability of material

All results were generated through a probabilistic analysis to
quantify the impact of parameter uncertainty on the outcomes and
the uncertainty around those outcomes. Multivariate normal
distributions were used to define the uncertainty in the survival
model parameters. All analyses were performed in R version 4.2.2,
and a simplified example of the code used in this analysis has been
made available in the following GitHub repository: https://github.
com/koendegeling/Survival_Inequalities. The flexsurv package,
version 2.2.1 (Jackson, 2016), was used for standard parametric
survival modeling.

Results

Inequalities in OS and PFS significantly increased when
comparing the combined novel therapies with their comparators
in RCTs, except for mNSCLC, where there was a nonsignificant
decrease in OS inequality for the 5-group stratification. The full
results are presented by outcome in the following 2 subsections.
Tables 2, 3 show the full results of OS and PFS, respectively.

Overall survival

For mBC, Figure 2A illustrates the survival extrapolation using
the selected log-logistic distribution, as well as the healthTA

B
LE

3
Su

rv
iv
al

in
eq

ua
lit
ie
s
in

te
rm

s
of

PF
S
fo
r
al
l
ca
n
ce
rs
,
re
p
or
te
d
as

m
ea

n
(9
5%

co
n
fi
d
en

ce
in
te
rv
al
)
b
as
ed

on
th
e
p
ro
b
ab

ili
st
ic

an
al
ys
is
.

2
gr
ou

p
st
ra
tifi

ca
tio

n
5
gr
ou

p
st
ra
tifi

ca
tio

n
In
eq

ua
lit
y
gr
ad

ie
nt

C
an

ce
r
ty
pe

In
te
rv
en

tio
ns

C
om

pa
ra
to
rs

D
iff
er
en

ce
a

In
te
rv
en

tio
ns

C
om

pa
ra
to
rs

D
iff
er
en

ce
a

In
te
rv
en

tio
ns

C
om

pa
ra
to
rs

D
iff
er
en

ce
a

m
B
C

8.
8
(8
.0
;
9.
7)

5.
5
(5
.0
;
6.
1)

3.
3
(2
.3
;
4.
3)

21
.4

(1
9.
0;

23
.9
)

12
.7

(1
1.
3;

14
.2
)

8.
7
(5
.9
;
11
.6
)

4.
9
(4
.4
;
5.
5)

3.
0
(2
.6
;
3.
3)

2.
0
(1
.3
;
2.
6)

60
.7
%

(3
9.
4%

;
84
%
)

71
.7
%

(4
8.
7%

;
95
.8
%
)

67
.6
%

(4
2.
8%

;
95
.2
%
)

m
C
R
C

4.
1
(3
.7
;
4.
5)

0.
8
(0
.6
;
1.
1)

3.
3
(2
.8
;
3.
8)

9.
1
(8
.1
;
10
.1
)

3.
7
(3
.1
;
4.
4)

5.
4
(4
.2
;
6.
6)

2.
1
(1
.9
;
2.
4)

0.
8
(0
.7
;
0.
9)

1.
3
(1
.1
;
1.
6)

41
0.
6%

(2
77
.4
%
;
56
3.
2%

)
14
7.
6%

(1
00
.7
%
;
20
3.
2%

)
17
2.
7%

(1
21
.5
%
;
23
3.
3%

)

m
N
SC

LC
14
.9

(1
3.
2;

16
.8
)

9.
2
(8
.4
;
10
.0
)

5.
7
(3
.8
;
7.
7)

37
.8

(3
2.
6;

43
.6
)

19
.6

(1
7.
6;

21
.9
)

18
.2

(1
2.
5;

24
.4
)

8.
7
(7
.5
;
10
.0
)

4.
6
(4
.2
;
5.
1)

4.
0
(2
.8
;
5.
4)

62
.4
%

(3
9.
4%

;
87
.7
%
)

93
.8
%

(6
0.
2%

;
13
1.
0%

)
88
.1
%

(5
6.
7%

;
12
2.
7%

)

a C
on

fi
de
nc
e
in
te
rv
al
s
fo
r
th
e
D
iff
er
en
ce

th
at

ar
e
st
ri
ct
ly

po
si
ti
ve

or
ne
ga
ti
ve
,
i.e
.,
th
at

do
no

t
co
ve
r
ze
ro
,
su
gg
es
t
th
e
di
ff
er
en
ce

is
si
gn
ifi
ca
nt
.

Frontiers in Pharmacology frontiersin.org05

Zebrowska et al. 10.3389/fphar.2023.1249998

125

https://github.com/koendegeling/Survival_Inequalities
https://github.com/koendegeling/Survival_Inequalities
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1249998


distributions based on the 2- and 5-group stratifications. Detailed
results for the survival inequalities and the differences therein are
presented in Table 2. The highest increase in survival inequalities
was observed for the 5-group stratification. Here, the inequality in
OS increased by 13.9 (95% CI: 1.4; 26.6) months, or 25% (2.2%;
50.8%), from 57.1 (49.7; 65.5) months to 71.1 (61.9; 81.5) months.

Survival was extrapolated using a log-logistic distribution for
mCRC (Figure 2D). The greatest increase in inequalities was seen in
the 5-group stratification, where the inequality in OS increased by
6.7 (3.0; 10.5) months, or 40.4% (16.1%; 67.9%), from 17.0 (14.7;
19.5) months to 23.7 (21.0; 26.7) months.

For mNSCLC, survival was extrapolated using a mixture of a
Gamma and a Weibull distribution (Figure 2G). The results for the
2-group stratification show an increase in OS inequality by 9.1 (0.7;
17.4) months, or 31.4% (1.8%; 71.1%), from 30.8 (23.6; 38.1) months
to 39.9 (35.9; 44.9) months. Notably, however, the results for the 5-
group stratification showed a nonsignificant decrease in inequalities
by 14.9 (−84.5; 19.0) months, or 12.2% (−55.8%; 31.1%), from 84.2

(56.1; 153.3) months to 69.3 (58.3; 89.3) months, which is the result
of the crossing of the survival curve.

Progression-free survival

For all cancer types, PFS was extrapolated using a mixture of a
log-logistic and log-normal distribution (Figure 3A, D, G), showing
significant increases in survival inequalities. For mBC (Figure 3B, C),
the greatest increase in inequalities was seen in the 5-group
stratification, where the inequality in PFS increased by 8.7 (5.9;
11.6) months, or 71.7% (48.7%; 95.8%), from 12.7 (11.3; 14.2)
months to 21.4 (19.0; 23.9) months.

For mCRC (Figure 3E, F), the 5-group stratification again
showed the greatest increase in inequalities in absolute sense. The
inequality in PFS increased by 5.4 (4.2; 6.6) months, or 147.6%
(100.7%; 203.2%), from 3.7 (3.1; 4.4) months to 9.1 (8.1; 10.1)
months. Note that the increase was higher in relative sense for the

FIGURE 2
Results of the survival modeling for OS and the corresponding health distributions in terms ofmedian OS based on the 2- and 5-group stratifications
for mBC (A–C), mCRC (D–F), and mNSCLC (G–I).
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2-group stratification, but this was caused by the low value for the
comparator group as denominator.

For mNSCLC (Figure 3H, I), the greatest increase in inequalities
was seen in the 5-group stratification, where the inequality in PFS
increased by 18.2 (12.5; 24.4) months, or 93.8% (60.2%; 131.0%),
from 19.6 (17.6; 21.9) months to 37.8 (32.6; 43.6) months.

Discussion

In this research, a framework was proposed to quantify the
impact of novel metastatic cancer therapies on health inequalities in
survival outcomes based on published KM curves. This comes at a
pivotal point in time, where there is increasing debate about how to
consider equity-related aspects in health economic analyses. For
example, there has been a collective effort to show that lack of health
equity consideration within a health technology assessment (HTA)
could result in neglecting an important aspect of the value of

interventions and potentially misallocation of healthcare
resources (Cookson et al., 2017; Podolsky et al., 2022).
Furthermore, the Institute for Clinical and Economic Review has
recently published a whitepaper on the use of methods that support
equity-informed analyses for HTA in the United States (Agboola
et al., 2023). It has also been suggested that even the most popular
method, namely, distributional cost-effectiveness analysis, faces
significant challenges in implementation by HTA agencies due to
scarcity and lack of consistency within equity-informed data
(Meunier et al., 2023).

