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Editorial on the Research Topic
Advances in artificial intelligence and machine learning applications for
the imaging of bone and soft tissue tumors

Growing interest in artificial intelligence (AI) applications in the biological and medical

sciences has led to a notable surge in related publications in recent years. A PubMed

query for “machine learning” yielded 33,855 results published in the year of 2023 alone,

which represents a greater than fourfold increase in comparison to 2018 (1). In the

realm of musculoskeletal and soft tissue tumor imaging, there has been increasing

enthusiasm for a broad range of AI applications ranging from prognostication and risk

stratification to lesion classification and treatment response (Varghese et al., 2–4).

This Research Topic, titled “Advances in Artificial Intelligence and Machine Learning

Applications for the Imaging of Bone and Soft Tissue Tumors,” encompasses a selection of

manuscripts that primarily focus on recent developments in AI applications targeting the

imaging of these neoplasms while also exploring topics related to quantitative image

analysis and interpretation. The following representative manuscripts provide insights

into current advancements and methodologies within this evolving field:

Jin et al. describe a machine learning algorithm based on Gray Level Co-occurrence

Matrix (GLCM) scores to detect pelvic bone metastases in patients with colorectal

cancer using a retrospective cohort of 614 patients who underwent MRI of the pelvis

over a 7-year period. Diffusion-weighted images were segmented, from which 48 GLCM

features were extracted for further analysis. A generalized linear regression model and

four machine learning classification models were then constructed from this dataset.

Random forest achieved the highest performance, with AUCs of 0.926 and 0.919 in the

training and internal validation sets, respectively. Their results suggest a promising role

for radiomics-based machine learning models in detecting pelvic bone metastases. By

integrating these advanced modeling techniques into clinical workflows, healthcare
Abbreviations

AI, artificial intelligence; GLCM, Gray Level Co-occurrence Matrix.
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providers may enhance their ability to identify osseous metastatic

disease more reliably, thereby potentially improving prognostic

assessments and guiding treatment interventions tailored to

individual patient needs.

Rich et al. publish a systematic review and meta-analysis of

deep learning image segmentation approaches for the evaluation

of primary and secondary malignant bone tumors. Accurate

delineation of osseous lesions on imaging is crucial for

performing quantitative analyses, yet is often the rate-limiting

step in AI and machine learning studies when performed

manually. Additionally, precise delineation of the extent of bony

involvement of disease may allow for more holistic clinical

assessments and prognostication in situations of widespread

metastatic disease. In their article, Rich et al. conducted a

comprehensive literature search of studies investigating

automated deep-learning segmentation methods for malignant

bony lesions, identifying 41 studies published between 2010 and

2023 suitable for inclusion in the final analysis. Overall, they

found that most studies applied a U-Net convolutional neural

network architecture, most often trained on either MRI or CT

images. Models trained on PET/MRI and PET/CT had lower

median dice similarity coefficients when compared to models

trained on MRI and CT, possibly due to increased image noise

and degradation. Furthermore, models trained on 2D data

appeared to have slightly higher median dice similarity

coefficients, though the difference was not statistically significant.

Future optimizations and validations could include training of

models on larger, multi-institutional datasets to allow for

improved generalizability.

Debs and Fayad and Sabeghi et al. both describe emerging

applications of AI and machine learning in musculoskeletal

imaging. Debs and Fayad review use cases ranging from image

protocoling, examination scheduling, and hanging protocol

optimization to results reporting, lesion detection, and lesion

classification. They also detail approaches for determining

tumor of origin and assessing for treatment response of

metastatic spinal lesions. Sabeghi et al. comment on methods

for stratifying neoplastic lesions with respect to malignant

potential, histologic grade, and response to treatment. They

further discuss challenges with assembling sufficiently large,

diverse, and heterogeneous datasets to train robust, generalizable

models. As models become increasingly more complex and

advanced, federated learning may offer an elegant solution for

leveraging multicentric training sets without the need for

centralized aggregation of potentially sensitive and protected

patient data (5), though technical limitations and complexities

associated with managing heterogeneous systems and data pose

major hurdles.

Gadermayr et al. investigate computer vision and deep learning

approaches for automated muscle segmentation of MR images. The

authors employ an unpaired image-to-image translation approach

to leverage “easy” data in order to improve segmentation

performance of “hard” data. Using a novel domain specific loss

function alongside four segmentation schemes, namely Gaussian

mixture, graph-cut, shape-priority graph-cut, and convolutional

neural network approaches. Their results suggest performance
Frontiers in Radiology 026
benefits for both unsupervised and supervised methods, with the

potential to reduce the amount of necessary training data in

related studies.

Woznicki et al. developed an open-source framework termed

“AutoRadiomics”, which seeks to aggregate all common steps of

typical radiomics workflows into a single standardized software

package. Their framework provides embedded tools for image

segmentation and pre-processing alongside standardized

radiomics libraries and machine learning models, and provides

multiple optimizations for hyperparametric tuning, data splitting,

and oversampling. AutoRadiomics seeks to lower the barrier to

entry for radiomics and machine learning studies through a

modular, user-friendly interface and intuitive design, promising

accessibility without the need for a robust coding background.

Consistent application of publicly accessible frameworks such as

AutoRadiomics in future radiomics studies can serve to enhance

transparency by improving workflow standardization and

reproducibility.

Finally, Varghese et al. discuss applications of spatial

assessments of texture analysis in oncologic imaging. Spatial

assessments are particularly effective in capturing areas of

intratumoral heterogeneity as they have the ability to quantify

subtle voxel-to-voxel variations in the underlying grayscale

intensities. This granular approach allows for a more nuanced

understanding of tumor characteristics, which is critical for

accurate diagnosis and treatment planning. These spatial

assessments can be further classified as neighborhood-based

methods, which quantify differences in grayscale intensities

relative to neighboring voxels, and spatial filters, which

are image processing methods that enhance edges and/or

textures at regions of rapid grayscale change. Additionally,

the authors also underscore the significance of utilizing

optimal methodologies and best practices when conducting

statistical analyses in high-dimensional radiomics studies. They

offer guidance on accurate reporting of machine learning

performance outcomes to ensure that findings are both reliable

and reproducible.

In conclusion, this Research Topic highlights many innovative

developments in AI and machine learning applications for the

imaging of bone and soft tissue neoplasms. While radiomics-

based studies have for some time shown promise in serving as

novel quantitative imaging biomarkers, deep learning

approaches have, in more recent years, also gained traction as

powerful decision support tools which integrate diverse

hierarchical and multimodal inputs. As imaging-based AI

algorithms continue to evolve in complexity and rigor, there

exists immense potential for creating an armamentarium of

tools aimed at augmenting the work of clinical radiologists and

enhancing patient care.
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Deep neural networks recently showed high performance and gained popularity in

the field of radiology. However, the fact that large amounts of labeled data are

required for training these architectures inhibits practical applications. We take advantage

of an unpaired image-to-image translation approach in combination with a novel

domain specific loss formulation to create an “easier-to-segment” intermediate image

representation without requiring any label data. The requirement here is that the task can

be translated from a hard to a related but simplified task for which unlabeled data are

available. In the experimental evaluation, we investigate fully automated approaches for

segmentation of pathological muscle tissue in T1-weighted magnetic resonance (MR)

images of human thighs. The results show clearly improved performance in case of

supervised segmentation techniques. Even more impressively, we obtain similar results

with a basic completely unsupervised segmentation approach.

Keywords: MRI, muscle, fatty-infiltration, thigh, generative adversarial networks, convolutional neural networks,

segmentation, image processing

1. INTRODUCTION

Within the last few years, deep neural networks showed impressive performance and gained
popularity in the field of radiology. However, the requirement for large amounts of labeled data
for artificial neural network training still inhibits practical applications. Since three-dimensional
(3D) data requires complex models, this is particularly challenging in radiology. In addition, voxel-
based 3D data annotation is highly time consuming. Another challenging aspect is given by an
often high variability within radiological data. Although variability due to the imaging setting can
be compensated by methods such as bias field correction (1) and contrast adjustment (2), semantic
variability caused by pathological modifications is hard to compensate.

Due to emerging techniques, such as fully convolutional neural networks (3) and adversarial
networks (4), image-to-image translation has recently gained popularity (5–7). These methods
enable, for example, a translation from one imaging modality to another (such as MRI to CT
and vice versa) (8). Conventional approaches require image pairs (e.g., pairs consisting of a CT
and an MRI scan of the same subject) for training the translation models (5, 6). To overcome
the restriction of training based on image pairs, unpaired approaches were introduced (7, 9,
10) and also applied to radiology (8, 11, 12). These models only require two data sets, one
for each of the modalities [e.g., computed tomography (CT) and magnetic resonance imaging
(MRI)]. As image pairs are often not achievable or at least very difficult and expensive to
collect, this opens up completely new perspectives for many radiological application scenarios.
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For example, if trained models (and especially manually
annotated training data) are available for one modality only, data
collected based on a different imaging setting can be translated to
this modality and can be subsequently processed without further
annotation effort.

In this paper, we do not consider a translation from one
imaging modality to another using cycle-GAN (7). Instead, we
consider a scenario where a certain domain (i.e., a subset of the
available data; e.g., non-pathological data) is easier to segment
than another domain (13). Image-to-image translation can be
applied here to translate from a hard-to-segment image domain
to an easy-to-segment domain. If translation is performed
appropriately, this approach has the potential to facilitate further
processing (here segmentation) and thereby enhance accuracy
(e.g., segmentation accuracy) to reduce the amount of required
annotated training data or even to facilitate fully unsupervised
segmentation.

1.1. Thigh Muscle Segmentation
Muscular dystrophy is a class of diseases caused by inherited
mutations in genes encoding for proteins that are essential to
the health and function of muscles. They are characterized by a
degeneration of muscle tissue, which in muscle imaging appears
as so-called fatty infiltration (see Figures 1C,D for example MR
images). A relevant disease marker is especially given by the so-
called fat fraction capturing the ratio between fatty-infiltration
and original muscle tissue volume. For computation of the
fat fraction, it is crucial to segment the overall muscle tissue
including fatty infiltrations. Although a segmentation of healthy
muscle tissue (see Figure 1) can be obtained easily based on
thresholding, difficulties arise in case of severely fat-infiltrated
muscle as fatty degeneratedmuscle tissue cannot be distinguished
from subcutaneous fat based on the image’s gray values (14)
(Figure 1D). This problem has been recently addressed in a few
studies. Origiu et al. (15) developed an active contours model
to detect the muscle boundary and a fuzzy c-means method to
distinguish muscle from fat. Gadermayr et al. (14) combined
graph-cuts and level-set approaches with statistical shapemodels.
Yao et al. (18) made use of two neural networks to first detect
the fascia lata and also incorporate region-based information to
finally utilize an active contours method. Although showing best
segmentation performance, the latter approach as well as further
ones (16–18) are optimized and evaluated on an easier scenario,
because all tissue inside the fascia lata is labeled as muscle (apart
from the bone).

1.2. Contributions
In this work, we make use of a new procedure for facilitating
segmentation tasks in order to boost segmentation accuracy.
In our approach, a hard segmentation task is mapped to an
easier (intermediate) segmentation task by means of unpaired
image-to-image translation making use of a cyclic GAN (7).
We consider the segmentation of MR images of human thighs
showing fatty infiltrations, which are translated to easy-to-
segment non-pathological images. For segmentation, we consider
methodologies that proved to be effective in previous works
(14, 15, 18). Even though we were unable to investigate each
individual configuration, we focus on covering a broad range

of techniques, namely a pixel-based unsupervised approach, a
region based method, a region-based method using shape prior,
and a convolutional neural network.

2. MATERIALS AND METHODS

In this work, we first perform image-to-image translation
to convert a hard-to-segment into an easy-to-segment
domain (section 2.1). After conversion to the intermediate
“easy” representation, only the generated fake image is
segmented (section 2.2) and the obtained mask is simply mapped
to the original image without making any changes.

2.1. Image-to-Image Translation
Supposed we have a set of images {hi}

N
j=1 of a “hard” domain (H),

which are difficult to segment, as well as a set of images {ei}
M
j=1

of an “easy” domain (E). Although the underlying distributions
(based on the empirical ones e ∼ pdata(e) and h ∼ pdata(h))
are different, we assume that the underlying distribution of the
corresponding ground-truth segmentations s (se ∼ pdata(s(e))
and sh ∼ pdata(s(h))) is similar. Then it follows that, based
on a segmentation only, the domain of an image (H vs. E)
cannot be predicted with a higher accuracy than chance. Thus,
the translated images could also become indistinguishable even
if the segmentation mask stays the same, which is the crucial
criterion for this approach. Otherwise, in a GAN setting, the
generator would be forced by the discriminator to change the
object’s shape with the implication that the segmentation of the
original H domain image would not be the same as for the
fake E domain image. As we finally directly map the obtained
segmentation mask from the fake E to the real H domain image
without making any changes, the similarity of the object’s shapes
is a strong requirement. Inspecting the considered MRI data,
we notice high variability between patients in general but no
systematic differences in the shapes between the datasets.

Now we focus on a domain adaptation from H to E by
performing image-to-image translation, specifically by means of
a cyclic GAN (7). This method requires only one dataset for each
domain without corresponding pairs. During GAN training, two
mapping functions, F :H → E and G : E → H are trained
optimizing a combination of a cycle consistency loss

Lc = Ee∼pdata(e)[||F(G(e))− e||1]+

Eh∼pdata(h)[||G(F(h))− h||1]
(1)

as well as a discriminator loss

Ld =Eh∼pdata(h)[log(DH(h))+log(1−DE(F(h)))]+

Ee∼pdata(e)[log(1−DH(G(e)))+log(DE(e))]
(2)

encouraging indistinguishable outputs (based on the
discriminators DH and DE). As the underlying distributions
of ground-truth segmentations sh and ee are similar, and as
there is a correlation between image information and the
ground-truth segmentation (which is a natural requirement for
all segmentation applications), it can be expected that during
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FIGURE 1 | Example MRI slices for each of the four considered pathological categories showing (A) healthy muscle only, (B) pathological muscle without visible fatty

infiltrations, (C) moderate infiltrations, and (D) largely affected muscle areas.

image-to-image translation using a cyclic GAN (7), the images
are translated from domain H to E without changing the
semantic structure in the image (i.e., the shape of the muscle).
To account for the specific application scenario, we introduce a
further loss function based on the rectified linear unit (ReLU) r

Lr = Eh∼pdata(h)[r(F(h)− h)]+

Ee∼pdata(e)[r(e− G(e))] ,
(3)

where r(x) = max(0, x). This method is introduced in order
to account for the fact that healthy muscle tissue in MR images
shows a lower voxel value than pathological muscle tissue. For
this purpose, if muscle tissue is translated from H to E , voxel
values should not increase, but only decrease. Vice versa, from
E to H, voxel values should only increase and not decrease. By
adding this further constraint, we expect that the overall structure
and consequently also the segmentation could be maintained
more effectively. This domain specific loss is finally combined
with the identity loss

Li=Ee∼pdata(e)[||F(e)− e||1]+

Eh∼pdata(h)[||G(h)− h||1]
(4)

to focus on maintaining the morphology and to ensure that data
from the easy domain E does not get extremely dark due to Lr .
All utilized losses are summarized in Figure 2.

2.2. Segmentation
For segmentation, we make use of four methods that were
applied to muscle segmentation tasks. Due to the rather small
amount of data for training, we focus on the following methods
that can be effectively trained with a small amount of data.
The first approach is based on the Gaussian Mixture Model

(GMM), which is fitted to the data in order to identify clusters
of three different classes: muscle, fat, and bone/vessels. Initial
cluster centers are fixed to the minimum gray value (smin),
maximum gray value (smax), and finally a value in between
(smin +

smax−smin
6 ). This method is completely unsupervised and

does not require any training data. In order to incorporate
boundary smoothness constraints, we furthermore investigate

a probabilistic Graph-Cut (GC) technique (the initialization is
obtained by the GMM and the probabilistic model is trained
based on ground-truth annotations). To additionally incorporate
a statistical shape model, we make use of the Shape-Prior

Graph-Cut (SPGC) approach (14). In this case, the shape
model (which is optimized for small data sets) is trained by
estimating a probability map for each pixel after an initial
registration (leading to excellent performance for pathological
images). SPGC and GC both require annotated training data
as the probabilistic model need to be trained on ground-truth
data. Details on these approaches are provided in (14). As
reference for a state-of-the-art convolutional neural network
(CNN) approach, we apply a 2D U-Net (3) including a GAN-
Loss, also referred to as Pix2Pix network (5). In this data-driven
approach, a segmentation model (implicitly including a shape
prior) is automatically learned during optimization of the weights
of the convolutional neural networks.

2.3. Experimental Details
The T1-weightedMR images were acquired on a 1.5 Tesla Phillips
device with fixed echo time (17 ms), bandwidth (64 kHz) and
echo train length (6) and a relaxation time between 721 and 901
ms. The sampling interval was fixed to 1 mm in x-y-direction
and 7 mm in z-direction. Bias-field correction was applied to
compensate homogeneity (19). Similar to (14, 18), the data are
separated into the four categories “healthy,” “minor,” “moderate,”
and “severe” corresponding to the degree of fatty infiltration. As
the categories “healthy” and “easy” can be rather easily segmented
with existing approaches (14), they are not considered during
evaluation. Healthy (and easy) scans could also be translated
with the proposed pipeline, but remain almost unchanged. Binary
ground-truth was acquired to cover muscle volume only, also
excluding small fascias (Figure 4a). Due to high correlation of
consecutive slices and to limit manual effort, each forth slice
(transversal plane) was annotated under strong supervision of a
medical expert (Madlaine Müller). For parameter optimization
of the segmentation stage, grid search combined with leave-
one-out cross-validation is applied to determine the best
combination individually for both datasets. The parameters of
the graph-cut approaches consist of curvature weight λs ∈
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FIGURE 2 | An illustration depicting the individual losses Ld ,Lc,Li ,Lr contributing to the overall loss on a high level perspective.

[0.001, 0.002, 0.05, 0.1, 0.2, 0.5], low-pass filtering weight σ ∈

[1, 2], shape prior weight λsp ∈ [0.1, 0.2, 0.5, 0.7, 1], and neutral
probability pn ∈ [0.2, 0.3, 0.4, 0.5]. The CNN segmentation
approach is trained for 200 epochs with learning rate 0.0002
for each setting and each fold. Fourfold cross-validation is
conducted. For data augmentation, random cropping (256× 256
patches from images padded to 300 × 300 pixels), rotations
with multiples of 90◦ and flipping is applied. For further
parameters, we use the defaults from the pytorch reference
implementation.

For image translation, a cyclic GAN (based on a ResNet
with 9 blocks as generator and the proposed patchwise CNN
as discriminator) (7) is trained for 200 epochs with learning
rate 0.0002 based on a “hard” and an “easy” dataset. The “easy”
dataset contains 2D slices showing “healthy” and “minor” data
both showing no visible fatty-infiltrations and the “hard” dataset
contains “moderate” and “severe” images. The individual sets are
merged to maximize the number of training images (overall, we
obtain 649 “hard” (from 19 patients) and 1,124 “easy” 2D images
(20 patients) with a size of 256 × 256 pixels). The losses Ld and
Lc are equally weighted (wd = 1, wc = 1) (7). For wi and wr

(corresponding to Li and Lr), several relevant parameters are
evaluated as shown in Figure 3. The standard GAN setting is
evaluated with wi = 0 and wi = 1 (G0,0, G0,1) and three settings
for wr > 0 are evaluated with wi = 1 (G.5,1, G1,1, G2,1). In the
latter case, the identity loss is required in order to prevent the
GAN from generating extremely dark fake-“healthy” MRI scans.

3. RESULTS

Figure 3 shows the segmentation performance individually for
the four segmentation methods (GMM, GC, SPGC, CNN) and
for the different GAN configurations (Gn,m, with n and m
defining the weights such that wr = n and wi = m). For
completely unsupervised segmentation using GMM, the baseline
relying on original images (OI) is outperformed clearly. The best
median DSCs are obtained with the GAN setting G0.5,1 (DSC:
0.82 compared to 0.67 in case of OI). A similar effect is observed
for GC. The benefit of image translation is clearly smaller in case
of SPGC and CNN. For all configurations, G0.5,1 exhibits the best
DSCs with scores of 0.85/0.82/0.86 compared to 0.83/0.72/0.83 in
case of OI and 0.83/0.82/0.86 in case of the standard cycle-GAN
configuration G0,0 for the approaches SPGC/GC/CNN.

Example image translation output and example segmentations
for GMM and SPGC are provided in Figures 4a–g. Results

show clear improvements for the rather basic methods GMM
and GC, which fail in case of original pathological data.
For the methods that are capable of learning the shape of
the muscles, even with OI median scores above 0.84 are
achieved. Even for SPGC and CNN further improvements are
achieved in case of image translation (CNN: 0.86 compared
to 0.83). The bottom row of Figure 4 additionally shows
the impact of different image translation settings for an
example image.

4. DISCUSSION

Making use of unpaired image-to-image translation, we propose
a methodology to facilitate segmentation tasks for specific
scenarios where a hard problem can be mapped to an easier
task. The most impressive performance gain is observed in
case of fully unsupervised segmentation (GMM) applied to
the “severe” data, which was expected due to the high degree
of fatty infiltrations complicating a pixel-level classification
without contextual knowledge. However, also with probabilistic
graph-cuts with (GC) or without a statistical shape model
(SPGC) and even for the deep learning based approach (CNN),
a slight increase of performance with image translation is
observed. For the latter, this is not completely obvious since
the segmentation network should be capable of learning the
same invariance to pathological data as the translation model.
However, for learning the translation model, all available data
could be used and not only the annotated data (each forth
slice only), which is supposed to be a clear advantage due
to the small training data sets. Related work investigating a
similar application in digital pathology also suggests that two
individual networks performing a task in two steps can be
advantageous (20).

Considering the different GAN configuration, we note that
especially the introduction of the new lossLr leads to best median
DSCs and the configuration G.5,1 is never outperformed by any
other GAN configuration.

By considering the qualitative results (Figure 4), we note
that the converted images (in case of G.5,1) actually exhibit a
high similarity compared to data of healthy subjects and most
importantly they finally lead to improved segmentations. Only in
some severe cases, it can be observed that the muscle’s shape is
slightly changed and that small structures are not reconstructed
perfectly eventually also affecting the overall segmentation
performance. Therefore, we expect that increasing the amount
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FIGURE 3 | Segmentation performance (median, quartiles, min, and max DSCs) for the four segmentation approaches (GMM, GC, SPGC, CNN) and for individual

GAN configurations (Gn,m) compared to a direct segmentation (i.e., segmentation without image translation) of the original image data (OI). The indices of GAN-based

methods define the loss weights wr (first index) and wi (second index).

FIGURE 4 | Example segmentations (c,d) of the original image (a) as well as of the translated images (e–g) in comparison to the ground-truth annotations (b).

Although small structures often cannot be completely reconstructed (especially SPGC leads to over-smoothed masks), overall segmentation robustness increases in

case of the translated image (f,g). The bottom row shows an overlay of an example original image (h) with the corresponding translated images. Although green color

indicates “added” muscle tissue, red color indicates “removed” muscle. Yellow shows unchanged intensities. The configurations without Lr show removed muscle

tissue and also added muscle in wrong areas (i,j). This is not the case when including the novel domain specific loss (k–m).

of unlabeled training data can help to improve the image-
translation process in order to boost the overall performance of
(unsupervised) segmentation even further.

For clinical application, we estimate that a DSC of between
0.85 and 0.90 is required for reliable diagnosis. Visual inspection
can help to quickly identify scans for which segmentation failed.
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After image translation, rates below 0.85 only occurred for
severely affected patients.

To conclude, we proposed a methodology to simplify
segmentation tasks and thereby boost the segmentation accuracy
by mapping a hard segmentation problem to an easier task. For
means of enhancing the image-to-image translation approach,
we introduced a further domain specific loss function included
in GAN training. We considered an application scenario on
segmenting MRI scans of human thighs and showed that the
proposed approach can be effectively applied to either increase
the segmentation performance of supervised segmentation
techniques, or even to obtain highly reasonable outcomes with
completely unsupervised techniques. We assess the latter case
as even more relevant with most significant boosts in DSC (up
to 0.15). We are confident that this approach is not limited to
the considered application but can be effectively applied to other
tasks in radiology as well.
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Artificial intelligence (AI) as an emerging technology is gaining momentum in medical

imaging. Recently, deep learning-based AI techniques have been actively investigated in

medical imaging, and its potential applications range from data acquisition and image

reconstruction to image analysis and understanding. In this review, we focus on the

use of deep learning in image reconstruction for advanced medical imaging modalities

including magnetic resonance imaging (MRI), computed tomography (CT), and positron

emission tomography (PET). Particularly, recent deep learning-based methods for image

reconstruction will be emphasized, in accordance with their methodology designs and

performances in handling volumetric imaging data. It is expected that this review can

help relevant researchers understand how to adapt AI for medical imaging and which

advantages can be achieved with the assistance of AI.

Keywords: deep learning, magnetic resonance imaging, computed tomography, positron emission tomography,

medical imaging reconstruction

INTRODUCTION

Of all the advances in modern medicine, medical imaging is among the most remarkable
developments. It allows us to see anatomical structures, organs, and biological processes
unreachable by unaided eyes, providing tremendous opportunities for scientific research as well as
disease diagnosis and treatment (1, 2). Different modalities such as magnetic resonance imaging
(MRI) (3), computational tomography (CT) (4), and positron emission tomography (PET) (5)
can provide versatile information, ranging from structure, morphology to physiological function.
Specifically, MRI uses powerful magnetic fields, radio waves, and computers to produce details of
anatomical structures and functions (6, 7). CT measures the linear attenuation coefficient of tissues
inside each voxel element as an X-ray beam transmits through the body. PET measures changes in
metabolic processes as well as other physiological activities by counting radioactive emissions of a
biochemical metabolite labeled with radioactive material.

To better serve the clinical end-users, abundant studies have been conducted to optimize the
scanning process, improve the imaging efficiency, and enhance the image quality of MRI/CT/PET
(8, 9). Image reconstruction plays a significant role in this aspect. For MRI, its slow imaging
speed has been a long-lasting bottleneck that seriously limits its wider applications in the clinic
(10). Among different possible solutions, k-space undersampling has been identified as a highly
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effective approach to accelerate the scan (11, 12). Nevertheless,
images generated from undersampled k-space data are subject
to the low-quality issue, with possible loss of the important
information related to disease diagnosis or treatment (13).
Thus, high-quality image reconstruction from incomplete k-
space data is critical. As for CT and PET, the main focus is
to reconstruct high-quality images from deteriorated raw data
caused by low-dose imaging demands (14, 15). Many efforts have
been devoted to developing image reconstruction methods for
MRI/CT/PET, among which deep learning-based methods have
shown unprecedented successes (9, 14–16).

During the last decade, deep learning has been extensively
applied to medical imaging to handle different problems, such
as image reconstruction (17), image registration (18–20), image
classification (21, 22), and lesion segmentation (23). Among
these applications, image reconstruction is a primary step in the
clinical workflow that has a huge impact on the downstream
tasks of imaging-based analysis and decision making. Notice
that different medical imaging modalities (MRI, CT, and PET)
have their own unique imaging physics and principles, and thus
numerous deep learning-based methods have been proposed to
accomplish respective reconstruction tasks (9, 11, 14, 15). For
MRI, existing works have achieved impressive achievement to
balance imaging efficiency and imaging quality (9, 11). Similarly,
promising results have also been achieved for CT and PET
image reconstruction (14, 15). However, current progress is still
preliminary for deep learning-based image reconstruction in real
applications, andmore efforts are needed tomake this technology
mature enough for wide real-world clinical applications. Thus, it
is the right time to review existing works to help beginners as well
as non-specialists better understand this relatively new technique
and promote more follow-up investigations and applications.

The remainder of this review paper is organized as
follows. In section Overall Workflow of Deep Learning-
Based Reconstruction, we demonstrate the overall workflow
of deep learning-based reconstruction, by briefly introducing
the basics of deep learning relevant to the reconstruction
task, the purpose of image reconstruction, and the workflow
of deep learning-based reconstruction. Detailed technical
developments of deep learning-based reconstruction are
introduced in section Technical Developments of Deep
Learning-Based Reconstruction. Section Clinical Applications
and Current Achievements reviews current clinical applications
and achievements, followed by descriptions of key challenges and
opportunities in section Challenges and Opportunities. Finally,
section Conclusion concludes the paper.

OVERALL WORKFLOW OF DEEP
LEARNING-BASED RECONSTRUCTION

Basics of Deep Learning
Artificial intelligence (AI) refers to the ability of a machine to
simulate human intelligence by thinking and acting like humans
(24). Deep learning is a sub-discipline of AI, which specifically
addresses various tasks through building deep neural networks
(DNNs) (25). Different abstract levels of representations are

extracted with multi-layer networks which enable the learning
of complex functions. When inputs are images, the low-level
features usually represent edges and contours in the images,
whereas the high-level features are commonly semantic features
(26). One key characteristic for deep learning is that all the
parameters for feature extraction are learned automatically with
the provided data samples, which can be better self-optimized
to specific problems compared to the use of manual feature
engineering approaches (26, 27).

Supervised learning, unsupervised learning, and
reinforcement learning are the three major paradigms for
deep learning (28–31). Supervised learning requires paired data
samples for the inputs and the expected outputs (28). Model
optimization is performed by minimizing loss functions that
are calculated to measure the difference between model outputs
and ground truth. In unsupervised learning, only input data
samples are provided, and certain assumptions of the data have
to be made and then the corresponding model constraints are
enforced to facilitate the model learning (29). In reinforcement
learning, an algorithm is referred to as an agent. Then, the
agent takes an action to change its state, and, at the same time,
a reward or penalty is assigned. Different from supervised
learning, the training data of reinforcement learning provide
only an indication of whether an action is correct or not. The
overall goal of reinforcement learning is to achieve the maximum
reward over time by learning a policy for the agent to choose
proper actions for any given states (31). Most medical image
reconstruction models are based on supervised learning or
unsupervised learning, while reinforcement learning is less
frequently utilized.

Deep Learning-Based Image
Reconstruction
MRI
MRI reconstruction aims to generate high-quality images from
sampled k-space data. Conventional reconstruction methods
(i.e., Fourier transform) require the scanning process to
follow the Nyquist sampling theory. Thus, to obtain high-
quality images, the sampling frequency should be high enough,
which unfortunately makes the scanning process very time-
consuming. On the other hand, undersampling, which breaks
the Nyquist sampling theory, leads to imperfect MR image
reconstruction if using conventional reconstruction methods.
To this end, compressed sensing (CS) MRI (CS-MRI) has been
proposed by introducing CS theory to reconstruct MR images
with significantly fewer measurements than those required by
traditional Nyquist sampling theory (32). CS-MRI accomplishes
the reconstruction task mainly by exploiting the sparsity of MRI,
since most MR images are sparse after transformed into an
appropriate domain (32), such as using total variation (33) and
wavelet transformation (34).

Despite the successes achieved, CS-MRI still has limited
performance because of using manually-designed methods to
exploit the sparsity in MRI. By contrast, deep learning-based
image reconstruction for MRI can automatically and fully exploit
the available data information and recover the lost information
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under the guidance of certain prior knowledge. Deep learning
was first introduced to MR image reconstruction in 2016 by
Wang et al. (35). In their work, a three-layer neural network
was built to automatically learn themapping between low-quality
and high-quality images (35). Following this work, a series of
studies have been published, aiming to build more sophisticated,
robust, and optimized deep learning models for MR image
reconstruction (36–39).

Existing deep learning-based MR image reconstruction
methods can be classified into two major categories, (1) model-
based methods and (2) data-driven methods. Model-based
methods reconstruct high-quality MR images via solving certain
optimization algorithms and utilizing neural network modules
to represent the reconstruction steps of the solution. Typical
optimization algorithms include alternating direction method
of multipliers (ADMM) algorithm (40), iterative shrinkage-
thresholding algorithm (ISTA) (41), and primal-dual hybrid
gradient (PDHG) algorithm (42). Data-driven methods are
the end-to-end approaches that rely on DNNs with large
capacities to learn non-linear reconstruction processes. Example
models include U-Net (36), residual network (ResNet) (43),
and generative adversarial networks (GAN) (44). Model-based
methods are more interpretable as the network blocks can
correspond to the algorithm solutions, and data-driven methods
are more effective in data exploitation. Overall, deep learning-
based MR image reconstruction methods have dominated the
current research field, with promising performance.

