
Edited by  

Gregorio Peron and Donghai Lin

Published in  

Frontiers in Molecular Biosciences

Serum metabolites in 
diagnostics and 
therapeutics

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/research-topics/49397/serum-metabolites-in-diagnostics-and-therapeutics/overview
https://www.frontiersin.org/research-topics/49397/serum-metabolites-in-diagnostics-and-therapeutics/overview
https://www.frontiersin.org/research-topics/49397/serum-metabolites-in-diagnostics-and-therapeutics/overview


December 2024

Frontiers in Molecular Biosciences frontiersin.org1

About Frontiers

Frontiers is more than just an open access publisher of scholarly articles: it is 

a pioneering approach to the world of academia, radically improving the way 

scholarly research is managed. The grand vision of Frontiers is a world where 

all people have an equal opportunity to seek, share and generate knowledge. 

Frontiers provides immediate and permanent online open access to all its 

publications, but this alone is not enough to realize our grand goals.

Frontiers journal series

The Frontiers journal series is a multi-tier and interdisciplinary set of open-

access, online journals, promising a paradigm shift from the current review, 

selection and dissemination processes in academic publishing. All Frontiers 

journals are driven by researchers for researchers; therefore, they constitute 

a service to the scholarly community. At the same time, the Frontiers journal 

series operates on a revolutionary invention, the tiered publishing system, 

initially addressing specific communities of scholars, and gradually climbing 

up to broader public understanding, thus serving the interests of the lay 

society, too.

Dedication to quality

Each Frontiers article is a landmark of the highest quality, thanks to genuinely 

collaborative interactions between authors and review editors, who include 

some of the world’s best academicians. Research must be certified by peers 

before entering a stream of knowledge that may eventually reach the public 

- and shape society; therefore, Frontiers only applies the most rigorous 

and unbiased reviews. Frontiers revolutionizes research publishing by freely 

delivering the most outstanding research, evaluated with no bias from both 

the academic and social point of view. By applying the most advanced 

information technologies, Frontiers is catapulting scholarly publishing into  

a new generation.

What are Frontiers Research Topics? 

Frontiers Research Topics are very popular trademarks of the Frontiers 

journals series: they are collections of at least ten articles, all centered  

on a particular subject. With their unique mix of varied contributions from  

Original Research to Review Articles, Frontiers Research Topics unify the 

most influential researchers, the latest key findings and historical advances  

in a hot research area.

Find out more on how to host your own Frontiers Research Topic or 

contribute to one as an author by contacting the Frontiers editorial office: 

frontiersin.org/about/contact

FRONTIERS EBOOK COPYRIGHT STATEMENT

The copyright in the text of individual 
articles in this ebook is the property 
of their respective authors or their 
respective institutions or funders.
The copyright in graphics and images 
within each article may be subject 
to copyright of other parties. In both 
cases this is subject to a license 
granted to Frontiers. 

The compilation of articles constituting 
this ebook is the property of Frontiers. 

Each article within this ebook, and the 
ebook itself, are published under the 
most recent version of the Creative 
Commons CC-BY licence. The version 
current at the date of publication of 
this ebook is CC-BY 4.0. If the CC-BY 
licence is updated, the licence granted 
by Frontiers is automatically updated 
to the new version. 

When exercising any right under  
the CC-BY licence, Frontiers must be 
attributed as the original publisher  
of the article or ebook, as applicable. 

Authors have the responsibility of 
ensuring that any graphics or other 
materials which are the property of 
others may be included in the CC-BY 
licence, but this should be checked 
before relying on the CC-BY licence 
to reproduce those materials. Any 
copyright notices relating to those 
materials must be complied with. 

Copyright and source 
acknowledgement notices may not  
be removed and must be displayed 
in any copy, derivative work or partial 
copy which includes the elements  
in question. 

All copyright, and all rights therein,  
are protected by national and 
international copyright laws. The 
above represents a summary only. 
For further information please read 
Frontiers’ Conditions for Website Use 
and Copyright Statement, and the 
applicable CC-BY licence.

ISSN 1664-8714 
ISBN 978-2-8325-5765-5 
DOI 10.3389/978-2-8325-5765-5

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/
https://www.frontiersin.org/about/contact
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


December 2024

Frontiers in Molecular Biosciences 2 frontiersin.org

Serum metabolites in diagnostics 
and therapeutics

Topic editors

Gregorio Peron — University of Brescia, Italy

Donghai Lin — Xiamen University, China

Citation

Peron, G., Lin, D., eds. (2024). Serum metabolites in diagnostics and therapeutics. 

Lausanne: Frontiers Media SA. doi: 10.3389/978-2-8325-5765-5

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/
http://doi.org/10.3389/978-2-8325-5765-5


December 2024

Frontiers in Molecular Biosciences frontiersin.org3

05 Editorial: Serum metabolites in diagnostics and therapeutics
Gregorio Peron and Donghai Lin

08 Targeted Metabolomic Analysis of Serum Fatty Acids for the 
Prediction of Autoimmune Diseases
Dimitris Tsoukalas, Vassileios Fragoulakis, Evangelia Sarandi, 
Anca Oana Docea, Evangelos Papakonstaninou, 
Gerasimos Tsilimidos, Chrysanthi Anamaterou, Persefoni Fragkiadaki, 
Michael Aschner, Aristidis Tsatsakis, Nikolaos Drakoulis and 
Daniela Calina

22 Serum Metabolite Biomarkers Predictive of Response to PD-1 
Blockade Therapy in Non-Small Cell Lung Cancer
Xiaoqun Nie, Liliang Xia, Fang Gao, Lixia Liu, Yi Yang, Yingying Chen, 
Huangqi Duan, Yaxian Yao, Zhiwei Chen, Shun Lu, Ying Wang and 
Chen Yang

33 Serum Metabolomic Patterns in Patients With 
Aldosterone-Producing Adenoma
Yule Chen, Hanjiang Wang, Ke Wang, Guodong Zhu, Zhishang Yang, 
Min Wang and Wenbin Song

42 Stratification of ovarian cancer borderline from high-grade 
serous carcinoma patients by quantitative serum NMR 
spectroscopy of metabolites, lipoproteins, and inflammatory 
markers
Gyuntae Bae, Georgy Berezhnoy, André Koch, Claire Cannet, 
Hartmut Schäfer, Stefan Kommoss, Sara Brucker, Nicolas Beziere and 
Christoph Trautwein

60 Metabolic profiling reveals altered tryptophan metabolism in 
patients with kawasaki disease
Xue Fan, Ke Li, Xin Guo, Shengyou Liao, Qi Zhang, Yangkai Xu, 
Hongtu Cui, Lemin Zheng and Mingguo Xu

74 Differences in the lipid metabolism profile and clinical 
characteristics between eosinophilic and non-eosinophilic 
acute exacerbation of chronic obstructive pulmonary disease
Yating Wang, Chun Chang, Sifan Tian, Juan Wang, Xiaoyan Gai, 
Qiqiang Zhou, Yahong Chen, Xu Gao, Yongchang Sun and Ying Liang

85 Serum metabolomics analysis of biomarkers and metabolic 
pathways in patients with colorectal cancer associated with 
spleen-deficiency and qi-stagnation syndrome or damp-heat 
syndrome: a prospective cohort study
Min Zou, Yan-Sheng Zhang, Jin-Kai Feng, Hao Tu, Ming-Bin Gui, 
Ya-Nan Wang, Zi-Jie Yang, Zeng-Qiang Yang, Ming Xu, 
Wei-Qiang Wu and Feng Gao

96 Metabolomics unveils the exacerbating role of arachidonic 
acid metabolism in atherosclerosis
Sai Ma, Songqing He, Jing Liu, Wei Zhuang, Hanqing Li, Chen Lin, 
Lijun Wang, Jing Feng and Lei Wang

Table of
contents

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/


December 2024

Frontiers in Molecular Biosciences 4 frontiersin.org

110 Associations of serum cystatin C concentrations with total 
mortality and mortality of 12 site-specific cancers
Changzhi Huang, Jiayi Lu, Jing Yang, Zhenling Wang, Dong Hang and 
Zan Fu

119 From serum metabolites to the gut: revealing metabolic clues 
to susceptibility to subtypes of Crohn’s disease and ulcerative 
colitis
Fan Li, Zhaodi Wang, Tongyu Tang, Qi Zhao, Zhi Wang, Xiaoping Han, 
Zifeng Xu, Yu Chang, Hongyan Li, Sileng Hu, Chanjiao Yu, 
Shiyu Chang, Yue Liu and Yuqin Li

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/


TYPE Editorial
PUBLISHED 28 November 2024
DOI 10.3389/fmolb.2024.1528799

OPEN ACCESS

EDITED AND REVIEWED BY

Wolfram Weckwerth,
University of Vienna, Austria

*CORRESPONDENCE

Gregorio Peron,
gregorio.peron@unibs.it

RECEIVED 15 November 2024
ACCEPTED 19 November 2024
PUBLISHED 28 November 2024

CITATION

Peron G and Lin D (2024) Editorial: Serum
metabolites in diagnostics and therapeutics.
Front. Mol. Biosci. 11:1528799.
doi: 10.3389/fmolb.2024.1528799

COPYRIGHT

© 2024 Peron and Lin. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License (CC
BY). The use, distribution or reproduction in
other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Editorial: Serum metabolites in
diagnostics and therapeutics

Gregorio Peron1* and Donghai Lin2

1Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy, 2Department
of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen,
China

KEYWORDS

serum, metabolites, pathogens, disease treatment, serum metabolome, molecular,
mechanisms

Editorial on the Research Topic

Serum metabolites in diagnostics and therapeutics
s

The field of serum metabolomics is revolutionizing our understanding of disease
mechanisms, and at the same time offers unprecedented opportunities in diagnostics and
personalized medicine. This Research Topic entitled “Serum Metabolites in Diagnostics and
Therapeutics” presents a collection of research articles that, overall, show the potential of
metabolomics to capture real-time biochemical snapshots: especially this aspect makes
metabolomics a valuable approach for early disease detection, therapeutic monitoring, and
biomarker discovery. By examining the latest methodologies and their clinical applications,
this Research Topic is intended as an integrated perspective on the advancements and
clinical applications of serum metabolomics.

Serum metabolomics, which assesses small-molecule metabolites circulating in blood,
directly reflects metabolic processes affected by disease, lifestyle, and genetic factors.
Metabolites like amino acids, lipids, and nucleotides often reveal distinctive patterns in
disease states, allowing clinicians to observe shifts linked to cellular dysfunction and
pathological pathways (Qiu et al., 2023). Recent studies highlight the value of these
metabolic signatures in early detection, as even minor changes in metabolite levels can
indicate disease onset before clinical symptoms emerge (Al-Sulaiti et al., 2023). For
instance, the literature emphasizes that metabolomics has wider applications in clinics than
genomic and proteomic approaches because it provides a dynamic readout of the current
physiological state (Ramautar et al., 2013). In fact, unlike genomics that reflects potential
risk, metabolomics presents a functional snapshot, making it ideal for real-timemonitoring.

The improvement of analytical technologies such as ultra-performance liquid
chromatography (UHPLC) and high-resolution mass spectrometry (MS) has played a
pivotal role in the progress of serum metabolomics. These techniques allow to efficiently
separate the chemical constituents of a complex matrix like serum and detect metabolites
at trace levels, being this crucial for profiling minor but diagnostically significant changes
of serum metabolic composition. For instance, in a study published in this Research
Topic, UHPLC-MS/MS was used to identify complex lipid profiles linked to cardiovascular
and inflammatory diseases, providing new insights into vascular health. High-throughput
nuclear magnetic resonance (NMR) spectroscopy is also widely used to perform serum
metabolomics and especially for metabolite identification. Because it allows for robust and
non-destructive analysis of samples, it is suitable for routine clinical applications. Together,
UHPLC-MS and NMR allow for comprehensive metabolomic profiling and can highlight
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biomarkers that could serve as early indicators for conditions like
cancer, diabetes, and neurodegenerative diseases.

Computational advancements in machine learning (ML)
and artificial intelligence (AI) have also catalyzed the field’s
growth. The interpretation of high-dimensional data generated
by metabolomics is often challenging and requires sophisticated
tools to identify patterns and relationships between metabolites and
disease phenotypes (Rattray et al., 2018). Several studies in this
Research Topic integrated AI and multivariate statistics to enhance
predictive capabilities: for instance, deep learning models have
been used to classify patients based on serum profiles and predict
the outcomes of metabolic syndrome. This AI-driven approach
enhances predictive accuracy by modeling complex, nonlinear
relationships that cannot be managed with traditional statistical
methods. Moreover, as metabolomic data grows, ML techniques
can adaptively improve, increasing their potential applications (e.g.,
cancer detection and monitoring of chronic diseases).

The clinical applications of serum metabolomics extend across
diagnostics, disease classification, and therapeutic management.
In cancer, early detection remains crucial for improving
patient outcomes (Brockhoven et al., 2023), and the analysis of
serum biomarkers can represent a non-invasive and accessible
alternative to biopsies. For instance, in a study of this Research Topic
authors identified lipid biomarkers that can be potentiallymonitored
for distinguishing malignant states. Also, serum metabolites may
have a role as indicators of therapeutic efficacy of cancer therapies,
as highlighted in another article, particularly in chemotherapy
response. Furthermore, the possibility to track metabolic changes
over time allows clinicians to adjust therapies based on patient-
specific responses, promoting more personalized treatments that
reduce adverse effects.

Similar considerations can be made for chronic diseases like
diabetes and cardiovascular disease. A study published in this
Research Topic explored metabolic profiles that predict treatment
outcomes in patients with type 2 diabetes and identified serum
markers linked to insulin resistance and glucose regulation. This
highlights metabolomics as a tool not only for diagnosis but also
for tracking longitudinal metabolic changes, supporting timely
intervention. Similarly, in inflammatory diseases, metabolomics can
detect shifts in lipid and amino acid profiles that correlate with
inflammatory markers, offering insights into disease mechanisms
and potential intervention points.

Despite these advancements, challenges remain in translating
serum metabolomics from research into clinical practice,
particularly in terms of standardization and reproducibility. The
variability in metabolite measurement across different platforms
and protocols can complicate the validation of biomarkers.
As one article in the Research Topic advocates, harmonizing
analytical protocols—standardizing sample preparation, instrument
calibration, and data processing—is essential for achieving
reproducible and comparable results. This standardization would
not only facilitate clinical adoption but also support large-scale

biomarker validation studies, which are essential for establishing
diagnostic thresholds and reference ranges in metabolomics.

Ultimately, the research presented in this Research Topic,
coupled with recent findings from wider literature, highlights
serum metabolomics as a cornerstone of precision diagnostics. By
capturing dynamic biochemical snapshots, serummetabolomics not
only allows for early disease detection but also supports personalized
medicine, enabling treatment decisions that align with the patient’s
unique metabolic profile. The integration of AI with metabolomics,
combined with the continued refinement of analytical technologies
and standardization efforts, promises a future where metabolomics
becomes routine inmedical diagnostics and therapeuticmonitoring.
Continued investment in these areas is essential to unlock the full
potential of serum metabolomics, transforming it from a powerful
research tool into a staple of clinical practice.

To conclude, as the Guest Editors, we would like to thank all the
Authors that contributed to this Research Topic by publishing their
research, as well as the Reviewers and the Assistant and Academic
Editors for their valuable support.
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Autoimmune diseases (ADs) are rapidly increasing worldwide and accumulating data

support a key role of disrupted metabolism in ADs. This study aimed to identify an

improved combination of Total Fatty Acids (TFAs) biomarkers as a predictive factor

for the presence of autoimmune diseases. A retrospective nested case-control study

was conducted in 403 individuals. In the case group, 240 patients diagnosed with

rheumatoid arthritis, thyroid disease, multiple sclerosis, vitiligo, psoriasis, inflammatory

bowel disease, and other AD were included and compared to 163 healthy individuals.

Targeted metabolomic analysis of serum TFAs was performed using GC-MS, and 28

variables were used as input for the predictive models. The primary analysis identified

12 variables that were statistically significantly different between the two groups, and

metabolite-metabolite correlation analysis revealed 653 significant correlation coefficients

with 90% level of significance (p < 0.05). Three predictive models were developed,

namely (a) a logistic regression based on Principal Component Analysis (PCA), (b) a

straightforward logistic regressionmodel and (c) an Artificial Neural Network (ANN)model.

PCA and straightforward logistic regression analysis, indicated reasonably well adequacy

(74.7 and 78.9%, respectively). For the ANN, a model using two hidden layers and

11 variables was developed, resulting in 76.2% total predictive accuracy. The models

identified important biomarkers: lauric acid (C12:0), myristic acid (C14:0), stearic acid

(C18:0), lignoceric acid (C24:0), palmitic acid (C16:0) and heptadecanoic acid (C17:0)

among saturated fatty acids, Cis-10-pentadecanoic acid (C15:1), Cis-11-eicosenoic

acid (C20:1n9), and erucic acid (C22:1n9) among monounsaturated fatty acids and the

Gamma-linolenic acid (C18:3n6) polyunsaturated fatty acid. The metabolic pathways of

the candidate biomarkers are discussed in relation to ADs. The findings indicate that the

metabolic profile of serum TFAs is associated with the presence of ADs and can be an

adjunct tool for the early diagnosis of ADs.

Keywords: metabolomics, total fatty acids, biomarkers, inflammation, autoimmune diseases
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INTRODUCTION

The distinction between self and foreign is a tightly regulated
process of the immune system, and defects in any of the
participating mechanisms may lead to autoimmune diseases
(ADs) (Menni et al., 2017). ADs incidence has increased
dramatically over the last decades, currently affecting 50 million
people in the US alone, especially at younger age (American
Autoimmune Related Diseases Association, 2018). This rapid
rise is possibly related to urbanization and higher socio-
economic status, which have shifted nutritional preferences
toward industrialized and low quality food with additives (Lerner
et al., 2016). Twin studies unraveled key genetic determinants to
ADs, especially for Major Histocompatibility Complex (MHC)
haplotypes based on the findings that ADs concordance is higher
in monozygotic twins (Theofilopoulos et al., 2017). However,
familial association to genetic predisposition is higher in early-
onset diseases suggesting that factors other than gene have an
impact on ADs as well (Cooper et al., 1999; Gangemi et al.,
2016; Negrei et al., 2016; Petrakis et al., 2017; Buha et al., 2018).
In a recent review, the authors discuss the role of metabolic
workload in immunological tolerance. Their proposed model
suggests that chronic malnutrition, including high calories and
nutrients intake for long periods, leads to the loss of tolerance
through the generation of high pro-inflammatory T cells vs. the
regulatory T cells that control inflammation (De Rosa et al.,
2017). They propose that metabolic disturbance should be added
to the hygiene model that has been applied to explain the rapid
rise of chronic conditions (Bach, 2002). In addition, the World
Health Organization (WHO) has suggested that the modifiable
risk factors are the cause of chronic diseases in more than 80%
of the cases (WHO, 2019). Modifiable factors are not presently
satisfactorily considered within the standard medical approach
(Strong et al., 2006; Tinetti et al., 2012).

Metabolomics can provide data for nutritional deficiencies,
metabolic imbalance, environmental burden, and the gut
microbiome. These factors can bemodified through diet, lifestyle,
supplements, and medication (Dahan et al., 2017). Key metabolic
pathways, including the metabolism of glucose, protein and
carbohydrates, fatty acids oxidation, mitochondrial function,
neurotransmitters metabolism, and markers of oxidative stress
and microbiome, are critically assessed through metabolomics
(Lee et al., 2015). Quantification and evaluation of metabolites
is the most effective method to capture time-dependent
fluctuations and cellular metabolic state even prior to disease
onset. Measurement of metabolites in patients with ADs and
experimental ADs models have shown that there are significant
metabolism fluctuations during the development of the disease
(Leslie and Beyan, 2011; Hao et al., 2017). Findings from a
randomized clinical trial on asthmatic children showed that
urinary organic acids could be potential biomarkers to track
the progression of the disease (Papamichael et al., 2018). Total
fatty acids (TFAs) are valuable markers of inflammation and gain
increasing attention in cases of chronic inflammation as in ADs
(Serhan et al., 2007). We have previously reported the reference
values of TFAs in a healthy Greek population, discussing the
role of age, gender, diet, and measurement method of the levels

of TFAs (Tsoukalas et al., 2019). Given these observations, we
measured serum TFAs in patients with ADs using targeted
GC-MS, aiming to identify an improved combination of these
biomarkers as a predictive factor for the presence of ADs
(Tsoukalas et al., 2019).

MATERIALS AND METHODS

Subjects
A retrospective nested case-control study (Ernster, 1994) was
conducted based on 5.850 subjects who visited the “Health clinic
for autoimmune and chronic diseases” in Athens, Greece during
the period of 3/8/2012 till 29/12/2017. All personal data were
collected via the electronic platform of the clinic by trained
administrative staff. The retrospective cohort study consisted of
1.950 patients for whom there were detailed records. A total of
240 patients with confirmed AD diagnosis were included in the
present study, and 163 healthy individuals were assigned to the
control group. Personal data of participants included age, gender,
AD type, BMI, medical and nutritional history, and metabolomic
analysis was performed in peripheral blood samples.

Exclusion criteria for the control group were obese
(18.5<BMI<29.9), athletes, pregnant or lactating women,
individuals taking any supplements and/or medication, and
individuals diagnosed with a chronic or acute disease.

Inclusion criteria for the control group were adults 18–60,
not taking any medication or supplements, and not suffering
by any chronic or acute disease. Inclusion criteria for AD
patients were individuals diagnosed with thyroid AD (THY),
and/or inflammatory bowel disease (IBD), and/or psoriasis
(PSO), and/or rheumatoid arthritis (RA), and/or vitiligo (VIT),
multiple sclerosis (MS) and/or other AD (full list of other AD
and comorbidities is available in Table S1).

RA diagnosis was based on ACR/EULAR 2010 Rheumatoid
Arthritis Classification Criteria (Kay and Upchurch, 2012).

IBD: diagnosed according to the Lennard-Jones diagnostic
criteria for Ulcerative colitis and Crohn’s disease (Sherlock and
Benchimol, 2017). PSO: Eligible PSO patients had to have chronic
plaque type of PSO, and PASI score was used to assess the severity
of the disease.

THY: As there are no international criteria for autoimmune
thyroid disease classification diagnosis was performed according
to levels of TSH, T3, and T4 and thyroid gland ultrasound to do
disease classification.

VIT: Diagnosis performed according to Vitiligo Global Issues
Consensus Conference (Kong et al., 2011).

MS: Diagnosis performed according to the McDonald 2010
diagnostic criteria (Polman et al., 2011).

Because the correlation of FA profiles to the clinical
parameters of each AD is out of the scope of this paper,
the clinical characteristics of patients for each AD group
are not presented here but will be examined in separate
studies. Also, it should be noted that in analyses such as we
discuss here, matching of controls with cases is a commonly
used method to control for confounding. However, there are
several considerations concerning its proper use and, frequently,
matching produces almost the same results with unmatching
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analysis or the gain in efficiency is modest. Nonetheless, for
statistically exploratory purposes, we attempted to match case
and controls concerning age and gender using the Propensity
Score Matching (PSM) which has become a popular approach to
estimate causal treatment effects (Rose and Laan, 2009; Faresjö
and Faresjö, 2010). The analysis showed that there was any
gain in terms of efficiency and, thus, we decided to conduct an
unmatched analysis and adjusted any potential confounder via
the multivariate analysis (Figure S3).

Ethics Approval
All procedures performed in studies involving human
participants were under the ethical standards with the 1964
Helsinki declaration and its later amendments, or comparable
ethical standards. Participants of the study were informed
that their personal data would be processed according to the
EU General Data Protection Regulation (GDPR), and fully
anonymization would be used for this study. Informed consent
was obtained from participants. The study has been approved by
the scientific board of the “Health clinic for autoimmune and
chronic diseases” and the Ethics Committee of the University of
Crete (approval no. A.P. 39_22112018).

Chemicals
Methyl non-adecanoate (74208, Honeywell FlukaTM; Honeywell,
Seelze, Germany) was used as an internal standard. The
calibration of the standard mixture was performed with a
mixture of FA methyl esters (47885-U; Supelco-Sigma-Aldrich,
St. Louis, MO, USA). All other solvents used were of the
highest purity available [methanol, n-hexane (both from Merck
KGaA, Darmstadt, Germany), HCl (301721] and 2,6-i-tert-butyl-
4-methylphenol (BHT, B1378l) (both from Sigma-Aldrich).

Sample Preparation
The participants fasted for 12 h before their visit to the clinic.
The metabolomic analysis was performed in the patients’ blood
samples using standard methodology (Tsoukalas et al., 2017).
Briefly, peripheral blood was collected, and samples were
centrifuged at 1,500 × g at 4

◦

C to isolate the plasma. The
plasma specimens were stored at −20

◦

C prior analysis for up
to 24 h to ensure that the samples would not degrade. In the
case of hemolysis of the blood samples, the blood collection
was repeated.

The standard internal mixture (200µl methyl non-adecanoate
in hexane containing BHT) was added to the 100 µl plasma.
The FAs were hydrolyzed and derivatized into methyl esters
by the addition of 5% v/v methanolic HCl. Transmethylation
was performed at 90◦C for 60min, and then the samples were
brought to room temperature. The extraction of FAmethyl esters
was performed using hexane, and they were transferred to GC
injection vials with a crimp cap.

As previously described, during the preparation of the samples
lipid extraction prior to methylation was not included since with
MS, the FAs can be directly identified in plasma without affecting
the quantity or quality (Stellaard et al., 1990).

Gas Chromatography-Mass Spectrometry
The carrier gas used was helium, and the injection volume was 1
µl per sample.

The analysis was performed on an Agilent 7890A gas
chromatograph (GC) coupled to a 5975C mass detector (MS
quadrupole), equipped with an electron ionization (EI) source,
operating in positive mode (Agilent Technologies, Santa Clara,
CA, USA). The FAmethyl esters were separated using anHP-5ms
capillary column (30m × 250µm × 0.25µm). The conditions
used were as follows: initial oven temperature was 70◦C, the
ramp rate was 4◦C/min, the final temperature was 290◦C, held
for 4min and the acquisition was in the scan mode.

Statistical Analysis
All analyses were undertaken using IBM SPSS 22 (IBM Corp.,
Armonk, N.Y., USA) software1 and the free R-project software
(https://www.r-project.org). A chi-squared test with continuity
correction was used to determine whether there is a significant
association between gender and the presence of AD. In order to
assess the normality of distributions for biomarkers, QQ-plots
were applied for each one of them, while univariate analyses
comparing differences between the means were conducted with
a Mann–Whitney U-test (P < 0.05). We further conducted a
multivariate analysis of variance (MANOVA) which affords in
a richer use of the information contained in the dataset and
explore the effect of factors on several response variables via
simultaneous hypotheses tests. In particular, the method runs
the analysis on a new variable which is a linear combination of
dependent variables and, thus, taking into account the potential
correlation between exploratory biomarkers in our case. As an
additional step, a Bonferroni correction was conducted to limit
the type I error which is the probability to wrongly reject the
null hypothesis at expenses of Type II errors (false negative)
(Vinaixa et al., 2012). Principal Component Analysis (PCA) was
applied to decompose the data into a few new variables which
correspond to a linear combination of the originals. PCA is a
multivariate data analysis aiming to reduce the dimension of
expression data with minimum information loss, to visualize
the similarities between the biological samples and to capture
the most of the variation in the data set (Jolliffe et al., 2016).
Outliers, the points that are distant from their own neighbors
in the data set, were analyzed using a straightforward approach
aiming to create a frequency of the continuous variables in a
graphic form. After the outliers had been identified, the data
were screened for outliers due to administrative (typo errors),
and none was found. At the end, the deletion or retention of
each outlier was clinically assessed. There was not any deletion
since the sample was considered representative without any
irregular pattern and, thus, we did not run any analysis to
reduce the influence of the outliers. Next, with a binary response
variable (“with” and “without” the AD) as an outcome, we built a
logistic regression model including as independent variables the
set of the principal components. The estimation of the model
parameters is expressed via odds ratios. Since, frequently, PCA
represents only a preliminary analysis of the available data,

1Available online at: https://www.ibm.com/analytics/spss-statistics-software

Frontiers in Molecular Biosciences | www.frontiersin.org 3 November 2019 | Volume 6 | Article 12010

https://www.r-project.org
https://www.ibm.com/analytics/spss-statistics-software
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


Tsoukalas et al. Metabolomic Biomarkers of Autoimmune Diseases

we also estimated the straightforward binary logistic regression
with all the biomarkers as independent variables based on the
backward selection method. Backward selection is a step-wise
regression method which starts with a full model consisting
of all candidate predictor variables (biomarkers). Based on the
probability of the likelihood-ratio statistic, a removal testing was
conducted to identify these variables that will remain in the
model as statistically significant, via an iteration process (Heinze
et al., 2018).

As a supplementary analysis, we employed an artificial
neural network (ANN) framework to identify these biomarkers
which predict better the presence of an AD. A mathematical
presentation of this technique is out of the scope of the article
and can be found by the interested reader elsewhere (Margarita,
2002). In short, ANN’s are a family of a flexible form of equations
which are often used for statistical analysis and data modeling,
in which their role is perceived as an alternative to standard
non-linear regression techniques. A neural network consists of
a series of the so-called neurons that are interlinked to form a
network, while each one of the links has a weight associated with
it. ANN has an input layer, one or more hidden layers, and the
output layer. An activation function is employed in the input
layer, but also to the output layer to determine the outcome of the
model. Differences amongst observed and predicted outcomes
reinforce the model to readjust their weights of independent
variables until a predetermined convergence is attained (the so-
called “training” of the model). It must be mentioned that the
optimal combination between the neurons and the number of
layers which must be employed, remains a scientifically open
question and in the most of cases, a trial-and-error approach is
conducted by the researchers. In the present analysis, aMultilayer

Perceptron (MLP) feed forward neural network was used and
trained with the error back propagation algorithm (Saduf, 2013).
The number of neurons at the input layer was determined by
the number of biomarkers used. A non-strict pre-selection of
included variables was conducted based on the p-value provided
by the straightforward logistic regression. We assumed two
hidden layers to capture the non-linear nature of the model. A
sigmoid activation function was employed in the output layer
to estimate the probability of the presence (or not) of an AD
as a binary outcome. Before the training of the model, all data
were transformed through standardized rescaling. We separate
our model to training data set, test set and holdout. Holdout
or random subsampling is a technique to evaluate predictive
models by partitioning the original sample into a training set to
train the model, and a test set to evaluate it. Finally, Receiver
Operating Characteristic (ROC) curve analysis was used to assess
the accuracy of predictions based on sensitivity and specificity for
all the above mentioned models (Hajian-Tilaki, 2013).

RESULTS

Characteristics of Patients With
Autoimmune Diseases
In the present study, 403 participants were included; 240 patients
with an AD (hereafter called case group) and 163 individuals
in the control group. Among the patients, the majority had
autoimmune thyroid disease (51.7%) while 29.7% of the total
patients had more than one conditions (Table S1). Figure 1

depicts the percentages of ADs per gender for those belonging
to the case arm. The baseline characteristics of the case and
the control group are depicted in Table 1. Age was also not

FIGURE 1 | Gender Distribution of the Autoimmune Diseases in the case group. VIT, Vitiligo; IBD, Inflammatory Bowel Disease; PSO, Psoriasis; RA, Rheumatoid

arthritis; MS, Multiple Sclerosis; THY, Thyroid autoimmune disease; OTHER, Other autoimmune disease.
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TABLE 1 | Baseline characteristics of the case and control group.

Case (n = 240) Control (n = 163)

*Age (Mean ± SD) 44.43 ± 11.4 43.3 ± 9.9

*Female (%) 70.2 63.6

*BMI (Mean ± SD) 25.4 ± 5 24.9 ± 4

a** Exercise n (%) 139 (56.7) 124 (75.2)

b** Alcohol n (%) 108 (44.1) 43 (26.1)

THY n (%) 191(51.67) 0

RA n (%) 40 (10.81) 0

IBD n (%) 73 (19.7) 0

MS n (%) 32 (8.64) 0

PSO n (%) 62 (16.7) 0

VIT n (%) 15 (4) 0

OTHER n (%) 117 (31.67) 0

BMI, Body Mass Index; THY, Thyroid Autoimmune Disease; RA, Rheumatoid Arthritis;

IBD, Inflammatory Bowel Disease; MS, Multiple Sclerosis; PSO, Psoriasis; VIT, Vitiligo;
aExercise >3 times per week; balcohol consumption of 3 glasses of wine per week; *p >

0.05; **p < 0.001.

statistically significantly different between cases and controls
(p > 0.05), while females represented the 70.2 and 63.6% for
the case and control group, respectively. The Body-Mass Index
(BMI), defined as weight in kilograms divided by the square
of the height in meters, was estimated at 24.9 ± 4 for the
control group, while was 25.4 ± 5 in the cases group, indicating
that there was not a statistical difference in the 95% level of
significance (p = 0.5). Concerning moderate physical exercise (3
times per week), 75.2% of total subjects answered positively in
that question from the control group, while for the case group
the corresponding percentage was limited to 56.7% (p = 0.011).
Moderate alcohol consumption (3 glasses of wine per week) for
those belonging to the case group and control group was 44.1 and
26.1%, respectively (p < 0.001).

Targeted Metabolomic Profiling of Patients
With Autoimmune Diseases and Healthy
Controls
In total, 23 TFAs were tested on the available sample using
GC-MS. Values of mean ± SD and median for each TFA, total
omega-3, total omega-6, total Monounsaturated FA (MUFA),
total Polyunsaturated FA (PUFA), total Saturated FA (SFA) for
the two groups are listed in Table 2. The non-Parametric Mann-
Whitney test was employed to detect differences among the
variables in the two groups since Q-Q plots showed a deviation
of normality. In total, 12 variables were statistically significant
under the assumption of non-difference of distributions between
the groups (Table 2). From the ratios included only total omega-
6/total omega-3 was significantly different between the groups
(p < 0.001). C22:6n3, total omega 3, C18:3n6, C15:1, C20:1n9,
C12:0, C15:0, C17:0, C18:0 and total omega 6/ total omega 3 ratio
were statistically significantly different between the two groups
after Bonferroni correction. Correlation analysis was performed
in the two groups to identify metabolite-metabolite correlations
with age and BMI being included as variables. Specifically, in

the case and control group, a total of 992 correlations were
analyzed, among which 653 resulted in significant correlation
coefficients in 90% level of significance (p < 0.05). Figure 2
depicts a scatter plot matrix showing the positive (blue)
and negative (correlations) in the case group (left) and the
control group (right). Overall, no statistically significant negative
correlations were noted. Lauric acid (C12:0), pentadecanoic
acid (C15:0), stearic acid (C18:0), myristoleic acid (C14:1), cis-
10 pentadecanoic acid (C15:1) and arachidonic acid (C20:4n6)
showed the strongest metabolite-metabolite correlations among
the TFAs in the case group, while age was not correlated to any of
these metabolites in any group.

Principal Component Analysis (PCA) was performed to
visualize clusters within the samples. The data were screened
for outliers due to administrative (typo errors), but none was
identified. Due to the absence of missing data, all the available
observations were included in the analysis. The Kaiser-Meyer-
Olkin Measure of sampling adequacy for component analysis
was estimated at 0.798, indicating reasonably well adequacy,
while Bartlett’s test of sphericity was statistically significant [X2

(253) = 5,102, p < 0.001]. Analysis indicated that the first seven
components, which were based on the variables shown in table
1 with correlation coefficient <75%, explained in total 70.3% of
the variance, while the rest of the components explained <4.5%
of the total variance each. Hence, the seven-component solution,
with eigenvalues >1, was preferred as a solution for the model
(Table S2 and Figure S1). The component score coefficient
matrix is depicted in Table 3. After the oblimin rotation, there
was only a small correlation between each of the composite
scores lower than 0.3 for all the components. Figure 3 depicts the
combination of factors, which show lower correlations, and have
r coefficient < 0.030 in absolute values (pairwise score plots for
components 1–7 in Figure S2).

Association of TFAs and Autoimmune
Disease
Table 4 shows a binary logistic regression model which was used
to test the research hypothesis regarding the relationship between
the likelihood that a patient will have an AD and components 1–7
and gender. The log of the odds of a subject being affected by an
AD was negative related to component one, five, six, and gender
(p < 0.001) and positive related to components two, three and
seven (p< 0.001), while the association with component four was
not statistically significant (Table 4). The Hosmer & Lemeshow
(H-L) goodness of fit test was estimated at X2 (8) = 29,450, p
< 0.001, while Nagelkerke (pseudo) R2 was 0.268. The model
predicts correctly 86.7 and 57.1% of those without and with an
AD, respectively. The overall predictive score was also 74.7%.

Selection of TFAs as Distinctive Markers
for Autoimmune Disease
Table 5 presents the results for the straightforward binary
logistic regression model. The model initially included all
the variables with a correlation <0.75 based on backward
selection, while only 6 of them were statistically significant
in the new model. Alcohol abstinence, myristic acid (C14:0),
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TABLE 2 | Concentrations of FA and FA ratios in case and control groups.

Case Control

Mean ± SD Median Mean ± SD Median p-value

C183n3 14.6 + 6.4 13.8 13.3 + 10 12.2 0.006*

C205n3 50.6 + 35 40.3 52.4 + 74.2 35.7 0.297

C226n3 105.7 + 50.9 98.2 118.9 + 58.5 107.6 0.020

Omega3 178 + 82.2 163.6 218.5 + 129.6 194.2 <0.001*

C182n6 1597.2 + 667.9 1534.1 1540.7 + 573.3 1420.5 0.601

C183n6 24.7 + 21.1 18.6 18.6 + 15.7 14.8 0.001*

C203n6 107.7 + 44.5 102.1 103.8 + 40.9 100.1 0.558

C204n6 424.4 + 124.7 413.9 402.9 + 119.8 387.9 0.082

Omega6 2153.6 + 755.9 2052.5 2065.4 + 661.8 1937.9 0.313

C141 3.3 + 7.7 1.9 2.1 + 2.2 1.1 <0.001*

C151 28.4 + 19.9 23.3 14.6 + 18 6.6 <0.001*

C161n7 85.9 + 57.9 72.7 68.7 + 43.2 57.7 0.001*

C181n9cis 1001.6 + 437 936.6 984.3 + 425.1 886.2 0.516

C201n9 7.4 + 3.8 6.4 5.5 + 4.4 4.4 <0.001*

C221n9 1.5 + 0.8 1.4 1.5 + 2.1 1.0 <0.001*

C241n9 68.2 + 20 65.4 69.7 + 18.7 68.9 0.327

C120 8.1 + 10.9 5.2 11.9 + 11.7 7.2 <0.001*

C140 57.4 + 36.8 48.9 58.5 + 33.6 50.4 0.508

C150 12.5 + 4.8 11.6 13.3 + 5.2 12.8 0.119

C160 1740.6 + 551.3 1631.9 1617.8 + 363.8 1559.6 0.078

C170 16 + 4.8 15.2 17 + 4.8 16.8 0.026*

C180 516.2 + 137 502.7 560.5 + 127.5 558.9 <0.001*

C200 14.8 + 4.3 14.4 15.3 + 5.1 14.5 0.447

C220 37.9 + 11.4 37.6 38.4 + 10.8 36.5 0.700

C240 31.5 + 10 31.5 32.8 + 8.9 31.2 0.237

C204n6/ C205n3 11.5 + 6.3 10.3 11.2 + 5.7 10.1 0.901

C203n6/ C204n6 0.3 + 0.2 0.2 0.3 + 0.1 0.3 0.390

C18:2n6/ C20:3n6 17 + 9.6 14.6 16.6 + 7.9 15.7 0.677

Omega6/ Omega3 13.8 + 6.4 12.7 11.1 + 5 10.2 <0.001*

MUFA 1190.5 + 478.9 1155.8 1140.3 + 462 1029.8 0.188

PUFA 2330.7 + 784.6 2274.6 2282.9 + 702 2200.2 0.604

SFA 2433.5 + 719 2325.6 2313.1 + 522.3 2252.3 0.250

Total FA 5954.7 + 1713.6 5743.7 5735.8 + 1484.2 5538.0 0.197

BMI 25.4 + 5 25.2 24.9 + 4 24.4 0.502

Non-Parametric Mann-Whitney test. Ho, The distribution of characteristics is the same between the groups. Concentrations of fatty acids are expressed as µmol/l.

*p < 0.05. Omega6, Total omega6 fatty acids; Omega3, Total omega3 fatty acids; PUFA, Polyunsaturated fatty acids; MUFA, Monounsaturated fatty acids; SFA, Saturated fatty acids.

Bold indicates that the variables are considered statistically significant (p < 0.05) based on Bonferroni correction.

and lignocericc acid (C:24:0) were positively correlated to the
absence of an AD. Negative correlations with the absence
of ADs were found in lack of exercise, cis-10 pentadecanoic
acid (C15:1) and gamma-linolenic acid (C18:3n6). The (H-L)
test was X2 (8) = 10,374, p = 0.240, while the Nagelkerke
(pseudo) R2 was estimated at 0.556. Classification table
indicates that the model predicts correctly 92.9 and 58.3.%
of those with and without an AD, respectively. The overall
predictive accuracy was 78.9%. ROC analysis indicates that
the area under the curve was 0.856 (0.819–0.893), p < 0.001
(Figure 4).

Validation of the Distinctive Model for
Prediction of Autoimmune Disease
Artificial Neuronal Networks (ANN) analysis was employed
based on the architecture of the model presented in Figure 5.
Initially, we adopted 2 layers of architecture, with all available
variables in the input layer to describe the non-linear nature
of our data set. Due to over-fitting and the relatively limited
number of our observations, we reduced our model. In the end, a
model with two hidden layers and 11 variables were employed
in accordance with the previous logistic model. We used 273
(67.7%) observations as training data set, 88 (21.8%) observations
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FIGURE 2 | A scatter plot correlation matrix of the main variables used in the model. (A) Case group (B) Control group. Positive correlations are shown in blue and

negative correlations are shown in red.

TABLE 3 | Component score coefficient matrix.

Component 1 2 3 4 5 6 7

C183n3 0.011 −0.005 −0.261 −0.028 −0.159 −0.052 0.189

C205n3 −0.003 −0.123 −0.011 0.500 0.041 −0.014 0.007

C226n3 −0.027 0.058 0.017 0.388 −0.015 0.008 0.048

C182n6 −0.050 0.045 −0.330 −0.036 −0.109 0.025 0.095

C183n6 0.007 −0.047 −0.303 −0.058 0.139 −0.088 0.008

C203n6 0.121 0.116 −0.017 −0.152 0.127 −0.064 −0.037

C204n6 0.076 0.132 −0.035 −0.015 −0.002 0.018 −0.092

C151 0.209 −0.128 −0.042 0.037 0.106 0.087 −0.081

C161n7 0.223 −0.064 0.023 −0.010 0.109 0.032 −0.167

C201n9 −0.049 −0.096 −0.319 0.132 0.069 0.110 −0.260

C221n9 0.062 0.023 0.034 −0.036 −0.163 −0.070 −0.682

C241n9 −0.065 0.261 0.068 0.109 0.047 0.018 −0.147

C120 0.137 −0.013 0.012 0.005 −0.284 −0.155 0.347

C140 0.227 −0.055 −0.009 0.010 −0.048 −0.035 0.095

C160 0.195 0.069 0.049 0.005 −0.063 0.045 −0.032

C170 0.069 0.085 −0.025 0.180 −0.089 −0.062 0.001

C180 0.112 0.178 0.107 −0.002 −0.132 0.014 0.199

C200 −0.011 0.272 0.011 −0.044 −0.028 −0.018 0.021

C240 −0.082 0.288 −0.079 −0.091 0.115 0.036 0.024

BMI 0.037 −0.004 0.007 −0.084 0.482 −0.058 0.091

Exercise 0.024 0.053 0.061 0.022 −0.275 0.559 −0.057

Alcohol 0.011 −0.002 −0.050 −0.024 0.146 0.691 0.101

Age −0.024 0.047 0.037 0.141 0.455 0.031 0.051

% Variance 30,3 10,8 8,2 6,1 5,5 4,9 4,6

% Cumulative

Variance

30,3 41,1 49,3 55,4 60,9 65,8 70,4

Rotation Method: Oblimin with Kaizer Normalization; in the model used only variables with

Spearman correlation coefficient < 75%.

as the test set, and 42 observations (10.4%) as a holdout. The
parameters of the model are presented in Table S3. The overall
predictive accuracy of the model was estimated at 76.2%. Total
predictive value of the model is presented in Table 6. The area
under the ROC curve was estimated at 0.792 for cases and
controls. Themost important biomarkers which contribute to the
model were Cis-11-Eicosenoic (C20:1n9), Lauric acid (C12:0),
Erucic acid (C22:1n9), Cis-10-pentadecanoic acid (C15:1),
Stearic acid (C18:0), Myristic acid (C14:0), Heptadecanoic acid
(C17:0), Palmitic acid (C16:0) (Figure 6).

DISCUSSION

In this study, we measured the levels of serum TFAs using
targeted GC-MS metabolomics in patients with ADs and
compared them to controls aiming to assess their potency
as disease biomarkers. We hypothesized that metabolites
are significantly altered in patients with ADs, including
thyroid disease, rheumatoid arthritis, multiple sclerosis,
vitiligo, psoriasis, and inflammatory bowel disease. In total,
28 biomarkers including 23 TFAs and demographic variables
were measured in 403 individuals and data were analyzed using
univariate analysis (chi-square,Man-Whitney test, andWilkoxon
Sign Rank test), as well as more advanced techniques, such as
PCA analysis, logistic regression, and Artificial Neural Networks.

We found that AD patients had increased levels of C14:1,
C15:1, C16:1n7, C20:1n9, C22:1n9, C18:3n3, C18:3n6, and total
omega-6/ total omega-3 ratio while they had lower levels of
total omega-3 fatty acids, C12:0, C17:0, C18:0 in a statistically
significant manner (Table 2). However, Bonferroni correction
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FIGURE 3 | Principal component analysis on total fatty acids of patients with autoimmune diseases compared to control group. Pairwise score plots that the r

coefficient was <0.030 are shown. Absolute r coefficient values are depicted in each plot.

TABLE 4 | Association of the presence of autoimmune disease with the Principal

Components Dependent.

B St Error exp(B) 95% LCI 95% UCI p-value

Factor 1 −0.285 0.141 0.752 0.570 0.992 0.044

Factor 2 0.578 0.132 1.783 1.376 2.310 0.000

Factor 3 0.570 0.136 1.769 1.354 2.310 0.000

Factor 4 0.107 0.114 1.113 0.891 1.390 0.348

Factor 5 −0.673 0.128 0.510 0.397 0.656 0.000

Factor 6 −0.294 0.118 0.745 0.591 0.940 0.013

Factor 7 0.328 0.130 1.389 1.076 1.792 0.012

Female −0.595 0.253 0.551 0.336 0.905 0.019

Constant −0.082 0.202 0.921 0.685

Variable: Absence of autoimmune disorder; Binary Logistic Regression LCI: Lower

Confidence Interval; UCI: Upper Confidence Interval.

indicated that only the levels of C22:6n3, total omega 3, C18:3n6,
C15:1, C20:1n9, C12:0, C15:0, C17:0, C18:0 and total omega
6/ total omega 3 ratio were statistically significantly different.
The high inter-correlations between metabolites may partially
explain the different results obtained from Mann–Whitney test
and Bonferroni correction. Indeed, the metabolite-metabolite
correlation patterns were markedly different between the case
and the control group indicating the metabolic re-programming
of ADs in line with previous studies reviewed by Seeger

TABLE 5 | Association of the presence of autoimmune disease with patient’s

characteristics Dependent.

B St

Error

exp(B) 95%

LCI

95%

UCI

p-

value

C183n6 −0.039 0.010 0.961 0.943 0.980 0.000

C151 −0.299 0.055 0.741 0.666 0.825 0.000

C140 0.154 0.027 1.166 1.106 1.230 0.000

C240 0.026 0.015 1.026 0.997 1.056 0.078

No exercise −1.002 0.309 0.367 0.200 0.673 0.001

No alcohol 0.934 0.297 2.544 1.423 4.549 0.002

Constant −1.847 0.528 0.158 0.000

Variable: Absence of autoimmune disorder; Binary Logistic Regression Model; Stepwise

Backward Method; Variable(s) entered on step 1: Exercise, Alcohol, Sex, C183n3,

C205n3, C226n3, C182n6, C183n6, C203n6, C204n6, C151, C161n7, C201n9,

C221n9, C241n9, C120, C140, C160, C170, C180, C200, C240, BMI.

et al. (Seeger, 2009; Amersfoort and Kuiper, 2017). Among
the statistically significant correlations, lauric acid (C12:0),
pentadecanoic acid (C15:0), stearic acid (C18:0), myristoleic acid
(C14:1), cis-10 pentadecanoic acid (C15:1) and arachidonic acid
(C20:4n6) were stronger correlated in the case than the control
group (p < 0.001).

