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In the last thirty years, Magnetic Resonance has generated a wide revolution in 
biomedical research and in medical imaging in general. More recently, the “in vivo” 
studies of the human brain were extended by new original ways to the dynamic study 
of function and metabolism of the human brain. The enormous interest in expand-
ing the investigation of the brain is emphasizing the search for new NMR methods 
capable of extracting information of so-far obscure aspects of the brain function. In 
fact, many quantitative approaches have been proposed in order to complement the 
information obtained by functional MRI, and several multimodal and multiparametric 
approaches have been developed to exploit the information, either functional or 
structural, made available by the flexible contrast generation typical of MRI, and to 
combine it with complementary information. The XII workshop of the International 
School on Magnetic Resonance and Brain Function, held in Erice between 17 April 
and 6 May, 2016, was specially devoted to novel approaches aimed at better struc-
tural characterization of brain diseases, and at investigating frontiers MRI approaches 
to better understand the brain function. The papers included in this eBook offer a 
broad overview of the subjects covered during the Workshop, including applications 
of multiparametric MRI to neurological diseases, multimodal combination of MRI 
with electrophysiology, advanced methods for the investigation of brain networks 
and of brain physiology, and perspectives towards brain state reading.

Citation: Giove, F., Ronen, I., eds (2018). Proceedings of the International School on 
Magnetic Resonance and Brain Function – XII Workshop. Lausanne: Frontiers Media. 
doi: 10.3389/978-2-88945-554-6

Image: Daniele Mascali, based on data from S. Tommasin, D. Mascali et al. Scale-invariant rearrangement of resting 

state networks in the human brain under sustained stimulation. Neuroimage 179:570-581 (2018) 

doi: 10.1016/j.neuroimage.2018.06.006

https://www.frontiersin.org/research-topics/4937/proceedings-of-the-international-school-on-magnetic-resonance-and-brain-function---xii-workshop
https://www.frontiersin.org/research-topics/4937/proceedings-of-the-international-school-on-magnetic-resonance-and-brain-function---xii-workshop
https://www.frontiersin.org/journals/neuroscience


Frontiers in Neuroscience 3 August 2018 | Proceedings of XII ISMRBF Workshop

04 Editorial: Proceedings of the International School on Magnetic Resonance 
and Brain Function – XII Workshop

Federico Giove and Itamar Ronen

06 Multi-Modal Brain MRI in Subjects With PD and iRBD

Silvia Mangia, Alena Svatkova, Daniele Mascali, Mikko J. Nissi,  
Philip C. Burton, Petr Bednarik, Edward J. Auerbach, Federico Giove,  
Lynn E. Eberly, Michael J. Howell, Igor Nestrasil, Paul J. Tuite  
and Shalom Michaeli

18 Lysophosphatidyl Choline Induced Demyelination in Rat Probed by 
Relaxation Along a Fictitious Field in High Rank Rotating Frame

Lauri J. Lehto, Aloma A. Albors, Alejandra Sierra, Laura Tolppanen,  
Lynn E. Eberly, Silvia Mangia, Antti Nurmi, Shalom Michaeli and Olli Gröhn

32 Determining Excitatory and Inhibitory Neuronal Activity From Multimodal 
fMRI Data Using a Generative Hemodynamic Model

Martin Havlicek, Dimo Ivanov, Alard Roebroeck and Kamil Uludaǧ 
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Editorial on the Research Topic

Proceedings of the International School on Magnetic Resonance and Brain Function – XII

Workshop

This Special Research Topic includes the proceedings of the XII workshop of the International
School on Magnetic Resonance and Brain Function (ISMRBF), held between April 30th and May,
6th 2016 in Erice (Italy) at the premises of the EttoreMajorana Foundation and Centre for Scientific
Culture. ISMRBF is a biennial event that gathers scientists whose research is focused on the crucial
intersection between technological advances in MRI and emerging applications in neuroscience.

Indeed, many recent improvements inMRI instrumentation and techniques have been triggered
by the increasing demands from a vast community of neuroscientists, which are exploiting MRI as
one the most powerful tools for non-invasive investigation of human brain structure and function.
Another long lasting topic covered by ISMRBF is the use of multimodal and multiparametric
approaches. MRI is intrinsically multiparametric, thanks to the flexibility of the framework for
contrast generation, that can bemade sensitive tomultiple biophysical phenomena.MRI can be also
combined with other distinct modalities, such as electrophysiology, optical imaging and PET based
molecular imaging. Fusion of information within- and across modalities has shown an excellent
potential to complement the strengths and weaknesses of MRI as a stand-alone technique.

The papers included in this Research Topic offer a broad overview of the subjects covered
by the Workshop. Mangia et al. contributed a paper that shows the potential of multiparametric
MRI in application to neurological diseases, characterizing how Parkinson’s disease and idiopathic
rapid eye movement sleep behavior disorder are associated with tissue properties in subcortical
regions. The authors exploited a battery of conventional (diffusion tensor imaging, DTI) and
non-conventional metrics (adiabatic and non-adiabatic rotating frame relaxation), and concluded
that rotating frame relaxation combined with functional connectivity may provide sensitive and
specific signatures of progression of neurological diseases. The paper by Lehto et al. used similar
MRI approaches on rats. In this case, MRI outcomes were correlated with myelin content in
pharmacologically induced demyelinating lesions. Techniques based on non-adiabatic rotating
frame relaxation showed good specificity and excellent sensitivity in the detection of lesions, and
good quantitative correlation with actual myelin content. In comparison, the sensitivity reached by
a battery of more conventional MRI approaches was lower. Authors concluded that non-adiabatic
rotating frame relaxation is a valuable technique for the investigation of demyelinating diseases.

4

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://doi.org/10.3389/fphy.2018.00018
http://crossmark.crossref.org/dialog/?doi=10.3389/fphy.2018.00018&domain=pdf&date_stamp=2018-03-06
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:federico.giove@uniroma1.it
https://doi.org/10.3389/fphy.2018.00018
https://www.frontiersin.org/articles/10.3389/fphy.2018.00018/full
http://loop.frontiersin.org/people/44486/overview
http://loop.frontiersin.org/people/50120/overview
https://www.frontiersin.org/research-topics/4937/proceedings-of-the-international-school-on-magnetic-resonance-and-brain-function---xii-workshop
https://doi.org/10.3389/fnins.2017.00709
https://doi.org/10.3389/fnins.2017.00433


Giove and Ronen Editorial: Proceedings of XII ISMRBF Workshop

The contribution by Havlicek et al. expanded the multimodal
approach to functional MRI. By combining multiple MRI and
electrophysiological datasets from humans, non-human primates
and cats, they discussed the generative model for BOLD (Blood-
Oxygenation Level-Dependent) they recently introduced, and
showed that it can explain the dynamic relationship between
haemodynamic and neural events underlying the generation
of the BOLD contrast. Hawsawi et al. dealt with multimodal
combination of MRI and electrophysiological measurements
in humans from the complementary point of view of patient
safety. In their paper, the authors explored the safety issues
related to simultaneous MRI and scalp or intracranial EEG,
by identifying the physical phenomena that play a role in
patient safety and reviewing the relevant literature. The authors
concluded that risks can be managed, but that simultaneous
invasive electrophysiology and MRI is characterized by a set of
potential health hazards so complex, that careful case by case
evaluation is needed.

The paper by Bednarik et al. is a retrospective study on
patients affected by type 1 diabetes, investigating the connection
between the pathology itself, impaired hypoglycaemia awareness,
and cortical atrophy. Authors showed that type 1 diabetes
is associated with gray matter atrophy compared to matched
controls. The effect was larger in subjects with impaired
hypoglycaemia awareness, likely because of increased exposure
to hypoglycaemic episodes. Authors indicated that future studies
should clarify whether the reported subtle reductions of gray
matter volume are associated with cognitive impairment. The
review by Van Schependom and Nagels discusses the relationship
between neuroimaging and cognitive scores in multiple sclerosis
(MS). The authors highlighted that improving the capability
of neuroimaging-derived metric to assess pathology-related
features can be useful not only for the characterization of
the pathophysiological mechanisms underlying MS damage, but
also to improve and speed-up the development of innovative
therapies.

Tommasin et al. studied how the performance of a sustained
cognitive stimulus affects the features of slow BOLD oscillations
underlying functional connectivity within the Default Mode
Network (DMN). They found that the stimulus reduced both
amplitude of oscillation and functional connectivity within the
DMN, but that the coupling between the reported changes
was spatially heterogeneous and likely frequency specific. They
concluded that the coupling between amplitude of BOLD
fluctuations and functional connectivity is a potentially useful
parameter to study brain networks. Bordier et al. presented
a simulation work aimed at exploring optimal procedures
for sparsification in graph theory analysis of topology of

functional networks. Sparsification is often needed to simplify
the processing and the interpretation of networks, however it is
prone to over-pruning the network, and the identification of an
optimal threshold is an open issue. The authors used synthetic
data to show that percolation data-driven approaches can be
used to identify a threshold that maximize the information of the
pruned network.

The next couple of papers deal with MR approaches to study
neurophysiology and neurochemistry. Sonnay et al. reviewed the
applications of 13C-MR to brain energetics, and in particular
how the combination of advanced MR techniques, mathematical
models of metabolism and nutrients transport, and increasing
magnetic fields can help the understanding the specific metabolic
response to stimulation within astrocytes and neurons, as
well as the metabolic interactions between these cells. Driver
et al. studied an important issue regarding the measurement
of brain oxygen consumption (CMRO2 ) by MR via the so-
called calibrated-BOLD method, i.e., the usual isometabolic
assumption during hypercapnia. The authors showed that their
new approach, using the most relaxed and physiologically
sensible hypothesis of linear dependence between a graded
hypercapnic challenge and CMRO2 , allows more accurate
estimates of basal CMRO2 as well as activation-related CMRO2

change.
Finally, Nam and Kim tackled the issue of decoding brain

states by fMRI, by showing that brain reading can be achieved
non-invasively even in the motor domain. Specifically, they
demonstrated that directional arm movement can be predicted
in humans exploiting simple linear encoding models.

The next workshop of the ISMRBF will be held in Erice, April
22–29 2018. The focus will be, as usual, on brain functional and
microstructural MRI and compatible approaches. Information
about the workshop can be found at the website http://ismrbf.
marbilab.eu.
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Multi-modal Brain MRI in Subjects
with PD and iRBD
Silvia Mangia 1*, Alena Svatkova 2, 3, Daniele Mascali 4, Mikko J. Nissi 5, Philip C. Burton 1,

Petr Bednarik 1, 3, Edward J. Auerbach 1, Federico Giove 4, 6, Lynn E. Eberly 7,

Michael J. Howell 8, Igor Nestrasil 2, Paul J. Tuite 8 and Shalom Michaeli 1

1Department of Radiology, Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, MN,

United States, 2Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States, 3Central European
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Kuopio, Finland, 6 Fondazione Santa Lucia IRCCS, Rome, Italy, 7Division of Biostatistics, University of Minnesota,

Minneapolis, MN, United States, 8Department of Neurology, University of Minnesota, Minneapolis, MN, United States

Idiopathic rapid eye movement sleep behavior disorder (iRBD) is a condition that often

evolves into Parkinson’s disease (PD). Therefore, by monitoring iRBD it is possible to

track the neurodegeneration of individuals who may progress to PD. Here we aimed at

piloting the characterization of brain tissue properties in mid-brain subcortical regions of

10 healthy subjects, 8 iRBD, and 9 early-diagnosed PD. We used a battery of magnetic

resonance imaging (MRI) contrasts at 3 T, including adiabatic and non-adiabatic rotating

frame techniques developed by our group, along with diffusion tensor imaging (DTI) and

resting-state fMRI. Adiabatic T1ρ and T2ρ, and non-adiabatic RAFF4 (Relaxation Along

a Fictitious Field in the rotating frame of rank 4) were found to have lower coefficient

of variations and higher sensitivity to detect group differences as compared to DTI

parameters such as fractional anisotropy and mean diffusivity. Significantly longer T1ρ

were observed in the amygdala of PD subjects vs. controls, along with a trend of lower

functional connectivity as measured by regional homogeneity, thereby supporting the

notion that amygdalar dysfunction occurs in PD. Significant abnormalities in reward

networks occurred in iRBD subjects, who manifested lower network strength of the

accumbens. In agreement with previous studies, significantly longer T1ρ occurred in the

substantia nigra compacta of PD vs. controls, indicative of neuronal degeneration, while

regional homogeneity was lower in the substantia nigra reticulata. Finally, other trend-level

findings were observed, i.e., lower RAFF4 and T2ρ in the midbrain of iRBD subjects

vs. controls, possibly indicating changes in non-motor features as opposed to motor

function in the iRBD group. We conclude that rotating frame relaxation methods along

with functional connectivity measures are valuable to characterize iRBD and PD subjects,

and with proper validation in larger cohorts may provide pathological signatures of iRBD

and PD.

Keywords: rotating frame MRI, Parkinson’s disease, iRBD, functional connectivity, DTI
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INTRODUCTION

Idiopathic rapid eye movement (REM) sleep behavior
disorder (iRBD) is a sleep disorder associated with abnormal
pontomedullary synuclein protein. iRBD evolves into Parkinson’s
disease (PD) or another synucleinopathy, e.g., dementia with
Lewy bodies (LBD) or multiple system atrophy (MSA), in up
to 90% of cases (Schenck et al., 1986, 1996; Boeve et al., 2001;
Luk et al., 2012; Boeve, 2013; Bunzeck et al., 2013). Thus, iRBD
may provide an opportunity to understand the evolution of
neurodegeneration as well as a window in which to intervene
with disease altering therapies. It is thought that the α-synuclein
pathology in more caudal brainstem regions in iRBD ascends to
the substantia nigra (SN) of the midbrain as the disease evolves
into PD or other synuclein disorders (Boeve, 2013). Iron, which
is present in higher quantities in the substantia nigra and other
structures, may also play a role in the loss of dopaminergic
neurons through its pro-oxidant effects (Zecca et al., 2008; Kaur
et al., 2009). In addition, several studies have demonstrated
abnormalities in structural integrity and functional connectivity
in patients with iRBD (Hanyu et al., 2012; Ellmore et al., 2013).

Magnetic resonance imaging (MRI) offers several non-
invasive contrasts that are useful in evaluating the pathological
hallmarks of patients with iRBD, and any MRI findings in
iRBD patients can be compared with those in individuals with
PD. Previous studies have focused on evaluating structural
approaches such as diffusion tensor imaging (DTI) and voxel-
based morphometry (VBM) in patients with PD. This has
included work that showed changes in DTI fractional anisotropy

(FA) (Menke et al., 2009, 2010; Vaillancourt et al., 2009; Peran
et al., 2010; Du et al., 2011) andmean diffusivity (MD) (Kamagata
et al., 2012) in the substantia nigra of patients with PD.
Others have shown that DTI may be useful in differentiating
PD from other degenerative parkinsonian disorders and may
also have the potential to monitor for disease progression
(Prodoehl et al., 2013). Additionally, VBM demonstrated non-
dopaminergic brainstem alterations in iRBD (Scherfler et al.,
2011). VBM and DTI have also provided insights into non-motor
features such as depression (Feldmann et al., 2008; Kostic et al.,
2010), smell (Ibarretxe-Bilbao et al., 2010; Rolheiser et al., 2011)
and cognitive changes (Ibarretxe-Bilbao et al., 2009; Song et al.,
2011) in PD. Therefore, DTI and VBM may prove useful in
evaluating iRBD as it evolves into a Parkinsonian condition. So
far, it has only been possible to show discriminative properties
of the MRI methods using fairly large numbers of patients and
controls, and these methods have not yet revealed if they are able
to characterize the clinical severity of PD (Gorell et al., 1995;
Martin et al., 2008). Therefore, our group previously employed
novel microstructural imaging methods to map the SN (Michaeli
et al., 2007; Nestrasil et al., 2010), as well as other brainstem and
subcortical regions, in PD (Karagulle Kendi et al., 2008; Tuite
et al., 2012).

In our current work, we employed several MRI modalities
that are sensitive to various brain tissue properties, such as
microstructural integrity, iron loads, and functional connectivity.
Namely, we utilized novel rotating frame relaxation mapping
methods developed in our group including adiabatic T1ρ

(Michaeli et al., 2006), T2ρ (Michaeli et al., 2004) and RAFF4
(Relaxation Along a Fictitious Field in the rotating frame of
rank 4) (Liimatainen et al., 2010, 2011, 2015), together with DTI
and resting-state functional MRI (rsfMRI). Our previous studies
conducted in PD (Michaeli, 2007; Michaeli et al., 2007; Nestrasil
et al., 2010; Tuite et al., 2012) and other brain conditions (Sierra
et al., 2008; Jokivarsi et al., 2009; Mangia et al., 2013; Satzer et al.,
2015) have shown that the proposed rotating frame methods
provide information on different relaxation mechanisms in the
human brain. T2ρ is sensitive to diffusion and exchange of
water protons in environments with different local magnetic
susceptibilities and reflects iron content with higher sensitivity
than conventional T2 MRI (Michaeli et al., 2005, 2007). T1ρ

provides an indication of neuronal loss and can be used to assess
PD nigral degeneration with a higher sensitivity than is possible
with conventional T1-based MRI (Michaeli et al., 2006, 2007).
RAFF4 methodology, which is derived from adiabatic T1ρ and
T2ρ (Liimatainen et al., 2010, 2011, 2015), has high sensitivity to
myelin content (Satzer et al., 2015; Hakkarainen et al., 2016), and
thus could provide information on microstructural integrity.

Rotating frame relaxations offer a conceptual advantage
as compared to free-precession relaxation methods for
characterizing tissue properties thanks to their inherent
sensitivity to slower motional regimes (Michaeli et al., 2008).
Indeed, while watermolecules undergo a large variety ofmotional
regimes in tissue, the motions which are most sensitive to the
intricate nature of tissue microstructure and composition are
those in intermediate-slow regimes. Rotating frame relaxations
during frequency swept pulses offer additional practical
advantages as compared to continuous-wave T1ρ, including a
minimized sensitivity to B1 distributions and a capability to
simultaneously tune the contrast to multiple effective frequencies
(Mangia et al., 2009). Although not common for clinical studies
of neurological disorders, rotating frame relaxations with
frequency swept pulses were proven as robust and sensitive
methods for a variety of in vivo investigations conducted by our
group (Michaeli et al., 2007; Sierra et al., 2008; Jokivarsi et al.,
2009; Nestrasil et al., 2010; Griffith et al., 2011; Liimatainen et al.,
2012; Tuite et al., 2012; Mangia et al., 2013; Satzer et al., 2015;
Hakkarainen et al., 2016) and others (Andronesi et al., 2014;
Casula et al., 2017; Okuaki et al., 2017).

Our previous applications of mapping adiabatic rotating
frame relaxations in humans had been limited to single-
slice acquisitions performed on a non-clinical 4 Tesla scanner
(Michaeli et al., 2007; Nestrasil et al., 2010; Tuite et al., 2012;
Mangia et al., 2013). With the present work, we piloted the
extension of these methodologies to multi-slice acquisitions on
a clinical 3 Tesla scanner, and we thus embarked on a small
cross-sectional study of 10 healthy controls, 9 patients with iRBD,
and 10 patients with PD. Rather than focusing on the endpoint
of progression to a clinical PD diagnosis for iRBD subjects, the
ultimate goal is to use 3 TMRI for characterizing the spectrum of
abnormalities resulting from inexorable synuclein deposition and
other pathological features in both PD and iRBD. Our study is a
step forward for establishing biomarkers which can characterize
PD and iRBD, and ultimately the development of parkinsonian
syndromes from iRBD subjects.
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METHODS

Subjects
PD and iRBD subjects were recruited from the University of
Minnesota Movement Disorders Clinic. Ten healthy controls, 9
iRBD patients and 10 individuals with PD were recruited and
underwent the MRI protocol. However, all data from one iRBD
subject and one PD subject were entirely discarded due to major
motion observed during the acquisition. All the other subjects
successfully completed the MRI protocol (Table 1), except one
control subject who did not finish the DTI acquisitions, and one
PD subject who presented excessive motion during the resting-
state acquisition.

Exclusion criteria included history of stroke, seizures,

neurosurgical procedures, arrhythmias, Montreal cognitive
assessment (MoCA) scores lower than 25, and incompatibility
with MR safety criteria. This study was carried out in
accordance with the recommendations of The Code of Federal

Regulations, Institutional Review Board, with written informed
consent from all subjects. All subjects gave written informed

consent in accordance with the Declaration of Helsinki. The

protocol was approved by the Institutional Review Board:
Human Subjects Committee of the University of Minnesota.

Clinical assessments were performed on anti-parkinsonian
medications (for subjects on such treatment) and included

the National Institute of Neurological Disorders and Stroke

(NINDS) CommonData Element PDmedical and family history,
demographic information, the Hamilton Anxiety and Depression

Rating Scales (Hamilton, 1959, 1960, 1980), United States version

of the Parkinson disease questionnaire (PDQ-39) that reflects
upon quality of life (Bushnell and Martin, 1999), the Unified

Parkinson Disease Rating Scale (UPDRS), the Schwab and
England, and Hoehn and Yahr (Fahn and Elton, 1987; Goetz
et al., 2007, 2008; Dibble et al., 2010). In particular, we also
used the UPDRS part III score to characterize our patient
populations, as UPDRS part III represents an objective evaluation
of motor symptoms. We assessed for features of iRBD with
the validated REM sleep behavioral disorder questionnaire-Hong
Kong (RBDQ-HK, English version) (Li et al., 2010) in all subjects.
For cognitive function, we included the MoCA and the CogState
(Nasreddine et al., 2005; Hoops et al., 2009; Gagnon et al., 2010).

For smell perception, we used the brief smell identification test
(B-SIT) (Hawkes et al., 1997; Double et al., 2003; Bohnen et al.,
2008; Silveira-Moriyama et al., 2009).

Imaging Protocol
Studies were performed on a 3 T Siemens Prisma system using
a 32-channel RF receive coil. Standard B0 shimming were
performed at the beginning of the imaging session to minimize
B0 inhomogeneities.

Adiabatic T1ρ, T2ρ and non-adiabatic RAFF4 measurements
were collected from 30 AC-PC aligned slices covering the
brainstem and basal ganglia using a segmented GRE readout with
4 segments, voxel size = 1.6 × 1.6 × 3.6 mm3, GRAPPA= 3, TE
= 3.18ms and TR = 2 s. For adiabatic relaxation measurements,
hyperbolic secant (HS) pulses were used with BW=1.6 kHz,
pulse duration Tp = 6ms, peak power ω

max
1 /(2π) = 800Hz,

5 acquisitions with number of pulses = 0, 4, 8, 12, 16 using
MLEV4 phase cycling (Michaeli et al., 2004, 2005, 2006, 2008).
In T2ρ acquisitions, magnetization was on -z prior to readout.
For RAFF4, Tp was 4.52ms for one P-packet. The number of
P-packets was 0, 4, 8, 12, 16 with ω

max
1 /(2π)= 327Hz. RAFF4

acquisitions were separately conducted without and with a global
inversion (achieved by the same HS pulse used for T1ρ) prior
to the train of P-packets, to produce sampling of the recovery
and decay curve, respectively, to the steady-state magnetization
induced during RAFF4.

T1-weighted, T2-weighted images, DTI and rsfMRI were
collected covering the whole brain. For T1-weighted acquisitions
MPRAGE with TR = 2150ms, TE = 2.47ms, TI = 1,100ms,
voxel size = 1 × 1 × 1 mm3, flip angle = 8 degrees and
GRAPPA = 2 was used. T2-weighted images were collected
using SPACE sequence, voxel size = 1 × 1 × 1 mm3,
TE = 147ms and GRAPPA = 2. Two DTI datasets were
acquired with different phase encoding (i.e., anterior-posterior
and posterior-anterior) utilizing TR = 2,820ms, TE = 72.6ms;
multi band (MB) = 4 (https://www.cmrr.umn.edu/multiband),
7 non-diffusion weighed (b0) images, and 93 diffusion weighted
images with b-value of 750 s/mm2 (47 images) and 1,500 s/mm2

(46 images) and voxel size= 1.8× 1.8× 1.8mm3. Finally, rsfMRI
data was obtained using gradient echo Echo Planar Imaging (EPI)
sequence, TR= 900ms, multi band (MB)= 4; TE= 30ms; voxel

TABLE 1 | Subjects’ characteristics.

Control mean ± SD (range) iRBD mean ± SD (range) PD mean ± SD (range)

n 10 8 9

Sex 7M/3F 4M/4F 4M/5F

Age (years) 57.3 ± 5.2 (47.0–63.4) 65.7 ± 6.7 (54.7–72.3) 66.1 ± 6.6 (56.3–74.3)

Disease duration (years) – 9.1 ± 14.1 (0.1–15.0) 2.4 ± 1.9 (0.1–4.5)

Onset side (PD) – – 4L/4R, 1NA

UPDRS – 11.6 ± 6.2 (3–21) 36.8 ± 11.2 (26–58)

UPDRS-III – 6.9 ± 4.9 (0–14) 20.3 ± 5.5 (15–32)

MoCA – 27.3 ± 1.4 (25–29) 27.7 ± 1.7 (25–30)

Characteristics of subjects whose data underwent further analyses. All subjects completed the whole MRI protocol, except one control subject who did not finish the DTI acquisitions.

One PD subject was later excluded from functional connectivity analyses, because the resting-state functional scans exceeded the established criteria for acceptable motion.
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size = 3 ×3 × 3 mm3, matrix size = 64 × 64, 48 AC-PC aligned
slices with interleaved slice acquisition, 502 volumes.

Image Analysis and ROI Definition
Brain segmentation of the T1-weighted scan was carried
out with FreeSurfer (FS) version 5.3.0 (http://surfer.nmr.mgh.
harvard.edu) installed on the supercomputer at the Minnesota
Supercomputing Institute. Automated processing has been
described previously (Fischl et al., 2002). A trained operator
visually inspected each subject’s data to ensure accuracy of the
segmentation.

The following region of interest (ROI) masks were derived
from FS automatic labeling of each subject’s brain anatomy:
caudate nucleus, pallidum, putamen, accumbens, amygdala,
thalamus, hippocampus, and brainstem. With the exception of
the brainstem, separate left and right hemisphere ROIs were
generated for each structure. The brainstem was then manually
separated to midbrain and pons regions. Additionally, left
and right ROIs encompassing the substantia nigra reticulata
(SNr), and separately the substantia nigra compacta (SNc), were
manually drawn on each subject’s T2-weighted image using
itkSNAP software v.3.2.0 (Yushkevich et al., 2006) following the
methodology described in our previous paper (Nestrasil et al.,
2010). Representative examples of ROI selections are shown in
Figures 1, 2.

Rigid-body motion correction was performed on adiabatic
T1ρ, T2ρ and RAFF4 measurements using the MCFLIRT
algorithm in FSL (Jenkinson et al., 2012) with default options
(Jenkinson et al., 2002). For T1ρ and T2ρ measures, all acquired
images were firstly co-registered to the first acquisition and then
to the averaged volume. The same algorithm was also applied
on the two separate decay and recovery RAFF4 datasets to
minimize the effect of movement between the two acquisitions.
Relaxation time constant maps were calculated with MATLAB
(MathWorks, Natick, MA) using in-house written routines and
the Aedes software package (http://aedes.uef.fi). In particular, we
used a 2-parameters non-linear fitting for estimating M0 and
relaxation time in T1ρ and T2ρ acquisitions, and a 4-parameters
non-linear fitting for estimating M0, Mss (steady state value
of magnetization), -Mz (initial magnetization value measured
from the negative hemisphere) and relaxation time for RAFF4
acquisitions. The FreeSurfer BB-register algorithm (Greve and
Fischl, 2009) was utilized to align the first acquired image of
T1ρ, T2ρ, and RAFF4 measurements to the FS-preprocessed T1-
weighted images. The transformation matrix was then applied
to the parametric maps utilizing trilinear interpolation. The
registration accuracy was visually verified. The quality of BB-
register initialization was additionally quantified for the adiabatic
relaxation maps by using the quality assessment value provided
by the algorithm.

DTI datasets with opposite phase encoding were utilized to
reduce susceptibility artifacts and field inhomogeneities using
FSL TOPUP (Andersson et al., 2003). After motion and eddy-
current correction (Andersson and Sotiropoulos, 2016), data
were skull-stripped (Smith, 2002) and BB-register was applied
to co-register DTI data to the T1-weighted image (Greve and
Fischl, 2009). The parameters utilized for BB-register matched

those used for motion-correcting the relaxation measurements,
except that the first volume of relaxation measures was replaced
by the b0 image in order to calculate the transformation matrix
for DTI. The accuracy of registration was verified visually. The
DTIFIT tensor model in FSL (Jenkinson et al., 2012) was fit to
the co-registered DTI data to generate fractional anisotropy (FA)
and mean diffusivity (MD) maps.

T1ρ, T2ρ, RAFF4, FA, and MD values of co-registered images
were averaged across voxels within each ROI for each subject.
Where applicable, the masked MRI ROIs extracted from the
left and right hemispheres were combined before averaging.
Representative examples of relaxation and DTI maps are shown
in Figure 3.

Resting State Functional Connectivity
Pre-processing
Resting-state data were pre-processed and analyzed using AFNI
(Cox, 1996), FS, and in-house routines based on Matlab R2013b.
Data underwent the following pre-processing pipeline: (1)
removal of first 10 volumes to allow for signal stabilization
and for subjects to adapt to the new condition, (2) despiking
(AFNI, 3dDespike), (3) slice-time correction (AFNI, 3dTshift),
(4) realignment to the first EPI volume (AFNI, 3dvolreg), (5)
coregistration of the first EPI volume to the FS-preprocessed
T1-weighted image (FS, bbregister), and (6) normalization to
2 × 2 × 2 mm3 MNI space (FS, mri_vol2vol). To minimize
data resampling, steps five and six were applied simultaneously,
concatenating the two transformations (FS, mri_vol2vol). In
addition, a general linear model was constructed to regress
out baseline drift, motion and spurious variance from MNI
normalized data (AFNI, 3dTproject). The following regressors
were included in themodel: a second order Legendre polynomial,
a basis of sine and cosine to model frequencies outside the
band 0.01–0.1Hz, the six estimated motion parameters and their
first derivative, the first five eigenvectors from the time series
inside WM (after two voxels erosion; FS mask) and the first five
eigenvectors from the time series inside CSF (after one voxel
erosion; FS mask), following the aCompCor approach (Behzadi
et al., 2007). To further reduce the impact of motion, data were
censored by removing time points with more than 0.33mm
of displacement (estimated as the Euclidian norm of motion
parameter derivatives) along with each previous time point.
Censoring was applied during the regression step, removing
time points from both data and regressors. The censoring
threshold of 0.33mm was selected so that at least 20 degrees
of freedom (DOF) remained in the data. One PD subject
could not meet this criterion for any reasonable choice of the
censoring threshold and was therefore excluded from any further
connectivity analysis, leaving a total of 10 controls, 8 iRBD
and 8 PD subjects. The remaining DOF did not differ among
groups (controls: 51.5 ± 7.9, RBD: 46.4 ±11.2, PD: 48.1 ± 7.8;
ANOVA p = 0.48). Finally, conventional smoothing was not
applied to the data since functional outcomes were not compared
voxel-by-voxel but at the ROI level. However, since inter-
subject variability in data smoothness, arising from different
amounts of interpolation due to motion correction and/or spatial
normalization, directly impacts local connectivity estimation, we
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FIGURE 1 | Regions of interest used for the analysis of the relaxation, DTI and functional data from one representative control subject. Masks identifying the regions of

interest were transferred to standard space for visualization purposes. SNc, substantia nigra pars compacta; SNr, substantia nigra pars reticulata.

FIGURE 2 | Substantia nigra ROIs (SNr, in blue, and SNc, in red) overlaid on T2-w images and adiabatic T1ρ, and T2ρ maps from one representative control subject.

Images are shown either without (top row) or with (bottom row) the overlay of the ROIs.

set the effective data smoothness to an isotropic Gaussian FWHM
of 4mm (Maximo et al., 2013). This step was accomplished
with the AFNI program 3dBlurToFWHM with the non-default
option to avoid local smoothness estimation (i.e., whole-brain
estimation only), in order to preserve the neuronal related
smoothness.

Movement Assessment
Framewise displacement (FD), as defined in Power et al. (2012),
was computed to index the subject’s movements during the
resting-state scan. There was no significant difference in FD
between controls and PD (controls: 0.15 ± 0.06mm; PD: 0.18 ±
0.04; control vs. PD p = 0.10), however, iRBD subjects moved
more than controls (iRBD: 0.22 ± 0.05; iRBD vs. control p =
0.004) and PD subjects (iRBD vs. PD p = 0.10). To partially take
into account this issue we included FD as a nuisance covariate in
all statistical tests of the functional metrics.

Metrics
Two functional metrics were calculated: seed-based functional
connectivity (FC) and regional homogeneity (ReHo).

Seed-Based FC
Time series within each of the ROIs described previously were
averaged, yielding a single time series that served as seed. The
correlation (Pearson’s r) between the seed time series and the
time series at each other voxel was then computed to quantify
FC between the seed and the rest of the brain. To take into
account the different number of DOF across subjects (due to
the censoring procedure), correlation values were transformed in
standard scores (Z) dividing the Fisher transformed r-value by
the standard error of the Fisher’s distribution:

Z = arctanh(r) ∗
√
DOF − 3. (1)
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FIGURE 3 | Representative maps of T1ρ, T2ρ, RAFF4, FA, and MD from one each of a control, iRBD and PD subject. ROIs of interest visible on the selected slices are

also shown superimposed on the T1-weighted (T1w) images, including thalamus (beige), pallidum (dark blue), putamen (light blue), caudate (red), and accumbens

(yellow).

For each subject and ROI, the seed-based FC was averaged within
the functional network identified in the healthy control group.
Specifically, the functional network was defined by a one-sample,
one-tail, t-test on the seed-based FC maps of the healthy controls
(p < 0.0005, minimum cluster size 20). We refer to this aggregate
value of seed-based FC as network strength.

ReHo
Regional homogeneity was implemented as a metric to assess
local connectivity (Zang et al., 2004). For each voxel in the brain,
ReHo was computed as the Kendall’s coefficient of concordance
among the voxel time series and the time series of its 18 nearest
neighbors (AFNI, 3dReHo). Resulting brain maps were then
transformed into z-scores by subtracting the whole-brain mean
and dividing by the whole-brain standard deviation. Aggregate
ReHo values were finally extracted by averaging across voxels in
each ROI previously described.

Statistical Analyses
Subject age, clinical characteristics, and movement (FD) were
summarized by group with means and standard deviations (SD)
and compared using linear models that allowed for group-
specific variances and provided Holm-corrected p-values for

multiple comparisons among the groups (Holm, 1979); sex
distribution was compared using Fisher’s exact test. The average
relaxation (T1ρ, T2ρ, and RAFF4), diffusion (FA, MD) and
functional connectivity (network strength and ReHo) parameters
were analyzed per ROI. For each of the 11 ROIs separately,
each MR parameter was summarized by group (PD, iRBD,
controls) using means and standard deviations, and compared
across groups using linear models which allowed group-specific
variances; we fit models with and without correction for age.
Per ROI, type I error was controlled with Holm’s adjustment for
the 2 comparisons (PD vs. control and iRBD vs. control) and
false discovery rate correction (Benjamini and Hochberg, 1995)
was used for multiple testing of the 7 MRI outcomes. Results
are presented both without and with the multiple-comparisons
and the multiple-testing corrections (Figure 4, Supplementary
Table 1).

RESULTS

Individuals enrolled in this study spanned from middle-age to
older adults (Table 1). The age of PD and iRBD subjects was 66
years on average for both groups, while the healthy controls were
on average 9 years younger (p < 0.02, corrected, for each of PD
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FIGURE 4 | Group summaries of T1ρ, T2ρ, RAFF4, FA, MD, ReHo and network strength. N = 10, 8, 9 in the control, iRBD and PD groups, respectively, for T1ρ, T2ρ,

and RAFF4, whereas N = 9, 8, 9 for FA and MD, and N = 10, 8, 8 for network strength and ReHo. Data shown as mean ± SD. * and ** indicate, respectively, p <

0.05 and p < 0.005 with age-adjustments after Holm’s correction (gray: iRBD vs. controls; black: PD vs. controls). Asterisks within a box indicate p < 0.05 after

correcting FDR for multiple testing (7 modalities).

and iRBD vs. controls); the sex distribution was similar across all
3 groups. Disease duration spanned from 1 month to 4.5 years in
the PD subjects, and from 1 to 15 years in the iRBD patients. As
expected, PD subjects had significantly higher (worse) UPDRS
scores and UPDRS-III scores than iRBD subjects (p = 0.00003
and p = 0.00009, respectively), but their MoCA values were
comparable.

The adiabatic relaxation maps were well-registered to the
anatomical images, with an average value of quality assessment
of 0.21 ± 0.04 (normal range is between 0 and 1.1; 0 represents
perfect registration initialization). The range of adiabatic T1ρ

(∼130–180ms), T2ρ (∼55–90ms) and RAFF4 (∼ 240–410ms)
measured at 3 T from the gray matter structures of interest
were in good agreement with previous studies conducted at 4 T
(Michaeli et al., 2007; Nestrasil et al., 2010; Liimatainen et al.,
2015). In addition, rotating frame relaxation maps were highly
reproducible among subjects. Indeed, between-subject variations
among healthy controls were 3% for adiabatic T1ρ, T2ρ, and
RAFF4 from the regions of interest. Diffusion parameters were
more variable than relaxation parameters, with between-subjects
variations of 9 and 4% for FA and MD, respectively. Between-
subjects variations were considerably higher for functional
connectivity parameters, namely 22 and 35% for network
strength and ReHo, respectively.

Rotating frame relaxation parameters tended to be higher
in patients than in controls for most of the ROIs (Figure 4,
Supplementary Table 1). When age was not used as a
covariate, significant Holm-corrected group-differences between

PD patients and controls were observed for T1ρ in the
amygdala (p= 0.0001), hippocampus (p = 0.03), pons (p =
0.011), putamen (p = 0.014), substantia nigra compacta (p
= 0.018), and thalamus (p = 0.013), while between iRBD
and controls T1ρ differences occurred in the amygdala (p =
0.012), hippocampus (p = 0.038), midbrain (p = 0.016), pons
(p = 0.011), and thalamus (p = 0.013). Group differences
between PD and controls were also observed for T2ρ in the
amygdala (p = 0.033) and thalamus (p = 0.008), while none
of the RAFF4 findings were significant. Holm-corrected group
differences between iRBD and controls occurred for T2ρ and
RAFF4 in the midbrain (p = 0.024 and p = 0.005, respectively).
On the other hand, diffusion parameters exhibited only one
Holm-corrected group difference, namely MD in SNr of iRB
vs. controls (p = 0.001). Network strengths were smaller in
patients than in controls for most regions. Holm-corrected group
differences were significant for the network of the accumbens of
both patient groups vs. controls (p< 0.013), and for the networks
of the amygdala and SNr of PD vs. controls (p = 0.040 and p =
0.028, respectively). Finally, differences in ReHo were observed
only between PD and controls in the SNc (p = 0.021) and SNr
(p= 0.007).

Including age as a covariate demonstrated that most of the
above mentioned differences were largely accounted for by age
(Figure 4, Supplementary Table 1), especially for T1ρ outcomes.
A lengthening of T1ρ in the amygdala of PD patients as compared
to controls was however still robustly detected with Holm-
correction after age-adjustment (p = 0.005). PD patients also
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maintained a significantly longer T1ρ in the SNc (p = 0.046) as
compared to controls. Between iRBD and controls, only trend-
level group differences were observed after age-adjustments,
namely for T1ρ in the amygdala (p = 0.075), and for T2ρ and
RAFF4 in the midbrain (p = 0.08 and p = 0.064, respectively).
Network strength was still lower in the accumbens of iRBD
patients as compared to controls (p = 0.003), but only a trend
was observed between PD and controls (p = 0.085). Moreover,
age-adjustments and Holm-correction maintained a significantly
lower ReHo in the SNr of PD vs. control (p = 0.035), while only
trend level differences were reached for the amygdala (p= 0.067).

Finally, after additionally correcting FDR for multiple testing
(7 modalities), the longer T1ρ in the amygdala of PD vs. controls
remained significant (p= 0.038), along with the smaller network
strength of the accumbens of iRBD vs. controls (p= 0.018).

DISCUSSION

In the current study we recruited an iRBD group in addition to
a mild-moderately affected PD group with the ultimate goal of
identifying similarities in MRI signatures of both diseases. Both
patient groups were selected to have no diagnosis of dementia,
with MoCA scores not less than 25 (Table 1, and Supplementary
Figure 1). In addition, while iRBD subjects had findings on their
UPDRS-III evaluations (Table 1, and Supplementary Figure 1),
they were not thought to meet a clinical diagnosis of PD (Hughes
et al., 1992) at enrollment. Motivated by the group-differences
previously observed between PD subjects and controls when
using adiabatic T1ρ and T2ρ (Michaeli et al., 2007; Nestrasil
et al., 2010; Tuite et al., 2012), here we piloted a more extended
imaging protocol which included T1ρ and T2ρ, RAFF4, DTI,
and rsfMRI, and performed multi-slice acquisitions from the
midbrain to characterize multiple subcortical brain regions
rather than single slices of the brainstem as we used previously.
Notably, mutli-slice mapping of T1ρ, T2ρ, and RAFF4 had never
been implemented before, especially on a 3 Tesla clinical scanner.
Here we demonstrate that 30-slices relaxationmapping is feasible
with 5-min of acquisition time for each of T1ρ and T2ρ and
10-min for RAFF4. Thus the total acquisition time is similar
to those employed for clinical MRI studies, and therefore such
developments represent a critical step toward a future translation
of the rotating frame methodologies to clinical trials. A multi-
slice approach is needed for the purpose of obtaining more data
that may allow an examination of regions involved in both motor
and non-motor aspects of disease and that could be potentially
useful in developing a prognostic biomarker (to predict whether
iRBD patients are likely to develop PD) as well as a PD staging
biomarker. With regard to the prognostic biomarker, based on
clinical data, e.g., patients with greater cognitive impairment
are more likely to have a different course than those without.
If MRI methods can demonstrate pathology in sub-cortical
regions involved in non-motor function, such as the amygdala
or hippocampus, this information could be potentially useful in
prognosis.

In principle, other MRI contrasts such as T1-Magnetization
Transfer (MT) signal (so-called neuromelanin-sensitive scan

Ogisu et al., 2013) and T1 relaxometry (Menke et al., 2009)
could have been used, as they had been shown to reveal SN
degeneration in PD. Such methods had been proven useful for
visualizing and estimating the volumes of the SN structures.
However, the neuromelanin-sensitive scan (Ogisu et al., 2013)
is a qualitative approach based on signal intensity and it thus
precludes a quantitative evaluation of SN tissue characteristics.
On the other hand, T1-relaxometry is a quantitative method that
allows quantification of tissue relaxation properties. However,
the T1 measured in the SN did not reveal a difference between
PD and controls (Menke et al., 2009), consistent with a
lower sensitivity of free-precession relaxations to detect tissue
degeneration as compared to rotating frame relaxations.

An important finding of the current study is that
rotating frame relaxation parameters provided more robust
characterizations of brain tissue as compared to DTI metrics,
both in terms of observed coefficient of variations and in
terms of their sensitivity to detect age-related and disease-
related differences. The most prominent observation was
that PD and iRBD groups share a lengthening of T1ρ in a
region that is non-motor related and appears abnormal during
cognitive impairment and depression, i.e., the amygdala.
However, group differences vs. controls were clearly more
pronounced in PD patients than in iRBD patients, as they
remained robustly significant for PD patients also after age-
adjustments and corrections for multiple testing, whereas they
reached only trend level in comparisons of iRBD subjects
vs. controls. Dysfunction in olfactory, cardiovascular, sleep,
sensory and cognitive functions is often present during
PD, and even can precede the motor symptoms and the
disease onset (for example, see Jellinger, 2015). Therefore,
the differences between PD and iRBD vs. controls in non-
motor areas detected by rotating frame T1ρ MRI further
support the critical importance of considering non-motor
abnormalities in PD and iRBD. The T1ρ results obtained in
the amygdala of PD patients were overall consistent with
previous findings of structural amygadalar deterioration in
these patients (Bouchard et al., 2008; van Mierlo et al., 2015;
Vriend et al., 2016). Since significant differences of amygadalar
volumes were not observed in the present study (data not
shown), and our PD subjects did not have significant mood
or cognitive impairments, one may speculate that T1ρ MRI
may detect subtle tissue changes in the amygadala which occur
prior to structural changes and/or symptom manifestations.
Interestingly, the lengthening of T1ρ in the amygdala as well
as in SN regions of PD vs. controls, which is suggestive of
neuronal degeneration in these areas, was accompanied by a
deterioration of local functional connectivity as revealed by
regional homogeneity.

Group differences were seen in rotating frame MRI
parameters for other regions such as the thalamus, although
such differences were largely explained by age. It is, however,
still interesting to note that motor dysfunction in PD has
been related to the change in activity of thalamic neurons in
the motor circuits (Halliday, 2009). The slight lengthening of
T1ρ in the SNc of PD patients as compared to controls is in
agreement with previous studies (Michaeli et al., 2007; Nestrasil
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et al., 2010), although the finding was not robust enough to
survive after correcting FDR for multiple testing, most likely
due to the limited number of subjects and/or due to lack of
on-to-one age matching of PD and controls (although age was
taken into account in the statistical analyses). Importantly,
adiabatic T2ρ was shown to pick up the difference in the SN
of PD vs. control subjects in our previous studies conducted
at 4 T (Michaeli et al., 2007; Nestrasil et al., 2010), but not
in the current work. The differences in the outcomes among
the current and previous studies could be attributed to the
hardware used, i.e., higher magnetic field strength 4 T vs.
3 T (the lower field decreases sensitivity). Also, the multislice
acquisition used in the current study may have impacted the
efficiency of the contrast preparation module thus “diluting” the
contrast as compared to the single slice used for the 4 T study.
Importantly, in order to allow extended brain coverage, the
spatial resolution used in this study was lower than previously
used, thus leading to higher partial volume effects. Moreover,
although the manual ROI segmentation of the SN was carefully
performed, inaccuracies in placement are possible as there are
unclear borders in T2-weighted images (Bolding et al., 2013).
Differences between current and previous studies may also be
due to different subject characteristics, with the most notable
being a shorter disease duration of the current cohort (on
average 2.5 years) as compared to our previous studies (on
average 5 years in Michaeli et al., 2007; and 7 years in Nestrasil
et al., 2010). Similar arguments apply for the pons, where T1ρ

differences were previously observed (Tuite et al., 2012). In fact,
in the present cohort we observed lengthening of T1ρ in the pons
of PD vs. controls only when comparisons were not adjusted
for age.

Finally, the long-distance connectivity as measured by
network strength was significantly lower for the accumbens of
iRBD subjects relative to controls, while such difference was
not noted for the PD subjects. On the other hand, rotating
frame relaxation and DTI parameters did not show evident
abnormalities in the accumbens. Another putative signature of
iRBD subjects was a longer RAFF4 and T2ρ in the midbrain,
that could again be related to changes in non-motor features as
opposed to motor function in the iRBD group.

In future studies, it would be important to follow the subjects
for at least 3 years to identify iRBD patients who remain stable,
those who progressed to PD, and those who progressed to LBD.
Changes in nigrostriatal circuits are expected mainly in iRBD
converted to PD, and to a lessser extent in iRBD converted to
LBD. At the same time, it will be critical to fully characterize the
iRBD and PD subjects with extensive behavioral and cognitive
tests in order to fully understand the implications of the MRI
findings. In addition, the lack in the present study of a complete
age matching among controls and patients was a nuisance that
had to be resolved with the inclusion of age-adjustments in
the statistical analyses, and will have to be avoided in future
investigations. Yet it allowed appreciating for the first time
the interesting property that rotating frame relaxations may be
exquisitely sensitive to age, a feature that may even be exploited
in investigations that target aging itself. From an acquisition
perspective, the rotating frame relaxation protocols also allow

great deal of flexibility. Depending on the hypothesis to be tested,
for instance if a focus on only hippocampus and amygdala are
desired, one may design a specific rotating frame multi-slice
acquisition protocol that achieves high spatial resolution with
a reduced number of slices, while guaranteeing full coverage of
the selected regions of interest. If acquisition time is limited,
one may choose to collect only adiabatic T1ρ and resting-state
fMRI, and skip entirely DTI which did not reveal sufficient
sensitivity to detect group differences in this pilot investigation.
On the other hand, other developments are currently underway
to further optimize the acquisition times along with the intrinsic
contrasts of the readout scheme. One promising direction
is to implement magnetization preparation modules within a
3D readout sequence with virtually zero-echo times sequence,
such as SWeep Imaging with Fourier Transformation (SWIFT)
(Idiyatullin et al., 2006). Initial steps in this directions of research
have already been proven successful in animal studies (Zhang
et al., 2016).

Assessment of PD and iRBD subjects through combined
microstructural and functional approaches may be a platform
for comprehensive analysis of ongoing neurodegeneration. In
essence, this approach may allow for staging of degeneration.
In the present study, several outcomes showed trend-level
differences in multiple regions, indicating the need of larger
cohorts in future studies. Therefore, further studies on large
cohorts of patients including longitudinal investigations of how
iRBD advance to PD are necessary to characterize the ability of
MRI metrics to be used as biomarkers of progression of iRBD
into PD or other neurodegenerative diseases.

CONCLUSION

We piloted for the first time the multi-slice mapping of rotating
frame adiabatic T1ρ and T2ρ and non-adiabatic RAFF4 on a
3 Tesla scanner for human brain studies, which here involved
control subjects along with non-demented iRBD and PD
subjects. Rotating frame relaxations provided greater sensitivity
to detect tissue abnormalities compared to conventional diffusion
modalities that are commonly used to characterize tissue
microstructure. The most prominent abnormality observed was
a lengthening of T1ρ in the amygdala of PD subjects, indicating
neuronal degeneration in a non-motor area. This finding was
even more prominent than what was detected by T1ρ in the
substantia nigra, i.e., the area related to the typical motor
symptoms of PD. Significantly smaller network strength of the
accumbens was also observed for iRBD subjects as compared to
controls.
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Lauri J. Lehto 1, 2, Aloma A. Albors 1, Alejandra Sierra 1, Laura Tolppanen 3, Lynn E. Eberly 4,

Silvia Mangia 2, Antti Nurmi 3, Shalom Michaeli 2 and Olli Gröhn 1, 2*

1Department of Neurobiology, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland,
2Department of Neurobiology, Center of Magnetic Resonance Research, University of Minnesota, Minneapolis, MN,

United States, 3Charles River Discovery Services, Kuopio, Finland, 4Division of Biostatistics, University of Minnesota,
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In this work a new MRI modality entitled Relaxation Along a Fictitious Field in the

rotating frame of rank 4 (RAFF4) was evaluated in its ability to detect lower myelin

content in lysophosphatidyl choline (LPC)-induced demyelinating lesions. The lesions

were induced in two areas of the rat brain with either uniform or complex fiber orientations,

i.e., in the corpus callosum (cc) and dorsal tegmental tract (dtg), respectively. RAFF4

showed excellent ability to detect demyelinated lesions and good correlation with myelin

content in both brain areas. In comparison, diffusion tensor imaging metrices, fractional

anisotropy, mean diffusivity and axonal and radial diffusivity, and magnetization transfer

(MT) metrices, longitudinal relaxation during off-resonance irradiation and MT ratio, either

failed to detect demyelination in dtg or showed lower correlation with myelin density

quantified from gold chloride stained histological sections. Good specifity of RAFF4 to

myelin was confirmed by its low correlation with cell density assesed from Nissl stained

sections as well as its lack of sensitivity to pH changes in the physiological range as tested

in heat denaturated bovine serum albumin phantoms. The excellent ability of RAFF4 to

detect myelin content and its insensitivity to fiber orientation distribution, gliosis and pH,

together with low specific absorption rate, demonstrates the promise of rotating frame

of rank n (RAFFn) as a valuable MRI technique for non-invasive imaging of demyelinating

lesions.

Keywords: RAFF, DTI, relaxation, myelin, demyelination, white matter damage, lysophosphatidyl choline

INTRODUCTION

The quantitative assessment of myelin in the brain is highly important for both diagnostic and
monitoring purposes of a variety of disorders, including multiple sclerosis (MS), traumatic brain
injury (TBI), and stroke. However, conventional magnetic resonance imaging (MRI) approaches
currently used to detect demyelination are suboptimal in their ability to detect myelin. To date,
the identification of specific pathological processes involving demyelination by conventional MRI
methods is not possible. This is because many different pathological processes result in similarly-
appearing lesions in conventionalMR, e.g., inflammatory demyelination, infection, stroke or tumor
may all appear as bright lesions on T2-weighted images.
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Advanced MRI modalities such as diffusion tensor imaging
(DTI) (Schmithorst et al., 2002), magnetization transfer (MT)
(Does et al., 1998), T1/T2 ratio (Glasser and Van Essen,
2011), multiexponential T2 (McCreary et al., 2009), and direct
detection using ultra-short echo time (Wilhelm et al., 2012)
have potential in assessing tissue organization and myelin.
However, these methodologies just partially address the problem
of myelin detection (Glasser and Van Essen, 2011; Nossin-
Manor et al., 2013). For instance, although DTI is sensitive
to tissue microstructure, it is not specific to myelin (Le Bihan
and Johansen-Berg, 2012), because metrics derived from DTI
data are influenced also by the underlying macroscopic level
organization of myelinated fibers. On the other hand, MT has
contributions from T1 in different water pools, and the results
are dependent on experimental parameters such as off-resonance
frequency and saturating B1 field strength. For example, the
MT ratio (MTR) showed equally strong correlations with both
the degree of myelin loss and the extent of axonal loss in
postmortem samples (Schmierer et al., 2004). T1/T2 ratio has
been shown to provide good correlation with myelin in normal
gray matter (Glasser and Van Essen, 2011), but just like T1

and T2, it is influenced by the change of multiple different
factors such as edema and paramagnetic ion concentration
in the pathological brain (Pirko and Johnson, 2008; Beer
et al., 2016). Furthermore, in a recent study by Dula and co-
workers (Dula et al., 2010), myelin water fraction, an often
cited multiexponential T2 relaxation metric, varied by almost a
factor of 2 between two regions in the spinal cord while the
myelin volume fractions differed by only approximately 12%. The
proposed explanation for such observation relied on variation in
microanatomy and intercompartmental water exchange. Overall,
no currently available MRI technique or other noninvasive
methods have proven capable of specifically signaling the myelin
loss.

Recently, we introduced a novel MRI relaxation method
entitled Relaxation Along a Fictitious Field (RAFF) (Liimatainen
et al., 2010, 2011) in the rotating frame of rank n (RAFFn)
(Liimatainen et al., 2015). With RAFFn, the fictitious fields are
created by a non-adiabatic modulation of the RF amplitude
and frequency. The particular case of the fictitious fields Hn

of rank n which are stationary in the rotating frame of
rank (n-1) was detailed in (Liimatainen et al., 2015). We
have shown that frequency modulated pulses operating in
the nonadiabatic regime in the 1st rotating frame, and thus
producing a large fictitious magnetic field in the 2nd rotating
frame, can be used for generating novel MRI contrast in
living samples. RAFFn is conceptually different from more
conventional rotating frame MRI methods. With continuous
wave spin lock and adiabatic T1ρ and T2ρ methods, relaxations
are governed solely by longitudinal or transverse relaxations
in the rotating frame. On the other hand, relaxations during
RAFF2 comprise contributions from both T1ρ and T2ρ relaxation
pathways. Similarly, RAFFn comprises both T1ρ(n) and T2ρ(n)
relaxation channels. Moreover, RAFFn is also conceptually
different from chemical exchange saturation transfer (CEST)
and/or MT since RAFFn is sensitive to all contributing
relaxation mechanisms including dipole-dipole interactions,

diffusion in local field gradients and exchange between spins
with different chemical shifts and the cross-relaxations. On
the other hand, CEST and MT provide direct measure of
the saturation transfer or exchange between off-resonance
spins and water. We have shown that for adiabatic T1ρ
the contribution of cross relaxations (origin of MT) between
spins within the bandwidth of the adiabatic pulse is minor
(Michaeli et al., 2008). The contribution of off-resonance
saturation to RAFFn relaxation may originate also from side
bands at frequencies defined by the duration of the RAFFn
pulses (Liimatainen et al., 2015), a mechanism which may
enhance sensitivity of RAFFn to multiple spin pools within the
myelin component. These frequencies are determined by the
assembling of the RAFFn pulses into P-packets, which refocuses
the magnetization in the form of rotary echo (Solomon, 1959).
Formation of the rotary echoes in the rotating frame during
RAFFn pulses is an additional distinction from MT and CEST
techniques.