CT
In CT, image reconstruction aims to transform the sensor data,
which basically reflects line integrals of the object, to an image
representing the object. Until recently, most CT reconstruction
methods can be classified as either analytic reconstruction or
iterative reconstruction. Analytic reconstruction is based on
the mathematical inverse of the forward model of an imaging
process, which could either be mathematically derived or
numerically modeled after the design of the CT imaging device
and the knowledge about how it generates sensor data. A
typical example of analytic reconstruction in CT is filtered
back-projection (FBP) (45). Iterative reconstruction is based
on a numerical forward model combined with a feedback
loop (46–51). In the feedback loop, the error between the
calculated sensor dataset and the measured sensor dataset
is back-transformed to the image domain to update the
current image estimation. This process is repeated until the
error reaches a small threshold and the optimum image
solution is obtained. Iterative reconstruction has been widely
used in CT because the measurements are typically noisy
or a mathematical inverse is unknown or computationally
challenging. Examples of iterative reconstruction in CT include
the algebraic reconstruction technique (ART) (52) and the
simultaneous algebraic reconstruction technique (SART)
(46). Iterative reconstruction usually outperforms analytic
reconstruction in terms of the quality of reconstructed images,
because iterative reconstruction relies on a more improved
forward model and has the ability to bring in various types of

external prior information to expand the information available
during reconstruction.

Very recently, a third type of CT reconstruction method
– deep learning based reconstruction – was introduced. Deep
learning reconstruction was first introduced to CT in 2016, when
Kang et al. used a deep learning reconstruction approach at
the 2016 Low-Dose X-ray CT Grand Challenge [organized by
the American Association of Physicists in Medicine (AAPM)]
(53), and, in parallel, when Chen et al. introduced a similar
convolutional neural network (CNN) for low-dose CT denoising
(54). The successful demonstration of CNN reconstruction
in low-dose CT has inspired many other deep learning
reconstruction research. For example, a combination of a
CNN with the Normalized Metal Artifact Reduction (NMAR)
algorithm for CT metal artifact reduction (55), a combination
of DenseNet and Deconvolution Network (DD-Net) for sparse-
view CT (56), Super-Resolution Convolutional Neural Network
(SRCNN) for CT super-resolution (57), and so on.

Deep learning reconstruction does not require an explicit
physical imaging model. Instead, deep learning reconstruction
can build its own model from a large amount of training
data, which becomes more and more readily available due to
the wide use of medical imaging in modern healthcare. With
larger and more representative training datasets, deep learning
reconstruction has the potential to outperform both analytic
reconstruction and iterative reconstruction. With unsupervised
learning or self-supervised learning, it has been hypothesized that
the integration of imaging physics within the machine learning
pipeline may further improve the reconstruction quality. For
example, a self-supervised and hybrid CT super-resolutionmodel
that integrates the advantages of both deep learning network and
imaging physics has been just published very recently (51).

PET
Similarly, PET reconstruction aims to generate diagnostic
quality images from measurement data. The conventional
PET reconstruction methods can be broadly classified into
two categories, i.e., (1) analytic (58, 59) and (2) iterative
PET reconstruction methods (60, 61). The analytic PET
reconstruction methods provide a straightforward mathematical
solution for image formation, a typical example of which is
the filtered-back projection (FBP). In contrast, based on a
more accurate description of the imaging process, iterative
methods produce a more complex mathematical solution that
requires multiple steps to reach an image. Since it can take
into account the noise patterns in the observations and use
more realistic models of the system, the iterative methods
provide improvements over the analytical methods. The classical
iterative methods include Maximum Likelihood-Expectation
Maximization (ML-EM) (60) and Ordered Subsets Expectation
Maximization (OSEM) (61).

Recently, numerous learning-based methods have also
been developed for PET reconstruction, such as random
forest (62), sparse representation (SR) (63), and multi-level
Canonical Correlation Analysis (mCCA) scheme (64). Yet, these
traditional machine learning methods often require complex
feature engineering, which largely limits the practicability and
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also results in suboptimal reconstruction quality. To address
this limitation, deep learning was first introduced to PET
reconstruction in 2017 by Xiang et al. (65). The authors
proposed a deep CNN model, followed by an auto-context
strategy, to estimate standard-dose PET images directly from
both the low-dose PET and the corresponding MR images,
without the need for handcrafted features. Encouraged by the
great success of this work, a series of deep learning-based
methods have been developed and successfully applied to various
scenarios of PET reconstruction (58–61, 66, 67). In addition,
the combination of the conventional iterative reconstruction
framework and the deep learning-based method has provided
some new approaches for PET reconstruction (14, 68, 69).
For instance, Gong et al. (14) used the existing inter-patient
information via a deep neural network to further improve the
quality of the reconstructed PET image. Furthermore, with the
introduction and development of new deep learning models
such as GAN, more efforts applying new techniques have
been continuously conducted for superior PET reconstruction
performance (70–72).

Training and Testing Workflow
The image reconstruction framework typically includes an
input, a reconstruction model, and an output. Traditionally,
the input is a sensor-domain raw data, i.e., sinogram in CT.
With deep learning-based reconstruction, the sensor data can
be first reconstructed using an analytic reconstruction model to
provide a low-quality image, and then this low-quality image
is fed into the DNN model to generate the corresponding
high-quality image. For MRI, the input and output data pair
can be either in k-space or image space. Note, to build
a deep learning-based reconstruction framework, two steps,
namely model training and model testing, are included, as
detailed below.

Model training is performed on the provided training samples
to optimize the model parameters. During the model training,
the loss between the model-generated outputs and the provided
training samples is calculated and back-propagated to optimize
the model parameters. The model parameters are updated to
minimize this loss. Model training proceeds in a data batchmode.
Training is stopped after the model is converged to a certain
point, or after reaching a pre-selected number of epochs. To avoid
the overfitting issue, data augmentation is commonly utilized.
Frequently utilized data augmentation methods include affine
transformations and Gaussian noise addition. In a deep learning
model, there are usually some hyper-parameters (such as batch
size, learning rate, etc.) that need to be adjusted manually or
automatically, i.e., using an additional validation set, to improve
the model performance.

With the optimized model, testing can be performed. To
comprehensively evaluate the model performance, testing with
data different from the training/validation data should be
conducted. For example, validating and testing data from
different centers collected with different machines are often
considered to make the model robust enough in real-
world applications.

TECHNICAL DEVELOPMENTS OF DEEP
LEARNING-BASED RECONSTRUCTION

This section will review various deep learning reconstruction
methods developed for MRI, CT, and PET, with typical
methods summarized in Table 1. We will present technical
aspects and performance characterization of deep learning
reconstruction. Technical aspects will include data preparation,
network architecture design, loss function, and settings or
requirements for training.

Data Preparation
When applying deep learning to medical imaging, normally three
datasets are in need, namely training, validation, and testing
datasets. The training dataset is used to train a neural network
that is monitored by the validation dataset to avoid overfitting
or underfitting. The testing dataset is to evaluate whether the
deep learning models can perform well for the real application
scenarios. The datasets should include ground-truth images
for supervised learning. While for unsupervised learning, no
ground-truth information is needed.

For MRI, different types of datasets have been collected and
experimented with for various applications. According to the
target region dynamic characteristics, there are static MRI and
dynamic MRI. Static MRI is applicable when the imaging target
changes slowly with time, such as the knee (36, 38) and the brain
(37). Dynamic MRI is often required when the target moves
fast, such as cardiac MRI (74, 91). Based on the number of coils
utilized to collect the data, MRI datasets can be classified into
single-channel MRI (92) and multi-channel MRI (43, 76, 93).
When different imaging parameters are used, multi-parametric
MRI data are collected to better characterize the physical and
physiological properties of the imaging object (94). Besides,
quantitative MRI is also available, which can measure tissue-
specific parameters (95)1.

For CT, depending on the goal of network training, various
public datasets are available for DNN model training when
developing deep learning reconstruction methods. Some datasets
are curated for image noise reduction. For example, the Mayo
Clinic Low-Dose X-ray CT datasets for the Low Dose CT Grand
Challenge organized by the AAPM (54) have clinical CT images
acquired at the full-dose level and the corresponding simulated
CT images at the quarter-dose level. This Mayo Clinic dataset
can be useful for training deep learning models to reduce CT
image noise and hence optimize the dose efficiency. Other
datasets are curated toward specific diseases or conditions. For
example, The Cancer Imaging Archive (TCIA) hosts a large
archive of medical CT images of cancer accessible for public
download. Noticeably, in the last year, because CT has been
successfully proven to be a rapid triaging tool in patients
with moderate to severe COVID symptoms in a resource-
constrained environment where COVID-19 is highly prevalent
(96), we now have abundant publicly-available COVID CT
datasets available today. Two particular COVID CT datasets

1Popular datasets in MRI include fastMRI https://fastmri.org/dataset/ and

brainweb https://brainweb.bic.mni.mcgill.ca/.
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TABLE 1 | Representative works on deep learning-based MRI/CT/PET image reconstruction.

Modality Task description Network architecture Loss function Dataset Evaluation

metrics

Reference

MRI Directly learning the

transformation from

sensor-space data to image

MLP Simple squared loss and

additional L1-norm penalty

ImageNet database,

MGH-USC HCP public

database

SNR, RMSE (37)

MRI k-space to k-space

reconstruction

UNet L2 loss Knee k-space dataset,

MGH-USC HCP public

database

NMSE, PSNR,

SSIM

(36)

MRI Reconstruction with

proposed complex

convolution operations

ResNet Mean absolute error (MAE) Brain dataset, Knee dataset PSNR, SSIM (43)

MRI Reconstructing real-valued

and complex-valued MRI

data

GAN Cyclic data consistency loss IXI database, Data Science

Bowl challenge, Knee

dataset

PSNR, SSIM,

NRMSE

(44)

MRI Fast and high-quality

reconstruction by combining

various loss functions

GAN Content loss, Image domain

and frequency domain

MSE loss, Perceptual

VGG loss

MICCAI 2013 grand

challenge dataset,

Pathological MRI images

NMSE, PSNR,

SSIM

(52)

MRI Infusing motion information

into the modeling process

with deep neural networks

for enhanced dynamic MRI

reconstruction quality

Recurrent neural network

(MODRN, Motion-guided

Dynamic Reconstruction

Network)

L1 loss Private short-axis cardiac

data (21 normal subjects

and 3 dyssynchrony disease

patients)

NMSE, PSNR,

SSIM

(73)

MRI Reconstruction with both

k-space and spatial prior

knowledge integrated via

multi-supervised network

training

CNN L2 loss Private cardiac MR data MSE, PSNR,

SSIM

(74)

MRI Improving MRI

reconstruction accuracy

and computational speed

with a CS-based model

Model-based (Alternating

direction method of

multipliers algorithm)

NMSE Brain and chest MR images NMSE, PSNR,

Test time

(40)

MRI Fast and high-quality

reconstruction of clinical

accelerated multi-coil MR

data

Model-based (Variational

network, unrolling iteration)

MSE Clinical knee dataset SSIM, NRMSE (38)

MRI Deriving deep architectures

for inverse problems with

the arbitrary structure

Model-based (recursive

framework alternating

between denoising block

and data-consistency layer)

MSE Brain MR dataset from five

volunteers

PSNR, Time (75)

MRI Fast parallel MR imaging by

exploring both spatial

redundancy and multi-coil

correlations

Model-based (split Bregman

iterative algorithm)

MSE Private 2D multichannel MR

brain dataset

NMSE, PSNR,

SSIM

(76)

MRI Self-supervised deep

learning MRI reconstruction

by dividing sub-sampled

data points into two sets

with one for data

consistency and another for

loss calculation

Model-based (regularized

iterative algorithm between

data consistency and a

regularizer solved by the

variable-splitting and

quadratic relaxation method)

Normalized L1-L2 loss Knee MR data from fastMRI

initiative database

NMSE, SSIM (77)

MRI Accelerate and improve

multishot diffusion-weighted

MRI reconstruction by

combining unrolled network

with deep CNNs

Model-based and UNet

(recurrences of

model-based gradient

updates (shotlocally

low-rank) and neural

networks

L1 loss Private brain (14 scans from

8 volunteers) and breast (6

scans from 6 volunteers)

MR data

NMSE, PSNR,

SSIM

(78)

CT Using U-Net and its variants

for recovery of

high-frequency edges in

sparse-view CT in the image

domain

Dual frame and tight frame

U-Nets

Pixel-wise soft-max

combined with cross

entropy function (the original

U-net loss function)

10 patient CT scan data

from the 2016 AAPM Low

Dose CT Grand Challenge

Dataset

NMSE, PSNR,

SSIM

(56)

(Continued)
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TABLE 1 | Continued

Modality Task description Network architecture Loss function Dataset Evaluation

metrics

Reference

CT General sparse-view CT

image reconstruction

DenseNet combined with

deconvolution

Weighted loss between

MSE and MS-SSIM

3,059 clinical CT images

from the TCIA database

MSE, SSIM,

Haralick texture

features

(15)

CT CT super-resolution Modified U-net L2 loss 7,670 CT slices NRMSE, PSNR (57)

CT Low-dose CT for mapping

low-dose images to

normal-dose images; CT

image denoising

Residual encoder-decoder

CNN (RED-CNN)

MSE loss 7,015 normal-dose CT

images from the NBIA

dataset and simulated

low-dose CT images

RMSE, PSNR,

SSIM

(54)

CT CT image denoising Framelet-based wavelet

residual network

Pixel-wise soft-max

combined with cross

entropy function (the original

U-net loss function)

10 patient CT scan data

from the 2016 AAPM Low

Dose CT Grand Challenge

Dataset

RMSE, PSNR,

SSIM

(79)

CT Sparse-view CT image

reconstruction

U-net with skip connection

for residual learning

Pixel-wise soft-max

combined with cross

entropy function (the original

U-net loss function)

The 2016 AAPM Low Dose

CT Grand Challenge

Dataset, plus 500 simulated

images and 377

experimental sinograms

SNR (80)

CT CT image denoising in

low-dose CT

GAN network, consisting of

a Generator CNN and a

Discriminator CNN

binary cross-entropy, L2

loss

5 low-dose and 5

corresponding routine-dose

CT scans of a phantom,

and 28 cardiac CT scans

from patients

SNR, PSNR (81)

CT CT image denoising in

low-dose CT

GAN network with

Wasserstein distance and

perceptual loss (WGAN)

Wasserstein distance based

adversarial loss, VGG

perceptual loss

10 patient CT scan data

from the 2016 AAPM Low

Dose CT Grand Challenge

Dataset

PSNR, SSIM (82)

CT CT super-resolution GAN-CIRCLE Adversarial loss, cycle

consistency loss, identity

loss, joint sparsifying

transform loss

Micro-CT dataset from 25

tibia specimen, and the

2016 AAPM Low Dose CT

Grand Challenge Dataset

PSNR, SSIM,

IFC

(83)

CT To ensure data consistency

even in worst-case

scenario, and to guarantee

the convergence of a

non-convex CT

reconstruction problem

Specially designed method

that replaces the projector

in a projected gradient

descent with a CNN, and

uses the CNN in the

feedback loop to recursively

project the result onto the

sensor domain

Data consistency loss 500 lower-lung CT images

from the 2016 AAPM Low

Dose CT Grand Challenge

Dataset, and 377 micro-CT

slice images of a rat brain

SNR, SSIM (84)

CT CT Super-resolution Self-supervised SADIR-net

(super-resolution and deblur

based iterative

reconstruction), which is a

hybrid between deep

learning network and

imaging physics

Joint loss function

combining L2-norm with

SSIM

47 clinical CT scans from

TCIA database;

custom-acquired

Catphan700 phantom CT

sensor data

MTF, RMSE,

SSIM, IFC

(51)

PET Incorporating the neural

network into the iterative

PET reconstruction

framework for PET

denoising

UNet with residual learning Augmented Lagrangian

format, L2 loss

19 XCAT phantoms;

6 lung patient data

CR, STD (14)

PET Standard-dose PET

reconstruction from

low-dose PET

Noise-Aware Dual Res-UNet Dice loss, Binary cross

entropy loss, General and

adaptive robust loss, SSIM

loss

10 subjects referred for

whole-body FDG-18

PET/CT scan on a GE

Discovery 710 scanner

PSNR, SSIM (85)

PET Using patients’ own prior

information for PET

reconstruction

3D UNet MSE Phantom and real brain data CRC, STD (69)

PET PET reconstruction from

projections data

ANN MSE Simulated data NMSE (86)

(Continued)
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TABLE 1 | Continued

Modality Task description Network architecture Loss function Dataset Evaluation

metrics

Reference

PET Using multilayer perceptron

(MLP) to enhance MAP

reconstructed PET images

MLP with backpropagation Least squares loss PET phantom images, two

patient PET imaging

datasets

NMSE, NSD,

Contrast

(87)

PET Ultra-low-dose PET

reconstruction

ResNet L1 loss, SSIM, MS-SSIM 9 PET/MRI images from

patients with glioblastoma

(GBM)

PSNR, SSIM,

NRMSE

(66)

PET Using dilated convolutions

for recovering full-count PET

images from low-count PET

images

UNet with dilated

convolution

L1 loss 35 PET data extracted from

an IRB approved psychiatric

study

MAPE, PSNR,

SSIM

(88)

PET Reconstruction of PET

image from sinogram data

CNN VGG, MAE, MS-SSIM Whole-body PET studies:40

patients for training, 4 for

validation, and 10 for testing

SNR, Bias, MAE,

MS-SSIM

(89)

PET Anatomy-aided PET image

reconstruction

3D CNN L2 loss Simulation study: 20

XCAT51 phantoms real

patients studies: 6 hybrid

lesion patients, 6 lung

cancer patients

CR, STD (90)

PET Using a deep learning prior

for iterative PET

reconstruction

DnCNN + local linear fitting

(LLF)

L2 loss 27 control subjects and

clinical patients

Bias and

standard deviation;

NRMSE; SSIM

(68)

PET Reconstruction of PET

image from sinogram data

GAN Adversarial loss, L1 loss Simulated data of the three

phantoms using Monte

Carlo simulations, including

Zubal thorax phantom with

64Cu-ATSM, Hoffman brain

phantom with 18F-FDG and

Zubal brain phantom with

11C-Acet ate

Bias, Variance (71)

PET Reconstruction of PET

images from sinogram data

GAN MSE, Relativistic Average

LS adversarial loss

Human brain PET dataset

with nine subjects

Bias, Variance,

PSNR, SSIM

(70)

PET Low-dose PET image

denoising

CycleWGAN Adversarial loss,

Cycle-consistency loss,

Identity loss

Eighteen patients with

biopsy-proven primary lung

cancer or patients with

suspicious radiological

abnormalities

NRMSE, PSNR,

SSIM, SUVmean
and SUVmax

(72)

could be useful for training deep learning models. One is the
BIMCV-COVID-19+ (97), a large dataset from the Valencian
Region Medical Image Bank earlier in the pandemic period, and
another is the RSNA International COVID-19 Open Radiology
Database (RICORD), which is an ongoing international effort
in curating potentially the largest international COVID-19
CT dataset.

For PET, the datasets mainly include static PET (98–100)
and dynamic PET (101–104) based on data types. On the other
hand, according to the number of tracers imaged in a single
scan, the datasets can be classified as single-tracer PET (105),
dual-tracer PET (106, 107), and multi-tracer PET (108). When
it comes to the injected tracer dose level, the datasets can also
be broadly categorized as low-dose PET (L-PET) and full-dose
PET (F-PET) (65, 67, 88). Although the use of real PET data
in studies is more clinically relevant, these real data are often
difficult to obtain due to various factors. Therefore, simulated
phantom data is becoming a popular alternative in research
works (68, 88, 109, 110).

Network Architecture
The neural network architectures employed for different
tomographic imaging tasks share some similar properties. The
most frequently used architectures include multilayer perceptron
(MLP), U-Net, generative adversarial networks (GAN), ResNet,
etc. Here, we introduce these typical network architectures.

MLP
The MLP, which is an artificial neural network (ANN) with all
layers fully-connected, can map sets of input data into a set of
desired outputs. In the past decades, researchers have worked
on exploiting MLP in medical image analysis. For example,
a multilayer perceptron was proposed for accelerated parallel
MRI (111). Zhu et al. (37) proposed an MLP-based manifold
learning framework to emulate the fast-Fourier transform and
learn an end-to-end mapping between k-space data and image
domains and achieve the purpose of acceleration. For PET, MLP
was also employed for simple low-resolution PET reconstruction
(86). Furthermore, Yang et al. (87) developed an MLP-based
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framework to enhance the maximum a posteriori (MAP)
reconstructed PET images, which constructs a highly non-linear
and spatial-varying mapping between the MAP reconstructed
image patches and the corresponding enhanced image patches.

U-Net
U-net consists of an encoder structure and a decoder
structure, which was originally designed for biomedical image
segmentation (112, 113). The encoder gradually down samples
the input images to extract image features with different levels
of semantic information. The decoder receives the features from
the encoder and recovers the feature map resolution step-by-step
to generate the outputs, which are often the same size as the
inputs and can then be treated as the reconstructed images. Skip
connections between the encoder and the decoder are introduced
to improve the localization accuracy during decoding.

For MRI, Ye et al. (114) used deep residual learning to
accelerate MRI. The proposed deep residual learning network
is composed of two separately trained amplitude and phase
difference networks, which can successfully learn and remove
aliasing artifacts. Furthermore, Ye et al. also proposed a U-
Net-based domain adaptation architecture for radial k-space
undersampled MR (115), and a fully data-driven deep learning
algorithm for k-space interpolation (36). These methods have
been successfully applied to MR image reconstruction, and have
achieved better results than the classic CS method. Duan et al.
(116) proposed a fast and accurate deep learning reconstruction
method for human lung gas MRI, which consists of coarse-to-
fine nets (C-net and F-net) based on U-Net. The proposed deep
learning method can better reconstruct the human lung gas MR
images acquired from highly undersampled k-space compared
with the traditional CS-MRI. Hyun et al. (117) proposed an under
sampling MRI reconstruction method using U-Net, which shows
excellent performance and can generate high-quality MR images
with a small amount of data.

For CT, U-net and its variants have also been successfully
applied to solve various problems in CT reconstruction,
including sparse-view CT reconstruction, artifact reduction,
noise suppression, and CT super-resolution, etc. For sparse-
view CT reconstruction, which can reduce radiation dose
and accelerate scanning speed, Han et al. (56) achieved
better reconstruction performance by framing U-Net via deep
convolutional framelets. Also, for sparse-view CT reconstruction,
Kofler et al. (118) proposed a cascade of U-nets and data
consistency layers, and Zhang et al. (15) developed DD-Net by
combining DenseNet and deconvolution and arranging them in a
network topology similar to U-Net. For the purpose of CT artifact
reduction, Zhang et al. (55) tried U-net and found promising
results of U-net in reducing global and local CT artifacts. To
reduce noise in low-dose CT images, Liu et al. (119) adopted
stacked denoising autoencoders to suppress noise and recover
structure details. For CT super-resolution, Park et al. (57) used
a modified U-net to learn an end-to-end mapping between low-
resolution and high-resolution CT images.

For PET, U-net is also a commonly used framework in many
PET reconstruction works (14, 69, 86, 120–122). Gong et al. (14)
designed an iterative reconstruction framework that combines

the U-net structure and the residual network for PET denoising
by utilizing dynamic data of prior patients. Taking the noise level
of low-count PET into account, Xiang et al. (85) developed a
noise-aware dual Res-UNet (NADRU) framework for low-dose
PET reconstruction. The proposed method first identified an
attention map indicating the location of high-intensity noise
in the low-dose PET images. Then, the noise attention map
was incorporated with the original image for high-quality PET
reconstruction. In addition to reconstructing high-quality images
within PET, many efforts have also been made to reconstruct PET
from other modalities. For example, Sikka et al. (121) adopted
a 3D U-Net architecture to estimate PET from MRI images. By
considering non-local and non-linear correlations, the proposed
method showed a significant improvement in the diagnostic
accuracy of Alzheimer’s disease. Employing a modified 3D U-net
as the network structure, Gong et al. (69) designed an iterative
reconstruction framework that incorporates the personalized
deep neural network to generate PET data from a patient’s
own MRI prior image(s). Furthermore, Cui et al. (122) utilized
CT/MR prior information to perform PET denoising based on a
modified 3D U-net structure in an unsupervised manner.

ResNet
ResNet is proposed to solve the difficulty of training very deep
CNNs and avoid model performance degradation (123). The core
idea of ResNet lies in residual learning, which is based on the
assumption that it is easier to optimize the residual mapping than
to optimize the original and unreferenced mapping (123). With
the success of residual learning, the ResNet has also been widely
used in medical image reconstruction.

For MRI, Shi et al. (124, 125) proposed a residual-learning-
based MR image super-resolution reconstruction network. The
network can improve image reconstruction performance using
both global residual learning (GRL) and local residual learning
(LRL). Wang et al. (43) proposed a new framework Deepcomplex
MRI using a deep residual CNN for parallel imaging. It considers
the correlation between the real and imaginary parts of MR
complex images and achieved better results than real-value
networks. Li et al. (126) designed a deep ResNet using variable
density spiral trajectory to accelerate fMRI reconstruction. The
proposed deep ResNet consists of various residual blocks.
Du et al. (127) proposed a residual CNN for reconstructing
single anisotropic 3D MR images based on residual learning.
The residual CNN with long and short skip connections
can effectively recover uncollected high-frequency details of
MR images.

For CT, ResNet or more generally residual learning has
also been demonstrated its effectiveness in CT reconstruction,
particularly in noise suppression and artifact reduction. Chen
et al. (128) developed a residual encoder-decoder CNN (RED-
CNN) for low-dose CT. RED-CNN combines autoencoder,
deconvolution network, and shortcut connections. It can
effectively suppress noise, preserve structure details, and
enhance lesion detection. For CT image denoising, Kang
et al. (79) proposed a wavelet residual network based on a
deep convolutional framelet and achieved better performance
compared to their earlier algorithm using directional deep
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convolutional-wavelet neural network (53). To reduce the sparse-
view CT artifact, Dong et al. (129) proposed a residual deep
learning CNN to interpolate the sinogram of sparse-view micro-
CT, and the deep learning interpolated sinogram was FBP-
reconstructed into high-quality images. Also for sparse-view CT,
Jin et al. (81) proposed FBPConvNet, which first reconstructs
sparse-view CT sinogram with FBP and then improves the FBP-
reconstructed image using a modified U-net with the addition of
residual learning.

For PET, residual learning is also employed in the
reconstruction task. In order to effectively restore the low-
dose PET images to the standard-dose quality, Xu et al. (66)
proposed an encoder-decoder residual deep network, in which
residual learning and skip connections were adopted for learning
the difference between standard-dose and low-dose PET images.
Similarly, Spuhler et al. (88) designed a novel multiscale dilated
CNN approach to predict full-count PET images from low-count
images. The proposed method integrated the residual learning to
capture the difference of low-count and full-count PET images
and enhance the convergence of the network. The experiments
of these studies showed that residual learning was beneficial
for high-quality PET reconstruction. Moreover, in Chen et al.
(54), a deep learning-based framework with low-count PET and
multimodal MRI as inputs was presented for diagnostic-quality
PET image synthesis through residual learning.

GAN
GAN (130), as one of the most popular generative models in deep
learning, has demonstrated its superior performance in many
computer vision tasks and attracted growing interest in medical
image reconstruction.

For MRI, Yang et al. (52) proposed De-Aliasing GAN
(DAGAN) for fast compressed sensing MRI reconstruction. The
authors designed a refinement learningmethod to stabilize the U-
Net-based generator. In order to better preserve texture and edge
information, DAGAN combines adversarial loss and innovative
content loss in the image reconstruction process and takes
into account the frequency information at the same time. The
reconstruction result of DAGAN is better than the traditional CS-
MRI algorithm. Quan et al. (44) proposed an improved model,
RefineGAN, based on fully residual convolutional autoencoder
and GANs for fast and accurate CS-MRI reconstruction. It
can perform faithful interpolation for a given undersampled k-
space data by employing a deeper generator and discriminator
with cyclic data consistency loss. RefineGAN outperforms the
state-of-the-art CS-MRI reconstruction algorithms in terms of
both image quality and running time. Mardani et al. (131)
proposed a novel CS framework based on LSGAN and pixel-
wised l1/l2 loss forMRI reconstruction, namely GANCS. GANCS
can reconstruct higher quality images with improved fine texture
details compared to existing methods.

For CT, Wolterink et al. (81) used a GAN network that
consists of a Generator CNN and a Discriminator CNN to
reduce the noise level in CT images. They produced better
images for more accurate coronary calcium quantification.
Similarly, for the purpose of image denoising in low-dose CT,
Yang et al. (82) modified the original GAN network by using

the Wasserstein distance, instead of the Jensen-Shannon (JS)
divergence, to compare data distributions. The Wasserstein
distance is combined with the well-known pre-trained VGG-19
network (132) to build a joint loss function. This modified GAN
network also achieved promising results in image denoising.
For the purpose of CT super-resolution, You et al. (83)
developed a GAN network constrained by the identical, residual,
and cycle learning ensemble (GAN-CIRCLE). GAN-CIRCLE
incorporates deep CNN, residual learning, and network-in-
network techniques for feature extraction and restoration, and
employed a cycle Wasserstein regression adversarial training
framework. It is noted that many GAN networks also employed
the technique of residual learning in their architectures.

For PET, Liu et al. (71) employed a conditional GAN
(cGAN) framework to learn the mapping from sinogram data
to reconstructed PET images directly. Inspired by the promising
results achieved by cGAN, the authors further presented an
end-to-end model for PET reconstruction, which adopts two
coupled networks to sequentially denoise low dose sinogram and
reconstruct activity map (70). Zhou et al. (72) designed a cycle
Wasserstein regression adversarial model (CycleWGAN) using
Wasserstein distance, instead of JS divergence and cycle-loss, to
boost the low-dose PET image quality, which shows the superior
performance of Wasserstein distance in effectively preserving the
edge information. To reduce the loss of contextual information,
Wang et al. (133) developed a concatenated 3D cGAN for high-
quality PET image estimation from low count PET. Considering
the various contributions of different image locations and the
complementary information in different modalities, they further
proposed an auto-context-based locality adaptive GANs (LA-
GANs) (67) model to reconstruct the full count PET image from
both the low count PET and the accompanying multimodal
MRI images. Besides, many other works also attempted to
reconstruct PET images from other modality information in
consideration of the expensive cost of PET imaging and the
hazards of radiation exposure. Ben-Cohen et al. (134) proposed
to generate simulated PET images from given CT data without
manually annotated labels. They first adopted FCN to generate
an initial PET-like image and then employed cGAN to refine
the FCN output so that the synthesized image could be more
realistic. Based on 3D GAN, Yaakub et al. (135) designed a two-
stage approach to predict accurate PET images from T1-weighted
MRI scans. It is worth noting that many GAN-based models
have also introduced residual learning to further improve the
reconstruction performance (136, 137).

Modality-Specific Module Design
To improve the reconstruction accuracy or enhance the reliability
of the reconstruction results, special network modules are usually
designed taking the specific properties of different imaging
modalities into consideration.

For MRI, in addition to modules utilized by every model,
including the convolutional layers, the normalization layers, and
the activation layers, there is commonly a data consistency layer
to guarantee that the data on scanned points are correct (138).
According to the data acquisition process of MRI, undersampling
happens in the k-space by neglecting a certain portion of data
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points. Therefore, theoretically, on the scanned data points, the
reconstruction results should be consistent with the acquisitions.
With the data consistency layer, the reconstruction is forced to
be correct on these sampling points and the reconstruction of
unscanned data points is accordingly improved. Besides, because
the data acquisition of MRI proceeds in a different domain (k-
space) from the image domain, reconstruction can be performed
in individual domains (38, 139) or cross-domains (74, 140).
Furthermore, complex-valued neural networks are proposed to
specifically process the complex-valued MR data (43, 141, 142).

For CT, although the reconstruction results from most
reported deep learning algorithms are so far remarkable in
terms of image quality, there is still some concern about
whether those reconstruction results can be trusted, especially
in real-world applications of diagnostic imaging. One main
limitation of those deep learning algorithms is that they seldom
provide guarantees in the worst-case scenario. To address this
limitation, Gupta et al. (84) proposed a specially designed CT
image reconstruction method that replaces the projector in a
projected gradient descent with a CNN and uses the CNN
in the feedback loop to recursively project the result onto
the sensor domain. This reconstruction method can enforce
measurement consistency, is guaranteed to converge, and, under
certain conditions, converges to a local minimum of a non-
convex inverse problem. On the other hand, while iterative
CT reconstruction can yield high-quality images, careful tuning
of hyper-parameters in these iterative reconstruction problems
is inevitable. To achieve automatic parameter tuning, Shen
et al. (143) employed deep reinforcement learning to train a
system that can automatically adjust parameters in a human-
like manner, and demonstrated that CT images reconstructed
from their approach attain quality similar or better than those
reconstructed with manually tuned parameters.