The framework was successfully applied to estimate the impact
of novel therapies on OS and PFS outcomes in mBC, mCRC, and
mNSCLC. Overall, the results of this analysis showed that the pooled
novel therapies improved median survival for OS and PFS but
widened survival inequalities in absolute terms by increasing
survival the most among those patient groups who had
comparatively better survival outcomes already. The findings for
mNSCLC in terms of OS showed that the framework is also capable

FIGURE 3
Results of the survival modeling for PFS and the corresponding health distributions in terms ofmedian PFS based on the 2- and 5-group stratification
for mBC (A–C), mCRC (D–F), and mNSCLC (G–I).
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of identifying decreases in inequalities, albeit nonsignificant for this
case study. Hypotheses on what may explain this finding are beyond
the scope of this research.

Although the framework was applied to pooled therapies for
certain metastatic cancers, it can be generalized to other settings as
well. For instance, it can be applied to specific treatments to
investigate the impact of certain therapies on inequalities. It can
also be applied to other types and stages of cancer, other disease
areas and treatments, and other time-to-event outcomes. The
philosophy behind the framework can also be used as a
foundation for exploring the quantification of health inequalities
based on published distributions for other types of outcomes.

In addition to its potential broad applicability, strengths of the
framework include that it is a conceptually straightforward
approach to visualize and explain, and it is relatively easy to
apply, with the provided R code further contributing to uptake
and use by other researchers. Therefore, it represents a potentially
important tool that can provide useful insights when IPD are not
available, facilitating an initial understanding of how an intervention
may impact healthcare disparities and informing further IPD-driven
research into health disparities.

The main limitation of the proposed framework is that it does not
provide any direct information as to why the changes in the health
distribution occur. Although various organizations have published
slightly different versions, definitions generally consider inequities or
disparities as unjust differences in outcomes that can be explained by
SDOH, whereas inequalities are used as a synonym for inequities or to
simply describe that there are differences in outcomes (Braveman, 2014;
Arcaya et al., 2015). Here, we adopt the latter definition of inequalities,
and therefore, one could say that the framework provides insights into
the impact on health inequalities but not disparities, which would
require explanation of the changes based on SDOH. Results obtained
through the framework could, hence, be complemented with disease-
specific evidence on links between health inequalities and SDOH or,
ideally, analyses of RCT data or real-world data to understand the
impact of SDOH on the outcomes. Nevertheless, the proposed
approach using aggregate data provides useful initial insights into
how healthcare interventions may impact the distribution of health
outcomes between groups of individuals.

A natural extension of this work would be to use the results in,
for example, a distributional cost-effectiveness analysis. Further
research is also warranted to apply the framework to more case
studies within oncology and beyond. Finally, it would be
particularly interesting to apply the framework to a case study
for which the corresponding IPD are available to compare the

results and to investigate the extent to which the impact on
inequalities can be explained by SDOH—to assess the link
between health inequalities and disparities.
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Introduction: Real-world evidence (RWE) in health technology assessment (HTA)
holds significant potential for informing healthcare decision-making. A
multistakeholder workshop was organised by the European Health Data and
Evidence Network (EHDEN) and the GetReal Institute to explore the status,
challenges, and opportunities in incorporating RWE into HTA, with a focus on
learning from regulatory initiatives such as the European Medicines Agency (EMA)
Data Analysis and Real World Interrogation Network (DARWIN EU

®
).

Methods: The workshop gathered key stakeholders from regulatory agencies,
HTA organizations, academia, and industry for three panel discussions on RWE
and HTA integration. Insights and recommendations were collected through
panel discussions and audience polls. The workshop outcomes were reviewed by
authors to identify key themes, challenges, and recommendations.

Results: The workshop discussions revealed several important findings relating to
the use of RWE in HTA. Compared with regulatory processes, its adoption in HTA
to date has been slow. Barriers include limited trust in RWE, data quality concerns,
and uncertainty about best practices. Facilitators include multidisciplinary
training, educational initiatives, and stakeholder collaboration, which could be
facilitated by initiatives like EHDEN and the GetReal Institute. Demonstrating the
impact of “driver projects” could promote RWE adoption in HTA.

Conclusion: To enhance the integration of RWE in HTA, it is crucial to address
known barriers through comprehensive training, stakeholder collaboration, and
impactful exemplar research projects. By upskilling users and beneficiaries of
RWE and those that generate it, promoting collaboration, and conducting “driver
projects,” can strengthen the HTA evidence base for more informed
healthcare decisions.
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1 Introduction

Health technology assessment (HTA) is a multidisciplinary
process that assesses the value of health technologies to inform
decision-making, aiming to enhance equity, efficiency, and quality
in healthcare systems (O’Rourke et al., 2020). It is widely used
throughout Europe to make decisions about the reimbursement and
pricing of healthcare technologies, including new medicines.
Estimates of relative effectiveness, healthcare use and costs are
key inputs for assessing effectiveness, cost-effectiveness, and
budget impact, which are required for HTA recommendations in
several countries. Companies and HTA organisations face multiple
challenges in obtaining and generating such evidence in support of
their products.

Traditional HTA approaches primarily rely on randomised
controlled trials (RCTs) to generate clinical evidence. However,
there is growing recognition of the importance of integrating
real-world evidence (RWE) derived from real-world data (RWD)
sources into HTA processes. RWE may provide a more
comprehensive understanding of interventions’ effectiveness and
safety in clinical settings, and address some of the evidence gaps
faced by companies and HTA organisations. However, the uptake of
RWE for HTA has been slow compared with regulatory
decision making.

The European Medicines Agency (EMA) has established the
Coordination Centre for the Data Analysis and Real World
Interrogation Network (DARWIN EU®) (darwin-eu.org) (EMA,
2021). It aims to provide access to valid and trustworthy RWE
from across Europe on diseases, populations and the use and
performance of medicines. This will increasingly support
regulatory decision-making, which is often followed by HTA to
support reimbursement decisions (EMA, 2023).

To explore the current landscape and prospects of incorporating
RWE in HTA, a multi-stakeholder workshop titled “Advancing
Real-World Evidence in Health Technology Assessment” was
convened by the Innovative Medicines Initiative (IMI) funded
European Health Data and Evidence Network (EHDEN) project
(ehden.eu) (IMI, 2018), in collaboration with the GetReal Institute.
EHDEN aims to enable large-scale analysis of health data in Europe
by building a large federated data network of standardised data
(EHDEN, 2018). Part of the project involves supporting the
transition towards outcomes-driven healthcare systems in
Europe, by adopting the use of a federated data network
approach for HTA purposes. The GetReal Institute is an
independent, member-led non-profit organisation emerging from
two IMI projects with the mission to facilitate the adoption and
implementation of RWE in regulatory and HTA decision-making in
Europe. The aim was to foster collaboration, share experiences, and
identify key strategies to facilitate the use of RWE in HTA. This
article presents an overview of the workshop discussions,
highlighting key findings, recommendations, and areas for future
development.

2 Materials and methods

The workshop was convened with relevant stakeholders to
discuss the current state, challenges, and future directions of

integrating RWE into HTA processes. Experts and stakeholders
were selected based on their expertise and experience in RWE and
HTA. Key individuals from academia, regulatory agencies, HTA
organisations, industry, and patient organisations were invited to
ensure a diverse range of perspectives.

The workshop was designed as a half-day event, comprising
three panels focused on specific topics related to RWE and HTA
integration. Each panel consisted of a presentation followed by a
moderated discussion. The first panel discussed the progress and
future of DARWIN EU®, and reflections fromHTA organisations on
plans for adoption of RWE. The second panel focused on reflections
from industry, patient organisations, and academics. The final panel
discussed the potential of EHDEN and GetReal Institute in
supporting RWE integration in HTA.

Following the panel presentations, open discussions were held
among the workshop participants. These discussions allowed for the
exchange of ideas, identification of common challenges, and exploration
of strategies to overcome barriers hindering the wider adoption of RWE
in HTA. The participants shared their perspectives, experiences, and
recommendations based on their respective domains of expertise. In
addition, two audience polls were conducted to gather insights and
perspectives from the attendees. The first poll aimed to identify the areas
within HTA where RWE could help resolve decision-critical evidence
gaps. The second poll aimed to determine the areas where initiatives like
EHDEN and the GetReal Institute could provide support for HTA.
Both polls enabled participants to select more than one option to
accurately capture their views.