RAFFn generates flexible MRI contrast with low specific
absorption rate (SAR) and is thus particularly safe for human
applications. We have demonstrated that by changing the rank
of the rotating frame and the orientation of the fictitious field
in the rotating frame of reference, RAFFn MRI contrast can
be sensitized to various motional regimes. In particular, RAFF4
and RAFF5 are exquisitely sensitive to slow/ultra-slow motion
characterized by the correlation times (τc) in themillisecond time
scale. This is important for sensitive and specificmyelin detection
as the highly organized structure of myelin contains multi-
compartment water environments: myelinic, intra-axonal, and
interaxonal. These pools are characterized by different molecular
mobilities and T2 relaxation components which correspond to
ultra-short (50µs–1ms), short- (1–50 ms), intermediate (50ms–
0.5 s), and long-lived T2 components (>0.5 s) (Does et al., 1998;
Bonilla and Snyder, 2007). The short T2 component is attributed
mainly to myelin water, whereas an ultra-short component
is thought to arise from carbon-bound methylene protons.
Extensive experimental and theoretical studies by Mefed and
coworkers have demonstrated that relaxation measurements in
high–rank rotating frames of T1ρρ and T1ρρρ (second and third
frame longitudinal relaxations, respectively) allow the probing
of slow-ultra slow motion with the characteristic correlation
times up to 10−1–10−3 s (Mefed, 1999, 2001). Our previous
analysis, in agreement with those by Mefed, also shows that
the sensitivity of RAFF4 and RAFF5 is shifted to the motional
regime in the millisecond time scale as compared to adiabatic
T1ρ (Michaeli et al., 2006) which has a maximal sensitivity to
the correlation times in the microsecond time scale (Satzer et al.,
2015).

Utilizing the sensitivity of RAFF4 and 5 to slow molecular
motion, we have recently embarked onmeasuringmyelin content
in the normal brain and in complex mucopolysaccharidosis type
I (MPS-I) pathology including demyelination (Satzer et al., 2015;
Hakkarainen et al., 2016). Importantly, the highest correlation
between relaxation time constants andmyelin content as assessed
by quantitative histology was achieved with RAFF4 and RAFF5
techniques, as compared to other relaxation based contrasts
(Satzer et al., 2015; Hakkarainen et al., 2016).

Frontiers in Neuroscience | www.frontiersin.org August 2017 | Volume 11 | Article 43319

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Lehto et al. LPC Induced Demyelination Probed by RAFF

In the present work, we further focused on intracranial
lysophosphatidyl choline (LPC) injections in the rat brain that
have been used previously to model focal demyelination lesions
in MS (Waxman et al., 1979; Ransohoff, 2012). LPC injection
causes demyelination in the white matter within 3-5 days with
only mild inflammatory response, thus allowing a clean model
to study demyelination. Another important feature of the model
is that location of the white matter lesion can be freely chosen,
thus allowing to study the influence of underlying macroscopic
structure of the myelinated fibers on MRI contrasts. The optimal
MRI contrast for detection of demyelination would be sensitive to
the amount of myelin regardless of macroscopic level anisotropy.

The aim of this study was to characterize the ability of
RAFF4 to detect demyelination processes in presence of different
underlying tissue macrostructure and to compare that with some
of the approaches currently used to detect white matter lesions
in advanced human studies. To achieve these goals, we induced
demyelination by injecting LPC in the rat corpus callosum (cc)
and dorsal tegmental tract (dtg), measured RAFF4, DTI and
MT parameters, and performed histology validation to assess the
ability of the various MRI modalities to detect demyelination.
Furthermore, influence of pH on RAFF4 contrast was evaluated
using bovine serum albumin containing phantoms.

MATERIALS AND METHODS

Animal Model
Male Spraque Dawley rats (n = 21, Charles River, Germany;
300–350 g) were used in the experiments. Rats were group
housed with a preserved 12 h light/12 h dark cycle and ad
libitum access to food and water. All animal procedures were
approved by the Animal Ethics Committee of the Provincial
Government of Southern Finland, and conducted in accordance
with the guidelines set by the European Commission Directive
2010/63/EEC.

All surgical procedures were done under inhalation
anesthesia using 1.8–2.2% isoflurane in 30%/70% O2/N2O.
To induce demyelinated lesions, stereotaxic injections of the
LPC solution (volume of 1.5µl; concentration: 10mg/ml;
L-α-lysophosphatidylcholine from egg yolk; L-4129 Sigma-
Aldrich, St. Louis, USA) were performed in selected areas
of the rat brain, chosen based on their myeloarchitecture.
The injections were placed either in the cc (n = 6 and
n = 4, LPC and vehicle, respectively) at the stereotaxic
coordinates: 0.4mm posterior from bregma, 1.4mm lateral
from the midline, and 2.6mm from the skull. For the dtg (n
= 6 and n = 4, LPC and vehicle, respectively) the injection
coordinates were at 6.3mm posterior from bregma, 0.8mm
lateral from the midline, and 4.3mm from the skull. The
cc represents a major white matter bundle with the parallel
organization of myelin bundles, while dtg is a typical example
of more complex myeloarchitecture with a high density of
heterogeneously oriented axons. Control animals underwent
identical protocol but were injected with 1.5µl of vehicle
solution [0.1M sodium phosphate buffer (PBS)] instead of
LPC.

MRI
All the animals were imaged 3 days after injection, when there
is already significant demyelination in this animal model, while
inflammatory reaction and remyelination typically develops later
(Waxman et al., 1979). All MR experiments were performed
using a horizontal 7 T magnet system (Bruker Pharmascan,
Entlingen, Germany).

The sites of injections were localized using T2-weighted fast
spin-echo (FSE) images with the following parameters: TR= 4 s,
echo spacing 12ms, TEeff = 48.0ms, necho = 8, FOV = 25.6 ×
25.6mm2, matrix size = 256 × 256, number of slices = 20 and
slice thickness = 0.75mm. The imaging slice for RAFFn, MT
and DTI (middle slice) was centered to the FSE slice next to the
injection site to avoid including mechanical damage induced by
the injection.

RAFFn Technique
A detailed description of the RAFFn technique was presented
elsewhere (Liimatainen et al., 2015). We chose to use RAFF4, as
RAFF4 and 5 showed highest correlation to myelin content in
normal rat brain in our previous study (Hakkarainen et al., 2016),
and as RAFF4 relaxation is faster than RAFF5 thus requiring
shorter pulse train duration than RAFF5. With RAFFn, the
sine/cosine pulses were used for the modulation of the amplitude
and frequency, respectively. The orientation of the effective field
of RAFFn in the rotating frame of rank (n-1) relative to the
Z(n−1) axis of quantization is defined by the angle α(n), as was
previously detailed (Liimatainen et al., 2010, 2011, 2015). Here,
the α(n) was set to 45◦ in each rotating frame of rank n-1,
and the amplitude of the effective field Hn was maintained at
the same level. During RAFFn pulses, the rotary echoes are
generated when using four pulse elements assembled into a P-
packet according to the scheme PP−1PπP

−1
π

(Liimatainen et al.,
2010). An instantaneous flip of the effective field Hn is indeed
performed during each P-packet to ensure refocusing of M on
the Z(n−1) axis and to form rotating frame rotary spin echo
(Solomon, 1959). The peak RF amplitude of RAFF4 pulses was
γB1 = 323Hz. The time duration of each PP−1PπP

−1
π packet

defined as Tp = 4π/(
√
2ωmax

1 ) was set to 4.525 ms. The signal
intensity decay was measured by incremental pulse trains of P-
packet, with an inversion pulse to account for steady state. RAFF4
pulse train durations were 0, 27, 54, 81, and 108 ms.

Fast spin-echo (FSE) was used as a readout pulse sequence
with TR = 4 s, TEeff = 8.3ms, necho = 8, FOV = 32.0 ×
32.0mm2, matrix size = 256 × 256, number of slices = 1 and
slice thickness= 0.5mm, leading to total acquisition time 21min
20 s for one relaxation time constant map.

Comparator Techniques: DTI and MT
MT measurements were conducted using the same FSE readout
sequence as described above for RAFF4. The modified inversion
MT protocol with two consecutive acquisitions was used (Mangia
et al., 2011). First, the signal decay during off-resonance
irradiation withM oriented along+Z was acquired, and, second,
the signal recovery was measured when M was inverted along
−Z. A square saturation pulse with γB1 = 200Hz was placed
8 kHz off-resonance with an incrementing pulse duration of 0,
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0.3, 0.6, 0.9, and 1.2 s. Total acquisition time was 21 min 20 s.
T1sat, steady state magnetization MSS and magnetization in fully
relaxed state, M0, were solved using pixel-by-pixel analysis with
monoexponential decay and rise functions to the same steady
state value, as described in Mangia et al. (2011). MTR was
calculated as MTR= 1–MSS/M0.

For DTI, segmented spin-echo EPI was used with TR = 2 s,
TE = 30.0ms, nshots = 6, number of averages = 12, FOV = 26.5
× 18.0mm2, matrix size= 212× 144, number of slices= 9, slice
thickness = 0.5mm, b = 1,000 s/mm2, diffusion directions = 42
leading to total acquisition time of 1 h 55min. Mean diffusivity
(MD), fractional anisotropy (FA), radial and axial diffusivity (RD,
AD) maps were calculated from DTI data.

ROI Analysis with MRI
Relaxation time constant maps and parametric maps from MT
and DTI data were calculated in MATLAB (MathWorks, Natick,
MA). The regions of interest (ROIs) were hand-drawn using
the Aedes software package (http://aedes.uef.fi). Six ROIs were
drawn in the cc, three contralateral (1, 2, and 3) and three
ipsilateral (4, 5, and 6) to the injection site (Figure 3). Mean
values of ROI 4 further averaged over LPC or vehicle animals
were used to evaluate the relative contrast (RC) of each of
the different MRI metrics between LPC and vehicle injected
animals. For metrics with lower intensity in vehicles, RC =
[LPC–vehicle]/LPC ∗ 100%. For metrics with higher intensity
in vehicles, RC = [vehicle–LPC]/vehicle ∗ 100%. This approach
ensures that RC is comparable between techniques regardless
of the direction of change between LPC and vehicle animals.
Further, by dividing the difference with the higher value makes
RC a conservative approach as it has a maximum of 100%. In
addition, relative contrast-to-noise ratio (RCNR) was calculated
so that RCNR = [higher value–lower value]/SD(mean values
of ROI4 of the vehicles). To have a broader dynamic range of
myelinated tissue, all 6 ROIs were used to calculate correlations
between MRI and myelin content based on histological stainings
as described below. For the dtg, an ROI covering the lesion was
drawn and copied to the contralateral side to the corresponding
anatomical location. For the vehicle injected animals, a 3-by-3
voxel ROI was drawn at the injection site and copied to the same
anatomical location on the contralateral side. RC between LPC
and vehicle injected animals were then calculated as for the cc,
using the contralateral ROIs.

Histological Procedures
Immediately after the MRI scans, all the animals were
transcardially perfused with 0.9% NaCl (30 ml/min, 2 min,
4◦C), followed by 4% paraformaldehyde (PFA) solution in 0.1
M phosphate buffer (pH 7.4, 30 ml/min, 25 min, 4◦C). Fixed
brains were removed from the skull, and post-fixed for 4 h in 4%
PFA. Then, the brains were cryoprotected in 20% glycerol in 0.02
M potassium phosphate-buffered saline (pH 7.4) for 36 h, and
frozen in dry ice. The frozen brains were stored at −70◦C until
sectioning.

The brains were cut in five series of 30-µm thick coronal
sections using a slidingmicrotome. The first series of sections was
stored in 10% formalin, at room temperature. The series from

second to fifth were stored in a cryoprotectant tissue-collecting
solution (30% ethylene glycol, 25% glycerol in 0.05M PBS) at
−20◦C until further processing.

The first series of sections was stained with Nissl (thionin)
to study cytoarchitecture, cell death and gliosis. The second
series of sections was stained with gold chloride to assess the
myeloarchitecture. For myelin staining, sections were mounted
on gelatin-coated slides and dried at 37◦C. They were then
incubated in a 0.2% gold chloride solution (HAuCl4•3H2O,
G-4022 Sigma-Aldrich, St. Louis, USA) in 0.02M PBS (pH
7.4) containing 0.09% NaCl for 7–8 h at room temperature
in the dark. Then, the slides were washed twice for 4min
in 0.02 M PBS in 0.09% NaCl and placed in a 2.5%
sodium thiosulfate solution for 5min. After three 10min
washes in the buffer solution, sections were dehydrated
through an ascending series of ethanol, cleared in xylene and
coverslipped with DePeX (BDH, Laboratory Supplies, Dorset,
UK).

Histological Analyses
High-resolution photomicrographs of both myelin- and Nissl-
stained sections of the cc and the dtg were obtained using a light
microscope (Leica DMRB, Wetzlar, Germany) equipped with
a digital camera (DXM1200F, Nikon Instruments Inc., Japan).
Three consecutive sections of these areas were analyzed covering
a volume of 450µm that corresponded to the slice thickness in
MRI.

The optical density on myelin- and Nissl-stained sections
was quantified using ImageJ software (version 1.41 http://
rsb.info.nih.gov/ij/). For cc and dtg, ROIs were drawn
corresponding in location, size and shape to the MRI ROIs.
Optical density (OD) was averaged for each ROI over three
consecutive sections to cover the volume analyzed in MRI.
After conversion of the images to gray-scale, OD values were
obtained from the ROIs. For correction of possible staining
differences between sections and brains, OD values from
healthy reference areas were obtained. For the cc lesions,
white matter in the striatum was used as a reference and
for dtg lesions, cc (in the sections of dtg) was used as a
reference.

Transmission Electron Microscopy (TEM)
One extra rat, injected with LPC as described above, was used
to study the ultrastructure of the myelin sheaths in the corpus
callosum 3 days after the LPC injection using TEM. T2-weighted
images were acquired to verify the presence and consistency
of the demyelinated lesion. After MRI, the rat was perfused
using 0.9% NaCl (30 ml/min) for 2 min followed by 4% PFA
(30ml/min) in 4◦C for 50min. The brain was removed from
the skull, post-fixed in 4% PFA/1% glutaraldehyde overnight
at 4◦C, and sectioned in 1-mm thick coronal sections in a
brain matrix. One 1-mm thick section matching the level of
the MRI analysis was selected based on T2-weighted images.
The corpus callosum of this section was dissected into eight
small portions from the level of the injection site to the same
level on the healthy contralateral side. These corpus callosum
samples were incubated with 4% PFA in 0.1 M cacodylate
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buffer (pH 7.4) at 4◦C for an overnight. Then, the samples
were rinsed in 0.1M cacodylate buffer 5 min three times,
followed by a post-fixation in 1% osmium tetroxide (OsO4) in
0.1M cacodylate buffer for 2 h. After that, the samples were
again rinsed in 0.1M cacodylate buffer for 5 min three times.
Then, the samples were dehydrated in ascending percentage
of alcohols for 10min, and the last incubation was propylene
oxide twice for 10min. The samples were then infiltrated with
a 1:1 mixture of propylene oxide and LX-112 resin (Ladd
Research Industries Inc., USA) for 1 h, followed by incubation
in LX-112 resin overnight. The embedding was done with fresh
LX-112 resin in molds. The polymerization of the samples
was done in an oven at 37◦C for 24 h, and then at 60◦C
for 48 h.

Once the samples were embedded in the resin, four
semi-thin sections of 1µm were sectioned and stained with
Toluidine blue. Toluidine blue stained sections were used
to study the cyto- and myeloarchitecture of the samples,
and to guide TEM imaging. Six ultrathin sections were cut
for TEM and mounted in three different grips. Imaging
was done in a transmission electron microscope JEOL
JEM-2100F using magnifications between 250 and 10,000x.
Photomicrographs were taken using a digital camera connected
to the microscope.

Bovine Serum Albumin Phantoms
Heat denaturated bovine serum albumin samples (BSA) were
used to investigate influence of pH on RAFF4. Heat denaturated
BSA has been shown to provide a good model to study influence
of pH modulated proton exchanges as relaxation mechanism
in tissue, while glutaraldehyde crosslinking blocks a significant
portion of exchangeable NH-groups in the protein (Mäkelä
et al., 2001). BSA (fraction V, Sigma Chemicals, St. Louis,
MO) was dissolved in 0.1 M Tris (pH 7.4) to yield a 10%
solution. The pH was adjusted to be 6.2, 6.6, 7.0, 7.4, and
7.8 in five BSA samples, respectively, using HCl or NaOH.
BSA phantoms were exposed to 65◦C for 3 min for heat
denaturation.

The pH phantoms were imaged using a horizontal 9.4 T
magnet (Magnex Scientific Ltd., Abington, UK) interfaced to
a Varian (Agilent) DirectDrive console (Agilent Technologies,
Santa Clara, CA). RF transmission and signal reception were
carried out using a single loop coil with 20mm diameter. T2-
weighted FSE MR imaging was used as a readout with the
parameters as follows: TR= 4 s, TEeff = 55ms, matrix size 256×
256, FOV = 25.6 × 25.6mm2, 8 echoes with 8 ms echo spacing,
initial TE = 10ms, one slice with slice thickness 1mm. The
settings of RAFF4 were same as for in vivo studies described
above. T2-maps were measured using double spin-echo with two

FIGURE 1 | MRI parameter maps of a representative rat, 3 days after an LPC injection into the corpus callosum. Relaxation time constant map of RAFF4 (A), T1sat
(B), magnetization transfer ratio, MTR (C), fractional anisotropy, FA (D), mean diffusivity, MD (E), and axial and radial diffusivity, AD and RD (F,G). Representative

examples of ROIs for analyzing lesions in the corpus callosum are shown on a grayscale RAFF4 map in (H). White arrowhead points to demyelinated lesion in (A–G).
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3ms adiabatic full passage pulses and echo times of 5, 7, 15, 23,
31, 39, and 63ms.

Statistical Analyses
The Mann-Whitney U-test was used to compare LPC injected
animals to vehicles. The contribution of myelinated axons
and cell density to the MRI metrics was assessed using
Pearson’s linear correlation (two-tailed) between pooled

ROI analysis results from MRI and histology of myelin and
Nissl stained sections, respectively. ROIs from both LPC
and vehicle injected animals were included in the analysis
including contralateral and ipsilateral ROIs. Correlation
was calculated separately for all data, cc data and dtg
data. False discovery rate (FDR) correction was done
to adjust p-values for inflation of error due to multiple
testing.

FIGURE 2 | ROI analysis of MRI parameters in the corpus callosum, ipsilateral side. Mean and SD using RAFF4 (A), T1sat (B), magnetization transfer ratio, MTR (C),

fractional anisotropy, FA (D), mean diffusivity MD (E), and axial and radial diffusivity, AD and RD (F,G) values obtained from LPC-induced lesion ROI 4 in the corpus

callosum of LPC injected (n = 6) rats and from the corresponding ROI in the vehicle injected (n = 4) rats. Statistical significance; * < 0.05 (FDR adj. for testing 7 MRI

parameters), Mann-Whitney U-Test.

FIGURE 3 | (A) Representative photomicrograph of myelin-stained sections of the corpus callosum. (B,C) are high magnification images of ROIs 3 and 4 from (A).

(D) Representative photomicrographs of Nissl-stained sections of the corpus callosum. (E,F) Are high magnification images of ROIs 3 and 4 in (D). Scale bars: (D,F)

200 and 50 µm, respectively.
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RESULTS

Corpus Callosum–Demyelination in a Major
white Matter Track with Parallel Axons
MRI

Representative parametric maps from relaxation, MT and
diffusion data obtained from a rat with LPC injection in the cc
are shown in Figure 1. The imaging slice was chosen to be 0.75
mm posterior from the injection site to avoid the influence of
mechanical damage caused by the injection needle. The lesion
was clearly visible in all quantitative MRI maps as well as in
myelin and Nissl stained histological slices on the ipsilateral site
close to the injection site. In all animals, the lesion was located
within the cc, extending ipsilaterally 1.95 ± 0.24 mm (mean
± SD; based on T2-weighted images) from the midline and

contralaterally 0.05 ± 0.15 mm from the midline in mediolateral
direction, due to diffusion of the LPC along the tract.

In the ROI analysis, all MRI metrics showed statistically
significant differences (p< 0.05) between lesions induced by LPC
in the ipsilateral cc (ROI 4, in Figure 3) and the corresponding
area in vehicle animals (Figure 2). The RC observed with RAFF4
was 19.7%. The RC of MTR and T1sat were 7.4 and 4.7%,
respectively, thus exhibiting smaller RC than RAFF4. On the
other hand, MD and FA showed the largest RC: 29.8 and 22.5%,
respectively. Reduced MD and FA were explained by decrease
in axial diffusivity (AD) by 41.3%, while radial diffusivity (RD)
did not show a statistically significant difference, consistent with
axonal damage and contradicting the typical pattern of diffusion
changes often associated with demyelination (Song et al., 2005).
While RC of DTI metrics were higher than that of RAFF4, RCNR

FIGURE 4 | (A) In vivo T2-weighted image of a rat used for the ultrastructural analysis using transmission electron microscopy (TEM). White squares indicate the

location of the images shown in (B,C). Representative photomicrographs of Toluidine blue stained sections of the normal corpus callosum (B) and demyelinating

lesion (C). White arrows in panel C point at axons with thin myelin sheath. Scale bar in (B,C) is 20 µm. Representative photomicrographs obtained in TEM are shown

for the normal corpus callosum (D) and demyelinated lesion (E). White asterisks indicate individual axons in both (D,E). In (D), axons have normal and packed myelin

sheaths (white arrowheads). In (E), the myelin sheaths appear loosely packed and full of pockets (white arrowheads). A black asterisk indicates an axon without myelin

sheath. Scale bar in (D,E) is 200 nm.
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of RAFF4 was higher at 5.7 in comparison to 4.4, 1.8, and 2.6 of
MD, FA and AD, respectively. Correspondingly, RCNR for MTR
and T1sat was 2.3 and 1.8 respectively.

Histology and Electron Microscopy
An example of myelin- and Nissl-stained section from the
same animal as was presented for MRI in Figure 1 is
shown in Figure 3. Three days after LPC injection in the
cc, a demyelinated area over the whole ipsilateral cc was
observed (ROI 4 to 6) while the myelin content on the
contralateral side appeared normal (ROI 1 to 3, Figure 3A).
Also ROI 4, closest to the midline in the ipsilateral side
still presented signs of demyelination (Figure 3C), which
gradually decreased toward the contralateral side and ROI 3
(Figure 3B).

On Nissl-stained sections, a slightly increased cell density was
observed on the demyelinated area (Figure 3D), which can be
attributed to mild gliosis. The cell density was higher in ROI 6
and decreased toward the midline (ROI 4) and the contralateral
side (ROI 3) (Figure 3D). Mild gliosis overlapped with the
demyelinated area observed in myelin staining (Figure 3A).
Gliosis was diffusely distributed; however, a high number of cells
were found surrounding the blood vessels (Figure 3F). On the
contralateral side to the injection site, the density and distribution
of cells appeared normal (Figure 3E).

In order to understand the unexpected diffusion results in
cc, samples from one additional animal underwent TEM. T2-
weighted imaging confirmed that the location and extent of the
LPC lesion was comparable to lesions in other cc injected animals
(Figure 4A). Toludine blue staining showed clearly decreased
staining intensity around the axons in the ipsilateral cc when
compared to the contralateral cc, corroborating demyelination
(Figures 4B,C). In TEM, axonal myelin sheaths appeared thick
and tightly packed on the contralateral cc. Intra-axonal space
appeared normal with only a few membranes or organelles,
such as mitochondria, that could restrict diffusion along axons
(Figure 4D). In the demyelinating ipsilateral cc, axons were
either completely demyelinated or surrounded by thin and
disorganized myelin sheaths (Figure 4E). In pockets between
the myelin sheaths, vacuoles and myelin debris were observed
around all the demyelinated axons, forming more boundaries
along the axonal length.

Dorsal Tegmental Tract–Demyelination in
an Area with a Complex Myeloarchitecture
MRI
Lesions with a width of 0.59 ± 0.18mm were clearly visible
in RAFF4, T1sat and MTR maps in the dtg (Figure 5). In ROI
analysis of the dtg, RAFF4 and the MT MRI metrics showed
a statistically significant difference (p < 0.05) between lesions

FIGURE 5 | Relaxation time constants map of RAFF4 (A), T1sat (B), magnetization transfer ratio, MTR (C), fractional anisotropy, FA (D), mean diffusivity, MD (E), and

axial and radial diffusivity, AD and RD (F,G) of LPC-induced lesion in the dorsal tegmental tract. Representative examples of ROIs for analyzing lesions in the dorsal

tegmental tract are shown on a grayscale RAFF4 map in (H). Arrowheads indicate the lesion site.
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FIGURE 6 | ROI analysis of MRI parameters in the dorsal tegmental tract, ipsilateral side. Mean and SD of RAFF4 (A), T1sat (B), magnetization transfer ratio, MTR (C),

fractional anisotropy, FA (D), mean diffusivity, MD (E), and axial and radial diffusivity, AD and RD (F,G) obtained from LPC induced lesion ROI in the dorsal tegmental

tract of LPC injected (n = 6) rats and from the corresponding injection site ROI in vehicle injected (n = 4) rats. Statistical significance; * < 0.05 (FDR adj. for testing 7

MR parameters), Mann-Whitney U-Test.

FIGURE 7 | (A) Representative photomicrograph of myelin-stained sections of the dorsal tegmental tract. (B,C) are high magnification images of contra- and

ipsilateral ROIs from (A), respectively. (D) Representative photomicrographs of Nissl-stained sections of the dorsal tegmental tract. (E,F) are high magnification images

of contra- and ipsilateral ROIs from (D), respectively. Scale bars: (D,F) 200 and 50 µm, respectively.

induced by LPC and the corresponding area in vehicle injected
animals, while the diffusion metrics did not show a significant
difference (Figure 6). The RC of RAFF4 was 26.2% while the RCs
of MTR and T1sat were lower at 16.4 and 12.5%, respectively.
Corresponding RCNRs were 6.8, 4.8, and 5.6, respectively.

Histology
Figure 7 shows myelin- and Nissl-stained sections of a rat
3 days after LPC injection in the dtg. We observed a

demyelinated area ipsilaterally to the injection (Figure 7C) while
the myelin content on the contralateral side appeared normal
(Figure 7B).

On Nissl-stained sections, we observed an increased
cell density attributed to gliosis, which overlapped with
the demyelinating area (Figure 7D). On the contralateral
side to the injection site, the amount and distribution
of cells were normal (Figure 7E). Similarly as in the
cc lesion, gliosis was diffusely distributed, and a high

Frontiers in Neuroscience | www.frontiersin.org August 2017 | Volume 11 | Article 43326

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Lehto et al. LPC Induced Demyelination Probed by RAFF

TABLE 1 | Pearson correlation of MRI parameters with optical density in myelin and Nissl stained sections including ipsilateral and contralateral ROIs and both LPC and

vehicle injected animals.

RAFF4 MTR T1sat FA MD AD RD

MYELIN

cc R −0.742 0.741 −0.741 0.662 0.708 0.714 0.257

95%, lower −0.838 0.600 −0.837 0.490 0.553 0.562 0.003

95%, upper −0.601 0.837 −0.599 0.784 0.815 0.820 0.480

|upper-lower| 0.237 0.237 0.238 0.294 0.262 0.257 0.476

p <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.048

dtg R −0.745 0.719 −0.705 0.438 0.122 0.279 −0.079

95%, lower −0.893 0.405 −0.875 – − − –

95%, upper −0.451 0.881 −0.382 – – – –

|upper-lower| 0.442 0.476 0.493 – – – –

p 0.001 0.001 0.001 0.053 0.610 0.233 0.739

Both R −0.743 0.719 −0.700 0.473 0.591 0.648 0.039

95%, lower −0.827 0.593 −0.797 0.282 0.426 0.499 –

95%, upper −0.625 0.811 −0.568 0.627 0.717 0.760 –

|upper-lower| 0.203 0.218 0.229 0.350 0.291 0.260 –

p <0.001 < 0.001 <0.001 <0.001 <0.001 <0.001 0.732

NISSL

cc R 0.217 −0.306 0.286 −0.245 −0.169 −0.208 0.036

95%, lower – – – – – – –

95%, upper – – – – – – –

|upper-lower| – – – – – – –

p 0.149 0.107 0.107 0.149 0.225 0.149 0.782

dtg R 0.587 −0.562 0.580 −0.412 −0.298 −0.396 −0.119

95%, lower 0.195 −0.804 0.184 – – – –

95%, upper 0.817 −0.159 0.814 – – – –

|upper-lower| 0.6224 0.645 0.629 – – – –

p 0.026 0.026 0.026 0.112 0.230 0.112 0.616

Both R 0.343 −0.450 0.466 −0.415 −0.066 −0.292 0.295

95%, lower 0.134 −0.610 0.274 −0.582 – −0.481 0.081

95%, upper 0.524 −0.256 0.622 −0.215 – −0.078 0.484

|upper-lower| 0.390 0.354 0.348 0.367 – 0.404 0.403

p 0.004 <0.001 <0.001 <0.001 0.564 0.009 0.008

Statistically significant R-values (p < 0.05, FDR adj. for testing 7 MRI parameters) are shown in bold.

Cc, corpus callosum; dtg, dorsal tegmental tract.

number of cells were found around blood vessels
(Figure 7F).

Correlation between MRI Parameters and
Histology
RAFFn and MT parameters provided good correlation (R
> 0.70) with myelin staining optical density when data
from both brain areas and all ROIs were pooled (Table 1,
Figure 8), while the correlation with myelin density was
clearly lower for FA (R = 0.47) and for MD (R = 0.59).
When only ROIs in the cc were included in the correlation
analysis, all MRI parameters, except RD, markedly correlated
(R > 0.66) with myelin density. However, the correlation

with diffusion parameters was lower than that of RAFFn or
MT despite larger relative changes in diffusion parameters
than RAFFn and MT (Table 1). Importantly, in the dtg,
RAFF4 and MT parameters had excellent correlation with
myelin staining (R > 0.70), while there was no statistically
significant correlation between diffusion parameters and myelin
density.

There was a mild correlation between RAFF4 and Nissl
staining intensity in the dtg (R < 0.59), however no statistically
significant correlation in the cc and a weak correlation overall
(R < 0.35). This indicates that cellularity is not the determining
factor to contrast, but may have a small contribution for example
in the case of profound gliosis (Table 1).
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FIGURE 8 | Pearson correlation between MRI metrics and optical density measured from myelin stained sections including all ROIs, i.e. LPC and vehicle injected

animals, contralateral and ipsilateral ROIs. Linear regression line between optical density of myelin and (A) RAFF4, (B) MTR, (C) T1sat, (D) FA, (E) MD, (F) AD overlaid

on the corresponding scatter plot of the ROI data. RD did not show statistically significant correlation.

Influence of pH in Protein Phantoms
Relaxation time maps were measured with different techniques
from a BSA phantom with varying pH values. While T2 showed
clear dependence on pH, due to altered proton exchange, as
expected, RAFF4 was virtually unaffected by pH at values
around a physiological pH of 7.4, in the range of 6.2–7.8
(Figure 9).

DISCUSSION

In the present work, the value of the RAFF4 technique for
detection of demyelination in the brain was investigated in a
well-controlled LPC-injection rat model. Our major finding
was that RAFF4 was able to robustly detect demyelination
in both the cc and dtg, which have a different organization

of myelinated axons and had a different amount of gliosis
after LPC injection. Furthermore, RAFF4 provided excellent
correlation with myelin content in both cases, while DTI
was unable to reliably assess demyelinated area in the dtg,
likely due to its sensitivity to underlying cytoarchitecture
and gliosis. Interestingly, MT parameters measured
with a recently introduced modified inversion technique
(Mangia et al., 2011) were able to detect demyelination
in both the cc and dtg and showed good correlation
with myelin content, though the overall ability of MT at
detecting demyelination was slightly lower than that of
RAFF4.

Excellent correlation of RAFF4 to myelin content can be
attributed to sensitivity of RAFF:n to correlation time regime
in the ms-range (Satzer et al., 2015; Hakkarainen et al., 2016),
which likely corresponds to exchange and dipolar interaction
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FIGURE 9 | Effect of pH on (A) RAFF4 and (B) T2 in a bovine serum albumine

phantom. RAFF4 is essentially unaffected by changing pH. Error bars indicate

the standard deviation across voxels inside the ROI drawn in the phantom.

of myelin water and dipolar interaction with carbon-bound
methylene protons. In our previous study, there was no
significant difference between RAFF4 and RAFF5 in their
ability to detect myelin in normal brain (Hakkarainen et al.,
2016) indicating that contribution of myelin to spectral density
function is relatively flat in this correlation time range. As
RAFF4 has shorter relaxation time constant than RAFF5,
and therefore requires shorter magnetization preparation pulse
train, RAFF4 was chosen over RAFF5 for sensitizing MRI for
myelin. In our previous studies, RAFF1-3 showed sensitivity
to shorter correlation time regime than RAFF4-5, with
reduced gray/white matter contrast and reduced sensitivity to
myelin (Liimatainen et al., 2010; Satzer et al., 2015). The
different sensitivities of RAFFn techniques indicate how these
techniques can be tuned to detect different motional regimes
corresponding to different cellular components and pathological
processes.

A conventional DTI approach was used as a comparative
method, as it is one of the most commonly used advanced
MRI approaches in clinical settings for assessment of white
matter abnormalities. In the cc, DTI was able to detect LPC
lesion even better than RAFF4 based on contrast between
LPC and vehicle injected animals. However, large variability
of the DTI metrics led to worse contrast-to-noise ratio
between the two groups in comparison to RAFF4. In addition,
the pattern of diffusion changes was unexpected: decreased
MD, which was associated with decreased AD, while RD
was unchanged. Demyelination is classically associated with

increased RD (Song et al., 2005), as water molecules can pass
axonal membranes more freely in the absence of myelin. In
our study, demyelination, 3 days after LPC injection, was
confirmed by quantitative analysis of myelin stained histological
sections. Our results indicate substantial but not complete
demyelination at this subacute time point. A previous electron
microscopy study in LPC injected rats showed significant
thinning of the myelin sheaths around axons, but not complete
dissolution of myelin especially in the early time points
(Foster et al., 1980). Our TEM data showed similar changes
3 days after LPC injection. In spite of clear demyelination,
some disorganized myelin sheaths were still observed, which
preserved RD close to normal. Furthermore, disorganized myelin
sheaths with pockets, myelin debris, and vacuoles increased
the number of diffusion restricting boundaries in the intra
axonal space explaining the decreased AD, FA, and MD. These
findings emphasize the complexity of using simple diffusion
metrics as markers for a specific pathological feature such as
demyelination. On the other hand, DTI, and especially more
advanced high angular resolution diffusion-weighted imaging-
type diffusion imaging approaches, clearly have potential to
provide information that goes far beyond the myelin content
and warrants further studies. The optimal MRI protocol to
assess white matter pathology should contain both a technique
with high sensitivity and specificity to myelin and capability to
characterize microstructural changes.

Importantly, RAFF4 and RAFF5 have been shown to
correlate with myelin density to a greater extent than MT
in normal brain (Hakkarainen et al., 2016). Our results here
show that using advanced MTR mapping (Mangia et al.,
2011), MTR can also provide excellent correlation with myelin
in LPC induced demyelination although lower than that
of RAFF4. In addition to anisochronous and isochronous
rotating frame relaxation pathways contributing to RAFF4
and 5, RAFF4 and 5 may share with MT cross-relaxation
pathways. Therefore, these two techniques could provide
complementary information for characterizing tissue integrity
which could be utilized by proper modeling (Underhill et al.,
2011).

A benefit of the LPC model is that it causes demyelination
without significant edema formation and only mild to moderate
gliosis. Therefore the LPC model allows assessment of
demyelination without multiple simultaneous contributing
factors. In practically all human pathological conditions,
demyelination is co-localized with a number of other
pathological processes including inflammation, edema and
acidification. There was more gliosis in the dtg than in cc after
LPC injections, which likely explains why there was statistically
significant correlation with Nissl staining in dtg but not in cc.
However, in both cases correlation with myelin content remained
good, and in general RAFF4 correlation with myelin density was
higher than with other MRI methods studied. Importantly, the
correlation of RAFF4 with Nissl stain proves that mechanisms
other than myelin must contribute to the RAFF4 contrast.
Therefore, RAFF4 is not entirely specific to myelin, as expected
for any relaxation parameters that unavoidably depends on
multiple biological processes. Yet, the insensitivity of RAFF4
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to at least some processes such as pH changes, along with
the distinct feature of RAFF4 to detect slow and ultra-slow
motional regimes typical in myelin, overall suggest also a
better specificity of RAFF4 to myelin as compared to other
methods.

A unique feature of RAFF4 is that sensitivity to slowmolecular
motion can be achieved within the SAR limits of human studies,
making the RAFF4 technique readily applicable to clinical
settings. Indeed, excellent gray/white matter contrast with high
rank RAFF4 has already been demonstrated in human brain
with reasonable acquisition times (∼10min) (Liimatainen et al.,
2015). While sensitivity to ms-time range can be also achieved
with conventional spin-lock techniques, such as continues-wave
T1ρ with spin-lock field in kHz range (Sepponen et al., 1985;
Gröhn et al., 2000), human studies are compromised because of
high SAR of on-resonance spin-lock pulses.

CONCLUSION

The excellent ability of RAFF4 to detect myelin content in
healthy and pathological tissues and its insensitivity to fiber
orientation distribution, gliosis and pH together with low SAR,

promises RAFFn to become a useful technique for visualizing
demyelinating lesions. Future work will aim to investigate later
time points after LPC-induced demyelination in order to follow
the remyelination of the LPC injected animals and to test
specificity of RAFF4 for myelin in other disease models with
more complex pathology which for instance include edema.
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Hemodynamic responses, in general, and the blood oxygenation level-dependent

(BOLD) fMRI signal, in particular, provide an indirect measure of neuronal activity. There

is strong evidence that the BOLD response correlates well with post-synaptic changes,

induced by changes in the excitatory and inhibitory (E-I) balance between active neuronal

populations. Typical BOLD responses exhibit transients, such as the early-overshoot

and post-stimulus undershoot, that can be linked to transients in neuronal activity,

but they can also result from vascular uncoupling between cerebral blood flow (CBF)

and venous cerebral blood volume (venous CBV). Recently, we have proposed a

novel generative hemodynamic model of the BOLD signal within the dynamic causal

modeling framework, inspired by physiological observations, called P-DCM (Havlicek

et al., 2015). We demonstrated the generative model’s ability to more accurately model

commonly observed neuronal and vascular transients in single regions but also effective

connectivity between multiple brain areas (Havlicek et al., 2017b). In this paper, we

additionally demonstrate the versatility of the generative model to jointly explain dynamic

relationships between neuronal and hemodynamic physiological variables underlying the

BOLD signal using multi-modal data. For this purpose, we utilized three distinct data-sets

of experimentally induced responses in the primary visual areas measured in human, cat,

and monkey brain, respectively: (1) CBF and BOLD responses; (2) CBF, total CBV, and

BOLD responses (Jin and Kim, 2008); and (3) positive and negative neuronal and BOLD

responses (Shmuel et al., 2006). By fitting the generative model to the three multi-modal

experimental data-sets, we showed that the presence or absence of dynamic features

in the BOLD signal is not an unambiguous indication of presence or absence of those

features on the neuronal level. Nevertheless, the generative model that takes into account

the dynamics of the physiological mechanisms underlying the BOLD response allowed

dissociating neuronal from vascular transients and deducing excitatory and inhibitory

neuronal activity time-courses from BOLD data alone and from multi-modal data.

Keywords: excitatory-inhibitory, multi-modal data, fMRI signal modeling, response transients, neuronal

adaptation, post-stimulus BOLD undershoot, hemodynamic uncoupling, DCM
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INTRODUCTION

Functional magnetic resonance imaging (fMRI) is a widely
used non-invasive technique to assess brain function. The
fMRI signal reflects neuronal activity only indirectly through
the measurements of accompanying hemodynamic processes at
temporal resolution typically on the order of seconds and spatial
resolution typically on the order of tens of cubic millimeters.
In general, neuronal activation causes a series of physiological
events, including localized changes in cerebral blood flow
(CBF), cerebral metabolic rate of oxygen (CMRO2), cerebral
blood volume (CBV), and deoxyhemoglobin content. These
physiological variables form the basis of the blood oxygenation
level-dependent (BOLD) signal (Ogawa et al., 1990), the most
commonly used fMRI approach. However, CBF and CBV can
also be directly measured with various fMRI techniques (e.g., see
Wong et al., 1997; Lu et al., 2003; Liu and Brown, 2007; Huber
et al., 2014b).

In many studies, it has been found that there is high

correspondence between response properties measured in fMRI
and other hemodynamic techniques and those measured from

invasive electrical recordings, mostly acquired in non-human
primates, cats and rodents (Logothetis et al., 2001, 2010;
Kim et al., 2004; Niessing et al., 2005; Devor et al., 2007,
2013; Logothetis, 2008; Muckli, 2010; Boynton, 2011; Hillman,
2014). In particular, CBF and BOLD responses show better
correlation with post-synaptic local field potentials (LFPs) than
with spiking activity (multi-unit activity, MUA), suggesting that
the hemodynamic response reflects stronger the input to a
neuronal population in a brain area and intrinsic processing
(Lauritzen, 2005) rather than the output of that area (Goense
and Logothetis, 2008; Logothetis et al., 2010; Magri et al.,
2012). Positive CBF and BOLD responses during stimulation are
associated with an increase in neuronal activity and decrease
in deoxyhemoglobin content, whereas negative CBF and BOLD
responses are associated with a decrease in neuronal activity
below baseline and increase in deoxyhemoglobin content (e.g.,
Shmuel et al., 2006 and references therein).

Typical positive BOLD responses to sustained stimulation
display transients, such as response adaptation (also referred to
as early-overshoot) and post-stimulus undershoot (Frahm et al.,
1996; Krüger et al., 1996; Hoge et al., 1999). Similarly, neuronal
responses to stimulation exhibit rapid rise followed by a decay
(or adaptation) to a steady-state level and are often followed
by a brief decrease below baseline after stimulus cessation (e.g.,
Logothetis et al., 2001). These neuronal transients (Boynton et al.,
1996; Hoge et al., 1999; Bandettini and Ungerleider, 2001; Birn
et al., 2001) are the result of changes in excitatory and inhibitory
(E-I) balance between active neuronal populations, controlled by
local micro-circuitry but also by long-range connections with
other brain areas (Logothetis, 2002; Logothetis and Wandell,
2004; Shmuel et al., 2006; Hyder et al., 2010; Havlicek et al.,
2017b). CBF reflects these neuronal transients in a temporally
smoothed fashion (Hoge et al., 1999; Attwell and Iadecola, 2002;
Uludağ et al., 2004; Sadaghiani et al., 2009; Attwell et al., 2010;
Cauli and Hamel, 2010; Mayhew et al., 2014). Because of the
complex underlying physiological processes, the BOLD response

can exhibit transients not only from neuronal sources, but also
due to the properties of blood vessels: the BOLD response is
dominated by signal contributions originating from the venous
compartments, and venous CBV can be dynamically uncoupled
from CBF (i.e., venous CBV lags behind CBF), influencing the
amplitude of the early-overshoot and post-stimulus undershoot
of the BOLD-response (Buxton et al., 1998b; Mandeville et al.,
1999; Yacoub et al., 2006; Chen and Pike, 2009). Alternatively,
dynamic uncoupling between CBF and CMRO2 (i.e., CMRO2

lags behind CBF) could result in the same BOLD transients
as well (Lu et al., 2004; Frahm et al., 2008; Donahue et al.,
2009; Hua et al., 2011; Poser et al., 2011; van Zijl et al., 2012).
However, we have recently argued, supported by modeling
of experimental data, that the contribution of CBF-CMRO2

uncoupling to BOLD signal transients is much lower than that
of CBF-venous CBV uncoupling (Havlicek et al., 2017a). Thus,
neuronal and hemodynamic responses in different areas (or
voxels) and subjects exhibit dynamic features, which can be both
due to changes in E-I balance or due to biomechanical properties
of the vasculature.

In standard analysis of fMRI data, linear convolution is
applied between a stick or box-car functions (representing the
stimulation paradigm) and assumed canonical hemodynamic
response function (representing the combined transform from
stimulus time-course to neuronal signal and the measured
BOLD response) (Friston et al., 1995). However, as indicated
above, excitatory and inhibitory neuronal responses may be
nonlinearly related to stimulation (e.g., see Boynton et al.,
1996; Bandettini and Ungerleider, 2001; Birn et al., 2001; Grill-
Spector and Malach, 2001; Kida and Yamamoto, 2008; Mullinger
et al., 2013, 2014; Pérez-González and Malmierca, 2014; Havlicek
et al., 2017a; Keller et al., 2017). Furthermore, vascular
transients resulting from dynamic uncoupling induce additional
nonlinearities between the input function and subsequent
hemodynamic variables. Therefore, the linearity assumption in
BOLD data analysis may not be sufficient in many experiments
and, consequently, the inferred information about the neuronal
activity changes obtained from hemodynamic signals using linear
(de)convolution analysis might be confounded with vascular
effects. In other words, to more accurately estimate neuronal
responses from the BOLD signal, a nonlinearmodel that accounts
for dynamic relationships between neuronal and hemodynamic
physiological variables underlying the BOLD response is needed.

Recently, we have introduced a physiologically-informed
generative model of the BOLD signal within the framework of
dynamic causal modeling (Friston et al., 2003) (called P-DCM)1,
linking excitatory and inhibitory neuronal activity to the BOLD
response (Havlicek et al., 2015). In P-DCM, we employ: (i) an
adaptive excitation-inhibition neuronal model that accounts for a
wide range of neuronal time-course both during stimulation and
post-stimulation periods; (ii) a neurovascular coupling (NVC)
model that links neuronal activity to blood flow in a strictly

1As we have developed our novel generative model within the framework of the

dynamic causal model (DCM) and applied it both to single ROI and to a network

of ROIs, in this paper to avoid confusion, we use DCM and the generative model

embedded within P-DCM interchangeably.
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feedforward fashion; (iii) a balloon model (Buxton et al., 1998b)
that can account for a vascular uncoupling between CBF and
venous CBV; and (iv) field strength and sequence dependent
parameterization of the BOLD signal equation. We compared P-
DCM with other DCM models (Friston et al., 2003; Marreiros
et al., 2008) and demonstrated significant improvements in the
ability to model commonly observed neuronal and vascular
response transients in single regions (Havlicek et al., 2015)
and also within a network of several regions with task-driven
activity changes (Havlicek et al., 2017b). In the latter case, we
also showed a high fidelity of P-DCM to jointly explain CBF
and BOLD responses simultaneously measured with the arterial
spin labeling (ASL) fMRI technique, demonstrating the benefit
of additional information provided by a CBF measurement for
model inversion.

In general, multi-modal imaging is a powerful approach
to study the relationship between neural activity and the
BOLD fMRI signal. Measurements of different physiological
variables can increase the ability to disambiguate neuronal and
vascular effects present in the BOLD signal and potentially
unravel limitations of the hemodynamic models. In the
current work, we aim to explore the versatility of P-DCM to
explain dynamic relationships between various combinations of
measured physiological variables and to deduce the excitatory
and inhibitory neuronal dynamics from hemodynamic data.
This is done under the constraints of assumed physiological
mechanisms and experimental manipulations. In particular, we
use: (1) newly acquired CBF and BOLD responses to static
and flickering stimuli in human subjects; (2) CBF, total CBV
and BOLD response to square-wave grating stimulus acquired

in the cat brain from the study of Jin and Kim (2008);
and (3) positive and negative neuronal and BOLD responses
induced by rotating visual stimuli measured in the monkey
brain from the study of Shmuel et al. (2006). In our modeling,
we emphasize stimulus-type-dependent modulation of response
transients that can be linked to a dynamic interplay between
excitatory and inhibitory activity. In addition, we allow for
differences between stimulation and post-stimulation response
periods and account for vascular-, magnetic field strength-, and
MRI sequence-dependent properties. The current approach can
also be generalized to other invasive and non-invasive multi-
modal data, such as EEG-fMRI, provided generative models exist
for both modalities.

METHODS

General Description of P-DCM
The generative model in P-DCM consists of four causally-linked
components that define how the neuronal signal is transformed
to the measured BOLD response (see Figure 1 for an illustration
and the summary of model equations). For a more detailed
description of the model and its comparison with previous DCM
models, please see (Havlicek et al., 2015, 2017b).

Neuronal Model of E-I Balance
In this model, an exogenous input u (t) (e.g., sensory stimulus)
drives the change in excitatory activity, ne (t), which is directly
coupled with a change in inhibitory activity, ni (t). The strength
of this input, expressed with the parameter c, scales the amplitude
of the neuronal response. The shape of the neuronal response

FIGURE 1 | On the left, a schematic depicts the four main components of P-DCM generative model, representing the causal chain between the neuronal and the

BOLD response. In the middle, shapes of the physiological responses generated at different stages of the generative models are shown. The shaded areas around the

responses represent the amount of response transient variability that can be modeled by P-DCM. This illustration highlights the two main sources of BOLD response

transients: caused either by (1) neuronal transients generated by the model of E-I balance; or by (2) vascular transients due to dynamic uncoupling between CBF and

venous CBV; or mixture of these two. On the right, a summary of all equations underlying P-DCM is provided.
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is tuned by the transient imbalance between excitatory and
inhibitory activity. In particular, the typical overshoot at the onset
can be produced by gradually increasing inhibitory activity that
modulates the excitatory activity via negative feedback. Next,
persistence of the inhibitory activity following stimulus cessation
can produce post-stimulus deactivation. This temporal evolution
of excitatory and inhibitory activity, including their dynamic
mismatch, is controlled by the parameters σ and λ, respectively,
and the strength of the inhibitory activity modulating the
excitatory activity is encoded by the parameter µ. Optimization
of these neuronal parameters allows modeling a broad repertoire
of neuronal response adaptation profiles and of possible post-
stimulus deactivations separately for the stimulation period (SP)
and the post-stimulation period (PSP)2.

Neurovascular Coupling (NVC):
The output of the neuronal model, i.e., the excitatory
activity modulated by inhibitory activity, is transformed
to CBF, f (t), in a strictly feedforward fashion, via
vasoactive signal a(t). Neuronal excitation/inhibition leads
to arterial vasodilatation/vasoconstriction associated with
increased/decreased CBF (Devor et al., 2007). Thus, the modeled
neuronal response transients are conveyed to a CBF response,
albeit in a smooth version. Decay and delay of the CBF response
with respect to the neuronal response is regulated with three
constants, ϕ, φ and χ , with only χ being optimized during model
inversion.

Hemodynamic Model:
The hemodynamic model is represented by the balloon model
(Buxton et al., 1998a,b). It models themass balance of normalized
changes in CBV, v(t), and deoxyhemoglobin content, q(t), as
they pass through the venous compartment. Their changes are
driven by changes in the inflowing CBF, f (t), and CMRO2,
m(t), respectively. It is assumed that CBF and oxygen extraction

faction, E(t), are dynamically coupled, thus m (t) = f (t) · E(t)
E0

,
where E0 is the value of oxygen extraction faction at rest (please
see discussion of this assumption in (Havlicek et al., 2015), and
the Discussion section for more details). Furthermore, during
steady-state, the blood leaving the venous compartment (i.e.,
the outflow, fout(t)) and the venous CBV are coupled via a
power law relationship (Grubb et al., 1974), with exponent α,
whereas during the transient periods venous CBV and CBF can
be uncoupled; i.e., venous CBV can evolve more slowly than CBF.
This is due to the vessel’s resistance to changes in venous CBV,
described by the viscoelastic time constant, τ . Theoretically, the
viscoelastic time constant can have different values during SP
and PSP, τSP and τPSP. The time dimension of changes in v(t)
and q(t) is scaled by the mean transit time of the blood through
the venous compartment at rest, t0. Note that t0 is linked to the
resting venous blood volume fraction V0 via the central volume
principle, t0 = V0

F0
, where F0 is the blood flow at rest.

2Please note that we use PSP instead of PSU, as the sign of the post-stimulus BOLD

response depends on whether it is preceded by negative or positive changes in

neuronal activity during stimulation (as in Shmuel et al., 2006; whose data are

investigated in the current study).

BOLD Signal Equation:
The BOLD signal reflects changes in the deoxyhemoglobin
content, q(t), together with changes in the deoxyhemoglobin
concentration, q(t)/v(t), and venous CBV, v(t). Their relative
contribution is weighted by parameters that are magnetic field
strength-, TE- andMRI sequence-dependent (Uludağ et al., 2009;
Havlicek et al., 2015, 2017a).

In summary, as illustrated in Figure 1, P-DCM and its
parameters allows the BOLD response to exhibit transients, such
as response adaptation during stimulation and post-stimulus
undershoot that can have both neuronal and vascular origins.
As we show below, physiological origins of these transients
can be tested under the constraints of concurrent multi-modal
physiological data and experimental manipulations.

Data Description
To demonstrate the utility and versatility of P-DCM, below we
describe three different data-sets acquired from human, cat, and
monkey brains. Each data-set consists of a different combination
of physiological measurements: I. CBF and BOLD response;
II. CBF, total volume CBV, and BOLD responses, published in
Jin and Kim (2008); and III. neuronal and BOLD responses,
published in Shmuel et al. (2006). Any additional physiological
data, next to the BOLD data (and/or experimental manipulation),
provide physiologically-informed constraints on the underlying
mechanisms of the BOLD response. This can result in a more
accurate inference on the changes in E-I balance forming the
neuronal responses (Havlicek et al., 2017b) and potentially
inform about the limitations of model structure and parameter
assumptions.

I. CBF and BOLD Responses
Four healthy volunteers (females, age range: 26–34) were
scanned for the current study on a 3 T Siemens PrismaFit MR
scanner (Siemens Medical Solutions, Erlangen, Germany). For
each subject, six functional runs and an anatomical scan were
acquired. To obtain functional measurements of both CBF and
BOLD signals, a multi-TE FAIR-Q2TIPS ASL sequence (Kim,
1995) was used with a gradient-echo echo-planar imaging (GE-
EPI) readout and the following imaging parameters: TR =
2,200ms; TI1/TI2 = 700/1,660ms; TE1/TE2/TE3 = 8/21/33ms;
FOV = 192 × 192 mm2; nominal voxel size = 3 × 3 × 3 mm3,
flip angle = 90◦; matrix size = 64 × 64; 325 volumes (total scan
duration 715 s); 10 oblique slices acquired in interleaved fashion,
covering early visual areas. The anatomical MPRAGE scan was
acquired with: 1mm isotropic nominal voxel size; FOV = 224 ×
224 mm2; matrix size= 224× 224; TE= 2.1ms; TR= 2,400ms;
TI= 1,040ms.

The subjects were instructed to fixate on a small dot at
the center of the screen throughout the experiments. Each of
the EPI functional runs began with a 55 s resting period and
continued with alternation of two static and two flickering
checkerboard conditions (each 55 s long), interspersed with
110 s resting periods. Flickering checkerboards were presented
at 4Hz (eight reversals per second). The order of static and
flickering conditions within a run was pseudo-randomized.
For the static condition, a full-field, black-and-white radial
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checkerboard was presented (Michelson contrast 1), whereas, for
the flickering condition, reduced contrast (Michelson contrast
1/3) checkerboards were presented at 4Hz (i.e., 8 reversal per
second) (Sadaghiani et al., 2009). The resting periods consisted
of a gray screen isoluminant with the mean luminance of the
checkerboard. In order to maintain the subjects’ attention, the
color change of the fixation dot (altering between red and blue
at three pseudo-random intervals within each stimulation block)
was passively observed. For each subject, there were twelve trials
per condition.

For each subject, the CBF time-series were derived from the
ASL data acquired with TE = 8ms using surround subtraction
(Mumford et al., 2006). The BOLD time-series were obtained
from the ASL data acquired with TE = 33ms using surround
averaging. The data were preprocessed using SPM12 (R6470)
(http://www.fil.ion.ucl.ac.uk/spm). To correct for head motion,
the realignment parameters with respect to the first volume
were estimated using BOLD data and the same realignment
parameters were applied to the corresponding volumes of CBF
data. The mean BOLD image was coregistered to the anatomical
image and the estimated spatial transformation matrix was
applied to the functional BOLD and CBF data. CBF data were
modeled voxel-wise using a general linear model (GLM). This
model included main predictors representing the periods of
static and flickering visual stimulation and additional predictors
representing the stimulus onset and offset. All predictors (i.e.,
three per condition) were convolved with a gamma-variate
hemodynamic response function (“spm_Gpdf.m”) with shape and
scale parameters 4 and 0.5, respectively. The additional predictors
were introduced to explain deviations of the hemodynamic
response shape between conditions during stimulation and post-
stimulation periods. The predictors were not orthogonalized in
order to retain a direct interpretation of the model. Furthermore,
data were high-pass filtered (cut-off = 1/256 s) to remove low
frequency signal drifts and a first-order autoregressive model
was used to remove serial correlations. Based on a conjunction
analysis of the two main contrasts for static and flickering
conditions, significant voxels within the gray matter of the left
and right visual cortex (p< 0.05, corrected for family-wise errors)
were selected from the CBF data. The same voxels were selected
from the BOLD data. The statistically significant BOLD signal
map (not reported) included the CBF ROI, but had a larger spatial
spread. Voxel’s time-courses from the CBF and BOLD data (∼40
voxels per subject) were extracted, high-passed filtered (cut-off=
256 s), and the average responses in percent signal change were
calculated for the two experimental conditions.