Three predictive models were built to estimate the probability
of the absence of an AD as a function of gender, age, exercise,
alcohol consumption, BMI, and TFAs as biomarkers. PCA
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FIGURE 4 | ROC curve for the straightforward binary logistic Model.

analysis was used to reduce the representation of variables to only
seven new artificial variables, and we created a new predictive
model based on binary logistic regression. Furthermore, we
estimated a straightforward logistic regression model with all
28 variables as potential independent biomarkers. In the end,
only the statistically significant biomarkers were assessed by the
model. As expected, the first model had slightly less accurate
predictions (74.7 vs. 78.9%) compared to the second, since
PCA reduces the portion of the information used from the
initial data set. It needs to be mentioned that PCA analysis
is mainly an exploratory technique aiming to investigate the
data set at a first level. The main strength of this analysis –
if any, depending on the data structure- is the reduction of
dimension by creating artificial variables at expenses of accuracy
(Jolliffe et al., 2016). However, the assumption that the principal
components with highest variance will also contain the most
information is a limitation of the analysis which is also observed
in our study. Hence, the PCA plot does not show a considerable
distinction between control and case groups and, thus, the
factors of PCA do not seem sufficiently robust to be used
for a satisfactory data interpretation. For the 78.9% predictive
accuracy of the second model, myristic acid (C14:0), lignoceric
acid (C24:0), Cis-10 pentadecanoic acid (C15:1), gamma-
linolenic acid (C18:3n6), exercise and alcohol consumption
were identified as the most sensitive markers. Exercise and
alcohol are lifestyle variables that have a major impact on
metabolism and the immune system directly. Several studies
have discussed the beneficial role of physical activity not only in
prevention but also for the improvement of disease progression

FIGURE 5 | Architecture of the Artificial Neural Network.
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and the quality of life of patients (Sharif et al., 2018). More
importantly, it has been shown that regularmoderate exercise can
increase glucose uptake and reduce insulin resistance
(DeFronzo et al., 1987). The role of alcohol consumption
in health and its effects on the immune system have been
extensively discussed, and although several studies show
that moderate alcohol consumption may be beneficial
to health (Carlé et al., 2012) others demonstrate that
it has a detrimental effect on the gut microbiome and
immunotolerance (Wang et al., 2010; Sarkar et al., 2015;
National Institute on Alcohol Abuse and Alcoholism, 2000).

ANN analysis showed that the most important predictors
for the ADs were the following: Cis-11-eicosenoic (C20:1n9),
lauric acid (C12:0), Erucic (C22:1n9), Cis-10 pentadecanoic
acid (C15:1), stearic acid (C18:0), myristic acid (C14:0),
heptadecanoic acid (C17:0), palmitic acid (C16:0) in the order
of importance. The predictive accuracy of the ANN model
was comparable to the straightforward binary logistic regression
(76.2%). These findings indicate that the metabolic pathways
of SFAs and MUFAs are significantly affected in ADs. In the
group of SFAs lauric acid (C12:0), myristic acid (C14:0), stearic
acid (C18:0), lignoceric acid (C24:0), palmitic acid (C16:0) and
heptadecanoic acid (C17:0) can be potent biomarkers. SFAs
including stearic acid (C18:0), myristic acid (C14:0) and palmitic
acid (C16:0) are endogenously converted to the MUFAs oleic
acid (C18:1n9cis), myristoleic acid (C14:1) and palmitoleic acid
(C16:1n7), respectively. This conversion is catalyzed by theDelta-
9 desaturase, and the activity of the enzyme has been associated
with insulin resistance (Kurotani et al., 2012), a key player in
several Ads (Giles et al., 2015; Granata et al., 2017; Medina et al.,

2018). Indeed insulin resistance has been linked to impaired
desaturase activity and high levels of stearic and palmitic acid
(Mayneris-Perxachs et al., 2014). Lignoceric (C24:0) is a very long
chain fatty acid along with behenic acid (C22:0) and arachidic
acid (C20:0). These are major components of ceramides that have
been shown to have a protective role against insulin resistance
and diabetes (Lemaitre et al., 2015). Heptadecanoic acid (C17:0)
belongs to the odd-chain fatty acids, and although it has been
widely used as a biomarker of dairy intake (Yakoob et al.,
2014), there is recent evidence that it is related to metabolic
diseases and gut microbiome imbalance (Jenkins et al., 2017).
Insulin resistance is a common denominator in many chronic
inflammatory diseases through complex molecular pathways

TABLE 6 | Classification table for artificial neural network.

Predicted

Case Control % Correct

Training Case 152 15 91.0%

Control 41 65 61.3

Overall percent 70.7% 29.3% 79.5

Testing Case 50 4 92.6

Control 16 18 52.9

Overall percent 75.0% 25.0% 77.3

Holdout Case 17 2 89.5

Control 8 15 65.2

Overall percent 59.5% 40.5% 76.2

FIGURE 6 | Contribution of biomarkers and factors to the predicted accuracy of the ANN.
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(Engin et al., 2018). Because insulin inhibits lipolysis of stored fat,
under insulin resistant conditions, free fatty acid levels increase
in blood circulation and are taken up by organs that cannot store
efficiently fat such as the liver and skeletal muscles. Excess fat in
these tissues generates a cascade of mechanisms that lead to local
insulin resistance and inflammation (Savage et al., 2005). From
a different point of view, the Western diet has been implicated
in the rapid rise of ADs as a result of multiple factors that
break immunotolerance (De Rosa et al., 2017; Tsoukalas et al.,
2019). Therefore, biomarkers that may predict and early diagnose
insulin resistance would be very helpful in the prediction of
chronic diseases.

In the case of MUFAs, Cis-10-pentadecanoic acid (C15:1),
Cis-11-eicosenoic acid (C20:1n9) and erucic acid (C22:1n9)
were demonstrated as potent biomarkers by our predictive
model. Cis-11-eicosenoic acid (C20:1n9) originates from oleic
acid (C18:1n9cis) and can be elongated to produce erucic acid
(C22:1n9) (Bao et al., 1998). Erucic acid intake (through canola,
Wallflower, or Lorenzo’s oil) has been suggested to be beneficial
for peroxisomal disorders like X-linked adrenoleukodystrophy
by reducing the saturated VLCFA by negative feedback (Risé
et al., 2014).

Gamma-linolenic acid (C18:3n6), the intermediate metabolite
of linoleic acid (C18:2n6) conversion to dihomo-gama-linoleic
acid (C20:3n6) and Arachidonic acid (C20:4n6) was also a
sensitive marker for the predictive model. Dihomo-gama-
linoleic acid (C20:3n6) and Arachidonic acid (C20:4n6) are
the main precursors of the pro-inflammatory mediators. There
have been several studies showing that arachidonic acid, along
with other omega-6 and omega-3 fatty acids can be valuable
markers in chronic inflammatory diseases because they reflect the
inflammation status and the dietary preferences of the individual
(Patterson et al., 2012; Tsoukalas et al., 2019). In a previous study,
the authors demonstrated a strong relationship between serum
fatty acid composition with the risk of type 1 diabetes-associated
autoimmunity (Niinistö et al., 2017). A nested case-control
analysis was performed within the Finnish Type 1 Diabetes
Prediction and Prevention Study birth cohort, with 7,782
individuals. Fatty acids were associated with islet autoimmunity
and primary insulin autoimmunity (higher palmitoleic acid, cis-
vaccenic, arachidonic, docosapentaenoic, and docosahexaenoic
acids decreased risk; higher α-linoleic acid and arachidonic:
docosahexaenoic and omega-6/omega-3 acid ratios increased
risk). The authors concluded that the fatty acid status might
play a role in the development of type 1 diabetes-associated
autoimmunity, but further studies are warranted to clarify the
independent role of fatty acids in the development of type
1 diabetes.

A strength of this study is the application of ANN analysis
to the targeted metabolomics data. ANN or logistic regression
have been employed in many areas of health care research
having advantages and disadvantages (Dreiseitl and Ohno-
Machado, 2002). The most profound advantage of ANN is
that it does not assume any pre-specified form of relationship
between response and predictive variables but, on the contrary,
the model itself investigates the relationship, which is not
necessarily linear. Of course, due to this feature, ANNs have some

disadvantages such as heavy mathematical computation and -
more importantly- proneness to overfitting. Moreover, The ANN
calculations represent a “data hungry” procedure and require an
abundance of data to maximize its performance. In this light,
it could be argued that the accuracy of our ANN model would
have been even better in comparison with the binary logistic
model if we had more data. However, this condition was not
feasible for our study, but it is also not frequent in medical
research, where dataset size is constrained by the complexity
and the cost of large-scale experiments. As a general rule, it
has been recommended that there should be approximately 10
times more training cases for each node of the model (Stathakis,
2009), but several statistical attempts have been made to reduce
this numbers to smaller sample sizes (Pasini, 2015). Since our
model has 9 nodes (at hidden layer 1) and 403 observations in
total, this requirement is partially being fulfilled, including a fair
sample size for an ANN analysis. In fact, an advantage of the
present analysis is that it includes a relatively large sample of
patients within the metabolomic context. As a general comment,
beyond the ANN’s requirements, the determination of a sample
size per group is important in order to meet the criteria for a
robust metabolomics analysis. Due to several complexities, there
is currently no standard statistical methodology for this sample
estimation (Nyamundanda et al., 2013; Trivedi et al., 2017). On a
theoretical level, patient heterogeneity and other factors may play
a role in the final estimation, but in practice, researchers usually
include only 30–50 patients per treatment group, well below the
number of subjects used in the present work.

One potential limitation of our study is that the cases
(patients with ADs) had different diseases. Hence, this might
be considered as a confounder and should be adjusted in
statistical analysis, although this type of analysis requires a
larger dataset. Our very next study will include additional
variables of the population and focus on specific types of
AD in order to explore more complex relationships between
TFAs and pathogenesis of autoimmunity. Metabolomics is an
emerging tool used for biomarker discovery as it can provide
systemic understanding of the disease. However, there is some
variability and inconsistencies among metabolomic studies,
due to the experimental design (Kohler et al., 2017). This
is a general characteristic of “omics” studies, since the small
sample size results in limited statistical power especially when
data require adjustment for multiple testing. In the present
work, although the dataset outweighs the commonly used
sample sizes, this limitation needs to be considered as the
inclusion of volunteers affected by different diseases could
hamper the interpretability of the results. However, many
autoimmune diseases share common molecular mechanisms
although different organs and cell types are involved, and, thus,
probably have some common biomarkers (Arnald et al., 2016).
Similarly, common biomarkers related to different diseases is
observed even in a more “mature” field such as this of genomic
medicine, a case that hampers the results interpretation as
well (Fragoulakis et al., 2019).

The findings of the present study can be used as a baseline
for studies on the metabolic fingerprint of ADs and highlight
the potency of metabolomics and advanced statistical tools
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in prevention, prediction, treatment response, and drug side
effects monitoring.

From this study, it can be concluded that the TFAs
are associated with ADs presence, which is in line with
the previous studies (Simopoulos, 2002). Overall, there is
growing evidence that ADs have a distinct metabolic fingerprint
which can be assessed through metabolomics, permitting a
personalized approach and therapy. The metabolomic profile
of TFAs can provide information regarding dietary intake
and endogenous synthesized fatty acids. Thus, it needs to be
critically assessed by the physician considering, the medical
and nutritional history and the disease background as well
(Trivedi et al., 2017). To this end, tailor-made interventions
in nutrition and lifestyle might be of high therapeutic value
in ADs.
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Serum Metabolite Biomarkers
Predictive of Response to PD-1
Blockade Therapy in Non-Small Cell
Lung Cancer
Xiaoqun Nie1†, Liliang Xia2†, Fang Gao1†, Lixia Liu1, Yi Yang2, Yingying Chen3,
Huangqi Duan3, Yaxian Yao2, Zhiwei Chen2, Shun Lu2*, Ying Wang3* and Chen Yang1*

1CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of
Sciences, Shanghai, China, 2Department of Shanghai Lung Cancer, Shanghai Chest Hospital, Shanghai Jiao Tong University,
Shanghai, China, 3Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong
University School of Medicine, Shanghai, China

Background:Despite remarkable success of immunotherapies with checkpoint blockade
antibodies targeting programmed cell death protein 1 (PD-1), the majority of patients with
non-small-cell lung cancer (NSCLC) have yet to receive durable benefits. We used the
metabolomic profiling of early on-treatment serum to explore predictors of clinical
outcomes of anti-PD-1 treatment in patients with advanced NSCLC.

Methods:We recruited 74 Chinese patients who had stage IIIB/IV NSCLC-proven tumor
progression and were treated with PD-1 inhibitor. The study was comprised of a discovery
cohort of patients treated with nivolumab and two validation cohorts of patients receiving
tislelizumab or nivolumab. Serum samples were collected 2–3 weeks after the first infusion
of PD-1 inhibitor. Metabolomic profiling of serum was performed using ultrahigh
performance lipid chromatograph-mass spectrometry. The serum metabolite
biomarkers were identified using an integral workflow of nontargeted metabolomic
data analysis.

Results: A serummetabolite panel consisting of hypoxanthine and histidine was identified
and validated as a predictor of response to PD-1 blockade treatment in patients with
advanced NSCLC. High levels of both hypoxanthine and histidine in early on-treatment
serum were associated with improved progression-free survival [hazard ratio (HR) � 0.078,
95% confidence interval (CI), 0.027–0.221, p < 0.001] and overall survival (HR � 0.124,
95% CI, 0.039–0.397, p < 0.001) in the discovery cohort. The serum metabolite panel
showed a high sensitivity and specificity in distinguishing responders and non-responders
in the validation cohorts 1 and 2, with an area under the receiver-operating characteristic
curve of 0.933 and 1.000, respectively. High levels of serum hypoxanthine and histidine
were correlated with improved progression-free survival in the validation cohort 1 (HR �
0.137, 95% CI, 0.040–0.467, p � 0.001) and in the validation cohort 2 (HR � 0.084, 95%
CI, 0.009–0.762, p � 0.028).

Conclusion: Our results revealed that hypoxanthine and histidine in early on-treatment
serum are predictive biomarkers of response to PD-1 blockade therapy in patients with
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advanced NSCLC. The serum biomarker panel would enable early identification of NSCLC
patients who may benefit from PD-1 blockade therapy.

Keywords: immune checkpoint inhibitors, non-small cell lung cancer, serum metabolomics, metabolite biomarker,
non-targeted metabolomics

INTRODUCTION

Non-small cell lung cancer (NSCLC) is the leading cause of cancer-
related mortality worldwide and generally has a poor prognosis
(Bray et al., 2018). During the past several years, major advances
have been made in cancer treatment through the use of immune
checkpoint inhibitors (ICIs) (Ribas and Wolchok, 2018). ICIs
targeting programmed cell death protein 1 (PD-1) or its ligand
PD-L1 have demonstrated improved clinical efficacy in both
second-line and first-line treatment of advanced NSCLC when
compared to conventional chemotherapy (Sui et al., 2018). At
present, two anti-PD-1 antibodies nivolumab and pembrolizumab
as well as several anti-PD-L1 antibodies have been approved by the
United States. Food andDrug Administration (FDA) for treatment
of multiple cancer types including NSCLC (Ribas and Wolchok,
2018). Recently, an anti-PD-1 antibody tislelizumab has been
approved in China for treatment of NSCLC and other cancers
(Liu and Wu, 2020). These PD-1/PD-L1 inhibitors block the
binding of PD-1 to its PD-L1 ligand and restore the capacity of
cytotoxic T cells to recognize and kill cancer cells. Current PD-1/
PD-L1 blockade therapies have shown durable disease control and
improved survival in patients with advanced NSCLC (Rangachari
and Costa, 2019). However, only subsets of patients are benefiting
from the anti-PD-1/PD-L1 therapies. For example, only 10–30% of
patients with NSCLC have objective tumor responses to treatment
with nivolumab (Borghaei et al., 2015; Topalian et al., 2019). The
mechanistic basis for the variation in response patterns remains
poorly explained. In addition, some patients experience severe
autoimmune adverse events (Friedman et al., 2016; Spain et al.,
2016). Given the distinct response patterns, combined with
potentially severe toxicity and high costs, there is an urgent
need to identify biomarkers that can predict which patients are
likely to benefit from PD-1/PD-L1 blockade therapies.

So far, PD-L1 expression, which is assayed by
immunohistochemistry (IHC) staining on tumor specimens, is the
most commonly used biomarker for selecting patients treated with
anti-PD-1/PD-L1 antibodies (Topalian et al., 2015). However, PD-L1
expression was not consistently associated with tumor responses and
patient survival. For example, only 44.8% of PD-L1-positive NSCLCs
are responsive to pembrolizumab in a first-line treatment (Garon
et al., 2015). A proportion of PD-L1-negative patients withNSCLC or
other cancers also benefits from anti-PD-1 therapy (Robert et al.,
2015). Several other biomarkers, which include tumor mutational
load, mismatch-repair deficiency, neoantigens, density of tumor-
infiltrating lymphocytes, and the diversity of gut microbiome,
have been reported to correlate with the clinical outcomes (Le
et al., 2015; Rizvi et al., 2015; Berghoff et al., 2016; McGranahan
et al., 2016; Jin et al., 2019). However, these proposed biomarkers are
not perfectly predictive. Moreover, most of them are based on tumor
assays, which require invasive sampling, and are not practical for

monitoring tumor response during treatment. Recently, circulating
blood biomarkers for prediction of immunotherapeutic responses
have attracted increasing attention because they can be minimally
invasively obtained from patients and trended over time (Li, Bullock,
et al., 2019).

Tumor-infiltrating immune cells typically experience
metabolic stress as a result of the dysregulated metabolic
activity of tumor cells, which can result in
immunosuppression and tumor immune evasion (Herbel et al.,
2016). Cumulative evidence indicates that combination of ICIs
with interventions targeting the metabolic circuits that impede
antitumour immunity may be a promising strategy to improve
clinical efficacy (Li, Wenes, et al., 2019). Metabolic biomarkers of
immunotherapeutic responses can not only guide the therapeutic
decisions but also lead to identification of novel metabolic targets
for combination therapies. Advances in mass spectrometry (MS)-
based metabolomics have allowed the discovery of new
biomarkers for cancer diagnosis and customized treatment
(Crutchfield et al., 2016). However, up to now, only a few
metabolomics studies have been performed to investigate the
changes in serum metabolites after anti-PD-1 treatment (Li H,
et al., 2019), the gut microbiota-derived metabolites in responsive
patients (Frankel et al., 2017), and the correlation between plasma
metabolites and T cell markers (Hatae et al., 2020). Metabolic
biomarkers that can reliably predict outcomes of anti-PD-1/PD-
L1 treatments remain to be uncovered.

In this study, by comprehensively profiling metabolites in
early on-treatment serum from a discovery cohort, we identified a
metabolite panel consisting of hypoxanthine and histidine as a
predictor of NSCLC response to PD-1 blockade, which was then
validated in independent patient cohorts. High levels of the serum
metabolite biomarkers were found to correlate with improved
survival of patients with NSCLC receiving PD-1 blockade
therapy.

MATERIALS AND METHODS

Patients
Patients of this study were recruited from Shanghai Chest
Hospital affiliated to Shanghai Jiao Tong University (Shanghai,
China). All the participants had histologically proven stage IIIB/
IV NSCLC (Table 1). Serum samples from a patient cohort
treated with nivolumab were used as a discovery set to
identify potential serum biomarkers of response to PD-1
blockade therapy. The potential metabolite biomarkers were
validated in a patient cohort receiving tislelizumab and
another cohort treated with nivolumab. The patients treated
with nivolumab had squamous or non-squamous cell
carcinoma and had received one to two prior systemic
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therapies and proved progression before PD-1 blockade therapy.
The patients receiving tislelizumab all had non-squamous cell
carcinoma, and tislelizumab was used as first-line therapy in
combination with chemotherapy. All the participants in this
study were followed up until disease progression or death.
Patients received nivolumab (240 mg) every 2 weeks, and
tislelizumab (200 mg) was administered every 3 weeks.
Peripheral blood samples were collected after administration
of nivolumab or tislelizumab. Disease severity was measured
by computed tomography or magnetic resonance imaging and
evaluated for therapeutic response using Response Evaluation
Criteria in Solid Tumors 1.1 (RECIST 1.1). Clinical response to
the treatment with nivolumab or tislelizumab was evaluated every
8 weeks and was confirmed by a subsequent assessment no less
than 4 weeks thereafter. Electronic medical charts were reviewed
independently by two investigators to assign clinical response
groups. Responders were defined by freedom from disease, stable
disease, or decreased tumor volume for more than 6 months, and
non-responders were defined by tumor growth or a clinical
benefit lasting 6 months or less (Hodi et al., 2018). Patients
gave their written informed consent to participate in the

research, which had received approval from the Ethics
Committee of Shanghai Chest Hospital. All the procedures
were conducted in accordance with the Declaration of Helsinki.

Sample Preparation
Serum was collected after centrifugation of peripheral blood at
1500 g for 10 min and immediately stored at −80°C. The samples
were thawed on ice. Then 100 μl of samples were mixed with 50 μl
of internal standard (6 μg/ml 2-chloro-L-phenylalanine in water)
and 350 μl of methanol. After vortex for 1 min, the samples were
centrifuged at 14,000 g for 15 min, and the supernatant was used
for LC-MS analysis. Quality control (QC) samples were prepared
by mixing aliquots of serum samples from a subset of the cohort
and using the same procedure as the samples studied.

Liquid Chromatography-Mass
Spectrometry Analysis
Metabolites were profiled using ultrahigh performance lipid
chromatography-mass spectrometry (UHPLC-MS). Samples
were injected onto a UHPLC system (Acquity, Waters)

TABLE 1 | Clinical characteristics of discovery and validation sets and efficacy of anti-PD-1 therapy.

Characteristicsa Discovery set (n = 43) Validation set 1 (n = 21) Validation set 2 (n = 10)

Age, year 63 (41–74) 60.4 (54–72) 64.5 (46–78)
Sex
Male 33 (77%) 14 (67%) 9 (90%)
Female 10 (23%) 7 (33%) 1 (10%)

Smoking status
Smoker 31 (72%) 11 (52%) 8 (80%)
Non-smoker 12 (28%) 10 (48%) 2 (20%)

Histology
Squamous 17 (40%) 0 7 (70%)
Non-squamous 26 (60%) 21 (100%) 3 (30%)

Disease stage
III 6 (14%) 1 (5%) 1 (10%)
IV 37 (86%) 20 (95%) 9 (90%)

Metastasis
Yes 37 (86%) 20 (95%) 9 (90%)
No 6 (14%) 1 (5%) 1 (10%)

Previous chemotherapy treatment
Cisplatin based 28 (62%) - 5 (36%)
Carboplatin based 12 (27%) - 6 (43%)
Others 3 (7%) - 3 (21%)
No previous treatment 0 - 0
Unknown 2 (4%) - 0

Radiotherapy
Yes 15 (35%) 4 (19%) 8 (80%)
No 27 (63%) 9 (43%) 2 (20%)
Unknown 1 (2%) 8 (38%) 0

Clinical benefit to PD-1 blockade
Durable clinical benefit 23 (53%) 13 (62%) 4 (40%)
No clinical benefit 20 (47%) 8 (38%) 6 (60%)

RECIST response to PD-1 blockade
Complete response 0 0 0
Stable disease 18 (42%) 6 (29%) 6 (60%)
Partial response 8 (19%) 13 (62%) 0
Progression disease 17 (39%) 2 (9%) 4 (40%)

Progression-free survival since PD-1 blockade, days 152 (24–645) 369 (42–770) 87 (27–429)
Overall survival since PD-1 blockade, days 573 (33–648) 596 (86–769) 366 (144–429)

aData are expressed as number (%) or median (range).
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coupled to a Q Exactive hybrid quadrupole-orbitrap mass
spectrometer (Thermo Fisher). The sample injection order was
randomized, and QC and blank samples (80%methanol in water)
were regularly injected throughout the run. The injection volume
was 10 μl. Metabolites were separated with a Luna NH2 column
(50 mm × 2 mm, 5 μm particle size, Phenomenex) (Yuan et al.,
2012). The column was maintained at 15°C with a solvent flow
rate of 0.3 ml/min. Solvent A was 20 mM ammonium acetate
adjusted to pH 9.0 with ammonium hydroxide, and solvent B was
acetonitrile. The gradient of B was as follows: 0 min, 85%; 3 min,
30%; 12 min, 2%; 15 min, 2%; 16 min, 85%; 23 min, 85% B. The
mass spectrometer was run in both electrospray ionization
positive (ESI+) and negative (ESI−) modes. The key parameters
were as follows: ionization voltage, +3.8 kV/−3.8 kV; sheath gas
pressure, 35 arbitrary units; capillary temperature, 320°C. The
mass spectrometer was run in full scan mode at an m/z 70–1000
scan range and 70,000 resolution. MS/MS spectra were acquired
with 15–35-eV collision energy.

Data Processing
Data processing was performed using an integral workflow of
nontargeted metabolomic data analysis (Dunn et al., 2011).
Briefly, data were processed by R package XCMS, followed by
quality checks and signal drift correction to generating a data
matrix that consisted of retention time, m/z value, and peak
intensity. The peak area of each metabolite was normalized to
sum of areas of all metabolites present in the sample, and then
unit-variance scaled before further statistical analysis
(Gorrochategui et al., 2016). The accurate mass and acquired
MS/MS spectra were used for metabolite identification by
matching with in-house spectral libraries and online databases
(mzCloud, MoNA, and HMDB) (Kind et al., 2018). Quantitation
of serum metabolites was performed by using a targeted analysis
and external calibration curves as reported previously (Roberts
et al., 2012).

Statistical Analysis
Multivariate statistical analysis of metabolomic data was
performed using the SIMCA software (Umetrics).
Unsupervised principal component analysis was conducted to
visualize grouping trends and the clustering of QC samples. A
supervised model of orthogonal partial least-squares-
discriminant analysis (OPLS-DA) was applied to identify the
metabolites contributing to class separation according to
corresponding variable importance in the projection (VIP).
The OPLS-DA parameters, R2Y and Q2, were used for
evaluating the goodness of the model fit. The risk of
overfitting of the OPLS-DA model was evaluated by
performing 200 permutation tests.

Univariate statistical analysis of marker metabolites was
performed using the Multi Experimental Viewer software
(http://www.tm4.org). A nonparametric Wilcoxon-Mann-
Whitney test was conducted, and a p value < 0.05 was
considered a priori to be statistically significant. The
metabolites with false discovery rate (FDR) values less than 0.
05 and VIP values greater than 1.0 were defined as putative
marker metabolites. The biomarker model was built by binary

logistic regression using forward stepwise method. To evaluate
the classification performance, receiver operating characteristic
(ROC) analysis was conducted and the area under the ROC curve
(AUC) was computed by using the MedCalc software (https://
www.medcalc.org/).

The Kaplan-Meier method was used to estimate progression-
free and overall survival, with the differences between the groups
calculated with the log-rank test. Hazard ratios (HRs) from
univariate Cox regression were used to determine the
association between marker metabolites and survival.
Multivariate Cox regression was conducted to adjust for
patient characteristics by using the SPSS software (SPSS Inc.).

RESULTS

Study Population
The characteristics of the study cohorts are summarized in
Table 1. To identify potential serum biomarkers of clinical
response to PD-1 blockade, we collected serum samples from
a discovery cohort of 43 patients with advanced NSCLC treated
with the anti-PD-1 antibody nivolumab. The potential
biomarkers were confirmed in two independent validation
sample sets. A validation cohort was comprised of 21 patients
with advanced NSCLC treated with another PD-1 inhibitor,
tislelizumab. Another cohort for biomarker validation includes
10 patients with NSCLC treated with nivolumab. Nivolumab-
treated patients had squamous or non-squamous cell carcinoma,
whereas all the patients receiving tislelizumab had non-squamous
cell carcinoma. The patients were treated with nivolumab as the
second-line or third-line therapy, whereas tislelizumab was used
in the first-line combination therapy of the patients. We defined
responsive and non-responsive patients based on the following
criteria (Hodi et al., 2018): patients with durable clinical benefit
(defined as no progression event or death within the first
6 months of PD-1 blockade) were classified as responders;
patients with no durable clinical benefit (progression event or
death within the first 6 months of PD-1 blockade) were classified
as non-responders. No significant difference was observed in age,
sex, disease history, disease stage, smoking history, and prior
treatments between responders and non-responders in
nivolumab- or tislelizumab-treated patients (Supplementary
Table S1).

Identification of Potential Metabolite
Biomarkers of Response to PD-1 Blockade
We collected serum samples from the discovery cohort 2 weeks
after the first infusion of nivolumab. Among the patients in the
discovery cohort (n � 43), 21 being evaluated as partial response
or stable disease were classified as responders, and 22 with disease
progression were classified as non-responders. By using ultrahigh
performance lipid chromatography-mass spectrometry
(UHPLC-MS), a total of 1,566 metabolite peaks were detected,
including 803 in the negative and 763 in the positive ionization
modes. The quality control samples are clustered in the score plot
of principal component analysis (PCA), indicating the good
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reproducibility of the metabolomics analysis (Figure 1A). The
PCA of the discovery set also demonstrated a tendency of
difference in metabolomic profiles between responders and
non-responders. For screening of potential marker metabolites,
orthogonal partial least squares discriminant analysis (OPLS-DA)
was applied. The OPLS-DA score plot of the discovery set
revealed a clear separation between responders and non-
responders without overfitting (Figure 1B). The validity of the
OPLS-DA model was confirmed using permutation tests
(Supplementary Figure S1). A subsequent univariate analysis
was performed, resulting in identification of 185 metabolite peaks

with a variable importance in the project (VIP) > 1.0, p < 0.05,
and a false discovery rate (FDR) < 0.05 as important variables
contributing to class separation.

Metabolite identification was performed by matching accurate
mass and tandem MS/MS spectra with in-house spectral libraries
and online databases and by confirmation with authentic
standards. Thus, six candidates of marker metabolites were
obtained, including cystine, threonine, histidine, 3-
oxotetradecanoic acid, 1,7-dimethyluric acid, and
hypoxanthine (Supplementary Table S2). Binary logistic
regression was performed to construct the best model using

FIGURE 1 | Principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA) of the data from the discovery set. (A) PCA
score plot. (B) OPLS-DA score plot. The cumulative R2Y and Q2Y of the OPLS-DA model are 0.92 and 0.67, respectively. R, responders; NR, non-responders; QC,
quality control.

FIGURE 2 | Serum levels of potential marker metabolites hypoxanthine (A) and histidine (B) at early on-treatment in responders and non-responders of the
discovery set and validation sets 1 and 2. The box plots depict the minimum and maximum values (whiskers), the upper and lower quartiles, and the median. Groups
were compared by Wilcoxon-Mann-Whitney test with Benjamini-Hochberg-based adjustment for multiple comparisons.
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the six metabolites (Supplementary Table S3). Therefore, the
combination of hypoxanthine and histidine was identified as the
best biomarker panel to distinguish responders and non-
responders to nivolumab treatment. Responders had
significantly higher levels of both marker metabolites in early
on-treatment serum than non-responders (p < 0.001 and p <
0.001, respectively) (Figure 2). By contrast, the PD-L1 expression
in pretreatment tumors was not significantly different (p � 0.116)
between responders and non-responders in the discovery cohort
(Supplementary Table S1). The receiver operating characteristic
(ROC) analysis showed that the metabolite panel performs better
than each metabolite in discrimination of responders and non-

responders (Figure 3). The area under the curve (AUC) for the
metabolite panel was 0.972 [95% confidence interval (CI),
0.869–0.999], with sensitivity of 95% and specificity of 86%.

High Marker Metabolite Levels Correlate
With Improved Patient Survival
The association between the marker metabolites and the clinical
outcome of nivolumab treatment was examined. Metabolite levels
were dichotomized into high and low categorical variables based
on the median value in the analyzed samples. We found that the
serum levels of hypoxanthine and histidine at early on-treatment

FIGURE 3 | Receiver operating characteristic (ROC) analysis of hypoxanthine and/or histidine in the discovery set and validation sets 1 and 2. Hyp, hypoxanthine;
His, histidine; AUC, area under the curve.

FIGURE 4 | Serum levels of metabolite biomarkers at early on-treatment associate with progression-free survival in the discovery set (A), validation set 1 (B), and
validation set 2 (C). Kaplan-Meier analysis for progression-free survival in NSCLC patients by serum levels of hypoxanthine and/or histidine. His, histidine; Hyp,
hypoxanthine; HR, hazard ratio.
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were significantly associated with progression-free survival (PFS)
[hazard ratio (HR) � 0.215, 95% CI, 0.102–0.449, p < 0.001; HR �
0.336, 95% CI, 0.166–0.679, p � 0.002, respectively] (Figure 4,
Supplementary Table S4). The combination of both metabolites
and the association with PFS demonstrated an additive effect (HR
� 0.078, 95% CI, 0.027–0.221, p < 0.001) (Figure 4,
Supplementary Table S4). The median PFS of patients with
high levels of one or both metabolites were 180 days (95% CI,
57–360 days) and 339 days (95% CI, 264–498 days), respectively,
whereas patients with low levels of both metabolites had a median
PFS of 51 days (95% CI, 27–57 days) (p < 0.001) (Figure 4). The
combination of both metabolites remained an independent factor
for PFS in the multivariate analysis (Supplementary Table S4).

The levels of serum hypoxanthine and histidine were also
significantly and independently correlated with overall survival
(OS) (HR � 0.124, 95% CI, 0.039–0.397, p < 0.001) (Figure 5,
Supplementary Table S5). Patients with high levels of both
metabolites had a longer overall survival (median OS of
589 days, 95% CI, 56–589 days) than did patients with low
levels of both metabolites (median OS of 297 days, 95% CI
93–354 days) (p < 0.001). Thus, hypoxanthine and histidine in
early on-treatment serum were identified as the potential
biomarkers predictive of clinical outcomes in patients with
NSCLC receiving PD-1 blockade therapy.

Validation of Serum Metabolite Biomarkers
Predictive of Response to PD-1 Blockade
The potential metabolite biomarkers were evaluated in two
independent validation sample sets. Serum samples were
collected from a validation cohort 3 weeks after the first
infusion of tislelizumab. This cohort consisted of 13

responders and eight non-responders (validation set 1)
(Table 1). We determined the absolution concentrations of
hypoxanthine and histidine in serum (Figure 2), and the
measurements were highly reproducible. The logistic
regression model of the metabolite panel for predicting
response to PD-1 blockade was constructed as follows: logit (p
� Responder) � 0.114 × (Hyp) + 0.079 × (His) − 19.548. In this
equation, (p � Responder) is the predicted probability of NSCLC
patients benefiting from PD-1 blockade therapy, (Hyp) and (His)
are the serum concentrations of hypoxanthine and histidine,
respectively, at early on-treatment. The cutoff value of (p �
Responder) was 0.798. By using this model, the AUC was
determined as 0.933 (95% CI, 0.734–0.996) for the validation
set 1, with sensitivity of 92% and specificity of 88%, which
indicates that the metabolite panel performed well in
distinguishing responders and non-responders (Figure 3). A
positive association between levels of the serum metabolite
panel and PFS was highly statistically significant and
independent (HR � 0.137, 95% CI, 0.040–0.467, p � 0.001)
(Figure 4, Supplementary Table S6). Patients with high levels
of hypoxanthine and histidine had a median PFS of 569 days
(95% CI, 360–750 days), whereas the median PFS for patients
with low levels of both metabolites was 126 days (95% CI,
42–256 days) (p < 0.001). Moreover, we found that high levels
of the serum metabolite panel were significantly associated with
improved overall survival of patient in the validation set 1 (p �
0.008) (Figure 6).

Another validation cohort was comprised of 10 patients with
NSCLC treated with nivolumab (validation set 2) (Table 1).
Serum samples were collected from these patients 2 weeks
after the first infusion of nivolumab. Similar to the results of
the discovery set and validation set 1, serum level of the two

FIGURE 5 | Kaplan-Meier estimates of overall survival by serum levels of hypoxanthine and/or histidine in the discovery set. His, histidine; Hyp, hypoxanthine; HR,
hazard ratio.
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marker metabolites had a high sensitivity and specificity in
discrimination of responders and non-responders of the
validation set 2 (Figure 3). Responders had significantly
higher levels of hypoxanthine and histidine in serum than
non-responders (p � 0.019 and p � 0.038, respectively)
(Figure 2), which were verified by the enzyme-based assays
(Supplementary Figure S2) (Liu et al., 2009; Sun et al., 2012).
We found that high levels of the serum metabolite panel were
correlated with improved PFS in the validation set 2 (HR � 0.084,
95% CI, 0.009–0.762, p � 0.028) (Figure 4, Supplementary Table
S6). Patients with high levels of the serum metabolite panel
outlived patients with low levels of both metabolites, although
the statistical significance cutoff was not met (p � 0.116)
(Figure 6). Thus, the results from the two independent
validation sets confirmed the serum metabolite panel as
predictive biomarkers of NSCLC response to PD-1 blockade
therapy.

DISCUSSION

Immunotherapies with checkpoint blockade antibodies targeting
PD-1, PD-L1, and cytotoxic T-lymphocyte antigen 4 (CTLA-4)
have remarkably improved the outcome of patients with
advanced NSCLC and other cancers (Ribas and Wolchok,
2018). However, a substantial number of patients do not
receive any clinical benefit, and robust predictors of
therapeutic response are currently lacking. Though several
tumor-derived and immune cell-derived biomarkers have been
proposed, the demonstrated biomarker profiles often overlap
between responders and non-responders and require invasive
sampling from patients (Zhang et al., 2019). In the present study,
we identified the serum metabolite biomarkers predictive of
response to anti-PD-1 treatment in patients with advanced
NSCLC based on metabolomic profiling using UHPLC-MS.
The metabolomic profile of early on-treatment serum was
found to be highly predictive of therapeutic responses, whereas
the pretreatment serum metabolome was influenced by the initial

states in patients including the treatments prior to PD-1 blockade,
thereby making it less suitable for use. Indeed, we failed to
identify reliable biomarkers from the pretreatment serum
metabolomic data of the discovery cohort possibly due to the
heterologous treatments prior to PD-1 blockade. Hypoxanthine
and histidine in early on-treatment serum were identified and
validated in independent patient cohorts as the predictive
biomarkers of clinical outcomes of PD-1 block therapy. To
our knowledge, this is the first report of the validated serum
metabolite biomarkers predictive of response to immune
checkpoint blockade therapies in lung cancer. This biomarker
panel would enable the identification of patients who may benefit
from continuing after the first administration of anti-PD-1
antibodies. Moreover, blood collection for these biomarkers is
minimally invasive compared with the collection of tumor tissues.
For clinical praxis, the nontargeted metabolomic approach can be
replaced by a targeted MS analysis or sensitive enzyme-based
assays specifically for the metabolite biomarkers, which could
simplify the process and reduce the measurement costs and thus
allow a more affordable, large-scale analysis (Cui et al., 2018).

The identified metabolite biomarkers, hypoxanthine and
histidine, have values beyond their ability to predict the
response to PD-1 blockade. They also offer novel insight into
mechanisms of therapeutic resistance and suggest metabolic
targets for interventions in combination with PD-1 blockade
to improve clinical efficacy. Hypoxanthine is a key
intermediate in adenosine metabolism, which can be
synthesized from adenosine through sequential activities of
adenosine deaminase (ADA) and purine nucleoside
phosphorylase (PNP) (Boison and Yegutkin, 2019). We found
that hypoxanthine levels were significantly higher in responders
than in non-responders, which suggests a role of the adenosine-
hypoxanthine metabolism in therapeutic resistance to PD-1
blockade. Previous studies have demonstrated that adenosine
is implicated in the suppression of T cell-mediated antitumor
responses, and the adenosine pathway has become an important
therapeutic target in cancer (Li X et al., 2019). Several clinical
trials have been initiated to test the efficacy of combined

FIGURE 6 | Kaplan-Meier estimates of overall survival by serum levels of hypoxanthine and histidine in the validation set 1 (A) and validation set 2 (B). His, histidine;
Hyp, hypoxanthine.
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adenosine pathway inhibitors with PD-1/PD-L1 blockade in
several cancers including NSCLC (Boison and Yegutkin, 2019).
So far, much effort has been made to target adenosine-producing
enzymes CD39 and CD73 and adenosine receptor A2AR for
enhancing antitumor immunity (Arab and Hadjati, 2019).
However, adenosine levels depend on the complex interplay
between several adenosine-producing and -degrading pathways
(Arab and Hadjati, 2019). Conversion of adenosine to
hypoxanthine via ADA and PNP represents a currently
underappreciated route that could regulate adenosine levels.
Our finding prompts the intriguing question of whether
increasing ADA and PNP activities for hypoxanthine synthesis
from adenosine could improve antitumor immunity. In fact,
ADA deficiency has been shown to result in tumor
progression, and ADA activity of T cells has been suggested as
an indicator of immune competence in patients with head and
neck squamous cell carcinoma (Theodoraki et al., 2018).

Cancer cells increase uptake of amino acids, thereby depleting
these resources for immune cells in the TME (Pavlova and
Thompson, 2016). The amino acid transport and metabolism
in T cells are also repressed by PD-1 ligation (Patsoukis et al.,
2015). Thus, increased availability of amino acids may support
the growth and function of T cells in the presence of PD-1
inhibitor. This may partially explain why responders had higher
levers of serum histidine than non-responders among the patients
receiving anti-PD-1 therapy. Moreover, high levels of histidine
can increase the production of histamine through the reaction
catalyzed by histidine decarboxylase (HDC). Histamine is an
inhibitor of NADPH oxidase (NOX2) and has been approved in
Europe in conjunction with interleukin-2 for relapse prevention
in patients with acute myeloid leukemia (Stadtmauer, 2002). A
recent study has shown that histamine targets myeloid-derived
suppressor cells and improves the anti-tumor efficacy of PD-1/
PD-L1 checkpoint blockade in mouse models (Grauers Wiktorin
et al., 2019). Thus, our finding raises the possibility that
supplementation of histamine/histidine and increasing HDC
activity might be attractive strategies to enhance immunotherapy.

In conclusion, we report that the identification of metabolite
biomarkers in early on-treatment serum constitutes a predictive
tool for selecting NSCLC patients who stand to gain clinical benefit
from anti-PD-1 therapy. Despite these provocative results, several
limitations exist with this study. The patient cohorts in the current
study were admittedly small and results need to be validated in
large cohorts. Although the validation set one was comprised of
patients receiving PD-1 inhibitor in combination with
chemotherapy, the metabolite biomarkers need to be validated
in more patient cohorts treated with combination therapy that is
becoming a promising treatment strategy for NSCLC (Dong et al.,
2019). Further studies are required to evaluate the serum
metabolite panel for predicting clinical outcome of anti-PD-1
therapy in other cancer types. Our findings also warrant follow-

up studies to check the ability of the serum metabolite biomarkers
to predict the response to drugs targeting other immune-related
proteins, such as PD-L1 and CTLA-4.
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Serum Metabolomic Patterns in
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Aldosterone-producing adenoma (APA), the main cause of endocrine hypertension, has
recently been reported to be associated with other diseases, such asmetabolic syndrome,
but the detailed mechanism underlying this association remains unclear. Here, we used
untargeted metabolomics and compared the abundance of serum metabolites between
essential hypertension (EHT) and APA patients, as well as the serum metabolites of APA
patients before and after adrenalectomy. Our results revealed 44 differential metabolites
between APA and EHT patients and 39 differential metabolites between pre- and
postoperative APA patients. Several metabolites involved in cardiovascular disease,
obesity, and diabetes were dysregulated in APA patients compared to EHT patients,
including arachidonic acid metabolites [e.g., 5(S)-HpETE and 12-HETE], amino acids (e.g.,
L-carnitine, taurine, and L-arginine), nucleotide metabolites (e.g., hypoxanthine) and
cholesterol 3-sulfate. Importantly, the levels of hypoxanthine and cholesterol 3-sulfate,
two metabolites that promote the development of atherosclerotic lesions and obesity,
were originally increased in APA patients, but those elevated levels were reversed by
adrenalectomy. Conversely, levels of L-carnitine and (3-carboxypropyl)
trimethylammonium cation, two metabolites participating in lipid metabolism, were
decreased in APA patients but increased postoperatively. We conclude that APA
might participate in cardiovascular and metabolic diseases by regulating serum
metabolites.

Keywords: aldosterone-producing adenoma, metabolomics, serum, hypertension, adrenalectomy

INTRODUCTION

The renin-angiotensin-aldosterone system (RAAS) is an orchestrated hormonal cascade, that is,
important for maintaining the homeostasis of fluids, electrolytes, and blood pressure; dysregulation
of this cascade leads to cardiovascular disorders (Nappi and Sieg, 2011). Primary aldosteronism (PA),
characterized as an overproduction of aldosterone under suppressed renin conditions (Gomez-
Sanchez et al., 2020), is one of the most common causes of secondary hypertension, with a prevalence
of 20% among patients with resistant hypertension (Byrd et al., 2018). Aldosterone-producing
adenoma (APA) is one of the major subtypes of PA and can be cured by adrenalectomy (Funder,
2019). Elevated aldosterone results in low-renin hypertension, hypokalemia, and damage to target
organs. It has been shown that patients with PA have a higher cardiovascular mortality than patients
with essential hypertension (EHT), and this phenomenon was not explained by blood pressure
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because the patients were matched for cardiovascular risk
(Reincke et al., 2012). In addition, PA-directed therapy
reduced the excess morbidity (Loh and Sukor, 2020).
Importantly, emerging evidence has indicated that patients
with PA not only have an increased risk of cardiovascular
events but also have increased risks of diabetes and metabolic
syndrome (Monticone et al., 2018). Thus, aldosterone in PA
patients might play a wide range of roles in the human body.
However, the details of the underlying mechanism remain
unclear.

In recent decades, much effort has been exerted to improve
our understanding of PA. Metabolomics, a high-throughput
approach, has been adopted to describe the metabolic features
of PA using tumor or urinary samples from APA patients to
reveal the characteristics or improve the diagnosis of PA
(Spyroglou et al., 2021). However, serum is an ideal sample
for disease diagnosis, disease monitoring, and mechanistic
investigations and not only reflects the changes at the genomic
and proteomic levels but also is influenced by environmental
factors (Hashim et al., 2019). Thus, in this study, we preliminarily
investigated the effects of APA on human disease using
untargeted metabolomics of serum samples from EHT patients
and APA patients before and after adrenalectomy.

MATERIALS AND METHODS

Patients
We recruited a total of 11 patients with APA who had undergone
unilateral retroperitoneal laparoscopic adrenalectomy in the
Department of Urology at the First Affiliated Hospital of Xi’an
Jiaotong University between January 2020 and May 2020. Serum
renin and aldosterone were tested, and the aldosterone-renin
ratio (ARR) was calculated to screen for APA. All patients had
been diagnosed with unilateral cortical adenoma of the adrenal
gland via enhanced computed tomography (CT). The diagnosis
was confirmed by conducting an intravenous saline infusion test.
Two of the patients aged <35 years were not recommended for
adrenal vein sampling (AVS). The other patients were
recommended for this procedure, but 3 patients refused it.
Thus, in total, 6 patients underwent AVS, and the results were
consistent with those of the CT scan. Eight patients had
hypokalemia. No patients had abnormalities on cortisol or
catecholamine tests. Three days after the adrenalectomy the
serum aldosterone ARR and potassium levels were
reexamined. We also recruited 9 patients with EHT admitted
to the Department of Cardiovascular Medicine at the First
Affiliated Hospital of Xi’an Jiaotong University as controls.
EHT was defined as hypertension with no secondary
hypertension cause, such as aberrant adrenal hormone levels,
an adrenal mass, chronic kidney disease, renal artery stenosis, or
hyperthyroidism. All patients agreed to participate in this study.

Serum Collection
The EHT and preoperative APA patients were phlebotomized on
the second day of hospitalization on an empty stomach. On the
third day after adrenalectomy, the APA patients underwent a

second blood draw. The peripheral blood sample was kept at 4°C
for 2 h until it coagulated, followed by centrifugation at 2000 rpm
for 10 min. The supernatant was collected and subjected to
metabolomics analysis. One patient did not undergo
postoperative phlebotomization because of a fever after
adrenalectomy. Finally, 9 EHT samples and 11 preoperative
APA samples were used to analyze the differential serum
metabolites between EHT and APA patients. Additionally, 10
pairs of preoperative and postoperative samples were used to
analyze the differential serum metabolites before and after
adrenalectomy.

