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Editorial on the Research Topic

The combination of data-drivenmachine learning approaches and prior

knowledge for robust medical image processing and analysis

Combining data-driven machine learning with prior knowledge has significantly

advanced medical image processing and analysis. Deep learning, driven by large datasets

and powerful GPUs, excels in tasks like image reconstruction, segmentation, and disease

classification. However, these models face challenges such as high resource demands,

limited generalization, and lack of interpretability. In contrast, model-driven approaches

offer better generalization, interpretability, and robustness but may lack accuracy and

efficiency. Combining these paradigms leverages their strengths, promising superior

performance and enhanced diagnostic accuracy. This Research Topic showcases how

this integration enhances medical imaging, including accurate stroke onset estimation,

improved COVID-19 diagnosis and recovery assessment, and enhanced cardiac imaging

techniques. These advancements highlight the potential for improved diagnostic accuracy,

treatment planning, and clinical decision-making in medical imaging.

A convolutional neural network (CNN) was developed by Gao et al. to identify

acute ischemic stroke patients within a 6-h window for endovascular thrombectomy

using computed tomography perfusion and perfusion-weighted imaging. This CNN

outperformed support vector machines and random forests, demonstrating its potential

for accurate stroke onset time estimation using both CT and MR imaging.

Building on the success of deep learning in stroke diagnosis, another study by Huang

et al. utilized deep learning and CT scans to assess lung recovery in COVID-19 Delta

variant survivors over 6 months. The findings were promising, with ground-glass opacities

disappearing andmild fibrosis inmost cases, alongside improved lung prognosis compared

to the original COVID-19 strain. In a similar vein, a mixed-effects deep learning model

was created by Bridge et al. to diagnose COVID-19 from CT scans, achieving high

accuracy and robustness. With an AUROC of 0.930 in external validation, this model
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outperformed other methods, showcasing potential for clinical

application in automated COVID-19 diagnosis.

Transitioning to cardiac imaging, a novel Transformer-

ConvNet architecture, MAE-TransRNet, was proposed by Xiao

et al. for cardiac MRI registration. This method significantly

improved deformable image registration accuracy by combining

the strengths of convolutional neural networks (CNN) and

Transformers, outperforming state-of-the-art methods on the

ACDC dataset.

Extending the application of deep learning to ENT diagnostics,

a multi-scale deep learning network, MIB-ANet, was developed by

Bi et al. for grading adenoid hypertrophy from nasal endoscopy

images. This network outperformed junior E.N.T. clinicians in

accuracy and speed, demonstrating its potential for clinical

application in automated adenoid hypertrophy grading.

Further advancing medical imaging, an anatomical prior-

informed masking strategy for pre-training masked autoencoders

was introduced by Wang et al. to enhance brain tumor

segmentation. Leveraging brain structure knowledge to guide

masking, this method improved efficiency and accuracy on the

BraTS21 dataset, outperforming state-of-the-art self-supervised

learning techniques. Similarly, a Joint 2D−3D Cross-Pseudo

Supervision (JCPS) method was introduced by Zhou et al. for

segmenting the carotid vessel wall in black-blood MRI images.

This approach, which combines coarse and fine segmentation

leveraging both labeled and unlabeled data, significantly enhanced

segmentation accuracy, outperforming existing methods.

A systematic review of deep learning techniques for segmenting

isointense infant brain tissues in MRI was conducted by Mhlanga

and Viriri, analyzing 19 studies from 2012–2022. This review

highlighted challenges due to low tissue contrast and overlapping

intensity in white and gray matter, with convolutional neural

networks (CNNs) being prominently used.

AI-based echocardiographic quantification of global

longitudinal strain (GLS) and left ventricular ejection fraction

(LVEF) in trastuzumab-treated patients was evaluated by

Jiang et al.. They found moderate to strong correlations

with conventional methods, suggesting AI’s potential as a

supplementary tool in clinical settings despite lower feasibility

rates. In another study employing echocardiograms, Zhang Y.

et al. introduced an automated pipeline that utilizes deep neural

networks and ensemble learning to accurately quantify left

ventricular ejection fraction (LVEF) and predict heart failure. Their

method demonstrated high accuracy and clinical applicability,

achieving a Pearson’s correlation coefficient of 0.83 with expert

analysis and an AUROC of 0.98 for heart failure classification.

Furthermore, a semi-supervised contrastive learning network was

proposed by Guo et al. for multi-structure echocardiographic

segmentation. Evaluated on the CAMUS dataset, it achieved high

performance, outperforming existing methods and using fewer

parameters. This approach enhances cardiac disease diagnosis and

reduces clinician workload.

Finally, for oncology, MRI radiomics-based machine

learning models were compared for predicting glioblastoma

multiforme prognosis by Zhang D. et al. The DeepSurv model

outperformed traditional Cox proportional-hazards and other

models, highlighting the potential of deep learning in improving

GBM survival predictions.

In conclusion, the integration of data-driven machine learning

approaches with prior knowledge marks a significant advancement

in medical imaging. The studies reviewed herein underscore the

transformative impact of these combined methodologies, offering

substantial improvements in diagnostic accuracy, efficiency, and

robustness across various medical imaging tasks. This Research

Topic significantly contributes to the field by addressing key

challenges and paving the way for more reliable and precise

medical image analysis, ultimately enhancing patient outcomes and

clinical decision-making.
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Six-month follow-up after recovery
of COVID-19 Delta variant survivors
via CT-based deep learning

Jianliang Huang1†, Ruikai Lin2†, Na Bai2†, Zhongrui Su1, Mingxin Zhu1,

Han Li2, Conghai Chai1, Mingkai Xia1, Ziwei Shu3, Zhaowen Qiu2,4*

and Mingsheng Lei1,5*

1Zhangjiajie Hospital A�liated to Hunan Normal University, Zhangjiajie, China, 2College of Information and

Computer Engineering, Northeast Forestry University, Harbin, China, 3Yong Loo Lin School of Medicine,

National University of Singapore, Singapore, Singapore, 4Heilongjiang Tuomeng Technology Co., Ltd., Harbin,

China, 5Zhangjiajie College, Zhangjiajie, China

Purpose: Using computer-aided diagnosis (CAD) methods to analyze the discharge

and 6-month follow-up data of COVID-19 Delta variant survivors, evaluate and

summarize the recovery and prognosis, and improve people’s awareness of this

disease.

Methods: This study collected clinical data, SGRQ questionnaire results, and lung CT

scans (at both discharge and 6-month follow-up) from 41 COVID-19 Delta variant

survivors. Two senior radiologists evaluated the CT scans before in-depth analysis.

Deep lung parenchyma enhancing (DLPE) method was used to accurately segment

conventional lesions and sub-visual lesions in CT images, and then quantitatively

analyze lung injury and recovery. Patient recovery was also measured using the SGRQ

questionnaire. The follow-up examination results from this study were combinedwith

those of the original COVID-19 for further comparison.

Results: The participants include 13 males (31.7%) and 28 females (68.3%), with an

average age of 42.2 ± 17.7 years and an average BMI of 25.2 ± 4.4 kg/m2. Compared

discharged CT and follow-up CT, 48.8% of survivors had pulmonary fibrosis, mainly

including irregular lines (34.1%), punctuate calcification (12.2%) and nodules (12.2%).

Comparedwith dischargedCT, the ground-glass opacity basically dissipates at follow-

up. The mean SGRQ score was 0.041 (0–0.104). The sequelae of survivors mainly

included impaired sleep quality (17.1%), memory decline (26.8%), and anxiety (21.9%).

After DLPE process, the lesion volume ratio decreased from 0.0018 (0.0003, 0.0353)

at discharge to 0.0004 (0, 0.0032) at follow-up, p < 0.05, and the absorption ratio of

lesion was 0.7147 (–1.0303, 0.9945).

Conclusion: The ground-glass opacity of survivors had dissipated when they were

discharged from hospital, and a little fibrosis was seen in CT after 6-month, mainly

manifested as irregular lines, punctuate calcification and nodules. After DLPE and

quantitative calculations, we found that the degree of fibrosis in the lungs of most

survivors was mild, which basically did not a�ect lung function. However, there are

a small number of patients with unabsorbed or increased fibrosis. Survivors mainly

had non-pulmonary sequelae such as impaired sleep quality and memory decline.

Pulmonary prognosis of Delta variant patients was better than original COVID-19,

with fewer and milder sequelae.

KEYWORDS

follow-up, Delta variant survivors, deep lung parenchyma enhancing, sub-visual lesion,

pulmonary fibrosis, COVID-19 sequelae
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1. Introduction

Since first detected in Wuhan, China, Coronavirus disease 2019

(COVID-19) has swept the world, threatening the world with public

health concerns and social instability. As of 3rd November 2022,

the cumulative number of confirmed COVID-19 cases worldwide

reached 631,324,387, with more than 6,594,803 cumulative deaths

(1). The major pathogen of COVID-19 has been identified as

severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2),

yet new variants kept appearing, leading to ongoing worldwide

outbreaks of COVID-19 at different magnitudes. SARS-CoV-2 Delta

variant (also known as lineage B.1.617.2), a variant of concern

identified by the World Health Organization (WHO), became the

primary strain of the COVID-19 pandemic in 2021 (2), affecting

more than 75% of countries worldwide. In March 2022, a new

variant named Deltacron with Delta variant as the main stem was

confirmed to exist by WHO, which will exacerbate the plague

of COVID-19 to humans. Therefore, it is very important and

urgent to fully understand COVID-19, especially the mechanism

of action and physiological effects of SARS-CoV-2 and its variants

on humans.

In the mid-1960s, Lodwick first introduced the concept of using

computer technology for medical image analysis and computer-

aided diagnosis (CAD). However, limitations such as technology

and clinical philosophy have constrained the development of CAD

technology. It was not until after the 1980s, with the development of

mathematics, statistics, datamining techniques, computer algorithms

and other sciences, that CAD emerged in large numbers in the

treatment and prognosis studies of many diseases (3). Notably,

the rapid development of artificial intelligence (AI) has surged the

recent CAD craze, enabling the application of technologies such as

machine learning and deep learning in clinical diagnosis, treatment,

and prognosis. To date, AI has gradually emerged in various medical

fields and clinical challenges, such as tumor diagnosis, cardiovascular

diseases, and central nervous system pathologies (4, 5). During

the COVID-19 pandemic, AI approaches have been extended to

understanding COVID-19 pneumonia from multiple perspectives,

including prevention, diagnosis, treatment, monitoring, and follow-

up examination, as such to provide an abundance of valuable

clinical evidence and decision support for fighting against the

disease (6).

We collected academic research on COVID-19 (SARS-CoV-2

virus) and its variants from three literature databases, the Web of

Science, PubMed, and China National Knowledge Infrastructure,

bringing the total number of relevant publications to 640,333

from the earliest searchable date to May 2022. While 19,873

cases were related to follow-up examination, only 101 were

associated with the Delta variant. In this study, we followed up

with 41 Delta variant survivors from Zhangjiajie City, China,

for 6 months after discharge. We collected these patients’ last

CT scan and clinical data before they were discharged from

the hospital and continued to collect CT scans and important

clinical indicators during the 6-month follow-up. Further, we

used AI approaches such as deep lung parenchyma enhancing

(DLPE) to quantify follow-up CT and discharged CT (7) and

to provide a comprehensive assessment of patient recovery and

prognosis. Our findings provide intrinsic insights into the

mechanisms underlying the prognosis of COVID-19, especially the

Delta variant.

2. Materials and methods

2.1. Study design and participants

This is a retrospective study. We collected 6-month follow-up

data from COVID-19 Delta variant patients admitted to Zhangjiajie

City People’s Hospital from July to September 2021. All diagnoses

and discharges of patients conformed to the Diagnosis and Treatment

of Novel Coronavirus Infection Guidelines produced by the Chinese

National Health Commission (Trial Version eight or earlier versions)

(8). We excluded the following patients: 1) patients who died

before follow-up; 2) patients who refused to participate in follow-

up; 3) patients who could not be contacted or otherwise could not

participate in follow-up; 4) patients diagnosed with asymptomatic

infection at discharge. A total of 41 individuals, including 13 males

and 28 females, participated in this follow-up study. We classified

the patients into three age groups: youngth (under 45 years), middle-

aged (45–59 years), and elderly (60–89 years) in light of the WHO

age classification criteria (9). Each individual’ s CT scans (at

discharge and follow-up) and Body Mass Index (BMI) were collected

accordingly. The Chinese BMI standard defines four categories:

BMI<18.4 indicates a thin body shape, 18.5<BMI<23.9 indicates a

normal body shape, 24.0<BMI<27.9 indicates an overweight body

shape, and BMI>28.0 indicates an obese body shape. Other clinical

data including vaccination status at discharge and SGRQ scores at

follow-up were recorded for analysis. Patients with no <1 dose

of vaccination history were included in the vaccination cohort

concerning the low availability of the COVID-19 vaccine during the

Delta variant outbreak in Zhangjiajie. We conducted the hospital

discharge and the follow-up CTs with the TOSHIBA Aquilion

Lightning CT scanner. The tube voltage and current were set at

120 kV and 100–200 mA, respectively, with a matrix of 512 ×

512. Further, we collected the lung window level. The lung window

was reconstructed with a 1 mm thin layer, and the scanned lung

window level and width were 600 and 1,600 HU, respectively.

This retrospective study was approved by the Ethics Committee

of the Zhangjiajie City People’s Hospital with waived informed

consent requirement.

2.2. Follow-up assessment

The St. George’s Respiratory Questionnaire (SGRQ) (10) is

a clinical measurement designed to conduct health status self-

assessments for patients with chronic airflow limitation, i.e., various

respiratory diseases correlated with pulmonary function (11, 12). The

questionnaire contains three main sections: symptoms (respiratory

discomfort), activities (impact of dyspnea on daily tasks), and

psychosocial impact (psychosocial impact of the disease). Typical

SGRQ scores are<1, while higher scores indicate poorer health status

and more impaired pulmonary function. Only SGRQ questionnaires

filled out by patients without prompting from physicians were used

in this study.

Two senior radiologists in the team performed diagnosis on the

follow-up and hospital discharge CT scans collected from the 41

COVID-19 Delta variant survivors. We investigated imaging features

until consensuses were reached on all diagnostic findings. Further,

we categorized all CT scans into two groups: Normal and Abnormal

CT (including fibrotic and Non-fibrotic changes). Fibrotic changes
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FIGURE 1

Workflow of traditional lesions segmentation.

include bronchiectasis, reticulations, nodules, punctuate calcification,

irregular lines, and pulmonary bullae. Non-fibrotic changes include

ground-glass opacity (GGO) and consolidation.

2.3. Computer-aided diagnosis

2.3.1. Lesions segmentation of COVID-19
Since the outbreak of COVID-19, a large number of researchers

working in artificial intelligence have used deep learning models

to assist in the diagnosis, treatment, and prognosis of COVID-19.

Their initial goal was generally to save radiologists’ time in reviewing

medical images and to improve the accuracy of lesions identification.

With computer-aided diagnosis methods, physicians can accurately

obtain inflammation annotation in CT slices and accurately calculate

the percentage of inflammation (POI) and its inflammatory density

for each lung lobe or lung segment in a short time (2).

A typical workflow is shown in Figure 1. Firstly, raw CT scan is

used as input for spatial normalization and signal normalization, and

put into the standard space. In the standard space, the inflammation

annotation is obtained using our 2.5D segmentation algorithm, i.e.,

the 3D data is split from three orthogonal directions (XY plane,

XZ plane, YZ plane), and the segmentation is performed in each

of these three directions using the U-Net network, and then the

segmented results are integrated to obtain the final inflammation

annotated mask. To better observe the distribution of inflammation

in the lung, the results of the inflammation labeling are reconstructed

in three dimensions, showing the distribution of inflammation in the

lung in a clear and three-dimensional manner. This model can be

deployed on an ordinary home computer to mark the inflammation

and calculate the POI value of a CT scan within 1 min with the

accuracy of more than 97%, which greatly improves the working

efficiency of radiologists.

There are certain limitations to such an approach. Namely,

the workflow of this model only allows marking visual lesions

on regular CT scans, but not sub-visual lesions (i.e., it is almost

impossible for a radiologist to see fibrosis lesions directly from

ordinary CT scans). Among our team’s latest published techniques

(7), the deep lung parenchyma enhancing (DLPE) method was used

to automatically mark visible and sub-visual COVID-19 lesions. In

the follow-up study, we used the DLPE method to avoid the lesion-

omissions issue that might occur in similar studies with traditional AI

applications.studies.

2.3.2. Deep lung parenchyma enhancing
Deep lung parenchyma enhancing (DLPE) is a computer-aided

detection (CADe) method for quantifying lung parenchymal lesions

on chest CT. It can identify new lesions under the original lung

window of hospitalized COVID-19 patients and survivors, whereas

ordinary CT scans might neglect the sub-visual lesions. DLPE has

a solid ability to predict sequelae such as pulmonary fibrosis. Its

workflow includes three steps (shown in Figure 2):

(I) Segment the lung parenchyma, trachea and biood vessels.

First, we used the proposed 2.5D segmentation algorithm to segment

the lung. We further investigated the characteristics of the trachea

and blood vessels and developed a two-stage segmentation model

accordingly. The first stage determines the approximate extent of the

trachea and blood vessels, reducing the search space by thousands

of times, upon which the second stage achieves segmentation with

higher stability and accuracy. Both stages were carried out by 2.5D

segmentation models with feature-enhanced loss function. Finally,

we developed a refined trachea and vascular mask.

(II) Deep lung parenchyma enhancing. We excluded the

trachea and blood vessels from the lung to obtain a healthy lung

parenchyma area. We further determined the position and width

of the optimal window by calculating the median and standard

deviation of the healthy lung parenchyma CT signal, which is

generally used for observing lung parenchymal lesions. Finally,

enhanced CT images, namely DLP-enhanced CTs, are obtained as

parenchyma abnormalities are significantly enhanced compared to

pulmonary windows.

(III) Segment the abnormalities in the lung parenchyma. We

compared the enhanced parenchyma with the lung window. As the

lesions were enhanced dozens of times, more previously neglected

lesions were identified. Based on the DLP-enhanced CT, we built a

2.5D segmentation and quantization model which produced visible

and sub-visual COVID-19 lesions from DLP-enhanced CT images.

For simplicity reasons, the complete algorithm workflow was called

the DLPE method.

2.3.3. Quantitative analysis
We used lung parenchyma lesion volume ratio and median lesion

severity to measure the lesion severity of the CT images after DLPE

process. The lesion volume ratio is defined as lesion volume divided

by lung parenchymal volume:

Lesion volume ratio = Vsubvisual ÷ Vlung (1)

Where Vsubvisual is the volume of the sub-visual lesions, Vlung is

the volume of the lung parenchyma. Median lesion severity is the
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FIGURE 2

Workflow of deep lung parenchyma enhancing.

median value of the difference between the lesion and the baseline

CT signal:

Median lesion severity = | Subvisual array− Baseline array | (2)

Where Baseline array is the median CT signal value of healthy

lung parenchyma, and Subvisual array is the CT signal value of

lesion. Absorption ratio was used to describe the lesion changes from

discharge to 6-month follow-up:

Absorption ratio = (Discharged − Followup) ÷ Discharged (3)

Where Discharged represents the lesion volume ratio of hospital

discharge CT, and Followup represents the lesion volume ratio

of follow-up CT. An absorption ratio >0 reveals that the lung

lesions have been absorbed since hospital discharge. As such, higher

absorption ratios indicate better recovery. Vice versa, an absorption

ratio less than or equal to 0 implies that the lung lesions of the patient

have enlarged or remained unchanged since hospital discharge. In

this case, higher absorption ratios indicate worse recovery; namely,

patients may be affected to varying degrees by sequelae such as

pulmonary fibrosis.

2.4. Statistical analysis

Statistical analyses were performed using Python 3.7. Without

otherwise statement, measurement data were described by mean

± standard deviation or median (interquartile range). The Mann-

Whitney U test and Kruskal-Wallis test were used to test independent

samples. Count data were expressed as frequencies with percentages.

P < 0.05 was considered to be statistically significant.

3. Results

3.1. Clinical characteristics

We retrospectively analyzed the clinical data of 41 follow-up

patients. Clinical characteristics are shown in Table 1. The mean

age of the patients was 42.2 ± 17.7 years, of which 13 were

male patients (31.7%) and 28 were female patients (68.3%). The

mean BMI of the patients was 25.2 ± 4.4 Kg/m2. And there

are 14.6% of patients meanwhile suffering from hypertension and

9.8% from diabetes. In the 6 months after discharge, some patients

developed sequelae, which including: impaired sleep quality (17.1%),

TABLE 1 Demographic and clinical characteristics of the enrolled

COVID-19 patients.

Characteristics All patients (n = 41)

Age, years 42.2± 17.7

Sex

Men 13 (31.7%)

Women 28 (68.3%)

BMI 25.2± 4.4

Basic diseases

Hypertension 6 (14.6%)

Diabetes 4 (9.8%)

Sequelae

Impaired sleep quality 7 (17.1%)

Memory decline 11 (26.8%)

Anxiety 9 (21.9%)

Depression 2 (4.9%)

Throat discomfort 4 (9.8%)

Decline of visual acuity 5 (12.2%)

Fatigue 3 (7.3%)

ArmWeakness 2 (4.9%)

Muscle or joint pain 5 (12.2%)

Hair loss 4 (9.8%)

SGRQ score 0.041 (0, 0.104)

memory decline (26.8%), anxiety (21.9%), depression (4.9%), throat

discomfort (9.8%), decline of vision acuity (12.2%), fatigue (7.3%),

limbs weakness (4.9%), muscle or joint aches (12.2%) and hair loss

(9.8%). None of the patients developed pulmonary-related sequelae

such as dyspnea. We investigated the SGRQ scores of follow-up

patients. The median of SGRQ scores was 0.041 and the interquartile

range was (0, 0.104). All patients had SGRQ scores <1.

3.2. Chest CT evaluation

3.2.1. Imaging evaluation
This study collected the last CT scan before discharge and the

6-month follow-up CT scan from the 41 COVID-19 Delta variant
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FIGURE 3

Imaging features of follow-up CT and hospital discharge CT.

FIGURE 4

Chest CT of a 42-year-old male survivor of COVID-19 Delta variant.

(a) On admission, baseline scan shows multiple bilateral ground-glass

opacity with predominantly linear pattern and peripheral distribution,

with air-bronchogram and tubular size increase of vessels in some

lesions. (b) 4 days after admission, the lesions were significantly larger

and more extensive than before, chest CT scans were subpleural

ground-glass opacity that grew larger with crazy-paving pattern and

consolidation. (c) Before discharge, the lesions in both lungs were

basically absorbed. (d) At follow-up, the chest CT was basically

normal, with a few fibrotic lesions were seen in the left lung.

survivors. Two experienced senior radiologists diagnosed all CT

scans and summarized the imaging features. As shown in Figure 3,

prominent abnormalities found on the CT before discharge include

ground-glass opacity in 18 cases (43.9%) and irregular lines in 11

cases (26.8%). A few had punctuated calcification (4.9%), small

201 nodules (4.9%), reticulations (4.9%), and traction bronchiectasis

(2.4%). In comparison, the ground-glass opacity was almost utterly

unseen in the follow-up CT. Other present abnormalities include

irregular lines in 14 cases (34.1%), punctuate calcification in five

cases (12.2%), and small nodules in 5 cases (12.2%). Figure 4

demonstrates the lung recovery process of a typical COVID-19 Delta

variant survivor.

3.2.2. CT slices after deep lung parenchyma
enhancing

We enhanced all CT scans using the DLPEmethod to visualize all

lesions, including sub-visual abnormalities. The comparison between

the processed discharged CT and the processed follow-up CT (typical

CT slices) shows that most of the lesions had been absorbed by

the discharge, and the lung condition had improved considerably

in 6-month (Figure 5). In addition, we measured the severity of the

detected lesion using the lesion volume ratio and median lesion

severity (Table 2). Of note, the lesion volume ratio and median lesion

severity were significantly smaller at follow-up than at discharge (p <

0.05; Figure 6).

3.2.3. Absorption ratio at the 6-month follow-up
The mean value of the survivors’ absorption ratio was 0.7147

(–1.0303, 0.9945). We grouped patients by gender, age, BMI, and

COVID vaccination status, upon which we performed statistical

analysis on the absorption ratio concerning median lesion severity

(Table 3). While slight statistical difference was seen in the absorption

ratio among patients in different BMI range groups (p = 0.155), the

difference was stronger among different age groups (p < 0.005). No

significant differences were seen among different gender groups or

vaccination status groups.

3.3. Comparison with original COVID-19
follow-up

We compared the results of this follow-up study with those

of the five original COVID-19 follow-up studies, as presented in

Table 4. We found that Delta variant survivors had similar sequelae
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FIGURE 5

DLPE method applications in 41 patients.

TABLE 2 Changes in lesions under DLPE.

The hospital discharge CT
(n = 41)

The follow-up CT
(n = 41)

P-value

The lesion

volume ratio

0.0018 (0.0003, 0.0353) 0.0004 (0, 0.0032) 0.005

Median lesion

severity

0.1329 (0.0632, 0.1892) 0.0910 (0.0730, 0.1179) 0.012

Data are medians, with ranges of quartiles in parentheses.

as the original COVID-19 survivors except for severe pulmonary

sequelae such as chest tightness and dyspnoea. Further, we confirmed

the absence of ground-glass opacity (GGO) and the mild fibrosis

of lung lesions in the follow-up CT scans, suggesting that the

lung prognosis of Delta variant patients is better than that of the

original COVID-19 patients. Specifically, in CT imaging, 62–90%

of original COVID-19 patients were discharged with GGO and

7.3–68% had consolidation. However, in our study, only 43.9%

of Delta variant patients were discharged with GGO and without

consolidation. And at 6-month follow-up, 27–44.8% of original

COVID-19 patients still had GGO, while no GGOwas found in Delta

variant survivors.
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FIGURE 6

Polar scatter plot based on the lesion volume ratio and median lesion severity from hospital discharge and follow-up CT. The image on the left becomes

the image on the right after enlarging 10 times.

TABLE 3 Absorption ration in lesions under DLPE.

Absorption rate of
lesion volume ratio

(n = 41)

P-value Absorption rate of
median lesion severity

(n = 41)

P-value

Sex 0.575 0.327

Male (n = 13) 0.7147 (–1.3699, 0.9669) 0.4003 (–0.1075, 0.6171)

Female (n = 28) 0.7518 (–0.7423, 0.9981) 0.2354 (–1.8101, 0.5783)

Age range 0.005 0.302

≤45 (n = 22) –0.7425 (–6.1833, 0.8158) 0.4624 (0.0100, 0.5805)

45–59 (n = 12) 0.9864 (0.3432, 0.9994) 0.0468 (–2.1080, 0.5253)

≥60 (n = 7) 0.9890 (0.7147, 1.0000) 0.3092 (–1.1145, 1.0000)

BMI 0.155 0.806

≤18.5 (n = 4) 0.9059 (–0.5578, 0.9997) 0.3943 (–0.5121, 0.8686)

18.5–23.9 (n = 12) 0.5655 (–1.0708, 0.9880) 0.1803 (–0.2579, 0.5757)

≥24 (n = 18) 0.8694 (–0.1381, 0.9997) 0.4271 (–0.5965, 05846)

≥28 (n = 7) –0.6000 (–10.746, 0.7147) 0.3059 (–2.4956, 0.5836)

Vaccinated or not 0.626 0.291

Not (n = 15) 0.8238 (–1.0148, 0.9988) 0.3059 (–0.7877, 0.4709)

Vaccinated (n = 26) 0.7077 (–1.0542, 0.9934) 0.4464 (–0.1467, 0.5847)

Data are medians, with ranges of quartiles in parentheses.

4. Discussion

Pulmonary fibrosis is an interstitial lung disease caused by intense

fibroblast activation and extracellular matrix deposition in the lung,

which often results in a range of sequelae such as reduced diffusion

function of lung and labor dyspnea in patients. To date, studies on

the follow-up of original COVID-19 patients have found that the

most common abnormal lung changes in discharged patients are

fibrosis and ground-glass opacity (GGO) (16, 18–20), consistent with

SARS-related research foundings. Studies have shown that a shell
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TABLE 4 Comparing the original COVID-19 follow-up to the Delta variant follow-up.

References Sample
size

Age Basic diseases Sequelae The hospital
discharge CT

The follow-up
CT

Dai et al. (13) 50 48± 14 Hypertension (18%),

Diabetes (16%),

Pulmonary disease (4%)

Decreased activity

tolerance (18%),

Cough (10%),

Palpitation (6%),

Depression (12.5%)

GGO (90%),

Consolidation (54%),

Reticulations (13%),

Bronchiectasis (10%)

GGO (42%),

Consolidation (20%),

Bronchiectasis (6%),

Reticulations (11%)

Han et al. (14) 114 54± 12 Hypertension (28%),

Diabetes (11%),

Chronic pulmonary

(14%)

Dry cough (6.1%),

Dyspnea (14%),

Expectoration (10%)

GGO (62%),

Consolidation (24%),

Reticulations (14%)

Normal CT (38%),

GGO (27%)

Fibrotic-like changes

(35%)

Jia et al. (15) 205 56± 12 Hypertension (36.9%),

Diabetes (16%)

- GGO (87%),

Consolidation (7.3%),

Reticulation (5.4%),

Bronchiectasis (5.4%),

Nodule (1%)

Normal CT (48.3%),

GGO (28%),

Consolidation (1.5%),

Reticulation (22%),

Bronchiectasis (13.7%),

Nodule (7.3%)

Huang et al.

(16)

1,733 57 (47–65) Hypertension (29%),

Diabetes (12%),

Pulmonary disease (2%)

Fatigue or muscle

weakness (63%),

Sleep difficulties (26%),

Hair loss (22%),

Smell disorder (11%),

Palpitations (9%),

Anxiety or depression

(23%)

GGO (76%),

Consolidation (23%),

Irregular lines (30%)

Normal CT (47.3%),

GGO (44.8%),

Consolidation (1.1%),

Irregular lines (15.9%)

Caruso et al.

(17)

118 65± 12 Hypertension (34%),

Diabetes (9.0%)

Cough (24%),

Dyspnea (42%),

Hair loss (20%),

Decline of visual acuity

(12%)

GGO (86%),

Consolidation (68%),

Fibrotic-like changes

(55%)

Normal CT (28%),

GGO (42%),

Consolidation (1.7%),

Fibrotic-like changes

(72%)

Our study 41 42.2± 17.7 Hypertension (14.6%),

Diabetes (9.8%)

Impaired sleep quality

(17.1%),

Memory decline (26.8%),

Anxiety or depression

(26.8%),

Fatigue (7.3%),

Hair loss (9.8%)

Normal CT (34.1%),

GGO (43.9%),

Fibrotic-like changes

(34.1%)

Normal CT (51.2%),

GGO (0%),

Fibrotic-like changes

(48.8%)

nucleoprotein from SARS can bind to SMAD3, a cellular protein that

activates a signaling pathway to promote collagen and plasminogen

protein inhibitor production, further leading to the formation of

fibrosis in the lungs (21). At present, no similar protein has been

identified in COVID-19-related studies, so the current understanding

of the prognosis of fibrotic changes in COVID-19 patients remains

unclear. Caruso et al. (17) reported that residual GGO was found on

lung CT in 42% of original COVID-19 patients and fibrotic changes

were present in 72%; a proportion of patients were discharged with

dry cough (24%), dyspnoea (42%) and many other lung-related

sequelae. In a 6-month follow-up study of 114 original COVID-19

patients, Han et al. (14) found that 35% of patients had residual

fibrotic changes in lungs and 14% had dyspnoea. Besides, seriously

ill hospital patients developed more severe fibrosis, which was found

to restain even at the 1-year follow-up. Similar results have been seen

in a 15-year follow-up study of SARS patients (22). Pan et al. (23)

found that 61% of patients had complete resolution of abnormal lung

changes by 3 months after discharge; at the 1-year follow-up, 25% of

patients still had residual fibrotic changes, but it was unclear whether

this fibrosis can be further absorbed.

There are few follow-up studies on the Delta variant; hence

we conducted this study to raise awareness of pulmonary fibrotic

changes and other COVID-19 Delta variant sequelae. We collected

hospital discharge CT scans and 6-month follow-up CT scans from

41 Delta variant survivors. We found that more than half of the

patients (51.2%) had no residual fibrosis in their follow-up CT

of lung after 6-month discharge and that the GGO was almost

completely absorbed. The changes of fibrotic presented in follow-

up CT of the remaining patients were predominantly irregular lines

(34.1%) and small nodules (12.2%), and the patients had a very

mild degree of fibrosis. Artificial intelligence and deep learning

techniques are widely adopted in current radiology research as

they enable physicians to segment infected lesions accurately and

implement precision medicine. This research used the previously

proposed deep lung parenchyma enhancing (DLPE) model (7) to

automatically outline all lung lesions, including conventional and

sub-visual lesions. Quantitative assessments was further conducted to

evaluate patients’ recovery, comparing the calculations of lung lesions

on discharged CT and follow-up CTs. We found that most patients

had largely dissipated lung lesions at discharge. And after 6 months,

re-quantification of lung lesions on follow-up CT revealed a small

lesion volume ratio (mean = 0.04%), leading us to assume that the

lung fibrosis had been slowly absorbed over time. In the meantime,

a proportion of patients developed increased fibrosis (i.e., negative

absorption ratio), yet the observed fibrosis levels were less notable and

the pulmonary diffusion function remained unaffected. This suggests

that DLPEmight be deficient in capturing some existing lung damage

(early lung damage). It is also possible that the patients experienced
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other lung damage after discharge, which also caused fibrosis but was

unrelated to the COVID-19 infection.

There are multiple factors that affect the prognosis of COVID-

19 survivors, including gender, age, body mass index (BMI), and

vaccination status. Sylvester et al. (24) have shown that female

patients are at a higher risk of developing long COVID syndrome

due to differences in the immune system between the sexes. Obesity,

measured by BMI, is considered a risk factor strongly associated with

the severity of COVID-19 infection and mortality (25). Vaccination

is vital in preventing and treating COVID-19 (26), as it reduces

the risk of hospitalization and severe sequelae after infection. Age

is also strongly associated with patient prognosis, as Huang et al.

(16) found that a 10-year increase in age of COVID-19 patients was

associated with a 27% increase in pulmonary diffusion dysfunction

and a 4% decrease in the absorption ratio. Results of comparing

the absorption ratio by gender, age, BMI, and vaccination status

show that the absorption rate of lesion volume ratio was significantly

different for different age groups (p < 0.005) and slightly different

for different BMI range groups (p = 0.155). No differences were

seen between gender and vaccination status groups, presumably due

to the small sample size. In addition, sequelae such as impaired

sleep quality, memory loss and anxiety were found in Delta variant

survivors, similar to those noted in the follow-up study of 1,733

original COVID-19 patients by Huang et al. (16).

This study used the St. George’s Respiratory Questionnaire

(SGRQ) (10) to assess the Delta variant survivors and obtained

a median SGRQ of 0.041 (0, 0.104), which is within the normal

range. The result confirmed that the participating survivors had good

pulmonary recovery with no significant pulmonary sequelae, and the

infection did not significantly affect their quality of life.

The main contributions of this paper are as follow. 1) This

is a 6-month follow-up study on discharged COVID-19 Delta

variant patients, with data gathered from an earlier cohort of

Delta variant patients in China. As limited follow-up studies have

been done on the Delta variant, this research is prevailing in

broadening the understanding of the Delta variant. 2) Multiple

computer-aided techniques, such as deep learning and quantitative

analysis, are used to compare the follow-up outcomes of Delta

variant survivors and original COVID-19 survivors. Critical findings

include Delta variant survivors had a better prognosis than

original COVID-19 survivors. 3) In this study, we applied the

previously proposed sub-visual lesion observation method (i.e.,

DLPE) for the first time. This novel lesion segmentation method

enabled clinicians to observe and analyze lung lesion changes in

Delta variant survivors in greater detail, which is of great value

and guidance for the COVID-19 prognostic assessment. Indeed,

this research has some shortcomings. Firstly, we lacked direct

information showing the patients’ pulmonary diffusion functions

because the selected cohort did not undergo a complete pulmonary

function test during hospitalization and follow-up examination.

Secondly, this study was geared toward Delta variant survivors

diagnosed in Zhangjiajie city, China, in 2021, resulting in a small

sample size.

5. Conclusion

In this study, we analyzed the discharged CT scans, 6-month

follow-up CT scans, and some clinical indicators of 41 COVID-19

Delta variant survivors to assess fibrosis absorption and sequelae

comprehensively. This paper marked the first application of the deep

lung parenchyma enhancing method to quantify the extent of lung

lesions on hospital discharge and follow-up CTs. We found that the

lung lesions had primarily dissipated by discharge and that the lesion

volume ratio in follow-up CT was generally small in most cases.

We also compared the absorption ratios by gender, age, BMI, and

vaccination status. Results have shown that the absorption ratios were

significantly different for patients in different age groups and slightly

different for different BMI range groups. Statistics and analysis of

Delta variant sequelae are also provided, pointing out the primarily

experienced sequelae, including impaired sleep quality, memory loss,

and anxiety. In conclusion, this study aims to use computer-aided

AI methods to raise awareness of the COVID-19 Delta variant and

promote the prognosis of the disease. While confounding progress

has been made in understanding pulmonary sequelae associated

with the Delta variant, it is absolutely necessary to carry on the

investigation of COVID-19 and the evolution of prognosis clinical

care continuously in the future.
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Introduction: It is critical to identify the stroke onset time of patients with acute

ischemic stroke (AIS) for the treatment of endovascular thrombectomy (EVT).

However, it is challenging to accurately ascertain this time for patients with

wake-up stroke (WUS). The current study aimed to construct a deep learning

approach based on computed tomography perfusion (CTP) or perfusion weighted

imaging (PWI) to identify a 6-h window for patients with AIS for the treatment of

EVT.

Methods: We collected data from 377 patients with AIS, who were examined by

CTP or PWI before making a treatment decision. Cerebral blood flow (CBF), time

to maximum peak (Tmax), and a region of interest (ROI) mask were preprocessed

from the CTP and PWI. We constructed the classifier based on a convolutional

neural network (CNN), which was trained by CBF, Tmax, and ROI masks to identify

patients with AIS within a 6-h window for the treatment of EVT. We compared

the classification performance among a CNN, support vector machine (SVM), and

random forest (RF) when trained by five di�erent types of ROI masks. To assess

the adaptability of the classifier of CNN for CTP and PWI, which were processed

respectively from CTP and PWI groups.

Results: Our results showed that the CNN classifier had a higher performance

with an area under the curve (AUC) of 0.935, which was significantly higher than

that of support vector machine (SVM) and random forest (RF) (p = 0.001 and p

= 0.001, respectively). For the CNN classifier trained by di�erent ROI masks, the

best performance was trained by CBF, Tmax, and ROI masks of Tmax > 6 s. No

significant di�erence was detected in the classification performance of the CNN

between CTP and PWI (0.902 vs. 0.928; p = 0.557).

Discussion: The CNN classifier trained by CBF, Tmax, and ROI masks of Tmax > 6 s

had good performance in identifying patients with AIS within a 6-h window for the

treatment of EVT. The current study indicates that the CNN model has potential

to be used to accurately estimate the stroke onset time of patients with WUS.

KEYWORDS

acute ischemic stroke, endovascular thrombectomy, stroke onset time, deep learning,

perfusion imaging
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Introduction

In the guidelines for the early management of patients

with acute ischemic stroke (AIS) published by the American

Heart Association/American Stroke Association (AHA/ASA)

in 2019, recombinant tissue-type plasminogen activator (rt-

PA) thrombolysis and endovascular thrombectomy (EVT) are

recommended to treat patients with AIS (1). Both of these are

performed mainly for patients within a specific window of time

from stroke onset, which are 4.5 h for rt-PA thrombolysis and

6-h for EVT. However, because 14–29.6% of patients with AIS

are attacked during their sleep, which is called wake-up stroke

(WUS) (2), their accurate stroke onset time cannot be ascertained

to calculate this window. This means that other examinations are

needed to estimate the stroke onset time of patients with WUS

before treatment of rt-PA thrombolysis or EVT.

In previous studies, multi-modality imaging has been shown to

have strong potential for accurately estimating the stroke onset time

(3–8). In rt-PA thrombolysis treatment, the imaging biomarker

of intensity mismatch between diffuse weighted imaging (DWI)

and fluid-attenuated inversion recovery (FLAIR) is used to detect

patients within a 4.5 h window (4), which means that the stroke

onset time of patients with an unknown time and with a DWI–

FLAIR mismatch biomarker is within a 4.5 h window for rt-PA

thrombolysis treatment. In order to further explore the relationship

between imaging biomarker and stroke onset time, Kong et al.

constructed a decoder–encoder network to extract features using

DWI, FLAIR, and time to maximum peak (Tmax) images, which

can classify patients within a 4.5 h window for rt-PA thrombolysis

treatment (8). This means that a machine learning classifier based

on an imaging biomarker can accurately estimate the stroke

onset time.

However, there is not a typical imaging biomarker to identify

a 6-h treatment window for EVT. Some potential imaging

biomarkers were found in previous works (9–12), such as a

reduction in cerebral blood flow (CBF) and a delayed Tmax. The

progression of AIS can be directly expressed by changes of an

infarct core and ischemic region (12–14). An infarct core and

penumbra region can be estimated using perfusion map images,

which include CBF, cerebral blood volume (CBV), mean transit

time (MTT), and Tmax. The infarct core is defined as the region

of CBF reductions to <30% compared contralateral hemispheres

(CBF < 30%) for computed tomography perfusion (CTP), or

apparent diffusion coefficient (ADC) values <620. The ischemic

region includes the infarct core and penumbra region, which is the

region of Tmax > 6 s (9). Furthermore, Olivot et al. (15) estimated

the benign hypoperfusion, ischemic, and infarct core regions only

by different Tmax thresholds, which are, respectively, >4, >6, and

>10 s. Thus, CBF and Tmax are significantly related to the stroke

onset time.

The present study sought to combine the deep learning

technique with perfusion map images (CBF and Tmax), which

was processed from CTP or perfusion weighted imaging (PWI), to

identify patients with AIS within a 6-h window for the treatment

of EVT. We constructed a classifier based on a convolutional

neural network (CNN), which was trained by CBF, Tmax, and

a region of interest (ROI) mask. Compared to previous studies,

to classify patients within a 4.5 h window for rt-PA thrombolysis

treatment, our method is able to identify them within a 6-h

window for the treatment of EVT. Meanwhile, our method has

stable performance for both CTP and PWI. It means that our

method enables compatible with both magnetic resonance (MR)

and computed tomography (CT) devices, rather than only MR

devices. Thus, our method has more potential to be used widely

in hospitals, especially primary hospitals.

Methods

Patients

The local institutional review board approved this retrospective

analysis, and the patient had signed the informed consent

form. Also, patient records and images (including the source

or raw imaging data) were anonymized before image analysis.

Anonymized data are available on reasonable request to the

corresponding author, and the data collected in the repository

will be made accessible to qualified researchers worldwide, based

on the recommendations of a scientific committee that will

evaluate proposed research projects. The confidentiality of patients’

information will be rigorously protected.

We recruited patients with AIS between April 2020 and

April 2021 from the eStroke China national thrombolytic

and thrombectomy imaging platform. Thirteen subcenters are

registered on the platform and upload CTP or PWI images

examined from patients with AIS before treatment to the eStroke

platform. In addition, clinical information, including age, sex,

national institute of health stroke scale (NIHSS), and exact stroke

onset time are recorded. In order to align the examination

performance among subcenters, we adjusted imaging protocols

based on different device types, which are summarized in Table 1.

To avoid the bias of the stroke onset time of patients with

AIS, the data were collected by neurologists with more than 5

years of clinical experience, and they were recorded fully on the

eStroke platform. Patients were recruited into this study based on

the following criteria: (1) AIS due to anterior circulation artery

(ACA) occlusion; (2) the recorded exact stroke onset time; (3) the

recorded time of initial pretreatment imaging; (4) examined CTP

or PWI before treatment; and (5) complete clinical information.

All patients were anonymously recruited, and they were informed

of and agreed to the study. The dataset will be released on the

website https://github.com/bianyueyan/CNN-EVT.

Experimental design

According to previous works, the stroke onset time is correlated

with CBF/ADC, Tmax, and changes in the benign hypoperfusion,

ischemic, and infarct core regions. These regions can be estimated

by different thresholds in CBF and Tmax (9, 15). Therefore, three

factors including CBF/ADC, Tmax and the region of diseased

hemispheres, are correlated with the identification of the stroke

onset time. In order to enable to be compatible with both CT and

MR examinations, we chose CBF, Tmax and the region of diseased

hemispheres as input images. In this study, we constructed three

types of classifiers, namely, support vectormachine (SVM), random
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TABLE 1 List of imaging protocols.

CTP protocols

Subcenter Slice thickness (mm) No. of slices Total coverage (mm, cc) kVp mAs

Center1 5 480 80 80 200

Center2 5 1,080 80 80 223

Center3 5 460 80 80 176

Center4 5 360 80 80 211

Center5 5 336 80 80 200

Center6 5 1,566 80 80 124

Center7 10 506 80 80 350

Center8 5 864 80 80 158

Center9 5 704 80 80 176

Center10 5 360 80 80 264

PWI protocols

Subcenter Slice thickness (mm) FOV (mm2) Bandwidth (kHz) TR/TE (ms) Acquisition
matrix

Center11 5 230× 230 28.3 1,590/32 128× 128

Center12 5 230× 230 31.2 1,500/19.2 96× 128

Center13 5 230× 230 29.4 1,740/32 128× 128

cc, craniocaudal; mAs, milliampere-seconds; kVp, kilovoltage peak; FOV, field of view; TR, repetition time; TE, echo time.

forest (RF), and CNN, to identify patients with AIS within a 6-h

window for the treatment of EVT. These classifiers were trained by

three channels of images. The first channel was CBF images, the

second was Tmax images, and the third was ROI mask, which was

one of the regions of CBF < 30%, Tmax > 4 s, Tmax > 6 s, Tmax

> 8 s, and Tmax > 10 s.

In order to compare the performance among the different

classifiers (SVM, RF, and CNN), each classifier was trained by three

channels of images, consisting of CBF, Tmax, and ROI masks of

Tmax> 6 s. Meanwhile, for observing the differences from the ROI

masks (CBF < 30%, Tmax > 4 s, Tmax > 6 s, Tmax > 8 s, and

Tmax > 10 s), the CNN classifier was trained by CBF, Tmax, and

each ROI mask. Through the above process, the classifier with the

best performance was selected. Finally, we trained the best classifier

using CBF, Tmax, and ROI mask, respectively, from CTP and PWI

to compare their agreement.

Image preprocessing

The CTP and PWI of patients with AIS were examined

before the treatment, and then intra-phase rigid registration was

performed to correct motion artifacts. After this, the images were

smoothed using a Gaussian filter with a kernel with a width of

2.5mm. In order to reduce disturbance of skull and cerebrospinal

fluid (CSF), the images were segmented using BET2 (16) and the

thresholding method, respectively, and then the ROI was selected

while the rest of the image was excluded. Perfusion parameter

maps, including CBF, CBV, MTT, and Tmax, were constructed by

block-circulant singular value decomposition (bSVD) provided by

the eStroke platform. Perfusion parameter maps were resampled

to the spacing of 1mm in the x, y, and z directions to reduce

the impact of image resolutions. The resampled images were

chosen as the analytical basis of feature extraction, training, and

testing datasets.

According to previous studies, ROI masks segmented by

different thresholds based on CBF and Tmax express the

progression of AIS, which are strongly related to the stroke onset

time (3–8). In order to compare their performances in estimating

the stroke onset time, we segmented the ROI masks by CBF< 30%,

Tmax > 4 s, Tmax > 6 s, Tmax > 8 s, and Tmax > 10 s.

Feature extraction

Features for training machine learning methods, including

SVM and RF, were generated based on CBF, Tmax images, and

ROI masks, which mainly included first-order descriptive statistics,

features of shape, gray level co-occurrencematrix (GLCM) features,

gray level dependance matrix (GLDM) features, and gray level size

zone matrix (GLSZM) features. All of the features are shown in

Table 2. They were extracted with the Radiomics module in the 3D

Slicer software, version 4.11 (NA-MIC, NAC, BIRN, NCIGT, and

the slicer community, USA). After extracting the initial features,

the principal component analysis (PCA) approach was applied to

reduce dimensionality and decrease the dependance on the number

of training data.

Classifier construction

We compared the performance of three types of classifiers,

namely, SVM, RF, and CNN in identifying a 6-h window for the
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TABLE 2 List of features.

Feature
class

No. of
features

Feature name

Shape 9 Maximum 2D diameter, maximum 3D,

diameter, mesh volume, minor axis length,

sphericity, surface area, surface volume ratio,

voxel volume

First order

descriptive

statistics

15 Energy, entropy, interquartile range, kurtosis,

maximum, mean absolute deviation, mean,

median, minimum, robust mean absolute

deviation, root mean squared, skewness, total

energy, uniformity, variance

GLCM 12 Autocorrelation, cluster prominence, cluster

shade, cluster tendency, contrast, correlation,

difference average, difference entropy,

difference variance, joint average, sum

entropy, sum squares

GLDM 5 Dependence entropy, dependence variance,

gray level non-uniformity, gray level

variance, high gray level emphasis

GLSZM 10 Gray level non-uniformity, gray level

non-uniformity normalized, gray level

variance, high gray level zone emphasis, large

area emphasis, large area high gray level

emphasis, large area low gray level emphasis,

low gray level zone emphasis

treatment of EVT. Briefly, SVM is a supervised machine learning

algorithm, mainly used to process classification and regression

tasks. The objective of SVM is to find a hyperplane in a N-

dimensional space that is defined by the number of features in

order to classify the dataset (17). RF is an ensemble learning

method that can operate a variety of tasks, including regression

and classification. It commonly constructs a multitude of decision

trees during the training time. In a classification task, RF creates

many decision trees on data samples, each of which votes based

upon the results of the prediction. Finally, the output of RF

means the class selected by the most trees (18). A CNN is a

feed-forward neural network, which is used to handle computer

vision tasks such as image classification, object detection, and image

recognition (19).

In this study, a CNN was constructed based on VGGNet with

2 convolutional blocks (20), which consisted of a structure of

eleven layers: an input layer, three convolutional layers, two batch

normalization layers, two rectified linear unit (ReLU) layers, a

max pooling layer, a fully connected layer, and a soft-max layer,

which are shown in Figure 1. According to the previous works,

the stroke onset time of patients with AIS was correlated with

the severity and range of CBF reduction and Tmax delay. Thus,

the input layer in our network was designed as a three-channel

layer, which included CBF, Tmax and ROI mask respectively. The

CBF and Tmax channels of the input layer can provide the detail

features about the severity of CBF reduction and Tmax delay,

and the ROI mask channel can present a weight map to express

the range of CBF reduction and Tmax delay. The input layer

was separated into blocks with the size of 64 × 64 × 64. The

convolutional layer contained 16 filters with a receptive field of 5×

FIGURE 1

The architecture of the CNN proposed to identify patients with AIS

within a 6-h window for the treatment of EVT.

5 × 5 voxels in a one-voxel stride sliding. The batch normalization

layer and ReLU layer which followed the convolutional layer,

batch-normalized and rectified the feature map. The max pooling

layer reduced the number of rectified features, and they were

flattened into a single linear vector by the fully connected layer.

Finally, the classification was processed in the soft-max layer.

Binary cross-entropy loss was used as loss function. Comparing

VGGNet with 2 convolutional blocks, the input layer in our

network included three channels, and each channel was 3D images.

Apart from that, we removed a max-pooling layer in the first

convolutional block in order to decrease the loss of the detail

features. All classifiers were trained by fivefold cross-validation to

avoid overfitting bias.

Statistical analysis

We computed the receiver operating characteristic (ROC)

curve and the area under the ROC curve (AUC), which can

compare the ability of all classifiers to identify patients with

AIS within a 6-h window. To determine the significance of

differences among classifiers in the task of identification, we used

the DeLong test to compare the AUCs of the classifiers (21).

We also computed patient-wise accuracy, sensitivity, specificity,

and precision for each classifier. SPSS version 22.0 (IBM,

USA) and GraphPad Prism version 6.0 (GraphPad, USA)

powered all of the statistical computations, with significance set

at p < 0.05.
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TABLE 3 Patient characteristics.

Characteristics Values

No. of patients 377

Age (year) 66.0± 11.9

Male sex∗ 263 (69.8)

Stroke onset time (h) 6.7± 5.7

NIHSS on admission 11.5± 7.2

∗Data are the number (percentage) of patients. Except where indicated, data are mean± SD.

TABLE 4 The patient characteristics in the training and testing datasets.

Patient
characteristics

Training
dataset

Testing
dataset

P-value

Age (year) 66.81± 11.63 68.06± 11.64 0.3737

Sex (female/male) 98/223 16/40 0.8454

NIHSS on admission 12.08± 7.13 11.00± 7.51 0.4152

Stroke onset time (h) 5.87± 5.46 5.98± 4.60 0.0552

Results

Patient characteristics

We recruited 2,500 patients from the eStroke platform; 426

were excluded due to loss of original data, and 922 were excluded

because of poor image quality, such as motion artifacts during

scanning. Additionally, 775 with an onset time exceeding 24 h were

excluded. Finally, a total of 377 patients (263 men and 114 women;

mean age = 66.0 ± 11.9 years) were included in this study. The

stroke onset time was 6.7 ± 5.7 h (range = 0–24 h). All patients

had ACA occlusion. The patients’ baseline and NIHSS are listed in

Table 3.

Training and testing dataset analysis

Training and testing datasets were selected randomly, which

were grouped by the onset time of stroke. Table 4 shows the patient

characteristics in the training and testing datasets. All p-values for

each patient characteristic between the training and testing datasets

were estimated. We observed that all p-values were higher than

0.05, which means that there were no significant differences in each

patient characteristic between the training and testing datasets.

Performance analysis of the classifiers

Figure 2 shows the ROC curves of the classifiers (SVM, RF,

and CNN) for identifying patients with AIS within a 6-h treatment

window for EVT. All of the AUCs of the classifiers were higher

than 0.76, which was the highest AUC for identifying patients with

AIS within a 4.5 h window for rt-PA thrombolysis treatment in a

previous study (8). The AUC of RF was the lowest at 0.775 (0.732–

0.818), while the AUC of the CNN was the highest at 0.935 (0.893–

0.975). The AUC of the CNN was significantly higher than that of

FIGURE 2

ROC curves of the classifiers, including CNN, SVM, and RF.

TABLE 5 The AUCs of classifiers of the identification of patients with AIS

within a 6- and 4.5-h window.

Classifier Identifying patients
within 4.5-h
window

Identifying
patients within
6-h window

Ho et al. (7) Kong et al. (8) CBF + Tmax + ROI

RF 0.624 0.690 0.775 (0.732–0.818)

SVM 0.669 0.746 0.788 (0.746–0.830)

CNN – – 0.935 (0.893–0.975)

Bold indicated the highest AUC for a given classifier.

the SVM (p= 0.001) and RF (p= 0.001). The AUCs of the classifiers

compared with the previous work are depicted in Table 5.

Performance analysis of the ROI masks

The CNN classifier was trained by CBF, Tmax, and each ROI

mask (respectively, CBF < 30%, Tmax > 4 s, Tmax > 6 s, Tmax

> 8 s, and Tmax > 10 s), each ROC curve of which is shown in

Figure 3. The AUC of Tmax> 6 s was the maximum value (AUC=

0.935), which was significantly higher than that of Tmax > 8 s and

Tmax > 10 s (p = 0.017 and p = 0.002, respectively). Although the

AUC of Tmax > 6 s was higher than that of Tmax > 4 s, there was

no significant difference between them (p= 0.285). Comparing the

ROI masks segmented by Tmax, the AUC of CBF < 30% was only

0.796 (0.723–0.867).

Performance analysis of scanning devices

We separated the training dataset into two groups (CTP and

PWI), and the CNN classifier was trained by CBF, Tmax, and ROI

mask of Tmax > 6 s in each group. Figure 4 shows the ROC curves
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FIGURE 3

ROC curves of the CNN trained by CBF, Tmax, and each ROI mask.

FIGURE 4

ROC curves of the classifiers of the CNN trained by CBF, Tmax, and

ROI masks of Tmax > 6 s in the CT and MR groups.

of two groups. The AUCs of the two groups were higher than 0.9,

and there was no significant difference between them (p= 0.557).

Examples of identification

Figure 5 shows four examples for identifying patients with AIS

within a 6-h window for the treatment of EVT using our method.

The classifier was CNN-trained by CBF, Tmax, and ROI masks

of Tmax > 6 s. The results of the classifier identification were

matched with the ground truth, which was the accurate stroke

onset time of patients. DWI and FLAIR are listed in Figure 5 for

comparison with a previous study (8), which detected patients

with AIS within a 4.5 h window for rt-PA thrombolysis treatment

using the machine learning method and the imaging biomarker of

DWI–FLAIR mismatch.