CBF, Total CBV and BOLD Responses
Hemodynamic responses of CBF, total CBV, and BOLD signal
were extracted from Figure 1 of the paper by Jin and Kim
(2008) using Matlab (MathWorks, Inc.). These responses were
measured using fMRI in the visual cortex of anesthetized cats
at 9.4 T. In brief, they used 60 s visual stimulus of black and
white square-wave gratings drifting with a temporal frequency
of 2 cycles/s. This was always preceded by 20 s and followed by
60 s control condition represented by the same but stationary
gratings. All data were acquired with GE-EPI readout. BOLD

and total CBV signals were acquired simultaneously with TR
= 2 s and ∼0.2 × 0.2 × 2 mm3 voxel size and CBF signal
was acquired during separate runs with TR = 3 s and ∼0.3 ×
0.3 × 2 mm3 voxel size. However, the reported responses from
Figure 1 were upsampled (using linear interpolation) to TR =
1 s. BOLD responses were derived from two TEs of 10ms and
20ms (by calculating the slope ∆R∗2 , but displayed in average
percent signal change). Furthermore, in Figure 1 by Jin and Kim,
hemodynamic responses were reported for both the middle and
top (superficial) part of the gray matter. We have taken CBF and
total CBV responses from the middle gray matter and the BOLD
response from the superficial area, where it exhibited the highest
signal change. Note that CBF and total CBV are more localized to
signal changes induced in the arterial blood compartment, while
BOLD signal is mostly represented by the venous compartment,
where the draining veins carry the signal from deeper gray matter
structures toward the surface. Therefore, from the view of blood
dynamics, the BOLD response measured at the surface mostly
reflects the CBF and arterial CBV changes that occurred deeper
in the gray matter. Finally, for all three hemodynamic responses,
it is important to preserve the exact amounts of reported percent
signal changes.

III. Neuronal and BOLD Responses
Neuronal and BOLD responses were extracted from Figures 2A,
1D of the paper by Shmuel et al. (2006), respectively.
These responses were measured simultaneously using invasive
electrophysiological recording and fMRI in the visual cortex of
anesthetized monkey brain at 4.7 T. In brief, 20 s visual stimuli
consisting of high-contrast radial checkers rotating 60◦ per s were
presented on gray background. The same background was used
5 s before and 25 s after the stimuli. Stimulation ring overlapping
with the receptive field at V1 induced positive response in the
vicinity of the electrode, while stimulus ring, which did not
overlap with the receptive field, induced negative response in the
same area. Neuronal responses were obtained by averaging the
fractional change in power spectrum over the whole range of
frequencies (4–3,000Hz) with temporal resolution of 1 s. BOLD
data were acquired with GE-EPI readout, TE = 20ms, TR =
1 s and in-plane spatial resolution of 0.75 × 0.75 × 2 mm3.
Positive and negative BOLD responses induced by two stimuli
were sampled and averaged over the same voxels within the ROI
around the electrode.

Model Specification
The multi-modal data from each study is used to identify
the neuronal and vascular parameters of the generative model.
Below, we specify the model assumptions for each study
and form the observation equation to enable joint fitting
to multiple physiological variables. In general, we aim to
constrain the model estimation by at least two physiological
measurements, experimental manipulations and properties of
the venous blood compartment, the latter being independent of
experimental manipulations, as it is given by the biomechanical
properties of blood vessels. The assumptions about time-period-
(i.e., stimulation or post-stimulation period) and experimental
condition-specificity of certainmodel parameters weremotivated
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by three criteria: (1) we favor the minimum number of
parameters that can sufficiently explain the dynamic behavior of
the multi-modal experimental data; (2) we have prior knowledge
from previous results that some parameters have to be time-
period- and/or experimental condition-specific, e.g., vascular
parameters are condition independent for the same voxels;
(3) the first and second criteria should be consistent for all
three experiments described above, i.e., the same assumptions
about neuronal and vascular parameters have to hold for all
three experiments. Furthermore, if available, the model is also
constrained by the measured percent signal changes of CBF and
BOLD responses.

Experiment I: CBF and BOLD Responses:
To jointly model CBF and BOLD responses using P-DCM
during both static and flickering conditions, we made the
following specifications for the generative model in order to
determine the transfer of condition-dependent neuronal changes
to changes in the measured signals. Two independent inputs,
uS and uF , in the form of box-car functions representing 55 s
long static and flickering visual stimulation (whose strengths
were controlled by two parameters c), were used to drive the
neuronal activity. To accommodate the assumption that each
type of visual stimulus can result in a different adaptation profile
during the stimulation period (SP) but also exhibit differences
in neuronal adaptation during the post-stimulus period (PSP),
parameters of the neuronal model, σ and µ, were allowed to
vary between the two phases but also between conditions. On
the other hand, λ was allowed to vary only between the two
conditions. This is because after the static stimulus the CBF
response exhibits a slower return to the baseline without a post-
stimulus undershoot, which is effectively modeled by setting the

parameter µ close to zero. Thus, during this PSP, parameter λ

does not have an effect on the shape of the neuronal response
and becomes unidentifiable. Further, the NVC parameter χ ,
was assumed to be the same for both conditions and SP and
PSP. Within the hemodynamic model, the viscoelastic time
constant, τ , controlling the expansion and deflation of the venous
compartment was allowed to vary between SP and PSP but not
during the two conditions. The mean transit time at rest, t0, was
estimated together with the resting blood volume fraction, V0,
by assuming a blood flow value at rest, F0 = 0.01 s−1 (i.e., 60
ml/100 g/min, a typical value for human visual cortex; Donahue
et al., 2006). All these free parameters and their usage during
specific periods and conditions are summarized in Table 1. Next,
the Grubb’s exponent α and the oxygen extraction fraction at rest,
E0, were fixed to 0.3 and 0.35, respectively. The BOLD signal
equation was parameterized for 3 T magnetic field strength and
the sequence parameters utilized in this study (see Table S1).

The modeled physiological variables were linked to measured
(averaged) response at the level of CBF (i.e., the output of NVC)
and BOLD signals. To enable their joint fitting, we considered a
concatenated form of the observation equation:

[

yf
yb

]

=
[

f − 1
b

]

·100+
[

εf
εb

]

, (1)

where yf and yb are measured CBF and BOLD responses to
both static and flickering stimuli in percent signal changes,
all concatenated to a single vector. The measured data were
explained by modeled CBF and BOLD responses, f and b,
respectively, with additive error terms εf and εb, constituting the
“AR(1)+white noise” model (Friston et al., 2003).

TABLE 1 | Model parameters optimized during model inversion of the three data-sets.

Free parameters

Neuronal model NVC Hemodynamic model

c (-) σ (s−1) µ (s−1) λ (s−1) χ (s−1) τ (s) t0 (s), V0 (%)

CBF AND BOLD DATA:

SP Static � � � �† � � �

Flicker � � � �‡

PSP Static - � � † �

Flicker - � � ‡

CBF AND TOTAL CBV AND BOLD DATA:

SP Gratings � � � � � � �

PSP - � �

NEURONAL AND BOLD DATA:

SP Positive � � � �† �† � �

Negative � � � �‡ �‡

PSP Positive - � � † † �

Negative - � � ‡ ‡

�Indicates parameter that is optimized within a certain time-period or condition.

†‡
Indicates optimized parameters that were consider the same between time-periods but different between conditions (e.g.,

†
marks the static condition and ‡marks the flickering

condition in the first experiment).
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Experiment II: CBF, Total CBV and BOLD Responses:
To jointly model CBF, total CBV and BOLD responses to
the same visual stimulus, the generative model was specified
as follows: the excitatory activity of the neuronal model was
driven by a single input in the form of a box-car function
representing 60 s stimulation duration, scaled by the parameter
c. As in the previous experiment, the neuronal parameters σ

and µ were allowed to vary between SP and PSP periods,
while a single λ was estimated for both periods. The NVC and
hemodynamic model were also controlled in the same way as in
the previous experiment (seeTable 1). The BOLD signal equation
was parameterized for 9.4 T magnetic field strength and specific
sequence parameters (see Table S1). Since, we have additional
measurements of the total CBV, the observation equation had the
following form:





yf
yṽ
yb



 =





f − 1
ṽ
b



 · 100+





εf
εṽ
εb



 . (2)

Here, the total CBV data, yṽ, is modeled as a weighted sum of
CBF (i.e., approximating the response shape of arterial CBV) and
venous CBV, ṽ = wa ·

(

f − 1
)

+wv · (v− 1), with weights wa and
wv scaling the contribution of arterial CBV (i.e., proportional to
CBF) and venous CBV. In other words, the measured BOLD data
constraints the relative contributions of arterial and venous CBV
to the measured total CBV data, as in the BOLD signal model
only the venous CBV contributes to its time-course.

Experiment III: Neuronal and BOLD
Responses:
To jointly model positive and negative neuronal and BOLD
responses to non-overlapping and overlapping visual stimuli,
respectively, the generative model was specified as follows: Two
independent inputs, uP and uN , scaled by the input strength
parameters were used to induce positive and negative responses,
respectively. The stimulus duration for the positive response was
25 s but 26 s for negative response as the measured neuronal
response remained decreased ∼1 s after stimulus cessation.
Furthermore, in contrast to the two experiments above, we
assumed that NVC can differ for the positive and negative
responses (i.e., a response-type-specific χ), as themechanisms for
NVCmay differ for increases and decreases in CBF. On the other
hand, similarly as before, the dynamic properties of venous blood
compartment (i.e., the viscoelastic time constant τ ) were assumed
the same for the two response types but possibly different
between SP and PSP periods. Thus, also a single mean transit
time, t0, and resting venous blood volume, V0, were assumed
across both conditions (see Table 1). The BOLD signal equation
was parameterized for 4.7 T magnetic field strength and specific
sequence parameters (see Table S1). Since in this experiment we
also have access to neuronal recordings, the observation equation
had the following form:

[

yn
yb

]

=
[

wn · ne
b

]

· 100+
[

εn
εb

]

, (3)

where yn and yb are the measured neuronal and BOLD responses
to both types of stimuli (i.e., both positive and negative responses,
concatenated to a single vector) in percent signal changes. Since
the reported percent signal change of the measured neuronal
responses in Shmuel et al. (2006) do not directly relate to
the physiologically plausible range of CBF and BOLD signal
changes in our model, the excitatory neuronal response, ne,
in the observation equation was additionally scaled with the
parameter wn.

Model Inversion
Modeled responses were calculated by a numerical integration of
differential equations using a local linearization approach (Ozaki,
1992), with integration step 1t = 0.1 s and later downsampled
to match the TR of the measured data. Responses defined by
the above observation equations were fitted to the measured
data using variational Laplace (VL) optimization algorithm
(Friston et al., 2007) as implemented in the SPM12 toolbox
(“spm_nlsi_GN.m”). This is a Bayesian estimation procedure
designed for the estimation of nonlinear dynamic models, where
themodel parameters are specified in terms of priors. It calculates
posterior parameter estimates by iteratively maximizing the free
energy (i.e., the approximation to the model log-evidence).
Since the VL algorithm employs the Laplace assumption, all the
parameters—prior and posterior—are defined using Gaussian
distributions. As most of the physiological parameters included
in the model can only have positive values, thus, their default
values are scaled with a latent variable via the log-normal
transformations; e.g., τ · exp (τ̃ ) (see Table S2). The prior means
and variances of the latent variables are listed in Table S1.

RESULTS

CBF and BOLD Responses
Figure 2A shows the average CBF and BOLD responses to static
and flickering stimuli in percent signal changes, respectively.
With the onset of the static stimulus, the CBF response rises
first and then the BOLD response follows slightly later. They
both reach their maxima (i.e., 66% for CBF and 2.8% for BOLD)
after ∼13 s and continue with a steady decrease toward the end
of stimulation. This response adaptation has more pronounced
character in the BOLD response. After stimulus offset, both
responses rapidly decrease. The amplitude of the CBF response
first drops quickly to ∼10% and then slowly recovers to the
baseline. In contrast, the amplitude of the BOLD response drops
below baseline, with a negative peak of −0.7%, at ∼11 s after
stimulus offset. This post-stimulus undershoot then recovers to
the baseline in the next ∼60 s. The CBF and BOLD responses
to the flickering stimulus differ substantially from the responses
to the static stimulus. The CBF response reaches its maximum
(i.e., 77%) only by the end of the stimulation, exhibiting mostly
a flat plateau from ∼22 to 55 s. In contrast, the BOLD response
peaks to 3% during an earlier phase of the stimulation, i.e., after
15 s, which is slightly later compared to the BOLD response to the
static stimulus. From this time point, the BOLD response slightly
and slowly decreases toward the end of the stimulation. After
stimulus cessation, both CBF and BOLD responses drop below
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FIGURE 2 | Data and results depiction of experiment I. (A) The average CBF and BOLD responses derived from the ASL data for static (left) and flickering (right)

conditions displayed in percent signal change with thin dark red and purple lines, respectively. The error-bars represents the standard error of the measurement (n =
5). The measured responses are overlaid with the fitted CBF and BOLD responses, displayed with thick red and purple lines. The black bar below the responses

represents the stimulation period. (B) Estimated excitatory (green lines) and inhibitory (orange lines) responses in percent signal change. (C) Estimated venous CBV

(blue lines) and deoxyhemoglobin content (brown lines) responses in percent signal change.

baseline (reaching their negative peaks in ∼15 s after stimulus
offset, at −15 and −1.8%, respectively) and then slowly recover
to baseline. In general, the post-stimulus BOLD undershoot is
much larger and peaks slightly later compared to the post-
stimulus undershoot in the CBF response (both relative to their
respective positive responses). Additionally, the post-stimulus
BOLD undershoot recovery to baseline is steeper compared to
the CBF response.

The results of jointly fitting CBF and BOLD responses using
the P-DCM model are overlaid on the measured data in the

same Figure 2A. The estimated model parameters are listed in
Table 2. One can see that the model was able to accurately explain
the discrepancy in the response shape of the two hemodynamic
variables, and also the response shape variation due to differences
in the type of visual stimuli (see fitted CBF and BOLD responses
depicted with thick red and purple lines, respectively).

The estimated excitatory and inhibitory neuronal responses
are displayed in Figure 2B. The excitatory and not the inhibitory
neuronal response mostly defines the shape of the CBF response.
However, it evolves faster, with more pronounced transients,
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TABLE 2 | Estimated values of model parameters.

Free parameters

Neuronal model NVC Hemodynamic model Additional

c (-) σ (s−1) µ (s−1) λ (s−1) χ (s−1) τ (s) t0 (s), V0 (%) wn (-) wa (-) wv (-)

EXPERIMENT I: CBF AND BOLD RESPONSES

SP Static 0.08 1.15 0.73 0.05† 0.28 68.68 2.07 - - -

Flicker 0.04 0.52 0.01 0.05‡

PSP Static - 0.25 0.00 † 69.49

Flicker - 0.66 0.39 ‡

EXPERIMENT II: CBF AND TOTAL CBV AND BOLD RESPONSES

SP Gratings 0.17 2.80 7.30 0.02 0.27 59.91 2.06 - 0.12 0.19

PSP - 2.13 1.95 41.11

EXPERIMENT III: NEURONAL AND BOLD RESPONSES

SP Positive 0.13 1.87 3.19 0.15† 0.19† 9.37 2.95 12.69† - -

Negative −0.09 1.32 6.70 0.06‡ 0.85‡ 2.59‡

PSP Positive - 1.89 1.94 † † 28.53 †

Negative - 1.05 1.70 ‡ ‡ ‡

†‡
Indicates optimized parameters that were consider the same between time-periods but different between conditions as described in Table 1.

such as response adaptation in the case of the static condition
and post-stimulus deactivation in the case of the flickering
condition. Response adaptation and post-stimulus deactivation
were explained by an amplitude variation of the inhibitory
neuronal response. This means that the more pronounced
response adaptation during stimulation is caused by a larger,
gradual increase of inhibitory activity above baseline and the
post-stimulus deactivation solely reflects the sharp increase of
inhibitory activity after stimulus cessation (followed by a slower
return to baseline). Note that the inhibitory responses displayed
in Figure 2B were modulated by the period and condition
specific parameter µ (i.e., the inhibitory-to-excitatory coupling).
These experimental data and modeling results demonstrate that
the type of stimulus modulates both the positive response and
the post-stimulus undershoot, but in a different manner. This
means that the E-I balance changes with time and can be
very different between stimulation and post-stimulation periods,
which is reflected in estimated neuronal parameters (i.e., in
σ and µ).

The discrepancy between the measured CBF and BOLD
responses was explained with uncoupling between the CBF
and venous CBV responses. In Figure 2C, we can see that the
venous CBV time-course evolves in a much slower fashion than
the CBF time-course (Figure 2A). For example, for the static
stimulus, the venous CBV response slowly increases during
stimulation while the CBF response starts declining already
after ∼15 s of stimulation. Similarly, the CBF response returns
much faster to baseline after stimulus cessation than the venous
CBV response. This dynamic uncoupling during the transient
periods results in a more pronounced response transients
in the BOLD response, which approximately represents the
inverted deoxyhemoglobin response (see Figures 2A,C). The
CBF-venous CBV uncoupling parameterized by the viscoelastic
time constant was estimated separately for the stimulation and
post-stimulation periods, but yielded almost identical values

τSP ∼= 68 s and τPSP ∼= 69 s, respectively. These large
values reflect the fact that τ should scale with stimulus
duration (see Uludağ and Blinder, 2017 and references therein).
Importantly, the discrepancy between CBF and BOLD responses
was explained with the same viscoelastic time constants for
both the static and flickering conditions. This demonstrates
that the passive mechanism of CBF-venous CBV uncoupling is
independent of stimulus type (but dependent on the stimulus
duration).

CBF, Total CBV and BOLD Responses
Figure 3A shows the averaged CBF and BOLD responses in
percent signal change to 60 s visual stimulation as reported by Jin
and Kim (2008). The CBF response reaches its maximum peak (at
46%)∼12 s after the stimulus onset. The BOLD response reaches
the peak ∼2 s earlier (at 3.5%), even though the CBF response
is faster immediately after stimulus onset. The average total
CBV response (displayed in Figure 3C in percent signal change)
rises with the BOLD response but its peak (at 6.5%) is ∼3 s
delayed with respect to the BOLD response peak. After reaching
their maxima, all three responses decrease toward the end of
stimulation. While the BOLD response exhibits the steepest
decay, the decrease of the total CBV response is the slowest.
The amplitudes of CBF, total CBV and BOLD at the end of
stimulation are 21, 3.6, and 1% (i.e., in ratios of 0.46, 0.55, and
0.29 with respect to their maximum peaks), respectively. After
stimulus cessation, all responses drop below baseline and exhibit
considerable post-stimulus undershoots. The ratios of the post-
stimulus response undershoots with respect to the amplitudes
at the end of the stimulation for CBF, total CBV, and BOLD
are 0.57, 0.42, and 1.4, respectively. The BOLD response with
the largest relative post-stimulus undershoot reaches the negative
peak earliest (at−1.4%), i.e.,∼18 s after stimulus onset, then CBF
with smaller relative undershoot follows (−12%, after 20 s), and
the total CBV response has the smallest andmost sluggish relative
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FIGURE 3 | Data and results depiction of experiment II. This figure and its

sections follow the same plotting format as Figure 2. The average CBF, BOLD

and total CBV responses are replotted versions of the data reported in Figure 1

of Jin and Kim (2008). (A) The fitted and average measured CBF and BOLD

responses. (B) The estimated excitatory and inhibitory responses. (C) The

average measured and fitted total CBV responses are displayed with dark thin

and light thick cyan lines, respectively. Next, to the estimated venous CBV

response and deoxyhemoglobin content responses, also the arterial CBV

response is depicted (pink line).

post-stimulus undershoot (−1.5%, after 27 s). All responses take
almost 100 s to fully recover to baseline.

The results of jointly fitting CBF, total CBV and BOLD
responses using the P-DCM model are overlaid on the measured
data in the same Figures 3A,C. The estimated model parameters

are listed in Table 2. All fitted CBF, total CBV and BOLD
responses follow very closely the dynamic changes observed
in the experimental data. The estimated excitatory neuronal
response depicted in Figure 3B shows a strong and fast
adaptation during stimulation and drops significantly below
baseline immediately after stimulus cessation, followed by a slow
recovery to baseline. As in the previous study, neuronal response
adaptation during stimulation and post-stimulus deactivation
are modeled by dynamic changes in the inhibitory neuronal
response. Inhibitory response modulates the excitatory response
by different amounts during stimulation and post-stimulation
periods (see Table 2, for differences in optimized period-specific
neuronal parameters).

The dynamic relationship between CBF, total CBV, and BOLD
signal was explained with the CBF-venous CBV uncoupling.
Estimated arterial and venous CBV (CBVa and CBVv) responses
are displayed in Figure 3C in percent signal changes as they
contribute to the predicted total CBV response (weighted by
parameters wa and wv). One can see that the arterial CBV change
is larger than the venous CBV change (e.g., by a factor of ∼2 at
the end of the stimulation) and that venous CBV evolves slower
during the transient periods. The large dynamic uncoupling
between CBF (or arterial CBV) and venous CBV, which differed
between stimulation and post-stimulations periods (τSP ∼= 60 s
and τPSP ∼= 41 s), was estimated to significantly contribute to
the size of BOLD response transients. These τ values provide a
good explanation for the significantly more pronounced response
adaptation and post-stimulus BOLD undershoot compared to
the CBF and total CBV responses (as also reflected by the ratios
mentioned above). As a consequence of CBF and arterial CBV
responses exhibiting strong post-stimulus undershoots (due to
the aforementioned decrease of excitatory activity below baseline
during PSP), also venous CBV shows a post-stimulus undershoot,
even though it is reduced and smoothed due to the viscoelastic
properties of veins (i.e., large τ ) (see Figure 4C). The same
mechanism applies for the slower increase and strongly reduced
adaptation profile of venous CBV during SP.

Neuronal and BOLD Responses
Average positive and negative neuronal responses in percent
signal changes to 20 s visual stimuli overlapping and non-
overlapping with its receptive field, respectively, as reported
in Shmuel et al. (2006), are displayed in Figure 4B. The
corresponding average positive and negative BOLD responses
(also in percent signal changes) are displayed in Figure 4A.
The positive neuronal response reaches its maximum peak
immediately after stimulus onset (given downsampling of the
neuronal signal to TR = 1 s). Then, within the next 5 s, it rapidly
decreases to its lower plateau, where it remains till the end of
the stimulation. In contrast, the positive BOLD response shows a
rather slow increase, reaching its maximum ∼15 s after stimulus
onset (at 1.75%) and it remains about this level until the end of
the stimulation. After stimulus cessation, the neuronal response
drops quickly below baseline, producing a strong post-stimulus
deactivation followed by gradual return to baseline in the next
∼13 s. The BOLD response also decreases after stimulus cessation
but in a much slower fashion, crossing the baseline∼9 s after the
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FIGURE 4 | Data and results depiction of experiment III. This figure and its sections follow the same plotting format as Figure 2. The average positive (left) and

negative (right) neuronal and BOLD responses are replotted versions of the data reported in Figures 1D, 2A of Shmuel et al. (2006). (A) The estimated CBF and fitted

BOLD (and average measured BOLD) responses. (B) The average measured neuronal responses are depicted with dark thin green lines overlaid with fitted excitatory

responses displayed with thick green lines. (C) The estimated venous CBV and deoxyhemoglobin content responses in percent signal change.

stimulus offset. Then it continues with a stronger post-stimulus
BOLD undershoot, which is significantly delayed (∼15 s) with

respect to the neuronal post-stimulus deactivation. The limited
post-stimulus period of 25 s did not allow for a full recovery
of the BOLD undershoot to baseline. The negative neuronal
response can be seen as an inverse of the positive response,
but exhibiting significantly smaller signal change. After stimulus
onset, there is an immediate decrease in neuronal activity below
baseline followed by adaptation to the plateau of lower sustained
amplitude during SP. After stimulus offset, it first slightly

decreases3 (within 1 s) and then quickly increases, showing a
post-stimulus activation above baseline, which is mostly in phase
with the post-stimulus deactivation observed in the positive
neuronal response. The negative BOLD response follows the
course of the neuronal response more closely compared to the
positive BOLD response. It reaches the minimum peak (at ∼1%)
∼6 s after the stimulus onset and keeps increasing almost linearly

3This is the reason why we extended the stimulation period for negative response

by 1 s.
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toward the end of the stimulation (to −0.4%). Afterwards, it
crosses baseline∼4 s earlier than the positive BOLD and exhibits
a post-stimulus BOLD overshoot (with maximum at 0.4%) that
evolves significantly faster than the post-stimulus undershoot of
the positive response.

The results of jointly fitting the positive and negative
neuronal and BOLD responses with P-DCM are overlaid with
the measured data in Figures 4B,A, respectively. The estimated
model parameters are listed in Table 2. The fitted neuronal
and BOLD responses follow very closely the dynamic changes
observed in the experimental data. The estimated excitatory
neuronal responses for both positive and negative responses
provided an accurate representation of the transient features
observed in the experimental data. As before, response adaption
and post-stimulus deactivation profiles were modeled by a
variable modulation of the excitatory activity by inhibitory
activity (see Figure 4A). The dynamic features of the positive
excitatory neuronal response are well comparable to the
estimated neuronal response in the second experiment (or to
the response features seen in the first experiment). The negative
excitatory response was induced by the stimulus input function
uN(t) scaled by the negative c parameter. Thus, in contrast to
the positive neuronal response, the inhibitory response gradually
decreases below baseline during SP, which then causes an increase
of the excitatory activity after its initial drop. After stimulus
cessation, the inhibitory activity quickly increases up to∼¼of the
total decrease, and then slowly recovers to the baseline. This slow
post-stimulus recovery of the inhibitory response below baseline
causes an increase (i.e., overshoot) in the post-stimulus excitatory
response.

Next, as the NVC could differ between the positive and
negative responses, the estimated positive CBF response is
significantly delayed with respect to the neuronal response,
which smooths out the strong adaptation during SP and post-
stimulus deactivation observed in the neuronal response. This
slow evolution of the CBF response was achieved by slowing
down the feedforward mechanism of NVC (i.e., by lowering
the decay constant χ). On the other hand, the estimated CBF
response following the negative neuronal response is much faster,
closely resembling dynamic features of the neuronal response.
This is because the NVC acts faster (by employing a higher decay
constant χ).

Furthermore, the fitted positive BOLD response is even more
delayed with respect to the CBF response, with mean transit
time at rest, t0 ∼= 3 s (see Figure 4B). The CBF-CBV
uncoupling is smaller, with viscoelastic time constant, τSP ∼= 9
s, (see Figure 4C). Therefore, no response adaptation is present
during SP. Although the estimated CBF response exhibits a
minimal post-stimulus undershoot, the stronger post-stimulus
BOLD undershoot is well explained by a larger CBF-venous
CBV uncoupling (τPSP ∼= 29 s) during PSP. The venous CBV
and deoxyhemoglobin responses are displayed in Figure 4C.
The negative BOLD and CBF responses show similar response
transients even though the same viscoelastic time constants,
regulating CBF-venous CBV uncoupling during SP and PSP, were
used as in the case of the positive response. Significant post-
stimulus overshoot in the CBF response can account for a large

fraction of the post-stimulus BOLD overshoot. This is because
the actual effect of CBF-CBV uncoupling on the post-stimulus
BOLD undershoot for the negative response is smaller due to a
generally lower amplitude level of venous CBV during recovery
(see Figure 4C). Therefore, in contrast to the positive response,
the main origin of post-stimulus BOLD overshoot is neuronal.

DISCUSSION

The BOLD fMRI signal is an indirect reflection of neuronal
activity. It has been suggested that it best correlates with the post-
synaptic potentials, which—after mediation by metabolic and
vascular processes—results in the characteristic hemodynamic
delay and blurring relative to neuronal activity. Thus, the high
complexity of tissue processes associated with brain activity,
ranging from microscopic (i.e., molecular) to macroscopic (i.e.,
brain area) levels, is reduced to a spatially and temporally varying
scalar number (i.e., the dynamic fMRI signal). That is, there is
only reduced information about the excitatory and inhibitory
neuronal activity available from the fMRI signal. As a result,
temporal features of the BOLD signal, such as signal adaptation
during stimulation or signal reduction after the stimulation,
cannot be taken as a direct evidence of neuronal adaptation
or post-stimulation deactivation, respectively. Recently, we
have proposed, inspired by physiological observations, a novel
generative hemodynamic model within the DCM framework,
called P-DCM. We have demonstrated (using BOLD data and
BOLD data combined with CBF) that P-DCM is superior
in describing single ROI time-courses and also deducing the
effective connectivity between brain areas (Havlicek et al., 2015,
2017b) compared to previous DCM models (Friston et al., 2003;
Marreiros et al., 2008) and that the model inversion, in general,
benefits from additional CBF data.

In this paper, we have additionally demonstrated the versatility
of P-DCM to jointly explain dynamic relationships between
neuronal, neurovascular and hemodynamic physiological
variables underlying the BOLD signal using new and previously
published multi-modal data. For this purpose, we utilized
three data-sets of experimentally induced responses in primary
visual areas measured in the brains of human, cat, and monkey,
respectively: (1) CBF and BOLD responses to static and flickering
stimuli acquired for this study; (2) CBF, total CBV and BOLD
responses to square-wave grating stimulus (Jin and Kim, 2008);
and (3) positive and negative neuronal and BOLD responses
induced by overlapping and non-overlapping visual stimuli
with the visual receptive field (Shmuel et al., 2006). The fitting
of P-DCM to multi-modal data (i.e., the model inversion)
was performed using a VB approach (Friston et al., 2007)
under the constraint of assumed physiological mechanisms
and experimental manipulations. Specifically, we assumed
that the BOLD response transients, such as positive response
adaptation and post-stimulus undershoot, can be due to two
physiological mechanisms: (1) neuronal, due to changes in E-I
balance caused by a dynamic interaction between excitatory and
inhibitory neuronal populations (Hoge et al., 1999; Krekelberg
et al., 2006; Shmuel et al., 2006; Logothetis, 2008; Sadaghiani
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et al., 2009; Mullinger et al., 2013); and (2) vascular, due to
dynamic uncoupling between CBF and venous CBV responses
(Mandeville et al., 1998; Chen and Pike, 2009; Kim and Ogawa,
2012; Huber et al., 2014a; Havlicek et al., 2017a).We also assumed
that the experimental manipulation can modulate the neuronal
response transients by changing the E-I balance and that this can
differ between SP and PSP. Similarly, the vascular uncoupling
was allowed to vary between SP and PSP but was invariant with
respect to the experimental manipulations. P-DCM provided
accurate fits to all measured multi-modal responses and was
able to shed a light on the dynamic relationships between the
physiological processes underlying the BOLD response. The
limitations of P-DCM due to its assumptions are discussed
below.

In the first experiment using both CBF and BOLD responses,
we were able to show that a 55 s long static and flickering stimuli
induced different modulations of the CBF response transients
during SP and PSP and that there was a large discrepancy in
the size and form of transients between the CBF and BOLD
transients, as commonly observed (see e.g., Sadaghiani et al.,
2009; Havlicek et al., 2017a and references therein). P-DCM
could explain the experimentally induced modulation of the
CBF response transient by optimizing the balance between
excitatory and inhibitory activity. The accurate fit of both CBF
responses to static and flickering stimuli was achieved by allowing
some of the neuronal model parameters (σ ,µ) to be time-
period- and condition-specific, while others (λ) including the
NVC parameter (χ) were considered condition- and period-
invariant (see Table 2). Next, the large discrepancy in the size
of transients between the measured CBF and BOLD responses
was explained with a strong uncoupling between CBF and venous
CBV responses, which was identified to be similar for SP and
PSP (τSP ∼= 68 s and τPSP ∼= 69 s). More importantly,
both BOLD responses to static and flickering stimuli could be
explained by assuming the same vascular uncoupling for the two
conditions. Additionally, these estimates compared quite well
with our previous results obtained by applying P-DCM to the
single-subject BOLD responses of the same experimental ASL
data (Havlicek et al., 2015). Nevertheless, additional information
about the shape of CBF responses incorporated in the current
study provided more accurate estimation of the neuronal
and vascular component contribution to the BOLD response
transients (see Figure 6C in Havlicek et al., 2015).

By using P-DCM to explain the dynamic discrepancy in the
shape of the CBF, total CBV and BOLD responses to a 60 s
long square-wave grating visual stimulus provided by the second
experiment (Jin and Kim, 2008), we were able to accurately
jointly fit all measured responses. First, even though the response
transients (i.e., early-overshoot and post-stimulus undershoot)
were strongly present in both CBF and total CBV responses,
the BOLD response transients were even more significantly
pronounced (see Figure 3A). Thus, some additional mechanism
next to the neuronal contribution is necessary to fully explain the
BOLD response transients: As in the first study, the shape of CBF
response was well explained by optimizing the E-I balance for the
SP and PSP. Importantly, by having measurements of both CBF
and total CBV responses underlying the BOLD response, we were

able to determine that arterial CBV has a larger contribution to
the total CBV than the venous CBV, which is in good agreement
with other experimental observations (Drew et al., 2011; Kim
and Kim, 2011; Huber et al., 2014a; Gagnon et al., 2015), and
that venous CBV evolves much slower compared to the CBF
(or arterial CBV) due to a strong (but slightly different) CBF-
venous CBV uncoupling between SP and PSP (τSP ∼= 60 s
and τPSP ∼= 41 s) (Uludağ and Blinder, 2017). The strong
neuronal transients are well reflected in both the CBF and arterial
CBV responses, and also the venous CBV response transients
reflect this neuronal modulation, albeit largely smoothed out
by the strong CBF-venous CBV uncoupling (see Figure 3C).
Therefore, even though the venous CBV does not exhibit the
more typical slow increase during SP and slow return to baseline
during PSP (Kim and Kim, 2011; Huber et al., 2014a), the
vascular uncoupling still significantly contributes, in addition to
the CBF post-stimulus deactivation, to the post-stimulus BOLD
undershoot (having ∼50% neuronal and 50% vascular origin).
Thus, our modeling results agree with a suggestion by Jin and
Kim (2008) that there is a significant contribution of CBF post-
stimulus deactivation to the post-stimulus BOLD undershoot,
but disagree with their suggestion that these multi-modal data do
not support the contribution of the vascular uncoupling between
CBF and venous CBV. It is incorrect to assume that the venous
CBVmust exhibit slow return to baseline after stimulus cessation
in order to effectively contribute to the post-stimulus BOLD
undershoot if there is a post-stimulus undershoot in CBF and
total CBV.

The third experiment offered positive and negative neuronal
and BOLD responses to 20 s long visual stimuli overlapping and
non-overlapping with the receptive field of the voxels in the
ROI (Shmuel et al., 2006). The electrophysiological recordings of
neuronal activity in V1 demonstrated that the positive neuronal
responses can indeed exhibit a very pronounced response
adaptation (but see below) and significant deactivation/activation
during SP and PSP, respectively, similarly as estimated by P-DCM
from the hemodynamic responses in the two experiments above.
By modeling the dynamic changes in E-I balance during both SP
and PSP, P-DCM was also able to explain the negative neuronal
response, including the post-stimulus increase in neuronal
activity. Note that this was achieved under the assumption that
the input arriving to the excitatory population in V1 from LGN
is negative (i.e., already LGN exhibits negative response, see e.g.,
Gouws et al., 2014). Furthermore, the relationship between the
positive neuronal and BOLD responses in this experimental data
is very interesting as there is a strong adaptation in the neuronal
response during SP but no sign of adaptation in the BOLD
response. This seems to appear as a typical observation for the
BOLD responses to stimuli with a comparable stimulus duration
measured in the V1 area of anesthetized macaque monkey brain
(Logothetis et al., 2001; Logothetis, 2002; Pfeuffer et al., 2004;
Goense and Logothetis, 2006) but less common in anesthetized
cats or rats (as shown above and, e.g., Zhao et al., 2007; Kida
and Yamamoto, 2008; Kim et al., 2010). Moreover, the stronger
neuronal deactivation during PSP invites the hypothesis that
the post-stimulus BOLD response undershoot could be related
to this decrease in neuronal activity. However, the estimate of
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CBF response provided by P-DCM suggests that the neuronal
adaptation and post-stimulus deactivations are almost entirely
smoothed out by a slow rate of NVC (with χ = 0.19 Hz),
which is also necessary to explain the smoothness of the observed
BOLD response. This is in line with experimental observations
from anesthetized macaque monkey brain reported in Pfeuffer
et al. (2004), Zappe et al. (2008), and Zaldivar et al. (2014),
albeit not explicitly described by the authors (see also discussion
below for possible effects of anesthesia). Thus, in contrary to
suggestion made in Shmuel et al. (2006), our modeling results
suggest that the post-stimulus BOLD undershoot is not caused
by the neuronal deactivation but by the vascular uncoupling
(with τPSP ∼= 29 s) with a slow return of venous CBV to
baseline during PSP (but see also below). Note that this vascular
uncoupling is smaller than in the first two experiments, which
is in a good agreement with the fact that the size of the post-
stimulus undershoot and thus also size of the vascular uncoupling
is proportional to stimulus duration (Uludağ and Blinder, 2017).

On the other hand, the shape of the negative BOLD response
follows very closely the shape of the negative neuronal response
with a smaller delay of the negative peak with respect to the
stimulus onset and the post-stimulus overshoot to stimulus
offset compared to the positive BOLD response. The faster
evolution of the negative BOLD response (with an earlier post-
stimulus undershoot) compared to the positive BOLD response
was also observed in other studies using human subjects (Shmuel
et al., 2002; Pfeuffer et al., 2004; Huber et al., 2014a). As
we assumed that the passive hemodynamic properties of the
venous compartment are the same for both positive and negative
responses (including the size of vascular uncoupling), P-DCM
explained the dynamic relationship between neuronal and BOLD
response by a faster NVC (with χ = 0.85 Hz) for decreases
in neuronal activity. In contrast to the positive BOLD response,
the neuronal transients are reflected in the BOLD signal time-
course due to the fact that the relative change of neuronal
amplitude between stimulus onset and offset is larger (close to
baseline by the end of the stimulation) compared to the positive
response. Note that theoretically, one could also explain the
discrepancy between positive neuronal and BOLD responses by
making the NVC faster, increasing the mean transit time (t0)
and minimizing the vascular uncoupling (τ ), which would result
in the post-stimulus BOLD undershoot having mainly neuronal
origin. However, this would lead to t0 > 4.5 s, which would have
to significantly differ from the negative BOLD response. That is,
we would not be able to assume the same hemodynamic (i.e.,
vascular) model for both negative and positive BOLD response in
the same voxels, which is not physiologically plausible. In general,
it is more likely that the main differences between the positive
and negative BOLD responses are due to different control of
NVC (Lauritzen, 2005). Whether the rate difference in NVC for
positive and negative responses is a general distinctive feature will
need to be clarified in future experiments.

In summary, the three experimental data-sets provided
physiological measurements at different stages of the dynamic
cascade between neuronal and BOLD responses. First, we
demonstrated that P-DCM was able to estimate (excitatory and
inhibitory) neuronal responses with different amount of response

adaptation during the stimulus period and post-stimulus
deactivation/activation after the stimulation. We showed that the
response adaptation during SP can vary from fast and strong (e.g.,
in the third experiment) to minimal (e.g., in the first experiment,
response to flickering stimulus). Similarly, during PSP, the
excitatory neuronal activity can slowly return to baseline (e.g., in
the first experiment, after the response to the static stimulus) or it
can decrease below baseline following the positive response (e.g.,
in the second experiment) or increase above baseline following
the negative response. Second, the CBF response was shown
to reflect the neuronal time-courses in a smoothed fashion
via feedforward NVC, which can reduce or even completely
eliminate neuronal transients (as in the third experiment for the
positive CBF response). However, modeling of the NVC allows
recovering excitatory and inhibitory neuronal transients from
the CBF data. Additional transient phenomena in the BOLD
response are induced by CBF-venous CBV uncoupling. That
is, the discrepancy between the BOLD signal and CBF are due
to venous CBV (or, alternatively, CMRO2, but see Havlicek
et al., 2017a). That is, the presence or absence of dynamic
features in the BOLD signal is not an unambiguous indication
of the presence or absence of those features on the neuronal
level. However, P-DCM applied to multi-modal data was able
to dissociate between neuronal and vascular contributions to
the BOLD response transients induced by different types and
durations of stimuli. Furthermore, P-DCM accommodated the
magnetic field strength and sequence parameters differences
between experimental studies that also influence the size and
nonlinearity of BOLD response transients (Havlicek et al., 2015,
2017a; Uludağ and Blinder, 2017). We think that P-DCM and its
emphasis on response transients may be useful to also explain
other combinations of multimodal data (e.g., neuronal activity
recordings, CBF, CBV and BOLD) or to play an important role in
combining EEG and fMRI data (Valdes Sosa et al., 2009; Riera and
Sumiyoshi, 2010; Rosa et al., 2011; Butler et al., 2017; Friston et al.,
2017). The neuronal mass activity of post-synaptic signals can
be decomposed to non-overlapping frequency bands. The higher
frequency band (gamma) is more associated with the main signal
change of the hemodynamic response while lower frequency
bands, such as alpha, and beta carry more information about
changes in response transients (Magri et al., 2012;Mullinger et al.,
2013, 2014; Ding et al., 2016).

Finally, it is important to realize that due to complexity of
physiological mechanisms transforming the neuronal response
to the BOLD response, the standard linear analysis (e.g., Friston
et al., 1995, 1998) or (linear) deconvolution applied to BOLD
data (e.g., Gaudes et al., 2011; Ryali et al., 2011; Smith et al.,
2012; Bush and Cisler, 2013) cannot provide a reliable estimate
of the underlying changes in neuronal activity in any of the three
experiments. Our results highlight the necessity of nonlinear
models, such as P-DCM, which account for dynamic uncoupling
at both the neuronal and vascular levels and that can benefit from
multi-modal data. In addition, nonlinear generative models,
such as P-DCM, have the potential also to improve novel data
analysis approaches, e.g., single-voxel and multi-voxel-pattern or
representational similarity analysis approaches (e.g., Kriegeskorte
et al., 2008; Haxby, 2012).
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Model Assumptions and Limitations
It is generally believed that modeling E-I balance—as the
underlying source of the BOLD response (Logothetis, 2008)—
is crucial for relating neuronal and hemodynamic responses.
The applied neuronal model of E-I balance within P-DCM
represents a large simplification of the underlying complex
neuronal processes that operate at very fine temporal and spatial
scales. The aim of this model is to mainly characterize regional
post-synaptic changes in excitatory and inhibitory activity using
a simple mathematical function that can be related to changes
in the hemodynamic signal. It is assumed that the two-state
neuronal model is driven by an exogenous input entering the
excitatory state and the change in excitatory activity is followed
by a (smaller) change in the inhibitory activity that subsequently
modulates the excitatory activity via negative feedback and the
E-I (im)balance eventually settles into a new balance state.
Despite its simplicity, this model is able to represent dynamic
change in E-I balance resulting in wide repertoire of neuronal
response adaptions profiles (Hoge et al., 1999; Bandettini and
Ungerleider, 2001; Logothetis et al., 2001), including more
abrupt changes of E-I balance with stimulus cessation followed
persistence of inhibitory activity that creates the post-stimulus
deactivation (Sadaghiani et al., 2009; Mullinger et al., 2013,
2014, 2017). Therefore, P-DCM offers a new way to assess the
neuronal origin of hemodynamic response transients by means
of proxies for excitatory and inhibitory responses that can have
high neuroscientific relevance.

Changes in the E-I balance were encoded in three neuronal
parameters (σ , µ, λ). The temporal evolution of excitatory
and inhibitory activity, including their dynamic mismatch, was
controlled by the parameters σ and λ, respectively, and the
strength of the inhibitory activity modulating the excitatory
activity is encoded by the parameter µ. In this paper, we have
mostly commented on the shape of estimated neuronal response
and emphasized possible differences in excitatory and inhibitory
dynamics. However, the actual values of estimated parameters
controlling the neuronal model are informative and significantly
differed between the three experiments (especially σ and µ).
It is possible that these differences can be attributed to the
neuronal or stimulus properties, as described above (Kida and
Yamamoto, 2008), but also to the fact that responses of the
two animal experiments were acquired under anesthesia (see
below). In addition, testing for significant differences in estimated
neuronal parameters due to experimental modulation or between
healthy and diseased subjects is potentially an important area
for future P-DCM utilization (Stephan et al., 2017). Note that in
this paper we have made the specific assumption that (σ , µ) can
vary between both SP and PSP but also between experimental
conditions. On the other hand, λ was allowed to vary only
between experimental conditions. This is because we favored a
simpler model that was able to explain the observed neuronal
responses in all three experiments, even with λ being only
condition specific. Additionally, in the first experiment, the CBF
response during PSP exhibits a slower return to the baseline
without post-stimulus undershoot. This is effectively modeled
by setting the parameter µ (i.e., the influence of inhibitory to
excitatory activity) close to zero, which means that during this

PSP, parameter λ does not have an effect on the shape of the
neuronal response and becomes unidentifiable. Nevertheless, the
inhibitory responses (as displayed in Figures 2–4) are modulated
by the parameter µ, which makes them time-period specific as
well.

Furthermore, the assumption about the input entering the
excitatory state is appropriate for the majority of cortical regions
as the vast majority of long-range connections between regions
are mediated by excitatory neurons (Markram et al., 2004). For
an additional description how P-DCM can model long-range
connections, please see Supplementary Material 3 in Havlicek
et al. (2015). We have utilized the same assumption also for the
negative neuronal response but with a negative input entering the
excitatory state, as it was shown earlier that negative responses in
primary visual areas may be preceded by negative responses in
LGN (e.g., Gouws et al., 2014).

NVC in P-DCM transforms neuronal to CBF response using
a feedforward mechanism. While the motivation for utilizing
feedforward NVC is fully discussed in Havlicek et al. (2015),
we have also demonstrated in Havlicek et al. (2017b) that NVC
based on negative feedback mechanism (Friston et al., 2000) is
suboptimal and that the feedforward NVC in conjunction with
the two-state neuronal model of E-I balance is preferred for
modeling fMRI data. NVC is controlled by three parameters (ϕ,
φ, χ), but optimizing only χ is sufficient to adjust the smoothness
and delay of CBF response with respect to the neuronal
response (i.e., we prefer a parsimonious NVC model with a
minimum number of free parameters). The NVC parameter
χ was assumed to vary between conditions. This is mainly
because the third experiment involved a condition resulting
in the negative response, and it was suggested earlier that
the NVC of positive and negative hemodynamic response may
differ (see e.g., Lauritzen, 2005; Huber et al., 2014a), which is
supported here by our results obtained with constrained model
inversion by multi-modal data. In fact, our fitting results of the
first experiment showed that positive hemodynamic responses,
although resulting from two different stimulus types and having
different modulation of response transients, can have the same
NVC parameter χ (see Table 2).

In the hemodynamic model, P-DCM assumes that CBF and
CMRO2 are tightly coupled. There are three reasons to do so:
(1) It is a common assumption in DCM literature that CBF is
tightly coupled with CMRO2 (Friston et al., 2003), and other
papers showed that CBF and venous CBV are uncoupled (e.g.,
Mandeville et al., 1999; Kim and Kim, 2011; Huber et al.,
2014a), as for longer stimuli venous CBV response exhibits much
slower increase and return to baseline compared to the CBF
response; (2) If one considers both CMRO2 and venous CBV
responses uncoupled from CBF response, then both can have
similar impact on the transients of the BOLD response and the
generative model becomes unidentifiable. From modeling (and
model inversion) perspective, this is seen as redundancy and
therefore it is preferable to fix one of these two mechanisms.
This is because under normal conditions even with multimodal
data (consisting of CBF, total CBV and BOLD) one cannot
effectively disentangle these two mechanisms from each other;
(3) We have recently provided a comprehensive proof using
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multi-echo data (Havlicek et al., 2017a) that next to CBF (i.e.,
neuronal) contribution, the CBF-venous CBV uncoupling (and
not the CBF-CMRO2 uncoupling) is the mechanism behind
the BOLD response transients. In this case, the specific echo-
time dependence of the BOLD response transients (related to
contribution from both extravascular and intravascular signals)
together with a variable CBF response allowed us to identify the
underlying mechanism.

In this paper, we have selected three multi-modal data-
sets as illustrative examples to demonstrate the versatility of
P-DCM to explain underlying causal relationships under the
constraint of multiple physiological measurements. We aimed to
includemulti-modal data-sets acquired at differentmagnetic field
strengths, containing different combinations of physiological
variables next to the standard BOLD response, and possibly
involving more than one level of experimental manipulation.
Further, we favored averaged data with excellent signal-to-noise
quality, which clearly manifest discrepancy between different
physiological variables and between experimental conditions.
There are certainly many more interesting published multi-
modal data-sets that P-DCM could be further tested on. For
example, we have limited our demonstration to human, monkey
and cat data, however, there are many excellent multi-modal
data measured in rodents (e.g., Kida et al., 2007; Boorman
et al., 2010; Füchtemeier et al., 2010; Hyder et al., 2010;
Hirano et al., 2011). Since a good correspondence was shown
earlier between hemodynamic responses measured in cats and
rats (see e.g., Zong et al., 2012) and in monkeys and rats
(see e.g., Huber et al., 2015), we expect that P-DCM could
perform well also if applied to rodent data. Furthermore, as
model parameters are specified in terms of priors, it is also
possible to account for interspecies differences in physiological
parameters. For example, a higher baseline blood flow and
volume influences the main transit time, which could be
adjusted for different species (even though it was not necessary
in our case, as the mean transit time was one of the free
parameters).

All three data-sets represent evoked responses to longer
sustained stimuli measured in the primary visual cortex. This
choice allowed us to consider model assumptions that could be
shared between all three experiments (as mentioned above) and
fitting results obtained from these experiments could be more
directly compared with each other. Additionally, in our previous
aforementioned study (Havlicek et al., 2017a), the same static
and flickering stimuli, including identical stimulus durations,
provided high evidence that the BOLD response transients are
mainly of neuronal and vascular origin (with negligible or zero
contribution of CBF-CMRO2 uncoupling). Therefore, we are in
a good position to extend these results to the model assumptions
applied in this paper, especially in the case of the first experiment.
Similarly, the authors of the second experiment data-set showed
in the independent study that with the same type of stimulus,
the venous CBV response in the primary visual cortex of the
cat exhibits much slower dynamics compared to the arterial
CBV (Kim and Kim, 2011). Furthermore, other multi-modal
data acquired in the primary visual cortex of monkey brain
(i.e., comparable to the third experiment) showed that despite

deactivation of after stimulus cessation in the neuronal response,
no or negligible post-stimulus undershoot was present in the
CBF response but significantly present in the BOLD response
(Pfeuffer et al., 2004; Zappe et al., 2008; Zaldivar et al., 2014).
This supports our assumption and fitting result that CBF-venous
CBV uncoupling can play important role in explaining the
observed BOLD response transients also in third experiment.
In general, the selected data may have revealed limitations of
the structure of P-DCM and assumptions of specific parameters
in the generative model. However, as the generative model was
able to reproduce the experimental observations, P-DCM proves
to be flexible enough to accommodate a wide range of multi-
modal experimental data. Nevertheless, more work on novel
data (including short stimuli and other brain regions) must be
performed to further evaluate and develop current generative
model used in P-DCM.

Finally, the second and third experiments were performed on
anesthetized animals using isoflurane (i.e., a common anesthetic
agent used in animal research). In general, anesthesia is known
to influence the amplitude and shape of both neuronal and
hemodynamic responses (Krautwald and Angenstein, 2012;
Uludağ and Blinder, 2017). Under anesthesia using isoflurane,
the neuronal baseline (i.e., the firing rate) is decreased and
the neuronal responses exhibit smaller changes and can have
more pronounced and faster adaptation compared to the
awake state (Aksenov et al., 2015; Keller et al., 2017). This
can potentially explain the large adaptation profiles of the
neuronal responses in the second and third experiment, even
though dynamic stimuli were applied (i.e., one would expect
responses more comparable to responses to flickering rather
than static stimuli in the first experiment). Having said this,
larger differences in the shape of neuronal responses due to
experimental modulations are expected during awake state
(Haider et al., 2013; Bahmani et al., 2014; Keller et al., 2017),
highlighting some benefits of human fMRI over animal studies
under anesthesia. At the hemodynamic or NVC level, isoflurane
based anesthesia leads to vasodilatation of mainly arteries and
arterioles in the occipital areas, which results in increase of
baseline CBF but even larger increase of baseline CBV; i.e.,
the mean transit time (in the microvasculature) is increased
as well (Lorenz et al., 2001). Subsequently, the change in CBF
due to activation is smaller and more delayed compared to
awake state (Sicard et al., 2003; Pisauro et al., 2013). As a
result, BOLD responses during anesthesia are also smaller. The
anesthesia is expected to influence more the active mechanisms
of the arterial compartment (in our model represented by
CBF) than the passive mechanism of the venous compartment.
Note that, theoretically, the same type of anesthetic agents
could also have different effect on the neuronal responses
and NVC between species, which could explain the large
discrepancy between the second and third experiment (besides
the obvious differences in stimulus type and stimulus duration).
As P-DCM is able to optimize all stages of the physiological
chain from the neuronal to the hemodynamic responses, it
can also be useful in characterizing the differences in the
physiological mechanisms during both anesthesia and the awake
state.
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K. (2017b). On the importance of modeling fMRI transients when estimating

e ff ective connectivity: A dynamic causal modeling study using ASL data.

NeuroImage 155, 217–233. doi: 10.1016/j.neuroimage.2017.03.017

Haxby, J. V. (2012). NeuroImage multivariate pattern analysis of fMRI: The early

beginnings. Neuroimage 62, 852–855. doi: 10.1016/j.neuroimage.2012.03.016

Hillman, E. M. (2014). Coupling mechanism and significance of the

BOLD signal: a status report. Annu. Rev. Neurosci. 37, 161–181.

doi: 10.1146/annurev-neuro-071013-014111

Hirano, Y., Stefanovic, B., and Silva, A. C. (2011). Spatiotemporal evolution of

the functional magnetic resonance imaging response to ultrashort stimuli. J.

Neurosci. 31, 1440–1447. doi: 10.1523/JNEUROSCI.3986-10.2011

Hoge, R. D., Atkinson, J., Gill, B., Crelier, G. R., Marrett, S., and Pike, G. B. (1999).

Stimulus-dependent BOLD and perfusion dynamics in human V1.NeuroImage

9(6 Pt 1), 573–585. doi: 10.1006/nimg.1999.0443

Hua, J., Stevens, R. D., Huang, A. J., Pekar, J. J., and Zijl, P. C. M. V. (2011).

Physiological origin for the BOLD poststimulus undershoot in human brain:

vascular compliance versus oxygen metabolism. J. Cereb. Blood FlowMetab. 31,

1599–1611. doi: 10.1038/jcbfm.2011.35

Huber, L., Goense, J., Kennerley, A. J., Ivanov, D., Krieger, S. N., Lepsien, J.,

et al. (2014a). Investigation of the neurovascular coupling in positive and

negative BOLD responses in human brain at 7T. Neuroimage 97, 349–362.

doi: 10.1016/j.neuroimage.2014.04.022

Huber, L., Goense, J., Kennerley, A. J., Trampel, R., Guidi, M., Reimer,

E., et al. (2015). Cortical lamina-dependent blood volume changes in

human brain at 7T. Neuroimage 107, 23–33. doi: 10.1016/j.neuroimage.2014.

11.046

Huber, L., Ivanov, D., Krieger, S. N., Streicher, M. N., Mildner, T., Poser, B. A., et al.

(2014b). Slab-selective, BOLD-corrected VASO at 7 Tesla provides measures of

cerebral blood volume reactivity with high signal-to-noise ratio. Magn. Reson.

Med. 72, 137–148. doi: 10.1002/mrm.24916

Hyder, F., Sanganahalli, B. G., Herman, P., Coman, D., Maandag, N.

J. G., Behar, K. L., et al. (2010). Neurovascular and neurometabolic

couplings in dynamic calibrated fMRI: transient oxidative neuroenergetics

for block-design and event-related paradigms. Front. Neuroenergetics 2:18.

doi: 10.3389/fnene.2010.00018

Jin, T., and Kim, S.-G. (2008). Cortical layer-dependent dynamic blood

oxygenation, cerebral blood flow and cerebral blood volume responses during

visual stimulation. Neuroimage 43, 1–9. doi: 10.1016/j.neuroimage.2008.06.029

Keller, A. J., Houlton, R., Kampa, B. M., Lesica, N. A., Mrsic-flogel, T. D., Keller,

G. B., et al. (2017). Stimulus relevance modulates contrast adaptation in visual

cortex. Elife 6, 4–15. doi: 10.7554/eLife.21589

Kida, I., Rothman, D. L., and Hyder, F. (2007). Dynamics of changes in blood

flow, volume, and oxygenation: implications for dynamic functional magnetic

resonance imaging calibration. J. Cereb. Blood Flow Metab. 27, 690–696.

doi: 10.1038/sj.jcbfm.9600409

Kida, I., and Yamamoto, T. (2008). Stimulus frequency dependence of

blood oxygenation level-dependent functional magnetic resonance imaging

signals in the somatosensory cortex of rats. Neurosci. Res. 62, 25–31.

doi: 10.1016/j.neures.2008.05.006

Kim, D.-S., Ronen, I., Olman, C., Kim, S.-G., Ugurbil, K., and Toth, L. J. (2004).