The data collected during the workshop, including audience poll
results, presentation materials, and discussion notes, were compiled.
Key themes, common challenges, and potential recommendations
were identified and synthesised to provide a comprehensive
understanding of the workshop outcomes.

3 Results

3.1 Panel 1: EMA, DARWIN EU
®
& reflections

from HTA organisations

The first panel focused on the establishment of the DARWIN
EU® and its Coordination Centre by EMA. The discussions
highlighted the ambitious goal of providing access to valid and
trustworthy RWE from across Europe, encompassing diseases,
populations, and the use and performance of medicines. The
panel highlighted the value of standardising health data using the
Observational Medical Outcomes Partnership Common Data
Model (OMOP CDM) maintained by the Observational Health
Data Sciences and Informatics (OHDSI) community (www.ohdsi.
org) which could help to realise the necessary need to scale up real-
world data studies across Europe (Hripcsak et al., 2015).

The second part of the panel focused on reflections from HTA
organisations and their plans for adopting RWE. The panel
highlighted that there is growing interest in utilising RWE for
HTA decision-making. The need for improved trust in RWE and
availability of good quality data were identified as key factors
limiting its adoption. HTA organisations expressed the need for
data that reflect the target population and regional variations in
healthcare. The panel recognised the potential benefits of RWE in
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speeding up access to new treatments and reducing the cost of drug
development programs. Some HTA organisations are investing in
the development of frameworks and best practices for planning,
conducting, and reporting RWE studies, though there is scope for
cross-border collaboration in such efforts. The panel emphasised the
importance of upskilling technical staff and committees to evaluate
the quality and appropriateness of RWE.

The moderated panel discussion examined the fundamental
differences between regulators and HTA organisations regarding
RWE use cases. Regulators focus on safety and efficacy, while HTA
organisations consider relative clinical effectiveness and cost
effectiveness. However, there are potential overlapping use cases
that could benefit both regulators and HTA organisations, such as
characterising a given disease population and its natural history.
This understanding of shared goals can shape the choice of data
partners for DARWIN EU® and EHDEN. The selection of these data
partners is driven by stakeholders’ specific questions and the need to
generate relevant evidence.

The panel acknowledged the increasing interest and adoption of
the OMOP CDM in Europe, particularly stimulated by the EHDEN
project and the recent DARWIN-EU® initiative. This is also resulting
in the establishment of so called national nodes that drive the
adoption of the data model and its use in collaborative studies at
the national level (www.ohdsi-europe.org).

3.2 Panel 2: reflections from stakeholders

The second panel of the workshop featured reflections from relevant
HTA stakeholders representing industry, patient organisations, a health
data medical research funder, and a multi-stakeholder initiative focused
on RWE generation for healthcare decisions.

The industry panelist highlighted the potential value of RWE in
informing reimbursement decisions but identified challenges such as
data standardisation and collaboration. The patient representative
expressed support for RWE but emphasised the need for resources
and training for patients to understand and engage with it. The
medical research funder representative emphasised infrastructure
and real-time data and the RWE initiative representative highlighted
challenges in data quality and the lack of expertise in utilising RWD.

The moderated panel discussion addressed the need for training
and upskilling staff, particularly in healthcare decision-making bodies.
Efforts to develop educational materials and align various organisations
and initiatives were discussed. The potential to extend learnings from
COVID-19 projects to other conditions was explored, emphasising the
importance of identifying impactful “driver projects”. Aligning EU
member states on RWD requirements and involving decision-
making bodies in data infrastructure discussions were identified as
crucial steps. Accounting for real-world context in RWE studies and
involving data custodians to ensure appropriate data utilisation were
also highlighted.

3.3 Panel 3: RWE and HTA: how can EHDEN
and GetReal Institute help?

The final panel of the workshop focused on the role of EHDEN
and the GetReal Institute in supporting the generation and use of

RWE inHTA. The GetReal Institute, from its previous work with the
GetReal Think Tank, identified three focus areas of interest to
stakeholders; reducing barriers to using secondary data sources,
bridging the gap between RCTs and RWE, and addressing evidence
needs of healthcare decision-makers.

HTA use cases using EHDEN were discussed, including
examples in chronic obstructive pulmonary disease (Kent et al.,
2021), cancer, and COVID-19. The use cases demonstrated how
EHDEN’s real-world data can be used in economic models, provide
insights into cancer survival, and assess treatment effectiveness for
COVID-19.

Two audience polls were conducted during the moderated
panel discussion. The first asked, “Where does HTA experience
decision-critical evidence gaps that RWE could help to resolve?.”
“Generalisability of trial data” was the most selected option in this
poll (Figure 1), though several other gaps received a high number
of votes, such as disease population characteristics, long-term
health outcomes, and identifying treatment pathways. Notably,
quantifying relative effectiveness received many votes, despite
HTA organisations traditionally highly prioritising randomised
evidence for this purpose. These results indicate that HTA
processes grapple with multiple issues that suitable RWE may
help to inform.

The second poll asked, “Where should initiatives like EHDEN
and GetReal Institute focus their support for HTA?”. “Sharing and
developing best practices for conducting studies in the HTA
domain” was the most selected option (Figure 2), with
“provision of educational materials” the second most
popular answer.

Training and upskilling in RWD was a key theme in the
moderated panel discussion. It was recognised that a
multidisciplinary approach is needed. This should encompass
wide-ranging learning materials including topics such as
phenotyping, study design, and analytical approaches. These
resources should be accessible across a variety of training levels
(undergraduate through to postgraduate degrees), and to HTA
staff and relevant stakeholders, such as industry. Educating
healthcare workers responsible for data collection is also
essential, and it should be demonstrated how the collected data
informs their practice and contributes to meaningful outcomes.
Both EHDEN and the GetReal Institute have educational
platforms targeted to a broad audience through the EHDEN
Academy (academy.ehden.eu) and the GetReal Academy
(getreal-academy.org). Example courses that are directly
relevant to the integration of RWE in HTA include “Real-
World Evidence in Medicine Development” on the GetReal
Academy, and the “Health Technology Assessment” course on
the EHDEN Academy.

Discussions also revolved around the future and next steps for
RWD adoption in HTA. Engaging stakeholders in ongoing
discussions and projects was emphasised to drive impactful
advancements in HTA. The importance of “driver projects” was
emphasised, as they provide practical experience and learning
opportunities. It was noted that more of these projects are
needed, and prompt action is necessary due to the rapid pace of
change. Involving key stakeholders in the conduct of driver projects,
and structured organisation of projects were considered vital
for success.
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4 Discussion

The workshop provided valuable insights into the integration
of RWE in HTA and identified key challenges and opportunities
in this domain. There is a clear divergence between the
acceptability of RWE for regulatory decision-making and for
HTA decision-making. Traditional HTA approaches favour

randomised evidence to support assessments of clinical and
cost effectiveness, but HTA organisations will increasingly be
presented with healthcare technologies with regulatory approval
underpinned by RWE. Limited trust in RWE, concerns about
data quality, and a limited understanding of what best practice is
when it comes to RWE, were identified as barriers to wider
adoption in HTA.

FIGURE 1
Poll results for “Where does HTA experience decision-critical evidence gaps RWE could help to resolve?” (PROMS = patient-reported
outcome measures).

FIGURE 2
Poll results for “Where should initiatives like EHDEN and GetReal Institute focus their support for HTA?”
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Generally, the findings are in line with published literature on
barriers to adoption and use of RWE in HTA (Hogervorst et al.,
2022). To address the barriers to RWE adoption, there is a need for
comprehensive and multidisciplinary training and education
initiatives. Starting from undergraduate levels, extending to
healthcare providers responsible for data collection, and
healthcare payers who make decisions about reimbursement,
these efforts should aim to enhance awareness, knowledge, and
expertise in assessing the quality and appropriateness of RWE.