For PET, some studies have incorporated specially designed
modules to improve the PET image quality. For instance,
taking the location-varying contributions from different imaging
modalities into account, Wang et al. (67) proposed a locality
adaptive fusion module to automatically fuse local patches
from multimodal MRI for high-quality PET image synthesis. In
Samuel Matej et al. (58), the authors devised a novel Radon
inversion layer to address the computational challenges in
multi-slice PET image reconstruction. This specially designed
layer was demonstrated to be efficient in performing domain
transformation from sinogram to image space. Moreover, to
encourage feature reuse and prevent resolution degradation, Du
et al. (144) designed residual dense connections followed with
pixel shuffle operations (RDPS blocks) in the generator network,
achieving promising reconstruction results.

Loss Function
As the task is to restore the quality of the output images in all
locations, for the fully supervised learning, the most frequently
used loss for the network training is the mean squared error
(MSE) between the network prediction and the ground truth.
MSE is also known as the L2 loss. Based on MSE, there are
also some extended loss functions such as root mean squared

errors (RMSE), normalized mean squared errors (NMSE), and
normalized root mean squared errors (NRMSE).

There are alternative losses, such as the mean-absolute-error
cost function (MAE), which is also known as the L1 loss.
Compared with MSE, MAE is used relatively less, but there are
still studies showing that using MAE can preserve better results
than MSE.

One common choice of loss function for reconstruction
problem is L2, but the reconstructed image obtained is of low
quality and lacks high-frequency detail. Therefore, in order to
offset the shortcoming of L2 loss, structural similarity index
(SSIM), signal to noise ratio (SNR), peak SNR (PSNR), or
perceptual loss is used as an additional loss to constrain the
prediction results in some literatures. These additional loss
functions or the combined loss between them have been shown
to improve the reconstruction performance of the model.

Modality-Specific Loss
In MRI, there are also specially designed losses. In Quan
et al. (44), the authors proposed a cyclic data consistency loss,
which combines the undersampled frequency loss and the fully
reconstructed image loss. In practice, MSE, MAE or other
functions can be used as the basic function to achieve cyclic loss.
Some studies (52) combine MSE and perceptual loss to form a
novel content loss to achieve better reconstruction details. There
are also studies that combine MAE with perceptual loss (145), or
MSE with TV loss (146), for MR image reconstruction.

In CT, Yang et al. (84) employed for their modified GAN
network a joint loss function that combines the Wasserstein
distance-based adversarial loss with the well-known pre-trained
VGG−19 loss (134). Those two loss terms in the joint loss
function are balanced with a hyperparameter to control the trade-
off between the GAN adversarial loss and the VGG perceptual
loss. When comparing the performance of a modularized deep
neural network to commercial algorithms for low-dose CT image
reconstruction, Shan et al. (147) chose a composite loss function
that includes three components: adversarial loss, MSE, and edge
incoherence. The adversarial loss is used to train the generator in
their GAN network to produce images as close to the reference
high-dose images as possible, the MSE is used to reduce image
noise, and the edge incoherence is used to enhance the edge
information in the denoised image.

In PET, Kim et al. (68) proposed a novel 3D local linear
fitting (LLF) function and incorporated it into the cost function,
combining the input image with the DnCNN correcting the
unwanted bias and finally enhance the image quality. Similarly,
Ouyang et al. (105) designed a GANmodel with feature matching
technique and task-specific perceptual loss to ensure that the
synthesized standard-dose amyloid PET images include the
correct features.

Requirement for Network Training
The fundamental parameter learning schemes are back-
propagation algorithms. Adam optimization with variable
parameter momentum is often used in neural network
optimization. As for hardware, the graphics card for deep
learning network training is essential. According to the literature
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we searched and referenced, the types of graphics cards generally
used are NVIDIA K80, NVIDIA K40c, GTX 1080Ti, RTX 2080,
RTX 2080Ti, Titan X, Titan Xp, Titan V, etc. As for software,
TensorFlow, PyTorch, Keras, Caffe, etc. are several commonly-
used DNN training frameworks. In addition, Matlab is also used
to process data or perform tests in some studies. The system used
is generally a Linux system.

CLINICAL APPLICATIONS AND CURRENT
ACHIEVEMENTS

Deep learning-based medical imaging techniques have played
more and more important roles in today’s clinical applications,
and have achieved significant progress in solving various major
pain points in different imaging modalities.

MRI
For MRI, it has superior soft-tissue contrast and it is radiation-
free. However, the major limitation of MRI is its slow acquisition
speed. Although lots of acceleration strategies were proposed
in the literature, such as parallel imaging and compressed
sensing, they have their own limitations such as amplification
of Gibbs artifacts and long iterative reconstruction time. Deep
learning-based techniques offer a feasible solution to robustly
and efficiently reconstruct the MRI images from subsampled K-
space data even under high down sampling factors. Moreover,
deep learning-based reconstruction techniques can be integrated
with conventional acceleration techniques to reach even
higher reconstruction quality. For instance, the AI-assisted
compressed sensing (ACS) technique developed by United
Imaging Intelligence (UII) and United Imaging Healthcare
(UIH) integrates the advantages of four acceleration techniques,
i.e., (1) deep learning-based reconstruction, (2) partial Fourier
transform, (3) parallel imaging, and (4) compressed sensing, into
a unified framework, and achieves great success in real-world
clinical applications for fast MRI imaging. ACS is able to reduce
around 80% scan time on average for most of the FSE sequences,
and it supports the scan of different body parts such as head,
cervical spine, lumbar spine, hip, pelvis, ankle, and knee. For each
body part, ACS normally can achieve a scan time of fewer than
100 s for all the sequences as shown in Figure 1.

ACS has received FDA 510K clearance and has also been
deployed in different hospitals. Another example is the SubtleMR
techniques developed by Subtle Medical, which also adopts deep
learning-based techniques for fast MR imaging and received FDA
510K clearance. SubtleMR is able to reduce around 60% scan
time and has also been deployed in many hospitals and applied
in real-world clinical workflow in the US.

CT
For modalities of CT (as well as PET as introduced below), the
radiation dose delivered to the patient must be strictly controlled,
because radiation is harmful to the patient and an excessive dose
may lead to the result of secondary cancer. However, a lower dose
normally leads to inferior image quality, and it may affect the
diagnosis accuracy. Therefore, how to obtain high-quality images

under the low-dose condition for CT is essential in real world
clinical applications.

Deep learning-based denoising techniques provide a good
solution to obtain high-quality CT images under low-dose
conditions. The basic principle is to train a deep learning network
that learns the mapping between the low dose CT image and
the corresponding standard-dose CT image. Once the network
is trained, the image quality can be significantly improved by
passing the low dose CT image through the network. This
strategy has been adopted by many industries and turned into
products in real world applications. For instance, the DELTA
(i.e., DEep Learning Trained Algorithms), a deep learning-based
denoising technique developed by UII and UIH, can reduce the
dose up to 80% while the low contrast detectability (LCD) of CT
images can be improved up to 157%; some typical examples are
shown in Figure 2. Canon developed the Advanced intelligent
Clear-IQ Engine (AiCE) which can reduce the noise and boost
signal in CT images based on deep learning. GE developed the
TrueFidelity CT imaging platform, which adopts deep learning-
based techniques to improve the image quality of low-dose
CT images. DELTA, AiCE, and TrueFidelity all received FDA
510K clearance.

PET
For PET, besides the concern of dose, another pain point is the
relatively longer imaging time than other image modalities such
as CT and DR, and some patients such as children and patients
with bone cancer may not be able to hold their positions during
the imaging process. Therefore, how to obtain high-quality
images under low-dose conditions and how to accelerate the
imaging is essential for real-world clinical applications of PET.

So far, various deep learning-based techniques have been
applied to accelerate the acquisition speed of PET imaging and
also maintain the high quality of PET images. For instance,
the HYPER DLR (Deep-Learning Reconstruction) product
developed by UII and UIH can significantly reduce the scanning
time of PET imaging from 3min/bed to< 1min/bed. In addition,
it can effectively reduce the noise level of PET images under low
count rate conditions and significantly improve image quality.
Specifically, the SNR (Signal-to-Noise Ratios) of PET images
can be improved by 42% with an accelerated imaging speed.
Figure 3 shows some typical examples of HYPERDLR. Similarly,
Subtle Medical developed the SubtlePET product which also
adopts deep learning-based techniques and can denoise the low-
count PET images obtained in 25% of the original scan duration,
improving patient comfort during PET scans. Both HYPER DLR
and SubtlePET received FDA 510K clearance.

PET-MRI
In some applications, cross-modality synthesis techniques are
also required. For instance, the PET-MR imaging equipment
normally needs to synthesize the CT image from the acquired
MR image in order to perform attenuation correction (AC) for
the PET image (148). This process is illustrated in Figure 4.

There are lots of synthesis strategies. The most simple and
straightforward strategy is to segment the MR image into several
tissue types and fill the corresponding regions with fixed CT HU
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FIGURE 1 | (A) The principle of ACS. It integrates the advantages of different acceleration techniques such as deep learning-based reconstruction, parallel imaging,

and compressed sensing. (B) ACS normally can achieve great scan speed (i.e., <100 s) for different body parts and sequences.

FIGURE 2 | (A) The low dose abdominal CT image. (B) The resulting image after applying DELTA to the low dose image in (A). (C) The corresponding standard dose

abdominal CT image.

FIGURE 3 | Typical examples of the HYPER DLR PET denoising product

developed by UII and UIH. The first row shows PET images obtained by using

different acquisition times per bed without HYPER DLR, where the image

quality degrades significantly when fast acquisition time. The second row

shows the resulting images by applying the HYPER DLR technique, where

obvious image quality improvement can be observed.

values. This strategy has been widely adopted in many companies
such as Siemens and GE. With the aid of deep learning-based

cross-modality synthesis techniques, it is possible to obtain

more precise synthesized CT images from the MR images with

unsupervised learning techniques and therefore to produce more

accurate AC operation. For instance, UII and UIH proposed

an unsupervised deep learning-based technique (149) that can
effectively synthesize the CT images from the MR sequences.
Typical examples are shown in Figure 5.

CHALLENGES AND OPPORTUNITIES

The success of deep learning-based methods on image
reconstruction for medical imaging has been extensively

validated. However, the wide applications in clinical practices

are not yet realized. One key limiting issue is the model
interpretability. Due to the nature of DNN, the entire non-linear

mapping process is a “black box,” meaning that no direct physical
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FIGURE 4 | The process of PET-MR attenuation correction, where a synthetic CT image is obtained from the MR image to help the attenuation correction of PET

image.

FIGURE 5 | Typical examples of synthesizing CT images from a whole body MR image with deep learning-based techniques. For more details, please refer to Ge

et al. (149).

or theoretical mechanism is provided to explain how the inputs
are transformed to the outputs (150). Consequently, deep
learning reconstruction models find difficulties to get accepted
by clinicians. Recently, enhancing model interpretability
through building interpretable neural networks or utilizing
various visualization techniques becomes a hot topic in deep
learning-based natural image analysis (151–154). Similarly, more
efforts should be devoted to building both interpretable and
high-performance deep learning reconstruction models.

Another challenge is the generalization capability of deep
learning-based methods. It is known that deep learning is a
data-driven method, and the performance of deep learning
models depends heavily on the training data (25, 26, 155).
Thus, constructing a comprehensive training dataset is critical.
Different from natural images, the distributions of medical

images can be quite different if different scanning protocols or
scanning machines are utilized. Moreover, due to ethical issues,
building large medical image datasets by collecting images from
different resources is difficult. As a result, the performance of
most existing deep learning models might be over-claimed, and
a performance drop can be observed when applying the reported
models to the data of end-users. Building robust models that can
maintain performance during implementation is important to
promote wide applications.

At the same time, the increasing demand for automated
image analysis in the clinic to help achieve efficient and accurate
imaging-based diagnosis and decision making is providing
various opportunities for the introduction of deep learning-based
methods. With the rapid development of computing power and
optimization of deep learning models, deep learning is expected
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to play a significant role in achieving fast, portable, safe, and
cheap medical imaging. For instance, the transformer (156)
framework proposed in 2017 for NLP has demonstrated inspiring
performance in capturing global information and has also shown
great potential for applications in many image processing tasks
recently. The development of the transformer also provides
opportunities for the enhancement of current medical imaging
models. Besides, multi-modal imaging and autonomous imaging
are also promising directions for future studies.

CONCLUSION

Deep learning has presented inspiring performances in image
reconstruction for different medical imaging modalities,
including MRI, CT, and PET. In this review paper, we focus
on the applications in MRI, CT, and PET. A detailed survey is
conducted in the following aspects and sequence: the overall
deep learning reconstruction workflow, the technological
development of deep learning reconstruction, the clinical
applications and current achievements, and a discussion of the
challenges and opportunities. In summary, deep learning-based
medical image reconstruction presents a great potential to
promote a wide spectrum of applications in the clinic, if the
remaining issues, such as interpretability and generalizability,
can be properly addressed in the future.
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Purpose: Machine learning based on radiomics features has seen huge success in a

variety of clinical applications. However, the need for standardization and reproducibility

has been increasingly recognized as a necessary step for future clinical translation. We

developed a novel, intuitive open-source framework to facilitate all data analysis steps of a

radiomics workflow in an easy and reproducible manner and evaluated it by reproducing

classification results in eight available open-source datasets from different clinical entities.

Methods: The framework performs image preprocessing, feature extraction, feature

selection, modeling, and model evaluation, and can automatically choose the optimal

parameters for a given task. All analysis steps can be reproduced with a web application,

which offers an interactive user interface and does not require programming skills.

We evaluated our method in seven different clinical applications using eight public

datasets: six datasets from the recently published WORC database, and two prostate

MRI datasets—Prostate MRI and UltrasoundWith Pathology and Coordinates of Tracked

Biopsy (Prostate-UCLA) and PROSTATEx.

Results: In the analyzed datasets, AutoRadiomics successfully created and optimized

models using radiomics features. For WORC datasets, we achieved AUCs ranging from

0.56 for lung melanoma metastases detection to 0.93 for liposarcoma detection and

thereby managed to replicate the previously reported results. No significant overfitting

between training and test sets was observed. For the prostate cancer detection task,

results were better in the PROSTATEx dataset (AUC = 0.73 for prostate and 0.72 for

lesion mask) than in the Prostate-UCLA dataset (AUC 0.61 for prostate and 0.65 for

lesion mask), with external validation results varying from AUC = 0.51 to AUC = 0.77.

Conclusion: AutoRadiomics is a robust tool for radiomic studies, which can be used

as a comprehensive solution, one of the analysis steps, or an exploratory tool. Its wide

applicability was confirmed by the results obtained in the diverse analyzed datasets. The

framework, as well as code for this analysis, are publicly available under https://github.

com/pwoznicki/AutoRadiomics.

Keywords: radiomics, radiology, machine learning, reproducibility, workflow, image analysis
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INTRODUCTION

Over the past decades, the search for novel, quantitative imaging
biomarkers has been an emerging topic in the research landscape,
with the ultimate goal of leveraging the full potential of medical
imaging and enabling more personalized medical care (1, 2).
Within this field, radiomics has been identified as a potential
way to mathematically extract clinically meaningful quantitative
imaging biomarkers (so-called features) from medical images
of different modalities (3–5). Combined with machine learning
(ML), radiomics classifiers have been shown to accurately
predict the diagnosis (6), prognosis (7), mutational status
/ genetic subtypes (8–10), histopathology (8), surgery (11),
or treatment response (12). Consequently, there is a huge
interest in the clinical and research field to translate the
diagnostic and prognostic potential of radiomics to clinical
patient care.

This interest has resulted in a large number of scientific
publications being issued with a similarly large variety of
methods and radiomics pipelines. Besides the inherent issue
of model overfitting, which comes with any ML and big data
application where the number of features usually considerably
exceeds the number of samples in the training set, most
radiomics studies also have been proven difficult to reproduce
and validate. This may be also due to the large variety of
methodology and the lack of an open-science mindset within the
research community, with the datasets and code rarely published
alongside the results.

Fortunately, an evolving body of open-science frameworks
has been accumulating in recent years, and new initiatives
aiming at standardization and reproducibility of different
aspects of radiomics analysis and ML have been founded.
For example, the Image Biomarker Standardization Initiative
(IBSI) (3) has addressed the standardization of the radiomic
feature extraction process, while the Workflow for Optimal
Radiomics Classification (WORC) (2) has been developed in
order to automate and standardize a typical radiomics (and
ML) workflow.

Performing reproducible radiomics studies usually requires
programming skills, since themost prevalent tools in the research

FIGURE 1 | Framework components. AutoRadiomics has a modular architecture, and its components are based on the typical steps in a radiomics analysis. *The first

analysis step, automatic segmentation, is not performed inside the framework directly, but a script is generated that can be run separately.

community are written in Python language (1–3). This makes it
very difficult for clinicians (who will be the ones responsible for
clinical translation of trained models and classifiers) to perform
radiomics studies by themselves or to simply “play around” with
the data.

The aim of this study was to present an intuitive, open-source
framework with an interactive user interface for reproducible
radiomics workflow. We evaluated its performance on eight
publicly available datasets covering varying clinical applications
to prove that the framework is able to reproduce previously
published studies. AutoRadiomics provides tools for every step
of the radiomics workflow (including image segmentation, image
processing, feature extraction, classification, and evaluation) with
the ability to adjust each step of the workflow as needed.
We believe this framework may help to bridge the gap
from programmers to clinicians and enable them to quickly
experiment with their datasets in a reproducible way.

MATERIALS AND METHODS

This analysis is divided into two main parts: Section Framework
describes design principles that we followed while designing
AutoRadiomics, and Section Experiment provides information
on experiments that were performed to evaluate its performance
in publicly available tomography imaging datasets.

Framework
AutoRadiomics is an open-source Python package with an
embedded web application with an interactive user interface.
The framework can be accessed at https://github.com/pwoznicki/
AutoRadiomics, where all the details on its development can
be found. The framework is built around the standard steps
of a radiomics workflow, including image processing, feature
extraction, feature selection, dataset rebalancing, ML model
selection, training, optimization, and evaluation. The main
components of the framework are presented schematically in
Figure 1. AutoRadiomics uses standard libraries validated in
multiple radiomics studies, such as pyradiomics (1) for feature
extraction, scikit-learn (13) for MLmodels and data splitting, and
imbalanced-learn (14) for over-/undersampling. These reliable
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FIGURE 2 | Exemplary screenshots of the web application. The application enables users to perform all the analysis steps including feature extraction, model training,

and evaluation, using standardized or custom settings.

FIGURE 3 | Study flowchart.
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building blocks further contribute to creating robust and
reproducible workflows. The framework is available under the
Apache-2.0 License.

Data Preparation and Radiomic Feature Extraction
Data splitting in AutoRadiomics is performed on provided
case IDs. Depending on dataset size and application, user can
choose to split the data into k folds for cross-validation (with
or without a separate test set) or into training/validation/test
sets. Radiomic features, including standard shape, intensity, and
texture features, are extracted with pyradiomics, with additional
parameters specified in the parameter file. A few built-in options
are provided for this purpose, including extraction parameters
validated in previous studies (12, 15). Additional optimizations
in computing resource allocation make the extraction process
more efficient.

Hyperparameter Optimization and Experiment

Tracking
Hyperparameter optimization is performed using the Optuna
framework (16), which dynamically constructs the search
space for hyperparameters and automatically chooses optimal
ones. The framework simultaneously optimizes the choice
and hyperparameters of the ML classifiers as well as feature
selection and oversampling methods, which greatly simplifies the
training workflow. The following classifiers are included: logistic
regression, support vector machines, random forest, and extreme
gradient boosting (XGBoost). Experiments are tracked using an
integrated MLFlow tracking dashboard, which allows the user to
explore the training artifacts as well as the metrics during and
after the training process.

Web Application
Recognizing the problems many non-expert users may face when
being forced to use a programming interface, we developed a
browser application with an interactive user interface on top of
the Python package. The app can be run locally as a Docker
container, satisfying the necessary privacy concerns. It adopts a
straightforward, modular structure to the radiomics workflow
and covers sequentially all steps of the analysis pipeline. The
output of each intermediary step, training parameters, and logs
are stored in the experiment’s directory. That enables the user to
later come back to the experiment and document the workflow.
Figure 2 presents exemplary screenshots of the app. The app also
provides utilities for generating Python code that can be then
executed as a separate script to perform automatic segmentation
using the state-of-the-art nnU-Net framework (17), and for
generating radiomics maps using voxel-based feature extraction.

Experiment
Data Sources
To validate the developed framework, we used eight datasets
from two different sources. Firstly, we used six public datasets
from the recently publishedWORCdatabase (18), which includes
multi-institutional annotated CT and MRI datasets with varying
clinical applications. The respective classification tasks were
(1) well-differentiated liposarcoma vs. lipoma, (2) desmoid-type

fibromatosis vs. extremity soft-tissue sarcoma, (3) primary solid
liver tumor, malignant vs. benign, (4) gastrointestinal stromal
tumor (GIST) vs. intra-abdominal gastrointestinal tumor, (5)
colorectal liver metastases vs. non-metastatic tumor, and (6) lung
metastases of melanoma vs. lung tumor of different etiology.
The database was released together with benchmark results
to facilitate reproducibility in the radiomics field and, to our
knowledge, we are the first ones to replicate the previously
published results (2).

Additionally, two public prostate MRI datasets, which
are available on The Cancer Imaging Archive, were used:
Prostate MRI and Ultrasound With Pathology and Coordinates
of Tracked Biopsy (19) from the University of California,
Los Angeles (UCLA) (further referred to as Prostate-UCLA)
and PROSTATEx (20) with annotations from Cuocolo et al.
(21). These two datasets were selected since they both had
segmentations of prostate gland and lesions as well as biopsy
evaluation including Gleason Score (GS) available. All lesions
from the Prostate-UCLA dataset had targeted biopsy performed.
For PROSTATEx, all lesions with PI-RADS ≥3 were biopsied.

TABLE 1 | Characteristics of training and test cohorts.

Number of patients

Imaging modality Training Test

Lipo T1w MRI

well-differentiated liposarcoma 45 (49%) 11 (48%)

lipoma 46 (51%) 12 (52%)

Desmoid T1w MRI

desmoid-type fibromatosis 57 (35%) 15 (37%)

extremity soft-tissue sarcoma 105 (65%) 26 (63%)

Liver T2w MRI

malignant primary solid liver tumor 75 (51%) 19 (50%)

benign primary solid liver tumor 73 (49%) 19 (50%)

GIST CT

gastrointestinal stromal tumor 99 (51%) 25 (51%)

other intra-abdominal tumors 97 (49%) 24 (49%)

CLRM CT

colorectal liver metastases 29 (48%) 8 (50%)

other colorectal tumors 32 (52%) 8 (50%)

Melanoma CT

lung metastases of melanoma 38 (50%) 9 (47%)

other lung tumors 38 (50%) 10 (53%)

PROSTATEx T2w MRI

benign prostate lesion 80 (51%) 20 (50%)

ISUP grade 1 (GS = 6) 23 (15%) 6 (15%)

ISUP grade 2 (GS ≥ 7) 55 (35%) 14 (35%)

Prostate-UCLA T2w MRI

benign prostate lesion 142 (23%) 36 (23%)

ISUP grade 1 (GS = 6) 146 (24%) 37 (24%)

ISUP grade ≥ 2 (GS ≥ 7) 333 (54%) 83 (53%)

T1w, T1-weighted; T2w, T2-weighted; ISUP, International Society of Urological Pathology;

GS, Gleason score.
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TABLE 2 | Classification results.

Dataset AUC F1 Sensitivity Specificity

Five-fold CV Test Test Test Test

Lipo 0.86 ± 0.10 0.93 [0.77–1.0] 0.85 [0.67–1.0] 0.82 [0.56–1.0] 0.92 [0.73–1.0]

Desmoid 0.78 ± 0.05 0.90 [0.79–0.98] 0.77 [0.57–0.92] 0.80 [0.58–1.0] 0.84 [0.68–0.96]

Liver 0.64 ± 0.11 0.67 [0.49–0.84] 0.68 [0.48–0.82] 0.69 [0.45–0.88] 0.68 [0.47–0.88]

GIST 0.68 ± 0.03 0.69 [0.53–0.84] 0.72 [0.56–0.84] 0.72 [0.54–0.88] 0.71 [0.5–0.88]

CRLM 0.68 ± 0.14 0.75 [0.43–1.0] 0.82 [0.57–1.0] 0.88 [0.6–1.0] 0.75 [0.43–1.0]

Melanoma 0.59 ± 0.15 0.56 [0.29–0.93] 0.48 [0.15–0.76] 0.44 [0.13–0.8] 0.70 [0.42–1.0]

Prostate masks

PROSTATEx 0.70± 0.03 0.73 [0.55–0.89] 0.73 [0.55–0.86] 0.75 [0.53–0.94] 0.69 [0.47–0.88]

UCLA 0.48 ± 0.09 0.61 [0.51–0.71] 0.78 [0.72–0.74] 0.75 [0.67–0.82] 0.44 [0.28–0.61]

PROSTATEx→ UCLA* 0.70 [0.62–0.79] 0.52 [0.43–0.62] 0.36 [0.27–0.45] 0.97 [0.90–1.0]

UCLA→ PROSTATEx 0.60 [0.41–0.79] 0.69 [0.52–0.83] 0.80 [0.61–0.95] 0.49 [0.27–0.73]

Lesion masks

PROSTATEx 0.68 ± 0.10 0.72 [0.56–0.86] 0.68 [0.48–0.84] 0.55 [0.33–0.76] 0.95 [0.82–1.0]

UCLA 0.59 ± 0.03 0.65 [0.55–0.74] 0.73 [0.67–0.80] 0.64 [0.55–0.73] 0.64 [0.48–0.8]

PROSTATEx→ UCLA 0.51 [0.41–0.61] 0.31 [0.21–0.41] 0.19 [0.12–0.27] 0.92 [0.82–1.0]

UCLA→ PROSTATEx 0.77 [0.60–0.91] 0.74 [0.57–0.87] 0.70 [0.5–0.89] 0.80 [0.61–0.95]

Results are presented as mean ± std for five-fold cross validation and mean with 95% CI in brackets for test set.
*arrow denotes external validation of the model trained on PROSTATEx in the Prostate-UCLA dataset.

FIve-fold CV, five-fold cross-validation; UCLA, Prostate-UCLA dataset.

We trained radiomics models based on either the whole prostate
gland or the target lesion masks in T2-weighted MR images to
differentiate between benign prostate lesions and prostate cancer,
as well as between clinically significant and clinically insignificant
prostate cancer.

Data Processing
The study flowchart is presented in Figure 3. For each dataset,
we split 80% of the data into training and 20% into the test
set. Then, we split the training set into 5 folds to perform
hyperparameter optimization using a cross-validation approach.
Image and segmentation data were converted into the NIfTI
format, where necessary, and no additional image preprocessing
was applied. For feature extraction, we used separate extraction
and image processing parameter sets for MRI and CT datasets, as
recommended by the IBSI (3). Hyperparameter optimization was
performed for each dataset with Optuna using 200 trials of the
Tree-structured Parzen Estimator (TPE) algorithm to maximize
the objective function.

Statistical Analysis
Receiver operating characteristic (ROC) curves were generated
for each independent variable and the area under the curve
(AUC) was calculated. The diagnostic efficacy of the model
was additionally evaluated using the F1 score, sensitivity,
and specificity, and was reported with 95% confidence
intervals (95% CI) obtained with the bootstrap technique.
The bootstrap used 1,000 resamples (with replacement) of
predicted probabilities to determine the 95% CI. All analyses
were performed with the AutoRadiomics framework, using
Python 3.8.10.

RESULTS

All the experiments were successfully implemented using Python,
but can also be reproduced using the interactive web application.
Supplementary Figure S1 shows the code extract required to run
the optimization and evaluation process for a selected dataset
(the implementation assumes a table with data paths is already
created). The optimal configurations of models selected for
each task are presented in Supplementary Appendix S3. The
execution time of the whole pipeline, including the optimization,
took around 1 h on a machine with 16 GB RAM and 8-core AMD
Ryzen 5800X processor.

The details of training and test cohorts for each task are
shown in Table 1. In total, we included 1895 patients in our
analyses. In the six datasets from the WORC database, the class
distribution was approximately balanced. For the two prostate
datasets, the distribution of classes differed between datasets: in
PROSTATEx, 50% of index lesions were classified as benign, 15%
as GS 6, and 35% as GS ≥7, compared to only 23% of index
lesions classified as benign, 24% as GS = 6, and 54% as GS≥7
in Prostate-UCLA.

Table 2 summarizes the classification results and Figure 4

presents the corresponding ROC curves for all included datasets.
In the following, we report the results from the test cohorts.

In the WORC database, we obtained results ranging from
weak discrimination for the Melanoma dataset (AUC = 0.56
[95% CI: 0.29–0.93], F1 = 0.48 [95% CI: 0.15–0.76]) to excellent
discrimination for the Lipo dataset (AUC = 0.93 [95% CI: 0.77–
1.0], F1 = 0.85 [95% CI: 0.67–1.0]) and the Desmoid dataset
(AUC = 0.90 [95% CI: 0.79–0.98], F1 = 0.77 [95% CI: 0.57–
0.92]).
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FIGURE 4 | Results of ROC analysis.

For prostate datasets, results are reported separately for
classification using features from either prostate or lesion masks.
The discrimination was acceptable for both prostate masks (AUC
= 0.73 [95% CI: 0.55–0.89], F1 = 0.73 [0.55–0.86]) as well
as lesion masks (AUC = 0.72 [95% CI: 0.56–0.86], F1 = 0.68
[95% CI: 0.48–0.84]) in the PROSTATEx dataset, and moderate
for prostate masks (AUC = 0.61 [95% CI: 0.51–0.71], F1 =

0.78 [95% CI: 0.72–0.74]) and lesion masks (AUC = 0.65 [95%
CI: 0.55–0.74], 0.73 [95% CI: 0.67–0.80]) in the Prostate-UCLA
dataset. Both prostate datasets were additionally validated using
the other dataset, and their performance varied from AUC =

0.51 [95% CI: 0.41–0.61] for the PROSTATEx model using lesion
masks evaluated in Prostate-UCLA to AUC = 0.77 [95% CI:
0.60–0.91] for the Prostate-UCLA using lesion masks evaluated
in PROSTATEx.

The additional evaluation of the prostate MRI datasets
for differentiation between clinically significant and
clinically non-significant prostate cancer is presented in the
Supplementary Table S2. For this challenging task, the results

were worse than those for prostate cancer detection, with AUCs
ranging from 0.40 [95% CI: 0.29–0.50] for the Prostate-UCLA
dataset to AUC = 0.70 [95% CI: 0.33–0.97] for the PROSTATEx
dataset, trained with prostate masks. The external validation
results in this dataset showed AUCs in the range of 0.37 to 0.70
with high variability.

DISCUSSION

In this study, we introduced and validated a new open-source,
interactive framework for reproducible radiomics research. The
tool aids in selecting the optimal model for a given task, and
the associated web application lowers the entry threshold for
clinicians who want to contribute to the field of radiomics
research and foster clinical translation.

We evaluated AutoRadiomics in six different classification
tasks from the WORC database. It achieved consistently high
AUCs in both cross-validation and the test set, in the direct
comparison of our results vs. those reported in the original
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publication on the dataset (2): 0.93 vs. 0.83 for the Lipo dataset,
0.90 vs. 0.82 for the Desmoid dataset, 0.67 vs. 0.81 for the Liver
dataset, 0.69 vs. 0.77 for the GIST dataset, 0.75 vs. 0.68 for the
CRLM dataset, 0.56 vs. 0.51 for the Melanoma dataset. That
means, our framework achieved comparable results, higher in 4/6
tasks, and lower in 2/6 tasks. We also evaluated our framework in
two public prostate MRI datasets, achieving AUCs in the range
of 0.61–0.73 for internal validation, and 0.51–0.77 for external
validation. Those results prove that AutoRadiomics can be
successfully applied off-the-shelf and achieve competitive results
with its automatic configuration. We believe the differences
between ours and previously reported results may be largely
explained by the relatively small sample sizes, different data
splitting, and differing choice of classifiers. It has to be noted,
however, that, similarly to Starmans et al. (2), we achieved
best results for the Lipo dataset, and worst for the Melanoma
dataset, which suggests both approaches have converged to an
optimal solution.