Spatial relationship between neuronal activity and BOLD functional MRI.

Neuroimage 21, 876–885. doi: 10.1016/j.neuroimage.2003.10.018

Kim, S.-G. (1995). Quantification of relative cerebral blood flow change

by flow-sensitive alternating inversion recovery (FAIR) technique:

application to functional mapping. Magn. Reson. Med. 34, 293–301.

doi: 10.1002/mrm.1910340303

Kim, S.-G., and Ogawa, S. (2012). Biophysical and physiological origins of blood

oxygenation level-dependent fMRI signals. J. Cereb. Blood Flow Metab. 32,

1188–1206. doi: 10.1038/jcbfm.2012.23

Kim, T., and Kim, S.-G. (2011). Temporal dynamics and spatial specificity

of arterial and venous blood volume changes during visual stimulation:

implication for BOLD quantification. J. Cereb. Blood Flow Metab. 31,

1211–1222. doi: 10.1038/jcbfm.2010.226

Kim, T., Masamoto, K., Fukuda, M., Vazquez, A., and Kim, S.-G. (2010).

Frequency-dependent neural activity, CBF, and BOLD fMRI to somatosensory

stimuli in isoflurane-anesthetized rats. Neuroimage 52, 224–233.

doi: 10.1016/j.neuroimage.2010.03.064

Krautwald, K., and Angenstein, F. (2012). Low frequency stimulation of the

perforant pathway generates anesthesia-specific variations in neural activity

and BOLD responses in the rat dentate gyrus. J. Cereb. Blood Flow Metab. 32,

291–305. doi: 10.1038/jcbfm.2011.126

Krekelberg, B., Boynton, G. M., and van Wezel, R. J. A. (2006). Adaptation:

from single cells to BOLD signals. Trends Neurosci. 29, 250–256.

doi: 10.1016/j.tins.2006.02.008

Kriegeskorte, N., Mur, M., and Bandettini, P. (2008). Representational similarity

analysis–connecting the branches of systems neuroscience. Front. Syst.

Neurosci. 2:4. doi: 10.3389/neuro.06.004.2008

Krüger, G., Kleinschmidt, A., and Frahm, J. (1996). Dynamic MRI sensitized to

cerebral blood oxygenation and flow during sustained activation.Magn. Reson.

Med. 35, 4. doi: 10.1002/mrm.1910350602

Lauritzen, M. (2005). Reading vascular changes in brain imaging: is dendritic

calcium the key? Nature reviews. Neuroscience 6, 77–85. doi: 10.1038/nr

n1589

Liu, T. T., and Brown, G. G. (2007). Measurement of cerebral perfusion with

arterial spin labeling: part 1. Methods. J. Int. Neuropsychol. Soc. 13, 517–525.

doi: 10.1017/S1355617707070646

Logothetis, N. K. (2002). The neural basis of the blood–oxygen–level–dependent

functional magnetic resonance imaging signal. Philos. Trans. R. Soc. Lond. Ser.

B Biol. Sci. 357, 1003. doi: 10.1098/rstb.2002.1114

Logothetis, N. K. (2008). What we can do and what we cannot do with fMRI.

Nature 453, 869–878. doi: 10.1038/nature06976

Logothetis, N. K., Augath, M., Murayama, Y., Rauch, A., Sultan, F., Goense, J., et al.

(2010). The effects of electrical microstimulation on cortical signal propagation.

Nat. Neurosci. 13, 1283–1291. doi: 10.1038/nn.2631

Logothetis, N. K., Pauls, J., Augath, M., Trinath, T., and Oeltermann, A. (2001).

Neurophysiological investigation of the basis of the fMRI signal. Nature 412,

150–157. doi: 10.1038/35084005

Logothetis, N. K., and Wandell, B. A. (2004). Interpreting the BOLD signal.

Annu. Rev. Physiol. 66, 735–769. doi: 10.1146/annurev.physiol.66.082602.

092845

Lorenz, I. H., Kolbitsch, C., Hormann, C., Luger, T. J., Schocke, M., Felber, S.,

et al. (2001). Inluence of equianaesthetic concentrations of nitrous oxide and

isoflurane on regional cerebral blood flow, regional cerebral blood volume, and

Frontiers in Neuroscience | www.frontiersin.org November 2017 | Volume 11 | Article 61649

https://doi.org/10.1523/JNEUROSCI.3555-14.2015
https://doi.org/10.1002/hbm.21116
https://doi.org/10.1016/j.mri.2005.12.032
https://doi.org/10.1016/j.cub.2008.03.054
https://doi.org/10.1523/JNEUROSCI.0164-14.2014
https://doi.org/10.1016/S0001-6918(01)00019-1
https://doi.org/10.1161/01.STR.5.5.630
https://doi.org/10.1038/nature12370
https://doi.org/10.1016/j.neuroimage.2017.07.034
https://doi.org/10.1016/j.neuroimage.2015.07.078
https://doi.org/10.1016/j.neuroimage.2017.03.017
https://doi.org/10.1016/j.neuroimage.2012.03.016
https://doi.org/10.1146/annurev-neuro-071013-014111
https://doi.org/10.1523/JNEUROSCI.3986-10.2011
https://doi.org/10.1006/nimg.1999.0443
https://doi.org/10.1038/jcbfm.2011.35
https://doi.org/10.1016/j.neuroimage.2014.04.022
https://doi.org/10.1016/j.neuroimage.2014.11.046
https://doi.org/10.1002/mrm.24916
https://doi.org/10.3389/fnene.2010.00018
https://doi.org/10.1016/j.neuroimage.2008.06.029
https://doi.org/10.7554/eLife.21589
https://doi.org/10.1038/sj.jcbfm.9600409
https://doi.org/10.1016/j.neures.2008.05.006
https://doi.org/10.1016/j.neuroimage.2003.10.018
https://doi.org/10.1002/mrm.1910340303
https://doi.org/10.1038/jcbfm.2012.23
https://doi.org/10.1038/jcbfm.2010.226
https://doi.org/10.1016/j.neuroimage.2010.03.064
https://doi.org/10.1038/jcbfm.2011.126
https://doi.org/10.1016/j.tins.2006.02.008
https://doi.org/10.3389/neuro.06.004.2008
https://doi.org/10.1002/mrm.1910350602
https://doi.org/10.1038/nrn1589
https://doi.org/10.1017/S1355617707070646
https://doi.org/10.1098/rstb.2002.1114
https://doi.org/10.1038/nature06976
https://doi.org/10.1038/nn.2631
https://doi.org/10.1038/35084005
https://doi.org/10.1146/annurev.physiol.66.082602.092845
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Havlicek et al. From fMRI to Excitation and Inhibition

regional mean transit time in human volunteers. Br. J. Anaesth. 87, 691–698.

doi: 10.1093/bja/87.5.691

Lu, H., Golay, X., Pekar, J. J., and Van Zijl, P. C. M. (2003). Functional magnetic

resonance imaging based on changes in vascular space occupancy.Magn. Reson.

Med. 50, 263–274. doi: 10.1002/mrm.10519

Lu, H., Golay, X., Pekar, J. J., and Van Zijl, P. C. M. (2004). Sustained

poststimulus elevation in cerebral oxygen utilization after vascular recovery.

J. Cereb. Blood Flow Metab. 24, 764–770. doi: 10.1097/01.WCB.0000124322.60

992.5C

Magri, C., Schridde, U., Murayama, Y., Panzeri, S., and Logothetis, N. K. (2012).

The amplitude and timing of the BOLD signal reflects the relationship between

local field potential power at different frequencies. J. Neurosc. 32, 1395–1407.

doi: 10.1523/JNEUROSCI.3985-11.2012

Mandeville, J. B., Marota, J. J. A., Ayata, C., Zaharchuk, G., Moskowitz, M.

A., Rosen, B. R., et al. (1999). Evidence of a cerebrovascular postarteriole

windkessel with delayed compliance. J. Cereb. Blood Flow Metab. 19, 679–689.

doi: 10.1097/00004647-199906000-00012

Mandeville, J. B., Marota, J. J., Kosofsky, B. E., Keltner, J. R., Weissleder, R.,

Rosen, B. R., et al. (1998). Dynamic functional imaging of relative cerebral

blood volume during rat forepaw stimulation.Magn. Reson. Med. 39, 615–624.

doi: 10.1002/mrm.1910390415

Markram, H., Toledo-Rodriguez, M., Wang, Y., Gupta, A., Silberberg, G., andWu,

C. (2004). Interneurons of the neocortical inhibitory system. Nature reviews.

Neuroscience 5, 793–807. doi: 10.1038/nrn1519

Marreiros, A. C., Kiebel, S. J., and Friston, K. J. (2008). Dynamic causal

modelling for fMRI: a two-state model. Neuroimage 39, 269–278.

doi: 10.1016/j.neuroimage.2007.08.019

Mayhew, S. D., Mullinger, K. J., Bagshaw, A. P., Bowtell, R., and Francis,

S. T. (2014). Investigating intrinsic connectivity networks using

simultaneous BOLD and CBF measurements. Neuroimage 99, 111–121.

doi: 10.1016/j.neuroimage.2014.05.042

Muckli, L. (2010). What are we missing here? Brain imaging evidence for higher

cognitive functions in primary visual cortex v1. Int. J. Imaging Syst. Technol. 20,

131–139. doi: 10.1002/ima.20236

Mullinger, K. J., Cherukara, M. T., Buxton, R. B., Francis, S. T., and Mayhew,

S. D. (2017). Post-stimulus fMRI and EEG responses: Evidence for a

neuronal origin hypothesised to be inhibitory. Neuroimage157, 388–399.

doi: 10.1016/j.neuroimage.2017.06.020

Mullinger, K. J., Mayhew, S. D., Bagshaw, A. P., Bowtell, R., and Francis,

S. T. (2013). Poststimulus undershoots in cerebral blood flow and

BOLD fMRI responses are modulated by poststimulus neuronal activity.

Proc. Natl. Acad. Sci. U.S.A. 110, 13636–13641. doi: 10.1073/pnas.12212

87110

Mullinger, K. J., Mayhew, S. D., Bagshaw, A. P., Bowtell, R., and Francis, S. T.

(2014). Evidence that the negative BOLD response is neuronal in origin: a

simultaneous EEG-BOLD-CBF study in humans. Neuroimage 94, 263–274.

doi: 10.1016/j.neuroimage.2014.02.029

Mumford, J. A., Hernandez-Garcia, L., Lee, G. R., and Nichols, T. E. (2006).

Estimation efficiency and statistical power in arterial spin labeling fMRI.

Neuroimage 33, 103–114. doi: 10.1016/j.neuroimage.2006.05.040

Niessing, J., Ebisch, B., Schmidt, K. E., Niessing, M., Singer, W., and Galuske, R.

A. W. (2005). Hemodynamic signals correlate tightly with synchronized

gamma oscillations. Science 209, 948–951. doi: 10.1126/science.11

10948

Ogawa, S., Lee, T.M., Kay, A. R., and Tank, D.W. (1990). Brainmagnetic resonance

imaging with contrast dependent on blood oxygenation. Proc. Natl. Acad. Sci.

U.S.A. 87, 9868–9872. doi: 10.1073/pnas.87.24.9868

Ozaki, T. (1992). A bridge between nonlinear time series models and nonlinear

stochastic dynamical systems: a local linearization approach. Stat. Sin. 2,

113–135.

Pérez-González, D., and Malmierca, M. S. (2014). Adaptation in

the auditory system: an overview. Front. Integr. Neurosci. 8:19.

doi: 10.3389/fnint.2014.00019

Pfeuffer, J., Merkle, H., Beyerlein, M., Steudel, T., and Logothetis, N. K. (2004).

Anatomical and functional MR imaging in the macaque monkey using

a vertical large-bore 7 Tesla setup. Magn. Reson. Imaging 22, 1343–1359.

doi: 10.1016/j.mri.2004.10.004

Pisauro, M. A., Dhruv, N. T., Carandini, M., and Benucci, A. (2013).

Fast hemodynamic responses in the visual cortex of the awake

mouse. J. Neurosci. 33, 18343–18351. doi: 10.1523/JNEUROSCI.2130-1

3.2013

Poser, B. A., Mierlo, E. V., and Norris, D. G. (2011). Exploring the post-

stimulus undershoot with spin-echo fmri: implications for models of

neurovascular response. Hum. Brain Mapp. 153, 141–153. doi: 10.1002/hbm.

21003

Riera, J. J., and Sumiyoshi, A. (2010). Brain oscillations: ideal scenery to

understand the neurovascular coupling. Curr. Opin. Neurol. 23, 374–381.

doi: 10.1097/WCO.0b013e32833b769f

Rosa, M. J., Kilner, J. M., and Penny, W. D. (2011). Bayesian comparison

of neurovascular coupling models using EEG-fMRI. PLoS Comput. Biol.

7:e1002070. doi: 10.1371/journal.pcbi.1002070

Ryali, S., Supekar, K., Chen, T., and Menon, V. (2011). Multivariate dynamical

systems models for estimating causal interactions in fMRI. Neuroimage 54,

807–823. doi: 10.1016/j.neuroimage.2010.09.052

Sadaghiani, S., Ugurbil, K., and Uludağ, K. (2009). Neural activity-induced
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Understanding the brain and its activity is one of the great challenges of modern science.

Normal brain activity (cognitive processes, etc.) has been extensively studied using

electroencephalography (EEG) since the 1930’s, in the form of spontaneous fluctuations

in rhythms, and patterns, and in a more experimentally-driven approach in the form of

event-related potentials (ERPs) allowing us to relate scalp voltage waveforms to brain

states and behavior. The use of EEG recorded during functional magnetic resonance

imaging (EEG-fMRI) is a more recent development that has become an important tool

in clinical neuroscience, for example for the study of epileptic activity. The purpose of

this review is to explore the magnetic resonance imaging safety aspects specifically

associated with the use of scalp EEG and other brain-implanted electrodes such as

intracranial EEG electrodes when they are subjected to the MRI environment. We

provide a theoretical overview of the mechanisms at play specifically associated with

the presence of EEG equipment connected to the subject in the MR environment, and

of the resulting health hazards. This is followed by a survey of the literature on the safety

of scalp or invasive EEG-fMRI data acquisitions across field strengths, with emphasis

on the practical implications for the safe application of the techniques; in particular, we

attempt to summarize the findings in terms of acquisition protocols when possible.

Keywords: radiofrequency safety, gradient safety, thermal injury, MR safety, electroencephalography, implanted

electrodes, epilepsy, neuroscience

INTRODUCTION

Electroencephalography (EEG) is a technique to record the brain’s electrical activity. Since its
introduction by Berger in 1929 and replication by Adrian in 1934 [1], this technique has evolved
from recording electrophysiological of the brain activities to clinical use including identification

of epileptic seizures, non-epileptic seizures, migraine and movement disorders based on the
spontaneous changes in the rhythms and shapes of the event-related potentials (ERPs). The activity
of neurons, and to a lesser extent glial cells, produces electrical and magnetic fields [2]. In epilepsy,
recording patients having a seizure using scalp EEG is a clinical tool of the utmost importance
especially when used in conjunction with video recording to better identify the seizure onset.
Two types of EEG are available: scalp EEG, the non-invasive tool capable of recording brain
activity, mostly originating in the superficial neocortex, and intracranial EEG (icEEG), an invasive
technique requiring surgery with exquisite sensitivity, although more restricted to the immediate

52

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://doi.org/10.3389/fphy.2017.00042
http://crossmark.crossref.org/dialog/?doi=10.3389/fphy.2017.00042&domain=pdf&date_stamp=2017-10-10
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:hassan.hawsawi.15@ucl.ac.uk
https://doi.org/10.3389/fphy.2017.00042
https://www.frontiersin.org/articles/10.3389/fphy.2017.00042/abstract
http://loop.frontiersin.org/people/385239/overview
http://loop.frontiersin.org/people/159459/overview
http://loop.frontiersin.org/people/20395/overview


Hawsawi et al. Safety of Scalp or icEEG during MRI: Review

vicinity of the implanted electrodes [2–4]. According to Tao
et al. [5], recognizable activity recorded on scalp EEG must
originate from at least 10 cm2 of cortical area. However, volume
conduction and the attenuating effect of the skull make it
difficult to relate these signals to their specific origin, forcing the
investigator to make assumptions on the nature of the generator,
combined with models of the associated fields: this is the inverse
problem of EEG (MEG) [2]. IcEEG is capable of detecting
activities generated in the mesial cortex during a seizure [6, 7].
In addition, icEEG has the ability to detect weaker brain activity
that sometimes cannot be identified in scalp EEG and MEG and
it can only detect activity occurring within a set of small brain
regions defined by patient clinical needs [2, 3].

Functional brain imaging can help to localize regions
responsible for epileptic discharges; this includes positron
emission tomography (PET), single photon emission computed
tomography (SPECT) and functional magnetic resonance
imaging (fMRI). FMRI reveals changes in the blood oxygenation
level [8] by measuring the local hemodynamic variations through
detecting the changes in the blood oxygen level dependent
(BOLD) signals that can be seen clearly during brain activities
[9]. FMRI can be used to identify regions involved in the
generation of epileptic discharges, particularly when combined
with EEG: Simultaneous scalp EEG-fMRI [10, 11] or icEEG-fMRI
[12–17]. However, as with all simultaneous multimodal data
acquisitions methodologies, data quality can be compromised
due to interactions between the two systems, and the subject [18].

The potential benefits of simultaneous scalp EEG-fMRI or
icEEG-fMRI are plentiful. However, there are several risks
associated with the three types of magnetic fields used by MRI:
the static magnetic field (B0), time-varying magnetic gradient
field and radiofrequency (RF) magnetic field (B1). The greatest
risk is generally heating which is related to RF electromagnetic
field-induced currents that cause increased power deposition in
the tissue in the vicinity of metallic EEG or icEEG electrodes
when applying concurrent fMRI [19]. In addition heating can
also occur as a result of the induced currents by the switching
magnetic fields [20]. These problems can cause tissue burns in
the locations adjacent to the metallic electrodes [20, 21].

The main objective of this review is to provide a survey
of the current knowledge regarding the safety of placing EEG
electrodes in contact with or within human subjects, within the
MRI scanner; although our primary interest is in the use of
non-invasive (scalp) and invasive EEG electrodes, we consider
studies of other brain implants such as electrodes for deep brain
stimulation (DBS), to the extent that studies involving those are
directly relevant to the topic of this review. Specifically, depth
intra-cranial EEG electrodes are very similar to DBS electrodes,
geometrically and in their composition, and therefore we believe
that any published work on the safety implications of placing
DBS electrodes in the MRI environment must be included in this
review.

The article is structured as follows: first, we briefly review
the health hazards that are associated with the technique of
simultaneous scalp EEG-fMRI and icEEG-fMRI after which we
discuss the main theoretical aspects of EEG equipment when
subjected to MRI. Second, we list the factors that can affect the

increase of the heating of the scalp EEG and implanted electrodes
inside the MRI that are subjects of previous and current research
studies. Finally, we follow that by reviewing the appropriate
acquisition protocol.

HEALTH HAZARDS RELATED TO
CURRENT FLOW IN, AND IN THE
PRESENCE OF CONDUCTIVE
ELECTRODES IN CONTACT WITH OR
WITHIN, HUMAN TISSUE: A BRIEF
SURVEY OF OBSERVATIONS

Observations from the use of diathermy show that electrical
currents of the order of 1A or greater may cause skin burns
around metallic electrodes; similar effects have been observed
in the vicinity of electrodes in contact with tissue placed in
the MR environment [22–25]. Ulcers can be caused due to
electrolysis from direct currents (DC) [20, 26]. Electro-motive
forces and thermal skin damage are caused at the electric field
of 3,500V/m [25, 27]. Electric shock or stimulation under the
frequency of 100KHz and tissue heating in the frequencies higher
than 100KHz occur as a result of current flow to the body
in contact with a metallic objects [20, 28–31]. Human subjects
reported mild neural stimulation when exposed to gradient field
changes of 61 Ts−1 [32]. Other health effects of the switching
gradients in the body include nerve or muscle stimulation
[33–35]. Schaefer et al. estimated that nerve simulation might
occur during exposure to an electric field of 0.0006 Volts/m or
greater assuming the radius of the patient 0.2m [33]. Prolonged
RF induced heating for up to 5◦C (over the normal body
temperature) would damage the neurons [34, 36] and that
depends on the sensitivity of the tissue in the brain [37, 38].

We are not aware of any officially recorded report of
significant injury directly linked to EEG recording inside the
MR scanner in the scientific literature, European or North
American regulatory authority databases or those of equipment
manufacturers (Robert Stormer, Brain Products GmbH; personal
communication). However, there are reports of ECG electrode-
related burns sometimes placed during EEG-fMRI recording
sessions [39].

THE SOURCES OF HEALTH HAZARDS IN
SIMULTANEOUS EEG AND FMRI:
THEORETICAL CONSIDERATIONS

The sources of health hazards associated with the use of EEG
duringMRI scanning have been studied since the technique’s first
published demonstrations of feasibility of recording EEG on 0.3
T MRI systems [40, 41] and then continued as EEG-fMRI was
developed on 1.5 T scanners [42–48]. The same general safety
considerations apply to EEG-fMRI as for all applications of MR
to human subjects. In summary, safety issues might arise not
only from the physical forces or from magnetic fields on these
foreign objects but also inductive interactions between magnetic
fields and the body and other components placed within the field
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[31]. In addition, capacitive interactions occur between the RF
electrical field and the human body close to RF transmit coils in
the form of (time varying) charge accumulation [20].

As with the introduction of any device not part of the
MR system in the scanner, extra precautions are advised and
careful consideration of any potential additional health hazard
specifically related to the device should be given: ballistic
(projectile) and electrical device safety issues and electromagnetic
compatibility; these will not be the subject of this review and
the reader should consult standard texts on MR safety and
electrical device safety (as applied outside the MR environment),
for example, [31, 49, 50]. In the case of EEG recording, we have
the introduction of electrically conductive circuits consisting of
powered amplifiers electrically connected to the patient via leads
and electrodes attached to the patient’s body and additional
risks can arise from induced currents. Such electrically active
components are the subject of electromagnetic compatibility
regulations and standards such as produced by the International
Electrotechnical Commission (IEC) (www.iec.ch), International
Organization for Standardization (ISO) (www.iso.org), the US
Federal Communications Commission (FCC) (www.fcc.gov) and
the Society of Automotive Engineers (SAE) (www.sae.org). The
conductive loops in EEG equipment typically contain high
impedance components in the amplifiers and low impedance
segments [20].

Let us consider the exposure of conductive to the
electromagnetic fields involved in the acquisition of MR images,
namely the magnetic (B) and electric (E) fields. Interactions
with different types of materials arise when EEG electrodes
and leads are introduced in the three types of magnetic fields
used in MRI. First, the strong and uniform static magnetic
field (B0) interacts with different materials that have specific
magnetic properties that include: diamagnetic, paramagnetic
and ferromagnetic materials, resulting in mechanical forces
(the aforementioned ballistic effects) or torques. Diamagnetic
materials are repelled by magnetic field forces as a result of
these forces. The paramagnetic or ferromagnetic materials
are attracted by the forces of the magnetic fields. Second, RF
electromagnetic fields, that are produced by RF coils during the
MR sequence, contains two components; one magnetic (B1),
and the second non-conservative electric component [20, 51].
For a circularly polarized B1, the electrical component can be
expressed as follows:

ERF = ωo B1
(

y sin(ωot
)

+ x cos(ωot))ẑ (1)

Where ω0 is the Larmor frequency (63.76 MHz and 127.7 for 1.5
T and 3 T, respectively) and ẑ is the unit vector along the scanner’s
long (Bo) axis. Third, the gradient magnetic fields that modulate
Bz produced by the scanner’s gradient coils, for spatial encoding
along the 3 orthogonal axes x, y and z [52]:

Gx =
dBz

dx
, Gy =

dBz

dy
and Gz =

dBz

dz
(2)

Therefore, induced currents can arise in circuits comprising of
conductive loops (including body tissues) when exposed to a

time-varying magnetic field (gradient and RF) or when there are
moving loops interacting with a spatially varying static magnetic
field (B0) [19, 20]. The ERF field can give rise to time-varying
charge accumulation in extended linear conductors. The currents
and charges resulting from such interactions increase with the
strength and frequency of the applied fields (and/or the rate of
motion within the fields) and require careful consideration in
theory, and possibly experimentally.

Theory of the Interaction between Closed
Circuits (Loops) and the Switching
Gradient Field
The interaction between conductive loops and a time-varying
magnetic field follows Faraday’s law:

V = −
d

dt
∫AB.

⇀
dS (3)

Where V is the induced electromotive force, (dS) is the
infinitesimal area parameter which is also a factor of the moving
surface area (A); B is the magnetic field. Equation (3) can be
generalized to show the relationship between the electric and
switching magnetic fields; Maxwell-Faraday’s equation:

▽ x
−→
E = −

∂

∂t

−→
B (4)

Where ▽ is the curl operator,
−→
E is the electric field and dB/dT

is the rate of the magnetic field. In MRI terms, the maximum
change in the magnetic field (dB/dT)max corresponds to the
gradient field’s (Smax) maximum slew rate at the position (z)
relative to the central axis of the gradient coils:

(

dB

dt

)

max

= Smax . z (5)

The switching gradient field that is applied in three coordinates
x, y, and z, and used to modulate the resonance frequency,
is an important element of MR scanning pulse sequences.
The switching gradient field can interact with conducting
loops causing one main issue for EEG-fMRI: the flow of the
currents within the loop of tissues that depends on (dB/dT), the
conductivity of the body and the cross-section of the conducting
loop [32].

Interaction between the RF Field and
Circuits (Loops and Linear Antennas)
At frequencies in the MHz range and above, and in contrast
to the gradient fields, the electrical component of the EM field
produced by coils becomes a primary element with significant
safety implications.

Concerning the magnetic element, B1, the following
proportionality relationship applies the induced voltage, V, in a
closed circuit:

V(t)RF ≈ −ωo B1 (t)A (6)
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The exact relationship is a function of the circuit’s geometry and
location, and B1 distribution [20]. This occurs in loop antennas
(inductive coupling).

The electrical part of the RF field can generate charges to
flow and accumulate in extended wires (capacitive coupling)
[20] according to Equation (1) for the E field for circularly
polarized B1. More generally the effect of EEG equipment can be
considered as altering the electric field such that its overall power
is increased both globally and in localized areas.

Interaction between Moving Closed
Circuits (Loops) and Static Magnetic Field
(B0)
Moving loops interaction with the static magnetic fields (B0)
follows Equation (3) and the electromagnetic field and can be
calculated by the following equation:

|Vmov| = Bo
dS

dt
(7)

Where (dS/dt) is the average of the loop area across the static
magnetic field.

Magnetic Forces and Torques
Another potential source of health hazard is the presence of
magnetic forces and torques on any conductive or magnetic
element because of the exposure to the temporary gradient
magnetic field within the permanent magnetic fields; these forces
are known as Lorentz forces that act on the icEEG implants
and causes vibrations and displacement that can be directly
dependent on the Bo (in the absence of the permanent magnetic
parts) as well as the induced currents and the location from the
iso-center of the Bo and inversely on the gradient ramp time
[53–56].

In summary, the hazards related to EEG recording inside
MRI fields that were listed in International Organization of
Standardization [57] are:

• Heating which is induced by RF or gradient fields.
• Vibration as result of gradient switching fields.
• Force and torque due to B0.
• Extrinsic electric potential as a result of lead voltage induced

by gradient fields (is not the subject of this review).
• Rectification that is caused by lead voltage induced by RF (is

not the subject of this review).
• Malfunction as a result of B0, RF and gradient fields (is not the

subject of this review).

Experimental Factors that can Affect the
Amount of Heating in the Vicinity of
Electrodes in the Application of the
EEG-fMRI
In this section, we start by describing the factors that are common
to the safety of all MR scanning, and taking into consideration
the presence of electrodes, starting with physiological, followed
by the scanning process itself and associated MR technology. We
then describe factors specifically related to experiments designed
to assess the safety of MR scanning in the presence of electrodes.

RF Energy Deposition
Although the type of sequence can be a general guide to RF-
induced heating, the details of a MR scanning sequence are
crucial in assessing the specific risks associated with its use, in
the presence of conductive devices such as EEG electrodes. In the
following, we discuss two common practical MR factors closely
related to energy deposition: SAR and RF transmit coil type.

Specific absorption rate
The specific absorption rate (SAR) is a measure of the amount
of heat generated in a body due to exposure to RF fields through
the Joule effect and is the most important parameter to quantify
the risks associated with RF exposure during MR scanning [19,
58]. Furthermore, it can be empirically linked to the heating of
implants and electrodes [59]. SAR is the relation between tissue
exposure to the RF field and the absorbed energy in a certainmass
[60, 61]. SAR in units of W/Kg can be related to the electric part
of the RF field, as:

SAR =
σ

2ρ

∣

∣EE
∣

∣

2
(8)

Where σ is the material’s electrical conductivity in (S/m), ρ is
the mass density in the unit (kg/m3) and EE is the local RF
electrical field magnitude. The SAR value can be calculated and
expressed in several ways: averaged over a whole body, averaged
over whole head and averaged over local or small volume that
can be 1 g of tissue or 10 g of tissue or other values. (In this
review, we use head-averaged SAR unless indicated otherwise)
Under certain conditions, without heat dissipation, SAR can be
expressed in-terms of temperature changes as follows [54]:

SAR = Cp
dT

dt
(9)

Where Cp is the heat capacity in unit (4,186 J/C◦.Kg for water)
and dT/dt is the rate of temperature change.

The international safety guidelines forMRI scanning state that
the increase in the temperature of human tissues must not exceed
1◦C and that the SAR value should not exceed 10 W/Kg for the
local SAR (using local transmit coils) [50, 60]. For the volume
transmit coils such as head or body RF coils, whole-body SAR
must not exceed 2 W/Kg and the whole-head SAR must not
exceed 3.2 W/Kg for the head-average over 6 min [50]. For more
information about thermal damage and thresholds, please refer
to Sapareto and Dewey [37] and Yarmolenko et al. [38].

Type of RF transmit coil
RF transmit coils vary greatly in geometry, size (anatomical
coverage) and excitation mode, depending on the desired
application and scanner design, with direct consequences for
the E field distribution and power. Therefore the distribution
and amount of tissue heating with or without any conductive
components placed in or near the RF coil is greatly affected by the
coil size and design. For example, SAR values can be decreased
by careful transmit coil design [62–68]. Kangarlu and co-workers
performed simulations and experiments to study the impact of
coil length on localized heating at 8T, showing greater heating
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for longer coils [69]. In practice, the volume of the coil is an
important determinant of the total power required to produce the
B1 field needed for a given pulse sequence with increased power
requirements being associated with a greater risk of heating.
Hence multiple studies have considered the type of coil coverage
(head vs. body) in the presence of EEG electrodes and leads
[19, 36, 55, 70, 71]. For example, Carmichael et al. [19] in a study
at 1.5T in the presence of icEEG (depths or subdural grids and
strips) electrodes found that the head transmit-receive coil results
in significantly less localized heating compared to the body coil.
The authors conclude that body transmit coil should be avoided
when icEEG electrodes are present; this finding is in line with
that of others, but in contradiction with Boucousis et al. [36].
This could be explained by the different electrode and phantom
configuration.

In addition, the use of multi-channel coils (such as an
8-channel system arranged in two rows positioned in the
z-orientation) can help to reduce the required RF power and
SAR values [64, 72–75]. Multi-transmit coils offer reduced power
requirement to produce RF field and thus, a decreased SAR value
[63–66, 73–78].

It is important to note that there is a complex relationship
between the position of the body and the conductive components
of the EEG system in relation to the RF coil and their coupling
which is also field strength dependant. Therefore, generalizations
are limited to the range of tested circumstances such as a
particular spatial arrangement of EEG equipment tested in
different RF coils.

Type of MR Sequence
The type and parameters of an MR sequence are crucial factors
for temperature elevation because of the obvious link between the
amount of RF power deposited in the body, the power applied
and heating; this deposited power, the SAR is a fundamental
parameter in MR safety [55]. For structural and functional
imaging of the brain in epilepsy, sequences typically used include
spin echo (SE) and derived sequences such as fast spin echo (FSE)
or turbo spin echo (TSE), gradient echo (GE) sequences with
or without and inversion pulse for T1 weighted imaging and
echo planar imaging (EPI) for functional imaging. SE involves
the application of an excitation and refocusing RF pulse (90◦ and
180◦) however it is rarely used due to long imaging times. In
FSE or TSE, a series of multiple refocusing RF pulses are applied
following the excitation pulse, which is termed the echo train
length. A large power is required to produce the RF B1 field for
refocusing pulses (that need to approach 180◦) and many are
applied in a short time period (order 1 per 10 ms) that leads to
high RF power levels. This then causes increases in the heating
effects because of the coupling between E-field and B-field in the
RF band [79]. Gradient echo sequences involve a single RF pulse
followed by a gradient reversal [80], and generally have a much
lower SAR than SE. In either case, the amount of heating can
be controlled by changing parameters such as the flip angle and
sequence repetition time (TR). EPI is a time efficient sequence
where an entire image is obtained in a series of gradient echoes
with differing phase encoding following a single RF pulse. This
makes it typically a low RF power sequence. SE-EPI uses the

same readout following an excitation and refocusing pulse which
increases its SAR.

Multi-band (MB) (also known as simultaneous multi-
slice) sequence is a more recent development to speed the
image acquisition by the use of excitations of multiple slices
simultaneously [81]. This type of technique has recently become
widely used in fMRI to allow faster temporal sampling than the
single-banded acquisition pulse techniques. The requirements
of exciting multiple slices can lead to greater RF power
requirements, especially peak power and at high multiband
factors. However, there are already a number of approaches
to RF pulse design to limit this power requirement (e.g.,
Norris PINS pulses, transmit sense) [82]. In addition, for faster
sampling (shorter TRs), optimal imaging requires smaller flip
angles helping to limit power requirements. Nevertheless, these
sequences repose the challenge of managing heating risks when
higher SAR sequences are used together with EEG recording
equipment particularly for high acceleration factors and high
field strength MRI scanners [83].

In the context of studies focused on identifying the set
of circumstances and image acquisition parameters that allow
MRI in the presence of EEG electrodes (or other implants), SE
sequences are often used to assess worst-case heating [20, 55, 70],
and in comparison with other, less SAR intensive and more
practically relevant sequences such as GE EPI used for fMRI.
The former approach has the advantage of demonstrating the
potential health impact of the wrong scanning protocol being
used, for example through operator error, while allowing for risk
assessment of lower SAR protocols. It is crucial to note that the
calculation of SAR is scanner and software specific therefore to
directly compare between pulse sequences across vendors B1rms

(root mean squared B1) provides a much more reliable metric
independent of factors such as the RF coils used, body position
or weight. SAR estimates for any given acquisition are model-
based and scanner manufacturer-specific and are not designed to
take any foreign body into consideration and therefore, caution
is advised when using SAR in relation to the heating of implants
[19].

EEG Equipment-Related Factors

Type, number and position of electrodes
The general aim of most experiments on RF-induced electrode
heating has been to identify the worst case scenario, which in
effect means identifying the location of greatest heating for a
given electrode/subject configuration. This approach is typically
in accordance with the ASTM guidelines.

The types of EEG electrodes are factors that can theoretically
affect the amount of localized heating in the presence of
EEG electrodes in contact with human subjects in the MRI
environment. EEG electrode types include scalp and icEEG
(and for the purpose of this study, DBS electrodes which are
extremely similar to depth EEG electrodes). The material used
for the clinical and investigative scalp EEG electrode contacts
range from Ag/AgCl, Au, plastic to stainless steel, each with
greatly varying magnetic and conduction properties. Invasive
(icEEG) electrodes are usually made of Pt-iridium (though steel
and platinum are also used) and the conductive wires made
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of nichrome (NiCr). At 4T, Stevens and co-workers reported
no significant heating increases in three different types of scalp
EEG electrodes: brass, silver, and conductive plastic of about 0.1,
0.0, and 0.1◦C, respectively, when they are attached to an oil
phantom without connection to the lead wires and EEG devices
and without forming a resonant loop [84]. These temperature
increases changed to 0.05, 0.04, and 0.06◦C for the brass, silver
and conductive plastic electrodes, respectively, when they were
attached to an agarose phantom indicating the importance
of choosing the proper phantom and electrode materials for
heating measurements in the high magnetic fields [84]. Phantom
composition will be explained in the following sections.

Angelone et al have found that the number of scalp
EEG electrodes can affect the amount of heating using finite
difference time domain (FDTD) computational simulations.
In their simulations, SAR values of 0.59W/kg without EEG
and 0.77W/kg were estimated in the skin with 124 scalp
EEG electrodes at 3T [85]. The same trend was obtained for
simulations at 7T where the results showed 0.29W/kg without
scalp EEGs, 0.35W/kg with 16 electrodes, 0.41W/kg with 31
electrodes and 0.43W/kg with 62 electrodes [85]. However,
outside the field of MR, a reduction in heating was observed
experimentally when placing increased number of electrodes in
the presence of GSM900 mobile phone (RF: 890–915 MHz)
that depended on the location and angle of the electrode leads
with respect to the RF [86]. Importantly the shielding effect of
electrodes can result in a reduction in the local SAR [85, 86].

Concerning the distribution of RF-induced heating, Vasios et
al studied that with the scalp EEG electrodes according to the 10–
20 international systems [87]. They measured heating of 1.09◦C
and 6.61◦C in the CZ paste position and 0.87◦C and 0.97◦C 5mm
from Fp1 position when placing inkCap (thin nylon grommet
contacts and thin polyester film) and the standard (gold/grass)
scalp EEG electrodes, respectively [87].

Intracranial electrodes used for invasive monitoring in
epilepsy patients are either strips or grids of disks that are
designed to reside on the cortical surface (ECoG) or penetrating
cylindrical electrodes (depth electrodes). Concerning studies of
heating in the presence of icEEG, comparing depth electrodes
with grid electrodes, the two electrodes tend to have similar
heating [36, 55]. It has been shown that icEEG electrodes
implanted coronally with their terminating wires positioned
posteriorly to the magnet, showed heating below the standard
allowed limits (<1◦C); however, these terminating wires showed
increased heating when positioned anteriorly to the magnet, and
excessive heating can be seen in the parasagittal implant locations
at 1.5T [70]. Therefore, it is recommended to apply EPI sequences
in an orthogonal approach (perpendicular to the Z-axis of the
magnet) [70]. The addition of multiple and different electrodes
have been studied by Carmichael and Boucousis but the total
electrode number itself has not been identified as a critical factor
determining heating.

Connection cables (leads) and their configuration
The conductive termination of wires can play a significant role in
the amount of localized heating in the vicinity of EEG electrodes.
For instance, Carmichael et al. have tested the effect of the

position of the terminal cables on heating and found that when
these cables were positioned in the z-axis to the magnet, they
produced high temperature of about 6◦C and about 2.6◦C when
the cables are placed close to the body toward the feet (inside the
bore) [55]. Heating can elevate above the permitted limits when
the wires are shorted and placed in close proximity (effectively
creating a short-circuit) [19, 36, 70].

It is well established that the length of electrode leads and
cables plays a vital role in determining the amount of heating due
to the possibility of resonant antenna effects, as a function of the
relationship between effective length and the Larmor frequency
(and therefore static field strength). This effect was investigated at
1.5T by Yeung et al. who determined that wires of a length of less
than 0.6m and around 2.6–3m result in reduced heating [88].
Assecondi et al. also tested this phenomenon at 4T, observing
a difference of 1.5◦C temperature increase between two cable
lengths [89].

Static Field Strength (B0)
As noted above, scanner static magnetic field strength is an
important factor for localized heating in itself, because the
frequency of the RF is linearly related to field strength thus
the power required for a given B1 amplitude is also increased
and correspondingly the same pulse sequence results in higher
SAR at higher field strengths. However, the higher SAR may
not always result in greater heating for a given EEG system
because the coupling between any conductive structure and the
RF coil will depend on their respective resonant lengths. One
research study that compared the heating effect on icEEG inside
1.5T and 3T MRI scanners was performed by Carmichael et
al. [19] where they studied the effect of heating in three MR
systems (1.5T GE, 3T GE Signa Excite and 3T Siemens TIM
Trio) and found that in general the 3T MRI systems produces
higher temperature elevation above the limits than 1.5T in the
vicinity of metallic electrodes specifically when using structural
sequences. The temperature increase also can be high even when
the head transmit coil is used [55]. Another study showed that
it may be possible to use the body transmit and head receive coil
configuration in 3T and low SAR EPI sequences but the structural
sequences such as FSE should be avoided because they produce
heating above the standard limits [36].

Mullinger, Neuner and Jorge reported that using EEG cap
connected with MR compatible EEG amplifier at ultrahigh field
MRI scanners (7T and 9.4T) can be performed with acceptable
risk under specific conditions [90–93].

Gradient Fields
The switching magnetic gradient fields can also affect the heating
in the presence ofmetallic implantsmade of conductingmaterials
[79]. The heating from the gradient switching fields can be
determined by Faraday’s law where the magnetic flux change
produced by the scanner induces electrical eddy currents in
conductive implants which is then converted to thermal energy.
The magnitude of the flux change is strongly dependant on the
position relative to the magnet’s iso-center [20, 79]; however this
effect is minimal for EEG electrodes [20, 55].
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Perfusion Process in the Human Body
Blood perfusion plays a vital role in temperature regulation
and therefore is a consideration in devising safety tests, at least
theoretically. Blood flow carries about 50–80% of the heat in
or out the body tissues [94, 95]. There are many biophysical
models that have been formulated to study temperature change
or regulation by perfusion. It is noteworthy that some body parts
are not normally perfused such as the eye [96]. Nonetheless,
everything else being equal, perfusion should result in reduced
heating compared to that observed in tests performed on
(passive) phantoms and can therefore be cited as a mitigating
effect although difficult to quantify or validate precisely due to
the possible presence of other temperature regulating processes
such as conduction, convection, radiation, metabolism and
evaporation [97].

Survey of the Experimental Literature on
the Safety of Scalp EEG-fMRI and
icEEG-fMRI
The main health-related effect that can be caused by the RF
fields when scalp or intracranial EEG are within the MRI scanner
during image acquisition are thermal as consequence of tissue
absorption of RF energy that can be locally increased by the
presence of the EEG system.

Summaries of the experimental research articles relevant to
the topic can be found inTables 1, 2. In the following, we describe
some of the highlights and discuss important experimental
factors for consideration when conceiving such experiments.
One of the first safety studies using EEG within MRI was
performed by Zhang et al. [98], where they studied the heating
effect, resonant frequency and the RF power loss when placing
nickel-chromium intracranial depth electrodes inside 1.5T MRI
scanner. Zhang et al. found that the resonant frequency was 100
MHz and the RF power loss was −2 dB when the electrode
was in air, the resonant frequency decreased to 37 MHz and the
RF power loss became −19 dB when the electrode was placed
inside saline solution. The RF power loss became −3 dB at
the frequency of 64 MHz (1.5T), and the heating increased to
0.07◦C which was measured after each SE sequence [98]. The
ASTM standard specifies the use of gel phantoms since saline
can lead to significantly underestimated temperature increases
due to the greater heat dissipation due to convection, which
may partly explain the results of Zhang et al. [98]. We also
note that the temperature measurements were performed after
a delay following the scanning. Lemieux et al. also performed
one of the early measurements of heating effect inside 1.5T
MRI scanner examining the main factors of heat induction. It
was performed by designing a loop from the wires of 15 EEG
electrodes fitted with current limiting resistors in a square box
shape surrounding a spherical head phantom in order to assess
the effect of heating and suggest the appropriate resistor which
was found to be around 5.6 k ohm for the maximum allowed
specific air ratio (SAR) and 13 k ohm for the minimum heating
of the fitted non-ferrous carbon resistors to achieve maximum
heating of less than 1◦C in the resistors for the non-loop and
in the electrode [20]. While current-limiting resistors have been

used to reduce the heating from the currents that are induced
by the gradient and RF field, some authors have found their
effectiveness in limiting the heating associated with capacitive
coupling (at 7T) to be doubtful [60]. Other authors such as
Bonmassar and colleagues investigated the effect of MR induced
heating by the addition of junction field effect transistor (JFET)
in a circuit connected to the scalp EEG has been determined
to produce isolated currents with less noise when it is in OFF
mode [71]. The safety profile of scalp EEG have been further
characterized using similar protocols and a range of different
MRI protocols and clinical setups [84, 87, 89, 90, 99–102]. The
summaries of the safety studies of scalp EEG in MRI are listed in
Table 1.

In a similar vein, different groups have tested the MRI
interactions with DBS devices. These typically consist of a pulse
generator (housed in a metallic box), electrodes and connection
wires. Overall at 0.35T [103] and 1.5T it has been found
that risks can be managed under specific configurations (low
SAR sequences and often a head transmit-receive coil) and the
production of heating is less when DBS equipment are fully
implanted [34, 59, 104–113]. In 3T MRI fields and higher [34,
59, 107, 109–111, 114–118], similar results in terms of heating
have been obtained but more caution is required when dealing
with DBS implants and wires as well as pulse sequences in general
require greater SAR. The summaries of the safety studies of DBS
external electrodes and implants in MRI are listed in Table 2.

A study by Carmichael et al focused on the safety of MRI
in patients with icEEG electrodes used for epilepsy monitoring
and presurgical evaluation. In this study, the mechanical forces
on electrodes (types and positions), tissue heating and tissue
stimulation were tested [19]. In addition, a study was performed
to evaluate the safety of recording icEEG during fMRI where
terminating cables positions and the use of different types
of MRI scanners and RF coils were explored both on 1.5T
MR scanners [55] and with the use of 3T MRI systems [19,
36, 55, 119]. In addition, studies by Shellock et al. [120],
Nyenhuis et al. [121], and Bhattacharyya [122] were performed
to assess the heating of metallic implants. Summaries of the
safety research of icEEG and metallic implants in MRI are listed
in Table 1.

Other groups [85, 93, 123, 124] have performed temperature
and safety assessments when utilizing simultaneous EEG-
fMRI and DBS techniques using finite difference time domain
(FDTD) computing approaches. Yeung et al. performed heating
assessments on conducting wires using the simulations of
method of moments (MoM) [88]. Another technique known
as finite element method (FEM) was used to study the heating
effect on DBS electrodes and leads [125–128]. The summaries
of the safety studies using computer simulation techniques
when placing EEG, implants and DBS electrodes in MRI are
found in Table 3. In principle, computer simulations offer
the possibility of speeding up safety research by allowing the
consideration of a variety of experimental scenarios (electrode
configuration, subject, scanner design, sequence, etc.) the testing
of which could be time consuming [85, 125]. However, this
benefit is reliant on two considerations: computational speed
and, most crucially, computational model accuracy. Therefore,
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computational simulations can be effective once the model has
been subjected to exhaustive experimental validation.

Animal testing in vivo was performed by Ciumas et al. [70],
Gorny et al. [110], Shrivastava et al. [114], Eryaman et al.
[115], Shrivastava et al. [116], Eryaman et al. [117] and showed
agreement with water-gel phantom experiments. The summaries
of the safety researches of EEG and implants inMRI using animal
samples are included in Table 1.

In the following we describe the experimental conditions in
more depth.

Phantom Composition and Geometry
ASTM has set the guidelines regarding the characteristics of
phantom material for heating measurements which should have
water mixed with sodium chloride and polyacrylic acid (PAA)
or other materials such as hydroxyethylcellulose mixed with
sodium chloride and water containing a conductivity of 0.47 ±
10% S/m at temperature range from 20 to 25◦C, specific heat
of 4150 J/(kg K) at 21◦C, diffusivity of approximately 1.3 ×
10−7 m2/s and heat capacity of about 4,150 J/kg◦C in order to
simulate the human thermal properties of the tissues [49]. The
phantom contents and its effect on heating in the application of
EEG-fMRI has been addressed by Shellock research group where
they filled a rectangular plastic phantom with a semi-solid gel
containing hydroxyetheyl-cellulose (HEC) and mixed with 91%
of water and 0.12% of NaCl that simulates a conductivity of 0.8
S/m [120]. Other research has been performed by Mullinger et
al. [91] that included mixing a heated solution of 4% Agar and
0.5% of NaCl. Boucousis et al. have used a spherical phantom
filled with 45 g of semi-solid agar gel, 1500ml of distilled water
and 6.75 g NaCl, which all mixed together in the sphere and
surrounded by 0.9% NaCl solution in a small area isolated from
the agar solution which is also surrounded by acrylic material
from the outside to produce an electrical conductivity of 0.7
S/m and simulate the electrical conductivity of the gray matter
[36]. The difference in phantom materials between studies is a
potential source of error for temperature measurements that are
carried out inside theMRI environment. The effect of the gelling-
agent PAA, which controls the viscosity of the phantommaterial,
with the heating increase was well characterized by Park and co-
workers, finding that the more viscous the phantom material the
more the localized heating which might be closer to “worst case”
tissues with low perfusion in the human body [129].

Location of the Temperature Probes
The location of the temperature-measuring devices relative to
the EEG electrodes is another factor that affects the accuracy
of temperature measurements. According to the ATSM safety
standard, the temperature probes should be placed in the
area which is suspected to experience the greatest heating,
the temperature probe should have spatial resolution of less
than 1 mm for the performance of heating calculations in
all orientations [49]. Park and co-workers demonstrated the
effect of taking temperature measurements on the tip of a DBS
electrode, 5 mm lateral to the electrode and 5 mm above the
electrode and determined different results in each setup [129].
Mattei et al. determined that there were underestimations of
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the measurements using Luxtron temperature probes of about
11 and 70% of the heating and SAR values, respectively at
1.5T when positioning the tip of the Luxtron temperature
probe to the side of the contact and when positioning the
tip of the Luxtron temperature probe to the tip of the
contact [130]. The measurement of temperature and SAR
values can be improved (less underestimation) by placing the
active area of these particular probes (not the tip) in contact
with the tip of the contact [130]. Therefore in general, care
must be taken to consider the implant and probe geometry
and sensitivity to ensure accurate temperature measurements
are obtained.

GENERAL CONCLUSIONS IN VIEW OF
MINIMIZING THE ADDITIONAL HEALTH
RISKS ASSOCIATED WITH
SIMULTANEOUS EEG-FMRI

It must be emphasized that the safety of EEG recording in
the MR environment (or conversely, MR scanning with EEG
recording equipment) should always be treated as a non-standard
procedure requiring extra care, and potentially require a site-
specific risk assessment, even for non-invasive (scalp EEG)
and MR Conditional labeled equipment, irrespective of field
strength. Once implemented, it is strongly advised to monitor
the subjects throughout the procedure. These considerations
are more critical for the case of MR scanning in the presence
of invasive, intracranial EEG electrodes, due to the greater
risk of serious injury. MRI with invasive electrodes remains a
relatively rare occurrence concentrated in specialized centers
with only a few relevant publications dedicated to the study of
the safety aspects. Although post-icEEG (and DBS) electrode
implantation MR scanning (for electrode localization validation)
is an established procedure in some clinical settings, to our
knowledge this is usually performed under local safety rules and
supervision. As things stand it seems unlikely that the icEEG-
fMRI technique with electrodes attached to recording amplifiers
will become standard clinical practice in the short to medium
term and will not benefit from fully tested, commercially available
turn-key solutions. Therefore site- (and scanner-) specific safety
investigations are warranted for all applications of MR in the
presence of implanted electrodes. For field strengths above 3T,
this recommendation is even stronger and also applies to scalp
EEG electrodes.

Nonetheless, it is possible to extract a summary of conclusions
that may guide investigators wanting to implement EEG-
fMRI. Firstly, follow the instructions provided by the
providers/manufacturers of the (so-called) “MR-compatible”
EEG equipment (from electrode, electrode cap, etc. to

amplifier/digitiser/signal transmitter) carefully; this advice
usually comes in the form of a User’s Manual andMRConditional
Statement and may cover the details of the application of the
electrodes, EEG equipment handling and positioning, MR
scanner field strength, type of MR sequence, etc. In the specific
case of icEEG-fMRI, no “MR-compatible” EEG equipment
solution is available on the commercial market (as of July 2017)

and therefore the type of guidance described above (for scalp
EEG) does not exist. Secondly, we can provide the following
general guidance, for the implementation of simultaneous
EEG-fMRI in every local setting:

• High-SAR MR sequences (such as FSE) should always be
avoided [36, 55].

• Excessive heating is more likely to occur when using body
transmit RF coils than localized (e.g., head) transmit coils
[14, 19, 55].

• Noxious effects are usually reduced by placing all leads and
cables along the scanner’s central axis [36, 55].

At this time, given the huge variety ofMR environments (scanner
type and model, RF coil, etc.) it is not possible, nor wise in our
opinion, to provide more specific guidelines for EEG-fMRI.

CONCLUSIONS

Simultaneous scalp EEG-fMRI remains a significant tool for
the detection, identification, and localization of epileptiform
discharges. Simultaneous icEEG-fMRI is a more technically
challenging, and much less widely applied technique, with
potential for providing richer data on brain activity. The relative
complexity and constant evolution of MRI instruments, with
the numerous fields involved, combined with the quasi infinite
number of possible EEG electrode and wire configurations
provide the setting for a range of complex potential health
hazards resulting from a number of mechanisms, i.e.,
physical interactions such as RF-induced heating due to
the aforementioned factors (including lead orientations) and
therefore require careful consideration and evaluation.
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In this study, we retrospectively analyzed the anatomical MRI data acquired from 52

subjects with type 1 diabetes (26M/26F, 36 ± 11 years old, A1C = 7.2 ± 0.9%) and 50

age, sex and BMI frequency-matched non-diabetic controls (25M/25F, 36 ± 14 years

old). The T1D group was further sub-divided based on whether subjects had normal,

impaired, or indeterminate awareness of hypoglycemia (n = 31, 20, and 1, respectively).

Our goals were to test whether the gray matter (GM) volumes of selected brain regions

were associated with diabetes status as well as with the status of hypoglycemia

awareness. T1D subjects were found to have slightly smaller volume of the whole cortex

as compared to controls (−2.7%, p = 0.016), with the most affected brain region being

the frontal lobe (−3.6%, p = 0.024). Similar differences of even larger magnitude were

observed among the T1D subjects based on their hypoglycemia awareness status.

Indeed, compared to the patients with normal awareness of hypoglycemia, patients with

impaired awareness had smaller volume of the whole cortex (−7.9%, p = 0.0009), and

in particular of the frontal lobe (−9.1%, p = 0.006), parietal lobe (−8.0%, p = 0.015) and

temporal lobe (−8.2%, p = 0.009). Such differences were very similar to those observed

between patients with impaired awareness and controls (−7.6%, p = 0.0002 in whole

cortex,−9.1%, p= 0.0003 in frontal lobe,−7.8%, p= 0.002 in parietal lobe, and−6.4%,

p = 0.019 in temporal lobe). On the other hand, patients with normal awareness did

not present significant volume differences compared to controls. No group-differences

were observed in the occipital lobe or in the anterior cingulate, posterior cingulate,

hippocampus, and thalamus. We conclude that diabetes status is associated with a

small but statistically significant reduction of the whole cortex volume, mainly in the frontal

lobe. The most prominent structural effects occurred in patients with impaired awareness

of hypoglycemia (IAH) as compared to those with normal awareness, perhaps due to

the long-term exposure to recurrent episodes of hypoglycemia. Future studies aimed at

quantifying relationships of structural outcomes with functional outcomes, with cognitive

performance, as well as with parameters describing glucose variability and severity of

hypoglycemia episodes, will be necessary to further understand the impact of T1D on

the brain.
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INTRODUCTION

Diabetes is a growing world epidemic, with an estimated
projected number of more than 800 million people living with
diabetes by 2,030 (Wild et al., 2004). Diabetes is a complex
metabolic disorder that affects multiple systems in the body. Type
1 diabetes (T1D) is an autoimmune disease, characterized by
destruction of insulin producing cells in the pancreas resulting
in absolute deficiency of insulin (Standards of Medical Care
in Diabetes, 2017). Although Type 1 diabetes can manifest at
any age, it is usually diagnosed in children and young adults.
In comparison, type 2 diabetes is characterized by variable
degrees of insulin deficiency and reduced responsiveness to
insulin action. It is usually diagnosed in middle age to older
people and is associated with obesity. Diabetes is characterized by
hyperglycemia (high blood glucose) and over time hyperglycemia
can lead to development of complications such as eye problems,
nerve damage and kidney disease (Standards of Medical Care in
Diabetes, 2017). Treatment with exogenous insulin is needed in
people with type 1 and advanced type 2 diabetes. Treatment with
insulin to tightly control glucose can reduce the risk of long term
complications of diabetes but also increases risk of hypoglycemia
(low blood glucose).