The success of RWE integration in HTA depends on
collaboration and engagement among stakeholders (Facey et al.,
2020). Initiatives like EHDEN and the GetReal Institute play a
crucial role in facilitating coordination, providing neutral forums,
and developing resources to promote best practices and
recommendations. To build trust and demonstrate the value of
RWE, the identification and execution of impactful “driver projects”
is essential. Initially, these projects should focus on characterising
patient populations and the natural history of diseases, as these are
comparatively simple analyses that can provide tangible, useful
evidence for HTA quickly.

Further driver projects that focus on other identified evidence
gaps, such as examining the generalisability of RCT
evidence—which may require more complex studies—would be
valuable. Where possible, driver projects should address evidence
gaps that are common to the HTA and regulatory spaces. Such
projects have been initiated within EHDEN focusing on key
challenging areas for HTA including extrapolation of cancer
survival data beyond the time horizon of clinical trials and
assessing relative effectiveness of treatments (Claire et al., 2022).
These are two key challenging methodological areas for the use of
RWE in HTA, and future driver projects should similarly aim to
address evidence gaps.

Based on the workshop discussions, the following
recommendations are proposed to advance the integration of
RWE in HTA:

• Develop and Promote Training Resources: A comprehensive
strategy should be developed to create, develop, and promote
training resources to upskill users and beneficiaries of RWE in
HTA. These resources should cover various disciplines and
target different levels of education, from undergraduates to
established HTA professionals.

• Identify and Execute “Driver Projects”: Key driver projects
that can have a substantial impact on methodology
development and build trust in the use of RWE should be
identified. These projects should focus on areas of high
relevance to HTA and involve collaboration among
stakeholders to ensure recognition and support for
their outcomes.

• Start with “Easy-Win” Projects: Initiating projects that address
the characterisation of patient populations and the natural
history of diseases, particularly in areas of overlap with the
regulatory space, is a good starting point. These easy-win
projects provide tangible outcomes and pave the way for
further advancements in RWE integration in HTA.

• Collaboration and Stakeholder Engagement: Continued and
deeper collaboration among stakeholders, including HTA
organisations, researchers, industry representatives, and

patient organisations, is crucial for the successful
integration of RWE in HTA. Efforts should be made to
maintain engagement, foster discussions, and drive projects
that align with the vision and development of RWE
adoption in HTA.

The article summarises the key findings and
recommendations derived from a multi-stakeholder
workshop. The insights gained from this workshop have the
potential to inform future strategies and initiatives aimed at
promoting the use of RWE in HTA, to support evidence-
informed and patient-centred healthcare decision-making and,
ultimately, better health outcomes.
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Applying the estimand and target
trial frameworks to external
control analyses using
observational data: a case study in
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Introduction: In causal inference, the correct formulation of the scientific
question of interest is a crucial step. The purpose of this study was to apply
causal inference principles to external control analysis using observational data
and illustrate the process to define the estimand attributes.

Methods: This study compared long-term survival outcomes of a pooled set of
three previously reported randomized phase 3 trials studying patients with
metastatic non-small cell lung cancer receiving front-line chemotherapy and
similar patients treated with front-line chemotherapy as part of routine clinical
care. Causal inference frameworks were applied to define the estimand aligned
with the research question and select the estimator to estimate the estimand
of interest.

Results: The estimand attributes of the ideal trial were defined using the estimand
framework. The target trial framework was used to address specific issues in
defining the estimand attributes using observational data from a nationwide
electronic health record-derived de-identified database. The two frameworks
combined allow to clearly define the estimand and the aligned estimator while
accounting for key baseline confounders, index date, and receipt of subsequent
therapies. The hazard ratio estimate (point estimate with 95% confidence interval)
comparing the randomized clinical trial pooled control arm with the external
control was close to 1, which is indicative of similar survival between the
two arms.

Discussion: The proposed combined framework provides clarity on the causal
contrast of interest and the estimator to adopt, and thus facilitates design and
interpretation of the analyses.
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causal inference, estimand framework, target trial emulation framework, external
control, oncology, real-world data

OPEN ACCESS

EDITED BY

Dalia M. Dawoud,
National Institute for Health and Care
Excellence, United Kingdom

REVIEWED BY

Michelle Casey,
Pfizer, United States
Enrico Capobianco,
Jackson Laboratory, United States

*CORRESPONDENCE

Letizia Polito,
letizia.polito@roche.com

†These authors have contributed equally to this
work and share first authorship

RECEIVED 16 May 2023
ACCEPTED 11 January 2024
PUBLISHED 26 January 2024

CITATION

Polito L, Liang Q, Pal N, Mpofu P, Sawas A,
Humblet O, Rufibach K and Heinzmann D
(2024), Applying the estimand and target trial
frameworks to external control analyses using
observational data: a case study in the solid
tumor setting.
Front. Pharmacol. 15:1223858.
doi: 10.3389/fphar.2024.1223858

COPYRIGHT

© 2024 Polito, Liang, Pal, Mpofu, Sawas,
Humblet, Rufibach and Heinzmann. This is an
open-access article distributed under the terms
of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in
other forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in this
journal is cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Frontiers in Pharmacology frontiersin.org01

TYPE Original Research
PUBLISHED 26 January 2024
DOI 10.3389/fphar.2024.1223858

136

https://www.frontiersin.org/articles/10.3389/fphar.2024.1223858/full
https://www.frontiersin.org/articles/10.3389/fphar.2024.1223858/full
https://www.frontiersin.org/articles/10.3389/fphar.2024.1223858/full
https://www.frontiersin.org/articles/10.3389/fphar.2024.1223858/full
https://www.frontiersin.org/articles/10.3389/fphar.2024.1223858/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fphar.2024.1223858&domain=pdf&date_stamp=2024-01-26
mailto:letizia.polito@roche.com
mailto:letizia.polito@roche.com
https://doi.org/10.3389/fphar.2024.1223858
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://doi.org/10.3389/fphar.2024.1223858


1 Introduction

Several causal inference frameworks, including the estimand
framework (EF), target trial emulation framework (TTF), and PICO
framework, exist to help define a precise scientific question for
comparative assessments in clinical research and development
(Goetghebeur et al., 2020). There are overlapping but
complementary elements in these frameworks, suggesting the
potential for a combined application; however, this presents
challenges to investigators as there are limited practical examples
and guidance for the combined application of the frameworks.

The EF has increasingly been adopted by health authorities and
pharmaceutical companies since its initial publication in August 2017
(Food and Drug Administration, 2021). The EF enables researchers to
specify a precise scientific question by using five attributes that define
the estimand (i.e., the treatment effect of interest or the “what to
estimate”). These five interrelated attributes are population, treatment,
variable of interest (endpoint), intercurrent event handling, and the
summary measure. An intercurrent event is an event occurring after
treatment initiation that affects either the interpretation or the
existence of the measurements associated with the endpoint. For
example, if performing a comparative assessment on overall survival
(OS) between two different treatments, candidates for intercurrent
events include, among others, early discontinuation of treatment or
treatment switching after disease progression. In general, the
definition of the estimand comes first and is derived from the
scientific objective of the trial or study. Together with
considerations about missing data, the framework then informs the
choice of the estimator. The addendum acknowledges that usually an
iterative process will be necessary to reach an estimand that is
clinically relevant for decision making and for which a reliable
estimate can be computed. If it is not possible to develop an
appropriate trial design or to derive an adequately reliable estimate
for a particular estimand, an alternative estimand, trial design, or
method of analysis may need to be considered. However, practical
examples in the literature describing such an iterative process to
redefine an initial target estimand, while also considering aspects of
identifiability (and hence the estimator) are limited.While the focus of
the ICH E9 addendum is on randomized clinical trials (RCTs), the
principles are also applicable whenever estimating a treatment effect
(i.e., non-randomized studies). However, estimation of a causal effect
from observational data, compared to RCT data, often has additional
challenges. Namely, observational data is more often incomplete,
heterogeneous, and subject to different types of measurement
errors and biases (e.g., selection bias, bias due to baseline
confounding, and the ability to correctly define the index date for
comparison) (Liu and Panagiotakos, 2023).