Discussion

In this study, we proposed to use a CNN framework based on

a perfusion map (CBF and Tmax) to identify patients with AIS

within a 6-h window for the treatment of EVT. We compared the

performance of each classifier (SVM, RF, and CNN) and differences

from each ROI mask (CBF < 30%, Tmax > 4 s, Tmax > 6 s, Tmax

> 8 s, and Tmax> 10 s). Our results showed that the CNN classifier

trained by CBF, Tmax, and ROI masks of Tmax > 6 s had a higher

performance in terms of identification within a 6-h window. Apart

from this, our method had stable performance for both CTP and

PWI, which means that the proposed method has higher potential

to be used widely in stroke centers.

In a previous study, the progression of AIS could be directly

expressed by changes in the infarct core and ischemic region (12–

14). Thomalla et al. proposed that DWI–FLAIR mismatch can

be deemed an imaging biomarker for identifying patients with

AIS within a 4.5 h treatment window for rt-PA thrombolysis (4).

Meanwhile, in the study of DIFFUSE 3, the infarct core and

penumbra region could be estimated using CBF and Tmax (8).

Because DWI, FLAIR, and Tmax are related to the progression of

AIS, Kong at el. constructed a decoder–encoder network trained

by DWI, FLAIR, and Tmax to identify patients with AIS within a

4.5 h window for rt-PA thrombolysis treatment (8). In fact, Kong’s

decoder–encoder network has the potential to detect this within a

6-h treatment window. However, because this network was trained

only by MR examination, it was hard to be widely used in hospitals,

especially primary hospitals. Thus, in order to be used for both CT

and MR examination, we chose CBF and Tmax as two of the three

channels of input images of classifiers instead of DWI and FLAIR,

and we pulled ROI masks into the third channel of input images

because their changes were correlated with the progression of AIS.

This means that our method has more potential to be performed in

primary hospitals.

In identifying patients with AIS within a 4.5 h window for rt-

PA thrombolysis treatment, the AUC of the best classifier was 0.780

(8). The best classifier in this study was the CNN trained by CBF,

Tmax, and ROI masks of Tmax > 6 s. The AUC of our method

was 0.935, which is much higher than that of previous works. The

reason is that the progression of AIS over time mainly influences

cerebrovascular hemodynamic changes (9–11). For instance, in

Figure 5, changes in CBF and Tmax had a significant relationship

with the stroke onset time among patients A, B, C, and D. Although

patient D was attacked by a stroke for 10.1 h, the intensity between

DWI and FLAIR was not mismatched, which would have been

misestimated in previous works. Apart from this, our results

showed that the CNN has a stronger ability to capture hidden

features and signal changes from CBF and Tmax, compared to

machine learning methods such as SVM and RF. Moreover, by

comparing the performance of classifiers trained by different ROI

masks, our results showed that the AUC of Tmax > 6 s was the

highest in all ROI masks, although it was not significantly higher

than that of Tmax > 4 s (p = 0.285). According to a previous
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FIGURE 5

Examples of the identification of patients with AIS within a 6-h window for the treatment of EVT using the CNN classifier trained by CBF, Tmax, and

ROI masks of Tmax > 6 s. The green region in the third column is the mask of Tmax > 6 s. The stroke onset times of patients (A, B) were, respectively,

4.2 and 5.3 h, which was identified within a 6-h time window for the treatment of EVT by the classifier. For patients (C, D), their stroke onset time was

7.0 and 10.1 h, respectively, which was identified without a 6-h window by the classifier.

work (9), the region of Tmax > 6 s includes an infarct core and

penumbra, while the regions of CBF < 30% and Tmax > 10 s only

include an infarct core, and the region of Tmax > 8 s includes an

infarct core and a part of penumbra. For the region of Tmax > 4 s,

it includes benign hypoperfusion, an infarct core and penumbra,

which should include more features than that of Tmax > 6 s, but

the benign hypoperfusion in the region of Tmax > 4 s is always

misestimated because of personalizing. For example, Tmax values

in the deep area of white matter without lesions are commonly

more than 4 s for patients with AIS. Therefore, we recommend the

CNN classifier trained by CBF, Tmax, and ROI masks of Tmax >

6 s rather than Tmax > 4 s.

This study has some methodological limitations that need to

be addressed. First, the sample size was relatively lower than that

of other studies based on deep learning algorithms. However,

data were collected from 13 centers, with eight types of CT and

MR scanners, uniformly distributed between 0 and 24 h from the

stroke onset time. Thus, the sample size was enough to support

the training of the CNN model in this study. Second, data were

collected retrospectively, and some inaccurate information was

involved. In fact, a prospective study to evaluate the performance

of our method in clinical use is a future avenue for investigation,

but it does not enable to assume the clinical potential of this study.

In the future, a larger, randomized, and prospective study will be

designed to evaluate the performance of this method.

Conclusion

In this study, a CNN classifier trained by CBF, Tmax, and

ROI masks of Tmax > 6 s, has good performance to identify

patients with AIS within a 6-h window for the treatment of

EVT. Comparing with existing works to classify patients within

a 4.5-h window for the treatment of rt-PA thrombolysis, to

the best of our knowledge, this is the first work to assist

the treatment of EVT. Meanwhile, our method performs the

identifying task using CBF and Tmax, which can be acquired

by CTP or PWI. It means that our method is compatible with

both CT and MR devices, while previous works only support

MR devices because their inputs rely on DWI and FLAIR

images which are examined only by MR devices. Commonly,

CT examination is faster than MR, which benefits to bring the

patients out of danger. Therefore, it has the potential to be widely

used to accurately estimate the stroke onset time of patients

with WUS.
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MAE-TransRNet: An improved
transformer-ConvNet
architecture with masked
autoencoder for cardiac MRI
registration
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1College of Information and Computer Engineering, Northeast Forestry University, Harbin, China,
2Department of Cardiovascular Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing,

China, 3First A�liated Hospital, Jiamusi University, Jiamusi, China

The heart is a relatively complex non-rigid motion organ in the human body.

Quantitative motion analysis of the heart takes on a critical significance to

help doctors with accurate diagnosis and treatment. Moreover, cardiovascular

magnetic resonance imaging (CMRI) can be used to perform a more

detailed quantitative analysis evaluation for cardiac diagnosis. Deformable image

registration (DIR) has become a vital task in biomedical image analysis since

tissue structures have variability in medical images. Recently, the model based

on masked autoencoder (MAE) has recently been shown to be e�ective in

computer vision tasks. Vision Transformer has the context aggregation ability to

restore the semantic information in the original image regions by using a low

proportion of visible image patches to predict the masked image patches. A novel

Transformer-ConvNet architecture is proposed in this study based on MAE for

medical image registration. The core of the Transformer is designed as a masked

autoencoder (MAE) and a lightweight decoder structure, and feature extraction

before the downstream registration task is transformed into the self-supervised

learning task. This study also rethinks the calculation method of the multi-

head self-attention mechanism in the Transformer encoder. We improve the

query-key-value-based dot product attention by introducing both depthwise

separable convolution (DWSC) and squeeze and excitation (SE) modules into

the self-attention module to reduce the amount of parameter computation to

highlight image details and maintain high spatial resolution image features. In

addition, concurrent spatial and channel squeeze and excitation (scSE) module is

embedded into the CNN structure, which also proves to be e�ective for extracting

robust feature representations. The proposed method, called MAE-TransRNet, has

better generalization. The proposed model is evaluated on the cardiac short-axis

public dataset (with images and labels) at the 2017 Automated Cardiac Diagnosis

Challenge (ACDC). The relevant qualitative and quantitative results (e.g., dice

performance and Hausdor� distance) suggest that the proposed model can

achieve superior results over those achieved by the state-of-the-artmethods, thus

proving thatMAE and improved self-attention aremore e�ective and promising for

medical image registration tasks. Codes andmodels are available at https://github.

com/XinXiao101/MAE-TransRNet.
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1. Introduction

Medical image registration has been considered a vital

analytical task in medical image processing, especially for

the registration of deformable non-rigid organs. It is capable

of providing doctors with a wide variety of complementary

information regarding lesions (1). The systole and diastole of the

heart chambers play a vital role inmaintaining the ejection function

of the heart. Certain heart diseases can lead to changes in the shape

of the ventricles, thus resulting in abnormal motion. For instance,

hypertrophic cardiomyopathy may cause the localized thinning

of the ventricular wall. Inadequate aortic valve closure can cause

lesions (e.g., enlarged ventricular chambers). Thus, the study on

cardiac registration takes on a critical significance in quantifying

cardiac motion, which helps doctors predict the progression of

patients diseases in future and conduct precise medical treatment.

Moreover, cardiovascular magnetic resonance imaging (CMRI)

presents accurate morphological information and a better soft

tissue contrast ratio of the human heart (2), which contributes to

the diagnosis of a wide variety of cardiac abnormalities. CMRI has

become the gold standard in the analysis of cardiac motor function,

viability, and abnormalities.

The registration of cardiac images is considered a complex task,

which is primarily indicated by two aspects:

(1) Non-rigid and complex motion. The heart undergoes

very complex motion and deformation in the cardiac cycle. In

addition to the well-known overall deformation (e.g., expansion

or contraction), the heart also undergoes overall rigid motion and

local deformation, thus making it have a more complex non-rigid

periodic motion than other soft tissues (3). Furthermore, due to this

motion, themorphology of the slices of the heart varies significantly

within continuous time frames of a cardiac cycle, thus making

accurate tracking of cardiac motion a difficult task.

(2) Scarcity of anatomical landmarks. There are fewer precise

anatomical landmarks required to characterize cardiac motion

than to resize other soft tissue structures. Moreover, the labels

are more difficult to obtain. Notably, the lack of reliable

identifiable landmarks in the myocardial wall makes it difficult for

registration (4).

The registration of cardiac images is significantly more

complicated than that of other tissues and organs’ images due to

the aforementioned two major problems.

However, with the rise of deep learning technology over the

past few years, traditional registration methods with low accuracy,

complex and tedious iterative processes, and high time costs

have been unable to reduce the difficulties of today’s medical

image registration. Thus, deep learning methods based on deep

neural networks have become the key to solving the bottleneck of

medical image registration performance (5–7). Different training

methods are largely divided into three types, namely, supervised

learning, unsupervised learning, and weakly supervised learning.

In existing research, Rohe et al. (8) proposed SVF-Net, a fully

convolutional network based on the U-Net structure. This network

replaces all layers in the conventional U-Net (9) network with

convolutional layers. In addition, the model combines global

semantic information from the deep network and local positional

information from the shallow network, and it predicts the SVF

3D velocity field using ROI from the segmentation to supervise

3D cardiac image registration. Unsupervised learning methods

have been a research hotspot in the field of registration since

there have been rare labels related to cardiac tissue motion

analysis. Krebs et al. (10) proposed a low-dimensional multiscale

probabilistic deformation network based on conditional variational

autoencoder (CVAE). This network is capable of learning from

unlabeled cardiac data, which can be used for the registration

of deformable soft tissue structures (e.g., heart and brain).

Balakrishnan et al. (11) optimized a simple U-Net network,

named VoxelMorph, which can be trained in an unsupervised or

supervised manner to achieve MRI registration results by defining

a loss function consisting of a mean square error (MSE). The

loss function comprises a similarity measure and a smoothing

constraint on the deformation field. Some researchers, inspired

by the above-unsupervised methods, also proposed a weakly

supervised strategy to solve the problem of sparse anatomical

signatures of tissues and organs. Hu et al. (12) proposed a method

to infer the registration field parameters from the high-level

information contained in a small number of existing anatomical

labels. These researchers introduced existing annotations in the

region around the target at the training stage to introduce

additional information for optimizing the network parameters

and increasing the registration accuracy. Deep learning based on

medical image registration methods, especially using convolutional

neural networks, have shown more significant improvements

in registration performance over the past few years. Increasing

methods have been proposed to solve the problems of slow

computation and less information captured using existing 2D/3D

registration methods (13). However, the current mainstream

frameworks primarily use convolutional neural networks as the

backbone, and the conventional convolutional operation is to

extract features by sliding a window with a convolutional kernel

size. Moreover, the perceptual field is limited to a fixed-size region,

which is only effective in extracting local features and has some

limitations in acquiring global information (14). The Transformer,

originally applied in the field of NLP, has gradually become a

novel alternative architecture for extracting global features in

recent years since it is effective in capturing long-range global

location information (15). Nevertheless, since the Transformer

is insufficient to extract local detailed features, relevant research

has emerged to fuse the advantages of Transformer in extracting

global information and CNN in extracting local information to

complement each other. Vision transformer (16) is capable of

dividing the image data into patches and then interpreting these

patches as sequences to take them as input. The above tokens are

handed it over to the Transformer encoder for processing. Thus,

Chen et al. (17) first proposed a hybrid model of Transformer

and CNN (TransUnet), thus preserving the U-shaped structure

of U-Net and introducing the Transformer encoder structure.

The input image is first passed through a series of convolution

operations to generate feature maps of different resolutions. In

addition, the network serializes the feature maps output from the

last layer as the patches. These patches are input to the Transformer

layer for encoding. Subsequently, a feature sequence with self-

attentive weights is obtained through Transformers encoding, and

it is reshaped to the image size and then upsampled, which is
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combined with different high-resolution CNN features derived

from the encoding path in the upsampling process to achieve

a more accurate medical image segmentation tasks. Chen et al.

(18) proposed ViT-V-Net fusing the basic registration framework-

VoxelMorph based on the V-Net (19) structure with the vision

transformer-based encoder to fully use the spatial correspondence

obtained from the 3D volume for more accurate registration. As

a result, the network can be better in extracting registration field

features and extracting global features. The network is capable of

extracting global features, while preserving as many local features

as possible between image contexts.

Although introducing the Transformer has been very effective

in solving problems (e.g., the loss of deep local feature information),

numerous Transformer baselines and hybrid models have been

proposed to solve the above problems. In fact, the Transformer

is transferred from the NLP to the CV field, and a relatively

large gap exists between the above two fields in understanding

images and texts. Compared with the high information density

of linguistic text information, the image information is highly

redundant, thus making it relatively difficult for the model

to predict the information density. In addition, considerable

information irrelevant to the task objective may be included in the

scope of the model learning, so the model should spend a lot of

parameter capacity in learning. Moreover, a significant gap exists in

the design of Transformer-based structures for NLP tasks and CV

tasks. Decoding linguistic information may be easier than images,

and reconstructing pixels is more complex than reconstructing

words, so the design of the Transformer’s internal structure is

significantly correlated with the learning effect of implicit semantic

representation during image decoding. Due to the above analysis

and the emergence of the problem, He et al. (20) transferred the

method with masked operation from NLP to the CV field. They

developed a relatively simple strategy, i.e., randomly masking a

certain percentage of the image patches, so the model can learn

more useful features and can predict the information of the missing

pixels. This architecture is capable of effectively achieving good

results in classification, segmentation, and detection tasks.

In the meantime, the self-attention mechanism plays a crucial

role in Transformer encoders, and its variants have been used to

varying degrees in text, image, speech, and video tasks (21–23).

The self-attention mechanism can filter out the features which are

useful for the target task, and improve the model computation

efficiency to a certain extent. It can paymore attention to the feature

correlation between the data, to solve the problems of network

information redundancy, gradient dispersion, and the difficulty of

handling variable-length sequences. The current multi-head self-

attention mechanism used in the traditional vision transformer

maps each sequence into three different feature spaces (Q, K, V),

and then calculates the attention weights by scaled dot product,

which selects parallel multiple features from the input features

for fusion. The attention mechanism based on the scaled dot

product can capture the global contextual information of the

feature sequence. However, in terms of computational complexity,

assuming that the sequence length is set to N of dimension D, the

dot product computation is essentially a multiplication between a

matrix of dimension N × D and a matrix of D × N with a time

complexity of O(n2d). In natural language processing tasks and

some speech recognition tasks, many related studies have simplified

the computation of the self-attention mechanism. It is necessary to

consider some strategies to make it better for vision tasks and to

reduce the computational complexity of self-attention.

Inspired by their research, we propose a novel Transformer-

ConvNet model (MAE-TransRNet) using the MAE’s strategy for

cardiac MRI registration.

This study aims to enhance the performance of cardiac

MRI registration by combining the advantages of CNN and

Transformer. In this study, the transformer structure, which is

currently popular, is primarily adopted to fuse the basic structure

of the existing unsupervised registration baseline-VoxelMorph.

We also explore the effect of the improved self-attention

mechanism on the effect of feature aggregation. In addition,

the attention mechanism and the superiority of the currently

proposed Transformer structure with a MAE in increasing the

registration accuracy of 3D medical images are investigated.

The main contributions of this study are summarized into the

following aspects:

(1) We propose a new hybrid multi-head self-attention module

(HyMHSA) for vision tasks. The original query-key-value-based

dot product computation unit is replaced with a dense synthesis

unit that directly computes the attention weights. Meanwhile, the

attention module restricts the interactions between sequences by

exploiting the correlation between adjacent contexts of sequences,

which makes the attention weights interact only between a portion

of adjacent tokens and fuses them with the dot product form of the

computation unit to reduce the computational burden.

(2) We introduce the concurrent spatial and channel squeeze

and excitation (scSE) module (24) in the CNN’s downsampling

structure. In the Transformer encoder, squeeze and excitation

module (25) is introduced after the attention to the Transformer

structure, so as to reduce the feature redundancy in the self-

attention mechanism in the ViT model, while increasing the

richness of the cardiac image features.

(3) The structure of the conventional ViT model is improved

based on Masked Autoencoder (MAE) (20). The application of

the Transformer combined with VoxelMorph is deeply considered

in medical image registration based on the existing research, and

the Transformer is employed as a baseline to make corresponding

model improvements. The proposed model is named MAE-

TransRNet.

2. Related work

2.1. Deformable image registration
baseline–VoxelMorph

Convolutional neural networks have progressively replaced the

conventional registration methods based on mutual information

with the development of deep learning in recent years. VoxelMorph

(11) was proposed in 2019 and has been extensively used

as a baseline in medical image registration. The VoxelMorph

framework can learn registration field parameters from 3D

volumetric data, and the encoder-decoder structure based on U-

Net (9) structure is adopted to combine shallow features and deep

features and reduce the information loss of features. Moreover,

VoxelMorph provides two training strategies. One training strategy
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is based on the grayscale value of the image to make the similarity

to maximize the similarity loss and smoothing loss. This part

is primarily pure unsupervised learning method for iterative

optimization. The other training strategy introduces additional

segmentation labels of the image as the auxiliary information based

on the unsupervised method by obtaining the dice performance

between the image pairs of segmentation labels at the training stage,

thus increasing the registration effect. In this study, the superiority

of the VoxelMorph baseline framework in the medical image

registration is considered, and the skip connection structure of

the VoxelMorph model architecture is redesigned and transferred

into a long-range skip connection structure containing CNN

encoder and decoder. This design is capable of combining the local

information of feature maps at different scales more effectively and

increasing the feature extraction capability.

2.2. Multi-head self-attention in
transformer encoder

The multi-head self-attention module selects multiple pieces

of information from the inputs and learns feature representations

from different representation subspaces at different locations. The

operation of multi-head attention can be described as mapping a

query and a set of key-value pairs to the output, where the query,

key, and value are denoted by Q, K, and V. Then, the three-

part linear mapping is input to the attention mechanism based on

scaled dot product to perform h attentions in parallel computation

(h refers to multiple heads). The formula for each dot product

attention computation is as follows:

Attention(Q,K,V) = softmax(
QKT

√

Dk

)V (1)

1
√

Dk
is the attention deflator that mitigates the gradient

disappearance. Then the results of h-heads scaled dot product

attention are concatenated to obtain the final multi-head attention

output feature vector:

MultiHead(Q,K,V) = Concat(head1, ..., headh)W
O (2)

where headi = Attention(QWQ
i ,KW

K
i ,VW

V
i ) (3)

WQ, WK , and WV denote the weight parameter matrixes

corresponding to Q, K, and V. Figure 1 illustrates the structure of

the traditional multi-head self-attention mechanism.

Self-attention models have been widely used in various fields.

For query, key, and value, sequences of three vectors generated by

tokens through linear layers, a considerable number of researchers

have considered how to reduce the computation of attention.

Quadratic, for a matrix with N × N, we may not need the value

of each position on the matrix to participate in the attention

computation. Furthermore, for the global context information of

the Transformer, we do not need to consider all the information

from the beginning to the end. A sequence obtained from the cut

image patches has a very long length. That is, when calculating

the value of the current position, only its neighboring positions

are considered. The range of neighboring positions to consider,

FIGURE 1

Structure of the traditional multi-head self-attention mechanism.

the choice of position, and the choice of the sequence length to

be calculated are all important factors that currently affect the

complexity of attention computation in the vision domain. Chiu

and Raffel (26) introduce a scalable and variable sliding window for

attention computation, and Tay et al. (27) abandon the query-key-

based interactive attention weight learning approach and propose a

dense synthesizer that uses two feed-forward linear layers to predict

the attention weight parameters. Xu et al. (28) further proposed a

local dense synthesizer. They restrict the attention computation to

a local area around the current central frame. However, improved

works based on the self-attention mechanism are rarely found

in medical image registration tasks. Our work is a new attempt.

We introduce an improved self-attention mechanism into our

Transformer encoder and explore whether the attention module
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FIGURE 2

Pipeline for our registration method with MAE Pre-training. In the first stage (shown at the bottom), we use multi-branch MAE for pre-training, The

input of the Transformer encoder is a subset of unobscured tokens from multiple branches, with a lightweight decoder to reconstruct the complete

image. In the second stage (shown at the top), the weights obtained in the pre-training stage are used for the initialization of the registration model,

the network takes a two-channel 3D volume tensor as our input, which is down-sampled by three convolutions, and then recalibrated with attention

weights by scSE module, CNN decoder recovers potential features to image size and up-sample back to the original resolution size, using the spatial

transformation function to warp moving image.

applicable to text, as well as speech tasks, can be well applied to

our registration tasks.

2.3. Squeeze and excitation block in feature
extraction

The convolutional operation is the core of conventional

convolutional neural networks, which are based on local perceptual

fields to fuse features in spatial and channel dimensions. The

squeeze and excitation block proposed by Hu et al. (25) in 2018

places a focus on the research relating to the channel dimension

and explores the feature relationships between channels, which

can adaptively adjust the features on the channel dimension. The

squeeze and excitation block can be stacked in many classical

classification network structures (e.g., AlexNet and ResNet), and

it has high performance on datasets (e.g., ImageNet). Inspired by

the squeeze and excitation module, Guha Roy et al. (24) explored a

fusion module combining channel dimension features and spatial

dimension features to “reconstruct” features both in space and

channel. Thus, the network can focus more on learning features

that are more significance in downstream tasks, and it exhibits high

applicability in 2D and 3D scenes. For the common tasks in current

medical image analysis, (e.g., segmentation and registration), more

insights should be gained into the spatial information at the pixel

level of the image. Now, the embedding structure of such modules

has been extensively used in the field of medical images (e.g., brain

MRI and enhanced CT’s segmentation tasks). Based on the above

research, squeeze and excitationmodule and concurrent spatial and

channel squeeze and excitation (scSE) module are embedded into

the proposed model, and the role of the above two modules in

improving the performance of the registration model is explored.

The importance of different levels of features is adjusted, so the

model can learn more valuable high-level features, and features

that are less important for the target task are given less attention.

Thus, richer spatial and channel information can be obtained

at the pixel level. The relative importance of attention in both

dimensions is calibrated simultaneously, which leads to further

accuracy improvements in downstream registration tasks.

2.4. Transformers in vision and
self-supervised learning

With the prevalence of Transformer architectures migrated

from the NLP domain, increasing variants of Transformer-

ConvNet have high performance in computer vision tasks.

Transformer structures are now extensively employed in vital tasks

(e.g., medical image segmentation, medical image registration, and

reconstruction) because of their superiority in capturing global
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FIGURE 3

Architecture of our HyMHSA module. It is a hybrid version of the traditional multi-head self-attention mechanism and local dense self-attention

mechanism.

contextual information and the localization of CNN convolutional

operations for fine feature extraction. The TransUnet proposed by

Chen et al. (17) is the first attempt at the Transformer-ConvNet

structure, and it has achieved effective results in the segmentation

tasks of cardiac and abdominal multiple organs. Several important

works have also emerged in registration tasks, suggesting that

the splicing and Transformer-ConvNet structures can effectively

consider the advantages of both in their respective fields. However,

with the emergence of some relevant in-depth studies, several

problems are caused as follows:

(1) Numerous studies have suggested that the critical factor for

learning efficiency is the scale of dataset, besides some problems of
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FIGURE 4

scSE module in CNN encoder.

FIGURE 5

3D MAE Transformer. After the masked operation, only the unmasked patches are fed into ViT. After the linear mapping into one-dimensional tokens,

the blank positions (yellow parts) are all filled by the same vector of the same dimension and then decoded by a layer of Transformer decoder. The

next layer will be fine-tuned in accordance with the downstream task.

the model. The ability to learn valid information from considerable

unlabeled data has been a crucial research topic in medical image

analysis tasks. The number of data required to train the vision

Transformer is significantly higher than that of a conventional

convolutional neural network, especially the standard dataset with

annotations. However, for medical images with a small sample size,

it is undoubtedly challenging to obtain many labeled datasets, and

the problem of data starvation always exists in the research on the

vision Transformer architecture.

(2) The Transformer structures adopted to fuse CNNs

are primarily migrated versions of structures based on NLP

tasks, and the information density contained in the text is

significantly different from the images. The features extracted

by the Transformer encoder may be too complete and
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FIGURE 6

Reconstruction e�ect of cardiac images on MAE’s three variants. The pre-processed original images, masked images, reconstructed images, and

MAE reconstruction pasted with visible patches are presented from left to right.

TABLE 1 Comparison of image registration performance (including dice performance and Hausdor� distance) of five di�erent methods on the ACDC

dataset.

Methods
LV Myo RV Avg

DSC HD DSC HD DSC HD DSC HD

VoxelMorph 0.847 5.75 0.743 6.23 0.754 9.32 0.781 7.10

CoTr-Based 0.847 5.59 0.776 6.12 0.768 9.25 0.797 6.99

PVT-Based 0.848 5.37 0.745 6.08 0.778 9.12 0.79 6.86

ViT-V-Net 0.856 5.51 0.789 5.96 0.783 8.78 0.809 6.75

The proposed method 0.858 5.49 0.792 5.93 0.785 8.65 0.812 6.69

The best results are achieved and highlighted by the bold values.

contain some redundant information, so it is imperative to

remove redundancy.

In medical images, the anatomical structure of the respective

organ has a certain correlation between different contextual slice

information, and it is also correlated with the features of the

neighboring regions around the target region. The learning of

the neighboring information and contextual information between

pixels can facilitate the representation of advanced features.

With the continuous development of self-supervised learning, the

Transformer structure combined with the self-attentivemechanism

(29) can break through the state of the art continuously. Self-

supervised learning essentially provides a reliable learning path

that allows the network to learn from large amounts of unlabeled

data to be more capable of feature extraction. In fact, self-

supervised learning is divided into several processes. (1) First, the

basic structure or characteristics of the large amount of unlabeled

data (which can be interpreted as built-in prior knowledge) are

employed. Together with the relevant requirements of the task

definition, some certain properties of the data are adopted instead

of manual labeling, which can be interpreted as generating pseudo-

labels for the images and initially training the network. Thus, it

can extract features, i.e., the initial learning ability. (2) Second,

the network is fine-tuned with a small amount of labeled data, so

the network can further satisfy other tasks such as classification,

segmentation, and registration.

The Transformer refers to an encoder -decoder integration

based purely on an attention mechanism. In the current vision

tasks, more novel strategies are urgently required to help models

learn image features with powerful representations due to the

different natures of visual information and textual information.

Moreover, the MAE recently proposed by Kaiming He et al., has

been well-adapted to the vision transformer and has achieved

better results in tasks (e.g., classification). We consider that masked

autoencoder can be effective in computer vision tasks by destroying
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FIGURE 7

Visualization results of the attention heat map of the ACDC dataset in several models.

FIGURE 8

Examples of registration results from the proposed method, columns 1 and 3 are the moving image and fixed image from three di�erent periods;

columns 2 and 4 are the triple classification labels for the left ventricle, left ventricular myocardium, and right ventricle; columns 5 and 6 represent

the warped original image and the warped image with labels, respectively; column 7 is the dense deformable field generated from fixed image and

moving image; column 8 is the visualization result of the Jacobian determinant, as the dense displacement vector field (DVF); columns 9 and 10 are

the registration flow filed and displacement field generated from the deformed images.

most of the patches of the image data and forcing the model to

adapt to this defective feature structure when learning the image

representation, which significantly reduces the redundancy of the

image and creates a more challenging assignment. Finally, the

model is enabled to learn the essential features of the image, so a

powerful representation of the whole image data is obtained. The
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FIGURE 9

Performance comparison of the training and validation stage of di�erent methods. Compared with other methods, the loss values of the proposed

method are kept at a lower level during the training process, and the dice performance values obtained from the validation set are higher. (A) Training

loss values under the comparison of di�erent registration methods. (B) Validation dice performances under the comparison of di�erent registration

methods.

design of an asymmetric encoder -decoder structure saves model

overhead, in which the encoder accounts for learning high-level

feature representations by learning only the visible, unobscured

patches, and the obscured patches are represented by a set of

shared, learnable latent vectors. Self-supervised learning is further

introduced into the visual transformer based on existing research,

and the self-encoder with mask operations is applied to the heart

image registration task, which can effectively solve the problem

of sparsely labeled data and large information density differences

between images and texts. Furthermore, applying the expandable

MAE to our task and increasing the feature learning difficulty can

instead lead to a stronger learning capability of the model.

3. Proposed method

3.1. Overview

OurMAE-TransRNet is a two-stage registration pipeline. In the

first stage (bottom half of the figure), we use masked autoencoder

as the encoder for pre-training. The encoder input is a subset of

randommasking of the image after patch chunking, and a modified

self-attention mechanism is used in the Transformer encoder

for simplifying the attention weight calculation. It calculates

the attention parameter by selecting local contextual location

information in the sequence. We reconstruct the complete image

with a lightweight Transformer decoder, and the pre-trained model

weights contain the powerful global latent features learned by

the MAE pre-trained model on the cardiac image. In the second

stage (top half of the figure), the pre-trained weights generated

in the first stage are passed to the encoder of the registration

model, and the registration network is initialized. Our input is

3D cardiac MRI (Ω ∈ R3), which consists of a single-channel

grayscale image of the initial time frame F ∈ RH×W×L (fixed

image) and a single-channel grayscale image of the end time frame

M ∈ RH×W×L (moving image). The proposed model aims to

learn the mapping transformations between the image pairs of the

initial frame and the final frame. The resolution of the original

image is first reduced to a suitable size through the downsampling

operation of three convolutional neural networks to obtain a

high-level feature representation, and then the spatial features are

combined with the channel features by a concurrent spatial and

channel squeeze and excitation (scSE) module, and the obtained

high-level attention features are fed into the Transformer coding

layer with the same structure as the pre-training stage. Going

through the CNN decoder, the high-level features are reshaped to

the image format. The deformation field is CNN’s output, which is

applied to the moving image through the warping layer. Here, the

model uses the weights learned in the pre-training stage to train

the registration network by calculating loss for backpropagation

to generate a registration network model with optimal weight

parameters. Subsequently, the objective function is minimized, as

expressed in Equation (4)

ϕ̂ = argmin
ϕ

L(F,M,ϕ) (4)

ϕ is obtained as the vector field offset from F toM as a feature of the

registration image pair, i.e., ϕ = Id + u. Id represents the constant

transformation operation, and u represents the displacement vector

field. Figure 2 illustrates the overall pipeline of the proposed

method.

3.2. Novel multi-head self-attention with
SE module

In the Transformer encoder, the core of multi-head self-

attention is to map query, key, and value in their respective

representation subspaces and merge them back after processing
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TABLE 2 Comparison of proposed methods with di�erent attention

mechanisms including time complexity and registration performance.

Method Complexity DSC Avg HD Avg

MHSA O
(
N2D

)
0.807 6.81

LDSA O (Ncn) 0.801 6.71

HyMHSA O
(
N(N + cn)

)
0.812 6.69

N is the length of the input feature and cn is the context neighbor’s value.

in their respective spaces, which is essentially the decomposition

process and re-aggregation of attention features. For the visual

domain, each location of each feature mapping contains

information about the features at other locations in the same

image, which makes the model more adept at capturing the

dependencies between features with long spatial intervals.

However, in practice, the input of image data is generally high

resolution, especially 3D images, which makes the model need

to learn longer feature sequences without losing too many fine-

grained features of the image, and neither direct processing of

the whole image nor downsampling can solve such problems

significantly. The presence of inductive bias in CNN structures

allows such models to be good at extracting local information. The

Transformer structure remains desperate for extensive sample-size

medical training data. In the face of such scarce data, we can

only achieve this by exploring more powerful feature extractors,

introducing some of the properties of inductive bias inherent in

CNNs into Transformer, and in particular, embedding efficient

convolution modules in the structure of self-attention computation

to enhance the attention to small-scale local information in the

dataset, which is one of the aims of our study.

We introduce the SEmodule into the computation of attention.

Meanwhile, we embed the depthwise separable convolution (30)

into our attention and the feed-forward layer. Given a 3D image

as the input X ∈ RB×C×H×W×L, the input is mapped into

three subspaces representing Q, K, and V by a module consisting

of deep convolution and point convolution, respectively. The

depthwise convolution aggregates the spatial information, and the

pointwise convolution aggregates the feature information along

the channel dimension. Then we flatten the image features into

a long sequence for Transformer encoding by patch embedding

and position encoding. SE module is introduced in the respective

transformer block to solve the problem thatmany channels inmany

current ViT models contain excessive redundant information, as

well as to increase the efficiency of the model. After SEmodules, the

long token (X ∈ R
B×N×D) is compressed into a 1×1×1×D token,

which is equivalent to compressing all global attention features into

a high-level feature representation. Moreover, a series of nonlinear

mappings are performed for the respective channel of the high-

level features. Finally, the weight parameter corresponding to each

channel is obtained, and a weight value representing the degree of

attention is generated for the respective feature channel. This part

aims to learn the nonlinear interaction between each token channel,

and the weights are weighted with the original token to obtain the

reconstructed attention to the feature representation with shape

B × N × D. After the above operation, our input changes from

X ∈ R
B×C×H×W×L to XQ/XK/XV ∈ R

B×N×D, formulating as:

X1 = PoiW(DepW(X,K1),K0)

X2 = PoiW(DepW(X,K2),K0)

X3 = PoiW(DepW(X,K3),K0)

(5)

XQ = SE(Patch_PosEmd(X1,H,W, L,C, P), r)

XK = SE(Patch_PosEmd(X2,H,W, L,C, P), r)

XV = SE(Patch_PosEmd(X3,H,W, L,C, P), r)

(6)

where DepW and PoiW denote depthwise convolution and

pointwise convolution, K0, K1, K2, and K3 are different kernel sizes,

r is the reduction ratio of SE module, XQ, XK , and XV denote the

vector representations mapped from the original input to three

different subspaces, and P denotes the patch size.

The design of the attention module affects the computational

efficiency of the vision transformer. Currently, self-attention in

vision transformer establishes global long-distance dependencies

by interacting information between all regions in the image, which

requires neighborhood and global context to achieve. Our approach

does not entirely discard the decomposition and aggregation

model of multi-headed self-attention while further setting the

model’s scope to consider neighborhoods. Our hybrid attention

reduces the computational effort by restricting the current frame

from interacting with its finite neighboring frames. We take one

attention head as an example to explain our approach. First, we

generate three weight matrixes W1, W2, and W3 for computing

attention using the linear layer of SELU. W1 and W2 are used to

directly generate the attention weights corresponding to XQ and

XK , and W3 is used to generate the attention weights for “values.”

In W2, we introduce a hyperparameter cn, which represents the

contextual neighbors. This parameter restricts the contexts around

the current location considered in the attention calculation. Thus,

the dimension of the original weight calculation is reduced from

N to cn. The model shares attention weights among only a limited

number of locally adjacent contexts, significantly reducing time

complexity. The input token (XQ/XK/XV ∈ R
B×N×D) is computed

by attention weighting to obtain the query token (SXQ ∈ R
B×N×cn)

with local contextual information and key token (SXK ∈ R
B×N×cn),

value token (SXV ∈ R
B×N×D) are obtained directly by W3

weighting. Furthermore, we introduce the variable j to compute the

weights of each cn position above and below the j-centered position

in the token with local attention, weight it with the value token, and

sum it to obtain two vector outputs AttnQ_V , AttnQ_K containing

local adjacency context information. Since query and key are

obtained by locally computing the full dense attention synthesized

directly, we call this part the local dense attention computation

module. The output of local dense attention is calculated by:

SXQ = Softmax (SELU(XQW1)W2)

SXK = Softmax (SELU(XKW1)W2)

SXV = XVW3

(7)
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FIGURE 10

Boxplots to describe the variability of dice performance obtained by di�erent registration methods for the same anatomical structure.

FIGURE 11

Boxplots to describe the variability of dice performance for various anatomical structures obtained under the same registration method.

TABLE 3 Ablation study about di�erent masking ratios in the ACDC dataset for registration.

Masking ratio
LV Myo RV Avg

DSC HD DSC HD DSC HD DSC HD

0.85 0.854 5.52 0.773 6.12 0.783 8.75 0.803 6.8

0.75 0.858 5.49 0.792 5.93 0.785 8.65 0.812 6.69

0.65 0.857 5.42 0.776 5.89 0.783 8.62 0.812 6.64

0.375 0.858 5.42 0.794 5.85 0.786 8.62 0.813 6.63

0.125 0.859 5.39 0.795 5.78 0.788 8.58 0.814 6.58

The best results are achieved and highlighted by the bold values.
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TABLE 4 Ablation experiments on the location of SE module embedding.

SE module position
LV Myo RV Avg

DSC HD DSC HD DSC HD DSC HD

Transformer 0.856 5.51 0.789 5.98 0.783 8.68 0.811 6.72

CNN Block 0.854 5.65 0.793 6.07 0.782 8.73 0.809 6.82

Trans+CNN 0.858 5.49 0.792 5.93 0.785 8.65 0.812 6.69

The best results are achieved and highlighted by the bold values.

OutnQ =

cn−1∑

j=0

S
n,j
XQS

n+j−⌊

cn
2 ⌋

XV

OutnK =

cn−1∑

j=0

S
n,j
XKS

n+j−⌊

cn
2 ⌋

XV

(8)

AttnQ_V = OutnQW3

AttnK_V = OutnKW3

(9)

where W1 ∈ R
D×D, W2 ∈ R

D×cn, and W1 ∈ R
D×D are three

learnable weights and n denotes the number of tokens.

Finally, we aggregate the attention of the three components Q,

K, and V by the traditional multi-head self-attention computation

module to obtain the feature representation of hybrid attention in

one attention head, and then we concatenate the outputs of all the h

heads and calculate the output of the HyMHSA block, formulating

as:

AttnOut = MHSA(AttnQ_V ·WQ,AttnQ_K ·WK , SXV ·W
V ) (10)

HyMHSA(X) = Concat(AttnOut1, ...,AttnOuth)W
m (11)

Our architecture of the hybrid multi-head self-attention

mechanism is shown in Figure 3.

3.3. Squeeze and excitation module in 3D
CNN encoder

The channel and spatial dimensional parallel attention

mechanismmodules are introduced in the CNN encoder before the

Transformer structure to operate on convolutional features using

a dual-dimensional parallel extraction of attention features, with

input feature maps of X ∈ RH×W×L×C. Moreover, the attention

mechanism modules [e.g., spatial squeeze and channel excitation

block (cSE) and channel squeeze and spatial excitation block (sSE)]

are applied to 3D CNN (Figure 4) The spatial attention module

consists of a global average pooling layer and a fully connected,

ReLU activation layer (ẑ = W1 (δ (W2z))) behind it. This module

generates the intermediate feature vector z ∈ R1×1×1×C via the

pooling layer while generating n-th element, which is expressed as

follows:

zn =

1

H ×W × L

H∑

i

W∑

j

L∑

k

un(i, j, k) (12)

In this step, the global spatial information of the image features

is also embedded into the feature vector z. With the variation of the

squeeze and excitation module, the entire attention recalibration

process is expressed as follows:

XcSE = FcSE
(
X

)
= [σ (ẑ1) x1, σ (ẑ2) x2, · · · , σ (ẑc) xc] (13)

where c denotes the attention weight of each channel, emphasizing

high-importance features and suppressing low-importance

features, assigning different levels of importance to the

respective channel. The other part targets the fine-grained

pixel information in cardiac MRI. This part is enabled us

to deeply mine the channel information of the feature map

and then spatially excite it. The feature vector is expressed

as X =

[
x1,1,1, x1,1,2, · · · , xi,j,k, · · · , xH,W,L

]
, and the linear

representation of the feature projection (Xs = Wsq · X) is obtained

through convolution operation. The attention recalibration process

is illustrated as follows:

XsSE = FsSE
(
X

)
=

[
σ

(
Xs(1,1,1)

)
x1,1,1, σ

(
Xs(i,j,k)

)
xi,j,k, · · · ,

σ
(
Xs(H,W,L)

)
xH,W,L

]
(14)

The value of each σ represents the relative importance of the

spatial information (i, j, k, c) for a given feature map. Accordingly,

the combination of the twomodules allows features on channel and

spatial aspects to be considered more often in the learning process

of the network. The formula is:

¯XscSE =
¯XcSE + ¯XsSE (15)

3.4. 3D vision transformer with MAE as
deformable registration core architecture

3.4.1. 3D vision transformer architecture
The conventional 3D ViT architecture is borrowed as the

backbone for pre-training and downstream registration tasks, and

the feature maps containing some high-level feature information

obtained from three downsampling operations are employed

as the input of ViT: X ∈ R
H×W×L×C. The size of P ×

P × P non-overlapping patches is adopted to slice the high-

dimensional images to get N =

HWL
P3

patches. These patches

are flattened into P3C-dimension vectors, and the serialized

representation with high-level features is obtained. To preserve the

position information, position embedding is introduced after patch

embedding, and the vector of flattened patches and the vector of

position information are added for a serialized representation of

the global information of the image.
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TABLE 5 Comparison of image registration performance in three variants of MAE pre-training model (including dice performance and Hausdor�

distance) on the ACDC dataset.

Pretrain-Model
LV Myo RV Avg

DSC HD DSC HD DSC HD DSC HD

Base 0.858 5.49 0.792 5.93 0.785 8.65 0.812 6.69

Large 0.859 5.47 0.795 5.96 0.786 8.6 0.813 6.68

Huge 0.861 5.42 0.794 5.87 0.786 8.37 0.814 6.56

TABLE 6 Three variants of MAE’s detail about configuration and parameters.

Model Patch size Encoder dim Mlp dim ViT layers ViT head Params

Base 16 768 3,072 12 12 63.837M

Large 16 1,024 4,096 24 16 244.455M

Huge 14 1,280 5,120 32 16 387.248M

FIGURE 12

MAE’s pre-training result on the ACDC dataset, including training loss, validation loss, training contrastive loss, and training reconstruction loss. We

consider three di�erent MAE variants.

3.4.2. Pre-training with MAE
The core part of the proposed method introduces a self-

supervised learning strategy by designing 3DViT as an autoencoder

structure with random masked operations to allow the encoder

to learn more high-level abstract features and by employing an

asymmetric encoder -decoder structure as the core structure of the

registration network. Figure 5 illustrates the 3D MAE framework

adopted. The feature map is sliced into overlap patches (patch size
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= 8) in the conventional ViT approach, accessing the position

embedding. For the above patches, the patches above half of the

ratio (masking ratio = 0.75) are masked, only a small portion

of patches that are visible to the encoder are kept, and then the

patches required to be masked are calculated. Next, random indices

are obtained and divided into the masked and unmasked parts.

The unmasked part is the shallow representation of the high-level

features, while the masked part is represented by a shared and

learnable vector. Each masked patche can be represented as the

same vector. As depicted in Figure 5, only the unmasked patches are

fed into ViT after the masked operation. After the linear projection,

the patches are converted to one-dimensional tokens, and the blank

positions (yellow parts) are all filled by the same vector of the same

dimension and then decoded by a layer of Transformer decoder.

In the MAE, the MSE is used as the reconstruction loss function,

and the reconstruction effect is measured by obtaining the MSE

between the reconstructed image and the original image in the pixel

space.

3.4.3. Designed architecture applied to
downstream tasks

A simple layer is designed as the registration head according

to the downstream registration task. Before this layer, five CNN

decoder layers are also designed to reconstruct the feature

representation obtained by the Transformer Block. Subsequently,

the feature representation is recovered to the image data format and

gradually upsampled back to the original resolution, as presented in

Figure 5.

3.5. Loss functions in the registration model

The loss function in the registration model consists of a mean

square error (MSE) similarity loss and a regularized smoothing

loss based on a folding penalty and the sum of the two is used as

the loss between the moving image M, the fixed image F, and the

deformation field ϕ. The loss function is given by:

L(F,M,ϕ) = LMSE(F,M,ϕ)+ αP (16)

where LMSE(F,M,ϕ) is the mean square error similarity loss, α

is the regularization parameter, P is the regularization loss based

on the folding penalty, and the two parts of the loss function are

formulated as:

LMSE(F,M,ϕ) = L(2) =
1

�

∑

2∈ω

[F(2)−M ◦ ϕ(2)]2 (17)

P =

1

V

∫ X

0

∫ Y

0

∫ Z

0

[(
∂2T

∂x2

)2

+

(
∂2T

∂y2

)2

+

(
∂2T

∂z2

)2

+2

(
∂2T

∂xy

)2

+ 2

(
∂2T

∂xz

)2

+ 2

(
∂2T

∂yz

)2
]
dxdydz

(18)

In the mean square error similarity loss function, 2 is the

network parameter to be learned, � represents the image domain,

and M ◦ ϕ(2) denotes the moving image after spatial transform

(warped layer); in the regularized loss function based on the folding

penalty, the essence of the function is to penalize the folding

region of the deformation field, V is the volume of the 3D image

domain, T is the local spatial transformation, and adding this term

minimizes the second-order derivative of the local transformation

of the deformation field, which leads to an affine transformation of

the local deformation field and thus enhances the smoothness of the

global deformation field.

4. Experiments

4.1. Preparation of datasets and related
setting details

The dataset used for the experiment and the related settings

are described. In this study, the dataset applied is the publicly

available benchmark dataset from the automated cardiac diagnosis

challenge (31) (ACDC) in 2017. This dataset contains short-axis

cardiac 3D MR images from a total of 150 cases for two-time

frames of initial frame-end frame, and the public dataset applied

provides standard segmentation labels for three parts (including the

left ventricle (LV), the left ventricular myocardium (Myo), and the

right ventricle (RV)) for the registration task, which involves five

categories of cases (including normal, heart failure with infarction,

dilated cardiomyopathy, hypertrophic cardiomyopathy, and right

ventricular abnormalities). Hundred cases of the above 150 cases

contain the triple segmentation labels, while 50 cases do not contain

labels. The same dataset is employed for the pre-training task

and the downstream task. For the pre-training task, 250 cases

are employed for training, and 50 cases are applied for validation

(only include images). For the downstream task, the image parts

are extracted in 40 cases (1–40), and the complete cardiac cycle

images of 50 cases (101–150) for a total of 90 cases are extracted

as the training set, 20 cases (41–60) containing images and labels

are extracted as the validation set, and 40 cases of data from cases

(61–100) are extracted as the test set. At the data preprocessing

stage, all the images are cropped to 64 × 128 × 128, the random

flip is adopted as the data augment method for the training set to

increase the sample size of the dataset. Furthermore, the label pixel

normalization method is applied for the validation and test sets to

preprocess the data.

4.2. MAE architecture for pre-training

In the pre-training task, the three variants of MAE architecture

(MAE-ViT-Base, MAE-ViT-Large, and MAE-ViT-Huge) are

adopted to pre-train the heart dataset to compare how well the

model learns cardiac image features. Unlike the original method

of pre-training with the ImageNet-1K (32) dataset, the ACDC

dataset is employed, which is divided into 250 cases and 50 cases

for training and validation, respectively. The learning rate is set

to 1e-4, and MAE pre-training is run for 500 epochs. Moreover,

the batch size is set to 2, and the masking ratio is set to 0.75

(default setting) to save the pre-trained MAE model obtained in

the pre-training stage for testing some subsequent results.
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4.3. Downstream task–Cardiac MRI
registration

The method proposed in this study is a hybrid network of

CNN and Transformer structures, while some structures with

Transformer structures are employed as the main backbone

network to access in the registration task for comparison.

Thus, VoxelMorph is adopted as the baseline network. The

PyTorch framework is employed to implement all methods for

the comparison experiments. The MONAI framework is used

to visualize the registration results, and the methods of the

experiments are completed on an NVIDIA RTX 3090 GPU. The

Adam optimizer and the step decay (power = 0.9) learning rate

reduction strategy are employed in all neural networks. nii format

is converted into 3D volume npz format for two time frames from

the dataset, and the two-time frames in the respective 3D format in

the training sets are converted into fixed image and moving image,

respectively. Subsequently, the validation sets and test sets let the

image and label of each of the two-time frames form a 3D image

pair. On that basis, the respective image is matched with the image

of another time frame in a random combination, thus forming

four pairs of fixed image and moving image (360 pairs, 80 pairs,

and 160 pairs). The proposed framework is compared primarily

with several typical methods based on deep learning, which include

the baseline framework for registration, VoxelMorph, and three

networks [CoTr-based (33) registration network, PVT-based (34)

registration network, and ViT-V-Net)] for several applications of

the Transformer backbone. The single-channel fixed image and

the moving image are combined into a 3D grayscale image with

a channel number of 2 as the input of the network. All inputs are

subjected to the same preprocessing. The batch size is set to 2, the

initial learning rate is set to 0.0001, and the training rounds of 500

epochs are set. The whole process is performed by downsampling

the input five-dimensional tensor. Subsequently, the obtained high-

level feature representation is divided into equal-sized patches

through patch embedding operation. For patches, the remaining

visible unmasked patches are fed into the encoder of the 3D vision

transformer, so the deformation is achieved from the input image

to the predicted densely aligned deformation field using the spatial

transformer network. The proposed model is trained by optimizing

the loss function for the similarity between the fixed and moving

images. For the metrics to evaluate the registration effect, dice

coefficient (DSC) and hausdorff distance (HD) are selected to

evaluate the 3D registration results.

5. Results

5.1. Cardiac image in MAE reconstruction

The reconstruction effect for cardiac MRI is tested by pre-

training the model on the ACDC dataset. Figure 6 presents the

results of three variants of MAE architecture’s reconstruction at

a mask ratio of 0.75. As revealed by the results, although the

resolution of visible patches in the reconstructed image is reduced,

and the three model variants differ in their reconstruction of

cardiac images. The MAE can still recover the lost information

from the pixels around the missing patches effectively. The

recovered features can be better applied to downstream tasks.

5.2. Cardiac MRI registration

The method applied takes the dice coefficient and hausdorff

distance as measurement metrics. The proposed method is

compared with several advanced registration methods currently

available, and the experiments are performed on 150-cases ACDC

dataset. The comparison results achieved for dice performance

and Hausdorff distance are listed in Table 1. Some representative

registration methods are based on deep learning, including

the unsupervised registration baseline -VoxelMorph, as well

as the registration network with 3D PVT-based, CoTr-based,

and ViT-V-Net.

The visualization results of the attention heat map of the ACDC

dataset in several models are shown in Figure 7. We compared the

proposedmethod with VoxelMorph and ViT-V-Net to compare the

models in terms of feature aggregation. In the visualization results,

brighter regions indicate a higher degree of feature aggregation.

These visualization results of the attention heat map show that all

three methods can aggregate different features in three regions of

the left and right ventricles and ventricular walls. In contrast, our

method can wrap the target contour region more comprehensively.

Figure 8 presents the registration results of the whole cardiac

organ and the left and right ventricles obtained by the proposed

method and the generated deformation fields, including three

different periods of registration. The proposed method is capable of

enhancing the dice performance by nearly 0.01 and decreasing the

Hausdorff distance by about 0.1, respectively, compared with other

methods, and the loss values of the proposed method are kept at a

lower level during the training process, and the dice performance

values obtained from the validation set are higher (Figures 9A,

B). In the meantime, we set the value of contextual neighbors in

self-attention to 100 by default and compare the time complexity

of traditional self-attention, naive local intensive attention, and

hybrid local dense attention in our model. The results show that

the model can improve model performance while maintaining a

low time complexity. These results are shown in Table 2. In brief,

theMAE-TransRNet achieves better registration results and verifies

the effectiveness of MAE, SE, and HyMHSA modules introduced

into the registration task. In the meantime, we used boxplots to

describe the variability of dice performance obtained by different

registrationmethods for the same anatomical structure and also the

variability of dice performance for various anatomical structures

obtained using the same registration method (Figures 10, 11).

6. Ablation study

To evaluate the effect of our proposed MAE-TransRNet more

accurately, a series of ablation experiments are set to verify the

performance of the model under different settings, including the

masking ratio size, and whether to add different dimensions to the

Transformer encoder and CNNmodules, and the effect of theMAE

model size on the effect of the registration task. All the training

epoch is set to 500.
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6.1. Masking ratio

The default value of the masking ratio is set to 0.75 as the

baseline framework for the experiment, and the experimental

settings are used when the masking ratio is set to other values

to explore the effect of the masking ratio on the final registration

effect. The result is listed in Table 3.

6.2. SE module’s position

The SE module is introduced in the MAE-TransRNet

architecture. Because of the Transformer-ConvNet architecture,

the SE module is embedded into the Transformer block and the

scSE module into the CNN block, and the effect of SE embedding

on the model is compared at the above two positions. It is found

that the dice coefficients and HD of the registration are slightly

improved by introducing SE module either in the Transformer

block or in the CNN block, and the results are better when

SE module is introduced in both parts of the architecture, thus

suggesting that the attention mechanism based on the channel and

spatial dimensions in the Transformer block and CNN block is

beneficial. The results of our experiments are listed in Table 4.

6.3. Model scaling

Finally, we provide an ablation study on different model

sizes of MAE pre-training model. In particular, three different

configurations, including the “Base,” “Large,” and “Huge” models,

are investigated. For the “base” model, the patch size, encoder dim,

MLP dim, number of ViT layers, and number of ViT heads are set

to be 16, 768, 3,072, 12, and 12. It is concluded that larger model

results in a better performance. For the huge computation cost, the

MAE-ViT-Base model is applied to all the experiments. The result

and the related configuration are shown in Tables 5, 6. Moreover,

the related train loss value is presented in Figure 12.

7. Discussion

An unsupervised learning deformable image registration

model is proposed based on Transformer-ConvNet. It has been

implemented to predict the spatial transformation parameters

between input image pairs by introducing ViT. There are two

differences between most deep learning-based methods, especially

some methods that introduce the Transformer as follows:

(1) The proposed model is trained by continuously optimizing

the image similarity metric without any label as ground truth,

while the label is used to support validation and testing. Thus, the

registration effectiveness is measured.

(2) We designed the core of the Transformer as a self-encoder

and lightweight decoder structure with a MAE, turning the feature

extraction prior to the registration downstream task into a self-

supervised learning task.

The cardiac MRI dataset for the ACDC is evaluated. The

experimental results suggest that the model can outperform the

baseline model of deep learning-based deformable registration and

slightly outperform some other Transformer-based registration

methods. A MAE is applied to the heart registration task first from

the difference between text and image information. The method

of masking more than half of the patches significantly reduces the

redundancy of images, making the feature extraction task more

challenging and forcing the model to learn more deeply hidden

and better representations. Our purpose in introducing two SE

modules is to enhance the feature representation capability of the

Transformer structure and the CNN structure. The purpose of

introducing the scSE module in the CNN structure is to help us

dig deeper into the fine-grained information of the feature map by

considering the importance of features in the channel and spatial

dimensions to the fine-grained pixel information in the heart

image; we introduce the SE module in the self-focus mechanism,

hoping to analogize the application scenario of SE in convolution to

do query, key, and value in the self-focus computation, respectively.

We successfully introduce some convolutional induction bias

in the Transformer module to enhance the extraction of local

information. Also, we are the first to use this kind of local dense

attention in the vision domain, especially in the alignment task. We

believe that this self-attention mechanism based on local neighbor

context is useful for medical image analysis tasks. The results of

several comparison experiments and ablation studies suggest that

using the MAE for medical image registration tasks is of great

significance in the effect improvement, and the MAE with different

scales has a slight difference in the reconstruction effect of cardiac

images. It is more appropriate to select “Base” as the baseline

model to avoid a high cost of computation. It is worth discussing

that, unlike the results when the MAE with a high masking ratio

is applied to natural images (e.g., ImageNet-1K dataset), a high

masking ratio does not make the MAE achieve the optimal result

in medical image tasks. Since the masking ratio is continuously

adjusted downward, the effectiveness of our registration tasks

is increased slightly, which also suggests that the masking ratio

of MAE has different effects on different image analysis tasks.

Moreover, the embedding of the SE module in Transformer-

ConvNet structure plays a positive role in feature extraction to a

certain extent.