It has been long recognized that diabetic patients may
suffer from reduced cognitive function (Miles and Root, 1922;
Cukierman-Yaffe, 2014). Both type 1 and type 2 diabetes are
associated with cognitive impairment and structural changes
in the brain. In particular, type 1 diabetes (T1D) has been
linked to performance deficits in memory, attention, information

processing and executive function (Kodl and Seaquist, 2008).
The neuro-structural correlates of these clinical events remain
uncertain.

Identification of brain damage induced by diabetes,
particularly before cognitive symptoms appear, is critical
for mitigating the long-term consequences of the disease
on the brain. Various non-invasive and quantitative MRI
neuroimaging approaches have been utilized to objectively
characterize the impact of diabetes on brain structure and
function, including structural MRI, diffusion tensor imaging
(DTI), magnetic resonance spectroscopy (MRS) and functional
MRI (fMRI) (Moheet et al., 2015b). Subjects with T1D have
been found to have reductions in both white and gray matter
(GM) volumes by MRI (Musen et al., 2006; Wessels et al., 2006,
2007). They have also been shown to have lower GM density,
primarily in the regions of frontal, temporal, posterior, and
cerebellar regions of the brain (Musen et al., 2006; Wessels et al.,
2006; Hughes et al., 2013). Moreover, in children with T1D,
greater exposure to severe hypoglycemia has been associated
with enlargement of hippocampal GM volume compared
to children without severe hypoglycemia (Hershey et al.,
2010).

In the present study we retrospectively analyzed anatomical
MRI data acquired in our laboratory from a sizable number
of subjects with long-standing T1D and non-diabetic subjects.
The T1D group was further sub-divided in two groups based
on whether subjects had normal or impaired awareness of
hypoglycemia (IAH).

The typical symptoms of hypoglycemia include sweating,
hunger, shakiness/tremulousness, heart pounding, and
nervousness/anxiety (Tesfaye and Seaquist, 2010). These
warning symptoms are mediated by activation of the nervous
system and are key for recognition of hypoglycemia so that
the person can take corrective actions to stop the progression
of hypoglycemia. Recognition of the onset of these symptoms
constitutes awareness of hypoglycemia (McAulay et al., 2001;
Geddes and Frier, 2007). Recurrent exposure to iatrogenic
hypoglycemia can lead to development of IAH (Cryer, 2005).
IAH is estimated to occur in 20% of patients with type 1 diabetes
(Geddes et al., 2008). IAH is associated with a 6-fold increased
risk of developing severe hypoglycemia (an event causing such
neurological changes as to require the aid of another person)
(Gold et al., 1994). Questionnaires have been developed to assess
awareness of hypoglycemia in people with diabetes (Gold et al.,
1994; Clarke et al., 1995; Pedersen-Bjergaard et al., 2001). In this
study, we primarily utilized the Cox questionnaire to categorize
the status of hypoglycemia awareness in participants with
diabetes (Clarke et al., 1995). The Cox questionnaire comprises 8
questions that examine the glycemic threshold at which subjects
develop symptoms of hypoglycemia. This questionnaire also
characterizes the subject’s exposure to episodes of moderate and
severe hypoglycemia. A score of four or more implies IAH, while
a score of two or less reflects normal awareness of hypoglycemia.
A Cox score of three however indicates an indeterminate status
of awareness, in which case one can consider an additional
method, such as the Gold questionnaire to further characterize
impaired awareness (Gold et al., 1994). The Gold scoring method
is based on the response to a single question, “Do you know
when your hypos are commencing?” Results are expressed in a
7-point Likert scale (from “Always aware” to “Never aware”),
where a score of four or more indicates impaired awareness.

Our goal for this study was to estimate the group-differences
in structuralMRI outcomes available from our datasets.Whereas,
other studies have investigated differences in brain volumes
between diabetic and non-diabetic subjects (van Harten et al.,
2006; Moheet et al., 2015b), a distinct novel aspect of the present
work was to test, within the T1D group, whether the IAH is
associated with altered brain volumes. In particular, we focused
on the volume of the whole cortex, separate cortical lobes, and
selected cortical and sub-cortical structures, namely the anterior
cingulate cortex (ACC), the posterior cingulate cortex (PCC), the
hippocampus, and the thalamus. The ACC and PCC are key brain
regions involved in cognition and executive function (Nachev,
2006; Leech and Sharp, 2014), while the hippocampus, a brain
structure located deep in the temporal lobe, plays an essential
role in learning and memory processing (Scoville and Milner,
1957; Burgess et al., 2002; Squire et al., 2004). Our specific interest
in the thalamus originated from recognizing that this area may
be functionally involved in the development of IAH (Mangia
et al., 2012). Indeed, the thalamus is one of the brain areas
which manifest increased neuronal activity during hypoglycemia
as measured by increases of blood flow in healthy controls.
However, such response was observed to be blunted in a group of
type 1 diabetic subjects with impaired awareness to hypoglycemia
(Mangia et al., 2012).
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METHODS

Subjects
Subjects were drawn from experiments that were conducted over
a time-frame of 7 years from 2009 to 2016 within the context
of multiple completed and on-going projects which generally
aimed at describing the brain responses to hypoglycemia during
hyperinsulinemic clamps (Mangia et al., 2012; Terpstra et al.,
2014; Moheet et al., 2015a). Datasets that contained both T1-
weighted (T1w) and T2-weighted (T2w) structural MRI of
acceptable image quality as determined by visual inspection (e.g.,
no motion artifacts) were included in this analysis. Included T1D
subjects were recruited for participation because they had T1D
(defined on clinical grounds) and were between the ages of 18
and 67 years. The healthy control group was frequency matched
to T1D based on age, sex, and BMI during the same time period.
Recruited T1D subjects had hemoglobin A1C <8% in the 3
months before study participation, and did not have history of
proliferative retinopathy or other microvascular complications.
T1D subjects were also divided into two subgroups: T1D with
IAH and T1Dwith normal awareness of hypoglycemia (NAH), as
verified primarily by the Cox questionnaire (Clarke et al., 1995).
In the few cases (n = 7) that T1D subjects had a Cox score
of three (i.e., indeterminate status), we used their Gold score
(Gold et al., 1994) for determining their awareness status. For 1
of these 7 patients, Gold score was missing in the database, and
therefore that subject was left as “indeterminate” and excluded
from the analyses focused on hypoglycemia awareness. Other
exclusion criteria for both groups included history of stroke,
seizures, neurosurgical procedures, or arrhythmias, use of drugs
that can alter glucose metabolism (other than insulin for the T1D
subjects), alcohol abuse, history of renal insufficiency with serum
creatinine levels above 1.5 mg/dL, pregnancy, breastfeeding, and
incompatibility with MR safety criteria.

Protocol
During the experimental MRI session, metabolic conditions were
controlled by the use of a hyperinsulinemic (2 mu/kg/min) clamp
to maintain blood glucose values around 95 mg/dL (normal
glycemia). Only the data collected during normal glycemia are
included in this analysis. Details regarding the protocol for
this insulin clamp technique have been published elsewhere
(Mangia et al., 2012; Moheet et al., 2015a). The studies were
carried out in accordance with the Declaration of Helsinki and
with the recommendations of The Code of Federal Regulations,
Institutional Review Board. The protocol was approved by the
Institutional Review Board: Human Subjects Committee of the
University ofMinnesota.Written informed consent was obtained
from all subjects prior to the experimental session.

MRI Measurements
MRI measurements were performed using either a 3 T Siemens
Trio scanner (Siemens, Erlangen, Germany) or a 3 Tesla Siemens
Prisma scanner (Siemens, Erlangen, Germany). Radiofrequency
pulses were transmitted with the scanner body coil, while
signal was received with either a 12-channels receive coil (for
experiments conducted with the 3 T Trio) or a 20-channels
receive coil (for experiments conducted with the 3 T Prisma).

Each subject’s head was carefully fixed with padding and memory
foam to prevent motion artifacts while assuring that subject
was comfortable with the setup. In addition, the structural T1w
and T2w images were always acquired at the beginning of the
study session. High resolution T1w images were acquired with
a MPRAGE sequence, with the following parameters: 256 ×
256 mm2 field of view, 160 slices, 1 mm isotropic resolution,
repetition time (TR) = 2,150 ms, echo time (TE) = 2.47 ms,
inversion time (TI) = 1,000 ms, with parallel acceleration factor
(PAT) of 2 for a total scan time of ∼5 min for each magnet.
T2w scans were acquired with the T2-SPACE sequence at 1
mm isotropic resolution using the same imaging volume of the
MPRAGE acquisition. For acquisitions on the 3T Trio, the T2-
SPACE parameters were TR = 3,200 ms, TE = 201 ms, PAT 4,
and for 3T Prisma TR = 3,200 ms, TE = 147 ms, PAT 4. Both
T1w and T2w images were automatically corrected for the B−1 -
related spatial inhomogeneity utilizing coil sensitivity profile and
“prescan normalize” routine implemented in the Siemens image
acquisition/reconstruction algorithm.

Data Processing
Segmentation of cortical and subcortical GM structures was
performed with an identical pipeline for each subject based on
Freesurfer (version 5.3, http://surfer.nmr.mgh.harvard.edu/). In
the first step, the masks resulting from subcortical segmentation
(aseg) (Fischl et al., 2002) and cortical parcellation (aparc)
(Desikan et al., 2006) were obtained in native subject space
by using T1w images. In addition, the estimated intracranial
volumes (eICV), later used to adjust volumes of brain GM
regions to the head size (Buckner et al., 2004), were obtained
per subject. The high contrast between cerebrospinal fluid (CSF)
and cerebral cortex on T2w images was utilized to refine
segmentation (Glasser et al., 2013). Finally the segmentation
outputs were carefully manually edited in accordance with
the Freesurfer manual in several subsequent steps. The errors
resulting from imperfect intensity normalization were corrected
by adding control points. The remaining errors in white matter
segmentation were fixed by editing of wm.mgz file. Finally, the
pial surfaces were checked and edited where needed. All manual
editing steps were performed by an experienced neuroradiologist
(P.B.).

The selected nine cortical and subcortical regions of interest
(ROIs) are listed in Tables 2–4, and are shown in Figure 1. In
particular, the PCC corresponded to the brain areas identified by
FreeSurfer as the isthmus cingulate, while the ACC corresponded
to the rostral anterior cingulate. Volumes were calculated from
each ROI separately for right and left hemisphere, so that two
data points were obtained per subject per ROI. Volumes of the
segmented brain structures were scaled (i.e., divided) by eICV per
subject.

Finally, the operator performing the manual editing was
blinded to the hypoglycemia awareness status of the T1D
subjects, but was un-blinded to the diabetes status (controls or
T1D). In order to assess the possible bias induced by the partial
un-blinding of the operator, differences in the whole cortex
volumes obtained before and after manual edits were calculated
per subject, with positive numbers indicating volume reductions
after editing.
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FIGURE 1 | Visualization of regions of interest subjected to volumetry analyses from one representative non-diabetic subject. The top row displays the mask of the

whole supratentorial cortex, which includes lobes (frontal, parietal, temporal, occipital), insula and cingulum. Bottom row depicts masks of cortical lobar regions

(frontal, parietal, temporal, occipital) and secondary cortical and subcortical regions of interest (ACC, PCC, thalamus, and hippocampus). In particular, the PCC and

ACC corresponded to the brain areas identified by FreeSurfer as the isthmus cingulate and rostral anterior cingulate, respectively. ROIs are here shown as combined

between the two hemispheres, however the statistical analyses used both right and left hemisphere data points per ROI per subject.

Statistical Analyses
Subject age, BMI, A1c, and disease duration were summarized
with means and standard deviations (SD) and compared
between groups using linear models; sex and scanning protocol
distribution were compared across groups using Fisher’s exact
test. For each of the nine ROIs separately, volumes (left and right
hemispheres combined) were summarized by group using means
and standard deviations. Group comparisons of GM volumes per
ROI were tested (1) between all T1D subjects and controls, (2)
between T1D with NAH and T1D with IAH, and (3) between
controls and each of T1D with NAH and T1D with IAH. For
such comparisons, linear mixed models were used that adjusted
for age, sex, BMI, hemisphere, and protocol. For the NAH vs.
IAH comparisons within the T1D group, we fit models with
and without additional correction for duration of disease and
A1c. Our primary test of interest was for the whole cortex.
Within the whole cortex, false discovery rate (FDR) (Benjamini
and Hochberg, 1995) correction was used for multiple testing
of the 4 lobes, and separately for multiple testing of the

additional 4 cortical and subcortical ROIs (namely the ACC,
PCC, hippocampus, and thalamus). When comparing controls
to each of the groups of T1D subjects with NAH and with IAH,
the FDR correction included the additional p-value correction
for those two pairwise comparisons. Statistical significance
results are presented both without and with the multiple-testing
corrections. Finally, hemisphere by group interactions were
evaluated (but were left out of the final models since they were
non-significant for all ROIs), and differences in the whole cortex
volumes obtained before and after manual edits were compared
with unpaired two-tailed t-test between the controls and T1D
subjects.

RESULTS

A total of 102 datasets (50 from non-diabetic controls and
52 from T1D subjects) were evaluated. Subjects were evenly
distributed among females and males in both control and T1D
groups (Table 1). T1D subjects had good glycemic control, with
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TABLE 1 | Subject characteristics.

Group n Age (years) Sex (M/F) BMI (kg/m2) T1D duration (years) A1C (%) Protocol (Trio/Prisma)

Control 50 36 ± 14 25/25 25 ± 4 – – 18/32

T1D 52 36 ± 11 26/26 26 ± 4 20 ± 11 7.2 ± 0.9 19/33

p-values* 0.86 0.99 0.25 – – 0.99

T1D-NAH 31 32 ± 10 18/13 26 ± 4 17 ± 10 7.4 ± 0.8 10/21

T1D-IAH 20 43 ± 10 8/12 27 ± 5 25 ± 11 6.9 ± 0.8 9/11

p-values§ 0.0005 0.26 0.45 0.008 0.042 0.39

*Comparisons between control and T1D subjects.
§Comparisons between T1D-NAH and T1D-IAH subjects.

an average A1C of 7.2%, and their disease duration was 20 ± 11
years on average. Both T1D and control groups were 36 years
old on average (p = 0.86), while the T1D-NAH group was
on average 11 years younger than the T1D-IAH group (p =
0.0005). T1D-IAH subjects also tended to have slightly lower
A1C as compared to the T1D-NAH group (p = 0.042). No
group-differences in BMI were observed. Image quality was
high/excellent for all datasets, and no differences were observed
among groups or between imaging protocols. In addition, on
average, 0.04 ± 1.5% and 0.06 ± 1.1% of voxels were removed
by the operator in controls and T1D subjects, respectively
(p= 0.92).

The GM volume of the whole cortex was slightly smaller for
T1D subjects than controls (by −2.7%, p = 0.016). Among the
4 lobes, the frontal cortex was the most affected (by −3.6%, p
= 0.024, corrected), whereas only a trend of smaller volume was
observed for the parietal lobe (by −2.9%, p = 0.081, corrected).
No differences were observed when considering the other ROIs
(Table 2).

When comparing IAH vs. NAH in T1D subjects (Table 3),
the GM volume of the whole cortex was smaller by an even
larger extent (namely −7.9%, p = 0.0009) than what was
observed between T1D subjects and controls. Smaller volumes
were observed in particular in the frontal lobe (−9.1%, p =
0.006, corrected), parietal lobe (−8.0%, p= 0.015, corrected), and
temporal lobe (−8.2%, p = 0.009, corrected). Such observations
were not driven by differences in T1D duration and A1C
among groups, since these models adjusting for T1D disease
duration and A1C showed similar or even stronger statistical
significance than when comparisons were not corrected for those
parameters (Table 3). No volume differences in the other ROIs
were observed.

Differences observed between T1D subjects with and without
impaired awareness were very similar to those observed
between T1D with IAH and controls (Table 4), namely
−7.6% in whole cortex (p = 0.0002), −9.1% in frontal
lobe (p = 0.0003, corrected), −7.8% in parietal lobe (p =
0.002, corrected), and −6.4% in temporal lobe (p = 0.019,
corrected). On the other hand, T1D with NAH did not present
significant volume differences as compared to controls in
any ROI.

Finally, no hemisphere by group interaction was observed for
any ROI. Also, the two protocols were not found to impact the
volumetric outcomes.

TABLE 2 | Volumetry comparisons between T1D subjects and controls.

Region Group values (mean ± SD) Group-comparisons

Control (n = 50) T1D (n = 52) Diff* (%) unadj_p fdr_p

Whole cortex 0.33 ± 0.02 0.32 ± 0.02 −2.7 0.016 0.016

Frontal lobe 0.119 ± 0.010 0.115 ± 0.009 −3.6 0.006 0.024

Occipital lobe 0.031 ± 0.003 0.030 ± 0.002 −3.4 0.084 0.112

Parietal lobe 0.079 ± 0.006 0.077 ± 0.006 −2.9 0.040 0.081

Temporal lobe 0.073 ± 0.005 0.072 ± 0.005 −1.3 0.345 0.345

ACC 0.0033 ± 0.0004 0.0033 ± 0.0004 −0.3 0.976 0.976

Hippocampus 0.0058 ± 0.0005 0.0058 ± 0.0005 0.0 0.800 0.976

PCC 0.0033 ± 0.0004 0.0032 ± 0.0004 −2.7 0.256 0.512

Thalamus 0.0104 ± 0.0009 0.0101 ± 0.0010 −2.6 0.131 0.512

Linear mixed models used for the comparisons included age, sex, BMI, hemisphere and

protocol as covariates. False discovery rate correction was applied for the 4 lobes, and,

separately, for the ACC, hippocampus, PCC, and thalamus. Shaded areas indicate p <

0.05, and bold numbers indicate group differences for which fdr_p < 0.05. ACC (anterior

cingulate cortex), PCC (posterior cingulate cortex), unadj_p (unadjusted p-value), fdr_p

(p-value after false discovery rate correction).

*Differences were calculated as T1D minus Control.

DISCUSSION

This cross-sectional morphometric MRI study examined the
association of T1Dwith GMvolumes. In this study, we found that
subjects with long standing T1D had smaller whole cortex and
frontal lobe GM volumes compared to non-diabetic controls of
similar age, sex and BMI. In this study, subjects with diabetes had
good glycemic control based on A1C and did not have any severe
microvascular complications. We also noted a trend toward T1D
having smaller GM volume in the parietal region. Overall the
magnitude of these differences was small, namely 3.6% in the
frontal lobe and 2.7% in the whole cortex. However, structural
effects of larger magnitude were present in T1D patients with
IAH as compared to patients with NAH (e.g., 7.9 and 9.1% in
whole cortex and frontal lobe, respectively), as well as compared
to controls (e.g., 7.6 and 9.1% in whole cortex and frontal lobe,
respectively). Interestingly, patients with NAH did not show
volume reductions as compared to controls. These observations
are novel because association between IAH and reduced brain
volumes in patients with T1D diabetes has never been reported
before.

The exact mechanisms underlying development of IAH
are not known and could be related to alterations in both
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TABLE 3 | Volumetry comparisons for T1D subjects between those with NAH and IAH.

Region Group values (mean ± SD) Group-comparisons

Without adjustment for With adjustment for

T1D duration and A1C T1D duration and A1C

T1D with NAH (n = 31) T1D with IAH (n = 20) Diff* (%) unadj_p fdr_p unadj_p fdr_p

Whole cortex 0.33 ± 0.01 0.30 ± 0.02 −7.9 0.002 0.002 0.0009 0.0009

Frontal lobe 0.120 ± 0.007 0.108 ± 0.008 −9.1 0.002 0.008 0.002 0.006

Occipital lobe 0.031 ± 0.002 0.029 ± 0.003 −3.8 0.593 0.593 0.342 0.342

Parietal lobe 0.079 ± 0.005 0.073 ± 0.006 −8.0 0.013 0.018 0.011 0.015

Temporal lobe 0.074 ± 0.004 0.069 ± 0.005 −8.2 0.008 0.016 0.005 0.009

ACC 0.0034 ± 0.0004 0.0032 ± 0.0005 −5.4 0.528 0.704 0.377 0.528

Hippocampus 0.0059 ± 0.0004 0.0057 ± 0.0006 −3.3 0.478 0.704 0.396 0.528

PCC 0.0033 ± 0.0004 0.0032 ± 0.0004 −2.7 0.966 0.966 0.876 0.876

Thalamus 0.0104 ± 0.0008 0.0097 ± 0.0011 −5.2 0.313 0.704 0.292 0.528

Linear mixed models used for the comparisons included age, sex, BMI, hemisphere and protocol as covariates, both without and with additional adjustment for disease duration and

A1c. False discovery rate correction was applied for the 4 lobes, and, separately, for the ACC, hippocampus, PCC, and thalamus. Shaded areas indicate p < 0.05, and bold numbers

indicate group differences for which fdr_p < 0.05. ACC (anterior cingulate cortex), PCC (posterior cingulate cortex), unadj_p (unadjusted p-value), fdr_p (p-value after false discovery

rate correction).

*Differences were calculated as IAH minus NAH for the T1D subjects.

brain hypoglycemia sensing and impaired coordination of the
counter-regulatory response. Alterations in neurotransmission,
upregulation of brain glucose transport or availability of alternate
fuels like lactate for brain metabolism (as a result of exposure to
recurrent hypoglycemia) may contribute to development of IAH
(Tesfaye and Seaquist, 2010). Strict avoidance of hypoglycemia
may partially restore awareness of hypoglycemia (Dagogo-Jack
et al., 1994; Fanelli et al., 1994; Leelarathna et al., 2013), however
this is very challenging for insulin treated patients with diabetes
to maintain long-term.

Importantly, our comparisons took into account age
differences between the two patient populations (T1D subjects
with IAH tend to be older than T1D subjects with NAH), along
with differences in A1C (T1D subjects with IAH tend to have
slightly lower A1C than T1D subjects with NAH) and differences
in diabetes duration (T1D subjects with IAH tend to have longer
disease duration than T1D subjects with NAH). Therefore, based
on our results, we can rule out that our findings were driven by
age or simply by disease duration. On the other hand, since T1D
patients who develop IAH are generally those who experience
episodes of hypoglycemia more frequently, one can speculate
that the long-term exposure to recurrent hypoglycemia may be
associated with reduced brain volumes. To test such hypothesis,
future investigations should include objective measures of
antecedent hypoglycemia episodes by means of continuous
glucose monitoring.

Smaller brain volumes between T1D subjects and non-
diabetic subjects are generally consistent with previous published

literature. Musen et al. reported reduced GM density in the
region of left and right superior temporal gyri, left angular gyrus,
left middle temporal and middle frontal gyri, and left thalamus
in subjects with T1D relative to control subjects (Musen et al.,
2006). Another study reported reduced GM volume in the frontal
lobe in subjects with T1D compared to controls (Hughes et al.,
2013). Smaller GM volumes in T1D have been linked to poor

TABLE 4 | Volumetry comparisons of controls with T1D-NAH and T1D-IAH

subjects.

Region Group-comparisons

T1D-NAH vs. Controls T1D-IAH vs. Controls

Diff* (%) unadj_p fdr_p Diff* (%) unadj_p fdr_p

Whole cortex 0.4 0.632 0.632 −7.6 0.0001 0.0002

Frontal lobe 0.0 0.435 0.569 −9.1 0.00004 0.0003

Occipital lobe −2.0 0.207 0.331 −5.7 0.118 0.237

Parietal lobe −0.1 0.719 0.719 −7.8 0.0006 0.002

Temporal lobe 1.9 0.498 0.569 −6.4 0.007 0.019

ACC −1.8 0.812 0.812 −3.7 0.794 0.812

Hippocampus 1.5 0.507 0.812 −2.0 0.810 0.812

PCC 1.4 0.255 0.812 −4.6 0.468 0.812

Thalamus −0.6 0.371 0.812 −5.8 0.108 0.812

Linear mixed models used for the comparisons included age, sex, BMI, hemisphere and

protocol as covariates. False discovery rate correction was applied for the 4 lobes and

two pairwise comparisons, and, separately, for the ACC, hippocampus, PCC, thalamus

and the two pairwise comparisons. Shaded areas indicate p-values < 0.05, and bold

numbers indicate group differences for which fdr_p < 0.05. ACC (anterior cingulate

cortex), PCC (posterior cingulate cortex), unadj_p (unadjusted p-value), fdr_p (p-value

after false discovery rate correction).

*Differences were calculated as T1D-NAH or T1D-IAH subjects minus controls.

glycemic control, severe hypoglycemia and presence of severe
microvascular complications (Moheet et al., 2015b).

In people with Type 2 diabetes, several studies have shown
evidence of hippocampal atrophy and reduced performance on
neurocognitive testing (den Heijer et al., 2003; Bruehl et al.,
2009). In our study we did not see significant differences
in hippocampal volumes of subjects with T1D compared to
controls. These findings are consistent with previous small
studies which also did not find evidence of hippocampal atrophy
in subjects with long standing T1D (Lobnig et al., 2006;
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Bednarik et al., 2015). Interestingly, whereas group differences
were observed in the frontal and parietal lobes, our analysis
did not reveal volume differences in two sub-regions of such
lobes that constitute the major hubs of the default mode
network, namely the ACC and PCC. Diabetes or hypoglycemia
awareness status did not impact the thalamic volume either,
despite this region has been suggested to be functionally
involved in the development of hypoglycemia unawareness based
on the blunted thalamic responses to hypoglycemia observed
in IAH-T1D subjects as compared to non-diabetic controls
(Mangia et al., 2012). These findings remind to apply general
caution when anticipating structural group differences of a brain
area based on functional group differences observed in that
area.

MRI studies, including the present one, usually involve only
limited numbers of subjects. Therefore, it remains a challenge
to coherently describe how the many contributors such as
age, diabetes duration, glucose control (i.e., A1C levels) and
glucose variability, among others, mediate the impact of diabetes
on the brain especially when analyses are performed at the
voxel level, which is inherently more demanding in terms of
multiple comparison corrections. To partially overcome such
a challenge, in this study we chose a morphometry analysis
based on estimating the volumes of aggregated large brain
areas that were mostly automatically segmented by FreeSurfer
routines and, most importantly, are maintained in the native
space of the subject. Such an ROI-based approach allows a
straightforward normalization of brain volumes based on the
total intra-cranial volume of the subject and does not require
excellent alignment of the normalized brains as is necessary for
voxel-wise comparisons. Also, the use of automatic Freesurfer
segmentation, and standardized operator routines to correct
segmentation outcomes, allowed identifying the regions of
interest with minimized operator biases. In addition, a distinct
strength of our study design was the excellent matching in the
frequency of age, sex, and BMI between T1D and non-diabetic
subjects.

One obvious limitation of this study is its cross-sectional
design. We do not have longitudinal A1C data or information
about previous episodes of severe hypoglycemia, so we cannot
assess the relationship of exposure to hyper- and hypoglycemia
on GM volume. Another limitation of our study is that we did
not perform neurocognitive testing in these subjects and cannot
assess if these subtle reductions in GM volumes were associated
with decline in cognitive function.

CONCLUSIONS

We conclude that T1D is associated with a small but significant
reduction of the whole cortex GM volume, mainly in the frontal
lobe. Similar structural effects occur when comparing, within
the T1D subjects, patients with IAH vs. those with normal
awareness. The clinical significance of these subtle changes in GM
volume is not clear. Future studies are needed to examine if these
subtle reductions in GM volumes are associated with cognitive
impairment.
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Multiple Sclerosis (MS) is a neuro-degenerative and -inflammatory disease leading to

physical and cognitive impairment, pathological fatigue and depression, and affecting

patients’ quality of life and employment status. The combination of inflammation,

demyelination, and neurodegeneration leads to the emergence of MS lesions, reduced

white and gray matter brain volumes, a reduced conduction velocity and microstructural

changes in the so-called Normal Appearing White Matter (NAWM). Currently, there are

very limited options to treat cognitive impairment and its origin is only poorly understood.

Therefore, several studies have attempted to relate clinical scores with features calculated

either using T1- and/or FLAIR weighted MR images or using neurophysiology. The aim

of those studies is not only to provide an improved understanding of the processes

that underlie the different symptoms, but also to develop a biomarker—sensitive to

therapy induced change—that could be used to speed up therapeutic developments

(e.g., cognitive training/drug discovery/...). Here, we provide an overview of studies that

have established relationships between either neuro-anatomical or neurophysiological

measures and cognitive outcome scores. We discuss different avenues that may help

to improve the prediction of cognitive impairment, and how well we can expect them to

predict cognitive scores.

Keywords: cognitive impairment, multiple sclerosis, biomarker, MRI and fMRI, neurophysiology

INTRODUCTION

Cognitive impairment has been estimated to affect 1 out of every 2 multiple sclerosis (MS) patients
(Rao et al., 1991) and affects different domains, most commonly information processing speed,
working memory, long-term memory, attention, and executive functions (Langdon, 2011). In
contrast to physical disability, which can be easily monitored with the Expanded Disability Status
Scale (EDSS, Kurtzke, 1983), cognitive impairment is difficult to assess as (1) neuropsychological
evaluation demands time and (2) test results can be influenced by practice-effects, i.e., an
improvement of test scores even when the disease is stable as the patients get practiced in the
specific tests.

Several attempts have been made to address these issues in order to facilitate and improve
the reliability of cognitive follow-up. The Minimal Assessment of cognitive functioning in MS
(MACFIMS, Benedict et al., 2002) and the Brief International Cognitive Assessment of MS
(BICAMS, Langdon et al., 2012) have been developed in order to allow a less time-demanding
cognitive assessment. Furthermore, even a single 5-min test can assess a patient’s cognitive status
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with a sensitivity of up to 0.9 at a specificity of about 0.6 (Van
Schependom et al., 2014a). Although, the practice effect can be
partially mitigated by using alternate versions of cognitive tests,
patients can still learn certain strategies limiting the potential of
these batteries to detect changes in clinical trials.

As part of the clinical follow-up, MS patients regularly
undergo an MRI scan allowing the radiologist/neurologist
to assess the number and volume of T1-hypointense, T2-
hyperintense, and Gadolinium enhancing lesions. While the
automated interpretation of MR images has not only led to
a more reliable quantification of lesions (Jain et al., 2015), it
provides objective insight in the brain’s atrophy rate, which is
significantly faster in MS than in healthy controls (De Stefano
et al., 2015).

Despite improvements in the quantification of MR images,
only a limited correlation is observed between the radiological
findings and a patient’s actual physical or cognitive disability.
This lack of correlation is well-known and is known as the
clinico-radiological paradox, which can be caused by a multitude
of factors, amongst which: (1) Neglect of damage to the
spine when assessing the correlation between brain lesion load
and physical disability; (2) The quality of clinical ratings; (3)
Differences in cognitive reserve defined as differences in cognitive
processes as a function of lifetime intellectual activities and other
environmental factors that explain differential susceptibility to
functional impairment in the presence of pathology or other
neurologic insult (Barulli and Stern, 2013), for which intelligence
quotient and education level are often taken as indicators
(Martins Da Silva et al., 2015); and (4) The assumption that
white and gray matter appearing normal on T1 and T2 weighted
images are unaffected by the disease process (Barkhof, 2002).
Although, the use of diffusion tensor imaging has shown that
both normal appearing white and gray matter (normal with
respect to their appearance on T1 and T2 weighted MRI,
NAWM/NAGM) are affected, their inclusion does not solve the
clinico-radiological paradox (Hawellek et al., 2011; Moll et al.,
2011).

Apart from the structural damage, neurophysiological
changes have been described. Already in 2000, Leocani et al.
showed a reduced alpha power and an increase of power at
lower frequencies in 40–80% of the MS patients (Leocani
et al., 2000). As neurophysiological functioning is not only
influenced by structure but also by more widespread changes
that might be too subtle to be picked up with conventional
MR imaging, it might help to reduce the clinico-radiological
paradox.

Given the prevalence of cognitive impairment in MS, the
difficulties in cognitive assessment and the lack of disease
modifying therapies targeting cognition, we aim at providing an
overview of possible roads toward a biomarker for cognition in
MS based on neuroanatomical and neurophysiological features
acquired through MRI or magneto-/electroencephalography
(M/EEG). A biomarker that is more objective and reliable than
standard neuropsychological tests, easy to acquire and sensitive
to interventions could substantially improve the follow-up and
therapeutic development.

NEURO-ANATOMY

In multiple sclerosis, MR imaging has provided a unique way
of assessing the disease activity in the patient’s brain in vivo.
It has allowed identifying hypo-intense lesions on T1-weighted
images, hyper-intense lesions on T2-weighted images (Li et al.,
2003) and active breaches of the blood-brain-barrier using T1-
weighted images after the administration of Gadolinium as
contrast-enhancer (Soon et al., 2007). Whereas, T1-hypointense
lesions indicate axonal loss, T2 hyperintense lesions are known
to be sensitive yet unspecific markers of disease activity (van
Waesberghe et al., 1999). As such, MR images have provided a
way of assessing the disease activity and are increasingly being
used as secondary outcome in pivotal clinical trials (Cohen et al.,
2012).

However, despite the easy interpretability and despite the
inclusion of MR imaging parameters in the revised 2010
McDonald criteria (Polman et al., 2011) for the diagnosis of
MS, the relationship between the parameters extracted from MR
images and clinical disability, expressed in EDSS or cognitive
scores, remains surprisingly low.

One explanation for this clinico-radiological paradox may be
the use of univariate linear techniques, whereas the relationship
between MRI covariates and clinical covariates does not
necessarily need to be linear. In Hackmack et al. (2012), the
authors argued that using canonical correlation analysis and a
searchlight procedure, they obtained correlations of up to 80%
using standard MR images. Yet, it is important to note that many
of the areas that allowed to predict the clinical status involved the
periventricular white matter, a region that is difficult to coregister
to a template. As such, we should make sure to understand
what features drive more advanced techniques, especially when
extending toward machine learning.

Atrophy
MS-related cognitive impairment has been associated with both
cortical (Benedict, 2002; Benedict et al., 2005;Morgen et al., 2006)
and subcortical (Houtchens et al., 2007; Sicotte et al., 2008; Batista
et al., 2012; Damjanovic et al., 2016; Preziosa et al., 2016; Rocca
et al., 2016) gray matter atrophy and cortical lesions (Calabrese
et al., 2009) explaining between 20 and 60% of the variance of a
variety of cognitive tests assessing the most commonly affected
cognitive domains using multilinear models.

The relationship between cortical atrophy and cognition
should not come as a surprise, given that neuronal density,
neuronal size, and axonal density all significantly predicted gray
matter volume in 45 tissue blocks in a post-mortem study
(Popescu et al., 2015). A more extensive review on this topic can
be found in Filippi (2015).

Microstructural Integrity
Apart from brain atrophy, MS leads to demyelination entailing a
reduced structural connectivity. Normal appearing white matter
typically shows decreased fractional anisotropy (FA), increased
mean diffusivity (MD), and radial diffusivity (RD) demonstrating
that the white matter appearing normal on T1 and T2 weighted
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MR images is likely to be affected by the MS pathology (Vrenken
et al., 2006; Roosendaal et al., 2009; Hawellek et al., 2011; Moll
et al., 2011).

Apart from general reductions/increases in diffusion
parameters, several studies have found microstructural
abnormalities in specific tracts like the fornix (Roosendaal et al.,
2009; Kern et al., 2012), the cingulum (Mesaros et al., 2012),
and the uncinate fasciculus (Fink et al., 2010). Furthermore,
several of these changes correlate with cognitive impairment:
e.g., a reduced information processing speed was associated
with reduced FA in the corpus callosum (Roosendaal et al.,
2009) and higher FA in the fornix was related to better memory
results (Kern et al., 2012). Yet, importantly, Mesaros et al. found
that lesional damage (assessed by FA/MD) along cognitive
related tracts (especially the cingulum) outperformed diffusion
abnormalities in NAWM when discriminating cognitively
preserved and impaired MS patients (Mesaros et al., 2012) on a
variety of neuropsychological tests.

Furthermore, the addition of these measures to multilinear
models did not result in a substantial improvement of the
prediction of general cognitive impairment (R2 = 0.2–0.5) and
does not seem to solve the clinico-radiological paradox (Daams
et al., 2015; Preziosa et al., 2016). One explanation for this
result could be that the interpretation of abnormal diffusion
parameters is not straightforward. While decreased FA and
increased MD tend to point to increased diffusion and thus a
reduced fiber integrity, both increased/decreased FA/MD may
indicate pathology-induced changes depending on the brain
region and the underlying cellular structure (Soares et al., 2013).
Finally, the magnetization transfer ratio, a measure related to
microglia activation and—only in close proximity of lesions—
to axonal degeneration (Moll et al., 2011), has been shown to
be altered before the onset of clinical symptoms (Iannucci et al.,
2000).

NEUROPHYSIOLOGY

As functional connectivity (FC) is not only determined by the
underlying structural connectivity matrix (Honey et al., 2009),
it may provide additional and independent information on a
patient’s cognitive status and is therefore an important candidate
biomarker for cognitive impairment in MS.

Functional MRI
Based on the observation of the additional recruitment of
adjacent brain areas during tasks in cognitively preserved MS
patients as opposed to smaller activations in cognitively impaired
MS patients (Staffen et al., 2002; Sweet et al., 2006), it has been
suggested that the brain tries to compensate the reduced local
processing power by recruiting adjacent areas leading to both
increased activation and connectivity (Schoonheim et al., 2015).

However, recently, both increases (Hawellek et al., 2011; Faivre
et al., 2012; Zhou et al., 2014) and decreases (Bonavita et al., 2011;
Cruz-Gómez et al., 2013; Louapre et al., 2014) in resting-state FC
of the default-mode network have been associated with cognitive
impairment in MS. More specifically, Hawellek et al. observed
an association between increased connectivity and impaired

cognitive functioning and suggested that the widespread white-
matter damage precludes the brain from easily switching between
different states resulting in an increased FC (Hawellek et al.,
2011).

These contradicting results have led Schoonheim et al.
to doubt the “compensation” hypothesis, proposing that this
increased activation may also be interpreted as a maladaptive
response of the brain following e.g., disinhibition or even an
unrelated side-effect of the accumulating structural damage
(Schoonheim et al., 2015).

A closer look at the MS cohorts on which these contradicting
results are based, shows that studies observing a higher FC
in MS and positive correlations between cognitive impairment
and functional connectivity included patients in the very early
stage of the disease (mean disease duration: 2, 1.1, and 2.8
years in Hawellek et al., 2011; Faivre et al., 2012; Zhou et al.,
2014) as compared to studies observing lower FC and negative
correlations (mean disease duration of 5.5, 4.5, and 11 years in
Bonavita et al., 2011; Cruz-Gómez et al., 2013; Louapre et al.,
2014, respectively). Therefore, we suggest that increased FC may
be related with increased cognitive impairment in the very early
stage of the disease but with increased cognitive abilities in later
disease stages.

Magneto-/Electroencephalography
All previously mentioned neurophysiological results are based
on resting state functional MRI, which offers a high spatial
resolution but does not capture the brain’s rich temporal
dynamics. Unfortunately, only few studies have assessed
cognition in MS using resting-state assessed by electrophysiology
(EEG) or magnetoencephalography (MEG).

The studies that have used rest EEG/MEG to assess MS
patients, have found an increase in power density at low
frequencies (delta, 2–4 Hz) and a decrease of power in the
alpha band (Leocani et al., 2000; Babiloni et al., 2016), which
allowed to distinguish between relapsing remitting and secondary
progressive MS patients (Babiloni et al., 2016). Furthermore,
Van der Meer et al. found a decrease in upper-alpha power
(10–12 Hz) and an increase in lower-alpha power (8–10 Hz),
which may relate to the slowing of the alpha-peak in Alzheimer’s
dementia (Goossens et al., 2017). Functional connectivity studies
have observed an increase in functional connectivity in the beta
band [assessed by the phase lag index (Tewarie et al., 2013),
and synchronization likelihood (Schoonheim et al., 2013)] and
the functional connectivity in the beta band correlated with an
overall cognitive score (Tewarie et al., 2013).

With respect to task-related EEG/MEG, the most commonly
applied paradigm is the P300, a paradigm in which the subject
is asked to pay attention to a specific stimulus within a series of
similar but more frequently occurring stimuli. Although, reduced
amplitudes and increased latencies have been consistently found
when comparing MS subjects with healthy controls (Piras et al.,
2003; Magnano et al., 2006; Leocani et al., 2010), the accuracy
of various features in detecting cognitive impairment in MS is
limited: Van Schependom et al. reported accuracies of about 70%
using a variety of machine learning techniques and features (Van
Schependom et al., 2013, 2014c) with results highly depending
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on the choice of connectivity measure (Van Schependom et al.,
2014b).

FUTURE DIRECTIONS

Given that both MRI and functional connectivity can only
explain a small fraction of the observed variance, different
approaches may be interesting to pursue.

One alternative approach to assessing the local connectivity
of different structures is assessing the whole brain as one
network. Based on this weighted or unweighted network—for a
discussion on whichmetrics have been successfully applied cf. the
EEG/MEG section above—different parameters can be calculated
using graph theory. The most commonly defined parameters are
the average shortest path length (also called the “integration”),
the clustering coefficient and the modularity. Path length and
clustering coefficient are typically normalized with respect to the
mean of those parameters obtained by randomly permuting the
adjacency matrix. The ratio of the normalized path length and
clustering coefficient is called the small-worldness.

Graph theory approaches seem to point in the direction of a
more regular topology as evidenced by an increase in path length
and clustering coefficient in the alpha-band (Schoonheim et al.,
2013) in rest and in the theta and delta band during an auditory
oddball task (Van Schependom et al., 2014b).

An alternative option would be not to analyse the brain in
terms of a frequency-decomposition, but rather to assess the
brain in a non-static way. With regards to EEG, microstates—
states that are stable for around 100 ms—have been shown to
be relevant to schizophrenia (Kindler et al., 2011) and recently
Gschwind et al. have shown differences in microstate properties
in MS. Specifically, they found fewer short duration microstates
and more frequent long duration states for the two microstates
that have been suggested to represent the sensorimotor and
the visual network (Gschwind et al., 2016). This finding could
confirm the hypothesis put forward by Hawellek et al. of an
impaired switching as the underlying mechanism of increased
functional connectivity (Hawellek et al., 2011). Importantly,
Gschwind et al. did not observe any correlation between the
temporal dynamics and the patients’ cognitive scores. This
approach could be extended to MEG, where Baker et al. showed
the existence of stable states with lifetimes around 100–200 ms.
As these states are defined in source space, they are easier to
interpret (Baker et al., 2014; Vidaurre et al., 2016).

FURTHER CONSIDERATIONS

Finally, we should be aware of the fact that the “golden truth” of a
patient’s cognitive status cannot be directly observed but needs to
be probed by the assessment of standardized neuropsychological
tests. These tests have inherent limitations, e.g., some patients
may have been subjected to similar tests previously and are better
prepared than others. Furthermore, the results obtained on these
tests may be influenced by a patient’s mood and fatigue level, two
factors that may even be more difficult to assess than cognition.
A final covariate that mostly cannot be taken into account is
the influence of medication [e.g., the use of anti-cholinergics to

control bladder problems also influences cognitive functioning
(Kersten et al., 2013) or the use of anti-epileptica (Ortinski and
Meador, 2004)].

Therefore, a perfect correlation will never be reached. In
order to provide a rough quantification of the correlation that
we would be able to obtain, we assume (1) a true underlying
cognitive profile that follows a Gaussian distribution across the
MS population, (2) a simulated measured cognitive profile by
adding extra Gaussian noise, and (3) a cognitive biomarker which
is similarly composed of the sum of the true underlying cognitive
profile and some Gaussian noise.

As Pearson’s correlation coefficient decreases with increasing
standard deviation of the measured cognitive score and the
biomarker, both of which are increased by the additive Gaussian
noise, the maximal accuracy will decrease. As an example, we can
use the values provided by Boringa et al. (2001) for the SDMT
(mean = 52, standard deviation = 11). Assuming a standard
deviation of 3 points on both measurements, the theoretical
maximum for R2 is 0.86. The main limitation of this type of
calculation is the assumption on the distribution of both the
underlying cognitive profile and the noise caused by either
imprecise cognitive batteries or imprecise biomarkers. Apart
from its common use, there is no specific reason for which
we have chosen a Gaussian distribution. However, the main
point that we aim to convey in this paragraph, i.e., that we
cannot expect an imaging biomarker to be perfect because the
assessment of cognition is not expected to be perfect either, is
independent from the specific distribution.

CONCLUSION

In this perspective paper, we described—without providing
an exhaustive review—the different imaging modalities
(MRI/DTI/MTI/EEG/MEG) that have been applied with
the aim of finding a correlate of cognitive impairment in MS.
While the features deduced from different MRI modalities do not
seem to overcome the clinico-radiological paradox, the generally
increased interest in assessing whole-brain functional networks
using EEG/MEG has found its way to MS. Although, it is more
difficult to interpret changes in power at certain frequency
bands or the “effectiveness” of a functional network than it is to
interpret the changes in the volume of different brain structures,
we feel that improved EEG/MEG features—whether or not
in combination with MRI—may help to reduce the paradox
and lead to assess cognitive functioning more objectively
(without inter-rater variability) and therefore lead to improved
patient-care.
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Spontaneous low-frequency Blood-Oxygenation Level-Dependent (BOLD) signals

acquired during resting state are characterized by spatial patterns of synchronous

fluctuations, ultimately leading to the identification of robust brain networks. The

resting-state brain networks, including the Default Mode Network (DMN), are

demonstrated to persist during sustained task execution, but the exact features of

task-related changes of network properties are still not well characterized. In this work

we sought to examine in a group of 20 healthy volunteers (age 33 ± 6 years, 8 F/12

M) the relationship between changes of spectral and spatiotemporal features of one

prominent resting-state network, namely the DMN, during the continuous execution of a

working memory n-back task. We found that task execution impacted on both functional

connectivity and amplitude of BOLD fluctuations within large parts of the DMN, but these

changes correlated between each other only in a small area of the posterior cingulate.

We conclude that combined analysis of multiple parameters related to connectivity, and

their changes during the transition from resting state to continuous task execution, can

contribute to a better understanding of how brain networks rearrange themselves in

response to a task.

Keywords: low frequency BOLD fluctuations, functional connectivity, DMN, working memory, fALFF

INTRODUCTION

Spontaneous low-frequency fluctuations (LFFs) of the BOLD signal are thought to be a
manifestation of the ongoing activity of the brain [1]. Such BOLD LFFs are spatially synchronized
in the brain, identifying robust and reproducible connectivity patterns also known as resting-state
networks [2]. Although, BOLD LFFs have been subject of intense research, the relationship between
network connectivity and spectral features of the signal is still not completely characterized. Even
less clear is how this relationship is influenced by the cognitive activity of the brain.

Of particular interest is the characterization of the spontaneous activity within the DMN,
that is considered an intrinsic property of the human brain, relevant for brain physiology
and pathology [3]. The specific interest for DMN is justified because features of slow BOLD
fluctuations within the DMN have been linked to multiple brain processes (recently reviewed
by [4]). Indeed, cognition has been shown to depend on the activity of the DMN itself
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[5], as well as on the connectivity between DMN and other
networks, such as the “task–positive” network [6]. Far from
being a static property of the brain, connectivity within DMN
and between DMN and other networks is influenced by
behavior [7].

Task-related modulations of the DMN are not restricted to
effects on connectivity. Indeed, the amplitude of BOLD LFFs
within the DMN depends on the cognitive activity, decreasing
during a working memory task [8] or after a continuous and
prolonged attention task [9]. Level of activity in the DMN has
been found to be modulated by working memory load both
during and after task performance [10, 11]. The amplitude of
LFFs has been proposed as a measure to assess the degree of
intrinsic brain activity, offering insights into the physiological
determinants of functional connectivity [12, 13]. Various metrics
have been proposed to assess BOLD fluctuation amplitude,
including ALFF (amplitude of LFF, [13, 14]) and its normalized
version fALFF (fractional ALFF), less sensitive to noise [15].
ALFF has been found to be altered in several pathologies [14, 16,
17], and to be also influenced by the behavioral state or by the
task [18, 19]. Moreover, the amplitude of fluctuations at rest has
been shown to correlate with brain activation and deactivation
in DMN during the execution of an N-back working memory
task, and this correlation was found to be load dependent [20].
The load dependency of the relationship between rest and task
fluctuations suggests that the involved regions are characterized
by both a great capacity for enhancing flow and metabolism
under stimulation, and a large fluctuation amplitude at rest.

The spectral amplitude of BOLD LFFs is often integrated
over a relatively broad range (typically between 0.01 and 0.1Hz),
however it has been suggested that a finer spectral subdivision can
allow a better grasp of the underlying physiological phenomena
[21–23]. In particular, ALFF within the bands labeled slow-
5 (0.01–0.027Hz) and slow-4 (0.027–0.073Hz) brings most of
the neuronal-related information (compared to higher frequency
ranges) and is characterized by distinct spatial patterns [23, 24].

BOLD response signals show a spatially segregated coupling
with electrophysiological signals (e.g., [25–27]) and metabolism
[28, 29], yet the connectivity patterns are only partially
determined by anatomic constraints [30]. Brain spontaneous
activity, embodied in functional connectivity, has been shown to
account to up to 70% of the energy consumed by the brain [31],
therefore, the local relationship between fluctuation amplitude
and functional connectivity has the potential to clarify some
basic features of functional networks. Accordingly, correlation
between oscillation amplitude and functional connectivity has
been found in healthy subjects at rest [32], and was reported to
be decreased in Alzheimer’s disease patients [33]. Moreover, the
temporal variance of dynamic local functional connectivity has
been associated with the temporal variance of ALFF [34], and
regional synchrony of BOLD fluctuations has been proposed as
a determinant for neurovascular coupling variability [35].

In the present study, we sought to elucidate whether
the relationship between amplitude and connectivity strength
of BOLD fluctuations within the DMN can be modulated
by behavior. For this purpose, we quantified spectral and
spatiotemporal features of BOLD LFFs within the DMN during

resting state and during the sustained execution of a graded
working memory task.

MATERIALS AND METHODS

Subjects
Twenty healthy Italian–speaking subjects (age 33 ± 6 years,
8 female) participated in the present study. The study was
carried out in accordance with a protocol approved by the
Ethics Committee of Santa Lucia Foundation in Rome. Recruited
subjects gave written informed consent in accordance with the
Declaration of Helsinki and European Union regulations.

Image Acquisition
Data were collected on a 3 T MRI system (Magnetom Allegra,
Siemens Healthineers, Erlangen, Germany). Functional images
were acquired via 2D gradient-echo planar sequence (TE = 30
ms, TR = 2,100 ms, FA = 70◦, voxel size 3 × 3 × 2.5 mm3)
lasting 24min and 38 s for a total of 704 volumes (4 dummy scans
included). Sagittal, T1-weighted structural data were acquired
for tissue segmentation purpose (MPRAGE, TE = 4.38ms,
TR= 2,000 ms, FA= 8◦, voxel size 1.33× 1.33× 1 mm3).

Stimulation Paradigm
During the functional runs, subjects were presented with a
stimulation paradigm consisting of alternated epochs of open-
eyes resting state and sustained auditory working memory task
(4min and 54 s each, starting with resting-state epoch). The
auditory working memory task involved continuous n-back trials
administered in epochs either at “high” load (2-back) or “low”
load (1-back). Each trial was composed of a 500-ms window,
in which subjects were aurally presented with a pseudorandom
vowel (A, E, or O), and a subsequent 1,600-ms window, in which
subjects were asked to press a button every time the current vowel
was the same as the one presented one stimulus prior (1-back) or
two stimuli prior (2-back).

Two functional runs were acquired for each subject during
the same experimental session, with epoch ordering: rest/1-
back/rest/2-back/rest and rest/2-back/rest/1-back/rest. Run
order was counterbalanced across subjects. The stimulation
paradigm started after the second dummy scan (i.e., 2 scans
before the first analyzed image) to roughly account for
hemodynamic delay.

Image Processing
Functional and structural MRI data were preprocessed using
functional connectivity toolbox version 15.b [36] and analyzed
with dedicated in-house routines based on MATLAB R2013a
(The Mathworks, Natick, MA, USA) and AFNI [37]. T1 weighted
images were segmented in white matter (WM) and Cerebrospinal
Fluid (CSF) probability maps to be later used for denoising.
Functional data underwent standard preprocessing, including
removal of the first four volumes of each fMRI run, realignment,
slice-timing correction, normalization to MNI space (using as
source volume the mean EPI image) and spatial smoothing with
an isotropic Gaussian kernel (8 × 8 × 8 mm3 FWHM). Several
spurious sources of variance were removed from smoothed
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functional data via regression analysis, including the estimated
realignment parameters and their first derivative, signals from
WM and CSF following the aCompcor approach [38] and outlier
volumes detected using the Artifact Detection Tools (ART: www.
nitrc.org/projects/artifactdetect/). Finally, a band-bass temporal
filter in the range 0.008–0.09 Hz was applied to the residual
time-series. An unfiltered time-series was also retained for fALFF
computation.

Each functional run was then split in its five epochs, which
were later used to extract epoch-related functional parameters
(see below). A DMN mask was derived by independent
component analysis (FSL MELODIC toolbox, [39]) of the first
resting-state epoch and was used to constrain the subsequent
analyses. The first resting-state epoch was then discarded, leaving
2 resting-state and 2 task epochs for each of the two functional
runs.

A second dataset was obtained with the same procedures, but
with isotropic Gaussian kernel at 6 × 6 × 6mm3 FWHM for
testing purposes. All the following results are referred to the 83

mm3 smoothing dataset, unless otherwise stated.

Computation of Parameters
Each of the following parameters was computed separately in
each functional epoch, thus they represent specific features of
BOLD LFFs at specific steady-state conditions.

As a measure of average network strength, within-network
functional connectivity (FC) was evaluated as the Pearson’s
correlation coefficient between each voxel’s time course and the
average time course of the whole DMN. Correlation maps were
z-Fisher transformed to improve normality.

To quantify the amplitude of LFFs, fALFF was calculated for
each voxel time series as the summation of the spectral amplitude
in the selected low–frequency range (between 0.008 and 0.09Hz)
divided by the summation in the full frequency range [15]. The

computation was performed via the AFNI program 3dRSFC
[37]. Average contribution of different frequency bands was
also evaluated by estimating the Power Spectral Density (PSD)
of the average BOLD time course within the DMN. The PSD
was estimated via the squared magnitude of the Fast Fourier
Transform of the signal, and averaged separately in the slow-
5 (0.01–0.027Hz) and slow-4 (0.027–0.073Hz) bands. PSD was
also normalized by its integrated power.

Analysis of Changes Associated with
Sustained Working Memory Task
Stationary changes of each investigated parameter (fALFF and
FC) between task and the resting epoch immediately following
it were evaluated voxel by voxel (irrespectively of the task level)
and tested for significance by paired t-test across subjects, after
averaging separately the parameters of interest across the two
functional runs of each subject.

Changes of the PSD profile were assessed by linearly fitting
the normalized PSD of each epoch, and testing the resulting
slopes via repeated measures ANOVA and post-hoc Bonferroni
corrected paired t-test. Task-related changes of PSD integrated
magnitude were assessed by 2-way repeated measures ANOVA
and post-hoc t-tests (Bonferroni corrected), defining as factors the

stimulation condition (rest, 1-back, 2-back) and the frequency
band (slow-5 and slow-4).

Finally, to test whether changes of functional connectivity are
related to changes of amplitude of fluctuations we computed
voxelwise Pearson correlation of the relevant quantities across
subjects.

Statistical threshold for voxelwise comparisons was set to p <

0.05 corrected for multiple comparisons at cluster level by Monte
Carlo simulation (AFNI, 3dClustSim). The corrected threshold
corresponded to a single-voxel p < 0.001 and a minimum cluster
size depending on the estimated smoothness of fit residuals and
on the number of voxels within the DMNmask. Smoothness of fit
residuals was estimated using a mixed model for autocorrelation
function of noise [40, 41].

RESULTS

fALFF and FC were significantly reduced within posterior areas
of DMN during task execution, including the precuneus
(bilaterally) and the posterior division of the cingulate
(Figures 1A,B). The anterior portion of DMN showed significant
task-related fALFF changes in the medial prefrontal cortex, but
did not show any significant change of FC. Very similar results
were obtained on the 6 × 6 × 6 mm3 smoothing dataset (not
shown).

Spectral analysis revealed that the task-related fALFF
decrement occurs with a reduction of fluctuations power at each

FIGURE 1 | Task-related changes in spectral and spatio-temporal parameters

within DMN. Maps show the significant task-associated changes of (A) fALFF

and (B) FC for the test TASK > REST (paired t-test, p < 0.05 corrected.