The TTF is another causal framework that can be used to specify
the scientific question more precisely in a comparative assessment
(Hernán and Robins, 2016). TTF complements the EF by addressing
gaps related to the analysis of observational data and applies design
principles of an RCT to the specific setting of a non-randomized
comparative assessment (Hernán et al., 2008; Cain et al., 2016;
Hernán and Robins, 2016; Petito et al., 2020). TTF entails defining a
hypothetical randomized trial to address a precise scientific question
and then further specifying how it can be emulated
(i.e., approximated) by non-randomized data. The essential
components of a target trial protocol are eligibility criteria,

treatment strategies, treatment assignment, start/end of follow-up,
outcomes, causal contrasts, and the analysis approach (estimator)
(Hernán and Robins, 2016). The framework can also be utilized
when a combination of clinical trial and observational data are used,
for example, to contextualize a single-arm clinical trial with
observational data (Thomas et al., 2021). Combining the EF and
the TTF provides a structured approach to enhance the scientific
rigor for causal inference for observational and/or non-randomized
data. Together they bring more transparency to the causal estimand,
which supports specifying the attributes of the estimand and the
assumptions made to draw causal conclusions.

Another framework that aims to define the precise scientific
question includes the PICO framework (Schardt et al., 2007),
traditionally used in epidemiology for observational studies. The
EF and TTF extend the PICO framework, with the former adding
intercurrent events and ensuring that the population-level summary
measure is made explicit, and the latter adding the causal contrast,
assignment procedures, and the start/end of follow-up. By explicitly
calling out these key elements, the treatment effect can be
adequately defined.

An important goal in pharmacoepidemiology is to assess
whether observational data (including electronic health record
[EHR]-derived data) can emulate (and thus supplement or
replace, e.g., for regulatory decision-making) the control arm of a
RCT, while acknowledging that there are differences between
clinical trial and routine clinical settings, at baseline and post-
baseline, that may have an impact on the outcome independently
from the treatment received. In this study we jointly apply the EF
and TTF to perform a comparative effectiveness assessment in
patients with non-small cell lung cancer (NSCLC) using data
from a set of pooled control arms of three RCTs as well as EHR-
derived de-identified observational data (West et al., 2019; Jotte
et al., 2020; Nishio et al., 2021). The objective of our case study was to
determine whether there is a difference in OS between patients with
metastatic NSCLC receiving front-line chemotherapy in pivotal
trials versus patients with metastatic NSCLC who received front-
line chemotherapy as part of routine care, had patients not received a
subsequent therapy. This case study aims to illustrate the application
of the EF to observational data, and the benefits of complementing
the EF with the TTF to account for specific challenges in
observational data that are not directly addressed by the EF (and
vice versa, as the handling of intercurrent events is not explicitly
addressed in the TTF). The iterative process (as indicated in the EF)
to arrive at the final scientific question is illustrated in the Methods
section. In sum, the present study provides insights into where the
two frameworks are complementary and provides a practical
example of their joint application.

2 Materials and methods

2.1 Applying the frameworks to the
research question

Before discussing details of the joint application of the EF and
TTF to define the final scientific question, we want to provide
insights and stepwise practical guidance on the iterative process
outlined in the EF to arrive at the final question:
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TABLE 1 EF/TTF attributes based on the scientific research question.

Scientific research question

Would there be a difference in OS between patients with metastatic NSCLC receiving front-line chemotherapy (control
arms) in IMpower trials (130, 131 and 132) vs. patients with metastatic NSCLC who received front-line chemotherapy as
part of routine care, had patients not received a subsequent therapy?

EF/TTF Attributes Target trial Emulation of the target trial Assumptions

Target population/
Eligibility criteria

Metastatic squamous and non-squamous
NSCLC patients, 18 years of age or older, with
ECOG PS 0,1 and with adequate
hematological and end-organ function. The
population is defined through the common I/
E criteria of IMpower130, 131 and 132
(limited to those criteria applicable
retrospectively to observational data). To
align the I/E criteria of the 3 trials, and to
reflect the targeted population treated with 1L
chemotherapy, patients with a sensitizing
mutation in the EGFR gene or an ALK fusion
oncogene were excluded

Same as the target trial for the RCT arm, with
some assumptions for the OC arm

Observational data does not perfectly emulate
the trial I/E criteria. We attempt to define the
study cohort that best approximates the target
population by including additional rules

• Time window for the eligibility assessment
(ECOG PS, lab values, biomarker)

• How to handle missing values (ECOG PS, lab
values, biomarker)

○ Excluding patients with missing value may
introduce selection bias

• Rules to account for difference between trial
structured visits and routine clinical care

○ E.g., Patients with structured activity
within 90 days of advanced diagnosis

Treatment/Treatment
strategies

The investigational arm (pooled trial control
arms) and the OC arm received the following
chemotherapies

Same as the target trial with some assumptions
for both arms

Assumption on treatment:
• For this study we assume equivalence of
nab-paclitaxel and paclitaxel. However,
the two molecules are known to have
different safety profiles. The decision to
include paclitaxel was to limit treatment
assignment bias since nab-paclitaxel is not
the standard of care in the real world while
it was adopted in IMpower trials

Patients with non-squamous NSCLC

-Pemetrexed + cisplatin/carboplatin

-nab-paclitaxel/paclitaxel + carboplatin*

Patients with squamous NSCLC

-nab-paclitaxel/paclitaxel + carboplatin*

The investigational arm received care
according to the trial protocol, whereas the
comparator arm received care according to
routine clinical practice

Endpoint/Outcomes OS Same as the target trial None. The validity of the rwOS from Flatiron
Health has been demonstrated (Zhang et al.,
2021) against clinical trial OS as the gold
standard to capture death occurrence. For this
reason, in this study we refer to OS and not to
rwOS for routine clinical practice

Intercurrent events (IE)
and strategy/Causal
contrast

IE: Receipt of any subsequent cancer therapy Same as the target trial None

Strategy: hypothetical

Causal contrast: Per-protocol effect of
adhering to treatment after initiation. Receipt
of any subsequent cancer therapy is a
deviation from the study protocol.

Population-level
summary/analysis plan

HR with 95% CI Same as the target trial None

Assignment procedures Participants were randomly assigned to one of
the two treatment settings

Randomization is emulated by weighting
observations for the inverse probability of
treatment setting assignment following some
assumptions

Clinical assumptions

Treatment setting assignment was assumed to
be conditional on the following baseline
covariates

• Age, gender, race, metastatic tumor type
(de novo Stage IV/recurrent disease), time
from initial diagnosis to index date,

(Continued on following page)
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Step 1: determine the comparison of interest.

Step 2: develop the scientific question.

Step 3: discuss the implications of estimating the estimand aligned
with the scientific question, thinking in terms of estimand attributes,
including potential intercurrent events and the consequences of
different strategies used to handle them.

Step 4: refine the scientific question if needed and iterate Steps
3–4 until the question is clear enough to leave no ambiguity about
the estimand.

Applying these steps, we were interested in comparing the
treatment effect of the same front-line treatment given in a
clinical trial versus in the clinical practice when subsequent
treatments would be similar. We started with the scientific

question: “Is there a difference in OS between patients with
metastatic NSCLC receiving front-line chemotherapy in pivotal
trials versus patients with metastatic NSCLC who received front-
line chemotherapy as part of routine care?” EHR-derived
observational data from routine clinical practice suggests a larger
heterogeneity in subsequent second-line cancer treatments as
compared to the clinical trial setting (Signorovitch et al., 2022).
This difference in the range of potential subsequent therapies may
introduce complexities in estimating causal treatment effects for
longer-term outcomes such as OS and ultimately complicate
interpretations. Therefore, the initial research question has been
iterated to: “Is there a difference in OS between patients with
metastatic NSCLC receiving front-line chemotherapy in pivotal
trials versus patients with metastatic NSCLC who received front-
line chemotherapy as part of routine care, had patients not received a
subsequent therapy?” Hence, instead of considering the entire

TABLE 1 (Continued) EF/TTF attributes based on the scientific research question.

Scientific research question

Would there be a difference in OS between patients with metastatic NSCLC receiving front-line chemotherapy (control
arms) in IMpower trials (130, 131 and 132) vs. patients with metastatic NSCLC who received front-line chemotherapy as
part of routine care, had patients not received a subsequent therapy?