Quantitative evaluation of disease patterns in medical images
which are invisible to the human eye has shown diagnostic
potential in multiple retrospective studies, but large-scale clinical
validation and adoption are still missing (22). We believe
that an accessible toolkit for exploratory data analysis and a
standardized workflow is a key component in developing the
field toward clinical translation. With this in mind, we released
AutoRadiomics as an intuitive open-source framework that
structures the radiomics workflow and makes it more accessible
and reproducible.

Recent advances in automated ML have the potential to
empower healthcare professionals with limited data science
expertise (23). Inspired by those breakthroughs, new platforms
for ML applied to medical imaging have recently been
introduced, such as WORC (2), which focuses on automatic
construction and optimization of the radiomics workflow. While
this platform also provides an automated solution and is very
extensive in scope, AutoRadiomics sets itself apart with its
interactive web interface, state-of-the-art tooling, and additional
utilities (i.e., for visualization and segmentation).

With our web application, we hope to shift the focus
from metrics to interpretability, which is achieved through
comprehensive visualizations and radiomics maps. We would
like to point out a few scenarios, where AutoRadiomics could
be especially helpful: (1) for clinicians exploring their dataset
using the embedded web application to gain quick insight into
their data, (2) for researchers using Python for radiomic analyses,
who want to complement their current workflow or add a
benchmark or reference standard, (3) for an inter-institutional
collaboration as means of facilitating results sharing and
workflow reproducibility.

Currently, our framework can be used only for binary
classification tasks, which limits its applicability. We are

planning to extend it in the future to handle multiclass
classification, regression tasks, and survival data. Furthermore,
some processing steps such as automatic segmentation using
deep learning require GPU capability, which is why it is not
integrated into our framework and only the code for performing
segmentation with a nnU-Net can be generated. AutoRadiomics
does not require a powerful GPU and a modern personal
computer is enough to run it. One should also keep in mind that
the results of any optimized model have to be considered with
caution and no abstraction layer (such as our web application)
may replace true expert domain knowledge.

In conclusion, we herein presented AutoRadiomics, a
framework for intuitive and reproducible radiomics research.We
described its key features as well as the underlying architecture,
and we discuss its most promising use cases. Finally, we validated
it extensively in eight public datasets to show its consistently
high performance in various and diverse classification tasks.
We believe that AutoRadiomics may help to improve the
quality and reproducibility of future radiomics studies, and,
through its accessible interface, may bring those studies closer to
clinical translation.
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How should studies using AI be
reported? lessons from a systematic
review in cardiac MRI
Ahmed Maiter1,2†, Mahan Salehi1†, Andrew J. Swift1,2

and Samer Alabed1,2*
1Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, United
Kingdom, 2Department of Radiology, Sheffield Teaching Hospitals, Sheffield, United Kingdom

Recent years have seen a dramatic increase in studies presenting artificial intelligence (AI)
tools for cardiac imaging. Amongst these are AI tools that undertake segmentation of
structures on cardiac MRI (CMR), an essential step in obtaining clinically relevant
functional information. The quality of reporting of these studies carries significant
implications for advancement of the field and the translation of AI tools to clinical
practice. We recently undertook a systematic review to evaluate the quality of
reporting of studies presenting automated approaches to segmentation in cardiac MRI
(Alabed et al. 2022 Quality of reporting in AI cardiac MRI segmentation studies—a
systematic review and recommendations for future studies. Frontiers in Cardiovascular
Medicine 9:956811). 209 studies were assessed for compliance with the Checklist for
AI in Medical Imaging (CLAIM), a framework for reporting. We found variable—and
sometimes poor—quality of reporting and identified significant and frequently missing
information in publications. Compliance with CLAIM was high for descriptions of
models (100%, IQR 80%–100%), but lower than expected for descriptions of study
design (71%, IQR 63–86%), datasets used in training and testing (63%, IQR 50%–67%)
and model performance (60%, IQR 50%–70%). Here, we present a summary of our
key findings, aimed at general readers who may not be experts in AI, and use them as
a framework to discuss the factors determining quality of reporting, making
recommendations for improving the reporting of research in this field. We aim to
assist researchers in presenting their work and readers in their appraisal of evidence.
Finally, we emphasise the need for close scrutiny of studies presenting AI tools, even
in the face of the excitement surrounding AI in cardiac imaging.

KEYWORDS

artificial intelligence, machine learning, cardiac MRI, segmentation, systematic review, quality

of reporting

Introduction

The development and application of artificial intelligence (AI) is an exciting frontier in

radiology (1–3). AI tools promise automation of complex and time-intensive tasks, making

them appealing in an era in which the demand and complexity of medical imaging are

increasing. This is reflected in the recent rapid expansion in the number of studies presenting

AI tools for imaging. However, there are several challenges that need to be overcome before

AI can be implemented effectively in routine clinical practice (4). Transparency of model

design, training and testing is critical for understanding the generalisability of tool but can be

problematic where technologies are proprietary. Evaluating the performance of AI tools in

relevant populations and environments is also an important step for determining their

external validity. There is also growing awareness of ethical issues within the field. These

include concerns about the risk of AI tools propagating human biases, including racial, that
01 frontiersin.org
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could cause discrimination for minority population groups (5–7).

These challenges are inherently linked to the manner and quality

in which studies of AI tools are presented.

The ability to compare evidence underpins modern medicine and

necessitates that research is presented in a transparent, consistent and

reproducible manner. Poor quality of reporting can contribute to

research waste, hinder advancement of the field and limit clinical

applicability. It is important for all stakeholders—including

researchers, radiologists using AI tools, clinicians using AI-derived

information and the public—to understand what constitutes high

quality reporting. Structured tools have been proposed to assist the

reporting of studies using AI, including the Checklist for Artificial

Intelligence in Medical Imaging (CLAIM) (8).
AI for segmentation in CMR

The demand for cardiac imaging is growing, and with it the

appetite for automation. Cardiac MRI (CMR) allows non-invasive

assessment of both cardiac anatomy and function. CMR can yield

quantitative metrics (such as ventricular volumes, myocardial

thickness and infarct sizes) that are of diagnostic and prognostic

value. However, these measurements require the accurate

delineation of anatomical structures on imaging, or segmentation.

Those reading CMR studies have traditionally performed manual

segmentation in order to derive these metrics—a process that is

laborious, time-intensive and prone to interobserver variability.

The ability to automate this process using AI methods has been

the focus of an increasing number of studies in recent years (9–12).

In the broadest terms, AI automates processes traditionally

performed by humans. Machine learning is a major branch of AI

in which a program automatically identifies relevant features in

data and adapts to improve its performance at a task. Machine

learning encompasses a broad range of techniques, including deep

learning and neural networks. In the context of segmentation in

medical imaging, this involves a program learning to identify

anatomical features in an image (such as the endocardium) in

order to delineate structures (such as the cardiac chambers).

Although the specific approaches and model designs are myriad,

they have to date shared some similarities in their development.
FIGURE 1

Violin plot indicating compliance of the 209 included studies with the
CLAIM criteria, grouped into domains of study, dataset, model and
performance description. Median (solid line) and 1st and 3rd quartile
(dashed lines) values are indicated. From Alabed et al 2022 (13).
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This typically involves three stages: training, validation and testing.

During training, data is passed through the algorithm and the

algorithm identifies features that enable it to undertake a task. In

the validation stage, the algorithm is exposed to the unseen

validation set and its performance at the task is determined. The

algorithm is then adapted to optimise its performance and the

training and validation steps are repeated until satisfactory

performance is achieved and a final model is established. The

model is then tested on new, unseen, data to yield its final

performance results. This is a gross simplification of varied and

complex processes, but is nonetheless important for contextualising

how studies using AI are reported.
The systematic review

We recently undertook a systematic review of the quality of

reporting of studies using AI methods for segmentation of structures

on CMR (13). Studies presenting fully automated AI methods for

the segmentation of cardiac chambers, myocardium or scar tissue on

adult CMR images were eligible for inclusion. Included studies were

assessed for descriptive information and compliance with CLAIM.

We grouped the individual CLAIM criteria into four domains: study

description, dataset description, model description and performance

description. 209 studies were included, undertaken in 37 different

countries and published from 2012 to 2022. The median overall

compliance of studies with all CLAIM criteria was 67%

[interquartile range (IQR) 59–73%]. Median compliance was highest

for the model description domain (100%, IQR 80%–100%) and

substantially lower for the study description (71%, IQR 63%–86%),

dataset description (63%, IQR 50%–67%) and performance

description (60%, IQR 50%–70%) domains (Figure 1).

The development of an AI model requires training, in which an

algorithm is exposed to data (such as CMR images) to learn features

(such as where different anatomical structures are located relative to

each other) that enable it to undertake a task (such as to delineate

the left ventricular endocardium). This process is critical and

underpins the performance and validity of all AI tools. The quality,

size and variation of the dataset being used for training are of

particular importance when considering the clinical applicability of a

model, as a model trained on data from one population or

demographic group may not generalise well when applied to others.

For example, a model trained solely on CMR images from younger

patients may not perform as well when used on an older population.

It is essential that studies describe their data sources in a clear and

transparent manner so that the generalisability of their models can be

understood. This includes information about cases (such as number,

eligibility criteria and clinical characteristics) and the nature of the

data itself (such as the type of images and how they were acquired).

We found that although most studies indicated their data sources

(94%), this was a significant omission when missing. Approximately

half used publicly available datasets (49%), of which most (66%) were

made available through Medical Image Computing and Computer

Assisted Intervention (MICCAI) challenges, emphasising their role

in advancing the field. Publicly available datasets aid

reproducibility and comparison between models, but as with any

retrospective data source have their own selection biases. Multiple
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or combined datasets were used in few studies (17%) but have the

potential to improve the generalisability of models by exposure to

different populations. Most studies reported the number of cases

used (95%), with a median of 78 and a wide range of 3 to 12,984.

Insufficient case numbers and variability are likely to affect

generalisability. A minority of studies failed to report the type of

CMR image used for segmentation (14%), greatly limiting the

interpretability of their models.

Similarly, detailed description of the structure of AI models and

the training approach are important and expected in this field. Again,

this should be transparent and reproducible. Understanding the

model structure can help to highlight biases in performance and

thus model generalisability. However, this can be challenging due

to proprietary “black-box” methodologies in design. Furthermore,

publications should be written in an accessible manner such that

methods are not obscured. For example, studies that present a

clinical message should ensure that computer science methods and

concepts (such as model structure) are explained clearly for readers

who may not be AI experts (and vice versa). This balance can be

difficult to achieve in such a rapidly evolving and technical field.

We found that compliance with the model description domain was

indeed excellent. This may reflect the fact that most were published

in technical (58%) and hybrid (11%) journals. Most studies

provided details about the model used (95%), training approach

(78%) and software used (74%). However, open source code was

only provided in a minority of studies (10%). Publishing the open

source code for an AI model greatly improves transparency and

facilitates the comparison of different models.

Understanding how effectively AI models perform is essential for

their translation into clinical practice. Performance needs to be
FIGURE 2

Recommendations for studies based on findings of this systematic review. Adap
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described in a consistent manner to enable comparison between

models. However, we found that descriptions of model

performance were variable, with many publications failing to

present key information. The way in which performance is assessed

can vary and needs to be transparent. Ideally, this should involve

testing a model using a distinct and external dataset (such as

images from a different population acquired by a different centre).

This represents an important step in ensuring that an AI model is

generalisable and valid for translation into clinical use. Only a

minority (22%) of the studies that we assessed tested their models

on external data. It is expected that AI models can fail, and it is

good practice for studies to present an analysis of failed cases to

indicate how and why this occurred. This is crucial for

advancement of the field and clinical implementation. A clinician

using an AI model will need to understand the factors that may

predispose to false results. This goes hand-in-hand with

understanding measures of diagnostic accuracy (such as sensitivity

and specificity), which are major determinants of clinical utility.

We noted that few studies reported failure analysis of incorrectly

classified cases (32%) or estimates of diagnostic accuracy (21%).

To the best of our knowledge, this study was the largest review of

the AI-based cardiac imaging literature to date. There are, of course,

limitations. The review had a narrow focus on AI approaches to

segmentation in CMR. Only journal papers presenting fully

automated techniques were included. Semi-automated techniques

incorporate both manual and AI-based elements and their

distinction from fully automated techniques is open to a degree of

subjectivity. The exclusion of semi-automated techniques,

unpublished literature and conference abstracts were important to

ensure consistent and reproducible evaluation of the included studies
ted from Alabed et al 2022 (13) and CLAIM (8).
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but did narrow the scope of the review and carried the risk of selection

bias. Finally, there is an inherent risk of observer bias and

interobserver variability when evaluating quality of reporting, even

when using structured tools such as CLAIM; future studies may

consider assessing interobserver agreement quantitatively. However,

despite these limitations, our study has considered important factors

for how AI studies in general are presented, and our findings are

likely applicable to the broader field of AI in medical imaging.
Discussion

This systematic review identified significant and frequent gaps in

the existing literature. In this paper, we have explored some of the

hallmarks of high-quality AI publications in cardiac imaging. We

encourage researchers and readers to bear these in mind when

presenting and appraising studies using AI methods. Based on the

findings in our systematic review, we make a number of

recommendations for researchers to improve the quality of

reporting of AI studies, which are provided in Figure 2. Study

methodology should be described in sufficient detail to enable

reproducibility. Information about all data sources, including

clinical characteristics of all participants, should be provided in

order to understand study validity and generalisability. Testing on

multiple and external datasets is an important step in the

translation of AI models to clinical practice. Studies in this field

may have a wide readership and publications should be accessible

and transparent regardless of journal type. Tools such as CLAIM

may help when presenting and reviewing studies.
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Machine learning based gray-
level co-occurrence matrix early
warning system enables accurate
detection of colorectal cancer
pelvic bone metastases on MRI

Jinlian Jin*, Haiyan Zhou, Shulin Sun, Zhe Tian, Haibing Ren,
Jinwu Feng and Xinping Jiang

Gezhouba Central Hospital of Sinopharm, The Third Clinical Medical College of China Three Gorges
University, Yichang, Hubei, China
Objective: The mortality of colorectal cancer patients with pelvic bone

metastasis is imminent, and timely diagnosis and intervention to improve the

prognosis is particularly important. Therefore, this study aimed to build a bone

metastasis predictionmodel based on Gray level Co-occurrence Matrix (GLCM) -

based Score to guide clinical diagnosis and treatment.

Methods: We retrospectively included 614 patients with colorectal cancer who

underwent pelvic multiparameter magnetic resonance image(MRI) from January

2015 to January 2022 in the gastrointestinal surgery department of Gezhouba

Central Hospital of Sinopharm. GLCM-based Score and Machine learning

algorithm, that is,artificial neural net7work model(ANNM), random forest model

(RFM), decision tree model(DTM) and support vector machine model(SVMM)

were used to build prediction model of bone metastasis in colorectal cancer

patients. The effectiveness evaluation of each model mainly included decision

curve analysis(DCA), area under the receiver operating characteristic (AUROC)

curve and clinical influence curve(CIC).

Results: We captured fourteen categories of radiomics data based on GLCM for

variable screening of bone metastasis prediction models. Among them,

Haralick_90, IV_0, IG_90, Haralick_30, CSV, Entropy and Haralick_45 were

significantly related to the risk of bone metastasis, and were listed as candidate

variables of machine learning prediction models. Among them, the prediction

efficiency of RFM in combination with Haralick_90, Haralick_all, IV_0, IG_90,

IG_0, Haralick_30, CSV, Entropy and Haralick_45 in training set and internal

verification set was [AUC: 0.926,95% CI: 0.873-0.979] and [AUC: 0.919,95% CI:

0.868-0.970] respectively. The prediction efficiency of the other four types of

prediction models was between [AUC: 0.716,95% CI: 0.663-0.769] and [AUC:

0.912,95% CI: 0.859-0.965].
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Abbreviations: IQR, inter-quartile range; OA, oss

carcinoembryonic antigen; ECOG, Eastern Cooperative

Energy value; IG_all, Inverse gap full angle; IG_0, Invers

gap 45°; IG_90, Inverse gap 90°; IV_all, Inertia value full a

value full angle SD; IV_0, Inertia value 0°; IV_45, Inertia v

value 90°; Haralick_all, Haralick full angle; Haralick_0, H

Haralick 30°; Haralick_45, Haralick 45°; Haralick_90, Ha

shadow value; CP, Cluster prominence.
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Conclusion: The automatic segmentation model based on diffusion-weighted

imaging(DWI) using depth learning method can accurately segment the pelvic

bone structure, and the subsequently established radiomics model can

effectively detect bone metastases within the pelvic scope, especially the RFM

algorithm, which can provide a new method for automatically evaluating the

pelvic bone turnover of colorectal cancer patients.
KEYWORDS

colorectal cancer, bone metastasis, gray-level co-occurrence matrix, machine
learning, prediction
Introduction

Worldwide, colorectal cancer is still a malignant tumor of the

digestive system with a high incidence rate and mortality (1). In

recent years, it is encouraging that advanced diagnostic

technologies, such as computed tomography (CT) colon imaging,

magnetic resonance imaging (MRI) and positron emission

tomography (PET)/CT colon imaging, are beneficial to enable

some early cancer patients to receive timely treatment and

effectively reduce the recurrence and metastasis rate (2, 3).

Nevertheless, the poor prognosis caused by colorectal cancer

metastasis is still one of the important factors that can not be

ignored and avoided.

Previous studies have focused on the common metastatic sites

of colorectal cancer, including lymph node metastasis, liver

metastasis, and so on (4–6). Vigilantly, bone metastasis is also a

poor prognostic factor for colorectal cancer, with incidence rate

ranging from 2% to 11% (7, 8). As one of the advanced diseases of

colorectal cancer, due to the heterogeneity and complexity of bone

metastasis, there are great differences in the survival and recurrence

of patients (9–11). Previous studies have shown that the most

common sites of bone metastasis in colorectal cancer patients are

the pelvis, thoracic vertebrae and lumbar vertebrae, while there may

be metastatic or implanted small lesions in the pelvis and the pelvic

cavity near the sacrum. Cancer emboli can be directly transferred to

the pelvis, or transferred to the sacrum through the capillaries of the

sacrum, leading to vertebral bone metastasis or other sites (9–11).

Therefore, it is urgently needed that the available prediction model

can divide patients into different categories according to the risk

score of pelvic bone metastasis, so as to select appropriate treatment

methods, and can also more accurately evaluate the effectiveness of

treatment measures.
eous alteration; CEA,

Oncology Group; EV,

e gap 0°; IG_45, Inverse

ngle; IV_all_SD, Inertia

alue 45°; IV_90, Inertia

aralick 0°; Haralick_30,

ralick 90°; CSV, Cluster

0246
Nowadays, radiomics and advanced algorithms have been

gradually applied to the medical field, of which the most widely

used is clinical prediction model (12, 13). Gray level co-occurrence

matrix(GLCM) has been widely used in disease diagnosis, clinical

staging, treatment evaluation and prognosis evaluation (14, 15).

With the help of the spatial correlation characteristics of gray level,

the modified technology can describe the image texture, which can

efficiently extract and model the features of a variety of medical

images (16, 17). Additionally, the higher-order algorithm of

machine learning, with its iterative weight distribution, can make

better use of predictors to improve the diagnostic efficiency of

the model.

Inspired by this, this study based on diffusion weighted imaging,

on the basis of applying machine learning algorithm to

automatically segment the pelvic bone structure, established

radiomics model to judge whether there is bone metastasis in the

pelvic bone structure of patients with colorectal cancer, in order to

better serve clinical decision-making.
Materials and methods

Study population

We retrospectively included 614 patients with colorectal cancer

who underwent pelvic multiparameter MRI from January 2015 to

January 2022 in the gastrointestinal surgery department of

Gezhouba Central Hospital of Sinopharm. Comparison against

abdominopelvic CT, SPECT/CT, or histopathologic tissue

sampling was used to establish the baseline ground truth for

presence or absence of bone metastases at the time of enrollment.

The inclusion criteria of patients are as follows: (i)Patients

suspected of colorectal cancer or undergoing pelvic multi-

parametric diffusion weighted imaging(mp-DWI) scan due to

reexamination after colorectal cancer treatment; (ii)Patients with

complete pelvic DWI images; (iii)Patients without primary pelvic

bone disease (primary osteosarcoma, bone cyst, blood system

disease, fracture, etc.). Exclusion criteria: (i)Patients with a history

of pelvic bone structure surgery; (ii)Patients with a history of other

malignancies; (iii)Patients with unsatisfied image quality, such as

motion artifacts and chemical shift artifacts; (iv)Patients with
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incomplete scanning scope and not including most pelvic bone

structures. This retrospective study was approved by the Ethics

Committee of Gezhouba Central Hospital of Sinopharm, and the

research scheme was implemented according to the artificial

intelligence(AI) model training specifications of the unit. All

patients’ personal information is encrypted to prevent leakage,

and complies with the Declaration of Helsinki. All patients in this

study were informed of the study protocol and approved the study

by written consent. The process of incorporating patients and

building prediction models was shown in Figure 1.
Acquisition of diffusion weighted imaging
parameters

We used GE Discovery MR750 W3.0 T machine to perform

pelvic MRI plain scan and enhanced scan. The patient was

instructed to lie on his back with his head advanced, and the

scanning range was from the umbilical foramen level to the pubic

symphysis. The sequences included conventional transverse T1WI,

(with or without) conventional transverse T2WI, (transverse,

sagittal, coronal) fat compression T2WI, (with or without sagittal)

transverse DWI (b value=1000s/mm, b value=2000 s/mm),

transverse and sagittal fat compression LAVA enhanced

sequences. Sagittal fat compression T2WI scanning parameters:

TR 4 800.0 ms, TE 110.5 ms, matrix 320 × 320, layer thickness and

layer spacing are 5 mm and 1 mm respectively, FOV range:

28 cm × 28 cm.

Next, we standardized the format of DWI, that is, converted the

high b value DWI image in DICOM format to Nifty format, and

then the radiology resident (with film reading experience of 3 years

or more) used ITK-SNAP3.6.0 software(http://www.itksnap.org/

pmwiki/pmwiki.php?n=Main.Publications ) to manually delineate

and label the DWI image along the edges of various pelvic bone

structures. In addition, a radiologist (with film reading experience ≥
Frontiers in Oncology 0347
15 years) modified and confirmed the label, and the confirmed

image label was used as the gold standard of pelvic bone structure

segmentation model.
Training and verification of
segmentation model

We preprocessed the image and extract the texture features, and

used the software GE (Shanghai) AK (Artifical Intelligence Kit,

V3.2.0R version) application platform to preprocess the image:

linear method is used for resampling, with X, Y, Z spacing of

1.000; Gaussian 0.50 is used for noise removal; MR bias field

correction is adopted to eliminate the stray intensity change

caused by the non-uniformity of magnetic field and coil; Intensity

standardization adopts gray discretization, and the expected

minimum value and maximum value are 0.015 and 0.255,

respectively. After image preprocessing (resampling, offset field

correction, intensity standardization), a total of 48 GLCM texture

features are finally collected by AK software, including 8 types of

parameters, namely: cluster facilitation, cluster shade, correlation,

GLCM energy, GLCM entropy, Haralick correlation, inertia, inverse

difference motion; 6 angles are calculated, including full angle, full

angle SD, 0°, 45°, 90° and 135°.
Analysis and evaluation of pelvic bone
metastasis prediction model

We preprocessed the DWI images of 614 patients, namely:

size=64 × 224 × 224 (z, y, x), automatic window width and

level. Patients were randomly divided into training set (70%)

and verification set (30%) according to 7:3. In order to eliminate

the imbalance of the classified training set data, we balance the

positive/negative samples by reducing the sampling, and use Min

Max to normalize the feature matrix. At the same time, we use

Pierce correlation coefficient to reduce the dimension of the data,

and the eigenvectors of the transformed eigenmatrix have

independent features.

There are four machine learning model building methods used in

this study, including artificial neural network model (ANNM), random

forest model(RFM), decision tree model(DTM) and support vector

machine model (SVMM) (18–21). As linear regression models are

often used to build clinical prediction models, this study builds

generalized linear regression model (GLRM) based on Softmax

regression (22, 23), namely: fk = 1 −ok−1
i−1 ∅ i RFM, DTM, ANNM

and SVM are the most commonly used algorithms inmachine learning

(18). In this study, a pelvic bone metastasis prediction model was built

based on four supervised learning algorithms.

Before building the prediction model, we use recursive feature

elimination algorithm to select features and sort them, and select the

first 8 features as the best feature subset; At the same time, for the

GLRM, the minimum absolute shrinkage and selection operator

classifier are selected to establish a classification model for

predicting pelvic bone metastasis based on DWI images (24). The

effectiveness evaluation of each model mainly includes decision curve
FIGURE 1

The flow chart of patient selection and data process.
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analysis(DCA) (25), area under the receiver operating characteristic

(AUROC) curve and clinical influence curve(CIC) (26).
Statistical methods

The distribution of “measurement” and “counting” data in

accordance with normal distribution in this study is expressed by

means (interquartile interval) and percentage (%). For the

independent two sample nonparametric test, the Mann Whitney

rank sum test is used for the inter-group comparison that does not

meet the normal distribution (27); The t-test or chi square test is

used for the inter group comparison of samples from normal or

nearly normal populations. In addition, the visual analysis of all

charts in this study was completed with R studio software

(download website: https://www.r-project.org/); Two tailed P

values less than 0.05 were considered statistically significant.
Results

Patient baseline data and image
segmentation characteristics

According to Caret software package algorithm, 614 patients

included in this study were randomly divided into training set

(N=429,70%) and internal verification set (N=185,30%) according

to 7:3. The clinical characteristics and image data sources of patients

in the data set were summarized in Table 1 and Supplementary

Table 1. The average age of patients used for pelvic bone structure

segmentation model training was 58 (50, 68) years. Among all the

patients used to establish the pelvic bone metastasis classification

histological model, 53 patients had bone metastasis [average age 55

(47, 65) years], and 561 patients had no bone metastasis [average age

58 (50, 68) years]. In addition, in the split model sample group, there

was no statistically significant difference in clinical characteristics

(age, pathology, osseous alteration, CEA and tumor location)

between the training set and the internal validation set (P>0.05);

The three types of GLCM parameters, namely correlation (full angle,

0°, 45°, 90°), inertia (full angle, full angle SD, 0°, 45°, 90°), inverse

difference (full angle, 0°, 45°, 90°), cluster prominence and cluster

shadow, had statistical differences (P<0.05), while energy, entropy

and Haralick correlation had no statistical differences (P>0.05).
Feature variable screening based on GLCM
prediction model

Then, we compared the classification features of bone

metastasis lesions based on GLCM between groups, and analyzed

the correlation between patients’ baseline data and candidate

variables of bone metastasis. The results showed that Haralick_90,

Haralick_all, IV_0, IG_90, IG_0, Haralick_30, CSV, Entropy and

Haralick_45 were highly positively correlated with pelvic bone

metastasis in colorectal cancer patients (Figure 2A). In addition,
Frontiers in Oncology 0448
TABLE 1 Baseline data of patients with colorectal cancer.

Variables Overall (N=614)

Age (median [IQR]),year 58.00 [49.25, 68.00]

sex (%)

Male 381 (62.1)

Female 233 (37.9)

Pathology (%)

Adenocarcinoma 293 (47.7)

Squamous cell carcinoma 231 (37.6)

Adenosquamous carcinoma 61 (9.9)

Small cell carcinoma 29 (4.7)

Tumor stage (%)

I-II 533 (86.8)

III 39 (6.4)

IV 42 (6.8)

Differentiation (%)

High 326 (53.1)

Moderate 189 (30.8)

Low 99 (16.1)

OA (%)

Osteolytic 393 (64.0)

Osteogenic 188 (30.6)

Miscibility 33 (5.4)

CEA (%),ng/mL

<100 156 (25.4)

≥100 458 (74.6)

Tumor location (%)

Colonic segment 197 (32.1)

Rectal segment 417 (67.9)

ECOG (%)

0-2 278 (45.3)

>2 336 (54.7)

EV (median [IQR]) 0.96 [0.70, 1.22]

Entropy (median [IQR]) 8.63 [8.37, 8.87]

IG_all (median [IQR]) 3.06 [2.62, 3.58]

IG_0 (median [IQR]) 2.20 [1.84, 2.58]

IG_45 (median [IQR]) 2.96 [2.55, 3.39]

IG_90 (median [IQR]) 2.30 [1.81, 2.77]

IV_all (median [IQR]) 186.50 [159.00, 216.75]

IV_all_SD (median [IQR]) 5229.00 [3691.25, 6978.50]

(Continued)
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in order to build radiomics model for colorectal cancer patients to

conduct classification and evaluation with and without pelvic bone

metastasis, we conducted feature extraction from the labeled and

segmented images and labels based on the manually labeled and

automatically segmented pelvic bone structures, respectively. The

extracted features were used to establish the radiomics model, and

the processing steps included data equalization, data normalization,

feature dimension reduction, and feature selection. As shown in

Figure 2B, Haralick_90, IV_0, IG_90, Haralick_30, CSV, Entropy

and Haralick_45 were the intersection candidate predictors of RFM,

SVM, ANNM and DTM.
Construction of bone metastasis model
based on generalized linear algorithm

According to the results of multiple logistic regression analysis, a

nomograph (Figure 3A) was developed. The visual quantitative

mapping tool of the prediction model was based on the scaling of

each regression coefficient to 0 to 100 points in the multiple logistic

regression. b The influence of the variable with the highest coefficient

(absolute value) is assigned 100 points. Add the scores of all

independent variables to get a total, and then convert it into the

probability of predicting pelvic bone metastasis. Generally, the C index

and AUC value exceeding 0.6 implied a reasonable estimate. This study

showed that the C index of GLRM was 0.72, and resampling also

showed that the model had an ideal robustness (Figures 3B, C).
Construction of bone metastasis model
based on machine learning algorithm

As shown in Figure 4 and Supplementary Table 2, the RFM

based on the “bagging” algorithm sorted the GLCM parameters,

where Haralick_90, Haralick_all, IV_0, IG_90, IG_0, Haralick_30,

CSV, Entropy and Haralick_45 were suitable for further model

building of the RFM algorithm; The prediction efficiency of the

model showed that the model still had a robust and efficient

prediction efficiency (AUC: 0.926,95% CI: 0.873-0.979), even

though it passed the ten fold cross validation. Consistent with the
Frontiers in Oncology 0549
parameter variables of the RFM model, DTM (Supplementary

Figure 1) adopted CSV, Entropy and Haralick_30 as the decision

factors in the “branches” of the model, and its prediction efficiency

in the training set was worse than that of RFM (AUC: 0.889,95% CI:

0.836-0.942); However, ANNM included eight parameters, namely,

Entropy, IG_90, IV_0, IV_45, IV_90, Haralick_al, Haralick_30,

Haralick_45, Haralick_90 and CSV. The prediction efficiency

obtained was AUC: 0.912, 95% CI: 0.859-0.965, which was worse

than RFM, but better than DTM, SVM and GLRM.
Efficacy evaluation of five bone metastasis
prediction models

DCA is a relatively new model evaluation method compared

with ROC curve (28). In this study, we adopted two model
A

B

FIGURE 2

Candidate variables related to pelvic bone metastasis in colorectal
cancer. (A) Correlation between outcome variables of bone
metastasis and candidate variables of GLCM; (B) Intersection
candidate variables of four prediction models based on machine
learning algorithm.
TABLE 1 Continued

Variables Overall (N=614)

IV_0 (median [IQR]) 159.05 [127.47, 193.60]

IV_45 (median [IQR]) 159.85 [124.62, 192.50]

IV_90 (median [IQR]) 131.00 [108.25, 155.00]

Haralick_all (median [IQR]) 0.10 [0.09, 0.10]

Haralick_30 (median [IQR]) 0.10 [0.09, 0.11]

Haralick_45 (median [IQR]) 0.07 [0.07, 0.08]

Haralick_90 (median [IQR]) 0.11 [0.10, 0.13]

CSV (median [IQR]) 90.00 [84.00, 96.00]

CP (median [IQR]) 79.00 [72.00, 85.00]
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effectiveness evaluation methods. We verified the linear regression

model GLRM and four machine learning models (RFM, ANNM,

SVM and DTM) with an internal test set. From the perspective

of prediction accuracy, we can see that RFM has the largest

“net benefit” in DCA(threshold probability=0.81), followed by

ANNM, DTM and SVM (Figure 5 and Supplementary Table 3).

GLRM was the least predictive machine learning model, with

threshold probability=0.54.