3dClustSim parameters: single-voxel p < 0.001; cluster size threshold, 10 and

18 voxels, for fALFF and FC, respectively). Black lines identify the boundaries

of DMN as identified by ICA, where analysis was restricted. Task-related

decrements of fALFF and FC are apparent in the posterior DMN, and in the

anterior cingulate only for fALFF.

Frontiers in Physics | www.frontiersin.org July 2017 | Volume 5 | Article 3193

www.nitrc.org/projects/artifact detect/
www.nitrc.org/projects/artifact detect/
http://www.frontiersin.org/Physics
http://www.frontiersin.org
http://www.frontiersin.org/Physics/archive


Tommasin et al. BOLD Fluctuations during Sustained Stimulation

FIGURE 2 | PSD group results: (A) PSD of BOLD fluctuations in the DMN, averaged in each epoch. Resting-state epochs are represented in red, task epochs in blue

(dark blue is 1 back, light blue is 2 back). Task-related changes in spectral power are visible. (B) PSD averaged in the slow-4 (green) and slow-5 (yellow) range. Slow-5

presents higher integrated power in all epochs. Power was always higher at rest than during task, but in a frequency specific manner (significant interaction stimulation

condition x frequency band). The two task levels were indistinguishable. See Results Section for p-values. (C) Normalized PSD. In normalized PSD a steeper

dependence on frequency during resting state than during task performance is apparent. (D) Difference between normalized PSD during task execution and resting

state as a function of frequency. All values are mean ± SEM across subjects. SEM is computed after within-subject averaging of corresponding data from the two runs.

investigated frequency (Figure 2A). Comparison of error bands
suggests that PSD of BOLD fluctuations is very reproducible
between sessions at rest (compare light red and dark red lines
in Figure 2A). Any possible effect of task level is confined to the
lower part of frequency spectrum (below 0.02Hz, light and dark
blue lines in Figure 2A, see also Supplementary Figure 1 for
the confidence band of the PSD difference between task levels).
Values averaged within slow-5 and slow-4 bands confirmed the
result, showing a consistent task-related decrease of PSD, but no
average effect of task level [Figure 2B, 2-way ANOVA, F(3, 57)
> 85, p < 0.001 for the factor “stimulation condition”; post-hoc
Bonferroni paired t-test t > 10, p < 0.001, n = 20 for task vs.
rest; t < 1.4, p > 0.9, n = 20 for differences between 1-back and
2-back].

The task-related decrement of fluctuation power was not
uniform across the whole spectrum. Indeed, the reduction of
PSD magnitude during task was less marked at the higher
frequencies, both in absolute terms and in terms of fractional
change compared to rest (compare changes in slow-4 and slow-5
bands, Figure 2B). This feature was demonstrated by a significant

interaction between factors (stimulation condition and frequency
band) in 2-way ANOVA [F(3, 57) > 32, p < 0.001]. Analysis
of simple main effects confirmed that, in both bands, power
change in task vs. rest comparison was always significant, and
task (respectively rest) epochs were indistinguishable among
them (p < 0.001 for all significant comparisons, p > 0.8 for
all not significant comparisons). Accordingly, the normalized
PSD highlighted an higher power contribution from the lower
frequencies, but it was characterized by a steeper decrease of
power with frequency during rest than during task; in other
words, the normalized PSD became significantly flatter during
task (Figure 2C). The change of normalized PSD shape between
treatments was also confirmed by repeated measures ANOVA
on the average slope [F(3, 57) > 46, p < 0.001; Table 1]; relevant
post-hoc tests indicated that the LFFs normalized spectrum
was remarkably reproducible between rest epochs (t < 1.3,
p > 0.9, n = 20) and between task epochs, irrespectively of
the task level (t < 1.8, p > 0.4, n = 20). The slope was
however reduced by task (t > 6.6, p < 0.001, n = 20 for all
comparisons).
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TABLE 1 | Slope of normalized PSD.

1-back Rest after 1-back 2-back Rest after 2 back

Slope −0.284 −0.468 −0.235 −0.503

SEM 0.027 0.026 0.021 0.033

Values of the slope of normalized PSD averaged across subjects, separately calculated

during task epochs and during rest epochs immediately following each task epoch. The

shape is significantly flatter during task than rest [repeated measures ANOVA, F(3, 57) >

46, p < 0.001 between treatments]. Slopes are consistent across resting epochs, as well

as across task epochs (Bonferroni paired t-test, t < 1.3, p > 0.9, n = 20 and t < 1.8,

p > 0.4, respectively; n = 20). Slopes are reduced between task and the immediately

following rest epoch (t > 6.6 p < 0.001, n = 20 and t > 9.6, p < 0.001, n = 20 for 1-back

and 2-back, respectively). Slopes are also reduced between task and the chronologically

unmatched rest (t > 8.4, p < 0.001, n = 20 for 2-back vs. rest after 1 back, and t > 7.8,

p < 0.001, n = 20 for 1-back vs. rest after 2 back). SEM, Standard Error of the Mean.

In agreement with this finding, the difference between the
pooled task and rest conditions showed an overall increase
with frequency (Figure 2D); interestingly, the difference crosses
zero (thus the normalized PSD at rest and task are equal) at a
frequency roughly compatible with the boundary between slow-4
and slow-5 bands.

Finally, the voxel-wise analysis within the DMN revealed
that the decrement of FC (Figure 1A) was correlated to the
decrease of fALFF (Figure 1B) in a small area in the posterior
cingulate (Figure 3, unthresholded correlation map is reported
in Supplementary Figure 2). Equivalent results were obtained on
the 6× 6× 6 mm3 smoothing dataset (not shown).

DISCUSSION

In this work we sought to test whether changes in connectivity
during a working memory task are mirrored by changes in
fluctuation amplitude within the DMN, and if task-related
changes of the two parameters are correlated. We found a
remarkably homogeneous reduction of both fALFF and FC
during sustained working memory task in the posterior areas of
DMN, while changes in the anterior cingulate were less marked
(Figures 1A,B).

Task-related reductions in fluctuation amplitude, as indexed
by fALFF metric, were also evident in the power spectrum within
the DMN mask. Task epochs showed a pronounced reduction
in power at each investigated frequency, in a consistent and
reproducible manner across different task loads (Figure 2A).
However, the decrease in fluctuation power within the DMN
was not uniform across the explored frequency range. Indeed,
while both rest and task states showed higher fluctuation power
in the slow-5 band compared to the slow-4 band, consistently
with the known 1/f power distribution of BOLD LFFs [42, 43],
the trend was less marked during tasks (Figure 2B). Accordingly,
normalized spectral power showed state-dependent trends for
slow-5 and slow-4 bands, suggesting that the switch to task
state has a major impact on the lower frequency component, or
(possibly) that the lower frequency component is more relevant
to the switch of brain function.

The reduced power of LFFs during the task execution is
in agreement with previous studies [8, 43, 44]. Indeed, power

FIGURE 3 | Correlation between fALFF and FC changes within the DMN. The

map shows the voxelwise thresholded results of correlation analysis between

task-related changes of fALFF and FC. Decrease of fALFF was correlated to

decrease of FC in a small single cluster within the posterior DMN areas (p <

0.05 corrected. 3dClustSim parameters: single-voxel p < 0.001; cluster size

threshold, 16 voxels).

distributions of both task and rest states have shown to follow
a power law, with significant reduced exponent during task
states [43], compatible with the task-related decrease of PSD we
reported. Moreover, reduced BOLD fluctuations were observed
within the DMN during a working memory task, which, similarly
to our results, were more notable in posterior regions [8]. At odds
with our results, Zhang et al. have reported mainly decrements
of fALFF during a stop signal task within the DMN [45]. While
several factors might contribute to explain the discrepancy with
our results (e.g., different task condition and the use of task-
residual instead of a continuous and prolonged acquisition of task
state), more likely it might be explained by the transformation
of fALFF in z-score which removes the mean difference across
states.

The reduction in fluctuation amplitude mirrors the tendency
of the DMN to reduce its spontaneous activity during cognitive
engagement. This result shows that task execution affects brain
regions within the DMN inducing both a time-locked functional
deactivation, as shown in countless task-based experiments,
and a modulation of spontaneous fluctuations toward low
level of activity. In addition, several studies have demonstrated
that DMN deactivation increases with cognitive load [10, 11]
indicating that cognitive resources are reallocated according
to task demand and that endogenous processes need to be
inhibited at different levels for successful execution. This could
be interpreted as a redistribution of cognitive ability but also
as a neuronal correlate of mental fatigue [11], self-referential
processes [46], or mind-wandering [47]. In our case, aggregate
values of LFFs power spectral density within slow-4 and slow-5
bands (Figure 2B) did not reveal any effect of load, while spectral
decomposition suggested that any effect of load is confined to
the lowest spectral range, below 0.02Hz (about half of the slow-
5 band, Figure 2A and Supplementary Figure 1). These results
suggest that amplitude of fluctuations and DMN deactivation
react differently to an increase of cognitive activity. Incidentally,
the inhomogeneous response of PSD to task within the slow-5
band suggests that a further subdivision of slow-5 into 2 or more
bands can help to identify subtle frequency-specific effects on the
amplitude of BOLD LFFs.
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Functional connectivity and ALFF during resting state have
shown region specific couplings in elderly populations [32, 33]
which were suggested to be of physiological relevance being
disrupted in degenerative dementia [33]. While these studies
have shown inter-subject associations between connectivity
and amplitude at rest, others have also found within-subject
synchronized fluctuations of the two parameters [34]. We found
that the task-related decreases of fALFF and FC are highly
correlated within a small area of the DMN (Figure 3), supporting
a physiological relation between the two parameters, even within
the DMN, which is not directly involved in the execution
of the task. This result suggests that a change of functional
connectivity reflects a change of amplitude of fluctuations at
least in spatially segregated regions within posterior DMN
areas. Taking into account a connection between amplitude
of fluctuations and underlying electrophysiological activity [25,
27], this result overall suggests the neural origin of changes of
functional connectivity within the DMN.

The correlation between variation of FC and fALFF within
the DMN was not observed uniformly across the whole network.
We hypothesize that this finding is related to an intrinsic
heterogeneity of the coupling between FC and fALFF changes.
Indeed, unthresholded data (Supplementary Figure 2) showed a
smooth change of correlation with some local maxima (of which
only one exceeds statistical threshold). This feature suggests
spatially segregated coupling between FC and fALFF changes.
However, the fact that the effect is confined in the areas of most
significant FC and fALFF changes (compare Figures 1A,B with
Figure 3) may also indicate a possible lack of sensitivity of our
experimental design. The lack of generalized correlation between
FC and fALFF changes also implies that fALFF changes are not
the only determinants of FC changes, a notion that confirms the
utility of exploiting both parameters in functional connectivity
studies. An intriguing hypothesis, that deserves further analysis,
is that the changes of connectivity and of fluctuation amplitude
do not share the same spectral sensitivity profile. Indeed, in
a previous study we reported band-specific spatial patterns of
correlation between FC and ALFF at rest, even if the effect was
mainly present outside the DMN [33]. However, in the present
study, we found that the amplitude of fluctuation is substantially
more affected by task execution in the lower range of frequencies
(the slow-5 band), suggesting that, differently for the coupling
during resting states, a frequency specific relationship may exist.
This hypothesis is also in line with previous resting-state studies
that have repeatedly shown frequency-specific alterations in
fluctuation amplitude [16, 48, 49] and connectivity [48] during
pathological states.

In conclusion, in this work we reported that amplitude
and connectivity of BOLD low-frequency fluctuations within
the DMN are affected by the sustained performance of a
cognitive task. With the exception of the very low frequency
component, different cognitive loads were associated with similar
modulations in fluctuation amplitude. Task-related modulations
of amplitude of fluctuations and connectivity strength are not
independent within the DMN. The results we obtained suggest
that the correlation between amplitude of BOLD fluctuations and
connectivity strength can be exploited to gather insights into the
physiology of brain function.
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Supplementary Figure 1 | PSD difference between 1 back and 2 back. The

figure reports the 95% confidence band for the difference of LFFs power spectral

density between task levels 1-back and 2-back. The confidence band does not

overlap zero only below 0.02 Hz.

Supplementary Figure 2 | Correlation between fALFF and FC changes within the

DMN, unthresholded. Unthresholded map of the correlation between fALFF and

FC changes within the DMN (unthresholded version of Figure 3). Correlation was

generally around 0, except some clusters of positive correlation. Only one of them

reached statistical significance (highlighted by black outline, corresponding to

Figure 3).
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Neuroimaging data can be represented as networks of nodes and edges that capture the

topological organization of the brain connectivity. Graph theory provides a general and

powerful framework to study these networks and their structure at various scales. By

way of example, community detection methods have been widely applied to investigate

the modular structure of many natural networks, including brain functional connectivity

networks. Sparsification procedures are often applied to remove the weakest edges,

which are the most affected by experimental noise, and to reduce the density of the

graph, thus making it theoretically and computationally more tractable. However, weak

links may also contain significant structural information, and procedures to identify

the optimal tradeoff are the subject of active research. Here, we explore the use of

percolation analysis, a method grounded in statistical physics, to identify the optimal

sparsification threshold for community detection in brain connectivity networks. By

using synthetic networks endowed with a ground-truth modular structure and realistic

topological features typical of human brain functional connectivity networks, we show

that percolation analysis can be applied to identify the optimal sparsification threshold that

maximizes information on the networks’ community structure. We validate this approach

using three different community detection methods widely applied to the analysis of

brain connectivity networks: Newman’s modularity, InfoMap and Asymptotical Surprise.

Importantly, we test the effects of noise and data variability, which are critical factors to

determine the optimal threshold. This data-drivenmethod should prove particularly useful

in the analysis of the community structure of brain networks in populations characterized

by different connectivity strengths, such as patients and controls.

Keywords: threshold, percolation, sparsification, brain networks, functional connectivity

INTRODUCTION

In recent years, considerable efforts have been made to study the complex structure of brain
connectivity, marking the inception of the “connectomic era” in brain neuroscience. Functional
Magnetic Resonance Imaging (fMRI) and other neuroimaging methods have shown that
spontaneous fluctuation in brain activity, as measured with a subject lying in the scanner without
being engaged in any specific task, are organized in coherent patterns, thus suggesting that resting
state functional connectivity reflects the functional architecture of the brain (Damoiseaux et al.,
2006).
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Several methods have been developed and applied to study
these patterns of synchronization, including multivariate
approaches (e.g., Principal Component or Independent
Component Analysis) (Beckmann et al., 2005; Damoiseaux et al.,
2006) and graph theoretical methods (Bullmore and Sporns,
2009).

Graph theory provides a general and powerful framework to
investigate the topological organization of the brain connectivity.
A number of graph theoretical studies have revealed a small-
world, rich-club structure (van den Heuvel and Sporns, 2011)
of functional connectivity networks, and the presence of hub
regions defined by high connectivity and network centrality.
Moreover, community detection methods have been widely
applied to investigate the modular structure of many natural
networks, including brain functional connectivity networks. The
presence modules, i.e., clusters of nodes that are more densely
connected among them than with the rest of the network,
reflects functional segregation within the integrated network,
and is thought to confer robustness and adaptability to brain
connectivity networks (Bullmore and Sporns, 2009).

For these analyses, the brain is represented as a network of
nodes interconnected by links. Commonly, the nodes correspond
to anatomically defined brain areas and links to a measure of
inter-regional interaction or similarity between the nodes. For
resting state functional connectivity networks, edge weights are
typically computed as temporal correlations in the fluctuations
of the BOLD signals in different areas, resulting in a correlation
adjacency matrix (Eguiluz et al., 2005).

Sparsification procedures are normally applied to remove
weaker links, which are most affected by experimental noise (van
den Heuvel and Fornito, 2014), and to reduce the density of
the graph, thus making it computationally more tractable. In the
literature, it is common practice to fix the density of the adjacency
matrix a priori, and to identify the threshold that preserves
the target density of edges (Bassett et al., 2008; Lynall et al.,
2010). Stability analyses exploring a range of densities are often
performed to assess how critically topological parameters derived
from the sparsified adjacency matrix depend on the choice of
threshold. Sparsification schemes based on the computation of
graph Minimum Spanning Trees prior to thresholding have also
been proposed to prevent disruption of local connectivity by
global removal of weak links (Alexander-Bloch et al., 2010).

Here, we address the problem of computing the optimal
threshold for community detection in brain connectivity
networks. Specifically, we propose the use of percolation analysis,
a method rooted in statistical physics, to identify a sparsification
threshold that maximizes information on the network modular
structure. This data driven procedure, first introduced by
Gallos et al. (2012), iteratively removes the weakest edges and
computes the largest connected component. The percolation
threshold corresponds to the point where the largest component
starts breaking apart. We entertain the hypothesis that the
percolation threshold strikes the optimal balance between
information gained by cutting off noise, and lost by removing
potentially genuine weak connections. To test this hypothesis, we
apply three different community detection methods (Newman’s
modularity Newman, 2006), InfoMap Rosvall and Bergstrom,

2008; Kawamoto and Rosvall, 2015, and Asymptotical Surprise
Nicolini and Bifone, 2016; Nicolini et al., 2017) to synthetic
networks endowed with a ground truth modular structure,
and with topological features, levels of noise and variability
similar to those observed in functional connectivity experimental
data. We compare the retrieved and planted modular structures
by using Normalized Mutual Information, an information
theoretic measure of similarity, as a function of sparsification
threshold. We find that this information can be maximized
by an appropriate choice of threshold, and we assess the use
of percolation analysis as a data-driven method for optimal
sparsification. Finally, we discuss the application of this approach
to compare networks characterized by different noise levels and
connectivity strengths, such as those observed in cross-sectional
studies assessing brain connectivity in different populations, e.g.,
patients and healthy controls.

MATERIALS AND METHODS

Synthetic networks are a useful tool to test the effect of threshold
on community detections, and the ability to retrieve a pre-
determined ground-truth modular structure. We ran two types
of simulations: simulation of Lancichinetti-Fortunato-Radicchi
(LFR) networks (Lancichinetti et al., 2008) and simulation of
complex LFR including intersubject variability and different level
of noise. The latter made it possible to assess the influence of
noise or data variability, thus mimicking realistic experimental
dataset.

The main goal of these simulations is the validation of a
method that can be used in the analysis of functional connectivity
networks asmeasured by resting state fMRI. As shown inNicolini
and Bifone (2016), brain functional connectivity networks are
composed of modules with heterogeneous size distributions. This
structure can be mimicked using the LFR approach, which can
generate synthetic networks with power law degree distributions
and community sizes akin to those observed in natural networks,
such as functional connectivity networks (Lancichinetti et al.,
2008).

Simulation 1
The Lancichinetti-Fortunato-Radicchi (LFR) benchmark
algorithm generates networks with a priori known communities
and node degree distributions. Community size and node degree
follow power law distributions (for example see Figure 1).

The mixing of the communities is controlled by the
topological mixing parameter µt. Each node shares a fraction
1–µt of edges with nodes in its same community and a fractionµt

with nodes in other communities: 0≤ µt ≤ 1. Similarly, a weight
mixing coefficient µw controls, on average for each node, the
balance between the incident edge weights coming from internal
and external communities.

The LFR synthetic networks were built for N = 600 nodes,
sampling nodes degree from a power-law with exponent τd = 2,
average degree 〈k〉 = 12 and maximum degree maxk = 50. We
set the topological and weight mixing coefficient, i.e., the average
fraction of intra-cluster and intercluster degree and strengths,
to µt = µw = 0.2. Planted community sizes ranged from 5 to
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FIGURE 1 | Example of benchmark LFR network with parameters N = 300,

〈k〉 = 12, maxk = 50, µt = µw = 0.2, minc = 5, maxc = 50.

50 nodes and were sampled from a power law with exponent
τ c = 1. This simulation was run 9 times for each value of
µt = µw. The Matlab code to generate LFR synthetic network
is available at github.com/carlonicolini/lfrwmx. The function
takes the parameters described above as inputs, and returns the
equivalent to a weighted connectivity matrix that can be directly
analyzed by community detection approaches.

Simulation 2
This simulation makes use of the output matrix from the LFR
function described above to generate artificial resting state fMRI
datasets. The general idea is that, starting from an adjacency
matrix with a given modular structure, we can generate time-
courses for each of the nodes whose pairwise correlations
reproduce the edge structure of the original matrix. Schematic
of this procedure is shown in Figure 2.

To this end, we first calculate the closest positive-definite
matrix C ∈ Rn×n from the adjacency matrix of the original
LFR network (Higham, 1988). We then exploit the properties
of the Cholesky decomposition and the techniques described in
Nicolini et al. (2017) to calculate time-courses for the individual
nodes. This approach makes it possible to generate correlated
random variables, i.e., following the weights of our original
connectivity matrix, by decomposing the closest positive definite
matrix C ∈ Rn×n into the product of a lower triangular matrix
L ∈ Rn×n and its transpose such that C = LLT . By multiplication
of L with random standardized time series X ∈ Rn×m (our
synthetic BOLD signals), we obtain new time series Y = LX
whose covariance matrix is exactly C as one can verify that C =
E

(

YYT
)

= E
[

(LX) (LX)T
]

= E
[

(LX)XT LT
]

= L E[XXT]LT =
LTIL = C. The random time series were generated with 150

points and a base-line value set to 100. Both the random resting
state time series X and the added noise were generated using the
R package NeuRosim (Welvaert et al., 2011).

The generation of multiple sample of random time series
simulates the effects of intersubject variability, and Rician-noise
(Welvaert and Rosseel, 2013) is added to mimic fMRI resting
state data. The definition of Signal-to-Noise (SNR) used in
the rest of this paper is: SNR= S̄/σN where S̄ is the average
magnitude of the signal generated by NeuroSim and σN is the
standard deviation of the noise (Krüger and Glover, 2001). An
example of synthetic time-course is shown in the Supplementary
Information section, Figure S1.

The last step results in 600 times series of 150 points with
different levels of noise for each of the simulated subjects.
Datasets were generated for populations of 20, 40, and 60 subjects
and for a SNR equal to 35 and 70. The procedure has been run 5
times for each different parameter to produce different networks
and datasets.

Connectivity Matrix
The connectivity matrix is the weighted matrix representing
the links between two nodes. In Simulation 1, the matrix was
generated directly by the LFR model. In Simulation 2, using the
same approach as in fMRI experiment, we computed pairwise
Pearson correlations between time-series from pairs of nodes in
each dataset (subject), resulting in a matrix M of size N× N with
N the number of nodes and with M(i,j) the correlation coefficient
between the time series of the node i and the node j. Average
group matrices were calculated by Fisher transformation and
subsequent averaging of individual matrices.

Sparsification and Percolation Threshold
Sparsification procedures are normally applied to remove weaker
links, which are most affected by experimental noise (van den
Heuvel and Fornito, 2014), and to reduce the density of the graph,
thus making it computationally more tractable.

The method of our choice for the sparsification was motivated
by a model to describe phase transitions of connected subgraphs
in random networks called percolation analysis (Callaway et al.,
2000; Goerdt, 2001). We applied thresholds on the original
network at different levels of edge weights, and identified the
largest connected components of the thresholded graphs via
breadth-first search (Leiserson et al., 2009). The critical point
where the largest component starts breaking apart is identified
as the percolation threshold at which the network’s structure, is
preserved while discarding potential effects of noise. Figure 3
represents an example of the size of the largest component with
respect to the threshold in a benchmark LFR network.

Community Detection
To assess whether the efficacy of the sparsification procedure
depends on the community detection approach, we applied three
different methods, based on conceptually different principles that
have been extensively applied to the analysis of resting state fMRI
data. The first one, probably the most widely used, is Newman’s
modularity (Newman, 2006). We also tested InfoMap (Rosvall
and Bergstrom, 2008) and Asymptotical Surprise (Nicolini and
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FIGURE 2 | Flowchart of the generation and analysis of the synthetic datasets. In (A) a network with a pre-defined community structure is generated. The adjacency

matrix is then processed in block (B) to obtain the nearest positive definite matrix for the Cholesky decomposition. This enables the generation of node-wise

time-courses into which different levels of noise can be injected. The procedure is repeated multiple times to generate different instances (mimicking different subjects

in the sample). Finally, correlation matrices are calculated for each instance (block C), and Fisher transformed to calculate the average adjacency matrix for analysis by

community detection algorithms (block D). The resulting partitions are then compared with the original, planted one in terms of NMI.

FIGURE 3 | Percolation analysis for a LFR networks. The number of nodes in

the giant component has a step-wise behavior with respect to the threshold.

The percolation threshold value is t*.

Bifone, 2016; Nicolini et al., 2017), as they have been shown
to resolve community structures at a finer level than Newman’s
modularity, which is affected by a resolution limit that prevents
detection of modules that are smaller than a scale determined by
the size of the entire network.

Briefly, Newman’s modularity seeks optimal partition by
maximizing intra-cluster edge-density against that of a null
model based on random edge rewiring. Optimization of this
fitness function is typically performed using the Louvain
method (Blondel et al., 2008), a greedy agglomerative clustering
algorithm that works on hierarchical refinements of the network’s
partitions. Here we used the Louvain implementation available in
the Brain Connectivity toolbox (Rubinov and Sporns, 2010).

The idea behind Infomap is the minimization, through a
set of heuristics, of the description length (Rissanen, 1978) of

a random walker defined on the network. For this study we
used the Infomap implementation available in the igraph-0.7.1
package (Csárdi and Nepusz, 2006).

Finally, Asymptotical Surprise is a recently developed
approach rooted in information theory that aims at maximizing
the relative entropy between the observed intracluster density
and the expected intracluster density, on the basis of the Erdos-
Renyi null model (Traag et al., 2015). Surprise was recently shown
to be quasi-resolution-limit free, and to provide improved means
to resolve the modular structure of complex networks of brain
functional connectivity (Nicolini and Bifone, 2016; Nicolini et al.,
2017). Optimization of Asymptotical Surprise was carried out by
means of PACO (PArtitioning Cost Optimization), an iterative
agglomerative algorithm built on a variation of the Kruskal
algorithm for minimum spanning trees (Nicolini and Bifone,
2016; Nicolini et al., 2017). We have shown that maximization
of Asymptotical Surprise enables detection of communities
of widely different sizes, thus making it possible to resolve
differences in the modular organization of different networks
representing functional connectivity in different subjects or
experimental groups (Nicolini and Bifone, 2016). A Matlab
toolbox including binary and weighted versions of Surprise
optimization is available upon request at http://forms.iit.it/view.
php?id=68447. An example of adjacency matrix for an LFR
network with the node indexes reordered by membership and
the modular partition demarcated by a red line is shown in the
Supplementary Information section, Figure S2.

Evaluation of Retrieved Partition
The advantage to know in advance the ground truth community
is that we can quantify differences between the planted
community and the extracted ones. Three coefficients were used
to evaluate the results of the community detection methods at
different levels of threshold of our synthetic networks. First,
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the Normalized Mutual Information (NMI) (Danon et al., 2005;
Meilǎ, 2007), a measure of the similarity between structures is
defined as:

NMI(A,B) =
−2

∑CA
i=1

∑CB
j=1 Nij log

(

NijN

Ni.N.j

)

∑CA
i=1 Ni. log

(

Ni.
N

)

+
∑CB

j=1 N.j log
(

N.j

N

) (1)

where A and B are the community structures of two networks,
CA and CB are the number of community in partition A and
B respectively, N the total number of nodes in the networks
(which is the same in A and B) and Nij is the overlap between
A’s community i and B’s community j; i.e., the number of
common nodes. Finally, Ni. and N.j are the total number of
nodes in community i of A and j of B respectively. The
NMI ranges from 0 to 1, where 0 indicates that the retrieved
community structure does not convey information about the
planted partition, and 1 when the two partitions correspond
perfectly. Indeed, NMI= 0 corresponds to the situation ofNij=0,
i.e., to a void intersection group between A’s and B’s communities,
and NMI= 1 to complete identity.

In order to gain information about the origin of mismatches
between planted and retrieved partitions, we also computed
Sensitivity and Specificity, assessing the levels of false positives
and false negatives incurred by the community detection
algorithms. For each community we identified the biggest overlap
between the ground truth and the retrieved modules to establish
a correspondence between the partitions. Subsequently, we
identified the nodes that were correctly assigned (true positives
= TP) and wrongly assigned (false positives = FP) to a selected
community.We also identified nodes that were correctly assigned
(true negatives = TN) or erroneously assigned (false negative =
FN) to a different community. These values were used to calculate
Sensitivity and Specificity for each community:

Sensitivity =
TP

TP + FN
(2)

Specificity =
TN

TN + FP
(3)

and subsequently averaged over the partition. The values for
Sensitivity and Specificity range from 0 to 1, with 1 denoting the
perfect match.

Benchmark Resting State Functional
Connectivity Network
To illustrate the effects of threshold choice on the partition of
resting state fMRI functional connectivity networks, we used a
benchmark dataset described by Crossley et al. (2013). Detailed
experimental and image processing procedures are described in
the original paper, alongside with the ethical statements. In short,
fMRI data were acquired from 27 healthy volunteers at 3 T.
Gradient echo-planar imaging data were acquired for 5 min (TR
= 2 s, TE = 13). Time series were extracted from 638 brain
regions defined by a template also described in Crossley et al.
(2013), and band-passed (0.01–0.1 Hz). Functional connectivity
was defined as pairwise Pearson correlation at a subject’s level,
and group-level functional connectivity matrix was calculated by
averaging individuals’ matrices after Fisher- transform, We used
BrainNetViewer as a tool for the visualization of the communities
on brain templates.

RESULTS

Simulation 1
The benchmark created for this first test did not involve
any variation coming from noise or subject variability. The
community detections methods were applied directly to the
matrix generated by the LFR function. Figure 4 shows the
NMI calculated between the structure extracted by Newman
modularity, InfoMap and Asymptotical Surprise, and the ground
truth for µt = µw = 0.2, as a function of threshold.

The gray zone on the graphics indicates the range of
sparsification thresholds obtained by percolation analysis
calculated in different runs. These graphics demonstrate the
deleterious effects of excessive removal of weak edges. In
the case of noiseless networks, percolation analysis identifies
the threshold corresponding to the departure from optimal
performance of the community detection algorithm. This is
in keeping with the fact that the percolation threshold is the
minimum threshold value that preserves connectedness of
the giant component. However, it should be noticed in this
noiseless scenario all links correspond to true correlations, and
no spurious edges are contemplated.

Simulation 2
In the second simulation we assessed the effects of noise and
variability in the correlation structure of the networks. We

FIGURE 4 | NMI between ground truth community structure and the results of the 3 community detection algorithms applied to an LFR networks (µt = µw = 0.2).
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FIGURE 5 | NMI (in black), Sensitivity (in blue), and Specificity (in green) of the Newman community detection algorithm applied to LFR networks (µt = µw = 0.2). Two

different signal to noise ratio (SNR) are represented on the lines (top line SNR = 70, lower line SNR = 35), Number of subjects varies depending of the column

(respectively from left to right 20, 40, and 60 subjects).

FIGURE 6 | NMI (in black), Sensitivity (in blue), and Specificity (in green) of the InfoMap community detection algorithm applied to LFR networks (µt = µw = 0.2). Two

different signal to noise ratio (SNR) are represented on the lines (top line SNR = 70, lower line SNR = 35), Number of subjects varies depending of the column

(respectively from left to right 20, 40, and 60 subjects).

computed NMI, the Sensitivity and Specificity for the partitions
obtained by the 3 methods (Newman, InfoMap and Asymptotical
Surprise) with the different SNRs and numbers of subjects (see
Figures 5–7).

In the presence of variability, we observe a first increase
in NMI for increasing threshold, followed by a subsequent
drop. We interpret the first rise as a regime in which
weak links are mostly determined by spurious correlations,
and carry little information about the structure of the
network. As threshold increases, removal of additional edges
decreases the ability to retrieve the planted modular structure

by removing structurally relevant correlations. This picture
is confirmed by the observation that maxima in NMI
correspond to simultaneously large values of Sensitivity and
Specificity.

The percolation threshold values appear to consistently fall in
the vicinity of maximum NMI for all three community detection
methods. The general conclusion from these simulations is
that percolation analysis detects a quasi-optimal value of
sparsification threshold, thus enabling optimal detection of
community structure in the presence of experimental noise and
data variability.
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FIGURE 7 | NMI (in black), Sensitivity (in blue), and Specificity (in green) of the Asymptotical Surprise community detection algorithm applied to LFR networks

(µt = µw = 0.2). Two different signal to noise ratio (SNR) are represented on the lines (top line SNR = 70, lower line SNR = 35), Number of subjects varies depending

of the column (respectively from left to right 20, 40, and 60 subjects).

Effects of Threshold in Resting State Brain
Networks
A ground-truth community structure for functional connectivity
networks from the human brain remains to be established,
as different community detection approaches retrieve different
partitions depending on the characteristics of the fitness function
and optimization algorithm. A discussion of the ultimately valid
partition for functional connectivity networks and of the best
algorithm for its retrieval is beyond the scope of this paper,
which focuses on the information theoretical foundations of the
choice of the optimal sparsification threshold. We have recently
compared various community detection methods as applied to
the study of human brain functional connectivity in Nicolini
et al. (2017). Here, to illustrate the effects of the choice of
threshold on community detection, we have applied Newman’s
modularity, probably the most established community detection
algorithm in network neuroscience, to a benchmark resting
state functional connectivity network for different threshold
values. Figure 8 shows the largest module identified byNewman’s
modularity at a threshold below percolation (left panel), and its
partitions for increasing thresholds. Below percolation threshold,
a widely distributed subnetwork comprising sensorimotor,
auditory and visual cortices is detected as a single community.
At percolation threshold, this broad community breaks up
into a sensorimotor module, which also includes the superior
temporal gyrus, and an occipital module, including visual
cortices as well as the ventral and dorsal visual streams. As
the threshold is further increased, the algorithm retrieves a
different modular organization, with a dorsal sensorimotor
module separated from the supramarginal and temporal nodes,
which merge with other temporal nodes to form an independent
community. Hence, the effects of the choice of threshold
are not limited to fragmentation of modules for increasing

thresholds, but can also result in the mixing and merging
of nodes from different communities into potentially spurious
modules. This example further emphasizes the importance of
a judicious choice of sparsification threshold. Our results in
synthetic networks suggest that percolation analysis enables
the identification of threshold that maximizes information on
the network modular structure. A detailed description of the
community structure of resting state functional connectivity
brain networks at the percolation threshold is reported in
Nicolini et al. (2017).

DISCUSSION

An open problem in the analysis of brain connectivity is the
optimal choice of threshold when comparing different groups,
e.g., patients and healthy controls in cross-sectional studies
assessing the effects of disease on functional connectivity.
Typically, identical sets of nodes are defined for the two
groups, and the comparison is based on edge distribution and
strength. Many studies tend to fix the same edge density in
the connectivity graphs of the groups to be compared. Indeed,
certain global topological parameters (e.g., global efficiency,
Rubinov and Sporns, 2010) depend on edge density, and
comparisons at constant density make it possible to assess
differences related to the topological reorganization of links,
rather than to their number and strength. On the other
hand, constant edge density may bias group comparisons when
graphs exhibit intrinsic differences in connectivity strength. By
way of example, neuropsychiatric diseases like Schizophrenia
and Autism have been associated with disruption and overall
reduction of functional and structural connectivity. Imposing
equal densities for graphs describing connectivity in patients and
controls may lead to the inclusion of a greater number of weak,
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FIGURE 8 | Analysis of the largest modules detected by Newman’s

community detection algorithm in a resting state functional connectivity

network from the human brain for different thresholds. At percolation threshold

(central panel) the sensorimotor and the visual modules are identified as

separate communities, while they are merged into a widespread subnetwork

for a threshold below percolation. For a higher threshold (right panel)

fragmentation and reorganization of modules is apparent, with the emergence

of a separate temporal module, and a break-up of dorsal sensorimotor and

supramarginal and temporal cortices.

potentially spurious links in the group with weaker connectivity,
and to the exclusion of important links in the group with stronger
connectivity. A higher proportion of spurious connection results
in a more random network topology, and intergroup differences
may just reflect different levels of noise, rather than genuine
topological differences (van den Heuvel and Fornito, 2014).

The present study may provide a strategy to overcome
this problem. Indeed, community detection determines the
membership of each node to a certain module. This is not
dependent on overall edge density, but on the local balance
between edges linking the node to other members of the same
module, or to other nodes in different modules. The optimal
sparsification threshold is the one that maximizes information
about community structure, and is network-specific, as it
depends on the structure and noisiness of each network. Hence,
independent thresholding of the networks to be compared

based on percolation analysis maximizes information about
memberships in the two groups.

CONCLUSION

In conclusion, we have explored the use of percolation analysis,
a method based on statistical physics, to determine the
sparsification threshold in synthetic networks endowed with
a ground-truth modular structure, and topological features
akin to those of real world networks like brain connectivity
graphs. We find that the percolation threshold, i.e., the
highest threshold that preserves connectedness of the giant
component, corresponds to the maximum information that can
be retrieved by various community detection algorithms on
the planted modular structure in the presence of noise and
intersubject variability. Intuitively, this threshold corresponds
to the optimal balance between information lost by removing
genuine edges and spurious correlations introduced by noise.
These findings provide evidence of the existence of an optimal
sparsification threshold, and a solid theoretical basis for its
identification by means of a data driven method like percolation
analysis.
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Cerebral function is associated with exceptionally high metabolic activity, and requires

continuous supply of oxygen and nutrients from the blood stream. Since the

mid-twentieth century the idea that brain energy metabolism is coupled to neuronal

activity has emerged, and a number of studies supported this hypothesis. Moreover,

brain energy metabolism was demonstrated to be compartmentalized in neurons and

astrocytes, and astrocytic glycolysis was proposed to serve the energetic demands

of glutamatergic activity. Shedding light on the role of astrocytes in brain metabolism,

the earlier picture of astrocytes being restricted to a scaffold-associated function in

the brain is now out of date. With the development and optimization of non-invasive

techniques, such as nuclear magnetic resonance spectroscopy (MRS), several groups

have worked on assessing cerebral metabolism in vivo. In this context, 1H MRS

has allowed the measurements of energy metabolism-related compounds, whose

concentrations can vary under different brain activation states. 1H-[13C] MRS, i.e.,

indirect detection of signals from 13C-coupled 1H, together with infusion of 13C-enriched

glucose has provided insights into the coupling between neurotransmission and glucose

oxidation. Although these techniques tackle the coupling between neuronal activity and

metabolism, they lack chemical specificity and fail in providing information on neuronal

and glial metabolic pathways underlying those processes. Currently, the improvement of

detection modalities (i.e., direct detection of 13C isotopomers), the progress in building

adequate mathematical models along with the increase in magnetic field strength now

available render possible detailed compartmentalized metabolic flux characterization.

In particular, direct 13C MRS offers more detailed dataset acquisitions and provides

information on metabolic interactions between neurons and astrocytes, and their role

in supporting neurotransmission. Here, we review state-of-the-art MR methods to study

brain function and metabolism in vivo, and their contribution to the current understanding

of how astrocytic energy metabolism supports glutamatergic activity and cerebral

function. In this context, recent data suggests that astrocytic metabolism has been

underestimated. Namely, the rate of oxidative metabolism in astrocytes is about half

of that in neurons, and it can increase as much as the rate of neuronal metabolism in

response to sensory stimulation.

Keywords: brain energy metabolism, neurotransmitter metabolism, neuron-glia interaction, neuronal activity,

MRS, fMRI, mathematical modeling
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INTRODUCTION

Cerebral function requires the cooperative interaction between
different cell types, namely neurons, astrocytes, microglia and
oligodendrocytes, and depends on high metabolic activity
supported by continuous supply of oxygen and glucose from
the blood (Siesjö, 1978). Blood flow is indeed directly related
to the cerebral metabolic rate of glucose consumption (CMRglc)
(Sokoloff, 1978). Although the adult human brain represents
only 2% of the total body weight, it consumes up to 20% of
the total glucose metabolism under normal resting physiological
conditions (e.g., Rolfe and Brown, 1997). Since themid-twentieth
century the idea that brain energy metabolism is coupled to
neuronal activity has emerged (McIlwain et al., 1951; Van den
Berg et al., 1969), and a number of studies supported this
hypothesis (Pellerin and Magistretti, 1994; Poitry-Yamate et al.,
1995; Tsacopoulos et al., 1997). Notably, in the 90’s, brain energy
metabolism was demonstrated to be compartmentalized between
neurons and astrocytes, and astrocytic glycolysis was proposed
to serve the energetic demands of glutamatergic activity (Pellerin
and Magistretti, 1994; Poitry-Yamate et al., 1995; Tsacopoulos
et al., 1997).

Ogawa et al. reported in 1992 the changes in the apparent
transverse relaxation time T∗

2 due to variations in local blood
oxygen consumption (CMRO2), cerebral blood flow (CBF) and
cerebral blood volume (CBV; Ogawa et al., 1992). This discovery
formed the basis of a powerful technique used nowadays to
study brain activity: blood oxygenation level-dependent (BOLD)
functional magnetic resonance imaging (fMRI). Under the
assumption of brain metabolism being segregated into two main

Abbreviations: 20-HETE, 20-hydroxyeicosatetraenoic acid; AA, arachidonic

acid; ADP, adenosine 5′-diphosphate; AMPA, α-amino-3-hydroxyl-5-methyl-

4-isoxazole-propionate; ANLS, astrocyte-neuron lactate shuttle; AST, aspartate

transaminase; ATP, adenosine 5′-triphosphate; BBB, blood-brain barrier; BOLD,

blood oxygenation level-dependent; cAMP, cyclic adenosinemonophosphate; CBF,

cerebral blood flow; CBV, cerebral blood volume; CMRglc, cerebral metabolic rate

of glucose; CMRO2, cerebral metabolic rate of oxygen; COX, cyclooxygenase;

DNP, dynamic nuclear polarization; EAAT, excitatory amino acid transporters;

EET, epoxeicosatrienoic acid; FADH2, flavin adenine dinucleotide (reduced

form); FE, fractional enrichment; fMRI, functional magnetic resonance imaging;

fMRS, functional magnetic resonance spectroscopy; FRET, fluorescence resonance

energy transfer; GDH, glutamate dehydrogenase; GDP, guanosine diphosphate;

GLS, glutaminase; GLUT, glucose carrier; GS, glutamine synthetase; GTP,

guanosine triphosphate; IP3, inositol 1,4,5-triphosphate; Kt, apparent Michaelis

constant of glucose transport; MCT, monocarboxylate transporters; ME, malic

enzyme; mGluR, metabotropic glutamate receptor; MR, magnetic resonance;

MRP, multidrug resistance proteins; MRS, magnetic resonance spectroscopy;

NADH, nicotinamide adenine dinucleotide (reduced form); NMDA, N-methyl-

D-aspartate; NO, nitric oxide; NOS, nitric oxide synthase; Nrf2, nuclear

factor-erythroid 2-realted factor-2; OAA, oxaloacetate; OG, 2-oxoglutarate; P2Y,

purinergic receptors; PC, pyruvate carboxylase; PDH, pyruvate dehydrogenase

complex; PEPCK, phosphoenolpyruvate carboxykinase; PET, positron emission

tomography; PFK, phosphofructokinase-1; PFKFB3, fructose-2,6-bisphosphatase-

3; PGE2, prostaglandins E2; PK, pyruvate kinase; PLA2, phospholipase A2; PLC,

phospholipase C; SA, system A transporter; sGC, soluble guanylate cyclase;

SLC2, solute carrier family 2; SN, system N transporter; SNARE, soluble N-

ethylmaleimide-sensitive factor activating protein receptor; CA, tricarboxylic acid

cycle; Tmax: apparent maximum transport rate of glucose transport; VGLUT,

vesicular glutamate transporter; VSOAC, volume-sensitive organic osmolyte-

anion channel.

compartments, neurons and astrocytes (which is valid for cortical
gray matter), and based on measurements of the glutamate-
glutamine cycle and glucose oxidation rates, a quantitative
interpretation of functional imaging by integrating oxidative
neuroenergetics of neuronal processes was thereafter suggested
(Shulman and Rothman, 1998). In this context, the main
metabolic costs underlying neuronal activity involved not only
the maintenance of the glutamate-glutamine cycle, but also
the generation and propagation of action potentials, uptake
and recycling of neurotransmitters from the synaptic cleft, and
restoration and maintenance of resting membrane potential
(reviewed in Attwell and Laughlin, 2001). However, besides the
proposed coupling between neurotransmission and neuronal
oxidative metabolism, data acquired during the past decades in
other experimental conditions and models suggested substantial
astrocytic contribution to metabolism (Gruetter et al., 2001 and
reviewed in Lanz et al., 2013) and blood flow regulation (reviewed
in Attwell et al., 2010). A recent analysis on K+-dependent
stimulation of astrocytic metabolism suggests that the actual
glial contribution to total energy metabolism has been long
underestimated (DiNuzzo et al., 2017).

This article reviews the biochemical mechanisms associated
with energy metabolism in brain cells, and provides a critical
review of the traditional view of astrocytes being glycolytic
and neurons oxidative, which has been challenged over the
past years by evidence pointing to important rates of oxidative
respiration in astrocytes, namely during increased brain activity.
13C MRS along with infusion of 13C-labeled substrates and the
use of compartment models as tools to probe glial and neuronal
metabolism will then be described. Data recently acquired in our
laboratory (Sonnay et al., 2016, 2017) assessing the matter of glial
and neuronal oxidative metabolism coupled to neuronal activity
is then presented and potential usage of the mitochondrial ATP
production in astrocytes is further discussed.

BRAIN GLUCOSE UPTAKE AND
METABOLISM

The brain can consume several substrates, such as lactate
(Bouzier et al., 2000; Wyss et al., 2011), acetate (Cerdan et al.,
1990), fatty acids (Kuge et al., 1995) and ketone bodies (Künnecke
et al., 1993), but energy metabolism in the adult brain primarily
relies on glucose provided from the blood to fuel activity both in
the resting and activated states (reviewed in Sokoloff, 2004).

Uptake of monocarboxylates, such as lactate, pyruvate, and
ketone bodies, is mediated by monocarboxylate transporters
(MCT) along with the co-transport of one 1H for each molecule.
The isoform MCT1 is expressed in the endothelial cells and
in astrocytes (reviewed in Pierre and Pellerin, 2005), MCT4 in
astrocytes and MCT2 in neurons (Bergersen et al., 2002; and
reviewed in Barros and Deitmer, 2010).

In mammalian brain cells, glucose transport and utilization is
predominantly mediated by facilitated diffusion through glucose
transporters GLUT1 and GLUT3 that belong to the Solute
Carrier Family 2 (SLC2). GLUT1 is present in all brain cells,
with high density in astrocytes and endothelial cells of the
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capillaries, but less in neurons (reviewed in Maher et al., 1994).
In contrast, GLUT3 expression is almost restricted to neurons
(Maher et al., 1992, 1996). GLUT1 is thus the main carrier
involved in the import of glucose into the brain from the blood,
and its apparent affinity for glucose transport is lower than that of
GLUT3 (discussed in Simpson et al., 2007). These two facilitative
carriers mediate energy-independent transport of glucose bi-
directionally along a concentration gradient, which is maintained
by continuous phosphorylation of intracellular glucose by the
glycolytic enzyme hexokinase, and exist in sufficient density to
ensure that glucose transport is not rate-limiting for CMRglc

(Gruetter et al., 1998b; Barros et al., 2007; Duarte et al., 2009).
GLUT4 in neurons (Ashrafi et al., 2017) and GLUT2 in both
neurons and astrocytes (Thorens, 2015) have also been shown
to transport glucose. However, GLUT2 and GLUT4 are carriers
involved in specific functions in certain brain areas, and are
likely to have a minor role on glucose uptake for cellular
fueling.

After entering the cells, glucose is converted via glycolysis to
two molecules of pyruvate with net formation of 2 ATP and 2
NADH in the cytosol. Pyruvate can then be reduced to lactate
mediating NAD+ formation, transaminated to alanine or enter
mitochondria via the mitochondrial pyruvate carrier, where it
is decarboxylated to acetyl-CoA by the pyruvate dehydrogenase
complex (PDH) with formation of CO2 and NADH (Patel and
Korotchkina, 2001). Acetyl-CoA condensates with oxaloacetate
entering therefore oxidative metabolism via the tricarboxylic
(TCA) cycle. Each turn of the TCA cycle yields 3 NADH,
1 FADH2 and 1 GTP molecules. The electron-transfer chain
generates a gradient of H+ across the mitochondrial membrane,
which is used by the ATP synthase for ATP production. As
each NADH and FADH2 molecules generates 2.5 and 1.5 ATP
respectively, complete oxidation of one molecule of glucose
produces 30 or 32 ATP, depending on the transport of cytosolic
NADH to mitochondria either in the malate-aspartate or in the
glycerol 3-phosphate mitochondrial shuttles (Voet and Voet,
1995).

Oxidation of glucose-derived pyruvate through the TCA
cycle not only provides the bulk of energy produced to support
cerebral function (reviewed in Hertz and Dienel, 2002), but
also involves the generation of de novo amino acids, namely
glutamate (reviewed in Gruetter, 2002). Neurons extensively
release glutamate and need therefore a replenishment system
to ensure adequate neurotransmitter levels. Namely, synthesis
of de novo oxaloacetate from pyruvate is catalyzed by the
glial-specific enzyme pyruvate carboxylase (PC; Gamberino
et al., 1997), mediating CO2 fixation in an energy-dependent
manner, increasing therefore the number of carbon skeletons
in the TCA cycle. Oxaloacetate formed through pyruvate
carboxylation condensates with acetyl-CoA to produce new
glutamate molecules (Waagepetersen et al., 2001). In addition,
under low acetyl-CoA concentration, pyruvate can be produced
cataplerotically from TCA cycle intermediates (pyruvate
recycling): from oxaloacetate, mediated by the combined action
of phosphoenolpyruvate carboxykinase (PEPCK) and pyruvate
kinase (PK; Cruz et al., 1998), occurring in astrocytes (Sonnewald
et al., 1996) and to less extent in neurons (Cruz et al., 1998), and

from malate by the malic enzyme (ME; Bakken et al., 1997; Cruz
et al., 1998; Sonnewald, 2014).

Once glutamate is taken by astrocytes, it can be converted to
glutamine in an energy-dependent manner via the glial-specific
enzyme, glutamine synthetase (GS; Derouiche and Frotscher,
1991). Glutamine is then transported to neurons via the System
N transporter (SN1) in astrocytes (Chaudhry et al., 1999) and
the System A transporters (SA1 and SA2) in neurons (Chaudhry
et al., 2002), and converted to glutamate by glutaminase (GLS),
completing therefore the glutamate-glutamine cycle (Shen et al.,
1999; Zwingmann and Leibfritz, 2003), which is now accepted
as a major mechanism for maintaining synaptic transmission.
Therefore, while about 90% of the brain’s glutamate resides in
neurons (estimated between 5 and 16% in glia of the rodent
brain; Tiwari et al., 2013; Lanz et al., 2014), most of the glutamine
has been localized to astrocytes (Ottersen et al., 1992; Cruz and
Cerdan, 1999). Glutamate can also re-enter the TCA cycle (Qu
et al., 2001; Hertz et al., 2007; Sonnewald, 2014) notably by the
reversible aspartate transaminase (AST) or the glial-abundant
reversible enzyme glutamate dehydrogenase (GDH; Karaca
et al., 2015), being oxidized for further energy or amino acid
production. Consequently, the glutamate-glutamine cycle is not
a stoichiometric process, as a number of amino acid molecules
can be used in other metabolic pathways depending on cellular
requirements (McKenna, 2007). Glutamine can diffuse out of
the brain parenchyma and be used for ammonia detoxification
(Zwingmann and Leibfritz, 2003). In addition, glutamate can
have other fates than being converted to glutamine, such as
formation of GABA and glutathione, and be synthetized from
other substrates than glucose, namely lactate or ketone bodies.
Amino acids can also be used for biosynthetic pathways and
derived from protein degradation (McKenna, 2007; Figure 1).

GLIAL SUPPORT TO CEREBRAL
FUNCTION

Scaffold-Associated Role of Astrocytes
The term astrocyte originates etymologically from the Greek
words astron (star) and cyte (cell). They belong to the general
group of macroglia cells (Kettenmann and Verkhratsky, 2008),
where glia is derived from the Greek word gliok (glue). Astrocytes
were initially described in themiddle of the nineteenth century by
Rudolf Virchow (Virchow, 1856), who named nervenkitt (nerve-
putty) the “gelatinous” substance in the brain, and later by
Camillo Golgi, who hypothesized a role of astrocytes in nutrient
distribution to the brain parenchyma (Golgi, 1886).

Several cytological studies on rats (Kacem et al., 1998;
Mathiisen et al., 2010) and mice (Halassa et al., 2007) have shown
that astrocytes are anatomically polarized cells that associate both
with neurons and the vasculature: whereas perisynaptic processes
contact neurons, vascular processes (or endfeet) surround
intraparenchymal blood vessels (i.e., blood-brain barrier, BBB;
Kacem et al., 1998). Perisynaptic processes largely express
glutamate transporters (EAAT1 and EAAT2), while endfeet are
more specialized in nutrient uptake and express large amounts
of glucose transporters (GLUT1; Iadecola and Nedergaard,
2007). Therefore, the etymology reflects what astrocytes have
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FIGURE 1 | Schematic representation of possible pathways mediating neurometabolic coupling. Upon action potential glutamate is released in the synaptic

cleft and activates the post-synaptic glutamate receptors (mGluR, NMDA, AMPA, and kainate). Glutamate molecules that are left in the synaptic cleft are transported

into astrocytes via the glutamate transporters (EAAT) using the electrochemical gradient of Na+ (1 glutamate is transported with 3 Na+) and antiport of one K+. The

Na+ gradient is reestablished by the Na+/K+-ATPase, an energy-dependent process (3 Na+ anti-transported with 2 K+). Glial glutamate is then converted to

glutamine by glutamine synthetase (GS), an energy-dependent reaction, and is shuttled back to neurons via system N transporter (SN1) and system A transporter

(SA1,2). In neuron, glutamine is hydrolyzed by glutaminase (GLS) into glutamate that is packed into vesicles by VGLUT for further glutamate release. Glutamate uptake

into astrocytes is associated with glucose transport from plasma via GLUT1, and both glycolysis and oxidative metabolism via pyruvate dehydrogenase (PDH) take

place. Glucose is also transported into neurons via GLUT3, where it also undergoes non-oxidative and oxidative metabolism. Produced-glutamate can re-enter the

TCA cycle (i.e., glutamate oxidation) via glutamate dehydrogenase (GDH) or aspartate transaminase (AST). In astrocytes, pyruvate can be produced cataplerotically

either from oxaloacetate, mediating the combined action of phosphoenolpyruvate carboxykinase (PEPCK) and pyruvate kinase (PK), or from malate by the malic

enzyme (ME; i.e., pyruvate recycling). Glycolytic-derived pyruvate is converted to lactate by lactate dehydrogenase (LDH) and exchanged between neurons and

astrocytes through monocarboxylate transporters (MCT1,4 and MCT2). Lactate can be converted back to pyruvate via LDH and therefore regulate the NADH/NAD+

redox ratio. In astrocytes, pyruvate carboxylase (PC) produces oxaloacetate from pyruvate in mediating CO2 fixation in an energy-dependent manner. Oxaloacetate

condensates then with acetyl-CoA to produce de novo molecules of glutamate. The left and right cells represent an astrocyte and a neuron, respectively. The

difference in TCA cycle size reflects the fact that neurons are more oxidative than astrocytes. The red circle is a blood vessel, the surrounding darker layer represents

the endothelial cells and the thicker outer line is the smooth muscle cells (or pericytes). Word in bold red and bold purple corresponds to energy-producing and

consuming processes, respectively. Enzymes are in gray italic. *Either one or the other enzyme acts.

traditionally been considered, satellite housekeeping cells of
the brain, whose sole purpose is to serve neuronal cells in
creating a favorable environment for the neurons to function
efficiently. In this conventional view, astrocytes control pH and
local ion homeostasis, deliver nutrients and clean neuronal waste
(Nedergaard et al., 2003).