EF/TTF Attributes Target trial Emulation of the target trial Assumptions

smoking history, histology, and treatment
type

Statistical assumptions

Statistical assumptions include consistency,
conditional exchangeability, positivity and
correct model specification. These are explained
in the text

Start/end follow-up Start of follow-up occurs at the time when the
treatment is assigned (i.e., when eligibility is
met)
End of follow-up is reported in
Supplementary Table 1

Same as target trial. To emulate the start of
follow up for the OC arm, some assumptions
are needed. To emulate the end of follow up
we truncated the follow-up time at Month
21 because there were few patients remaining
in the RCT arm after Month 21

For the OC arm, the actual start of follow-up
occurs at the time when the treatment is
initiated (dose 1 cycle 1)

The risk of comparing different time zero is to
introduce immortal time bias. This cannot be
quantified. The primary estimate is unbiased if
the following assumptions are met.

Assumptions in the OC

• There are no reasons for a patient to not
initiate treatment other than death once
assigned to treatment

• Death is unlikely to have occurred in
between assignment and start of
treatment because we assume

○ The time between assignment and start of
therapy is short

○mNSCLC is a disease with no rapid course
in first line

No assumption for RCT. We verified that

• All patients assigned to treatment started
treatment

• Median time between assignment and
start of therapy was 2 days

Notes: 1L, first-line therapy; ALK, anaplastic lymphoma kinase; CI, confidence interval; EGFR, epidermal growth factor receptor; HR, hazard ratio; I/E, inclusion and exclusion; mNSCLC,

metastatic non-small cell lung cancer; NSCLC, non-small cell lung cancer; OC, observational comparator; OS, overall survival; RCT, randomized clinical trials; rwOS, real-world overall survival.
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treatment strategy (front-line and subsequent therapy) which is
complicated by heterogeneity in subsequent therapies among
clinical trial and clinical practice settings, the iteration resulted in
the scientific question of treatment effect of the front-line regimens.

Now we focus on jointly applying the EF and TTF to the final
scientific question. Table 1 displays the EF/TTF attributes that define
the estimand aligned with the scientific research question. We define
the hypothetical target trial structured according to the EF and the
study that attempts to emulate it, leveraging elements from the EF
and TTF. The average treatment effect on the treated (ATT) is the
estimand of primary interest. This is the treatment effect difference
of using front-line chemotherapy in a clinical trial versus in clinical
practice, where the target population is defined by the population of
the three clinical trials.

2.2 Data source

2.2.1 Clinical trial data
Individual patient-level data (IPD) were used from Roche-

sponsored phase III, open-label randomized clinical trials
IMpower130 (ClinicalTrials.gov identifier: NCT02367781), 131
(ClinicalTrials.gov identifier: NCT02367794), and 132
(ClinicalTrials.gov identifier: NCT02657434). Methods and
primary findings have been previously reported (West et al.,
2019; Jotte et al., 2020; Nishio et al., 2021). These three trials
included patients who were chemotherapy-naive and had stage
IV NSCLC. OS was the primary endpoint for the three trials. To
address the objective of the present study, only the IPD from the
control arms were used. The control arms received platinum-based
chemotherapy as follows:

• IMpower130 included patients with non-squamous NSCLC
treated with carboplatin plus nab-paclitaxel

• IMpower131 included patients with squamous NSCLC treated
with carboplatin plus nab-paclitaxel

• IMpower132 included patients with non-squamous NSCLC
treated with carboplatin or cisplatin plus pemetrexed

As these three clinical trial control arms had similar settings in
terms of disease, therapy, and inclusion/exclusion criteria and had
similar survival outcomes such as median survival time
(Supplementary Figure S1), they were pooled together to increase
the sample size and are collectively referred to as the RCT arm in
this study.

2.2.2 Observational data
The observational comparator (OC) arm of this study was

developed using the nationwide (US-based) Flatiron Health
EHR-derived de-identified database. This longitudinal database
is comprised of patient-level structured (e.g., laboratory values
and prescribed treatments) and unstructured data (e.g.,
biomarker reports) curated from technology-enabled chart
abstraction from physicians’ notes and other documents
(Birnbaum et al., 2020; Ma et al., 2020). During the study
period, the de-identified data originated from approximately
280 cancer clinics (approximately 800 sites of care, primarily
community-based cancer centers). The studies involving human

participants were reviewed and approved by the IRB of WCG IRB
and included a waiver of informed consent.

2.3 Cohort selection/study sample

The OC cohort was selected to align, as closely as possible, to the
eligibility (inclusion/exclusion) criteria of the three clinical trials,
which reflected the eligibility criteria of the target trial (Table 1 and
Supplementary Table S2). This deliberate selection allowed us to
define a pooled sample of one common target population. To be
eligible for entry into the de-identified database, the patient’s EHR
must include >1 visit to a community oncology clinic and have
confirmation of an advanced NSCLC diagnosis and histological
subtype (squamous vs. non-squamous histology) through a review
of unstructured data (i.e., clinical notes, radiology reports, or
pathology reports). A front-line therapy start date for advanced
or metastatic NSCLC on or after 16 April 2015, and on or before
31 May 2017, to match the clinical trials’ start and end dates of
enrollment was also required. Patients with an Eastern Cooperative
Oncology Group performance status (ECOG PS) of 0, 1, or
unknown were included. Patients had to have received at least
one administration of the regimens of interest (i.e., carboplatin
plus paclitaxel/nab-paclitaxel, carboplatin, or cisplatin plus
pemetrexed). Patients who had potentially incomplete historical
treatment data (i.e., >90-day gap between advanced diagnosis
and structured activity in the EHR), therapy within 6 months
before the start of front-line therapy for advanced-stage disease,
receipt of a clinical study drug, or multiple primary tumors were
excluded. Patients with missing information or known to have a
sensitizingmutation in the epidermal growth factor receptor (EGFR)
gene or anaplastic lymphoma kinase (ALK) fusion oncogene were
excluded. All patients were followed until 18 July 2019. Detailed
inclusion/exclusion criteria were included in
Supplementary Table S2.

2.4 Statistical analyses

We applied the following estimation approach to target the ATT
estimand with attributes as specified in Table 1. First, the inverse
probability of treatment weighting (IPTW) method was used to
balance baseline patient characteristics between the RCT arm and
the OC arm. A multiple logistic regression model was used to
estimate propensity scores (PS) that are defined as probabilities
of being assigned to the RCT arm conditional on all confounders
that were selected based on clinical experts’ knowledge and
availability of the relevant variables. Because we target the ATT
as described above, patients from clinical trials were given a weight
of one. In contrast, patients’ weights from the OC cohort were
defined as the ratio of the estimated PS to one minus the estimated
PS (i.e., odds of being treated in the clinical setting). We refer to
these weights as IPTW-ATT weights. Before and after IPTW-ATT
weighting, differences in baseline characteristics were assessed
through standardized mean and proportion differences (SMD)
(Table 2; Figure 1). Patient characteristics were considered
statistically different if SMD ≥0.10 (Austin and Stuart, 2015). In
addition, we examined the propensity score distribution to ensure a
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reasonable overlap between the two cohorts. The weighted
population was used in the subsequent analyses.

Secondly, the inverse probability of censoring weighting (IPCW)
method was used to handle informative censoring introduced by
censoring patients upon the occurrence of the intercurrent event of
interest, i.e., receipt of any subsequent cancer therapy, as per the
hypothetical strategy of handling intercurrent events (Table 1). We
artificially censored patients at the time of receipt of first second-line
treatment and used the IPCW method to estimate weights for the
follow-up information for the remaining patients using both
baseline and time-varying variables, which are likely to impact
treatment switching based on clinical experts’ knowledge to
adjust for any potential confounding created by the artificial
censoring. Specifically, we fit a Cox model for each arm that was
used to estimate the probability of not being censored by time (t)
given baseline and time-varying covariates (listed in Table 2) for the
specific group. The IPCWweights are calculated as the inverse of the
conditional probability of not being censored. We truncated the
follow-up time at Month 21 because there were few patients
remaining in the RCT arm after Month 21 and thus, the
positivity assumption was unlikely to hold. This approach was
adopted to emulate the end of follow-up of the target trial
(Table 1). Then, to reduce variance of the weighted estimator, we

calculated the stabilized IPCW weight (Austin and Stuart, 2015),
which is the probability of not being censored conditional on
selected baseline covariates, divided by the probability of not
being censored, conditional on both baseline and time-varying
covariates. The mean, standard deviation, minimum, and
maximum estimated weights were used to inspect the robustness
of the estimator. Estimated weights with the mean far from one—or
very extreme values—are indicative of non-positivity or
misspecification of the weight model (Hernán and Robins, 2006).