However, the effect of the proposed method compared with

other methods on the cardiac registration task does not differ

significantly between models, probably because the dataset size

is relatively small and the model parameters are great. In

addition, for the part of MAE, before feeding into the decoder,

a part of the token in the blank position is filled in by

sharing the learnable vector, which essentially generates non-

existent content and is easy to mislead the original features

of the image. Accordingly, if the potential impact is further

considered, our future research is devoted to the design of

the model to be more lightweight, considering the realism of

the underlying information representation, while trying to scale

up a certain amount of dataset size to further enhance the

registration performance.

8. Conclusion

An unsupervised learning deformable image registration

method is proposed based on Transformer-ConvNet structure,
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which changes the original ViT structure, introduces mask

operations, and does not require segmentation labels as registration

information. Furthermore, we introduce a new multi-head

self-attention mechanism that sets the range of the model

considering neighbors so that the attention module only computes

contextual information within a limited distance from the

current location. The result of this study verifies that the MAE-

TransRNet can achieve results comparable to several popular

methods at present and still has much room for improvement.

Future research may be extended to multimodal cardiac image

registration tasks.

Data availability statement

Publicly available datasets were analyzed in this study. This data

can be found at: https://www.creatis.insa-lyon.fr/Challenge/acdc/

index.html. Codes and models are available at: https://github.com/

XinXiao101/MAE-TransRNet.

Author contributions

XX, SD, and ZQ conceived this study. YY and YL were the

developers of computer-aided diagnosis methods. XX and GY

completed the data analysis. XX and SD drafted the manuscript.

All authors were involved in the finalization of the manuscript and

approved the manuscript.

Funding

This work was financially supported by the National Natural

Science Foundation of China under Grant (62202092), the Key

R&D Project of Heilongjiang Province (No. 2022ZX01A30), the

Science and Technology Program of Suzhou (Nos. ZXL2021431

and RC2021130), the Fundamental Research Funds for the Central

Universities (No. 2572016BB12), People’s Republic of China, the

Fundamental Research Funds for the Central Universities (No.

2572020DR10), Beijing Hospitals Authority’s Ascent Plan (Code:

DFL20220605), and the Beijing Nova Program (No. 20220484174).

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

1. Sotiras A, Davatzikos C, Paragios N. Deformable medical image registration: a
survey. IEEE Trans Med Imaging. (2013) 32:1153–90. doi: 10.1109/TMI.2013.2265603

2. Shewaye T. Cardiac MR image segmentation techniques: an overview.
arXiv:1502.04252 [cs.CV] (2015). doi: 10.48550/arXiv.1502.04252

3. Potel M, Mackay S, Rubin J, Aisen A, Sayre R. Three-dimensional
left ventricular wall motion in man. Invest Radiol. (1984) 19:499–509.
doi: 10.1097/00004424-198411000-00006

4. Ye M, Kanski M, Yang D, Chang Q, Yan Z, Huang Q, et al. DeepTag: an
unsupervised deep learning method for motion tracking on cardiac tagging magnetic
resonance images. In: Proceedings - 2021 IEEE/CVF Conference on Computer Vision
and Pattern Recognition, CVPR 2021. IEEE (2021). p. 7257–67.

5. Mäkelä T, Clarysse P, Sipilä O, Pauna N, Pham QC, Katila T, et al. A review
of cardiac image registration methods. IEEE Trans Med Imaging. (2002) 21:1011–21.
doi: 10.1109/TMI.2002.804441

6. Geert, Litjens, Thijs, Kooi, Babak, Ehteshami, et al. A survey on deep
learning in medical image analysis. Med Image Anal. (2017) 42:60–88.
doi: 10.1016/j.media.2017.07.005

7. Haskins G, Kruger U, Yan P. Deep learning inmedical image registration: a survey.
Mach Vis Appl. (2019) 31:8. doi: 10.1007/s00138-020-01060-x

8. Rohe MM, Datar M, Heimann T, Sermesant M, Pennec X. SVF-Net: learning
deformable image registration using shape matching. In: Descoteaux M, Maier-Hein
L, Franz A, Jannin P, Collins D, Duchesne S, editors. Medical Image Computing and
Computer Assisted Intervention – MICCAI 2017. MICCAI 2017. Lecture Notes in
Computer Science(), Vol. 10433. Cham: Springer (2017). p. 266–74.

9. Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for biomedical
image segmentation. In: Navab N, Hornegger J, Wells W, Frangi A, editors. Medical
Image Computing and Computer-Assisted Intervention -MICCAI 2015. MICCAI 2015.
Lecture Notes in Computer Science, Vol. 9351. Cham: Springer (2015).

10. Krebs J, Delingette H, Mailhe B, Ayache N, Mansi T. Learning a probabilistic
model for diffeomorphic registration. IEEE Trans Med Imaging. (2019) 2:7112.
doi: 10.1109/TMI.2019.2897112

11. Balakrishnan G, Zhao A, Sabuncu M, Guttag J, Dalca A. VoxelMorph: a learning
framework for deformablemedical image registration. IEEE TransMed Imaging. (2019)
2019:964. doi: 10.1109/CVPR.2018.00964

12. Hu Y, Modat M, Gibson E, Li W, Ghavami N, Bonmati E, et al. Weakly-
supervised convolutional neural networks for multimodal image registration. Med
Image Anal. (2018) 49:2. doi: 10.1016/j.media.2018.07.002

13. Miao S, Wang Z, Liao R. A CNN regression approach for real-time 2D/3D
registration. IEEE Trans Med Imaging. (2016) 35:1800. doi: 10.1109/TMI.2016.2521800

14. Naseer M, Hayat M, Zamir SW, Khan F, Shah M. Transformers in vision: a
survey. ACM Comput Surveys. (2022) 54:1–41. doi: 10.1145/3505244

15. Han K, Wang Y, Chen H, Chen X, Tao D. A survey on visual transformer.
arXiv:2012.12556 [cs.CV]. (2020). doi: 10.48550/arXiv.2012.12556

16. Dosovitskiy A, Beyer L, Kolesnikov A, Weissenborn D, Houlsby N. An image
is worth 16x16 words: transformers for image recognition at scale. arXiv:2010.11929
[cs.CV] (2020). doi: 10.48550/arXiv.2010.11929

17. Chen J, Lu Y, Yu Q, Luo X, Zhou Y. TransUNet:
transformers make strong encoders for medical image segmentation.
arXiv:2102.04306 [cs.CV]. (2021). doi: 10.48550/arXiv.2102.
04306

18. Chen J, He Y, Frey EC, Li Y, Du Y. ViT-V-Net: vision transformer for
unsupervised volumetric medical image registration. Med Image Anal. (2021)
82:102615. doi: 10.1016/j.media.2022.102615

19. Milletari F, Navab N, Ahmadi SA. V-Net: fully convolutional neural networks for
volumetric medical image segmentation. In: 2016 Fourth International Conference on
3D Vision (3DV). Stanford, CA: IEEE (2016). p. 565–71.

Frontiers inMedicine 18 frontiersin.org42

https://doi.org/10.3389/fmed.2023.1114571
https://www.creatis.insa-lyon.fr/Challenge/acdc/index.html
https://www.creatis.insa-lyon.fr/Challenge/acdc/index.html
https://github.com/XinXiao101/MAE-TransRNet
https://github.com/XinXiao101/MAE-TransRNet
https://doi.org/10.1109/TMI.2013.2265603
https://doi.org/10.48550/arXiv.1502.04252
https://doi.org/10.1097/00004424-198411000-00006
https://doi.org/10.1109/TMI.2002.804441
https://doi.org/10.1016/j.media.2017.07.005
https://doi.org/10.1007/s00138-020-01060-x
https://doi.org/10.1109/TMI.2019.2897112
https://doi.org/10.1109/CVPR.2018.00964
https://doi.org/10.1016/j.media.2018.07.002
https://doi.org/10.1109/TMI.2016.2521800
https://doi.org/10.1145/3505244
https://doi.org/10.48550/arXiv.2012.12556
https://doi.org/10.48550/arXiv.2010.11929
https://doi.org/10.48550/arXiv.2102.04306
https://doi.org/10.1016/j.media.2022.102615
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Xiao et al. 10.3389/fmed.2023.1114571

20. He K, Chen X, Xie S, Li Y, Dollár P, Girshick R. Masked autoencoders are scalable
vision learners. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. IEEE (2022). p. 16000–9.

21. Wu C, Wu F, Ge S, Qi T, Huang Y, Xie X. Neural news recommendation
with multi-head self-attention. In: Proceedings of the Twenty-Eighth International Joint
Conference on Artificial Intelligence. (2019). p. 6390–5.

22. Alamri F, Dutta A. Multi-head self-attention via vision transformer for zero-shot
learning. arXiv:2108.00045 [cs.CV]. (2021). doi: 10.48550/arXiv.2108.00045

23. Hong Y, Zhang Y, Schindler K, Martin R. Context-aware multi-head self-
attentional neural network model for next location prediction. arXiv:2212.01953
[physics.soc-ph] (2022). doi: 10.48550/arXiv.2212.01953

24. Guha Roy A, Navab N, Wachinger C. Concurrent spatial and channel ‘squeeze
& excitation’ in fully convolutional networks. In: Frangi A, Schnabel J, Davatzikos
C, Alberola-López C, Fichtinger G, editors. Medical Image Computing and Computer
Assisted Intervention - MICCAI 2018. MICCAI 2018. Lecture Notes in Computer
Science, Vol. 11070. Cham: Springer (2018). p. 421–9.

25. Hu J, Shen L, Sun G. Squeeze-and-excitation networks. In: 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT: IEEE
(2018). p. 7132–41.

26. Chiu CC, Raffel C. Monotonic chunkwise attention. arXiv [Preprint]. (2017).
arXiv: 1712.05382.

27. Tay Y, Bahri D, Metzler D, Juan DC, Zhao Z, Zheng C. Synthesizer: Rethinking
self-attention for transformer models. In: International Conference on Machine
Learning. PMLR (2021). p. 10183–92.

28. Xu M, Li S, Zhang XL. Transformer-based end-to-end speech recognition with
local dense synthesizer attention. In: ICASSP 2021 - 2021 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP). Toronto, ON: IEEE (2021). p.
5899–903.

29. Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez A, et al. Attention
is all you need. In: Advances in Neural Information Processing Systems, Vol. 30. (2017).

30. Chollet F. Xception: deep learning with depthwise separable convolutions. In:
2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu,
HI: IEEE (2017). p. 1800–7.

31. Bernard O, Lalande A, Zotti C, Cervenansky F, Yang X, Heng PA, et al.
Deep Learning techniques for automatic MRI cardiac multi-structures segmentation
and diagnosis: is the problem solved? IEEE Trans Med Imaging. (2018) 37:2514–25.
doi: 10.1109/TMI.2018.2837502

32. Deng J, DongW, Socher R, Li LJ, Li K, Li FF. ImageNet: a large-scale hierarchical
image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition.
Miami, FL: IEEE (2009). p. 248–55.

33. Xie Y, Zhang J, Shen C, Xia Y. CoTr: efficiently bridging CNN and transformer
for 3D Medical image segmentation. In: Medical Image Computing and Computer
Assisted Intervention-MICCAI 2021. MICCAI 2021. Lecture Notes in Computer Science,
Vol. 12903. Cham: Springer (2021). p. 171–80.

34. WangW, Xie E, Li X, Fan DP, Song K, Liang D, et al. Pyramid vision transformer:
a versatile backbone for dense prediction without convolutions. In: 2021 IEEE/CVF
International Conference on Computer Vision (ICCV). Montreal, QC: IEEE (2021). p.
548–58.

Frontiers inMedicine 19 frontiersin.org43

https://doi.org/10.3389/fmed.2023.1114571
https://doi.org/10.48550/arXiv.2108.00045
https://doi.org/10.48550/arXiv.2212.01953
https://doi.org/10.1109/TMI.2018.2837502
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Frontiers in Medicine 01 frontiersin.org

MIB-ANet: A novel multi-scale 
deep network for nasal 
endoscopy-based adenoid 
hypertrophy grading
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1 Department of Otolaryngology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 
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China

Introduction: To develop a novel deep learning model to automatically grade 
adenoid hypertrophy, based on nasal endoscopy, and asses its performance with 
that of E.N.T. clinicians.

Methods: A total of 3,179 nasoendoscopic images, including 4-grade adenoid 
hypertrophy (Parikh grading standard, 2006), were collected to develop and 
test deep neural networks. MIB-ANet, a novel multi-scale grading network, was 
created for adenoid hypertrophy grading. A comparison between MIB-ANet and 
E.N.T. clinicians was conducted.

Results: In the SYSU-SZU-EA Dataset, the MIB-ANet achieved 0.76251 F1 score 
and 0.76807 accuracy, and showed the best classification performance among 
all of the networks. The visualized heatmaps show that MIB-ANet can detect 
whether adenoid contact with adjacent tissues, which was interpretable for 
clinical decision. MIB-ANet achieved at least 6.38% higher F1 score and 4.31% 
higher accuracy than the junior E.N.T. clinician, with much higher (80× faster) 
diagnosing speed.

Discussion: The novel multi-scale grading network MIB-ANet, designed for 
adenoid hypertrophy, achieved better classification performance than four 
classical CNNs and the junior E.N.T. clinician. Nonetheless, further studies are 
required to improve the accuracy of MIB-ANet.

KEYWORDS

adenoid hypertrophy, nasal endoscopy, deep learning, medical image classification, 
convolutional neural networks

1. Introduction

Adenoid hypertrophy is a common disease in children with otolaryngology diseases. A 
meta-analysis showed that the prevalence of adenoid hypertrophy in children and adolescents 
was 34.46% (1). Adenectomy or adenotomy is the first-recommended therapy for sleep 
disordered breathing in children, with “adenoid faces” (2) and other growth and development 
problems. Clinically, surgical indication is on the basis of the grading of adenoid hypertrophy. 
There are four main grading standard of adenoid hypertrophy based on nasal endoscopy, i.e., 
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Clemens grading standard (3), Cassano grading standard (4), Parikh 
grading standard (5), and ACE grading system (6). Among which, 
Parikh grading standard, which was reported on Otolaryngol Head 
Neck Surg. in 2006, grades adenoid hypertrophy by evaluating the 
adjacent structure of adenoid tissue contact, which can reflect the 
degree of blockage in the Eustachian tube and can be related to the 
meaning of the surgery. However, long-time reading of different 
images is a tedious work and may cause misdiagnosis, especially for 
interns without experiences. Creating an artificial intelligence deep 
network for nasal endoscopy-based adenoid hypertrophy grading 
is meaningful.

In recent years, many deep learning methods, especially 
convolutional neural networks (CNNs), have been applied in the 
medical image domain (7–12). For adenoid hypertrophy, Shen et al. 
(13) collected 688 lateral cranial X-ray images of patients with adenoid 
hypertrophy, and divided these images into training set (488), 
validation set (64) and test set (116). This deep learning model 
calculated the AN ratio (AN ratio, where A is the absolute size of the 
adenoid and N is the size of the nasopharyngeal space) to grade 
adenoid hypertrophy. Liu et al. (14) collected 1,023 lateral cranial 
X-ray images, and proposed a deep learning model based on VGG16 
to grade adenoid hypertrophy. In the clinic, nasoendoscope is a 
simple, economical, readily available, and reproducible way to 
diagnose adenoid hypertrophy. Compared to lateral cranial X-ray, 
nasoendoscope requires no radiation and provides good view to 
investigate the distance relationship between adenoid and adjacent 
structures. However, to the best of our knowledge, there is no deep 
learning research available to help grade endoscopic images of 
adenoid hypertrophy.

Inspired by the success of previous works in detection and 
classification of medical endoscopic images, in this study, we assumed 
that the adenoid hypertrophy grading could also benefit from deep 
learning techniques. Toward this end, we acquired a large collection 
of nasal endoscopic images to build a novel MIB-ANet model and 
assessed its performance.

2. Materials and methods

2.1. SYSU-SZU-EA dataset

We reviewed the nasoendoscopic images of patients who 
underwent routine clinical screening for nasal diseases at the Seventh 
Affiliated Hospital of Sun Yat-sen University (Shenzhen, China), 
between December 2019 and May 2021. All of the images in SYSU-
SZU-EA Dataset were original nasoendoscopic images, without 
artificial light, zoom, and optical amplification restrictions. We only 
choose images capturing adenoid residue or adenoid hypertrophy. 
There was no limitation for age, gender, or whether to combine 
chronic rhinosinusitis or other diseases. This dataset consists of 3,179 
images. All images were captured using a rigid 0-degree 2.7 mm 
nasoendoscope and endoscopic capture recorder (Wolf, Tuttlingen, 
Germany), equipped with high-performance medical imaging 
workstation. All of the images were saved with JPG format consisting 
of red, green, and blue color channels and had widths and heights 
ranging from 700 and 1,000 pixels. All the patients had signed 
informed consent before nasoendoscopy.

2.2. Grading method of adenoid 
hypertrophy

There are four main grading standard of adenoid hypertrophy, i.e., 
Clemens grading standard (3), Cassano grading standard (4), Parikh 
grading standard (5), and ACE grading system (6). Among which, 
Parikh grading standard grades adenoid hypertrophy by evaluating 
the adjacent structure of adenoid tissue contact, which can reflect 3D 
structure and requires few parameters, and is convenient for clinical 
evaluation and deep learning. Therefore, in this work Parikh grading 
standard were chosen as the grading method. Table  1 shows the 
grading method of adenoid hypertrophy and the detailed numbers of 
images of four grades. Adenoid hypertrophy is divided into 1–4 grades 
according to whether the adenoid tissue contacted or pressed the 
Eustachian tube pillow, vomer bone, and soft palate in a relaxed state. 
Figure 1 shows four example adenoid images with grades 1 to 4 in the 
SYSU-SZU-EA Dataset. Three E.N.T. clinicians, including one senior 
E.N.T. clinician, one intermediate E.N.T. clinician and one junior 
E.N.T. clinician were employed for data annotation.

2.3. Preprocessing

Computer implementation environment: The neural network 
models were coded in Python (version 3.7.6, 64 bit) using the open-
source Pytorch (version 1.8.1) library and tested on Intel (R) Xeon (R) 
Gold 6,132 CPU @2.60GHz and a Tesla V100. Due to limited GPU 
resources, all images were resized to 256 × 256 pixels. In the training 
phase, we used a learning rate of 0.0001 and a batch size of 32 in the 
Adam optimizer, and used the “StepLR” with step size of 10, gamma 
of 0.9 to decay the learning rate. In addition, we employed random 
vertical flip, random horizontal flip, and random rotation on the input 
images to augment the dataset in training.

Data distribution of training set, validation set and test set: 
We randomly divided the 2,183 adenoid images into training set and 
validation set. The ratio of the image number of training set to the 
validation set is 4:1. In order to ensure that the number of adenoid 
images at each grade in the training set is sufficient, the dividing 
ratio for grade 1 and 2 was set as approximately 4:1, and the dividing 
ratio for grade 3 and 4 was set as approximately 5:1. For testing set, 
996 images were graded by 3 E.N.T. clinicians with different 
experiences and the final result was determined based on majority 
voting. The detailed distribution of adenoid hypertrophy images 
with different grades in training set, validation set, and test set is 
shown in Table 1.

2.4. The novel multi-scale grading network: 
MIB-ANet

In this paper, we designed a framework, MIB-ANet, for adenoid 
hypertrophy classification. As shown in Figure  2A, the proposed 
MIB-ANet consisted of two modules, the backbone network—ANet 
and Modified Inception Block (MIB). MIBs and ANet were integrated 
as MIB-ANet by replacing the first two layers of ANet (red dotted box) 
with MIBs (blue box), whose details are shown in Figures 2B,C and 
Supplementary B.
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2.5. Performance evaluation

In this study, four classic CNNs, i.e., AlexNet (15), VGG16 (16), 
ResNet50 (17), and GoogleNet (18), were employed for performance 
comparison. Details of the structure of four classic CNNs and ANet 
are described in Supplementary A. Accuracy, F1 score and confusion 
matrix were adopted as the evaluation metrics of classification 
performance. Definition of Evaluation Metrics are described in 
Supplementary B. Details of ablation study for Classification 
Performance evaluation are described in Supplementary C. We also 
used the Class Activation Map (CAM) (19) to visualize the attention 
map of different CNNs, which can highlight the regions of interest 
of different models. The comparison of the performance of 
MIB-ANet, ANet and four classic CNNs are showed in 
Supplementary D.

2.6. Comparison between MIB-ANet and 
E.N.T. clinicians

We compared the diagnostic performance of MIB-ANet with 
three E.N.T. clinicians. While the senior E.N.T. clinician has more 
than 20 years of experience in nasal endoscopy, the intermediate and 
junior E.N.T. clinician has approximately 8 years and 5 years of 
experience in nasal endoscopy, respectively. They conducted blind 
assessments of 996 images in testing set and the final result was 
determined based on majority voting. We compared MIB-ANet with 
human experts using F1 score and accuracy.

2.7. Ethics

The study was approved by the ethical review board of the Seventh 
affiliated Hospital of Sun Yat-sen University (no. KY-2022-008-01).

2.8. Statistical analysis

ROC curves were adopted as the evaluation metrics of 
classification performance, which were coded in Python (version 
3.7.6, 64 bit). Wilcoxon signed-rank test was used to analyze the 
difference between two paired samples of ordinal categorical variables, 
which was performed by SPSS 17.0. All tests were two-sided, and 
p < 0.05 was considered as statistically significant.

3. Results

3.1. Comparison based on F1 score and 
accuracy

We compared the performance of MIB-ANet to E.N.T. clinicians. 
Since the test set was annotated by 3 E.N.T. clinicians independently, 
the ground truth was determined based on majority voting and a face-
to-face discussion of these 3 E.N.T. clinicians. Therefore, we evaluated 
the performance of each doctor by calculating the F1 score and 
accuracy of their diagnostic results with the voted ground truth. Table 2 
shows the performance of MIB-ANet and 3 E.N.T. clinicians. From 

TABLE 1 Details of Parikh grading standard and data distribution of training set, validation set, and test set in SYSU-SZU-EA dataset.

Grade Adjacent structure of 
adenoid tissue contact

Training set Validation set Test set Number

1 None 428 122 228 778

2 Torus tubarius 576 158 276 1,010

3 Torus tubarius, vomer 492 104 355 951

4 Torus tubarius, vomer, palate (at rest) 250 53 137 440

Total 1746 437 996 3,179

FIGURE 1

Examples of 4 grades adenoid nasoendoscopic images according to Parikh grading standard in the SYSU-SZU-EA dataset.
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Table 2, we can see that MIB-ANet achieved at least 6% higher F1 score 
and 4% higher accuracy than the junior clinician, and achieved much 
higher diagnosing speed than human experts, e.g., at least 80 times 
faster than the senior clinician. Table 2 also shows the detailed Z and p 
value between the voted ground truth and MIB-ANet or 3 
E.N.T. clinicians. Since the classification results were ordinal categorical 
variables, two-sided Wilcoxon signed-rank test was employed to 
analyze the difference between two paired samples. As we know, p 

value indicates the statistical significance and Z value indicates the 
tendentiousness. The p value of MIB-ANet was 0.188, which showed 
that there was no significant statistical difference between the voted 
ground truth and MIB-ANet. However, the p values of 3 
E.N.T. clinicians were smaller than 0.05, which meant that there were 
significant statistical differences between the voted ground truth and 3 
E.N.T. clinicians. The Z values of both MIB-ANet and 3 E.N.T. clinicians 
were smaller than zero, which meant that both clinicians and deep 

A

B

C

FIGURE 2

(A) The overview of the proposed MIB-ANet architecture. (B) The architecture of ANet. (C) The architecture of Inception Block and Modified Inception 
Block.
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model tended to make prediction of higher grade. Compared to 3 
clinicians, MIB-ANet achieved the smallest absolute Z value, which 
meant that the prediction of MIB-ANet was more objective.

3.2. Comparison based on ROC curve and 
confusion matrices

Figure 3 shows the micro-average ROC curve of MIB-ANet and 
different grade. True Positive Rate (TPR) as well as False Positive Rate 
(FPR) of 3 E.N.T. clinicians. For points in ROC curve, the closer to the 
upper left corner, the better grading performance. From Figure 3A, 

TABLE 2 Performance of MIB-ANet to E.N.T. clinicians.

Evaluation 
metrics Time 

(s)

vs. Ground 
truth

F1 
score

Accuracy Z
p 

value

Senior clinician 0.89013 0.89558 4 ~ 8 −6.962 0.000*

Intermediate 

clinician

0.80555 0.80422 5 ~ 11 −8.307 0.000*

Junior clinician 0.69867 0.72490 7 ~ 13 −5.618 0.000*

MIB-ANet 0.76251 0.76807 0.05 −1.316 0.188

We used “bold” to highlight the best performance of the variable.

A B

C D

E

FIGURE 3

(A–E) show the overall micro-average ROC curve of MIB-ANet and that for grade 1 to 4 adenoid hypertrophy respectively, compared with TPR and FPR 
of 3 E.N.T. clinicians.

48

https://doi.org/10.3389/fmed.2023.1142261
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Bi et al. 10.3389/fmed.2023.1142261

Frontiers in Medicine 06 frontiersin.org

A B

C D

FIGURE 4

The confusion matrices of MIB-ANet and 3 clinicians. (A–D) Show the confusion matrix of senior clinician, intermediate clinician, junior clinician, and 
MIB-ANet, respectively.

we can see that the senior clinician (green point) showed the best 
grading performance. MIB-ANet (red curve) showed performance 
between intermediate clinician (aqua point) and junior clinician (blue 
point). From Figures 3B,D, we can see that for grade 1 and grade 3 
adenoid images, 3 E.N.T. clinicians showed better performance than 
MIB-ANet (All of points are located above the curve of MIB-ANet). 
From Figures 3C,E, we can see that for grade 2 and grade 4 adenoid 
images, MIB-ANet showed better performance than junior clinician 
(blue point is located below the red curve), while showed worse 
performance than senior clinician and intermediate clinician (green 
point and aqua point are located above the red curve).

Figure 4 shows the confusion matrices of MIB-ANet and human 
experts. From these matrices, we can calculate that for grade 1 adenoid 
images, the accuracy of 3 E.N.T. clinicians were roughly the same and 
higher than that of MIB-ANet. For grades 2, 3, and 4 adenoid images, 
senior clinician achieved the best accuracy, which were 0.92671, 
0.95281, and 0.96988, respectively. MIB-ANet achieved better 
accuracy (0.86747) than intermediate clinician (0.85743) for grade 3 
adenoid images. And for grades 2, 3, and 4 adenoid images, MIB-ANet 
achieved better accuracy (0.83534/0.86747/0.92771) than junior 
clinician (0.82229/0.77209/0.91064).

3.3. Comparison based on heatmap 
visualization

Figure 5 shows the heatmaps overlaid on adenoid nasoendoscopic 
images, which denotes attention map of different neural networks 

according to weighting of all pixels dictated by CAM. From Figure 5, 
we can see that, for grade 1 and grade 2, AlexNet, VGG16, ANet, and 
MIB-ANet tended to focus on whether the adenoid tissue is in contact 
with torus tubarius; ResNet50 and GoogleNet tended to focus on the 
adenoid area and whether adenoids were in contact with vomer. For 
grade 3 and grade 4, VGG16 and ResNet50 tended to focus on 
whether adenoids were in contact with soft palate. For grade 3, 
AlexNet, GoogleNet, and ANet tended to focus on the size of the 
airway (to some extent, the larger the adenoid, the smaller the airway 
space). For grade 4, AlexNet, GoogleNet, and ANet tended to focus 
on the adenoid area. In contrast, MIB-ANet can always focus on 
whether adenoids were in contact with adjacent tissues, which meant 
that the prediction made by MIB-ANet was based on the contact 
between adenoids and adjacent tissues, which was the same as how 
E.N.T. clinician make a decision14. The heatmaps intuitively explain 
why MIB-ANet has the best performance among all networks.

3.4. Performance of different grades

Figure 6 shows the F1 score of different grades for MIB-ANet, 
senior clinician, intermediate clinician, and junior clinician. From 
Figure 6, we can see that senior clinician showed the best classification 
performance among 3 E.N.T. clinicians. For grades 2, 3, and 4 adenoid 
images, senior clinician achieved 10–30% higher F1 score than 
intermediate clinician and junior clinician, and for grade 1 adenoid 
images, senior clinician showed comparable F1 score to intermediate 
clinician and junior clinician. Compared to 3 E.N.T. clinicians, 
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MIB-ANet achieved comparable F1 score to intermediate clinician for 
grade 2 and 3 adenoid images, which was 9 and 5% higher than junior 
clinician, respectively. For grade 4 adenoid images, MIB-ANet 
achieved 7% lower F1 score than intermediate clinician, but 17% 
higher than junior clinician. For grade 1 adenoid images, MIB-ANet 
achieved lower F1 score than 3 E.N.T. clinicians, but only 5% lower 
than senior clinician. Overall, the performance of MIB-ANet was 
better than junior clinician and close to intermediate clinician.

4. Discussion

Clinically, the grading of adenoid hypertrophy is important for 
surgical indication. There are several medical examinations to evaluate 
adenoid hypertrophy, such as lateral cranial X-ray, nasoendoscopy, cone-
beam computed tomography (CBCT) (20), MRI, and 3D printed model 
(21). Nasal endoscopy is a radiation-free, safe, and convenient operation, 
which is routinely used for adenoid hypertrophy grading examination. In 

FIGURE 5

The heatmaps of different deep networks for adenoid hypertrophy prediction. The first column shows the original adenoid images. The second, third, 
fourth, fifth, sixth, and seventh columns show the heatmaps of AlexNet, VGG16, ResNet50, GoogleNet, ANet and MIB-ANet, respectively.

FIGURE 6

The F1 score of different grades for MIB-ANet, senior clinician, intermediate clinician, and junior clinician.
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this work, we built SYSU-SZU-EA nasoendoscopic image dataset and 
proposed a novel efficient deep neural network, MIB-ANet, for adenoid 
hypertrophy classification. To the best of our knowledge, this is the first 
deep learning research to address the grading of endoscopic images of 
adenoid hypertrophy. The experimental results showed that our network 
achieved better classification performance than four classical CNNs, i.e., 
AlexNet, VGG16, ResNet50, and GoogleNet. When compared to three 
E.N.T. clinicians, MIB-ANet achieved much higher (80× faster) 
diagnosing speed, with a grading performance better than the junior 
E.N.T. clinician.

In recent years, many deep learning methods, especially convolutional 
neural networks (CNNs), have been applied in the medical image domain. 
Girdler et al. (22) categorized 297 nasoendoscopic images by using the 
CNN model of ResNet-152 for automated detection and classification of 
nasal polyps and inverted papillomas. Overall accuracy of 0.742 ± 0.058 
was achieved. Yang et al. (23) developed a cascaded under-sampling 
ensemble learning method (CUEL) to prevent and diagnose clinical 
rhinitis, which achieved 90.71% average accuracy on 2,231 clinical rhinitis 
instances. The current deep learning network is mostly used for the 
diagnosis of diseases. Even in the field of capsule endoscopic images with 
a large number of deep learning researches, little work is conducted to 
classify the degree of disease. In this study, we focused on the clinical 
requirement of adenoid hypertrophy grading, rather than disease 
diagnosis. At the same time, more detailed assessment, such as the nasal 
mucosal inflammation state, the size degree of polyps, and grading of 
adenoid hypertrophy, can lead to the creation of an automatic nasal 
endoscopy reporting system, which can reduce the burden of E.N.T 
clinicians and improve efficiency and accuracy of reading caused by 
visual fatigue.

Usually, different network models are suitable for different data 
sets, and the design of network structure should be based on the 
characteristics of data sets. Medical data sets are different from data 
sets collected in daily life, such as ImageNet, and contain much 
smaller number of images. However, the classical deep learning 
model has a large number of parameters, which is easy to over fit 
when these models are trained using small data sets in the medical 
field. Therefore, in order to avoid the over fitting problem in the 
classification of adenoid hypertrophy, we tried to reduce the amount 
of model parameters when designing the network structure. In 
addition, compared with natural images, nasoendoscopic images are 
characterized by more concentrated color distribution (overall red 
color), more abundant texture features (tissue blood vessels, dense 
tissue distribution), and large differences in size and shape among 
different types of adenoid. The classical deep learning model cannot 
well extract both low-level and high-level adenoid hypertrophy 
features. In order to solve this problem, we proposed ANet to extract 
high-level adenoid hypertrophy features using dilated convolutions. 
Based on ANet, we proposed MIB-ANet with convolution kernels of 
different sizes to extract both low-level and high-level adenoid 
hypertrophy features. The performance of ANet and MIB-ANet was 
better than four classic CNNs. In addition, the experimental results 
showed that MIB-ANet can achieve a grading performance better 
than the junior E.N.T. clinician with much higher diagnosing speed.

However, some limitations in our study should be mentioned. 
Firstly, we annotate the ground truth label of testing set according to 
the evaluation results of 3 E.N.T. experts with the principle of majority 
voting, which might still generate some incorrect labels. Further 
manual data cleaning and more reasonable annotation process, e.g., 
intraoperative evaluation of adenoid size, are required (24). Secondly, 

when MIB-ANet was used to grade adenoid hypertrophy, the model 
tended to fit the size of adenoid. When the image of adenoid collected 
by endoscopic technician is not standard (for example, the endoscope 
is close to the adenoid when collecting the adenoid image), MIB-ANet 
is easy to predict a higher grade. Therefore, the E.N.T clinicians are 
suggested to draw the boundary of the designated anatomical structure 
or attention area by using some software like imageScope, which can 
further improve the performance. At the same time, enlarging the 
database and building up a multicenter data platform are also helpful 
to improve the model. Finally, in this study, we only focused on adenoid 
hypertrophy grading on nasoendoscopic images. In the future, we can 
further add labels of other nasopharyngeal diseases, such as 
nasopharyngeal carcinoma and nasopharyngitis, and develop a 
comprehensive classification model for nasal disease diagnosis.
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of Sciences, Ningbo, China

Background: The automatic analysis of medical images has the potential improve 
diagnostic accuracy while reducing the strain on clinicians. Current methods 
analyzing 3D-like imaging data, such as computerized tomography imaging, often 
treat each image slice as individual slices. This may not be able to appropriately 
model the relationship between slices.

Methods: Our proposed method utilizes a mixed-effects model within the deep 
learning framework to model the relationship between slices. We  externally 
validated this method on a data set taken from a different country and compared 
our results against other proposed methods. We  evaluated the discrimination, 
calibration, and clinical usefulness of our model using a range of measures. Finally, 
we carried out a sensitivity analysis to demonstrate our methods robustness to 
noise and missing data.

Results: In the external geographic validation set our model showed excellent 
performance with an AUROC of 0.930 (95%CI: 0.914, 0.947), with a sensitivity 
and specificity, PPV, and NPV of 0.778 (0.720, 0.828), 0.882 (0.853, 0.908), 0.744 
(0.686, 0.797), and 0.900 (0.872, 0.924) at the 0.5 probability cut-off point. Our 
model also maintained good calibration in the external validation dataset, while 
other methods showed poor calibration.

Conclusion: Deep learning can reduce stress on healthcare systems by 
automatically screening CT imaging for COVID-19. Our method showed 
improved generalizability in external validation compared to previous published 
methods. However, deep learning models must be robustly assessed using various 
performance measures and externally validated in each setting. In addition, best 
practice guidelines for developing and reporting predictive models are vital for 
the safe adoption of such models.
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1. Background

Coronavirus disease 2019 (COVID-19) is an infectious respiratory 
disease caused by severe acute respiratory syndrome coronavirus 2 
(SARS-CoV-2). Virus clinical presentation ranges from mild cold-like 
symptoms to severe viral pneumonia, which can be fatal (1). While 
some countries have achieved relative control through lockdowns, 
future outbreaks and new strains are expected to continue, with many 
experts believing the virus is here to stay (2). Detection and isolation 
is the most effective way to prevent further spread of the virus. Even 
with effective vaccines becoming widely available, with the threat of 
continued waves and new potentially vaccine-resistant variants, it is 
vital to further develop diagnostic tools for COVID-19. These tools 
will likely also apply to future outbreaks of other similar diseases as 
well as common diseases such as pneumonia.

The diagnosis of COVID-19 is usually determined by Reverse 
Transcription Polymerase Chain Reaction (RT-PCR), but this is far 
from being a gold standard. A negative test does not necessarily 
indicate a negative diagnosis, with one recent review finding that 
RT-PCR has a real-world sensitivity of around 70% and a specificity 
of 95% (3). Furthermore, an individual patient data systematic review 
(4) found that RT-PCR often fails to detect COVID-19, and early 
sampling is key to reducing false negatives. Therefore, these tests are 
often more helpful to rule in COVID-19 rather than ruling out. If a 
patient presents with symptoms of COVID-19, but an RT-PCR test is 
negative, then further tests are often required (1). Consecutive 
negative tests with at least a one-day gap are recommended; however, 
this still does not guarantee that the patient is negative for COVID-19 
(5). Computed tomography (CT) can play a significant role in 
diagnosing COVID-19 (6). Given the excessive number of COVID-19 
cases worldwide and the strain on resources expected, automated 
diagnosis might reduce the burden on reporting radiologists.

CT images are made up of many slices, creating a three 
dimensional (3D)-like structure. Previous approaches, such as those 
used by Li et al. (7) and Bai et al. (8) treat the image as separate slices 
and use a pooling layer to concatenate the slices. An alternative 
approach assumes the slices form a 3D structure and use a 3D CNN, 
such as that proposed in CoviNet (9). A fundamental limitation of 
these methods is the need for the same number of slices as their 
inputs, but the number of slices often varies between different CT 
volumes. Instead, we propose using a novel mixed-effects layer to 
consider the relationship between slices in each scan. Mixed-effects 
models are commonly used in traditional statistics (10, 11), but 
we believe this is the first time that mixed-effects models have been 
utilized in such a way. It has been observed that some lobes of the lung 
are more often affected by COVID-19 than others (12, 13) with lower 
lobe distribution being a prominent feature of COVID-19 (14), the 
fixed-effects take this into account by considering where each slice is 
located within the scan.

Deep learning has shown great potential in the automatic 
classification of disease, often achieving expert-level performance. 
Such models could screen and monitor COVID-19 by automatically 
analyzing routinely collected CT images. As observed by Wynants 
et al. (15) and Roberts et al. (16) many models are already developed 
to diagnose COVID-19, which often obtain excellent discriminative 
performance; however, very few of these models, if any, are suitable 
for clinical use, mainly due to a lack of robust analysis and reporting. 
These models often suffer from common pitfalls, making them 

unsuitable for broader adoption. Roberts et al. (16) identified three 
common areas in which models often fail these are: (1) a lack of 
adequately documented methods for reproducibility, (2) failure to 
follow established guidelines and best practices for the development 
of deep learning models, and (3) an absence of external validation 
displaying the model’s applicability to a broader range of data outside 
of the study sample. Failure to address these pitfalls leads to profoundly 
flawed and biased models, making them unsuitable for deployment.

In this work, we aim to address the problems associated with 
previous models by following guidelines for the reporting (17, 18) and 
development (19) of prediction models to ensure that we  have 
rigorous documentation allowing the methods developed here to 
be replicated. In addition, we will make code and the trained model 
publicly available at: github.com/JTBridge/ME-COVID19 to promote 
reproducible research and facilitate adoption. Finally, we use a second 
dataset from a country other than the development dataset to 
externally validate the model and report a range of performance 
measures evaluating the model’s discrimination, calibration, and 
clinical usefulness.

Hence, our main aim is to develop a mixed-effects deep learning 
model to accurately classify images as healthy or COVID-19, following 
best practice guidelines. Our secondary aim is to show how deep 
learning predictive algorithms can satisfy current best practice 
guidelines to create reproducible and less biased models.

2. Methods

Our proposed method consists of a feature extractor and a 
two-stage generalized linear mixed-effects model (GLMM) (20), with 
all parameters estimated within the deep learning framework using 
backpropagation. First, a series of CT slices forming a CT volume is 
input to the model. In our work, we use 20 slices. Next, a convolutional 
neural network (CNN) extracts relevant features from the model and 
creates a feature vector for each CT slice. Then, a mixed-effects layer 
concatenates the feature vectors into a single vector. Finally, a fully 
connected layer followed by a sigmoid activation gives a probability of 
COVID-19 for the whole volume. The mixed effects and fully 
connected layer with sigmoid activation are analogous to a linear 
GLMM in traditional statistics. The overall framework is shown in 
Figure 1.

2.1. Feature extractor

For the feature extractor, we use a CNN. In this work, we chose 
InceptionV3 (21) as it is relatively efficient and commonly used. 
InceptionV3 outputs a feature vector of length 2048. To reduce the 
time needed to reach convergence, we  pretrained the CNN on 
ImageNet (22). A CNN is used for each slice, with shared weights 
between CNNs; this reduces the memory footprint of the model. 
Following the CNN, we used a global average pooling layer to reduce 
each image to a feature vector for each slice. We then added a dropout 
of 0.6 to improve generalizability to unseen images. We  form the 
feature vectors into a matrix of shape 20 2 048× , . Although we used 
InceptionV3 (21) here, other networks would also work and may 
provide better performance on other similar tasks. We then need to 
concatenate these feature vectors into a single feature vector for the 
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whole volume; normally, pooling is used, in our work we propose 
using a mixed-effects models.

2.2. Mixed-effects network

We propose utilizing a novel mixed-effects layer to model the 
relationship between slices. Mixed-effects models are a statistical 
model consisting of a fixed-effects part and a random-effects part. The 
fixed-effects part models the relationship within the CT slice; the 
random effects can model the spatial correlation between CT slices 
within the same image (11). For volumetric data, the number of slices 
may differ significantly due to various factors such as imaging protocol 
and the size of the patient. Some CT volumes in the dataset may have 
fewer images than the model is designed to use, which leads to missing 
data. The number of slices depends upon many factors including the 
scanning protocol and the size of the patient. Mixed-effects models 
can deal with missing data provided the data are missing at random 
(23). It is likely that the data here is missing at random, although not 
completely at random. The mixed-effects model is given by

 Y X Z ei i i i= + +α β

where Y X Z ei i i i, , , are vectors of outcomes, fixed effects design 
matrix of shape slices features× , random effects design matrix of 
shape slices slices× , and vector of error unknown random errors of 
the ith patient of shape slices, respectively, and α β,  are fixed and 
random effects parameters, both of length features and slices, 
respectively. In our work, we have 20 slices and 2048 features and use 

the identity matric for the random effects design matrix. The values in 
the random effects design matric can be  changed to reflect a 
non-uniform distance between slices. We assume that the random 
effects β  are normally distributed with mean 0 and variance G

 β ∼ ( )N G0, .

We also assume independence between the random effects and 
the error term.

The fixed effects design matrix, X , is made up of the feature 
vectors output from the feature extraction network. For the random 
effects design matrix, Z , we use an identity matrix with the same size 
as the number of slices; in our experiments, this is 20. The design 
matrix is then given by

 

Z20 20

1 0

0 1

0 0

0 0

0 0

0 0

1 0

0 1

× =

…

…























� � � .

This matrix easily generalizes to any number of slices. If the 
distance between slices is not uniform, the values can be  altered 
accordingly. We  assumed no particular correlation matrix. 
We  included the fixed and random intercept in the model. All 
parameters for the mixed-effects layer were initialized using the 
Gaussian distribution with mean 0 and standard deviation 0.05.

FIGURE 1

Diagram of the overall framework. Twenty slices are chosen from a CT volume. Each slice is fed into a CNN with shared weights, which outputs a 
feature vector of length 2048 for each image. The feature vectors form a 20-by-2048 fixed effects matrix, X, for the GMM model with a random-
effects matrix, Z, consisting of an identity matrix. A mixed-effects model is used to model the relationship between slices. Finally, a fully connected 
layer and sigmoid activation return a probability of the diagnosis.
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A type of mixed-effects modeling has previously been combined 
with deep learning for gaze estimation (24). However, their mixed-
effects method is very different from our proposed method; they used 
the same design matrix for fixed and random effects. In addition, they 
also estimated random-effects parameters with an expectation–
maximization algorithm, which was separate from the fixed effects 
estimation, which used deep learning. In our work, we utilize a spatial 
design matrix to model the spatial relationship between slices and 
estimate parameters within the deep learning framework using 
backpropagation without the need for multiple stages.

2.3. Loss function

As the parameters in the model are all estimated using 
backpropagation, we must ensure that the assumption of normally 
distributed random effects parameters with mean zero is valid. 
We achieve this by introducing a loss function for the random effects 
parameters, which enforces a mean, skewness, and excess kurtosis of 
0. We  measure skewness using the adjusted Fisher–Pearson 
standardized moment coefficient
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where n  is the length of β , β  is the mean of β  and [ ]E ⋅  is the 
expectation function. The Gaussian distribution has a kurtosis of 3; 
therefore, the excess kurtosis is given by the kurtosis minus 3. This 
formula for this random-effects parameters loss function which 
we aim to minimize, is then given by

 L E Skew Kurtrandom = ( ) + ( ) + ( ) −β β β 3 .

For the classification, we  use the Brier Score (25) as the loss 
function, which is given by

 
L

N
p oBrier

i

N
i i= −( )

=
∑1
1

2

where N  is the total number of samples, pi  is the predicted 
probability of sample i and oi is the observed outcome of sample i. The 
Brier score is the same as the mean squared error of the 
predicted probability.

We chose to use the Brier Score over the more commonly used 
binary cross-entropy because it can be  decomposed into two 

components: refinement and calibration. Calibration is often 
overlooked in deep learning models but is vital to assess the safety of 
any prediction model. The refinement component combines the 
model’s resolution and uncertainty and measures the model’s 
discrimination. The calibration component can be used as a measure 
of the model calibration. Therefore, the Brier Score can be used to 
optimize both the discrimination and calibration of the model. The 
overall loss function is given by

 L L LBrier random= + .

A scaling factor could be introduced to weight one part of the loss 
function as more important than the other; however, we give both 
parts of the loss function equal weighting in our work.

We also transformed the labels as suggested by Platt (26) to reduce 
overfitting. The negative and positive labels become

 
o

N−
−

=
+
1

2

and

 
o N

N+
+

+
=

+
+
1

2

respectively, where N− and N+ are the total number of negative 
and positive cases in the training set. This is similar to label smoothing 
as commonly used in deep learning, but the new targets are chosen by 
applying Bayes’ Rule to the out-of-sample data to prevent overfitting.

2.4. Classification layer

The output of the mixed-effects layer is a single vector, which is 
the same length as the number of slices used. For example, in our 
work, we had a vector of length 20. Furthermore, we used a fully 
connected layer with sigmoid activation to obtain a probability of the 
scan showing COVID-19; the sigmoid activation is analogous to the 
logistic link function in traditional statistics. Finally, we added an L1 
regularization term of 0.1 and an L2 regularization term of 0.01 to the 
kernel to reduce overfitting.

2.5. Model performance

Many deep learning models focus on assessing discriminative 
performance only, using measures such as the area under the receiver 
operating characteristic curve (AUROC), sensitivity, and specificity. 
To better understand the model performance and impact, we report 
performance measures in three broad areas: discrimination, 
calibration, and clinical usefulness (27). Discrimination assesses how 
well a model can discriminate between healthy and COVID-19 
positive patients. Models with excellent discriminative performance 
can still produce unreliable results, with vastly overestimated 
probabilities regardless of the true diagnosis (28). Model calibration 
is often overlooked and rarely reported in deep learning, if at all; 
however, poorly calibrated models can be  misleading and lead to 
dangerous clinical decisions (28). Calibration can be assessed using 
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four levels, with each level indicating better calibration than the last 
(29). The fourth and most stringent level (strong calibration) requires 
the correct model to be known, which in turn requires predictors to 
be non-continuous, and an infinite amount of data to be used and is 
therefore considered utopic. We consider the third level (moderate 
calibration) using calibration curves. Moderate calibration will ensure 
that the model is at least not clinically harmful. Finally, measures of 
clinical usefulness assess the clinical consequences of the decision and 
acknowledge that a false positive may be more or less severe than a 
false negative.

Firstly, the discriminative performance is assessed using AUROC 
using the pROC package in R (30), with confidence intervals 
constructed using DeLong’s (31) method. For sensitivity, specificity, 
positive predictive value (PPV), and negative predictive value (NPV), 
we use the epiR (32) package in R (30); with 95% confidence intervals 
constructed using Jeffrey’s prior (33). We report performance at a 
range of probability thresholds to demonstrate how the thresholds can 
be adjusted to reduce false positives or false negatives depending on 
the setting (34). Secondly, we  assess model calibration using 
calibration curves created using the CalibrationCurves package (29), 
which is based on the rms (35) package. Finally, we assess the clinical 
usefulness of the model using decision curve analysis (36). Net 
benefits are given at various thresholds, and models which reach zero 
net benefit at higher thresholds are considered more clinically useful. 
Two brief sensitivity analyses are performed, one assessing the model’s 
ability to deal with missing data and the other assessing its ability to 
deal with noise. To improve the model’s interpretability and reduce the 
black-box nature, we produce saliency maps (37) that show which 
areas of the image are helpful to the model in the prediction. We also 
check the assumption of normally distributed random-
effects parameters.

2.6. Comparison models

To assess the added benefit of using our mixed-effects method, 
we  compare against networks that use alternative methods. Both 
COVNet (7) and a method proposed by Bai et al. (8) propose deep 
learning models that consider the slices separately before 
concatenating the features using max pooling. COVNet uses a 
ResNet50 (38) CNN to extract features and pooling layers to 
concatenate the features before a fully connected classification layer. 
The model proposed by Bai et al. uses EfficientNetB4 (39) to extract 
features followed by a series of full-connected layers with batch 
normalization and dropout; average pooling is then used to 
concatenate the feature vectors before classification. While max 
pooling is simple and computationally efficient, it cannot deal with 
pose variance and does not model the relationship between slices.

An alternative method to pooling is treating the scans as 3D, 
such as in CoviNet (40). CoviNet takes the whole scan and uses a 
16-layer 3D CNN followed by pooling and fully connected layers. 
We  implemented these models as described in their 
respective papers.

In all comparison experiments, we kept hyperparameters, such as 
learning rate, learning rate decay, and data augmentation, the same to 
ensure the comparisons were fair. For COVNet (7) and the model 
proposed by Bai et al. (8) we pretrained the CNNs on ImageNet as 

they also did; however, no pretrained models were available for 
CoviNet. For the loss function, we also used the Brier score (25).

2.7. Computing

Models were developed using an Amazon Web Services p3.8xlarge 
node with four Tesla V100 16GiB GPUs and 244GiB available 
memory. Model inference was performed on a local Linux machine 
running Ubuntu 18.04, with a Titan X 12GiB GPU and 32GiB 
available memory. Model development and inference were performed 
using Tensorflow 2.4 (41, 42), and R 4.0.5 (30) was used to produce 
evaluation metrics (43, 44) and graphs (35, 45). We  used mixed 
precision to reduce the computational cost, which uses 16-bit floating-
point precision in all layers, except for the mixed-effects and 
classification layers, where 32-bit floating-point precision is used.

We used the Adam optimizer (46) with an initial learning rate of 
1e-4; if the internal validation loss did not improve for three epochs, 
we  reduced the learning rate to 20%. In addition, we  assumed 
convergence and stopped training if the loss did not improve for 10 
epochs to reduce the time spent training and the energy used.

2.8. Data

There is currently no established method for estimating the 
sample size estimate in deep learning. We propose treating the final 
fully connected classification layer as the model and treating previous 
layers as feature extraction. We can then use the number of parameters 
in the final layer to estimate the required sample size. Using the 
“pmsampsize” package (47) in R, we estimate the required minimum 
sample size in the development set. We use a conservative expected 
C-statistic of 0.8, with 21 parameters and an estimated disease 
prevalence of 80% based on datasets used in other studies. This gives 
a minimum required sample size of 923 patients in the training set. 
For model validation, around 200 patients with the disease and 200 
patients without the disease are estimated to be  needed to assess 
calibration (29).

All data used here is retrospectively collected and contains 
hospital patients with CT scans performed during the COVID-19 
pandemic. The diagnosis was determined by examining radiological 
features of the CT scan for signs of COVID-19, such as ground-glass 
opacities. For model development, we use the MosMed dataset (48), 
which consists of a total of 1,110 CT scans displaying either healthy or 
COVID-19 infected lungs. The scans were performed in Moscow 
hospitals between March 1, 2020, and April 25, 2020. We split the 
dataset into two sets for training and internal validation on the patient 
level. The training set is used to train the model, and the internal 
validation set is used to select the best model based on the loss at each 
epoch; this helps prevent overfitting on the training set. In addition, 
we obtained images from a publicly available dataset published by 
Zhang et  al. (49) consisting of CT images from a consortium of 
Chinese hospitals.

Overall, this allows us to perform external geographical validation 
in another country and to better evaluate the developed model. In 
addition, we will be able to assess how well a deep learning model 
generalizes to other populations. A summary of all the datasets used 
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is shown in Table 1. We have 923 patients in the training set and at 
least 200 patients in each class for the external validation set.

2.9. Patient and public involvement

Patients or the public were not involved in the design, conduct, 
reporting, or dissemination of our research.

2.10. Data pre-processing and 
augmentation

The MosMed dataset was converted from Dicom image format 
into PNG, normalized to have a mean of 120 and a variance of 95. 
Images were ordered from the top of the lungs to the bottom. 
During training, we applied random online data augmentation to 
the images. This alters the image slightly and gives the effect of 
increasing the training dataset size, although this is not as good as 
expanding the training dataset with more samples. First, we adjusted 
the brightness and contrast between 80 and 120%. We then rotated 
the image plus or minus 5 degrees and cropped the image up to 20% 
on each side. Finally, we  flipped the image horizontally and 
vertically with a probability of 50% each. All random values were 

chosen using the uniform distribution except for the flips, which 
were chosen using a random bit. Example images are shown in 
Figure 2A.

The dataset taken from Zhang et al. (49) required a large amount 
of sorting to be  made suitable for use. Some of the scans were 
pre-segmented and only showed the lung areas, while others showed 
the whole CT scan. We  removed any pre-segmented images. 
Identifying information on some images had to be cropped to reduce 
bias in the algorithm. In addition, many of the scans were duplicates 
but were not labeled as such, and many scans were incomplete, only 
showing a few lung slices or not showing any lung tissue at all. We only 
used complete scans with one scan per patient. Finally, some scans 
needed to be  ordered top to bottom. Using the bilinear sampling 
algorithm, all images were resized to 256 by 256 pixels, and image 
values were divided by 255 to normalize between 0 and 1. Example 
images are shown in Figure 2B.

The MosMed dataset has a median of 41 slices, a minimum of 31 
slices and a maximum of 72 slices. The Zhang et al. dataset has much 
greater variability in scan size with a median of 61 slices, a minimum 
of 19 slices, and a maximum of 415 slices. We present histograms 
showing the number of slices per scan in Figure 3. We require a fixed 
number of slices as input, and we chose to use 20 slices. For all scans, 
we included the first and last images. If scans had more than 20 slices, 
we sampled uniformly to select 20. Only one scan in the Zhang et al. 
dataset had less than 20 slices; a blank slice replaced this slice; the 
mixed-effects model can account for missing data.

While removing slices may waste some information available to 
us, using the full 415 slices that some images have would be impractical 
due to the large memory footprint. An alternative to removing slices 
would be to reduce the resolution of each slice; however, this again 
would waste information. Choosing to use 20 slices of each CT image 
is a compromise between the amount of information used and the 
practicality of processing the CT scans.

TABLE 1 Summary of the datasets used.

Dataset Location Use Healthy/
COVID19

MosMed training Moscow, Russia Training 169/856

MosMed validation Moscow, Russia Internal validation 85/285

Zhang et al. (48) China External validation 243/553

FIGURE 2

Example images showing (A) healthy and (B) COVID-19 lungs taken from the Mosmed dataset.
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3. Results

On the internal validation dataset, the proposed model attained 
an AUROC of 0.936 (95%CI: 0.910, 0.961). Using a probability 
threshold of 0.5, the sensitivity, specificity, NPV, and PPV were 0.753 
(0.647, 0.840), 0.909 (0.869, 0.940), 0.711 (0.606, 0.802), and 0.925 
(0.888, 0.953), respectively. The model proposed by Bai et  al. (8) 
attained an AUROC of 0.731 (0.674, 0.80). However, despite attaining 
a reasonably AUC value, the model was badly calibrated, and the 
predicted probabilities of COVID-19 were all clustered around 0.42, 
meaning that the sensitivity, specificity, PPV, and NPV are 
meaningless. We tried to retrain the model and rechecked the code 
implementation; however, we  could not obtain more meaningful 
results. Covinet (9) attained an AUROC of 0.810 (0.748, 0.853). Using 
a probability threshold of 0.5, the sensitivity, specificity, NPV, and PPV 
were 0.824 (0.726, 0.898), 0.596 (0.537, 0.654), 0.378 (0.308, 0.452), 
and 0.919 (0.870 0.954), respectively. COVNet (7) attained an AUROC 
of 0.935 (0.912, 0.959). Using a probability threshold of 0.5, the 
sensitivity, specificity, NPV, and PPV were 1.0 (0.958, 1.0), 0.796 
(0.745, 0.842), 0.594 (0.509, 0.676), and 1.0 (0.984, 1.0), respectively. 
Full results for a range of probability thresholds are shown in Table 2, 
with ROC curves shown in Figure 4.