Compartmentalization of Brain Energy
Metabolism
However, the role of astrocytes extends beyond physically
supporting neurons. Interconnected via gap junctions, astrocytes
form a complex functional network that detects and modulates
neuronal activity, integrates and transmits surrounding signals,
controls brain vasculature for nutrient delivery, and regulates
and metabolizes energy substrates. Astrocytes transport
glucose via GLUT1 transporters (reviewed in Maher et al.,
1994). Compared to neurons, astrocytes express high levels

of 6-phosphofructose-2-kinase/fructose-2,6-bisphosphatase-3
(PFKFB3), producing fructose-2,6-bisphosphate, activating
in turn phosphofructokinase-1 (PFK) (Almeida et al., 2004;
Herrero-Mendez et al., 2009). Astrocytes are, therefore, prone
to aerobic glycolysis (Barros and Deitmer, 2010) and early
studies have supported that glycolysis can be stimulated by
neuronal activity (Kasischke et al., 2004), astrocytic glutamate
uptake (Pellerin and Magistretti, 1994; Takahashi et al., 1995;
Tsacopoulos et al., 1997) and extracellular K+ (Peng et al.,
1994). Recently, using the genetically encoded fluorescence
resonance energy transfer (FRET) lactate sensor Laconic, a
lactate gradient from astrocytes to neurons was demonstrated in
vivo (Mächler et al., 2016). The two ATPs glycolytically-produced
have been proposed to serve the energetic demands associated
with glutamatergic activity in fueling both the Na+/K+-
ATPase pump coupled to glutamate transport (consuming
one ATP) and the glutamine synthetase (consuming another
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ATP) for the maintenance of the glutamate-glutamine cycle
(Pellerin and Magistretti, 1994). On the other hand, neurons
constantly degrade PFKFB3 (Almeida et al., 2004; and reviewed
in Bolaños et al., 2010) and neuronal activation of PFKFB3
was shown to lead to oxidative stress and neuronal apoptosis
(Herrero-Mendez et al., 2009). Astrocytic-produced lactate was
therefore proposed to alternatively fuel neurons for oxidative
metabolism during neuronal activity, in line with stimulation
of glycolysis by K+ (Peng et al., 1994; Bittner et al., 2011),
by glutamate (Pellerin and Magistretti, 1994), and increased
lactate efflux by K+ (Sotelo-Hitschfeld et al., 2015) and NH+4

(Provent et al., 2007; Lerchundi et al., 2015), while neuronal
glucose to be diverted into the pentose phosphate pathway for
antioxidant defense during enhanced work at the respiratory
chain (Bouzier-Sore and Bolaños, 2015). The study by Sibson
et al. in the rat brain suggesting 1:1 stoichiometry between
neuronal glucose oxidation and the glutamate-glutamine cycle
rate (Sibson et al., 1998) provided support to this early view
of compartmentation of brain metabolism. However, this
hypothesis did not consider (or exclude) stimulation of glial
oxidative metabolism to support increased neurotransmission
rates. Yet, hexokinase was shown to be highly expressed in
neurons as compared to astrocytes (Lundgaard et al., 2015),
which is consistent with the ability of neurons to rapidly
upregulate their glycolytic activity to fuel energy demand. In
line with this, it was reported that increased glycolysis occurs
for example in nerve terminals of bicuculline-treated rats (Patel
et al., 2014), and in cultured neurons exposed to high K+ (Peng
and Hertz, 2002).

Stimulation of Glial Oxidative Metabolism
In vitro
Although glycolytic activity is higher in glia than in neurons,
astrocytes express an important number of enzymes involved
in the TCA cycle, suggesting substantial oxidative capacity. In
particular, about 45 and 16% of gene expression in astrocytes is
dedicated to energy homeostasis and energy substrate transport,
respectively, and TCA cycle related genes (i.e., citrate synthase,
aconitase, isocitrate dehydrogenase, oxoglutarate dehydrogenase,
dihydrolipoamide s-succinyltransferase, succinyl-CoA ligase,
succinate dehydrogenase, fumarase, malate dehydrogenase) have
larger expression in astrocytes than in neurons (Lovatt et al.,
2007). Moreover, an important amount of small mitochondria
was detected in the fine astrocytic processes (Derouiche et al.,
2015) and shown to co-localize with EAAT (Genda et al.,
2011; Jackson et al., 2014), which might facilitate coupling of
astrocytic respiration with glutamate uptake (Eriksson et al.,
1995). Additionally, elevation in astrocytic Ca2+ coincide
with mitochondria position within the processes (Jackson and
Robinson, 2015), and a rise in mitochondrial Ca2+ concentration
might stimulate TCA cycle activity and thus ATP production
(Wan et al., 1989; Denton, 2009). Consistent with glial metabolic
activation by neuronal activity (Eriksson et al., 1995) and
stimulation of Na+/K+-ATPase by extracellular K+ (Hajek et al.,
1996; Honegger and Pardo, 1999), the fraction of glutamate that
is metabolized through glial TCA cycle was reported to increase

with extracellular glutamate application to astrocytes (McKenna
et al., 1996).

Glial Oxidative Metabolism In vivo
A few in vivo studies have investigated themetabolic involvement
of glia during neuronal activation. In particular, autoradiography
studies using the glial-specific energy substrate acetate
demonstrated increased glial oxidative metabolism during
both acoustic (Cruz et al., 2005) and photic (Dienel et al.,
2007b) stimulations in awake rats. Similarly, positron emission
tomography (PET) along with [1-11C]acetate infusion showed
increased astrocytic oxidative metabolism during infraorbital
nerve stimulation of anesthetized rats and visual stimulation
in humans (Wyss et al., 2009). Using dual photon fluorescence
confocal microscopy, Lind et al. showed that during trigeminal
nerve stimulation of anesthetized mice about 70% of astrocytes
respond to stimulation with Ca2+ increase (Lind et al., 2013).
With the same methodology the glial activation map was
reported to resemble that of neurons during rat paw stimulation,
suggesting both neuronal, and glial topographical representation
of the body in the cortex (Ghosh et al., 2013), and pointing to
significant glial activation during neuronal activity.

While these techniques present high spatial resolution,
they are associated with some disadvantages, such as the
need of radioactive tracers and ionizing radiations (PET,
autoradiography), invasiveness (dual photon fluorescence
confocal microscopy, FRET, autoradiography), potential cellular
toxicity (FRET), the lack of absolute quantification in the case
of FRET (as signal magnitude directly rely on the number of
molecules of interest binding the sensor), and the lack of chemical
specificity (PET, autoradiography) for providing quantitative
information on metabolic pathways underlying oxidative
metabolism. Currently, the development of tracers detectable
by MRS, such as 13C-labeled substrates, the improvement of
detection modalities (Henry et al., 2003), the progress in building
adequate mathematical models (Gruetter et al., 2001) along
with the increase in magnetic field strength render possible
detailed compartmentalized metabolic flux characterization in
vivo in a non-invasive manner and with minimal assumptions
(Duarte et al., 2011; Duarte and Gruetter, 2013; Dehghani et al.,
2016; Sonnay et al., 2016, 2017). In particular direct detection
of 13C-labeled compounds (13C MRS) provides quantitative
assessment of major metabolic pathways including glycolysis,
TCA cycle, glutamate-glutamine cycle and pyruvate carboxylase
(Gruetter et al., 2001; Henry et al., 2006; Duarte et al., 2011).
Direct detection of 13C-labeled compounds is a technique that
has been robustly implemented and can be applied to small
animal metabolism studies in the whole brain (Duarte et al.,
2011) or in specific cerebral regions (Patel et al., 2005a; Sonnay
et al., 2016, 2017).

DYNAMIC 13C MAGNETIC RESONANCE
SPECTROSCOPY (13C MRS)

Nuclear magnetic resonance (NMR) is a non-ionizing and non-
invasive technique based on the magnetic properties of spin-
containing nuclei. This methodology can be used in both clinical
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settings (e.g., Prichard et al., 1991; Rothman et al., 1992; Gruetter
et al., 1994, 1998a, 2001; Shen et al., 1999; Gruetter, 2002; Lebon
et al., 2002; de Graaf et al., 2004; Mangia et al., 2007; Oz et al.,
2007, 2015; Lin et al., 2012; Schaller et al., 2013, 2014; Bednařík
et al., 2015) and pre-clinical studies (e.g., Mason et al., 1992;
Hyder et al., 1996, 1997; Sibson et al., 1998, 2001; Choi et al.,
2002; Henry et al., 2002; Patel et al., 2004, 2005a; Deelchand
et al., 2009; Duarte and Gruetter, 2013; Duarte et al., 2011, 2015;
Mishkovsky et al., 2012; Just et al., 2013; Bastiaansen et al., 2013,
2015; Lanz et al., 2014; Sonnay et al., 2015, 2016, 2017). However,
in most animal applications it requires anesthesia, which can
modify the coupling between neuronal activity, brainmetabolism
and vascular regulation of blood flow (Masamoto and Kanno,
2012; Sonnay et al., 2017, and references therein).

Several nuclei can be used to investigate brain metabolism,
notably 1H, 31P, or 13C. In the case of phosphorus, 31P
MRS is used to investigate energy metabolism by providing
information on the energy status of endogenous phosphate
compounds, namely ATP, ADP, and PCr (e.g., Zhu et al., 2009).
1HMRS is based on local environment-dependent 1H present in
metabolites (discarding water that is several orders of magnitude
more concentrated) and assesses changes in total metabolite
concentrations (generally in the mM range) involved in
energy metabolism, osmoregulation, membrane metabolism and
myelination (reviewed in Duarte et al., 2012). The main challenge
associated with 1H MRS is the complexity of the neurochemical
profile composed of several overlapping metabolite signals on
a relatively small frequency range (i.e., 4–5 ppm) that is to be
analyzed (de Graaf, 1998). An extension of this technique is
1H functional MRS (fMRS) that focuses on time-dependent
changes in metabolite concentrations, which are associated with
metabolic pathways during brain activity (Prichard et al., 1991;
Mangia et al., 2007; Lin et al., 2012; Just et al., 2013; Schaller et al.,
2013, 2014; Bednařík et al., 2015). The difficulty associated with
the detection of small concentration changes occuring during
neuronal activation can yet be overcome by using high magnetic
field MR system (≥9.4 T) to increase spectral resolution and
sensitivity.

Direct 13C MRS can measure 13C isotope incorporation (or
fractional enrichment, FE) over time into different molecules
and into specific positions within the same molecule (i.e., 13C
isotopomers), with signals distributed over a large chemical shift
range, namely about 200 ppm. Since the 13C isotope has a natural
low abundance (1.1%), a low background signal is detected.
However, as 13C gyromagnetic ratio is ¼ of that of 1H, 13C
MRS is an insensitive technique as compared with 1H MRS.
This is the reason why 13C tracers are infused in a substantial
amount to enable proper signal detection. The 13CMRS detection
threshold in vivo is typically in the mM range and it is usually
not possible to measure TCA cycle intermediates that are present
in smaller quantities. However, amino acids (e.g., glutamate,
glutamine, and aspartate), which are in exchange with TCA
cycle intermediates, are present at higher concentrations and can,
therefore, bemeasured and used formetabolic modeling and thus
for estimation of fluxes across major biochemical pathways.

On the other hand, dynamic nuclear polarization (DNP) can
be used to increase 13C polarization of 13C-labeled substrates,

and thus offers potentially tremendous signal enhancement and
detection of 13C labeling in tissue’s TCA cycle intermediates, such
as 2-oxoglutarate in the brain (Mishkovsky et al., 2012), or citrate
in the heart (Schroeder et al., 2009; Bastiaansen et al., 2015).
While such a technique can probe metabolism in vivo with high
sensitivity and a time resolution of 1 s, the acquisition window
is limited to approximately a minute (Comment, 2016), since
MR acquisition needs to be performed within the time decay
(seconds) of the enhanced nuclear polarization, and detection of
downstream compounds depends notably on the turnover rates
and on the concentration of labeled metabolites produced within
the recording period (discussed in Mishkovsky et al., 2012).
Moreover, further developments are required to actually translate
the detection and measurement of hyperpolarized 13C in vivo to
quantification of metabolic fluxes (Bastiaansen et al., 2013).

The strong heteronuclear scalar coupling between 13C and 1H
nuclei complicates the spectra (i.e., splitting of 13C resonances in
multiplets with reduced peak height) and reduces the sensitivity,
so that additional hardware is required for 1H decoupling during
acquisition (discussed in Henry et al., 2006). Homonuclear 13C
couplings are also observable and the presence of 13C multiplets
depends on the simultaneous presence of 13C spins in the
same molecule at adjacent positions. Although assessment of
13C multiplets with high temporal resolution is challenging
because of low signal amplitude, their inclusion in mathematical
modeling (i.e., bonded cumomer approach) improves reliability
and independency of the estimated brain metabolic fluxes
(Shestov et al., 2012; Tiret et al., 2015; Dehghani et al., 2016).

The evaluation of 13C enrichment curves over time of carbon
containing molecules requires the use of multi-compartment
models describing best the data (de Graaf et al., 2003, 2004;
Patel et al., 2004, 2005a, 2010; Henry et al., 2006; Lanz
et al., 2013). As a simplified view of the real biochemical
network, a model is a set of metabolite pools interconnected
by the major biochemical reactions that are associated with
metabolic fluxes. Each pool is associated with certain labeling
positions in the atomic chain of one metabolite synthesized
downstream from the infused compound: therefore there are
at least as many labeling equations as carbon positions. The
model contains the measurable entities and the non-measurable
pools that are present in lower concentrations (e.g., TCA cycle
intermediates) and that reach steady-state labeling much faster
than larger pools, such as amino acids (Uffmann and Gruetter,
2007). The model can combine isoenzymes, parallel pathways
that result in the same labeled pools, intermediate pools that
equilibrate rapidly (e.g., pyruvate/lactate) or which enzymes are
assumed not to be involved in other processes (e.g., glycolysis).
According to the complexity to reach, the model can assess
reversibility of reactions, sub-compartmentation or transport
across membranes (reviewed in Henry et al., 2006). Based on
the known biochemical reactions, a model should, therefore, be
as simple as possible and as complex as necessary to describe
measured parameters, focusing on the relevant pathways leading
to metabolic observations and neglecting the influence of others
(e.g., presence of cofactors, much slower reactions).

Derivation of metabolic fluxes is usually performed using
dynamic positional enrichment (total amount of label
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accumulated at individual position without distinguishing
within multiplets; de Graaf et al., 2004; Duarte et al., 2011;
Sonnay et al., 2016, 2017). The metabolic model describing
13C labeling is solved mathematically by a set of coupled linear
differential mass-balance equations describing the system at
equilibrium (i.e., metabolic but not isotopic steady-state). It
assumes mass and energy conservation (i.e., constant fluxes and
pool size over time), instant and uniformly labeling of the pools,
and equal probability for a labeled or non-labeled molecule to
enter and leave a pool (Mason et al., 1992 and see Lanz et al., 2013
for mathematical details). This latter assumption is plausible
given that the biochemical reactions are fast compared to the
temporal resolution of the MR acquisition techniques. Note that
the metabolic steady-state assumption might not necessary hold
under certain conditions (Lanz et al., 2014).

Isotopomers from [1,6-13C2] Glucose
An extensively used substrate for two-compartment (i.e.,
neurons vs. astrocytes) brain metabolism investigation is [1,6-
13C2]glucose (Lanz et al., 2013). On a general principle,
[1,6-13C2]glucose crosses the BBB through facilitate glucose
transporters (GLUT), is taken up by neurons and astrocytes, and
1 mole of glucose is metabolized through glycolysis (cytosolic
reaction) to produce 2 moles of [3-13C]pyruvate (1 mole of [1-
13C]glucose only produces 1 mole of [3-13C]pyruvate, resulting
in two-fold reduced 13C labeling of pyruvate). Two moles
of [2-13C]acetyl-CoA is then synthetized by PDH. Then in
the first turn of the mitochondrial TCA cycle, [2-13C]acetyl-
CoA will label position C4 of 2-oxoglutarate. Due to the
transmitochondrial exchange mediated notably by GDH and
AST, cytosolic glutamate C4 is in turn labeled (the carbon
positions are maintained). Due to the symmetry of the succinate
and fumarate molecules, half of the labeling in position C4 of
2-oxoglutarate is transferred with equal probability to positions
C2 and C3 of oxaloacetate, leading to the formation of
[2-13C]aspartate and [3-13C]aspartate from oxaloacetate by AST.
In the second turn of the TCA cycle, labeled molecules of
oxaloacetate combine again with (labeled or unlabeled)molecules
of acetyl-CoA, resulting in the formation of [2-13C]glutamate
and [3-13C]glutamate. Then in the third turn of the TCA
cycle, half of the carbons of position C3 of 2-oxoglutarate
are transferred to position C2, while the other half stays at
position C3. Meanwhile carbons at position C2 are transferred
to position C1 of 2-oxoglutarate or lost as CO2. The aspartate
pool is enriched at position C1, C2, C3 and C4. In astrocytes,
[3-13C]oxaloacetate can be formed from [3-13C]pyruvate by
PC, leading to the formation of [2-13C]2-oxoglutarate and [2-
13C]glutamate. Therefore, [1,6-13C2]glucose, as [1-

13C]glucose,
allows differentiating astrocytes and neurons in labeling positions
C2 and diluting positions C3 (with 12C) of glutamate via the
glial specific enzyme PC, but enhances signal detection at a given
resonance by two-fold compared to [1-13C]glucose (two times
more [3-13C]pyruvate at the end of glycolysis). In the glutamate-
glutamine cycle, the carbon positions are maintained. As the
labeling persists in the TCA cycle, multiple carbon positions
become labeled (Figure 2).

Other labeled substrates can be used to study brain
metabolism by direct 13CMRS in vivo depending on the labeling
pattern. For instance, [2-13C]glucose in the human brain allowed
labeling the carboxyl groups of glutamate and glutamine (i.e.,
positions C1 and C5), and aspartate (i.e., positions C1 and C4;
Li et al., 2016). However, half of labeling is rapidly lost as CO2.
Using uniformly labeled glucose ([U-13C]glucose) increases the
splitting of the resonance C4 of glutamate and glutamine due to
J-coupling with position C5 (Henry et al., 2003). [3-13C]lactate
can be used as an alternative to [1,6-13C2]glucose, but results
in a reduced amount of labeling molecules because of a lower
lactate entry into the brain as compared to [1,6-13C2]glucose
(Duarte et al., 2015). [2-13C]acetate has the particularity of
being metabolized almost exclusively in glia. It produces [2-
13C]acetyl-CoA and the large neuronal glutamate pool becomes
labeled via glial [4-13C]glutamine. Therefore, [2-13C]acetate
allows increasing the sensitivity of the measurements of glial
oxidative metabolism and the glutamate-glutamine cycle in
minimizing the bias toward the large neuronal glutamate pool
(Patel et al., 2010; Lanz et al., 2014). To obtain more precise
measurements on neuronal and glial oxidative metabolism, [1,6-
13C2]glucose can be co-infused with [1,2-13C2]acetate. However,
advanced modeling approaches are needed to account for
the additional homonuclear coupling brought by this double
infusion (Deelchand et al., 2009).

Compartmental Models of Brain
Metabolism
One-Compartment Model
The one-compartment model (Figure 3A) was the first metabolic
model used to describe the turnover curves following infusion

FIGURE 2 | Schematic overview of labeling transfer during

[1,6-13C2]glucose or [1-13C]glucose infusion. The splitting of the labeling

after OG is due to the symmetry at the succinate and fumarate level. The

indexes represent the carbon positions that become labeled. The first, second,

and third turns of the TCA cycle are represented by solid, dashed, and dotted

lines, respectively. The glial specific reaction driven by pyruvate carboxylase

(VPC ) labels position C2 and dilutes position C3. Glc, glucose; Lac, lactate;

Pyr, pyruvate; Asp, aspartate; OAA, oxaloacetate; OG, 2-oxoglutarate; Glu,

glutamate; Gln, glutamine; VTCA, TCA cycle rate; VX, transmitochondrial

exchange rate (modified from Lanz et al., 2013).
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A B

FIGURE 3 | Schematic view of the (A) one- and (B) two-compartments model. (A) As glutamate is mainly located in neurons, the one-compartment model

represents neurons. This model is characterized by the total TCA cycle rate (VTCA ), the transmitochondrial exchange rate (VX ) and to some extent the

neurotransmission rate modeled by the glutamine exchange rate (VGln). A dilution factors (Vdil) regulates the amount of lactate entering and leaving the cell. (B) The

two compartments are linked by the glutamate-glutamine cycle. Plasma glucose is transported into the cells down its concentration gradient via GLUT1 (in glial) and

GLUT3 (in neurons) transporters. Once inside glucose is processed through glycolysis into pyruvate. Pyruvate enters then the TCA cycle to produced energy and

amino acids. The glial-specific enzyme, pyruvate carboxylase (PC), produces de novo molecules of glutamate by carboxylation of pyruvate into oxaloacetate. Glc,

glucose; Lac, lactate; Pyr, pyruvate; Asp, aspartate; OAA, oxaloacetate; OG, 2-oxoglutarate; Glu, glutamate; Gln, glutamine; CMRglc, cerebral metabolic rate of

glucose consumption; VPDH, neuronal TCA cycle rate; Vg, glial full oxidation of pyruvate; VPC, pyruvate carboxylase; VGS, glutamine synthetase; VNT,

neurotransmission rate; VX, transmitochondrial exchange rate; Vex, exchange rate with glial glutamine; Vefflux, loss of glial glutamine (or ammonia detoxification =
VPC); Vdil, in (A) dilution at the level of lactate and in (B) dilution rate from glial-specific substrates. Boldface indicates MR-measurable metabolites. The superscripts n

and g indicate neuron and glial, respectively. ATP-dependent reactions are indicated with the red arrows.

of [1-13C]glucose along with 1H-[13C] MRS (i.e., detection of
1H attached to 13C; Mason et al., 1992; Rothman et al., 1992;
Hyder et al., 1996). As most of the glutamate is located in
neurons (Ottersen et al., 1992), this model is assumed to mainly
represent neuronal TCA cycle activity. It allows assessing the
TCA cycle rate (VTCA), the trans-mitochondrial flux (VX) and
a dilution flux at the level of lactate (Vdil, accounting for the
utilization of unlabeled substrates;Mason et al., 1992) from fitting
glutamate and glutamine C4, and Glx (glutamate+glutamine)
C3. Although the astrocytic compartment is not represented
in this model, the neurotransmission rate can be modeled
with a glutamine exchange rate (VGln; Henry et al., 2002).
While 1H-[13C] MRS studies provided an initial measure of
local oxidative metabolism, they were limited to the number
of detected 13C isotopomers and were dependent on several
assumptions regarding glial fluxes (Patel et al., 2004; de
Graaf et al., 2004). With the rapid improvement of MRS
methodology and sensitivity (Gruetter et al., 1994, 1998a;
Henry et al., 2003, 2006), detection of carbon position C2,
C3, and C4 (and their splitting) of glutamate and glutamine
became possible (i.e., direct detection of 13C-labeled compounds)
resulting to the development of two-compartments models with
minimum assumptions regarding glial fluxes (Gruetter et al.,
2001).

Two-Compartment Models
Two-compartment models describe compartmentalization of
brain energy metabolism between glutamatergic neurons and

astrocytes linked by the glutamate-glutamine cycle (Figure 3B).
In contrast to the one-compartment model, this model can
estimate up to nine independent fluxes from the labeling
curves of glutamate, glutamine, and aspartate (Duarte et al.,
2011; Sonnay et al., 2016, 2017) resulting in up to thirteen
parameters that can be assessed when combining some of
the fitted fluxes. More precisely, the fitted parameters are the
neurotransmission rate (VNT; i.e., glutamate-glutamine cycle
representing neurotransmission), the neuronal and glial TCA
cycle (i.e., VPDH and Vg, representing glial full pyruvate
oxidation), pyruvate carboxylase activity (VPC), the trans-
mitochondrial exchange rates describing the combined effects
of AST, GDH and transport across mitochondrial membrane
occurring in neurons (Vn

X) and in glia (V
g
X), glial glutamine

exchange (Vex), pyruvate/lactate influx from plasma (Vin) and
dilution from glial specific substrates (i.e., acetate and fatty
acids) (Vdil). In addition, calculated fluxes are total glial TCA
cycle activity (V

g
TCA = Vg + VPC), the glutamine synthetase

rate (VGS = VNT + VPC), the total cerebral metabolic rate of
glucose oxidation (CMRglc(ox) = [Vn

TCA + V
g
TCA + VPC]/2)

and the pyruvate/lactate out-flux from the brain parenchyma
(Vout = 2CMRglc-2CMRglc(ox) + Vin). CMRglc is the cerebral
metabolic rate of glucose and is usually determined together
with the apparent maximum transport (Tmax) and the apparent
Michaelis constant of glucose transport Kt using labeling of
plasma and brain glucose (Duarte et al., 2011; Sonnay et al.,
2016, 2017). In glial cells, GLS is neglected because the net
13C labeling follows the direction of glutamine synthesis. Vex
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can exchange with unlabeled glutamine of undefined origin
(Oz et al., 2004) or the proposed 1H MR invisible but 13C
labeled glutamine pool (Duarte and Gruetter, 2013). Besides
the contribution to amino acid synthesis, VPC also represents
glutamine efflux (Vefflux) from the brain (i.e., ammonia disposal)
and maintains the mass balance in the glial TCA cycle (Lee et al.,
1998). Glutamate oxidation in the model is possible through VX

(composite representation of AST and GDH). Note that both
VGln and VNT represent the glutamate-glutamine cycle. One is
rather used in the one-compartmentmodel (VGln) as an exchange
rate between glutamate and glutamine, while the other in the
two-compartment model (VNT).

Flux Information Brought by the Turnover Curves of

Amino Acids
Labeling of a particular nucleus depends on pool size and the
numbers of upstream and downstream fluxes (Henry et al., 2006),
affecting therefore the shapes of the turnover curves differently.
Glutamate is the most concentrated amino acid observed by 13C
MRS (Figure 4). Glutamate labeling depends on both VTCA and
VX, meaning that these two fluxes play an important role in
defining glutamate turnover. While glutamate C4 relies on the
composite flux Vgt, that is VX.VTCA/(VX + VTCA), glutamate
C3 and C2 depend on independent contribution of Vgt, VX, and
VTCA (reviewed in Lanz et al., 2013), because they are labeled in
the second turn of the TCA cycle. Therefore, the information
concerning VX is mainly stored in the initial slopes of the
turnover curves of position C4, C3, and C2 of glutamate (for
Vn
X) and glutamine (for V

g
X). In the special case of V

g
X, this flux is

particularly difficult to estimate, because labeled molecules from
the glial TCA cycle into glial glutamate can also be transferred
via VPC (Figure 2). The value of VX has been matter of debate for
a long time, as it has been considered by some to be much larger
than VTCA (Mason et al., 1992; Patel et al., 2004; Yang et al., 2009),
but it was also estimated to be on the same order of magnitude of
VTCA, as reflected in a delay in the C3 and C2 labeling relative
to C4 (Gruetter et al., 2001; Oz et al., 2004; Duarte et al., 2011;
Duarte and Gruetter, 2013; Lanz et al., 2014; Sonnay et al., 2016).

The neurotransmission rate, VNT, represents the conversion
of glutamate to glutamine and vice versa. In this process the
carbon positions are maintained. Therefore, VNT mostly depends
on the relative steady-state enrichment of the turnover curves of
glutamate and glutamine: the closer they are to each other, the
faster VNT.

The first turn of the TCA cycle results in label transfer from
glucose to glutamate (via VX). Usually glutamate C4 is the
first detectable peak in a spectrum during an experiment, as it
appears within the first 5 min of infusion (Patel et al., 2005a;
Duarte et al., 2011; Sonnay et al., 2016 and reviewed in de
Graaf et al., 2003). Then, in the subsequent TCA cycle label is
transferred from position C4 to C3 and C2. In neurons, VPDH

will therefore rely on the slope and the steady-state enrichment of
the turnover curves of position C4, C3, and C2 of glutamate and
glutamine, as labeling from glutamate is transferred to glutamine.
As aspartate is mainly labeled via transamination of the TCA
cycle intermediate oxaloacetate, the slope and the steady-state
enrichment of position C3 andC2 of aspartate are further affected

by VPDH. The slopes of the labeling curves reflect, the rate of
VPDH. In glia the situation is different, since label dilution due to
VPC can occur. VPC dilutes position C3 and labels position C2 of
glutamate and glutamine. Therefore, fast Vg results in a relatively
high and steep glutamine C3 turnover curve (Vg has to be fast to
counterbalance the loss due to VPC).

Diluting position C3 and labeling position C2 of glutamate
and glutamine, the measurement of VPC relies on the relative
curves of position C3 and C2 of glutamate and glutamine, and
the assumption that glutamate is mainly neuronal and glutamine
mainly glial. High C3 and low C2 labeling is associated with slow
VPC, while high C2 and low C3 labeling reflect rather increased
VPC. Therefore, when the FE of glutamine C2 approaches that
of C4, either PC activity is high compared to PDH, and/or
glial-specific dilution of acetyl-CoA (Vdil) occurs.

As mentioned above, Vdil reflects dilution of the acetyl-
CoA pool with specific unlabeled glial substrates. Notably, Vdil

dilutes glial acetyl-CoA 13C labeling relative to its precursor
pyruvate. As the position C4 of glutamate and glutamine only
receives labeling from acetyl-CoA, dilution at this point would
lead to a lower (steady-state) C4 labeling. Since glutamate and
glutamine are mainly present in neurons and glia, respectively,
Vdil is also responsible for lower FE of position C4, C3, and
C2 of glutamine compared to glutamate. However, the effect
of Vdil on enhancing the labeling difference between glutamate
and glutamine is counteracted by VNT, which represents the
glutamate-glutamine cycle. The faster the rate of VNT, the
more similar will be the labeling of glutamate and glutamine.
Note that Vdil in glial acetyl-CoA can result in glutamine
C2 being similar or larger than glutamine C4, which has
been observed in some studies (discussed in Duarte et al.,
2011).

Vex represents an exchange between two putative glutamine
pools, one of which is not released to neurons and may
account for a continuous slow increase in FE over time (Duarte
and Gruetter, 2013). Vex can be in exchange with a 1H MR
invisible but 13C labeled glutamine pool (Hancu and Port,
2011) or with unlabeled amino acids from the blood (i.e.,
glutamine), as astrocytes envelop capillaries (Oz et al., 2004).
This second glutamine pool could be associated with biosynthetic
pathways, which have rates much slower than mitochondrial
energy metabolism (McKenna, 2007). The effect of Vex is
in practice observable near the end of an experiment, when
the labeling of glutamine still increases, while glutamate is at
steady-state.

The difference Vout-Vin directly reflects whether the labeling
from plasma glucose is enough to fuel the whole downstream
metabolism since Vout-Vin = 2CMRglc-2CMRglc(ox). Therefore,
if mitochondrial metabolism is faster than glycolysis, oxidation
of additional substrates, such as lactate, must occur under
certain conditions (Sonnay et al., 2017). In resting human brain,
however, the brain exports lactate to the blood stream (discussed
in Dienel, 2012).

The above descriptions are purely indicative of what happens
for each flux independently. Experimental data is a linear
combination of many fluxes, which will adjust during fitting
process to best describe the turnover curves.
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FIGURE 4 | Typical 13C MRS spectra acquired in vivo in the rat brain during [1,6-13C2]glucose infusion at 14.1T (reproduced from Duarte et al., 2011).

Panel (A) shows a time course of 13C labeling with a temporal resolution of 5.3 min. The spectrum in (B) was acquired for 1.8 h, starting 3.5 h after the infusion onset.

Panel (C) is an expansion of B depicting multiplets originated from isotopomers of glutamine (Gln), glutamate (Glu) and aspartate (Asp).

INCREASED GLIAL AND NEURONAL
GLUCOSE OXIDATION WITH NEURONAL
ACTIVITY ASSESSED BY 13C MRS

The first 13C MRS data acquired in vivo upon stimulus-induced
brain activity were modeled using a one-compartment model
and reported a marked increase in total TCA cycle activity in
the somatosensory cortex of stimulated rats compared to rest
(Hyder et al., 1996, 1997). The following experiment consisted on
measuring neuronal CMRglc(ox) under three different anesthesia-
induced activity states, namely pentobarbital (deep), α-chloralose
(moderate) and morphine (light) (Sibson et al., 1998). In this

study, energy metabolism was found to be coupled to the rate
of the glutamate-glutamine cycle (representing glutamatergic
neurotransmission, VNT in Figure 3) in a proportion of 1:1
above isoelectricity, and the main assumption of the model was
driven by the astrocyte-neuron lactate shuttle (ANLS) hypothesis
according to which two glycolytic ATP are rapidly produced
to fuel both glutamate uptake via the Na+/K+-ATPase and
glutamine synthetase (Pellerin and Magistretti, 1994). According
to this model, no stimulation of oxidative metabolism should
occur in glia, in contrast to neurons. Later several studies in rat
brain (Patel et al., 2004, 2005a; de Graaf et al., 2004), assuming
VPC as a fixed fraction of VGS (Sibson et al., 2001) and V

g
TCA
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as a fraction of total VTCA (van den Berg and Garfinkelm, 1971;
Lebon et al., 2002), corroborated the stoichiometry. However, it
should be noted that constraining the value of VPC to VGS and
V
g
TCA to the total VTCA implies an effective coupling between glial

oxidative metabolism and neuronal function.
Indeed, the astrocytic processes engulfing synapses are capable

of sensing increased synaptic activity (Iadecola and Nedergaard,
2007; Cheung et al., 2014) and to stimulate metabolism in local
mitochondria (Eriksson et al., 1995; Jackson et al., 2014). The
13C MRS study by Gruetter et al. (2001) in the human brain,
modeling for the first time the occurrence of glucose oxidation
in the glial compartment, indeed demonstrated that a significant
fraction (≈21%) of glucose is also oxidized in astrocytes (Gruetter
et al., 2001). Using a similar model, glial oxidation and pyruvate
carboxylase activity was shown to significantly contribute also
to total glucose oxidation in awake animals (Oz et al., 2004),
and rats anesthetized with α-chloralose (Duarte et al., 2011),
pentobarbital (Choi et al., 2002) and thiopental (Sonnay et al.,
2017). In these rodent studies, going from the awake state to deep
anesthesia, glial metabolism was found to account for 30–40% of
total oxidative metabolism.

Recently, our group further addressed the issue of glial and
neuronal oxidative metabolism coupled to neuronal activity. In
particular, we first measured the cortical changes in metabolic
fluxes induced by electrical stimulation of the four paws of
rats. We observed a similar increase (in absolute terms) of
both glial and neuronal oxidative metabolism resulting from
the increase in glutamate-glutamine cycle rate (Figure 5; Sonnay
et al., 2016). Moreover, about 37% of total glucose oxidation, i.e.,
CMRglc(ox), occurred in astrocytes at rest, 39% during stimulation
and 1CMRglc(ox)/1VNT ≈ 1. Interestingly in this study, as
well as in Patel et al. (2005b), PC did not vary with VNT,

suggesting that de novo synthesis of amino acids is not required
for increases of the glutamate-glutamine cycle, neither there is
increase in glutamine loss from the cortical tissue. Indeed Patel
and Tilghman reported that glutamate can stimulate pyruvate
carboxylation (Patel and Tilghman, 1973). Instead, glutamate
could be oxidized in astrocytes to compensate for the high
cost of glutamate uptake during neurotransmission (McKenna,
2013).

In the study by Sonnay et al. (2016) the resulting incremental
ATP produced by glucose oxidation was in excess of the increase
in ATP required by the glutamate-glutamine cycle per se (i.e., glial
Na+/K+-ATPase extrusion of Na+ that is co-transported with
glutamate and glial glutamine synthetase activity). While the fate
of neuronal ATP is likely involved in supporting other functions
than the glutamate-glutamine cycle, such as stabilization of
membrane potentials and restoration of ion (Na+, K+, and Ca2+)
gradients across the cell membrane (Attwell and Laughlin, 2001),
the role of the considerable amount of ATP produced in glial
cells (as estimated from recent 13C MRS experiments in rodents;
Duarte et al., 2011, 2015; Sonnay et al., 2016, 2017) is still
unclear and likely extends beyond fueling glutamine synthetase,
the Na+/K+-ATPase and the Ca2+-ATPase (Fresu et al., 1999).
K+ uptake has been recently suggested to fully account for
astrocytic energy consumption (DiNuzzo et al., 2017). However,
the simulations by DiNuzzo et al. are still unable to account for
substantial V

g
TCA in cases of low glutamate-glutamine cycle rate.

To summarize, in addition to the proposed coupling
of neuronal oxidative metabolism and neurotransmission,
astrocytes increase their oxidative metabolism too, resulting
in a large production of ATP. It is, therefore, important to
investigate the exact fate of the ATP produced. In this context,
the ATP produced in glia might notably support blood flow
regulation (Zonta et al., 2003; Metea and Newman, 2006),
neuronal activity modulation (Volterra and Meldolesi, 2005) and
protection against oxidative stress (Borst and Elferink, 2002;
Dringen and Hirrlinger, 2003). Glycogenolysis might moreover
provide energy to support neurotransmission (i.e., release and
uptake of glutamate; Sickmann et al., 2009).

FUNCTIONS OF ASTROCYTES IN THE
BRAIN

Blood Flow Regulation
Brain vasculature is rich in arterioles and fine capillaries (Reina-
De La Torre et al., 1998), and CBF regulation is mainly
controlled by relaxation and constriction of these blood vessels
(Attwell et al., 2010). In this context astrocytes and neurons are

FIGURE 5 | Relation of estimated total, neuronal and glial glucose oxidative metabolism to the glutamate-glutamine cycle in the rat cortex

anesthetized with α-chloralose (originally reported in Sonnay et al., 2016). Metabolic fluxes are in µmol/g/min. Average fluxes across the resting (in blue) and

stimulated (in red) group are shown with associated SD.
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presumed to play a key role in modulating CBF to match energy
demands. In neurons, upon NMDA activation intracellular
Ca2+ concentration increases, which activate phospholipase
A2 (PLA2) in the cytosol that then produces arachidonic
acid (AA). In astrocytes, activation of mGluR by glutamate
triggers the translocation of the α-subunit of the receptors to
phospholipase C (PLC) mediating the conversion of GTP to
GDP (Bockaert et al., 1993). Activated PLC cleaves membrane
phosphatidylinositol 4,5-bisphosphate (PIP2) to diacylglycerol
(DAG) and inositol 1,4,5-triphosphate (IP3) that triggers Ca

2+

increase. In neurons, cyclooxygenase (COX) converts AA into
prostaglandins E2 (PGE2) leading to vessel dilation (Wang et al.,
2005). In astrocytes, AA can be converted either to PGE2 by
COX (Zonta et al., 2003) or to epoxeicosatrienoic acids (EET)
by epoxygenase, which diffuse through pericytes (Hamilton et al.,
2010; or smooth muscle cells for arteries) for blood vessel
dilation. If AA is converted into 20-hydroxyeicosatetraenoic

acid (20-HETE) by ω-hydroxylase in pericytes, it will cause
vasoconstriction (Metea and Newman, 2006). New line of
evidence suggest moreover that the astrocytic production of
PGE2 might be dependent on glutathione levels (Howarth
et al., 2017, and references therein). In neurons activation of
ionotropic glutamate receptors located on the post-synaptic
zone (i.e., NMDA) also activates nitric oxide synthase (NOS),
which in turn produces NO. Interaction of NO with soluble
guanylate cyclase (sGC) triggers cGMP dependent vasodilation
mechanisms (Laranjinha et al., 2012; Lourenço et al., 2014).
Moreover, neuronal vesicular ATP can be released and act on
astrocytic purinergic receptors (P2Y) to raise intracellular Ca2+

concentrations mediating the conversion of GTP to GDP and
PLC activation (reviewed in Erb and Weisman, 2012; Bazargani
and Attwell, 2016). Alternatively, ATP can also intracellularly
be converted to adenosine by adenylate kinase cytosolic 5′-
nucleotidase (reviewed in Iadecola, 2004). Intracellular adenosine

FIGURE 6 | Schematic representation of possible signaling pathways mediating neurovascular coupling. Activation of glutamate receptors (mGluR, NMDA)

triggers increases in Ca2+ concentration. Ca2+ increase upon mGluR activation is mediated by phospholipase C (PLC) and inositol 1,4,5-triphosphate (IP3).

Arachidonic acid (AA) is then produced by phospholipase A2 (PLA2). In astrocytes AA can be converted either to prostaglandins E2 (PGE2 ) by cyclooxygenase (COX)

or to epoxeicosatrienoic acids (EET) by epoxygenase for vasodilation. If AA is converted into 20-hydroxyeicosatetraenoic acid (20-HETE) by ω-hydroxylase, it will lead

to vasoconstriction. In neurons, increase in Ca2+ concentration results in either PGE2 or nitric oxide (NO) production via NO synthase (NOS). In pericytes and smooth

muscle cells NO interacts with the soluble guanylate cyclase (sGC) for cGMP- dependent vasodilation mechanisms. Neuronal release of vesicular ATP can activate the

astrocytic purinergic receptors (P2Y) to raise intracellular Ca2+ concentration. Intracellular ATP can be converted to adenosine by adenylate kinase cytosolic

5′-nucleotidase. Intracellular adenosine can be transported by the nucleoside transporters to activate the adenosine receptors (AR) for cAMP-dependent vasodilation

mechanisms via adenylate cyclase and inhibiting the vasoconstrictive effects of 20-HETE. Lactate can inhibit the astrocytic prostaglandin transporter (PGT)-mediated

PGE-lactate exchange, increasing therefore extracellular PGE2 concentration. K+ and H+ ions, associated notably to action potentials and oxidative metabolism,

respectively, can also modulate vasodilation. Astrocytes can modulate synaptic plasticity in releasing vesicles containing glutamate, D-serine, ATP and neurotrophic

factors in an ATP-dependent manner. Glutathione is produced in astrocytes and can be released through multidrug resistance proteins (MRP) mediating ATP

hydrolysis. Release of ascorbate mediate non-hydrolytic ATP binding to volume-sensitive organic osmolyte-anion channel (VSOAC) and is stimulated by glutamate.

The left and right cells represent an astrocyte and a neuron, respectively. The difference in TCA cycle size reflects the fact that neurons are more oxidative than

astrocytes. The red circle is a blood vessel, the surrounding darker layer represents the endothelial cells and the thicker outer line is the smooth muscle cells (or

pericytes). Word in bold red and bold purple corresponds to energy-producing and consuming processes, respectively. Enzymes are in gray italic. The dashed line

represents vasodilation and the dotted line vasoconstriction.
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can be released extracellularly by nucleoside transporters (Iliff
et al., 2003), which can in turn act on adenosine receptors
located on pericytes (Iliff et al., 2003; Gordon et al., 2008) and
trigger the activation of adenylate cyclase (in mediating the
conversion of GTP to GDP) that converts ATP to cAMP (Suzuki
et al., 1988). Increase in cAMP leads to vasodilation and inhibits
the vasoconstrictive effects of 20-HETE (Koehler et al., 2006;
Figure 6).

Other lines of evidence suggest that the transfer of excess
electrons from NADH to O2 by NADH oxidase (Wolin, 1996)
can generate O−

2 , which raises intracellular Ca2+ levels (Ikebuchi
et al., 1991) activating in turn NOS for NO production (Ido et al.,
2001).

Two different dynamics of Ca2+ signaling have been proposed
to initiate and sustain hemodynamic responses. First, brief
(100ms) Ca2+ responses in astrocytic end-feet, occurring
downstream neuronal activation and scaling with the level
of neuronal activity, triggers vessel dilation onset. Second, a
slower and long lasting (seconds) Ca2+ elevation contributes
to a prolonged blood vessel dilation (Lind et al., 2013). Yet,
the observation that astrocytic Ca2+ can lag a few seconds
arteriolar dilation supports the hypothesis that astrocytic Ca2+-
dependent mechanisms may not be a prerequisite for CBF
response initiation (Nizar et al., 2013). Local CBF response
could be immediately regulated by fast (400 ms) feed-forward
mechanisms directly related to neuronal activity (e.g., neuronal
NO production (Buerk et al., 2003), action potential-associated
K+ current (Paulson and Newman, 1987), neuronal arachidonic
pathway activation Zonta et al., 2003; Metea and Newman, 2006),
rather than feedback mechanisms associated with metabolism
(e.g., lactate, astrocytic mGluR-related signaling, ATP-derived
adenosine signaling), that probably occur at longer time scales
(seconds) to match CBF with energy demands (discussed in
Buxton, 2010). In this context the fact that the CBF/CMRO2 ratio
varies between brain regions, as well with stimulus frequency
(discussed in Buxton, 2010) and length (Lin et al., 2009), further
suggests regulation of this ratio by notably neuronal activity-
associated mechanisms (discussed in Buxton, 2010). Recent data
further address this controversy in suggesting Ca2+-dependent
signaling for modulation of capillary but not arteriolar diameter
(Biesecker et al., 2016). Because CO2, one of the end products
of oxidative metabolism, can diffuse out of the cells and is in
rapid equilibrium with HCO−

3 , extracellular H+ ions can also
locally contribute to CBF regulation (Kuschinsky and Wahl,
1978).

Neuronal Activity Modulation and Synaptic
Plasticity
Although astrocytes do not generate action potentials per se
they can actively modulate synaptic transmission and neuronal
synchronization in mediating notably the release of vesicles-
containing neurotransmitters and neuromodulators, such as
glutamate, ATP, adenosine, and D-serine. Glutamate-containing
microvesicles are present in astrocytes and upon Ca2+ signaling
glutamate molecules are released and can target post-synaptic
receptors (i.e., NMDA, AMPA, mGluR, and kainate) to fine

tune firing threshold (Volterra and Meldolesi, 2005). In the
extracellular space ATP can be converted to adenosine by the
dephosphorylating action of the ectonucleotidase anchored at
the plasma membrane (Joseph et al., 2003). Adenosine can
activate adenosine receptors and therefore modulate neuronal
activity by triggering K+ efflux (e.g., Newman, 2003), as well
as intermediary metabolism (Haberg et al., 2000; Hammer
et al., 2001; Duarte et al., 2016) and blood flow (Blood et al.,
2003; Iliff et al., 2003; Gordon et al., 2008). D-serine that
can be released from astrocytes was also shown to modulate
electrical neurotransmission by acting at the glycine binding
site of NMDA receptor (Stevens et al., 2003). Moreover, the
production of neurotrophic factors was shown to promote the
formation and the function of synapses (Pfrieger and Barres,
1997), and to regulate intracellular Ca2+ homeostasis upon
stimulation of the glutamate receptors and thus to preserve
the activity of the mitochondrial electrochemical gradient
and therefore energy metabolism (El Idrissi and Trenkner,
1999). Glutamate, D-serine, ATP and neurotrophic factors
are notably released exocytotically, mediating Ca2+ signaling
and ATP-dependent soluble N-ethylmaleimide-sensitive factor
activating protein receptor (SNARE) disassembly (Goda, 1997;
Parpura and Zorec, 2010), resulting in energy consumption
(Figure 6). The delivery of these vesicles to the plasma
membrane involves cytoskeleton assembly/disassembly (Potokar
et al., 2007) requiring ATP hydrolysis (Korn et al., 1987; Le
Clainche et al., 2003). Interestingly, the number of astrocytic
processes, as well as their contact with active synapses, are
stimulated by extracellular glutamate and also involve actin-
dependent mechanisms (Cornell-Bell et al., 1990) requiring
ATP hydrolysis (Korn et al., 1987; Le Clainche et al.,
2003).

Protection against Oxidative Stress
The use of NADH through the electron transport chain for ATP
production and mitochondrial Ca2+ influx results in reactive
oxygen species (ROS) production (Boveris and Chance, 1973;
and reviewed in Görlach et al., 2015). Yet, the cooperative action
of astrocytes in culture was shown to protect neurons against
ROS toxicity (Desagher et al., 1996), and astrocytes express
larger amounts of antioxidant molecules and ROS-detoxifying
enzymes than neurons (Makar et al., 1994). The thiol group of the
glutathione molecule acts as an important electron donor. While
both neurons and astrocytes synthesize glutathione, neuronal
glutathione levels are higher in the presence of astrocytes
(Dringen et al., 1999), probably because of shuttling of cysteine-
glycine (glutathione precursor) from astrocytes to neurons
(Dringen and Hirrlinger, 2003). Glutathione transport across
cells is notably mediated by multidrug resistance proteins (MRP)
that belong to the subgroup ABCC of the ATP-binding cassette
transporters, which mediate passage via ATP hydrolysis (Borst
and Elferink, 2002; Dringen and Hirrlinger, 2003; Figure 5).
Activation of astrocytic glutamate receptors was shown to
translocate nuclear factor-erythroid 2-realted factor-2 (Nrf2)
(present in lower concentrations in neurons) into the nucleus
and to trigger the expression of antioxidant genes, notably
related to glutathione metabolism (Jimenez-Blasco et al., 2015).
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Astrocytes synthesize large amount of hydrogen sulfide, which
was demonstrated to not only have neuroprotective properties
(Lee et al., 2009), but also act as neuromodulator in enhancing
NMDA responses (Abe and Kimura, 1996) and modulating glial
Ca2+ waves (Nagai et al., 2004).

Ascorbate is also another important antioxidant anion in the
brain and glutamate was demonstrated to stimulate its release
from astrocytes (Wilson et al., 2000), suggesting an essential
protecting role of the ascorbate flux from astrocytes to neurons
during synaptic activity (Acuña et al., 2013). Astrocytes are
responsible for the recycling of the neuronal extracellularly
released dehydroascorbic acid (the oxidized form of ascorbate)
into ascorbate, which can be exported to neurons (Covarrubias-
Pinto et al., 2015). Extracellular transport of ascorbate from
astrocytes is believed to be mediated by volume-sensitive organic
osmolyte-anion channel (VSOAC) that requires non-hydrolytic
ATP binding (Jackson et al., 1994; Covarrubias-Pinto et al., 2015;
Figure 6). Considering the fact that efficacy of the mechanisms
stimulated by astrocytic glutamate uptake depends on the density
of the transporters at the plasma membrane (Robinson, 2002),
efficient trafficking of EAAT2-containing vesicles and exocytosis
must moreover take place (Stenovec et al., 2008).

Glycogenolysis
Glycogen constitutes a glucose storage in the form of highly
branched polysaccharide molecules (Preiss and Walsh, 1981)
found in high concentrations in the liver and in skeletal muscle,
although smaller but significant levels (6–8 µmol/g) are also
estimated in the human brain (Oz et al., 2015). Glycogenesis
(glycogen production from glucose 1-phosphate by glycogen
synthase) and glycogenolysis (glycogen breakdown to glucose 6-
phosphate by the combined action of glycogen phosphorylase
and phosphoglucomutase) mainly occurs in astrocytes (Dringen
et al., 1993; Figure 1), and the latter can be stimulated by
extracellular glutamate and K+ (Hertz et al., 2015). In line with
this, glycogen levels were found to increase with anesthesia
(Morgenthaler et al., 2006) and decrease during somatosensory
(Swanson et al., 1992) and visual (Dienel et al., 2007a)
stimulation. However, no change in brain glycogen level was
measured during visual stimulation in humans (Oz et al., 2007).
While glycogen-derived lactate has been demonstrated to have
a pivotal role in memory formation and consolidation (Gibbs
and Hertz, 2005; Suzuki et al., 2011; Boury-Jamot et al., 2016),
learning mechanism and synaptic strength (Duran et al., 2013),
and neuronal function (Tekkök et al., 2005), the role of glycogen
is unlikely limited to fuel neuronal metabolism. Recently,
astrocytic glycogenolysis was shown to provide energy to sustain
glutamatergic neurotransmission (i.e., glutamate uptake and
release; Sickmann et al., 2009). Glycogen might act as a substrate
for de novo formation of glutamate (Gibbs et al., 2007) and
glycogen-derived energy might be required over glucose-derived
energy for pyruvate carboxylation (Sickmann et al., 2012),

suggesting that astrocytic glycogen metabolism might be crucial
to maintain proper brain function.

CONCLUSION

While the essential role of astrocytes to cerebral function is
now widely accepted, quantitative assessment of their actual
contribution to energy metabolism has been missing, notably
because the methodologies did not allow differentiating between
neurons and astrocytes. Direct 13C MRS along with advanced
metabolic modeling can provide measurements of both neuronal
and glial metabolism in specific brain regions and under various
activation states. In this context, new data indicate that the rate of
astrocytic metabolism is about half of that in neurons, and can be
activated by sensory stimulation and that the astrocytic response
amplitude can be, in absolute terms, as large as in neurons,
suggesting that the changes in ATP requirements associated
with the glutamate-glutamine cycle are coupled with the ATP
produced by glucose oxidation in both compartments.

Increase in neuronal metabolism likely supports
neurotransmission-associated functions, such as restoration
of ion gradients caused by action potentials, post-synaptic
currents, and transport of glutamate into vesicles. Adaptation
of glial metabolism also provides energy for neurotransmission
besides housekeeping tasks, likely fueling the production and
action of modulators of neuronal activity and of synaptic
plasticity, supply of antioxidant molecules and neurotrophic
factors that are necessary for adequate brain function, and
regulation of blood flow and volume. Astrocytes are moreover
important source of glycogen that can be used specifically for
neurotransmission support.

Progress in MR detection methods of 1H and non-1H
nuclei is a promising direction for more detailed and complete
metabolic dataset acquisition. While this provides insights into
cellular function in vivo, it also requires improvement of
current metabolic models describing best energy metabolism.
Simultaneous acquisition of other types of data, such as electrical
activity and blood flow, might contribute to more precise
characterization of the coupling between brain function and
energy metabolism by MRS.
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Calibrated BOLD is a promising technique that overcomes the sensitivity of conventional

fMRI to the cerebrovascular state; measuring either the basal level, or the task-induced

response of cerebral metabolic rate of oxygen consumption (CMRO2). The calibrated

BOLD method is susceptible to errors in the measurement of the calibration parameter

M, the theoretical BOLD signal change that would occur if all deoxygenated hemoglobin

were removed. The original and most popular method for measuringM uses hypercapnia

(an increase in arterial CO2), making the assumption that it does not affect CMRO2.

This assumption has since been challenged and recent studies have used a corrective

term, based on literature values of a reduction in basal CMRO2 with hypercapnia. This

is not ideal, as this value may vary across subjects and regions of the brain, and will

depend on the level of hypercapnia achieved. Here we propose a new approach, using

a graded hypercapnia design and the assumption that CMRO2 changes linearly with

hypercapnia level, such that we can measure M without assuming prior knowledge of

the scale of CMRO2 change. Through use of a graded hypercapnia gas challenge, we

are able to remove the bias caused by a reduction in basal CMRO2 during hypercapnia,

whilst simultaneously calculating the dose-wise CMRO2 change with hypercapnia.

When compared with assuming no change in CMRO2, this approach resulted in

significantly lower M-values in both visual and motor cortices, arising from significant

dose-dependent hypercapnia reductions in basal CMRO2 of 1.5 ± 0.6%/mmHg (visual)

and 1.8 ± 0.7%/mmHg (motor), where mmHg is the unit change in end-tidal CO2

level. Variability in the basal CMRO2 response to hypercapnia, due to experimental

differences and inter-subject variability, is accounted for in this approach, unlike previous

correction approaches, which use literature values. By incorporating measurement of,

and correction for, the reduction in basal CMRO2 during hypercapnia in the measurement

ofM-values, application of our approach will correct for an overestimation in both CMRO2

task-response values and absolute CMRO2.
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INTRODUCTION

Blood oxygenation level dependent (BOLD) functional MRI
(fMRI) signal contrast is widely used as a surrogate measure of
underlying neuronal activity (Kwong et al., 1992; Ogawa et al.,
1992). The BOLD signal is dependent on the concentration
of deoxygenated hemoglobin in blood, which is modulated by
changes in cerebral blood flow (CBF), cerebral blood volume
(CBV), and cerebral metabolic rate of oxygen consumption
(CMRO2). Significant inter-region and inter-subject variability
in the BOLD response arises due to vascular factors (Chiarelli
et al., 2007a; Lu et al., 2008), which could confound interpretation
of the underlying neuronal activity from BOLD results. The
technique termed calibrated BOLD was developed to address
this variability (Davis et al., 1998; Hoge et al., 1999). A
calibration parameter (M), defined as the theoretical BOLD
signal change that would occur if all deoxygenated hemoglobin
were removed, incorporates basal hemodynamic parameters,
along with parameters that are dependent on the specific
MRI acquisition scheme. This calibration parameter allows for
calculation of either absolute CMRO2 (Bulte et al., 2012; Gauthier
and Hoge, 2012; Wise et al., 2013), or the task-dependent relative
change in CMRO2 (Davis et al., 1998; Hoge et al., 1999). CMRO2

directly reflects tissue metabolism, so is widely considered a
more direct measurement of underlying neuronal activity than
the cerebrovascular CBF and CBV responses. However, this
approach is sensitive to errors in the measurement of M (Hoge
et al., 1999; Chiarelli et al., 2007b).