The treatment effects were estimated using weighted survival
analysis methods. Hazard ratio (HR) and 95% CI were adopted for
the population-level summary (Table 1). Specifically, we estimated
the HR, using an IPTW-ATT-IPCW weighted Cox proportional
hazard model and the 95% CI for the HR using the bootstrap
approach (Schaubel and Wei, 2011). We also used the IPTW-ATT-
IPCW weighted Kaplan-Meier method to compute OS function
estimates and weighted log-rank test to compare across groups.
Hence, the double weighting estimation approach targets the ATT
estimand with attributes of the EF and TTF as specified in Table 1.

Missing values for covariates with a missing rate less than 30%
were imputed using median (for age and time from initial diagnosis
to index date) or mode (smoking history). Covariates with more
than 30% of values missing (i.e., ECOG PS) were not imputed and

TABLE 2 Baseline characteristics.

Variable Categories RCT arm, N = 849 OC arm, N = 3340 SMD

Age group (years), n (%) <65 435 (51.2) 1222 (36.6) 0.42

≥65 and <75 322 (37.9) 1268 (38.0)

≥75 92 (10.8) 850 (25.4)

Gender, n (%) Female 248 (29.2) 1457 (43.6) 0.30

Race, n (%) Asian 105 (12.4) 46 (1.4) 0.75

White 699 (82.3) 2373 (71.0)

Other 45 (5.3) 921 (27.6)

ECOG PS, n (%) 0 314 (37.0) 714 (21.4) 0.05a

1 532 (62.7) 1179 (35.3)

Unknown 2 (0.2) 1447 (43.3)

Tumor diagnosis type, n (%) De novo Stage IV 706 (83.2) 2118 (63.4) 0.46

Recurrent disease 143 (16.8) 1221 (36.6)

Smoking history, n (%) No 69 (8.1) 257 (7.7) 0.02

Yes 780 (91.9) 3070 (91.9)

Unknown 0 (0.0) 13 (0.4)

Histology, n (%) Non-squamous 509 (60.0) 2278 (68.2) 0.17

Squamous 340 (40.0) 1062 (31.8)

Time from initial diagnosis to index date (months), median [IQR] 1.41 [0.92, 2.89] 1.25 [0.79, 2.27] 0.15

Treatment, n (%) Carboplatin + Pacli/Nab-pacli 568 (66.9) 1877 (56.2) 0.22

Platinum + Pemetrexed 281 (33.1) 1463 (43.8)

Notes: ECOG PS, eastern cooperative group performance status; OC, observational comparator; RCT, randomized clinical trial; SMD, standardized mean and proportion differences.
aThe “unknown” category was not considered for SMD, calculation.
bECOG PS, variable was not included in the propensity score model because of the high proportion of missing values.
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excluded from the IPWmodels. We performed a sensitivity analysis
by analyzing the whole follow-up period for RCT and OC arms
instead of truncating them at Month 21. Also, to evaluate to what
extent our estimation methods remove the potential bias on OS due
to baseline confounders and intercurrent events, we performed the
traditional IPTW-only method that adjusts for baseline
characteristics but not intercurrent events in terms of Kaplan-
Meier (K-M) estimate and HR, and compared it to our proposed
method. To follow the structure of the EF, we consider this IPTW-
ATT-only estimation as a supplementary analysis because it
estimates an estimand different from our target estimand.

No formal hypothesis testing was conducted, and thus, no
statistical significance was explicitly assessed.

R (3.6.1) was used for the analyses.

3 Results

3.1 Cohort characteristics

A total of 849 patients were in the RCT arm and 3,340 patients were
in the OC arm (refer to Supplementary Table S3 for the OC cohort
attrition table). Demographic and clinical characteristics of the study
sample at baseline are presented in Table 2 (and in Supplementary
Table S4 stratified by RCT). Statistically significant differences between
the RCT and OC arms were observed in age, gender, race, ECOG PS,

FIGURE 1
Covariate balance after IPTW-ATT.

TABLE 3 Characteristics of intercurrent events.

RCT OC

Number of patients 849 3340

Median (95% CI) follow-up time, months 26.5 (19.9–28.8) 35.6 (29.4–43)

Switch to subsequent therapy (any), n (%) 449 (52.9%) 1881 (56.3%)

Median (IQR) time to switch (among patients who switched), months 6.24 (4.27–9.69) 5.45 (3.12–9.43)

Number of patients who switched prior to 6 months/Number of patients who ever switched, n (%) 207/449 (46.1) 1049/1881 (55.8)

Notes: CI, confidence interval; IQR, interquartile range; OC, observational comparator; RCT, randomized clinical trial.
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tumor diagnosis type (de novo Stage IV/recurrent disease), histology,
time from initial diagnosis to index date, and treatment type. Patients in
the OC armwere older, with a higher percentage of females, races other

than White and Asian, recurrent disease and non-squamous histology,
shorter time from initial diagnosis to index date, and less frequently
treated with carboplatin plus paclitaxel/nab-paclitaxel.

TABLE 4 Baseline and clinical characteristics among patients who switched treatment and who did not switch treatment.

Variable Category, n (%) RCT OC

Patients who
switched
treatment

Patients who did
not switch
treatment

Patients who
switched
treatment

Patients who did
not switch
treatment

N = 449 (52.9%) N = 400 (47.1%) N = 1881 (56.3%) N = 1459 (43.7%)

Age <65 227 (50.6) 207 (51.9) 708 (37.6) 514 (35.2)

65–75 179 (39.9) 143 (35.8) 717 (38.1) 551 (37.8)

≥75 43 (9.6) 49 (12.3) 456 (24.2) 394 (27.0)

Histology Non-squamous 251 (55.9) 258 (64.5) 1287 (68.4) 991 (67.9)

Squamous 198 (44.1) 142 (35.5) 594 (31.6) 468 (32.1)

Treatment Carboplatin + Pacli/Nab-pacli 287 (63.9) 281 (58.5) 1034 (55.0) 843 (57.8)

Platinum + Pemetrexed 162 (36.1) 119 (41.5) 847 (45.0) 616 (42.2)

Progression during
the follow-upa

Yes 390 (86.9) 230 (57.5) 1360 (72.3) 397 (27.2)

No 59 (13.1) 170 (42.5) 521 (27.7) 1062 (72.8)

Notes: OC, observational comparator; RCT, randomized clinical trial.
aFollow-up is up to switch or, in absence of switch until last activity before study end date (end date for the specific data source).

FIGURE 2
IPTW-ATT-IPCW weighted Kaplan-Meier curves.
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The percentage of patients who switched to subsequent
antineoplastic treatment, i.e., the intercurrent event of interest,
was higher in the OC arm compared to the RCT arm (56.3% vs.
52.9%; Table 3) during the whole follow-up period. Among patients
who switched, the median time to treatment switch was shorter in
the OC arm compared to the RCT arm (5.45 vs. 6.24 months; 55.8%
vs. 46.1% switched in the first 6 months). Differences in pre-
specified confounders for treatment switching including age,
histology, treatment type, and progression were observed.
Specifically, we saw a higher percentage of switching among
patients with progression events during the follow-up period in
both RCT and OC arms (Table 4).

3.2 Main analyses

A logistic regression model was fitted to account for imbalances
between the RCT and OC arms on baseline characteristics and
estimate the PS. Then IPTW-ATT weights were calculated using the
PS estimated from the logistic model and we excluded a small
percentage of patients (0.4%) with extreme weights (weight >10) in
the OC arm to avoid undesirable variability in estimates due to
extremely large weights (Potter and Zheng, 2015). Supplementary
Figure S2 shows the distribution of the PSs in the OC and RCT arms,
which served as the basis to compute the IPTW-ATT weights. SMDs
for patient variables were all below 0.1 after IPTW-ATT (Figure 1),

suggesting balance achieved on the selected baseline characteristics
through IPTW-ATT weighting (Austin, 2009) when trying to
emulate randomization (more detail in Table 1).