At the same time, the ROC curve showed that the diagnostic

efficacy of bone metastasis of RFM in training set and verification

set was [AUC: 0.926,95% CI: 0.873-0.979] and [AUC: 0.919,95% CI:

0.868-0.970] respectively, while the diagnostic efficacy of bone

metastasis of ANNM in training set and verification set was

[AUC: 0.912,95% CI: 0.859-0.965] and [AUC: 0.894,95% CI:
Frontiers in Oncology 0650
0.843-0.945] respectively, which was slightly lower than that of

RFM; As shown in Table 2 and Supplementary Figure 2, in general,

the prediction efficiency of the prediction model for pelvic

metastasis of colorectal cancer constructed by machine learning

algorithm was better than that of the traditional generalized linear

model. The results were consistent both in the training set and

internal test set.
Prediction effectiveness evaluation of
optimal prediction model

Based on the evaluation of five prediction models for pelvic

metastasis of colorectal cancer, we found that RFM was the best in
A

B C

FIGURE 3

Construction of GLRM to predict bone metastasis in colorectal cancer patients. (A) Prediction score of bone metastasis based on Nomogram
visualization; (B) Robustness evaluation of GLRM in training set and internal test set; (C) Multi-sample model prediction verification based
on resampling.
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terms of prediction efficiency. In order to further evaluate the

differentiation efficiency of RFM, we used CIC to evaluate the

“classification accuracy” of RFM in training set and internal

verification set. As shown in Supplementary Figure 3, the blue

curve (number high risk with outcome) indicated the number of

true positives under each threshold probability, and the red curve

(numberhigh risk) indicated the number of people classified as

positive (high risk) by the prediction model under each threshold

probability. It was credible that RFM can accurately distinguish

patients with bone metastasis from those without bone metastasis,

whether in training set or internal verification set, which further

confirms that RFM can not only increase the interpretability of

bone metastasis risk grading model for colorectal cancer patients,

but also improve the grading accuracy. Therefore, RFM was suitable

for stratified diagnosis and treatment.
Frontiers in Oncology 0751
Discussion

Invasion of colorectal cancer has always been a difficult problem

in the treatment process. Because cancer cells can metastasize

remotely through lymphatic vessels, blood vessels and nerves,

especially vascular invasion, that is, cancer cells can metastasize

remotely earlier through the portal vein and inferior vena cava (29–

31). In the early stage of treatment, pay close attention to the degree

of colorectal cancer invasion, and carefully check the metastatic

lymph nodes (4, 32). For those with high degree of invasion or

lymph node metastasis, prepare radiotherapy and chemotherapy

plans in advance. Routine treatment after radical surgery can have a

very important guiding value to improve the prognosis of patients.

As far as we know, this is the first attempt to integrate machine

learning algorithm and imaging information to build a prediction
A

B C

FIGURE 4

Construction of bone metastasis prediction model of colorectal cancer based on RFM. (A) Sorting of RFM prediction variables based on “Pruning”
algorithm; (B) Screening optimal subset based on ten fold fold cross validation; (C) Recognition visualization of RFM in differentiating patients with or
without pelvic bone metastasis.
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model for colorectal cancer bone metastasis. Compared with

previous studies, this study extracts a series of information that

cannot be directly observed by the naked eye through quantitative

and high-throughput analysis and processing of medical images,

which can better reveal the relationship between tumor biological

characteristics and images, and can be used to establish descriptive

and predictive models to help doctors make clinical decisions.

At present, studies have found that preoperative T staging,

lymphatic metastasis and Duckes staging of colorectal cancer are

independent factors that affect the prognosis of colorectal cancer

(33–35). In addition, anesthesia, perioperative blood transfusion

and treatment are also relevant factors. However, most of the above
Frontiers in Oncology 0852
factors are based on liver metastasis and lung metastasis, but there is

little analysis on the influencing factors of bone metastasis of

colorectal cancer (5, 36). There is also a lack of reliable potential

indicators that can predict bone metastasis of colorectal cancer. In

view of this, this study strives to explore the main influencing

factors of bone metastasis after radical resection of colorectal

cancer, explore its potential bone metastasis prediction indicators,

and build a bone metastasis prediction model based on advanced

algorithms. As far as we know, this is the first prediction model for

pelvic bone metastasis of colorectal cancer based on radiomics and

machine learning. With the help of this model, we hope to better

guide clinical diagnosis and treatment.

The bone metastasis of colorectal cancer is mainly osteogenic

lesions, with multiple and jumping distribution, and osteogenic

changes and osteolytic changes exist at the same time (37).

Fortunately, mpMRI has a high sensitivity and specificity in the

diagnosis of colorectal cancer bone metastasis (38). When both

systemic bone phenomena and CT cannot determine the existence of

bone metastasis, mpMRI is usually feasible. Generally speaking,

mpMRI includes conventional sequences (TIW1 and T2W1) and

functional sequences (DWI, DCE-MRI and MRS) (38, 39). Among

them, DWI is more sensitive to monitoring bone metastasis of

colorectal cancer than conventional sequences. DWI is an assessment

of microscopic movement of water molecules in the body, and can

provide quantitative (such as ADC value) and qualitative (such as

signal strength) information for disease diagnosis and treatment.

Radiomics is a new image post-processing technology emerging in

recent years. Through quantitative and high-throughput analysis and

processing of medical images, it extracts a series of information that

cannot be directly observed by the naked eye, reveals the relationship

between tumor biological characteristics and images, and is used to

establish descriptive and predictive models to help doctors make

diagnosis (40). In this study, on the basis of segmentation of pelvic

bone structure, we established radiomics model based on DWI images

to detect whether colorectal cancer patients have metastatic lesions

within the scope of pelvic bone structure. Encouragingly, the model is

robust and accurate in the prediction of test set, which can be used to

undertake early warning of colorectal cancer bone metastasis and

auxiliary diagnosis before treatment.

With the in-depth development of cross field artificial

intelligence machine learning, it is now possible to predict disease

risks through machines, and even diagnose some diseases (41). In

recent years, due to the extensive application of deep learning and
A

B

FIGURE 5

Effectiveness evaluation of five predictive models for pelvic bone
metastasis detection based on DCA. (A) Training set; (B) Internal
validation set.
TABLE 2 Comparison of predictive efficacy of five types of pelvic bone metastasis prediction models.

Model

Training set Internal validation set

AUC Mean AUC 95%CI Variables& AUC Mean AUC 95%CI Variables&

RFM 0.926 0.873-0.979 7 0.919 0.868-0.970 7

SVMM 0.862 0.809-0.915 11 0.841 0.790-0.892 11

DTM 0.889 0.836-0.942 5 0.839 0.788-0.890 5

ANNM 0.912 0.859-0.965 10 0.894 0.843-0.945 10

GLRM 0.716 0.663-0.769 7 0.722 0.671-0.773 7
&Variables included in the model.
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the inclusion of rich and diverse medical images, it has become an

important part of artificial intelligence machine learning diagnosis,

so deep learning has also had a huge impact in medical diagnosis.

Previous studies have shown that the random forest algorithm can

effectively process the mixed data, missing values or outliers, and

higher dimensional data in medical data, and then comprehensively

classify the data through multiple decision trees, and perform

correlation testing, prediction, and interpretation (42). These

processing processes are not easy to appear over fitting, making

the prediction accuracy more accurate. In this study, we built and

validated the prediction model of colorectal cancer bone metastasis

through a large sample size, among which the prediction model

established through the random forest (iterative) algorithm was the

best (AUC: 0.926,95% CI: 0.873-0.979). In addition, the prediction

efficiency of other machine learning models (ANNM, DTM,

SVMM) is also better than GLRM. The possible reason is that

Logistic regression has advantages in data processing of online

relationships, and machine learning is often more applicable in the

face of nonlinear problems. Therefore, how to improve the

extrapolation of the model needs further research.

In addition, this study inevitably has the following limitations. First

of all, this study only judged whether there was bone metastasis in the

pelvic cavity at the patient level, and did not discuss the bone structure

of a single pelvic cavity or from the focus level. In the future, we should

also detect the metastatic lesions at the bone structure level and the

lesion level, so as to detect and locate the bone metastasis of colorectal

cancer in the pelvic region; Second, this study did not compare the

classification performance of the radiomics model with the diagnostic

efficacy of radiologists. In the follow-up research, we will compare the

effectiveness of artificial intelligence and human experience; Third, this

study only used a single DWI sequence to classify whether there is bone

metastasis. Although this sequence is essential in the process of bone

metastasis detection, it still has some limitations in the detection of

osteogenic changes. Therefore, we consider adding other sequences

(such as ADC map, T1WI, etc.) to the model in subsequent studies to

improve the prediction performance of the model for all types of

metastatic lesions.
Conclusion

To sum up, this study based on depth learning segmentation DWI

image pelvic bone structure of the radiomics model can better identify

the pelvic range of colorectal cancer bonemetastases; Among them, the

predictive factors provided by RFM combined with GLCM can obtain

the best predictive efficacy of bone metastasis, so it can undertake part

of the work of mpMRI assisted diagnosis of colorectal cancer, so as to

better guide clinical diagnosis and treatment.
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Introduction: Medical image analysis is of tremendous importance in serving
clinical diagnosis, treatment planning, as well as prognosis assessment.
However, the image analysis process usually involves multiple modality-specific
software and relies on rigorous manual operations, which is time-consuming
and potentially low reproducible.
Methods: We present an integrated platform - uAI Research Portal (uRP), to
achieve one-stop analyses of multimodal images such as CT, MRI, and PET for
clinical research applications. The proposed uRP adopts a modularized
architecture to be multifunctional, extensible, and customizable.
Results and Discussion: The uRP shows 3 advantages, as it 1) spans a wealth of
algorithms for image processing including semi-automatic delineation,
automatic segmentation, registration, classification, quantitative analysis, and
image visualization, to realize a one-stop analytic pipeline, 2) integrates a variety
of functional modules, which can be directly applied, combined, or customized
for specific application domains, such as brain, pneumonia, and knee joint
analyses, 3) enables full-stack analysis of one disease, including diagnosis,
treatment planning, and prognosis assessment, as well as full-spectrum
coverage for multiple disease applications. With the continuous development
and inclusion of advanced algorithms, we expect this platform to largely simplify
the clinical scientific research process and promote more and better discoveries.

KEYWORDS

research platform, one-stop, medical image analysis, deep learning, semi-automatic

delineation, radiomics

1. Introduction

Medical imaging is widely employed in clinical research to investigate effects on

diagnosis, staging, treatment planning, and follow-up evaluations (1–4). Medical imaging

contains multiple imaging sequences or modalities, such as magnetic resonance imaging

(MRI), computed tomography (CT), and positron emission tomography (PET), providing

complementary information (5–8). The processing and quantitative analysis of medical

images ensure their clinical utility in a variety of medical applications, from general

research to clinical workflows.

Most recently, machine learning- and deep learning-based intelligent imaging analyses

have shown enormous advantages in providing consistent and accurate image

quantifications in multiple applications, including image segmentation, registration,
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classification, etc. (9–12). A series of algorithm architectures and

strategies have been developed to meet different requirements.

For example, U-Net (13, 14), V-Net (15), and nnU-Net (16)

exhibit accurate segmentation performance; affine models (i.e.,

FLIRT, A-SIFT) (17) and deformable models [i.e., FNIRT, ANTS,

VoxelMorph (18), Dual-PRNet (19), LDDMM (20)] assist to

image registration; ResNet (21), DenseNet (22) and their variants

have attracted much attention in classification tasks. Also, varied

attention mechanisms and loss functions have been utilized to

optimize the deep learning network and improve its robustness

(23–26). The accurate analysis of medical images accelerates the

development and upgrading of intelligent algorithms that can be

integrated into the software to enable easy-to-use clinical research.

Numerous choices of medical image analysis tools integrating

advanced algorithms are available. For example, MATLAB (27),

Python (https://www.python.org/), 3D Slicer (28) (https://www.

slicer.org/), and Mimics (Materialize, Leuven, Belgium) allow

general image processing, while FreeSurfer (https://surfer.nmr.mgh.

harvard.edu/), chest imaging platform (CIP, https://

chestimagingplatform.org/), and OpenSim (29) are proprietarily

applied to the brain, lung, knee joint analyses, respectively.

Meanwhile, a number of software is dedicated to a specific

modality, such as resting-state fMRI data analysis toolkit (REST)

(30) and statistical parametric mapping (SPM, UCL Queen Square

Institute of Neurology, London, UK) designed for functional MR

images; DtiStudio (31) and medical imaging interaction toolkit

(MITK) (32) applied to diffusion images; SenseCare (33) provides

a range of artificial intelligence (AI) toolkits for specific clinical

scenarios such as lung cancer diagnosis and radiotherapy

planning. Overall, the software greatly simplifies image processing

and makes it easy for clinicians to understand and use.

However, users still face a series of challenges in using the

software to achieve one-stop image analysis. First, complex image

analysis requires introduction of multiple software to adapt to

the respective modalities and organs, which makes it difficult to

integrate information from different modalities organically.

Second, different software relies on specific environments (e.g.,

Windows and Linux) and programming languages (e.g., Python,

C++, and R), requiring extensive computer knowledge to be used

in practice. Third, the feasibility of integrating the latest AI

models into the software to iteratively optimize performance is

yet to be assessed. Finally, manual contouring regions of interest

(ROIs) (34) is always required in scientific research to serve as

the gold standard or to extract quantitative metrics, which is

time-consuming and may suffer from low reproducibility and

consistency due to intra- and inter-observer variability.

Therefore, it is desired to design an integrated platform for one-

stop analysis of medical images, which needs to be compatible,

advanced, easy to use, extensible, and reproducible. In addition,

the ideal platform should offer cloud-based services (public or

private) to reduce configuration requirements on the user end

and allow multiple clients to work simultaneously. A dedicated

data management module is also essential for organizing

multiple clinical projects and massive medical data, which allows

the integration of large-scale data from multiple centers to

develop robust algorithms and facilitate collaborative research.
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In line with the trend, we propose a multifunctional platform,

called uRP (uAI research portal, https://www.uii-ai.com/en/uai/

scientific-research), to perform accurate image processing and

analysis on demand. The uRP can satisfy the following

requirements: (1) Integrating a variety of algorithms with respect

to the image’s modality (i.e., MRI, CT, PET), body part (i.e.,

head, chest, abdomen, pelvis), and processing task (i.e.,

segmentation, registration, classification), to be suitable for diverse

applications; (2) Offering friendly interactive user interface (UI)

to make clinicians easy to understand and independently

implement complete AI-related research; (3) Possessing the

extendable capability to enrich existing modules and ensure

reusable and reproducible analysis across clinicians, even

hospitals; (4) Achieving automatic or semi-automatic image

processing (e.g., delineation) to ensure efficient and accurate

analysis; (5) Supporting cloud-based computing services with high

concurrency and owing a dedicated data management module.

In the below sections, we present an overview of uRP’s

architecture and major functional modules, including semi-

automatic delineation, deep learning-based image segmentation,

registration, and classification, as well as radiomics and statistics.

The clinical utility of the uRP is demonstrated by three domain

analyses of the brain, pneumonia, and knee joint. Representative

use cases are exampled to illustrate some of the outcomes that

clinicians have achieved by using the uRP. In addition, the

modules of the uRP will continue to be developed and extended,

and we prospect future design concepts and directions to achieve a

more intelligent platform for scientific research and even clinical uses.
2. Materials and methods

In this article, we propose the uRP to realize the one-stop

medical image analysis. The architecture and main modules are

shown in the following parts.
2.1. Overview of uRP

From 2018, we began to build the uRP to promote one-stop

advanced medical image analysis in the context of integrating AI

modules. It is intended to facilitate scientific research for

clinicians and is therefore designed as flexible modules that can

be used directly, combined, or customized for specific application

domains. Here, we start by describing its architecture and key

components (Figure 1).

2.1.1. Architecture
The design of uRP architecture takes a modular and layered

approach. Internally, the software consists of three layers: (1) The

lower level is composed of hardware drivers, such as graphics

processing unit (GPU) accelerated using NVIDIA CUDA, and

cloud servers, such as Amazon web services (AWS), that

efficiently use graphics resources of the host system; (2) At the

middle level, there is application programming interface (API),

primarily Python and C++, contributing a range of algorithms
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FIGURE 1

Overview of uRP with layered and modular architecture. At the lower level, it involves hardware drivers and cloud servers. At the middle level, it includes
the application programming interface (API) and open-source packages to develop algorithms, ensuring versatility for data management, deep learning,
as well as radiomics and statistics. At the higher level, it provides a series of user interfaces to perform different application domains covering multiple
imaging modalities, full-stack analysis of one disease (i.e., diagnosis, treatment planning, and follow-up), and full-spectrum coverage for multiple diseases.
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(e.g., segmentation, registration, classification) and providing

higher-level functionality and abstractions. Additionally, a variety

of open-source libraries are embedded in the uRP, where the

DICOM toolkit (DCMTK) is used to support DICOM format

data, and Qt to provide a cross-platform graphical user interface

(GUI) framework; (3) The higher level presents UIs of multiple

algorithms and builds blocks to the end users for domain-specific

analysis (Figure 1). All computational demanding modules can

run in parallel on many processors at once, using message

passing between processes and/or shared-memory threads.

Since its inception, uRP has been evolving with major

architecture, UIs, and functional redesigns. The uRP’s version is

updated every 2 months, and each release is formally tested on a

variety of platform configurations to ensure its stability.

2.1.2. Interactive UI
uRP is a web-based platform supporting GPU cloud

computing. It supports plug-ins to deliver task-specific

functionality to the user. uRP mainly consists of three functional
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modules, (1) data management, supporting the upload of

imaging data and non-imaging features, extraction of subject

information from DICOM tags, and image search based on

specific criteria; (2) image processing, including semi-automatic

delineation, deep learning-based segmentation, registration, and

classification; (3) radiomics and statistics, for classification and

regression tasks. Images in DICOM or NIFIT formats from

clinical picture archiving and communication system (PACS) or

external drives are supported with various imaging modalities,

including MR, CT, PET, x-ray, and digital radiography (DR)

images. These technical modules can support a variety of

applications on demand (Figure 1).
2.2. Semi-automatic delineation

Delineation of ROIs is essential in clinical research as the

primary step for quantification and feature extraction. Manual

delineation is generally considered as the gold standard, but it is
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limited by its tedious, time-consuming, and error-prone

characteristics, and thus difficult to achieve high-quality and

efficient annotation especially with the massive amount of

medical images. In view of this, various automatic delineation

algorithms have been developed, including fully automatic and

semi-automatic methods. It is worth noting that fully-automatic

delineation is convenient but sometimes hard to reach the

desired accuracy, while semi-automatic delineation allows

human-computer interaction and thus can optimize the results,

which is a time-saving alternative to manual delineation. Our

proposed uRP platform contains a collection of tools for fully-

automatic, semi-automatic, and manual delineation. As shown in

Figure 2, a smart annotation tool and a ROI modification tool

are integrated into the uRP to assist the delineation process.
2.2.1. Smart annotation tool
The uRP offers several smart annotation tools (SATs) for

medical images, including (1) intelligent interactive segmentation

and (2) annotation propagation, which enables fast extraction of

the target from the complex background and 3D propagation of

the annotation.

Intelligent interactive segmentation is a technique that allows the

user to adjust the region of interest (ROI) by manipulating seeds. In

use, the user firstly draws a rectangle to cover the ROI, where the

Canny edge detection algorithm is then performed within the

rectangle to generate the target boundary. After that a positive

seed is generated at the centroid, and 4 negative seeds are placed

at the vertices of the user-defined rectangle, serving as the control

points for the boundary (Figure 2A, Supplementary Video 1).

We can then update the shape and size of the generated boundary

by adjusting the positive / negative seeds. Also, more positive

seeds (green) can be added to enlarge the ROI by clicking on the

area outside the edge, and negative seeds (red) can be added in

the ROI to remove specific regions. Canny’s approach is a widely

used edge detection method with tweakable parameters and thus

suitable to be integrated with a GUI. The algorithm can be

divided into the following 5 steps: (1) Use a Gaussian filter to

smooth the image and reduce the noise; (2) Calculate the gradient

intensity and direction for each pixel point in the image; (3) Edge

candidates are identified by applying the non-maximal or critical

suppression to the gradient magnitude; (4) Apply double-threshold

detection to determine real and potential edges; and (5) Finalize

the edge detection by suppressing isolated weak edges (35). The

implementation for the Canny edge detection algorithm could be

found in the OpenCV library (36).

Another tool is annotation propagation, which applies the

current annotation in one slice to its adjacent slices. Specifically,

the current annotation serves as the initial mask, and the tool

can automatically propagate annotations across entire image

frames (Supplementary Video 2). Especially, the user can

optionally keep the correct region when the ROI is propagated to

other slices and divided into multiple regions. Users can save

annotations for following radiomics and deep learning analyses

on the uRP, or download them for future review.
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2.2.2. ROI modification tool
After labeling the ROI, a variety of specific preprocessing needs

to be performed on the mask to meet diverse image analyses. For

example, studying tumor microenvironment requires obtaining

the peritumor region, whereas studying liver fat requires

extracting the ROI by intensity. The uRP offers a morphological

modification tool to dilate or erode the selected ROI according to

user-defined distances in the x, y, and z directions. For existing

ROIs, separation can be performed by user-defined split

intervals, connectivity, or minimum size (voxels). It can also

merge, intersect, and complement multiple ROIs by performing

linear operations on the pixels at each position of the ROI

(Figure 2B). When conducting multimodal research, ROI can be

duplicated across modalities. The above ROI modification tools

can be applied to 2D and 3D ROI, and users can expand

research directions with a variety of ROI preprocessing tools

available on the platform.
2.3. Deep learning modules

With the advancement of deep learning and its wide

application in medical image processing (37, 38), this technology

has shown great potential in organ segmentation (39), disease

diagnosis (40), etc. Some powerful online trainable deep learning

modules are available on the uRP, such as the segmentation

module, registration module, and classification module. The

network architecture of each module is shown in Figure 3. The

segmentation module can segment various organs of the whole

body using a cascade coarse-to-fine framework (Figure 3A); the

registration module performs unsupervised registration from a

moving image to a reference image (Figure 3B), and the

classification module can focus on ROI to classify the input

image (Figure 3C). These deep learning modules are directly

invoked through a simple parameter configuration, which can be

flexibly applied to various research scenarios.
2.3.1. Segmentation
The input of the segmentation module can be single- or

multimodal 2D or 3D data, where models can be trained to

automatically delineate ROIs, such as organs or tumors. The uRP

integrates a segmentation toolkit named VB-Net (41, 42). Briefly,

we use a V-Net as the backbone for the segmentation task,

which consists of a compression path, an expansion path, and

skip connections (43). The compression path extracts high-level

context information and the expansion path upsamples the signal

to recover its original size, where skip connections allow the

extracted high-level context information to be fused with fine-

grained local information. To reduce model parameters and GPU

memory cost, bottleneck layers are added in the down block and

up block of the network (Figure 3A). Moreover, a variety of

optimization strategies are embedded in the network to improve

segmentation performance and extend application scenarios, as

described below:
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FIGURE 2

Image preprocessing by semi-automatic delineation tool. (A) Smart interactive segmentation. (B) Preprocessing methods of the original ROI (1), including
dilation (2), erosion (3), duplication (4), union (5), intersection (6), complement (7), and separation by intensity (8).
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(1) Adaptive input module, which adds convolutional layers to

large-size images to ensure the network adapts to various input

images; (2) A cascade coarse-to-fine strategy, in which the

coarse-resolution model aims to localize ROIs in the original

image by leveraging the global 3D context, and the fine-

resolution model focuses on refining detailed boundaries of ROIs

(Figure 3A); (3) Self-attention mechanism, which accelerates

network convergence and improves segmentation accuracy; (4)

Various loss functions, such as Dice loss, focal loss, and

boundary loss, which can effectively constrain the segmented

targets in different tasks (41).

Scientific research users can invoke the deep learning

segmentation module directly through the configuration file,

requiring no coding skills in the process (Supplementary Video

3). The configuration file provides the following functions: (1)

setting paths of training data, model storage, and output results;

(2) hyperparameters during the training process (e.g., GPU

selection, batch size, training epochs); (3) data augmentation

(e.g., flipping, rotating, scaling), (4) data preprocessing (e.g.,

sampling method, cropped size, padding type, normalization); (5)

configurations of the loss function, optimizer, and learning rate

scheduler; (6) segmentation evaluation metrics (i.e., Dice, average

symmetrical surface distance, Hausdorff distance); (7)

configurations of networks and strategies, e.g., cascading of

different networks and selection of attention mechanisms. The

configuration file should be configured in a standard format (a

template is provided on the uRP) and called in the training process.

Moreover, the segmentation module integrates more than 100

high-precision organ segmentation models throughout the body.
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Segmentation of organs at risk using the uRP’s segmentation

module has shown great advantages in terms of speed (0.7 s vs.

20 s per organ), accuracy (average Dice score 96.6% vs. 84.3%),

and robustness (successful rate 98.6% vs. 83.3%) compared to

conventional methods (44).

2.3.2. Registration
Image registration is to align a moving image to a reference

image, which is a critical procedure in the analyses of

multimodal images and longitudinal data (45). The uRP provides

both traditional image registration (i.e., rigid, affine

transformation) and deep learning-based nonlinear registration.

Briefly, the nonlinear registration model consists of a registration

network, spatial transform block, and hybrid loss calculation

module. A hybrid loss is calculated to strengthen the alignment

constraints of different structures, which combines image

dissimilarity, deformation regularization, and segmentation

dissimilarity with different weights (Figure 3B). The available

image dissimilarity metrics include mean square difference

(MSD), normalized correlation (NC), mutual information (MI),

etc. Image registration can be performed between the images of

the same modality or of different modalities; for example, MI is

generally selected as the image dissimilarity for cross-modal

registration.

Notably, the segmentation results obtained automatically from

the segmentation module could also be used in the registration

process. In previous studies, organ segmentations served as soft

constraint in the loss function to provide auxiliary information

in the training of the registration model (46, 47). Compared to
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FIGURE 3

Network architectures of deep learning modules in the uRP. (A) Workflow of segmentation network (VB-Net) with a coarse-to-fine strategy, which first
roughly locates the target area and then segments the fine boundary of the ROI. (B) Image registration framework with introduced region segmentations
as constraints. (C) Classification network from images to features, with ROI attention strategy. GAP, global average pooling; FC, fully connected layer.
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using only the intensity image for registration, these studies found

that the large deformation can be more readily estimated with the

help of the segmentation result.
2.3.3. Classification
The uRP integrates a classification module and can be used for

two-class and multi-class tasks. ResNet (48) is used as the

classification backbone and optimized by several strategies: (1) an

online attention module as CAM (49) and Grad-CAM (50), that

ensures the network to focus on ROIs and increases the model

interpretability (Figure 3C); (2) a balanced sampling mechanism,

which can alleviate the imbalanced distribution of the input data;
FIGURE 4

The radiomics analysis workflow. The radiomics analysis module supports fou
(2) data processing and region of interest (ROI) delineation, (3) feature extract
analysis workflow can be used in a variety of clinical applications.
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(3) different sampling methods for inputs; (4) various loss

functions, e.g., focal loss (51), Ap loss (52), and CAM loss. A lot

of classic and mature classification networks such as DenseNet

(53) and EfficientNet (54) have been embedded in the uRP.

Moreover, the classification module can be flexibly invoked via a

configuration file, similar to the segmentation module.
2.4. Radiomics and statistics

Radiomics is a quantitative image analysis technique through

extracting quantitative features from medical images, that aims to
r main functions, including (1) image visualization for multi-modal images,
ion and selection, and (4) model construction and evaluation. The above
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link large-scale data mining of images with clinical and biological

endpoints (55). The uRP implements a one-stop analytic pipeline

of radiomics, providing clinical researchers with a simple UI for

image visualization, image processing, feature analysis, model

construction and evaluation, and statistical analysis (Figure 4).
2.4.1. Data preprocessing and grouping
Previous studies have shown that radiomics features are sensitive

to variations in gray level, pixel size, and slice thickness of images

(56–59). However, it is difficult to standardize parameters during

image acquisition for all patients in a clinical setting. The platform

supports a variety of normalization algorithms to normalize image

signal intensity, such as mean_std, max_min, and center_width.

And it resamples the image and ROI mask to specified pixel

spacing to achieve a standardized variable pixel size and slice

thickness by resampling algorithms, such as the nearest neighbor,

linear interpolation, and B-spline interpolation. A pre-defined bin

number of 64 is used for all analyses. In image processing and

feature calculation, we follow the guidelines of the imaging

biomarker standardization initiative (IBSI) (60).

The uRP supports three data grouping methods, namely

customized grouping, random grouping according to proportion,

and cross-validation grouping. The training set is used for feature

selection and model construction, and the model performance is

evaluated on the testing set.
2.4.2. Feature extraction and standardization
After preprocessing the images, a total of 2,264 radiomics

features can be automatically extracted from each ROI

(Supplementary Table S1). The first-order statistics include 18

features that reflect the quantitative depiction of the distribution

of voxel intensity in medical images. The shape-based features

include 14 features that reflect the shape and size of a region.

The textural features include 21 gray level co-occurrence matrix

(GLCM) features, 16 gray level run length matrix (GLRLM)

features, 16 gray level size zone matrix (GLSZM) features, 5

neighboring gray-tone difference matrix (NGTDM) features, and

14 gray levels dependent matrix (GLDM) features, which

quantify regional heterogeneity differences. Additionally, the

derived images are obtained by applying 24 filters (box mean,

additive Gaussian noise, binomial blur, curvature flow, box-

sigma, normalize, Laplacian sharpening, discrete Gaussian, mean,

speckle noise, recursive Gaussian, shot noise, LoG (sigma: 0.5, 1,

1.5, 2), and wavelets (LLL, LLH, LHL, LHH, HLL, HLH, HHL,

HHH)), and are used to extract first-order statistics and textural

features (2,160 derived features). Most features defined in the

uRP conform to feature definitions described in the IBSI (60).

To ensure the clinical utility of the model, features beyond

radiomics should also be considered to improve the model’s

generalizability, such as demographic information and biological

data. Considering that radiomics features and clinical features

have different ranges, feature standardization algorithms are also

provided in the uRP, such as z-score_scaler, min_max_scaler,

quantitle_transformer, yeojohnson_transformer, boxcox_transformer,

L1_normalization, L2_normalization, and max_abs_scaler (61).
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2.4.3. Feature selection and model construction
The feature selection module is used for feature selection or

dimension reduction to improve model performance. It includes

variance thresholding for removing low variance features, SelectKBest

for removing high p-value features, as well as least absolute shrinkage

and selection operator (LASSO) for sparse feature selection. It also

includes factor analysis, independent component analysis (ICA),

linear discriminant analysis (LDA), principal component analysis

(PCA), and more than 10 algorithms for dimension reduction to get

fewer new features formed by original features.

Based on the selected features, various machine learning-based

models can be constructed for classification or regression tasks.

Our proposed uRP integrates 13 machine learning algorithms,

including adaptive boosting (AdaBoost), bagging decision tree,

decision tree, Gaussian process, gradient boosting decision tree

(GBDT), K-nearest neighbors (KNN), random forest (RF),

logistic regression (LR), extreme gradient boosting (XGBoost),

stochastic gradient descent (SGD), support vector machine

(SVM), quadratic discriminant analysis (QDA), partial least

squares-discriminant analysis (PLS-DA), and allows for

hyperparameters adjustment. The nomogram model is also

included in this module, which combines radiomics and clinical

factors to facilitate the clinical utility of predictive models. It is

necessary to first calculate the score of each predictive variable,

obtain the total point, and then find the probability of the

disease outcome corresponding to the total score.
2.4.4. Evaluation metrics
To evaluate model performance, the uRP provides two sets of

quantitative metrics for classification and regression models.

(1) Classification model: The platform can automatically

generate receiver operating characteristic (ROC) curves and

calibration curves in the training and validation cohorts, and

calculate multiple metrics, such as the area under the ROC curve

(AUC, with 95% confidence interval), F1 score, precision,

sensitivity, specificity, and accuracy. It also provides a visual

representation of the confusion matrix and supports the

comparison of multiple models. In addition, the histogram, box

chart, violin chart, correlation analysis heatmap, and clustering

analysis heatmap are optionally plotted to establish the relationship

between features. For clinical applications, the decision curve and

clinical impact curve can be plotted to assess the clinical usefulness

of models by quantifying net benefits at different risk thresholds.