Metabolite Extraction
To extract metabolites from the serum samples, 400 μL of cold
extraction solvent methanol/acetonitrile/H2O (2:2:1, v/v/v)
was added to 100 mg of sample and adequately vortexed.
After vortexing, the samples were incubated on ice for
20 min and then centrifuged at 14,000 g for 20 min at 4°C.
The supernatant was collected and dried in a vacuum
centrifuge at 4°C. For LC–MS analysis, the samples were
redissolved in 100 μL of acetonitrile/water (1:1, v/v) solvent
and transferred to LC vials.

LC–MS Analysis
For untargeted metabolomics of polar metabolites, extracts were
analyzed using a quadrupole time-of-flight mass spectrometer
(Sciex TripleTOF 6600) coupled to hydrophilic interaction
chromatography via electrospray ionization (performed by
Shanghai Applied Protein Technology Co., Ltd.). LC
separation was performed on an ACQUIY UPLC BEH Amide
column [2.1 mm× 100 mm, 1.7 µm particle size (Waters, Ireland)
using a gradient] of solvent A (25 mM ammonium acetate and
25 mM ammonium hydroxide in water) to solvent B
(acetonitrile). The gradient was 85% B for 1 min and was
linearly reduced to 65% B over 11 min and then reduced to
40% over 0.1 min and kept at that level for 4 min; then, the
gradient was increased to 85% over 0.1 min, and a 5-min re-
equilibration period was employed. The flow rate was 0.4 ml/min,
the column temperature was 25°C, the auto sampler temperature
was 5°C, and the injection volume was 2 µL. The mass
spectrometer was operated in both negative ion and positive
ionization modes. The ESI source conditions were set as follows:
ion source gas 1 (Gas 1) as 60, ion source gas 2 (gas 2) as 60,
curtain gas (CUR) as 30, source temperature of 600°C, and
IonSpray Voltage Floating (ISVF) of ± 5500 V. For MS
acquisition, the instrument was set to acquire over the m/z
range of 60–1000 Da, and the accumulation time for the TOF
MS scan was set at 0.20 s/spectra. In auto MS/MS acquisition, the
instrument was set to acquire over the m/z range of 25–1000 Da,
and the accumulation time for the product ion scan was set at
0.05 s/spectra. The product ion scan was acquired using
information-dependent acquisition (IDA) with the high-
sensitivity mode selected. The parameters were set as follows:
the collision energy (CE) was fixed at 35 V with ± 15 eV, a
declustering potential (DP) was set at 60 V (+) and −60 V (−) to
exclude isotopes within 4 Da, and the candidate ions to monitor
per cycle were set at 10.
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Data Processing and Statistical Analysis
Processing of LC–MS data was carried out by Shanghai Applied
Protein Technology Co., Ltd. The raw MS data (wiff.scan files)
were converted to MzXML files using ProteoWizard MSConvert
before being imported into freely available XCMS software. To
select the peaks, the following parameters were used: centWave
m/z = 25 ppm, peak width = c (10, 60), prefilter = c (10, 100). For
peak grouping, bw = 5, mzwid = 0.025, and minfrac = 0.5 were
used. Of the extracted ion features, only the variables with more
than 50% of nonzero measurement values in at least one group
were retained. Compound identification of metabolites by MS/
MS spectra was conducted with an in-house database established
with available authentic standards. After normalization to the
total peak intensity, the processed data were uploaded before
being imported into SIMCA-P (version 14.1, Umetrics, Umea,
Sweden), where they were subjected to multivariate data analysis,
including Pareto-scaled principal component analysis (PCA) and
orthogonal partial least-squares discriminant analysis (OPLS-
DA). Sevenfold cross-validation and response permutation
testing were used to evaluate the robustness of the model. The
variable importance in the projection (VIP) value of each variable
in the OPLS-DAmodel was calculated to indicate its contribution
to the classification. The normality of the distributions and the
homogeneity of variances were checked using the Shapiro–Wilk
test and Levene’s test, respectively. For comparisons between the
EHT and APA groups, the p value of normally distributed
samples was calculated using Student’s t-test (equal variances)
or a two-tailed Welch’s t-test (unequal variances), and the p value

of non-normally distributed samples was calculated using the
Mann–Whitney U test. For comparisons between the
preoperative and postoperative APA groups, the p value was
calculated using a dependent t-test (normal distribution) or
Wilcoxon signed-rank test (non-normal distribution).
Metabolites with VIP >1 in OPLS-DA analysis and p <0.05
were defined as significantly differential metabolites.
Metabolites with VIP values >1 and 0.05 ≤ p <0.1 were
defined as differential metabolites because the difference
approached statistical significance (Carrillo et al., 2016). A
Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis
was performed to evaluate the enrichment of metabolites in
various pathways.

The baseline patient data (e.g., age, serum aldosterone) were
analyzed using GraphPad Prism 8.0. Quantitative data are
presented as the median and interquartile range. Differences
in mean values between two groups were analyzed with the
Wilcoxon test. The differences in count data between two
groups were analyzed using the χ2 test.

RESULTS

Clinical Characteristics of Participants
We did not find any significant difference in sex, body mass index
(BMI), or blood pressure between the EHT and APA groups,
though they did differ in age (Supplementary Table S1). The
serum aldosterone levels and ARR in the APA group were

FIGURE 1 | Baseline characteristics of the participants. (A) Serum aldosterone levels of the EHT and APA patients. (B) The aldosterone-to-renin ratio (ARR) of EHT
and APA patients. (C) Serum levels of potassium in EHT and APA patients. (D) Preoperative and postoperative serum aldosterone levels. (E) Preoperative and
postoperative serum ARRs. (F). Preoperative and postoperative serum potassium levels. *p＜0.05.
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significantly higher than those in the EHT group (Figures 1A,B).
The level of serum potassium in the APA group was significantly
lower than that in the EHT group (Figure 1C). Three days after
adrenalectomy, serum aldosterone levels and ARR were
significantly decreased, and all patients with hypokalemia had
normal potassium levels (Figures 1D–F).

Differential Metabolites Between EHT and
APA Patients
The PCA indicated good clustering of the QC group, and no
extreme outliers were observed (Supplementary Figure S1A).
The OPLS-DA analysis indicated clear separation between the
EHT and APA groups in both positive and negative ion modes
(Supplementary Figure S1B). The results of the permutation test
strongly indicated that original models in both positive (R2 =
0.6675, Q2 =−0.3839) and negative (R2Y = 0.9786, Q2 = −0.1739)
ion modes were valid (Supplementary Figure S1C).

In our study, a total of 164 and 168 known biochemical
compounds were identified by LC–MS analysis in positive ion
and negative ion modes, respectively. Based on our selection
criteria, we detected 22 significantly differential metabolites
between the EHT and APA groups (VIP >1, p <0.05) and one
differential metabolite (VIP >1, 0.05 ≤ p <0.1) in the positive ion
mode, and we identified 14 significantly differential metabolites
(VIP >1, p <0.05) and 8 differential metabolites (VIP >1, 0.05 ≤
p <0.1) between the EHT and APA groups in the negative ion

mode. All significantly differential metabolites and differential
metabolites are listed inTable 1. Combining the results from both
positive and negative ion modes revealed that 10 metabolites
exhibited higher abundance in the APA group, while 34
metabolites exhibited lower abundance in the APA group than
in the EHT group. Among the metabolites abundant in the APA
group, 5(S)-HpETE showed the largest fold change and was 32-
fold higher in the APA group than in the EHT group. Among the
metabolites abundant in the EHT group, 12-HETE showed the
largest fold change and was 9-fold higher in the EHT group than
in the APA group (Figure 2A, Table 1).

A KEGG enrichment analysis was conducted on all
significantly differential metabolites detected by both positive
and negative ion modes. The results indicated that the
significantly differential metabolites were enriched in several
pathways, such as those involving GABAergic synapses,
arginine synthesis, and ABC transporters (Figure 2B).

Differential Metabolites Between the
Preoperative and Postoperative Serum of
APA Patients
The PCA indicated good clustering of the QC group, and no
extreme outliers were observed (Supplementary Figure S2A).
The OPLS-DA analysis indicated clear separation between the
preoperative and postoperative groups, in both positive and
negative ion modes (Supplementary Figure S2B). The results

TABLE 1 | Differential metabolites between APA and EHT patients.

Positive ion mode Negative ion mode

Name VIP Fold change (APA
vs EHT)

p
value

Name VIP Fold change (APA
vs EHT)

p
value

Glycerophosphocholine 4.39 0.22 0.00 (+-)12-HETE 7.36 0.11 0.00
L-Histidine 2.13 0.29 0.00 L-Glutamate 5.55 0.41 0.00
N6-Methyl-L-lysine 1.34 0.37 0.05 Succinate 1.36 0.52 0.00
Trigonelline 1.18 0.45 0.01 L-Aspartate 1.77 0.59 0.00
D-Proline 3.60 0.48 0.00 1-Oleoyl-L-.alpha.-

lysophosphatidic acid
1.31 0.59 0.01

L-Glutamate 1.53 0.50 0.00 Hydroxyisocaproic acid 2.36 0.64 0.02
Betaine 2.73 0.51 0.00 D-Quinovose 1.88 0.66 0.05
Ornithine 1.21 0.53 0.01 2-Hydroxy-3-methylbutyric acid 2.96 0.66 0.05
2-Methylbutyroylcarnitine 1.64 0.55 0.02 Ammelide 1.17 0.81 0.00
L-Lysine 1.36 0.55 0.03 Hypoxanthine 7.53 1.49 0.02
L-Glutamine 3.60 0.62 0.00 3-Hydroxycapric acid 2.70 1.52 0.02
1-Stearoyl-2-hydroxy-sn-glycero-3-
phosphocholine

1.80 0.62 0.01 Bisindolylmaleimide I 2.82 2.35 0.03

(3-Carboxypropyl) trimethylammonium
cation

2.59 0.62 0.00 pregnenolone sulfate 4.36 2.38 0.04

L-Citrulline 1.06 0.66 0.02 5(S)-HpETE 2.95 32.38 0.00
L-Leucine 2.07 0.68 0.02 Phenol 6.98 0.51 0.06
1-Oleoyl-sn-glycero-3-phosphocholine 5.60 0.68 0.05 D-Sorbitol 1.14 0.57 0.08
Nicotinamide 1.56 0.73 0.04 L-Iditol 2.14 0.65 0.05
L-Carnitine 10.97 0.77 0.00 Capric acid 1.28 0.75 0.07
Taurine 1.75 0.83 0.02 L-Proline 2.01 0.81 0.09
Sphingomyelin (d18:1/18:0) 2.22 1.34 0.02 L-Glutamine 1.10 0.87 0.09
Hypoxanthine 2.26 1.55 0.02 2-Oxoadipic acid 8.58 1.03 0.08
Thioetheramide-PC 1.03 1.56 0.04 Cholesterol 3-sulfate 8.38 1.39 0.07
L-Arginine 4.99 0.57 0.05

All significantly differential metabolites (VIP >1, p < 0.05) are shown in bold and differential metabolites (VIP >1, 0.05 ≤ p < 0.1) are shown in regular font.
Bold values represents the significant differential metabolites.
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FIGURE 2 | Differential metabolites between EHT and APA patients. (A) Top five differential serum metabolites detected by LC–MS analysis in EHT and APA
patients. (B) KEGG analysis of the differential metabolites detected by LC–MS analysis in EHT and APA patients.

TABLE 2 | Differential metabolites between preoperative and postoperative APA patients.

Positive ion mode Negative ion mode

Name VIP Fold change
(postoperative vs.

preoperative)

p
value

Name VIP Fold change
(postoperative vs.

preoperative)

p
value

Trimethylamine N-oxide 1.70 0.32 0.04 Pyrocatechol 1.95 0.08 0.00
Trigonelline 2.21 0.33 0.00 3-Indolepropionic acid 2.68 0.18 0.02
Nicotinamide 3.71 0.38 0.00 Indoxyl sulfate 10.53 0.48 0.03
L-Lysine 2.18 0.48 0.01 Hypoxanthine 9.58 0.55 0.00
Allopurinol riboside 2.86 0.50 0.01 Cholesterol 3-sulfate 13.22 0.60 0.00
Inosine 5.45 0.53 0.01 1-Palmitoyl-2-hydroxy-sn-

glycero-3-
phosphoethanolamine

1.34 0.76 0.01

Uracil 1.09 0.60 0.00 Taurine 1.90 1.25 0.05
Hypoxanthine 15.68 0.63 0.02 D-Mannose 1.24 1.50 0.01
Phthalic acid Mono-2-ethylhexyl Ester 1.70 0.64 0.03 D-Lyxose 1.62 1.57 0.01
Glycerophosphocholine 3.58 0.65 0.03 Methylmalonic acid 1.45 1.77 0.00
L-Citrulline 1.36 0.66 0.01 D-Threitol 1.02 1.98 0.00
1-Palmitoyllysophosphatidylcholine 1.23 0.67 0.01 myo-Inositol 1.33 2.15 0.02
1-Palmitoyl-2-hydroxy-sn-glycero-3-
phosphoethanolamine

1.66 0.74 0.01 Acetoacetic acid 1.33 2.21 0.00

1-Stearoyl-2-oleoyl-sn-glycerol 3-
phosphocholine (SOPC)

13.56 1.24 0.05 D-Maltose 1.28 8.55 0.00

L-Carnitine 16.64 1.40 0.03 Chenodeoxycholate 1.49 0.31 0.07
Phe-Ile 1.26 2.04 0.01 Allantoin 1.97 0.84 0.07
Cellobiose 1.99 7.37 0.00 DL-3-Phenyllactic acid 1.32 1.66 0.06
N1-Methyl-2-pyridone-5-carboxamide 3.32 0.50 0.06
Decanoyl-L-carnitine 2.99 0.64 0.09
1-Oleoyl-sn-glycero-3-phosphocholine 8.81 0.72 0.05
1-Palmitoyl-sn-glycero-3-phosphocholine 2.38 0.81 0.08
Betaine 1.75 0.83 0.08
(3-Carboxypropyl) trimethylammonium
cation

3.34 1.61 0.06

All significantly differential metabolites (VIP >1, p <0.05) are shown in bold and differential metabolites (VIP >1, 0.05 ≤ p <0.1) are shown in regular font.
Bold values represents the significant differential metabolites.
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of the permutation test strongly indicated that the original models of
both positive (R2= 0.9196,Q2=−0.2122) and negative (R2Y= 0.8224,
Q2 = −0.3506) ion modes were valid (Supplementary Figure S2C).

Based on our selection criteria, we detected 17 significantly
differential metabolites (VIP >1, p <0.05) and 6 differential
metabolites (VIP >1, 0.05 ≤ p <0.1) between the preoperative

and postoperative groups in the positive ion mode, and we
identified 14 significantly differential metabolites (VIP >1,
p <0.05) and 3 differential metabolites (VIP >1, 0.05 ≤ p <
0.1) between the preoperative and postoperative groups in the
negative ion mode. All significantly differential metabolites and
differential metabolites are listed in Table 2.

FIGURE 3 | Differential serum metabolites between preoperative and postoperative APA patients. (A) Top five differential serum metabolites detected by LC–MS
analysis between preoperative and postoperative APA patients. (B) KEGG analysis of the differential serum metabolites detected by LC–MS analysis between
preoperative and postoperative APA patients.

FIGURE 4 | APA-regulated serum metabolites. (A) Outline of the analysis. (B) Abundance of metabolites that might be regulated by APA identified in positive ion
modes. (C) Abundance of metabolites that might be regulated by APA identified in negative ion modes.
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Combining the results of both positive and negative ion modes
revealed that 10 metabolites exhibited higher abundance in the
preoperative APA group, while 34 metabolites exhibited higher
abundance in the postoperative APA group. Among the
metabolites abundant in the preoperative APA group,
cellobiose showed the largest fold change and was 8.5-fold
higher in the preoperative APA group than in the
postoperative APA group. Among the metabolites abundant in
the postoperative APA group, pyrocatechol showed the largest
fold change and was 12.5-fold higher in the postoperative APA
group than in the preoperative APA group (Figure 3A).

A KEGG enrichment analysis was conducted including all
significantly differential metabolites detected by both positive and
negative ion modes. The results indicated that the significantly
differential metabolites were enriched in 12 pathways, such as
those involving ABC transporters and lysine degradation
(Figure 3B).

APA-Regulated Serum Metabolites
Next, we conducted a conjoint analysis by combining the
significantly differential metabolites and differential
metabolites between the serum of the EHT and APA groups
and those between the serum of the preoperative and
postoperative APA patients (Figure 4A). The results indicated
that hypoxanthine and cholesterol 3-sulfate levels were increased
in APA patients compared with those in EHT patients and were
decreased postoperatively (Figures 4B,C). Conversely,
L-carnitine and (3-carboxypropyl) trimethylammonium cation
levels were decreased in APA patients compared with those in
EHT patients and were increased postoperatively (Figures 4B,C).
In particular, a change in hypoxanthine levels was detected in
both positive and negative ion modes (Figures 4B,C).

DISCUSSION

Early studies on PA metabolomics mainly focused on steroid
profiling, which indicated elevated 18-hydroxycortisol and 18-
oxocortisol levels in APA patients (Spyroglou et al., 2021).
Recently, Alessandro Lana et al. performed metabolic profiling
to distinguish between EHT and APA patients and between APA
and bilateral adrenal hyperplasia (BAH) patients.

They found that purine nucleosides and the related catabolites
deoxyadenosine and uric acid were considerably different
between EHT and PA patients; however, the adenosine
deamination catabolites (deoxyinosine, hypoxanthine, and
IMP), free amino acids (histidine and taurine), and the
pyrimidine diphosphate CDP exhibited higher discriminatory
power when comparing APA and BAH groups in a sex-
independent manner (Lana et al., 2019). Another study
focusing on distinct signatures of KCNJ5 and CACNA1D
mutant APAs was performed by Murakami and colleagues.
They revealed that purine metabolism is activated in KCNJ5
mutant APA (Murakami et al., 2019).

In the current study, we compared the abundance of serum
metabolites in EHT and APA patients using untargeted
metabolomics. The results revealed 34 decreased and 10

increased metabolites in APA patients compared with EHT
patients. KEGG analysis of the differential metabolites between
APA and EHT patients found that they were enriched in several
pathways involved in central carbon metabolism, amino acid
metabolism, and ABC transporters, indicating that APA might
have a broad effect on human metabolism. Among these
metabolites, we observed differences in two arachidonic acid
catabolites, 5(S)-HpETE and 12-HETE, between EHT and
APA patients. Since arachidonic acid is widely involved in
inflammation, obesity, diabetes, hypercholesterolemia, and
cardiovascular disease, it is possible that APA facilitates
cardiovascular and metabolic diseases via changes in
arachidonic acid metabolism (Sonnweber et al., 2018).
Furthermore, both 5(S)-HpETE and 12-HETE levels showed
clear separation between APA and EHT patients, indicating
that these metabolites might be used as biomarkers to screen
for APA.

We also found that APA patients had lower levels of several
amino acids (e.g., L-histidine, D-proline, L-glutamate, ornithine,
L-lysine, L-glutamine, L-citrulline, L-leucine, L-carnitine, taurine,
L-arginine, L-aspartate) than those of EHT patients; some of
these amino acids have been reported to play a protective role
against cardiovascular diseases. For example, L-arginine was
found to improve artery diameter and endothelial function in
humans and improve endothelial function and reduce
atherosclerotic plaques in animal models (Zaric et al., 2020),
while taurine supplementation improved left ventricular function
and reduced atherosclerotic lesion formation (Zaric et al., 2020).
Thus, amino acid metabolism might be another mechanism
underlying APA-mediated cardiovascular risks.

We also compared serum metabolites in preoperative and
postoperative patients with APA. The results indicated 25
downregulated and 14 upregulated metabolites after the
operation. KEGG analysis of the differential metabolites
showed that they were enriched in pathways involved in ABC
transporters, pyrimidine metabolism, and lysine degradation.
Using a conjoint analysis that combined the differential serum
metabolites of the EHT and APA groups and of the preoperative
and postoperative APA patients, we found that hypoxanthine and
cholesterol 3-sulfate levels were increased in APA patients
compared with those in EHT patients but decreased
postoperatively. Conversely, L-carnitine and (3-carboxypropyl)
trimethylammonium cation levels were decreased in APA
patients compared with those in EHT patients but increased
postoperatively. Most of these metabolites have been found to be
associated with metabolic syndrome or cardiovascular diseases.
For example, cholesterol 3-sulfate is present on a variety of cells
and in human low-density lipoproteins and is believed to
participate in platelet adhesion and atherosclerotic lesions
(Merten et al., 2001). Hypoxanthine is a product of purine
metabolism and is associated with obesity and smoking
(Furuhashi et al., 2020). L-carnitine transports long-chain fatty
acids into the mitochondrial matrix, thus allowing the cells to
degrade fat (Pekala et al., 2011). L-carnitine supplementation thus
provides a protective effect against overweight (Askarpour et al.,
2020) and cardiovascular events (Wang et al., 2018). (3-
Carboxypropyl) trimethylammonium is derived from betaine,
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a dietary compound that participates in lipid metabolism
(Airaksinen et al., 2018). However, we did not observe any
changes in levels of 5(S)-HpETE or 12-HETE, possibly due to
the short interval (only 3 d) between the adrenalectomy and
postoperative blood sampling.

The main limitation of our study was its small sample size.
Further studies with larger sample sizes are needed to validate the
differential metabolites and to investigate their clinical
significance. In addition, postoperative serum samples were
collected only 3 d after adrenalectomy. This might miss
potential metabolites regulated by APA. Thus, longer follow-
up times are also needed in future studies. Finally, the age
difference between APA and EHT patients might affect the
accuracy of the results.

CONCLUSION

In this study, we identified differential serummetabolites between
patients with EHT and APA, as well as differential serum
metabolites between APA patients pre- and post-
adrenalectomy. We found that several metabolites involved in
cardiovascular diseases, obesity, and diabetes were dysregulated
in APA patients compared to those in EHT patients. In particular,
APA patients had higher hypoxanthine and cholesterol 3-sulfate
levels but lower L-carnitine and (3-carboxypropyl)
trimethylammonium cations levels than EHT patients. The
abnormality of the concentrations of these metabolites was
reversed by adrenalectomy. We conclude that APA might
influence cardiovascular and metabolic diseases by regulating
these metabolites.
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Background: Traditional diagnosis is based on histology or clinical-stage
classification which provides no information on tumor metabolism and
inflammation, which, however, are both hallmarks of cancer and are directly
associated with prognosis and severity. This project was an exploratory approach
to profile metabolites, lipoproteins, and inflammation parameters (glycoprotein A
and glycoprotein B) of borderline ovarian tumor (BOT) and high-grade serous
ovarian cancer (HGSOC) for identifying additional useful serum markers and
stratifying ovarian cancer patients in the future.

Methods: This project included 201 serum samples of which 50 were received
from BOT and 151 from high-grade serous ovarian cancer (HGSOC), respectively.
All the serum samples were validated and phenotyped by 1H-NMR-based
metabolomics with in vitro diagnostics research (IVDr) standard operating
procedures generating quantitative data on 38 metabolites, 112 lipoprotein
parameters, and 5 inflammation markers. Uni- and multivariate statistics were
applied to identify NMR-based alterations. Moreover, biomarker analysis was
carried out with all NMR parameters and CA-125.

Results: Ketone bodies, glutamate, 2-hydroxybutyrate, glucose, glycerol, and
phenylalanine levels were significantly higher in HGSOC, while the same
tumors showed significantly lower levels of alanine and histidine. Furthermore,
alanine and histidine and formic acid decreased and increased, respectively, over
the clinical stages. Inflammatory markers glycoproteins A and B (GlycA and GlycB)
increased significantly over the clinical stages and were higher in HGSOC,
alongside significant changes in lipoproteins. Lipoprotein subfractions of
VLDLs, IDLs, and LDLs increased significantly in HGSOC and over the clinical
stages, while total plasma apolipoprotein A1 and A2 and a subfraction of HDLs
decreased significantly over the clinical stages. Additionally, LDL triglycerides
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significantly increased in advanced ovarian cancer. In biomarker analysis,
glycoprotein inflammation biomarkers behaved in the same way as the
established clinical biomarker CA-125. Moreover, CA-125/GlycA, CA-125/GlycB,
and CA-125/Glycs are potential biomarkers for diagnosis, prognosis, and treatment
response of epithelial ovarian cancer (EOC). Last, the quantitative inflammatory
parameters clearly displayed unique patterns of metabolites, lipoproteins, and CA-
125 in BOT and HGSOC with clinical stages I–IV.

Conclusion: 1H-NMR-based metabolomics with commercial IVDr assays could
detect and identify altered metabolites and lipoproteins relevant to EOC
development and progression and show that inflammation (based on
glycoproteins) increased along with malignancy. As inflammation is a hallmark
of cancer, glycoproteins, thereof, are promising future serum biomarkers for the
diagnosis, prognosis, and treatment response of EOC. This was supported by the
definition and stratification of three different inflammatory serum classes which
characterize specific alternations in metabolites, lipoproteins, and CA-125,
implicating that future diagnosis could be refined not only by diagnosed
histology and/or clinical stages but also by glycoprotein classes.

KEYWORDS

metabolomics, tumor progression, metastasis, glycoprotein, CA-125, biomarker,
diagnostics, precision medicine

1 Introduction

Ovarian cancer (OC) has been considered highly life-
threatening (Clarke-Pearson, 2009), and worldwide, OC incidents
and deaths are 88.01% and 84.20%, respectively (Zhou et al., 2021).
To date, more than 30 different histology types of OC have been
described, and epithelial OC (EOC) that starts to proliferate in the
epithelial layer covering the ovary is the most common and accounts
for more than 95% of OC malignancy (Desai et al., 2014; Kaku et al.,
2003). Furthermore, EOC is classified into five subtypes, of which
high-grade serous ovarian cancer (HGSOC) is the most frequently
diagnosed (Prat and FIGO Committee on Gynecologic Oncology,
2014).

OC relies on a variety of energy metabolites to develop; in
particular, OC has high propensity on Warburg and reverse
Warburg effects (Schwartz et al., 2017; Li et al., 2019; Wang and
Li, 2020). AsOttoWarburg demonstrated, neoplasms showed highly
increased metabolic rates that were characterized by a high uptake of
glucose as a primary energy source and the production of an
excessive amount of lactate even in the presence of oxygen
(Warburg et al., 1927). This process is called the Warburg effect,
involving the alteration of metabolic enzymes such as hexokinase 2
(HK2) (Wang et al., 2014), pyruvate kinase type M2 (PKM2) (Wong
et al., 2015), glucose transporter 1 (GLUT1) (Mayer et al., 2014),
lactate dehydrogenase (LDH), and lactate transporter
[monocarboxilate transporter (MCTs)] (Fantin et al., 2006). On
the other hand, the reverse Warburg effect reflects that adjacent
cancer cells are metabolically supported by cancer-associated
fibroblasts (CAFs), which can undergo HIF-1α-induced
autophagosomal degradation and aerobic glycolysis. Following
this, lactate, 3-hydroxybutyrate, and glutamines are released into
the tumor microenvironment (TME). In turn, the cancer cells utilize
lactate and 3-hydroxybutyrate and glutamine for adenosine
triphosphate (ATP) and glutathione production, respectively (Fu
et al., 2017; Thuwajit et al., 2018; Wilson et al., 2019). Furthermore,

OC patients end up with cachexia, anorexia, and death due to
increased resting metabolism alongside peritoneal metastasis and
progression (Archid et al., 2019; Hilal et al., 2017).

In addition to energy production by polar metabolites, cancer
cells also utilize lipids to survive and proliferate (Butler et al., 2020).
The consequence of altered lipid metabolic pathways, increased de
novo lipogenesis and lipolysis via exogenous (dietary) and
endogenous uptakes, respectively, allows cancer cells to enhance
membrane biogenesis and ATP production (Butler et al., 2020) and
then evades apoptosis (Swinnen et al., 2006; Menendez and Lupu,
2007; DeBerardinis et al., 2008). The two major sources to obtain
such supplies endogenously are the omentum majus adipocytes,
especially in OC (Nieman et al., 2011), and lipoproteins that are
mainly synthesized by the liver carrying cholesterols (CL) and
triglycerides (TG) to cancer cells (Brown, 2007; Maran et al.,
2021). Moreover, inflammation is related to EOC initiation and
progression. Some sources of inflammation are retrograde
menstruation, obesity, ovulation, polycystic ovary syndrome
(PCOS), talc exposure, infections (Savant et al., 2018),
postmenopausal event (Jia et al., 2018), and dysbiotic
microbiome (Wang et al., 2020). As a result, systemic
inflammation occurs alongside changes in lipoproteins, which
promotes carcinogenesis and malignant metastasis (Greten and
Grivennikov, 2019; Georgila et al., 2019).

Detection of OC at an early stage (clinical stage I or II) is a
crucial step for curing OC. Approximately, the chance to diagnose
OC at the early stage is about 20%, and it allows to increase the 5-
and 10-year overall survival of the patients by 71.4% and 53%,
respectively (Kim et al., 2018; Peres et al., 2019). However, to date, an
early-stage diagnosis is hard to achieve due to an unclear
understanding of OC development and tumor pathogenesis (Bast
et al., 2009; Bowtell et al., 2015).

Until now, in addition to conventional strategies to determine
OC development, there is no specific way to diagnose and detect OC
at the early stage among women who are exposed to inevitable risks,
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such as aging (Setiawan et al., 2012) and menopausal status (Nichols
et al., 2006). A conventional diagnostic approach is blood test of the
cancer antigen marker CA-125 (Gupta and Lis, 2009) and
transvaginal ultrasound (van Nagell and Hoff, 2013). Yet, each
diagnostic test has a drawback; CA-125 is influenced by a
number of OC-unrelated conditions (Kobayashi et al., 2012), and
transvaginal ultrasound cannot distinguish between benign tumor
and cancer (van Nagell and Hoff, 2013), thus providing a low
specification. Moreover, other imaging approaches, including
computed tomography (Iyer and Lee, 2010), magnetic resonance
imaging (Prayer et al., 1993; Low et al., 1995), and positron emission
tomography/computed tomography (Yamamoto et al., 2008;
Karantanis et al., 2012), are not sensitive to diagnose ovarian
tumor and cancer. In other words, morphological changes and
biological properties are not enough to evaluate the disease
progression in OC. Hence, discovering additional biomarkers is,
indeed, one of the clinical needs.

In this project, metabolite and lipoprotein profiles of borderline
ovarian tumor and HGSOC patients’ serum were investigated
alongside inflammatory markers by commercially available
quantitative IVDr NMR standard operating procedures (SOPs) as
provided by Bruker BioSpin. Uni- and multivariate statistics were
applied to identify NMR-based alterations based on patients’
diagnosed histology and clinical stage. The correlation of
glycoproteins and OC cancer antigen markers [CA-125,
carcinoembryonic antigen (CEA), and carbohydrate antigen 19-9
(CA 19-9)] was studied for the first time.

2 Materials and methods

2.1 Patients’ clinical information and sample
collection and storage

Table 1 describes clinical and pathological characteristics of the
patients. A total of 201 serum samples in 2 mL aliquots (50 of BOT
and 151 of HGSOC) with patients’ information were provided
by the biobank (freezer at −80°C) of Women’s Health at
Universitätsklinikum Tübingen. All patients gave written consent,
and samples were collected under the ethical approval number 208/
2021BO2. A graphical summary of the key findings of this study is
provided within Figure 1.

2.2 1H-NMR spectroscopy equipment and
spectra acquisition

1H-NMR spectroscopy (Bruker Avance III HD 14.10 T) was
operated at 600 MHz with a triple-resonance (TXI) room
temperature 5 mm probe at 310 K. All samples were measured,
quantified and analyzed in a similar scheme (Figure 2).

2.3 Sample preparation for Bruker Avance
IVDr NMR analysis

The serum was thawed at room temperature for 30 min.
Following this, the serum samples were then placed inside a box

with ice to prevent degradation. The next steps were performed
according to the Bruker IVDrNMR SOP in brief by adding 400 μL of
Bruker Plasma Buffer and 400 µL of the serum into a 1.5 mL
Eppendorf tube and then transferring 600 μL of the solution into
a 5 mm NMR tube for measurement.

2.4 Quantification of the measured serum
and evaluation of quality control

All the serums were measured with a nuclear Overhauser
spectroscopy experiment (1D-NOESY) for 4 min to quantify
polar 40 metabolites and 112 lipoproteins by small-molecule
metabolites (B.I.QUANT-PS™) and Bruker IVDr Lipoprotein
Subclass Analysis (B.I.LISA™), respectively (Bruker.com, 2022a).
The inflammatory analytes GlycA, GlycB, and Glyc (addition of
GlycA and GlycB) were measured with a sequence of pulse gradient
perfect echo experiment (1D-PGPE) and quantified by PhenoRisk
PACS™ RuO* (Bruker.com, 2022b). Each serum was subject to a
quality control test by B.I. methods (Bruker.com, 2022b).

TABLE 1 Summery of patient characteristics.

Number of patients 201

Age (mean, minimum, and maximum) 58.75 (18–87)

Gender Female

Cancer type Ovarian cancer

Histology

High-grade serous ovarian cancer 151 (75%)

Endometrioid borderline tumor 2 (1%)

Mucinous borderline tumor 16 (8%)

Serous borderline tumor 29 (14%)

N/A but diagnosed as borderline tumor 3 (2%)

Tumor grading

GB 50 (25%)

G3 151 (75%)

FIGO stage

I 43 (21%)

II 13 (6.5%)

III 81 (40%)

III-IV 1 (0.5%)

IV 33 (16%)

N/A 30 (15%)

Treatment status

Pre-treated 25 (12%)

Untreated 150 (75%)

N/A 26 (13%)

N/A: not applicable; FIGO: International Federation of Gynecology and Obstetrics.
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2.5 Chemometrics

This is an exploratory study without prior sample size
calculation. Statistical analysis was performed using the
MetaboAnalyst 5.0 toolbox (Xia et al., 2009). The quantified
analytes were normalized to the sample volume. The missing
values of metabolites were replaced by LoDs (1/5 of the
minimum positive value of each variable), and the missing
values of lipoproteins were estimated by k-nearest neighbors
(KNN) feature-wise. Additionally, the estimation of the missing
value of metabolites and lipoproteins was carried out using the
KNN for correlation between metabolites, lipoproteins,
inflammation, and CA-125 markers. Serum samples that
appeared as outliers by principal component analysis (PCA)
and failed to pass an NMR experiment quality test were
excluded. Of note, all pre-treated patients (radiotherapy and/
or chemotherapy) were excluded from statistical analysis.
Moreover, all patients with missing and non-absolute levels
of cancer antigen markers, such as CA-125, CEA, and CA 19-9,
were excluded from comparative and correlation analysis.

2.6 Comparative statistics

It was performed using Prism software 9. Normally
distributed data were subject to an unpaired t-test and
ordinary ANOVA tests after the F-test. Skewed data were
statistically analyzed with Mann–Whitney and

Kruskal–Wallis tests. A value of p < 0.05 was considered
significant. Of note, a false discovery rate (FDR) was applied
to correct the p-value.

2.7 Univariate and multivariate analyses

A volcano plot was used only for two group-based
comparisons, to analyze altered metabolites and lipoproteins.
A value of p < 0.05 and fold change (FC) cutoff >1.2 were
considered statistically and biologically significant. In
multivariate analysis, a PCA score plot, PCA biplot, and
sparse partial least square discriminant analysis (sPLSDA)
score plot were used to observe the clusters and separation
based on the respective comparison. Correlation analysis is
independent of the group. The data were log-transformed,
pareto-scaled, and then, analyzed by Spearman’s correlation
with the PatternHunter tool of MetaboAnlyst 5.0 for skewed
data. Moreover, correlation analysis was performed to observe
the correlation between Glyc NMR parameters and cancer
antigen markers (CEA and CA 19-9), the data of which were
log-transformed. Last, a k-means clustering plot was performed
based on the quantitative inflammatory parameters (GlycA,
GlycB, and Glyc), and then, we further analyzed the NMR-
based alternation of metabolites and lipoproteins with the CA-
125 marker by the sPLSDA score plot and comparative statistics.
Of note, all of these parameters were also log-transformed and
pareto-scaled.

FIGURE 1
Summary of epithelial ovarian cancer development and progression by in vitro diagnostics research 1H-NMR-based metabolomics assays.
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2.8 Biomarker analysis

Inflammation markers (GlycA, GlycB, and Glyc) were subject to a
comparative statistical analysis and classical univariate receiver
operating characteristic (ROC) curve analysis, to observe how
accurate these markers are in distinguishing OC patients.
Furthermore, all NMR parameters and CA-125 were log-
transformed and pareto-scaled, and biomarker analysis was carried
out based on the principle “compute and include metabolite ratios.”

3 Results

3.1 Polarmetabolites and lipoproteins vary in
histology of ovarian cancer with clinical
stages I–IV

Volcano analysis and comparative statistics were carried out.
In the volcano plot, ketone bodies, glutamate, and glycerol were
upregulated in HGSOC compared to BOT (Figure 3A). The rest of
the metabolites were found significant by comparative statistics;
alanine and histidine were significantly higher in BOT (Figure 3A),
and glucose, 2-hydroxybutyric acid (Supplementary Figure S1),
and phenylalanine (Figure 3A) were significantly higher in

HGSOC. A multivariate analysis was further performed to
observe any discernible patterns in the metabolite profiles of
BOT and HGSOC. HGSOCs were closely clustered to BOT
(Supplementary Figure S9A), yet they tended to be separate
from BOTs, which was due to glucose and lactic acid relevant
to OC development.

In terms of the clinical stages, acetoacetic acid, formic acid, and
histidine were significantly different between OC with stages I–IV.
Acetoacetic acid was observed to be significantly lower in OC with
stage I than in OC with stages II and IV (Supplementary Figure S1),
while alanine was significantly higher in OC with stages I and III
than OC with stage IV (Figure 3A). Formic acid (Supplementary
Figure S1) and histidine (Figure 3A) increased and decreased over
the clinical stage, respectively.

From the quantitative lipoprotein panel, the parameters L1TG,
LDTG, L2TG, L4TG, L5TG, IDAB, IDPN, H2TG, L3TG, L3TG,
V4PL, V4CH, H1TG, V4TG, V4FC, VLAB, VLPN, IDCH, and
IDFC were upregulated in HGSOC compared to BOT (Figure 3B). It
can be estimated that these increased lipoproteins carry TG,
phospholipids, CL, and free CL to the OC, and at the same time,
TG are transported back to the liver by H1TG andH2TG. Moreover,
total TG (TPTG), total cholesterols (TPCH), high-density
lipoprotein cholesterol (HDCH), and low-density lipoprotein
cholesterol (LDCH) were not significant between HGSOC and
BOT (Supplementary Figure S2). The multivariate analysis
showed that HGSOC and BOT were clustered next to each other,
and the separation was driven by TBPN and LDPN (Supplementary
Figures S9C, S9D). Indeed, lipoproteins seemed to facilitate OC
development.

In the clinical stage-based comparison, H3FC,H4A1, H4A2,H4FC,
HDA1, HDCH, HDTG, TPA1, TPA2, V5TG, and ABA1 showed
significant changes, while the rest of the lipoproteins were observed
the same way as in the histology-based comparison (Supplementary
Figure S3). High-density lipoproteins (HDLs) apolipoprotein A-1
(ApoA1) and apolipoprotein A-2 (ApoA2), and low-density
lipoproteins (LDLs), very-low-density lipoproteins (VLDLs), and
intermediate-density lipoproteins (IDLs) tended to decrease and
increase, respectively, over the clinical stage. Moreover, H1TG,
H2TG, and HDTG increased over the clinical stage (Supplementary
Figure S3).

3.2 Glycoprotein inflammation markers of
borderline ovarian tumor and high-grade
serous ovarian cancer stages I–IV vary
according to each other

Inflammation markers such as glycoprotein A (GlycA),
glycoprotein B (GlycB), and overall Glyc were significantly
higher in HGSOC than in BOT (Figure 4), indicating that
inflammation occurred during OC development. The
inflammation based on Glyc results also increased over the
clinical stages where significance was observed between stages
I vs. IV, I vs. III, II vs. IV, and III vs. IV (Figure 4). The
multivariate analysis clearly showed that glycoprotein-assessed
inflammation varied between the diagnosed histology, and the
altered inflammation was indeed related to their tumor
progression (Supplementary Figures S9E, S9F).

FIGURE 2
Metabolomics workflow. An overview of the data workflow in
metabolomics for the identification of NMR-based alternations from
borderline ovarian tumor and high-grade serous ovarian cancer serum
samples.
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3.3 Glycoprotein inflammation markers
predict effectiveness of the treatment and
are promising add-ons for diagnosis and
prognosis of ovarian cancer

In order to see whether GlycA, GlycB, and the sum of Glyc
possess potential for diagnosis and prognosis, comparative
statistical analysis was carried out in a treatment-based
comparison. The inflammation markers were not significant
between the treatment statuses (Supplementary Figure S4). No
significant change was further confirmed by cross-validation with
the “leave one out cross-validation” method (LOOCV); Q2 was
negative (Supplementary Table S16), which means that the group
was not predictive at all, and PLS-DA (partial least square

discriminant analysis) would not provide important
information (Szymańska et al., 2012). Additionally, the cancer
antigen marker CA-125 that is used to investigate the
effectiveness of radiotherapy (Aliomar et al., 2013) and
chemotherapy (Wang et al., 2019) was subject to comparative
statistics. Hereby, the result shows non-significance between the
overall groups (Supplementary Figure S4), yet it was significant in
comparing BOT vs. HGSOC and clinical stages (Figure 4).
Biomarker analysis shows that the inflammation markers were
able to distinguish between BOT vs. HGSOC (Supplementary
Figure S7) and I–II vs. III–IV (Supplementary Figure S5), as CA-
125. In this study, all NMR parameters alone were not good
enough to classify both histology and clinical stage of OC
(Supplementary Tables S24, S25). However, we could see that

FIGURE 3
Altered metabolites and lipoproteins in borderline ovarian tumor (BOT) and high-grade serous ovarian cancer (HGSOC) with clinical stages I–IV.
From left: (A, B) volcano plot showing statistically and biologically significant metabolites and lipoproteins in the histology of ovarian cancer; red plots
indicate upregulation in high-grade serous ovarian cancer (fold change >1.2 and p-value <0.05). From right: (A, B) violin plots by comparative statistics
showing significantly altered alanine (FDR <0.01), phenylalanine (FDR <0.1), and histidine (FDR <0.01) in high-grade serous ovarian cancer
(** <0.01 and ****<0.0001) and significantly altered alanine and histidine over the clinical stages (q-value = ** <0.01 and ***< 0.001). From right: (B and
bottom) violin plots displaying significantly altered lipoproteins in high-grade serous ovarian cancer (FDR <0.01, ***< 0.001, and ****<0.0001) and over
the clinical stages (q-value = (*<0.05, ** <0.01, ***< 0.001, and ****<0.0001).
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the area under the curve (AUC) of CA-125/sarcosine, CA-125/
pyruvate, CA-125/3HB, and CA-125/oxoglutaric acid was higher
than that of CA-125 (Figure 5). Histology of OC was classified by
CA-125/sarcosine and CA-125/pyruvate, while the classification
of the clinical stage of OC was achieved by CA-125/3HB and CA-
125/oxoglutaric acid. Moreover, increased ratio values of CA-
125/GlycA (Supplementary Figure S6), CA-125/GlycB
(Supplementary Figure S6), and CA-125/Glyc (Figure 5) within
AUC analysis helped in classifying both the histology and clinical
stage of OC.

3.4 Quantitative inflammatory parameters
clearly characterize specific patterns of
metabolites, lipoproteins, and CA-125 in
ovarian tumor and cancer with clinical
stages I–IV

K-means clustering was performed with the quantitative
inflammatory parameters, where we could distinguish different
inflammatory classes. In other words, quantitative inflammatory
parameters varied according to each cluster (Figure 6). We then
carried out sPLSDA and comparative statistics to observe the
NMR-based alternations and CA-125 based on the inflammatory

classes. Each class was clearly separated along with specific and
unique changes in metabolites, lipoproteins, and CA-125
(Figure 6). Moreover, the model was cross-validated with
LOOCV; the error rate was 8.8% at component 1
(Supplementary Figure S10), indicating that different
glycoprotein classes perform good classification.

3.5 Correlation of glycoprotein
inflammation markers with the established
cancer markers CA-125, CEA, and CA 19-9

Inflammation was positively correlated with ketone bodies (3-
hydroxybutyric acid and acetoacetic acid), succinic acid, 2-
hydroxybutyric acid, CA-125, and various parameters, mainly
triglycerides, in lipoprotein fractions (LDLs) (Figures 7A, B). A
negative correlation was observed for histidine, alanine, TPA2 (total
plasma apolipoprotein A2), and subfraction of HDLs with certain
lipid species, notably HDL-4 (Figure 7A). Moreover, two ketone
bodies were positively correlated only with the inflammation
markers and negatively correlated with alanine and sarcosine
(Figures 7B, C). We also observed that the correlation between
glycoprotein inflammation, CEA, and CA 19-9 antigen markers was
weak (Supplementary Figures S8A, S8B).

FIGURE 4
Altered glycoprotein inflammation and cancer antigen-125 markers in ovarian cancer serum samples. Violin and box plots showing significant
increase in glycoprotein inflammation and cancer antigen-125markers over the clinical stages (q-value = *<0.05, ** <0.01, ***< 0.001, and ****<0.0001)
that they are higher in high-grade serous ovarian cancer than in borderline ovarian tumor (FDR <0.001, *<0.05, ** <0.01, ***< 0.001, and ****<0.0001).
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FIGURE 5
Potential biomarker candidates to cancer antigen-125 markers for ovarian cancer diagnosis and prognosis. The optimal cutoff was based on the
closest to the top left corner principle and is indicated by the red dot in all the ROC curves. Black dots and yellow diamond represent the level of cancer
antigen-125 and each ratio and mean concentration of cancer antigen-125 and each ratio, respectively.
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FIGURE 6
Unique pattern of metabolites, lipoproteins, and CA-125 in different Glyc classes that include borderline ovarian tumor (BOT) and high-grade serous
ovarian cancer (HGSOC) with clinical stages. (A) K-means clustering based on NMR-based inflammatory concentration. (B) sPLSDA score plot with clear
distribution of ovarian tumor and cancer at different inflammatory levels. (C) Heatmap displaying significantly altered metabolites, lipoproteins, and CA-
125 of ovarian tumor and cancer at different inflammatory concentrations (p-value <0.01 and FDR <0.01). (D) Selected violin plots by comparative
statistics showing significantly altered metabolites, lipoproteins, and CA-125 involved in inflammation (q-value = *<0.01, **<0.001, ***<0.0001, and
****<0.00001).
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4 Discussion

4.1 Alterations of metabolites and
glycoprotein inflammation markers in
borderline ovarian tumor and high-grade
serous ovarian cancer clinical stages I–IV
implicate critical roles in tumor development

It has been observed that malignant OC cells can disseminate
to periglandular regions and the visceral omentum majus that is

basically a large layer of adipocyte tissue (Lengyel et al., 2018). By
the presence of a lesion in the omentummajus, these cells canmake
use of free fatty acids deriving from the adipocytes and switch from
the glycolytic pathway into lipid metabolism where elevated fatty
acid oxidation takes place for energy supply and tumor
development (Balaban et al., 2017; Wu et al., 2019). It is
furthermore consistent that we observed increased ketogenesis
in HGSOC along with upregulated glycerol and glutamate.
Elevated ketogenesis in the OC serum implicates the utilization
of fatty acid (Braicu et al., 2017; Hilvo et al., 2016), reverse

FIGURE 7
Correlation of the glycoprotein inflammation markers with metabolites, lipoproteins, and cancer antigen-125 markers. (A–C) Respective positive and negative
correlations. (A)Positive andnegativecorrelationsofcancer antigen-125withmetabolite, lipoproteins, and inflammationmarkers. (B)Positive andnegativecorrelationsof
3-hydroxybutyric acid withmetabolites, lipoproteins, and inflammationmarkers. (C) Positive and negative correlations of 3-hydroxybutyric acid with other metabolites.
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Warburg effect of circulating CAFs (Schauer et al., 2011; Ao et al.,
2015), and cachexic phenotype (Pin et al., 2018), since the rate of
hepatic fatty acid oxidation and fatty acid oxidation-related
enzymes decreases along with hepatic ketogenesis and plasma
ketone concentrations during acute phase response
(Khovidhunkit et al., 2004b; Memon et al., 1992). Upregulated
glycerol and glutamate represent an elevated rate of lipolysis in the
adipocytes (Castelli et al., 2021; Nieman et al., 2011) and
glutathione production (Aggarwal et al., 2019; Fazzari et al.,
2015), respectively. As a consequence of a generally higher
antioxidant capacity in the cancer cells, reactive oxygen species
(ROS) do not induce apoptosis, but instead provoke inflammation,
leading to facilitation in tumor development (Liou and Storz,
2010). In our results, the positive correlation of ketone bodies
and highly observed NMR-based inflammatory markers of GlycA,
GlycB, and Glyc in HGSOC further support this explanation.