Calibration curves in Figure 5 show reasonable calibration for the 
mixed-effects model, although the model may still benefit from some 
recalibration. The other models do not have good calibration and 
likely provide harmful predictions. The decision curve in Figure 6 
shows that the proposed model is of great clinical benefit compared to 
the treat all and treat-none approach.

It is important to remember that the model was selected using this 
internal testing set to avoid overfitting on the training set; therefore, 
these results are biased, and the external validation results are more 
representative of the true model performance.

On the external geographical validation dataset, the proposed 
model attained an AUROC of 0.930 (0.914, 0.947). With a probability 
threshold of 0.5, the sensitivity, specificity, NPV, and PPV were 0.778 
(0.720, 0.828), 0.882 (0.853, 0.908), 0.744 (0.686, 0.797), and 0.90 
(0.872, 0.924), respectively. The model proposed by Bai et al. (8) again 

attained a reasonable AUROC of 0.805 (0.774, 0.836); however, the 
sensitivity, specificity, NPV, and PPV were meaningless. Covinet (9) 
attained an AUROC of 0.651 (0.610, 0.691). Using a probability 
threshold of 0.5, the sensitivity, specificity, NPV, and PPV were0.008 
(0.001, 0.029), 0.991 (0.979, 0.997), 0.286 (0.037, 0.710), and 0.695 
(0.661, 0.727), respectively. COVNet (7) attained an AUROC of 0.808 
(0.775, 0.841). With a cut-off point of 0.5, the sensitivity, specificity, 
NPV, and PPV were 0.387 (0.325, 0.451), 0.940 (0.917, 0.959), 0.740 
(0.655, 0.814), and 0.777 (0.744, 0.808), respectively. Full results are 
shown in Table 3.

Similar to the internal validation, Figure  7 shows reasonable 
calibration for the mixed-effects model, although some recalibration 
may improve performance. Again, the comparison models could give 
harmful predictions as they are poorly calibrated. The decision curve 
in Figure 8 shows that the model is of great clinical benefit compared 
to the treat all and treat-none approach.

Although our proposed method and the Covnet model showed 
comparable performance on the internal validation set, the Covnet 
model could not generalize to the external geographical validation 
set, and calibration showed that the Covnet model would provide 
harmful risk estimates. This highlights the need for robust external 
validation in each intended setting. Nevertheless, the results show 
that the proposed method better generalizes to external geographical 
datasets and provides less harmful predictions when compared to 
the four previously proposed methods based on the calibration  
curves.

3.1. Saliency maps

It is vital to understand how the algorithm makes decisions and 
to check that it identifies the correct features within the image. 
Saliency maps can be used as a visual check to see what features the 
algorithm is learning. For example, the saliency maps in Figure 9 show 
that the model correctly identifies the diseased areas of the scans. 
We used 100 samples with a smoothing noise of 0.05 to create these 
saliency maps.

FIGURE 3

Histogram showing the number of slices per scan for (A) the MosMed dataset and (B) the Zhang et al. dataset. The MosMed dataset has much fewer 
slices on average with a much smaller spread.
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FIGURE 4

Receiver operating characteristic curves for (A) the MosMed internal validation set and (B) the Zhang et al. external validation set.

3.2. Sensitivity analysis

Mixed-effects models are capable of accounting for missing data. 
However, only one image had less than 20 slices; hence, we could not 
adequately assess if our model can indeed maintain good 
performance with missing data. Here, we rerun the analysis using 
the same dataset, using the same model and weights; however, 

we reduce the number of slices available as testing data inputs to 
simulate missing data. Blank images replace these slices. 
We uniformly sampled the slices choosing between 10 and 19 slices; 
this equates to between 5 and 50% missing data for the model. 
We ran inference at each level of missingness and briefly show the 
AUROC to determine at which point the predictive performance is 
significantly reduced.

TABLE 2 Area under the receiver operating characteristic curve (AUROC), sensitivity, specificity, positive predictive value (PPV), and negative predictive 
value (NPV) on the internal validation dataset.

Model AUROC Threshold Sensitivity Specificity PPV NPV

Bai et al. 0.731

(0.674, 0.80)

0.3 0 0.0 (0.0, 0.042) 1.0 (0.987, 1.0) NA 0.77 (0.724, 0.812)

0.4 0.012 (0, 0.064) 0.996 (0.981, 1.0) 0.50 (0.013, 0.987) 0.772 (0.725, 0.814)

0.5 1.0 (0.958, 1.0) 0.0 (0.0, 0.013) 0.230 (0.188, 0.276) NA

0.6 1.0 (0.958, 1.0) 0.0 (0.0, 0.013) 0.230 (0.188, 0.276) NA

0.7 1.0 (0.958, 1.0) 0.0 (0.0, 0.013) 0.230 (0.188, 0.276) NA

CoviNet 0.801

(0.748, 0.853)

0.3 0.459 (0.350, 0.570) 0.898 (0.857, 0.931) 0.574 (0.448, 0.693) 0.848 (0.802, 0.886)

0.4 0.706 (0.597, 0.80) 0.761 (0.708, 0.810) 0.469 (0.380, 0.559) 0.897 (0.851, 0.932)

0.5 0.824 (0.726, 0.898) 0.596 (0.537, 0.654) 0.378 (0.308, 0.452) 0.919 (0.870 0.954)

0.6 0.918 (0.838, 0.966) 0.446 (0.387, 0.505) 0.331 (0.271, 0.394) 0.948 (0.895, 0.979)

0.7 0.965 (0.90, 0.993) 0.246 (0.197, 0.30) 0.276 (0.226, 0.331) 0.959 (0.885, 0.991)

CovNet 0.935

(0.912, 0.959)

0.3 0.941 (0.868, 0.981) 0.839 (0.791, 0.879) 0.635 (0.544, 0.719) 0.98 (0.953, 0.993)

0.4 0.965 (0.90, 0.993) 0.825 (0.775, 0.867) 0.621 (0.533, 0.704) 0.987 (0.964, 0.997)

0.5 1.0 (0.958, 1.0) 0.796 (0.745, 0.842) 0.594 (0.509, 0.676) 1.0 (0.984, 1.0)

0.6 1.0 (0.958, 1.0) 0.779 (0.726, 0.826) 0.574 (0.490, 0.655) 1.0 (0.984, 1.0)

0.7 1.0 (0.958, 1.0) 0.761 (0.708, 0.810) 0.556 (0.473, 0.636) 1.0 (0.984, 1.0)

Mixed-effects

(ours)

0.936

(0.910, 0.961)

0.3 0.588 (0.476 0.694) 0.961 (0.932, 0.981) 0.820 (0.70, 0.906) 0.887 (0.846, 0.920)

0.4 0.659 (0.548, 0.758) 0.933 (0.898, 0.959) 0.747 (0.633, 0.840) 0.902 (0.862, 0.933)

0.5 0.753 (0.647, 0.840) 0.909 (0.869, 0.940) 0.711 (0.606, 0.802) 0.925 (0.888, 0.953)

0.6 0.812 (0.712, 0.888) 0.884 (0.841, 0.919) 0.676 (0.577, 0.766) 0.940 (0.905 0.960)

0.7 0.906 (0.823 0.958) 0.832 (0.783, 0.873) 0.616 (0.525, 0.702) 0.967 (0.937, 0.986)

Point estimates and 95% confidence intervals were calculated using De Long’s method for AUROC and Jeffrey’s interval for sensitivity, specificity, PPV, and NPV. Results are shown at a range 
of probability thresholds.
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The plot of AUROCs at different levels of missingness is shown 
in Figure 10, along with 95% confidence intervals. We can see that 
at 20% missingness, there is a statistically significant decrease in 

predictive performance. Although, even at 50% missingness, the 
model still performs relatively well, with an AUROC of 0.890 (95% 
CI: 0.868, 0.912). It should be noted that this does not mean that 
there is no reduction in performance at 5–15% missingness, only 
that the reduction was not statistically significant at the 95% 
confidence level.

Deep learning models can be  susceptible to adversarial 
attacks (50), where minor artifacts or noise on an image can 
cause the image to be misclassified, even when the image does 
not look significantly different to a human observer. Here, 
we perform a brief sensitivity analysis by adding a small Gaussian 
noise to the image. We  tested the model performance on the 
external dataset, with each image having a random Gaussian 
noise added. Experiments were conducted with standard 
deviations of 0 up to 0.005 in increments of 0.001 added to the 
normalized image. We did not add Gaussian noise in the data 
augmentation so that the model is not explicitly trained to deal 
with this kind of attack.

When using a variance of 0, the images are  
unchanged, and the results are the same as the standard results 
above. We  present results on the Zhang et  al. (49) dataset. 
Example images for each level of variance are shown in Figure 11, 
and a graph showing the reduction in AUROC is shown in  
Figure 12.

FIGURE 5

Calibration curves for (A) the Bai et al. model (B) the Covinet model, (C) the Covnet model, (D) the proposed mixed-effects model on the Mosmed 
internal validation dataset.

FIGURE 6

Decision curves for the proposed mixed-effects model on the 
Mosmed internal validation dataset.
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TABLE 3 Area under the receiver operating characteristic curve (AUROC), sensitivity, specificity, positive predictive value (PPV), and negative predictive 
value (NPV) on the external validation dataset.

Model AUROC Threshold Sensitivity Specificity PPV NPV

Bai et al.
0.805

(0.774, 0.836)

0.3 0.0 (0.0, 0.015) 1.0 (0.993, 1.0) NA 0.695 (0.661, 0.727)

0.4 0.0 (0.0, 0.015) 1.0 (0.993, 1.0) NA 0.695 (0.661, 0.727)

0.5 1.0 (0.985, 1.0) 1.0 (0.0, 0.007) 0.305 (0.273, 0.339) NA

0.6 1.0 (0.985, 1.0) 1.0 (0.0, 0.007) 0.305 (0.273, 0.339) NA

0.7 1.0 (0.985, 1.0) 1.0 (0.0, 0.007) 0.305 (0.273, 0.339) NA

CoviNet
0.651

(0.610, 0.691)

0.3 0.0 (0.0, 0.015) 1.0 (0.993, 1.0) NA 0.695 (0.661, 0.727)

0.4 0.0 (0.0, 0.015) 1.0 (0.993, 1.0) NA 0.695 (0.661, 0.727)

0.5 0.008 (0.001, 0.029) 0.991 (0.979, 0.997) 0.286 (0.037, 0.710) 0.695 (0.661, 0.727)

0.6 0.160 (0.117, 0.213) 0.929 (0.905, 0.949) 0.50 (0.385, 0.615) 0.716 (0.681, 0.749)

0.7 0.551 (0.487, 0.615) 0.694 (0.654, 0.733) 0.442 (0.385, 0.50) 0.779 (0.740, 0.815)

CovNet
0.808

(0.775, 0.841)

0.3 0.305 (0.247, 0.367) 0.969 (0.951, 0.982) 0.813 (0.718, 0.887) 0.760 (0.727, 0.791)

0.4 0.354 (0.294, 0.418) 0.955 (0.934, 0.971) 0.775 (0.686, 0.849) 0.771 (0.737, 0.802)

0.5 0.387 (0.325, 0.451) 0.940 (0.917, 0.959) 0.740 (0.655, 0.814) 0.777 (0.744, 0.808)

0.6 0.432 (0.369, 0.497) 0.937 (0.913, 0.956) 0.750 (0.670, 0.819) 0.790 (0.756, 0.820)

0.7 0.473 (0.409, 0.538) 0.931 (0.907, 0.951) 0.752 (0.675, 0.818) 0.801 (0.768, 0.831)

Mixed-effects

(ours)

0.930

(0.914, 0.947)

0.3 0.675 (0.612, 0.733) 0.935 (0.911, 0.954) 0.820 (0.760, 0.871) 0.867 (0.838, 0.894)

0.4 0.741 (0.681, 0.795) 0.904 (0.877, 0.927) 0.773 (0.713, 0.825) 0.888 (0.859, 0.913)

0.5 0.778 (0.720, 0.828) 0.882 (0.853, 0.908) 0.744 (0.686, 0.797) 0.90 (0.872, 0.924)

0.6 0.827 (0.774, 0.873) 0.859 (0.827, 0.887) 0.720 (0.664, 0.772) 0.919 (0.892, 0.941)

0.7 0.885 (0.838, 0.922) 0.828 (0.794, 0.859) 0.694 (0.639, 0.744) 0.942 (0.918, 0.961)

Point estimates and 95% confidence intervals were calculated using De Long’s method for AUROC and Jeffrey’s interval for sensitivity, specificity, PPV, and NPV. Results are shown at a range 
of probability thresholds.

3.3. Fixed-effects only

To show that the mixed-effects method improves prediction over 
the fixed-effects method alone, we removed the random-effects part 
of the model to leave the fixed effects only. This was the only change 
to the model and allowed us to see the added benefit of the mixed-
effects part. The full results are shown in Tables 4, 5. This experiment 
shows much worse performance when the random effects are removed 
from the model.

4. Discussion

Artificial intelligence is set to revolutionize healthcare, allowing 
large amounts of data to be processed and analyzed automatically, 
reducing pressure on stretched healthcare services. These tools can aid 
clinicians in monitoring and managing both common conditions and 
outbreaks of novel diseases. However, these tools must be assessed 
adequately, and best practice guidelines for reporting and development 
must be followed closely to increase reproducibility and reduce bias. 
We have developed a deep learning model to classify CT scans as 
healthy or COVID-19 using a novel mixed-effects model. Following 
best practice guidelines, we have externally validated the model. In 
addition, we  robustly externally geographically validated the 
developed model in several performance areas, which are not 
routinely reported. For example, discriminative performance 

measures show that the model can discriminate between healthy and 
COVID-19 CT scans well, calibration shows that the model is not 
clinically harmful. Finally, the clinical usefulness measures show that 
the model may be  useful in a clinical setting. From the results 
presented here, it would seem that our deep learning model 
outperforms the RT-PCR tests as shown in the review by Watson et al. 
(3); however, those results are conservative estimates and were 
conducted under real-world clinical settings. A prospective study is 
required to determine if this is the case.

Compared to previously proposed models, our model showed 
similar discriminative performance to one existing method; however, 
our method generalized better to an external geographical validation 
set and showed improved calibration performance. Interestingly, in 
both internal and external validation, the sensitivity and NPV are 
similar in all models. However, the specificity and PPV are statistically 
significantly improved for the mixed-effects model in the external 
validation dataset. The performance of the proposed model in the 
external validation set is similar to that reported by PCR testing (3). 
However, a direct comparison should not be made as PCR testing on 
this exact dataset is unavailable.

There are several limitations of the study that should 
be highlighted and improved in future work. Firstly, we have only 
performed external geographical validation in a single dataset. 
Further external validation, both geographical and temporal, is 
needed on many datasets to determine if the model is correct in each 
intended setting. Although we performed a brief sensitivity analysis 
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here, more extensive work on adversarial attacks is needed. Future 
studies could consider following the method proposed by 
Goodfellow et  al. (50) to improve robustness against adversarial 
examples. Patient demographic data were not available for this study, 
but future studies could incorporate this data into the model to 

improve results. Finally, rules of thumb for assessing sample size 
calculations in the validation set can lead to imprecise results (51). 
Simulating data is a better alternative; however, it is difficult to 
anticipate the distribution of the model’s linear predictor. Therefore, 
we were required to revert to the rule of thumb using a minimum of 
200 samples in each group (29).

Initial experiments used the Zhang et al. (49) dataset for training; 
this showed promising results on the internal validation set; however, 
external validation showed random results. In addition, saliency maps 
showed that the model was not using the features of COVID-19 to 
make the diagnosis and was instead using the area around the image. 
We concluded that the images for each class were slightly different, 
perhaps due to different imaging protocols, and the algorithm was 
learning the image format rather than the disease. We then used the 
MosMed dataset for training and the Zhang et al. (49) dataset for 
external validation. This highlights the need for good quality training 
data and external validation and visualization.

Future studies should validate models and follow reporting 
guidelines such as TRIPOD (17) or the upcoming QUADAD-AI 
(52) and TRIPOD-AI (53) to bring about clinically useful and 
deployable models. Further research could look deeper into the 
areas of images identified by the algorithm as shown on the 

FIGURE 7

Calibration curves for (A) the Bai et al. model (B) the Covinet model, (C) the Covnet model, (D) the proposed mixed-effects model on the Zhang et al. 
external validation dataset.

FIGURE 8

Decision curves for the proposed mixed-effects model on the Zhang 
et al. external validation dataset.
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FIGURE 9

Example of original images and saliency maps showing highlighted 
regions on four patients in the Zhang et al. dataset. Four consecutive 
images display how the diseased areas differ between slices. All 
images are taken from the external validation set.

saliency maps; this could potentially identify new features of 
COVID-19 which have gone unnoticed. Before any model can 
be fully deployed, clinical trials are needed to study the full impact 
of using such algorithms to diagnose COVID-19 and the exact 
situations in which such a model may be  used. In-clinic 
prospective studies comparing the performance deep learning 
models with RT-PCR and lateral flow tests should be carried out 
to determine how deep learning compares; this will show whether 
deep learning could be  used as an automated alternative to 
RT-PCR testing.

This study indicates that deep learning could be  suitable for 
screening and monitoring of COVID-19 in a clinical setting; however, 
validation in the intended setting is vital, and models should not 
be  adopted without this. It has been observed that the quality of 
reporting of deep learning prediction models is usually very poor; 

however, with a bit of extra work and by following best practice 
guidelines, this problem can be overcome. This study highlights the 
importance of robust analysis and reporting of models with 
external validation.
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FIGURE 10

AUROC values at different levels of missingness. At 20% missingness, 
the loss in performance becomes statistically significant; however, 
even with 50% missing images, the model still has a reasonably high 
AUROC.
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FIGURE 11

Example images showing the effect of increasing the amount of noise in the image input. (A) no noise; (B) deviation  =  0.001; (C) deviation  =  0.002; 
(D) deviation  =  0.003; (E) deviation  =  0.004; (F) deviation  =  0.005.

FIGURE 12

Graph showing the drop in AUROC as the amount of noise in the image input increases. The AUROC falls steadily with increased noise in the image.
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TABLE 4 Area under the receiver operating characteristic curve (AUROC), sensitivity, specificity, positive predictive value (PPV), and negative predictive 
value (NPV) on the internal validation dataset for our proposed model and the fixed effects model.

Model AUROC Threshold Sensitivity Specificity PPV NPV

Fixed effects 0.494

(0.427, 0.561)

0.3 0.859 (0.766, 0.925) 0.165 (0.124, 0.213) 0.235 (0.189, 0.286) 0.797 (0.672, 0.890)

0.4 0.953 (0.884, 0.987) 0.046 (0.025, 0.077) 0.229 (0.187, 0.277) 0.765 (0.501, 0.932)

0.5 0.988 (0.936, 1.0) 0.014 (0.004, 0.036) 0.231 (0.188, 0.277) 0.80 (0.284, 0.995)

0.6 1.0 (0.958, 1.0) 0.0 (0.0, 1.0) 0.230 (0.188, 0.276) NA (NA, NA)

0.7 1.0 (0.958, 1.0) 0.0 (0.0, 1.0) 0.230 (0.188, 0.276) NA (NA, NA)

Mixed-effects

(fixed + random)

0.936

(0.910, 0.961)

0.3 0.588 (0.476 0.694) 0.961 (0.932, 0.981) 0.820 (0.70, 0.906) 0.887 (0.846, 0.920)

0.4 0.659 (0.548, 0.758) 0.933 (0.898, 0.959) 0.747 (0.633, 0.840) 0.902 (0.862, 0.933)

0.5 0.753 (0.647, 0.840) 0.909 (0.869, 0.940) 0.711 (0.606, 0.802) 0.925 (0.888, 0.953)

0.6 0.812 (0.712, 0.888) 0.884 (0.841, 0.919) 0.676 (0.577, 0.766) 0.940 (0.905 0.960)

0.7 0.906 (0.823 0.958) 0.832 (0.783, 0.873) 0.616 (0.525, 0.702) 0.967 (0.937, 0.986)

Point estimates and 95% confidence intervals were calculated using De Long’s method for AUROC and Jeffrey’s interval for sensitivity, specificity, PPV, and NPV. Results are shown at a range 
of probability thresholds.
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TABLE 5 Area under the receiver operating characteristic curve (AUROC), sensitivity, specificity, positive predictive value (PPV), and negative predictive 
value (NPV) on the external validation dataset for our proposed model and the fixed effects model.

Model AUROC Threshold Sensitivity Specificity PPV NPV

Fixed effects
0.630

(0.590, 0.670)

0.3 0.794 (0.738, 0.843) 0.374 (0.334, 0.416) 0.358 (0.317, 0.40) 0.805 (0.752, 0.852)

0.4 0.971 (0.942, 0.988) 0.159 (0.130, 0.192) 0.337 (0.302, 0.373) 0.926 (0.854, 0.970)

0.5 1.0 (0.984, 1.0) 0.063 (0.044, 0.087) 0.319 (0.286, 0.354) 1.0 (0.90, 1.0)

0.6 1.0 (0.985, 1.0) 0.018 (0.277, 0.343) 0.309 (0.277, 0.343) 1.0 (0.692, 1.0)

0.7 1.0 (0.985, 1.0) 0.004 (0.0, 0.013) 0.306 (0.274, 0.339) 1.0 (0.158, 1.0)

Mixed-effects

(fixed + random)

0.930

(0.914, 0.947)

0.3 0.675 (0.612, 0.733) 0.935 (0.911, 0.954) 0.820 (0.760, 0.871) 0.867 (0.838, 0.894)

0.4 0.741 (0.681, 0.795) 0.904 (0.877, 0.927) 0.773 (0.713, 0.825) 0.888 (0.859, 0.913)

0.5 0.778 (0.720, 0.828) 0.882 (0.853, 0.908) 0.744 (0.686, 0.797) 0.90 (0.872, 0.924)

0.6 0.827 (0.774, 0.873) 0.859 (0.827, 0.887) 0.720 (0.664, 0.772) 0.919 (0.892, 0.941)

0.7 0.885 (0.838, 0.922) 0.828 (0.794, 0.859) 0.694 (0.639, 0.744) 0.942 (0.918, 0.961)

Point estimates and 95% confidence intervals were calculated using De Long’s method for AUROC and Jeffrey’s interval for sensitivity, specificity, PPV, and NPV. Results are shown at a range 
of probability thresholds.
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Introduction: Precise delineation of glioblastoma in multi-parameter magnetic

resonance images is pivotal for neurosurgery and subsequent treatment

monitoring. Transformer models have shown promise in brain tumor

segmentation, but their e�cacy heavily depends on a substantial amount of

annotated data. To address the scarcity of annotated data and improve model

robustness, self-supervised learning methods using masked autoencoders have

been devised. Nevertheless, these methods have not incorporated the anatomical

priors of brain structures.

Methods: This study proposed an anatomical prior-informed masking strategy to

enhance the pre-training of masked autoencoders, which combines data-driven

reconstruction with anatomical knowledge. We investigate the likelihood of tumor

presence in various brain structures, and this information is then utilized to guide

the masking procedure.

Results: Compared with random masking, our method enables the pre-training

to concentrate on regions that are more pertinent to downstream segmentation.

Experiments conducted on the BraTS21 dataset demonstrate that our proposed

method surpasses the performance of state-of-the-art self-supervised learning

techniques. It enhances brain tumor segmentation in terms of both accuracy and

data e�ciency.

Discussion: Tailored mechanisms designed to extract valuable information

from extensive data could enhance computational e�ciency and performance,

resulting in increased precision. It’s still promising to integrate anatomical priors

and vision approaches.

KEYWORDS

masked autoencoder, anatomical priors, transformer, brain tumor segmentation,

magnetic resonance image, self-supervised learning

1. Introduction

Glioblastoma (GBM) is one of the most aggressive brain cancers among adults (1).

Multi-parameter magnetic resonance imaging (MRI) provides valuable information for

characterizing the size, invasiveness, and intrinsic heterogeneity of brain tumors (2, 3).

Accurate delineation of GBM on multi-parameter MRI is crucial for clinical diagnosis

and treatment, such as assisting surgical planning for maximum glioblastoma resection

while preserving neurological function. However, the current clinical routine still relies on

manual delineation, which is time-consuming and requires expert knowledge. There is a

high demand for automatic brain tumor segmentation to enhance the efficiency of diagnostic

procedures, facilitate surgical planning, and contribute to prognostic analyses (4).
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In the last decade, there have been extensive studies on

automatic brain tumor segmentation (5), and most of them are

based on convolutional neural networks (CNNs) (6–8). However,

due to limited receptive field, CNNs often struggle to capture

long-range dependencies and global context (9, 10), potentially

leading to inaccurate segmentation predictions. The recent success

of transformer architecture in vision tasks (11, 12) has shown

benefits in learning global contextual information. New network

designs with vision transformers have emerged for medical

image segmentation (13, 14) and achieved state-of-the-art (SOTA)

performance in brain tumor segmentation (15–17). However, the

supervised training of vision transformers typically requires a large

amount of densely annotated images, otherwise there is a high risk

of overfitting.

To combat the challenge of data scarcity in medical image

segmentation, self-supervised learning (SSL) has proven to be

a promising solution (18). In general, a pretext SSL task is

designed to pre-train the network using unannotated data, and the

learned encoder weights are further optimized in the downstream

segmentation task. Since no manual annotation is needed for

SSL, it can be applied to utilize large unannotated datasets.

Recently, one of the most successful SSL frameworks is the masked

language modeling (MLM), which has achieved great success in

numerous natural language processing tasks with transformer-

based architecture (19–21). Motivated by MLM, masked image

modeling (MIM) was also proposed for pre-training vision

transformers. In MIM, the model predicts masked image patches

from unmasked patches. The prediction target can be either token

features or raw pixel values of the masked patches. BEiT (22)

utilizes a discrete variational autoencoder (dVAE) to transform all

image patches into discrete tokens, which are then used to pre-

train a vision transformer at the token level. However, tokenizing

the image patches requires additional training of a dVAE. In

contrast, He et al. (23) introduced the masked autoencoder

(MAE), which randomly masks a subset of image patches and

reconstructs the masked pixels from unmasked patches. The high

masking ratio of MAE enables efficient pre-training of vision

transformers with large annotated datasets. The success of MAE

has motivated a series of variants in vision tasks (24–27) and

applications in medical image analysis using MIM techniques. For

instance, Tang et al. (28) utilized masked inpainting for the pre-

training of a Swin UNETR (Shifted-window UNet transformer) in

abdominal segmentation tasks. Chen et al. (29) compared multiple

MIM approaches in abdominal segmentation. Zhou et al. (30)

applied MAE pre-training with UNETR (UNet Transformer)

and obtained performance gains in both abdominal and brain

tumor segmentation.

Building a masked image is a crucial step in MIM pre-

training. As shown in Figure 1, the smallest masking unit of

MLM, such as BERT (19), is typically the vocabulary, which

preserves contextual information. However, MIM employs random

masking, which can disrupt the spatial context and regions

with the same semantic meaning, given the absence of the

concept of words commonly observed in MLM. This, in turn,

makes it challenging for the representation learning process

to obtain high-quality pretrained network, especially when the

masking ratio reaches a high percentage. Recently, several studies

demonstrated that the masking strategy has a substantial effect

on model performance in downstream tasks (31, 32). Although

random masking is widely used, recent advances have shown that

appropriate masking strategies can achieve better performance,

such as region-based masking (33), attention-based masking (34),

and adaptive masking (AdaMAE) (31). These masking strategies

take the patch context into account, leading to more effective and

efficient pre-training.

In the context of medical images, anatomical knowledge

could help improve the pre-training. Huang et al. (35)

incorporated the symmetry characteristics of brain structures

into the pre-training by constructing symmetric positional

encodings. However, few studies have integrated the more

precise brain atlas (36) into the masking strategy. Inspired by

the performance gains achieved by weighted masking strategies,

we propose an anatomical prior-informed masking strategy

for the MAE pre-training. We hypothesize that the tumor

distribution among brain structures can guide the MAE pre-

training, therefore improving the downstream brain tumor

segmentation. To achieve this, we analyze the tumor occurrence

in the SRI-24 space and establish an anatomical prior-informed

probability map for image masking. This strategy allows us

to select more informative patches for MAE pre-training. By

combining the data-driven MAE with anatomical knowledge,

we aim to improve the accuracy and data-efficiency of brain

tumor segmentation.

In this study, our contributions are as follows:

(1) An anatomical prior-informed masking strategy is proposed

to enhance the pre-training of masked autoencoder. This

strategy is designed to preserve contextual information in

3D medical images and allows the pre-training process to

concentrate on regions that aremore relevant to the downstream

segmentation task.

(2) By incorporating prior-informed weighted sampling, we

construct an anatomical prior-informed masked autoencoder,

referred to as API-MAE. This self-supervised pre-training

approach utilizes 6,415 skull-stripped brain T1 MR

images and combines data-driven reconstruction with

anatomical priors.

(3) Inheriting the pretrained encoder weights, our method

demonstrates superior performance in the downstream

segmentation task on the BraTS21 dataset, outperforming

several transformer models and surpassing state-of-the-art

self-supervised learning methods. Subsequent experiments

demonstrate that our method exhibits greater efficiency

compared with a regular masked autoencoder and maintains

a satisfactory trade-off between segmentation accuracy and

computational consumption.

2. Methodology

2.1. Overview of proposed method

We propose a novel masking strategy for improved MAE

pre-training and downstream brain tumor segmentation in
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Overview of our proposed method.

MRI. As shown in Figure 2, our proposed method consists

of two stages: (1) pre-training a masked autoencoder with

anatomical prior-informed masking strategy on the unannotated

dataset and (2) transferring the pre-trained weights of the

encoder and fine-tuning the segmentation network on the

annotated dataset.
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2.2. Statistical analysis of tumor occurrence

2.2.1. Registration to standard brain template
To represent the anatomical priors, we first align all images

with the standard brain template. The DICOM image data are

transformed into Nifti format, and the brain is extracted using

FSL tools (37). After that, we transform each image into the SRI-

24 standard space (36) via affine registration. Using the optimized

affine transformation matrix M∗, all images are aligned in the

SRI-24 space.

M∗

= arg min
M

C(If , Affine(Im;M))

I = Affine(Im;M
∗)

(1)

where Im represents the moving image, which corresponds to

the MRI image of each sample. The fixed image, denoted as

If , refers to the T1 template of the SRI-24 standard space. In

this study, the operation C(Im, If ) represents the cost function

used to quantify disparities between the fixed image Im and the

moving image during the registration optimization process, where

a correction ratio is applied (38). The notation Affine(I;M) signifies

the affine operation that maps the floating image I to the fixed

image using the affine matrixM. Moreover, I represents the output

registrated image.

2.2.2. Sampling weight map derived from brain
tumor occurrence

We conduct a statistical analysis of enhanced tumor (ET)

across BraTS21 dataset (39–41) and obatin a distribution map of

ET occurrence in the SRI-24 standard space. To implement this

analysis, we utilize a brain parcellation atlas building upon the

parc116plus atlas (36). Some excessively small regions are merged

into larger ones, resulting in 128 parcellation regions of the entire

skull-stripped brain. To obtain the sampling probability of each

voxel, the average sampling probability for each parcellation is

defined as follows:

PRi =

∑
j fi,j

VRi ·
∑

i

∑
j fi,j

(i = 1, 2, . . . , 128; j = 1, 2, . . . ,NRi ) (2)

where Ri represents the i-th brain parcellation, PRi denotes the

average sampling probability per volume of region Ri, fi,j is the

occurrence frequency of the ET region in the j-th voxel within the i-

th parcellation, VRi represents the volume of Ri, and NRi represents

the number of voxel in Ri. Consequently, the sampling weight

map W, depicted in Figure 3, can be generated by assigning voxels

within the parcellation region Ri the identical probability value PRi .

2.3. Anatomical prior-informed masked
auto-encoder

As shown in Figure 3, our proposed Anatomical Prior-

Informed Masked AutoEncoder (API-MAE) consists of five

components as follows: (1) Anatomical Prior-informed Masking,

(2) Patch embedding, (3) Transformer Encoder, (4) Transformer

Decoder, and (5) Discriminator.

2.3.1. Anatomical prior-informed masking
strategy

Instead of the random masking strategy used in standard MAE

pre-training, we propose a dedicated masking strategy to select

informative patches based on the derived sampling weight map.

The input image I and sampling weights mapW are center-cropped

with a size of 128, i.e., I ∈ R
128×128×128, W ∈ R

128×128×128.

Subsequently, I and W are transformed into patches represented

as X = {xi}
n
i=1 and W = {wi}

n
i=1, respectively. Here, n signifies

the quantity of patches, and the patch size is configured at 8, a

choice consistent with previous studies (35). This configuration

leads to n = 16 × 16 × 16, aligning with the concept of vision

transformers (12) splitting the 2D image into 16 × 16 tokens. The

sample probability of each patch is determined by the probability

vector p = [p1, p2, . . . , pn]
⊺, where pi =

∑
j wi,j/

∑
i,j wi,j, and wi,j

denotes the sampling weight of the j-th voxel within the i-th patch

corresponding to the voxels xi,j of the image patch. Consequently,

the visible patches that are fed into the encoder can be sampled

as follows:

Xvis = Sampling(X , p) (3)

where Xvis = {xi}
k
i=1 represents visible patches sampled from

the original image patches X , and k = η · n represent the

number of visible patches, η = 0.25 is the sampling ratio which

aligned with the 75% masking ratio of MAE. The Sampling(X , p)

operation involves utilizing a multinomial probability distribution

with the probability vector p to select tokens from X for sampling,

which then constitute the visible tokens. The sampling procedure

is implemented using the multinomial API from PyTorch. As

depicted in Figure 4, the prior-informed sampling maintains

superior structural consistency compared to random masking,

which is advantageous for the calculation of region-based sampling

weights.

2.3.2. Patch embedding
The input visible patches in Xvis are first flattened into one-

dimensional vectors, then mapped to the feature dimension D via

learnable patch tokenizer g(·). The input of the transformer encoder

xenc is calculated as follows:

xenc = g(xi)+ PE ∈ R
D (4)

where xi ∈ Xvis, and PE is the sinusoidal positional encoding.

PE(pos, 2i) = sin
( pos

100002i/D

)

PE(pos, 2i+ 1) = cos
( pos

100002i/D

) (5)

where pos = 1, 2, . . . ,T represents the token position, i represents

the i-th dimension.

2.3.3. Transformer encoder
We adopt a shifted window vision transformer, known as SW-

ViT (35), as the transformer encoder in API-MAE. As shown in

Figures 3C, D, the multi-head self-attention (MSA) in the original
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FIGURE 3

Architecture of Anatomical Prior-Informed Masked Autoencoder (API-MAE). (A) Is the architecture of Anatomical Prior-Informed Masked

Autoencoder. (B) Is the Discriminator used for reconstruction. (C) If the Transformer block. (D) Is the linear Swin Transformer block.

transformer block is replaced with linear window-based multi-

head self-attention (LW-MSA) and shifted linear window-based

multi-head self-attention (SLW-MSA) in the Swin transformer

block. Both LW-MSA and SLW-MSA reduce parameters and

computations among each head, which improves the network

efficiency without significant accuracy loss. The transformer

encoder serves as the feature extractor in API-MAE and the

segmentation network. The output of the transformer encoder will

undergo a linear projection to fit the higher feature dimension of

the transformer decoder.

2.3.4. Transformer decoder
We use a shallow transformer decoder to reconstruct the

original image in API-MAE. The inputs to the decoder consist of

both visible tokens and masked tokens with positional encodings.

The output of the decoder is the reconstructed image tokens ŷi for

each input patch. The reconstruction loss function is the standard

L2 loss:

LRec =
1

2

∑

i

||ŷi − xi||2, i = 1, 2, . . . ,m (6)

where xi denotes the i-th image patch andm represents the number

of masked tokens. It should be noted that only masked tokens are

calculated for reconstructed loss.

2.3.5. Reconstruction Discriminator
Recent advancements in self-supervised learning, such as

DiRA (42), have demonstrated that the collaborative learning

of self-supervised and adversarial tasks can lead to a more

generalizable representation, encompassing fine-grained semantic

representation. Moreover, discriminators have been proven

beneficial for the masked autoencoder (32, 43). In API-MAE,

we introduced a reconstruction discriminator, envisioning its

potential synergistic effect when integrated into MAE decoder.

This combination aims to enhance the learning representation

and improve visual quality of the reconstructed output. The

discriminator is constructed as a shallower convolutional neural
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FIGURE 4

Example of visualizing a T1 MR image using di�erent masking strategies with a masking ratio of 0.75. This image is center-cropped with a shape of

128× 128× 128, and each token has a patch size of 8× 8× 8.

network, comprising five convolutional layers tasked with

distinguishing between the reconstructed and real images. The

adversarial loss employed for the discriminator is represented as

an L2 loss as follows:

LAdv =
1

2

∑

i

(||D(xi)− 1||2 + ||D(ŷi)||2), i = 1, 2, . . . , n (7)

where xi is the i-th image patch, ŷi is the corresponding

reconstructed patch, and n is the token number of the original

image. Thus, the total loss of API-MAE is a combination of

reconstruction loss and adversarial loss as follows:

LAPI-MAE = LRec + LAdv (8)

2.4. Segmentation network

After the pre-training of API-MAE, we discard the transformer

decoder and keep the transformer encoder for the brain tumor

segmentation task. The architecture of the segmentation network

is shown in Figure 5. The segmentation network contains three

parts as follows: (1) encoder, which contains patch embedding

and transformer blocks, (2) encoder propagation, and (3) decoder.

The patch embedding layer maps the input multi-parameter

MRI (i.e., T1, T1Gd, T2-FLAIR, and T2 image) patches to

the embedding features. The transformer blocks share the same

architecture and are initialized with the pre-training weight of the

transformer encoder in API-MAE. The encoder propagation and

decoder parts utilize features from the original image (i.e., z0) and

specific transformer layers (2nd, 4th, 6th, 8th, and last layer, i.e.,

z2, z4, z6, z8, z12) to propagate features and segment the image into

three target classes as follows: whole tumor (WT), tumor core

(TC), and enhanced tumor (ET). To obtain better segmentation,

the segmentation network adopts cross-entropy and Dice loss with

deep supervision as the segmentation loss as follows:

LSeg =

4∑

i=1

1

2i−1
· (CrossEntropy(Si, Ŝi)+ Dice(Si, Ŝi)) (9)

where i represents the stage of deep supervision, Ŝi denotes the

prediction of stage i, and Si represents the ground truth resized to

match the corresponding prediction.

3. Experiments

We pre-train the MAE model on an unannotated brain

MRI dataset and evaluate the segmentation performance on an

annotated brain tumor MRI dataset.
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FIGURE 5

Architecture of the baseline segmentation network. This network is made up of three parts, i.e., the Encoder part for feature extraction, the Encoder

Propagation part used for channel and spatial normalization and skip connection, and the Decoder parts used for upsampling and predicting the

segmentation results. The convolution blocks with skip=2 in the Encoder Propagation part are used for downsampling, and the UNetrUpBlock used

in the decoder part is used for upsampling and each block contains a deconvolution block and two residual convolution blocks.

3.1. Datasets

3.1.1. ADNI dataset
Alzheimer’s Disease Neuroimaging Initiative (ADNI)

dataset (44) is derived from a longitudinal multicenter study

aimed at early detection and tracking of Alzheimer’s disease

(AD). In this study, we collected 7,945 skull-stripped T1

MR images and subsequently handpicked 6,415 images of

superior visual quality for utilization in the pre-training dataset.

This selection was made following a visual inspection of the

registration results.

3.1.2. BraTS21 dataset
The BraTS21 dataset (39–41) consists of 1,251 multi-parameter

MRI scans. Each case includes four different modalities as follows:

a) native (T1), b) post-contrast T1-weighted (T1Gd), c) T2-

weighted (T2), and d) T2 Fluid Attenuated Inversion Recovery

(T2-FLAIR) images, acquired from various protocols and scanners

across multiple institutions. Each scan has been annotated by

experienced radiologists with three different subregions as follows:

enhancing tumor (ET), peritumoral edematous/invaded tissue

(ED), and necrotic tumor core (NCR). In this study, we divide the

1,251 samples into training, validation, and testing sets at a ratio of

7:1:2, following previous studies (35).

3.2. Evaluation metrics

Both the volumetric metric dice similarity coefficient (DSC)

and surface metric Hausdorff distance (HD) are used for

performance evaluation. DSC quantifies the overlap between

segmentation results and annotations in voxel space, while the 95th
percentile of Hausdorff distance (HD95) measures the distances

between the segmentation surface and ground-truth surface. The

calculation of HD95 is performed by the MedPy package using the

analysis framework from nnFormer (45).

3.3. Implementation details

Experimental settings: All the experiments are implemented

using the PyTorch 1.2 framework. We use 4 NVIDIA A100 GPUs

(40 GB VRAM) for MAE pre-training and NVIDIA RTX3090 GPU

(24 GB VRAM) for segmentation training and inference.

Data preprocessing: In the preprocessing section, we employ

affine registration to align individual images with the standard

space. Here, the cost function during the image registration

optimization is correlation ratio (38). To prevent the registration

results from being flipped upside down, we defined the rotation

search space for affine registration as follows: [−30◦, 30◦] for X-

axis rotation, [−30◦, 30◦] for Y-axis rotation, and [−180◦, 180◦] for

Z-axis rotation. This configuration is aimed to emphasize rotation

in the X-Y plane and prevent upside-down flipping along the
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FIGURE 6

The occurrence frequency in SRI-24 standard space among 1,251 cases from BraTS21 dataset. The five columns represent the standard brain T1 MR

image, brain atlas (enhanced parc116 plus) in SRI-24 Space, Enhanced Tumor (ET) occurrence, Tumor Core (TC) Tumor occurrence, and Whole

Tumor (WT) occurrence, respectively.

Z-axis. It performed effectively with our dataset of 6,415 pre-

training samples. The registration optimization and transformation

processing were executed using the FLIRT (46) toolbox from FSL.

Trilinear interpolation was utilized to compute the intensity of new

voxels during affine mapping. For the pre-training data, we employ

the MONAI (47) library for data normalization and cropping.

Additionally, we utilize the segmentation data preprocessing

pipeline provided by nnUNet (7), to handle the multi-modality

segmentation data.

Model architecture: In API-MAE, the transformer encoder

contains 12 layers of linear swin transformer blocks with a feature

dimension D = 384. The transformer decoder comprises 8 layers

of vanilla transformer blocks with a feature dimension of 384. The

discriminator consists of four convolution blocks with a kernel size

of k = 3 and a convolution block with a kernel size of k = 1. In

the segmentation network, the weights of encoder propagation and

decoder parts are initialized with the He initialization (48).

Model training: ForMAE training, the AdamWoptimizer with

a batch size of 12 is trained for 300 epochs. The initial learning

rate is 1e-3. Weight decay of 5e-2 is also adopted for model

regularization. For the segmentation procedure, we apply the (45)

training framework and default parameter for 1,000 epochs.

4. Results

4.1. Pre-training results of anatomical
prior-informed MAE

As presented in Figure 6, we note distinct differences in

the spatial distribution of tumor occurrence within the SRI24

space. Specifically, gliomas are more frequently observed in the

white matter regions of the middle and posterior sections of the

brain, with comparatively lower frequencies in the brainstem and

cerebellar regions. Table 1 shows the normalized probability of

tumor occurrence among all 128 brain parcellations. Considering

that ET is the most challenging region to segment, we employ the

probability of the ET region for probabilistic masking.

The masking and reconstruction results are shown in Figure 7.

It can be observed that random masking tends to distribute

masked patches uniformly across the entire image, whereas our

proposed weighted sampling strategy enables concentration on

more valuable, concentrated, and relatively contiguous regions.

The disruption of contextual information in random masking

makes the reconstruction task challenging and results in a blurry

reconstructed image. In contrast, the proposed weighted sampling

method canmaintain the integrity of semantic regions, allowing for

better reconstruction results.

4.2. Segmentation results on BraTS21
dataset

4.2.1. Segmentation performance on BraTS21
dataset

To validate the effectiveness of the proposed SSL pre-

training approach in downstream segmentation task, we conducted

validation experiments using the BraTS21 dataset. The downstream

brain tumor segmentation network is initialized with the pre-

trained API-MAE encoder weights and subsequently fine-tuned

using the BraTS21 dataset. We conducted a comparison of
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TABLE 1 The normalized occurrence of tumor regions within di�erent brain parcellations in enhanced SRI-24 atlas analyzed from 1,251 training cases of the BraTS21 dataset.

Atlas No. Occurrence (‰) Atlas No. Occurrence (‰) Atlas No. Occurrence (‰) Atlas No. Occurrence (‰)

ET TC WT ET TC WT ET TC WT ET TC WT

1 4.752 6.232 7.804 33 9.670 9.221 8.695 65 6.924 6.237 6.478 97 0.234 0.371 0.451

2 6.076 7.487 9.324 34 10.018 8.920 9.074 66 5.039 5.836 6.568 98 0.566 0.627 0.660

3 4.488 5.667 6.900 35 8.562 6.641 5.224 67 5.838 5.624 5.486 99 0.432 0.359 0.365

4 7.042 7.193 7.949 36 7.492 5.694 4.343 68 5.379 4.854 4.737 100 0.346 0.406 0.432

5 4.258 4.047 4.198 37 22.961 19.311 16.840 69 3.144 3.872 4.267 101 0.511 0.250 0.221

6 2.253 3.679 3.666 38 20.812 18.402 15.837 70 3.148 3.553 4.698 102 0.006 0.020 0.108

7 5.058 5.902 7.232 39 10.437 8.829 8.304 71 17.277 18.222 16.062 103 0.443 0.244 0.238

8 7.983 8.575 8.887 40 8.959 8.447 7.602 72 17.632 19.147 18.173 104 0.077 0.102 0.154

9 4.697 4.000 4.069 41 20.511 17.402 15.713 73 21.153 20.498 20.578 105 0.234 0.234 0.324

10 4.302 4.591 4.235 42 19.540 18.639 16.355 74 22.365 23.167 22.596 106 0.297 0.236 0.338

11 10.660 11.250 12.304 43 3.381 3.224 3.248 75 16.388 16.856 17.372 107 0.000 0.048 0.104

12 12.720 13.980 14.909 44 2.699 2.668 2.584 76 19.246 19.615 18.951 108 0.109 0.091 0.130

13 6.800 6.684 7.671 45 5.139 4.690 4.523 77 10.394 10.765 11.793 109 0.571 0.502 0.674

14 8.131 8.618 8.160 46 4.073 3.794 3.657 78 16.606 14.655 15.036 110 0.332 0.496 0.603

15 8.506 7.635 7.178 47 1.932 1.842 1.673 79 20.442 19.811 21.291 111 0.649 0.531 0.665

16 6.499 6.783 6.170 48 2.241 1.949 1.706 80 23.945 25.019 22.553 112 0.385 0.244 0.307

17 13.663 14.048 16.044 49 6.592 5.891 5.982 81 13.914 14.137 15.073 113 0.513 0.320 0.336

18 17.307 17.339 17.131 50 4.727 4.686 5.243 82 15.253 15.150 14.987 114 0.212 0.342 0.395

19 3.260 4.923 5.407 51 4.827 4.206 4.233 83 18.236 16.137 15.620 115 17.195 15.945 14.050

20 3.897 4.862 5.722 52 4.906 4.636 4.816 84 13.306 13.089 12.785 116 8.231 8.323 9.206

21 7.835 8.926 9.186 53 1.949 1.836 1.902 85 11.423 10.749 11.322 117 6.310 7.011 9.164

22 7.424 9.238 8.825 54 2.332 2.017 1.918 86 9.425 10.035 10.850 118 6.761 7.458 9.569

23 5.723 7.193 6.791 55 7.666 6.745 6.341 87 11.912 10.302 11.184 119 19.636 18.910 16.956

24 8.352 8.358 8.053 56 6.645 6.265 5.671 88 9.728 8.737 8.556 120 21.037 20.192 18.556

25 5.593 5.984 6.282 57 5.545 6.162 7.175 89 9.253 8.937 9.267 121 2.881 7.415 6.751

26 5.275 5.768 6.391 58 7.017 7.076 8.576 90 7.208 7.937 7.986 122 3.018 7.112 6.942

27 3.380 3.943 3.972 59 6.488 6.475 6.568 91 0.382 0.253 0.251 123 15.209 15.058 16.662

28 2.602 3.767 3.784 60 5.566 5.746 7.283 92 0.046 0.066 0.137 124 16.987 16.541 18.001

29 22.308 22.074 20.767 61 7.063 6.733 6.843 93 0.425 0.228 0.177 125 7.655 7.821 7.360

30 22.077 23.383 20.966 62 7.861 7.588 9.150 94 0.000 0.033 0.110 126 7.681 8.149 7.542

31 15.676 14.889 13.405 63 6.903 6.783 7.793 95 0.233 0.461 0.587 127 3.154 3.684 3.294

32 17.266 15.530 13.671 64 8.235 7.420 7.827 96 0.462 0.396 0.585 128 3.571 4.070 3.562

The occurrence is expressed in permillage format. ET, enhanced tumor; TC, means tumor core; WT, the whole tumor.
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FIGURE 7

The visible example of masking images and the reconstruction results of MAE and API-MAE. The five columns represent the origin brain T1 MR

image, the random masking strategy used in MAE, the masking image generated from API token sampling, and the reconstruction results of API-MAE,

respectively.

TABLE 2 E�ciency analysis.

Metric nnFormer TransBTS UNETR SW-ViT

FLOPs (G) 271.64 527.46 2141.32 860.03

Params (M) 37.48 30.62 91.04 85.29

CPU inference time (s) 1.425 16.011 21.953 5.030

GPU inference time (s) 0.010 0.006 0.008 0.106

FLOPs stands for Floating Point Operations, which are recorded in units of gigaflops. Params refers to the learnable parameters of different network architectures, recorded in units of millions.

Inference time is computed using an input tensor with dimensions of 2× 128× 128× 128.

our method against several transformer-based models, including

nnFormer (45), TransBTS (16), and UNETR (13) without pre-

training. Additionally, we compared against several SSL pre-

training methods used in medical imaging, namely, 3D-RPL and

3D-Jig (49), as well as the current state-of-the-art ASA in brain

tumor segmentation (35).

As shown in Table 2, we observed that the pre-trained models

demonstrate better performance, and our proposed API-MAE

achieved the best performance in terms of the Dice similarity

coefficient (DSC) metrics for whole tumor (WT) and tumor core

(TC) and the best average performance of all three regions.

4.2.2. Ablation study on masking strategies
To evaluate the effectiveness of our proposed masking

strategy, we conduct an ablation study on different MAE masking

strategies. The comparison methods include the baseline without

pre-training, MAE pre-trained with random masking, and our

proposed API-MAE pre-trained with anatomical prior-informed

masking strategy. Table 3 shows that our proposed API-MAE

showed improved performance for all regions compared with

vanilla MAE and baseline. This demonstrates the effectiveness

of our anatomical prior-informed masking compared with the

random masking strategy. However, the marginal improvement

indicates that in the presence of enough annotated data (more

than 1,000 cases in BraTS21), transformer-based models already

achieve satisfactory performance, and the benefit of pre-training is

not substantial.

4.2.3. Data-e�ciency analysis
To validate the data efficiency of our pre-trained model, we

further train the segmentation model on a small subset of the

whole training dataset. We randomly sampled 100 cases from the
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TABLE 3 Ablation study on the segmentation performance trained on the BraTS21 dataset.

Methods DSC (%)↑ HD95 (mm)↓

WT TC ET Mean WT TC ET Mean

Baseline 93.96 91.06 85.83 90.28 3.700 3.600 2.566 3.288

MAE 93.84 90.78 86.20 90.27 3.977 3.619 2.758 3.451

Ours 94.07 91.47 86.53 90.69 3.825 3.172 2.680 3.225

DSCmeans the Dice similarity coefficient, andHD95means the 95th percentile Hausdoff distance. ↑ indicates higher is better and ↓ indicates lower is better. Bold indicates the best performance.

TABLE 4 Comparison of model performance trained with 100 cases sampling from BraTS21 dataset.

Metric Methods WT TC ET Mean

DSC (%)↑

Baseline 91.83± 0.16 87.43± 1.88 83.11± 1.44 87.46

MAE 91.96 ± 0.03 87.89± 0.53 83.75± 0.59 87.87

API-MAE 91.95± 0.19 88.02 ± 0.68 84.25 ± 0.67 88.07

HD95 (mm)↓

Baseline 6.489± 0.426 5.563± 0.377 3.985± 0.226 5.346

MAE 6.262 ± 0.358 5.513± 0.722 4.093± 0.692 5.289

API-MAE 6.285± 0.694 4.979 ± 0.424 3.856 ± 0.384 5.040

Results from four independent sampling processes are reported with mean±std.↑ indicates higher is better and ↓ indicates lower is better. Bold indicates the best performance.

FIGURE 8

Example of tumor segmentation results from a testing image with 100 training cases. The three rows are from the axial, coronal, and sagittal views.

The green region represents the necrotic tumor core (NCR), the blue region represents the Gd-enhancing tumor (ET), and the red region represents

the peritumoral edematous/invaded tissue (ED).

original training cases, while the validation and testing sets were

kept the same as the whole dataset. The compared methods include

the baseline without pre-training, MAE pre-trained with random

masking, and our proposed API-MAE pre-trained with anatomical

prior-informed masking strategy. The sampling process is repeated

four times to mitigate the selective bias.

The segmentation results on the small training set are shown

in Table 4. It is observed that MAE pre-training benefits the

segmentation performance and improves the model robustness

in most scenarios. The improvement by pre-training is more

prominent in this small-dataset setting compared with the whole

dataset. The best segmentation performance for ET and TC

regions is obtained by API-MAE, in terms of DSC metrics,

which matches the purpose of using ET occurrence map for

weighted sampling. As shown in Figure 8, training with the MAE

paradigm tends to reduce the erroneous falsely predicted regions

and reduce the prediction error of ET regions, particularly in

difficult-to-segment regions.
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TABLE 5 Comparision results on BraTS21 dataset.

Methods DSC (%)↑ HD95 (mm)↓

WT TC ET Mean WT TC ET Mean

nnFormer (45) 91.46 87.42 82.22 87.03 10.15 9.59 16.78 12.17

TransBTS (16) 92.06 88.20 79.46 86.57 4.98 4.86 16.32 8.72

UNETR (13) 92.12 88.32 79.61 86.68 4.91 4.67 16.32 8.63

3D-RPL (49) 93.92 90.13 85.92 89.99 3.74 3.98 13.71 7.14

3D-Jig (49) 93.87 90.14 86.01 90.01 3.85 3.94 11.79 6.53

ASA (35) 94.03 90.29 86.76 90.36 3.61 3.78 10.25 5.88

Ours 94.07 91.47 86.53 90.69 3.82 3.17 2.68 3.23

DSCmeans the Dice similarity coefficient, and HD95means the 95th percentile Hausdoff distance. ↑ indicates higher is better and ↓ indicates lower is better. Bold indicates the best performance

and the results of previous studies are adopted from (35).

To further investigate the efficiency of proposed method, we

conducted an efficiency analysis of the segmentation phase for the

methods, as shown in Table 5. Since different SSL methods share

the same segmentation network, specifically SW-ViT, the variations

in performance arise from the encoder weights inherited from

diverse SSL pre-training tasks. This comparison involves distinct

network architectures, namely, nnFormer, TransBTS, UNETR, and

SW-ViT. All the methods were reproduced using the original code

on a local server equipped with an AMD Ryzen 9 5900X CPU (3.7

GHz), 128 GB RAM (DDR4 2400MT/s), and an NVIDIA RTX3090

GPU. For fair comparison, we modified UNETR by adjusting its

input channels to 4 and configuring the patch size as 8 × 8 × 8,

in alignment with SW-ViT. The computation consumption was

calculated utilizing the thop package. This process entails inputting

a tensor with dimensions of 2× 128× 128× 128 into the network

for computation and the standard segmentation procedure.

Combining the data fromTables 2, 4, we observe that nnFormer

exhibits the best inference efficiency. This superiority can be

attributed to the dimension of the embedding feature in the

Transformer module of the network, which is [96, 192, 384, 768]. In

contrast, other Transformer models often have embedding feature

dimensions of 384 or 768. This relatively shallower transformer

architecture contributes to its enhanced computational efficiency.

However, it may result in slightly lower segmentation performance.

Higher segmentation accuracy can be achieved in both WT and

TC components in models with increased transformer layers.

However, when using a high-layer transformer encoder such

as UNETR, the number of floating point operations (FLOPs)

and learnable parameters will increase rapidly. While the SW-

ViT could reduce the FLOPs and parameters with the help

of shifted window-based linear transformer modules. Enhanced

with SSL pre-training tasks, particularly our proposed API-

MAE, the methods using SW-ViT obtain the best segmentation

performance while maintaining a favorable balance in terms

of segmentation time consumption. Due to the presence of

certain operations within the network architecture that do not

parallelize efficiently during GPU computation, the proposed

method does not achieve optimal computational efficiency on the

GPU. However, the proposed method could attain decent CPU

time consumption, which maintains a reasonable balance between

accuracy and efficiency.