(2) Regression model: The platform automatically generates

prediction curves and scatter plots to visualize the results, and

calculates mean absolute error (MAE), mean absolute error

(MSE), R-squared, and Pearson correlation coefficient for

regression model evaluation.
3. Results

To illustrate the clinical utility of the uRP, we list three domain

analyses (i.e., brain, pneumonia, and knee joint) and representative

use cases.
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3.1. Specific domain analysis

It is worth noting that uRP can be extended and applied to a

variety of designated applications (Figure 1), e.g., brain structural

analysis, pneumonia analysis, and knee joint analysis. In this
FIGURE 5

One-stop brain analysis module integrated into the uRP. (A) Segmentation pip
skull, tissue segmentation of white matter, gray matter, and cerebrospinal fluid
user interface (UI) of brain analysis, including (1)–(2) image visualization of the
scale score. (C) UI showing abnormal regions and follow-up analysis.
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section, we focus on these three specific scenarios to describe the

versatility and scalability of uRP, covering segmentation,

quantitative analysis of ROI, classification for disease prediction,

and prognosis, where image analysis modules are integrated into

sequential to form an automatic analysis pipeline.
eline of brain structure, including the bias field correction, removal of the
(CSF), bilateral segmentation, and parcellation of 109 sub-regions. (B) The
specific region or disease, (3) quantitative volume analysis, and (4) MTA-
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3.1.1. Brain analysis
Neuroimaging shows tremendous potential in the early

diagnosis of neurodegenerative diseases (62, 63), in which

structural imaging (MRI) serves as a foundation to provide brain

tissue and parcellation information (Figure 5).

First, uRP can handle high-resolution MR images and

hierarchically segment brain structures (Figure 5A). The

workflow mainly involves: (1) the bias field correction, (2)

removal of the skull, (3) tissue segmentation of white matter,

gray matter, and cerebrospinal fluid (CSF), (4) bilateral

segmentation, and (5) parcellation of 109 sub-regions. A total of

109 sub-regions includes 22 temporal lobe structures, 20 frontal

lobe structures, 12 parietal lobe structures, 8 occipital lobe

structures, 8 cingulate gyrus structures, 2 insular structures, 12

subcortical gray matter structures, cerebral white matter

structures, ventricles, cerebellum, and other structures (64). To

emphasize, this segmentation process depends on VB-Net,

achieving efficient, precise, and end-to-end segmentation of

multiple sub-regions. The model was trained on T1 images of

1,800 subjects and tested on 295 subjects with an average Dice of

0.92, where the images were acquired from the Consortium for

Reliability and Reproducibility (CoRR) dataset (65) and Chinese

brain molecular and functional mapping (CBMFM) project (66).

Based on the segmentation results, the volume, volume ratio of

each sub-region, and the asymmetry index of paired sub-region

are calculated quantitatively and compared to the relevant

parameters from the gender- and age-matched normal dataset

(Figure 5B). Abnormal brain sub-regions are identified, where

those below the 5th percentile of the normal range are

considered likely to be abnormally atrophic, and those above the

95th percentile are considered abnormally enlarged (Figure 5C).

On the other hand, the medial temporal lobe atrophy (MTA)

score, also known as Schelten’s scale, is developed with an AI

model for automated assessment of the hippocampus atrophy

status (67). The score ranges from 0 to 4, in which the higher

the score, the more severe the hippocampal atrophy (Figure 5B).

It should be noted that the segmentation and computation of the

109 sub-regions take less than 1 min.

Based on this, uRP holds enormous ability in the follow-up

data analysis, i.e., (1) comparing volume changes of ROIs over

time to explore pathological progression of neurodegenerative

diseases; (2) constructing AI models to predict the odds of other

diseases such as Parkinson’s disease (PD) or mental diseases for

early diagnosis and early intervention; (3) promoting the brain

functional analysis with established structural ROIs, as well as

fiber connectivity analysis in diffusion tensor imaging (DTI)

(Figure 5C).
3.1.2. Pneumonia analysis
With the worldwide spread of coronavirus disease (COVID-

19), the early diagnosis and prognostic analysis of pneumonia

have become an urgent need, which inspires a large number of

related researches to serve the clinic (68–71). CT has been

popularly used to monitor pneumonia’s progression and measure

the disease severity (72–74). Based on chest CT scans, three
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important issues need to be explored: (1) the location of the

pneumonia infection, (2) the severity of the infection, and (3) the

etiology of the disease. uRP meets these requirements by

integrating segmentation, classification, and registration

algorithms (Figure 6A).

The first step is to locate the infected lesions. First, the whole

lung is obtained by embedded VB-Net, followed by bilateral

segmentation (75). Then, the left lung is segmented into 2 lung

lobes (superior and inferior lobes), while the right lung is

segmented into 3 lung lobes (superior, middle, and inferior

lobes). Afterward, 5 lung lobes are then finely segmented into 18

bronchopulmonary segments (Figure 6B). Infected lesions are

also auto-contoured in this process, and can be visualized from

the UI. Noted that the human-in-the-loop strategy is designed to

iteratively update VB-Net to address the problem of limited

annotated data (73). To be specific, an initial segmentation

model based on a small amount of delineated data is applied to

the new data, and segmentation results are manually corrected

and then fed into the model, so that a more robust model will be

trained through 3∼4 iterations, greatly improving the efficiency

of delineation.

Following the segmentation, a diverse set of handcrafted

features are calculated to quantitatively assess the severity of the

pneumonia infection (75), including (1) 26 volumetric features—

the volume and percentage of infections in each lobe and

pulmonary segment, (2) 31 numeric features—the number of

infected lobes and pulmonary segments, (3) 32 histogram

features—the histogram distribution of CT intensity, (4) 7 surface

features—the surface area of infections and lung boundary. A

total of 96 location-specific features are displayed in the UI to

reflect the severity of pneumonia infection. In addition, follow-up

data can be registered with previously acquired images to extract

changes in infection-specific features to monitor the progression

of pneumonia and to accurately determine the severity (Figure 6C).

Importantly, uRP can also distinguish different types of

pneumonia and predict possible pneumonia causes via uRP’s

built-in classification algorithms. Based on the segmented masks

and extracted features, dual-sampling attention 3D ResNet is

used to diagnose COVID-19 from community acquired

pneumonia (CAP) (76). Moreover, masks, handcrafted features,

as well as radiomics features can be used to classify the cause of

pneumonia (e.g., viruses, fungi, and bacteria), and to report the

corresponding probabilities.

Therefore, uRP-based pneumonia analyses involve automatic

segmentation of infected lesions, extraction and visualization of

quantitative metrics, and classification of different types of

pneumonia, which largely accelerates scientific research on

pneumonia.

3.1.3. Knee joint analysis
Knee osteoarthritis (OA), known as a degenerative joint

disease, results from the wear, tear, and progressive loss of

articular cartilage, which may eventually lead to disability (77).

The severity staging of knee OA should be carefully taken into

consideration for the treatment, which relies on a range of

morphological parameters, including the volume and thickness of
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FIGURE 6

One-stop pneumonia analysis module integrated into the uRP. (A) Schematics of pneumonia analysis, including segmentation, computation, registration,
and classification. (B) Hierarchical segmentation of lungs and infected lesions. (C) The user interface of pneumonia analysis on the uRP, including (1) image
visualization to compare images from two-time points, (2) quantitative analysis for pneumonia diagnosis and severity assessment, and (3) histogram
analysis of CT intensity distribution of images for comparison.
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articular cartilage, and minimal joint space width (mJSW) (78). To

benefit clinical practice, uRP implements a complete analysis

pipeline that automatically segments knee tissues and calculates

morphological metrics.

At first, a cascade coarse-to-fine strategy is applied to obtain

fast and accurate segmentation results (Figure 3A). Through two

3D-VNet segmentation models, multiple knee joint tissues are

accurately segmented, including bones (i.e., femoral bone, tibial
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bone, patella bone), cartilages (i.e., femoral cartilage, tibial

cartilage, patella cartilage), as well as menisci, and visualized in

the UI of uRP (Figure 7A).

At the same time, a series of morphological parameters are

automatically calculated from corresponding segmented masks

(79), including (1) volumes of cartilages, menisci, and cartilage

damage, (2) the mean thicknesses of cartilages, (3) the medial and

lateral mJSWs, calculated with the minimal Euclidean distance
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FIGURE 7

Knee joint analysis module integrated into the uRP. (A) The user interface (UI) of segmentation results of the knee joint, in which multiple knee joint tissues
are segmented including femoral bone and cartilage, tibial bone and cartilage, patella bone and cartilage, as well as menisci. (B) Quantitative metrics
calculated for knee osteoarthritis (OA) diagnosis, i.e., volume, thicknesses, minimal joint space width (mJSW), and severity assessment. (C) UI showing
quantified features and classification results for OA severity grading.
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between the femoral and tibial surfaces, (4) the severity assessment—

the ratio of the tibial cartilage covered by menisci, the grade of

cartilage damage and corresponding probability (Figure 7B).
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Severity grading is also performed by a classification algorithm

(Figure 7C). All the above results can be viewed from the uRP,

which is helpful for clinicians to make a quick diagnosis of knee OA.
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Overall, the knee joint analysis module on uRP can handle MRI

images in a fully automatic manner, in which knee joint tissues are

segmented and key features (i.e., volume, thickness, mJSW) are

calculated to identify the severity of knee OA, thus guiding the

optimal treatment.
3.2. Use cases

To illustrate the utility of the uRP, we example several use cases

and organize them into the following four parts:

3.2.1. Segmentation use
The automatic segmentation module on the uRP has been used

in many medical scenarios, for example, to diagnose COVID-19

infections. Chest CT scans of 549 patients were collected from

Shanghai Public Health Clinical Center and several other

hospitals, and were automatically segmented and quantified the

infected regions throughout the lungs (80). Researchers used the

pneumonia analysis module of the uRP, yielding a Dice

similarity coefficient of 91.6% ± 10.0% for the segmentation of

infected areas, and a mean estimation error of the infected

percentage of 0.3% for the whole lung on the validation dataset

(300 patients). Besides, to predict the severity of COVID-19

patients, quantitative features of 5 lung lobes and 18

bronchopulmonary segments were calculated and used to

construct a classification model based on the SVM algorithm.

The best accuracy of severity prediction was 73.4% ± 1.3%, which

demonstrated that uRP’s pneumonia analysis module owned

good performance on patient severity prediction.

3.2.2. Classification use
The image classification module built into the uRP has been

experimentally explored in various applications such as disease

diagnosis, risk classification, and treatment selection.

Gastrointestinal stromal tumors (GISTs) are mesenchymal

neoplasms with variable malignant potentials (81). In clinics,

accurate preoperative risk classification is important for surgical

resection and adjuvant treatment (82). Researchers from

Shandong Provincial Hospital and the Affiliated Hospital of

Qingdao University collected contrast-enhanced CT images and

clinicopathological characteristics from 733 patients and the goal

was to develop a model for predicting the GISTs risk

stratification (83). A deep learning model with an attention

mechanism was constructed on the uRP’s classification module

to divide patients into three categories (i.e., low-malignant,

intermediate-malignant, and high-malignant). The obtained

AUCs were 0.90, 0.80, and 0.89 on the testing sets for low-

malignant, intermediate-malignant, and high-malignant GISTs,

respectively. Therefore, this multi-center study demonstrated that

the quantitative CT and deep learning-based approach can be an

objective means of predicting the risk stratification of GISTs.

3.2.3. Registration use
Image registration is widely needed for the analyses of

multimodal images and longitudinal data. For example, precise
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registration of dynamic contrast enhanced MR images (DCE-

MEIs) with pre-contrast images can be used to obtain accurate

subtraction images, which helps to better differentiate the true

enhancement of residual viable tumors from coagulative necrosis.

In our recent study, Qian et al. collected 3D liver DCE-MRI

series from 97 patients, with each series including pre-contrast

T1-weighted, post-contrast T1-weighted scan at the arterial

phase, and post-contrast T1-weighted scan at the portal venous

phase (84). To overcome the intensity enhancement (due to the

contrast agent) and spatial distortions of the liver, the cascade

registration framework integrated into uRP was used to register

the post-contrast images to the pre-contrast images. The

registration performance of the proposed method was compared

with the traditional registration method SyN in the ANTs toolkit,

and the results demonstrated that the proposed framework

embedded in the registration module of uRP owned a

comparable performance and significantly improved efficiency.

3.2.4. Radiomics use
The radiomics module is particularly suitable for image-based

classification and regression tasks, deployed and used well in

multiple centers. Radiomics analysis was conducted in the Fourth

Affiliated Hospital of Harbin Medical University to discriminate

acute myocardial infarction from unstable angina (85). A total of

210 patients with coronary computed tomography angiography

(CCTA) images were retrospectively collected and randomly

divided into the training and validation cohorts. Following the

workflow of radiomics analysis in uRP, three vessel-based

pericoronary adipose tissue (PCAT) radiomics features and fat

attenuation index (FAI) were extracted from CCTA images, and

then selected features were used to construct the classification

model. Results demonstrated that the combined model achieved

superior performance with AUC values of 0.97 and 0.95 for

training and validation cohorts, respectively. The Affiliated

Hospital of Southwest Medical University applied a radiomics

model to predict the T stage, perineural invasion, and

microvascular invasion of extrahepatic cholangiocarcinoma

(CCA). This retrospective trial included 101 CCA patients

scanned with four MR images, including T1-weighted imaging

(T1WI), T2-weighted imaging (T2WI), diffusion-weighted

imaging (DWI), and apparent diffusion coefficient (ADC) map.

Radiomics features were extracted from four MR images,

followed by dimension reduction, and selected features were used

to construct three classification models corresponding to the

three tasks. The AUC values of models in the testing cohort for

predicting T stage, perineural invasion, and microvascular

invasion were 0.962, 1.000, and 1.000, respectively (86). Similarly,

researchers from Zhongshan Hospital constructed a multi-

parametric radiomics nomogram for predicting the microvascular

invasion (MVI) based on multiple MR sequences from 130

patients pathologically confirmed with intrahepatic CCA. The

nomogram incorporating tumor size, intrahepatic duct dilatation,

and the radiomics model, achieved good prediction performance

with AUC values of 0.953, 0.861, and 0.819 in the training,

validation (n = 33), and time-independent testing cohorts (n =

24), respectively (87).
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4. Discussion

Over the years, uRP has gained broad acceptance within the

medical image analysis community, which can be attributed to

its breadth of functionality, extensibility, and cross-platform

portability.
4.1. Extendable modules

One key strength of uRP is the modularization for customized

extensibility, where plug-ins can be designed for specific purposes,

and can be freely combined to accomplish complex analyses,

suitable for a variety of scenarios. uRP’s extensible structure

means that new functionality can be integrated on top of the

existing platform, rather than being created from scratch,

showing significant advantages over monolithic software. The

modular design benefits users in several ways:

(1) Reusability: uRP has integrated multiple algorithms that are

embedded into axiomatic building blocks and are invoked

for specific analysis workflows. An algorithm may

participate in many tasks and perform a similar function,

meaning that advanced techniques can be reused in new

research areas. In addition to existing algorithms, new

algorithms can also be developed and integrated into the

uRP, for example, transfer learning, transformer networks,

etc., to meet clinical needs. Besides, uRP can be extended

with third-party software (i.e., 3D Slicer) to import historical

annotation data or clinical information.

(2) Reproducibility: The design of plug-ins of uRP follows the

criteria of standardization and interoperability, which can be

easily shared among research groups, thus minimizing the

need for duplication and facilitating reproducibility and

consensus building. uRP collects detailed parameters set by

the user and generates a report summarizing quantitative

metrics and results so that a study can be replicated by

different researchers or even different institutions. Equally

important, uRP can be used for data management and fair

data repositories are essential for reproducible research.

Meanwhile, uRP owns reproducibility at scale, e.g.,

producing high-dimensional radiomics features for ROI in

each image or applying the same quantitative analysis in

high-throughput images.

(3) Community: uRP has an active community of more than 50

hospitals in China. The feedbacks provided by users fuel

improvements of uRP, especially the development of

innovative algorithms for clinical needs.

4.2. Advantages

The uRP platform has shown great potential for one-stop

image analyses in multiple scientific researches. There are several

other platforms for image analysis, such as 3D Slicer (28),

SenseCare (33), MITK (32). The proposed uRP has several

advantages. (1) uRP can provide cloud-based services allowing
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for high user concurrency, a data management module to

facilitate collaborations, and batch processing capability for

efficient analysis. (2) Some of these platforms are for clinical

diagnostic and treatment planning usages, with modules such as

lung cancer diagnosis, radiotherapy planning for head and neck

cancers. uRP is designed for clinical scientific research,

supporting image analysis and research idea validation. (3) The

uRP integrates machine learning algorithms and statistical

analysis methods to provide a more powerful analytical tool for

clinical research. (4) The uRP also offers smart annotation tools

for medical images, to remedy the time-consuming manual

annotation process that serves as a prerequisite for ROI based

analysis.
4.3. Outlook

Although uRP already has many applications as a one-stop

medical image analysis platform, some issues are still to be

addressed. Firstly, uRP currently focuses on the analysis of

radiological images, while other types of images could be future

supported, such as those from pathology. Secondly, most existing

applications are oriented towards the adult population, while

applications specific for the fetal, infant, and children are needed.

We have only two applications for now, i.e., infant brain

segmentation, skeletal age prediction, and would be further

increased in the future. While uRP cannot meet all the scientific

needs, it is fortunately a dynamic software that evolves together

with the new scientific research derived from clinical problems.

In the future, we will continue to develop more tools and

domain-specific methods, including algorithms, statistics, as well

as radiomics, to improve the efficiency, accuracy, robustness, and

generalization of one-stop analysis. Represented by ChatGPT,

generative AI is a hot research topic for now. It would bring

many improvements to the current scientific research, such as

better integrating multi-omics data to assist clinical diagnosis and

prognosis assessment. We are also exploring the possibility of

integrating generative AI in the platform at suitable scenarios

(88). We anticipate that the uRP can be applied to diverse

domains covering an increasing number of analytic pipelines for

diverse pathological diseases.
5. Conclusion

In summary, uRP is a one-stop medical image analysis software

for scientific research, and it not only supports versatile

visualizations, but also provides advanced functionality such as

automatic segmentation, registration, and classification for a

variety of application domains. More specifically, it has three

major merits, (1) advanced built-in algorithms (>100) applicable

to multiple imaging modalities (i.e., CT, MR, PET, DR), diseases

(i.e., tumor, neurodegenerative disease, pneumonia), and

applications (i.e., diagnosis, treatment planning, follow-up); (2)

an iterative deep learning-based training strategy for fast

delineation of ROIs of large-scale datasets, thereby greatly saving
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clinicians’ time and obtaining novel and more robust models; (3) a

modular architecture with customization and extensibility, where

plugins can be designed for specific purposes. As a result, it will

be necessary to investigate and develop new algorithms and

strategies to expand application domains and really solve clinical

problems.
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With the recent developments in deep learning and the rapid growth of
convolutional neural networks, artificial intelligence has shown promise as a tool
that can transform several aspects of the musculoskeletal imaging cycle. Its
applications can involve both interpretive and non-interpretive tasks such as the
ordering of imaging, scheduling, protocoling, image acquisition, report
generation and communication of findings. However, artificial intelligence tools
still face a number of challenges that can hinder effective implementation into
clinical practice. The purpose of this review is to explore both the successes and
limitations of artificial intelligence applications throughout the muscuskeletal
imaging cycle and to highlight how these applications can help enhance the
service radiologists deliver to their patients, resulting in increased efficiency as
well as improved patient and provider satisfaction.

KEYWORDS

artificial intelligence, machine learning, neural networks, musculoskeletal imaging,

image interpretation, automation

Introduction

Radiological imaging has come to play a central role in the diagnosis and management of

different muscuskeletal (MSK) disorders, and both technological improvements and

increased access to medical imaging have led to a rise in the utilization of common MSK

imaging modalities (1, 2). As such, there is a growing need for technical innovations that

can help optimize workflow and increase productivity, especially in radiology practices

that are witnessing higher volumes of increasingly complex cases (3).

Artificial intelligence (AI), or the development of computer systems that can mimic

human intelligence when performing human tasks, is rapidly expanding in the field of

diagnostic imaging and could potentially help improve workflow efficiency (4). AI is a

broad term that encompasses numerous techniques, and recent advances in the field have

transformed this technology into a powerful tool with several promising applications.

Nested within AI is machine learning (ML), a subfield that gives computers the ability to

learn and adapt by drawing inferences from patterns in data without following explicit

instructions (5). ML uses observations from data to create algorithms and subsequently

makes use of these algorithms to determine future output, with the goal of designing a

system that can automatically learn without any human intervention. Deep learning (DL)
Abbreviations

ACL, anterior cruciate ligament; AI, artificial intelligence; AUC, area under the curve; BMD, bone mineral
density; CNN, convolutional neural network; CT, computed tomography; DL, deep learning; DXA, dual-
energy x-ray absorptiometry; ML, machine learning; MRI, magnetic resonance imaging; MSK,
muscuskeletal; PACS, picture archiving and communication systems.
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FIGURE 1

Schematic representation demonstrating the relationship between artificial intelligence, machine learning, deep learning, and convolutional neural
networks, all subfields of each other.
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is an even more specialized subfield within ML that uses multiple

processing layers to progressively extract higher-level features

from raw input presented in the form of large datasets, and the

recent development of DL with convolutional neural networks

(CNN) is an important technological advancement apt at solving

image-based problems with reportedly outstanding performance

in several key aspects of medical imaging (Figure 1) (6–8).

CNNs are widely used in computer vision; they represent

feedforward neural networks with multiple layers of non-linear

transformations between inputs and outputs and can be

programmed to classify an image or objects according to their

features (output) by means of a training dataset with numerous

images or objects (input) (4).

For AI models to be developed, large data sets with high-quality

images and annotations are needed for both training of a model and

validation of its performance, and, given that developers are usually

not located within medical practices or hospital systems and

therefore do not have access to such data, image sharing between

the two becomes necessary. This multi-step process requires

collaboration between clinicians and developers and, following

approval from the responsible ethical committees, begins with

image de-identification, storage, and resampling of resolutions (9).

Images must then be appropriately labeled with ground truth

definitions, and, depending on the outcome of interest, this can

involve several different steps such as manual labeling of images,

data extraction from medical charts and pathology reports, and

detection of imaging findings from radiology reports or by

radiologists’ re-review of the imaging findings (9). Typically, data

sets used for training are larger than data sets used for validation

and testing, and, although logistically challenging in many cases,

images should ideally be obtained from multiple diverse sources to

increase representation of different populations and ensure

generalizability of the model’s performance (9).
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To understand how images are used for training AI and DL

models, it is important to understand the architecture of the

neural networks often employed in such models. The basic

building block of a deep neural network is a node, which can be

considered analogous to a neuron, and one neural network is

comprised of several weighted nodes arranged into layers and

connected through weighted connections (10). Training data is

fed to a network at an initial input layer and then propagated

throughout all layers of the model: each layer performs both

linear (e.g., weighted additions) and non-linear (e.g.,

thresholding) mathematical computations from input received

from the previous layer and feeds the output to the next layer,

which then performs the same computations until one final

output layer is reached (10). The model then provides a

prediction, which is compared to the ground truth label

previously assigned. Discrepancies between the two are fed back

into the network through backward propagation and gradient

descent: nodal weights and connections are adjusted accordingly,

and the model is refined with every data point from the training

set (Figure 2). Once the model is sufficiently refined, a validation

set is typically used to evaluate the model’s generalizability and

further refine predictions, after which the model is then tested

using a final test set with unseen data to simulate and assess

real-life performance (10). The size of the data sets needed for

training, validation, and testing can vary depending on the

outcome and/or the targeted population (with larger sets needed

for populations with more diversity and heterogeneity) but

generally follows a ratio of 80:10:10 or 70:15:15, respectively (9).

With its rapid and exponential growth, AI has the potential to

significantly strengthen several steps of the MSK imaging value

chain and offer applications that extend beyond imaging

interpretation to assist with non-interpretive tasks such as patient

scheduling, optimal protocoling, image acquisition, and data
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FIGURE 2

Schematic representation of deep neural network training. Training data is fed to the network at the initial input layer and propagated through subsequent
layers for a prediction to be made at the final output layer. Prediction is compared to ground truth, and feedback through backward propagation leads to
progressive refinement of weights. Circles represent nodes. Lines connecting circles represent weighted connections, with thickness correlating with
weight magnitude. Dashed arrow represents flow of information through network.
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sharing (11). AI can theoretically improve an MSK radiologist’s

ability to respond to the increasing workload of high-volume

practices and continue delivering high-quality care by allotting

more time for demanding tasks and minimizing time spent on

more routine and less complex functions. However, AI is not

without its pitfalls, and overutilization of this resource can pose

multiple problems relating to medical errors, bias and inequality,

data availability, and privacy concerns (12). The purpose of this

review is to highlight the different applications AI is presently

offering or can potentially offer throughout the MSK radiology

imaging cycle and to discuss risks, limitations, and future

directions of this important technology.
Prominent AI applications

Image appropriateness and protocoling

The first step in the MSK imaging process is to order the

appropriate imaging test, the responsibility of which falls on
Frontiers in Radiology 0374
the referring clinician or provider confronted with a wide

range of available modalities. AI, and ML in particular, could

help facilitate the process: ML algorithms could be used to

generate holistic clinical decision support systems that can

consider various aspects from a patient’s medical chart such

as symptomatology, laboratory test results, physical

examination findings, and previous imaging to recommend

the modality best suited to address the clinical query in

question (13, 14).

Protocoling comes next, and once an imaging modality is

chosen, the MSK radiologist or trainee is usually responsible

for ensuring that scans are performed correctly. Choosing the

right protocol is crucial to reaching a proper diagnosis and

optimizing patient care but can prove arduous and time-

consuming for the radiologist tasked with several other

responsibilities; as such, several recent studies have looked into

how DL can be of assistance. Lee assessed the feasibility of

using short-text classification to develop a CNN classifier

capable of determining whether MRI scans should be

completed following a routine or tumor protocol and, after
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comparing CNN-derived protocols to those determined by MSK

radiologists, reported an area under the curve (AUC) of 0.977

and an accuracy of 94.2% (15). Similarly, Trivedi et al.

developed and validated a DL-based natural language classifier

capable of automatically determining the need for intravenous

contrast for MSK-specific MRI protocols based on the free-text

clinical indication of the study and reported up to 90%

agreement with human-based decisions (16). Although these

studies show promising results, MSK imaging protocols are

complex and diverse, given that MSK as a field encompasses

localized and systemic diseases from neck to toe. More

investigations could potentially explore the use of other

composite classifiers such as medical history, prior imaging

protocols, scanner-specific data, contrast information, and

radiation exposure to help with protocoling decisions (13).
Scheduling

Given the rise in the use of medical imaging, adherence to

set schedules has become more important for radiology

practices, especially in the MSK setting where advanced and

sometimes lengthy examinations such as MRI and CT are

frequently used. No-shows or appointment cancellations can

be a significant burden on practices and also represent missed

opportunities for other patients to be scanned (17). There has

been a growing interest in how AI can help optimize

scheduling in various medical practices, and ML algorithms

with predictive frameworks have been successfully used to

predict missed appointments in diabetes clinics as well as

urban, academic, and underserved settings (18, 19). Various

ML predictive models have also been used to predict imaging

no-shows effectively (20, 21), and Chong et al. demonstrated

how using a pre-trained CNN with a predictive framework to

predict MRI no-shows and accordingly send out proactive

reminders to patients resulted in a reduced appointment no-

show rate from 19.3% to 15.9% (22). ML could also help

maximize patient throughput; Muelly et al. developed a feed-

forward neural network that can make use of patient

demographics and dynamic block lengths to estimate average

MRI scan durations, resulting in decreased wait times,

improved patient satisfaction, and optimized schedule

fill rates (23).
Image acquisition

Magnetic resonance imaging acquisition
Given the critical need but lengthy nature of MRI scans in

MSK imaging, there has always been an interest in reducing

MRI acquisition times in order to decrease patient discomfort

and improve scanner efficiency. Previous attempts at MRI

acceleration focused on parallel imaging and compressed

sensing, both of which operate by subsampling k-space and

reducing the number of phase-encoding lines acquired during a

scan, ultimately resulting in less data being collected (24, 25).
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While efficient, these two techniques suffer from reduced

image quality and increased artifacts in the reconstructed

images, leading to less diagnostic imaging. ML has been

proposed as a possible solution that can help mitigate the

limitations of accelerated imaging by using subsampled k-space

data to generate up-sampled high-resolution output images

comparable to images generated from otherwise fully sampled

k-space data (26). Using high quality MR images, Wang et al.

trained a CNN to restore fine structural details on brain images

obtained from zero-filled k-space data and were able to

generate images of diagnostic quality comparable to images

from a fully sampled k-space but with a fivefold increase in

acquisition speed (27). Hammernik et al. were able to achieve a

fourfold increase in knee MRI acquisition speed by using a DL

technique that created high-quality reconstructions of under-

sampled data (28), while Chaudhari et al. successfully made

use of a CNN to output thin-slice knee images from thicker

slices, thereby improving spatial resolution and image quality

(29). Similarly, Wu et al. developed an eightfold-accelerated DL

model capable of up-sampling sparsely sampled MRI data to

output images with minimal artifacts and a permissible signal-

to-noise ratio (30). In one study by Roh et al., DL-accelerated

turbo spin echo sequences were assessed for their ability to

depict acute fractures of the radius in patients wearing a splint

and were shown to be effective for both increasing acquisition

speed by a factor of 2 as well as improving image quality when

compared to standard sequences (31). Studies are still ongoing,

with AI-driven 10-fold accelerated MRI increasingly becoming

within reach (32) and other exciting ML applications being

explored such as the production of MR images from CT

images (33) and the post-processing of a single MRI

acquisition to obtain other planes and tissue weightings (34).

One such advance in MSK imaging is the synthetic

construction of fat-suppressed imaging from non-fat-

suppressed imaging (35).
Computed tomography
Unlike MRI, CT exposes patients to ionizing radiation, and

ML has shown promise as a tool that can help reduce the

radiation dose of a CT scan while maintaining a high quality

of images (36). The premise is similar to ML applications for

MRI acquisitions, whereby the goal is to reconstruct images

of diagnostic quality using lower-quality source data or

reduced quantities of source data. Cross et al. demonstrated

how CT images acquired at a low radiation dose and

reconstructed in part using an artificial neural network were

found to be similar to or improved compared to images

obtained using standard radiation doses by more than 90% of

the readers in the study (37). Other AI developments can also

help enhance image quality by decreasing artifacts related to

different factors, as demonstrated in the study by Zhang and

Yu where a CNN trained to merge original- and corrected-

image data was capable of suppressing metal artifacts and

preserving anatomical structural integrity near metallic

implants (38).
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TABLE 1 AI tools in musculoskeletal imaging.

Publication Application in
musculoskeletal

imaging

Algorithm
type

System
performance

Chung et al.
(41)

Proximal humerus
fracture detection

CNN Sensitivity/
specificity: 0.99/
0.97
Accuracy: 96%

Olczak et al.
(42)

Ankle, wrist and hand
radiographic fracture
detection

VGG 16-layer
CNN

Accuracy: 83%

Yu et al. (43) Hip fracture detection CNN Sensitivity/
specificity: 97.1%/
96.7%

Tomita et al.
(44)

Osteoporotic vertebral
fracture detection

CNN Accuracy: 89.2%

Cheng et al.
(45)

Hip fracture detection CNN Accuracy: 91%
Sensitivity: 98%

Rajpurkar et al.
(46)

Radiographic
abnormality detection

169-layer
DenseNet

Sensitivity/
specificity: 81.5%/
88.7%

Xue et al. (47) Hip osteoarthritis
detection

CNN Sensitivity/
specificity: 95.0%/
90.7%
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Image presentation

In radiology practices that use a Picture Archiving and

Communication System (PACS), radiologists often spend a

considerable amount of time manipulating image displays and

toggling between sequences and viewing panes to display

different imaging features in several anatomic planes. This is

known as the hanging protocol and constitutes another venue

that can be enhanced through the use of AI to afford radiologists

more productivity and efficiency. A study by Kitamura showed

how ML techniques using DenseNet-based neural network

models can successfully optimize hanging protocols of lumbar

spine x-rays by considering several parameters such as dynamic

position and rotation correction (39). Moreover, one PACS

vendor is currently using ML-based algorithms to learn a

radiologist’s preferences when viewing examinations, record

orientations of the sequences most commonly used, suggest

displays for future similar studies, and incorporate adaptations

following every correction, all in an effort to improve the

workflow in the reading room (40).