2-Hydroxybutyric acid, a marker for insulin resistance (IR) and
impaired glucose metabolism due to increased lipid oxidation and ROS
(Gall et al., 2010), was higher in HGSOC. 2-Hydroxybutyrate was also
higher in metastatic OC than in primary OC (Fong et al., 2011). Hence,
the reason for increased glucose in HGSOC may not only be due to
overexpression of GLUT1 (Lamkin et al., 2009), but it may be also
attributed by IR that reduced the ability of skeletal, muscle, fat, and
hepatic cells to take glucoses from the blood in response to normal
circulating levels of insulin (Schwartsburd, 2019).

One of the hallmarks of cancer and key process in metastasis is
the invasiveness of tumor cells (Hanahan andWeinberg, 2000). BOT
has been characterized by the absence of stromal invasion and a less
aggressive behavior compared to HGSOC (Brown et al., 2007); e.g.,
an increase in the circulating levels of formic acid or formate has
been associated with an elevated rate of serine catabolism that takes
place to promote invasiveness in oxidative glioblastoma multiforme
cells (Meiser et al., 2018) and tumor progression in colorectal cancer
(VanHook, 2022). Hence, the OC invasiveness may be facilitated by
formate, which could explain why formate was higher over the
clinical stages in this project.

Next, when cancer cells face genotoxic, oxidative, or nutritional
stresses, they switch to amino acid metabolism guaranteeing their
survival and proliferation (Wei et al., 2021). Decreased levels of
alanine in HGSOC could be due to increased systemic inflammation
as sustained systemic inflammation leads to hepatic glucose
production followed by hyperglycemia in which the liver
consumes alanine to perform gluconeogenesis and release acute
phase response proteins (Gabay and Kushner, 1999; Okin and
Medzhitov, 2016). Such phenomena could be linked to higher
concentrations of 2-hydroxybutyric acid and glucose in HGSOC,
increased phenylalanine levels in HGSOC by the systemic
inflammation-induced influence of phenylalanine hydroxylase
(Neurauter et al., 2008), the negative correlation between
inflammation and alanine along with elevated ketogenesis,
and decreased alanine levels which at the same time
increased inflammation over the clinical stages. Moreover,
the decreased level of alanine could reflect high glutamine
uptake via alanine–serine–cysteine transporter 2 (ASCT2) (Guo
et al., 2018).

The upregulation of excitatory amino acid (EAA) transporters is
one of the characteristics of many cancers (Karunakaran et al., 2008;
Saito and Soga, 2021). Decreased levels of histidine in HGOSC were

reflective of the upregulation of EAA transporters, to meet
requirements for their tumor development. Histidine was not
only shown to be involved in cancer progression but also to be a
metabolite which possesses anti-inflammatory properties
(Grohmann and Bronte, 2010). One study showed a chemokine
IL-8 response in a TNF-α-stimulated human leukemia monocytic
cell line (THP-1) which was inhibited by histidine (Hasegawa et al.,
2012). Furthermore, the production of TNF-α and IL-6 of
lipopolysaccharide-induced mouse peritoneal macrophages was
affected by histidine (Andou et al., 2009). Hence, the increase in
inflammation parameters could be facilitated by a low level of
histidine, as observed in the clinical stage-based comparison, with
a negative correlation of histidine, CA-125, and glycoprotein
inflammation markers.

4.2 Altered lipoproteins and glycoprotein
inflammation markers in borderline ovarian
tumor and high-grade serous ovarian cancer
with clinical stages I–IV can be used to
characterize tumor development and
correlate to each other

Several researchers have reported about the altered lipoprotein
profile of OC and ovarian tumor (OT) compared to healthy subjects.
For example, TC levels were lower in OT (Melvin et al., 2012), and also,
HDLs decreased in OT (Camps et al., 2021; Gadomska et al., 2005).
Furthermore TG, HDCH, CL, and LDCH decreased (Qadir and Malik,
2008) in OC patients. In this project, lipoprotein profiles were
investigated based on histology and clinical stages in order to
observe which lipoproteins could contribute to the development of OC.

Increased levels of VLDL in OC patients were observed by
Manisha and Jindal (2019) and Tiwari et al. (2015), which is
consistent with the results in this project where we identified
VLPN, VLAB, V4CH, V4PL, and V4TG to be higher in HGSOC.
Such increased lipoproteins indicate that CL, phospholipids, and TG
were transferred to HGSOC cells. Moreover, it has been found that
LDL receptors (LDLRs) are overexpressed by many tumors (Rensen
et al., 2001) and upregulated in OC patients in relation to healthy
subjects (Jaragh Alhadad, 2021), implicating that non-significant TG
and CL may be due to elevated consumption of the tumor
development.

In the clinical stages, most of the altered lipoproteins were observed
in the same manner as in a histology-based comparison where V5TG
and ABA1 also increased over the clinical stages. Moreover, altered
HDLs were clearly shown as depicted by the levels of H3FC, H4A1,
H4A2, H4FC, HDA1, HDCH, TPA1 (total plasma apolipoprotein A1),
and TPA2 decreased. It has been discovered that inflammation is
characterized by increased LDLs and TG, ApoB, and decreased
HDLs in chronic diseases (Tsoupras et al., 2018). The reason why
they decreased may be due to inflammation-associated mechanisms.
First, serum amyloid A (SAA) production increases in the liver by
which SAA bind to HDLs to displace apoA-1 and apoA-2 for HDL
clearance (Benditt and Eriksen, 1977; Eriksen and Benditt, 1980; Hosoai
et al., 1999; Ashby et al., 2001). Second, SAAdecreases the level of apoA-
1 and apoA-2 HDLs (Benditt and Eriksen, 1977; Eriksen and Benditt,
1980), affecting the synthesis of HDLs (Florea et al., 2022). Third, the
synthesis of apoA-1 decreases in the liver, leading to a decrease in HDL
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levels (Khovidhunkit et al., 2004a). Last, inflammation induces VLDL
production and secretion in the liver, and decreases the hepatic
clearance of TG-rich lipoproteins (Feingold et al., 2021). Indeed,
such mechanisms and findings can describe the negative correlation
between the Glyc inflammation markers, HDLs and TPA2. Moreover,
this is in accordance with our findings that subfractions of VLDLs,
IDLs, and LDLs with certain lipid species and apolipoprotein B-100
were increased in advancedOC andwere positively correlatedwithGlyc
inflammation and CA-125 markers.

Following decreased HDLs, cancer cells can maintain CL
homeostasis, carry out angiogenesis, and escape immune surveillance
(Ossoli et al., 2022). Additionally, oxidation of LDLs takes place more
often, promoting the production of TG along with an accumulation of
fatty acids in the adipocytes (Merkel et al., 2002). In other words, the
transportation of fatty acids from the adipocytes to OC cells may be also
facilitated by these discovered altered lipoproteins.

Another finding of this project was that ketogenesis was positively
correlated with succinic acid that can be seen as increased marker
during inflammation. Such correlations may indicate that OC cells
utilized glutamine and fatty acids to produce glutathione and acquire
ATP through the tricarboxylic acid (TCA) cycle, respectively, while
potentially sparing glucose. The increase in succinate during
inflammation could be due to the fact that this metabolite is a pro-
inflammatory agent inducing IL-1β through HIF-1α in macrophages
(Tannahill et al., 2013). In turn, metastasis of OC cells could be
facilitated by the IL-1β/β1 integrin axis (Watanabe et al., 2012), and
inflammation-associated cells transformed into cancer-associated
immune cells (Bent et al., 2018) that further developed OC
proliferation, invasion, and metastasis.

4.3 The NMR-based inflammation markers
GlycA, GlycB, and Glyc are potential
candidates for future diagnosis, prognosis,
and treatment response of ovarian cancer

We observed that NMR parameters themselves could not improve
diagnostic sensitivity and specificity compared to CA-125 alone. Yet, we
found that CA-125/sarcosine, CA-125/pyruvate, CA-125/3HB, and
CA-125/oxoglutaric acid could be potential biomarkers. These
metabolites are involved in OC proliferation (Yuan et al., 2015),
invasiveness with resistance to anoikis (Caneba et al., 2012), and
one-carbon metabolism (Rizzo et al., 2018). Additionally, CA-125/
3HB is indeed promising, since the elevated level of 3HB is reflective of
the cachexic phenotype (Pin et al., 2018) and circulating CAFs in the
blood (Schauer et al., 2011; Ao et al., 2015).

We showed that NMR-based inflammation parameters increased in
advanced OC serum, indicating the elevated glycosylation of the acute
phase proteins, such as α1-acid glycoprotein, haptoglobin, α1-antitrypsin,
α1-antichymotrypsin, and transferrin (Otvos et al., 2015). Several studies
confirm that haptoglobin β-chain (Ahmed et al., 2004; Ahmed et al.,
2005), α1-acid glycoprotein (Rodríguez, 2019), α1-antitrypsin
(Normandin et al., 2010), and α1-antichymotrypsin (Saldova et al.,
2007) increased, and transferrin, the negative acute phase protein,
decreased in OC during inflammation (Watanabe et al., 2014). Hence,
haptoglobin β-chain, α1-acid glycoprotein, α1-antitrypsin, and α1-
antichymotrypsin could be the inflammatory proteins that may
contribute to the NMR peaks of GlycA, GlycB, and Glyc in OT and

OC. Furthermore, such markers may be able to classify OC patients with
and without ascites, since the presence of ascites arises by increased
permeability of small vessels along with peritoneal parietal
revascularization and glycoprotein production (Yung and Chan, 2011).

As observed in the results, Glyc inflammation and CA-125 markers
behaved in the same way, which implicates that the effectiveness of
radiotherapy and/or chemotherapy was low. Yet, CA-125 levels are
influenced by a number of OC-unrelated conditions (Kobayashi et al.,
2012). The cancer antigen marker is neither able to detect the early onset
of OC (Journal, 2015) nor efficient in identifying asymptomatic OC
patients (Skates et al., 2021), and 20% of OC have either low or
completely missing presence of CA-125 (Journal, 2015). It is also
observed that different kits and versions of the CA-125 test influence
the absolute levels of CA-125 and test sensitivity (Kenemans et al., 1993),
and the test sensitivity of OC deceases by more than 50% in the cutoff of
the CA-125 level over 1,000 kU/l. (Moss et al., 2005). Of note, OC is not
induced by CA-125, but inflammation. Several studies show that
dysregulated inflammation is highly linked to tumor occurrence via
angiogenesis and metastasis (Frantz et al., 2013; Qu et al., 2018; Zhao
et al., 2018) and cancer-associated immune cells (Zhang et al., 2017).
Moreover, the response of cancer to therapies is regulated by
inflammation (Zhao et al., 2021). The response is either anti-tumor
immunity via acute inflammation or therapy-elicited chronic
inflammation along with subsequent therapeutic resistance and
aggressive cancer progression (Zhao et al., 2021). In other words,
Glyc inflammation markers are more reliable for cancer treatment
outcomes. We could also stratify OC patients based on their
quantitative inflammatory parameters, which clearly displayed specific
alteration in metabolites, lipoproteins, and CA-125. Therefore, we
conclude that CA-125/GlycA, CA-125/GlycB, and CA-125/Glyc, the
use of bothmarkers individually, and Glyc classes are potential for future
diagnosis, prognosis, and treatment response of OC.

5 Conclusion

Profiles of metabolites, lipoproteins, and inflammation
parameters of BOT and HGSOC serums were investigated using
highly reproducible and quantitative IVDr NMR analysis. Hereby,
we identified certain metabolites and lipoproteins that could be
related to OC development along with acute and chronic
inflammation. The NMR-based inflammation markers, GlycA,
GlycB, and Glyc, were shown to be able to classify histology and
early and advanced stages of ovarian cancer. Moreover, the ratios
CA-125/GlycA, CA-125/GlycB, and CA-125/Glyc, the use of both
markers individually, and Glyc classes could be an alternative to CA-
125 alone for diagnosis, prognosis, and treatment response of EOC.
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Glossary

Name Extended Name

2HB 2-hydroxybutyric acid

3HB 3-hydroxybutyric acid

ABA1 apolipoprotein-B100/apolipoprotein A1

ApoE apolipoprotein E

ASCT2 alanine–serine–cysteine transporter 2

ATP adenosine triphosphate

BOT borderline ovarian tumor

CA 19-9 cancer antigen 19-9

CA-125 cancer antigen-125

CAFs cancer-associated fibroblasts

CEA carcinoembryonic antigen

CL cholesterols

DMG N, N-dimethylglycine

EOC epithelial ovarian cancer

FC fold change

FDR false discovery rate

GlcNAc N-acetylgalactosamine

GLUT1 glucose transporter 1

GlycA glycoprotein A or glycoprotein acetylation

H1A1 apolipoprotein-A1 HDL-1

H1A2 apolipoprotein-A2 HDL-1

H1CH cholesterol HDL-1

H1FC free cholesterol HDL-1

H1PL phospholipids HDL-1

H1TG triglycerides HDL-1

H2A1 apolipoprotein-A1 HDL-2

H2A2 apolipoprotein-A2 HDL-2

H2CH cholesterol HDL-2

H2FC free cholesterol HDL-2

H2PL phospholipids HDL-2

H2TG triglycerides HDL-2

H3A1 apolipoprotein-A1 HDL-3

H3A2 apolipoprotein-A2 HDL-3

H3CH cholesterol HDL-3

H3FC free cholesterol HDL-3

H3PL phospholipids HDL-3

H3TG triglycerides HDL-3

H4A1 apolipoprotein-A1 HDL-4

H4A2 apolipoprotein-A2 HDL-4

H4CH cholesterol HDL-4

H4FC free cholesterol HDL-4

H4PL phospholipids HDL-4

H4TG triglycerides HDL-4

HDA1 HDL-apolipoprotein A1

HDA2 HDL-apolipoprotein-A2

HDCH HDL cholesterol

HDFC HDL-free cholesterol

HDPL HDL phospholipids

HDTG HDL triglycerides

HGSOC high-grade serous ovarian cancer or carcinoma

HIF hypoxia-inducible factor

HK2 hexokinase 2

IDAB IDL-apolipoprotein-B100

IDCH IDL cholesterol

IDFC IDL-free cholesterol

IDPL IDL phospholipids

IDPN ILDL particle number

IDTG IDL triglycerides

IR insulin resistance

KNN K-nearest neighbors

L1AB apolipoprotein-B100 LDL-1

L1CH cholesterol LDL-1

L1FC free cholesterol LDL-1

L1PL phospholipids LDL-1

L1PN particle number LDL-1

L1TG triglycerides LDL-1

L2AB apolipoprotein-B100 LDL-2

L2CH cholesterol LDL-2

L2FC free cholesterol LDL-2

L2PL phospholipids LDL-2

L2PN particle number LDL-2

L2TG triglycerides LDL-2

L3AB apolipoprotein-B100 LDL-3

L3CH cholesterol LDL-3

L3FC free cholesterol LDL-3

L3PL phospholipids LDL-3

L3PN particle number LDL-3

L3TG triglycerides LDL-3

L4AB apolipoprotein-B100 LDL-4

L4CH cholesterol LDL-4

L4FC free cholesterol LDL-4

L4PL phospholipids LDL-4

L4PN particle number LDL-4

L4TG triglycerides LDL-4

L5AB apolipoprotein-B100 LDL-5

L5CH cholesterol LDL-5

L5FC free cholesterol LDL-5

L5PL phospholipids LDL-5

L5PN particle number LDL-5
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L5TG triglycerides LDL-5

L6AB apolipoprotein-B100 LDL-6

L6CH cholesterol LDL-6

L6FC free cholesterol LDL-6

L6PL phospholipids LDL-6

L6PN particle number LDL-6

L6TG triglycerides LDL-6

LDAB LDL-apolipoprotein-B100

LDCH LDL cholesterol

LDFC LDL-free cholesterol

LDH lactate dehydrogenase

LDHD LDL-cholesterol/HDL-cholesterol

LDLR LDL receptor

LDPL LDL phospholipids

LDPN LDL particle number

LDTG LDL triglycerides

LOOCV leave one out cross-validation method

LPL lipoprotein lipase

MCTs lactate transporter (monocarboxilate transporter)

NANA N-acetylneuraminic acid

OC ovarian cancer

PCA principle component analysis

PCOS polycystic ovary syndrome

PKM2 pyruvate kinase type M2

ROC receiver operating characteristic

ROS reactive oxygen species

SAA serum amyloid A

sPLSDA sparse partial least square discriminant analysis

TBPN total particle number (apolipoprotein-B100 carrying
particles)

TCA tricarboxylic acid cycle

TG triglycerides

THP-1 human leukemia monocytic cell line

TME tumor microenvironment

TPA1 total plasma apolipoprotein A1

TPA2 total plasma apolipoprotein-A2

TPAB total plasma apolipoprotein-B100

TPCH total plasma cholesterol

TPTG total plasma triglyceride

V1CH cholesterol VLDL-1

V1FC free cholesterol VLDL-1

V1PL phospholipids VLDL-1

V1TG triglycerides VLDL-1

V2CH cholesterol VLDL-2

V2FC free cholesterol VLDL-2

V2PL phospholipids VLDL-2

V2TG triglycerides VLDL-2

V3CH cholesterol VLDL-3

V3FC free cholesterol VLDL-3

V3PL phospholipids VLDL-3

V3TG triglycerides VLDL-3

V4CH cholesterol VLDL-4

V4FC free cholesterol VLDL-4

V4PL phospholipids VLDL-4

V4TG triglycerides VLDL-4

V5CH cholesterol VLDL-5

V5FC free cholesterol VLDL-5

V5PL phospholipids VLDL-5

V5TG triglycerides VLDL-5

VLAB VLDL-apolipoprotein-B100

VLCH VLDL cholesterol

VLFC VLDL-free cholesterol

VLPL VLDL phospholipids

VLPN VLDL particle number
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Metabolic profiling reveals altered
tryptophanmetabolism in patients
with kawasaki disease

Xue Fan1†, Ke Li2†, Xin Guo1, Shengyou Liao3, Qi Zhang4,
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Hospital), Shenzhen, China, 4Key Laboratory of Molecular Cardiovascular Sciences of Ministry of
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Kawasaki disease (KD) is a childhood vasculitis disease that is difficult to diagnose,
and there is an urgent need for the identification of accurate and specific
biomarkers. Here, we aimed to investigate metabolic alterations in patients
with KD to determine novel diagnostic and prognostic biomarkers for KD. To
this end, we performed untargeted metabolomics and found that several
metabolic pathways were significantly enriched, including amino acid, lipid,
and tryptophan metabolism, the latter of which we focused on particularly.
Tryptophan-targeted metabolomics was conducted to explore the role of
tryptophan metabolism in KD. The results showed that Trp and indole acetic
acid (IAA) levels markedly decreased, and that L-kynurenine (Kyn) and kynurenic
acid (Kyna) levels were considerably higher in patients with KD than in healthy
controls. Changes in Trp, IAA, Kyn, and Kyna levels in a KD coronary arteritis mouse
model were consistent with those in patients with KD. We further analyzed public
single-cell RNA sequencing data of patients with KD and revealed that their
peripheral blood mononuclear cells showed Aryl hydrocarbon receptor
expression that was remarkably higher than that of healthy children. These
results suggest that the Trp metabolic pathway is significantly altered in KD
and that metabolic indicators may serve as novel diagnostic and therapeutic
biomarkers for KD.

KEYWORDS

kawasaki disease, tryptophan metabolism, coronary arteritis, metabolomics, biomarker

Introduction

Kawasaki disease (KD) is a vasculitis syndrome that typically affects young children
under the age of five and involves multiple systems of the body. It is one of the leading causes
of acquired heart diseases in children in developed countries (Newburger et al., 2016) and
may lead to ischemic cardiomyopathy (Chen et al., 2016). Vascular damage during the
development of KD can ultimately lead to several complications, such as coronary artery
lesions (CALs), including aneurysms, and aortic root dilatation (Gordon et al., 2009).
Currently, the diagnosis of KD relies on the assessment of clinical symptoms, including fever
lasting five or more days, erythema of the palms and soles or edema of the hands and feet,
bilateral conjunctival injection, changes in the lips and oral cavity, and cervical
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lymphadenopathy (McCrindle et al., 2017). Due to a lack of specific
diagnostic criteria for KD, its diagnosis requires well-trained
clinicians. The ability to accurately identify KD based on
improved disease characterization and prognostic models may
enable clinicians to make more precise treatment decisions and
initiate treatment earlier, leading to a better prognosis. In KD,
biomarkers could add diagnostic value to clinical features and
ultrasound. Based on their represented major pathophysiologic
pathways, current biomarkers are divided into the following
categories: inflammation [C-reactive protein (CRP), erythrocyte
sedimentation rate (ESR)], liver dysfunction [alanine
aminotransferase (ALT)], and metabolic homeostasis (albumin,
serum sodium) (McCrindle et al., 2017). However, it is necessary
to investigate biomarkers in other pathways to fully understand the
intricate pathophysiology of the condition and improve risk
assessment, and the clinical need for non-invasive biomarkers to
diagnose KD remains unfulfilled.

Metabolomics is an emerging, cost-effective, quantifiable tool
for biomarker discovery (Johnson et al., 2016). Metabolomics can
detect underlying changes in the metabolic products of physiological
processes caused by cardiovascular diseases (CVDs) and provide
important information on metabolic pathways and metabolites. In
addition, the effects of gene mutations and environmental changes
on the body are reflected by changes in metabolites. As a result, there
is increasing interest in using metabolomics to define the chemical
phenotypes associated with health or disease for cardiovascular risk
stratification (Newgard, 2017; Ruiz-Canela et al., 2017). For
example, metabolomics has revealed that the TMAO
(trimethylamine N-oxide) pathway is strongly linked to
myocardial infarction (Wang et al., 2011), and PAGln
(phenylacetylglutamine) has been identified as a crucial
prognostic factor in cardiovascular disease (Nemet et al., 2020).
However, limited metabolomics studies on KD plasma have been
reported, and diagnostic and prognostic applications of metabolic
alterations in KD are not yet well defined; therefore, there is an
urgent need to search for biomarkers and therapeutic targets for KD
from a metabolomic perspective.

Tryptophan (Trp) is an essential amino acid and, as such, must
be obtained from dietary sources. Dietary Trp can undergo
degradation via intestinal flora (Taleb, 2019), or it can enter the
bloodstream and be carried to various tissues where it is used as a
substrate in various biosynthetic pathways. Trp can be used as a
precursor of serotonin in the central nervous system (Ruddick et al.,
2006) and as a source of the coenzyme nicotinamide adenosine
dinucleotide (NAD) (Shin et al., 1998) throughout the body. The
L-kynurenine (Kyn) pathway is one of the main pathways of Trp
metabolism that generates Kyn and its downstream products and
participates in inflammatory and immune responses (Wang et al.,
2015). The Kyn pathway has been implicated in various biological
processes, including immune regulation, peripheral disorders, and
central nervous system disorders (Wang et al., 2015). Additionally,
Trp metabolites (Kyn, anthranilic acid, and 3-hydroxy-
L-kynurenine) are associated with high CVD-related mortality
(Wang et al., 2010; Mangge et al., 2014). However, limited
clinical data exist on the potential prognostic value of Trp
pathway metabolites in patients with KD.

Transcriptomics is widely used for studying CVDs, such as
atherosclerotic diseases (Herman and Autieri, 2018), hypertension

(Nemecz et al., 2016), heart failure (Gao et al., 2015), and
myocardial hypertrophy (Viereck et al., 2016), and has helped
identify new biomarkers and therapeutic strategies. Single-cell
transcriptome sequencing (scRNA-seq) technology can reveal subtle
changes in each cell and describes the gene regulatory networks that
alter physiological functions, behaviors, and phenotypes (Shaw et al.,
2021). Aryl hydrocarbon receptor (AHR) is a ligand-activated
transcription factor widely expressed in various immune cells,
including T cells, dendritic cells, and intestinal intraepithelial
lymphocytes. Trp metabolites have beeshown to be capable of
functioning as endogenous ligands to regulate related aryl
hydrocarbon receptor expression (Hezaveh et al., 2022). Combined
peripheral blood single-cell transcriptome and metabolomic analyses
can better verify changes in themetabolic microenvironment in plasma.

In this study, we aimed to: 1) investigate metabolic alterations in
patients with KD to identify possible novel diagnostic and
prognostic biomarkers for KD; 2) validate the metabolites’
change using Peripheral Blood Single-Cell Transcriptome
analysis; and 3) explore changes in biomarkers in mouse KD
models to support further research into therapeutic development
using mouse KD models.

Results

Metabolite profiling of the plasma from
patients with KD using untargeted
metabolomics

An overview of the workflow is presented in Figure 1. To identify
potential biomarker candidates, we collected plasma samples from
patients as a discovery cohort. The samples from 62 participants were
subjected to untargeted metabolomics analysis using ultra-high-
performance liquid chromatography-quadrupole time-of-flight
mass spectrometry (UHPLC-QTOF-MS). The basic characteristics
(including age and gender) of all 62 individuals were similar between
the KD and healthy control groups (Table 1). However, laboratory
values, including routine blood tests and biochemical indices of KD
patients, exhibited a higher inflammatory state.

Untargeted metabolomics was performed using ultra-
performance liquid chromatography coupled with tandem mass
spectrometry (UPLC-MS/MS) detectors. After instrumental
analysis, peak detection, and alignment, 2,345 mass features in
negative electrospray ionization (ESI–) and 2,645 in positive ESI+
were detected in the discovery cohort, 530 serum small-molecule
metabolites were identified, and the annotated data matrices were
used for further statistical analysis.

First, ESI- and ESI + quality control (QC) samples were used to
build principal component analysis (PCA) models to assess the
quality of the metabolomics data. The QC samples clustered tightly
together in both negative and positive modes, illustrating the high
stability and reliability of the data (Figures 2A,B). In addition, the
PCA distinguished clusters of samples from the two groups. To
maximize the identification of differential metabolites in patients
with KD, we constructed orthogonal projections to latent structures
(OPLS-DA model) to observe the main discriminations of
metabolomics between the two groups and identify significantly
altered metabolites (Figure 2C). Next, we evaluated the performance
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of the model in correctly categorizing new samples using 7-fold
cross-validation and 100 random permutation tests. The R2 and Q2

goodness-of-fit intercepts indicated that the OPLS-DA model was
accurate and did not exhibit overfitting (Figures 2D,E).

The sample correlation heatmap showed that the samples
between groups were scattered, and the samples within groups
were significantly correlated (Figure 2F). The PCA, OPLS-DA,
and the heatmap showed that KD patients were separated from

FIGURE 1
Flow chart showing the study design for metabolomics analysis and biological validation.

TABLE 1 Demographic and clinical characteristics of discovery cohort individuals.

HC KD p.Overall

N = 40 N = 22

Age (month) 28.0 [22.0; 40.2] 29.5 [13.2; 47.8] 0.591

Gender 0.716

Female 16 (40.0%) 7 (31.8%)

Male 24 (60.0%) 15 (68.2%)

WBC (10̂9/L) 7.08 [5.84; 8.35] 13.8 [8.91; 16.5] <0.001

Lymphocyte ratio (%) 58.4 [45.0; 63.0] 27.6 [16.8; 31.3] <0.001

Neutrophils (%) 31.0 [26.5; 45.3] 65.4 [55.4; 73.1] <0.001

Platelets (10̂9/L) 284 [262; 363] 392 [315; 506] 0.002

RBC (10̂12/L) 4.65 (0.34) 4.20 (0.52) 0.001

Hb (g/L) 125 (7.17) 108 (9.03) <0.001

ALT (IU/L) 15.8 [13.0; 17.0] 36.5 [16.0; 74.2] 0.001

AST (IU/L) 33.0 [29.8; 35.0] 26.5 [24.0; 31.5] 0.001

Serum albumin (g/L) 42.8 [41.9; 43.6] 36.9 [34.5; 37.7] <0.001

Total bilirubin (μmol/L) 6.11 [4.20; 6.90] 7.65 [5.93; 8.77] 0.100

The data are reported as either the mean ± standard deviation (SD), median with interquartile range (IQR), or percentages. A two-sided t-test was performed on variables represented as the

mean ± SD, a Wilcoxon rank sum test was performed on variables expressed as the median with IQR, and a chi-square test was performed on variables expressed as percentages. HC, health

control; KD, kawasaki disease; WBC, white blood cell; RBC, red blood cell; Hb, hemoglobin; ALT, glutamic pyruvic transaminase; AST, glutamic oxaloacetic transaminase.
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healthy controls and had different metabolic signatures compared
with those of the healthy controls.

To investigate alterations in the metabolic pathways of all m/z
features in both positive and negative ion modes, a Mummichog
pathway analysis was performed. The detailed pathway enrichment
results can be seen in Supplementary Tables S1, 2. Tryptophan
metabolism pathway (adjp = 0.00083892) was the most drastically
enriched pathway for positive-mode data using the mummichog
analysis approach. Tyrosine metabolism (adjp = 0.00089019),
phenylalanine metabolism (adjp = 0.0012113), glycerophospholipid
metabolism (adjp = 0.0057432), and fatty acid biosynthesis (0.019335)
were also significantly enriched in positive ion mode enrichment.
Porphyrin and chlorophyll metabolism (adjp = 0.00093957) and
tryptophan metabolism (adjp = 0.0012581) were the top two
differently enriched pathways for negative-mode data using the
mummichog analysis approach. Biosynthesis of unsaturated fatty acids
(adjp = 0.0036836), linoleic acid metabolism (adjp = 0.023143), and

tyrosine metabolism (adjp = 0.027834) also showed significantly
differential enrichment in negative ion pattern analysis. The analysis
revealed that Trp metabolism was notably enriched in both ESI+ (p =
0.0008) and ESI– (p = 0.0012) modes (Figures 3A,B). Furthermore,
annotations based on accurate mass and tandemMS fragmentation data
were subjected to traditional pathway analyses. To reduce the bias
induced by pure bioinformatic analysis, we used multiple databases to
increase the reliability, including SMPDB, INOH, KEGG, REACTOME,
and EHMN. These aforementioned pathways, including amino acid
metabolism, tyrosine metabolism, and linoleate metabolism, were also
validated with the analysis using multiple databases (Figure 3C). In the
discovery cohort, the relative abundance of Trp-related metabolites are
presented in Figure 4A, while Figure 4B shows the differentially expressed
metabolites visualized through a KEGG diagram.. Pathway analysis
revealed that these integrated results were generally consistent with
the results of Mummichog analysis, indicating that patients with KD
have significantly altered Trp metabolism.

FIGURE 2
Principal component analysis (PCA) classification models for KD and HC in the discovery cohort. PCA score plots for patients with KD and healthy
controls in (A) electrospray (ESI)+ mode and (B) ESI–mode. Healthy controls (HCs) are marked in red, patients with KD are marked in green, and quality
control (QC) samples are shown in blue. The x and y axes represent the contributions of individuals to the first two principal components, PC1, and PC2,
respectively. The OPLS-DA score plot shows the separation between patients with KD and healthy controls for all metabolites (C). The heat map
shows the change in the abundance of metabolites in the plasma of healthy controls (n = 40) and patients with KD (n = 22) (D). Overview of the OPLS-DA
model showing the R2X,R2Y, andQ2 coefficients for the groups (E). Permutation analysis of R2Y andQ2 coefficients repeated 200 times (F) (Q2 = 0.939 and
R2Y = 0.984).
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Trp-targeted metabolomic profiles in
patients with KD and mice with LCWE-
induced KD coronary arteritis

Untargeted metabolomic profiling demonstrated notable changes
in the Trp metabolic pathway within the plasma of KD patients,
suggesting that Trp metabolism may play an important role in the
occurrence and development of KD. To confirm these results, serum
levels of Trp, Kyn, IAA, and Kyna were quantified using a fully
validated LC-MS/MS-based targeted metabolomics method, and the
results were consistent with those of untargeted metabolomics. In
patients with KD, compared with healthy subjects, there were
significantly lower levels of Trp (65.6 µM vs 88.0 µM; p = 0.0003)
and IAA (0.61 µM vs 1.18 µM; p < 0.0001), whereas the Kyn level was
significantly higher (3.97 µM vs 2.45 µM; p < 0.0001; Figure 5A).
Additionally, IAA, Kyn, and Trp in patients with KD compared with

those in healthy subjects had a higher area under the curve (AUC)
values (0.94, p < 0.0001; 0.77, p = 0.003; and 0.74, p = 0.001,
respectively; Figure 5B). The combination of IAA, Trp, Kyn, and
Kyna in the metabolite panel had a high AUC value (0.979, 95% CI
0.92–1; Figure 5C). Additionally, a correlation analysis of these
differential metabolites and clinical characteristics was performed
to better understand the relationship between the Trp metabolism
panel and KD. Trp levels were only negatively associated with
hemoglobin levels, indicating that the metabolism panel differs
from that of existing biomarkers, such as clinical biochemical
indices (Figure 5F and Supplementary Table S1).

After considering the relevance of themousemodel of KD to human
disease, we used a mouse model to further examine the Trp pathways to
provide evidence for identifying potential biomarkers and targeted
discoveries from studies on the discovery cohort. We built a
Lactobacillus casei cell wall extract (LCWE) induced KD model; the

FIGURE 3
Results of the pathway enrichment analysis. A bubble chart showing the significantly enriched pathways between HCs and patients with KD from (A)
electrospray (ESI)+ mode and (B) ESI- mode using Mummichog analysis before metabolite annotation. The x and y axes represent the enrichment factor
of the pathway and the negative log 10 of the p-value, respectively. A Sankey diagram showing the altered metabolic pathway identified based on seven
different databases (C).
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model was shown to be successfully constructed by Hematoxylin and
eosin (HE) staining, inflammation scores, and serum cytokine detection.

HE staining of myocardial tissue showed significant
inflammatory cell accumulation and bleeding manifestations in
the mice in the KD group (Figure 5D). Compared with the
control group, the KD group exhibited significantly dilated CALs
with a high concentration of infiltrating inflammatory cells, and the
inner lining of the blood vessels appeared less smooth. Serum TNF-α
and IL-1β levels were significantly higher in the KD mice than those

in the control mice (Figure 5G; p < 0.0001). The mice in the KD
group also had significantly higher inflammation scores than those
in control mice (Figure 5H; p < 0.05), indicating the successful
creation of the KD coronary arteritis mouse model. Through
targeted metabolomics focusing on Trp metabolism, we studied
the changes in potential biomarkers in the plasma of mice with KD.
Consistent with the observations in patients with KD, Kyna, and
Kyn levels were increased, whereas Trp and IAA levels were reduced
in these mice (Figure 5E).

FIGURE 4
Altered tryptophan (Trp) metabolism in patients with KD. Relative abundance of Trp-related metabolites in the discovery cohort. Blue indicates HCs,
and red indicates patients with KD (A). The Trp metabolic pathway was visualized by a KEGG diagram, and differentially expressed metabolites are circled
(B). Red indicates downregulated metabolites, and blue indicates upregulated metabolites. Data are represented as the mean ± standard error (SE).
Statistical analysis was performed using two-tailed Student’s t-tests.
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External validation of altered trp metabolites
in the validation cohort

To further validate the metabolic changes regarding Trp
metabolism in patients with KD and identify potential
biomarkers, we enrolled another set of 38 patients with KD and
42 healthy controls (validation cohort) for targeted metabolomic
analysis and verification of potential biomarkers. The clinical
characteristics of the validation cohort participants are presented
in Table 2. There were no notable differences between the two

groups regarding sex and age. In this investigation, the profiles of
Trp and its metabolites again exhibited apparent separation between
the KD patients and healthy controls. The direction of changes in
Trp-related metabolites was consistent with previous observations
in the discovery cohort. Patients with KD had lower Trp (26.2 µM vs
57.5 µM, p < 0.0001) and IAA levels (0.24 µM vs 0.42 µM, p <
0.0001) but higher serum Kyna levels (0.19 µM vs 0.12 µM, p <
0.0001) compared with those of control subjects (Figure 6A). No
marked difference existed in the Kyn levels between the two groups
in the validation cohort, whereas IAA and Trp exhibited

FIGURE 5
The LCWE mouse model and internal validation of metabolic alterations in patients with KD. Bar plots showing the serum levels of Trp-related
metabolites in the discovery cohort (HC, n= 40; KD, n= 22) (A). Receiver operating characteristic (ROC) curve showing the discrimination accuracy of the
three metabolites in the discovery cohort (B). ROC analysis incorporating indole acetic acid (IAA), Trp, L-kynurenine (Kyn), and kynurenic acid (Kyna) (C).
Hematoxylin and eosin (HE) staining of myocardial tissue of the KD mouse model compared with that of the controls (D). Serum levels of IAA, Trp,
Kyn, and Kyna in the KDmousemodel (E). Correlation coefficients between serummetabolite levels and clinical characteristics in the validation cohort (F).
Data were analyzed using Spearman’s rank correlation test. Levels of the pro-inflammatory cytokines, tumor necrosis factor (TNF)-α and interleukin (IL)-
1β, in the serumof the LCWEmousemodel (G). Myocardial inflammation and heart vessel inflammation scores for each group (H). Data are represented as
the mean ± SE. Statistical analysis was performed using two-tailed Student’s t-tests (A, E, (G) and two-tailed Mann–Whitney U-tests (H). CI, confidence
interval. *, p < 0.05; **, p < 0.01; ***, p < 0.001.
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concentration level shifts in directions concordant with the results of
the discovery dataset. The relative ratio of downstream Kyn
metabolism to Trp metabolism was increased in both cohorts
(discovery cohort, p = 0.0002; validation cohort, p < 0.0001).

Additionally, receiver operating characteristic (ROC) curve
analysis showed that IAA, Trp, and Kyna had high AUC values
of 0.77, 0.91, and 0.94, respectively (Figure 6B). The combination
metabolite panel, including IAA, Trp, Kyn, and Kyna, had a higher
AUC value of 0.943 (Figure 6C). Similarly, the levels of these
different metabolites were not associated with routine blood tests
or biochemical indices (Figure 6D, Supplementary Table S2).

Expression of a Trp metabolism-related
gene in peripheral blood mononuclear cells
of patients with KD

The Aryl hydrocarbon receptor (AHR), a transcription factor that
depends on ligands, is expressed extensively in epithelial, endothelial, and
immune cells. In previous studies, cell groups were clustered into 12 cell
clusters in two samples, one from a healthy child and the other from a
patient with KD. Compared with the healthy child, the KD patient had
low levels of naive CD8+T cells, T helper cells, and B cells; conversely, the
number of immune-related T cells and natural killer T (NKT) cells was
higher in the KD patient. We reanalyzed public single-cell RNA
sequencing (scRNA-Seq) data from our previous study on peripheral
blood mononuclear cells (PBMCs) from patients with KD (Fan et al.,
2021). By comparing the gene expression of cells in each cluster and all

remaining cells, specific marker genes of the cluster were identified, and
the expression of aryl hydrocarbon receptor was found to be significantly
changed inmost PBMC types, including NKT, secretory progenitor, and
plasmacytoid dendritic cells, between patients with KD and healthy
individuals, as indicated by the lattice heatmap (Figure 7). Themeasured
changes in aryl hydrocarbon receptor expression levels were consistent
with the increased levels of endogenous aryl hydrocarbon receptor
ligands, such as Kyn, in the serum.

Discussion

KD is a self-limiting systemic vasculitis that predominantly
affects medium-sized arteries (Nakamura, 2018). The
development of KD mainly manifests as chronic inflammation
caused by immune cell infiltration and progressive remodeling of
vascular tissue (Johnson et al., 2016), and its diagnosis is currently
based on clinical symptoms. There is currently no recommended
blood-based biomarker for diagnosing KD in medical guidelines.

A few studies have proposed the use of proteins or additional
inflammatory parameters as potential biomarkers for KD. For example,
Zandstra et al. reported the use of C-reactive protein (CRP), myeloid-
related protein 8/14 (MRP8/14 or S100A8/9), and human neutrophil-
derived elastase (HNE) for discriminating KD from infectious diseases
(Zandstra et al., 2020). In another study, urine proteomic analysis
revealed 43 differentially expressed proteins between patients with KD
and normal controls, including serine hydroxy-methyltransferase 1,
which was regarded as a hub protein (Hu et al., 2019). Based on routine

TABLE 2 Demographic and clinical characteristics of validation cohort individuals.

HC KD p.Overall

n = 42 n = 38

Age (month) 29.0 (12.1) 24.6 (15.1) 0.161

Sex 1.000

Female 20 (47.6%) 19 (50.0%)

Male 22 (52.4%) 19 (50.0%)

WBC (10̂9/L) 8.74 (2.07) 13.5 (3.24) <0.001

Lymphocyte ratio (%) 33.0 (10.5) 25.9 (11.0) 0.004

Neutrophils (%) 51.0 (8.07) 67.4 (10.4) <0.001

Platelets (10̂9/L) 323 [276; 362] 463 [395; 524] <0.001

RBC (10̂12/L) 3.84 [3.50; 4.48] 4.07 [3.87; 4.26] 0.541

Hb (g/L) 104 [96.0; 111] 110 [105; 114] 0.006

Serum sodium (mmol/L) 140 [138; 142] 134 [132; 135] <0.001

ALT (IU/L) 26.0 [19.5; 34.5] 65.5 [39.5; 86.5] <0.001

AST (IU/L) 25.5 [15.2; 34.0] 32.0 [21.2; 54.0] 0.006

Serum albumin (g/L) 24.6 [21.6; 26.6] 35.8 [33.7; 36.8] <0.001

Total bilirubin (μmol/L) 6.75 [5.23; 9.88] 5.40 [4.50; 7.97] 0.025

Data are presented as the mean ± standard deviation (SD) and median with interquartile range (IQR). The p-values are based on the two-sided t-test for variables expressed as the mean ± SD,

Wilcoxon rank-sum test for variables expressed as median (IQR), and chi-square test for variables expressed as percentages. HC, health control; KD, kawasaki disease; WBC, white blood cell;

RBC, red blood cell; Hb, hemoglobin; ALT, glutamic pyruvic transaminase; AST, glutamic oxaloacetic transaminase.
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laboratory tests, serum ferritin may be a useful biomarker to distinguish
KD from other acute febrile illnesses (Kim et al., 2021). Moreover, it has
been suggested that IFN-γ-inducible protein 10 (IP-10) can facilitate the
early diagnosis of KD (Ko et al., 2015). Metabolic profiling is emerging
as an efficient approach for detecting different diseases that are not
easily diagnosed. However, there are limited studies exploring KD from
ametabolome perspective. In the current study, we recruited a discovery
and a validation cohort, established animal models of KD, and
integratedly analyzed the metabolome profile shift of KD using
untargeted metabolomics and targeted metabolomics.

Our metabolomic analysis revealed an underlying metabolic
signature in the plasma of patients with KD. We first performed
pathway enrichment in the discovery cohort fromMS peaks using the

well-establishedMummichog.We then annotated themetabolites and
comprehensively applied a variety of databases to conduct pathway
analysis on the identified metabolites. The pattern of metabolic
abnormalities that we found in the phospholipid oxidation
pathway was consistent with that reported in a recent study by
Nakashima and others (Nakashima et al., 2021). Lipid
abnormalities appear in many immune disorders and different
phases of the inflammatory process, such as rheumatoid arthritis
(Steiner and Urowitz, 2009) and type-1 diabetes (O’Brien et al., 1998).
We also observed amino acid metabolism pathways, including those
of tyrosine that were enriched with metabolites that differed between
KD and healthy subjects. Alterations in amino acid metabolism are
widespread in metabolic disorders and participate in the immune

FIGURE 6
External validation of potential biomarkers for patients with KD. Bar plots showing the serum levels of Trp-related metabolites in the validation
cohort (HC, n = 42; KD, n = 38) (A). Receiver operating characteristic (ROC) curve showing the discrimination accuracy of Trp-related metabolites in the
validation cohort (B). Data represent the mean ± SE. The p-value was calculated using two-tailed U-tests. ROC analysis incorporates IAA, Trp, Kyn, and
Kyna in the validation cohort (C). Correlation coefficients between metabolite serum levels and clinical characteristics in the validation cohort (D).
Association strength was assessed using Spearman’s rank correlation test. IAA, indole acetic acid; Kyn, L-kynurenine; Kyna, kynurenic acid.
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response caused by pathogen infection (Tomé, 2021). Among these
altered metabolic pathways, the tryptophan pathway was the most
significantly enriched pathway. The serum concentrations of Trp
pathway metabolites were measured using targeted metabolomics
because it is a more quantitatively sound approach with greater
clinical utility than untargeted metabolomic assessments. The
results of further targeted detection of metabolites of the
tryptophan pathway replicated the non-targeted analysis results.
The prognostic metabolites that were found to discriminate
patients with KD from healthy individuals were from the Trp
pathway, including Trp itself, IAA, Kyn, and Kyna. Tryptophan is
one of the several amino acids that are essential in mammals and acts
as a precursor of many signaling molecules that regulate adaptive
immune responses (Liu et al., 2017). It exhibits the highest antiradical
activity among all amino acids in cellular proteins. Weiss et al.
suggested that Trp is a potent scavenger of the radicals that are
induced by chloramine-T or hydrogen peroxide (Weiss et al., 2002).
The decrease in Trp levels in patients with KD may contribute to the
progression of KD symptoms, as supplementation of Trp has been
shown to be beneficial (Gibson, 2018). The primary catabolic pathway
of Trp in mammals is the Kyn pathway, which involves the
constitutive catalysis of Trp to Kyn by three key rate-limiting
enzymes—indoleamine 2,3-dioxygenase 1 and 2 (IDO1 and IDO2)
and Trp 2,3-dioxygenase (Ketelhuth, 2019). Kynurenine is important
to the pathogenesis of aortic diseases by contributing to inflammation
in various vascular beds (Ramprasath et al., 2021). Studies have shown
that Kyn exhibits pro-oxidant effects when exposed to aerobic
radiation, resulting in the production of superoxide radicals, which
can lead to the reduction of cytochrome C (Goda et al., 1987).
Increased levels of Kyn can cause NKT cell death mediated by
reactive oxygen species (ROS) (Song et al., 2011). This indicates
that treatments targeting Kyn may be useful for patients with

oxidative stress-related diseases. Kynurenic acid is an intermediary
in the Trpmetabolic pathway and functions as a ligand for the orphan
G protein-coupled receptor 35 (Wang et al., 2006). It can be generated
by kynurenine aminotransferases under physiological conditions in
endothelial cells (Stazka et al., 2002) and human PBMCs (Jones et al.,
2015). Endothelial dysfunction is a critical process implicated in the
development of KD. Indole acetic acid, which is derived from Trp, has
been shown to decrease inflammation and ROS (Ji et al., 2020) by
reducing the expression of pro-inflammatory cytokines (Shen et al.,
2010). In the present study, the decreased concentration of IAA may
be due to KD development. Overall, the identified metabolites and
pathways fit the pathophysiological profile of KD.

Despite the high variability in the blood metabolome between
and within individuals, the metabolic signature we constructed
herein performed acceptably as a diagnostic tool for KD in two
independent cohorts, with AUCs of 0.976 and 0.943. In a previous
study, good intra-group repeatability was observed for the results of
Kyn, Kyna, xanthurenic acid, 3-hydroxy-L-kynurenine, anthranilic
acid, 3-hydroxyanthranilic acid, and the Kyn/Trp ratio in samples
obtained from both the chronic heart failure and control groups,
supporting the use of Trp pathway metabolites as biomarkers (Kato
et al., 2010). Fortunately, KD and heart failure are uncommon, and
these diseases rarely overlap.

Next, we investigated the metabolic changes of Trp metabolism
in the LCWE-induced KD coronary arteritis mouse model.
Consistent with our hypotheses, Trp metabolism and the
correlated metabolites trended in a similar pattern as those in
patients with KD. Integrating the cross-species data from humans
and mice may provide more opportunities for identifying potential
biomarkers and making targeted discoveries.