5. Discussion

Recently, transformer-based models have emerged as state-

of-the-art methods for 3D medical image segmentation, owing

to their superiority in modeling long-range dependencies and

leveraging global contextual information over fully convolutional

neural networks. However, such methods often rely on a vast

of training data for network optimization. A major challenge in

training such models is the limited availability of annotated data. In

this study, we address this challenge by utilizing 6,415 unannotated

T1-weighted MR images from the ADNI dataset for pre-training.

Our approach consistently improved the segmentation accuracy

in scenarios with both large and small training sets. Although

only T1-weighted images are used for pre-training, the learned

weights benefit the downstream brain tumor segmentation on

multi-parameter MRI. This highlights the potential of pre-training

for improved medical image segmentation.

The MAE used in computer vision typically employs random

masking with a high masking ratio of 0.75 and utilizes 25%

unmasked patches for encoder training. The high masking ratio

can lead to the loss of contextual information in high-dimensional

medical images, making image reconstruction challenging

and potentially affecting the learning of generalizable features.

Therefore, it is important to consider tailored sampling strategies

that take into account the specific characteristics and requirements

of the task at hand. In this study, we introduce an anatomical

prior-informed masking strategy, where brain regions with higher

tumor occurrence are more frequently sampled for pre-training.

The experiments demonstrate that our proposed pre-training

method enhances the performance of brain tumor segmentation,

which outperforms other self-learning approaches. This indicates

that incorporating anatomical priors into the pre-training stage

leads to performance improvements in downstream tasks.

Additionally, our anatomical prior-informed sampling strategy

can be considered as an attention mechanism in selecting valuable

and task-related patches forMAE pre-training. In general, attention

mechanisms usually help models filter out high-value information

from large amount of data, thereby improving computational

efficiency and performance and making computing more precise

and efficient. Given a large number of image patches in the

unannotated dataset, it is important to let the pre-training process
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attend the informative patches. By incorporating the tumor

occurrence rate and brain template into the construction of an

attentive sampling strategy, our approach integrates anatomical

priors with masked image modeling pre-training. This enables

efficient sampling and the most use of unannotated data.

There are some limitations of this study. Our proposed

method requires the pre-registration of the sampling weighting

map for each individual, a process typically executed on the

CPU and incurring a time cost. In future study, this procedure

can be expedited through the utilization of deep learning-based

networks, enabling accurate and rapid registration. We showcase

the advantage of integrating anatomical priors during the pre-

training stage, leveraging only tumor occurrence information. In

future, the exploration of more advanced anatomical priors, such

as symmetric brain structure or active learning strategies (50), holds

potential for further investigation.

6. Conclusion

In this study, we introduce a novel pre-training technique for

brain tumor segmentation utilizing transformer networks. This

technique involves the integration of an anatomical prior-informed

masking strategy into the masked image modeling process.

Informative image patches from brain parcellations with higher

tumor occurrence are sampled more frequently, facilitating the

mask autoencoder to focus on the regions of interest. The proposed

approach demonstrates promising performance in the brain tumor

segmentation task, surpassing compared self-learning methods.
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Cardiac diseases have high mortality rates and are a significant threat to human
health. Echocardiography is a commonly used imaging technique to diagnose
cardiac diseases because of its portability, non-invasiveness and low cost.
Precise segmentation of basic cardiac structures is crucial for cardiologists to
efficiently diagnose cardiac diseases, but this task is challenging due to several
reasons, such as: (1) low image contrast, (2) incomplete structures of cardiac,
and (3) unclear border between the ventricle and the atrium in some
echocardiographic images. In this paper, we applied contrastive learning strategy
and proposed a semi-supervised method for echocardiographic images
segmentation. This proposed method solved the above challenges effectively
and made use of unlabeled data to achieve a great performance, which could
help doctors improve the accuracy of CVD diagnosis and screening. We
evaluated this method on a public dataset (CAMUS), achieving mean Dice
Similarity Coefficient (DSC) of 0.898, 0.911, 0.916 with 1/4, 1/2 and full labeled
data on two-chamber (2CH) echocardiography images, and of 0.903, 0.921,
0.928 with 1/4, 1/2 and full labeled data on four-chamber (4CH) echocardiography
images. Compared with other existing methods, the proposed method had fewer
parameters and better performance. The code and models are available at https://
github.com/gpgzy/CL-Cardiac-segmentation.

KEYWORDS

echocardiography, deep learning, semi-supervised learning, images semantic

segmentation, contrastive learning

1. Introduction

Cardiovascular diseases (CVDs) are increasing threats to global health and have become

the leading cause of death in industrialized countries (1). The American Society of

Echocardiography (ASE) and the European Association of Cardiovascular Imaging

(EACVI) have emphasized the importance of cardiac chamber quantification by

echocardiography in the diagnosis and treatment of cardiovascular diseases (2).

Echocardiography is one of the most widely utilized diagnostic tests in cardiology,

offering clear visualizations of left ventricular size during end systole and end diastole,

along with the thickness of the myocardium (3). In echocardiography, a heart afflicted by

disease might display enlarged atrial and ventricular volumes or an augmented thickness
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of the myocardium (4). However, these chamber quantifications,

such as chamber sizes, volumes, and etc., are usually based on

precise segmentation of certain critical structures (such as

ventricle, atrium and myocardium), and then measuring key

metrics that indicate the heart’s functionality (2, 5). Practically,

this process requires cardiologists to manually describe the

anatomy and takes measurements of relevant biological

parameters, which can be tedious, time-consuming, and

subjective (5). Therefore, there exists a genuine requirement in

clinical settings for an efficient and precise automated

echocardiographic segmentation technique that can enhance the

efficacy and reduce the burden of the physician in clinical

imaging screening, track disease progression and make informed

decisions about treatment and intervention.

There are two main categories of automated segmentation

techniques for cardiac structures: traditional techniques and

neural network-based methods. Traditional methods include

contour models (6), level sets (7), and atlas-based methods (8).

Barbosa et al. (6) put forward a B-spline active contour

formulation that employs explicit functions for real-time

segmentation of 3D echocardiography and liver computer

tomography. This method overcomes the limitations of the initial

Active Geometric Functions (AGF) framework introduced by

Real-time segmentation by Active Geometric Functions while

preserving computational speed. Yang et al. (7) proposed a two-

layer level set method along with a circular shape constraint to

segment the left ventricle (LV) from short-axis cardiac magnetic

resonance images (CMRI) without relying on any pre-trained

models. This technique can be applied to other level set methods

and effectively addresses common issues in LV segmentation,

such as intensity overlap between Trabeculations and Papillary

Muscles (TPM) and the myocardium, and the existence of

outflow track in basal slices. Zhuang et al. (8) developed a fully

automated framework for whole-heart segmentation that relies

on the locally affine registration method (LARM) and free-form

deformations with adaptive control point status (ACPS FFDs) for

automatic segmentation of CMRI. However, these methods are

unable to surmount the challenges of low contrast and noise that

are inherent in echocardiography. As a result, they are unable to

produce accurate segmentation results based on echocardiography.

Neural network-based methods have demonstrated enhanced

segmentation accuracy in echocardiography as well, and they can

be classified further as supervised methods and semi-supervised

methods. Cui et al. (9) proposed a multitask model with Task

Relation Spatial Co-Attention for joint segmentation and

quantification on 2D echocardiography. This method integrated

the Boundary-aware Structure Consistency (BSC) and Joint

Indices Constraint (JIC) into the multitask learning optimization

objective to guide the learning of segmentation and

quantification paths. It was validated on the CAMUS dataset and

demonstrated outstanding performance, achieving an overall

mean Dice score of 0.912 and 0.923, as well as average precision

scores of 0.931 and 0.941 for the two-chamber views (A2C) and

apical four-chamber views (A4C). Cui et al. (10) utilized a

training strategy named multi-constrained aggregate learning

(MCAL) for the segmentation of myocardium in 2D
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echocardiography. This method leveraged anatomical knowledge

learned through ground-truth labels to infer segmented parts and

discriminate boundary pixels. It was validated on CAMUS

dataset and had performance with segmentation Dice of

0:853+ 0:057 and 0:859+ 0:560 for the apical A4C and A2C

views, respectively. Hamila et al. (11) proposed a novel

convolution neural network (CNN) that combines denoising and

feature extraction techniques for automatic LV segmentation of

echocardiography. 2D echocardiographic images from 70 patients

were used to train this network, and it was then tested on 12

patients, achieving a segmentation Dice of 0.937. While these

supervised methods can achieve excellent performance, they all

require a sufficient number of pixel-wise annotations to train the

model, which can be a time-consuming and tedious process.

Semi-supervised methods have shown effectiveness in reducing

the need for a large number of annotated samples in

echocardiography segmentation. Wu et al. (5) integrated a novel

adaptive spatiotemporal semantic calibration module into the

mean teacher semi-supervised architecture to determine

spatiotemporal correspondences based on feature maps for

echocardiography segmentation. The proposed method was

evaluated using the EchoNet-Dynamic and CAMUS datasets,

resulting in average Dice coefficients of 0.929 and 0.938,

respectively, for the segmentation of the left ventricular

endocardium. Additionally, based on these two datasets, El Rai

et al. (12) presented a new semi-supervised approach called

GraphECV for the segmentation of the LV in echocardiography

by using graph signal processing, respectively resulting in Dice

coefficients of 0.936 and 0.940 with 1/2 labeled data for the left

ventricular segmentation. Wei et al. (13) used a co-learning

mechanism to explore the mutual benefits of cardiac

segmentation, therefore alleviating the noisy appearance. It was

validated on the training set of CAMUS dataset using 10-fold

cross-validation, achieving a Dice of 0.923, 0.948 and 0.895 for the

segmentation of LV, myocardium and left atrium (LA). Chen et al.

(14) proposed a framework for cross-domain echocardiography

segmentation that incorporated multi-space adaptation-

segmentation-joint based on a generative adversarial architecture

with a generator and multi-space discriminators. The CAMUS

dataset was used to evaluate this method, and the experiments

show that this method attained the mean Dice coefficients of

0.890 for the segmentation of LV endocardium and LV

epicardium. However, only a few semi-supervised methods have

been used for the segmentation of the LV, LA, and myocardium,

and although some methods attempt to segment all three regions

simultaneously, the accuracy of multi-structure segmentation

remains to be improved, especially for the LV and LA segmentation.

To help improve the accuracy of diagnosing and screening for

cardiovascular diseases while also easing the workload associated

with evaluating LV images. In this paper, we proposed a novel

semi-supervised method for multi-structure segmentation of

echocardiography, and the main contributions could be

summarized as follows:

(1) We first applied contrastive learning in the multi-structure

segmentation of echocardiography, and could accurately
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segment LV, LA and myocardium without requiring a large

number of annotated samples, which explored the feasibility

of contrastive learning in echocardiography multi-structure

segmentation.

(2) We made two improvements to the existing model, building

upon the work by Lai et al. (15): replacing DeeplabV3+ (16)

with u-net (17) and modifying the structure of the

projector. These changes aimed to tackle challenges in

echocardiography, such as low contrast, unclear boundaries,

and incomplete cardiac structures.

(3) Our method was evaluated on the CAMUS dataset, and it

demonstrated excellent performance in both two-chamber

(2CH) and four-chamber (4CH) echocardiographic images.
FIGURE 1

Overview of the proposed framework. The proposed framework can be divide
was trained with a few epochs firstly, followed by training the unsupervised bran
neural network (CNN) to extract the feature map of labeled images and a clas
classifier from the supervised branch were used, the classifiers in two branche
multi-channel feature map and each white box represents a copied feature m
upward red arrows indicate the upsampling stages. The blue arrow to the right
a skip connection. The dilated convolutions were implemented in the down
feature dimensions. In the supervised branch, the loss function employed
between the predictions and the ground truth. On the other hand, the unsup
difference between pseudo labels and feature maps.
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2. Method

2.1. Overview

The cardiac structure segmentation network in this study was

built upon the contrastive learning, taking inspiration from the

work of Lai et al. (15) (Figure 1). The proposed network consists

of two branches: a supervised branch and an unsupervised

branch. The supervised branch was first trained with labeled data

to acquire basic features within the echocardiographic images.

Next, these parameters were shared with the unsupervised

branch, which was then continually optimized with unlabeled

data. More details about the supervised branch, the unsupervised
d into two branches: supervised and unsupervised. The supervised branch
ch with a lot of epochs. The supervised branch consists of a convolutional
sifier to make predictions. In the unsupervised branch, the same CNN and
s share parameters with each other. In CNN, each blue box represents a
ap. The downward red arrows indicate the downsampling stages and the
represents a convolution of 1� 1 and the black arrow to the right indicates
sampling stages. Furthermore, a projector was introduced to modify the
a standard cross-entropy loss (Lce), which measures the discrepancy
ervised branch employed a contrastive learning loss (Lcl) to quantify the
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branch and loss functions were introduced specifically in Sections

2.2, 2.3 and 2.4.
2.2. Supervised branch

The supervised branch of our network, like other

supervised networks, was composed of a convolutional

neural network (CNN) and a classifier. The CNN was

employed to extract features from images, whereas the

classifier was responsible for mapping these features to

predictions. More specifically, we employed the u-net as the

backbone in supervised branch to convert training images

into feature vectors, which was the CNN referred to in

Figure 1. U-net (17) is a type of neural network that

follows an encoder-decoder structure, where the encoder is

able to capture context information and the decoder can

perform precise localization. The encoder and decoder are

connected through a skip connection. While the skip

connection in u-net can help prevent shallow features from

being lost, the use of multiple pooling layers in the

contracting path can result in information loss in the

images. Dilated convolutions can be used to solve this issue

by increasing the field of perception without adding more

parameters, minimizing information loss during

downsampling. These convolutions inflate the kernel with

holes between the kernel elements, and the dilation rate

parameter indicates the amount the kernel is widened (18).

To enhance the performance of the proposed network, we

incorporated dilated convolutions into the downsampling

process of u-net, and used this modified u-net as the CNN.

The dilated convolutions were implemented in the second,

third and fourth downsampling stages of u-net, with

dilation rates of 1, 2 and 4 respectively. To evaluate the

effectiveness of the dilated convolutions, we conducted an

ablation experiment which was described in Section 3.6.
FIGURE 2

Performance comparison of our ablation studies on 2CH images from CAMUS
our ablation studies. (B) The validation loss values were analyzed to evaluate
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2.3. Unsupervised branch

The proposed unsupervised branch was based on the

contrastive learning strategy, which is a type of framework for

learning discriminative representations. The main focus of

contrastive learning was to compare pairs of sample examples

that are considered to be either similar (positive samples) or

dissimilar (negative samples) in terms of their semantic content.

In our work, each image was randomly cropped twice and then

done some different augmentations to create two different

transformation views, which were considered as positive samples.

In this process, we made sure the two positive samples have an

overlap region. The negative samples were images from the

training set, but without including the given image. As shown in

Figure 1, we transformed the xu image to create xu1 and xu2,

which serve as positive samples, and randomly selected images

from our training set (excluding xu) as negative samples. The

training process aimed to bring the positive samples (xu1 and

xu2) closer together and separated the negative samples that

belong to other classes. To maintain consistency in the

representation of the overlap region, we employed the loss

function Lcl . Finally, the unsupervised branch was able to learn

the deep features of ventricle, myocardium and atrium and

discriminate them well without labeled images.

As shown in Figure 2, the unsupervised branch consisted of a

CNN, a classifier and a projector. Among them, the CNN is the

same one shared with the supervised branch. The classifier in

unsupervised branch had the same architecture as that in the

supervised branch, and they shared the same parameters. The

projector was comprised of two linear layers, with the first layer

followed by batch normalization and rectified linear units

(ReLU). The purpose of the projector was to change the feature

dimension and prevent the loss of useful information for

segmentation. An ablation experiment was performed to evaluate

the significance of this projector, and more details have been

shown in Section 3.6. The loss function was a pixel-wise
dataset. (A) The IoU values were examined to assess the performance of
the performance of our ablation studies.
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contrastive loss, and it will be elaborated upon, as shown in

Section 2.4.
2.4. Loss functions

2.4.1. Supervised loss
Cross entropy loss was used in supervised networks to measure

the dissimilarity between the predicted probability distribution of

class labels and the actual distribution of class labels (19).

Compared with other loss functions, this loss function is

differentiable and easy to optimize using gradient based methods.

Therefore, in the supervised branch, we used cross entropy loss

as the loss function, which is frequently employed for image

semantic segmentation tasks.

The cross-entropy loss Lce can be written as follows:

Lce ¼ � 1
N

X
i

XM
c¼1

yiclog(pic) (1)

whereM and N are the number of classes and samples; yic depends

on the truth value of i, if it is equals to c, yic is 1, else yic is 0. pic is

the probability of sample i belongs to class c.
2.4.2. Unsupervised loss
In the unsupervised branch, followed the previous work Lai

et al. (15), the proposed loss function Lcl is:

Lcl ¼ Lce þ lLns,pf
dc (2)

where l is used to control the contribution of Lns,pf
dc , and the range

of l is 0-1. In our experiment, we set l with 0.1. Lce is a standard

cross entropy loss, which is the same as the loss function in

supervised branch.

Lns,pf
dc was a Directional Contrastive loss (DC Loss), which was

used to minimize the distance between positive feature pairs

(features with the same class) and maximize the distance

between negative feature pairs (features with different classes).

Specifically, as shown in Figure 1, we regarded two features of

fu1 and fu2 as a positive pair, because both of them

corresponded to the same pixels in xu but with different

transformations. In addition, any two images in the training

dataset were regarded as a negative pair.

The DC Loss (Lns,pf
dc ) can be written as follows:

Lns,pf
dc ¼ 1

B

XB
b¼1

(lb,ns,pfdc (fu1, fu2)þ lb,ns,pfdc (fu2, fu1)) (3)

where B represents the batch size of training.
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The lb,ns,pfdc can be written as follows:

lb,ns,pfdc (fu1, fu2) ¼ � 1
N

X
h,w

Mh,w
d,pf

� log r(fh,w
u1 , f

h,w
u2 )

r(fh,w
u1 , f

h,w
u2 )þ

P
fn[Fu

Mh,w
n,1 � r(fh,w

u1 , fn)

(4)

where Mh,w
d,pf is the binary mask and can filter those uncertain

positive samples. r denotes the exponential function of the cosine

similarity s between two features with a temperature t.

r(f1, f2) ¼ exp (s(f1, f2)=t); h and w denote the height and

width of 2-D images; N denotes the number of spatial locations

of xu; fn [ Rc represents the negative counterpart of the feature

fh,w
u1 , and Fu represents the set of negative samples.

The binary mask Mh,w
d,pf can be written as follows:

Mh,w
d,pf ¼ Mh,w

d � 1{maxC(f h,wu2 ) . g} (5)

where g is a threshold. If the confidence of a positive sample is

lower than g, this positive pair will not contribute to the final loss.

The directional mask Mh,w
d can be written as:

Mh,w
d ¼ 1{maxC(f h,wu1 ) , maxC(f h,wu2 )} (6)

where C is the classifier. f h,wu1 and f h,wu2 are features of xu1 and xu2
extracted by CNN.
3. Experiment

3.1. Dataset

In this paper, the proposed method was validated on CAMUS

dataset (20), which consisted of clinical exams from 500 patients.

For each patient, it included two-dimension (2D) apical 2CH

and 4CH view echocardiogram sequences, along with

annotations for LV, LA, and LV endocardium at end diastole

(ED) and end systole (ES) frames. Thereinto, 450 patients were

used as the training dataset to train the proposed model, and 50

patients were used as the testing dataset to evaluate the

performance of the trained model. For the training dataset, it

contained 366 patients with good or medium image quality, and

84 patients with poor image quality. The testing dataset

contained 40 patients with good or medium image quality, and

10 patients with poor image quality. Since the images in the

dataset had different sizes, we resized all of them to a uniform

resolution of 512� 512 and normalized them to the range of

[� 1, 1] before training.
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3.2. Implementation details

The proposed network was implemented based on pytorch1.13

and trained on a single NVIDIA Tesla A40 GPU with 48GB

memory. In order to reduce the GPU memory usage and

improve the efficiency of training, we used automatic mixed

precision (AMP) in training.

In our experiments, we initialized the network parameters

randomly and opted for the SGD optimizer with a weight decay

of 0.0001 and an initial learning rate of 0.01. To update the

learning rate, we employed the poly decay policy, which can be

expressed as follows:

l(iter) ¼ lr � 1� iter
total

� � power

(7)

where power ¼ 0:9; iter is the number of epochs we are currently

training; total is the sum of the epochs used for training. We

trained the supervised branch in the first 5 epochs before

training the unsupervised branch. In the end, we completed

training for a total of 80 epochs.
3.3. Data augmentation

In order to avoid the overfitting and improve the robustness of

the proposed network, several data augmentations were applied

before training, including Gaussian blur, color jitter, gray scale,

horizontal flipping. In unsupervised branch, we applied random

crop and random rotation. Specifically, we randomly cropped

images to a size of 320� 320 and rotated them with an

arbitrarily degree within the range of [� 15�, 15�].
3.4. Training process

The training process of the supervised branch can be

described as follows. Firstly, the labeled image xl was

processed by the CNN (1) to obtain its corresponding feature

map fl ¼ 1(xl). Then, the classifier C made predictions

�yl ¼ C(fl) based on the feature map. Finally, the predictions

�yl were compared to the ground truth yl using cross entropy

loss for supervision.

The training process of the unsupervised branch can be

described as follows. Firstly, an unlabeled image xu was

processed with two different transformations to get two

images xu1 and xu2. These two images were then fed through

the CNN (1) to generate the feature maps fu1 ¼ 1(xu1) and

fu2 ¼ 1(xu2). After that, the classifier C made predictions and

based on the feature map, while the projector F change the

feature dimension wu1 ¼ F(fu1) and wu2 ¼ F(fu2). Finally, we

calculated the loss between the low dimension feature and the

pseudo labels.
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3.5. Evaluation metrics

In our experiments, we used Dice Similarity Coefficient (DSC)

and Intersection-over-Union (IoU) to evaluate the performance of

the proposed method for images segmentation.

The DSC and IoU can be described as follows:

DSC ¼ 2� jA> Bj
jAj þ jBj ¼ 2� TP

2� TP þ FP þ FN
(8)

IoU ¼ A> B
A< B

¼ TP
TP þ FP þ FN

(9)

where A is the predicted set of pixels; B is the ground truth; TP

represents the true positive; FP represents the false positive and

FN represents the false negative. Note that IoU and DSC in the

following tables and figures represent the average value of

segmentation results from four classes, including background,

LA, LV and myocardium.
3.6. Ablation study

We conducted a series of ablation experiments to verify the

contribution of each component in the proposed method. The

ablation study was based on the full labeled data on CAMUS

dataset. In our experiments, we first embed a standard u-net as

the baseline. Then, we modified the u-net by adding dilated

convolutions to the downsampling process and named it

“Baseline+Dilation.” Finally, we added a projector to ”Baseline

+Dilation” to complete proposed method, which we called

“Baseline+Dilation+Projector.” The mean IoU and mean DSC

results for each method were presented in Table 1 and Figure 2.

Meanwhile, boxplots were employed to illustrate the variability of

the mean Intersection over Union (IoU) for the aforementioned

three methods in Figure 3.

Dilation: In order to demonstrate the effectiveness of the

dilated convolution applied in the u-net, we made a comparison

between Baseline and Baseline with dilation (Baseline+Dilation).

The experimental results shown that the model incorporated

dilation (Baseline+Dilation) outperformed the one without

dilation (Baseline), with an average IoU of 0.026 for 2CH images

and 0.014 for 4CH images (Table 1).

Projector: In Table 1, we can see that incorporating a projector

into the model improved the mean IoU from 0.847 to 0.849 in 2CH

images. From Figure 2, we can find that the segmentation

performance became better and more stable with the influence of

projector in the last 30 epochs of the training.
3.7. Segmentation results and comparison
with other methods

The proposed method was assessed for its ability to segment

multiple cardiac structures, including LV, myocardium and LA.

The segmentation performance was evaluated on the testing
frontiersin.org
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TABLE 1 Statistical comparison of ablation studies on 2CH and 4CH images with full labeled training data.

Method 2CH 4CH

IoU D(IoU) DSC D(DSC) IoU D(IoU) DSC D(DSC)
Baseline 0.811 0.004 0.893 0.002 0.854 0.003 0.919 0.002

Baseline + Dilation 0.847 0.003 0.916 0.001 0.868 0.002 0.928 0.001

Baseline + Dilation + Projector 0.849 0.002 0.917 0.001 0.868 0.002 0.928 0.001

The D(IoU) and D(DSC) represent the variance of the IoU and DSC scores, respectively.

The best results are achieved and highlighted by the bold values.

FIGURE 3

The variability of IoU about our ablation studies. (A) The results obtained from 2CH images. (B) The results obtained from 4CH images.

Guo et al. 10.3389/fcvm.2023.1266260
dataset of CAMUS dataset, comprising 40 patients with good or

medium quality images and 10 patients with poor quality images.

While the CAC (Context Aware Consistency Network) method

demonstrates strong performance in natural images segmentation,

it falls short when it comes to accurately delineating cardiac

structures in echocardiography (15). In certain cases, it may even

incorrectly segment certain regions. Despite these limitations,

CAC remains a widely employed semi-supervised technique for

various image segmentation tasks, including those involving

cardiac structures in echocardiography. Therefore, we compared
TABLE 2 Segmentation performance comparison of IoU and DSC between th

Method 2CH

IoU D(IoU) DSC D(DSC) IoU
DeeplabV3+ 0.673 0.190 0.796 0.170 0.67

0.70 0.014 0.816 0.012 0.71

0.786 0.005 0.876 0.003 0.81

U-net 0.780 0.007 0.872 0.005 0.79

0.805 0.006 0.888 0.004 0.83

0.832 0.004 0.906 0.002 0.85

CAC 0.780 0.006 0.872 0.004 0.81

0.784 0.005 0.875 0.003 0.82

0.787 0.004 0.877 0.002 0.83

Ours 0.819 0.004 0.898 0.002 0.82

0.838 0.003 0.911 0.002 0.85

0.849 0.002 0.917 0.001 0.86

N represents the ratio of labeled images that we used. The D(IoU) and D(DSC) repres

The best results are achieved and highlighted by the bold values.
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the performance of our proposed method with CAC in order to

demonstrate the superiority of our approach for cardiac

segmentation. In addition, we compared our method with some

supervised methods, including u-net and DeeplabV3+ with

Resnet50 backbone, using all the labeled images available. To

guarantee a fair comparison, we implemented all methods under

the same conditions, including the same data augmentations and

the same learning rate adjustment strategy.

The performance of each method has been presented in

Tables 2 and 3, showcasing the results for the proposed
e proposed method and other techniques.

4CH N Params

D(IoU) DSC D(DSC)
1 0.012 0.794 0.009 1/4 40.347MB

3 0.011 0.825 0.009 1/2

8 0.003 0.896 0.002 Full

6 0.006 0.882 0.003 1/4 17.267MB

5 0.006 0.907 0.003 1/2

4 0.003 0.919 0.002 Full

1 0.002 0.892 0.001 1/4 40.348MB

4 0.002 0.900 0.001 1/2

6 0.003 0.908 0.001 Full

9 0.003 0.903 0.002 1/4 17.268MB

7 0.003 0.921 0.001 1/2

8 0.002 0.928 0.001 Full

ent the variance of the IoU and DSC scores, respectively.
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TABLE 3 Segmentation performance comparison of precision and recall between the proposed method and other techniques.

Method 2CH 4CH N

P D(P) R D(R) P D(P) R D(R)
DeeplabV3+ 0.809 0.010 0.953 0.002 0.847 0.005 0.950 0.001 1/4

0.829 0.007 0.956 0.001 0.874 0.005 0.971 0.001 1/2

0.896 0.002 0.965 0.001 0.908 0.002 0.957 0.001 Full

U-Net 0.847 0.004 0.870 0.004 0.881 0.004 0.926 0.002 1/4

0.882 0.004 0.907 0.003 0.904 0.002 0.938 0.001 1/2

0.902 0.002 0.924 0.002 0.911 0.002 0.939 0.001 Full

CAC 0.864 0.003 0.926 0.002 0.891 0.002 0.937 0.001 1/4

0.880 0.002 0.927 0.002 0.903 0.001 0.940 0.001 1/2

0.881 0.002 0.935 0.002 0.897 0.002 0.932 0.001 Full

Ours 0.894 0.002 0.927 0.002 0.905 0.002 0.961 0.001 1/4

0.908 0.001 0.938 0.001 0.921 0.001 0.959 0.001 1/2

0.923 0.001 0.948 0.001 0.924 0.001 0.962 0.001 Full

N represents the ratio of labeled images that we used. P represents precision and R represents recall. The D(P) and D(R) represent the variance of the precision and recall,

respectively.

The best results are achieved and highlighted by the bold values.

TABLE 4 Segmentation performance of the proposed method on LV, LA and myocardium.

N 2CH 4CH

IoU D(IoU) DSC D(DSC) IoU D(IoU) DSC D(DSC)
1/4 LV 0.824 0.007 0.904 0.003 0.832 0.008 0.908 0.003

LA 0.806 0.014 0.893 0.007 0.837 0.012 0.911 0.011

Myocardium 0.694 0.012 0.819 0.007 0.697 0.013 0.809 0.008

1/2 LV 0.836 0.007 0.911 0.003 0.865 0.005 0.928 0.002

LA 0.830 0.011 0.907 0.005 0.843 0.014 0.915 0.012

Myocardium 0.726 0.009 0.841 0.005 0.748 0.008 0.856 0.004

Full LV 0.848 0.003 0.917 0.001 0.877 0.004 0.934 0.002

LA 0.842 0.010 0.915 0.005 0.854 0.015 0.921 0.012

Myocardium 0.744 0.005 0.851 0.002 0.766 0.006 0.867 0.003

N represents the ratio of labeled images that we used.

Guo et al. 10.3389/fcvm.2023.1266260
method, CAC method, and other supervised methods in both

the 2CH and 4CH views. From the tables, it was evident that

the proposed method outperformed the other methods in
FIGURE 4

The Boxplots show the IoU values for both 2CH and 4CH images, using the fou
outcomes achieved when employing 1/2 labeled images. (A) The results obta
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terms of segmentation performance with 1/4, 1/2, and full

labeled data. We also compared the number of parameters

among u-net, DeeplabV3+, the proposed method, and the
r methods mentioned in Table 2. These boxplots specifically showcase the
ined from 2CH images. (B) The results obtained from 4CH images.
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FIGURE 5

The IoU for segmentation results of the proposed method trained with different numbers of labeled images. (A) The results obtained from 2CH images.
(B) The results obtained from 4CH images.

FIGURE 6

Visual comparison of CAC method and the proposed method with 1/4labeled, 1/2labeled and full labeled data on 2CH and 4CH images. The red, green
and blue lines represent the ground truth. The value of IoU is marked on the right upper corner of each image. (A,B) The visual comparison of the
performance about discriminating the borders of myocardium on 2CH images and 4CH images. (C,D) The visual comparison of the probability of
segmentation errors in some regions on 2CH images and 4CH images. (E,F) The visual comparison of the performance about the identification of the
ventricle and myocardium location.
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CAC method in Table 2, showing that our method had fewer

parameters. Note that the values in the tables shown the

maximum of the epochs we trained. The multi-structure

segmentation performance of the proposed method has been

presented in Table 4. We can see with the increase in the

number of labeled images that take part in the training

process, the Iou and DSC are improved.

In Figure 4, boxplots have been used to visually represent the

range of variation in IoU values achieved by the four methods

mentioned earlier, where 1/2 labeled images were employed for

training. We can see our proposed method achieved lower

variation and higher mean IoU for for both 2CH and 4CH

images, in comparison to the other methods. In addition,

Figure 5 illustrated the trends of mean IoU as the number of

labeled images increases. It was observed that as the number of

labeled images utilized in the training process increased, the
FIGURE 7

Visual comparison of CAC method and the proposed method on 6 typical cha
The value of IoU is marked on the right upper corner of each image. (A–C)
images. (D) The visual comparison of the performance on images where the
of the performance on images that have no a clear border between the vent
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mean IoU also improved. Notably, the proposed method

consistently outperformed the other three methods in terms of

segmentation accuracy across all increments of labeled data.

The typical visual segmentation result of CAC method and

the proposed method were shown in Figure 6, where the

colorful line represents the ground truth. In Figures 6A,B, it

shown that the proposed method could discriminate the

borders of myocardium better than CAC method. Figures 6C,D

shown that the proposed method could reduce the probability

of segmentation errors in each region of the images.

Figures 6E,F shown that the proposed method achieved a

better identification of the ventricle and myocardium location

than CAC method.

In Figure 7, we shown certain challenging cases with poor

image quality. The IoU values are presented in the upper right

corner of each segmentation result. It becomes evident that the
llenging images. The red, green and blue lines represent the ground truth.
The visual comparison of the performance on some typical low contrast
complete cardiac structures are not present. (E,F) The visual comparison
ricle and the atrium.
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proposed method surpassed limitations of echocardiography more

effectively. Specifically, Figures 7A–C demonstrate that the

proposed method outperformed the CAC method in mitigating

the disadvantage of low contrast in echocardiography.

Additionally, Figure 7D showcases that the proposed method

achieved superior heart location identification compared to the

CAC method in images where complete cardiac structures are

not present. Moreover, Figures 7E,F indicate that the proposed

method reduced the likelihood of segmentation errors in regions

lacking clear boundaries between the ventricle and the atrium.
4. Conclusion

In this paper, we proposed a semi-supervised method to

segment the cardiac structures with echocardiography. The

proposed method first applied contrastive learning strategy into

cardiac structure segmentation, allowing for effective use of

unlabeled data. The network was able to mitigate the adverse

effects of low contrast, incomplete cardiac structures and unclear

boundaries in certain aspects of echocardiography. A lot of

experiments conducted on the CAMUS dataset shown that the

proposed network can effectively employ unlabeled data for the

automatic segmentation of multiple structures, resulting in

outstanding performance. This advancement contributes

significantly to the diagnosis and screening of cardiovascular

diseases (CVD), and also reduce the burden of doctors in

assessing echocardiography.
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Introduction: Cardiotoxicity is a potential prognostically important complication
of certain chemotherapeutic agents that may result in preclinical or overt clinical
heart failure. In some cases, chemotherapy must be withheld when left
ventricular (LV) systolic function becomes significantly impaired, to protect
cardiac function at the expense of a change in the oncological treatment
plan, leading to associated changes in oncological prognosis. Accordingly,
patients receiving potentially cardiotoxic chemotherapy undergo routine
surveillance before, during and following completion of therapy, usually with
transthoracic echocardiography (TTE). Recent advancements in AI-based
cardiac imaging reveal areas of promise but key challenges remain. There are
ongoing questions as to whether the ability of AI to detect subtle changes in
individual patients is at a level equivalent to manual analysis. This raises the
question as to whether AI-based left ventricular strain analysis could provide a
potential solution to left ventricular systolic function analysis in a manner
equivocal to or superior to conventional assessment, in a real-world clinical
service. AI based automated analyses may represent a potential solution for
addressing the pressure of increasing echocardiographic demands within
limited service-capacity healthcare systems, in addition to facilitating more
accurate diagnoses.
Methods: This clinical service evaluation aims to establish whether AI-automated
analysis compared to conventional methods (1) is a feasible method for assessing
LV-GLS and LVEF, (2) yields moderate to good correlation between the two
approaches, and (3) would lead to different clinical recommendations with serial
surveillance in a real-world clinical population.
Results and Discussion: We observed a moderate correlation (r= 0.541) in GLS
between AI automated assessment compared to conventional methods. The
LVEF quantification between methods demonstrated a strong correlation (r=
0.895). AI-generated GLS and LVEF values compared reasonably well with
conventional methods, demonstrating a similar temporal pattern throughout
echocardiographic surveillance. The apical-three chamber view demonstrated
the lowest correlation (r=0.423) and revealed to be least successful for
01 frontiersin.org95
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acquisition of GLS and LVEF. Compared to conventional methodology,
AI-automated analysis has a significantly lower feasibility rate, demonstrating a
success rate of 14% (GLS) and 51% (LVEF).

KEYWORDS

cardio-oncology, trastuzumab, cardiotoxicity, artificial intelligence, strain, echocardiography
Introduction

Cardiotoxicity is a significant, potential complication of certain

chemotherapeutic agents that can lead to either preclinical or overt

heart failure. In some cases, chemotherapy must be withheld when

cardiac function, primarily left ventricular (LV) systolic function,

becomes significantly impaired to protect cardiac function at the

expense of a change in the oncological treatment plan and

associated changes in prognosis (1). Accordingly, patients

receiving potentially cardiotoxic chemotherapy are recommended

to undergo routine surveillance before, during and following

completion of therapy, usually with transthoracic

echocardiography (TTE). Transthoracic echocardiography is a

well-established and widely available imaging modality with an

important role in determining cardiac structure and function. To

date, it remains the preferred technique for assessing the

development, progression and regression of cardiotoxicity among

oncology patients undergoing cardiac surveillance (2).

Echocardiographic indices such as left ventricular ejection

fraction (LVEF) by Simpson’s Biplane method has traditionally

been used to assess changes in LV systolic function. However, in

the modern era of speckle tracking echocardiography (STE),

strain quantification has rapidly evolved into a valuable tool for

the early detection of cardiotoxicity during oncological therapy

and has since been incorporated into international guidance (3, 4).

Until now, global longitudinal strain (GLS) has been the most

studied strain parameter with the largest body of literature

supporting its diagnostic and prognostic value (5, 6). One early study

evaluated eighty-one females with newly diagnosed HER2 + breast

cancer for early alterations of myocardial strain during treatment

with anthracycline and/or trastuzumab. Patients received three-

monthly surveillance throughout the course of a fifteen-month study

period. A reduction in LVEF was observed in the overall cohort

(64 ± 5% to 59 ± 6%; p < 0.0001); twenty-six patients [32%, (22%–

43%)] developed cardiotoxicity, and of these patients, 5 [6%, (2%–

14%)] developed symptoms of heart failure (HF). Significant LVEF

reduction (≥8%) was detected in 15% of patients that developed

subsequent cardiotoxicity, whereas upon the application of strain

analysis, the incidence rate increased to 78%. Among the patients

that later developed HF, all had a reported GLS of less than −19% (7).

While strain quantification with speckle tracking

echocardiography represents a sensitive method for assessing LV

function, this postprocessing analysis remains laborious, time-

consuming and is subject to significant inter- and intra-observer

variability, related to reproducibility of contouring cardiac

structure by manual and even semi-automated contouring. In

recent years, the emergence of artificial intelligence (AI) in

echocardiography has generated much interest among the cardiac
0296
imaging community. The technology is rapidly evolving but is

yet to be widely adopted into clinical practice. Recent evidence

has revealed promising findings, demonstrating that the

application of AI enables data analysis free from human operator

bias, accelerated workflow and quantification, along with high

feasibility rate in the absence of operator input. One multicentre

study which assessed LVEF and longitudinal strain using visual,

manual and fully AI-automated-methods (TomTec-Arena 1.2,

TomTec Imaging Systems) reported a high feasibility (98%) of

AI-automated assessment (8). Good correlation and levels of

agreement were observed between manual and automated

assessment (ICC: 0.83; bias: 0.7%; 95% CI: 0.1%–1.3%).

Expectedly, bias and levels of agreement were wider when visual

assessments were compared. A key advantage of automated

LVEF and LV-GLS compared to manual and visual assessment

was the absence of inter-measurement variability on repeated

assessments with the AI method able to identify the same

patterns each time. Finally, beat to-beat variability was 0.96 ±

3.52% for automated LVEF, 2.7 ± 8.16% for manual LVEF, 0.19 ±

1.31% for automated GLS, and 1.09 ± 3.29% for manual GLS (8).

In support of these findings is another recent trial by Salte

et al., which reported good correlation (R = 0.93, p < 0.001) and

low bias of −1.4 ± 0.3% (p < 0.01) with an estimated level of

agreement (LOA) of ±3.7% when comparing AI-automated vs.

conventional methodology (EchoPAC v.202, GE), suggesting that

the application of AI is potentially comparable to human expert

performance using conventional methodology (9).

While AI-based cardiac imaging analysis appear promising, there

are areas that require further assessment. AI-automated analysis must

be able to perform at least as well as established methodologies to

detect subtle changes in left ventricular function, whether LVEF or

GLS. Hence, further research is needed to fully establish the

vulnerability of automated image processing networks.

Furthermore, this automated approach relies upon a large training

dataset to implicitly learn features of the heart relevant to

segmentation which is resource intensive, demands close clinical

supervision and raises potential ethical and privacy concerns.

If AI-automated analysis of LV function can be demonstrated to

be equivocal to or superior to conventional methods within a real-

world clinical service, then it may represent a potential solution for

the challenges of limited clinical service capacity by reducing the

pressures of increasing echocardiographic demands, in addition to

facilitating more accurate diagnoses. This clinical service evaluation

aims to establish whether AI-automated analysis is: (1) a feasible

method for assessing LV-GLS and LVEF, (2) correlates well with

conventional methods, and (3) whether AI analysis would lead to

different clinical recommendations during serial surveillance in a

real-world clinical population.
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Materials and methods

Patient population

This single-centre audit and service evaluation retrospectively

reviewed all HER2 + breast cancer patients that underwent TTE

surveillance and trastuzumab therapy between January 2019 and

October 2022 at the Royal Wolverhampton NHS Trust (UK) and

assessed the evaluation of cardiac function against international

cardio-oncology guidance (Audit/Service evaluation number 5918,

Royal Wolverhampton NHS Trust, UK). Informed consent was not

required due to the retrospective nature of the clinical audit and

evaluation. Patients undergoing combination therapy including

anthracycline were excluded from the study. Patients with atrial

fibrillation or other form of arrhythmias during the

echocardiographic studies were also excluded. To reflect real-world

patient population and feasibility, patients with partially suboptimal

endocardial border definition were not excluded. Clinical

characteristics of our cohort were collected from the image reporting

system and hospital records and are summarised in Table 1.
Echocardiographic imaging protocol and
analysis

648 TTE studies acquired from 142 oncology patients that

received trastuzumab echocardiographic surveillance between

2019 and 2022 were retrospectively evaluated. All

echocardiographic studies within our British Society of

Echocardiography (BSE) accredited imaging laboratory were

comprehensive studies which complied with BSE cardio-oncology

guidelines. Echo imaging was performed by BSE accredited

echocardiographers using commercial equipment (Affiniti, EPIQ

and iE33, Phillips Medical Systems, Andover, Massachusetts, USA).
Assessment of GLS and LVEF

AI-automated and conventionally measured GLS and LVEF were

assessed from standard apical four- (A4C), three- (A3C), and two-

chamber (A2C) cine loops in accordance with BSE guidance.
TABLE 1 Demographic and clinical characteristics of the patient population.

Age (years) 59 ± 13

Gender 140 Female 2 Male

ECG and HR (bpm) 142 SR 79 ± 13

Height (cm) 163 ± 7.5

Weight (kg) 76 ± 18

BMI (kg/m2) 28.7 ± 6.4

BSA (m2) 1.85 ± 0.2

Blood pressure (BP) Systolic BP
137 ± 26 mmHg

Diastolic BP
80 ± 14 mmHg

Cancer type 119 BC 18 GC 5 OC

Data are expressed as mean ± standard deviation.

ECG, electrocardiogram; HR, heart rate; SR, sinus rhythm; AF, atrial fibrillation; BMI,

body mass index; BSA, body surface area; BC, breast cancer; GC, gastric cancer;

OC, oesophageal cancer.
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AI-automated assessments (GLS and LVEF) were performed

on individual echocardiographic studies using an AI-based

platform (Ultromics EchoGo Core, Oxford, UK). The

investigators submitted individual clinical studies required for

analysis from the local hospital archiving system to the AI

pipeline (Ultromics SaaS). Individual views are identified and

classified with the existing convolutional neural network (CNN)

model and subsequently processed by a U-Net based architecture

for view-specific LV contouring, myocardial segmentation, and

myocardial motion tracking to compute GLS and LVEF in the

absence of manual adjustments (10).

Conventional GLS assessment was performed in a semi-

automated fashion from the apical four-, three- and two-chamber

LV-focused cine images in dedicated conventional software (QLab,

version 15.5, Philips Medical Systems). Upon detection of the

endocardial border, the software automatically established a region

of interest (ROI) and calculated the strain values of the selected

view. The BSE-accredited or similarly experienced operator

manually adjusted the ROI to optimise tracking if deemed

necessary and strain values were recalculated to reflect this

adjustment. Where image quality was insufficient to permit strain

assessment of all three views, then a global strain value could not

be calculated. Conventional LVEF was manually performed using

the Simpson’s biplane method of discs (Modified Simpson’s rule)

for LV volumes and LVEF calculation. End-diastole was defined as

the frame following mitral valve closure or the frame in which the

cardiac dimension is largest, in preference to the onset of the QRS.

End-systole was defined as the frame preceding mitral valve

opening or the time in the cardiac cycle in which the cardiac

dimension is smallest, respectively. This protocol was performed

using the LV-focused A4C and A2C views.
Statistical analysis

Continuous variables were expressed as mean ± standard

deviation and categorical variables were presented as n (%).

Linear regression analysis was performed to evaluate the

relationship between GLS and LVEF when assessed by either

conventional or AI-automated methods. Bland-Altman analysis

was used to assess the levels of agreement and quantify systemic

differences between assessments. Comparison of mean values

between the automated and conventional groups were performed

using the paired sample student t-test. Analysis of variance

(ANOVA) was used to compare the means of three of more

groups. For all statistical tests performed, a p-value less than 0.05

was regarded as statistically significant. Statistical analyses were

performed using IBM SPSS Statistics version 29 (New York, USA).
Results

Subject characteristics

The patient cohort included 142 patients which had undergone

a total of 648 echocardiographic studies as part of their oncological
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FIGURE 1

Normal GLS data yielded by (A) AI-based and (B) conventional semi-automated strain analysis.
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therapy cardiac surveillance. The population comprised 140

females (99%), with mean age 59 ± 13 years (range 28–89 years).

Oncological diagnoses predominantly comprised breast cancer

(84%), but also included gastric (13%) and oesophageal cancer

(3%). Patient demographic and clinical characteristics are

summarised in Table 1.
Technical feasibility of AI-based compared
to conventional assessment in GLS and
LVEF

AI-generated GLS and LVEF values were acquired in 14% and

51% of all studies, respectively. Representative examples of normal
FIGURE 2

Abnormal GLS data yielded by (A) AI-based and (B) conventional semi-autom

Frontiers in Cardiovascular Medicine 0498
and abnormal GLS studies analysed by AI-generated and

conventional assessment are shown in Figures 1, 2 respectively.

The rate of success in obtaining strain results using AI vs.

conventional methods for the three standard apical views were:

A4C, 56% vs. 74%; A3C, 14% vs. 38%; A2C, 46% vs. 53%,

respectively (Figure 3).

Technical failure to derive strain from the A3C was therefore the

main reason for the low rate of success in obtaining AI-generated

GLS (ANOVA p = 0.028). Whilst the success rate of deriving

longitudinal strain from the A3C via the conventional method was

also low, the failure rate was superior to that of AI. Factors

contributing to suboptimal image quality, particularly affecting the

A3C, included challenging body composition, tachyarrhythmias,

ectopy, limited rib space and previous mastectomy.
ated strain analysis.
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FIGURE 3

Feasibility of AI-based versus conventional semi-automated strain analysis and LVEF in the standard apical views.
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GLS and LVEF using AI vs. conventional
assessment

Mean GLS in whole cohort was −17.9 ± 2.2% (AI) vs.

−19.1 ± 2.0% (conventional). Mean LVEF in the whole cohort

was 61.6 ± 5.7% (AI) vs. 60.7 ± 4.9% (conventional). Linear

regression and Bland-Altman analysis for GLS revealed

moderate correlation (r = 0.541, p < 0.001) and disagreement

(mean bias −1.2%, 95% CI: −5.2% to 2.8%; Figures 4A,B). In

contrast, LVEF showed strong correlation (r = 0.895, p < .001)

with small biases (Figures 5A,B).
Comparison between strain at individual
apical views using AI vs. conventional
assessment

Mean longitudinal strain values from specific apical views

were −18.7 ± 2.9% and −19.0 ± 2.6% (A4C) (Figures 6A,B),

−18.1 ± 2.8% and −18.6 ± 2.6% (A2C) (Figures 7A,B),

−15.7 ± 2.6% and −16.6 ± 1.6% (A3C) (Figures 8A,B),

and −18.2 ± 2.7% and −18.6 ± 2.6% for the AI method and

the conventional method, respectively. A strong correlation

and agreement was demonstrated in the A4C (r = 0.883,

p < .001, 95% CI: −3.0% to 2.4%) and A4C/A2C

(measurable values achieved from both A4C and A2C views

within a given study) strain (r = 0.853, p < .001, 95% CI:

−3.2% to 2.4%) views for strain between AI-automated and

conventional methods (Figures 9A,B). In comparison, the

A2C strain revealed a moderate correlation (r = 0.771,

p < .001). The weakest correlation (r = 0.423, p = 0.008) and

widest limits of agreement among each individual apical

view were observed in the A3C view.
Frontiers in Cardiovascular Medicine 0599
Temporal changes in GLS and LVEF
between AI vs. conventional assessments
during surveillance

Serial changes in strain and LVEF during TTE surveillance are

summarised in Table 2. Statistical differences between the

conventional and AI-automated methods at each time point are

illustrated in Table 3 using the independent sample t-test.

Conventional and AI-automated values followed a similar temporal

pattern in patients receiving trastuzumab therapy for both GLS and

LVEF irrespective of the cardiotoxic cohort or the total study

population (Figures 10, 11). At 3 months (T1), both conventional

and automated method demonstrated a reduction in GLS and

LVEF compared to baseline measurements (T0). By 6 months

(T2), further reduction in LV function was observed to a similar

degree by both methods. The GLS and LVEF were seen to be

lowest at 9 months (T3) from the initiation of trastuzumab

therapy. The AI-automated GLS values were consistently more

negative lower at each timepoint compared to the conventional

method (Table 3 and Figure 11). The LVEF values at timepoint 3

to 5 were almost identical by both methods although a higher

degree of variation was observed from the AI-automated method

(T3: 58.9 ± 8.7%, p = 0.422; T4: 58.9 ± 7.4, p = 0.638; T5: 62 ± 6.0, p

= 0.038). At 12- (T4) and 15-months (T5), AI-automated values

demonstrated improvements in GLS and LVEF. Similar trends were

observed from the conventional method although the degree of

improvement is shown to be smaller in LVEF at 15-months. There

were no significant differences observed between the AI-automated

and conventional methods for GLS. For LVEF, there was a

significantly lower LVEF from the conventional method (59.5 ±

5.7% vs. 62 ± 6.0%, p = 0.038). Based on the GLS and LVEF criteria

(11), six patients developed cardiotoxicity; this number was

considered too small to allow statistical sub-analysis. Nevertheless,
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FIGURE 4

(A) Correlation between conventional and AI-automated global longitudinal strain. (B) Bland-Altman plot of conventional and AI-automated global
longitudinal strain.
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the limited cases have highlighted the ability for AI-automated

analysis in detecting left ventricular changes among the

cardiotoxic cohort.
Discussion

In this real-world service evaluation and audit of the

assessment of left ventricular ejection fraction and strain in a

cohort of patients receiving trastuzumab chemotherapy, we
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assessed whether an AI-automated solution to LV systolic

function is a feasible and reliable methodology compared to

conventional analysis. The main findings are firstly, that GLS and

LVEF quantification obtained from AI-automated assessment

showed moderate to strong correlation compared to conventional

methods. Secondly, AI-generated GLS and LVEF values

compared reasonably well with conventional methods,

demonstrating a similar temporal pattern throughout the

echocardiographic surveillance. Thirdly, the apical-three chamber

view demonstrated the lowest correlation and revealed to be least
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FIGURE 5

(A) Correlation between conventional and AI-automated left ventricular ejection fraction. (B) Bland-Altman plot of conventional and AI-automated left
ventricular ejection fraction.
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successful for acquisition of GLS and LVEF. Finally, compared to

conventional methodology, AI-automated analysis has a

significantly lower feasibility rate, demonstrating a success rate of

14% (GLS) and 51% (LVEF).
Clinical demand and relevance

While the introduction of speckle tracking has provided exciting

opportunities in the field of cardiac imaging, its clinical application is
Frontiers in Cardiovascular Medicine 07101
rendered meritless if performed by unexperienced or suboptimally

trained practitioners. Like any echocardiographic technique, there is

a steep learning curve with performing and interpreting

echocardiograms (12). Interpretation of echocardiographic studies

is demanding and this can limit workflow particularly among

smaller centres with fewer trained echocardiographers. The

application of AI echocardiography may potentially address these

challenges by utilising an AI-based analysis of LV strain.

There is emerging data suggesting that a fully automated AI

assessment could potentially reduce post-processing time with
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FIGURE 6

(A) Correlation between conventional and AI-automated strain in apical-four chamber view. (B) Bland-Altman plot of conventional and AI-automated
strain in apical-four chamber view.

Jiang et al. 10.3389/fcvm.2023.1250311
high reproducibility and reduced risk imposed by human-

software interaction. However, in the presence of significant

knowledge gaps the technology may fall short of this

potential. Presently, semi-automated assessments are in

clinical use and accepted as a standard, feasible method for

LV strain assessment, supported by evidence from numerous

studies have supported the use of these methods (13–16).

However, the human-software interaction is such that the

current semi-automated approach yields values that are highly
Frontiers in Cardiovascular Medicine 08102
influenced by the level of experience and training of the

sonographer.

Furthermore, research to date has rarely explored the

application of AI-automated assessment in cancer therapy-

related cardiac dysfunction but instead has largely focused

on ischaemia-related cardiac abnormalities. Given that

cancer therapy-induced heart failure carries a worse

prognosis compared to heart failure related to other causes

(17), the need for accurate and frequent echocardiographic
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FIGURE 7

(A) Correlation between conventional and AI-automated strain in apical-two chamber view. (B) Bland-Altman plot of conventional and AI-automated
strain in apical-two chamber view.
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surveillance is clear and of paramount importance. It follows

that there is a clinical need for research into AI-automated

detection of subclinical changes in cardiac function to

accurately, reliable and rapidly detect changes earlier in the

disease process. To the best of our knowledge, this is the

first real-world evaluation of such an approach to validate

and explore the clinical feasibility of AI-automated LV

assessment in this patient cohort throughout the

surveillance period.
Frontiers in Cardiovascular Medicine 09103
The feasibility and accuracy of automated
GLS and LVEF

The present findings reveal that the current version of AI-

automated GLS possess some limitations in feasibility, achieving

successful acquisition of GLS in only 14% of all studies. The

higher rate of success demonstrated from conventional methods

(38%) suggests either that the AI-automated approach is

inferior to the semi-automated approach or that the semi-
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FIGURE 8

(A) Correlation between conventional and AI-automated strain in apical-three chamber view. (B) Bland-Altman plot of conventional and AI-automated
strain in apical-three chamber view.
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automated approach is overly generous in the studies to which it

is applied. The unifying consideration here is that of a threshold

for acceptability for an echo study to be amenable to either of the

assessment methods. We speculate that the two approaches accept

image qualities of different levels. Standardising this threshold is

not necessarily a straight-forward proposition as even with a

group of selected studies, the AI-automated system is using

different approaches to strain assessment than in the semi-

automated system.
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In either analysis approach, the acquisition of GLS requires the

strain values of three individual apical views. The present study

found that the A3C view was the most frequently limiting view

followed by the A2C (46%) in preventing a GLS assessment. These

findings are in keeping with a study by Kawakami et al. which

examined the automated tracking quality in each individual LV

segments (14). The study found that the LV segments in these in

these views are often associated with considerably poorer

automated tracking compared to segments in the A4C view.
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FIGURE 9

(A) Correlation between conventional and AI-automated strain in apical-four/-two chamber view. (B) Bland-Altman plot of conventional and AI-
automated strain in apical-four/-two chamber view.
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In contrast to previous studies that excluded echo studies where

image quality were deemed substandard (14), the present analysis

did not exclude these patients and is therefore relevant to real-

world clinical practice. All oncology patients that were

administered trastuzumab and underwent echo surveillance were

included to minimise selection bias and reflect real-world patient

cohorts, including known imaging challenges often specific to

cardio-oncology patients such as radiotherapy, breast

reconstruction surgeries, mastectomy and breast implantation
Frontiers in Cardiovascular Medicine 11105
(18). This might explain the lower rate of successful acquisition

compared to previous trials as the availability of diagnostic

quality images are reduced. Conversely, the possibility for over-

analysis in potentially non-feasible images should not be

excluded. The likelihood of the operator repeatedly adjusting the

region of interest in the presence of limited or absence of

endocardial border definition to “inaccurately” create a GLS

value that is consistent with visual assessment is not uncommon

and ought to be considered.
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TABLE 2 Mean values and standard deviation of conventional GLS and AI-automated GLS at individual timepoints during trastuzumab therapy.