Accuracy: 92.8%

Tiulpin et al.
(48)

Knee osteoarthritis
detection

Deep Siamese
CNN

Accuracy: 66.71%

Antony et al.
(49)

Knee osteoarthritis
severity grading

CNN Variable

Pedoia at el.
(50)

Osteoarthritis cartilage
degenerative change
detection and staging

CNN Accuracy: 80.74%,
78.02%, and
75.00% for normal,
small, and complex
large lesions,
respectively

Liu et al. (51) Knee cartilage lesion
detection

CNN Sensitivity/
specificity: 84.1%/
85.2%
80.5%/87.9%
Image interpretation

Although AI can assist MSK radiologists with several steps of

the imaging cycle, it is AI’s ability to help with image

interpretation, arguably a radiologist’s most important

responsibility, that has garnered the most attention in recent

years. The next section discusses different ways AI and ML can

help radiologists with MSK imaging interpretations to diagnose

different conditions with greater efficiency. Table 1 provides a

summary of AI tools with such applications.

Halabi et al.
(52)
Model by
Cicero and
Bilbily

Bone age detection Google
Inception V3
network

Mean absolute
difference from
ground truth: 4.265
months

Tajmir et al.
(53)

Bone age detection CNN Accuracy: 98.6%
within one year

Kim et al. (54) Computer-assisted bone
age detection

Greulich-Pyle
method-based
DL

69.5% correlation
rate with reference
bone age

Thodberg et al.
(55)
Martin et al.
(56)
Maratova et al.
(57)

Bone age detection
software validation

BoneXpert Variable

Yang et al. (58) Bone strength
prediction

Scaling index
method

Root mean square
error: 0.869 ± 0.121
Coefficient of
determination R2:
0.68 ± 0.079

Huber et al.
(59)

Bone biomechanical
property detection

Scaling index
method

Root mean square
error: 1.021

Deniz et al.
(60)

Proximal femur
segmentation

CNN Dice similarity
score: 0.95 ± 0.02

Lee et al. (61) Osteoporosis detection
in panoramic
radiographs

CNN AUC values:
0.9763, 0.9991 and
0.9987

(Continued)
Fractures
Automated fracture detection using AI can be helpful not only

to radiologists but also to other clinicians (such as overnight

emergency department personnel) who might not always have

access to radiology services and would sometimes have to rely on

their own preliminary fracture diagnosis. DL techniques have

been gaining increasing attention over the past few years in their

ability to detect fractures on images, as this can increase

diagnostic reliability and reduce the rate of medical errors.

Some studies have shown that CNNs can outperform

orthopedic surgeons when it comes to the detection of upper

limb and ankle fractures on radiographs (41, 42). Additionally,

multiple studies have shown promise when assessing the

competence of AI in detecting both axial and appendicular

skeletal fractures on radiographic and CT images (26, 43, 44, 97,

98), with one CNN model by Cheng et al. achieving an AUC of

0.98 and an accuracy of 91% for radiographic hip fracture

detection (45). Rajpurkar et al. trained a 169-layer DenseNet

baseline model to detect and localize fractures using a large

dataset of MSK radiographs containing 40,561 manually-labeled

images; when tested on a set of 207 studies, the model

successfully detected finger and wrist abnormalities with an AUC
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TABLE 1 Continued

Publication Application in
musculoskeletal

imaging

Algorithm
type

System
performance

Pan et al. (62) Osteoporosis screening
using low-dose chest CT

3D U-net CNN AUC: 0.927 for
detecting
osteoporosis and
0.942 for
distinguishing low
BMD

Jimenez-Pastor
et al. (63)

Vertebrae localization
and identification

Decision forests
and image-based
refinement

Identification rate:
79.6% for the
thoracic and of
74.8% for the
lumbar region

Lessmann et al.
(64)

Vertebrae segmentation
and identification

CNN Dice score: 94.9 ±
2.1% for
segmentation
Accuracy: 93% for
identification

Wimmer et al.
(65)

Vertebral body and
intervertebral disc
localization and labeling

CNN Detection rate:
93.6%

Jamaludin
et al. (66)

Lumbar spine MRI
radiological feature
detection

CNN Accuracy: 95.6%
for disc detection
and labeling

Lu et al. (67) Automating lumbar
vertebral segmentation,
disc-level designation,
and spinal stenosis
grading

U-net CNN Variable

Han et al. (68) Spinal structure
segmentation

Generative
Adversarial
Network

Accuracy:96.2%
Dice coefficient:
87.1%, Sensitivity/
specificity: 89.1%/
86.0%

Pan et al. (69) Radiographic Cobb
angle measurement and
scoliosis detection

Mask R-CNN Sensitivity/
specificity: 89.59%/
70.37%

Weng et al.
(70)

Radiographic sagittal
vertical axis
measurement

ResUNet CNN Median absolute
error: 1.183 ±
0.166 mm

Kim et al. (71) Differentiating between
tuberculous and
pyogenic spondylitis

CNN AUC: 0.802

Acar et al. (72) Differentiating
metastatic and
completely responded
sclerotic bone lesion in
prostate cancer

Textural
analysis, support
vector machine,
K-nearest
neighbor,
ensemble
classifier

Variable

Lang et al. (73) Differentiating spinal
metastases origin cancer

Radiomics,
CNN, CLSTM

Accuracy: 0.71 for
radiomics, 0.71 for
CNN, 8.81 for
CLSTM

Malinauskaite
et al. (74)

Differentiating soft-
tissue lipoma and
liposarcoma

Radiomics and
ML classifier

AUC: 0.926

Zhang et al.
(75)

MRI histopathological
grading of soft tissue
sarcomas

Radiomics,
random forests,
k-nearest
neighbor,
support vector
machine

Accuracy: 0.88

He et al. (76) Predicting recurrence of
giant cell bone tumors

CNN and CNN
regression
models

Accuracy: 75.5%
and 78.6%

(Continued)

TABLE 1 Continued

Publication Application in
musculoskeletal

imaging

Algorithm
type

System
performance

Blackledge
et al. (77)

Segmenting and
evaluating soft tissue
sarcomas after
radiotherapy

Logistic
regression,
support vector
machine,
random forest,
k-nearest
neighbor, kernel
density
estimation,
Naïve-Bayes, 20-
node, three-
layer, fully-
connected
neural network

Variable

Bien et al. (78) Detecting various knee
abnormalities

CNN Variable

Liu et al. (79) Diagnosing anterior
cruciate ligament tears

CNN Sensitivity/
specificity: 96%/
96%
AUC: 0.98

Ma et al. (80) Diagnosing meniscal
injuries of the knee

CNN Average accuracy:
89.8%

Chang et al.
(81)

Detecting complete
anterior cruciate
ligament tears

CNN Accuracy: 96%

Couteaux et al.
(82)

Detecting meniscal tears
of the knee

Region-based
CNN

AUC: 0.906

Roblot et al.
(83)

Detecting meniscal tears
of the knee

CNNs AUC: 0.90

Liu et al. (84) Segmenting knee
cartilage and bone

CNNs Variable

Norman et al.
(85)

Segmenting knee
cartilage and menisci

CNNs Variable dice
scores, ranging
between 0.770 and
0.878 for cartilage
and 0.809 and
0.753 for menisci

Balsiger et al.
(86)

Peripheral nerve
segmentation

CNN Dice scores of
0.859 and 0.719

Kemnitz et al.
(87)

Thigh muscle and
adipose tissue
segmentation

U-Net CNN Dice score: 0.96

Yin et al. (88) Differentiating sacral
chordoma from sacral
giant cell tumor

Radiomics ML
classifiers

Variable

Gitto et al. (89) Classifying deep-seated
lipomas and atypical
lipomatous tumors of
the extremities

Radiomics-based
ML

Sensitivity/
specificity: 92%/
33%

Pfeil et al. (90) Joint-space analysis for
rheumatoid arthritis
detection

Computer-aided
joint space
analysis

Variable

Langs et al.
(91)

Erosion spotting and
visualization in
rheumatoid arthritis

Generative
appearance
model

Sensitivity/
specificity: 85%/
84%
AUC: 0.92

Liu et al. (92) Epidural mass detection Gaussian
Mixture Model

Accuracy: 82%

Stotter et al.
(93)

Radiographic
measurements of the
pelvis and hip

CNN Variable

Etli et al. (94) Sex estimation from
sacrum and coccyx

Univariate
discriminant

Accuracy: 67.1%
for univariate

(Continued)
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Publication Application in
musculoskeletal

imaging

Algorithm
type

System
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analysis, linear
discriminant
function
analysis,
stepwise
discriminant
function
analysis,
multilayer
perceptron
neural networks

discriminant
analysis, 82.5% for
linear discriminant
function analysis,
78.8% for stepwise
discriminant
function analysis,
and 86.3% for
multilayer
perceptron neural
networks

Yune et al. (95) Predicting sex from
hand radiographs

CNN Agreement with
phenotypic sex:
77.8%

Bowness et al.
(96)

Identifying anatomical
structures on ultrasound

U-Net CNN mean highlighting
scores ranging
from 7.87/10 to
8.69/10

AUC, area under the curve; BMD, bone mineral density; CLSTM, convolutional long

short-term memory; CNN, convolutional neural network; CT, computed

tomography; DL, deep learning; ML, machine learning; MRI, magnetic resonance

imaging; VGG, visual geometry group.
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of 0.929 but was less competent at detecting abnormalities of the

shoulder, humerus, elbow, forearm, and hand (46). Since then,

their large dataset was made publicly available under the name

MURA to encourage public submissions and improve fracture

detection rates of the original study (99). With all the collective

efforts being made to improve AI-assisted fracture detection,

models are no longer just objects of research studies but have

been implemented into clinical practice. Presently, Gleamer

BoneView (Gleamer, Paris, France) is an FDA-approved

commercially available software that can help detect fractures on

radiographs and is the only AI fracture detection software to

have FDA clearance for use in both adults and pediatric patients

over two years of age (100).

However, despite all these promising applications, AI-assisted

fracture detection still has a key limitation: each CNN model

must be specifically trained on the body part being assessed

using large numbers of properly labeled images, whereas humans

can transfer their knowledge of one body part to another.

Moreover, models can be less reliable when trying to detect less

obvious fractures such as a non-displaced femoral neck fracture

(98), and most models report the output in a binary fashion

(fracture present or not present) without providing an in depth

description of the lesion or other related findings.
Osteoarthritis

Several studies have looked into how AI can assist radiologists

in evaluating images for the presence and grading of osteoarthritis.

Xue et al. fine-tuned a CNN model using a set of 420 hip

radiographs to detect hip osteoarthritis using a binary system

and reported a performance akin to that of a radiologist with ten

years of experience (47). Tiulpin et al. took advantage of the
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large publicly available Osteoarthritis Initiative (OAI) and

Multicenter Osteoarthritis Study (MOST) datasets to train and

test a CNN model to automatically score knee osteoarthritis

severity using to the Kellgren-Lawrence grading scale and

reported promising results with an AUC of 0.80 (48).

Interestingly, the probability distribution of KL grades was also

reported to show when predicted probabilities may be

comparable across two contiguous grades, rendering the model’s

performance more illustrative of real-life practice where arthritis

severity may represent the transition between two adjacent

grades instead of being neatly tiered at one single level. This was

also done in a study by Antony et al. where, in an attempt to

circumvent the limitation of a finite and discreet scale, knee

osteoarthritis grading was redefined as a regression with

continuous variables (49). Although osteoarthritis assessment has

been traditionally done using radiographs, AI can also augment

the quantitative and qualitative assessment of cartilage on MRI

to render the evaluation of osteoarthritis more accurate, and

several studies have worked on developing models capable of

successfully detecting cartilage lesions and staging cartilage

degenerative changes (50, 51).
Bone age
Radiographic assessment of bone age is important for

pediatricians to assess the skeletal maturity and growth of a

child, and efforts have been put into using AI to automate bone

age assessment and avoid the use of the inflexible and error-

prone traditional methods such as the Greulich-Pyle atlas and

the Tanner-Whitehouse method (101, 102). The Radiological

Society of North America Pediatric Bone Age Machine Learning

Challenge freely provided ML developers with a dataset

containing over 14,000 hand radiographs and used competitions

to promote collaborative effort into designing tools competent

at automating bone age assessment (52). With over 100

submissions, the winning algorithm was designed by the

University of Toronto’s Cicero and Bilbily who used Google’s

Inception V3 network for pixel information, concatenated the

architecture with sex information, and added layers after

concatenation for data augmentation (52). The ultimate goal

would be to provide radiologists with a tool that can help them

assess bone age rather than perform the task independently.

Tajmir et al. revealed how radiologists assisted by AI software

when assessing bone age perform better than an unaided AI

model, a single radiologist working independently, and a group

of expert radiologists working together (53). Moreover, Kim

et al. showed how the use of AI software can reduce reading

times by approximately 30%, from 1.8 to 1.38 min per study

(54). Presently, BoneXpert is a commercially-available widely-

used software developed by Visiana that provides automated

bone assessment by delineating the distal epiphyses of several

hand bones, with at least eight needed for computation (55).

Using the Greulich and Pyle or Tanner-Whitehouse standards,

skeletal maturity is assessed with a precision of 0.17 years,

reportedly nearly three times better than human performance

(14, 56, 57).
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Bone fragility
Imaging is often used for the evaluation of osteoporosis, a bone

disorder characterized by a decreased bone mineral density (BMD),

as bone strength assessment is fundamental for clinical decision

making and therapy monitoring. Several studies have coupled ML

support vector machines with methods of evaluating trabecular

bone microarchitecture to automate and improve quantitative bone

imaging and assessment (58, 59). In one study, Yang et al. used

DL algorithms to combine BMD data from dual-energy x-ray

absorptiometry (DXA) with bone microarchitecture data from

multi-detector CT in an attempt to predict proximal femur failure

loads; analysis revealed that trabecular bone characterization and

ML methods, when coupled with conventional DXA BMD data,

can appreciably enhance biomechanical strength prediction (58).

Huber et al. applied similar ML methods to predict proximal tibial

trabecular bone strength using MRI data instead and concluded

that combining ML techniques with data on bone structure can

enhance MRI assessment of bone quality (59).

In the same vein, ML algorithms have been employed in an

attempt to predict osteoporotic fractures from MRI data (103), with

one study making use of a CNN to automate segmentation of the

proximal femur and facilitate the measurement of bone quality on

MRI (60). Research has also focused on developing tools that can

offer opportunistic screening and assessment of bone fragility, with

one study looking at a system that can evaluate bone quality on

dental panoramic radiographs (61) and another describing a DL

system that can measure BMD on low-dose chest CT performed

for lung cancer screening (62). With all those recent developments,

AI is showing promise as a tool that can help with osteoporosis

diagnosis; however, further refinement of such models is still

needed to better automate the objective assessment of osteoporosis,

its progression, and its response to therapy (104).
Spine imaging
Given that MSK radiologists spend a considerable amount of

time looking at spine imaging, efforts have been made to develop

ML algorithms that can automate tasks related to spine imaging

interpretation and decrease the amount of time needed to

interpret individual scans (105). Multiple studies have presented

AI tools that can successfully detect and label spinal vertebrae as

well as intervertebral discs on MRI and CT images (63–65),

obviating the need for human manual labeling and streamlining

the review of images. Information from these models can be used

to automate other processes, as demonstrated by Jamaludin et al.

who, after presenting a model that could label vertebral bodies

and intervertebral discs on MRI with a 95.6% accuracy, used a

CNN to successfully provide radiologist-level assessment of

several other findings such as disc narrowing, central canal

stenosis, spondylolisthesis, and end plate defects (66).

In addition to that, researchers have focused on designing

models that can automate segmentation of the vertebrae, with

one study making use of a U-Net architecture to segment the six

lumbar intervertebral disc levels (67) and another adopting an

iterative instance approach whereby information on one

segmented vertebra is used to iteratively detect the following one
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(64). In the former study, Lu et al. also trained their model to

automate spinal and foraminal stenosis grading using a large

dataset obtained from 4,075 patients and reported an accuracy of

80% for grading spinal stenosis and 78% for grading neural

foraminal stenosis (67). To increase concordance between

automated segmentation outputs and ground truth labels,

generative adversarial networks have also been used, with one

resultant model concurrently segmenting the neural foramen, the

vertebral bodies, and intervertebral discs (68).

Advancements in this line of research are ongoing, supported by

large publicly available datasets such as SpineWeb and the MICCAI

2018 Challenge on Automatic Intervertebral Disc Localization and

Segmentation dataset. The Pulse platform (NuVasive, San Diego,

California, USA) is a recent FDA-approved spinal surgical

automation platform that combines multiple technologies to

provide intraoperative assessment during spine surgeries and can

help with tasks such as neuromonitoring of nerves, improvement

of screw placement, and minimizing intraoperative radiation

exposure (106). Other spine imaging applications could include

automating radiographic measurements of spinal alignment (69,

70) and using CNNs to distinguish tuberculous from pyogenic

spondylitis (71). However, despite the promising results of all these

recent developments, further research is still needed, and studies

are often hindered by several limitations such as the lack of a

consistent gold standard for entities where radiologists may exhibit

high variability in interpretation (107).

Muscuskeletal oncology
AI can potentially have several applications in MSK oncology and

may be able to help radiologists detect metastatic bone lesions,

determine their origin, and assess progression and treatment

response. Using CT texture analysis, Acar et al. developed an ML

model with an AUC reaching up to 0.76 when differentiating

metastatic bone lesions from sclerotic bone lesions with complete

response in patients with prostate cancer (72). To determine tumor

origin on contrast-enhanced MRI, Lang et al. used DL methods

and radiomics to devise a model that successfully differentiated

between spinal metastatic lesions from the lung and other origin

sites with a high accuracy reaching 0.81 (73). In addition, AI can

potentially help with the assessment of primary musculoskeletal

tumors. For example, two studies making use of ML techniques

and radiomics demonstrated how lipoma and liposarcoma could be

differentiated on MRI with expert-level performance (74) and how

the histopathological grades of soft tissue sarcomas can be pre-

operatively and non-invasively predicted on fat-suppressed T2-

weighted imaging with an accuracy reaching 0.88 (75). AI might

also serve other proposed roles, such as assisting clinicians in

predicting tumor recurrence as well monitoring post-treatment

tumor changes on imaging (76, 77).

Cruciate ligaments and menisci
Several studies have evaluated the performance of AI models

when detecting meniscal injuries and ligamentous tears of the

knee. Bien et al. trained a CNN model using a set of 1,130

training and 120 validation MRI exams to recognize meniscal

and anterior cruciate ligament (ACL) tears, reporting an AUC of
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0.847 for meniscal tears and an AUC of 0.937 for ACL tears on the

internal validation set and 0.824 on the external validation set (78).

Using arthroscopy as the reference, Liu et al. trained a CNN to

isolate ACL lacerations with an AUC of 0.98 and a sensitivity of

96% (51, 79), and Ma et al. trained a CNN to diagnose meniscal

injury, reporting a an accuracy of 85.6% for anterior horn injury

detection and 92% for posterior horn injury detection, a

performance comparable to a chief physician (80).

Isolation of individual joint structures might help enhance

model performance, as demonstrated by Chang et al. who, after

isolating the ACL on coronal proton density 2D MRI using CNN

U-Net, subsequently used a CNN classifier to evaluate the

isolated ACLs for the presence of pathology and reported an

AUC of 0.97 and a sensitivity of 100% (81). When testing a

CNN model for meniscal segmentation on fat-suppressed MRI

sequences, Pedoia et al. reported a sensitivity reaching 90%, a

specificity reaching 82%, and an AUC reaching 0.89 (50).

Likewise, Couteaux et al., Roblot et al., and Lassau et al. all

reported similar performances, with AUC values for meniscal

tear detection reaching 0.9 in all three studies (82, 83, 108).

Quantitative analysis: segmentation and radiomics
Segmentation, or the process of delineating anatomic

structures, can be time-consuming but is nevertheless important

for evaluating the potential degeneration of or damage to

segmented structures and the resultant decline in their

functionality. Semi-automated segmentation software are

currently being applied in clinical cardiac and prostate MRI, but

such software make use of algorithms with manually designed

hand-engineered features and thus require manual adjustments

to the computer-generated contours (26). As such, interest has

shifted to fully automating segmentation processes using CNN,

which can have a profound impact on a radiologist’s

functionality and efficiency in the reading room. Performance of

segmentation algorithms is often assessed with a dice coefficient

to assess the similarity of a segmentation to its ground truth by

reporting the percentage overlap between the two regions, and a

dice score of 0.95 is usually indicative of a successful algorithm

(109). Recent research has heavily focused on knee segmentation,

with Liu et al. designing a model that successfully segmented the

different structures of the knee using a CNN combined with a

3D deformable modeling approach (84). Using both T1-rho

weighted and 3D double-echo steady-state images, Norman et al.

also evaluated a DL model for automated segmentation of knee

cartilage and menisci but with simultaneous evaluation of

cartilage relaxometry and morphology; they found the model to

be adept at generating accurate segmentations and morphologic

characterizations when compared to manual segmentations (85).

DL techniques can have applications outside the knee as well, as

demonstrated by Deniz et al. who used similar methods but

shifted attention to the segmentation of the proximal femur,

reporting a CNN algorithm with a dice similarity score reaching

0.95 (60). Other venues are also being explored, with AI tools

showing promise in neurography segmentation (86) as well as

muscle segmentation in osteoarthritis patients to help with

muscular trophism evaluation (87).
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Besides segmentation, AI may also have applications in

radiomics, which is an emerging field in medicine that treats

medical images not only as pictures intended solely for visual

interpretation but also as a source of diverse quantitative

characteristics extracted as mineable data that can be used for

pattern identification to eventually assist with decision support,

characterization, and prediction of disease processes (110).

Spatial distribution of signal intensities and information on pixel

interrelationships are mathematically extracted to provide and

quantify textural information, which in turn can be used for

quantitative imaging biomarker discovery and validation for a

number of different conditions such as acute and chronic

injuries, spinal abnormalities, and neoplasms (111). By

uncovering imperceptible patterns in medical imaging, radiomics-

bases predictive models can play different roles such as providing

a detailed description of disease burden, identifying relationships

between phenotypes and outcomes, and predicting diagnosis and

prognosis for certain diseases, ultimately playing a key role in

improving precision medicine and personalized patient

management (112). ML models can identify and gather imaging

characteristics such as the distribution of signal intensities and

the spatial relationship of pixels that are not easily discernible

with visual interpretation and that can help improve clinical care

(113, 114). When testing different ML-augmented radiomics

models for preoperative differentiation of sacral chordomas from

sacral giant cell tumors on 3D CT; Yin et al. found contrast-

enhanced CT features more optimal than non-enhanced features

for helping identify the histology of the sacral tumor in question

(88). In one retrospective study, Gitto et al. assessed the

diagnostic performance of ML-enhanced radiomics-based MRI

for the classification and differentiation of atypical lipomatous

tumors of the extremities from other benign lipomas, reporting a

sensitivity of 92%, a specificity of 33%, and no statistically

significant difference when compared to qualitative image

assessment performed by a radiologist with 7 years of experience

(89). Research into the field is ongoing, and although radiomics

has shown promise as a powerful and innovative tool that can

help with the evaluation of different types of cancers, more

research is needed to fully explore the full scope of its

applications (115).

Other miscellaneous applications
Several research studies have looked into other potential

applications of AI such as joint space evaluation in rheumatoid

arthritis (90, 91), epidural mass detection on CT scans (92),

rotator cuff pathology detection (116), femoroacetabular

impingement and hip dysplasia detection (93), sex determination

using CT imaging of the sacrum and coccyx (94) or hand

radiographs (95), and assessment of Achilles tendon healing

(117). In addition to that, AI applications can have multiple

applications in MSK ultrasound (US), including but not limited

to segmentation of US images (96), quantitative analysis of

skeletal muscles (118), and detection of pediatric conditions such

as wrist fractures and developmental dysplasia of the hip (4,

119). Research is still ongoing, and additional repetitive and

time-consuming tasks might be tackled in coming years in an
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attempt to automate more processes and thus accelerate the process

of imaging interpretation.
Results reporting

AI can have several applications that can revolutionize the

production of radiology reports and the communication of

findings between physicians. Speech recognition, which has

already transformed the writing of reports, could be further

optimized with DL methods (120). Language processing systems

can also be applied, as shown by Do et al. who presented a

system capable of recognizing anatomy data from reports

generated with speech recognition software to concurrently

extract information on possible fractures (121) and Tan et al.

who presented a system capable of scanning x-ray and MRI

radiology reports to identify lumbar spine imaging findings that

could be related to low back pain (122). Natural language

processing (NLP) refers to the use of a computer to analyze and

interpret human language. Although NLP systems are not

entirely novel, recent advances in ML and neural networks have

revolutionized this technology, subsequently turning it into a tool

that can help with data extraction from radiology reports (123).

At their core, NLP systems operate using a multistep approach,

beginning with a preprocessing step whereby reports are broken

down into different subsets and processing steps during which

text from specific sections or differently-weighted sections is split

into sentences and words (a process known as tokenization)

(124). Word normalization and syntactic analysis follow, whereby

spelling mistakes are fixed, medical abbreviations are fully

expanded, and word roots are identified with the goal of

determining grammatical structures and linking words to

semantic concepts (such as symptom or disease), thus assigning

meaning to the data (124). The textual features extracted are

then processed by an automatic classifier using ML applications

to solve the ultimate task assigned to the system (such as

information extraction from reports), and ML applications have

to be trained on a set of manually-annotated reports, which can

be split into a training set and a validation set, both of which are

needed to develop the system and assess its performance (124).

Such tools could play a number of roles, such as suggesting

management recommendations to radiologists during the

dictation of a report or assisting with research purposes by

establishing links between different radiological findings and

resultant symptomatology or prognosis. Additionally, ML

applications may extend to extracting follow-up

recommendations from reports, thus ensuring the adequate

management of reported key findings (125).
Limitations

Although AI shows several promising applications across the

entire MSK imaging cycle, this technology is still facing a

number of challenges and limitations when it comes to both

development of AI tools and implementation into clinical
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practice. Large datasets are needed to develop successful DL

tools: tasks or diagnoses for which such datasets are not available

might be challenging to automate, and data can be fragmented

across many different systems, thus increasing the risk of errors,

decreasing the comprehensiveness of datasets, and increasing the

expenses of gathering complete data. Moreover, challenges in

establishing reference standards, such as irregularities in

contouring lesions, diagnostic uncertainties, as well as

inconsistencies in human performance and labeling, can all

reduce performance and hinder development. DL models being

developed are usually trained to perform one single task, whereas

patients seen clinically might have a number of etiologies and

conditions that require complex simultaneous interpretations.

Given that large amounts of data need to be collected for the

development of successful algorithms, issues pertaining to

privacy and ownership of such data arise: patients may be

concerned that collection of such data is a violation of privacy,

especially if an AI model can predict private information about a

patient without having received that information and

subsequently make it available to third parties (such as life

insurance companies). Large datasets can be problematic in a

different way: they may be more representative of a specific

subset of the population rather than the whole population and

could also reflect underlying biases and inequalities in the health

system. As such, algorithms trained using such datasets may

propagate systemic biases and inequalities that are already

present and may not be suitable for treating all patients but

rather the subset with the most representation in the training

dataset.

Evidently, AI models can and will make mistakes, resulting in

errors and injuries to patients being treated using the model.

Although medical errors are sometimes inevitable in the medical

field and can occur irrespective of the use of AI, the danger of

AI-related mistakes is that an underlying problem in one system

might result in injuries to thousands of patients if that system

becomes widespread (whereas errors from a single human

provider will affect the limited number of patients being treated

by that provider). Additionally, with errors arises the issue of

accountability: models often do not disclose the statistical

rationale behind the elaboration of their tasks, making it hard to

identify the cause of the error or understand the rationale behind

the final output of an algorithm and limiting implementation

into medical settings. To catch errors and refine algorithms,

post-implementation evaluation, maintenance, and performance

monitoring of implemented AI tools is just as vital as pre-

implementation development processes to the success of a model.

However, such monitoring can prove to be labor-intensive,

especially for smaller practices that will inevitably experience

workflow disruptions due to a lack of dedicated informatics

resources and an increase in the radiologists’ burden (126).
Conclusion

AI, ML and DL have the potential to significantly augment

several aspects of the MSK imaging chain, with applications in
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the ordering of imaging, scheduling, protocoling, acquisition and

presentation, image interpretation, as well as report generation

and communication of findings. Although research into this

technology is showing very promising results, development of

tools still faces a number of challenges that impede successful

implementation into clinical practice. The ultimate goal is not to

design a completely independent system that replaces the need

for human expertise but rather to equip radiologists and medical

professionals with tools that can automate certain functions and

thus alleviate some of the increasing responsibilities radiologists

face, affording them more time to focus on more demanding and

complex tasks. Radiologists and AI algorithms working hand in

hand have the potential to increase the value provided to patients

by improving imaging quality and efficiency, patient centricity,

and diagnostic accuracy, all of which can greatly enhance both

patient and provider satisfaction.
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Introduction: Image segmentation is an important process for quantifying
characteristics of malignant bone lesions, but this task is challenging and
laborious for radiologists. Deep learning has shown promise in automating
image segmentation in radiology, including for malignant bone lesions. The
purpose of this review is to investigate deep learning-based image segmentation
methods for malignant bone lesions on Computed Tomography (CT), Magnetic
Resonance Imaging (MRI), and Positron-Emission Tomography/CT (PET/CT).
Method: The literature search of deep learning-based image segmentation of
malignant bony lesions on CT and MRI was conducted in PubMed, Embase,
Web of Science, and Scopus electronic databases following the guidelines of
Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA).
A total of 41 original articles published between February 2017 and March 2023
were included in the review.
Results: The majority of papers studied MRI, followed by CT, PET/CT, and PET/
MRI. There was relatively even distribution of papers studying primary vs.
secondary malignancies, as well as utilizing 3-dimensional vs. 2-dimensional
data. Many papers utilize custom built models as a modification or variation of
U-Net. The most common metric for evaluation was the dice similarity
coefficient (DSC). Most models achieved a DSC above 0.6, with medians for all
imaging modalities between 0.85–0.9.
Discussion: Deep learning methods show promising ability to segment malignant
osseous lesions on CT, MRI, and PET/CT. Some strategies which are commonly
applied to help improve performance include data augmentation, utilization of
large public datasets, preprocessing including denoising and cropping, and
U-Net architecture modification. Future directions include overcoming dataset
and annotation homogeneity and generalizing for clinical applicability.
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1. Introduction

Bone is the third most common site of metastasis in the human

body across all cancers, with an incidence of 18.8 cases per 100,000

each year and survival rates ranging from months to a few years

(1, 2). The most common origins of bone metastases include

breast, prostate, lung, and hematologic malignancies (1). Primary

bone sarcomas are uncommon, with an incidence of 0.9 cases

per 100,000 each year and higher survival rate (3).

Magnetic Resonance Imaging (MRI), Computed Tomography

(CT), and Positron-Emission Tomography/CT (PET/CT) are

commonly used to diagnose and track malignant bone lesions

(Figure 1). MRI has higher sensitivity to detecting lesions in both

the marrow and surrounding soft tissue structures and does not

expose the patient to ionizing radiation. However, MRI requires a

more expensive and laborious imaging process when compared with

CT (4). CT is more sensitive to detecting changes in bone

morphology and has higher spatial resolution, although it involves

radiation and has poorer performance with soft-tissue and marrow

imaging (5). PET/CT combines techniques of both CT (three-

dimensional x-ray scanning with high spatial resolution) and PET

(injection of radioactive tracer to quantify cellular metabolism),

providing high sensitivity and specificity for imaging skeletal

malignancies (6). These benefits make PET/CT the standard of care

in bone lesion imaging, although there are still the drawbacks of

higher cost and use of radiation. PET/MRI similarly offers combined

benefits of both MRI and PET. Malignant bone lesions often appear

as blastic (hyperdense regions indicating bone formation), lytic

(hypodense regions indicating bone resorption), or a mix.

Early diagnosis of malignant bone lesions is critical for improving

prognosis and treatment response. Image segmentation, in which the
FIGURE 1

Appearance of malignant bone lesions on different imaging modalities. (A) Sag
femur in a 32-year-old female with biopsy-proven osteosarcoma of the dista
showing diffuse osseous metastatic disease (arrows) in a 72-year-old male
prostate-specific membrane antigen (PSMA) PET/CT fusion image showing d
months previously. Note that in (Β) and (C), not all metastatic lesions have be
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boundaries of a lesion are precisely delineated, allows radiologists to

determine the extent of disease and accurately provide quantitative

measurement for disease tracking, treatment response, and

management (7). Additionally, accurate segmentation is essential

for performing clinical research using radiologic images. The task of

image segmentation is typically performed manually by radiologists,

but this is a labor-intensive and time-consuming process, thus

limiting its applicability in clinical workflows.