There are numerous interactions between circulating
metabolites in plasma and blood cells. For instance, Kyn

FIGURE 7
Single-cell (sc)-RNA-sequencing analysis of peripheral blood mononuclear cells harvested from patients with KD revealed increased aryl
hydrocarbon receptor levels. Each point represents a cell. Points with close spatial distance indicate that the gene expression patterns of these cells are
relatively close, such that the expression patterns of cells in the same cluster were most similar.
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mediates the activation of aryl hydrocarbon receptor, a ligand-
activated cytoplasmic receptor and transcription factor capable of
reinforcing the inflammatory state by boosting the production of
interleukin-6 (Guarnieri, 2022). Hence, we performed data mining
on a typical pediatric PBMC single-cell transcriptome and found
that aryl hydrocarbon receptor expression was significantly altered
between children with KD and healthy subjects. The stimulated Kyn
metabolic pathway and aryl hydrocarbon receptor may indicate
increased ligand-receptor interactions between Kyn and aryl
hydrocarbon receptor. The downstream aryl hydrocarbon
receptor expression changes are consistent with changes in the
Trp pathway, which verified the reliability of our results—the
tryptophan metabolic pathway is indeed altered in KD patients.
In addition, the change in the tryptophan pathway can be used not
only as a phenotype but may also play a crucial role in the regulation
of the pathological development of KD by affecting transcription
factors such as aryl hydrocarbon receptor. We therefore speculate on
the therapeutic utility of Trp pathway metabolites in KD, but further
biochemical experiments are needed to verify this assumption
Notably, increased IDO activity in the serum has been observed
in patients with advanced atherosclerosis, indicating that activated
kynurenine pathway may play a pivotal role in the development of
vascular diseases (Ji et al., 2020). On the other hand, in the
kynurenine pathway, IDO1 is the primary rate-limiting enzyme.
Furthermore, several recent studies have demonstrated that the
expression of IDO1 is elevated in response to inflammatory
stimuli, such as type I and II interferons (Puccetti and
Grohmann, 2007), prostaglandins (Jones et al., 2015), or
microbial stimuli, such as lipopolysaccharides (Michaux et al.,
2022). Meanwhile, IDO1 is regarded as a target gene to regulate
overactive immune responses in human autoimmune diseases (Pan
et al., 2008; Platten et al., 2012; Kasper et al., 2016).

Our results suggest that the Trp metabolic pathway is
significantly altered in KD, particularly Trp itself, IAA, Kyn, and
Kyna. Single-cell transcriptome analysis results corroborated
metabolomic results to some extent. These metabolic indicators
may serve as novel biomarkers and help in developing new strategies
for the diagnosis and treatment of KD. Interventions in specific
microorganisms targeting microbiota-ido1-aryl hydrocarbon
receptor axis modulation in the host may offer innovative
therapeutic strategies for treating KD.

Our study suggests that four metabolites–Trp, Kyn, Kyna, and
IAA–are significantly altered in patients with KD and an LCWE-
induced coronary arteritis mouse model, and that they may be
potential biomarkers for diagnosing KD. However, a potential
weakness of our study is that expression of the Kyn pathway
increased during extensive inflammatory conditions, and it
cannot be ruled out that some of the differences in metabolic
profiles may be due to systemic inflammation. Thus, we should
study more inflammatory disorder cohorts, such as those with
measles, COVID-19, and scarlet fever, to better assess the
specificity of this biomarker panel to differentiate KD. Moreover,
we did not determine whether these altered levels of metabolites
contribute to the inflammatory process in KD. Based on the
combined metabolic analysis, we speculate that these metabolites
may play key roles in the genesis and pathological development of
the disease. Further studies are needed to determine the underlying
mechanisms and elucidate whether these metabolites can predict the

risk of KD. Furthermore, larger and well-characterized patient
cohorts are needed to validate our study.

Materials and methods

Human participants

A total of 142 participants from four clinical centers, including
82 healthy children and 60 KD patients, were recruited from Shenzhen
Children’s Hospital, Longgang District Maternal & Child Healthcare
Hospital of Shenzhen City, The First Affiliated Hospital of Jinzhou
Medical University, and Fushun Mining Bureau General Hospital,
China, from January to October 2021. Sixty-two and eighty
participants were included in the discovery and validation cohorts,
respectively (Figure A). The clinical characteristics of the patients are
summarized in Table 1 and Table 2. The diagnostic criteria were based
on the American Heart Association guidelines for KD from 2017
(Johnson et al., 2016). The exclusion criteria included children who
were not at the initial stage of the disease or had a course of
disease >10 days, children with other congenital heart malformations,
and those who had received treatment before admission. This study
followed the guidelines of the Declaration of Helsinki and received
approval from the Ethics Committees of Shenzhen Children’s Hospital
(protocol code 202003802) and Shenzhen Longgang Maternal & Child
Healthcare Hospital (LGFYYXLLL-2022-004).

Mice and treatments

C57/WT mice (four-to five-week-old) were purchased from the
Hunan Saike Jingda Experimental Animal Company (Changsha,
China). The mice were intraperitoneally injected with a single dose
of 400 µg of LCWE (day 0) to induce KD vasculitis; LCWE was
prepared as previously described (Porritt et al., 2020). The mice were
euthanized 14 days post-LCWE injection, and their hearts were
extracted. Mouse tissues were collected for further histopathological
examination, and serial sections (4 μm) were made and stained with
HE. Stained sections were photographed using a fluorescence
microscope (Olympus, Tokyo, Japan). Inflammation scores for
coronary arteritis, aortitis, and myocarditis were assessed to evaluate
the severity of inflammation. The serum levels of IL-1β and TNF-α
were determined by enzyme-linked immunosorbent assay.

Chemicals and materials for metabolomic
analysis

High-performance liquid chromatography (HPLC) grade
acetonitrile, methanol, formic acid was purchased from
Thermo Fisher Scientific, Waltham, MA, United States, and
liquid chromatography–mass spectrometry (LC–MS) grade
water was purchased from A.S. Watsons Group Co., Hong-
Kong, China. Unlabeled standards for targeted metabolomics
were purchased from Cayman Chemical (Ann Arbor, MI,
United States). The labeled standards, d4-IAA and d5-
tryptophan, were purchased from Toronto Research Chemicals
(Toronto, ON, Canada). All reagents and chemicals were of the
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highest purity (>99%) and stored at appropriate temperatures
and conditions.

Sample collection

Blood samples were collected in heparinized tubes according to
standard procedure, followed by centrifugation at 3,000 rpm at 4°C
for 10 min to obtain plasma. The plasma was then aliquoted and
stored at -80°C within 2 h of collection. The samples were
transported to the lipid center at Capital Medical University and
kept there until the end of recruitment.

Sample preparation

The plasma samples were first mixed with three volumes of
acetonitrile and incubated to precipitate proteins. The supernatant
was collected after centrifugation and then evaporated under a
vacuum to remove the solvent. Thereafter, the dried extracts were
resuspended in a mixture of acetonitrile and water, vortexed, and
centrifuged again to remove any remaining particles. Subsequently,
the recovered supernatant was subjected to LC–MS analysis, and
samples were injected in a randomized order during the runs to
prevent bias. A quality control (QC) sample, which was a mixture of
all plasma samples, was injected between every 10 sample injections to
monitor consistency in the retention time and signal intensity.

Mass spectrometry

Metabolic extracts were analyzed using reversed-phase liquid
chromatography–mass spectrometry (RPLC-MS) in both positive
and negative electrospray ionization modes. An AB SCIEX Triple
TOF 5600 mass spectrometer (SCIEX, Framingham, MA,
United States) was used to acquire data from 50 to 1,000 m/z in a
0.25 s TOF-MS scan mode. MS/MS spectra of the quality control
(QC) sample was obtained using an information-dependent
acquisition (IDA) method; the parameters were as follows: ion
spray voltage, 5,500 V (+) and 4,500 V (−); interface heater
temperature, 550°C (+) and 600°C (−); curtain gas of 35 PSI;
declustering potential, 100 V (+) and −100 V (−); collision energy,
10 eV (+) and −10 eV (−). The range of m/z was set to 25–1,000, and
the collision energy was 30 eV for IDA analysis. The resulting mass
spectra were processed further using Progenesis QI Software (Non-
linear Dynamics, Durham, NC, USA).

Chromatographic conditions

The sample was separated using a Waters ACQUITY UPLC HSS
T3 column (1.8 µm, 2.1 × 100 mm;Waters Corporation,Milford,MA,
United States) with a UHPLC system (Shimadzu, Tokyo, Japan). The
mobile phases consisted of water with 0.1% v/v formic acid A) and
acetonitrile with 0.1% v/v formic acid B), and the column was
maintained at 35°C. The separation was carried out using a linear
gradient at a flow rate of 0.25 ml/min. Specifically, the gradient started
at 2% B and increased to 60% B within 5 min, followed by a hold at

60% B for 5 min. Subsequently, the gradient was ramped up to 100%B
for between 10 and 17 min and held at 100% B for 17–20 min. Finally,
the gradient was decreased from 100% B to 2% B within 19–20.1 min.
The sample volume injected was 5 µl.

Data preprocessing

Progenesis QI software was used for LC-MS data analysis. The
software performed peak picking, alignment, and area
normalization using pooled QC injections as a reference.
Features that were absent in less than 10% of the pooled QC
injections were removed, and an Excel file was obtained with m/z,
peak retention time (RT), peak intensities, and RT-m/z pairs as
identifiers for each ion. Metabolites were identified using
Progenesis QI data processing software, with the aid of public
databases such as HMDB and LIPID MAPS, as well as in-house
databases. The Progenesis QI score, fragmentation score, and
isotope similarity were reported for all annotations based on
accurate mass and fragmentation data. Metabolic pathways were
analyzed using MetaboAnalyst 5.0 (Chong et al., 2018).

Targeted metabolomics and measurement
of serum biomarker levels

To prepare the samples, 20 µl of plasma was mixed with 80 µl of
an internal standard consisting of d4-IAA and d5-Trp in methanol.
Themixture was vortexed for 1 min at 4°C–8°C to precipitate proteins,
and the supernatant was collected by centrifugation at 20,000 × g for
10 min at 4°C. For analysis, 1 µl of the supernatant was injected into
the system, which used an analytical column (5 µmKinetex EVO-C18
150 mm × 4.6 mm; Phenomenex, Torrance, CA, United States) with
mobile phases A (0.1% formic acid in water, v/v) and B (0.1% formic
acid in acetonitrile, v/v). The column was maintained at 35°C, and all
analytes were detected in the positive ion multiple reaction
monitoring mode. The transitions with m/z 205.1,146 were
quantified for Trp, m/z 176.04,130.02 for IAA, m/z 190,144 for
Kyna, and m/z 209,94 for Kyn using a scan time of 0.1 s per
transition. Chromatographic separation of the analytes was
achieved using a linear and fast gradient elution program
consisting of a 0–0.5-min hold at 80%, 0.5–4.5-min decrease from
80% to 10% B, 1.5-min hold at 10% B, and finally an increase to 80%.
The flow rate was maintained at 0.5 ml/min.

All MS parameters were optimized by direct infusion. The
declustering potential and collision energies for specific quantification
and confirmation transitionswere optimized tomaximize the sensitivity.

Cell clustering and differential gene
expression (DGE) analysis of scRNA-seq

Seurat is a popular R package used to analyze single-cell RNA
sequencing data (Hao et al., 2021). In this study, Seurat v2.0.1 was
used for quality control and filtering of the single-cell data. Highly
variable genes were identified using the Find Variable Genes method
of the Seurat package, and 2,000 genes were selected for further
analysis, including principal component analysis (PCA). Principal
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components were used for cluster identification using the uniform
manifold approximation and projection (UMAP) algorithm, which
is a commonly used non-linear dimensionality reduction technique
for visualizing high-dimensional data. Clusters were annotated to
specific cell types based on the cell marker database. Finally, the
FindMarkers function in Seurat was used to identify differentially
expressed genes (DEGs) between healthy children and KD patients.
All single-cell transcriptome data used in this study were obtained
from a previous study (Shaw et al., 2021).

Statistical analysis

All statistical analyses were performed using GraphPad Prism
V.9 (GraphPad Software, San Diego, CA, United States) or SPSS
version 25 (SPSS Inc., Chicago, IL, United States). Significance was
assessed using one or more of the following: t-test, Mann–Whitney
U test, Spearman’s rank correlation test, and chi-squared test.
Receiver operating characteristic (ROC) curves analysis was
performed using two-tailed unpaired Student’s t-tests (normal
distribution) or Mann–Whitney U-tests (non-normal
distribution). Comparisons between two groups for the
remaining variables were performed using chi-squared or Fisher’s
exact tests. Statistical significance was set at p < 0.05.
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Objective: In this study, we aimed to investigate the differences in serum lipid
metabolite profiles and their relationship with clinical characteristics between
patients with eosinophilic and non-eosinophilic AECOPD.

Methods: A total of 71 AECOPD patients were enrolled. Eosinophilic AECOPDwas
defined as blood EOS% ≥ 2% (n = 23), while non-eosinophilic AECOPD, as blood
EOS< 2% (n=48). Clinical datawere collected, and serum lipidmetabolism profiles
were detected by liquid chromatography–mass spectrometry (LC-MS). The XCMS
software packagewas used to pre-process the raw data, and then, lipidmetabolite
identification was achieved through a spectral match using LipidBlast library.
Differences in lipid profiles and clinical features between eosinophilic and non-
eosinophilic groups were analyzed by generalized linear regression. The least
absolute shrinkage and selection operator (LASSO) was applied to screen themost
characteristic lipid markers for the eosinophilic phenotype.

Results: Eosinophilic AECOPD patients had less hypercapnic respiratory failures,
less ICU admissions, a shorter length of stay in the hospital, and a lower fibrinogen
level. In the lipid metabolism profiles, 32 significantly different lipid metabolites
were screened through a t-test adjusted by using FDR (FDR-adjusted p < 0.05 and
VIP> 1). Nine differential lipid metabolites were found to be associated with the
three clinical features, namely, hypercapnia respiratory failure, ICU admission, and
fibrinogen in further integration analysis. The species of triacylglycerol (TAG),
phosphatidylcholine (PC), lysophosphatidylcholine (LPC), and diacylglyceryl
trimethylhomoserine (DGTS) were high in these eosinophilic AECOPD. The
LASSO was applied, and three lipid metabolites were retained, namely, LPC (16:
0), TAG (17:0/17:2/17:2), and LPC (20:2). The logistic regression model was fitted
using these three markers, and the area under the ROC curve of the model was
0.834 (95% CI: 0.740–0.929).
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Conclusion: Patients with eosinophilic AECOPD had a unique lipid metabolism
status. Species of TAGs and LPCs were significantly increased in this phenotype and
were associated with better clinical outcomes.

KEYWORDS

chronic obstructive pulmonary disease, acute exacerbation, eosinophils, lipidomics, LC-
ESI-MS

1 Introduction

Chronic obstructive pulmonary disease (COPD) is a
heterogeneous disease characterized by persistent
respiratory symptoms and airflow limitations (Global
Initiative for Chronic Obstructive Lung Disease, 2022). It is
estimated that there are nearly 100 million patients with
COPD in mainland China, with a prevalence of 13.7%
among adults aged ≥ 40 years (Wang et al., 2018). The
prevalence of COPD will continue to rise, adding a heavy
economic burden to individuals and society (Global

Initiative for Chronic Obstructive Lung Disease, 2022).
Additionally, acute exacerbations of COPD (AECOPD) have
a significant impact on patients’ health (Wilkinson et al.,
2004), contributing to hospitalization and readmission,
disease progression, and increased risk of death.

Eosinophilic COPD is a phenotype of airway inflammation
characterized by the presence of eosinophilic inflammation in the
airways, manifested by elevated peripheral blood and/or sputum
eosinophil counts (Barnes, 2019). Some patients with COPD during
exacerbation also have a peripheral blood eosinophilia ≥ 2% or sputum
eosinophilia ≥ 3%, who are classified as eosinophilic AECOPD

TABLE 1 Demographic and clinical characteristics of the study subjects.

Characteristic Total (n = 71) Non-eosinophilic (n = 48) Eosinophilic (n = 23) p-valuea

Age (years) 74.1 (9.6) 73.7 (10.3) 75.0 (8.0) 0.566

Male 62 (87.3%) 42 (87.5%) 20 (87.0%) 1.000

BMI (kg/m2) 22.0 (5.2) 22.0 (5.8) 22.1 (3.7) 0.910

Smoking status

Never 7 (9.9%) 5 (10.4%) 2 (8.7%) 0.303

Former 42 (59.2%) 31 (64.6%) 11 (47.8%)

Current 22 (31.0%) 12 (25.0%) 10 (43.5%)

Smoking index (packs per year) 39.2 (29.7) 37.7 (28.1) 42.2 (33.3) 0.578

Comorbidities

Hypertension 37 (52.1%) 27 (56.3%) 10 (43.5%) 0.451

Coronary heart disease 11 (15.5%) 8 (16.7%) 3 (13.0%) 1.000

Heart failure 4 (5.6%) 3 (6.3%) 1 (4.3%) 1.000

Diabetes 11 (15.5%) 8 (16.7%) 3 (13.0%) 1.000

Hyperlipidemia 8 (11.3%) 5 (10.4%) 3 (13.0%) 0.708

Eosinophil count (cells/μL) 115 (176) 33 (44) 287 (220) <0.001

Eosinophil % 1.65 (2.23) 0.43 (0.50) 4.19 (2.29) <0.001

D-dimer (μg/mL) 0.26 (0.19) 0.28 (0.21) 0.21 (0.13) 0.106

Fibrinogen (g/L) 3.97 (1.29) 4.20 (1.41) 3.48 (0.82) 0.008

Total cholesterol (mmol/L) 3.98 (0.85) 3.95 (0.89) 4.04 (0.80) 0.668

Triglyceride (mmol/L) 1.02 (0.46) 0.96 (0.40) 1.14 (0.55) 0.156

Hypercapinic respiratory failure 24 (36.9%) 22 (45.8%) 2 (8.7%) 0.004

Need for ICU admission 14 (19.7%) 13 (27.1%) 1 (4.3%) 0.027

Time to next exacerbation (months) 27.1 (13.6) 27.1 (13.6) 27.1 (13.9) 0.994

Data are presented as mean (SD) or n (%).
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phenotypes (Singh et al., 2014; Pascoe et al., 2015; Dai et al., 2020). These
patients have specific characteristics in terms of clinical characteristics,
laboratory test results, treatment, and prognosis. For instance, the risk of
in-hospital mortality is lower among eosinophilic AECOPD patients,
and the hospital stay is shorter (You and Shi, 2021), with better response
to systemic glucocorticoid treatment (Bafadhel et al., 2014). However, the
pathogenesis of the eosinophilic phenotype of COPD exacerbation is still
not clear. Novel biomarkers can help clinicians recognize this phenotype
and develop potential new therapeutic targets.

Lipids are important cellular components. They participate in the
formation of cell membranes and are important energy storage
substances, components of various hormones, and important
mediators in cell signal transduction pathways. Accumulating studies
have demonstrated that lipid metabolism disorders are closely related to
the pathogenesis of COPD by affecting occurrence and development of
the disease (Fahy et al., 2005; Chen et al., 2019; Kotlyarov and Bulgakov,
2021). For example, obesity with high amounts of triglyceride and
cholesterol was associated with poorer COPD-related outcomes
(lower quality of life, more dyspnea, and more severe COPD
exacerbations) (Lambert et al., 2017). In addition, some species of
sphingolipids were inversely associated with emphysema, while
sphingosine 1-phosphate showed negative association with COPD
exacerbation (Bowler et al., 2015). Phospholipids, accounting for
forming cell membranes and pulmonary surfactants, were found to
be decreased in patients with COPD, which may correlate with
pulmonary functions (Lusuardi et al., 1992).

Lipidomics is an “omics” approach, which comprehensively
analyzes the full lipid components in various biological samples
and can provide significant insights into the understanding of
disease pathogenesis. With this technology, fatty acid metabolism
was identified to be altered in bronchial epithelial cells of asthmatic
patients, leading to an increase in levels of some lipid species
[phosphatidylcholine, lysophosphatidylcholine, and bis
(monoacylglycero) phosphate] (Ravi et al., 2021). Our previous
study found that the levels of lysophosphatidylcholine (LPC) 18:
3, lysophosphatidylethanolamine (LPE) 16:1, and

phosphatidylinositol (PI) 32:1 significantly dropped in the acute
stage compared to the recovery stage in hospitalized patients with
COPD exacerbation (Gai et al., 2021). In our study, we aimed to
compare the serum lipid metabolite profiles between eosinophilic
and non-eosinophilic AECOPD patients, and to explore the
association between differential lipid metabolites and patients’
clinical and prognostic features, based on the untargeted liquid
chromatography–mass spectrometry (LC-MS) lipidomics
technology. We hypothesized that lipid metabolic profiles were
different between these two phenotypes of AECOPD, and
lipidomics analysis may help elucidate the underlying pathogenesis.

2. Materials and methods

2.1 Study subjects and data collection

Data were collected from 71 AECOPD patients hospitalized in the
Department of Respiratory Medicine and Critical Care Medicine of
Peking University Third Hospital from April 2017 to March 2018.
These patients met the criteria for the diagnosis of acute exacerbation of
COPD, according to the Global Initiative for Chronic Obstructive Lung
Disease (GOLD) guidelines (Global Initiative for Chronic Obstructive
Lung Disease, 2022). The exclusion criteria were as follows: subjects
with other airflow limitation diseases rather than COPD, combination
of pneumonia and active pulmonary tuberculosis, severe liver and
kidney insufficiency, malignancies, an immunosuppressive condition
due to chemotherapy or HIV infection, receiving systemic
glucocorticoids due to COPD exacerbation in the past 1 month, and
severe trauma or stress reaction.

The clinical data included demographic characteristics, smoking
status, comorbidities, presence or absence of hypercapnic
respiratory failure [arterial carbon dioxide partial pressure
(PaCO2) ≥ 50 mmHg], the length of stay (LOS) in the hospital,
and requirement for an intensive care unit (ICU) stay or not. The
time taken for the next exacerbation was also collected.

FIGURE 1
OPLS-DA of LC-MS metabolite profiles between eosinophilic AECOPD and non-eosinophilic AECOPD subjects in electrospray positive ion (ESI+)
mode and electrospray negative ion (ESI−) mode, respectively. Red points represented eosinophilic AECOPD subjects, while blue points represented
non-eosinophilic AECOPD subjects. OPLS-DA, orthogonal projections to latent structures-discriminate analysis; LC-MS, liquid chromatography-mass
spectrometry; AECOPD, acute exacerbation of chronic obstructive pulmonary disease; POS, electrospray positive ion mode; NEG, electrospray
negative ion mode.
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TABLE 2 Differentially expressed metabolites between eosinophilic and non-eosinophilic patients.

Metabolite Median
m/z

Median
RT (s)

MS2.
score

Mean non-
eosinophilic

Mean
eosinophilic

log2fc p.t-test p.t.adj VIP

Positive-ion mode (ESI +)

TAG (12:0/12:0/22:3) 795.611 424.092 0.876 2.24 × 10−4 1.69 × 10−4 −0.405 5.60 ×
10−4

0.040 2.147

TAG (12:1/12:3/12:3) 647.423 155.660 0.876 3.27 × 10−6 1.93 × 10−6 −0.756 6.50 ×
10−4

0.042 2.088

TAG (13:1/22:5/22:5) 933.671 660.639 0.880 1.54 × 10−5 2.30 × 10−5 0.576 1.23 ×
10−4

0.022 2.469

TAG (14:0/18:2/18:2) 849.695 655.631 0.976 4.48 × 10−4 6.61 × 10−4 0.559 6.20 ×
10−4

0.042 2.258

TAG (14:3/21:5/22:0) 934.675 659.682 0.975 1.26 × 10−5 1.93 × 10−5 0.615 2.59 ×
10−4

0.033 2.167

TAG (15:0/20:5/20:5) 907.657 656.299 0.882 5.00 × 10−6 8.04 × 10−6 0.685 6.48 ×
10−4

0.042 2.101

TAG (15:0/21:3/21:3) 938.819 643.019 0.515 9.23 × 10−6 1.70 × 10−5 0.878 5.78 ×
10−4

0.040 2.092

TAG (16:0/18:1/18:2) 874.699 643.315 0.958 1.50 × 10−4 2.48 × 10−4 0.723 4.96 ×
10−4

0.038 2.452

TAG (16:0/18:2/18:3) 870.756 660.559 0.834 9.80 × 10−4 1.65 × 10−3 0.752 5.56 ×
10−4

0.040 2.148

TAG (16:1/16:1/18:3) 847.680 637.878 0.903 1.17 × 10−4 2.03 × 10−4 0.794 3.54 ×
10−4

0.037 2.341

TAG (16:2/18:2/18:3) 866.673 655.307 0.577 3.17 × 10−5 4.09 × 10−5 0.369 6.43 ×
10−4

0.042 2.306

TAG (17:0/17:2/17:2) 863.676 639.317 0.910 2.04 × 10−5 3.32 × 10−5 0.703 3.13 ×
10−5

0.015 2.632

TAG (18:1/18:1/21:5) 941.703 660.805 0.885 4.19 × 10−5 6.54 × 10−5 0.644 4.18 ×
10−4

0.037 2.081

TAG (20:4/22:7/22:7) 1,017.690 84.972 0.876 2.21 × 10−5 3.64 × 10−5 0.725 4.10 ×
10−4

0.037 2.529

TAG (20:5/22:7/22:7) 1,015.664 83.199 0.876 4.07 × 10−5 5.96 × 10−5 0.552 8.86 ×
10−5

0.021 2.903

TAG (20:6/20:6/22:5) 991.674 83.242 0.876 6.68 × 10−5 1.20 × 10−4 0.849 9.28 ×
10−5

0.021 2.640

TAG (20:6/22:7/22:7) 1,013.656 83.220 0.876 1.79 × 10−4 2.74 × 10−4 0.610 3.01 ×
10−5

0.015 2.962

LPC (16:0) 496.340 83.237 0.982 9.99 × 10−3 1.36 × 10−2 0.448 3.75 ×
10−5

0.016 3.021

LPC (20:2) 548.359 112.762 0.852 4.67 × 10−5 6.71 × 10−5 0.523 9.73 ×
10−5

0.021 2.740

PC (14:1e/22:6) 762.564 315.218 0.811 4.35 × 10−6 5.89 × 10−6 0.436 4.74 ×
10−4

0.038 1.110

DGTS (21:1/21:1) 848.683 637.876 0.641 6.72 × 10−5 1.20 × 10−4 0.838 1.25 ×
10−4

0.022 2.380

DGTS (26:0/16:1) 850.699 655.426 0.515 2.63 × 10−4 3.83 × 10−4 0.542 4.42 ×
10−4

0.037 2.297

DGTS (3:0/21:0) 600.467 83.235 0.620 1.74 × 10−5 2.53 × 10−5 0.543 7.55 ×
10−4

0.044 2.356

ACar (26:7) 526.377 112.711 0.587 1.74 × 10−4 2.26 × 10−4 0.374 3.84 ×
10−4

0.037 2.866

(Continued on following page)
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A blood routine test and blood biochemical examination were
performed in the clinical laboratory of our hospital. The peripheral
blood cell count and classification, fibrinogen, D-dimer, total
cholesterol, total triglyceride, and other laboratory parameters
were recorded. Our patients were grouped according to the
percentage of eosinophils (EOS) in peripheral blood. Non-
eosinophilic AECOPD was defined as having blood EOS%< 2%
and eosinophilic AECOPD as having blood EOS ≥ 2%.

All subjects or their close relatives participating in this study
signed an informed consent before data collection. The study
procedures were performed in compliance with the Declaration

of Helsinki (1964), and the study protocol was approved by the
Ethics Committee of Peking University Third Hospital (M2017410).

2.2 LC-MS analysis

2.2.1 Serum sample collection and preparation
Fasting (after at least 8 h) peripheral blood samples were

collected from patients using vacuum blood collection tubes. The
blood samples were left at room temperature for approximately
30 min until complete clotting, and then, the samples were

TABLE 2 (Continued) Differentially expressed metabolites between eosinophilic and non-eosinophilic patients.

Metabolite Median
m/z

Median
RT (s)

MS2.
score

Mean non-
eosinophilic

Mean
eosinophilic

log2fc p.t-test p.t.adj VIP

PEtOH (22:0/26:0) 918.755 640.810 0.796 6.16 × 10−5 1.03 × 10−4 0.747 2.14 ×
10−4

0.029 2.037

PMeOH (24:4/24:4) 888.656 628.171 0.947 7.93 × 10−6 1.21 × 10−5 0.607 3.80 ×
10−4

0.037 1.982

Negative-ion mode (ESI -)

HexCer/NS (d14:2/40:2) 972.837 692.336 0.567 1.35 × 10−5 1.06 × 10−5 −0.353 5.87 ×
10−3

0.123 2.412

PI (16:0/18:1) 835.519 273.846 0.815 1.81 × 10−4 2.48 × 10−4 0.452 2.46 ×
10−3

0.077 1.965

SQDG (18:3/26:4) 947.607 85.781 0.826 2.70 × 10−5 4.12 × 10−5 0.611 9.92 ×
10−3

0.156 1.799

SQDG (23:0/22:5) 965.616 449.079 0.876 2.63 × 10−5 2.19 × 10−5 −0.264 5.88 ×
10−2

0.311 1.559

TAG [17:0/22:1 (13Z)/22:3
(10Z,13Z,16Z)] [iso6]

979.846 688.173 0.898 1.43 × 10−5 1.08 × 10−5 −0.400 2.68 ×
10−2

0.229 2.192

RT, retention time; log2fc, log2 transformed fold change; p. t-test, p-value of the t-test; p.t.adj, FDR-adjusted p-value of the t-test; VIP, variable importance projection.

Lipid metabolites: TAG, triacylglycerol; LPC, lysophosphatidylcholine; PC, phosphatidylcholine; DGTS, diacylglyceryl trimethylhomoserine; ACar, acylcarnitine; PEtOH, phosphatidylethanol;

PMeOH, phosphatidylmethanol; HexCer/NS, hexosylceramide non-hydroxyfatty acid-sphingosine; PI, phosphatidylinositol; SQDG, sulfoquinovosyl diacylglycerol.

FIGURE 2
Heat map presenting 32 differential lipid metabolites between eosinophilic AECOPD and non-eosinophilic AECOPD subjects.
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centrifuged at 4°C at 2,500 × g for 15 min. The upper serum samples
were extracted and then placed in frozen storage at −80°C.

2.2.2 Lipid metabolite extraction
After being reheated and dissolved, 100 μL of the serum sample

was transferred into an EP tube, and then, 480 μL of the extract
solution (methyltert-butylether: methanol = 5:1) was added to the
sample. After vortexing and mixing for 30 s, the samples were
sonicated in an ice water bath for 10 min. After incubating
at −40°C for 1 h, the sample was centrifuged at 3,000 rpm for
15 min at 4°C. Then, 350 μL of the supernatant was transferred
to a fresh EP tube and vacuum dried. A measure of 200 μL of the
solution (DCM: MeOH = 1:1) was added to reconstitute the dried
samples. Then, the solution was vortexed for 30 s and sonicated in
an ice water bath for 10 min. A measure of 75 μL of the supernatant
was placed in a fresh glass vial for LC-MS analysis. A quality control
(QC) sample was prepared by mixing an equal aliquot (10 μL) of the
supernatants from each subject’s sample.

2.2.3 LC-MS analysis procedure
After lipid metabolite extraction was carried out, an ultra-high-

performance liquid chromatograph (ExionLC, AB SCIEX,
United States) was used to separate the target compounds using
a Phenomenex Kinetex C18 (2.1 mm × 100 mm, 1.7 μm,
Phenomenex, United States) liquid chromatography column.
High-resolution mass spectrometry data acquisition was
performed in information-dependent acquisition (IDA) mode,
utilizing a triple TOF 5600 mass spectrometer (AB SCIEX,
United States). The data acquisition software application (Analyst
TF 1.7, AB Sciex) conducts primary acquisition, followed by
automated ion selection and secondary mass spectrometry data
collection based on predetermined criteria derived from primary
mass spectrometry data. In each cycle, the most intensive
12 precursor ions with intensities over 100 were selected for

secondary mass spectrometry scanning. The energy of collision-
induced dissociation was 45 eV, and the accumulation time of each
secondary spectrum was 50 ms. The ion source parameters are as
follows: GS1 60 psi, GS2 60 psi, CUR 30 psi, TEM 600°C, DP 100 V,
ISVF 5,000 V (ESI + mode), and −3800 V (ESI − mode).

2.2.4 Data preprocessing and annotation
The mass-to-charge ratio (m/z) and retention time (RT)

information of the test samples were determined by liquid
chromatography–mass spectrometry (LC-MS), and then, XCMS was
used for retention time correction, peak identification, peak extraction,
peak integration, and peak alignment. Minfrac was set as 0.5, and the
cutoff was set as 0.3. Them/z of the substances in the LipidBlast database
was matched with RT. In the qualitative process, the score value of the
secondary qualitative metabolites was calculated based on the Euclidean
distance and the dot product algorithm, which improved the accuracy of
the mass spectrum annotation. XCMS parameters were set as follows:
centWave, ppm 10, peak width 5–20, and SN 3; prefiltering step: the
metabolites could be retained only if it contained at least three peaks of
intensity ≥ 1,000. The function used to calculate the m/z center of the
chromatographic peak was wMean, which was the intensity weighted
average of the m/z values of the peak. The minimum m/z dimension
difference required for peaks with overlapping retention times
was −0.001. Then, lipid metabolite identification was achieved
through a spectral match using the LipidBlast library. Finally, a total
of 2,431 lipid metabolites in the ESI + mode and 1,821 lipid metabolites
in the ESI − mode were detected for further multivariate analysis.

2.3 Statistical analysis

The baseline data were compared between the patients with the
percentage of peripheral eosinophils ≥ 2% and <2% using Student’s
t-test for continuous and Pearson’s chi-squared test or Fisher’s exact

TABLE 3 Nine lipid metabolites and their association with clinical featuresa.

Metabolite Preliminary screening Eosinophil Hypercapnic respiratory
failure

Need for ICU Fibrinogen

log2fc p.t.adj VIP β p.adj OR (95% CI) p.adj OR (95% CI) p.adj β p.adj

TAG (20:6/20:6/22:5) 0.849 0.021 2.640 1.186 0.001 0.377 (0.211, 0.675) 0.011 0.433 (0.236, 0.792) 0.028 −0.426 0.004

TAG (20:6/22:7/22:7) 0.610 0.015 2.962 0.807 0.001 0.230 (0.095, 0.554) 0.011 0.224 (0.088, 0.575) 0.023 −0.618 0.005

TAG (20:5/22:7/22:7) 0.552 0.021 2.903 0.731 0.001 0.228 (0.090, 0.578) 0.012 0.198 (0.071, 0.554) 0.023 −0.694 0.004

LPC (20:2) 0.523 0.021 2.740 0.663 0.001 0.259 (0.098, 0.685) 0.024 0.204 (0.064, 0.649) 0.028 −0.771 0.004

TAG (17:0/17:2/17:2) 0.703 0.015 2.632 0.637 0.003 0.264 (0.099, 0.703) 0.024 0.203 (0.059, 0.698) 0.036 −0.689 0.005

DGTS (3:0/21:0) 0.543 0.044 2.356 0.628 0.012 0.200 (0.075, 0.534) 0.011 0.286 (0.121, 0.672) 0.028 −0.686 0.001

LPC (16:0) 0.448 0.016 3.021 0.563 0.001 0.126 (0.036, 0.449) 0.011 0.103 (0.024, 0.439) 0.023 −0.987 0.004

ACar (26:7) 0.374 0.037 2.866 0.498 0.001 0.174 (0.050, 0.607) 0.024 0.124 (0.028, 0.548) 0.028 −1.162 0.001

TAG (16:2/18:2/18:3) 0.369 0.042 2.306 0.341 0.012 0.175 (0.043, 0.712) 0.028 0.104 (0.019, 0.570) 0.033 −0.836 0.025

a: Association of every one-fold increase of a marker with clinical features. Markers were considered the response variable for EOS, while the predictor variable for the other three clinical

features.

Abbreviation: EOS, percentage of peripheral eosinophils; RF, respiratory failure; log2fc, log2 transformed fold change; p.t.adj, FDR-adjusted p-value for the t-test; VIP, variable importance

projection; β, log2 transformed fold change after adjusting for age, sex, BMI, smoking status, serum total cholesterol, and triglyceride; p. adj, FDR-adjusted p-value.

Lipid metabolites: TAG, triacylglycerol; LPC, lysophosphatidylcholine; DGTS, diacylglyceryl trimethylhomoserine; ACar, acylcarnitine.
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test for categorical variables. The numerical variables were presented
as the mean value and standard deviation (SD), while the categorical
variables were expressed as numbers and percentages.

Significance of the difference between the two groups was analyzed
for each lipid using Student’s t-test, and an FDR-adjusted p-value <
0.05 was considered significant. The fold changes of each lipid were
calculated on the basis of the average in each group. Orthogonal
projections to latent structure discriminant analysis (OPLS-DA) was
applied to obtain a high level of group separation and a good
understanding of the variables responsible for classification, and the
first principal component of the variable importance projection (VIP)
was obtained. VIP values exceeding 1.0 with an adjusted p-value <
0.05 in the Student’s t-test were selected to correspond to potential lipid
biomarker candidates. To control the possible influences of some
factors, such as age, sex, BMI, smoking status, serum total
cholesterol, and triglyceride, linear regression was performed for
each lipid. The lipids with an FDR-adjusted p-value < 0.05 from the
Wald statistic were retained as potential lipid biomarkers.

We also checked the associations between the percentage of
peripheral eosinophils and other clinical features. Linear regression
or generalized linear regression was performed for each potential
lipid biomarker and clinical features significantly associated with the

percentage of peripheral eosinophils to determine more
characteristic lipid metabolites. Then, the least absolute shrinkage
and selection operator (LASSO) was applied to downsize these lipid
metabolites for discriminating eosinophilic and non-eosinophilic
AECOPD, while the largest value of lambda, whose corresponding
misclassification error was within one standard error of the
minimum misclassification error, known as “1-se” lambda, was
defined as the optimal value. A logistic regression model was
fitted using these selected markers as the covariates to obtain a
combined screening score. The predictability of the model was
evaluated by using the area under receiver operation
characteristic curve (ROC).

All the analyses were conducted using R version 4.0.5, with the
following packages being used: “ropls,” “glmnet,” and “pROC”. A
two-sided p-value of < 0.05 was considered statistically significant.
All data were analyzed anonymously.

3 Results

3.1 Clinical characteristics

As shown in Table 1, the mean age of our patients was 74.1 ±
9.6 years, and 87.3% of these patients were male, where 59.2% and
31.0% were former and current smokers, respectively. The age, sex
proportion, body mass index, tobacco exposure, and comorbidities
were not different between eosinophilic and non-eosinophilic
AECOPD patients. Serum triglyceride and cholesterol levels were
similar between the groups. Eosinophilic AECOPD patients had less
hypercapnic respiratory failure, less ICU admission, and shorter
LOS in the hospital, as well as a lower fibrinogen level. The time
taken for the next exacerbation was not statistically different.

3.2 Lipid metabolite profiling difference
between eosinophilic and non-eosinophilic
AECOPD

Log2 transformation was performed before statistics analysis.
First, OPLS-DA was performed. As shown in Figure 1, OPLS-DA
plots both demonstrated a barely clear separation between
eosinophilic and non-eosinophilic AECOPD, with most samples
being within the 95% confidential interval with the exception of one
non-eosinophilic sample. The R2Y values of the OPLS-DA model in
ESI + and ESI − modes were 0.562 and 0.688, respectively, and the
Q2Y values were 0.076 and 0.057, respectively. A total of 838 and
616 lipids had a VIP score > 1 in ESI + and ESI − modes,
respectively. Subsequently, a t-test with FDR-adjusting values and
fold changes was conducted to compare the difference between the
mean concentrations of lipid species between the two groups. In this
process, a total of 32 lipid metabolites (26 in ESI + and 6 in ESI −
modes) met both FDR-adjusted p < 0.05 and VIP > 1, and were
selected as potential candidate metabolites.

To further control the possible influencing factors, such as age,
sex, BMI, smoking status, serum total cholesterol, and triglyceride, a
linear regression model was structured for each candidate, and lipids
with an FDR-adjusted p-value < 0.05 from the Wald statistic were
retained in this model. It turned out that all the 32 candidate

FIGURE 3
LASSO analysis and cross-validation to identify the most
characteristic lipid biomarkers. (A) Nine potential lipid biomarkers
were included in the model for seven-fold cross-validation, in which
lambda.min and lambda.1se were determined. Accordingly,
lambda.1se was selected as the optimal value and there were three
corresponding lipid metabolites at this optimal value. (B) Coefficient
profiles of nine potential lipid biomarkers corresponding to different
lambda values in LASSO analysis. LPC (16:0), TAG (17:0/17:2/17:2), and
LPC (20:2) were retained in this model at lambda.1se = 0.059.
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metabolites were retained. Therefore, a total of 32 lipid metabolites
(Table 2) were selected as potential biomarkers, and they were
mapped to show the clear difference between the two groups
(Figure 2).

In the ESI + mode, the levels of most of triacylglycerols (TAGs),
lysophophatidylcholines (LPCs), and diacylglyceryl
trimethylhomoserine (DGTSs) were significantly higher in the
eosinophilic AECOPD patients than those in the non-
eosinophilic patients, except TAG (12:0/12:0/22:3) and TAG (12:
1/12:3/12:3). In the ESI − mode, the levels of PI (16:0/18:1), PIM1
(18:0/18:0), and SQDG (18:3/26:4) were significantly higher in the
eosinophilic AECOPD patients.

3.3 Integration analysis between clinical
characteristics and differential lipid
metabolites

The correlation analysis between the 32 lipid metabolites and
the clinical characteristics of all the AECOPD patients is shown
in Supplementary Figure 1. The most significant clinical
characteristics correlated with lipid metabolites were body
mass index, D-dimer, fibrinogen, total cholesterol, hypercapnic
respiratory failure, and ICU admission. We further analyzed the
associations between each of these 32 metabolites and the clinical
features which were different between the eosinophilic and non-
eosinophilic AECOPD, including hypercapnia respiratory
failure, need for ICU admission, and fibrinogen. There were
nine differential lipid metabolites associated with each of the
three features (Table 3). Most of them have a negative association
with these three features.

In order to identify the most characteristic lipid biomarkers for
the eosinophilic AECOPD phenotype, LASSO regression was
applied to further screen the potential biomarkers. As shown in
Figure 3A, all the nine different lipid metabolites associated with the
eosinophilic phenotype and clinical features were included in a 7-
fold cross-validation (CV) and a CV plot was generated, in which the
lambda.min and lambda.1se values were determined. Based on
lambda.1se, three lipid metabolites were retained, which were
LPC (16:0), TAG (17:0/17:2/17:2), and LPC (20:2) (Figures 3A,
B). All of these three lipid metabolites were high in patients with
eosinophilic AECOPD. Next, logistic regression models were fitted
by individually using each of the three selected markers as the
covariate, as well as using them together to obtain the individual
screening scores and a combined score, respectively. The
predictability of the models was evaluated by the area under
ROC curve. As shown in Figure 4, the area under the ROC curve
values of LPC (16:0), TAG (17:0/17:2/17:2), and LPC (20:2) were
0.790, 0.787, and 0.756, respectively. In addition, the AUC reached
0.834 (95% CI: 0.740–0.929) when including all the three markers
together, which meant this model had an excellent discriminative
capacity to distinguish eosinophilic AECOPD and non-eosinophilic
AECOPD.

4 Discussion

Our study demonstrated the unique characteristics of lipid
profiles measured using LC-MS in a group of hospitalized
AECOPD patients and indicated that alterations in lipid
metabolism were involved in the pathogenesis of the eosinophilic
phenotype. In our study, we observed that nine lipid metabolites

FIGURE 4
Receiver operating characteristic (ROC) curve of the diagnostic predictionmodelwith three LASSO-selectedmarkers, namely, LPC (16:0), TAG (17:0/17:2/17:
2), and LPC (20:2). The combined prediction performance of these three biomarkers was superior to the individual prediction performance of each biomarker.
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were significantly associated with the difference in clinical features
and prognosis between the eosinophilic and non-eosinophilic
phenotypes, which were enriched in triglycerides and
phospholipid metabolic pathways and were expected to be
potential biomarkers for AECOPD patients and help explain the
mechanisms of different clinical outcomes in the eosinophilic
phenotype. Furthermore, three lipid metabolites were further
screened using LASSO, including LPC (16:0), TAG (17:0/17:2/17:
2), and LPC (20:2). Their combination was reliable to predict the
clinical prognosis of AECOPD patients in different phenotypes.

Triglycerides are lipids containing three glyceryl groups (Fahy
et al., 2005; Liebisch et al., 2020) and are mainly found in the adipose
tissue (Chaurasia et al., 2016; Wu et al., 2020). Few studies have
explored the characteristics and mechanisms of triglyceride
metabolism of eosinophilic COPD. Our data showed that some
species of TAGs were higher in those with eosinophilic AECOPD. In
previous studies, high triglycerides and low HDL-C played an
important role in type 2 inflammation in asthmatic patients
(Barochia et al., 2017; Chanachon et al., 2022); the mechanism
may be that free fatty acids released by triglycerides promoted
inflammation by activating NF-κB signaling in mononuclear cells
and enhancing reactive oxygen species generation (Tucker et al.,
2020). Additionally, fatty acid synthesis or uptake and subsequent
TAG synthesis were also significantly enhanced after inflammatory
activation (Tucker et al., 2020). Airway inflammation in eosinophilic
COPD and asthma were likely to share a similar mechanism, which
could partly explain why some species of TAGs were increased in
those with eosinophilic AECOPD. However, the increased levels of
these species of TAGs in eosinophilic AECOPDwere associated with
better clinical outcomes and less systemic inflammation (a lower
fibrinogen level) in our study, which seemed to contradict previous
studies. A deficiency of lysosomal acid lipase could lead to disruption
of triglyceride and cholesterol ester metabolism in alveolar
macrophages, leading to respiratory inflammation, tissue
remodeling, and emphysema (Lian et al., 2004; Lian et al., 2005).
In addition, inflammation also increased the activity of
angiopoietin-like protein, an inhibitor of lipoprotein lipase, which
further prevented the metabolism of triglyceride-rich lipoproteins
and led to elevated triglyceride levels (Lu et al., 2010). Triglycerides
were associated with airflow obstruction and wheezing in asthma
patients (Fenger et al., 2013; Barochia et al., 2015; Chanachon et al.,
2022). However, inconsistent results between previous studies and
ours may be related to different study population and disease
statuses. In addition, very few studies elucidated the relevant
mechanism of the effect of triglyceride species on eosinophil
proliferation, activity, and function. The alteration of TAG
metabolism and its role in the pathogenesis of eosinophilic
COPD need to be further investigated.

Phospholipids are lipids containing phosphoric acid (Fahy
et al., 2005; Liebisch et al., 2020) and are the main components
of the biological membrane. Phospholipase A2 splits phospholipids
into lysophospholipids (a kind of phospholipid containing a single
fatty acid) and fatty acids. In our study, LPC (16:0) and LPC (20:2)
were increased in eosinophilic AECOPD and associated with fewer
hypercapnic respiratory failures, shorter ICU stay, and lower
fibrinogen level. The physiological role of LPC in inflammation
was complicated. In previous literature, LPCs could exhibit
proinflammatory or anti-inflammatory activity under different

conditions. Under certain pathophysiological conditions, LPC
can be used as a proinflammatory substance. The mechanism
may be that LPC-dependent NADPH oxidase can stimulate the
production of reactive oxygen species, thus promoting the
transformation of pro-cytokines into their mature bioactive
forms (such as IL-1β, IL-18, and IL-33), promoting the
occurrence of inflammation (Schilling and Eder, 2010).
However, under other conditions, some polyunsaturated LPCs
(such as LPC 20:4, LPC 20:5, and LPC 22:6) can exhibit anti-
inflammatory effects. The mechanism may be to downregulate the
formation of pro-inflammatory mediators (such as IL-5, IL-6, NO,
12-hydroxy eicosapentaenoic acid, and LPC16:0-induced PGE2)
and upregulate the expression of anti-inflammatory mediators (IL-
4 and IL-10) by reducing leukocyte exosmosis and plasma leakage
(Riederer et al., 2010; Hung et al., 2011; Hung et al., 2012). In our
study, elevated levels of several LPCs were found to have negative
correlations with fibrinogen in eosinophilic AECOPD patients,
suggesting that systemic inflammatory responses may be weaker
and clinical outcomes may be better, and that LPC may have a
protective effect in eosinophilic AECOPD patients. Regarding the
association between LPC and eosinophilic AECOPD phenotypes,
we speculated the mechanism as follows: eosinophils had been
demonstrated to express high levels of phospholipase A2 (Blom
et al., 1998), which can cleave phosphatidylcholine into LPC and a
free fatty acid and increase the level of LPC. Additionally, LPC
could induce eosinophils to adhere on and infiltrate into the airway
wall (Nishiyama et al., 2004; Zhu et al., 2007). However, most
previous studies were based on allergic diseases, such as asthma and
allergic rhinitis. The saturated or unsaturated fatty acid chains on
LPC species may exhibit different effects on inflammation.
Therefore, these issues should be addressed in further studies.