Patients were artificially censored at the time of treatment
switching (i.e., the intercurrent event of interest), then the
censoring mechanism was modeled via a Cox regression model,
and the probability of not being censored conditional on patient/
clinical characteristics that were pre-specified was estimated
(Table 4). The stabilized IPCW weights were calculated as the
ratio of the inverse of the probability of not being censored
conditional on race only and the probability of not being
censored conditional on age, race, histology, and progression.
Here, different from the traditional stabilized weights, race was
added to both the numerator and denominator to further increase
the stability of the IPCW weight (Cole and Hernán, 2008). To make
a stable estimation and reduce variability, extreme weights were
trimmed at the 99th percentile for the OC arm and the 98th
percentile for the RCT arm. The distribution of the weights after
trimming is displayed in Supplementary Table S5. The mean
stabilized weights had means close to one, a necessary condition
for correct model specification (Hernán and Robins, 2006).

After accounting for treatment setting assignment at baseline and
treatment switching using the IPTW-ATT-IPCW method, the HR
estimated from the weighted Cox model was equal to 0.94 (95% CI:
[0.77, 1.13]), which suggests comparable OS between the RCT and OC
arms. Weighted K-M estimates of survival functions overall were

FIGURE 3
IPTW-ATT-IPCW weighted Kaplan-Meier survival function estimates without truncating the follow-up time.
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comparable (Figure 2), however, there was crossing hazard between the
two arms. The two curves align well at months 7–14, while RCT
performed better at months 0–6 and worse at months 15–23. The
difference in median survival time between the two arms was small
(9.9 months with 95% CI: [8.6, 12.3] for the OC cohort versus
10.9 months with 95% CI: [9.6, 12.5] for the RCT cohort). These
results suggested that after accounting for imbalances of baseline
characteristics and removing the confounding effects of treatment
switching, patients in the OC arm had similar OS as those in
the RCT arm.

3.3 Sensitivity analyses

A sensitivity analysis was performed to analyze the entire follow-up
period (i.e., no truncation at 21months) for the RCT andOC arms. The
HR was 0.93 (95% CI: [0.77, 1.13]), which was similar to the primary
analysis results. However, there were wider confidence intervals for
K-M curves after month 21 for both the RCT and OC arms due to the
low number of events (Figure 3).

3.4 Supplemental analyses

In a supplemental analysis, we performed an IPTW-ATT-only
analysis that adjusted for baseline characteristics only by IPTW-

ATTweighting but without IPCW. This is a commonly usedmethod
in analyses of external control arms, resulting in a different estimand
compared to the primary analysis. Although the HR was similar to
the primary analysis (0.92, 95% CI: [0.81, 1.05]), there was a larger
discrepancy in K-M estimates between the RCT and OC arms,
especially during Months 6 and 14, compared to the primary
analysis (Figure 4).

4 Discussion

In this study, we applied the EF and TTF to define a precise
scientific question in comparative-effectiveness research. As a case study
to illustrate how to apply the EF and TTF when designing an external
control study using observational data, we conducted a retrospective
cohort study to compare OS among patients with metastatic NSCLC
exposed to front-line chemotherapy in RCTs versus routine clinical
practice settings, while accounting for differences in subsequent
treatments between these settings. To achieve this objective, we
pooled clinical trial patients from the control arms of three RCTs
(IMPOWER 130, 131, and 132) and derived an OC cohort from de-
identified EHR data obtained from routine clinical practice. OS was
compared between the two arms, assuming a hypothetical scenario
wherein patients in neither setting received subsequent therapy after the
first-line chemotherapy.We found no relevant difference inOS between
the two arms. Hence, when accounting for baseline confounding as well

FIGURE 4
IPTW-ATT weighted Kaplan-Meier curves.
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as differences in patterns of subsequent treatments in clinical trial and
routine clinical practice care patients, the long-term outcome of first-
line treatment for patients with metastatic NSCLC is similar despite the
lack of full trial entry criteria implementation.

Our approach attempts to clarify the causal contrast of interest
by combining elements of the EF and TTF. The EF and TTF serve
complementary purposes in answering the scientific question. As
formulated by Hernán and Robins, the TTF ensures that an
appropriate comparative study is designed to help estimate the
causal effect from the observed data (Hernán and Robins, 2016).
While the causal contrast can be specified within the TTF, the EF
adds clarity to the causal contrast through the explicit consideration
of intercurrent events (i.e., events occurring post-baseline that can
affect the assessment of treatment effects). Combined, the EF and
TTF improves transparency in the: 1) target of estimation (causal
contrast), 2) assumptions and data needed to identify the causal
contrast, and 3) limitations of available data.

To our knowledge, there are a limited number of studies that
combine the EF and TTF. Recently, Hampson et al. combined the EF
and TTF using routine clinical care data to generate an external
control arm (Hampson et al., 2023). The approach described in our
study adds to the limited number of use cases by accounting for a
scenario where patterns of subsequent treatments are different
between the sources of clinical trials and routine clinical care.
We anticipate that many researchers will likely encounter this
scenario in applications involving real-world external controls.
Our study, unlike other studies, also illustrates the iterative
nature of specifying an estimand. In practice, such iteration
allows a comprehensive and transparent dialogue among
stakeholders to reach a consensus on the scientific question and
its tractability given the available data (i.e., discern the identifiability
of the estimand).

Strengths of this study include the combination of the EF and
TTF, its large sample size, extensive follow-up, and its high
proportion of patients with an event of interest. In addition, to
mitigate possible sources of bias due to heterogeneity from
comparing the RCT and OC arms, we emulated randomization
with IPTW. Furthermore, the real-world data source we selected
reports key variables with high accuracy and clinical relevance. For
example, the composite real-world mortality endpoint was
previously validated using the National Death Index, and the
real-world disease progression endpoint, although following a
clinician-anchored approach supported by radiology report data,
was previously found to be comparable to trial RECIST-based
disease progression (Griffith et al., 2019; Zhang et al., 2021;
Mhatre et al., 2023). Lastly, model diagnostics indicated that the
weights from the IPTW-ATT and IPCW induced balance in the
measured baseline and post-baseline confounders.

There are notable limitations with this study. First, because data
were pooled from disparate sources, full information was not
available for all possible confounders. For example, there was
limited capture of comorbidities, sites of metastasis, and smoking
status within the OC arm compared to the RCT arm. The
assumption of no unmeasured confounders underlies both IPCW
(i.e., baseline as well as time-varying covariates jointly predicting
treatment switch and outcome (Howe et al., 2011)) as well as IPTW
(i.e., baseline covariates jointly predicting treatment setting and
outcome). About 43% (Table 2) of the patients in routine clinical

care included in our study had missing ECOG PS at the start of
front-line therapy, some of whom may have had an ECOG PS value
above 1. For context, among adults with NSCLC who received first-
line chemotherapy in the real-world setting, 13.6% had an ECOG PS
greater than 1 (Supplementary Table S3). A second limitation was
that the definition of time-zero differed across the RCT and OC
arms. Time-zero was the date of randomization in the clinical trials
compared to the date of treatment initiation in the routine clinical
practice cohort. The impact is believed to be small given that
typically, treatment was initiated within a few days post-
randomization. A third limitation is that patients in the IMpower
trials were global while patients in the OC arm were from the
United States only. Although we account for potential patient
confounders in our models, there could be residual confounding
effects due to regional differences. A fourth limitation was that we
pooled data from the control arms of the RCTs and hence assumed
negligible heterogeneity in outcomes among the three clinical-trial
cohorts. However, we believe trial heterogeneity posed little bias risk
to our study because the three trials were conducted by the same
sponsor and had similar visit schedules, data quality monitoring,
and survival estimates (Supplementary Figure S1). As a final
limitation, this work does not present guidelines regarding size
and power because formal hypothesis testing was not conducted
during the study. A proper power analysis would need to specify and
model the impact of the (time-varying) confounders on the effect
size. There are limited examples applying time-varying covariate
weighting in external control analyses, and guidelines on how to
compute sample size are needed. Future work should aim to
establish size and power guidelines to ensure quality and
meaningful inferences from these types of analyses.

5 Conclusion

In conclusion, this study showed that combining the EF and
TTF approaches can improve the rigor in the design and analysis of
comparative effectiveness studies, including retrospective
observational studies. The EF approach alone does not suffice in
specifying a study design, and the TTF alone can leave ambiguity in
the inferential target. The combination of the two frameworks
should be considered more often by researchers.
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