T0 T1 T2 T3 T4 T5
GLS (CON) −20.1 ± 2.6 −19.0 ± 2.8 −18.8 ± 2.3 −18.3 ± 2.3 −19.1 ± 1.9 −19.3 ± 2.5

GLS (AI) −19.0 ± 2.2 −18.6 ± 1.8 −18.2 ± 2.7 −17.3 ± 3.2 −18.1 ± 2.4 −18.4 ± 2.0

A4C (CON) −20.0 ± 3.1 −19.0 ± 3.2 −18.9 ± 2.7 −18.6 ± 3.0 −19.1 ± 2.3 −19.4 ± 2.6

A4C(AI) −19.8 ± 3.9 −19.4 ± 4.0 −18.5 ± 3.5 −18.8 ± 3.7 −19.3 ± 3.1 −19.1 ± 3.1

A2C CON) −20.8 ± 2.9 −19.2 ± 3.7 −18.5 ± 4.1 −18.8 ± 2.7 −19.6 ± 2.4 −20.0 ± 3.5

A2C (AI) −20.7 ± 4.2 −19.2 ± 4.2 −18.4 ± 3.9 −18.1 ± 3.2 −19.1 ± 4.4 −19.7 ± 4.1

A3C CON) −19.6 ± 3.1 −18.8 ± 3.8 −18.8 ± 2.5 −18.3 ± 2.9 −19.3 ± 2.8 −18.8 ± 3.3

A3C (AI) −15.3 ± 3.0 −15.5 ± 2.0 −15.7 ± 3.5 −13.9 ± 3.7 −15.5 ± 2.8 −14.9 ± 3.7

LVEF (CON) 61.5 ± 4.6 59.8 ± 5.7 58.7 ± 6.6 58.5 ± 6.3 58.9 ± 5.7 59.5 ± 5.7

LVEF (AI) 63.4 ± 6.9 62.4 ± 6.7 58.8 ± 9.2 58.9 ± 8.7 58.9 ± 7.4 62 ± 6.0

Data are expressed as mean ± standard deviation.

AI, artificial intelligence; A4C, apical-four chamber; A2C, apical-two chamber; A3C, apical-three chamber; CON, conventional; GLS, global longitudinal strain; LVEF, left

ventricular ejection fraction.

Jiang et al. 10.3389/fcvm.2023.1250311
Previous validation studies (8, 9, 14, 19) comparing AI-

automated and conventional methods have reported good

feasibility and correlation values, often in patient groups with

ischaemia-related heart diseases and other pathologies

unrelated to chemotherapy. In the setting of cardio-oncology,

our results are in line with previously reported evidence which

demonstrated a reasonable correlation between AI-derived GLS

and LVEF values to the conventional method, suggesting that

there were no considerable differences between method of

assessments.

Although our reported values were lower compared to the

literature, this may be influenced by the preselection of subjects

with segments suited for assessment in previous studies. Our

findings also demonstrated that serial monitoring of

trastuzumab-treated oncology patients with AI-assisted

technology to detect subtle changes in LVEF and GLS may be

done with similar certainty to conventional assessment with the

values generated from both methods being largely similar.

A significant difference in LVEF was observed at one timepoint

although this may be attributed to smaller sample size at the final

follow-up. Further work will be required to assess longitudinal
TABLE 3 AI-Automated and conventional global longitudinal strain and
left ventricular ejection fraction at each timepoint.

Method of assessment Pearson
correlation
coefficient

p-value

Conventional
(%)

Automated
(%)

GLS (T0) −20.1 ± 2.6 −19.0 ± 2.2 0.835 >0.001

GLS (T1) −19.0 ± 2.8 −18.6 ± 1.8 0.856 >0.001

GLS (T2) −18.8 ± 2.3 −18.2 ± 2.7 0.779 0.004

GLS (T3) −18.3 ± 2.3 −17.3 ± 3.2 0.761 0.020

GLS (T4) −19.1 ± 1.9 −18.1 ± 2.4 0.782 0.017

GLS (T5) −19.3 ± 2.5 −18.4 ± 2.0 0.727 0.023

LVEF (T0) 61.5 ± 4.6 63.4 ± 6.9 0.811 0.019

LVEF (T1) 59.8 ± 5.7 62.4 ± 6.7 0.715 0.031

LVEF (T2) 58.7 ± 6.6 58.8 ± 9.2 0.866 >0.001

LVEF (T3) 58.5 ± 6.3 58.9 ± 8.7 0.838 0.011

LVEF (T4) 58.9 ± 5.7 58.9 ± 7.4 0.844 0.006

LVEF (T5) 59.5 ± 5.7 62 ± 6.0 0.613 0.032

Data are expressed as mean ± standard deviation.

GLS, global longitudinal strain; LVEF, left ventricular ejection fraction.
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echocardiographic trends in addition to correlation between AI-

automated and conventional analyses, and there may be

systematic differences in absolute values whether related to the

vendor or system used.

In the cardiotoxic cohort, while the sample size was small, both

methods demonstrated a similar temporal trend highlighting the

potential for AI-automated methods to reliability detect LV

functional deterioration. Such findings suggest that AI-automated

LV assessments represent a valuable method of serial

echocardiographic monitoring in longitudinal patient care and

can build a case for future prospective studies in this area.
Study limitations

There are a few potential limitations associated with the present

analysis that deserves to be mentioned. First, we only studied

patients in sinus rhythm, thus data could not be extrapolated

from patients with irregular heart rhythms. Additionally, our

study included a relatively small sample size. Despite this, our

patient cohort included all patients during the study period to

reflect a real-world clinical setting and is the first to study

functional changes in this specific patient cohort, thereby

providing valuable insight into the application of AI-automated

analysis in serial echocardiographic studies in trastuzumab-

treated patients. Our report and early insights thereby provide a

basis for future studies to expand upon. Second, the potential

vendor differences in AI-imaging software for strain and LVEF

analysis due to differences in AI-algorithms should be noted.

Third, is the lack of gold standard reference to compare our

strain and EF measurements. However, the primary objective was

to determine the level of correlation between AI-automated and

conventional methods thus identifying the “true” reference value

is of lesser significance. We therefore used the current clinically

accepted semi-automated approach as the comparator. Finally,

the analysis was conducted retrospectively which meant that it

suffered from the inherent limitations of a restrospective study

design. Nevertheless, this report describes a straightforward

comparision of imaging as opposed to patient outcomes, thus

selection bias is of lesser relevance.
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FIGURE 10

Mean values and standard deviation of conventional GLS and AI-automated GLS at individual timepoints during trastuzumab therapy in the study
population.

Jiang et al. 10.3389/fcvm.2023.1250311
Future research directions

With increasing echocardiographic demands surpassing

clinical capacity in the face of a shortage of

echocardiographers, there is now an urgent need for the active

incorporation of AI guided technology to assist, or potentially

substitute the need for operator input into analysis of advanced

echocardiographic techniques. Consequently, software solutions

must possess the accuracy to where it could be confidently

applied irrespective of the GLS experience of the operator.

There are a number of challenges in the widespread clinical
FIGURE 11

Mean values and standard deviation of conventional LVEF and AI-automate
population.
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implementation of AI echocardiography, none of which are

considered insurmountable.

The future appears positive for the application of AI in

echocardiography and significant advances are anticipated to

address the current knowledge gaps. Future work should explore

whether: (1) AI-based assessment is superior to less experienced

humans, (2) image rejection threshold appropriateness, (3)

accuracy and reproducibility of automated, semi-automated and

manually generated data, and (4) improvements in post-

processing time and overall workflow on echocardiography

services.
d LVEF at individual timepoints during trastuzumab therapy in the study
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Conclusions

Despite enthusiasm for the application of AI technology in

healthcare, it is yet to be widely embraced in the

echocardiographic community. Due to significant limitations and

knowledge gaps in automation, AI technology in

echocardiography remains premature for clinical use if adopted

completely independent of operator intervention. Instead, at

present, it could be a useful unbiased “second opinion” for

“experienced” practitioners. Our analysis is supportive of

prospective studies into the utility and application of AI-based

analysis of heart function by echocardiography in patients

receiving potentially cardiotoxic chemotherapy.
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Introduction: The segmentation of the carotid vessel wall using black-blood
magnetic resonance images was a crucial step in the diagnosis of
atherosclerosis. The objective was to accurately isolate the region between the
artery lumen and outer wall. Although supervised learning methods achieved
remarkable accuracy in vessel segmentation, their effectiveness remained limited
due to their reliance on extensive labeled data and human intervention.
Furthermore, when confronted with three-dimensional datasets featuring
insufficient and discontinuous label data, these learning-based approaches
could lose their efficacy. In this paper, we proposed a novel Joint 2D–3D
Cross-Pseudo Supervision (JCPS) method for accurate carotid vessel wall
segmentation.
Methods: In this study, a vascular center-of-gravity positioning module was
developed to automatically estimate the region of blood vessels. To achieve
accurate segmentation, we proposed a joint 2D–3D semi-supervised network to
model the three-dimensional continuity of vascular structure. In addition, a
novel loss function tailored for vessel segmentation was introduced, consisting
of four components: supervision loss, cross-pseudo supervision loss, pseudo
label supervision loss, and continuous supervision loss, all aimed at ensuring the
accuracy and continuity of the vessel structure. In what followed, we also built
up a user-friendly Graphical User Interface based on our JCPS method for end-
users.
Results: Our proposed JCPS method was evaluated using the Carotid Artery
Vessel Wall Segmentation Challenge dataset to assess its performance. The
experimental results clearly indicated that our approach surpassed the top 10
methods on the leaderboard, resulting in a significant enhancement in
segmentation accuracy. Specifically, we achieved an average Dice similarity
coefficient increase from 0.775 to 0.806 and an average quantitative score
improvement from 0.837 to 0.850, demonstrating the effectiveness of our
proposed JCPS method for carotid artery vessel wall segmentation.
Conclusion: The experimental results suggested that the JCPS method had a high
level of generalization performance by producing pseudo labels that were
comparable with software annotations for data-imbalanced segmentation tasks.

KEYWORDS

carotid artery wall, atherosclerosis, black-blood vessel wall MRI, semi-supervised learning,

continuous prior, Graphical User Interface
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1. Introduction

Cardio-cerebrovascular disease (CCVD) manifests as systemic

vasculopathy affecting the heart and brain, making it a global

public health concern and a leading cause of mortality. Vascular

medical images are extensively used to visualize the three-

dimensional (3D) morphology of cardiac and cerebral vessels,

playing an essential role in the diagnosis and treatment of

CCVD. Blood vessel segmentation is aimed at extracting well-

defined vessel structures from these medical images. Therefore,

computer-based automatic detection and segmentation of blood

vessel walls are of great clinical significance, as they represent a

crucial step in ensuring precise diagnosis, early intervention, and

surgical planning for CCVD.

However, medical image segmentation has not been adequately

handled due to the complexity and diversity of the medical images.

Consequently, researchers have dedicated significant efforts to

develop effective segmentation methods, including both

traditional and deep learning–based approaches in recent years.

Traditional image segmentation techniques, such as thresholding

(1, 2), region growing method (3–5), active contour model (6, 7),

and level set method (8–10), have been widely recognized.

However, these methods have their limitations. They are often

semi-automatic and rely on human input, making them prone to

noise interference and intensity unevenness. Deep learning

methods have shown remarkable performance in medical image

segmentation tasks. For instance, the fully convolutional network

(FCN) can take inputs of arbitrary sizes and produce

correspondingly sized output with efficient inference and

learning for image segmentation tasks. Since then, the FCN has

been extensively used in the fields of medical image

segmentation (11–13), e.g., the segmentation of breast tumors on

MR images (13) and the segmentation of human torsos on CT

images (12). However, the FCN suffered from issues such as

inaccurate edges and loss of details. The U-Net architecture (14)

used the jump connections to effectively realize the integration of

features and performed more efficiently in training. Since then, it

was widely used for medical image segmentation (15–18). To

deal with small organs or tissues, a coarse-to-fine segmentation

framework was established to enhance the accuracy by extracting

regions of interest (ROI) during the coarse segmentation stage

and using ROI as inputs for the fine segmentation network.

These kinds of approaches have achieved satisfactory

performance in various image segmentation tasks (19, 20) and

were also successfully applied to handle vascular segmentation

problems (21–24).

Indeed, the vessel segmentation had unique characteristics such

as the significant imbalance of blood vessel proportions, complex

structures of blood vessels, and difficulties in acquiring blood

vessel labels. Samber et al. (25) applied a convolutional neural

network (CNN) to segment the carotid artery after extensive

manual preprocessing to improve carotid artery segmentation

accuracy. Oliveira et al. (26) combined the multiscale analysis

provided by the stationary wavelet transform with a multiscale

FCN for the purpose of automatic vessel segmentation. Ni et al.

(27) proposed a global channel attention network (GCA-Net) to
Frontiers in Cardiovascular Medicine 02111
segment intracranial blood vessels. Liu et al. (28) developed a

novel residual depth-wise over-parameterized convolutional

(ResDO-conv) network for automatic and accurate retinal vessel

segmentation. Imran et al. (29) designed an intelligence-based

automated shallow network with high performance and low cost

named Feature Preserving Mesh Network (FPM-Net) for the

accurate segmentation of retinal vessels. Tan et al. (30) proposed

the U-Net using local phase congruency and orientation scores

(UN-LPCOS), which showed a remarkable ability to identify and

segment small retinal vessels. However, the aforementioned

methods were all built up for dealing with 2D vessel

segmentation tasks. Zhou et al. (31) proposed an approach that

combined a voxel-based fully convolution network (Voxel-FCN)

and a continuous max-flow module to automatically segment the

carotid vessel wall. Tetteh et al. (32) presented the

DeepVesselNet to extract vessel trees in 3D angiographic

volumes. Xia et al. (33) proposed an edge-reinforced network

(ER-Net) for 3D vessel-like structure segmentation, which

incorporates a reverse edge attention module. Alblas et al. (34)

formulated the vessel wall segmentation as a multi-task

regression problem in polar coordinates to automatically segment

the carotid artery wall with high accuracy. However, the

performance of these methods was hindered when insufficient

labeled data were available. As such, semi-supervised

segmentation methods became increasingly popular to alleviate

the demand for labeled data, which could be broadly classified

into entropy-minimization–based methods (35) and consistency

determination–based methods (36–39). Recently, a novel

approach known as cross-pseudo supervision (CPS) has emerged

to enhance performance in semi-supervised learning problems

(40, 41). The CPS method enforces consistency among slightly

different network outputs, leading to satisfactory results even

with limited labeled data. More importantly, the CPS method

effectively avoids confronting the strong coupling between the

teacher and student networks (42).

In this paper, we presented a novel coarse-to-fine vessel wall

segmentation method. In the coarse segmentation stage, we

developed a modified Deeplabv3+ network to estimate both the

vessel location and signed distance function. Based on the coarse

segmentation, we calculated the location of the blood vessel’s

center of gravity using the first-order moment method. This

information was then utilized to crop the original images,

specifically selecting the ROI that contained the vessels. In the

fine segmentation stage, we proposed a joint 2D–3D CPS

network to ideally exploit the spatial information of 3D volumes

and used the continuity prior of blood vessels, which helped

enhance the blood vessel features and improved the segmentation

accuracy. It is worth mentioning that the CPS operation involved

both labeled and unlabeled data, which improved the

generalizability using the lower cost of manual annotation. In

comparison to existing coarse-to-fine methods, our model

incorporated both the position of the center of gravity and the

continuity of the target blood vessel to enhance the utilization of

carotid artery features. The proposed method was evaluated on

the 3D carotid black-blood MRI dataset obtained from the

Carotid Artery Vessel Wall Segmentation Challenge, which was a
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typical semi-supervised segmentation task with only around 20%

labeled data. Through numerical experiments, we were able to

demonstrate that our JCPS method surpassed the state-of-the-art

results on the competition’s leader board, exhibiting a significant

improvement in segmentation accuracy when compared to both

the baseline U-Net model and single CPS model. Furthermore,

we designed an effective and user-friendly Graphical User

Interface (GUI) for the automated segmentation of MRI images

of black-blood carotid arteries, aimed at providing valuable

assistance to clinicians in their diagnostic.

The rest of this paper is organized as follows. Section 2.

introduces our joint 2D–3D cross-pseudo supervision method,

including coarse and fine segmentation models, a loss function,

and implementation details. Section 3. presents experimental

results and ablation studies. We briefly discuss the proposed

approach and conclude with a summary and possible future

work in Section 4.
2. Materials and methods

2.1. Data source

The training set and test set data used in this study were both

from the Carotid Artery Vessel Wall Segmentation Challenge, in

which 25 cases with various carotid vessel wall conditions were

used as the training set, and the other 25 cases with various

carotid vessel wall conditions were used as the test set. A total of
FIGURE 1

An overview of the proposed JCPS framework, where CAT is short for concate
employed to locate objects in high-resolution images. The vascular center-of-
was utilized to identify the vascular center of gravity in both 2D and 3D origina
enabling efficient utilization of limited labeled data and a large amount of unl
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12,920 vessel wall images of sufficient quality in the training set

(2,584 images with manual contour labels) were used for

training, and a total of 2,412 images with manual contour labels

in the test set were used for testing. Each vessel wall image is an

axial slice of a carotid black-blood MRI image, and the size of

each original image is of 720� 720 in order to facilitate

subsequent evaluation and meet the Carotid Artery Vessel Wall

Segmentation Challenge.
2.2. Our approach

The proposed automatic carotid artery vessel wall segmentation

approach, known as the Joint 2D–3D Cross-Pseudo Supervision

(JCPS), comprised two stages, as illustrated in Figure 1. The

coarse segmentation model consisted of a vascular center-of-

gravity positioning model, and the fine segmentation model

consisted of a joint 2D–3D CPS network.
2.2.1. Coarse segmentation
Since the target vessel occupied only a small fraction of the

whole image and varied in sizes and locations in 2D axial slices,

we needed to automatically determine the approximated

location of the center of gravity for the blood vessel. This was

crucial for providing a region of interest specific to the local

vessel area, which would be utilized for subsequent vessel wall

segmentation. To achieve this, we developed a vascular center-

of-gravity positioning module within the coarse segmentation
nation. In the coarse segmentation model, a 2D Deeplabv3+ network was
gravity positioning module, derived from the lumen coarse segmentation,
l images. For the fine segmentation model, the CPS network was adopted,
abeled data to achieve precise segmentation.
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FIGURE 2

The structure of the 2D Deeplabv3+ network with the encoder module and the decoder module. The high-level feature information is first transferred
through the deep convolutional network into two parallel feature pyramid modules, and each enters the Multi-Layer Perceptron (MLP) of the decoder
module, which simultaneously outputs the pixel-level classification and the corresponding signed distance function.
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model to estimate the center of the vessel. The backbone of the

coarse segmentation model was chosen as DeepLabv3+ (43),

which had been commonly used for medical segmentation

(44, 45).

In the first stage, we identified 2D slices with the sufficient

image quality from 3D carotid black-blood MRI images

I3D [ RD�H�W , where D, H, and W represent the depth,

height, and width of the 3D volume, respectively. The input

and output of the coarse segmentation model were represented

as I2D [ RH�W and Q2D [ RH�W , respectively. Different from

the classical Deeplabv3+ network, our approach involved

learning both the pixel-level classification task and the signed

distance function. These components were utilized to achieve

binary classification results for the lumen area and to accurately

capture the lumen boundary, respectively. For a detailed

overview of the network architecture, please refer to Figure 2.

The input image was processed utilizing a deep convolutional

neural network (DCNN) to extract both low-level and high-
FIGURE 3

The MLP module in the decoder. The high-level feature information through
stacked with the low-level feature information in the channel dimension, while
convolution and a quadruple upsampling.
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level features. Following that, the high-level features were fed

into the Atrous Spatial Pyramid Pooling (ASPP) module, which

consists of parallel dilated convolutional layers and pooling

layers to extend the receptive field. It is capable of extracting

relevant features from original images with a relatively low

proportion of vessel regions, and subsequently merging them at

different scales, thereby enhancing the accuracy of the coarse

segmentation stage. Within the decoder, the Multi-Layer

Perceptron (MLP) module concatenated the low-level and high-

level features derived from the encoder. Subsequently, the

outputs were restored to the original image resolution by

employing interpolation and upsampling techniques. For a

detailed illustration of the network structure, please refer to

Figure 3. Based on the coarse segmentation, we used the vessel

center-of-gravity positioning model to crop the data into 2D or

3D patches, which were utilized as inputs for the fine

segmentation model. Subsequently, the fine segmentation model

accurately predicted binary labels for 3D carotid black-blood
the feature pyramid module is upsampled by quadruple interpolation and
the output is the same as the original input image resolution after a 3 � 3
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MRI volumes, with “0” representing the background and “1”

denoting the vessel wall.
2.2.2. 2D CPS network
To calculate the center of gravity of the 2D lumen area, we

utilized the first-order moment as follows

G2D ¼ g2D(Q2D), (1)

with

g2D(Q2D) ¼
P

I

P
J i � Q2D(i, j)P

I

P
J Q2D(i, j)

,

P
I

P
J j � Q2D(i, j)P

I

P
J Q2D(i, j)

 !
,

where Q2D(i, j) represents the gray value of the binary

segmentation map Q2D at point (i, j). Obviously, the center of

gravity of the segmented lumen was an approximation for the

centerline of the vessels. Subsequently, the estimated center of

gravity was used to crop local patches X2D [ Rh�w with a fixed

size h� w. These patches were then employed as inputs for the

fine segmentation model.

Assuming that the manual labels were randomly distributed in

the 3D carotid black-blood MRI volumes, comprising

approximately 20% of the total slices, we endeavored to exploit a

limited amount of 2D labeled data and a substantial amount of

2D unlabeled data to generate more precise pseudo labels for the
FIGURE 4

The structure of the 2D CPS network, which consists of two 2D U-Net netwo
loss and cross-pseudo supervision loss, where supervision loss represents the l
supervision loss represents the loss of mutual supervision of the pseudo labe
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latter. To achieve this, we employed a 2D semi-supervised

method CPS to integrate the pseudo labels and consistency

regularization, thereby maximizing the utilization of both labeled

and unlabeled data. Specifically, the U-Net architecture was

adopted as the backbone of the CPS network, as depicted in

Figure 4. The U-Net consisted of a contracting path and an

expansive path. Notably, the number of channels in the network

was halved compared to the traditional U-Net. Each

convolutional layer (Conv) was followed by a batch

normalization (BN) and a rectification linear unit (ReLU),

denoted as a composite layer (Conv-BN-ReLU).

As depicted in Figure 4, two U-Net networks, denoted as f (w1)

and f (w2), were initially generated. These networks shared the

same structure but had different initialization parameter. The

patches X2D, obtained from the coarse segmentation stage and

containing both labeled and unlabeled data, served as inputs for

both U-Nets. Their objective was to estimate the segmentation

confidence maps Pn
2D [ RC�h�w (n ¼ 1, 2), which can be

expressed as

Pn
2D ¼ f (X2D; wn), (2)

where C represented the number of categories, i.e., the images were

divided into C categories. The corresponding one-hot labels

Sn2D [ Rh�w (n ¼ 1, 2) were then obtained through the argmax

operation. These labels were considered the pseudo labels

predicted by the two networks. During the training of unlabeled
rks with varying parameters. Our loss function comprises the supervision
oss between the output of U-Net and the ground truth, and cross-pseudo
ls of the two U-Net outputs.
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FIGURE 5

The structure of the 3D CPS network, where CAT is short for concatenation. The original image patches and the pseudo labels output by the 2D CPS
network are concatenated to form the input of the 3D CPS net. It consists of two 3D U-Net networks with varying parameters. The loss function of
the 3D CPS network consists of four parts: the supervision loss, pseudo supervision loss, continuous supervision loss, and cross-pseudo supervision loss.
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data, we adopted the method of pseudo-label mutual supervised

learning, where the pseudo labels S12D were used to supervise P2
2D,

and the pseudo labels S22D were used to supervise P1
2D. The goal

was to enforce a high degree of consistency between the

predictions of the two perturbed networks. Subsequently, the

continuous 2D pseudo labels S2D [ Rh�w obtained after

sufficient training were concatenated as additional inputs for the

3D CPS network. These pseudo labels also provided auxiliary

supervision for the outputs of the 3D CPS network.
2.2.3. 3D CPS network
Although the 2D CPS model estimated the 2D pseudo labels,

it lacked the modeling of three-dimensional continuity. On the

other hand, employing 3D methods that take 3D images as

inputs often incurs high computational costs. To mitigate such

issues, the use of smaller 3D patches can be considered to

balance the performance and computational efficiency. Thus,

we proposed a novel method for acquiring 3D patches by

utilizing the vascular center-of-gravity positioning model and

2D pseudo labels to extract the relevant local vascular regions

of interest. In addition, an overlapping sliding window

approach was employed to preserve more contextual

information within the extracted patches. Firstly, we split the

3D volumes into a series of small-size 3D patches

J3D [ Rd�H�W , where d represented the depth of the desired

3D patch. For each J3D, there was a corresponding 3D lumen

binary segmentation map Q3D [ Rd�H�W , which was obtained

by gathering the 2D lumen coarse segmentation Q2D. The

vascular center of gravity G3D of the 3D image J3D was

calculated using Q3D according to the following equation:

G3D ¼ g3D(Q3D), (3)
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where g3D denoted the 3D first-order moment function, which

was a direct extension of the equation (1). Specifically, only

the x-axis and y-axis coordinates of G3D needed to be

determined since the patch depth had already been fixed to d.

Therefore, we used the position information of the vascular

center of gravity G3D to crop the input patch J3D into

X3D [ Rd�h�w, where the sizes were d � h� w. Finally, the

obtained 3D patches and pseudo labels were used as inputs for

the newly proposed 3D CPS network to estimate the

segmentation results. The specific architecture of this network

is illustrated in Figure 5.

Similar to the 2D CPS model, the 3D CPS network was

constructed using two 3D U-Net networks, denoted as g(u1) and

g(u2), which had identical structures but different parameters.

The input of the 3D CPS network consisted of both the 3D

patches and the pseudo labels estimated by the 2D CPS.

The output of the 3D CPS network was represented by the

confidence map Pm
3D [ RC�d�h�w(m ¼ 1, 2). Therefore, the

relationship could be expressed as follows:

Pm
3D ¼ g(X3D, P2D; um): (4)

Consequently, we obtained the corresponding pseudo labels

Sm3D [ Rd�h�w (m ¼ 1, 2) through the argmax operation. In

contrast to the 2D CPS model, the limited availability of 2D

labeled data within the 3D patches, which accounted for less

than 10%, posed difficulty for the semi-supervised network CPS

to achieve accurate segmentation. To address this challenge, we

additionally used the pseudo labels obtained by the 2D CPS

network to supervise the predictions of the 3D CPS network.

Simultaneously, the pseudo-label supervised learning enforced

the prediction of 3D CPS to be of high consistency with the 2D
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CPS model. In addition, we exploited the spatial continuity of the

vessels in order to enhance the plausibility of the predictions made

by the 3D CPS network.

2.2.4. Loss function
In the following, we will discuss the loss functions used for

coarse segmentation and fine segmentation, respectively.

In the coarse segmentation stage, the network output the

classification and signed distance function (SDF) simultaneously.

We used the Focal Tversky (FT) loss function (46) to calculate

the loss of the pixel-wise classification, given as follows:

LFT ¼ (1� LT)
g,

with

LT ¼ jP> Y j
jP> Y j þ ajP � Y j þ bjY � Pj ,

where LT represents the Tversky Loss, P and Y represent the predicted

pixel-level classification results and ground truth, and a and b

controlled the proportion of false positives and false negatives,

respectively. As can be seen, the Focal Tversky loss introduced a focal

mechanism based on the Tversky index. Compared to the traditional

cross-entropy loss function, it was proven to be better suited for

addressing class imbalance issues in image segmentation. In addition,

it can enhance penalty on boundary regions and suppress the

classification of pixels being misclassified. Therefore, we adopted the

Focal Tversky loss to address the challenging vessel segmentation

problem in coarse segmentation.

The SDF reflected the position information and boundary

information of the segmented lumen, which was defined as follows:

w(x) ¼
�inf
y[@V

kx � yk2, if x [ V;

0, if x [ @V;
inf
y[@V

kx � yk2, if x [ V n V;

8>><
>>:

where V represents the vascular area, y was the point on the border

of the vascular area, w :V , R2 ! R, the signed distance function

was expressed as the infimum of the minimum value to the border

of the vascular area for a given point x. Thus, the loss function for

the coarse segmentation stage consisted of the following two terms:

L ¼ LFT þ LSDF:
In order to balance the loss contributions from both tasks, we

used the homoscedastic uncertainty for weighting a dual-task loss

function as follows:

L(s1, s2) ¼ 1
s2
1
LFT þ 1

s2
2
LSDF þ logs1s2, (5)

where parameters s1 and s2 corresponded to the homoscedastic
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uncertainties of the Focal Tversky loss and the signed distance

function loss, regarding the classification task and the regression

task, respectively. By minimizing the loss L and the noise

variables s1, s2, task-specific losses could be balanced during the

training process.

The training of 2D CPS consisted of the supervision loss Ls2D
and cross-pseudo supervision loss Lcps2D such as

L2D ¼ Ls2D þ l0L
cps
2D , (6)

where l0 was the trade-off weight. The supervision loss for the

labeled data included the cross-entropy and dice loss as given

below:

Ls2D ¼ 1
2

X2
n¼1

(lce(Y
n, Pn

2D)þ ld(Y
n, Pn

2D)),

where Yn represented the ground truth, lce was the cross-entropy

loss, and ld was the dice loss. In addition, the cross-pseudo

supervision loss formula for labeled data and unlabeled data was

also considered

Lcps2D ¼ lce(S
2
2D, P

1
2D)þ lce(S

1
2D, P

2
2D):

In addition, the loss function for 3D CPS included the

supervision loss Ls3D, the cross-pseudo supervision loss Lcps3D , the

pseudo label supervision loss Lps3D, and the continuous

supervision loss Lcs3D, which was defined as follows:

L3D ¼ Ls3D þ l1L
cps
3D þ l2L

ps
3D þ l3L

cs
3D, (7)

where l1 and l3 were the trade-off weights, and l2 was the pseudo

label weight. Because the labels were in 2D format, the supervision

loss construction for the labels for the 3D CPS network was the

same as for the 2D CPS network, i.e.,

Ls3D ¼ 1
2jAj

X
i[A

X2
m¼1

(lce(Y
m
i , P

m
3D(i))þ ld(Y

m
i , P

m
3D(i))),

where A was the set of labels, Ym
i represented the ground truth, and

Pm
3D(i) represents the ith layer of the output Pm

3D of the 3D CPS

network. In addition, the cross-pseudo supervision loss was

defined as follows

Lcps3D ¼ lce(S
2
3D, P

1
3D)þ lce(S

1
3D, P

2
3D),

where Sm3D represents the pseudo label estimated by the 3D CPS

network for m ¼ 1, 2. The pseudo-label supervised loss formula
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for unlabeled data was described as

Lps3D ¼ 1
2jBj

X
i[B

X2
m¼1

(lce(S2D, P
m
3D(i))þ ld(S2D, P

m
3D(i))),

where B was the unlabeled dataset, and S2D was the pseudo labels of

the segmentation from the 2D CPS network. Finally, the

continuous supervision loss was defined as follows:

Lcs3D ¼ 1
2

X2
m¼1

Xd�1

i¼1

lce(S
m
3D(iþ 1), Pm

3D(i))þ
Xd
i¼2

lce(S
m
3D(i� 1), Pm

3D(i))

 !
:

2.3. Evaluation metrics

In the testing phase, the performance of the proposed method

was evaluated using manually corrected ground truth. The

segmentation effectiveness of the vessel wall, lumen, and outer

wall was assessed using the following designed quantitative

metrics (QS), the Dice Similarity Coefficient (DSC) of the lumen

region (DSCL), and the DSC of the wall region (DSCW). QS was

calculated based on six additional indicators: the DSC of the

vessel wall region, Lumen area difference (Lad), Wall area

difference (Wad), Normalized wall index difference (Nwid),

Hausdorff distance on lumen normalized by radius (Hdol), and

Hausdorff distance on wall normalized by radius (Hdow). The

calculation of QS was as follows:

QS ¼ 0:5� DSCþ 0:1� (f (Lad)þ f (Wad))þ 0:2� f (Nwid)

þ 0:05� (f (Hdol)þ f (Hdow)),

where f (x) ¼ max (0, 1� x). As an ensemble similarity measure,

DSC was computed to assess the similarity between the vessel

wall segmentation result and the ground truth, which was

defined as follows:

DSC ¼ 2(X > Y)
X þ Y

:

where X and Y represent the binary vessel wall segmentation result

and ground truth, respectively. Therefore, DSC equaled 1 when the

segmentation result was the same as the ground truth. The Lad and

Wad calculated the area difference between the lumen and outer

wall and the ground truth, respectively, which were defined as

follows:

Lad ¼ jXAL � YALj
YAL , Wad ¼ jXAW � YAW j

YAW :

where XAL, XAW , YAL, and YAW represent the area of the lumen

segmentation, the area of the outer wall segmentation, and their

corresponding ground truth areas, respectively. In addition, the
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Nwid represented the difference between the normalized outer

wall area and the normalized outer wall ground truth area using

the following formula:

Nwid ¼

�����
XAW � XAL

XAL � YAW � YAL

YAL

�����
YAW � YAL

YAL

:

The Hdol and Hdow were calculated by the Hausdorff distance

between the contours of the lumen and outer wall to the ground

truth, respectively, such as

Hdol ¼ max (h(XOL, YOL), h(YOL, XOL))ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XAL=p

p ,

and

Hdow ¼ max (h(XOW , YOW), h(YOW , XOW))ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XAW=p

p ,

where h(B, C) ¼ max
b[B

{min
c[C

kb� ck}, and XOL, XOW , YOL, and

YOW represent the contour point set of the lumen segmentation

result, the contour point set of the outer wall segmentation

result, and their corresponding ground truth contour point sets,

respectively.
3. Experiments and results

Our method was implemented by using PyTorch, and all

experiments were performed on a server with one NVIDIA

Geforce RTX 3090 Founders Edition GPU. In the coarse

segmentation stage, the total training time was 12 h. In the fine

segmentation stage, the total training time was 7 h.
3.1. Data processing

Manual vessel contour labels were given by a customized vessel

wall annotation software (CASCADE), so that some labels in the

test set had a certain offset error, as shown in Figure 6. To

address this issue, we manually corrected the label images to

eliminate the offset errors. Specifically, a total of 526 labels with

offset errors were manually adjusted to achieve the closest

approximation to the ground truth, as shown in Figure 6(B,D).
3.2. Implementation details

The training details of our proposed JCPS network are

described as follows. In the coarse segmentation stage, a

Deeplabv3+ coarse segmentation network was trained, and its

input patch size was the original resolution H �W, where H
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https://doi.org/10.3389/fcvm.2023.1203400
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


FIGURE 6

Example of manual contour label correction. (A,C) Test set label data with offset error. (B,D) Manually corrected test set label data.
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and W were both set to 720. The epoch number and batch size

were set to 400 and 12, respectively. The Deeplabv3+ was

optimized using an Adam optimizer, with a learning rate of

0.001, multiplied by 0.9 in iterations of 1,000. In the fine

segmentation stage, a joint 2D–3D CPS network was trained to

finely segment the vessel wall. For the 2D CPS network in JCPS,

the input patch size was h� w, where h and w were both set to

96. The iteration number, batch size, and batch size of the

labeled data were set to 30,000, 4, and 2, respectively. We

employed the Poly learning rate strategy, where the learning rate

was set to 0.01 and was changed by the initial learning rate

multiplied by (1� iter=max iter)0:9 for each iteration. In

addition, we employed mini-batch stochastic gradient descent

(SGD) with momentum to train 2D CPS, where the momentum

was fixed at 0.9 and weight decay was set to 0.0001. For the 3D

CPS network in JCPS, the input patch size was d � h� w, where

d, h, and w were set to 32, 96, and 96, respectively. The iteration

number, batch size, and batch size of the labeled data were set to

30,000, 4, and 2, respectively. The settings of the learning rate

strategy and SGD were the same as in 2D CPS. In the loss

function of the coarse segmentation stage, we set the weights as
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a ¼ 0:7, b ¼ 0:3, and g ¼ 0:7. In the loss function of the fine

segmentation stage, we empirically set the weights as

l0 ¼ l1 ¼ l3 ¼ e�5(1�t)2 , t ¼ epoch=max epoch [ [0, 1], which

were a weight ramp-up equation (37) that increased with time,

and l2 ¼ 1. In particular, the parameter settings of all variants of

our method were the same as those described above.

Note that the erroneous segmentation in the coarse

segmentation may affect the selection of central points and

subsequently impact the fine segmentation stage. The failure in

the first stage can be roughly divided into three cases: (1) there

are scattered fragments around the vessel wall, causing the center

point to deviate from its geometric center; (2) due to the

inability of coarse segmentation to accurately distinguish between

internal and external carotid arteries at the bifurcation of blood

vessels, the central point is located in the external carotid artery

region; (3) in areas of carotid artery stenosis, especially extremely

narrow areas, the coarse segmentation may not even be able to

identify vascular, thus unable to locate the center point.

Therefore, we applied the morphological post-processing to the

results of the coarse segmentation. We eliminated fragmented

regions in the coarse segmentation results by selecting the largest
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TABLE 1 Performance of carotid vessel wall segmentation in comparison
to the other top four teams.

DSC Lad Wad Nwid Hdol Hdow QS
Team 1 0.775 0.086 0.072 0.080 0.246 0.215 0.837

Team 2 0.761 0.064 0.075 0.079 0.554 0.515 0.728

Zhou et al. 10.3389/fcvm.2023.1203400
connected region. In the bifurcation area of the carotid artery, we

used the position of the center point before and after the

bifurcation to estimate the correct center point relying on the

spatial continuity of vessels. Finally, we used the segmentation

results of regular regions to interpolate the narrow regions.

Team 3 0.736 0.089 0.136 0.139 0.366 0.358 0.727

Team 4 0.697 0.170 0.144 0.130 0.407 0.361 0.694

Ours 0.806 0.063 0.068 0.054 0.305 0.297 0.850

Teams 1–4 are the top four methods in the Carotid Artery Vessel Wall

Segmentation Challenge. Evaluation indicators include DSC of the vessel wall

region, Lad, Wad, Nwid, Hdol, Hdow, and QS.

The bold values represent the optimal results achieved in the respective columns

for the indicators.
3.3. Performance on the test dataset

In the first place, we used coarse segmentation to estimate the

center of gravity and the local patches. As shown in Figure 7, our

modified Deeplabv3+ model accurately identified the center of

gravity in all slices. According to statistical analysis, we found

that the diameter of carotid artery vessels is smaller than 64

pixels. Therefore, we set the patch size to 96� 96 to capture

sufficient information on the carotid vessels. Furthermore, we

also validated that the segmentation results using 96� 96 sized

patches were optimal in numerical experiments.

In the fine segmentation stage, we evaluated the segmentation

performance of our proposed method using the public 3D carotid

black-blood MRI dataset. The segmentation accuracy of the top

four methods on the leaderboard, as well as our method, is

presented in Table 1. The results clearly demonstrated that our

method surpassed the top-ranked team by more than 1% on

quantitative scoring metrics and 3% on the Dice coefficient,
FIGURE 7

Visualization of the coarse segmentation. The first column are the original-reso
by coarse segmentation, and the last column are local patches obtained after
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while also surpassing other teams by a significant margin. In

addition, the Lad, Wad, and Nwid indicators indicated a

substantial reduction in errors within the segmented area using

our JCPS model. Although the Hdol and Hdow indicators were

slightly higher than those of the top-ranked team, the overall

performance of our JCPS model was superior to all others.

The effectiveness of each component in our method is

demonstrated in Table 2 and Figure 8. First, we examined the

effectiveness of the semi-supervised method CPS by comparing

U-Net and 2D–CPS during the fine segmentation stage. The

results presented in Table 2 and Figure 8 indicate a significant

improvement in segmentation accuracy with 2D-CPS compared
lution MRI images, the middle column are the centers of gravity estimated
passing through the vascular center-of-gravity positioning model.
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TABLE 2 Performance comparison of the carotid vessel wall segmentation between JCPS and its variants.

Method DSC DSCL DSCW Lad Wad Nwid Hdol Hdow QS
U-Net 0.766 0.908 0.911 0.108 0.112 0.104 0.491 0.478 0.791

2D-CPS 0.778 0.924 0.927 0.090 0.108 0.094 0.416 0.397 0.810

3D-CPS 0.784 0.938 0.933 0.075 0.097 0.092 0.364 0.350 0.821

3D-CPS-w/-CSL 0.788 0.938 0.934 0.074 0.083 0.084 0.346 0.331 0.828

JCPS-w/o-CSL 0.799 0.937 0.935 0.072 0.080 0.073 0.315 0.303 0.839

JCPS 0.806 0.939 0.939 0.063 0.068 0.054 0.305 0.297 0.850

U-Net: consists of a vascular center-of-gravity positioning model and a 2D U-Net model. 2D-CPS: consists of a vascular center-of-gravity positioning model and a 2D CPS

model. 3D-CPS: consists of a vascular center-of-gravity positioning model and a 3D CPS model. 3D-CPS-w/-CSL: consists of a vascular center-of-gravity positioning

model and a 3D CPS model with continuous supervision loss. JCPS-w/o-CSL: consists of a vascular center-of-gravity positioning model and a joint 2D–3D CPS

model without continuous supervision loss.

The bold values represent the optimal results achieved in the respective columns for the indicators.

FIGURE 8

Performance metrics (DSC, Lad, Wad, Nwid, Hdol, Hdow) for JCPS and its variants, where ♦ indicates outliers. Note that the proportion of outliers in each
evaluation index of our method is basically less than 3%.
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to U-Net, as evidenced by higher scores across all indicators. This

suggests that the CPS network is better suited for datasets with

limited labeled data and exhibits superior generalization

performance. In addition, the visualization results depicted in

Figure 9 demonstrate a substantial enhancement in our

segmentation accuracy for images containing lesions and those

near the carotid bifurcation, surpassing the performance of plain

U-Net models. This further confirmed the effectiveness of CPS in

improving segmentation accuracy.

Through the comparison between 3D-CPS and 2D-CPS, it can

be concluded that the 3D CPS network yields superior results by

leveraging the information across slices. As shown in Table 2,

Figures 8 and 9, the 3D-CPS outperforms the 2D-CPS in the

fine segmentation stage, which produced more complete contours

for the challenging images, showing the improvement brought by

the 3D segmentation approaches.
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We then investigated the performance of the joint 2D–3D CPS

model. By using the same loss function as the 3D-CPS model, the

JCPS-w/o-CSL demonstrated a significant enhancement in

segmentation accuracy and yielded superior results for

challenging images (refer to Table 2, Figures 8 and 9). It verified

the effectiveness of using 2D CPS to generate high-quality

pseudo labels that aid the 3D CPS networks in achieving

accurate segmentation. Furthermore, it showcases that the joint

2D–3D semi-supervised network is well-suited for processing 3D

carotid image datasets with limited 2D labels available.

Finally, we introduced the continuous supervision loss into the

joint 2D–3D CPS network to ensure the continuity between

adjacent slices. Through a comparison between 3D-CPS, 3D-

CPS-w/-CSL, JCPS-w/o-CSL, and JCPS, it was observed that 3D-

CPS-w/-CSL exhibited slightly better performance across all

metrics (refer to Table 2 and Figure 8). In addition, Figure 9
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FIGURE 9

Visual comparison between JCPS and its variants, where the second column GT represents the ground truth, referring to the high-quality annotations.
These red annotations represent the segmentation of the vessel wall. The case of blood vessels with the plaque are shown on the first row, blood vessels
with fuzzy boundary issues are shown in the second through fifth rows, and images of the carotid artery bifurcation are shown in the sixth and seventh
rows.
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illustrated that 3D-CPS-w/-CSL achieved superior segmentation

results compared to 3D-CPS, but both were slightly inferior to

JCPS-w/o-CSL. Furthermore, the visualization of 3D carotid

vessel wall segmentation in Figure 10 demonstrated that JCPS

outperformed JCPS-w/o-CSL in certain details, indicating the

beneficial effect of CSL in obtaining a more continuous carotid

vessel wall segmentation.

Based on the visualization results depicted in Figure 9, it was

observed that all methods were able to accurately identify the

vessel region of interest by utilizing the vascular center of

gravity obtained during the initial coarse segmentation stage.

This indicates the feasibility of the vascular center-of-gravity

positioning model. The first two rows of Figure 9 demonstrate

that the segmentation methods encountered challenges with
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under-segmentation when dealing with vessel images featuring

blurred boundaries and plaques. However, our method

successfully mitigated these issues by leveraging the semi-

supervised learning approach and ensuring continuity between

adjacent layers. Consequently, our method achieved stable and

precise segmentation outcomes. Furthermore, in the third and

fourth rows, it was also noted that images of blood vessels

with indistinct boundaries could lead to over-segmentation.

Nevertheless, our approach effectively addressed such cases. In

the last three examples, it was evident that accurately

segmenting the target artery near the carotid bifurcation posed

difficulties for other methods due to limited labeled data.

Remarkably, our method overcame this problem in most

instances.
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FIGURE 10

3D visualization comparison between the JCPS and its variants, where red annotations represent the segmentation of the vessel wall.
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The 3D visualization results of our method and its variants are

shown in Figure 10. Compared to methods using 3D networks,

both U-Net and 2D-CPS produced discontinuous and incomplete

blood vessels. By looking at the middle two columns, we saw

that 3D-CPS provided a more complete vascular structure but

might still fail in some challenging regions for such a problem

with the dataset of incomplete labels. Also, it can be clearly

observed that our JCPS could estimate complete and reasonable

3D segmentation results with fewer areas of poor segmentation

quality.
3.4. Graphical user interface

In practical applications, end-users exhibit a preference toward

software solutions that are user-friendly and incorporate a GUI.

However, to the best of our knowledge, a comprehensive human–

computer interaction (HCI) system that is exclusively dedicated to

MRI black-blood carotid image segmentation and offers an effective
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HCI verification environment for current deep learning algorithms

has yet to be established, thereby significantly limiting the clinical

application of these algorithms. To address this limitation, we have

developed a complete automatic vessel segmentation system

founded on a deep learning model. Our system encompasses

essential functions including data reading, model import, vessel

segmentation, result display, and segmentation accuracy evaluation,

seamlessly integrated in a pipeline fashion. The system was

implemented using the Python programming language, and the

vessel segmentation model based on deep learning algorithms could

be executed on a single machine. Figure 11 demonstrates the GUI

interface used for both coarse and fine segmentation of the lumen

and outer wall. It allows for the visualization of segmentation

results and evaluation indicators, thereby illustrating the accuracy of

the segmentation process. We tested the CPU time to process one

black-blood MRI data of size 230� 720� 720 on an AMD Ryzen

7 5700U processor. The CPU time for coarse segmentation and

fine segmentation is 80.73 and 139.42 s, respectively, which can

satisfy the clinical needs.
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FIGURE 11

Graphical User Interface of the JCPS method. (A) The vessel segmentation interface can display the original image, run the JCPS method, and display and
save the segmentation results. (B) The evaluation interface can provide six indicators to illustrate the segmentation accuracy of rough segmentation and
fine segmentation.
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4. Concluding remarks

In this study, we developed a two-stage segmentation

framework for carotid vessel wall segmentation. In the coarse

segmentation stage, we achieved automatic detection of the

vascular center of gravity using a vascular center-of-gravity

positioning model. The original images were then clipped into

local patches containing vessels based on centers of gravity and
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used as inputs for fine segmentation modeling. Notably, our

proposed approach enabled accurate localization of vascular

center-of-gravity without any manual intervention. In the fine

segmentation stage, we employed the joint 2D–3D CPS network

to estimate the vessel wall. To ensure accurate segmentation of

vascular structures, we introduced a novel hybrid loss function. In

comparison to the existing approaches, our method did not

require a large amount of labeled data and human interaction, and
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it exhibited improved segmentation performance across a range of

evaluation indicators. Therefore, with reduced costs, the proposed

JCPS network could facilitate clinicians in reading vessel wall

outlines and diagnosing atherosclerosis. Moreover, a user-friendly

and effective graphical user interface has been created to simplify

the implementation of our carotid vessel wall segmentation method.

Our JCPS can handle the task of segmenting the carotid artery

vessel wall with low image qualities. Indeed, our fine segmentation

network has quite good robustness to the results of coarse

segmentation, which can provide reasonable segmentation results

even for coarse segmentation with defects. However, its

performance may deteriorate when dealing with other vessel

segmentation problems. In the future, we plan to explore the

domain adaptive coarse segmentation model to achieve constant

performance on different vessel segmentation tasks. On the other

hand, the two-stage approach we used has high complexity and

the segmentation results also lack interpretability. Thus, we

would like to consider incorporating more effective domain

knowledge to develop reliable vessel stenosis prediction methods.

Indeed, our JCPS method is not restricted to carotid black-

blood MRI images but also can be used for other blood vessel

segmentation and 3D vessel reconstruction tasks. In future

works, we would like to investigate automatic segmentation

methods depending on even fewer manual annotations for

facilitating medical diagnosis. An avenue we plan to pursue

involves developing efficient methods for vessel segmentation

based on few-shot learning (47) and zero-shot learning (48). In

addition, we also intend to evaluate carotid stenosis on the basis

of a vascular model combined with hemodynamic simulation.
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Objective: To compare the performance of radiomics-based machine learning 
survival models in predicting the prognosis of glioblastoma multiforme (GBM) 
patients.

Methods: 131 GBM patients were included in our study. The traditional Cox 
proportional-hazards (CoxPH) model and four machine learning models 
(SurvivalTree, Random survival forest (RSF), DeepSurv, DeepHit) were constructed, 
and the performance of the five models was evaluated using the C-index.

Results: After the screening, 1792 radiomics features were obtained. Seven 
radiomics features with the strongest relationship with prognosis were obtained 
following the application of the least absolute shrinkage and selection operator 
(LASSO) regression. The CoxPH model demonstrated that age (HR  =  1.576, 
p  =  0.037), Karnofsky performance status (KPS) score (HR  =  1.890, p  =  0.006), 
radiomics risk score (HR  =  3.497, p  =  0.001), and radiomics risk level (HR  =  1.572, 
p  =  0.043) were associated with poorer prognosis. The DeepSurv model performed 
the best among the five models, obtaining C-index of 0.882 and 0.732 for the 
training and test set, respectively. The performances of the other four models 
were lower: CoxPH (0.663 training set / 0.635 test set), SurvivalTree (0.702/0.655), 
RSF (0.735/0.667), DeepHit (0.608/0.560).

Conclusion: This study confirmed the superior performance of deep learning 
algorithms based on radiomics relative to the traditional method in predicting 
the overall survival of GBM patients; specifically, the DeepSurv model showed the 
best predictive ability.
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1 Introduction

Glioblastoma multiforme (GBM) is the most common and least 
prognostic primary tumour of the central nervous system, with a 
5-year survival rate of 6–22% based on a combination of age at 
diagnosis and other risk factors (1). Prognostic models that include 
only the patient’s age, ethnicity, whether or not they receive 
radiotherapy, and risk factors such as the size, location and 
histopathological composition of the tumour often fail to predict 
overall survival (OS) accurately (2, 3). Therefore, identifying risk 
factors for GBM prognosis and developing appropriate predictive 
models are essential for the individualized and precise treatment of 
GBM patients.

Radiomics, which transforms digital medical images into 
mineable high-dimensional features and builds statistical models to 
analyze the features, has been widely used in tumour diagnosis, 
prognosis prediction, and treatment selection (4). Studies have shown 
that GBM radiomics information is closely related to patient prognosis 
and recurrence (5, 6). Zhang et  al. (7) developed and validated a 
radiomics nomogram model to determine GBM survival probabilities 
in a non-invasive manner, achieving superior accuracy in both the 
training and test set. Survival analysis (also known as time-effect 
analysis) methods have been widely used in medical research, such as 
clinical efficacy trials and disease prognosis analysis. The Cox 
proportional-hazards model (Cox-PH) is the most well-known 
method used to determine the association between clinical predictor 
variables and the risk of mortality events. The CoxPH model is based 
on the assumption of a linear combination of event risk and variables; 
however, it is likely to be  too simplistic to fit the actual 
disease progression.

Machine learning is a branch of artificial intelligence that has a 
wide range of applications in diagnosing and prognostic assessing 
GBM (5, 8). Compared to CoxPH models, machine learning can 
identify clinically significant risks with some marginal variables that 
can significantly improve the model’s performance (9). Deep learning 
(DL) is a frontier area of machine learning algorithms. Deep learning-
based features are mainly extracted through convolutional neural 
networks (CNN), and feature learning algorithms are derived from 
the data itself and are more targeted to specific studies (10), and are 
widely used in imaging diagnosis, disease staging and prognosis, 
which can effectively improve outcome prediction (11–13). The 
Deepsurv model is a deep learning technique applied to a non-linear 
cox proportional risk network (14). Studies have shown that the 
DeepSurv model can obtain patient risk factors from multiple 
parameters and has achieved good predictive performance in 
assessing different patients, such as lung cancer and nasopharyngeal 
carcinoma (15, 16). Previous deep-learning algorithms that have been 
applied to assess the prognosis of GBM patients used traditional 
clinical prognostic risk factors and did not incorporate radiomics 
features (17). To our knowledge, no study has been conducted on the 
prognosis of GBM patients using radiomics combined with machine 
learning. Therefore, this study aimed to construct: (1) a traditional 
CoxPH model, (2) a tree-based SurvivalTree model, (3) an RSF 
model based on ensemble learning, (4) a DeepSurv, and (5) a DeepHit 
model based on deep learning for predicting the overall survival of 
GBM patients based on GBM radiomics and clinical data. Following 
the construction of these five models, we compared their performance.

2 Materials and methods

2.1 Clinical case data

According to the proposed inclusion criteria, (1) clinical 
information of The Cancer Genome Atlas (TCGA) for GBM was 
downloaded from the TCGA database1 and (2) Magnetic Resonance 
Imaging (MRI) data were obtained from the Cancer Imaging Archive 
(TCIA),2 and a total of 262 patients were enrolled. Then, 131 patients 
were excluded due to (1) the lack of fluid-attenuated inversion 
recovery (FLAIR) sequences from TCIA (n = 114) and (2) MRI 
sequences acquired with severe motion or artefacts that may have 
induced bias in the subsequent analysis (n = 17). A total of 131 patients 
with GBM were subsequently retrospectively enrolled in our study. In 
this retrospective study, the requirement for informed consent was 
waived, as the relevant patient data in the TCGA were publicly 
available. We followed the relevant policies of the TCGA and TCIA in 
the acquisition and use of data. The flow chart for this study is shown 
in Figure 1.

2.2 Image acquisition and segmentation

Using ITK-SNAP3 software to segment the FLAIR images of 
patients in 3D, the segmentation process is shown in Figure 2. The 
FLAIR scan parameters were as follows: thickness = 4 ~ 5.5 mm, TR/
TE = 9,000 ~ 12,500/140 ~ 157 ms, slice gap = 4 ~ 6.5 mm, flip 
angle = 80 ~ 90°. The area of interest covered the entire tumour and 
edema region, and all feature extraction methods were implemented 
using the Cancer Imaging Phenomics Toolkit (CaPTk www.cbica.
upenn.edu/captk). To confirm the reproducibility of the features, 30 
patients were randomly selected, two people performed the Region 
Of Interest (ROI) segmentation, and the intraclass correlation 
coefficient (ICC) of the two ROIs was calculated (18). A threshold of 
ICC > 0.8 was set for considering a good agreement between the two 
neuro-radiologists. Features that achieved ICC higher than this 
thereshold were considered as showing reproducibility. The calculated 
features all contain first-order statistical features and statistical-based 
texture features, such as grey-level co-occurrence matrices (GLCM), 
grey-level dependence matrix (GLDM), neighbourhood grey-tone 
difference matrices (NGTDM), grey-level run-length matrices 
(GLRLM), and grey-level size zone matrices (GLSZ), grey-level size 
zone matrices (GLSZM) (19, 20).

2.3 Establishing radiomics signature and 
data cleaning

The least absolute shrinkage and selection operator (LASSO) 
method was used to select key features from the dataset significantly 
associated with prognosis. The selected features were linearly 
combined according to their respective coefficient weights to construct 

1 https://tcga-data.nci.nih.gov/

2 https://wiki.cancerimagingarchive.net/

3 https://www.itk-snap.org/
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a radiomics signature, calculate the risk score for each patient, and 
determine the risk level. Subsequently, all collected data were classified 
as numerical or subtypes according to the input features. The missing 
data imputation was performed using the k-nearest neighbor (KNN) 
algorithm (Supplementary Table S1).

2.4 Feature engineering

According to Subtype, one-hot coding was performed to convert 
different categories of risk factors into categorical variables. This 

resulted in two new features called Subtype_Mesenchymal and 
Subtype_Proneural.