In our study, we also found that eosinophilic AECOPDpatients had
better clinical outcomes, with shorter hospital stays, fewer cases of
respiratory failure, and a lower rate of ICU admission during
hospitalization. These results were similar to those found in a meta-
analysis. In this analysis, eosinophilic AECOPD (blood eosinophilia ≥
2% or 0.34 × 109 cells/L) had a better prognosis (lower risk of in-hospital
mortality, shorter stay in hospital, and lower risk of arrhythmia) (You
and Shi, 2021). Although studies showed a higher risk of readmission
(shorter first COPD-related readmissions and an increased number of
12-month COPD-related readmissions) in eosinophilic AECOPD
patients, our study did not suggest an increase in the risk of acute
exacerbations again (Peng et al., 2021).

This study included the following limitations: 1) since our study
results were drawn from a small sample size, further studies are
needed to elucidate the relation between lipid metabolism and
phenotypes of AECOPD. 2) The Q2Y value in OPLS-DA was
relatively low, which meant the estimates from the model were
probably on the lower side. This may be due to a possible small
difference between the whole lipid profiles of the two groups and the
small sample size. However, a combination of several lipids could
model well in the discrimination. In future, we would verify the
relationship between these lipid metabolites and disease phenotypes
in a prospective study. 3) In this study, we did not observe
differences in serum lipid metabolic profiles between the two
groups before and after the treatment, and it would be of great
significance in elucidating the mechanism if we could observe the
dynamic changes in lipid metabolites with the treatment time.
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In conclusion, our LC-MS analysis demonstrated that patients with
eosinophilic AECOPD had a unique serum lipid metabolite profile that
could be used to differentiate them from non-eosinophilic AECOPD
patients. TAGs and LPCs were significantly increased in eosinophilic
phenotypes and associated with less hypercapnic respiratory failure and
ICU admission, as well as a lower fibrinogen level, suggesting that these
lipid species can serve as biomarkers and play an important role in the
pathogenesis of COPD exacerbation. Further studies regarding the
mechanisms around lipid metabolism and metabolic pathways will
help develop potential therapeutic targets for patients with COPD.
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Serum metabolomics analysis
of biomarkers and metabolic
pathways in patients with
colorectal cancer associated
with spleen-deficiency and
qi-stagnation syndrome or
damp-heat syndrome: a
prospective cohort study

Min Zou1†, Yan-Sheng Zhang2†, Jin-Kai Feng3†, Hao Tu4,
Ming-Bin Gui1, Ya-Nan Wang1, Zi-Jie Yang1,
Zeng-Qiang Yang5†, Ming Xu1, Wei-Qiang Wu1 and Feng Gao1*

1Department of Colorectal and Anal Surgery, The 940th Hospital of Joint Logistics Support Force of
Chinese People’s Liberation Army, Lanzhou, China, 2Department of Obstetrics and Gynecology,
Gansu Provincial Maternity and Child-Care Hospital, Lanzhou, China, 3Department of Hepatic Surgery
VI, The Third Affiliated Hospital of Naval Medical University (Eastern Hepatobiliary Surgery Hospital),
Shanghai, China, 4Department of Colorectal Surgery, Chongqing Qijiang District People’s Hospital,
Chongqing, China, 5Department of Colorectal Surgery, Gansu Provincial Central Hospital,
Lanzhou, China
Objective: To profile the serum metabolites and metabolic pathways in

colorectal cancer (CRC) patients associated with spleen-deficiency and qi-

stagnation syndrome (SDQSS) or damp-heat syndrome (DHS).

Methods: From May 2020 to January 2021, CRC patients diagnosed with

traditional Chinese medicine (TCM) syndromes of SDQSS or DHS were

enrolled. The clinicopathological data of the SDQSS and DHS groups were

compared. The serum samples were analyzed by liquid chromatography-mass

spectrometry (LC-MS). The variable importance in the projection >1, fold

change ≥3 or ≤0.333, and P value ≤0.05 were used to identify differential

metabolites between the two groups. Furthermore, areas under the receiver

operating characteristic (ROC) curve > 0.9 were applied to select biomarkers

with good predictive performance. The enrichment metabolic pathways were

searched through the database of Kyoto Encyclopedia of Genes and Genomes.

Results: 60 CRC patients were included (30 SDQSS and 30 DHS). The level of

alanine aminotransferase was marginally significantly higher in the DHS group

than the SDQSS group (P = 0.051). The other baseline clinicopathological

characteristics were all comparable between the two groups. 23 differential

serum metabolites were identified, among which 16 were significantly up-

regulated and 7 were significantly down-regulated in the SDQSS group

compared with the DHS group. ROC curve analysis showed that (S)-3-methyl-
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2-oxopentanoic acid, neocembrene, 1-aminocyclopropanecarboxylic acid, 3-

methyl-3-hydroxypentanedioate, and nicotine were symbolic differential

metabolites with higher predictive power. The top five enrichment signalling

pathways were valine, leucine and isoleucine biosynthesis; lysosome; nicotine

addiction; fructose and mannose metabolism; and pertussis.

Conclusion: Our study identifies the differential metabolites and characteristic

metabolic pathways among CRC patients with SDQSS or DHS, offering the

possibility of accurate and objective syndrome differentiation and TCM

treatment for CRC patients.
KEYWORDS

colorectal cancer (CRC), metabolomics, liquid chromatography-mass spectrometry
(LC-MS), damp-heat syndrome (DHS), spleen-deficiency and qi-stagnation
syndrome (SDQSS)
Introduction

Colorectal cancer (CRC) is one of the most common malignant

tumors, with the third highest incidence and the second highest

mortality rates in the world (1). According to Cancer Statistics in

China, 2015 (2), the age-standardized morbidity and mortality rates

of CRC in China were 17.81/100 000 and 8.12/100 000, ranking

fourth and fifth, respectively. At present, the treatment options of

CRC mainly include surgical resection, systemic chemotherapy,

molecular targeted therapy, and immunotherapy. Radiation therapy

with or without chemotherapy is used to treat rectal cancer (3). Due

to the advance of diagnostic and treatment techniques of CRC, the

long-term prognosis and quality of life of these patients are greatly

improved. It has been reported that traditional Chinese medicine

(TCM) treatment can inhibit tumor metastasis and growth (4, 5),

accelerate postoperative rehabilitation (6), reduce postoperative

complications (7), and decrease the side effects of chemotherapy

in malignancies (8).

TCM is a unique medical theoretical system in China, and its

therapeutic effect has been proved in clinical practice. Syndrome

differentiation is the characteristic and foundation of disease

diagnosis and treatment in TCM. The Diagnosis and Treatment

Guideline of Malignant Tumors Using TCM issued by the Chinese

Society of Traditional ChineseMedicine (2008 Edition) classifies TCM

syndromes as 6 subtypes (9): spleen-deficiency and qi-stagnation

syndrome (SDQSS), blood stasis and poison obstruction syndrome

(SPOS), damp-heat syndrome (DHS), qi and blood deficiency

syndrome (QBDS), spleen and kidney yang deficiency syndrome

(SKYDS) and liver and kidney yin deficiency syndrome (LKYDS).

Different TCM syndromes reflect various pathological features and

stages of a certain disease. Conventional syndrome differentiation is

mainly depended on the subjective judgment of the attending TCM

physician, lacking the support of objective indicators.

Metabolomics is an integral part of systemic biology, which is a

method of quantitative analysis of all metabolites in organisms
0286
and the relative relationship between metabolites and

pathophysiological changes (10). In recent years, metabolomics

plays an increasingly important role in TCM syndrome

differentiation of various diseases, which shows promising value

in the investigation of biological essence of TCM syndromes (11).

Metabolomics can be used to identify symbolic metabolic

biomarkers distinctive of different TCM syndromes. Nowadays,

the commonly used analytical platforms of metabolomics are

comprised of nuclear magnetic resonance (NMR), mass

spectrometry, high performance liquid chromatography (HPLC)

and their coupling technologies, such as liquid chromatography-

mass spectrometry (LC-MS), gas chromatography-mass

spectrometry (GC-MS) (12, 13).

In this study, LC-MS was used to detect the serum metabolic

components of CRC patients with TCM syndromes of SDQSS or

DHS. We analyzed the differential metabolites of CRC patients with

SDQSS or DHS by multivariate statistical analysis and receiver

operating characteristic (ROC) curve analysis, and identified the

significant enrichment metabolic pathways. This study provides an

objective reference for syndrome differentiation and TCM

treatment of CRC.
Materials and methods

Ethical statement

This prospective cohort study was conducted in according to

the ethical guidelines of Declaration of Helsinki (as revised in 2013).

This study was approved by the Medical Ethics Committee of The

940th Hospital of Joint Logistics Support Force of Chinese People’s

Liberation Army (approval number: 2020KYLL075). Individual

written informed consent was obtained from all patients. Patients’

personal information have been anonymized to protect the privacy

of patients.
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Patients

Patients with pathologically diagnosed CRC who were admitted

to the 940th Hospital of Joint Logistics Support Force of Chinese

People’s Liberation Army from May 2020 to January 2021 were

consecutively enrolled. These patients were divided into the SDQSS

and DHS groups according to TCM syndrome differentiation.

Patients’ fasting peripheral venous blood was collected early in

the morning and the serum was isolated and purified by

centrifugation (1500 g, 10min, and 25°C) within 2h and stored

at -80°C.
Diagnostic criteria

The diagnostic criteria of CRC referred to the Chinese

Colorectal Cancer Diagnosis and Treatment Guidelines (2020

edition) revised by the Chinese Society of Oncology (3). The

TCM syndrome differentiation referred to the TCM Cancer

Diagnosis and Treatment Guidelines (2008 edition) issued by the

Chinese Association of TCM (9). The TCM syndrome of the

patients was independently evaluated by two senior experts of the

Department of TCM from our hospital. If the results were

consistent, the TCM syndrome could be determined; otherwise,

another physician participated in the differentiation until the

correct TCM syndrome was obtained.
Inclusion and exclusion criteria

The inclusion criteria included: (I) histopathologically

diagnosed primary CRC; (II) age between 18 and 75 years; (III)

patients’ TCM syndrome classified as SDQSS or DHS; (IV) patients

did not receive preoperative neoadjuvant chemotherapy or

radiotherapy; and (V) patients had sufficient vital organ functions.

The exclusion criteria included: (I) patients with active infectious

diseases, such as tuberculosis ; (II) patients who had

immunodeficiency diseases, such as AIDS; (III) cases with other

benign colorectal diseases or those without pathological diagnosis of

CRC; (IV) complete clinical data were not available; and (V) patients

who were incapable to cooperate for syndrome differentiation.
CRC serum sample preparation

400 µL of cold methanol was added into 100 µL of serum samples

and then vortex mixed for 60s. The mixture was then centrifuged at

12000 rpm for 10min at 4°C. All supernatant from each sample was

transferred and dried in vacuum. Then the supernatant was dissolved

with 150 µL of 2-chlorobenzalanine and 80% methanol mixed

solution; and was filtered with 0.22 µm membrane to obtain the

prepared samples for LC-MS. 20 µL of each sample was mixed into

QC samples to correct for systematic errors caused by the analytical

instrument (14–17). The remaining samples were subjected to LC-

MS detection (Panomix, Suzhou, China).
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Data processing and multivariate
data analysis

The LC-MS data were processed using the Proteowizard

software (version 3.0.8789) and the XCMS package from R

(version 3.6.3). Multivariate data analysis was achieved on the

normalized LC-MS datasets with software package SIMCA-P

(version 13.0) and the R language ropls package. Principal

component analysis (PCA), partial least squares discriminant

analysis (PLS-DA) and orthogonal partial least squares

discriminant analysis (OPLS-DA) models were constructed to

overview the distribution of different samples. Variable

importance in the projection (VIP) value >1, fold change (FC)

value ≥3 or ≤0.333, and P value ≤0.05 (18) were combined used to

identify the differential metabolites between the two groups.

Furthermore, an area under the ROC curve (AUC) > 0.9 was

applied to select symbolic metabolic biomarkers with good

predictive performance. Metabolite set enrichment analysis

(MSEA) was performed by using online software MetaboAnalyst

4.0 and the Kyoto Encyclopedia of Genes and Genomes

(KEGG) database.
Statistical analysis

For continuous clinical data with normal distributions, means

with standard deviation (SD) were shown, and the student’s t test

was used to compare the differences. For skewed distributed

continuous variables, medians with interquartile range (IQR)

were expressed, and Mann-Whitney U test was used to compare

the differences. Categorical data were exhibited as numbers and

percentages, and compared using chi-square test or Fisher’s exact

test as appropriate. Statistical significance was set as a P value less

than 0.05 (two-tailed). SPSS version 24.0 software (SPSS Inc.,

Chicago, IL) was used for statistical analysis.
Results

Baseline clinicopathological characteristics
of the SDQSS and DHS groups

As shown in Supplementary Figure 1, a total of 60 CRC patients

with qualified serum samples, including 30 patients in the SDQSS

group and 30 patients in the DHS group, were enrolled in this study.

The baseline clinicopathological characteristics of the SDQSS and

DHS groups of CRC patients are shown in Table 1, including sex, age,

body mass index (BMI), primary site of CRC, tumor differentiation

degree and pathological stage, carcinoembryonic antigen (CEA),

carbohydrate antigen 19-9 (CA199), hemoglobin (HGB), red blood

cell (RBC), white blood cell (WBC), platelet counts, alanine

aminotransferase (ALT), aspartate aminotransaminase (AST),

albumin (ALB), total bilirubin (TBil), blood urea nitrogen

(BUN), and serum creatinine (Scr). The level of ALT was

marginally significantly higher in the DHS group than the SDQSS
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TABLE 1 Clinicopathological characteristics of CRC patients with SDQSS or DHS.

Characteristics
SDQSS
(n=30)

DHS
(n=30)

P value

Sex 0.052

Male 17 (56.6%) 24 (80.0%)

Female 13 (43.3%) 6 (20.0%)

Age, years 0.196

≤ 65 12 (40.0%) 17 (56.7%)

> 65 18 (60.0%) 13 (43.3%)

BMI, kg/m2 0.271

≤ 24 18 (60.0%) 16 (53.3%)

> 24 12 (40.0%) 14 (46.7%)

Primary site 0.592

Colon 12 (40.0%) 10 (33.3%)

Rectum 18 (60.0%) 20 (66.7%)

Differentiation degree 0.100

Low 2 (6.7%) 8 (26.7%)

Middle 26 (86.7%) 21 (70.0%)

High 2 (6.7%) 1 (3.3%)

pathological stage 0.073

I 1 (3.3%) 4 (13.3%)

II 16 (53.3%) 8 (26.7%)

III 9 (30.0%) 16 (53.3%)

IV 4 (13.3%) 2 (6.7%)

CEA, ng/ml 0.371

≤ 5 24 (80.0%) 21 (70.0%)

>5 6 (20.0%) 9 (30.0%)

CA19-9, U/ml 1.000

≤ 37 26 (86.7%) 26 (86.7%)

>37 4 (13.3%) 4 (13.3%)

HGB, g/L 135.5 (120.0–140.0) 137.0 (110.5–154.3) 0.589

RBC, 1012/L 4.45 ± 0.34 4.41 ± 0.59 0.744

WBC, 109/L 5.89 ± 1.72 6.34 ± 2.11 0.369

PLT, 109/L 195.6 ± 69.9 207.6 ± 74.8 0.522

ALT, U/L 12.6 ± 6.1 16.5 ± 8.8 0.051

AST, U/L 14.0 (12.75–17.00) 16.0 (13.00–18.25) 0.229

ALB, g/L 38.3 ± 2.8 38.7 ± 3.7 0.667

TBil, umol/L 9.0 (6.60–12.63) 10.7 (7.15–14.33) 0.773

BUN, mmol/L 5.1 (4.18–6.65) 5.8 (4.38–7.45) 0.549

Scr, umol/L 69.5 (62.75–73.0) 72.5 (64.75–84.75) 0.124
F
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CRC, colorectal cancer; DHS, damp-heat syndrome; SDQSS, spleen deficiency and Qi stagnation syndrome; BMI, body mass index; CEA, carcinoembryonic antigen; CA19-9, carbohydrate
antigen 19-9; HGB, hemoglobin; RBC, red blood cell; WBC, white blood cell; PLT, platelet; ALT, alanine aminotransferase; AST, aspartate aminotransferase; ALB, albumin; TBil, total bilirubin;
BUN, blood urea nitrogen; Scr, serum creatinine.
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group (P = 0.051). The other baseline clinicopathological

characteristics were all comparable between the two groups.
Quality control (QC)

Theoretically, all QC samples were identical, but systematic

errors in the process of sample extraction, detection and analysis

were unavoidable, which would lead to potential differences among

QC samples. As shown in Supplementary Figure 2, the QC samples

on PCA score plots of positive and negative ion modes were

clustered with good repeatability, which indicated that the data

were reliable and the database building system was stable.
PCA and PLS-DA analysis of metabolomics
profiles in the SDQSS and DHS groups of
CRC patients

Principal component analysis (PCA) reflects the original state of

metabolomic data. The aggregation and dispersion degree of

samples can be observed from PCA score plots. As shown in

Figure 1, the spatial distribution of principal components in

metabolic spectra of SDQSS and DHS was discrete. The results

demonstrated that there were obvious differences in serum

metabolites between the two TCM syndrome groups.

PLS-DA can specify and group the samples during analysis, and

can discriminate the differences in various samples more sensitively.

As shown in PLS-DA score plot (Figure 2A), a significant separation

of dots in different colors was observed, which also indicated

significant differences existed in serum metabolic spectrum

between the two groups.

In order to confirm there was no overfitting in the PLS-DA

model, a permutation test was conducted. As shown in Figure 2B,

all blue Q2 points from the leftmost were lower than the rightmost

original blue Q2 point, indicating that there was no overfitting in

the PLS-DAmodel, and it could be used to identify the differentially

expressed metabolites and the related metabolic pathways.
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Identification of differential metabolites
among the SDQSS and DHS samples

A total of 3309 metabolites were identified by LC-MS analysis,

of which 2775 were up-regulated and 534 were down-regulated.

According to the selection criteria, 23 differential metabolites were

screened out, among which 16 were significantly up-regulated and 7

were significantly down-regulated in the SDQSS group compared

with the DHS group (Table 2). In addition, 5 differential

metabolites with high predictive accuracy and diagnostic power

were selected (AUC>0.9), including (S)-3-methyl-2-oxopentanoic

acid, neocembrene, 1-aminocyclopropanecarboxylic acid, 3-

methyl-3-hydroxypentanedioate, and nicotine. Among

them, nicotine is the landmark metabolite of the DHS group,

and (S)-3-methyl-2-oxopentanoic acid, neocembrene, 1-

aminocyclopropanecarboxylic acid, 3-methyl-3-hydroxypentanedioate

are the landmark metabolites of the SDQSS group. The box plots and

ROC curves of these 5 metabolites are exhibited in Figure 3.
Hierarchical clustering and
metabolic pathways

Hierarchical clustering is commonly used for unsupervised

clustering. It is performed when taking the relative contents of

metabolites under different experimental conditions as metabolic

levels. The results showed that CRC patients with SDQSS or DHS

syndrome could be distinguished well (Figure 4).

The possible metabolic pathways pertaining to CRC with

SDQSS or DHS were analyzed with MetaboAnalyst 4.0, a free

online metabolomics analysis platform on the basis of high-

throughput KEGG metabolic pathways database. The pathway

impact value was calculated by pathway topology analysis. For

SDQSS versus DHS, the top 5 potential enrichment signalling

pathways were valine, leucine and isoleucine biosynthesis;

lysosome; nicotine addiction; fructose and mannose metabolism;

and pertussis (Figure 5).
BA

FIGURE 1

PCA score plots of the SDQSS and DHS groups. (A) PCA in positive ion mode; (B) PCA in negative ion mode. PCA, principal component analysis;
SDQSS, spleen-deficiency and qi-stagnation syndrome; DHS, damp-heat syndrome.
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BA

FIGURE 2

(A) PLS-DA score plots of the SDQSS and DHS groups; (B) PLS-DA permutation plot. In Figure 2B, the X-axis represents the similarity between the
real grouping of samples and 100 random grouping, and the Y-axis indicates the model evaluation parameters. The cross-validation of PLS-DA
permutation model mainly refers to parameters such as R2X, R2Y, and Q2. R2X is the interpretability of model X variable (independent variable), R2Y
is the interpretability of model Y variable (dependent variable), and Q2 is the predictability of the model. Points R2 and Q2 in the upper right corner
of Figure 2B represent the model parameters of real grouping. Usually, it is better when R2 and Q2 are both larger than 0.5, and the maximum
values of R2 and Q2 are 1. When the R2 value is small, it means that the repeatability in the test set is poor (the background noise is high); when the
Q2 value is small, it indicates that there is high background noise in the test set, or the model has more outlier. Permutation plot can help to
effectively evaluate whether the PLS-DA model is over-fitted. The judging criteria are one of the follows: ① all blue Q2 points are lower than the
rightmost original blue Q2 point from left to right; ② the intersection of the regression line at Q2 in the Y-axis is less than or equal to 0. PLS-DA,
partial least squares discriminate analysis; SDQSS, spleen-deficiency and qi-stagnation syndrome; DHS, damp-heat syndrome.
TABLE 2 Differential metabolites in the serum of CRC patients with SDQSS compared with those with DHS.

Metabolite VIP FC P value FDR
Regulation
direction

AUC CI1 CI2 specificity sensitivity

(S)-3-Methyl-2-oxopentanoic acid 1.97 4.63 3.45E-10
5.28E-
08

up 0.978 0.936 0.995 0.87 0.93

Neocembrene 1.15 437.66 1.65E-09
1.51E-
07

up 0.924 0.861 0.996 0.87 1.00

1-Aminocyclopropanecarboxylic
acid

1.42 3.15 4.31E-08
1.81E-
06

up 0.914 0.834 0.962 0.90 0.90

3-Methyl-3-hydroxypentanedioate 1.95 3.01 8.35E-08
2.96E-
06

up 0.915 0.809 0.983 0.87 0.87

Triacetate lactone 1.64 4.19 2.87E-06
4.60E-
05

up 0.857 0.774 0.933 0.90 0.73

Erucic acid 1.10 3.89 5.86E-06
8.07E-
05

up 0.851 0.769 0.936 0.87 0.73

5-Methyl-2-furancarboxaldehyde 1.53 3.88 9.51E-06
1.17E-
04

up 0.846 0.726 0.908 0.67 0.80

6-Acetyl-D-glucose 1.42 3.64 8.56E-04
3.83E-
03

up 0.76 0.58 0.855 0.67 0.73

Coniferyl alcohol 1.41 3.58 1.00E-03
4.34E-
03

up 0.746 0.634 0.889 0.67 0.77

(S)-beta-Tyrosine 1.46 4.52 1.68E-03
6.41E-
03

up 0.76 0.68 0.844 0.63 0.83

D-erythro-3-Methylmalate 1.03 3.30 1.77E-03
6.68E-
03

up 0.747 0.605 0.851 0.67 0.77

4-Hydroxycinnamic acid 1.67 3.07 7.30E-04
3.37E-
03

up 0.934 0.87 0.975 0.83 0.90

(Continued)
F
rontiers in Oncology
 0690
 frontiersin.org

https://doi.org/10.3389/fonc.2023.1190706
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zou et al. 10.3389/fonc.2023.1190706
B

C D

E

A

FIGURE 3

Box plots and ROC curves of 5 selected differential metabolites with AUC > 0.9. (A) (S)-3-methyl-2-oxopentanoic acid; (B) neocembrene;
(C) 1-aminocyclopropanecarboxylic acid; (D) 3-methyl-3-hydroxypentanedioate; (E) nicotine. ROC, receiver operating characteristic; AUC, the area
under the ROC curve; CI, confidence interval; SDQSS, spleen-deficiency and qi-stagnation syndrome; DHS, damp-heat syndrome.
TABLE 2 Continued

Metabolite VIP FC P value FDR
Regulation
direction

AUC CI1 CI2 specificity sensitivity

9-OxoODE 1.75 3.85 7.60E-07
9.95E-
06

up 0.889 0.772 0.939 0.87 0.87

L-Aspartate-semialdehyde 1.61 3.61 2.00E-06
2.06E-
05

up 0.859 0.74 0.966 0.77 0.87

5-Aminopentanoic acid 1.07 4.14 7.74E-06
6.06E-
05

up 0.842 0.759 0.927 0.80 0.80

D-Sorbose 1.00 3.18 8.56E-04
2.86E-
03

up 0.753 0.622 0.864 0.60 0.83

4-Pyridoxic acid 1.89 0.19 1.04E-04
7.40E-
04

down 0.802 0.664 0.896 0.93 0.77

Mannitol 1-phosphate 1.52 0.15 2.68E-04
1.57E-
03

down 0.758 0.593 0.88 0.97 0.73

Nicotinic acid 1.65 0.29 6.90E-04
3.24E-
03

down 0.756 0.628 0.856 0.77 0.73

O-Acetylcarnitine 1.65 0.14 1.68E-03
6.41E-
03

down 0.737 0.602 0.858 0.87 0.70

Nicotine 1.65 0.06 5.97E-09
3.11E-
07

down 0.938 0.886 0.983 0.97 0.87

D-Mannose 1.46 0.28 2.18E-05
1.39E-
04

down 0.826 0.741 0.914 0.83 0.73

Gluconolactone 1.29 0.27 2.01E-04
8.52E-
04

down 0.783 0.629 0.867 0.93 0.67
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CRC, colorectal cancer; DHS, damp-heat syndrome; SDQSS, spleen deficiency and Qi stagnation syndrome; VIP, variable importance in the projection; FC, fold change; FDR, false discovery rate;
AUC: The area under receiver operating characteristic (ROC) curves; CI1: the lower limit of 95% confidence interval; CI2: the upper limit of 95% confidence interval.
AUC in bold denotes values > 0.9.
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Discussion

CRC is one of the most common malignant tumors and its

incidence and mortality rates are gradually increasing in the world

(1). At present, the diagnosis and treatment of CRC have developed

rapidly, and the prognosis of these patients has greatly improved.

TCM is a unique and long recognized theoretical system in China.

TCM has been widely used as part of adjuvant therapy and

comprehensive treatment for malignancies in clinical practice. The

advantages of integrating TCM and Western medicine are becoming

increasingly obvious, such as relief of postoperative pain, accelerating

postoperative rehabilitation, and reduction of chemotherapeutic side

effects. Syndrome differentiation is the foundation of TCM treatment,

and the accuracy of syndrome differentiation can be interfered

because of the subjectivity of attending doctors. Thus, accurate

differentiation of TCM syndromes based on objective materials and

quantitative biomarkers is particularly important.

TCM holds that CRC is caused by a series of internal and

external negative factors, such as deficiency of vital Qi, weakness of

spleen and stomach, external evils invasion, anxiety and depression,

or improper diet, all of which lead to endogenous dampness and

heat, qi stagnation, blood stasis and toxin stagnation. DHS and

SDQSS are two basic TCM syndromes of CRC. DHS is the

characteristic TCM syndrome type of early stage of CRC, with

clinical manifestations of abdominal distension, mucous bloody
Frontiers in Oncology 0892
stool, red tongue, yellow and greasy fur, and slippery pulse. SDQSS

belongs to the TCM syndrome type of relatively advanced stage of

CRC. Clinically, it is mainly manifested as abdominal pain,

anorexia, mental fatigue, sallow complexion, thin stool, pale

tongue, thin and greasy fur, and thready pulse. There is great

implications to discriminating these two TCM syndromes in

clinical practice, because the TCM treatment approaches mainly

depend on CRC patients’ syndrome types.

Recently, an increasing number of studies have applied

metabolomics to distinguish TCM syndromes of different

diseases. Jiang et al. (19) used nuclear magnetic resonance (NMR)

to analyze the plasma metabolites of diabetic patients with kidney-

yin deficiency syndrome (KYDS), and found that the levels of

creatinine, citric acid, trimethylamine oxide, phenylalanine and

tyrosine were decreased, whereas the levels of alanine, glycine and

taurine were increased, which can be used as the landmark

metabolites for the diagnosis of KYDS. Chen et al. (20) found

that phlegm-dampness stasis syndrome (PDSS) was mainly

attributed to the accumulation of harmful metabolites, while

LKYDS was mainly caused by the lack of protective metabolites.

The serum metabolic patterns in cellular oxidation, inflammatory

reaction and energy metabolism of these two syndromes were

significantly different.

In this study, the clinicopathological characteristics of CRC

patients in the SDQSS and DHS groups were compared. A
BA

FIGURE 5

Bubble diagram (A) and bar chart (B) of enriched metabolic pathways of the SDQSS and DHS groups. SDQSS, spleen-deficiency and qi-stagnation
syndrome; DHS, damp-heat syndrome.
FIGURE 4

Hierarchical clustering heat map of differential metabolites between the SDQSS and DHS groups. SDQSS, spleen-deficiency and qi-stagnation
syndrome; DHS, damp-heat syndrome.
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marginally significant increase of ALT was observed in the DHS

group compared with the SDQSS group (P = 0.051). Next, we used

LC-MS to analyze the metabolic profiles of serum samples from

CRC patients with SDQSS or DHS TCM syndrome. In our study, 23

differential metabolites were identified in the two groups. ROC

curve analysis of these differential metabolites showed that areas

under the ROC curves (AUC) of (S)-3-methyl-2-oxopentanoic acid,

neocembrene, 1-aminocyclopropanecarboxylic acid, 3-methyl-3-

hydroxypentanedioate, and nicotine were larger than 0.9, which

indicated these metabolites were sensitive and specific serum

biomarkers to distinguish CRC patients with SDQSS from those

with DHS.

The characteristic differential metabolite with the highest

discrimination ability for CRC with DHS was nicotine, which was

markedly upregulated in patients with DHS compared with those

with SDQSS. It was reported that 4-(methylnitrosamine)-1-(3-

pyridine)-1-butanone (NNK) derived from nicotine could

promote the formation of cell spheres and increase the expression

of cell surface markers CD44, OCT4, C-MYC and NANOG in

HCT8 and DLD-1 cells (21), while exposure to NNK could

significantly enhance the proliferation and growth ability of CRC

cells. Nicotine could promote the growth and metastasis of CRC

through downregulation of miR-200c (21); it could also stimulate

the invasion and metastasis of colon cancer cells in vitro by

activating the downstream signalling pathways of nAchRs and

p38 MAPK (22, 23). Thus, the remarkable increase of serum

nicotine level in CRC patients with DHS syndrome can reflect a

high risk of postoperative recurrence and metastasis. Regular

monitoring of serum nicotine level in CRC patients with DHS

may assist early detection of tumor recurrence and metastasis in

clinical practice.

The characteristic differential metabolite that was significantly

upregulated in the SDQSS group was 4-hydroxycinnamic acid, an

important polyphenol in the plant manganese-containing acid

biosynthetic pathway, mainly found in cereals, fruits and

vegetables (24). This compound has a range of beneficial

pharmacological properties, including powerful antioxidant, anti-

inflammatory, anti-ulcer (25), and anti-cancer effects (26). Neog

et al. (27). found that the anti-inflammatory effects of

hydroxycinnamic acid were mediated through inhibition of

inflammation-related proteins including nuclear factor kappa B

(NF-kB), inducible nitric oxide synthase (iNOS) and

cyclooxygenase-2 (COX-2). Ko et al. (28) investigated the effects

of 4-hydroxycinnamic acid on the inflammatory response in asthma

using an allergic asthma mouse model. They found that 4-

hydroxycinnamic acid reduced the levels of IL-5 and IL-13 in

bronchoalveolar lavage fluid (BALF), alleviated airway

inflammation and mucus overproduction induced by ovalbumin

exposure. In addition, 4-hydroxycinnamic acid could inhibit the

increased levels of NF-kB, iNOS and COX-2, and also reduced

matrix metalloproteinase-9 (MMP-9) activity and protein levels

(28). The elevated 4-hydroxycinnamic acid level may indicate a

better anti-inflammatory effect in CRC patients with SDQSS

compared to patients with DHS.

On the other hand, in this study, 5 classical metabolic pathways

related to 23 discriminating metabolites were found in the SDQSS
Frontiers in Oncology 0993
and DHS groups. These pathways suggest that severe metabolic

disturbances occur during the development and progression of CRC

with different TCM syndromes. The enrichment of these signalling

pathways may correlate with these syndrome types.

Several limitations of our study should be acknowledged. First,

the sample size of our study is insufficient. Only 30 samples were

enrolled in each of the two groups, which is not large enough for the

confirmative association between metabolic profiles and various

TCM syndromes in CRC patients. With the sample size increased

beyond 60 patients, the variables with marginally significant

difference, such as ALT and pathological stage, may become

statistically significantly different; hence, proper sample collection

practices are needed to avoid confounding effects. Second, the

detailed mechanisms underlying changes of metabolites in

different CRC syndromes should be deciphered with the

integration of transcriptomics and proteomics. Third, healthy

participants were not included as baseline control. Last, there is a

lack of metabolic profiling analysis of tumor tissues from CRC

patients with different syndromes.
Conclusion

Our study identifies the differential metabolites and

characteristic metabolic pathways of CRC patients with SDQSS or

DHS, TCM syndrome offering the possibility of accurate and

objective syndrome differentiation and TCM treatment for CRC

patients. Nevertheless, the results of this study need to be verified by

further research.
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Study design and patients enrollment. DHS, damp-heat syndrome; SDQSS,

spleen-deficiency and qi-stagnation syndrome.

SUPPLEMENTARY FIGURE 2
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Atherosclerosis is a complex vascular disorder characterized by the deposition of
lipids, inflammatory cascades, and plaque formation in arterial walls. A thorough
understanding of its causes and progression is necessary to develop effective
diagnostic and therapeutic strategies. Recent breakthroughs in metabolomics
have provided valuable insights into the molecular mechanisms and genetic
factors involved in atherosclerosis, leading to innovative approaches for
preventing and treating the disease. In our study, we analyzed clinical serum
samples from both atherosclerosis patients and animal models using laser
desorption ionization mass spectrometry. By employing methods such as
orthogonal partial least-squares discrimination analysis (OPLS-DA), heatmaps,
and volcano plots, we can accurately classify atherosclerosis (AUC = 0.892) and
identify key molecules associated with the disease. Specifically, we observed
elevated levels of arachidonic acid and its metabolite, leukotriene B4, in
atherosclerosis. By inhibiting arachidonic acid and monitoring its downstream
metabolites, we discovered the crucial role of this metabolic pathway in
regulating atherosclerosis. Metabolomic research provides detailed insights
into the metabolic networks involved in atherosclerosis development and
reveals the close connection between abnormal metabolism and the disease.
These studies offer new possibilities for precise diagnosis, treatment, and
monitoring of disease progression, as well as evaluating the effectiveness of
therapeutic interventions.

KEYWORDS

atherosclerosis, metabolomics, exacerbating role, metabolism, arachidonic acid

1 Introduction

Atherosclerosis, a widespread cardiovascular condition, exhibits a multifaceted and
heterogeneous pathogenesis (Gao et al., 2016; Khambhati et al., 2018; Sharma et al., 2021).
As a powerful investigative tool, Metabolomics has emerged to enhance our understanding
and unravel the molecular mechanisms underlying atherosclerosis (Ren et al., 2016; Giunchi
et al., 2019; Chen et al., 2021; Yang et al., 2021). Metabolomics encompasses a systematic
approach that explores the metabolites within an organism, unravelling intricate
associations between metabolites and diseases. This comprehensive methodology
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provides profound insights into disease development and
progression (Zhao et al., 2018; Tian et al., 2022; Xiao et al., 2022;
Zhang et al., 2022). First, metabolomics offers comprehensive
metabolic profiling by examining compositional and quantitative
metabolite changes within cells, tissues, or organisms. This
analytical technique unveils metabolic aberrations intimately
linked to atherosclerosis, including lipid metabolism, glucose
metabolism, amino acid metabolism, and other pivotal pathways
crucial for comprehending atherosclerotic pathogenesis. Secondly,
metabolomics analysis contributes to the identification and
discovery of prospective biomarkers. Early diagnosis of
atherosclerosis is of utmost importance, yet conventional clinical
examination techniques have limitations. Through metabolomics
research, we strive to ascertain metabolic biomarkers associated with
atherosclerosis, refining the precision and sensitivity of early
diagnosis. This pursuit facilitates early intervention and treatment
opportunities for patients.

Matrix-assisted laser desorption/ionization (MALDI) represents
an innovative metabolomics analysis approach that surpasses
conventional methodologies such as liquid chromatography-mass
spectrometry (LC-MS) and nuclear magnetic resonance (NMR)
(Schubert and Kostrzewa, 2017; Calvano et al., 2018; Xu et al.,
2019; Ashfaq et al., 2022). Initially, MALDI boasts high-throughput
capabilities and exceptional sensitivity. Atherosclerosis, being a
complex ailment characterized by diverse metabolic pathways
and metabolites, necessitates rapid analysis of numerous samples
(Ly et al., 2016; Moreno-Gordaliza et al., 2017; Duan et al., 2022).
MALDI technology caters to this requirement, enabling high-
throughput analysis and fostering a comprehensive
understanding of metabolite composition and alterations.
Furthermore, MALDI streamlines sample preparation by
minimizing the steps involved in sample preprocessing. This
reduction mitigates sample loss and variability, bolstering the
reliability and repeatability of data. Secondly, MALDI exhibits an
advantage in the analysis of small molecule metabolites.
Atherosclerosis-related metabolic anomalies primarily involve
small molecule metabolites such as lipid metabolites and glucose
metabolites. Compared to LC-MS, MALDI excels in ionising and
detecting small molecular compounds (Sun et al., 2016; Yan et al.,
2017; Torata et al., 2018; Ferey et al., 2019). This attribute empowers
the detection of metabolites at lower concentrations, amplifying the
detection range and sensitivity of metabolites. In conclusion,
MALDI, as a rapid, high-throughput, sensitive, and spatially-
resolved metabolomics analysis technique, provides an effective
tool for unravelling the molecular intricacies of atherosclerosis. It
elucidates the associations between metabolic irregularities and
disease progression, ultimately facilitating early diagnosis and
treatment of atherosclerosis.

Arachidonic acid and its downstream leukotriene metabolites
potentially play pivotal roles in atherosclerosis (Needleman et al.,
1986; Piomelli, 1993; Zeldin, 2001). Arachidonic acid, a
polyunsaturated fatty acid, generates leukotriene metabolites such
as leukotriene B4 (LTB4) and leukotrienes C4, D4, and E4 (LTC4,
LTD4, LTE4) through enzymatic catalysis (Bhatt et al., 2017;
Gelfand, 2017; Wan et al., 2017). Firstly, these leukotriene
metabolites exert substantial regulatory control over
inflammatory reactions. Inflammation constitutes a pivotal
process in atherosclerosis. The leukotriene metabolites LTC4,

LTD4, and LTE4, being potent inflammatory mediators, promote
leukocyte adhesion, chemotaxis, and activation, exacerbating the
inflammatory response (Gelfand, 2017; Wan et al., 2017). These
inflammatory reactions, in turn, stimulate endothelial cell damage
and release of inflammatory mediators, establishing a pernicious
cycle that accelerates atherosclerosis progression. Secondly,
leukotriene metabolites modulate platelet activation and
aggregation, a crucial step in thrombus formation within
atherosclerosis. The leukotriene metabolite LTB4 stimulates
platelet aggregation and releases platelet-activating factors,
heightening the risk of thrombus formation (Bhatt et al., 2017;
Gelfand, 2017; Wan et al., 2017). Platelet aggregation further
intensifies endothelial damage and fosters an augmented
inflammatory response, ultimately contributing to atherosclerosis
development. Moreover, leukotriene metabolites influence the
functionality of smooth muscle cells. Smooth muscle cell
proliferation and migration are pivotal features in atherosclerotic
lesion development. The leukotriene metabolites LTC4, LTD4, and
LTE4 facilitate smooth muscle cell proliferation and migration by
binding to receptors on smooth muscle cells, leading to arterial wall
thickening and plaque formation.

Hence, by employing metabolomics analysis utilizing MALDI
technology, we conducted comprehensive investigations on clinical
samples obtained from atherosclerosis patients and an animal model
we constructed (Figures 1A,B). To uncover and analyze the
metabolic alterations associated with atherosclerosis, we utilized
the exceptional ionization and resolution capabilities of two-
dimensional MXene materials. This advanced material,
characterized by its unique two-dimensional structure, facilitated
the efficient detection of small molecules involved in the metabolic
processes of atherosclerosis (Figure 1C). This methodology enabled
the identification of distinctive key metabolic pathways implicated
in atherosclerosis. Employing strategies like volcano plots and
heatmaps, we discerned potential metabolic molecules
(Figure 1D). Collaborative screening analysis highlighted the
critical involvement of the arachidonic acid pathway. Expanding
upon the metabolomics findings, we quantitatively assessed the
atherosclerotic effect of arachidonic acid by analyzing arachidonic
acid inhibitors and downstream metabolites. Our aspiration is that
this study provides meaningful insights into the diagnosis,
treatment, and intervention of clinical atherosclerosis.
Additionally, we believe that the integration of metabolomics
with biological validation affords novel perspectives for
researching various diseases, including cardiovascular ailments.

2 Materials and methods

2.1 Synthesis and characterization of Ti2AlN

The fabrication of Ti2AlN, a two-dimensional layered material,
was accomplished through a sodium hydroxide etching process.
This involved the reaction between 1 g of Ti2AlN material and
10 mL of 3M sodium hydroxide at a temperature of 40°C and a
rotational speed of 500 RPM for 12 h. Subsequently, the synthesized
material underwent three successive rinses with deionized water.
The resulting two-dimensional material was then carefully collected
and stored at a temperature of 4°C in a refrigerator for preservation.
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To examine its microstructure, scanning electron microscopy
analysis was performed using a Hitachi SU8600 instrument,
operating at a voltage of 10 kV, enabling detailed characterisation
of the material’s features and properties.

2.2 Construction of AS animal model

A meticulously designed AS animal model was established,
comprising 32 ApoE knock-out mice, evenly divided into control

FIGURE 1
Schematic illustration of metabolomics unveils the exacerbating role of arachidonic acid metabolism in atherosclerosis. (A) Collection of serum
samples derived from patients with atherosclerosis and serum obtained from an atherosclerosis model constructed using high-fat-fed APOE mice. (B)
Elucidation of the mechanism of atherosclerosis through metabolomics analysis, depicted in a flowchart. (C) Illustration of the synthesis and detection of
the metabolomics matrix on atherosclerosis investigation. (D) Post-metabolomics analysis, encompassing discrimination, heatmap generation,
volcano plot visualization, and enrichment analysis.
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and experimental groups. ApoE knockout mice were selected for
their altered lipid metabolism genes, rendering them more
susceptible to atherosclerosis, thus facilitating a simplified and
time-efficient modelling process, albeit at increased expenses. The
control group received no intervention, while the experimental
group was subjected to a 12-week high-fat, high-cholesterol diet
(SY108C) containing 20% fat and 1.25% cholesterol. After the
intervention period, samples were meticulously collected from
both groups, including blood and aortic tissues. For blood
sampling, 2% isoflurane anaesthesia (at a flow rate of 10 mL/min,
specific to the anaesthesia equipment employed) was administered,
followed by the extraction of blood. The blood was allowed to clot at
room temperature for 1–2 h, after which it was centrifuged at
2,500 rpm for 10 min to obtain the serum fraction, which was
then stored at −80°C for subsequent analysis. Aortic tissue
collection involved carefully positioning the mice in a supine
position on a dissecting table, followed by the excision of aortic
tissues and their fixation in 10% paraformaldehyde solution for
subsequent characterization and assessment.

2.3 Masson’s staining, oil Red staining, sirius
Red staining

Masson’s staining is a histological technique employed to assess the
integrity and pathological alterations of blood vessel walls. It
encompasses fundamental stages, including tissue fixation (using
10% buffered formalin), tissue processing (involving dehydration
and clearing), tissue embedding (using molten paraffin), tissue
sectioning (at a thickness of 4–6 μm), and staining. The specific
staining process encompasses deparaffinization (utilizing a xylene
solution), dehydration (employing a descending series of ethanol
concentrations, such as 100%, 95%, and 80% ethanol), staining (with
Masson’s staining solution encompassing acidic fuchsin, aniline blue,
and orange G dyes), rinsing (using buffer solution to eliminate excess
dye), dehydration (employing an ascending series of ethanol
concentrations), clearing (xylene), and mounting (Canada balsam).

The steps involved in Oil Red staining are as follows: Initially,
tissue sections are fixed in formaldehyde and subsequently subjected
to dehydration, sequentially immersing the sections in an ethanol
gradient (70%, 80%, 95%, 100%) for 10 min each, followed by
transfer into a clearing agent (xylene) for clearing. Subsequently,
the sections are immersed in an oil-red solution, maintained at a
temperature of 60–70°C, for 4–8 h to facilitate staining. After
staining, the sections are dehydrated in the clearing agent,
covered with a coverslip, and mounted.

The procedure for Sirius Red staining involves the fixation of
tissue sections in paraformaldehyde, followed by dehydration. The
sections are then immersed in an ethanol gradient (70%, 80%, 95%,
100%) for 10 min each and subsequently transferred to a clearing
agent (such as xylene) for clearing. Next, the sections are subjected to
staining with Sirius Red solution, followed by rinsing with distilled
water to eliminate excess dye. The sections are further dehydrated
using an increasing series of ethanol concentrations, cleared using a
clearing agent, and ultimately mounted utilizing a mounting medium.

2.4 Q-PCR and western blotting

The procedure of Western blotting involves several intricate
steps. Firstly, the samples undergo separation by SDS-PAGE
electrophoresis to resolve the proteins based on their molecular
weight. Subsequently, the proteins are transferred onto a
polyvinylidene fluoride (PVDF) membrane, facilitating their
immobilization for further analysis. Activation of the membrane
is achieved through wetting with a 20% methanol solution,
ensuring optimal binding efficiency. Following this, specific
antibodies are applied to the membrane, facilitating the
recognition and binding of the target protein of interest. To
enable detection, a secondary antibody labelled with an enzyme,
such as horseradish peroxidase (HRP), that exhibits affinity
towards the primary antibody is employed. Finally, protein
detection is accomplished utilizing sophisticated techniques,
including chemiluminescence or substrate staining, which
generate a measurable signal indicative of the presence and
quantity of the target protein.

The q-PCR procedure entails a series of meticulous steps.
Initially, RNA molecules are converted into complementary DNA
(cDNA) through reverse transcription, employing the enzyme
reverse transcriptase. Subsequently, specific primers and
fluorescent probes designed to anneal to the target gene of
interest are employed during PCR amplification. The
amplification process allows for the exponential replication of the
DNA region of interest. Detection of the amplified product is
achieved by monitoring the fluorescence signals emitted by the
fluorescent probes during PCR cycling. These signals provide a
quantifiable measure of the relative expression levels of the target
gene in the samples. Ultimately, the gene expression levels are
determined by employing the standard curve method, which
relates the fluorescence signals to the known concentrations of a
reference sample.

2.5 Metabolomics analysis

For MALDI-TOF Analysis, initially, 1 µL of the small
molecule standard solutions or serum samples was
meticulously pipetted onto a stainless steel target plate.
Following air-drying at room temperature, 0.5 µL of matrix
solution was added to cover the previous spot. After another
round of air-drying at room temperature, the samples underwent
analysis using an Ultraflex MALDI-TOF MS (Bruker Daltonics,
Billerica, MA) operating in a linear positive mode with a laser
intensity set at 50%. The molecular weights of the samples,
ranging from 80 to 1,000, were meticulously recorded during
the analysis. Metabolomics analysis involves various analytical
methods such as Principal Component Analysis (PCA),
Orthogonal Partial Least Squares Discriminant Analysis
(OPLS-DA), Heatmap, Volcano Plot, and Pathway
Enrichment. These methods are primarily used to analyze
high-throughput mass spectrometry data from both the
atherosclerosis group and the control group.
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2.6 Harvesting of clinical sample collection

Inclusion Criteria: 1) Serum samples must be obtained from
patients definitively diagnosed with atherosclerosis to ensure
consistency in the disease status of the study subjects: 2) Age
range restrictions are applied to maintain sample uniformity
while considering the characteristics of atherosclerosis across
different age groups; 3) Samples are exclusively selected from
patients in a stable period before treatment, minimizing the
potential impact of treatment on serum biomarkers and
enhancing result reliability. Exclusion Criteria: 1) Patients with
other cardiovascular diseases are excluded to ensure the
specificity and independence of the study results from
atherosclerosis; 2) Individuals with immune system
abnormalities are rejected to reduce sample variability caused
by immune interference; 3) Patients with severe liver or kidney
dysfunction are excluded to mitigate the impact of these factors
on serum biomarkers, ensuring result accuracy (Akboga et al.,
2015; Hua et al., 2023). The methodology for serum acquisition
and preservation is delineated as follows: Haematological
samples are meticulously obtained and deposited within
receptacles devoid of anticoagulant agents. Subsequently, these
samples undergo centrifugation at a velocity of 3,000 rotations
per minute for 10 min, thereby resulting in the formation of a
supernatant fraction that represents the coveted serum
component. Lastly, the serum is diligently safeguarded within
a freezer maintained at an ultra-low temperature of −80°C. It is of
paramount significance to acknowledge that the collection of
clinical samples (2022-RAL-35) has been granted official
endorsement by the ethics committee affiliated with the
esteemed Medical School of Nanjing University.