The original and most popular method for calculatingM uses
hypercapnia (an increase in arterial CO2). Typically, hypercapnia
is presented through inhalation of gasmixtures including CO2, or
through reductions in breathing depth and/or pace (e.g., breath
hold). The cerebral vasculature is sensitive to changes in partial
pressure of carbon dioxide dissolved in arterial blood (PaCO2),
such that hypercapnia is a potent vasodilator, causing increases
in CBF and CBV (Kety and Schmidt, 1948; Ito et al., 2003;
Noth et al., 2006; Chen and Pike, 2010b; Ho et al., 2011). For
calibrated BOLD, hypercapnia is assumed to be a purely vascular
stimulus, providing a change in CBF and CBV without a change
in CMRO2 (Davis et al., 1998). However, this iso-metabolic

assumption is the subject of controversy (Yablonskiy, 2011), with
literature indicating increases, decreases and no change in basal
CMRO2 with hypercapnia (Kety and Schmidt, 1948; Kliefoth
et al., 1979; Rhodes et al., 1981; Hoffman et al., 1982; Horvath
et al., 1994; Jones et al., 2005; Sicard and Duong, 2005; Chen
and Pike, 2010a; Jain et al., 2011; Xu et al., 2011). Recent human
MRI studies (Chen and Pike, 2010a; Jain et al., 2011; Xu et al.,
2011) have shown mixed results, calculating CMRO2 using the
Fick principle to combine CBF (phase contrast MRI) and OEF
(either T2- or susceptibility-based venous blood oxygenation

Abbreviations: ASL, arterial spin labeling; BOLD, blood oxygenation level

dependent (fMRI signal contrast); CMRO2, cerebral metabolic rate of oxygen

consumption; CBF, cerebral blood flow; CBV, cerebral blood volume; fMRI,

functional magnetic resonance imaging; PaCO2, partial pressure of carbon dioxide

dissolved in arterial blood; PETCO2, end-tidal partial pressure of carbon dioxide;

ROI, region of interest.

measurements). Xu et al. found a significant 13.4± 2.3% decrease
with a 5% CO2 hypercapnic challenge, whilst Chen and Pike
and Jain et al. found no significant change in basal CMRO2

with hypercapnia. Whilst these contrasting findings may arise
due to methodological differences, any CMRO2 change with
hypercapnia appears to be on the order of the measurement
accuracy of these methods. Despite this limited sensitivity, recent
calibrated BOLD studies have begun to correct for an assumed
reduction in basal CMRO2 with hypercapnia (Bulte et al., 2012),
based on these literature values (Xu et al., 2011). An appropriate
choice of CMRO2 response (or lack thereof) to hypercapnia is
important for calibrated BOLD experiments due to the sensitivity
of the method to propagation of errors in M through to the
endpoint CMRO2 calculation (Hoge et al., 1999; Chiarelli et al.,
2007b; Blockley et al., 2015).

With measurement sensitivity on the order of the changes
observed, current MR techniques are unsuited to fully
characterize the relationship between PaCO2 and CMRO2.
However, electrophysiological measurements appear to have
more sensitivity to investigate the dynamic range of mild
hypercapnia PaCO2 values. Studies in both non-human primates
and, more recently, in humans show reductions in spontaneous
neuronal oscillatory power with hypercapnia (Jones et al., 2005;
Zappe et al., 2008; Hall et al., 2011; Xu et al., 2011). We have
recently observed a linear relationship between PaCO2 and
spontaneous neuronal oscillatory power (Driver et al., 2016).
Whilst there is currently no direct relationship established
between CMRO2 and neuronal oscillatory power, they may
share similar underlying neurochemical mechanisms for their
responses to hypercapnia, specifically extracellular pH changes
modulating ATP channels (Dulla et al., 2005). Therefore, in the
following paragraphs, we explore the addition to the calibrated
BOLD technique of an assumption of a linear relationship
between hypercapnia level and CMRO2.

In this work, we present a new approach, relaxing the
iso-metabolic hypercapnia assumption in the calibrated BOLD
technique. By acquiring multiple levels of hypercapnia, M and
the dose-wise CMRO2 response to hypercapnia are solved for as
two unknowns in a set of simultaneous equations (one equation
for each hypercapnia level). We apply this approach to data
presented previously (Murphy et al., 2013), measuring both the
calibration parameter M and the dose-wise CMRO2 response to
a graded hypercapnia challenge.

MATERIALS AND METHODS

Theory
The calibrated BOLD equation, as proposed by Davis et al. (1998)
and elegantly restated by Hoge et al. (1999) can be used to model
the BOLD signal change during hypercapnia:

1BOLDHC

BOLD0
= M

[

1−
(

CBFHC

CBF0

)α−β

·
(

CMRO2,HC

CMRO2,0

)β
]

(1)

Where M is the calibration parameter, 1 denotes the difference
between the current state and baseline state, subscripts HC and
0 denote hypercapnia and baseline (normocapnia) conditions,
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respectively. The exponent α describes an assumed coupling
relationship between CBF and CBV (Grubb et al., 1974; Chen
and Pike, 2010b), whilst β is a power-law relationship between
venous blood oxygenation and transverse relaxation rate (Ogawa
et al., 1993; Boxerman et al., 1995; Driver et al., 2010; Croal et al.,
2017). If the iso-metabolic assumption were used, the CMRO2

term would reduce to 1, with numerator and denominator being
equal. M could then be calculated from Equation (1) using
measured values for the relative changes in BOLD and CBF due
to hypercapnia.

We propose to remove the iso-metabolic assumption, such
that the CMRO2 term becomes an unknown parameter to be
solved alongside M. To do this, we measure BOLD and CBF
responses to two levels of hypercapnia, setting up two versions
of Equation (1). Since the CMRO2 term may change between
the two equations, we assume a linear relationship between
CMRO2 and hypercapnia level. A new parameter κ is defined
as the dose-wise fractional CMRO2 change to a unit (1 mmHg)
change in end-tidal partial pressure of carbon dioxide (PETCO2),
a surrogate measure for PaCO2.

CMRO2,HC

CMRO2,0
= 1+ κ · 1PETCO2 (2)

Substituting Equation 2 into Equation 1:

1BOLDHC

BOLD0
= M

[

1−
(

CBFHC

CBF0

)α−β

· (1+ κ · 1PETCO2)
β

]

(3)
Therefore, with PETCO2 measured by sampling exhaled gas, M
and κ are two unknowns, which can be solved for using two
equations, one for each hypercapnia level.

Data Acquisition
Fifteen subjects (7M/8F, age range 21–36 years) participated in 2
sessions in which scans were acquired using a 3 T whole body
MRI system (GE Excite HDx, Milwaukee, WI, USA) with an
eight-channel receive coil. The School of Psychology, Cardiff
University Ethics Committee approved this study and subjects
gave written informed consent prior to participating.

Data were acquired using a pulsed arterial spin labeling
(ASL) proximal inversion and control for off-resonance effects
(PICORE), quantitative imaging of perfusion using a single
subtraction (PICORE QUIPSS II) (Wong et al., 1998) imaging
sequence. This sequence used a dual-echo gradient echo readout
(Liu et al., 2002) and spiral-out k-space acquisition [Glover, 1999;
490 repetitions (image volumes), TE1 = 3.3 ms TE2 = 29 ms,
TR = 2,200 ms, flip angle 90◦, FOV 22 cm, matrix 64 × 64, 12
slices of 7 mm thickness with an inter-slice gap of 1 mm, TI1
= 600 ms, TI2 = 1,500 ms for the most proximal slice, 10 cm
inversion slab thickness, adiabatic hyperbolic secant inversion
pulse, 10 mm gap between labeling slab and bottom slice, 10 cm
QUIPSS II saturation band thickness]. Additionally, whole brain
T1-weighted structural scan (fast spoiled gradient recalled echo,
1 × 1 × 1 mm voxels, TI/TR/TE = 450/7.8/3 ms) was acquired
for segmentation of gray matter.

Participants were presented with hypercapnia levels of
+4 and +8 mmHg 1PETCO2 above their normal resting
level. End-tidal CO2 levels were changed at 2-min intervals
between baseline, +4 and +8 mmHg values, in a randomized
order. This provided three 2-min blocks for each condition,
across the 18 min ASL scan. Gas mixtures were delivered
to the subject through a tight-fitting face-mask (Quadralite,
Intersurgical, Wokingham, Berkshire, UK). Flow rates of two
gas mixtures, namely medical air (21% O2, 79% N2) and a
5% CO2 mixture (5% CO2, 20% O2, 75% N2), were manually
adjusted to provide an inspired gas mixture of 30 L/min. The
respiratory circuit included a reservoir on the expired limb
to permit re-breathing in the event that the instantaneous
inspiratory rate exceeded 30 L/min. Expired gas concentrations
were sampled from the face-mask and PETCO2 and PETO2

(end-tidal pO2) were measured using rapidly responding gas
analyzers (AEI Technologies, Pittsburgh, PA, USA). A manual
feedback procedure was used to reach each hypercapnia
level, whereby the respective flow rates of medical air and
the 5% CO2 mixture were adjusted to reach the PETCO2

target.
A combined visual and motor task was simultaneously

performed, consisting of blocks of 8 Hz flashing checkboard and
right-handed self-paced finger tapping with a range of block
durations between 20 and 30 s. These blocks were interspersed
with 20–30 s blocks of rest. The range in task and rest block
durations were chosen so that the visual, motor and CO2 tasks
had minimal correlation with each other. The task data was used
to define primary visual and motor cortex ROIs.

Data Analysis
CBF time series were calculated from the first echo by separating
tag and control time series, interpolating to the TR and
subtracting. A similar procedure using averaging rather than
subtraction yielded BOLD time series from the second echo. R2

∗

was also calculated by performing an exponential fit across the
two echo times, separately for tag and control time series, then
combining tag and control R2

∗ values by surround averaging.
A gray matter (GM) ROI was calculated for each subject by
segmenting their anatomical image into three tissue types (gray
matter, white matter and cerebrospinal fluid) using FSL’s fast.
The GM map was resampled to the functional data resolution.
Visual and motor ROIs were calculated by including CO2, visual
and motor timings in a voxel-wise GLM for both the BOLD
and CBF data. The results for each subject were transformed
into MNI space and a voxel-wise t-test against 0 across subject
was performed. The t-test maps were FDR thresholded at p
= 0.05. The resulting BOLD and CBF activation maps were
transformed back into individual subject space. The visual and
motor ROIs were then calculated for each subject by taking
an intersection map between the BOLD activation map, the
CBF activation map and the individual GM ROI. Therefore, a
voxel was only included in the motor ROI if it significantly
responded to the motor task in both the BOLD and CBF data and
was present in the individual’s GM mask. A similar procedure
was used for the visual ROI. Once the ROIs were defined,
the BOLD and CBF time series were averaged over the visual,
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motor, and GM ROIs, then linear detrending was performed
using baseline periods, before averaging across sessions for each
subject.

BOLD and CBF responses to each hypercapnia level
(relative to baseline) were input into +4 and +8 mmHg
versions of Equation (3), then these two equations were solved
simultaneously for M and κ , using a two-parameter non-linear
fitting routine (lsqcurvefit, Matlab, The MathWorks, Natick,
USA). Subjects that reached the boundary conditions of the
non-linear fitting routine were removed from further analysis
(boundary conditions 1<M<20%; −5< κ < +5%/mmHg). For
comparison with the iso-metabolic assumption, the same two
equations as above (+4 and +8 mmHg versions of Equation 3)
were solved simultaneously using a one-parameter fit, to calculate
M whilst fixing κ = 0.

Optimized values of α= 0.14 and β= 0.91 were used (Griffeth
and Buxton, 2011), hereafter referred to as the empirically derived
α/β pairing. To ensure that our findings were not biased by
choice of this α/β pairing, we also repeated the non-linear fitting
with the following two alternative α/β pairings that have been
used previously for calibrated BOLD experiments at 3 T. Values
of α = 0.2 and β = 1.3 have been used at 3 T (Bulte et al., 2012),
hereafter referred to as the 3 T specific α/β pairing. Finally, a
simplified model has been proposed recently, substituting α/β for
a single parameter θ = 0.06 at 3 T (Merola et al., 2016). In this
case, this simplified model is equivalent to α = 0.06 and β = 1,
hereafter referred to as the simplified model α/β pairing.

RESULTS

The two levels of hypercapnia resulted in 1PETCO2 increases of
4.8 ± 0.3 and 8.4 ± 0.4 mmHg (mean ± SEM across subjects).
BOLD and CBF responses to the two levels of hypercapnia and
the respective task (where applicable) are presented for visual,
motor cortices and the remaining GM in Table 1. To assess
BOLD sensitivity at the 29 ms TE, baseline R2

∗ is also reported
for each ROI in Table 1. Group-average maps (MNI space) of the
BOLD and CBF responses to the two levels of hypercapnia are
shown in Figure 1.

For results presented based on either the two- or one-
parameter fits, the number of subjects included after discarding
those that reached the boundary conditions are presented in
the form (N = #/15), where # corresponds to the number of
subjects included. The two-parameter fit with the empirically
derived α/β pairing (0.14/0.91) gaveM = 9.6± 1.3% (N = 14/15)
and M = 4.7 ± 0.6% (N = 13/15), in the visual and motor
cortices respectively and M = 8.6 ± 0.9% (N = 15/15) in
the remaining GM. The dose-dependent hypercapnia CMRO2

parameter κ = −1.5 ± 0.6%/mmHg, κ = −1.8 ± 0.7%/mmHg
and κ = −1.3 ± 0.4%/mmHg showed significant reductions in
CMRO2 with hypercapnia level (Wilcoxon p = 0.04, p = 0.03,
and p = 0.002). The two-parameter fit resulted in significantly
lower M-values than the one-parameter fit for subjects that did
not reach the boundary conditions for both fits [Figure 2; visual
p = 0.04, (N = 9/15); motor p = 0.008, (N = 13/15); GM
p= 0.001, (N = 14/15)].

TABLE 1 | BOLD and CBF responses (% change from baseline) for the two

hypercapnia levels and for the visual and motor tasks (mean ± SEM

across subjects).

ROI 1PETCO2(mmHg) %BOLD %CBF Baseline R2* (s
−1)

Visual 4.8 ± 0.3 0.9 ± 0.3 13 ± 3 31.3 ± 1.6

8.4 ± 0.4 1.7 ± 0.3 19 ± 4

0 (+ Task) 1.7 ± 0.1 33 ± 3

Motor 4.8 ± 0.3 0.8 ± 0.1 30 ± 15 22.3 ± 0.7

8.4 ± 0.4 1.4 ± 0.2 43 ± 16

0 (+ Task) 1.3 ± 0.1 73 ± 19

GM 4.8 ± 0.3 1.0 ± 0.1 13 ± 2 31.7 ± 0.9

8.4 ± 0.4 1.6 ± 0.1 17 ± 3

Baseline R2* values are also presented for each ROI.

The effect of changing the α/β pairing is assessed in
Figures 3, 4. Figure 3 shows a scatter plot of κ across subjects for
each α/β pairing and each region of interest, with mean ± SEM
across subjects presented above. The group-averaged κ-values
remain stable across α/β pairings, indicating a robust decrease
in CMRO2 during hypercapnia. Figure 4 presents M values
across α/β pairings. Despite the amplitude of M varying with
α/β pairing, M calculated using the two-parameter fit was
consistently lower than that calculated using the one-parameter
(iso-metabolic) fit.

DISCUSSION

Through use of a graded hypercapnia gas challenge, we are
able to remove the bias caused by a reduction in basal CMRO2

during hypercapnia, whilst simultaneously calculating the dose-
wise CMRO2 change with hypercapnia.We observed consistently
lower M-values when calculated from our new approach,
compared to those calculated using an iso-metabolic hypercapnia
assumption, evidence for a systematic overestimation of M
when using the iso-metabolic assumption. In terms of studies
calculating the relative change in CMRO2 to a task, this
overestimation in M would result in an overestimation in the
CMRO2 task response (see Equation 1, replacing hypercapnia
terms with the equivalent task response terms). In terms
of studies investigating absolute CMRO2 measurements, the
overestimation inM would lead to an overestimation of absolute
CMRO2 (Blockley et al., 2015).

In this study, we define a dose-wise CMRO2 response to
hypercapnia, κ . Our findings suggest a decrease in CMRO2 with
hypercapnia in the primary visual and motor cortices, as well
as in the remaining GM. The scale of the CMRO2 reduction is
broadly similar to that observed by Xu et al. (2011), where their
5% CO2 challenge resulted in a 13.4% decrease in global CMRO2.
Based on the reported average 1PETCO2 of 8.7 mmHg, this is
equivalent to κ = −1.5%/mmHg. This is within the range of the
GM value that we measured of κ = −1.3 ± 0.4%/mmHg. Unlike
previous work, which measured the global CMRO2 response
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FIGURE 1 | Group-average maps of BOLD and CBF responses to the +4 and +8 mmHg 1PETCO2 hypercapnia conditions. The three slices shown are at

the level of MNI coordinate Z = +12, +28, and +42 mm, respectively.

FIGURE 2 | Comparison of M (mean ± SEM) calculated using the empirically derived α/β pairing (0.14/0.91) from the two-parameter (1CMRO2 varies

linearly with 1PETCO2) and one-parameter (iso-metabolic) models for subjects that did not reach the boundary conditions for both fits (visual cortex

N = 9; motor cortex N = 13; remaining GM N = 14). *p < 0.05.

to hypercapnia, our approach can provide measurements that
are localized to specific brain regions. Our initial findings
hint at some spatial heterogeneity in the CMRO2 response to
hypercapnia, with the hypercapnia CMRO2 reduction appearing
to be greater in the motor than visual cortex. However, this
dataset does not have the sensitivity to resolve whether this is
a significant difference (see inter-subject variability in Figure 3).
Likewise, the paradigm used here is not optimized for voxelwise
mapping of M and κ , however with a suitably optimized
graded hypercapnia paradigm design that enhances voxelwise
sensitivity, this approach could be translated to mapping M and
κ , for application in mapping absolute CMRO2. The potential
spatial heterogeneity of the CMRO2 response to hypercapnia
will be investigated in future studies, incorporating a specifically
optimized hypercapnia paradigm and amore sophisticated fitting
algorithm (Germuska et al., 2016). This approach for mapping
the CMRO2 response to hypercapnia should be considered in
the context of a potential alternative, O-15 PET. There is an
extensive literature on mapping CBF and CMRO2 using O-15

PET (e.g., Mintun et al., 1984; Ter-Pogossian and Herscovitch,
1985; Kudomi et al., 2013). Whilst there are many studies to
use O-15 PET to measure the CBF response to hypercapnia
(e.g., Ito et al., 2003), the O-15 PET literature on mapping the
CMRO2 response to hypercapnia is limited, with no change in
CMRO2 measured in anesthetized dogs (Rhodes et al., 1981).
The steady-state variant of the CMRO2 measurement used in
that work may also be biased by not accounting for intravascular
15O2 (Lammertsma and Jones, 1983; Lammertsma et al., 1983;
Ter-Pogossian and Herscovitch, 1985). Whilst our method is
constrained by the accuracy of the assumptions associated with
the calibrated BOLD technique (Hoge et al., 1999; Chiarelli et al.,
2007b; Chen and Pike, 2010b; Blockley et al., 2015; Croal et al.,
2017), it is non-invasive, not requiring use of radioactive tracers.
It also has the potential for finer temporal and spatial resolution
than O-15 PET.

The approach we present here requires an assumption as to
the form of the relationship between CMRO2 and PaCO2; in this
case, the assumption is of a linear relationship. Beyond the linear
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FIGURE 3 | Plot of κ across subjects for each α/β pairing, for visual cortex, motor cortex, and the remaining GM. Diamonds show mean κ across subjects.

The values presented at the top are mean ± SEM across subjects for κ, with bold text and *indicating p(κ 6=0) < 0.05 (Wilcoxon sign rank test). The numbers of

subjects included after discarding those that reached the boundary conditions are presented in the form (N = #/15) at the bottom of each plot.

relationship, no prior assumption is made as to whether CMRO2

increases, decreases or remains constant with hypercapnia. This
linear assumption is also implicitly made as part of the iso-
metabolic assumption, or when using previous literature values
for a CMRO2 decrease. The linear relationship between CMRO2

and hypercapnia level is based on our recent observations of a
linear relationship between hypercapnia level and spontaneous
neuronal oscillatory power (Driver et al., 2016). Whilst there is
currently no direct relationship established between CMRO2 and
neuronal oscillatory power, they may share similar underlying
neurochemical mechanisms for their responses to hypercapnia,
specifically extracellular pH changes modulating ATP channels
(Dulla et al., 2005). Even if the relationship includes some non-
linearity, bias introduced by a linear correction will be smaller
than the bias from no correction.

The constrained non-linear fitting performed here to solve
for M and κ imposed boundary conditions on these parameters.
These boundary conditions 1<M<20%; −5< κ < +5%/mmHg
were chosen to be sufficiently broad to include the range of
values that would be reasonably expected when averaging across
these regions of interest, based on previous literature (Leontiev
and Buxton, 2007; Chiarelli et al., 2007a; Mark et al., 2011; Xu
et al., 2011). Therefore, where the fitting algorithms returned
values that reached these boundary conditions, this is likely to
be due to noise in the data, most likely the ASL data, rather
than being an actual physiological outlier. It is for this reason
that we chose to discard results where the boundary condition
was reached, an approach we have taken previously (Murphy
et al., 2013; Wise et al., 2013). Out of the 18 versions of

the non-linear fitting (three ROIs over three α/β pairings for
each of the two- and one-parameter fits), 14 had either one
or no subjects reaching the boundary condition. There were 3
occasions where more than two subjects reached the boundary
condition, all occurring in the visual ROI for the one-parameter
fit, 5 subjects each for the 0.14/0.91 and 0.2/1.3 α/β pairings
and 4 subjects for the 0.06/1 α/β pairing. This is consistent
with the visual ROI dataset containing more variance than the
motor and remaining GM ROIs (see errorbars in Figure 4).
Further, a BOLD-weighted second echo time of 29 ms used
here has been optimized previously for BOLD contrast, based
on GM-averaged R2

∗ (Wise et al., 2013; Germuska et al., 2016).
The 29 ms echo time is optimal for BOLD contrast for the
R2

∗ values measured here in visual and GM ROIs (Table 1),
however the smaller R2

∗ measured in the motor ROI means
that BOLD contrast in this ROI is ∼10% lower than it would
have been if a longer echo time, specifically optimized for the
motor ROI, were used. However, since the BOLD contrast is
significantly above the noise, this lower BOLD contrast in the
motor ROI will have a negligible impact on BOLD sensitivity and
will be incorporated into M, not impacting on quantification of
CMRO2.

In conclusion, we present a new approach to calibrated BOLD,
relaxing the iso-metabolic hypercapnia assumption, whilst
measuring the dose-wise change in CMRO2 due to hypercapnia.
This approach can map local CMRO2 responses to hypercapnia,
so may be suitable for measuring spatial heterogeneity in these
responses. This approach may be especially applicable in studies
including metabolic pathology, such as diabetes, dementia, and
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FIGURE 4 | Plots of M (mean ± SEM) for each α/β pairing, comparing M calculated from the two-parameter (1CMRO2 varies linearly with 1PETCO2)

and one-parameter (iso-metabolic) models for subjects that did not reach the boundary conditions for both fits. The values presented at the top of each

plot are Wilcoxon sign rank p-values, testing whether M differs between two- and one-parameter fits (*p < 0.05).

multiple sclerosis, where there may be inter- and/or intra-subject
differences in the CMRO2 response to hypercapnia. Further,
as well as the calibrated BOLD endpoints of measuring task-
dependent CMRO2, or absolute CMRO2, the measurement of
the CMRO2 response to hypercapnia could become a tool for
investigating cerebral metabolic health in its own right.
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Recent advances in functional magnetic resonance imaging (fMRI) have been used to

reconstruct cognitive states based on brain activity evoked by sensory or cognitive

stimuli. To date, such decoding paradigms were mostly used for visual modalities. On the

other hand, reconstructing functional brain activity in motor areas was primarily achieved

through more invasive electrophysiological techniques. Here, we investigated whether

non-invasive fMRI responses from human motor cortex can also be used to predict

individual arm movements. To this end, we conducted fMRI studies in which participants

moved their arm from a center position to one of eight target directions. Our results

suggest that arm movement directions can be distinguished from the multivoxel patterns

of fMRI responses in motor cortex. Furthermore, compared tomultivoxel pattern analysis,

encoding models were able to also reconstruct unknown movement directions from the

predicted brain activity. We conclude for our study that non-invasive fMRI signal can be

utilized to predict directional motor movements in human motor cortex.

Keywords: fMRI, reconstruction, classification, decoding, encoding, directional movement

INTRODUCTION

Recent fMRI studies have successfully discriminated visual object categories (Haxby et al., 2001;
Cox and Savoy, 2003), hand gestures (Dinstein et al., 2008), and visual features such as orientation
and motion direction (Kamitani and Tong, 2005, 2006) from patterns of activity across an array of
voxels. Similar methods have been used to reconstruct visual stimuli such as images or movies by
modeling the brain activity in each voxel evoked by the visual stimuli (Thirion et al., 2006;Miyawaki
et al., 2008; Naselaris et al., 2009; Nishimoto et al., 2011). On the other hand, decoding brain activity
in motor areas usually require more invasive techniques. For example, invasive electrophysiological
techniques have demonstrated that neuronal activities in human primary motor cortex (M1) can
be used to control an artificial devices (Hochberg et al., 2006, 2012; Truccolo et al., 2008; Collinger
et al., 2013). Such invasive techniques have been found to be more precise and intuitive when used
to control an external effector using neuronal signals related to armmovements. Nonetheless, these
methods inevitably involved considerable risks associated with surgical procedures and potential
inflammations. Therefore, we used functional magnetic resonance imaging (fMRI) to measure
brain signals non-invasively and investigated whether the recent decodingmethods were applicable
to motor areas.

Neurons in the macaque M1 are known to be broadly tuned to directional arm
movements (Georgopoulos et al., 1982). This type of directional tuning is known as a basic
functional property of neuronal activity in M1.Previous studies also demonstrated that human
M1 neurons are sensitive to the movement direction based on electrophysiological signals
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(Hochberg et al., 2006; Truccolo et al., 2008). Furthermore,
fMRI responses in human M1 suggested sensitivity to movement
directions although each voxel contains a large number of
neurons, where each of them has different selectivities (Eisenberg
et al., 2010; Fabbri et al., 2010). Given that each voxel in
motor cortex is directionally tuned, and despite the fact that the
sensitivity of a voxel is weak, spatial patterns of fMRI response
may be distinguishable for differentmovement directions. To this
end, previous fMRI studies have used multivoxel pattern analysis
(MVPA) based on linear classifier to discriminate cognitive states
based on spatial patterns of fMRI responses (Mitchell et al., 2004;
Haynes and Rees, 2006; Norman et al., 2006; Hansen, 2007; De
Martino et al., 2008; Formisano et al., 2008; Haynes, 2009).

In this study, participants performed a center-out reaching
task during fMRI scan. The participants moved their arm
from a center position toward one of eight target positions
repeatedly according to visual instructions. To investigate how
head motions induced by repeated reaching movements have an
effect on the identification of different movement directions, we
also compared contralateral motor cortex with ipsilateral motor
cortex which uninvolved in the center-out reaching task. The
results demonstrated that reaching-out movements toward eight
directions can be discriminated based on spatial patterns of fMRI
responses in M1, although it was influenced by head motion
artifacts. However, these methods were restricted to predicting
sensory, cognitive, or motor information. In this model, spatial
patterns of fMRI response are used to identify a specific
task from a known stimulus set. To reconstruct an unknown
stimulus, decoding methods using encoding model are applied.
Encoding models use given stimuli to estimate corresponding
brain activity in each voxel, and then are used to reconstruct
unknown stimuli using the estimated fMRI responses. Here,
we used the directional tuning properties in human M1
to estimate the brain activity evoked by directional motor
movements in each voxel. The responses of each voxel were
characterized as a linear combination of idealized directional
tuning curves (Brouwer and Heeger, 2009). The identification
and reconstruction of movement directions were performed
using that linear encoding model. In the identification, the
encoding model demonstrated similar performance compared to
MVPA. To determine the feasibility of reconstructing all possible
directional motor movements from a limited amount of pre-
specified movement directions, we compared the reconstruction
performance capabilities in the case when movement directions
were used to estimate the encoding model with when they were
not used.

MATERIALS AND METHODS

Participants
Eight healthy right-handed subjects (mean age, 24.25; range,
21–30 years) participated in the experiments, which consisted
of functional scanning sessions for center-out reaching task
along with a high-resolution anatomical scanning session. All
subjects had normal visual acuity and no neurological or
psychiatric history. They provided written informed consent
regarding their participation. The experimental procedures were

in compliance with the safety guidelines for MRI research and
were approved by the Institutional Review Board for research
involving human subjects at the Korea Advanced Institute of
Science and Technology.

MRI Acquisition
The experiments were performed at 3T MR scanner (Siemens
Magnetom Verio, Germany). The functional images were
acquired with a T2∗-weighted gradient recalled echo-planar
imaging (EPI) sequence (TR, 1,000 ms; TE, 20 ms; flip angle,
90◦; FOV: 64 × 64 mm; voxel size, 3 × 3 × 5.5 mm,
number of slices, 21). T1-weighted magnetization-prepared
rapid-acquisition gradient echo (MPRAGE) images were also
acquired (TR, 1,800 ms; TE, 2.52 ms; FA, 9◦; FOV, 256 × 256
mm; voxel size, 1× 1× 1 mm).

Experimental Design
Each subject performed a center-out movement task. This task
involved a total of six runs. In the task, subjects were instructed
to move their right arm from a center position to one of
eight target positions along a route carved into an acrylic
panel (Figures 1A,B). The reaching movement was performed
five times in each run, along with five no movement trials
on the center position. Each run involved 40 trials for the
reaching movements and 5 trials for the no-movement cases.
No movement trials were pseudorandomly interleaved between
reaching movement trials. The reaching movements in the
experiment accounted for 240 trials in total (30 trials per each
direction). Each trial lasted 12 s. One run lasted 9 min and 24 s.

In each trial, we showed the participants a gray circle in the
center and eight gray circles on the periphery of the center circle
on a screen. Initially, they were instructed to hold their arm at
the center position which was the initial position before reaching
their arm to the target position. After 4 s, one of the eight gray
targets turned blue, which indicated the target direction to which
to move. The participants had to move their arm toward the
blue target position for 2 s. After reaching the target position,
they were instructed to keep their arms still at the target position
for 4 s. When the circle in the center turned blue, they moved
their arm back to the initial center position (Figure 1C). The
visual task was programmed with MATLAB Psychtoolbox-3 for
windows (Brainard, 1997). The visual cues were presented with
MR-compatible video goggles (Nordic Neuro Lab, Norway).

Before performing a center-out movement task, each
participant was sufficiently trained to become familiar with the
reaching movement inside the scanner and instructed to move
smoothly and consistently. To perform reaching movements on
the acrylic panel without moving their head, shoulder, or upper
arm, the subject’s head was stabilized with foam paddings inside
the head coil and cushioned head stabilizers placed on each side
of the head coil to reduce head motion. The subject’s upper arms
and shoulder were stabilized with a strap wrapping across the
chest and shoulder (Figure 1A).

Data Preprocessing
Data preprocessing was performed using custom software
written in Matlab (The MathWorks, Inc., USA). The first four
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FIGURE 1 | Setup and Experimental Design. (A) Participants laid in the scanner and put their arm on the arm-rest table to perform a center-out reaching task. To

perform the task without moving their head, shoulder, or upper arm, the participant’s head was stabilized with foam padding inside the head coil (upper left corner in

(A) and fixed using cushioned head stabilizers placed on each side of the head coil (bottom left corner in (A). As additional precautions against head movements and

shoulder, the participant’s shoulder was stabilized with a strap wrapping across the chest and shoulder. (B) The acrylic panel for the reaching movement. The carved

route served to maintain a constant reaching direction for each trial. (C) Example sequence of a trial. There were eight gray target circles in the periphery of the center.

The blue circle indicated the target position which to move and the red circle indicated the movement trajectory the participant used to move toward the target

direction.

volumes of each run were discarded automatically during the
scanning process. We performed three-dimensional motion
correction using the first volume as a reference, and the T2
anatomical image was coregistered to the functional image
data by SPM5 (http://www.fil.ion.ucl.ac.uk/spm). No spatial
smoothing was applied. The left primary motor cortex (M1)
ROI was individually defined for each participant by converting
the left M1 ROI of the standard MNI brain (Maldjian et al.,
2003) to that of an individual brain using the SPM5 deformation
toolbox. Voxels with extremely low signal intensity levels were
removed. The fMRI signals were linearly detrended and passed
through a high-pass filter using a cutoff frequency of 0.01 Hz
within each run to remove low-frequency drift. We regressed
out residual motion effects from the fMRI signals using six
motion parameters (three translational parameters and three
rotational parameters). The parameters were estimated using
rigid body transformation between each functional image and
a reference image during motion correction procedure by SPM.
Signal intensities were normalized by removing the baseline
from the fMRI signal of each voxel within each run and were
averaged within each reaching movement trial after shifting the
data by 3–5 s to compensate for hemodynamic delays in each
case. We selected relevant voxels within the left M1 using sparse
multinomial logistic regression (SMLR)-based feature selection.
In a typical fMRI experiment, there are too many voxels in the
brain compared to the number of samples that can be obtained.
Too many voxels or features can lead to poor generalization

performance by overfitting the learning model if all voxels are
used as input features. Support vector machine (SVM) we used in
this study for classification can avoid this problem bymaximizing
the margin and minimizing the classification error. However, the
generalization performance of SVM is also decreased if too many
irrelevant features are used to train themodel. Therefore, we used
one of voxel selection methods that can be used as a stand-alone
tool box for voxel selection to improve the model performance by
removing the irrelevant voxels. SMLR-based voxel selection was
based on the classification performance and selection frequency
as selection counting value (SC-value). Irrelevant voxels which
have 0 SC-value obtained by SMLR-based feature selection were
removed. SMLR-based feature selection was implemented by SLR
toolbox (Miyawaki et al., 2008; Yamashita et al., 2008).

Classification Using Multivoxel Pattern
Analysis
We investigated whether human M1 voxels show directional
sensitivity and whether the spatial patterns of the fMRI responses
in M1 evoked by directional movements could be discriminable
using MVPA based on linear classifier (Norman et al., 2006).
The classification was performed with a linear support vector
machine (SVM) classifier, one of the most popular classifiers in
MVPA literature. The SVM was implemented by the LIBSVM
toolbox (Chang and Lin, 2011) and we applied all of the default
parameters of linear SVM (C= 1). The fMRI responses of voxels
in left M1 ROI evoked by reaching movements were used for the
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classification. We evaluated the classification performance of the
SVM using a leave-one-run-out cross-validation procedure. In
each cross validation, one run (40 trials, 5 trials in eachmovement
direction) was retained as a test dataset while the remaining five
runs (200 trials, 25 trials in each movement direction) were used
to remove the irrelevant voxels using the SMLR-based feature
selection and to train the SVM classifier using the responses of
selected voxels. This procedure was repeated 6 times until all runs
were used as a test dataset. The classification performance was
obtained by averaging the prediction accuracies across runs.

Classification Using Encoding Model
To characterize the responses of each voxel, we used a simple
linear encoding model (Brouwer and Heeger, 2009) that has been
used for color decoding in visual cortical areas. Recent evidence
has showed that neurons in human M1 are directionally tuned
(Hochberg et al., 2006, 2012; Truccolo et al., 2008; Collinger
et al., 2013). The fMRI responses in human M1 were also
found to be sensitive to movement directions (Eisenberg et al.,
2010; Fabbri et al., 2010). Therefore, we could characterize the
directional tuning of the response of each voxel. To characterize
the directional tuning of each voxel, we assumed that the neurons
in human M1 were directionally tuned, and the activity shape
of the directionally tuned neurons was modeled as a half-wave
rectified sinusoidal curve. The negative values of the tuning curve
were set to 0 (Figure 2A). Given that there are a large number of
neurons in each voxel, we also assumed a relationship between
the fMRI responses and the neuronal activity. Previous studies
provides evidence that fMRI responses are linearly related to the
sum of the activity of all neurons within a voxel (Heeger et al.,
2000; Rees et al., 2000). Although it was an oversimplification, we
assumed a linear relationship between the fMRI response and the
local neuronal activity. Therefore, the response of a voxel was the
result of summing up responses of all neurons distributed in that
voxel. The tuning function of the voxel then characterized as a
linear combination of six half-wave rectified tuning curves. The
six directional tuning curves is shown in Figure 2B. The tuning
curve served as a basis function of the linear encodingmodel. The
directional movement stimulus was an angular variable ranging
from 0 to 2π .

The classification performance of the encodingmodel was also
evaluated using a leave-one-run-out cross-validation procedure.
In each cross validation, five of the six runs (R1, 200 trials, 25 trials
in each movement direction) were used to remove the irrelevant
voxels and to fit the encoding model using the responses of
selected voxels, while the remaining one run (R2, 40 trials, 5 trials
in each movement direction) was used to predict the movement
directions using the fitted encoding model. The selected voxel
responses R1 could be expressed as the weighted sum of six basis
functions. The linear encoding model was given by

R1 = Sw,

where R1(m×n) is the measured voxel response matrix, S (m×k)
is a response matrix of the six basis functions related to the
reaching movement stimulus, and w (k × n) is a linear weight
matrix. Let m denote the number of reaching movement trials,

n denote the number of voxels, and k denote the number of the
basis functions.

The weight matrix w was obtained using a regularized linear
regression procedure to find an optimal weight to fit the encoding
model more robust. The optimal weight matrix was given by

ŵ =
(

STS+ λIk

)−1
STR1,

where Ik is the k-dimensional identity matrix and λ is the
regularization parameter used. The lowest Bayesian information
criterion (BIC) (Schwarz, 1978) was used to find the optimal
value of the regularization parameter λ through a bootstrap
method (Efron and Tibshirani, 1994). The parameter λ was
optimized by using a regression function in RBF networks
toolbox (Orr, 1996a,b).

The model was fit to the voxels individually using the
linear combination of a set of basis functions. Therefore, we
could estimate the response of each voxel and the spatially
distributed pattern of the response across voxels activated by
each movement direction. The reaching movement direction for
which the predicted spatial pattern of voxel responses could be
decoded by matching the most similar one with the observed
spatial patterns of voxel responses. However, since there exists
substantial variation in the measured voxel responses due to
noise, we used the estimated response of the basis functions
to match with the responses of the basis functions associated
with a movement stimulus. The responses of basis function Ŝ
were predicted using the estimated weight ŵ and test data R2 as
follows:

Ŝ = R2ŵ
T
(

ŵŵT
)−1

Because ŵŵT was close to singular in some cases, the inverse of
ŵŵT was unstable. Therefore, we used regularization to estimate
the inverse. The movement direction could then be predicted
by comparing the estimated response patterns of basis functions
Ŝ with known responses of the basis functions evoked by each
of eight directional movements, and selecting the most similar
patterns through an assessment of Pearson’s r-values. Cross-
validation step was repeated 6 times for all of the runs. The results
based on the encoding model show the averaged classification
accuracies across runs.

Reconstruction Using Encoding Model
MVPA and the encoding model were used to identify the
movement directions. Furthermore, using the encoding model,
the reconstruction of the movement direction was also
performed by creating response of the basis functions for all
possible movement directions from 0 to 360◦. The reconstructed
direction was estimated by matching the estimated response
pattern Ŝ with the most similar one from the created response
pattern. The reconstruction was also tested using a leave-one-
run-out procedure. Five of the six runs (200 trials, 25 trials in each
direction ofmovement) were used to remove the irrelevant voxels
and to fit the encoding model using the responses of selected
voxels. The remaining run (40 trials, 5 trials in each direction of
movement) was used to test the reconstruction performance.
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FIGURE 2 | (A) Directional tuning curve. The basis tuning shape was modeled as a half-wave rectified sinusoidal curve. (B) Six directional tuning curves were used to

characterize the response of each voxel. The response of the voxel could be fitted by a linear combination of the six half-wave rectified sinusoidal curves.

We further tested the reconstruction performance in the case
when movement directions were not used to fit the encoding
model in order to determine the feasibility of reconstruction for
unknown movement directions. To this end, the reconstruction
was tested using a leave-one-direction-out procedure. One of
the eight directional movements (30 trials) was remained to test
the reconstruction performance as the unknown direction. The
other seven directions (210 trials, 30 trials in each direction
of movement) were used to select the relevant voxels using
the SMLR-based feature selection and then to fit the encoding
model using the responses of selected voxels. This procedure
was repeated 8 times to test the reconstruction of all of eight
directional movements.

The reconstructed directions for each directional movement
trials were spread out from the actual movement direction.
Therefore, we used the angular variance (AV) to quantify
the measurement of the angular dispersion of reconstructed
directions. The AV was defined as AV = 1 − ‖ r ‖, where
‖ r ‖ is the length of the mean angular direction which is
obtained bymeans of vector addition of reconstructed directions.
The quantity of AV lies in the interval [0, 1]. It is indicative
of the spread in reconstructed directions. If the reconstructed
directions were spread out evenly around all directions, the
AV would be close to maximal, otherwise the reconstructed
directions were concentrated completely in the actual movement
direction.

To compare the reconstruction performance capabilities in
the case when movement directions were used to fit the
encoding model with when they were not used, we investigated
the association between the results of the two reconstructed
directions by computing the circular correlation coefficient ρ

(Jammalamadaka and Sengupta, 2001), as follows,

ρ =
∑

i sin (αi − ᾱ) sin
(

βi − β̄
)

√

∑

i sin
2 (αi − ᾱ) sin2

(

βi − β̄
)

In this equation, α and β denote the reconstructed directions,
ᾱ and β̄ denote the mean angular directions, and i denotes the
number of reconstructed directions for each target direction. The
correlations were obtained separately for each direction and by
combining all directions for each subject.

To evaluate the reconstruction performance how they are
reconstructed correctly to the actual movement directions,
we computed the mean absolute error (MAE) between the
reconstructed and actual movement directions across all of
the reconstructed directions for individual subject. This is
also computed in both cased when movement directions
was included in fitting the encoding model and when they
were used as unknown movement directions to compare the
reconstruction performances. In this study, the reconstruction
was performed based on single-trial directional movement. To
investigate performance improvements when the directional
movement was executed repeatedly, we computed MAE
values of the mean angular directions obtained by averaging
all reconstructed directions and compared the performances
between the reconstruction based on single-trial and the trial-
averaged reconstruction.

Head Motion Effects
In fMRI experiments, head motion associated with motor tasks
is a prominent source of noise which leads to fMRI data
artifact, false detections, and misinterpretations of brain signals
(Friston et al., 1996; Thesen et al., 2000; Yang et al., 2005;
Culham et al., 2006). In this study, participants performed
reaching-out movement task from a center to one of eight target
directions. These repeated arm movements could have an effect
on head motion sufficiently by generating constant movement
patterns. Therefore, we investigated how head motion induced
by participant-active reaching movements has an influence on
the classification of directional movements. We used left M1 as
a region of interest (ROI) because all reaching movements by
right-handed participants were performed with the right hand.
Movements performed with the dominant hand was associated
with a greater activation compared with those of the non-
dominant hand in the contralateral motor cortex. (Dassonville
et al., 1997; Fabbri et al., 2010; Grabowska et al., 2012). Moreover,
although highest directional selectivity in the right parietal reach
region for both left and right hand movements was observed,
executed movements performed with the right hand as well
as observed and imagined movements led to non-significant
activations in the ipsilateral motor cortex (Dassonville et al.,
1997; Fabbri et al., 2010). The movement activation in the
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right M1 would have been trivial even though it reflects any
neural motion related signal by hemispheric interactions. The
activation in ipsilateral M1 uninvolved in the task would reflect
the head motion effects dominantly rather than hemispheric
interactions. Therefore, we chose the right M1 as a control region
to identify the headmotion effect by the reachingmovement. The
performance of the control region would yield some evidence
for residual head motion. The classification using MVPA and
the encoding model was conducted from the right M1. The
procedures were exactly identical, except for the spatial prior
mask from the MNI atlas left and right M1.

RESULTS

Classification Performance
We evaluated the classification performance of MVPA based
on SVM classifier and the encoding model via a leave-one-out
cross-validation scheme. We excluded one run (40 trials) from
the set of six runs to test the performance and trained the
SVM classifier or the encoding model using the remaining five
runs (200 trials). The classification result indicated that reaching
movements toward eight different directions could be decoded
from the spatially distributed patterns of the voxel responses.
The classification performances of both MVPA and the encoding
model were significantly greater than the chance level of 12.5% in
all participants (Figure 3). Each point indicates the classification
performance of each run which was used as test dataset during
cross validation. Average accuracies across all participants for
the MVPA and the encoding model were 41.8 and 36.1%,
respectively. In comparison, MVPA outperformed the encoding
model. These results indicated that decoding approaches using
the linear classifier outperform the encoding model when used
to classify brain states evoked by certain executed movements.
However, such a classification-based technique shows limitations
when used for decoding complex motor actions. It is impractical
to measure brain activity given many states which are possible.
Compared to classification-based technique, the encoding model
is more applicable to decode the complex motor actions by being
able to predict unknown brain states as well as to identify known
states.

In the encoding model, the classification performance was
less than that of MVPA. Reaching directions were predicted
by matching the estimated response pattern Ŝ with the highest
correlated one among response patterns by each of eight
directional movements through an assessment of Pearson’s r-
values. The decision boundary used to classify the reaching
movement directions was not optimized in the encoding model.
Therefore, we further investigated the performance validity of
the encoding model by combining the encoding model with
the SVM classifier. To use the SVM classifier in the encoding
model, we trained the SVM classifier using the estimated
response pattern of basis functions from the encoding model
that was fitted by training data and then tested the classification
performance capabilities. The average performance across all
participants improved from 36.1 to 42.8% (Figure 3). There
were no statistically significant performance differences between
MVPA and the combined model. These results indicated that the

FIGURE 3 | Classification accuracies for individual participants and average

accuracies across all participants using the conventional decoding approach

based on the linear SVM classifier, the linear encoding model and combination

of the encoding model and the SVM classifier. + Indicated the performance of

each run which was used test dataset during cross validation.
⊕

Indicates the

performance of each run was overlapped twice. • Indicates the performance of

each run was overlapped three times. The solid line indicates the chance level

of 12.5%. The error bars in averaged accuracies (mean) indicate the SDs

across participants.

encoding model could be used to decode which direction had
been moved, and these performances confirmed the validity of
the encoding model for classification.

Reconstruction Performance
The result of reconstructed direction for the first subject (S1)
is shown in Figure 4A. The red arrows represent each actual
movement direction to which the subject moved. Each black
point indicates all reconstructed directions across all runs (30
trials per each movement direction). The blue arrows represent
the mean angular direction for all reconstructed direction trials.
The results indicated that most of the reconstructed directions
were clustered near each actual movement direction and that
some reconstructed directions had large errors.

We further investigated the reconstruction capabilities of
when unknown directions are used. This reconstruction result
is shown in Figure 4B. The results of the reconstructed
direction indicated patterns similar to those of the reconstructed
directions used to train the encoding model (Figure 4A). Even
so some reconstructed directions had large errors showed
similar patterns. To quantify this, we investigated the association
between the results of the two reconstructed directions using
the circular correlation coefficient ρ. The correlation result for
the first subject (S1) is illustrated in Figure 5. For this subject, the
reconstructed directions of when movement directions are used
to fit the model were highly correlated with the reconstructed
directions of when the movement directions are not used to fit
the model for each target direction. The distributed pattern of
the combined reconstructed directions over all directions also
showed a highly significant correlation of ρ = 0.92. This result
confirmed that the reconstructed directions by the encoding
model revealed a similar pattern regardless of whether or not the
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FIGURE 4 | Reconstruction results for subject 1. The red arrows indicate the actual movement directions (target directions). Black points indicate the reconstructed

directions on a single-trial basis (total 30 reconstructed directions in each movement direction. The blue arrows represent the mean angular direction for all

reconstructed directions in each target direction. The mean angular direction was obtained by means of vector addition. The angular variance (AV) was defined as

AV = 1− ‖ r ‖ and the interval of the AV was [0, 1]. ‖ r ‖Indicates the length of the mean angular direction. (A) Results of the reconstructed directions that were

used to fit the encoding model. (B) Results of reconstructed direction that were not used to fit the encoding model.

reaching directions were included when fitting the model. The
correlation results for all subjects are shown in Table 1.

To evaluate the reconstruction performance capabilities
of when unknown directions are used and not used, we
computed the absolute error and mean absolute error (MAE)
between the reconstructed and actual movement directions
(target directions) across all of the reconstructed directions
for individual subject and the MAE across all subjects.

When unknown directions were used as test directions for
the reconstruction, the errors were larger than when known
directions were used (Figure 6A). That is, the reconstruction
accuracy when unknown directions were used was less than
the accuracy when known directions were used. However, there
were no significantly different reconstruction errors between
both cases. The shape of skewed distribution toward target
directions also showed that the reconstructed directions were
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FIGURE 5 | Circular correlation result between the reconstructed directions

used to fit the model and those not used for subject 1. Each color point

corresponds to the reconstructed directions in each target direction. ρ

Indicated the circular correlation coefficient obtained separately for each target

direction and that after combining over all directions in each subject.

TABLE 1 | Circular correlation coefficients.

Target

direction

S1 S2 S3 S4 S5 S6 S7 S8

0◦ 0.66 0.33 0.66 0.19 0.86 0.32 0.5 0.66

45◦ 0.77 0.77 0.53 0.47 0.5 0.31 0.35 0.82

90◦ 0.84 0.77 0.77 0.53 0.91 0.55 0.53 0.46

135◦ 0.72 0.8 0.75 0.2 0.71 0.79 0.49 0.7

180◦ 0.7 0.79 0.77 0.07 0.81 0.56 0.17 0.68

225◦ 0.7 0.46 0.68 0.54 0.15 0.23 0.63 0.29

270◦ 0.86 0.82 0.77 0.75 0.76 0.75 0.45 0.44

315◦ 0.78 0.67 0.89 0.29 0.72 0.78 0.51 0.52

Combined 0.92 0.9 0.7 0.58 0.8 0.7 0.81 0.71

clustered near the target directions. The angular dispersion of
reconstructed directions when unknown movement directions
were used as the test directions was also similar to the dispersion
of reconstructed directions when known directions were used
(Figure 6B). These reconstruction results confirmed the validity
of the encoding model to reconstruct unknown movement
directions. Furthermore, to compare the performance between
the reconstruction based on each trials and the trial-averaged
reconstruction, we also computed the MAE values of the
mean angular direction obtained by averaging all reconstructed
trials. The trial-averaged reconstructed performances were much
higher than the performances based on the single trials
(Figure 6C). The average MAE of the mean directions across all
participants reduced from 49.8 to 26.6◦ when known directions
were used to test the reconstruction and from 51.9 to 31.6◦

when unknown directions were used. This indicated that the
trial-averaged reconstruction approach could more efficiently
improve the reconstruction performance than the single-trial
approach.

Head Motion Effects
We evaluated the classification performance from the right M1
ROI via a leave-one-out cross-validation to identify head motion
effects by the reaching movement task. One run (40 trials, 5
trials in each movement direction) from the set of six runs
was excluded to test the performance. Remaining runs were
used to train the SVM classifier and encoding model (200
trials, 25 trials in each movement direction). It was repeated
6 times until all runs were used to test the performance. The
classification performance compared the left M1 and the right
M1 is shown in Figure 7. The average accuracies across all
participants for the left and right M1 based on MVPA were 41.8
and 18.9%, respectively, and the average accuracies for the left
and right M1 based on encoding model were 36.1 and 16.4%,
respectively. The small discriminability in right M1 could have
been influenced by a residual motion signal that was not captured
by the rigid body transformation for motion correction. Because
each fMRI volume is slice-wise assembled over time, the rigid
body transformation may not properly estimate the actual head
movements between and within slice acquisition. Compared to
average performances of the right M1 across participants, the
left M1 is significantly higher than the right M1 for both MVPA
and encoding model. The results indicated that the directional
movements measured on the right M1 were insufficient for
discrimination. Therefore, the effect of head motion does not
have a significant effect on the classification and reconstruction
performance.

DISCUSSION

It is well known that motor cortical neurons encode
various movement features, such as directions of movement
(Georgopoulos et al., 1982), hand positions (Georgopoulos
et al., 1984), velocities (Moran and Schwartz, 1999), and force
(Taira et al., 1996; Sergio and Kalaska, 1998) to generate a
variety of complex motor actions. The directional tuning of
motor cortical neurons is one of the most important factors
related to reaching movements. In this study, we investigated
whether an approach using the directional tuning could be
applied to fMRI responses to reconstruct movement directions
non-invasively. The responses of voxels reflect pooled activity
of neuronal populations because a large number of neurons
with different movement selectivities are distributed within
each fMRI voxel. Thus, the directional sensitivity of the overall
response would be weaker than that of single motor neurons by
averaging out the sensitivity and adding the noise. Nevertheless,
the pooled response of the neurons consistently characterized
with directional sensitivity due to the spatial distribution of
the neurons not being uniform. This generates distinct spatial
patterns of responses across multiple voxels for the reaching
movements and makes it possible to decode the directional
movements from the distributed response patterns. Earlier fMRI
work was also revealed that individual voxels in human M1
have directional tuning properties by computing the coefficient
of variation of five directions of reaching movements for each
voxel (Eisenberg et al., 2010). In this study, we verified that when
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FIGURE 6 | (A) Absolute error between the reconstructed directions and the target directions by combining all reconstructed directions in each subject. It represents

the distribution of reconstructed direction errors in each subject. The central reds line in central boxes indicate the median of the reconstruction errors. Black + in the

central box indicate the mean of reconstruction’s absolute errors (MAE). The central box represents the central 50% of the absolute errors. Its lower and upper

boundary lines are at the 25%/75% quantile of the errors. Vertical lines from the central box indicate the remaining data outside the central box except outliers (red +).

Bar plot indicates average MAE and SD across all participants. (B) Angular variance (AV) of reconstructed directions. Black dots indicated angular variance of each

target directions which was used to reconstruct movement directions. The error bars in averaged variance (mean) indicate the SDs across participants. (C) Absolute

error between mean angular directions obtained by averaging all reconstructed directions and target directions in each subject and the average MAE and SD across

all participants.
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using decoding approaches based on a linear classifier, reaching
movements toward eight directions were distinguishable with
high accuracy from the spatially distributed patterns of responses
across an array of voxels measured in humanM1. Although fMRI
signals were influenced by head motion effect, this indicated that
responses of M1 voxel were directionally sensitive for movement
directions. Therefore, we assumed that directional tuning was
encoded in M1 voxel. The responses of each voxel could be
simply modeled using the directional tuning property of the
motor cortical neurons. The directional tuning in each voxel was
estimated by a linear combination of the six sinusoidal curves.
Thus, directional movements could also be predicted using the
estimated responses of M1 voxels.

As a result of the classification of reaching movement
directions, the encoding model also demonstrated high
performance capabilities for all participants which were also
comparable to MVPA. Although the classification performance
of MVPA was better than that of the encoding model, the
encoding model is more applicable to predict complex motor
information. The classification-based decoding approaches
are used to classify brain activity into a specific experimental
stimuli or tasks, while the encoding model could predict brain
activity without any prior stimulus. To this end, we performed
the reconstruction of unknown directional movements and
compared the reconstruction results of the encoding model
which was fitted by seven directional movements with those
of the encoding model which was fitted by all eight directional
movements. The reconstruction results demonstrated that they
were clustered around the target direction to which the subject
moved. Furthermore, the distributed patterns of reconstructed
directions showed a highly significant correlation regardless of
whether the encoding model was estimated by seven or eight
movement directions. This indicated the potential feasibility
of decoding any possible directions over the eight movement
directions given during experiment task.

Recent fMRI studies have advanced beyond the classification
of cognitive states from experimentally predefined stimulus.
However, such advanced fMRI studies have mostly been
conducted using visual stimuli such as visual images (Kay
et al., 2008; Miyawaki et al., 2008; Naselaris et al., 2009) and
dynamic natural movies (Nishimoto et al., 2011). Thus, we
applied such decoding methods to predict motor information
about directional motor movements in human motor cortex.
In the present study, we used an intuitive and simple encoding
model to classify and reconstruct the movement directions.
The encoding model was defined based on directional tuning
properties in human motor cortex to estimate fMRI responses
in each voxel evoked by a center-out reaching task. We could
perform the identification and the reconstruction of movement
directions using the encoding model. During the reaching
task, head motions by repeated reaching movements could
have an influence on the identification performance. However,
the left M1 showed significantly higher performance than
the right M1, and the performance from the right M1 was
closed to chance level. This implies that motor information
associated with directional motor movements is encoded in
the responses of voxels, and fMRI responses in human M1

FIGURE 7 | Classification accuracies for individual participants and average

accuracies across all participants using different motor cortex regions (left and

right M1). + Indicates the performance of each run which was used test

dataset during cross validation.
⊕

Indicates the performance of each run was

overlapped twice. • Indicates the performance of each run was overlapped

three times. • Indicates the performance of each run was overlapped over four

times. The solid line indicates the chance level of 12.5%. The error bars in

averaged accuracies (mean) indicate the SDs across participants.

are directionally selective. Therefore, this result suggests that
decoding approaches based on the encoding model could be
applied to use motor information. Nonetheless, precise and
detailed encoding models for decoding complex motor actions
in real life can be considered to be used more practically. In
the present study, the identification and reconstruction were
performed based on single-trial basis. Reconstructed directions
based on single-trial were spread out around target directions.
It could cause a lot of errors to use motor information
practically. Thus, using the mean angular direction predicted
by averaging movement trials could reduce the reconstruction
error much more than using reconstructed directions on the
single-trial basis. To improve the decoding accuracy even more,
a trial-averaged procedure in which movement executions are
repeatedly performed is not suitable. Therefore, in the place
of movement executions, decoding approaches based on motor
imagery could be considered as future work. Furthermore, a
future investigation with the encoding model would need to
consider a variety of features related to complex movements such
as directions, velocities, positions, and force.
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