2.5 Construction of the model

2.5.1 CoxPH model
For the CoxPH model, proportional risk assumptions were made 

using the CoxPHFitter function. Filter-based feature selection was 
performed using Cox regression to select features significantly 
associated with prognosis in GBM patients. All comparisons were 

FIGURE 1

Flow chart of the study.
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performed at the 95% confidence level, with p < 0.05 indicating 
statistical significance.

2.5.2 SurvivalTree model
SurvivalTree is based on classification and regression trees 

(CART) (21). The model is based on the tree structure, and the tree 
building mainly includes tree generation and pruning. Simple 
dichotomous classification problems can better perform the 
prognostic grouping of the method.

2.5.3 RSF model
Random Survival Forest is a combination of random forest (RF) 

and survival analysis methods. The model calculates a cumulative risk 
function for each tree by selecting a subset of variables at each node 
and splitting the node tree based on survival time and event state, and 
finally calculates the mean of the integrated cumulative risk function 
to predict the error (22).

2.5.4 DeepSurv model
DeepSurv is a feed-forward deep neural network for CoxPH 

models to model a nonlinear representation of the risk of clinical 
events based on input features. The model architecture includes 
network inputs from patient data, fully connected and hidden layers, 
and an output layer with linearly activated individual nodes for 
estimating the logarithmic risk function in the CoxPH model (14). 
DeepSurv can make predictions without specifying interaction terms, 

and in addition, the model’s hyperparameters can vary depending on 
the model’s performance.

2.5.5 DeepHit model
The DeepHit model was initially designed to analyze the 

competing risks of multiple events (23). In the present study, 
we considered only one event: patient survival. Therefore, we can use 
a simplified DeepHit model to analyze our data. We can obtain an 
estimated probability value with the softmax layer of the model.

2.6 Model training and evaluation

After data preprocessing, the data was divided into 70% training 
data and 30% test data. The hyperparameters of the models were 
selected via random search. The performance of the models was 
compared using Harrell’s concordance index (C-index) and brier 
scores. C-index was used to estimate the proportion of random 
individuals with the same survival time ranking as their accurate 
survival time, with a C-index value of 1 indicating perfect 
discrimination and when 0.5 indicating random prediction. The brier 
score represents the mean squared difference between the observed 
patient status and the predicted probability of survival, with scores 
ranged from 0 (worst) to 1 (best). The overall estimate of the brier 
score for all available times is called the Integrated Brier Score (IBS). 
In practice, models with IBS below 0.25 are considered valuable. In 

FIGURE 2

Image segmentation (A–C) represent the axial, sagittal, and coronal views of the images, respectively, and (D) shows the 3D reconstruction results of 
the ROI.
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addition, for the SurvivalTree and RSF models, we  also used the 
receiver operating characteristic curves (ROC) over time and 
calculated the area under the curve (AUC) values to evaluate the 
model performance.

2.7 Statistical analysis

Statistical analysis was performed using R 3.6.0 and the model 
construction was performed using Python 3.7. The R packages used are 
as follows: glmnet package for LASSO logistic regression, gplots and 
pheatmap packages for heat map analysis. The Python packages were 
used are as follows: CoxPH analysis using the lifelines package, 
SurvivalTree and RSF using the scikit-survival package, feature 
importance ranking using the permutation_importance function; 
DeepSurv and DeepHit using the Pytorch-based pycox package. The 
comparison of patients between training and test set was performed for 
continuous variables with a t-test or Mann–Whitney test. The chi-square 
test was performed for subtype variables. All statistics were two-tailed, 
and p-values less than 0.05 were considered statistically significant.

3 Results

3.1 Clinical characteristics of patients

The clinical characteristics of the patients in the training and test 
set are shown in Table  1. There were no statistically significant 
differences in patient age, sex, race, radiation, pharmaceutical, survival 
status or survival month between the training and test set 
(p = 0.071–1.000).

3.2 Radiomics feature extraction and 
construction of radiomics signature

In this study, 1792 radiomics features were obtained based on 
T2-FLAIR images from the TICA database, using CaPTk software. 
The 1792 features were brought into the LASSO cox regression model 
to screen the optimal radiomics features. We screened the optimal 
radiomics features in the full dataset using the LASSO Cox regression 
model with ten-fold cross-validation (24). We  obtained seven 
radiomics features (three signal intensity features and four texture 
features) that were most closely related to the prognosis. A radiomics 
signature was constructed based on the linear combination of the 
screened seven radiomics features and their corresponding Cox 
regression coefficient products. The radiomics signature 
we constructed is described by a formula in the Supplementary Material.

3.3 Correlation between radiomics 
signature and clinical information

The correlation between the radiomics signature and clinical 
information was evaluated using heat map analysis 
(Supplementary Figure S1). The results show that “GLCM_Contrast_
Variance” has a high correlation with survival status, mostly in red color.

3.4 CoxPH model

The univariate cox analysis showed that age (HR = 1.576, 
p = 0.037), KPS score (HR = 1.890, p = 0.006), radiomics risk score 
(HR = 3.497, p = 0.001), and radiomics risk level (HR = 1.572, 
p = 0.043) were prognostic factors for overall survival in GBM 
(Table 2), and the univariate analysis forest plot is shown in Figure 3; 
multivariate cox analysis showed that KPS score (HR = 1.864, 
p = 0.008), radiomics risk score (HR = 3.370, p = 0.003) were 
prognostic factors for overall survival of GBM (Table  2). In the 
training and test set, the C-index of the CoxPH model was divided 
into 0.663 and 0.635, with an overall C-index of 0.662, and for 
predicting 1-year, 3-year, and 5-year survival, the brier score was 
0.225, 0.080, and 0.040, respectively, and the IBS was 0.102 (Table 3). 
The KM survival curves for variables that were significant for the 
univariate survival analysis are shown in Figure 4.

3.5 SurvivalTree and RSF model

GBM survival prediction models based on the SurvivalTree and 
RSF tree algorithms were built using the training set and validated in 
the test set. Figure 5 shows the AUC values of the CoxPH model, the 
SurvivalTree model and the RSF model over time. As can be seen from 
the graph, the CoxPH model has the highest AUC value of 0.701, and 
the SurvivalTree model has the lowest AUC of 0.564.

In the training and test set, the C-index of the SurvivalTree model 
was divided into 0.702 and 0.655, and the overall C-index was 0.564. 
For predicting 1-year, 3-year, and 5-year survival, the brier scores 
were 0.225, 0.080, and 0.040, respectively, and the combined brier 
score was 0.192. In the training and test set, the C-index of the RSF 
model was divided into 0.735 and 0.667, and the overall C-index was 
0.642; for predicting 1-year, 3-year, and 5-year survival, the brier 
scores were 0.214, 0.143, and 0.124, respectively, and the IBS was 
0.152 (Table  3). The IBS plots of the two models are shown in 
Figure 5.

The ranked importance of SurvivalTree and RSF model features 
are shown in Figure 6 and Supplementary Table S2; from the table, 
we can see that KPS, radiation and risk score are more important for 
the model. For both models, radiation is the most important feature, 
if radiation is removed from the model, the C-index of both will 
decrease by 0.145 and 0.101, respectively.

3.6 Deep learning model

DeepSurv and DeepHit survival prediction models based on deep 
learning algorithms were built using the training set and validated in 
the test set. In the training and test sets, the DeepSurv model had a 
C-index of 0.882 and 0.732, an overall C-index of 0.691, and a brier 
score of 0.203, 0.139, and 0.124 for predicting 1-year, 3-year, and 
5-year survival, respectively, with a combined brier score of 0.116. In 
the training and test set, the DeepHit model had a C-index of 0.608 
and 0.560, an overall C-index of 0.617, and a brier score of 0.347, 
0.330, and 0.146 for predicting 1-year, 3-year, and 5-year survival, 
respectively, with an IBS of 0.261 (Table 3). The IBS plots for the two 
models are shown in Figure 7.
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4 Discussion

Precision treatment of GBM can slow down tumour growth and 
help improve patient prognosis. Previous studies on GBM have used 
deep learning for diagnostic and prognostic assessment of tumours 
(17, 25). To our knowledge, this is the first study to use machine 
learning and radiomics approaches to assess the prognosis of GBM 

patients. In this study, by constructing radiomics prognostic labels, 
using different machine learning models and comparing the 
performance with the traditional CoxPH model, the results show that 
the DeepSurv deep learning model shows superior predictive power 
compared to the traditional CoxPH model.

While traditional radiography focuses on the visual presentation 
of images, radiomics focuses on the relationship between image 

TABLE 1 Demographics of patients enrolled in the training set and test set.

Variables Total (n =  131) Training set (n =  91) Test set (n =  40) p

Age 0.220

≤60 73 (56%) 47 (52%) 26 (65%)

>60 58 (44%) 44 (48%) 14 (35%)

Sex 0.979

female 44 (34%) 30 (33%) 14 (35%)

male 87 (66%) 61 (67%) 26 (65%)

Race 0.462

white 20 (15%) 12 (13%) 8 (20%)

others 111 (85%) 79 (87%) 32 (80%)

KPS 0.645

≤60 93 (71%) 63 (69%) 30 (75%)

>60 38 (29%) 28 (31%) 10 (25%)

Subtype 0.742

Classical 36 (27%) 24 (26%) 12 (30%)

Proneural 49 (37%) 36 (40%) 13 (32%)

Mesenchymal 46 (35%) 31 (34%) 15 (38%)

CIMP_status 0.773

G-CIMP 116 (89%) 81 (89%) 35 (88%)

Non G-CIMP 15 (11%) 10 (11%) 5 (12%)

Radiation 1.000

no 102 (78%) 71 (78%) 31 (78%)

yes 29 (22%) 20 (22%) 9 (22%)

Pharmaceutical 0.454

no 101 (77%) 68 (75%) 33 (82%)

yes 30 (23%) 23 (25%) 7 (18%)

Survival status 0.071

alive 16 (12%) 8 (9%) 8 (20%)

dead 115 (88%) 83 (91%) 32 (80%)

Survival months# 12.27 (5.5, 19.9) 13.13 (5, 22.09) 11.71 (6.88, 17.62) 0.581

#Continuous variables; median (range).

TABLE 2 Univariate and multivariate cox analysis of overall survival of GBM patients.

Variables Univariate analysis Multivariate analysis

Hazard ratio (95% CI) p value Hazard ratio (95% CI) p value

Age 1.576 (1.028–2.416) 0.037 1.452 (0.943–2.235) 0.090

KPS 1.890 (1.195–2.988) 0.006 1.864 (1.175–2.956) 0.008

Risk level 1.572 (1.015–2.436) 0.043 1.041 (0.580–1.850) 0.090

Risk score 3.497 (1.621–7.544) 0.001 3.370 (1.499–7.573) 0.003
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phenotypes and biological features and has been widely used in 
tumour diagnosis and prognosis evaluation (4). Studies have shown 
that FLAIR sequences are more advantageous in showing the extent 
of tumour borders and edema and that 90% of GBM recurrence 
occurs in the peritumoral edema area and has been shown to correlate 
with the prognosis of GBM (26). The FLAIR sequence was superior in 

showing the extent of the tumour border and edema. Some progressive 
patients showed no significant enhancement on the contrast scan but 
showed a high signal on the FLAIR sequence (27). Therefore, it is 
important to explore the prognostic evaluation of non-contrast FLAIR 
sequences in GBM. In order to construct a radiomics prognostic 
signature, we used the LASSO cox regression model to reduce 1792 

FIGURE 3

Coefficient convergence of LASSO Cox model for screening radiomics features and forest plot of univariate cox analysis. (A) The LASSO Cox model 
used tenfold cross-validation to select the optimal parameters. (B) The convergence of the coefficients of radiomics features under the parameters 
corresponding to the left figure, with each curve in the panel representing the trajectory of a feature coefficient. (C) Forest plot of univariate cox 
analysis.

TABLE 3 Hyperparameters, C-index and IBS results for the five models.

Model C-index Hyperparameters C-index Brier score IBS

Training set Test set 1-year 3-year 5-year

CoxPH 0.663 0.635 none 0.662 0.225 0.080 0.040 0.102

Survival Tree 0.702 0.655 max_depth:5,min_samples_leaf:2,min_samples_

split:12,n_estimators = 10

0.564 0.263 0.190 0.133 0.192

RSF 0.735 0.667 max_features:sqrt,min_samples_leaf = 2,min_samples_

split = 4,n_estimators = 10

0.642 0.214 0.143 0.124 0.152

DeepSurv 0.882 0.732 num_nodes = [32,32],out_

features = 1,dropout = 0.2,learning rate = 0.005

0.691 0.203 0.139 0.124 0.116

DeepHit 0.608 0.560 num_nodes = [32,32],out_features = labtrans.out_

features,dropout = 0.1,learning rate = 0.001

0.617 0.348 0.330 0.146 0.261
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features to 7 potential predictive features. The results of this study 
showed that the seven radiomics features obtained in the FLAIR 
sequence were strongly associated with GBM survival, and these 
features indicated grey-scale heterogeneity of GBM. In addition, the 
radiomics risk score was shown to be an independent prognostic 
factor for GBM by cox univariate and multivariate analyses. The 
radiomics risk score was likewise the more important feature in the 
tree model-based feature importance ranking, suggesting that our 
constructed radiomics risk score can be used as a prognostic marker 
for GBM.

The CoxPH model is a classic approach to survival analysis and 
event prediction; however, the model is semi-parametric and assumes 
that the risk of an event is linearly related to the variables. Recently, 
tree-based models have received increasing attention from researchers 
in addressing the identification of multidimensional interactions. 
SurvivalTree is similar to decision trees because it is constructed by 
the recursive splitting of tree nodes. Compared to CoxPH, 
SurvivalTree is more relaxed in its requirements for survival 
information and does not require survival times to satisfy a specific 
distribution (21). RSF is a combination of random forest and 
SurvivalTree. The advantage of the RSF model is that it is not 
constrained by the assumptions of proportional risk and log-linearity 

(22). Also, it can prevent the overfitting problem of its algorithm 
through two random sampling processes (28). In our study, the 
SurvivalTree and the RSF model achieved a C-index of 0.70 or higher 
in the training set. However, as the survival tree model has fewer 
parameters available for adjustment and is not an integrated algorithm, 
it has a lower overall C-index. The IBS results for both models also 
showed that the RSF performed better. In addition, the AUC values 
for the cumulative survival times of the two models indicate a 
significant difference between the first and second half of the time 
horizon, with higher AUC values for the model in the first half of the 
time horizon and lower AUC values in the second half of the time 
horizon. Therefore, the models are most effective in predicting 
mid-term mortality.

Deep learning models can learn and infer higher-order nonlinear 
combinations between patient clinical outcomes and predictor 
variables in an entirely data-driven manner and have been shown to 
outperform standard survival analysis, with one advantage being the 
ability to discern complex relationships between clinical outcomes and 
predictor variables without prior feature selection (14). In this study, 
the DeepSurv model achieved the highest C-index in both the training 
and test set. At the same time, the overall C-index also indicated that 
the model was superior, suggesting that the deep learning-based 

FIGURE 4

Survival curves of the high and low risk groups by univariate Cox analysis. (A–D) represent age, KPS, radiomics risk level, and radiomics risk score, 
respectively.
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FIGURE 5

AUC plot of cumulative survival time and IBS diagram based on the tree model. (A) AUC results for the SurvivalTree model, (B) AUC results for the RSF 
model, (C) IBS results for the SurvivalTree model, (D) IBS results for the RSF model.

FIGURE 6

Feature importance ranking results. (A) Results of feature importance ranking for the SurvivalTree model, and (B) results of feature importance ranking 
for the RSF model.
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survival model outperformed the CoxPH and RSF models in 
predicting GBM survival. Previous deep learning prognostic models 
based on clinical risk factors achieved a C-index of 0.823 and 0.700 in 
the training and test set, respectively (17); the present study achieved 
0.882 and 0.667 in the training and test set, indicating the superior 
performance of the prognostic model based on radiomics features. 
Another deep learning model constructed in this study is DeepHit, 
which can directly learn the distribution of first death times and 
performs better in dealing with multiple competing risks (28). 
However, since the ending of this study is a dichotomous variable and 
there are no multiple competing risks, the performance of this model 
was not improved by hyperparameter tuning, and this model may not 
apply to our data structure.

There are limitations to this study. First, MRI images were 
collected retrospectively from the TCIA database, and the 
heterogeneity of different imaging parameters generated by different 
devices and field strengths could not be controlled. In addition, there 
was a relatively low number of patients in this study. Some patients 
also had incomplete clinical risk factors. Second, a large amount of 
redundant information in the sequence images leads to a considerable 
workload and subjectivity in manual segmentation. A more advanced 
approach is to use deep learning models such as CNN to learn features 
directly from images, which reduces the presence of subjectivity 
between the raters. Finally, to construct prognostic models, our study 
only extracted features from FLAIR images. In constructing the 
models, it did not make use of structural images or functional 
MRI techniques.

5 Conclusion

In conclusion, based on the TCGA and TCIA databases 
combined with a radiomics approach, this study confirmed that the 
DeepSurv model based on deep learning achieves better performance 
in GBM patient data compared to the CoxPH model. Based on the 
above-optimized model, a personalized treatment recommendation 
system for GBM can be  developed to predict patient 
prognosis accurately.
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Introduction: To improve comprehension of initial brain growth in wellness 
along with sickness, it is essential to precisely segment child brain magnetic 
resonance imaging (MRI) into white matter (WM) and gray matter (GM), along 
with cerebrospinal fluid (CSF). Nonetheless, in the isointense phase (6-8 months 
of age), the inborn myelination and development activities, WM along with GM 
display alike stages of intensity in both T1-weighted and T2-weighted MRI, making 
tissue segmentation extremely difficult.

Methods: The comprehensive review of studies related to isointense brain MRI 
segmentation approaches is highlighted in this publication. The main aim and 
contribution of this study is to aid researchers by providing a thorough review to 
make their search for isointense brain MRI segmentation easier. The systematic 
literature review is performed from four points of reference: (1) review of studies 
concerning isointense brain MRI segmentation; (2) research contribution and 
future works and limitations; (3) frequently applied evaluation metrics and 
datasets; (4) findings of this studies.

Results and discussion: The systemic review is performed on studies that were 
published in the period of 2012 to 2022. A total of 19 primary studies of isointense 
brain MRI segmentation were selected to report the research question stated in this 
review.

KEYWORDS

isointense infant brain, segmentation, deep learning, convolutional neural networks, 
magnetic resonance imaging

1 Introduction

In brain research, the precise separation of infant brain tissues into non-overlapping regions 
such as white matter (WM), gray matter (GM) and cerebrospinal fluid (CSF) is crucial for 
determining how the normal and abnormal development of the developing brain (1–3). The first 
year of life is the most dynamic period in the development of the human brain, with fast tissue 
growth and the emergence of a vast array of cognitive and physical abilities (4, 5). Major brain 
diseases that are difficult to treat, such as attention deficit hyperactivity disorder (ADHD), baby 
autism, bipolar affective disorder, and schizophrenia, may show up in the patient’s developing 
brain tissue (6). Therefore, it is important that brain structures are adequately segmented in 
new-born images. The aim of precise brain tissue image segmentation is to provide crucial 
information for clinical diagnostics, treatment assessments, analysing brain changes, enabling 
clinical preparations together with presenting image-guided interventions (7–9).

Thus far, magnetic resonance imaging (MRI) is the predominant technique for imaging baby 
brain, specifically T1-weighted and T2-weight MRI, because it is safe, non-invasive and attains 
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non-intrusive cross-sectional views of the brain in multiple contrast 
without ionizing radiation (10, 11). Compared to automated 
segmentation, manual segmentation is tremendously arduous and 
time-consuming assignment which compels a comprehensive 
expertise base of brain structure and impossible at large scale. In 
addition, manual segmentation experiences small reproducibility, 
which is highly inclined to errors due to inter or inter-operator 
unpredictability (7, 8, 12, 13). Therefore, precise and automatic 
segmentation methods are highly needed.

Infant brain MRI segmentation is recognized to be  far more 
challenging than adult brain segmentation (5), due to ongoing white 
matter myelination, significant partial volume effects, decreased tissue 
contrast (14), increased noise, and infant brain pictures (14, 15). In 
actuality, as depicted in Figure 1, there are three distinct phases in the 
first-year brain MRI (16). Gray matter exhibits a higher signal strength 
than white matter in T1-weighted images during (1) the infancy phase 
(5 months). The gray matter has the lowest signal differentiation with 
the white matter in both T1 and T2 imaging during the second 
isointense phase (6–9 months), in which the signal intensity of white 
matter is growing during development due to myelination and 
maturation process. The final stage is the early adult-like stage 
(9 months), where the distribution of gray matter intensity in T1 
images is significantly lower than that of white matter, resembling the 
pattern of tissue contrast in adult MRI (5, 16).

Furthermore, the intensity distributions of the voxels in the gray 
and white matter continue to heavily overlap in the isointense stage, 
particularly in the cortical areas, in this way driving to the least tissue 
differentiation and making the primary challenging for tissue 
segmentation, in relationship to pictures on previous stages of brain 
development (5, 16–18). Numerous efforts have been made in the past 
few years to segment the baby brain using MRI (4, 6, 11, 19–28).

Despite having an array of infant brain segmentation models, to 
determine which segmentation techniques are most frequently employed 
and in what combinations, there is a need to assess the body of literature 

as a whole using a systematic literature review paper. By doing this, the 
restrictions on personal searches for isointense brain MRI segmentation 
models would be lessened. What are the current isointense brain MRI 
segmentation algorithms, and what are the application challenges? Is the 
main research question leading this systematic literature review (SLR). 
As a result, the study’s goal is to examine isointense brain MRI 
segmentation models utilizing a literature review.

2 Literature review

As of late, deep learning techniques centred around convolutional 
neural networks (CNNs) have demonstrated exceptional execution 
around a range of computer visualization and photograph evaluation 
usages in the clinical space (16, 17, 29–32). CNNs have accomplished 
advanced outcomes in numerous brain segmentation tribulations 
(7, 8, 12, 33–36), including the subdivision of 6-moths old brain MRI 
(1, 11, 21, 22, 24, 25, 32, 37, 38).

Some researchers have refined many recognized CNNs, for 
example U-Net (36, 38, 39) and the DenseNet (11, 21, 24, 34), for 
brain MRI division on 6-months-old child (1, 40, 41). These methods 
improve the viable conveyance and combination of the semantic data 
in a multimodal characteristics and have accomplished enhanced 
functioning contrasted with common machine learning techniques 
(16, 17). Nevertheless, inadequacies however occur in the present 
CNN-based division techniques for child brain for example, previous 
models focus on enhancing network architecture for example 
modality blend (41) and interlayer links (37, 42), which requires 
seasoned expertise experience for network designing and the training 
turn out to be more challenging as the network amplifies the depth 
(21). Furthermore, hardware requirements for computing and 
memory escalates drastically as the depth increase (21). Combination 
of these methods for improved performance is also problematic due 
to the inconsistence network layouts, tedious hyper-parameter 

FIGURE 1

T1 and T2 weighted MRI images of a baby taken at various ages—2  weeks, 3, 6, 9, and 12  months. The MR images of infants around 6  months old (i.e., 
the isointense phase) show the lowest tissue contrast, indicating the most difficult tissue segmentation. The bottom row displays the equivalent tissue 
intensity distributions from T1w MR images, where the WM and GM intensities are heavily overlapping during the isointense period. Reprinted with 
permission from IEEE, Copyright © 2019 IEEE (16).
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alteration and extreme graphic processing unit (GPU) memory 
utilization (17).

3 Methodology

The process of finding and critically evaluating pertinent research, 
as well as gathering and analysing data from this research, is known 
as a systematic literature review, or SRL (43). A systematic review’s 
objective is to locate all empirical data that satisfies the inclusion 
criteria and provides an answer to a particular research question (43, 
44). Additionally, it takes time to separate the known from the 
unknown. That is a crucial justification for conducting SLRs in 
accordance with a set of clear-cut methodological stages (45). This 
study established a systematic literature review (SLR) on the 
segmentation of isointense brain MRI using the Preferred Reporting 
Items for Systematic Reviews and Meta-analyses (PRISMA). PRISMA 
is a well-known systematic review methodology that has been used in 
a variety of research domains, including the medical field (46), 
business (47) and safety mining (45). Because of its 27 evidence-based 
checklist and four-phase analysis, PRISMA is acceptable in the 
research area even if it is not a quality assessment approach. This 
allows systematic literature reviews (SLRs) to be clear and transparent 
(43, 48). Identification, screening, eligibility, and data abstraction and 
analysis are the four core PRISMA phases. This systematic review was 
conducted from 1 August 2022 to 31 December 2022.

3.1 Research question

This study assesses segmentation results of isointense brain MRI 
studies that have been conducted in the past. For the purpose of 
describing the systematic literature review, the following four research 
questions have been developed.

 • [RQ-1] What techniques have been used for isointense brain 
MRI segmentation in neurosciences?

 •  [RQ-1a] What are the existing isointense brain MRI 
segmentation machine learning algorithm?

 •  [RQ-1b] What evaluation metrics have been used to measure 
accuracy of the techniques?

 • [RQ-2] What are the characteristic of the dataset used in 
neurosciences for isointense brain MRI segmentation?

 • [RQ-3] What are the findings of isointense brain MRI 
segmentation in this study?

 • [RQ-4] What are the future works and limitations to ease the 
other researchers search for isointense brain MRI segmentation?

3.2 PRISMA phases

3.2.1 Identification
The identification stage is the first step in the systematic 

literature review (SLR) process. The study question and goals are 
clearly defined at this point. A widespread search study was 
executed using Web of Science (WoS) and Scopus. All significant 
publishers, including Science Direct, Emerald, Taylor & Francis, 
Springer Links, IEEE, and Willey, are included in the Scopus 
integrated database. Due to its high calibre indexing information, 
many academics have regarded the Scopus database as a 
trustworthy resource for SLR. All appropriate peer-reviewed 
articles published between 2012 and December 31, 2022, are 
included in the search. When looking for pertinent publications, 
use terms like “automatic isointense MRI brain segmentation,” 
“Image segmentation 6-month brain MRI,” “Infant brain tissue 
segmentation,” and “Segmentation neonatal brain MRI.” The 
Boolean operators are combined with various keywords to enlarge 
the search range 634 articles were obtained as a consequence of this 
method from the combined Scopus and Web of Science databases 
(Table 1).

3.2.2 Screening
The subsequent stage is the screening procedure, in which articles 

are included or excluded based on standards set by the writers. 
Tables 2–4 provide specifics regarding inclusion and exclusion. 
Following the identifying procedure, 634 articles needed to 
be screened. Duplications were identified and removed, and 580 for 
the title and abstract screening, articles were found. Relevant articles 
were forwarded to the candidate data. After reviewing all available 
literature, the candidate data set was reviewed, and the inclusion and 
exclusion criteria were used to populate the chosen data. The screening 
stage produced 167 publications that were only focused on isointense 
brain MRI segmentation and were published between January 2012 
and December 31, 2022. Journals that published systematic reviews, 
review papers, proceedings from conferences, book chapters, book 
series, and novels were not included. The goal is to concentrate on 
legitimate isointense brain MRI segmentation research.

3.2.3 Eligibility
The third phase is the eligibility procedure, in which articles 

are included or eliminated according to the precise standards set 
forth by the writers. Manual screening of literature with a focus 
on the segmentation of isointense brain MRI and the inclusion 
and exclusion criteria from previous screening processes. The 
review was able to collect 19 carefully chosen articles on 
isointense brain MRI segmentation.

TABLE 1 Keywords used in this research.

Automatic Image 
Segmentation construct

AND Group of participants’ 
construct

OR Characteristic of interest construct

“Automatic segmentation” OR “Isointense” OR “brain MRI” OR

“Image segmentation” OR “6-months” OR “brain MRI tissues” OR

“Brain tissue segmentation” OR “Infant” OR “white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF)” 

OR

“Segmentation” “Neonatal” OR “MRI brain tissues”
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3.2.4 Data abstraction and analysis
Data abstraction and analysis come last. The remaining 

publications were assessed, examined, and analysed, and 19 were 
chosen for in-depth discussion in this paper (see Table 5). Reviews 

were based on particular studies that addressed the study’s research 
issue and purpose. Then, by reviewing the article’s title, abstract, and 
full text, the studies were extracted to find pertinent themes for the 
current study. Figure 2 depicts a synopsis of the SLR procedure. In this 

TABLE 2 Literature inclusion criteria.

Number Criteria Inclusion

1 Primary Source Literature describes data collected and analysed by the authors and not based on the other research conclusion

2 Relevant topic Literature directly references isointense infant brain image segmentation and provide analysis of the proposed models and the 

metrics used to evaluate the models

3 Publication timeline January 2012 – December 2022

4 Review quality Literature is published in a peer-reviewed journal

5 Dataset used Studies that use iSeg-2017 and iSeg-2019 dataset.

6 Data quality Literature must show data sources are numerous enough, qualified enough and representative enough to avoid bias in qualitative 

literature.

TABLE 4 Quality assessment checklist adopted from Kitchenham et al. (49) as cited by Usman et al. (50).

NO# Question Score

1 Are the research aim clearly specified? Y|N|P

2 Was the study designed to achieve these aims? Y|N|P

3 Are the segmentation techniques clearly described? Y|N|P

4 Are the evaluation metrics used adequately described Y|N|P

5 Are all research question answered adequately? Y|N|P

6 Are negative (if any) presented? Y|N|P

7 Are datasets considered by the study? Y|N|P

8 Is the purpose of data analysis clear? Y|N|P

9 Do the researcher discuss any problems with validity/reliability of the results Y|N|P

10 How clear are the links between data interpretation and conclusion? Y|N|P

11 Are finding based on multiple projects Y|N|P

12 Are statistical techniques are used to analyse data adequately? Y|N|P

13 Are data collection method adequately described? Y|N|P

TABLE 3 Literature exclusion criteria.

Number Criteria Exclusion

1 Secondary Source Article is a secondary source. Secondary data can distort this analysis by presenting a single model with multiple results.

2 Irrelevant studies Literature that does not reference infant brain image segmentation, specifically isointense (6–8 months)

3 Publication timeline 2011 and before

4 Document type Journals (systematic review), review papers, conference proceedings, dissertations, these, white papers, incomplete bibliographic 

records, industry reports, others on the basis of relevance, chapters in a book, book series, books

5.1 Unavailability Literature is not available as a full-text article in the selected data source.

5.2 Literature not available in research data source at the time of data collection.

6.1 Inadmissible quality Literature is not published in a peer-reviewed journal.

6.2 Literature does not adequately or completely its methodology such that it cannot determined how the model was created and 

evaluated.

6.3 Literature were T1-weighted and T2-weight MRI are not used.

6.4 Literature were fetal MRI imaged was used. (0–5 months).

6.5 Literature were not all 3 tissues (WM, GM and CSF) are segmented.

7 Language Literature is not in English

8 Duplication Literature is a duplicate of other literature in the study.
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study, quality assessment was based on the checklist suggested and 
provided by Kitchenham et al. (49) as cited by Usman et al. (50). A 
three-point scale was used in this study which is Yes/ NO/ Partial. Yes 
(Y), represented 1, Partial represented 0.5, and NO represented 0, This 
study used first quartile as the cut-off point which is 3.25. If a study 
scored less than 3.25 it would be removed from the primary studies.

The scoring process was Y = 1, P = 0.5, N = 0.

4 Results

Below, you  will find a review of these 19 studies, with four 
categories of the methodologies that were examined. Knowledge-
driven segmentation methods are covered in the first section. These 
methods are based on the use of advanced knowledge of brain 
morphology, including information on the relative position, 
connection, and structure of brain tissue. The second section presents 
an approach atlas-based and patch-driven approach. Methods that 
primarily rely on propagated atlas labels, registration techniques for 
the best atlas alignment, and various label fusion techniques for multi-
atlas methods are all examples of atlas-based approaches. The third 
section presents machine learning methods such as random forest, 
k-nearest (kNN) neighbour and support vector machine (SVM). 
When a multi-class classifier is used to create a brain tissue probability 
map for each tissue type (i.e., WM, GM, CSF), these supervised 
algorithms are intrinsically well suited for multi-class challenges. 
Convolution neural network-based deep learning techniques are 
covered in the final section. In a variety of computer vision 
applications, including the segmentation of infant brain MRI, CNN 
has displayed exceptional achievements (42, 57).

4.1 Knowledge-based approach

By incorporating knowledge of tissue connectivity, structure, and 
relative placements (15), offer a brain MRI segmentation technique 
that is based on general and widely acknowledged knowledge of 
neonatal brain morphology. The authors, for instance, utilised 
knowledge that the extra-ventricular CSF surrounds the cerebral gray 
matter, which is itself surrounded by the cortical white matter. The 
outline in Figure  3 summarizes the segmentation algorithm’s five 
steps. The procedures involve removing the brain’s intracranial cavity 
and hemispheres, detecting subcortical gray matter, separating cortical 
gray matter, unmyelinated white matter, and CSF, segmenting the 
cerebellum and brain stem, and detecting unmyelinated white matter 
(15). An infant’s brain’s T1 and T2 MR scans served as the algorithm’s 
input data.

4.2 Atlas-based and patch-driven approach

The authors provide a basic framework for isointense new-born 
brain MRI segmentation that uses sparse representation to combine 
the information from multiple imaging modalities (5). The authors 
initially create a library made up of a collection of multi-modality 
images from the training subjects and the ground-truth segmentations 
that match to those images. T1 and T2 images as well as fractional 
anisotropy (FA) images make up multi-modality. The training library 
patches provide a sparse representation of each patch needed to 
segment a brain image. The generated sparse coefficients are then used 
to obtain the first segmentation. The initial segmentation will 
be further considered in light of the patch similarities between the 

TABLE 5 Summary of the 19 selected studies using PRISMA approach for isointense brain tissue segmentation.

Authors Techniques Modality Infantile
Development stage at scan

Early-Adult
Isointense

(15) - T1, T2 ✓

(20) K- Nearest Neighbour T1, T2 ✓ ✓

(5) Multi-Atlas T1, T2, FA ✓ ✓ ✓

(18) Random Forest T1, T2, FA ✓

(27) 2D CNN T1, T2, FA ✓

(25) SVM T1, T2 ✓

(51) Random Forest T1, T2 ✓

(2) 3D CNN T1, T2 ✓

(21) 3D CNN T1, T2 ✓

(24) 3D CNN T1, T2 ✓ ✓

(34) 3D CNN T1, T2 ✓

(6) FCN T1, T2 ✓

(52) 3D CNN T1, T2 ✓

(42) 3D CNN T1, T2 ✓

(53) CNN T1, T2 ✓ ✓

(54) 2D CNN T1, T2 ✓

(28) 3D FCN T1, T2 ✓ ✓

(55) 3D CNN T1, T2 ✓ ✓

(56) GAN T1, T2 ✓ ✓
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segmented testing picture and the manual segmentation (ground-
truth) in the library images in order to enforce the anatomical 
correctness of the segmentation (5). Figure 4 illustrates the tissue 
probability maps calculated using the suggested approach.

4.3 Machine learning approaches

A segmentation technique based on supervised pixel 
categorization is suggested by Anbeek et al. (20). Both spatial and 

intensity characteristics were provided for each voxel. Each brain 
voxel was classified into one of the eight tissue classes using the 
k-nearest neighbour (kNN) classifier based on these characteristics. 
A preterm cohort of 108 infants’ T1- and T2-weighted MR images 
were obtained at term equivalent age. The brainstem, cerebellum, 
cortical and central grey matter, unmyelinated and myelinated 
white matter, cerebrospinal fluid in the ventricles and in the extra 
cerebral space were all segmented into eight classes using an 
automatic probabilistic segmentation method. Using leave-one-out 
tests on seven photos for which a reference standard had been 

FIGURE 2

The step of PRISMA for the systematic literature review. Adapted with permission from Liberati et al. (43), licensed under CC BY.
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manually established by a subject matter expert, the approach was 
trained and evaluated (20). The approach was then used on the 
remaining 101 scans, and the segmentations that resulted were 
assessed visually by three specialists. The volumes of the eight 
groups of segmented tissue were then calculated for each 
subject (20).

A strategy based on learning, employing random forest classifier 
for infant brain MRI segmentation is proposed by Sanroma et al. (25), 
Wang et al. (51), and Wang et al. (18). The authors propose a novel 
learning-based multi-source integration architecture for segmentation 
(18), where the tissue segmentation challenge is formulated as a tissue 
categorization challenge. In particular, tissue probability maps for each 
tissue type can be produced via voxel-wise classification using the 
random forest classifier, which is naturally suited for multi-class 
situations. In order to completely capture both local and contextual 
picture information, a large amount of training data with high data 
dimensions can be handled by random forest. This allows for the 
exploration of a huge number of image features. Additionally, an 
anatomy-guided tissue segmentation for 6-month-old new-born brain 
MRIs with autism risk was presented by Wang et al. (51). Intensity 
images’ 3D Harr-like feature extract is input to a random forest 
classifier, which outputs a class classification. Figure 5 shows a training 
flowchart for a series of classifiers for WM versus GM. A combination 
of strategies is presented by Sanroma et al. (25) for infant brain MRI 
segmentation. The standard approaches include support vector 
machine (SVM) and multi-atlas joint label fusion, which serve as 
examples of registration-based methods. A collection of several 
annotated photos is necessary for both registration and learning-
based approaches.

4.4 Deep learning methods

As of late, deep learning techniques centred around convolutional 
neural networks (CNNs) have demonstrated exceptional execution 
around a range of computer visualization and photograph evaluation 
usages in the clinical space (30, 31, 35, 36, 39). Convolutional neural 
networks were used in the majority of the publications found through 
the systematic literature review study using the PRISMA approach; 12 
out of the 19 articles used CNNs.

4.4.1 Deep fully convolutional neural networks
Deep convolutional neural networks (CNN) are suggested for 

multi-modality MRI segmentation of isointense brain tissue (27). 
According to Figure 6, the authors created CNN architectures with 
three input feature maps for 13 × 13 T1, T2, and FA image patches. 
There are three convolutional layers and one fully connected layer 
used. Local response normalization and softmax layers were also used 
in this network.

It is advised that more research be done on deep convolutional 
neural networks and suggestive annotations for new-born brain 
MRI segmentation (42). This study uses an ensemble of semi-
dense fully convolution neural networks with T1- and T2-weighted 
MRI as the input to examine the issue. The study shows that there 
is a strong correlation between segmentation mistakes and 
ensemble agreement. The approach thus offers measurements that 
can direct local user corrections. The performance of deep 
architectures was also examined by the authors in relation to the 
effects that early or late fusion of various image modalities might 
have (42).

FIGURE 3

Outline of the segmentation algorithm. Reprinted with permission from Elsevier, Copyright © 2012 Elsevier (15).
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A fuzzy-informed deep learning segmentation guided network by 
pertinent principles, as well as building blocks to learn multimodal 
information from MRI images, are also proposed by Ding et al. (55). 
Figure  7 shows the architecture, which consists of three primary 

processing steps: deep supervision, fuzzy-enabled multi-scale 
learning, and image refinement. A volumetric fuzzy pooling layer 
applies fuzzification, accumulation, and de-fuzzification to the 
neighbourhoods of adjacency feature maps to mimic the local 

FIGURE 4

Tissue probability maps calculated using the suggested approach without and with the anatomical restriction, as well as with and without the sparse 
constraint. Reprinted with permission from Elsevier, Copyright © 2014 Elsevier (5).

FIGURE 5

Training flowchart for a series of classifiers for WM versus GM. Reprinted with permission from Wiley, Copyright © 2018 Wiley (51).
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fuzziness of the volumetric convolutional maps. To enable the 
extraction of brain characteristics in various receptive fields, the fuzzy-
enabled multiscale feature learning module is designed using the VFP 
layer. A fuzzified multichannel dense model for multimodal 
segmentation has also been introduced.

A powerful 2D convolutional network called Rubik-Net uses the 
bottleneck structure and residual connections to improve information 
transfer while requiring fewer network parameters. On the iSeg2017, 
iSeg2019, and BrainWeb datasets, the Rubik-Net demonstrated good 
results in terms of segmentation accuracy (54).

4.4.2 Hyper densely connected CNNs
Hyper-densely connected CNNs have been employed by Basnet 

et al. (53), Bui et al. (21), Dolz et al. (2), Hashemi et al. (34), and 
Qamar et al. (24) in isointense infant brain MRI segmentation. The 
idea of dense connection is extended to multi-modal segmentation 
problems by a 3D fully convolution neural network developed by 
Dolz et  al. (2). Each image modality has a path, and dense 
connections can be shown in Figure 8 for both airings of layers that 
are on the same path as one another as well as layers that are on 
distinct paths.

FIGURE 6

Convolutional neural network’s detailed architecture using inputs in patches that are 13 by 13 in size. Reprinted with permission from Elsevier, 
Copyright © 2015 Elsevier (27).

FIGURE 7

The structure of the fuzzy-guided framework that has been presented for multimodal brain MRI segmentation. Reprinted with permission from IEEE, 
Copyright © 2022 IEEE (55).
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A deep densely connected network called 3D FC-DenseNet has 
been suggested by Hashemi et  al. (34). Due to its early 
downsampling and late upsampling layers, the network in Figure 9 
has eight times the usual patch sizes (128 × 128 × 128 vs. 64 × 64 
× 64), more depth, skip connections, and parameters than 
its predecessors.

“Deeper is the better” concepts plays an important role in deep 
learning architecture (24). A hyper-densely connected convolution 

neural networks for segmentation of infant brain MRI is presented by 
Qamar et  al. (24). The suggested model offers close connections 
between layers to enhance the network’s flow information 
performance. The algorithm employs T1 and T2 as input. On the other 
hand (21), carefully designed a fully convolutional densely connected 
network with skip connections, allowing for the direct combination 
of data from various densities of dense blocks to produce extremely 
precise segmentation results.

FIGURE 8

In the case of two picture modalities, a portion of the proposed HyperDenseNet. Each area of gray stands for a convolutional block. Black arrows denote 
dense connections between feature maps, while red arrows represent convolutions. Reprinted with permission from IEEE, Copyright © 2019 IEEE (2).

FIGURE 9

The study’s 3D FC-DenseNet architecture uses a 222 convolution with stride 2 (purple) to downscale the input patch from 128  ×  128  ×  128 to 
64  ×  64  ×  64 in the first layer. The patch is upsampled from 64  ×  64  ×  64 to 128  ×  128  ×  128 using a 222 convolution transpose with stride 2 (red) before 
the activation layer. With the help of this deep architecture, we were able to overcome memory size restrictions with big input patches, retain a wide 
field of vision, and add five skip connections to enhance the flow of local and global feature data. Reprinted with permission from, licensed under  
CC BY-4.0 (34).
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4.4.3 Generative adversarial networks
A network known as a “generative adversarial network” (GAN) is 

made up of two networks: a generator (G) that creates a false image from 
a noise vector and a discriminator (D) that determines the difference 
between produced and real data (56). It is advised to use a multi-stage 
Generative Adversarial Network for image segmentation (56). The 
model creates a rough contour of the background and brain tissues in 
the first stage. The model then creates a more detailed contour for the 
white matter, gray matter, and cerebrospinal fluid in the subsequent 
stage. The performed fusion of the coarse and refined outliners.

4.4.4 UNet architecture
The UNet model is one of the most popular convolution neural 

networks (CNN) that have been successfully used to medical imaging 
tasks (38, 52, 53). Convolutional, pooling, and up-sampling layers make 
up the UNet model (52). An architecture for segmenting the baby brain 
is shown in Figure 10. The network has two paths: a downsampling 
encoder path and an upsampling decoder path. Reduced feature map 
resolution and increased receptive field are the goals of downsampling 
in the encoder path. The residual inception and upsampling blocks 
make up the up-sampling procedure in the decoder pipeline. 
Particularly, local features are found in the shallower layers, whereas 
global features are found in the deeper layers. For new-born brain 
segmentation, the concatenation of the several levels of upsampling 
feature maps enables the capture of multiple contextual information. 
To classify the concatenated features into the target classes (WG, GM, 
CSF), a classifier is made up of a Conv (1 × 1 × 1). The brain probability 
maps that were produced using the Softmax classifier (52).

On the other hand (53), proposed In order to partition the 
brain tissues into the three categories of white matter, gray 
matter, and cerebrospinal fluid, a novel 3D CNN architecture that 
is based on the U-Net structure is described. The basic idea 
behind the proposed method is to use residual skip-connections 
and densely connected convolutional layers, as shown in 
Figure 11, to reduce the number of parameters in the network, 
improve gradient flow, and increase representation capacity. In 
addition, the suggested network is trained using the loss 
functions, cross-entropy, dice similarity, and a combination of 
the two.

In addition, Triple Residual Multiscale Fully Convolutional 
Network, a deep network design based on U-Net, is suggested by 
Chen et al. (6). The model is composed of encoder and decoder 
process. Encoder procedure comprises: tradition 2D convolution, 
max-pooling and residual block while the decoder procedure 
comprises deconvolution, residuals multiscale block, concatenate 
block and traditional 2D convolution. Furthermore, APR-Net, a 
new 3D fully convolutional neural network for segmenting brain 
tissue, is presented by Zhuang et al. (28). The model is made up 
of several encoded streams and one decoded stream, three 
primary components make up APRNet: Multi-modal cross-
dimension attention modules, 3D anisotropic pyramidal 
convolutional reversible residual sequence modules, and the core 
of the APRNet.

The common evaluation metrics that were applied to the 19 
studies that were obtained for this analysis utilizing the PRISMA 
approach are detailed in the section that follows.

FIGURE 10

Segmentation of 3D MRI brain images using a suggested network design. In the suggested approach, DenseNet and Inception-ResNet are used 
concurrently. Reprinted with permission from Elsevier, Copyright © 2020 Elsevier (52).
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5 Evaluation metrics

To assess the accurateness of an automatic segmentation 
algorithm: Dice Similarity Coefficient (DSC) (58, 59), Modified 
Hausdorff distance (MHD), where the 95-th percentile of all 
Euclidean distance is utilized, along with Average Surface 
Distance (ASD). The initial method computes intensity of overlap 
amongst the segmented area together with the ground truth, 
while the additional two techniques estimate the border distances 
(2, 21).

19 out of 21 of the articles obtained from the PRISMA approach 
employed one or more of the evaluation metrics (DSC, MHD, and 
ASD). Table 6 presents a list of all 19 studies and the metrics applied 
to assess the results of an segmentation algorithm.

In addition, Dice Similarity Coefficient, Modified Hausdorff 
Distance, Average Surface Distance metrics were also employed by 
iSeg-2017 organizers to assess the accurateness of the contesting 
segmentation techniques (16, 17):

To measure the intersection amongst separations, outcome X 
together with ground truth Y, the Dice Similarity Coefficient is 
characterised as tails:

 
DSC X Y

X Y
=

Ç
+

2

 
(1)

where X and Y represent two segmentation labels created 
physically and computationally, correspondingly, |X| represents the 

FIGURE 11

Architecture of the proposed network. Reprinted with permission from Elsevier, Copyright © 2021 Elsevier (53).

TABLE 6 A list of evaluation metrics employed by the 19 selected articles using PRISMA approach.

Authors
Evaluation 
Metrics

Dataset DSC
WM GM CSF

MHD ASD DSC MHD ASD DSC MHD ASD

(15) Dice 0.94 0.92 0.84

(20) Dice 0.47 0.91 0.75

(5) Dice 0.89 0.87

(18) Dice, MHD NeoBrain12 0.86 0.88 0.92

(27) Dice, MHD 0.86 0.28 0.85 0.24 0.83 0.44

(25) Dice iSeg2017 0.97 0.90 0.95

(51) Dice, MHD NDAR 0.89 0.28 0.90 0.24 0.92 0.43

(2) Dice, MHD iSeg2017, MRBrainS13 0.89 1.78 6.03 0.86 1.34 6.19 0.83 2.26 7.31

(21) Dice, MHD, ASD iSeg2017 0.91 5.92 0.39 0.91 5.75 0.34 0.94 13.64 0.13

(24) Dice, MHD, ASD iSeg2017 0.90 6.88 0.39 0.92 5.63 0.31 0.96 9.00 0.11

(34) Dice, MHD, ASD iSeg2017 0.90 7.1 0.36 0.92 9.55 0.31 0.96 8.85 0.11

(6) iSeg2017

(52) Dice, MHD, ASD iSeg2017 0.91 6.56 0.37 0.92 5.75 0.31 0.96 9.23 0.13

(42) Dice, MHD, ASD iSeg2017 0.90 7.45 0.41 0.92 6.06 0.34 0.96 9.13 0.12

(53) Dice, MHD, ASD iSeg2017, IBSR18 0.90 6.77 0.39 0.91 5.94 0.32 0.95 9.20 0.11

(54) Dice, MHD, ASD iSeg2017, iSeg2019, 

IBSR, BrainWeb

0.86 8.92 0.53 0.81 8.17 0.53 0.82 11.6 0.53

(28) Dice, MHD, ASD iSeg2017, MRBrainS13 0.91 6.22 0.35 0.92 6.41 0.32 0.95 9.13 0.12

(55) Dice, MHD, ASD iSeg2017 0.92 6.21 0.29 0.93 5.24 0.28 0.96 7.66 0.09

(56) Dice iSeg2017, MRBrainS13 0.88 0.93 0.93
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amount of optimistic portions in the binary segmentation X, and 
X YÇ  is the amount of common optimistic elements by X together 

with Y. A bigger DICE reveals a greater intersection among the 
physical and projecting division regions. The threshold should not 
be greater than 1 (16, 17).

Allow R along with S be the series of voxels within the physical 
and predicative segmentation limit, correspondingly. A modified 
Hausdorff distance (MHD) is described as follows:

 
MHD R S h R S h S R, max , , ,( ) = ( ) ( ){ }  (2)

where h R S
N

d r S
c r r

, ,( ) = ( )
Î
å1  and d r S r sr R,( ) = -Î

min
  with  .  

representing the Euclidean distance. A lesser MHD coefficient implies 
bigger resemblance between manual and predictive segmentation 
contours (7, 60). The maximum MDH from set X to set Y is a max 
function defined as 95%.
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where SC  and SD signify the outside meshes of C and D, 
correspondingly. A lesser ASD number implies superior segmentation 
accuracy (17).

The performance comparison of this study was done using DCS, 
MHD and ASD, comparing it with previous studies (21, 24, 34, 42, 
52). This shows the room of improvement or lack of improvement of 
our study using different evaluation metrics. The evaluation metric 
employed are DSC, MHD, and ASD for white matter (WM). The most 
favourable results of DCS was which was highest was 0.97, achieved 
by Sanroma et al. (25) followed by Gui et al. (15) which obtained DSC 
value of 0.94. Other authors have results less than 0.94. Regarding 
MHD results, the most optimal results were obtained by Luan et al. 
(54), which identified a value of 8.92 (11) followed and obtained the 
results of 6.03.

In addition to that; DSC, MHD, and ASD were computed to 
identify gray Matter (GM). The most accuracy results were obtained 
for DSC are 0.93 (55, 56), MHD of 9.55 was obtained by Hashemi et al. 
(34). For ASD (11), achieved a value of 6.19. Furthermore, CSF 
accuracy was measured using DSC, MHD, and ASD. Pertaining DCS, 
the most favourable accuracy was 0.96 supported by Hashemi et al. 
(34), Qamar et al. (24), Qamar et al. (52), Dolz et al. (42), and Ding 
et al. (55). The most accuracy value of the metric MHD was 13.64 
which was supported by Bui et al. (21). The most favourable metric 
value for ASD was 7.31 which was supported by Dolz et al. (11).

The most promising algorithm is supported by Dolz et al. (11). 
Their study was produced most accuracy when using WM, GM, and 
CSF. Interestingly, no strategy had a statistically significant superior 
performance than all other methods for segmentation of WM, GM, 
and CSF across any parameter. For example (25), obtained the highest 
median in terms of DCS for white matter (WM). Nonetheless, the 
differences between their findings and those of (15) are not statistically 
significant. Furthermore, Dolz et al. (11) has the highest ASD values 

for both WM, GM, and CSF, but one of the lowest MDH medians for 
WM, GM, and CSF. As a result, there is no discernible, statistically 
significant difference with any other methods.

The following dataset were used by in the 19 studies selected using 
the PRISMA.

iSeg-2017 dataset is a publicly available to the research 
community1 consisting of 10 infant subjects (5 females and 5 male) 
with manual labels were provided for training and 13 infant subjects 
(7 females and 6 male) were provided for testing. However, manual 
labels for testing subjects are not provided (16). In addition, iSeg-2019 
challenge was done with the aim of promoting automatic segmentation 
algorithms on infant brain MRI from multiple sites, MR images from 
four different sites as training, validation, and testing datasets, 
respectively are available from https://iseg2019.web.unc.edu/.

Three separate image sets of premature babies are included in the 
NeoBrainS12 data set: (i) axial scans taken at 40 weeks corrected 
gestational age; (ii) coronal scans taken at 30 weeks corrected 
gestational age; and (iii) coronal scans taken at 40 weeks corrected 
gestational age. At the neonatal critical care unit of the University 
Medical Center Utrecht in the Netherlands, all scans were performed 
as part of routine clinical procedures. You  can get the remaining 
photos from the first two sets along with the appropriate manual 
annotations from the NeoBrainS12 website at http://www.miccai2012.
org and use them as training data (61).

MRBrainS13 challenge workshop at the Medical Image 
Computing and Computer Assisted Intervention (MICCAI) 
conference provided dataset consisting of 20 subjects (mean 
age ± SD = 71 ± 4 years, 10 males, 10 female) were selected from an 
ongoing Computational Intelligence and Neuroscience 3 cohort study 
of older (65–80 years of age) functionally independent individuals 
without a history of invalidating stroke or other brain diseases. This 
dataset is publicly available from http://www.miccai2013.org (62).

Along with magnetic resonance brain image data, the Internet 
Brain Segmentation Repository (IBSR) offers manually guided expert 
segmentation results. Its goal is to promote the analysis and 
advancement of segmentation techniques https://www.nitrc.org/
projects/ibsr.

Through data sharing, data harmonization, and the publication of 
study findings, the National Database for Autism study (NDAR), a 
research data repository supported by the National Institutes of Health 
(NIH), seeks to further the understanding of autism spectrum 
disorders (ASD). In addition, NDAR acts as a platform for the 
scientific community and a gateway to numerous additional research 
repositories, enabling data aggregation and secondary analysis. 
Dataset can be accessed from https://www.re3data.org/repository/
r3d100010717

6 Findings and limitation of the 
presented frameworks

The findings of this study and drawback of the concerned 
frameworks on isointense brain MRI segmentation can be seen in 
Table 6.

1 http://iseg2017.web.unc.edu
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6.1 Findings

Deep learning methods are popular in isointense brain MRI 
segmentation, specifically convolution neural networks. An interesting 
discovery is that 13 of the 19 studies obtained using PRISMA 
employed convolution neural networks. In addition, Dice similarity 
coefficient (DCS) was the most frequently used evaluation metrics, 
where 17 out of the 19 studies used DCS. Modified Hausdorff Distance 
(MHD) was also employed in 13 studies out of 19, while Average 
Surface Distance (ASD) was the least utilized evaluation metrics, 
where nine studies out of the 19 used it. Furthermore, the most 
commonly used dataset for training and testing was from MICCAI 
iSEG-2017 Grand Challenge on 6-month infant brain MRI 
segmentation as illustrated in Table 6. iSEG-2017 dataset is a publicly 
available to the research community2 consisting of 10 infant subjects 
(5 females and 5 male) with manual labels were provided for training 
and 13 infant subjects (7 females and 6 male) were provided for 
testing. However, manual labels for testing subjects are not provided.

6.2 Limitation of the presented frameworks

Limitations presented from the assessed frameworks included the 
omission of ensemble to improve the evaluation metrics. Another 
studies used Dice similarity coefficient (DCS) and did not compare it 
with Modified Hausdorff Distance (MHD) and Average Surface 
Distance (ASD) to provide better results. On the other hand, some 
authors applied DCS and MHD and did not compare it with ASD to 
provide better results. Wilcoxon signed-rank test with all-against-all 
was used to see whether any study performs noticeably better than the 
others in terms of DCS, MHD, and ASD. Surprisingly, no study was 
able to partition WM, GM, and CSF across all parameters (DCS, 
MHD, and ASD) with a substantial statistically significant 
performance advantage over all other studies. In order to detect the 
significant difference, ensemble techniques must be  employed in 
conjunction with CNN, and the segmentation error can decrease in 
order to improve the model. With minimal user interaction, this idea 
has the potential to deliver expert-level performance.

Most researchers do not focus on improving the accuracy of the 
model, reducing the amount of Rubik convolutional calculations, and 
using multi-axis information more efficiently (54). While other avoid 
image processing due to the lack of datasets (56). Researchers are 
lacking to integrate different deep fuzzy structures to model data 
ambiguity and further explore training of deep fuzzy models using 
incremental and reinforcement learning. In addition, comparison of 
the research and other study to evaluate performance of proposed 
architectures using other challenges to take advantage of multi-modal 
data was lacking in their studies (24). A large amount of researchers 
have focused on image recognition and classification, there is a lack of 
CNNs focusing on semantic image segmentation (11). Some emerging 
research approach such as FCNN minimize redundant convolution 
results in computation being more efficient. Also few researchers have 
focused on 3D CNN-ensemble learning strategy used to improve 
performance (42). To overcome the challenges, single non-linear 

2 See footnote 1.

convolutional can be  used. Lastly, this study considered paper 
published between 1st of January 2012 and 31st of December, 2022.