2.7 Validation of the role of arachidonic acid
in atherosclerosis

Aspirin is an irreversible inhibitor of cyclooxygenase (COX),
which inhibits the metabolism of arachidonic acid. This
inhibition leads to a reduction in the synthesis of
prostaglandins (PGs), resulting in antipyretic, analgesic, and
anti-inflammatory effects [29,30]. In the experimental group,
the atherosclerotic mice received daily injections of aspirin at
a dosage of 40 mg/kg for 1 week. The control group, on the other
hand, received injections of an equivalent volume of normal
saline. After 1 week, the mice from both groups were assessed
using Sirius staining.

3 Results and discussion

3.1 Metabolic fingerprinting of AS using
clinical biosamples

To achieve heightened sensitivity for low-abundance
metabolites in atherosclerosis samples, we synthesized a two-
dimensional MXene (Ti2AlN) matrix, harnessing its unique
advantages arising from its distinctive two-dimensional structure.
This innovative matrix enabled the effective detection of low-

abundance metabolites in atherosclerosis samples, as visually
depicted in Supplementary Figure S1. Scanning electron
microscopy vividly characterized its layered structure, affirming
its unique morphology. The elemental composition of the matrix,
encompassing Ti, Al, Cl, N, and O, is elucidated in Supplementary
Figure S2, while the elemental distribution is apparent in
Supplementary Figure S3. Furthermore, we conducted a
comprehensive analysis and statistical evaluation of the elemental
ratios, as presented in Supplementary Table S1. The aforementioned
meticulous morphology and elemental analysis effectively
confirmed the integrity and structure of the two-dimensional
material, forming a robust basis for subsequent metabolomics
analysis in atherosclerosis.

To effectively screen potential biomarkers and aberrant
metabolic pathways in atherosclerosis, we recruited a cohort
comprising 38 atherosclerosis patients and 35 healthy
individuals, from whom serum samples were collected to
establish distinct groups for metabolomic profiling. Principal
Component Analysis (PCA) and Orthogonal Partial Least
Squares Discriminant Analysis (OPLS-DA) were employed for
data analysis. While PCA focused on reducing data
dimensionality and capturing overall variance, OPLS-DA
proved more adept at classification and identifying
discriminant features distinguishing between the groups. As
demonstrated in Figures 2A,B, PCA alone failed to achieve
efficient discrimination between atherosclerosis and control
groups; however, OPLS-DA successfully distinguished the two
groups and revealed significant metabolic disparities between
them. Furthermore, a heatmap analysis was performed to unveil
key biomolecules implicated in the differentiation of atherosclerosis
from the control group. Heatmaps, an invaluable tool in
metabolomics, visually depict differences and similarities between
various features, enabling rapid identification of critical metabolic
pathways or biomarkers. They effectively visualize large-scale
metabolic data, provide comprehensive information, and aid in
identifying potential associations and trends. Additionally, they
facilitate data mining and pattern recognition, expediting
researchers’ identification of significant metabolic features relevant
to diseases or biological processes. As depicted in Figure 2C, the
heatmap revealed distinct metabolic profiles between the serum
samples of the 38 athero-sclerosis patients and 35 healthy individuals.

Subsequently, a volcano plot analysis was conducted to further
scrutinize the serum samples of the 38 atherosclerosis patients and
35 healthy individuals. Volcano plots, widely employed in
metabolomics, visually portray the expression differences and
significance of metabolites, facilitating the identification of
noteworthy metabolic changes associated with diseases or
treatments. Moreover, volcano plots encompass both
upregulated and downregulated metabolites, providing
comprehensive information and aiding in the discovery of
potential biomarkers. As depicted in Figure 2D, the volcano
plot unveiled key upregulated and downregulated metabolites in
the serum samples of atherosclerosis patients and healthy
individuals. These findings strongly indicate significant
metabolic disparities between the serum samples of the
38 atherosclerosis patients and 35 healthy individuals. Through
the visualization of heatmaps and volcano plots, we successfully
demonstrated the differential expression of potential biomarkers
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between atherosclerosis and control groups, as well as analyzed the
trends of upregulation and downregulation. The aforementioned
outcomes have laid a solid foundation for subsequent research
endeavours. It is crucial to emphasize that our sample size of 38 vs
35 in metabolomic analysis is positioned at an intermediate level
(Chinello et al., 2010; Kriegsmann et al., 2015; Laguna et al., 2021;
Han et al., 2022), yet remains sufficient for decoding the metabolic
fingerprint features of atherosclerosis. Furthermore, our clinical
samples (38 vs 35) were meticulously collected following strict
admission and exclusion criteria (Experimental section). The
MALDI technique, leveraging its high-sensitivity laser
desorption ionization capabilities, effectively identifies
substantial differences in mz features between the two groups
(approximately 30–40 samples ineach group), facilitating the
screening of potential biomarkers.

3.2 Construction and validation of the
atherosclerosis model

To conduct a more precise analysis of potential biomarkers in
the metabolomic profile of atherosclerosis and explore disrupted
metabolic pathways, we established an atherosclerosis animal model
concurrently with a high-fat diet approach. As shown in Figure 3A,
we deliberately chose not to use commonly available rodents such as
SD rats, Wistar rats, C57 mice, or ICR mice, which possess normal
genetic backgrounds, wider availability, lower costs, and less
stringent dietary requirements. However, their cholesterol
absorption and utilization rates are low, and they exhibit robust
plasma cholesterol metabolism capabilities. Consequently, inducing
atherosclerosis naturally, even with short-term (within 3 months)
utilization of high-fat and high-cholesterol diets, poses a challenge.

FIGURE 2
Classification efficacy of clinical samples. Utilizing (A) principal component analysis (PCA) and (B) orthogonal projections to latent structures
discriminant analysis (OPLS-DA), metabolic profiling was performed on serum samples from 38 individuals with atherosclerosis and 35 healthy subjects,
yielding classification plots. (C) The identified feature mz molecules were utilized to distinguish serum samples from the aforementioned groups,
differentiating between the 38 individuals with atherosclerosis and the 35 healthy subjects. (D) The volcano plot exhibits upregulated and
downregulated factors for serum samples from the 38 individuals with atherosclerosis and the 35 healthy subjects.
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Instead, we selected ApoE mice, genetically modified to regulate
their lipid metabolism and reduce their relative resistance to
atherosclerosis. These genetically engineered mice simplify the
modelling of atherosclerosis and significantly shorten the
modelling time, albeit at a higher cost. The critical second step
involved employing an appropriate high-fat feeding method. As
depicted in Figure 3A, we adopted a strategy of administering a
high-fat and high-cholesterol diet (SY108C), containing 20% fat and
1.25% cholesterol content, for 10–12 weeks to establish a stable
atherosclerosis model. To validate the modelling effectiveness of
atherosclerosis, we performed Masson’s staining and Oil Red O
staining. Masson’s staining evaluates the integrity and lesions of the
arterial wall by staining elastic fibers and collagen fibers, while Oil
Red O staining is a lipid staining technique that highlights lipid
deposition in the arterial wall, particularly lipid plaques in
atherosclerotic lesions. These staining techniques provide

qualitative and quantitative pathological evaluations, aiding in the
understanding of the extent and characteristics of atherosclerosis
lesions, thereby offering crucial insights for related research and
clinical diagnosis. As depicted in Figures 3B,C, noticeable differences
between the atherosclerosis model and the control group are evident.
Furthermore, as shown in Figures 3D,E, the lipid content
significantly increased in the atherosclerosis group following
high-fat feeding. These staining results convincingly demonstrate
the success of the atherosclerosis modelling process.

Considering the association between P16, P53, and
atherosclerosis, we employed Western blotting to analyze the
expression of P16 and P53, as depicted in Figure 4A, using
GAPDH as a reference protein. Glyceraldehyde-3-phosphate
dehydrogenase (GAPDH), a crucial enzyme in cellular metabolic
processes, exhibits stable expression levels in most cells and tissues.
By detecting the expression of GAPDH as an internal reference

FIGURE 3
Construction and validation of the atherosclerosis model. (A)Methodology and Procedures for Establishing Atherosclerosis. (B)Masson’s Staining of
the Control Group and (C) Masson’s Staining of the Atherosclerosis Group. Analysis of Oil Red O staining (D) in the control group and (E) in the
atherosclerosis group.
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protein, we were able to normalize protein loads in different
samples, facilitating the comparison and analysis of the
expression levels of the target proteins. We quantified the
expression levels of P16 and P53 in atherosclerosis and control
groups, as shown in Figures 4B,C, indicating a significant increase in
P16 and P53 during the process of atherosclerosis. Additionally, we
assessed the mRNA expression levels of P16 and P53 using q-PCR
technology. Based on the principles of polymerase chain reaction
(PCR), fluorescently labelled probes were utilized to determine the
concentration of P16 and P53 mRNA in question. The
concentrations of P16 and P53 mRNA were significantly higher
in atherosclerosis compared to the control group (Figure 4D;
Supplementary Figure S4). The aforementioned staining, Western
blotting, and q-PCR characterizations confirm the successful
modelling of atherosclerosis, laying the foundation for further
metabolomics analysis in the atherosclerosis animal model.

3.3 Metabolic fingerprinting of AS using AS
animal model

Expanding upon the atherosclerosis animal model, to
comprehensively screen potential biomarkers and disrupted

metabolic pathways associated with atherosclerosis, a collection
of 32 serum samples from atherosclerosis animal models and
32 control group samples were acquired. Principal Component
Analysis (PCA) and Orthogonal Partial Least Squares
Discriminant Analysis (OPLS-DA) methods were employed for
classification. As depicted in Figures 5A,B, PCA failed to
effectively distinguish between atherosclerosis and control groups,
whereas the OPLS-DA method achieved significant separation
between the two groups, indicating distinctive metabolic profiles
between atherosclerosis and control groups, consistently aligning
with observed trends in clinical samples. Moreover, a heatmap was
utilized to visualize key metabolites that differentiate the
32 atherosclerosis animal model samples from the 32 control
group samples, as demonstrated in Figure 5C, prominently
illustrating the intergroup differences in various metabolites,
thereby facilitating subsequent metabolic analyses. Additionally, a
volcano plot was employed to analyse upregulated and
downregulated markers in the serum samples of the
32 atherosclerosis animal models compared to the 32 control
group samples, as depicted in Figure 5D. The analyses conducted
on the 32 atherosclerosis animal model samples and 32 control
group samples, including heatmap and volcano plot analyses, in
conjunction with clinical metabolomics analysis, aim to identify

FIGURE 4
Analysis of potential biomarkers before and after the development of atherosclerosis. (A)Western blotting analysis of P16 and P53 in samples from
the atherosclerosis model and control group. (B) Comparison of P16, and (C) P53 between the atherosclerosis group and the control group. (D)
Comparison of P53 mRNA expression levels between the atherosclerosis group and the control group.
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potential biomarkers and disrupted metabolic pathways associated
with atherosclerosis. Due to metabolic heterogeneity, there may be
significant metabolic differences among patients. The advantage of
animal models lies in the controllable experimental conditions,
including factors such as diet, exercise, and other lifestyle
variables. This controlled experimental environment helps
minimize external factors’ interference with metabolic analysis,
ensuring more reliable results. Combining animal models with
patient serum samples can provide a more extensive and
comprehensive metabolic profile, which contributes to
uncovering the pathogenesis of atherosclerosis. This
comprehensive approach will significantly contribute to

unravelling the pathogenesis of metabolomics and provide
valuable insights for the prevention, treatment, and management
of atherosclerosis.

3.4 Screening of biomarkers and disrupted
metabolic pathways associated with
atherosclerosis

Expanding upon the integrated metabolomics analysis of clinical
samples and animal models of atherosclerosis mentioned earlier, we
have identified overlapping potential biomarkers for the diagnosis of

FIGURE 5
Classification efficacy of serum samples from animal modelling of atherosclerosis compared to the control group. (A)Metabolic profiling of serum
samples from 32 individuals with modelled atherosclerosis and 32 control subjects using principal component analysis (PCA), and (B) orthogonal
projections to latent structures discriminant analysis (OPLS-DA), resulting in classification plots. (C) The identified feature mz molecules were utilized to
discriminate between serum samples from the 38 individuals with atherosclerosis and 35 healthy subjects. (D) The volcano plot illustrates
upregulated and downregulated factors in serum samples from the 32 individuals with modelled atherosclerosis and 32 control subjects.
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FIGURE 6
Screening of biomarkers for atherosclerosis and corresponding diagnosis capability. (A) Summarizing the selected panel of biomarkers derived from
the integration of metabolomics results from clinical samples and animal models, enabling discrimination between atherosclerosis and the control group
with an area under the curve (AUC) of 0.892. (B) Significant elevation of arachidonic acid molecules in atherosclerosis. (C) Arachidonic acid molecules
were used for discrimination between atherosclerosis and the control group, yielding an AUC value of 0.714. (D) Marked increase of leukotriene
B4 molecules in atherosclerosis. (E) Leukotriene B4 molecules were used for discrimination between atherosclerosis and the control group, resulting in
an AUC value of 0.684.
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atherosclerosis. Moreover, we assessed the diagnostic efficiency
using receiver operating characteristic (ROC) curves, which
provide a comprehensive evaluation of the sensitivity and
specificity of the diagnostic test for atherosclerosis. Sensitivity
pertains to the test’s ability to accurately identify patients with
atherosclerosis, while specificity relates to its capacity to correctly
exclude individuals without the condition. By considering both
factors, the ROC curve allows us to assess the performance of the
diagnostic test based on the curve’s shape and the area under it,
known as the area under the curve (AUC). As illustrated in
Figure 6A, the obtained AUC was 0.892, indicative of high
diagnostic performance and significant reference value.
Furthermore, we observed significant expression of arachidonic
acid in both atherosclerosis and control groups, as depicted in
Figure 6B. The diagnostic efficiency of arachidonic acid alone
was 0.714 (Figure 6C). Similarly, leukotriene B4 (LTB4), as a
downstream product of arachidonic acid, exhibited significant
expression in both atherosclerosis and control groups, as
illustrated in Figure 6D. The diagnostic efficiency of LTB4 alone
was 0.684 (Figure 6E). These findings suggest that integrating
metabolomics analysis results from clinical samples and animal
models enables the effective diagnosis of atherosclerosis.
Moreover, the identification of significantly elevated levels of
arachidonic acid and its downstream product, LTB4, in
atherosclerosis presents opportunities for further exploration of
disrupted metabolic pathways in this condition.

In our investigation of atherosclerosis, we have identified
arachidonic acid and its downstream product, leukotriene B4, as
potential biomarkers. To gain deeper insights, we conducted an
enrichment pathway analysis, which aims to identify metabolic
pathways that are significantly enriched under specific conditions.
This analytical approach allows for a better understanding of the
activity and regulatorymechanisms ofmetabolic pathways in different
physiological states or disease processes. Through this exploration, we
can unravel the regulatory networks and key nodes of metabolism,
thus enhancing our understanding of organismal metabolic function.

As illustrated in Figure 7A, we have discovered several enriched
metabolic pathways, including arachidonic acid metabolism,
glycine and serine metabolism, propanoate metabolism,
pyruvaldehyde degradation, the glucose-alanine cycle, thyroid
hormone synthesis, and vitamin K metabolism. Notably,
arachidonic acid metabolism is closely linked to both arachidonic
acid and leukotriene B4. Furthermore, we analyzed the network
diagram of metabolic pathways (Figure 7B), which provides a
graphical representation integrating metabolic pathways,
metabolites, and their interactions. This visual framework aids in
comprehending the relationships and interactions between metabolic
pathways, as well as the structure and functionality of the overall
metabolic network. Through this analysis, we have gained valuable
insights into the spatial relationships of various relevant metabolic
pathways in atherosclerosis.

3.5 Validation of the promoting role of
arachidonic acid and its downstream
metabolites in atherosclerosis

The above results indicate the regulatory role of arachidonic acid
and its downstream products in the process of atherosclerosis.
Therefore, Sirius staining is also employed for the assessment of
collagen content. When observed through a standard optical
microscope, collagen fibres within tissues such as the heart and
blood vessels exhibit vivid red staining, whereas muscle fibres exhibit
distinct yellow staining. The accompanying Figures 8A,B illustrates
the results of Sirius staining performed before and after the
application of an arachidonic acid inhibitor in atherosclerosis
mice (Supplementary Figure S5). In Figure 8C, the collagen area
within the image was quantified using the ImageJ software and
subsequently divided by the total plaque area to derive the
percentage of collagen content within the plaque. A higher
relative collagen content within the plaque indicates a greater
degree of stability, thereby implying that the introduction of the

FIGURE 7
Analysis of disrupted metabolic pathways in atherosclerosis. (A) Enrichment analysis and (B) interconnections between the dysregulated metabolic
pathways closely associated with atherosclerosis, derived from themetabolomics analysis of the aforementioned clinical biosamples and animal models.
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Arachidonic acid inhibitor reduces plaque stability. Additionally, we
quantified the area percentage of plaques before and after applying
the arachidonic acid inhibitor and found that the area decreased
from 14.0% ± 1.4% to 9.2% ± 0.73%. We assessed the levels of 5-
lipoxygenase (5-LO) and LTC4 synthase (LTC4S) concentrations,
and intriguingly, observed a substantial upregulation in their
abundance within the atherosclerosis group when compared to
the control group (Figure 8D). These findings strongly imply a
parallel surge in the levels of downstream metabolites derived from
arachidonic acid as well. During the development of atherosclerosis,
arachidonic acid participates in inflammatory responses and cellular
signalling through various pathways, influencing the pathological
changes in the arterial wall. Once endothelial cells in the arteries are
damaged or stimulated, arachidonic acid can be released and
converted into leukotriene B4 (LTB4), a potent inflammatory
mediator. LTB4 can attract and activate white blood cells, leading

to the occurrence of inflammation. Therefore, we speculate that
arachidonic acid and its downstream product, leukotriene B4, may
promote the adhesion and migration of white blood cells to the
arterial wall, thereby facilitating the formation of inflammatory cell
plaques within the blood vessels. Additionally, leukotriene B4 can
stimulate the release of platelet-aggregating factors and other
inflammatory mediators, further accelerating plaque formation
and progression. Therefore, we hypothesize that arachidonic acid
and its metabolite leukotriene B4 play important regulatory and
mediating roles in the pathological process of atherosclerosis.

4 Conclusion

In summary, our innovative metabolomics screening strategy
has demonstrated remarkable efficacy in enabling precise diagnosis,

FIGURE 8
Validation of the pivotal role of arachidonic acid metabolism disruption in atherosclerosis. (A, B) Analysis of Sirius-red staining before and after the
administration of arachidonic acid inhibitor in atherosclerotic mice. (C) Analysis of plaque area before and after inhibitor administration, demonstrating
effective mitigation of atherosclerosis upon inhibitor administration. (D) Significant upregulation of 5-lipoxygenase (5-LO) and LTC4 synthase (LTC4S) in
the atherosclerosis group compared to the control group.
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identifying biomarkers, and conducting comprehensive analysis of
metabolic pathways in atherosclerosis. Our diagnostic methodology,
utilizing advanced techniques such as OPLS-DA, heatmaps, and
volcano plots, has achieved a high area under the curve (AUC =
0.892) for atherosclerosis classification. This has provided us with
visual representations and in-depth scrutiny of the upregulation/
downregulation patterns of pivotal molecules involved in the
intricate processes of atherosclerotic development. Through
meticulous enrichment analysis, we have discovered a significant
elevation in arachidonic acid and its downstream metabolite,
leukotriene B4, in atherosclerosis. Rigorous biomarker validation
has yielded compelling evidence that elucidates the essential
regulatory role of the arachidonic acid metabolic pathway in
atherosclerosis, utilizing potent arachidonic acid inhibitors and
dissecting downstream metabolites. Overall, our metabolomics
approach has provided profound insights into the molecular
intricacies and underlying genetic foundations of atherosclerosis,
paving the way for novel avenues and promising prospects in disease
prevention and therapeutic intervention. We anticipate that the
widespread dissemination of our research findings will contribute to
the heightened precision and efficiency of clinical medicine, offering
invaluable guidance and unwavering support for the prevention,
treatment, and management of related ailments.

Data availability statement

The original contributions presented in the study are included in
the article/Supplementary Material, further inquiries can be directed
to the corresponding authors.

Ethics statement

The studies involving humans were approved by Institutional
Review Board of the Medical School of Nanjing University (2022-
RAL-35). The studies were conducted in accordance with the local
legislation and institutional requirements. The participants provided
their written informed consent to participate in this study. The
animal study was approved by Institutional Review Board of the
Medical School of Nanjing University (2022-RAL-35). The study
was conducted in accordance with the local legislation and
institutional requirements.

Author contributions

SM: Conceptualization, Project administration, Supervision,
Writing–original draft. SH: Investigation, Writing–review and
editing. JLi: Data curation, Writing–review and editing. WZ:
Writing–review and editing. HL: Methodology, Writing–review
and editing. CL: Writing–review and editing. LiW: Software,
Writing–review and editing. JF: Data curation, Formal Analysis,
Writing–review and editing. LeW: Conceptualization, Supervision,
Writing–review and editing.

Funding

The author(s) declare financial support was received for the
research, authorship, and/or publication of this article. This work
was financially supported by the National Natural Science
Foundation of China (81900409), the PLA Youth Training
Project for Medical Science (19QNP037), and the Foundation of
General Hospital of Eastern Theater Command (2LCZLXJS36).

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations,
or those of the publisher, the editors and the reviewers. Any product
that may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fmolb.2024.1297437/
full#supplementary-material

References

Akboga, M. K., Canpolat, U., Sahinarslan, A., Alsancak, Y., Nurkoc, S., Aras,
D., et al. (2015). Association of serum total bilirubin level with severity of
coronary atherosclerosis is linked to systemic inflammation. Atherosclerosis 240,
110–114. doi:10.1016/j.atherosclerosis.2015.02.051

Ashfaq, M. Y., Da’na, D. A., and Al-Ghouti, M. A. (2022). Application
of MALDI-TOF MS for identification of environmental bacteria:
a review. J. Environ. Manage. 305, 114359. doi:10.1016/j.jenvman.2021.
114359

Bhatt, L., Roinestad, K., Van, T., and Springman, E. B. (2017). Recent advances in clinical
development of leukotriene B4 pathway drugs. Semin. Immunol. 33, 65–73. doi:10.1016/j.
smim.2017.08.007

Calvano, C. D., Monopoli, A., Cataldi, T. R. I., and Palmisano, F. (2018). MALDI
matrices for low molecular weight compounds: an endless story? Anal. Bioanal. Chem.
410, 4015–4038. doi:10.1007/s00216-018-1014-x

Chen, J., Li, Y., Jiang, Y., Mao, L., Lai, M., Jiang, L., et al. (2021). TiO2/MXene-
Assisted LDI-MS for urine metabolic profiling in urinary disease. Adv. Funct. Mat. 31.
doi:10.1002/adfm.202106743

Chinello, C., Gianazza, E., Zoppis, I., Mainini, V., Galbusera, C., Picozzi, S., et al.
(2010). Serum biomarkers of renal cell carcinoma assessed using a protein profiling
approach based on ClinProt technique. Urology 75, 842–847. doi:10.1016/j.urology.
2009.09.050

Duan, S., Li, X., Yao, Z., Zhang, X., Yao, X., Yang, J., et al. (2022). Visual
authentication of steroidal saponins in Allium macrostemon Bge. and Allium
chinense G. Don using MALDI-TOF imaging mass spectrometry and their
structure activity relationship. Arab. J. Chem. 15, 104138. doi:10.1016/j.arabjc.
2022.104138

Ferey, J., Marguet, F., Laquerrière, A., Marret, S., Schmitz-Afonso, I., Bekri, S., et al.
(2019). A new optimization strategy for MALDI FTICR MS tissue analysis for

Frontiers in Molecular Biosciences frontiersin.org13

Ma et al. 10.3389/fmolb.2024.1297437

108

https://www.frontiersin.org/articles/10.3389/fmolb.2024.1297437/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fmolb.2024.1297437/full#supplementary-material
https://doi.org/10.1016/j.atherosclerosis.2015.02.051
https://doi.org/10.1016/j.jenvman.2021.114359
https://doi.org/10.1016/j.jenvman.2021.114359
https://doi.org/10.1016/j.smim.2017.08.007
https://doi.org/10.1016/j.smim.2017.08.007
https://doi.org/10.1007/s00216-018-1014-x
https://doi.org/10.1002/adfm.202106743
https://doi.org/10.1016/j.urology.2009.09.050
https://doi.org/10.1016/j.urology.2009.09.050
https://doi.org/10.1016/j.arabjc.2022.104138
https://doi.org/10.1016/j.arabjc.2022.104138
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2024.1297437


untargeted metabolomics using experimental design and data modeling. Anal. Bioanal.
Chem. 411, 3891–3903. doi:10.1007/s00216-019-01863-6

Gao, W., Liu, H., Yuan, J., Wu, C., Huang, D., Ma, Y., et al. (2016). Exosomes derived
from mature dendritic cells increase endothelial inflammation and atherosclerosis via
membrane TNF-α mediated NF-κB pathway. J. Cell. Mol. Med. 20, 2318–2327. doi:10.
1111/jcmm.12923

Gelfand, E. W. (2017). Importance of the leukotriene B4-BLT1 and LTB4-BLT2
pathways in asthma. Semin. Immunol. 33, 44–51. doi:10.1016/j.smim.2017.08.005

Giunchi, F., Fiorentino, M., and Loda, M. (2019). The metabolic landscape of prostate
cancer. Eur. Urol. Oncol. 2, 28–36. doi:10.1016/j.euo.2018.06.010

Han, X., Li, D., Wang, S., Lin, Y., Liu, Y., Lin, L., et al. (2022). Serum amino acids
quantification by plasmonic colloidosome-coupled MALDI-TOFMS for triple-negative
breast cancer diagnosis. Mat. Today Bio 17, 100486. doi:10.1016/j.mtbio.2022.100486

Hua, M., Chen, W. Y., Wang, L. H., Zou, X. H., and Mao, L. L. (2023). The value of
serum Lp-PLA2 combined with MPO in the diagnosis of cerebral infarction caused by
large artery atherosclerosis. Clin. Neurol. Neurosurg. 232, 107899. doi:10.1016/j.
clineuro.2023.107899

Khambhati, J., Engels, M., Allard-Ratick, M., Sandesara, P. B., Quyyumi, A. A., and
Sperling, L. (2018). Immunotherapy for the prevention of atherosclerotic cardiovascular
disease: promise and possibilities.Atherosclerosis 276, 1–9. doi:10.1016/j.atherosclerosis.
2018.07.007

Kriegsmann, J., Kriegsmann, M., and Casadonte, R. (2015). MALDI TOF imaging
mass spectrometry in clinical pathology: a valuable tool for cancer diagnostics (review).
Int. J. Oncol. 46, 893–906. doi:10.3892/ijo.2014.2788

Laguna, A., Xicoy, H., Tolosa, E., Serradell, M., Vilas, D., Gaig, C., et al. (2021). Serum
metabolic biomarkers for synucleinopathy conversion in isolated REM sleep behavior
disorder. npj Park. Dis. 7, 40. doi:10.1038/s41531-021-00184-9

Ly, A., Buck, A., Balluff, B., Sun, N., Gorzolka, K., Feuchtinger, A., et al. (2016). High-
mass-resolution MALDI mass spectrometry imaging of metabolites from formalin-
fixed paraffin-embedded tissue.Nat. Protoc. 11, 1428–1443. doi:10.1038/nprot.2016.081

Moreno-Gordaliza, E., Esteban-Fernández, D., Lázaro, A., Humanes, B., Aboulmagd,
S., Tejedor, A., et al. (2017). MALDI-LTQ-Orbitrap mass spectrometry imaging for
lipidomic analysis in kidney under cisplatin chemotherapy. Talanta 164, 16–26. doi:10.
1016/j.talanta.2016.11.026

Needleman, P., Truk, J., Jakschik, B. A., Morrison, A. R., and Lefkowith, J. B. (1986).
Arachidonic acid metabolism. Annu. Rev. Biochem. 55, 69–102. doi:10.1146/annurev.bi.
55.070186.000441

Piomelli, D. (1993). Arachidonic acid in cell signaling. Curr. Opin. Cell Biol. 5,
274–280. doi:10.1016/0955-0674(93)90116-8

Ren, S., Shao, Y., Zhao, X., Hong, C. S., Wang, F., Lu, X., et al. (2016). Integration of
metabolomics and transcriptomics reveals major metabolic pathways and potential

biomarker involved in prostate cancer. Mol. Cell. Proteomics 15, 154–163. doi:10.1074/
mcp.M115.052381

Schubert, S., and Kostrzewa, M. (2017). MALDI-TOF MS in the microbiology
laboratory: current trends. Curr. Issues Mol. Biol. 23, 17–20. doi:10.21775/cimb.023.017

Sharma, A. R., Sharma, G., Bhattacharya, M., Lee, S.-S., and Chakraborty, C. (2021).
Circulating miRNA in atherosclerosis: a clinical biomarker and early diagnostic tool.
Curr. Mol. Med. 22, 250–262. doi:10.2174/1566524021666210315124438

Sun, N., Fernandez, I. E., Wei, M., Wu, Y., Aichler, M., Eickelberg, O., et al. (2016).
Pharmacokinetic and pharmacometabolomic study of pirfenidone in normal mouse
tissues using high mass resolution MALDI-FTICR-mass spectrometry imaging.
Histochem. Cell Biol. 145, 201–211. doi:10.1007/s00418-015-1382-7

Tian, C., Qiu, M., Lv, H., Yue, F., and Zhou, F. (2022). Preliminary serum and fecal
metabolomics study of spontaneously diabetic cynomolgus monkeys based on LC–MS/
MS. J. Med. Primatol. 51, 355–366. doi:10.1111/jmp.12610

Torata, N., Kubo, M., Miura, D., Ohuchida, K., Mizuuchi, Y., Fujimura, Y., et al.
(2018). Visualizing energy charge in breast carcinoma tissues by MALDI mass-
spectrometry imaging profiles of low-molecular-weight metabolites. Anticancer Res.
38, 4267–4272. doi:10.21873/anticanres.12723

Wan, M., Tang, X., Stsiapanava, A., and Haeggström, J. Z. (2017). Biosynthesis of
leukotriene B4. Semin. Immunol. 33, 3–15. doi:10.1016/j.smim.2017.07.012

Xiao, Y., Ma, D., Yang, Y. S., Yang, F., Ding, J. H., Gong, Y., et al. (2022).
Comprehensive metabolomics expands precision medicine for triple-negative breast
cancer. Cell Res. 32, 477–490. doi:10.1038/s41422-022-00614-0

Xu, J., Li, X., Zhang, F., Tang, L., Wei, J., Lei, X., et al. (2019). Integrated UPLC-Q/TOF-
MS technique and MALDI-MS to study of the efficacy of Yixinshu capsules against heart
failure in a rat model. Front. Pharmacol. 10, 01474. doi:10.3389/fphar.2019.01474

Yan, F., Wen, Z., Wang, R., Luo, W., Du, Y., Wang, W., et al. (2017). Identification of
the lipid biomarkers from plasma in idiopathic pulmonary fibrosis by Lipidomics. BMC
Pulm. Med. 17, 174. doi:10.1186/s12890-017-0513-4

Yang, C., Yu, H., Hu, X., Chen, H., Wu, H., Deng, C., et al. (2021). Gold-doped
covalent organic framework reveals specific serum metabolic fingerprints as point of
crohn’s disease diagnosis. Adv. Funct. Mat. 31, 16163028. doi:10.1002/adfm.202105478

Zeldin, D. C. (2001). Epoxygenase pathways of arachidonic acid metabolism. J. Biol.
Chem. 276, 36059–36062. doi:10.1074/jbc.R100030200

Zhang, H., Zhao, L., Jiang, J., Zheng, J., Yang, L., Li, Y., et al. (2022). Multiplexed
nanomaterial-assisted laser desorption/ionization for pan-cancer diagnosis and
classification. Nat. Commun. 13, 617. doi:10.1038/s41467-021-26642-9

Zhao, C., Xie, P., Yong, T., Wang, H., Chung, A. C. K., and Cai, Z. (2018). MALDI-MS
imaging reveals asymmetric spatial distribution of lipid metabolites from bisphenol
S-induced nephrotoxicity. Anal. Chem. 90, 3196–3204. doi:10.1021/acs.
analchem.7b04540

Frontiers in Molecular Biosciences frontiersin.org14

Ma et al. 10.3389/fmolb.2024.1297437

109

https://doi.org/10.1007/s00216-019-01863-6
https://doi.org/10.1111/jcmm.12923
https://doi.org/10.1111/jcmm.12923
https://doi.org/10.1016/j.smim.2017.08.005
https://doi.org/10.1016/j.euo.2018.06.010
https://doi.org/10.1016/j.mtbio.2022.100486
https://doi.org/10.1016/j.clineuro.2023.107899
https://doi.org/10.1016/j.clineuro.2023.107899
https://doi.org/10.1016/j.atherosclerosis.2018.07.007
https://doi.org/10.1016/j.atherosclerosis.2018.07.007
https://doi.org/10.3892/ijo.2014.2788
https://doi.org/10.1038/s41531-021-00184-9
https://doi.org/10.1038/nprot.2016.081
https://doi.org/10.1016/j.talanta.2016.11.026
https://doi.org/10.1016/j.talanta.2016.11.026
https://doi.org/10.1146/annurev.bi.55.070186.000441
https://doi.org/10.1146/annurev.bi.55.070186.000441
https://doi.org/10.1016/0955-0674(93)90116-8
https://doi.org/10.1074/mcp.M115.052381
https://doi.org/10.1074/mcp.M115.052381
https://doi.org/10.21775/cimb.023.017
https://doi.org/10.2174/1566524021666210315124438
https://doi.org/10.1007/s00418-015-1382-7
https://doi.org/10.1111/jmp.12610
https://doi.org/10.21873/anticanres.12723
https://doi.org/10.1016/j.smim.2017.07.012
https://doi.org/10.1038/s41422-022-00614-0
https://doi.org/10.3389/fphar.2019.01474
https://doi.org/10.1186/s12890-017-0513-4
https://doi.org/10.1002/adfm.202105478
https://doi.org/10.1074/jbc.R100030200
https://doi.org/10.1038/s41467-021-26642-9
https://doi.org/10.1021/acs.analchem.7b04540
https://doi.org/10.1021/acs.analchem.7b04540
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2024.1297437


Associations of serum cystatin C
concentrations with total
mortality and mortality of
12 site-specific cancers
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Purpose: Cystatin C (CysC), beyond its biomarker role of renal function, has been
implicated in various physical and pathological activities. However, the impact of
serum CysC on cancer mortality in a general population remains unknown. We
aimed to examine the associations of serum CysC concentrations with total
mortality and mortality of 12 site-specific cancers.

Methods:We included 241,008 participants of the UK Biobank cohort with CysC
measurements who had normal creatinine-based estimated glomerular filtration
rates and were free of cancer and renal diseases at baseline (2006–2010). Death
information was obtained from the National Health Service death records
through 28 February 2021. Multivariable Cox proportional hazards models
were used to compute hazard ratios (HR) per one standard deviation increase
in log-transformed CysC concentrations and 95% confidence intervals (95% CI)
for mortality.

Results: Over a median follow-up of 12.1 (interquartile range, 11.3–12.8) years,
5,744 cancer deaths occurred. We observed a positive association between
serum CysC concentrations and total cancer mortality (HR = 1.16, 95% CI:
1.12–1.20). Specifically, participants with higher serum CysC concentrations
had increased mortality due to lung cancer (HR = 1.12, 95% CI: 1.05–1.20),
blood cancer (HR = 1.29, 95% CI: 1.16–1.44), brain cancer (HR = 1.19, 95% CI:
1.04–1.36), esophageal cancer (HR = 1.20, 95% CI: 1.05–1.37), breast cancer
(HR = 1.18, 95% CI: 1.03–1.36), and liver cancer (HR = 1.49, 95% CI: 1.31–1.69).

Conclusion: Our findings indicate that higher CysC concentrations are
associated with increased mortality due to lung, blood, brain, esophageal,
breast, and liver cancers. Future studies are necessary to clarify underlying
mechanisms.

KEYWORDS

cancer, cystatin C, mortality, prospective cohort study, UK Biobank

OPEN ACCESS

EDITED BY

Jian Zhi Hu,
Pacific Northwest National Laboratory (DOE),
United States

REVIEWED BY

Shi Qiu,
Sichuan University, China
Yuanwei Zang,
Shandong University, China

*CORRESPONDENCE

Dong Hang,
hangdong@njmu.edu.cn

Zan Fu,
fuzan1971@njmu.edu.cn

‡These authors have contributed equally to
this work

RECEIVED 06 June 2023
ACCEPTED 25 March 2024
PUBLISHED 25 April 2024

CITATION

Huang C, Lu J, Yang J, Wang Z, Hang D and Fu Z
(2024), Associations of serum cystatin C
concentrations with total mortality and
mortality of 12 site-specific cancers.
Front. Mol. Biosci. 11:1209349.
doi: 10.3389/fmolb.2024.1209349

COPYRIGHT

© 2024 Huang, Lu, Yang, Wang, Hang and Fu.
This is an open-access article distributed under
the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with these
terms.

Frontiers in Molecular Biosciences frontiersin.org01

TYPE Original Research
PUBLISHED 25 April 2024
DOI 10.3389/fmolb.2024.1209349

110

https://www.frontiersin.org/articles/10.3389/fmolb.2024.1209349/full
https://www.frontiersin.org/articles/10.3389/fmolb.2024.1209349/full
https://www.frontiersin.org/articles/10.3389/fmolb.2024.1209349/full
https://www.frontiersin.org/articles/10.3389/fmolb.2024.1209349/full
https://orcid.org/0000-0001-6944-0459
https://orcid.org/0000-0003-4753-1821
https://crossmark.crossref.org/dialog/?doi=10.3389/fmolb.2024.1209349&domain=pdf&date_stamp=2024-04-25
mailto:hangdong@njmu.edu.cn
mailto:hangdong@njmu.edu.cn
mailto:fuzan1971@njmu.edu.cn
mailto:fuzan1971@njmu.edu.cn
https://doi.org/10.3389/fmolb.2024.1209349
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/journals/molecular-biosciences#editorial-board
https://www.frontiersin.org/journals/molecular-biosciences#editorial-board
https://doi.org/10.3389/fmolb.2024.1209349


1 Introduction

Cystatin C (CysC) is a secreted cysteine protease inhibitor
abundantly expressed in body fluids (Xu et al., 2015). Due to its
relatively small molecular weight (~13.3 kDa) and easy detection,
CysC is commonly used in hospitals to measure the glomerular
filtration rate (GFR) as an index of kidney function (Inker et al.,
2012; Shlipak et al., 2013). However, emerging functional evidence
suggests that CysC is directly involved in various physical and
pathological activities beyond its renal function biomarker role.
For example, CysC has shown the potential to regulate immune
response (Pierre and Mellman, 1998), apoptosis (Mori et al., 2016),
autophagy (Wang M. et al., 2021), and tumor metastasis (Kopitz
et al., 2005) independently or through a potent inhibition of cysteine
cathepsins. Therefore, variation in CysC levels may have additional
clinical implications that warrant further investigation (Sarnak
et al., 2005).

Several studies have investigated the association between
circulating CysC concentrations and cancer prognosis, primarily
among patients already diagnosed with malignancies, such as lung
cancer (Chen et al., 2011), colorectal cancer (Kos et al., 2000),
breast cancer (Decock et al., 2008), and prostate cancer (Perez-
Cornago et al., 2020). Much less is known about the association in
the general population, particularly those with normal renal
function. Although there is evidence linking higher CysC levels
to increased total cancer mortality according to the Cardiovascular
Health Study (Fried et al., 2005) and the Whitehall Study
(Emberson et al., 2010), the association was not replicated in
two other cohort studies (Shlipak et al., 2006; Wu et al., 2010).
Moreover, few studies have performed dose–response analysis or
evaluated the association between CysC concentrations and site-
specific cancer mortality.

In this context, leveraging data from the UK Biobank, a large
prospective cohort study, we aimed to determine the association
between serum CysC concentrations and mortality from common
cancers among the general population. This study would improve
our knowledge about the impact of circulating CysC on cancer
mortality and provide novel biochemical support for the prognostic
assessment of specific cancers. Such insights are crucial for
developing effective strategies to reduce the risk of cancer-
related deaths.

2 Materials and methods

2.1 Study population

The UK Biobank is a large prospective cohort study consisting of
about half a million participants (aged 37–73 years) recruited
between 2006 and 2010 across the United Kingdom (Collins,
2012). Sociodemographic, lifestyle, and health-related information
was collected through self-reported questionnaires at the baseline
assessment. A series of biological samples, including blood, were
collected from participants to study biochemical and cellular
markers (Elliott and Peakman). The ethical approval was
obtained from the North West Multi-center Research Ethics
Committee (11/NW/0382; 16/NW/0274), and all participants
provided informed consent.

In the current study, we excluded participants who had a history
of cancer or renal disease before baseline according to electronic
health records and self-reported answers at baseline (n = 65,663).
Furthermore, participants who had missing data on serum CysC
(n = 28,147) or main covariates were further removed (n = 10,763).
To minimize reverse causality, we also excluded those with
creatinine-based estimated glomerular filtration rates (eGFR) <
90 mL/min/1.73 m2, which is considered abnormal renal function
(n = 156,879) (Stevens et al., 2013). Finally, 241,008 participants
were included in the analysis (Figure 1).

2.2 Biomarker measurements

An immuno-turbidimetric assay based on the Siemens Advia
1800 platform (Siemens plc) was used to measure serum CysC
concentrations. The average coefficients of variation (CV) in the
low- and high-level internal quality control samples of CysC were
1.36% and 0.75%, relatively. Moreover, an external quality assurance
scheme was conducted to verify the assay performance, showing that
100% of participated distributions (n = 20) were good or acceptable.
In addition, serum creatinine and cholesterol concentrations were
measured by enzymatic methods. C-reactive protein (CRP)
concentrations were measured by an immuno-turbidimetric
assay. Low-density lipoprotein (LDL) concentrations were
measured by an enzymatic selective protection assay. Details
about serum biomarker measurements and assay performances
have been described in the online UK Biobank Showcase (http://
biobank.ndph.ox.ac.uk/showcase/showcase/docs/serum_
biochemistry.pdf).

The eGFR was calculated based on creatinine using the Chronic
Kidney Disease Epidemiology Collaboration (CKD-EPI)
equation (20). CKD-EPl equation expressed as a single equation:
GFR = 141 × min (Scr/κ, 1)α × max (Scr/κ, 1)−1.209 × 0.993Age × 1.018
(if female) × 1.159 (if black). Scr is standardized serum creatinine in
mg/dL, κ is 0.7 for females and 0.9 for males, α is −0.329 for females
and −0.411 for males, min indicates the minimum of Scr/κ or 1, and
max indicates the maximum of Scr/κ or 1. Normal creatinine-based
estimated glomerular filtration rates were defined as greater than or
equal to 90 mL/min/1.73 m2 (CKD Work Group, 2024).

2.3 Covariate assessment

Information on age, sex, ethnicity, fasting status, education degree,
lifestyle factors (smoking status and alcohol consumption), andmedical
history (medical conditions, family history of cancer, and for women,
menopausal status and ever use of hormone replacement therapy) was
extracted from a self-reported questionnaire at baseline. Height and
body weight were measured by trained health workers, and the body
mass index (BMI) was calculated as weight in kilograms divided by
height in meters squared (kg/m2). The Townsend deprivation index, an
indicator of socioeconomic status, was derived from data on
unemployment, household overcrowding, non-home ownership, and
non-car ownership (Jarman et al., 1991). Physical activity wasmeasured
as total metabolic equivalent task (MET)-hours per week for all activity,
including walking, moderate, and vigorous activity (Ainsworth
et al., 1993).
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2.4 Ascertainment of cancer deaths

Death certificates were obtained from the National Health
Service Information Centre (England and Wales) and the
National Health Service Central Register Scotland (Scotland). The
10th revision of the World Health Organization’s International
Statistical Classification of Diseases (ICD-10) diagnosis codes was
used to ascertain the primary cause of death. Total cancer (C00-
D48) and the 12 most common cancers in the UK Biobank were
assessed, which included lung cancer (C34), colorectal cancer (C18-
C20), pancreatic cancer (C25), blood cancer (C81-C96), brain
cancer (C71), esophageal cancer (C15), breast cancer (C50), liver
cancer (C22), prostate cancer (C61), ovarian cancer (C56), stomach
cancer (C16), and kidney cancer (C64) (Supplementary Table S1).

2.5 Statistical analysis

The follow-up time was calculated from the date of recruitment
to the date of death, loss to follow-up, or the last follow-up
(28 February 2021). Cancer mortality rates pertained to the
number of deaths from a specific site-related cancer per a specific
number of person-years of follow-up. Multivariable-adjusted

restricted cubic splines with five knots (the 5th, 27.5th, 50th,
72.5th, and 95th percentiles) were used to plot the dose–response
relationship between serum CysC concentrations and cancer
mortality. A likelihood ratio test was used to compare the model
with both the linear and the cubic spline terms, with P for
nonlinear <0.05 considered nonlinearity and P for
nonlinear >0.05 & P for linear <0.05 denoting linearity. Cox
proportional hazard models with age as the time scale were used
to calculate hazard ratios (HR) and 95% confidence intervals (CI) for
cancer mortality according to quintiles and per one standard
deviation (SD) increment of the log-transformed CysC
concentrations. The proportional hazard assumption was based
on Schoenfeld residuals, and no violation was found in this study
(Richmond et al., 2019). Model 1 was adjusted for age at baseline
assessment (years), sex (female, male), ethnicity (White, not White),
and fasting status (yes, no). Model 2 was additionally adjusted for
the Townsend index (continuous), college or university degree (yes,
no), BMI (kg/m2), smoking status (never, previous, current), pack-
years of smoking (continuous), alcohol consumption (never, special
occasions only, 1–3 times per month, 1–2 times per week, 3–4 times
per week, daily/almost daily), physical activity (MET-hours/week),
family history of cancer (yes, no), prevalent hypertension (yes, no),
diabetes (yes, no), cardiovascular diseases (CVD) (yes, no), and for

FIGURE 1
Flowchart of study participants from UK Biobank. ESRD, end-stage renal disease; CVD, cardiovascular diseases; BMI, body mass index; HRT,
hormone replacement therapy; eGFR, estimated glomerular filtration rate.

Frontiers in Molecular Biosciences frontiersin.org03

Huang et al. 10.3389/fmolb.2024.1209349

112

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2024.1209349


women, menopausal status (yes, no) and ever use of hormone
replacement therapy (yes, no). Model 3 was further adjusted for
serum cholesterol (mmol/L), LDL (mmol/L), CRP (mg/L), and
creatinine-based eGFR (mL/min/1.73 m2).

Stratified analyses were conducted according to age at blood
drawn (<55; ≥55 years), sex (male; female), BMI (<30; ≥30 kg/m2),
and smoking status (non-smoker; smoker). Sensitivity analyses were
performed by excluding people who died within 2 years or had

TABLE 1 Baseline characteristics of UK Biobank participants with normal creatinine-based eGFR by quintile of serum cystatin C concentrationa.

Characteristics Quintile of CysC concentration, mg/L

Q1 (0.36–0.76) Q2 (0.76–0.82) Q3 (0.82–0.87) Q4 (0.87–0.94) Q5 (0.94–4.19)

Participants, No. 48,123 48,491 47,674 48,378 48,342

Age at assessment, year 51.1 (7.5) 53.1 (7.8) 54.2 (7.8) 55.3 (7.8) 56.6 (7.6)

Female, % 77 61 51 44 37

White race, % 92 93 94 94 93

College or university degree, % 40 38 36 33 28

Fasting when blood drawn, % 4 4 4 5 6

Townsend deprivation index −1.4 (3.0) −1.4 (3.0) −1.4 (3.1) −1.2 (3.1) −0.7 (3.3)

Body mass index, kg/m2 25.2 (3.9) 26.2 (4.2) 27.0 (4.4) 27.8 (4.7) 29.4 (5.7)

Physical activity, MET hour/week 39.9 (31.6) 39.9 (31.9) 39.4 (31.9) 39.2 (32.4) 37.7 (31.9)

Smoking status, %b

Never 62 59 57 53 46

Previous 31 32 32 33 32

Current 7 8 10 14 22

Alcohol consumption, %b

Daily or almost daily 21 21 21 21 18

Three or four times a week 26 26 24 23 19

Once or twice a week 27 26 26 26 25

One to three times a month 11 11 11 11 12

Special occasions only 10 10 10 11 14

Never 6 7 7 8 11

Prevalent hypertension, % 15 19 22 26 33

Prevalent diabetes, % 4 4 4 5 7

Prevalent CVD, % 2 3 3 4 7

Postmenopausal, %c 28 30 30 28 26

Ever HRT use, %c 18 18 18 17 16

Family history of cancer, % 32 33 34 35 35

eGFR, mL/min/1.73 m2 103.8 (7.3) 100.9 (6.6) 99.5 (6.2) 98.3 (5.9) 97.0 (5.5)

C-reactive protein, mg/L 1.73 (3.26) 1.98 (3.55) 2.25 (3.86) 2.61 (4.14) 3.68 (5.42)

Cholesterol, nmol/L 5.61 (1.06) 5.71 (1.09) 5.76 (1.11) 5.76 (1.13) 5.67 (1.18)

Low-density lipoprotein, nmol/L 3.42 (0.81) 3.54 (0.83) 3.61 (0.85) 3.64 (0.86) 3.61 (0.89)

aNormal creatinine-based eGFR was defined by the CKD-EPI as ≥90 mL/min/1.73 m2. Values are expressed as means (SD) unless otherwise indicated.
bThe total did not sum to 100% because a small proportion of participants chose “prefer not to answer".
cAmong women only.

Abbreviations: eGFR, estimated glomerular filtration rate; CysC, cystatin C; MET, metabolic equivalent task; CVD, cardiovascular disease; HRT, hormone replacement therapy; CKD-EPI,

Chronic Kidney Disease Epidemiology Collaboration; SD, standard deviation.
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unfavorable self-assessment of overall health at baseline. Two-sided
p-values less than 0.05 were considered statistically significant. All
the statistical analyses were performed using SAS version 9.4 (SAS
Institute, Cary, NC).

3 Results

During a total of a total of 2,860,841 person-years of follow-up
(median follow-up: 12.1 years; interquartile range: 11.3–12.8 years),
5,744 of 241,008 participants died from cancer. Table 1 describes the
baseline characteristics of participants according to quintiles of
serum CysC concentrations. Participants with higher CysC
concentrations were more likely to be older, males, current
smokers, and have a higher Townsend deprivation index and
BMI. In addition, they tended to have prevalent hypertension,
diabetes, and CVD; they also had higher levels of CRP and LDL.
The baseline characteristics of the subjects, stratified based on
whether cancer death occurred, are presented in
Supplementary Table S2.

We observed a positive linear relationship between CysC
concentrations and total cancer mortality among participants

with normal kidney function (P for linear <0.0001) after
adjustment for sociodemographic information, lifestyle factors,
medical history, specific biomarkers, and renal function
(Figure 2). As shown in Figure 3, a per 1-SD increment of the
log-transformed CysC concentrations was associated with a 16%
higher risk of total cancer mortality (HR = 1.16, 95% CI:
1.12–1.20) in Model 3. In the site-specific analysis (Figure 3),
CysC was positively associated with mortality from lung cancer
(HR = 1.12, 95% CI: 1.05–1.20), blood cancer (HR = 1.29, 95% CI:
1.16–1.44), brain cancer (HR = 1.19, 95% CI: 1.04–1.36),
esophageal cancer (HR = 1.20, 95% CI: 1.05–1.37), breast
cancer (HR = 1.18, 95% CI: 1.03–1.36), and liver cancer
(HR = 1.49, 95% CI: 1.31–1.69). Multivariable restricted cubic
spline analysis showed that CysC had positive linear associations
with mortality from the above-mentioned cancer types (P for
linear <0.05) (Supplementary Figure S2). However, the
associations were non-statistically significant between CysC
and mortality from the other types of cancer located at the
colorectum, pancreas, prostate, ovarian, stomach, and kidney.
The HRs and 95% CIs for mortality according to quintiles of
CysC concentrations are presented in Supplementary Table S3.
When compared to the lowest quintile, individuals in the highest

FIGURE 2
Dose–response association of serum cystatin C concentrations with total cancer mortality among participants with normal creatinine-based eGFR.
Multivariable Cox regressionmodels with restricted cubic spline analysis were performed, adjusting for the same set of covariates as inModel 3. Cystatin C
concentrations above 99.9% and below 0.1% were not plotted due to wide confidence intervals at the extremes. The solid line represents estimates of
hazard ratio (HR), and the dashed lines represent 95% confidence intervals (CI). The dashed lines perpendicular to the horizontal axis represent the
5th, 27.5th, 50th, 72.5th, and 95th percentiles of cystatin C, respectively. The dashed line perpendicular to the vertical axis represents the HR equal to 1.
Normal creatinine-based eGFR was defined by the CKD-EPI as ≥90 mL/min/1.73 m2.
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quintile exhibit a heightened mortality risk for lung cancer (HR =
1.36, 95% CI: 1.23–1.51), blood cancer (HR = 1.54, 95% CI:
1.05–2.26), and liver cancer (HR = 2.46, 95% CI: 1.45–4.17) after
adjusting for relevant confounding variables.

In the stratified analyses by age, gender, BMI, and smoking
status, the associations of serum CysC concentrations with total and
site-specific cancer mortality were generally similar across
subgroups despite several exceptions (Supplementary Figures
S2–S5). For example, in the subgroup of younger age, the
positive association with mortality of liver cancer and pancreatic
cancer was stronger, while the positive association was stronger with
breast cancer mortality in the older group. In addition, the
association with blood cancer mortality was stronger in the
subgroup of BMI <30 kg/m2 (P for interaction <0.05). Sensitivity
analysis showed that the associations were essentially unchanged
after excluding participants who died within the first 2 years
(Supplementary Table S4) or those with poor self-reported
overall health at baseline (Supplementary Table S5).

4 Discussion

In this prospective cohort study of the general population, we
found a positive linear association between serum CysC
concentrations and cancer mortality. The site-specific analysis

further revealed the positive association with mortality from lung
cancer, blood cancer, brain cancer, esophageal cancer, breast cancer,
and liver cancer. Our findings suggest an independent adverse effect
of CysC on the risk of cancer mortality.

4.1 Total cancer mortality

In line with our results, a cohort study including
4,673 participants from the Cardiovascular Health Study
reported that compared with the lowest quartile of serum
CysC concentrations, the highest quartile was associated with
a 79% increased risk of cancer mortality after adjustment for
known risk factors and inflammatory biomarkers (Fried et al.,
2005). Another prospective cohort study incorporating
5,371 older men also showed that a 50% higher CysC
concentration was associated with a 21% increased risk of
cancer death (Emberson et al., 2010). However, a biracial
cohort study of 3,075 Black and White ambulatory older
patients (70–79 years old) with a follow-up of 6 years failed to
replicate the association (Shlipak et al., 2006). Moreover, a prior
study including 2,990 participants with normal eGFR reported a
positive association between serum CysC concentrations and
cancer mortality in univariate analysis, which was attenuated
to be non-statistically significant in multivariate analysis (HR

FIGURE 3
Associations of serum cystatin C concentrations and cancer mortality. Multivariable Cox proportional hazard models were used to calculate hazard
ratios (HR) and 95% confidence intervals (CI) for cancer mortality per one standard deviation (SD) increment of the log-transformed cystatin C
concentrations.
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comparing extreme deciles of CysC = 2.45, 95% CI: 0.85–7.04)
(Wu et al., 2010). Generally, the studies observing no association
included small numbers of cancer deaths (<350), which might
have insufficient statistical power to detect the association. In the
current study, which has the largest sample size to date, we ruled
out individuals with renal diseases and kidney dysfunction at
baseline and controlled for eGFR and other potential
confounders, strongly suggesting an independent positive
association of CysC concentrations with cancer mortality.

4.2 Site-specific cancer mortality

To the best of our knowledge, there is no epidemiologic
evidence about the association between CysC concentrations
and cancer-specific mortality in the general population. In
support of our findings, previous case–control studies found
that compared with healthy controls, elevated circulating
levels of CysC were detected in patients diagnosed with lung
cancer (Chen et al., 2011), esophageal cancer (Yan et al., 2017),
breast cancer (Decock et al., 2008), and liver disease (Zinkin et al.,
2008). In addition, several retrospective studies conducted in
cancer patients have assessed the clinical prognosis significance
of CysC. For example, a prior study enrolling 205 patients with
small-cell lung cancer found that higher levels of serum CysC
were associated with a poorer progression-free survival (Wang H.
et al., 2021), and other studies reported CysC as a possible useful
biomarker in clinical prognosis management of patients with
breast cancer (Leto and Sepporta, 2020), non-Hodgkin B-cell
lymphoma (Mulaomerovic et al., 2007), and multiple myeloma
(Terpos et al., 2009).

Experimental investigations suggest that CysC plays a
critical role in key events of carcinogenesis, such as cell
proliferation, apoptosis, and cell adhesion, through its
inhibiting activity on cysteine proteases or other cathepsin
inhibition-independent mechanisms (Breznik et al., 2019).
For example, cysteine proteases have shown the ability to
mediate programmed cell death of lung and blood cancers
(Broker et al., 2004; Sukhai et al., 2013) and to promote the
maturation of antigen-presenting cells, antigen processing, and
presentation to T cells (Olson and Joyce, 2015). By thwarting the
effects of cysteine proteases, CysC could facilitate cancer cell
growth (Leto et al., 2018) and impair T-cell-dependent-
antitumor immune response (Zavasnik-Bergant et al., 2005;
Magister and Kos, 2013). On the other hand, ex vivo and
in vitro studies have shown a reduction in the proliferation of
tumor cells with CysC knockout, indicating that CysC might
directly regulate tumor growth through the p38 MAPK signaling
pathway. (Završnik et al., 2017). Additional evidence shows that
CysC secreted by lung cancer cells could increase the adhesion of
cancer cells to the brain microvascular endothelium and result in
the formation of brain metastasis (Rai et al., 2015). Moreover,
CysC may be conducive to tumor cell invasion and angiogenesis
by protecting matrix metalloproteinase-9 from autolysis (Mira
et al., 2004; Paupert et al., 2008). Zhao et al. also reported that
elevated expression of CST3, the gene encoding cystatin C, was
critical for cellular polyploidization that may facilitate cancer
cells to resist radiation therapy (Zhao et al., 2023).

The main strengths of this research include the large sample
size, prospective design with a long-term follow-up, and accurate
assessment of cancer death. Our results were robust to extensive
statistical adjustments and sensitivity analyses. Nevertheless,
several limitations should be addressed. First, the current
study is observational and could not rule out the possibility of
residual confounding. Second, a single measurement of serum
CysC at baseline was used in the study, which did not take into
account the change of the biomarker during the follow-up time.
Third, because most of the participants in the UK Biobank were
of White ethnicity, the generalization of our findings to other
ethnicities should be interpreted with caution. Further
independent validation is important for causal inference and
would ensure that the results can be generalized to a broader
population.

5 Conclusion

Our results suggest that serum CysC concentrations are
positively associated with mortality from total and certain types
of cancer in the general healthy population. Future studies are
warranted to clarify the underlying mechanisms of CysC in
carcinogenesis and uncover the potential of CysC as a target for
cancer treatment.
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From serum metabolites to the
gut: revealing metabolic clues
to susceptibility to subtypes
of Crohn’s disease and
ulcerative colitis
Fan Li1,2†, Zhaodi Wang1,2†, Tongyu Tang1,2, Qi Zhao1,2,
Zhi Wang1,2, Xiaoping Han1,2, Zifeng Xu1,2, Yu Chang1,2,
Hongyan Li1,2, Sileng Hu1,2, Chanjiao Yu1,2, Shiyu Chang1,2,
Yue Liu1,2 and Yuqin Li1,2*

1Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China, 2Norman
Bethune Health Science Center, Jilin University, Changchun, China
Background and aims: Inflammatory bowel disease (IBD) is a common chronic

inflammatory bowel disease characterized by diarrhea and abdominal pain.

Recently human metabolites have been found to help explain the underlying

biological mechanisms of diseases of the intestinal system, so we aimed to assess

the causal relationship between human blood metabolites and susceptibility to

IBD subtypes.

Methods: We selected a genome-wide association study (GWAS) of 275

metabolites as the exposure factor, and the GWAS dataset of 10 IBD subtypes

as the outcome, followed by univariate and multivariate analyses using a two-

sample Mendelian randomization study (MR) to study the causal relationship

between exposure and outcome, respectively. A series of sensitivity analyses

were also performed to ensure the robustness of the results.

Results: A total of 107 metabolites were found to be causally associated on

univariate analysis after correcting for false discovery rate (FDR), and a total of 9

metabolites were found to be significantly causally associated on subsequent

multivariate and sensitivity analyses. In addition we found causal associations

between 7 metabolite pathways and 6 IBD subtypes.

Conclusion: Our study confirms that blood metabolites and certain metabolic

pathways are causally associated with the development of IBD subtypes and their

parenteral manifestations. The exploration of the mechanisms of novel blood

metabolites on IBD may provide new therapeutic ideas for IBD patients.
KEYWORDS

Crohn’s disease, inflammatory bowel disease, ulcerative colitis, metabolite, metabolic
pathway, Mendelian randomization
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1 Introduction

Ulcerative colitis (UC) and Crohn’s disease (CD), collectively

referred to as inflammatory bowel disease, are a group of chronic,

recurrent autoimmune diseases. The interaction of genetic and

environmental factors that influence the immune response leads

to inflammatory bowel disease (1).The most common symptoms of

CD or UC include diarrhea, abdominal pain, bloody stools, and

weight loss. UC involvement is primarily in the colorectum, and CD

can involve the entire GI tract, but primarily in the ileum. The

differences between CD and UC subtypes at different sites have been

debated. Dulai et al. on the basis of the differences in CD subtypes

(2), suggested that a distinction should be made between ileal

dominant CD and isolated colonic CD at the time of diagnosis

(3). At the World Congress of Gastroenterology in Montreal in

2006, significant differences were found in patients with UC

involving the rectum, left colon, and total colon based on the

natural history of the disease, response to medications, risk of

neoplasia, and serologic and genetic markers in patients with UC

(4–6), based on which the Montreal UC Classification was

popularized to differentiate between the Static severity (4). Like

the subtypes at different sites, primary sclerosing cholangitis

associated UC (UC-PSC) (7), CD and UC associated

spondyloarthritis (CD-SpA, UC-SpA) (8) also have distinct

cl inical , cel lular and microbiological features . These

extraintestinal manifestations of UC and CD also warrant further

investigation into their pathogenesis. In recent years, metabolomics

has been extensively studied in patients with IBD. Single biomarker

approaches cannot be considered ideal for clinical application in

IBD with complex mechanisms. Metabolomics, by measuring

hundreds of metabolites in biological samples, allows for the

characterization of potential mechanisms specific to different

disease subtypes (9).A study by Schicho et al. found that energy

metabolites such as methanol, mannose, and formic acid (10). were

the metabolites with the most significant increase in serum and

plasma of patients with IBD, and other studies support the

observation of altered energy metabolism (11, 12),, including

metabolites involved in amino acid cycling and TCA cycling (13).

However, relatively few metabolomics studies have been conducted

for the different subtypes of UC and CD.

Mendelian randomization mimics the random grouping of

individuals at birth by identifying different single-nucleotide

polymorphisms and identifying the causal relationship between

exposure and outcome at the gene level. Since genetic differences

accompany individuals throughout their lives from birth,

Mendelian randomization studies effectively eliminate the effects

of general confounding factors such as age, social status, and

economic level, and allow for a clear direction of causality.

In this study, we explored the metabolite phenotypes

responsible for the pathogenesis of 10 IBD subtypes and

extraintestinal manifestations through a two-sample MR study

using the 275 blood metabolite GWAS dataset. The findings of

this research will guide further investigations into the diagnostic

and prognostic implications of blood metabolites for IBD subtypes.
Frontiers in Endocrinology 02120
2 Methods

2.1 Data sources

We used summary data for multiple cohorts of the study.

Metabolite data were derived from a genome-wide association

study of 275 blood metabolites in 7,822 adults from 2 European

population studies determined in 2014 by shin et al. Hundreds of

associations and their metabolic contexts reported in this study

define a system-wide molecular readout atlas of human gene

activity measured in vivo (14). We selected these metabolites into

nine subclasses of lipids, fatty acids, and carbohydrates, as defined

in the Kyoto Encyclopedia of Genes and Genomes (KEGG)

database. The outcome data comes from FinnGen, a database that

collects and analyzes genomic and health data from 500,000 Finnish

Biobank participants and provides novel medical and treatment-

related insights (15).It provided a GWAS dataset of UC and CD

stratified diagnoses and comorbidities for us to choose from, which

contained a sample size of 373,819 individuals, with a total of 15,779

patients with UC and CD. The GWAS dataset associated with gut

microbiota metabolomic pathways was published by Lopera-Maya

et al. in 2022. The study was based on a multidisciplinary

prospective cohort study of a population residing in northern

Netherlands, evaluating the impact of various exposures and

lifestyles on gut microbiota composition among 167,729

individuals. This study included data from 7738 participants,

encompassing 205 gut microbiota-associated metabolic pathways.

Databases of exposures and outcomes were derived from European

populations and included both males and females to avoid population

stratification bias (16). Details of the dataset information and

stratification are shown in Table 1, and comprehensive dataset

information is provided in Supplementary Table 1.
2.2 Research approach

In this study, we used two-sample MR (TSMR) to investigate the

causal relationship between blood metabolites and IBD subtypes and

their parenteral manifestations. We stratified the IBD subtypes by

combining the Montreal typing and The International Classification

of Diseases (ICD)-10 classification methods, details of which are

shown in Table 1.We investigated single nucleotide polymorphisms

(SNPs) as instrumental variables (IVs) and performed Univariate

Mendelian randomization (UVMR) analyses using inverse variance

weighting (IVW), MR-Egger regression, weighted median method,

weighted mode method, and MR-RAPS method after screening

qualified IVs, and conducted sensitivity analyses such as the MR-

Egger intercept test, Cochran’s Q test, and the leave-one-out test on

the results to ensure that the results were robust.

2.3 Selection of instrumental variables

In this study, adhering to the three basic assumptions of

association, independence, and exclusivity, the following steps
frontiersin.org
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were performed to screen the IVs: first, SNPs significantly

associated with exposure were extracted at the genome-wide

significance level (threshold alpha = 5 × 10^ -8), and in order to

obtain enough SNPs, we lowered the threshold to alpha = 1 × 10^-5

for batches that could not be extracted. Then, the criterion of r2 <

0.01 and kb = 10000 was set to remove SNPs with chained

disequilibrium. The F-statistic is an indicator of the degree of

association based on regression analysis, and in the instrumental

variable analysis method, instrumental variables with an F-statistic

of < 10 are considered to be invalid weak IVs. We calculated the

association F-value of each SNP with exposure and removed weak

instrumental variables.

We next used PhenoScanner searches for each SNP to exclude

SNPs associated with confounding factors such as serum vitamin D

levels, depression, and other confounding factors to avoid the

influence of confounding factors on the results (17).Next, we

applied MR-PRESSO to detect hetero-SNPs and correct their

horizontal pleiotropy. We also analyzed the direction of causal

estimation by MR- Steiger to remove all SNPs incorrectly

(18).Finally we removed SNPs directly associated with outcome

according to Bonferroni correction (P<0.05/n, n refers to the

number of remaining SNPs).The flowchart and directed acyclic

diagram consisting of MR research hypotheses are shown in Figure 1.
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2.4 Univariate MR analysis

In this study on the relationship between blood metabolites and

IBD subtypes, including their extraintestinal manifestations, we

employed five methods: Inverse Variance Weighted (IVW)

method, MR-Egger regression, Weighted Median, Weighted

Mode, and MR-Robust Adjusted Profile Score (PAPS).

The flowchart and directed acyclic graph composed of the MR

study hypotheses are shown in Figure 1. IVW is characterized by a

regression that does not take into account the presence of an

intercept term and is fitted with the inverse of the ending

variance (the quadratic of se) as weights, and its estimation can

be obtained by calculating the slope of a weighted linear regression

(19) (20). When the instrumental variables satisfy the three

hypotheses, the IVW approach provides a robust estimate of the

causal relationship between exposure and outcome and will be

preferentially used for assessment (21).The MR-Egger method is

similar to the IVW method except that the regression model

includes an intercept term. We preferred this method to be used

for assessment when there is multiple validity in the data. The

weighted median and weighted mode methods are based on the

majority validity assumption and the plurality validity assumption,

respectively, to calculate the causal effect (21, 22).
TABLE 1 Inclusion information and stratification details of the dataset.

Datasets
ICD-10
encoding

Montreal
classification

Case
Sample
Size

Year Authors Gender Population NSNP

Crohn’s disease
of small intestine

K50.0 L1+part of L4 2004 361931 2023 FinnGen
Males
and Females

European 20167370

Crohn’s disease
of colon

K50.1 L2 1581 361508 2023 FinnGen
Males
and Females

European 20167370

Crohn’s disease
of ileocolon

K50.2 L3 2098 362025 2023 FinnGen
Males
and Females

European 20167370

Arthropathy in
Crohn disease

M07.4*K50.9 273 373819 2023 FinnGen
Males
and Females

European 20167370

Ulcerative
proctitis

K51.2 E1 1773 361700 2023 FinnGen
Males
and Females

European 20167370

Ulcerative
rectosigmoiditis

K51.3 2487 362414 2023 FinnGen
Males
and Females

European 20167370

Left-sided
ulcerative colitis

K51.5 E2 4085 364012 2023 FinnGen
Males
and Females

European 20167370

Ulcerative
pancolitis

K51.0 E3 933 360860 2023 FinnGen
Males
and Females

European 20167370

Ulcerative colitis
with PSC

K83.0*K51 209 364784 2023 FinnGen
Males
and Females

European 20167370

Arthropathy in
ulcerative colitis

M07.5*K51.9 336 373882 2023 FinnGen
Males
and Females

European 20167370

Serum level of
275 metabolites

– – 7822 7822 2014 Shin et al.
Males
and Females

European 2546774

Gut microbiota
pathway of 205

– – 7738 7738 2022
Lopera-
Maya et al.

Males
and Females

European 5566712
fr
ICD, International Classification of Diseases; PSC, Primary Sclerosing Cholangitis; SNP, Single Nucleotide Polymorphism.
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Effective IV exceeds 50%, the median of the weighted median

ratio estimates will converge to the true causal effect. At less than

50%, when no larger group of invalid instrumental variables with

the same ratio estimand exists, weighted mode can be used to

determine the true causal effect. In the presence of heterogeneity

among SNPs, the weighted median and IVW methods were

required to jointly support the conclusion of significance.

The MR-RAPS method is a common modeling approach that is

based on estimating causal effects based on the multiplicity of effects

obeying a normal distribution centered on zero with positional

variance and using a probability profile likelihood function.

In the analysis we corrected the p-values of the MR results with

false discovery rate (FDR) method and inferred the causality using

the corrected p-value < 0.05 as the criterion.
2.5 Sensitivity analysis

Therefore, in the current study we performed the Q-test for

IVW and MR-Egger to evaluate the heterogeneity between IVs by

calculating the weighted sum of the squared distances between the

variant-specific estimates and the overall estimates, and concluded

that heterogeneity existed in SNPs with a Q-test P-value < 0.05. We

utilize the MR-Steiger model to estimate horizontal multinomials

based on their intercepts to ensure the robustness of the results (23).

The Instrument Strength Independent of Direct Effect (InSIDE)

assumption and the NO Measurement Error (NOME) hypothesis
Frontiers in Endocrinology 04122
that need to be satisfied for MR-Egger regression. We constructed a

funnel plot and calculated the I2 statistic to ensure the validity of

these assumptions. When I2 < 90% and the primary analytical

method is MR-Egger, a correction for causal estimates is required

(24) (25).Finally, we calculated the statistical power and conducted

leave-one-out sensitivity analyses using individual SNPs (26).

2.6 Multivariate MR analysis

After univariate MR, we performed multivariate analyses of

significant metabolites using the same parameters to find

independently significant plasma markers by IVW, MR-Egger,

weighted median, and LASSO regression methods. Heterogeneity

and pleiotropy were also analyzed by sensitivity analysis.

2.7 Metabolic pathway analysis

Existing metabolite sets were utilized, culminating in metabolic

pathway analysis based on KEGG databases using Metabo Analyst

5.0 (https://www.metaboanalyst.ca/), a user-friendly online tool for

streamlining metabolomics data analysis.
2.8 Visualization and statistical software

In this study we used scatter plots, regression plots, forest plots,

and leave-one-out forest plots to present the study findings, as
FIGURE 1

MR Study Design for the Association between Plasma Metabolites and IBD Subtypes This figure illustrates the workflow of Mendelian randomization
analysis in this study. (A) Mendelian randomization three hypotheses and experimental principles; (B) Multivariable Mendelian randomization experimental
principles. GWAS, Genome-Wide Association Study; CD, Crohn’s Disease; UC, Ulcerative Colitis; MR, Mendelian Randomization; PRESSO, Pleiotropy
RESidual Sum and Outlier; LD, Linkage Disequilibrium; IV, Instrumental Variable; RAPS, Robust Adjusted Profile Score; FDR, False Discovery Rate.
frontiersin.org

https://www.metaboanalyst.ca/
https://doi.org/10.3389/fendo.2024.1375896
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Li et al. 10.3389/fendo.2024.1375896
detailed in Supplementary Figures 1-4. The expression of the overall

results is demonstrated by means of circular heat maps and forest

plots. Several figures were partly generated using Servier Medical

Art (smart.servier.com), provided by Servier, licensed under a

Creative Commons Attribution 3.0 unported license. Statistical

analyses and visualizations were performed in this study using R

(version 4.1.2; R Foundation for Statistical Computing, Vienna,

Austria), with the application of the “TwoSampleMR”, “MR-

PRESSO”, “mr. raps”, “forestploter” packages and some basic R

packages. Calculation codes are provided in Supplementary File 1.
3 Result

3.1 Selection of instrumental variables

Initially, we screened a total of 16,522 SNPs associated with 275

plasma metabolites and did not find any weak variable instruments,

289 SNPs were missing from the endpoint database and were

deleted, 2,027 SNPs were ambiguous SNPs, palindromic SNPs

were deleted when merging the datasets, and 467 SNPs were

associated with confounders such as serum vitamin D levels and

depression after PhenoScanner searching, and these were deleted if

they did not meet the independence assumption. The MR-PRESSO

test identified 42 SNPs with horizontal pleiotropy; 111 SNPs

directly associated with outcome were removed after bonferroni

correction. 13,586 eligible SNPs were finally included in the study,

with the number of SNPs included in significant results depicted

in Figure 2.
3.2 Causal effects of blood metabolites on
9 subtypes of IBD

We summarize the details of the MR study in the

Supplementary Information.

In this study, 275 plasma metabolites were included in the

analysis. The number of SNPs per type of gut flora ranged from 1 to

31, and details of the IVs for 150 metabolites are listed in the

Supplementary Table. By univariate and multivariate MR analyses,

we found that 9 metabolites had significant causal effects on IBD

subtypes, of which 6 metabolites were protective against different

IBD subtypes and three metabolites promoted the development of

different IBD subtypes (as illustrated in Figure 2). The results of MR

analysis are depicted in the circular heatmap (Figure 3), with

detailed MR analysis results and the SNPs included therein

provided in Supplementary Tables 2, 3, while information on

confounding-related SNPs is available in Supplementary Table 4.

We estimated the causal associations of these 275 metabolites with

10 IBD subtypes and their extraintestinal manifestations using MR

analysis, and a total of 107 associations were identified in univariate

analyses, which involved 62 metabolites. Subsequent multivariate

analyses were performed, and 9 metabolites were observed to have

independent effects on outcome. This includes 2 metabolites from the

peptide metabolism pathway, 3 metabolites from the carbohydrate

pathway, 3 metabolites from the lipid metabolism pathway, and 1
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metabolite from the amino acid metabolism pathway. Protection

against CD subtypes was observed with three metabolites;

specifically, Erythronate reduced the risk of small intestinal Crohn’s

disease; HWESASXX and Phenylalanylphenylalanine reduced the risk

of Crohn’s disease of ileocolon. The development of CD subtypes is

promoted by two metabolites; 1,5-anhydroglucitol (1,5-AG) increases

the risk of Crohn’s disease of ileocolon, and nonanoylcarnitine

increases the risk of arthritis in Crohn’s disease. Against UC

subtypes, three metabolites showed protective effects; 1-

arachidonoylglycerophosphocholine and Myo-inositol reduced the

risk of ulcerative pancolitis; and mannitol reduced the risk of

ulcerative proctitis. A metabolite was found to promote the

pathogenesis of UC subtypes, with 3-methylhistidine increasing the

risk of ulcerative colitis with PSC.

Although the IVW approach is highly effective in inferring causal

relationships between exposures and disease outcomes, it is known to

be susceptible to weak instrumental variable bias. We therefore

conducted sensitivity and multivariate analyses of the above data to

assess whether the results were robust. With the exception of

heterogeneity in the causal relationship between erythritol and

small intestinal Crohn’s disease (however, both the IVW method

and the WM method results support a significant causal

relationship), no evidence of heterogeneity or pleiotropy was found

for the above significant results (as shown in Table 2). Detailed

sensitivity analysis results are provided in Supplementary Tables 5-7.
3.3 Metabolic pathway analysis

We also identified seven important metabolic pathways associated

with IBD subtypes in the present study (Table 3). 3-Methylhistidine

was involved in the histidine metabolic pathway (P=0. 010). Among

the metabolites that passed through the UMR only, those involved in

histidine metabolism, valine, leucine, and isoleucine biosynthesis,

arginine biosynthesis, aminoacyl-tRNA biosynthesis, alanine,

aspartate, and glutamate metabolism, phenylalanine, tyrosine, and

tryptophan metabolism, phenylalanine, tyrosine, and tryptophan

biosynthesis, and unsaturated fatty acid pathway biosynthesis (P<0.

05). In themetabolic pathways of gut microbiota, we identifiedmatches

with L-glutamate degradation V, super pathway of L-isoleucine

biosynthesis I, and super pathway of arginine and polyamine

biosynthesis (Table 3, Supplementary Table 8).
4 Discussion

In recent years, it has been found that IBD can occur in

combination with a variety of metabolic diseases, and metabolomic

studies have continued to identify metabolites and metabolic pathways

associated with intestinal inflammation and IBD (11, 27), and have

become the focus of in-depth research. Blood is the most commonly

used sample source for metabolomics identification because it contains

a large number of detectable metabolites and can be easily obtained in

large sample sizes to help screen for circulating biomarkers of IBD risk

(28). Our study confirms the existence of an subtypes-specific

metabolic profile in IBD and identifies key metabolites and
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metabolic pathways associated with IBD subtypes pathogenesis and its

associated phenotypes.

Table 4 summarizes the changes in metabolite levels in the

bodies of patients with IBD from previous studies, as well as the

effects of certain metabolites on IBD patients. Our previous studies

have identified different risk factors for intestinal flora in different

subtypes of CD or UC (29), and recent studies of CD subtypes have

identified metabolomic differences. A mouse experiment by Baur

et al. identified metabolomic differences in Crohn’s disease mice

with different sites of involvement (30). Whereas Schwärzler et al.

found a higher inflammatory profile in patients with ileal CD rather

than isolated colonic CD (31).Serum levels of sphingolipid

metabolites such as S1P (Sphingosine 1 phosphate) are higher in

CD patients with ileocecal involvement compared to colonic disease

(32).Serum anti-Brewer’s yeast antibodies better point to patients

with ileal Crohn’s disease (33).. The high abundance of adherent-

invasive E. coli (AIEC) possessed by patients with ileal CD

compared to colonic CD may differentiate the metabolomics of

different subtypes of CD patients through its ability to activate the

expression of innate immune/pro-inflammatory genes (34, 35).

However, stratification studies of UC subtypes remain limited.

Previous stratification studies have led us to stratify the subtypes

and extraintestinal manifestations of UC and CD, combining

multiple metabolites with different CD/UC subtypes and

obtaining many reliable results.

In the amino acid metabolic pathway we identified a causal

relationship between one metabolite and IBD. Amino acids are

essential constituents of the human body, both for protein synthesis

and through catabolism in important life activities of the body. It

has been noted that the abundance of genes for the metabolism and
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biosynthesis of almost all amino acids is decreased in IBD patients

(36). 3-Methylhistidine (3-MH) is a histidine derivative produced

by degradation of several tissues, especially skeletal muscle (37).

Histidine can affect acute and chronic inflammation and modulate

key events in the immune response by producing histamine through

decarboxylation reactions (38). It has been shown that histidine

supplementation inhibits oxidative stress in intestinal epithelial cells

thereby reducing damage to the gut as well as exerting anti-

inflammatory effects by inhibiting TNF-a-induced IL-8 secretion

(39). In addition, it has been found that dietary histidine

ameliorates colitis by modulating NF-kB activation as well as

inhibiting the production of pro-inflammatory cytokines by

macrophages in an IL-10-deficient cellular metastasis model of

Crohn’s disease (40). Decreased plasma histidine can increase the

risk of recurrence in patients with ulcerative colitis in remission

(41). However, our study discovered a positive causal relationship

between high levels of 3-MH and the onset of ulcerative colitis with

PSC, the mechanisms of which remain unknown and warrant

further investigation.

Previous studies have demonstrated a strong association

between foodborne bioactive peptides and the development of

IBD (42).It can prevent and treat colitis by regulating four

mechanisms: inflammatory cytokines, inflammatory pathways,

intestinal epithelial barrier and intestinal flora balance (43).

Phenylalanylphenylalanine is a peptide substance product

resulting from the incomplete catabolism of proteolytic

metabolism, which is strongly associated with a variety of

diseases: one study found a positive correlation between

Phenylalanylphenylalanine and the development of pancreatic

ductal adenocarcinoma pancreatic ductal adenocarcinoma
FIGURE 2

Forest Plot of Significant Univariate and Multivariate MR Analyses The forest plot illustrates the results of univariable and multivariable MR analysis.
*indicates the existence of heterogeneity between SNPs, # indicates the existence of pleiotropy of SNPs; 1 UVMR P-values are adjusted by the False
Discovery Rate method; 2 MVMR P-values are adjusted by significant UVMR exposures. OR, odds ratio; CI, confidence interval; PSC, primary
sclerosing cholangitis; UVMR, univariable MR; MVMR, multivariable MR; NSNP, number of SNPs.
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(PDAC) (44); It increases in lung cancer and decreases in

tuberculosis, and can be used as a potential diagnostic marker to

differentiate between lung cancer and tuberculosis (45).

Phenylalanylphenylalanine and HWESASXX were also found to

be causally associated with Crohn’s disease of ileocolon. However,

the mechanisms by which such metabolites affect IBD are not yet

fully understood and further experimental explorations are needed.

Furthermore, there is a close relationship between lipid

metabolism and IBD, with various fatty acids and lipid

metabolites attenuating the expression of the TNFa gene during

the pathology of IBD, such as oleic acid, w-3 polyunsaturated fatty

acids, arachidonic acid, and prostaglandins derived from

phosphatidylcholine (46). Macrophages play a role in the

pathogenesis of IBD through the cPLA2a/COX-1 pathway, which

has been identified to have anti-inflammatory, immune-

modulatory, intestinal microbiota-regulating, and barrier-

maintaining effects (47). The existence of a causal relationship
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between inositol and ulcerative proctitis may be due to the

following reasons, Inositol and inositol phosphates have been

shown to have a variety of health benefits such as anticancer,

antidiabetic, antioxidant and anti-inflammatory (48). Specifically,

inositol hexakisphosphate (IP6) reduces cell necrosis and pro-

inflammatory cytokine mRNA release at sites of inflammation

(49, 50), and myoIns likewise have the ability to downregulate

inflammation and cytokine release (51). We hypothesized that

inositol and phosphatidylinositol could protect against ulcerative

proctitis by decreasing the local response to intestinal mucosal

inflammation. Our study found a causal relationship between

nonanoylcarnitine (nonanoylcarnitine) and IBD and related

extraintestinal manifestations, and acylcarnitines were found to

serve as an alternative energy source for oxidative metabolism in

a study examining carnitine and its derivatives in relation to

alterations in IBD flora. Acetylcarnitine dietary supplementation

increases carnitine levels in the gut and promotes the recovery of
FIGURE 3

Heatmap of Significance in UVMR Analysis The heatmap displays the significance P-values of Mendelian randomization across different batches, with
significant batches shown in red. From inner to outer circles are CD-ART, CD-C, CD-IC, CD-S, UC-PSC, UC-ART, UC-PAN, UC-LS, UC-PS, UC-PRO.
Starting from the top left and proceeding clockwise, the groups are Lipid, Nucleotide, Peptide, Xenobiotics, Amino acid, Carbohydrate, Cofactors
and vitamins, Energy, Fatty acid. CD-ART, Arthropathy in Crohn disease; CD-C, Crohn’s disease of colon; CD-IC, Crohn’s disease of ileocolon; CD-S,
Crohn’s disease of small intestine; UC-PSC, Ulcerative colitis with PSC; UC-ART, Arthropathy in ulcerative colitis; UC-PAN, Ulcerative pancolitis; UC-
LS, Left-sided ulcerative colitis; UC-PS, Ulcerative rectosigmoiditis; UC-PRO, Ulcerative proctitis.
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TABLE 3 Key metabolic pathways involved in the pathogenesis of IBD subtypes.

Pathway Serum Gut
Microbiota

Both in
MVMR
and UVMR

Significant
in UVMR

Outcomes PEnrichment Matched
pathway

Outcomes PMR

Histidine metabolism 3-Methylhistidine L-Glutamic acid UC-PSC, CD-C 0.010

Valine, leucine and
isoleucine
biosynthesis

- 3-Methyl-2-
oxovaleric
acid, Ketoleucine

UC-ART 0.002 Super pathway of
L-isoleucine
biosynthesis I

UC-ART 0.002

Arginine biosynthesis - L-Glutamic
acid, Citrulline

CD-C, UC-LS 0.007 Super pathway of
arginine and
polyamine
biosynthesis

UC-LS 0.004

Aminoacyl-
tRNA biosynthesis

- L-Asparagine, L-
Tyrosine, L-
Glutamic acid

CD-C, CD-S 0.010

Alanine, aspartate
and
glutamate metabolism

- L-Asparagine, L-
Glutamic acid

CD-C, CD-S 0.029 L-glutamate
degradation V

CD-C 0.039

Phenylalanine,
tyrosine and
tryptophan
biosynthesis

- L-Tyrosine CD-C 0.038

Biosynthesis of
unsaturated
fatty acids

- Stearic acid,
Alpha-
Linolenic acid

UC-ART 0.046
F
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CD-ART, Arthropathy in Crohn disease; CD-C, Crohn’s disease of colon; CD-IC, Crohn’s disease of ileocolon; CD-S, Crohn’s disease of small intestine; UC-PSC, Ulcerative colitis with PSC; UC-
ART, Arthropathy in ulcerative colitis; UC-PAN, Ulcerative pancolitis; UC-LS, Left-sided ulcerative colitis; UC-PS, Ulcerative rectosigmoiditis; UC-PRO, Ulcerative proctitis, UVMR, univariate
MR; MVMR, multivariate MR.
TABLE 2 Sensitivity analysis results.

Batch Exposure Outcomes

Univariate Analysis Multivariate Analysis

Ppleiotropy Pheterogenity
Casual
Direction

Ppleiotropy Pheterogenity PWM

2022 Myo-inositol Ulcerative
pancolitis

-
-

TRUE 0.917 0.126 0.009

731 Erythronate Crohn’s disease
of small
intestine

0.596
0.727

TRUE 0.811 0.082 0.041

2095 1-
arachidonoylglycerophosphocholine

Ulcerative
pancolitis

0.894
0.610

TRUE 0.677 0.344 0.026

438 HWESASXX Crohn’s disease
of ileocolon

-
-

TRUE 0.443 0.025 0.011

548 Phenylalanylphenylalanine Crohn’s disease
of ileocolon

0.980
0.998

TRUE 0.917 0.126 0.013

2270 Mannitol Ulcerative
proctitis

0.187
0.899

TRUE 0.568 0.191 0.013

374 1,5-anhydroglucitol Crohn’s disease
of ileocolon

0.785
0.885

TRUE 0.811 0.082 0.154

1054 nonanoylcarnitine Arthropathy in
Crohn disease

-
-

TRUE 0.917 0.126 0.006

1178 3-methylhistidine Ulcerative
colitis with PSC

0.979
0.419

TRUE 0.265 0.871 0.173
TRUE Casual Direction indicates that the MR result passed the MR-Steiger forward causality test. Batches with less than 3 SNPs are not available for Cochran’s Q test and MR-Egger intercept
analysis. WM, weighted median method; PSC, Primary Sclerosing Cholangitis.
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health in rodent models of enteropathogenic Escherichia coli

infection (52). In the mouse experiments conducted by Lemons

et al., it was found that consuming animal products rich in carnitine

and acylcarnitines is associated with an increased risk of IBD (52).

The mechanism of action here is not fully understood and still

needs to be further explored.

Previous studies have indicated that 1,5-anhydroglucitol (1,5-

AG) is a carbohydrate-like metabolite whose enzymatic side

reaction produces 1,5-anhydroglucitol-6-phosphate (1,5-AG6P).

1,5-AG6P is a hexokinase inhibitor whose accumulation in cells

inhibits the phosphorylation of glucose thereby affecting the

glycolytic process. Neutrophils can suppress intestinal

inflammation in IBD patients by modulating immune responses,

oxidative stress, and generating pro-inflammatory cytokines,

chemokines, and calprotectin (53). And since glycolysis is its only

source of energy, an increase in 1,5-AG in the body may have

unfavorable consequences for patients with Crohn’s disease of

ileocolon through mechanisms that have not yet been clarified.

Our study did confirm a causal relationship between 1,5-AG and

the development of Crohn’s disease of ileocolon. Mannose, a

monosaccharide in vivo, has been shown in mouse experiments to

ameliorate colitis by strengthening tight junction proteins, inhibit
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mitochondrial dysfunction during inflammation by enhancing

lysosomal integrity, and limit the release of histone B for the

purpose of maintaining homeostasis in the intestinal epithelium

(54). Mannitol is a monosaccharide derivative, and in an in vitro

assay conducted by Yanjun Guo et al. it was found that mannitol

can induce vasorelaxation through hypertonicity as well as SKCa

(Small-conductance Ca2+-activated K+ channels) and IKCa

(Intermediate-conductance) mediated EDH (Endothelium

dependent hyperpolarization); leading to vasorelaxation, which

may play a key physiological role in enhancing postprandial small

resistance vascular blood flow and thus intestinal perfusion (55). In

the current study we found that mannitol reduced the risk of

ulcerative proctitis, and we speculate that it may be related to the

above mechanism, but further experimental verification is needed.

In addition, we found that Erythronate (erythritol) as well as

mannitol are causally related to IBD, but the exact mechanism is

still unclear and needs to be further explored. It is noteworthy that

both amino acid-related metabolites, peptide metabolites, lipid

metabolites, and carbohydrate metabolites share a common

pathway to exert a protective effect against IBD, i.e., modulation

of different pro-inflammatory factors and inhibition of the body’s

inflammatory response to exert a protective effect on the

intestinal mucosa.

In the present study we also identified seven metabolic

pathways associated with the 6 IBD subtypes and their

extraintestinal manifestations, namely valine, leucine and

isoleucine biosynthesis, arginine biosynthesis, histidine

metabolism, aminoacyl-tRNA biosynthesis, alanine, aspartate and

glutamate metabolism, phenylalanine, tyrosine and tryptophan

biosynthesis and unsaturated fatty acid biosynthesis. Overlapping

metabolic pathways between various IBD subtypes have also been

identified. The arginine synthesis pathway is significantly associated

with left-sided ulcerative colitis and Crohn’s disease of the large

intestine. This pathway involves metabolites related to glutamate

and arginine. Glutamate has been shown in previous models of

inflammation to improve intestinal barrier function, alleviate

inflammation, and inhibit protein degradation via the

corticotropin-releasing hormone (CRH)/CRH receptor 1, toll-like

receptor (TLR) 4, and nucleotide-binding oligo-structural domain

protein (NOD)/NF-kB, as well as the mammalian target of

rapamycin (mTOR) signaling pathways, which can exert a

protective effect against IBD (56). The polyamine pathway of

spermidine metabolism produces putrescine, spermidine and

spermine that stimulate colonic epithelial cell growth and regulate

epithelial cell apoptosis, with anti-apoptotic and pro-apoptotic

effects (57). Histidine metabolism is regulated for inflammation as

previously described. The biosynthesis of valine, leucine, and

isoleucine is an important part of the branched-chain amino acids

and may act as a modulator of intestinal development, nutrient

transport, and immune-related functions, thereby improving

intestinal health (58).

Epidemiologic evidence on the effect of polyunsaturated fatty

acids (PUFA) on inflammatory bowel disease (IBD) is conflicting

(59). In our study, we found that alpha-linolenic acid involved in

this metabolic pathway had a mitigating effect on arthropathy

associated with ulcerative colitis, but the results were not
TABLE 4 Evidence of the association between metabolites and IBD
onset in previous literature.

Metabolites Impact on IBD PMID

Alanine, glutamine,
histidine, leucine,
phenylalanine,
tyrosine, valine

Decreased levels of the aforementioned
amino acids in the serum of CD and
UC patients.

38156773

Omega-3 and omega-6
polyunsaturated
fatty acids

Decreased levels of the aforementioned
substances in the serum of CD
patients. Decreased levels of w-3
polyunsaturated fatty acids in the
serum of UC patients.

37008284

Tetracosanoic acid,
phosphatidylcholine
(PC),
lysophosphatidylcholine
(LPC), sphingomyelin
(SM), glycerides

Decreased levels of the aforementioned
substances in the serum of colonic CD
and UC patients. The levels of
arachidonoyl ethanolamide, palmitoyl
ethanolamide, branched fatty acid
esters of hydroxy fatty acids (FAHFA),
and three isomers of hexadecanoic acid
(palmitoyl stearin, stearoyl palmitin,
and stearin olein) were higher in
colonic CD patients than in
UC patients.

31368421

2-Arachidonoylglycerol Increased levels of these substances can
lead to a significant reduction in colitis
and associated systemic and
central inflammation.

21551239

Inositol and
its phosphates

The aforementioned substances can
inhibit inflammatory responses and
carcinogenic effects in IBD.

33374769

1,5-Anhydroglucitol
(1,5-AG), 1,5-
Anhydroglucitol-6-
phosphate (1,5-AG6P)

Toxic accumulation of the
aforementioned substances can lead to
reduced neutrophil counts, impaired
neutrophil function, and a significant
propensity for developing
inflammatory bowel disease (IBD).

36507137
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sufficiently reliable and need to be verified by further studies.

Pathways for histidine metabolism, aminoacyl-tRNA biosynthesis,

alanine, aspartate, and glutamate metabolism, as well as

biosynthesis with phenylalanine, tyrosine, and tryptophan are also

present in a wide range of IBD outcomes involving glutamate,

tyrosine, and aspartate.

This MR study has several strengths. First, to our knowledge,

this is the first MR study to systematically assess the causal role of

human blood metabolites in IBD subtypes and their parenteral

manifestations. Second, we underwent rigorous instrumental

variable screening and MR design, performed several sensitivity

analyses and multivariate MR analyses to ensure robust results and

explored independent blood metabolic markers. Finally, the dataset

planning is also a major highlight, as we included datasets with

European populations to minimize the error of results due to

population bias. The large sample of the dataset also overcomes

the sampling error brought about by the random effect. However,

our study has some limitations. For example, some batches of SNP

data were still pleiotropic after MR-PRESSO, and the conclusions

obtained by MR-Egger may not be sufficiently robust. Second, the

study population was focused on Europeans, so the conclusions

cannot be generalized to larger populations for the time being.

Third, since the ratio estimation method assumes linear causality,

the present study cannot exclude that blood metabolites have a

nonlinear relationship on outcome. Fourthly, due to the lack of

relevant datasets, we stratified only by the sites of Crohn’s disease,

without stratifying by severity (stricturing, penetrating, perianal

disease). Lastly, this study was confined to etiological exploration

and did not extend to investigating the post-onset details of

metabolites and IBD. Future research should follow the findings

of this study to conduct prospective cohort studies with repeated

measures, and dynamically monitor targeted levels of serum

metabolites, in association with symptoms, CRP levels, etc.,

during active or remission phases, to further delineate the

diagnostic and prognostic significance of specific blood metabolites.
5 Conclusion

Our study suggests that blood metabolites may influence the

pathogenesis of inflammatory bowel disease (IBD) in a causal

manner, specifically, 9 metabolites, including Erythronate, Myo-

inositol, and Mannitol, may be biomarkers used in public health for

screening and prevention of 10 IBD subtypes, as well as potential

molecules for the study of the pathogenesis of IBD. Exploration of

the Mechanisms of Novel Blood Metabolites in IBD may Provide

New Diagnostic Insights for Patients with IBD.
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