7 Limitation and future work

The limitation of this study come from fact that number of images 
in iSEG-2017 dataset is not enormous, it consists of only 10 
(T1-weighted and T2-weighted MRI) for training and 13 (T1 and T2 
MRI) for testing. In addition, the ground truth labels for the test 
instance are not available. In this study, both T1-weight and T2-weight 
MRI are studied. In future, only T1-weight or T2-weight MRI will 
be considered. In addition, accurate segmentation of child brain MRI 
is extremely difficult than grown-up brain segmentation, because of 
low tissue differentiate, excessive noise, continuing WM Mylenium, 
and uncompromising incomplete volume effects which makes tissues 
to remain miscategorised together with diminishing the exactness of 
the segmentation algorithm (14, 16, 63).

Most of the CNN models, experiments were performed on 
computational servers or CPU with a graphic processing unit (GPU) 
memory. Furthermore, similar article written by same authors were treated 
as separate paper based on different ideas of contribution (5, 18). Most 
dataset are already cleaned as secondary dataset, as a result, they contain 
lots of errors which can be minimized by re-cleaning the dataset. In the 
future, data augmentation could be applied to possible improve the results, 
by amplifying the size of the dataset. Furthermore, other evaluation metrics 
could be  utilized such Jaccard index which is also common for the 
evaluating of image segmentation tasks. The same algorithms selected in 
this study can be applied to adult brain MRI segmentation.

8 Conclusion

This systematic review investigates isointense brain MRI 
segmentation. An extensive literature search for relevant studies 
published in the period of 2012 to 2022 and finally identified 19 
primary studies that are pertaining to the four research questions 
(RQs) raised in this review. A summarized research approach of the 
existing literature along with the research contribution, evaluation 
metrics, datasets, finding and future recommendations to study 
isointense brain MRI segmentation models are described. The 
principle findings of this review are summarized as follows:

 • [RQ-1] The detailed review of infant brain MRI segmentation 
techniques and deep learning techniques has been deliberated in 
Section 4 and Sub-Section D of Section 4, respectively. The 
summarized review is examined in Table 5.

 • [RQ-2] Section 5 of this study reviews datasets. Table 6 presents 
the evaluation metrics and the most frequently used dataset for 
isointense brain MRI segmentation.

 • [RQ-3] It has been observed that deep learning techniques are 
popular in isointense brain MRI segmentation. Thirteen out of 
the nineteen studies used convolutional neural network and Dice 
Similarity Coefficient is also the most used evaluation metric 
from the presented frameworks.

 • [RQ-4] Future works and limitations from researcher play a vital role 
to explore further research in a relevant domain. To answer this RQ, 
the limitations and future works of deep learning technique and 
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evaluation metrics is discussed in Section 6 and 8, respectively. It was 
found that most studies recommended the use of data augmentation 
to amplify the size of the dataset, which could possibly improve 
the results.
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Introduction: The echocardiographic measurement of left ventricular ejection 
fraction (LVEF) is fundamental to the diagnosis and classification of patients with 
heart failure (HF).

Methods: This paper aimed to quantify LVEF automatically and accurately with 
the proposed pipeline method based on deep neural networks and ensemble 
learning. Within the pipeline, an Atrous Convolutional Neural Network (ACNN) 
was first trained to segment the left ventricle (LV), before employing the area-
length formulation based on the ellipsoid single-plane model to calculate LVEF 
values. This formulation required inputs of LV area, derived from segmentation 
using an improved Jeffrey’s method, as well as LV length, derived from a novel 
ensemble learning model. To further improve the pipeline’s accuracy, an 
automated peak detection algorithm was used to identify end-diastolic and 
end-systolic frames, avoiding issues with human error. Subsequently, single-
beat LVEF values were averaged across all cardiac cycles to obtain the final LVEF.

Results: This method was developed and internally validated in an open-
source dataset containing 10,030 echocardiograms. The Pearson’s correlation 
coefficient was 0.83 for LVEF prediction compared to expert human analysis  
(p < 0.001), with a subsequent area under the receiver operator curve (AUROC) of 
0.98 (95% confidence interval 0.97 to 0.99) for categorisation of HF with reduced 
ejection (HFrEF; LVEF<40%). In an external dataset with 200 echocardiograms, 
this method achieved an AUC of 0.90 (95% confidence interval 0.88 to 0.91) for 
HFrEF assessment.

Conclusion: The automated neural network-based calculation of LVEF is 
comparable to expert clinicians performing time-consuming, frame-by-frame 
manual evaluations of cardiac systolic function.
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1 Introduction

Heart failure (HF) is a common and increasingly prevalent 
condition that results in profound burdens on patients, healthcare 
services, and society (1). It is not a single pathological diagnosis but 
rather a clinical syndrome consisting of cardinal symptoms, typical 
signs on clinical examination, and evidence of impairment of either 
systolic or diastolic function on cardiac imaging (2). HF is divided into 
distinct phenotypes based primarily on the measurement of systolic 
left ventricular ejection fraction (LVEF): HF with reduced LVEF 
(HFrEF, LVEF<40%); HF with mildly reduced ejection fraction 
(HFmrEF, LVEF 40–49%); and HF with preserved ejection fraction 
(HFpEF, LVEF > = 50%) (2, 3).

Echocardiography is one of the most widely used diagnostic 
techniques in cardiology and is the first-line imaging modality for 
suspected cardiac pathology due to its availability and portability. The 
standard method to quantify LVEF using echocardiography as per 
recommendations from the American Society of Echocardiography 
(ASE) and the European Association of Cardiovascular Imaging 
(EACVI) is to first calculate left ventricular end-diastolic volumes 
(LVEDVs) and end-systolic volumes (LVESVs) using Simpson’s biplane 
method of multiple discs (4, 5). Practically, this method requires 
sonographers or cardiologists to visually identify LVED and LVES frames 
from a given cine video, which is both time-consuming and prone to 
error. There is significant intra- and inter-observer variability in LVEF 
quantification as a result of poor image quality (the endocardial border 
is often not well seen) and variable cardiac cycle lengths, for example, due 
to arrhythmias such as atrial fibrillation (AF) (6, 7). To ensure 
reproducible measurements of LVEF are obtained, it is recommended to 
average three cardiac cycles for patients in sinus rhythm and 5 to 10 
cardiac cycles in AF. These recommendations require substantial 
training, are rarely followed in clinical practice, and are based on 
consensus opinion only; the available data show that even best practice 
is time-consuming and poorly reproducible (4, 8).

To make the calculation of LVEF more efficient and accurate, this 
paper makes four novel contributions: (1) proposing a new pipeline 
method to provide comprehensive, transparent details on the calculation 
of LVEF, which might be more acceptable to clinicians and cardiologists 
(9); (2) following the recommendation by the ASE and EACVI to average 
LVEF values across all automatically identified cycles for each apical 4 
chamber (A4C) echocardiogram; (3) visualising the LV across the full 
cardiac cycle in a given echocardiogram, which is useful as an 
instantaneous summary of beat-to-beat volumetric differences, including 
the impact of arrhythmias such as AF (10, 11); and (4) the capacity to 
predict highly accurate LVEF values at scale without relying on manual 
approaches that have high workforce requirements.

2 Methods

This project used an overall framework of transparency, as 
developed by the cardAIc group (Application of Artificial Intelligence 
to Routine Healthcare Data to Benefit Patients with Cardiovascular 

Disease) and the BigData@Heart Consortium (1). Reporting follows 
the DECIDE-AI approach for clinical evaluation of decision support 
systems driven by artificial intelligence (see supplementary file for 
DECIDE-AI checklist) (12, 13).

2.1 Datasets

Two open datasets were used in this project, and both of them 
have obtained ethical approval (13, 14). One is the Stanford dataset 
with 10,030 A4C 2D grey-scale echocardiogram videos, each of which 
represented a unique individual who underwent echocardiogram 
between 2006 and 2018 as part of clinical care; another one is the 
CAMUS dataset with 450 A4C view sequences, acquired with different 
ultrasound scanners at the University Hospital of St Etienne (France). 
For both datasets, labels for each video included the location of the left 
ventricle (LV) endocardium (Figures  1A,D), LVEF, LVESV, and 
LVEDV, which were given by cardiologist experts in the standard 
clinical workflow. Note that the estimation of LV ejection fraction 
values was based on Simpson’s biplane method of discs. For the 
Stanford dataset, the LV endocardium in ED or ES frames was marked 
with 42 coordinates, as shown in Figure  1A. More details were 
supplied in Appendix B of the Supplementary file.

2.2 Al system

2.2.1 Methodology
In this article, the proposed pipeline consisted of three steps to 

assess patients with HFrEF using their corresponding echocardiogram 
cine in the A4C view (Figure 2A). First, an atrous convolutional neural 
network (ACNN) was used to segment the LV in each frame of a given 
video. Based on the segmentation mask, information as shown in 
Figure 1C, including LV area, LV width, and LV height, was extracted. 
In addition to segmentation, all ED and ES frames were identified in 
each video for further beat-to-beat analysis. Second, with the results 
computed from step 1, an ensemble learning model was developed to 
predict the LV length, which was then combined with the LV area to 
compute LV volumes at ED and ES frames. Based on these LV 
volumes, the final LVEF was computed (see formulas below). Next, 
whether a patient has HFrEF was determined based on the LVEF 
value from Step 2, defined as LVEF <40% (2, 3). In addition, a beat-
to-beat visualiser was provided based on segmentation results to 
provide an instantaneous summary of beat-to-beat volumetric 
differences as a result of the heart rhythm.

2.2.2 Inputs and outputs
The segmentation model required frames or arrays as input, as 

shown in Figure  2B, with a size of 112×112. Therefore, data 
preprocessing was carried out before training the pipeline, as 
described in Appendix B. This pipeline could generate two kinds of 
outputs, as shown in Figure 2C. One was the segmentation results, 
which would be displayed in video format for cardiologists to visualise 
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LV areas across the full cardiac cycle in a given echocardiogram. 
Another one was the beat-to-beat visualiser, which could be used to 
visualise the heartbeats and present the LVEF values for each cardiac 

cycle, along with their average for all cycles. Moreover, based on the 
LVEF from the all-cycle method, the result of the HF phenotype 
classification was presented in the visualiser.

FIGURE 1

(A–C) were from the Stanford dataset; (D) the CAMUS dataset. (A) human-labelled coordinate points in one frame. A Euclidean distance between two 
pink points was the LV length; (B) mask generated from these coordinate points, which was used for training our segmentation network; (C) LV area, LV 
widths, LV heights, and LV length; and (D) annotations included information including the left ventricle endocardium, the left ventricle myocardium, 
and the left atrium.

FIGURE 2

(A) Flowchart of the pipeline. There were three main steps, including LV segmentation, LVEF calculation, and HFrEF assessment. The area information 
from segmentation could also be used for ED and ES identification, beat-to-beat analysis of the heart, as well as visualising changes in volume (for 
example, due to an arrhythmia such as atrial fibrillation). ED  =  end diastole; ES  =  end systole; HFrEF  =  heart failure with reduced LVEF; LV  =  left ventricle; 
LVEF  =  left ventricular ejection fraction. (B) Input of the pipeline. (C) Proposed AI system. (D) Output information, including the segmentation result and 
the beat-to-beat visualiser. The calculated LVEF values are presented in this visualiser, along with the results of the HF phenotype classification. 
(E) outcome.
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2.3 Implementation

In the proposed pipeline, the ellipsoid single-plane model (area-
length method) was used to calculate LVEF (15), which was defined 
in Eq. 1.

 
v A

L
= ×
8

3

2

π  
(1)

In Eq. 1, A denoted the LV area, L represented the LV length 
(the distance from the apex to the midpoint of the annular plane), 
and V stood for the volume of LV. With this equation, it was 
possible to compute the end-diastolic volume (EDV) and 
end-systolic volume (ESV) of the LV, based on which LVEF is 
calculated as follows:
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Note that information from all cardiac cycles was used and that N 
here was the available number of cardiac cycles in a video.

2.3.1 LV area
In this project, a segmentation network, shown in Figure 3, was 

used to detect the LV contours first, and then LV areas at ED or ES 
phases were computed fairly easily by counting the number of pixels 
from a corresponding binary mask predicted from the trained 
segmentation model. The proposed network combined ResNet-50, 
atrous convolutions, and atrous spatial pyramid pooling (ASPP) to 
extract feature maps and capture long-range context information in 
the image (16, 17). It was trained first on the training set of the 
Stanford dataset, and the built-in hyperparameters were tuned on its 
validation set. After the network had been trained, it was directly 
deployed to segment all frames in each video in the test set of the 
Stanford dataset and then to present the trained model performance 

by calculating the DSC between predicted masks and labelled masks 
at given ED and ES only. In addition, this trained model was fine-
tuned in the training and validation sets of the CAMUS dataset and 
evaluated in its testing dataset. More details about the architecture, 
settings, and training procedure of the model are provided in 
Appendix C.

2.3.2 LV length
LV length was defined as the Euclidean distance from the 

midpoint of the annular plane to the apex in the apical four-
chamber view (18). Given that there is a correlation between the 
width, the height, and the area of the polygon (representing the LV 
shape), as shown in Figure  1C, a regression model based on 
ensemble learning (Figure  4) was developed to predict the LV 
length, which consists of four base regression models including 
Extra Trees (ETs) (19), Adaboosting (AD) (20), Lasso (21), and a 
stacking algorithm combining Ridge (22), K-nearest neighbours 
(KNNs) (23), and Gradient Boosting Decision Tree (GBDT) (24). 
This ensemble model was trained using the validation set of the 
Stanford dataset, and its accuracy was reported on both the 
validation and test sets of the Stanford dataset. The k-fold cross-
validation (25) and the R2 score (26) were used to evaluate the 
proposed model compared with other regression models. The 
analysis of variance (ANOVA) test was conducted to prove a 
significant difference between the proposed model and other 
comparative models (27). In addition, Pearson’s correlation 
coefficient (rcorr) and p-value were used to show the trained model’s 
performance on the test set of the Stanford dataset (28). More 
details are supplied in Appendix D.

2.3.3 ED and ES identification
To detect all ED and ES phases in a given video, the peak detection 

algorithm was used, taking as input the LV areas across all cardiac 
cycles in the video. The frame with the biggest LV area represents the 
ED phase, whilst the frame with the smallest LV area represents the 

FIGURE 3

Overall segmentation architecture. The segmentation network combined ResNet-50 (A), atrous convolutions, and atrous spatial pyramid pooling 
(ASPP) (B) to resample features at different scales and to capture multi-scale information. As an example, p0, r2, and s1 in the figure denote 
padding  =  0, atrous convolution with rate  =  2, and stride  =  1, respectively.
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ES phase. For each echocardiogram video, there are often multiple 
cardiac cycles. In order to identify all cardiac cycles, two parameters 
were defined for this algorithm. The first one was the horizontal 
stepsize, which was set to 20 to ensure the effective capture of all 
cardiac cycles (Figure 5A). Another parameter was the prominence 
value, which was set to be higher than 50% of the global maximum 
minus the global minimum to assume the true peaks were located 
within half of the range between the maximum and minimum values 
(ROI 1 in Figure 5A). Appendix E of the Supplementary file explains 
the parameter settings.

2.4 Outcomes

The main objective of this project was to determine LVEF, which 
is a measurement of LV systolic function utilised for HF phenotype 
classification. As a secondary outcome, this project conducted a 
classification task based on LVEF <40%, as previously calculated, using 
all cardiac cycles to detect HFrEF samples from the test sets of both the 
Stanford and CAMUS datasets (2, 3). In addition, with the computed 
LV areas and the identified ED as well as ES phases in Section 3.3, the 
beat-to-beat visualiser could be plotted with a 1D curve, where on the 
vertical axis it showed LV areas whilst on the horizontal axis it displayed 

frame numbers. This curve could be used to visualise the heartbeats 
and carry out the beat-to-beat analysis of the heart.

2.4.1 Safety and errors
Though the proposed segmentation network was quite accurate 

(0.922 dice similarity coefficient on the test set), there were still errors 
in deriving the LV area due to noise. This may affect the accuracy of 
the LVEF, which could result in the misclassification of HF and lead 
to the implementation of inappropriate treatment approaches (29). To 
further improve the performance, one method inspired by Jeffrey’s 
method was proposed to fine-tune the network prediction (30). 
Instead of directly selecting the 90th and 10th percentiles of the left 
ventricular areas to serve as LVED and LVES areas, the improved 
Jeffrey’s method also required averaging the top 10% ROI 1 and the 
top 10% ROI 2 in Figure 5B.

Using LV area at ED as an example, the improved Jeffrey’s method 
consisted of four steps: (1) computing the LV area at ED at a specific 
(e.g., second) cardiac cycle (indicated by the second red pentagram in 
Figure 5B); (2) computing the LV areas for each frame and sorting 
them according to the calculated LV areas in descending order, then 
selecting the top 10% of this sorted sequence (as indicated by top ROI 
1 in Figure 5B); (3) sorting the frames between ED and ES within that 
specific (e.g., second) cardiac cycle (indicated by top ROI 2  in 

FIGURE 4

Ensemble learning model: including Extra Tree (ET), AdaBoosting (AD), Lasso, and a stacking algorithm combining Ridge, K-nearest neighbours (KNNs), 
and Gradient Boosting Decision Tree (GBDT). The predicted LV lengths from these regressors were finally ensembled by a voting mechanism.

FIGURE 5

(A) Three scenarios are used for selecting true peaks, which are identified as ED and ES phases. (B) Improved Jeffrey’s method used to fine-tune LV 
areas computed from segmentation. Here, three parts were averaged to compute the final LV areas at ED or ES.
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Figure  5B), and then selecting the top  10% of LV areas; and (4) 
averaging all these selected areas to compute the final area of LV at 
ED. For the LV area at ES, a similar method was used, but using 
descending order for sorting. The improved Jeffrey’s method was able 
to exclude outliers from segmentation effectively and thus improve the 
accuracy of predicted LVEF significantly, as shown in Figures 6A,B.

2.4.2 Analysis methods
To evaluate the accuracy of computed LVEF, Pearson’s correlation 

coefficient (rcorr) was used to show the correlation between calculated 
LVEF values and those provided in the respective test set (28). 
Additionally, the p-value was used to measure whether the observed 
correlation coefficient is statistically significant. Furthermore, student’s 
t-test was used to determine whether there was a significant difference 
between the results from the one-cycle method and those from the 
all-cycle method. In order to evaluate the HFrEF classification, ROC 
curves with respective AUC values were plotted to compare the 
predictions with benchmark methods, which can assess the performance 
and discriminative ability of the classification model (31, 32). The 
confusion matrix was also used to visualise the performance of the 
proposed algorithm, showing how well the model was performing in 

terms of correctly predicting the target variable (33, 34). This is 
particularly important because false negatives can lead to missed 
diagnoses or delayed treatment, highlighting their significance in 
medical decision-making. The confidence intervals were calculated by 
generating 100 bootstrapped samples and obtaining 95 percentile ranges 
for each prediction, aiming to estimate the level of uncertainty associated 
with the model’s predictions.

3 Results

The proposed pipeline was trained and validated using the 
Stanford dataset (7,465 and 1,288 patients, respectively). The final 
analysis included 1,270 patients, of whom 8% (106) had LVEF <40%. 
Iteration and external validation used the CAMUS dataset of 200 
patients, of which 66 (33%) had LVEF <40%, 62 (31%) were women, 
and the average age was 64.9 years. Image quality for echocardiography 
in the CAMUS dataset was reported as good in 113 patients  
(57%), adequate in 65 patients (32%), and poor in 22 patients (11%). 
Further details on patient characteristics are summarised in 
Supplementary Table S1 in Appendix B.

FIGURE 6

Correlation plots. (A–D) Results from the Stanford dataset, whilst (E,F) from the CAMUS dataset. (A) Correlation between LVEF values derived from 
segmentation results directly and those labelled by an experienced clinician. (B) Correlation between LVEF values derived from the proposed 
Jeffrey’s method and those labelled by the clinician. (C) Correlation between LVEF values computed from a single cardiac cycle and labelled LVEF 
values. (D) Correlation between LVEF values computed from all cardiac cycles and labelled LVEF values. (E) Correlation between LVEF values derived 
from fine-tuned segmentation results and labelled LVEF values. (F) Correlation between LVEF values derived from the improved Jeffrey’s method 
and labelled LVEF values.
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3.1 Accuracy of automated LVEF 
calculation

The automated method to compute LVEF given in formulation (2) 
was assessed in three experiments based on the segmentation network 
and LV length model that were trained and elaborated upon in 
Appendices C,D of the Supplementary file.

3.1.1 Experiment 1
The alternative hypothesis was that Jeffrey’s method proposed in 

Section 3.4 could improve the performance of computing LVEF. For 
this, the ED and ES frames provided in the test set of the Stanford 
dataset were used. For each sample in the test set, LV lengths were 
predicted by the proposed voting ensemble learning model already 
trained in Section 4.2. LV areas were predicted by two methods: one 
was to deploy the trained network to segment their ED and ES frames 
and then count the number of pixels in the segmentation masks, and 
the other was the improved Jeffrey’s method. As shown in 
Figures 6A,B, these two sub-figures showed that the LVEF values 
derived from segmentation directly had a rcorr value of 0.77 (p-value 
<0.0001, 95% CI 0.74 to 0.80) with respect to these LVEF values 
provided in the test set. The correlation could be boosted to 0.84 (p-
value <0.0001, 95% CI 0.82 to 0.86) when using the improved Jeffrey’s 
method to compute LV areas. This experiment showed that it was 
necessary to fine-tune LV areas after segmentation using the proposed 
Jeffrey’s method, which improves the accuracy of the resulting LVEF 
with a t-value less than 0.0001.

3.1.2 Experiment 2
The alternative hypothesis was that LVEF computed by averaging 

across all cardiac cycles (i.e., our Eq. 2 where N > 1) was more accurate 
than that from only a single cardiac cycle (i.e., the Eq. 2 where N = 1), 
where the reference was human estimates of LVEF. First, the proposed 
peak detection algorithm was used to identify all ED and ES phases 
in a given echocardiogram video from the test set of the Stanford 

dataset. For the former method, the first paired ED and ES frames 
were selected as a cycle and then computed LVEF. For the latter 
method, all identified cycles were used to compute an averaged LVEF 
value using (2) for this video (85% of the videos contain more than 
three cardiac cycles). As shown in Figures 6C,D, the LVEF values 
derived from single cycles (rcorr = 0.77, p-value = 0.01, 95% CI 0.75 to 
0.80) were less accurate than those derived from all cycles (rcorr = 0.83, 
p-value <0.0001, 95% CI 0.81 to 0.85), when referring to these LVEF 
values provided in the test set (t-value <0.0001). Furthermore, if the 
second cycle was selected to compute LVEF, their respective rcorr value 
could be boosted to 0.78 (p-value <0.0001, 95% CI 0.78 to 0.80), still 
inferior to the proposed all-cycle method (t-value <0.0001).

3.1.3 Experiment 3
The alternative hypothesis was that the performance of the model 

would be retained in an external dataset (the test set of the CAMUS 
dataset). To predict LV areas, the segmentation network trained from 
the Stanford dataset was fine-tuned on the training set of the CAMUS 
dataset, and then it was deployed on the test set of CAMUS. To predict 
LV lengths, the voting ensemble learning model trained from the 
Stanford dataset was deployed directly on the test set of CAMUS. As 
shown in Figures  6E,F, it could be  seen that the rcorr value was 
improved from 0.74 (p-value <0.0001, 95% CI 0.68 to 0.78) to 0.79 
(p-value <0.0001, 95% CI 0.74 to 0.84) before and after applying for 
the proposed Jeffrey’s method.

3.2 Classification of patients with HFrEF

Current HFrEF terminology was used as guidance to detect HFrEF 
samples from the test sets of both the Stanford and CAMUS datasets 
based on their LVEF predicted in Section 4.3.1. ROC curves were 
plotted, and their AUC values were computed in Figure 7A. Amongst 
these curves (see the plot legend), the first two were obtained on the 
Stanford dataset, and the last two on the CAMUS. The proposed 

FIGURE 7

HFrEF assessment results. (A) ROC curves of different methods, each having an AUC value. (B) and (C) Confusion matrices computed from the 
Stanford and CAMUS datasets, respectively.
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all-cycle method achieved an AUC value of 0.98 (95% confidence 
interval: 0.97 to 0.99) in the internal validation (Stanford dataset). On 
external validation using the CAMUS dataset, the AUC was 0.90 (95% 
confidence interval 0.88 to 0.91), as shown in Table 1.

In addition, the confusion metric was presented to further 
evaluate the accuracy of the proposed methods. Figures 7B,C show the 
results from the test sets of the Stanford dataset and CAMUS, 
respectively. For the Stanford dataset, there were 1,270 samples in its 
test set, of which 97% were classified correctly. There were 12 that were 
not HFrEF samples, but the classifier classified them as HFrEF. There 
were 33 HFrEF samples, but the classifier classified them as 
non-HFrEF. With regards to the confusion metric for CAMUS, the 
proposed method predicted 78 non-HFrEF as HFrEF patients, but 
only two with HFrEF were mistaken as non-HFrEF.

3.3 Beat-to-beat visualiser

A beat-to-beat visualiser was provided as the output for diagnostic 
purposes, in addition to the quantitative results given in the previous 
sections. Based on the computed LV areas and the identified ED as 
well as ES phases, two beat-to-beat visualisers are presented in 
Figures 8A,B, which were used to provide an overview of LV volumes 
across all cardiac cycles and provide an instantaneous summary of 
beat-to-beat volumetric differences as a result of sinus or pathological 
arrhythmias. In Figure 8A, there was a similar gap between the ED 
and ES frames, which was the sample with a normal sinus rhythm in 
heartbeats. Figure 8B was a sample marked as a patient with AF by the 
dataset publisher. This figure showed that the sample had irregular 
heartbeats, and the gap between the ED and ES frames varied across 
all cardiac cycles. These examples provided a visualisation of hearts 
having different conditions.

4 Discussion

This project proposed a novel pipeline method to assess cardiac 
function that achieved state-of-the-art results. It involved training a 
weakly supervised algorithm to identify the LV using expert tracings, 
followed by using an ellipsoid single-plane model to determine LVEF 
values. This pipeline outperformed previous attempts that relied on 
segmentation-based deep learning methods (30). Furthermore, its 
performance in predicting the LVEF values was robust when applied 
to an external dataset of echocardiogram sequences from an 
independent medical centre. As a result, this pipeline could have the 
potential to assist clinicians in achieving a more precise and 
reproducible assessment of cardiac function and could have the 
capability to identify subtle changes in LVEF beyond the precision of 
human readers.

One difference between the proposed pipeline and human 
evaluation was the method of calculating LVEF, where the pipeline 

was based on beat-to-beat evaluation across numerous cardiac 
cycles, whilst the typical clinical approach is to take just one 
representative beat. The process of tracing three or five beats is not 
commonly performed in routine practice due to the labour-
intensive and time-consuming nature of the task. By automating the 
segmentation task, the proposed pipeline reduced the labour 
involved in assessing cardiac function and allowed for more 
frequent and accurate evaluations.

Two examples from the test set of the Stanford dataset are presented 
in Figures 8C,D to further explain the reason for using the all-cycle 
method. As can be seen, there were three cardiac cycles in Figure 8C, 
with three LVEF values being 63.53, 62.86, and 63.50%, respectively. In 
this case, calculating LVEF from any cycle would not make a significant 
difference. In Figure  8D, there were also three cycles, with the 
corresponding LVEF values being 53.68, 51.28, and 45.30%, respectively. 
If using the third cycle to compute LVEF, it would end up identifying this 
sample with HFmrEF, which would result in a true negative classification. 
Using the all-cycle method, the LVEF value was 50.09%, with which it 
was able to classify this sample correctly as HFpEF. Therefore, some 
recent studies based on only single-cycle information rather than 
all-cycle information might lead to reduced reliability and accuracy in 
diagnosing patients with systolic HF (14, 30, 35–37).

Another difference was that the pipeline relied on the machine to 
identify LV contours and ED as well as ES frames, which had the 
capability of computing LVEF more accurately. For example, in 
Figure 8D, with pink ED and ES, the LVEF value is 46.98% (HFmrEF), 
whilst with the corresponding green ED and ES, the LVEF value is 
51.28% (HFpEF). According to the Stanford dataset publisher, this 
sample should have an LVEF value above 50% (38). Clearly, this 
method computed a correct LVEF, proving the effectiveness of the 
proposed peak detection algorithm, whilst labelling ED and ES 
incorrectly would result in an incorrect LVEF. This means the ground 
truth LVEF values used to train the network may already 
be inaccurate for some regression methods due to the fact that the 
selection of ED and ES frames might be incorrect and that only one 
cycle was used to calculate LVEF in practice rather than using three 
or five consecutive cardiac cycles as per the ASE recommendation. 
Therefore, if some regression methods used these incorrect labels to 
train models, their prediction and evaluation accuracy could 
be degraded and biased (38–41). However, the automated methods 
in this study had no such issues and therefore were better than direct 
regression methods.

One limitation of the validation was the relatively small sample 
size of the CAMUS dataset (only 200 samples were used for fine-
tuning the network). However, the results of the LVEF were still 
robustly accurate when applying this learned model to the CAMUS 
dataset originating from a different site and time interval. Another 
limitation was the inability to use Simpson’s biplane method 
(measurement of LVEF using both A4C and apical 2-chamber views), 
as recommended by ASE and EACVI, due to the Stanford Echo-
Dynamic dataset only providing A4C views (15, 42). Instead, the 
area-length formulation was used based on the ellipsoid single-plane 
model, which still showed an excellent correlation with human-
labelled LVEF calculated with Simpson’s biplane (r = 0.99; p < 0.0001; 
mean absolute error 4.4%). Furthermore, the proposed approach 
could easily be modified to take into account the biplane method of 
LVEF calculation, with LV areas for both views derived from two 
separate segmentation methods (ACNN and the improved Jeffrey’s 

TABLE 1 HFrEF assessment results using AUC values with a confidence 
interval of 95%.

Stanford CAMUS

Single cycle 0.97 (0.96–0.98) 0.89 (0.87–0.91)

Average cycle 0.98 (0.97–0.99) 0.90 (0.88–0.91)
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method), whilst LV length could be derived from the novel ensemble 
learning model.

5 Conclusion

In this project, a new pipeline method was proposed to assess 
cardiac function based on only Apical 4 chamber cines, which could 
not only provide quantitative results, such as LVEF, but also present 
left ventricular contours and beat-to-beat visualisers for cardiologists 
to visually view the samples whilst making diagnoses. Additionally, 
the study highlighted the importance of following the ASE and EACVI 
recommendations of averaging three or five cycles to obtain a more 
precise assessment.

Data availability statement

Publicly available datasets were analyzed in this study. This data 
can be  found here: https://stanfordaimi.azurewebsites.net/
datasets/834e1cd1-92f7-4268-9daa-d359198b310a.

Author contributions

YZ: Conceptualization, Methodology, Visualization, Writing - 
original draft, Writing – review & editing. BL: Writing – review & editing. 
KB: Writing – review & editing. DB: Writing – review & editing. AT: 
Writing – review & editing. AK: Writing – review & editing. WL: Writing 
– review & editing. DZ: Writing – review & editing. XW: Writing – review 

& editing. AM: Writing – review & editing. OT: Writing – review & 
editing. GG: Writing – review & editing. DK: Writing – review & editing. 
JD: Writing – review & editing, Supervision.

Funding

The author(s) declare that financial support was received for the 
research, authorship, and/or publication of this article. The cardAIc 
team at the University of Birmingham and University Hospitals 
Birmingham NHS Foundation Trust have received support and 
funding from the NIHR Birmingham Biomedical Research Centre 
(NIHR203326), MRC Health Data Research UK (HDRUK/CFC/01), 
NHS Data for R&D Subnational Secure Data Environment 
Programme (West Midlands), the British Heart Foundation University 
of Birmingham Accelerator (AA/18/2/34218), and the Korea 
Cardiovascular Bioresearch Foundation (CHORUS Seoul 2022).

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors 
and do not necessarily represent those of their affiliated organizations, 
or those of the publisher, the editors and the reviewers. Any product 

FIGURE 8

Beat-to-beat analysis. (A) and (C) Two samples with normal sinus rhythm. (B) Patient with atrial fibrillation. (C) and (D) Human-labelled ED and ES were 
not exactly at peak or bottom positions.

161

https://doi.org/10.3389/fmed.2024.1354070
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://stanfordaimi.azurewebsites.net/datasets/834e1cd1-92f7-4268-9daa-d359198b310a
https://stanfordaimi.azurewebsites.net/datasets/834e1cd1-92f7-4268-9daa-d359198b310a


Zhang et al. 10.3389/fmed.2024.1354070

Frontiers in Medicine 10 frontiersin.org

that may be evaluated in this article, or claim that may be made by its 
manufacturer, is not guaranteed or endorsed by the publisher.

Author disclaimer

The opinions expressed in this paper are those of the authors and 
do not represent any of the listed organisations; none of the 
organisations had any role in the design or conduct of the study 

(including collection, analysis, and interpretation of the data) or any 
involvement in the preparation, review, or approval of the study.

Supplementary material

The Supplementary material for this article can be found online 
at: https://www.frontiersin.org/articles/10.3389/fmed.2024.1354070/
full#supplementary-material

References
 1. Savarese G, Becher PM, Lund LH, Seferovic P, Rosano GMC, Coats AJS. Global 

burden of heart failure: a comprehensive and updated review of epidemiology. 
Cardiovasc Res. (2023) 118:3272–87. doi: 10.1093/cvr/cvac013

 2. McDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Bohm M, et al. 
2021 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure. 
Eur Heart J. (2021) 42:3599–726. doi: 10.1093/eurheartj/ehab368

 3. Cleland JGF, Bunting KV, Flather MD, Altman DG, Holmes J, Coats AJS, et al. 
Beta-blockers for heart failure with reduced, mid-range, and preserved ejection fraction: 
an individual patient-level analysis of double-blind randomized trials. Eur Heart J. 
(2018) 39:26–35. doi: 10.1093/eurheartj/ehx564

 4. Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L, et al. 
Recommendations for cardiac chamber quantification by echocardiography in adults: 
an update from the American Society of Echocardiography and the European 
Association of Cardiovascular Imaging. J Am Soc Echocardiogr. (2015) 28:e14:1–39.e14. 
doi: 10.1016/j.echo.2014.10.003

 5. Lang RM, Bierig M, Devereux RB, Flachskampf FA, Foster E, Pellikka PA, et al. 
Recommendations for chamber quantification: a report from the American Society of 
Echocardiography's guidelines and standards committee and the chamber quantification 
writing group, developed in conjunction with the European Association of 
Echocardiography, a branch of the European Society of Cardiology. J Am  Soc 
Echocardiogr. (2005) 18:1440–63. doi: 10.1016/j.echo.2005.10.005

 6. Myhr KA, Pedersen FHG, Kristensen CB, Visby L, Hassager C, Mogelvang R. Semi-
automated estimation of left ventricular ejection fraction by two-dimensional and three-
dimensional echocardiography is feasible, time-efficient, and reproducible. 
Echocardiography. (2018) 35:1795–805. doi: 10.1111/echo.14112

 7. Phad N, de Waal K. Left ventricular ejection fraction using manual and semi-
automated biplane method of discs in very preterm infants. Echocardiography. (2020) 
37:1265–71. doi: 10.1111/echo.14784

 8. Bunting KV, Gill SK, Sitch A, Mehta S, O'Connor K, Lip GY, et al. Improving the 
diagnosis of heart failure in patients with atrial fibrillation. Heart. (2021) 107:902–8. doi: 
10.1136/heartjnl-2020-318557

 9. Moal O, Roger E, Lamouroux A, Younes C, Bonnet G, Moal B, et al. Explicit and 
automatic ejection fraction assessment on 2D cardiac ultrasound with a deep learning-
based approach. Comput Biol Med. (2022) 146:105637. doi: 10.1016/j.
compbiomed.2022.105637

 10. Sartipy U, Dahlstrom U, Fu M, Lund LH. Atrial fibrillation in heart failure with 
preserved, mid-range, and reduced ejection fraction. JACC Heart Fail. (2017) 5:565–74. 
doi: 10.1016/j.jchf.2017.05.001

 11. Taniguchi N, Miyasaka Y, Suwa Y, Harada S, Nakai E, Shiojima I. Heart failure in 
atrial fibrillation - an update on clinical and echocardiographic implications. Circ J. 
(2020) 84:1212–7. doi: 10.1253/circj.CJ-20-0258

 12. Vasey B, Nagendran M, Campbell B, Clifton DA, Collins GS, Denaxas S, et al. 
Reporting guideline for the early stage clinical evaluation of decision support systems 
driven by artificial intelligence: DECIDE-AI. BMJ. (2022) 377:e070904. doi: 10.1136/
bmj-2022-070904

 13. Ouyang D, He B, Ghorbani A, Lungren MP, Ashley EA, Liang DH, et al. 
Echonet-dynamic: a large new cardiac motion video data resource for medical 
machine learning In: NeurIPS ML4H workshop. Vancouver, BC, Canada: NeurIPS 
ML4H workshop (2019)

 14. Leclerc S, Smistad E, Pedrosa J, Ostvik A, Cervenansky F, Espinosa F, et al. 
Deep learning for segmentation using an open large-scale dataset in 2D 
echocardiography. IEEE Trans Med Imaging. (2019) 38:2198–210. doi: 10.1109/
TMI.2019.2900516

 15. BAC RBS, Mayers DL, Martin RP. Two-dimensional echocardiographic 
measurement of left ventricular ejection fraction: prospective analysis of what 
constitutes an adequate determination. Am Heart J. (1982) 104:136–44. doi: 
10.1016/0002-8703(82)90651-2

 16. Chen LC, Papandreou G, Schroff F, Adam H. Rethinking atrous convolution for 
semantic image segmentation. arXiv Preprint. (2017) arXiv:1706.05587. doi: 10.48550/
arXiv.1706.05587

 17. Yu F, Koltun V. Multi-scale context aggregation by dilated convolutions. arXiv 
Preprint. (2015) arXiv:1511.07122. doi: 10.48550/arXiv.1511.07122

 18. Smistad E., Østvik A., Salte I.M., Leclerc S., Bernard O., Lovstakken L. Fully 
automatic real-time ejection fraction and MAPSE measurements in 2D 
echocardiography using deep neural networksC. (2018) IEEE International Ultrasonics 
Symposium (IUS). 1–4

 19. Geurts P, Ernst D, Wehenkel L. Extremely randomized trees. Mach Learn. (2006) 
63:3–42. doi: 10.1007/s10994-006-6226-1

 20. Hastie T, Rosset S, Zhu J, Zou H. Multi-class adaboost. Stat Interface. (2009) 
2:349–60. doi: 10.4310/SII.2009.v2.n3.a8

 21. Ranstam J, Cook JA. LASSO regression. Br J Surg. (2018) 105:1348. doi: 10.1002/
bjs.10895

 22. Pereira JM, Basto M, Silva AF. The logistic Lasso and ridge regression in predicting 
corporate failure. Proc Econ Finance. (2016) 39:634–41. doi: 10.1016/S2212-5671(16)30310-0

 23. Shakhnarovich G., Darrell T., Indyk P.. Nearest-neighbor methods in learning and 
vision. IEEE Trans Neural Networks, (2008) 19:377.

 24. Friedman JH. Greedy function approximation: a gradient boosting machine. Ann 
Stat. (2001) 29:1189–232. doi: 10.1214/aos/1013203451

 25. Kohavi R. A study of cross-validation and bootstrap for accuracy estimation and 
model selection. IEEE Conference on Computer Vision and Pattern Recognition 
(1995);14:1137–1145.

 26. Nakagawa S, Johnson PCD, Schielzeth H. The coefficient of determination R(2) and 
intra-class correlation coefficient from generalized linear mixed-effects models revisited and 
expanded. J R Soc Interface. (2017) 14:20170213. doi: 10.1098/rsif.2017.0213

 27. Jonathan Long ES, Darrell Trevor. Fully convolutional networks for semantic 
segmentation. In Proceedings of the IEEE conference on computer vision and pattern 
recognition. (2015):3431–3440.

 28. Dokeroglu T, Deniz A, Kiziloz HE. A comprehensive survey on recent 
metaheuristics for feature selectionJ. Neurocomputing. (2022) 494:269–96. doi: 10.1016/j.
neucom.2022.04.083

 29. Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JGF, Coats AJS, et al. 2016 
ESC guidelines for the diagnosis and treatment of acute and chronic heart failure: the 
task force for the diagnosis and treatment of acute and chronic heart failure of the 
European Society of Cardiology (ESC)developed with the special contribution of the 
heart failure association (HFA) of the ESC. Eur Heart J. (2016) 37:2129–200. doi: 
10.1093/eurheartj/ehw128

 30. Zhang J, Gajjala S, Agrawal P, Tison GH, Hallock LA, Beussink-Nelson L, et al. 
Fully automated echocardiogram interpretation in clinical practice. Circulation. (2018) 
138:1623–35. doi: 10.1161/CIRCULATIONAHA.118.034338

 31. Hanley JA, McNeil BJ. A method of comparing the areas under receiver operating 
characteristic curves derived from the same cases. Radiology. (1983) 148:839–43. doi: 
10.1148/radiology.148.3.6878708

 32. Fawcett T. An introduction to ROC analysis. Pattern Recogn Lett. (2006) 
27:861–74. doi: 10.1016/j.patrec.2005.10.010

 33. Stehman SV. Selecting and interpreting measures of thematic classification 
accuracy. Remote Sens Environ. (1997) 62:77–89. doi: 10.1016/S0034-4257(97)00083-7

 34. Powers DM. Evaluation: from precision, recall and F-measure to ROC, 
informedness, markedness & correlation. J Mach Learn Technol. (2011) 2:37–63. doi: 
10.48550/arXiv.2010.16061

 35. Dong S, Luo G, Sun G, Wang K, Zhang HA. Left ventricular segmentation method 
on 3D echocardiography using deep learning and Snake. 2016 Computing in Cardiology 
Conference (CinC) (2016)

 36. Smistad E, Ostvik A, Salte IM, Melichova D, Nguyen TM, Haugaa K, et al. Real-time 
automatic ejection fraction and foreshortening detection using deep learning. IEEE Trans 
Ultrason Ferroelectr Freq Control. (2020) 67:2595–604. doi: 10.1109/TUFFC.2020.2981037

 37. Thavendiranathan P, Liu S, Verhaert D, Calleja A, Nitinunu A, Van Houten T, et al. 
Feasibility, accuracy, and reproducibility of real-time full-volume 3D transthoracic 
echocardiography to measure LV volumes and systolic function: a fully automated 

162

https://doi.org/10.3389/fmed.2024.1354070
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/articles/10.3389/fmed.2024.1354070/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fmed.2024.1354070/full#supplementary-material
https://doi.org/10.1093/cvr/cvac013
https://doi.org/10.1093/eurheartj/ehab368
https://doi.org/10.1093/eurheartj/ehx564
https://doi.org/10.1016/j.echo.2014.10.003
https://doi.org/10.1016/j.echo.2005.10.005
https://doi.org/10.1111/echo.14112
https://doi.org/10.1111/echo.14784
https://doi.org/10.1136/heartjnl-2020-318557
https://doi.org/10.1016/j.compbiomed.2022.105637
https://doi.org/10.1016/j.compbiomed.2022.105637
https://doi.org/10.1016/j.jchf.2017.05.001
https://doi.org/10.1253/circj.CJ-20-0258
https://doi.org/10.1136/bmj-2022-070904
https://doi.org/10.1136/bmj-2022-070904
https://doi.org/10.1109/TMI.2019.2900516
https://doi.org/10.1109/TMI.2019.2900516
https://doi.org/10.1016/0002-8703(82)90651-2
https://doi.org/10.48550/arXiv.1706.05587
https://doi.org/10.48550/arXiv.1706.05587
https://doi.org/10.48550/arXiv.1511.07122
https://doi.org/10.1007/s10994-006-6226-1
https://doi.org/10.4310/SII.2009.v2.n3.a8
https://doi.org/10.1002/bjs.10895
https://doi.org/10.1002/bjs.10895
https://doi.org/10.1016/S2212-5671(16)30310-0
https://doi.org/10.1214/aos/1013203451
https://doi.org/10.1098/rsif.2017.0213
https://doi.org/10.1016/j.neucom.2022.04.083
https://doi.org/10.1016/j.neucom.2022.04.083
https://doi.org/10.1093/eurheartj/ehw128
https://doi.org/10.1161/CIRCULATIONAHA.118.034338
https://doi.org/10.1148/radiology.148.3.6878708
https://doi.org/10.1016/j.patrec.2005.10.010
https://doi.org/10.1016/S0034-4257(97)00083-7
https://doi.org/10.48550/arXiv.2010.16061
https://doi.org/10.1109/TUFFC.2020.2981037


Zhang et al. 10.3389/fmed.2024.1354070

Frontiers in Medicine 11 frontiersin.org

endocardial contouring algorithm in sinus rhythm and atrial fibrillation. JACC 
Cardiovasc Imaging. (2012) 5:239–51. doi: 10.1016/j.jcmg.2011.12.012

 38. Ouyang D, He B, Ghorbani A, Yuan N, Ebinger J, Langlotz CP, et al. Video-based 
AI for beat-to-beat assessment of cardiac function. Nature. (2020) 580:252–6. doi: 
10.1038/s41586-020-2145-8

 39. Ghorbani A, Ouyang D, Abid A, He B, Chen JH, Harrington RA, et al. Deep 
learning interpretation of echocardiograms. NPJ Digit Med. (2020) 3:10. doi: 10.1038/
s41746-019-0216-8

 40. Wenhao Jiang KHL, Liu Z, Fan Y, Kwok K-W, Lee AP-W. Deep learning algorithms to 
automate left ventricular ejection fraction assessments on 2-dimensional echocardiography. 
J Am Coll Cardiol. (2019) 73:1610. doi: 10.1016/S0735-1097(19)32216-8

 41. Kusunose K, Haga A, Yamaguchi N, Abe T, Fukuda D, Yamada H, et al. Deep 
learning for assessment of left ventricular ejection fraction from echocardiographic 
images. J Am Soc Echocardiogr. (2020) 33:e1:632–635.e1. doi: 10.1016/j.echo.2020.01.009

 42. Fonarow GC, Hsu JJ. Left ventricular ejection fraction: what is "Normal"? JACC 
Heart Fail. (2016) 4:511–3. doi: 10.1016/j.jchf.2016.03.021

163

https://doi.org/10.3389/fmed.2024.1354070
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://doi.org/10.1016/j.jcmg.2011.12.012
https://doi.org/10.1038/s41586-020-2145-8
https://doi.org/10.1038/s41746-019-0216-8
https://doi.org/10.1038/s41746-019-0216-8
https://doi.org/10.1016/S0735-1097(19)32216-8
https://doi.org/10.1016/j.echo.2020.01.009
https://doi.org/10.1016/j.jchf.2016.03.021


+41 (0)21 510 17 00 
frontiersin.org/about/contact

Avenue du Tribunal-Fédéral 34
1005 Lausanne, Switzerland
frontiersin.org

Contact us

Frontiers

Translating medical research and innovation into 

improved patient care

A multidisciplinary journal which advances our 

medical knowledge. It supports the translation 

of scientific advances into new therapies and 

diagnostic tools that will improve patient care.

Discover the latest 
Research Topics

See more 

Frontiers in
Medicine

https://www.frontiersin.org/journals/Medicine/research-topics

	Cover
	FRONTIERS EBOOK COPYRIGHT STATEMENT
	The combination of data-driven machine learning approaches and prior knowledge for robust medical image processing and analysis
	Table of contents
	Editorial: The combination of data-driven machine learning approaches and prior knowledge for robust medical image processing and analysis
	Author contributions
	Funding
	Conflict of interest
	Publisher's note

	Six-month follow-up after recovery of COVID-19 Delta variant survivors via CT-based deep learning
	1. Introduction
	2. Materials and methods
	2.1. Study design and participants
	2.2. Follow-up assessment
	2.3. Computer-aided diagnosis
	2.3.1. Lesions segmentation of COVID-19
	2.3.2. Deep lung parenchyma enhancing
	2.3.3. Quantitative analysis

	2.4. Statistical analysis

	3. Results
	3.1. Clinical characteristics
	3.2. Chest CT evaluation
	3.2.1. Imaging evaluation
	3.2.2. CT slices after deep lung parenchyma enhancing
	3.2.3. Absorption ratio at the 6-month follow-up

	3.3. Comparison with original COVID-19 follow-up

	4. Discussion
	5. Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	References

	Identifying patients with acute ischemic stroke within a 6-h window for the treatment of endovascular thrombectomy using deep learning and perfusion imaging
	Introduction
	Methods
	Patients
	Experimental design
	Image preprocessing
	Feature extraction
	Classifier construction
	Statistical analysis

	Results
	Patient characteristics
	Training and testing dataset analysis
	Performance analysis of the classifiers
	Performance analysis of the ROI masks
	Performance analysis of scanning devices
	Examples of identification

	Discussion
	Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References

	MAE-TransRNet: An improved transformer-ConvNet architecture with masked autoencoder for cardiac MRI registration
	1. Introduction
	2. Related work
	2.1. Deformable image registration baseline–VoxelMorph
	2.2. Multi-head self-attention in transformer encoder
	2.3. Squeeze and excitation block in feature extraction
	2.4. Transformers in vision and self-supervised learning

	3. Proposed method
	3.1. Overview
	3.2. Novel multi-head self-attention with SE module
	3.3. Squeeze and excitation module in 3D CNN encoder
	3.4. 3D vision transformer with MAE as deformable registration core architecture
	3.4.1. 3D vision transformer architecture
	3.4.2. Pre-training with MAE
	3.4.3. Designed architecture applied to downstream tasks

	3.5. Loss functions in the registration model

	4. Experiments
	4.1. Preparation of datasets and related setting details
	4.2. MAE architecture for pre-training
	4.3. Downstream task–Cardiac MRI registration

	5. Results
	5.1. Cardiac image in MAE reconstruction
	5.2. Cardiac MRI registration

	6. Ablation study
	6.1. Masking ratio
	6.2. SE module's position
	6.3. Model scaling

	7. Discussion
	8. Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References

	MIB-ANet: A novel multi-scale deep network for nasal endoscopy-based adenoid hypertrophy grading
	1. Introduction
	2. Materials and methods
	2.1. SYSU-SZU-EA dataset
	2.2. Grading method of adenoid hypertrophy
	2.3. Preprocessing
	2.4. The novel multi-scale grading network: MIB-ANet
	2.5. Performance evaluation
	2.6. Comparison between MIB-ANet and E.N.T. clinicians
	2.7. Ethics
	2.8. Statistical analysis

	3. Results
	3.1. Comparison based on F1 score and accuracy
	3.2. Comparison based on ROC curve and confusion matrices
	3.3. Comparison based on heatmap visualization
	3.4. Performance of different grades

	4. Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References

	Development and external validation of a mixed-effects deep learning model to diagnose COVID-19 from CT imaging
	1. Background
	2. Methods
	2.1. Feature extractor
	2.2. Mixed-effects network
	2.3. Loss function
	2.4. Classification layer
	2.5. Model performance
	2.6. Comparison models
	2.7. Computing
	2.8. Data
	2.9. Patient and public involvement
	2.10. Data pre-processing and augmentation

	3. Results
	3.1. Saliency maps
	3.2. Sensitivity analysis
	3.3. Fixed-effects only

	4. Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	Supplementary material
	References

	Improving brain tumor segmentation with anatomical prior-informed pre-training
	1. Introduction
	2. Methodology
	2.1. Overview of proposed method
	2.2. Statistical analysis of tumor occurrence
	2.2.1. Registration to standard brain template
	2.2.2. Sampling weight map derived from brain tumor occurrence

	2.3. Anatomical prior-informed masked auto-encoder
	2.3.1. Anatomical prior-informed masking strategy
	2.3.2. Patch embedding
	2.3.3. Transformer encoder
	2.3.4. Transformer decoder
	2.3.5. Reconstruction Discriminator

	2.4. Segmentation network

	3. Experiments
	3.1. Datasets
	3.1.1. ADNI dataset
	3.1.2. BraTS21 dataset

	3.2. Evaluation metrics
	3.3. Implementation details

	4. Results
	4.1. Pre-training results of anatomical prior-informed MAE
	4.2. Segmentation results on BraTS21 dataset
	4.2.1. Segmentation performance on BraTS21 dataset
	4.2.2. Ablation study on masking strategies
	4.2.3. Data-efficiency analysis


	5. Discussion
	6. Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References

	An improved contrastive learning network for semi-supervised multi-structure segmentation in echocardiography
	Introduction
	Method
	Overview
	Supervised branch
	Unsupervised branch
	Loss functions
	Supervised loss
	Unsupervised loss


	Experiment
	Dataset
	Implementation details
	Data augmentation
	Training process
	Evaluation metrics
	Ablation study
	Segmentation results and comparison with other methods

	Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References

	Clinical service evaluation of the feasibility and reproducibility of novel artificial intelligence based-echocardiographic quantification of global longitudinal strain and left ventricular ejection fraction in trastuzumab-treated patients
	Introduction
	Materials and methods
	Patient population
	Echocardiographic imaging protocol and analysis
	Assessment of GLS and LVEF
	Statistical analysis

	Results
	Subject characteristics
	Technical feasibility of AI-based compared to conventional assessment in GLS and LVEF
	GLS and LVEF using AI vs. conventional assessment
	Comparison between strain at individual apical views using AI vs. conventional assessment
	Temporal changes in GLS and LVEF between AI vs. conventional assessments during surveillance

	Discussion
	Clinical demand and relevance
	The feasibility and accuracy of automated GLS and LVEF
	Study limitations
	Future research directions

	Conclusions
	Data availability statement
	Ethics statement
	Author contributions
	Conflict of interest
	Publisher's note
	References

	Joint 2D–3D cross-pseudo supervision for carotid vessel wall segmentation
	Introduction
	Materials and methods
	Data source
	Our approach
	Coarse segmentation
	2D CPS network
	3D CPS network
	Loss function

	Evaluation metrics

	Experiments and results
	Data processing
	Implementation details
	Performance on the test dataset
	Graphical user interface

	Concluding remarks
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References

	Comparison of MRI radiomics-based machine learning survival models in predicting prognosis of glioblastoma multiforme
	1 Introduction
	2 Materials and methods
	2.1 Clinical case data
	2.2 Image acquisition and segmentation
	2.3 Establishing radiomics signature and data cleaning
	2.4 Feature engineering
	2.5 Construction of the model
	2.5.1 CoxPH model
	2.5.2 SurvivalTree model
	2.5.3 RSF model
	2.5.4 DeepSurv model
	2.5.5 DeepHit model
	2.6 Model training and evaluation
	2.7 Statistical analysis

	3 Results
	3.1 Clinical characteristics of patients
	3.2 Radiomics feature extraction and construction of radiomics signature
	3.3 Correlation between radiomics signature and clinical information
	3.4 CoxPH model
	3.5 SurvivalTree and RSF model
	3.6 Deep learning model

	4 Discussion
	5 Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	References

	Deep learning techniques for isointense infant brain tissue segmentation: a systematic literature review
	1 Introduction
	2 Literature review
	3 Methodology
	3.1 Research question
	3.2 PRISMA phases
	3.2.1 Identification
	3.2.2 Screening
	3.2.3 Eligibility
	3.2.4 Data abstraction and analysis

	4 Results
	4.1 Knowledge-based approach
	4.2 Atlas-based and patch-driven approach
	4.3 Machine learning approaches
	4.4 Deep learning methods
	4.4.1 Deep fully convolutional neural networks
	4.4.2 Hyper densely connected CNNs
	4.4.3 Generative adversarial networks
	4.4.4 UNet architecture

	5 Evaluation metrics
	6 Findings and limitation of the presented frameworks
	6.1 Findings
	6.2 Limitation of the presented frameworks

	7 Limitation and future work
	8 Conclusion
	Data availability statement
	Author contributions
	 References

	Development of automated neural network prediction for echocardiographic left ventricular ejection fraction
	1 Introduction
	2 Methods
	2.1 Datasets
	2.2 Al system
	2.2.1 Methodology
	2.2.2 Inputs and outputs
	2.3 Implementation
	2.3.1 LV area
	2.3.2 LV length
	2.3.3 ED and ES identification
	2.4 Outcomes
	2.4.1 Safety and errors
	2.4.2 Analysis methods

	3 Results
	3.1 Accuracy of automated LVEF calculation
	3.1.1 Experiment 1
	3.1.2 Experiment 2
	3.1.3 Experiment 3
	3.2 Classification of patients with HFrEF
	3.3 Beat-to-beat visualiser

	4 Discussion
	5 Conclusion
	Data availability statement
	Author contributions
	References

	Back Cover