Machine learning has the potential to automate lesion

segmentation. Some early image segmentation methods include

thresholding, region-growing, edge-based segmentation, active

contour models, watershed transforms, and snakes (8). All of

these methods involve identifying simple features of an image

such as thresholded intensity values, edges, or neighboring

homogeneous regions, but are limited in analyzing more complex

features (9). The progress of deep learning methods in particular,

especially Convolutional Neural Networks (CNNs) (10), provides

the ability to segment complex images with increasing accuracy

(8, 11, 12). CNNs are deep neural networks in which

convolution operations are applied as sliding filters over an

image, reducing dimensionality, and identifying image features

through selection of filter weights. A particularly popular CNN

architecture is U-Net, which consists of an initial encoding

section of convolution operations and a subsequent decoding

section of transpose-convolution operations to reconstruct an

image with the same dimensions as the input (13) (Figure 2).

Deep learning has shown promise in image segmentation of

lesions in CT and MRI scans in a wide range of contexts

including lesions of the breast (14), kidney (15), and brain (16, 17).

Deep learning model performance generally improves

with larger dataset sizes, with the minimal acceptable size
ittal T1-weighted post-contrast MR image with fat suppression of the right
l femoral metadiaphysis (arrow). (B) Sagittal chest CT with bone windows
with castration-resistant prostate cancer. (C) Sagittal vertex-to-pelvis

iffuse osseous metastatic disease (arrows) in the same patient an in (B) 6
en annotated with arrows.
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FIGURE 2

U-Net applied to bone radiology image segmentation. Input is the medical image, and output is the segmentation mask applied to the lesion. Boxes
represent vectorized outputs of convolutional and pooling operations. Arrows represent mathematical operations applied to each layer. Blue arrows
are skip connections, red arrows are upsampling, yellow arrows are maxpool, black arrows are Convolution-rectified linear units (ReLU).
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typically being on the order of hundreds of subjects. However,

this is a challenging task in the realm of medicine where

the input involves patient data due to concerns regarding

privacy and sharing (18). While there are some major public

databases that can assist with data augmentation or transfer

learning for certain clinical queries (19–22), there are many

pathologies that are specific or unique enough where such

datasets are not readily available. Some techniques to try to

overcome this deficit include working with large pretrained

models (23), data-generation techniques such as Generative

Adversarial Networks (14, 24, 25), or applying domain

knowledge to data preprocessing and augmentation (26, 27).

There are very few public datasets or models which capture

primary or metastatic skeletal lesions on CT, MRI, PET/CT, or

PET/MRI.

The purpose of this systematic review and meta analysis is to

describe how effective deep learning-guided image segmentation

techniques are in accurately identifying and delineating

malignant bone lesion on major radiologic imaging studies (CT,

MRI, PET/CT, and PET/MRI), as well as to compare methods

and performance across studies. We describe all algorithms and

neural network architectures reported in the included studies, as

well as characteristics of the datasets and additional techniques

used for successful segmentation. We also note any publicly

available datasets or models.
2. Materials and methods

2.1. Literature search

Our systematic literature review is in compliance with the

guidelines outlined by the Preferred Reporting Items for

Systematic Reviews and Meta-Analyses 2020 (PRISMA). We
Frontiers in Radiology 0388
performed a keyword search for papers which studied deep

learning-based image segmentation of cancerous lesions of the

bone on CT, MRI, PET/CT, and PET/MRI scans. Searches were

performed on Pubmed, Embase, Web of Science, and Scopus. All

searches were performed on May 8, 2023. The exact search

criteria were as follows:

“(CT OR CTs OR MRI OR “MR Imaging” OR “PET-CT” OR

“PET/CT” OR “PET-MRI” OR “PET/MRI”) AND

(Segmentation) AND (“machine learning” OR “deep

learning” OR “artificial intelligence” OR “neural network”

OR “neural networks” OR “auto-segmentation” OR “auto

segmentation”) AND (bone OR skeleton OR bones OR

osseous OR blastic OR lytic) AND (cancer OR cancers OR

metastases OR metastasis OR neoplasm OR neoplasms OR

metastatic OR tumor OR tumors OR malignant OR tumour

OR tumours)”

Other inclusion criteria included a publication date range of

2010–2023, use of English language, full text availability, and

only primary literature (i.e., other review articles were excluded).

Exclusion criteria included segmentations performed on other

imaging modalities (e.g., x-ray, bone scintigraphy, PET), other

types of tissues or organs, segmentation of non-malignant

features (e.g., whole bone segmentation, fracture segmentation),

and non-segmentation techniques (e.g., synthetic data creation,

boundary-box generation, outcome classification).

We used the Covidence platform for paper importing and

screening (28). All unique papers which fit these criteria were

passed through a primary screening of titles and abstracts by a

single reviewer. All papers which passed the primary screen were

then passed through a secondary screen involving full text review

for inclusion criteria by two reviewers.
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2.2. Data extraction

Categories for data extraction were chosen to describe imaging

modality, model type, dataset, lesion type, and part of body in more

detail. Data was extracted from each paper with the following

categories (Supplementary Table S1):

(1) Publication date

(2) Imaging modality (CT, MRI, PET/CT, or PET/MRI)

(3) Imaging dimensionality (2-Dimensional [2D], 3-

Dimensional [3D])

(4) Primary cancer type

(5) Quality of lesion (blastic, lytic, or mixed)

(6) Soft tissue component

(7) Model architecture

(8) Dataset publicity

(9) Dataset size (patients, images)

(10) Patient population (demographics)

(11) Treatment received

(12) Ground truth establishment

(13) Training-cross validation-test split

(14) Cross validation method

(15) Additional methods

(16) Metrics.

3. Results

3.1. PRISMA flowchart

The results of our literature search are shown in the PRISMA

flowchart (Figure 3). In brief, our initial search yielded 784

papers. Covidence automatically eliminated 363 duplicates. An

additional 4 duplicates were eliminated manually, leaving 421

unique manuscripts. After primary screening of titles and

abstracts, 292 papers were further excluded. From the 129

papers which passed through full-text review, 41 studies were

ultimately eligible for inclusion in this study (Supplementary

Table S1) (29–69). Some of the most common reasons for

exclusion included wrong tissue type, segmentation of a non-

malignant feature (e.g., whole bone segmentation or fracture

segmentation), wrong study design (e.g., prognosis classification,

boundary box), and wrong imaging modality (e.g., bone

scintigraphy, PET, x-ray).
3.2. Categorization of included studies

Of the 41 total studies, the most popular publication year was

2022 (n = 18 studies, 43.90% of the cohort), followed by 2023 (up

until May) (n = 9, 21.95%). While our search criteria ranged

from 2010, the oldest paper included was from 2017. The most

common imaging modality studied was MRI (n = 21, 51.22%),

followed by CT (n = 12, 29.27%). The most common image

dimensionality method used 3D data alone (n = 21, 51.22%),

followed by 2D alone (n = 11, 26.83%). Osteosarcoma was the
Frontiers in Radiology 0489
most common cancer primary bone malignancy (n = 18, 43.90%).

Prostate cancer was the most secondary bone malignancy (n = 7,

17.07%) (Figure 4).
3.3. Synthesized findings of included
studies

Studies were categorized primarily by dimensionality, modality,

publication year, and lesion characteristics (i.e., blastic vs. lytic). All

performance metrics reported by each paper, including dice

similarity coefficient (DSC), F1-measure, Jaccard, accuracy,

sensitivity, and specificity, were included in Supplementary

Table S1. DSC was by far the most popular metric, recorded in

35 papers (85.3%). In order to determine statistical significance

between groups, a simple two-sample t test was conducted with a

power level of 95% being established prior to analysis. While

there was a higher median DSC for studies which used 2D data

(0.901, n = 11) compared to 3D data (0.856, n = 17), the

difference was not statistically significant (Figure 5C,

Supplementary Table S2). In the years 2017 through 2019, there

was only a single paper published each year across the 3 years,

which reported both the dimensionality method used and a DSC.

Although the years 2022 and 2023 accounted for a majority of

the papers within the cohort (n = 27, 65.85%), there was no

statistically significant difference in median DSCs (Figure 5A).

With regards to image modality, studies utilizing CT imaging

generally reported higher median 2D DSCs (0.94, n = 4)

compared to MRI (0.924, n = 7). In contrast, MRI generally

yielded a higher 3D DSCs (0.895, n = 10) than studies which

evaluated 3D data by CT (0.856, n = 5) (Supplementary

Table S2). However, neither difference for 2D vs. 3D data was

statistically significant (Figure 5C). Aggregating all data

dimensionality, CT had a slightly higher median DSC (0.92,

n = 9) than MRI (0.85, n = 17); however, there was no statistically

significant difference in mean dice score between the two

imaging methods (p = 0.5469). Papers studying lytic lesions

reported higher median 2D and 3D DSCs, at 0.94 (n = 2) and

0.922 (n = 5), respectively, when compared to segmentation of

blastic lesions, though this difference was similarly not

statistically significant (Figure 5D, Supplementary Table S2).

Papers which did not include cross-validation showed an average

higher DSC (0.923, n = 13) than those which did (0.840, n = 22)

(p = 0.0038). There was no statistically significant relationship

between using data augmentation in workflow and increased

DSC (p = 0.1156).
4. Discussion

In this systematic review and meta-analysis, we have attempted

to aggregate the literature describing automated segmentation

methods for primary and metastatic bone malignancies on CT

and MRI. We found that most models achieved objectively good

performance (DSC >0.7) on this task, with some of the

most common methods including data augmentation, U-Net
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FIGURE 3

PRISMA flowchart of systematic literature review.
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architecture modification, and preprocessing to reduce noise. We

clarify the frequency of reported studies that fall into specific

criteria regarding imaging approaches and lesion quality, which

helps identify which problems still need to be most studied and

how much precedent work exists for a specific type of problem.

Overall, while small numerical differences were seen between

segmentation DSCs when comparing across imaging modality,

publication year, dataset dimensionality, and lesion quality

(blastic vs. lytic), none of these were found to be statistically
Frontiers in Radiology 0590
significant. The similarity in performance across these attributes

indicates that these segmentation models have the capability to

perform well across a range of conditions. The statistical

significance in DSC improvement for papers which excluded

cross validation compared to those which included it indicates

the potential of an overfitting problem in these cases,

highlighting the importance of test sets and external validation

for generalizability. While other reviews have investigated similar

segmentation performance tasks applied to various lesions or
frontiersin.org
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FIGURE 4

Visualization of characteristics of included studies, showing distribution according to (A) publication year; (B) imaging modality; (C) image dimensionality;
(D) type of cancer.
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whole organs, to the best of our knowledge, ours is the first to

focus on deep learning techniques applied specifically to lesions

of the bone (70–77). Additionally, ours is the first which

specifically evaluates differences in segmentation performance

specifically as they relate to imaging modality, imaging

dimensionality, and predominant lesion characteristic. Future

directions include comparing further characteristics of papers

(e.g., model architecture, type of cancer, dataset size, etc.) to

determine which types of problems or approaches yield the best

results, as well as expanding the scope of analysis to other

imaging modalities or targets of segmentation to increase

statistical power.
4.1. Metrics

Comparison of metrics across various studies can be difficult.

Different problems or datasets may possess inherently different

technical challenges even when problems appear similar,

making performance comparison with metrics across studies

difficult. Additionally, different metrics capture different

qualities of success (Table 1). For instance, specificity is high
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when there are minimal false positives (i.e., minimal areas of

predicted lesions where none is present); since most lesions

make up a small percentage of an image, an algorithm will

achieve high specificity by predicting no lesions on an image,

even though this requires no learning. Within our cohort, Zhao

et al. reported an estimated DSC of 0.60, which is considerably

lower than most DSCs which lie approximately within the

0.85–0.95 range (69). However, they also reported sensitivity

and precision to each be 0.99, which would indicate an element

of good performance. While each metric has its strengths and

limitations, DSC was the most commonly reported metric by

far, reported in nearly every included study. DSC’s ubiquity in

image segmentation is due to a few factors including its use by

many others studying image segmentation techniques, its

balance of precision and recall, its intuitive appeal as an

approximator of percentage of overlap between ground truth

and prediction, its history of being used for measuring

reproducibility of manual segmentation, and its adaptability to

logit transformation since its values lie between 0 and 1

(78–81). All reported metrics from each study were recorded in

Supplementary Table S1. While a uniform dataset-agnostic

success criterion cannot be established as a result of the
frontiersin.org
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TABLE 1 Popular metrics for image segmentation.

Metric Equation

Dice similarity coefficient
jP> Lj
jPj þ jLj ¼

2TP
2TP þ FPþ FN

F1-measure 2�precision�recall
precision þ recall

Jaccard index, intersection over
union

jP> Lj
jPj< jLj ¼

TP
TPþ FPþ FN

Accuracy TPþ TN
TPþ TNþ FPþ FN

Sensitivity, true positive rate, recall TP
TPþ FN

Specificity, true negative rate TN
FPþ TN

False positive rate 1� specificity

False negative rate 1� sensitivity

Precision, positive predictive value
TP

TPþ FP

Negative predictive value TP
TNþ FP

Area under curve (AUC) Ð
(Receiver Operating Characteristic Curve)

P, Prediction; L, Label; TP, true positive; TN, true negative; FP, false positive; FN,

false negative.

FIGURE 5

Performance comparison with DSC by (A) publication year; (B) imaging modality; (C) image dimensionality; (D) quality of lesion (blastic vs. lytic).
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challenges described earlier, a general objective threshold for

what is considered a reasonable model is to achieve a DSC

around 0.7 (80), which most papers in this review surpass.
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4.2. Imaging modality and dimensionality

The overwhelming majority of imaging modalities utilized

throughout the paper cohort were either CT or MRI. Both CT

and MRI are reasonably amenable to automated segmentation,

with median DSCs between 0.85–0.95 for both modalities

(Figure 5B, Supplementary Table S2). Models analyzing

PET/CT and PET/MRI data demonstrate lower median DSCs

than CT and MRI-trained models. PET/CT and PET/MRI

combine spatial and metabolic information, providing useful

context for radiologists. However, there can be noise in

radioactive tracer uptake involved in PET, and errors in spatial

alignment of the two scans, making data more difficult to train

(82). Additionally, malignant lesions display heterogeneous

metabolic activity, adding further noise to the imaging process.

In order to overcome this, Hwang et al. utilized maximum-

likelihood reconstruction of activity and attenuation (MLAA)

algorithm as input for a CNN to improve accuracy and

convergence with good results (40).

Models were able to perform well on both 2D and 3D data,

with 2D data achieving slightly higher median DSCs

(Figure 5C), although the results were notably not statistically

significant. Both types of dimensionalities have pros and cons.

Computer vision models were historically trained with two-
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dimensional images, and 2D data is inherently generally less

complex than 3D. However, given that radiologists almost always

rely on 3D data for image interpretation, modern deep learning

frameworks in radiology, such as nnU-Net (11), have been

developed to primarily evaluate with 3D data. The third

dimension adds additional spatial and contextual information

that may otherwise be lost in two dimensional analysis. As a

compromise, one model in our dataset utilized 2.5D data by

employing two 2D encoder-decoder modules and one pseudo-3D

fusion module, which extracted features from the 2D outputs

(53). For clinical applications with unknown cases, considerations

for determining data dimensionality for a model include spatial

and contextual information, model choice, and difficulty of the

segmentation problem.
4.3. Dataset size

Dataset size ranged drastically among included papers, with

image count ranging from 37 (54) to 80,000 + . Generally, most

papers included dataset sizes in the hundreds to low thousands

of images or scans. Most studies utilized private and relatively

small datasets, making generalizability of algorithms difficult.

However, the one large publicly available dataset containing over

80,000 MRI scans of osteosarcoma was utilized by numerous

studies (43, 45, 52, 55, 59–64). Dataset size was not a significant

predictor of model performance in our cohort, as most models

achieved DSCs above 0.7, and many above 0.9, at all ranges of

dataset sizes.

This good performance in spite of small dataset size could be

attributed in part to data augmentation techniques utilized by

many papers. Some of the most popular employed techniques

include random cropping, flipping, rotation, zooming, and

mirroring (30–32, 35, 38, 43, 50, 52, 54, 56, 60, 67, 68). Of the

14 additional methods found within our review, 7 involved some

form of data augmentation. However, as described earlier, there

was no correlation between data augmentation workflow and DSC.

Transfer learning was utilized in some cases. Transfer learning

is generally thought to be most effective when the transferred data

is large and similar to the pathology being studied. Due to the

limited nature of public radiology images, models trained on very

large datasets of non-radiologic images, such as Microsoft Coco

(83), may be reasonable candidates for transfer learning even for

image analysis in radiology (66). Similarly, other studies utilized

generative methods to create phantom images for their training

sets that resembled real images (65). Data preprocessing can

incorporate steps to improve model performance, such as whole-

bone segmentation to allow the algorithm to have a smaller

region to analyze when segmenting an osseous lesion (47).

With small datasets comes the increased risk of overfitting.

There was no consensus on training-cross validation-test splits.

Generally, most studies dedicated approximately 60%–80% of

data to the training set, 10%–30% of data to the test set, and

0%–20% to the cross-validation set (Supplementary Table S1).

Nearly half of all papers did not include a cross validation set,

meaning that any hyperparameter tuning or architecture
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adjustment that resulted from testing could have resulted in

overfitting. The higher average DSC of papers without cross-

validation (0.92) compared to those with it (0.79) supports the

likelihood of overfitting in some of these cases. Only two papers

utilized external validation (testing of the model on an additional

dataset acquired separately from other sets used to initially train

or evaluate the model), making generalizability especially difficult

(47, 48). However, for both papers, the DSC on the external

validation set was the same as that of the test set (at 0.79 and

0.84, respectively), demonstrating model generalizability in these

cases (47, 48).
4.4. Model architecture

Most studies employed a U-Net CNN architecture for

automated image segmentation. U-Net is a popular architecture

type because of its ability to accurately segment small targets and

fast training speed (84). Image segmentation, as opposed to

classification, is especially helpful for extracting objects of

interest. In particular, bone segmentation of lesions correctly

identifies the spatial location of a tumor. What distinguishes

U-Net from other CNNs are the encoder-decoder networks as

well as the implementation of skip connectors. The encoder-

decoder network ensures that the output image has the same

dimensionality as the input image while skip connections ensure

full recovery of details and features that may have been lost or

forgotten as information passes through successive layers. This

preservation of dimensionality is essential for image

segmentation, where the output is a binary mask which must

resemble the outlined feature on the input image (84). Another

attractive feature of the U-Net is the fact that each layer of the

network extracts features from a different spatial scale of

the image, and by collecting results from each of these layers, the

network is able to transform an input image at multiple

spatial scales.

Many modifications of U-Net were created to boost model

performance. For instance, dilated convolutional U-Net, which

involves multiple dilated convolutions following a standard

convolution, was employed in a modified U-Net with recurrent

nodes in order to preserve contextual information and spatial

resolution (36). Some models employed combinations of

transformer models and modified U-Nets, allowing for

preservation of contextual features such as edge enhancement

(45, 49). Cascaded 3D U-Net likewise employ two U-Net

architectures in series, with the first trained on down-sampled

images and the second trained on full-resolution images,

allowing for a combination of granularity and refinement of the

features of choice (39).

While a majority of the papers utilized a modification of the

U-Net segmentation algorithm, other alternative architectures

included non-convolutional Artificial Neural Network models

(41), voxel-wise classification (33), AdaBoost algorithms and

Chan-Vese algorithms (37), CNN with bagging and boosting

(44), and V-Net (34, 65). These alternative algorithms achieved

DSCs or AUCs above 0.7, which is on par with the median
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performance of the U-Net models. However, U-Net variations have

been tried in a greater number of studies and demonstrated

performance as high as 0.9821 in this cohort (58), indicating that

U-Net may be more suitable at present day for achieving

maximal performance.
4.5. Approaches to segmentation

Two approaches to delineating or segmenting regions of

interest are “filling in the lesion” and “tracing precise

contour”. Filling in the lesion involves segmenting the entire

volume of the region of interest including both the solid and

necrotic components of the lesion. On the other hand, tracing

precise contours involves precisely outlining the boundaries of

a region of interest such that healthy tissues and other non-

relevant features are excluded. While the overwhelming

number of publications use lesion segmentation as the only

methodology, a few studies in literature have discussed a

multi step strategy “identification of lesions”, viz creating

bounding boxes around the lesions as a separate first step and

then a subsequent strategy of precise segmentation of lesions

(85, 86). Despite the different implications of these

approaches, most papers did not specify which approach they

followed when establishing ground truth. If establishment of

ground truth was discussed at all, it was usually generally

stated the number and skill level of radiologists involved in

the process, but with no specific mention of methodology.

Even so, Trägårdh et al. studied the importance of inter-

reader heterogeneity by comparing model performance on a

test set annotated by the same physician who annotated the

training set as compared to separate annotators, finding

substantial performance differences between sensitivities (57).

Methodology of producing ground truth segmentations

warrants further discussion to establish a repeatable standard

in future studies. The inter-reader heterogeneity also points to

the benefit of using probabilistic segmentation algorithms that

would account for this variability and produce an ensemble of

likely segmentations for a given input image. While these

algorithms have been used for the segmentation tasks (17,

87), they have not yet been applied to bone segmentation.

One of the strengths of this review is the comprehensive

analysis of all papers fitting search criteria, and the detailed data

extraction to allow for comparison of methods or qualities

among all papers which have studied this type of problem.

Another strength is maintaining focus on clinically relevant

features of model design while also keeping in mind technical

details of model implementation. A limitation is the difficulty in

comparing metrics across studies. Dataset quality, annotation

heterogeneity, and noise can make evaluation of a good DSC

specific to the specific dataset being studied. Additionally, the

relatively small number of studies involved in the review made it

difficult to perform any rigorous statistical analysis between

subcategories.

In conclusion, deep learning shows great promise for

bone lesion segmentation. Considerations include model
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architecture, imaging modality and dimensionality, dataset

size, and establishment of ground truth. Compared to other

tissues and organs, there is still much to be done to expand

on the task of bone lesion segmentation. Future directions

include training on larger and more diverse datasets, applying

multiple methods of establishing ground truth, accounting for

variability in the segmentation task, and integrating into

clinical application. The success with the osteosarcoma MRI

dataset from Second Xiangya Hospital of Central South

University shows the importance and applicability of these

large public datasets (63), and similar efforts should be

undertaken from other institutions and studying other types

of lesions. General image segmentation models, such as the

Segment Anything Model (12), could also show promise in

bone lesion segmentation, especially in conjunction with

optimization processes involved in the architecture design of

these studies. Deep learning-guided segmentation results have

great potential to augment human performance, especially in

conjunction with radiomic and pathomic data. As these

models continue demonstrating success and generalizability,

they will help radiologists save time and improve accuracy in

delineating these lesions.
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To date, studies investigating radiomics-based predictive models have tended to
err on the side of data-driven or exploratory analysis of many thousands of
extracted features. In particular, spatial assessments of texture have proven to be
especially adept at assessing for features of intratumoral heterogeneity in
oncologic imaging, which likewise may correspond with tumor biology and
behavior. These spatial assessments can be generally classified as spatial filters,
which detect areas of rapid change within the grayscale in order to enhance
edges and/or textures within an image, or neighborhood-based methods, which
quantify gray-level differences of neighboring pixels/voxels within a set distance.
Given the high dimensionality of radiomics datasets, data dimensionality
reduction methods have been proposed in an attempt to optimize model
performance in machine learning studies; however, it should be noted that
these approaches should only be applied to training data in order to avoid
information leakage and model overfitting. While area under the curve of the
receiver operating characteristic is perhaps the most commonly reported
assessment of model performance, it is prone to overestimation when output
classifications are unbalanced. In such cases, confusion matrices may be
additionally reported, whereby diagnostic cut points for model predicted
probability may hold more clinical significance to clinical colleagues with
respect to related forms of diagnostic testing.

KEYWORDS

radiomics, texture analysis, spatial assessment, machine learning, artificial intelligence

Key points

• Features of intratumoral heterogeneity are well-represented by spatial assessments of

texture, which may similarly correlate with tumor biology and behavior.

• Spatial filters are used to enhance edges and/or textures of an image by identifying areas

of rapid change within the grayscale.

• Neighborhood-based methods are higher-order texture approaches which quantify

differences in gray-level intensities of particular regions of interest with respect to their

neighbors within a set distance.
Abbreviations

GLCM, Gray-Level Co-Occurrence Matrix; GLRLM, Gray-Level Run-Length Matrix; GLSZM, Gray-Level Size-
Zone Matrix; GLDM, Gray-Level Dependence Matrix; NGTDM, Neighborhood Gray-Tone Difference Matrix;
FD, Fractal Dimension; PCA, Principal Component Analysis; AUC, area under the curve; ROC, receiver
operating characteristic; VOI, variable of importance.
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Introduction

Quantitative assessments of imaging texture characteristics

have been successfully applied to answer a variety of clinically-

relevant queries ranging from lesion classification to disease

prognostication, often in the form of radiomics-based machine

learning decision classifiers (1–13). While some approaches have

previously relied on filtering of high-dimensionality data to

identify the most contributory features or classes of features (14–

17), recent studies have demonstrated a subset of texture metrics

well-equipped to detect regions of heterogeneity in the imaging

grayscale (4, 9) (Supplementary Table S1). These “spatial

assessments” are aptly named for their ability to resolve subtle

areas of voxel-to-voxel variation, or in plainer terms, what might

be subjectively referred to as “coarseness” by a human

interpreting radiologist (4, 7, 8, 18–23). In this review, we detail

the various common approaches to spatial assessment of imaging

texture, as well as their applicability and implications in future

radiomics and machine learning-related studies.
Approaches to spatial assessment

Spatial filters

Spatial filters are image processing methods that enhance

spatial image properties of a region of interest such as edges and/

or textures (23–25). The size and shape of the filter

neighborhood or convolution kernel determines the performance

of the filter, and warrants standardization across multiple studies

to evaluate reliability (26). Some commonly used spatial filters

for texture analysis include statistical filters such as entropy

filters, range filters, standard deviation filters, median filters, and

average filters. However, given that use of spatial filters can lead

to an increase in radiomics feature space (27), it is advised to

avoid using these approaches with small sample sizes.

Directional gradients and direction invariant gradients have

been used to improve edge enhancement. For example, edge

filters such as Kirsch and Sobel have been reported as part of

multiple radiomics panels (28, 29). Likewise, the Laplacian of

Gaussian filter, which captures edges based on detecting areas

of rapid change in grayscale intensity and then smooths them

with a standard-deviation tunable Gaussian bandpass filter,

has been reported frequently in radiomics panels to capture

areas with increasingly coarse texture patterns (24, 27, 30).

Kernels such as the Laws filters identify specific textures

based on five fundamental vectors that emphasize features of

edge, level, spot, ripple, and wave, or a combination thereof,

and have been used for spatial filtering prior to feature

extraction (23, 31).

In some cases, noise can be suppressed using image transforms,

such as Fourier analysis (24). In this method, spatial domain

information can be converted to frequency domain information

and then filtered for high frequencies, low frequencies, bandpass,

etc. However, while the signal to noise ratio can be improved,

this technique merely suppresses the noise without improving the
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strength of the underlying signal (32). Wavelet transforms

further build upon the Fourier technique by decomposing the

original image in both spatial and frequency domains, thereby

providing relatively more precise signal localization (24, 27, 33,

34). The coefficients of these decomposed sub-bands can then be

weighted to enhance specific signal properties along select

directions of a 3-dimensional space.
Neighborhood-based methods

Statistical characterizations of texture can also be assessed

from higher-order texture methods (i.e., analysis based on

both grayscale values and their spatial orientation) such as

Gray-Level Co-Occurrence Matrix (GLCM), Gray-Level Run-

Length Matrix (GLRLM), Gray-Level Size-Zone Matrix

(GLSZM), Gray-Level Dependence Matrix (GLDM) and

Neighborhood Gray-Tone Difference Matrix (NGTDM) (35,

36). In all of these methods, the metrics generated essentially

quantify the differences in grayscale brightness between

neighboring pixels/voxels (9, 27, 37). For example, in GLCM,

texture is quantified based on how often a combination of

gray-level values occur next to each other at a given distance

and direction within a region of interest (23, 27, 31, 37)

(Figure 1, top row). Some commonly reported GLCM metrics

include energy, contrast, entropy, homogeneity, correlation,

variance, sum average, and autocorrelation (9, 35, 36)

(Figure 2).

In contrast to GLCM, GLRLM quantifies the pattern of gray-

level intensity pixels in a fixed direction from an interference

pixel (Figure 1, middle row). Run-length is defined as the

number of adjacent pixels that have the same gray-level intensity

in each direction (37). Some commonly reported GLRLM metrics

include short and long run emphasis, gray-level non-uniformity,

run-length non uniformity, low and high gray-level run

emphasis, and their combinations (9, 35).

Similar to GLCM, in GLSZM texture is also quantified based

on how often a combination of gray-level values occurs next to

each other at a given distance within a region of interest (27, 37);

however, in contrast to GLCM, GLSZM is direction independent

(40) (Figure 1, bottom row). Some commonly reported GLSZM

metrics include short and long zone emphasis, gray-level non-

uniformity, zone-size non-uniformity, low and high gray-level

zone emphasis, and their combinations (9, 35).

Likewise, GLDM quantifies the number of connected voxels

within a set distance that are dependent on a center voxel (37).

A neighboring voxel is considered dependent on the center voxel

if the absolute difference of their respective gray-levels falls

within a set value (9, 41). Some commonly reported GLDM

metrics include short and long dependence emphasis, gray-level

non-uniformity, dependence non-uniformity, gray-level and

dependence variance, and high grey-level zone emphasis, and

their combinations.

Lastly, NGTDM evaluates the difference between a particular

gray-level intensity and the average gray-level intensity of its

neighborhood within a given distance (23, 37, 42). Some
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FIGURE 1

Top row: (A) grayscale image with four different gray-levels. (B) Digitized version of the gray-level image with unique numerical values corresponding to
the gray-level or a range of gray-levels (dependent on bin size of bin width) for each theoretical pixel/voxel. (C) GLCM map of the image obtained for
distance 1 and direction 0 degrees. (D) This same process is then repeated in all other directions: i.e., 45, 90, and 135 deg, respectively. To obtain direction
invariant results, all results are normalized and averaged. Middle row: (A) Grayscale image with four different gray-levels. (B) Digitized version of the gray-
level image with unique numerical values corresponding to the gray-level or a range of gray-levels (dependent on bin size of bin width) for each
theoretical pixel/voxel. (C) GLRLM map of the image obtained for direction zero degrees. This same process is then repeated in all other directions:
i.e., 45, 90, and 135 deg, respectively. To obtain direction invariant results all results are normalized and averaged. Bottom row: (A) grayscale image
with four different gray-levels. (B) Digitized version of the gray-level image with unique numerical values corresponding to the gray-level or a range
of gray-levels (dependent on bin size of bin width) for each theoretical pixel/voxel. (C) GLSZM map of the image. GLCM, Gray-Level Co-Occurrence
Matrix; GLRLM, Gray-Level Run-Length Matrix; GLSZM, Gray-Level Size-Zone Matrix.
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commonly reported NGTDMmetrics include busyness, coarseness,

contrast, strength, and complexity (9, 35).
Other approaches

Structural methods involve techniques of decomposing an

image into basic units and then identifying the rules required

to construct that given image from its basic units. For instance,

Fractal Dimension (FD) is a metric that evaluates image

complexity by quantifying how changes in image scale affect

image detail (9, 43, 44). FD uses self-repeating structural

patterns in order to quantitatively assess the homogeneity of

the region of interest, and increases with greater geometric

complexity (35, 43, 45, 46). This in essence functions as an

objective evaluation of how consistent a shape is with itself,

and thus serves as an excellent measurement of the regularity

of a tumor’s morphology (23, 44).
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Applications in radiomics and machine
learning

In oncologic imaging, radiomics analysis has shown great utility

in evaluating features of intratumoral heterogeneity, which may

correspondingly reflect tumor behavior (4, 5, 7–9, 11, 13, 14, 35,

47, 48). There is a growing body of literature to suggest that

radiomics-based machine learning algorithms perform well with

various classification tasks, including differentiating benign from

malignant lesions, stratifying lesions by tumor grade, predicting

risk of distant metastases, and predicting overall survival (1–13).

Additional work suggests that subtle differences in the underlying

texture grayscale may also correlate well with tumoral genetic and

phenotypic variations, furthering the case for potential future

integrations of radiomics classifiers as risk stratification schema in

prospective clinical workflows (31, 35, 49, 50).

Given the sheer number of radiomics features extracted as part

of standard pipeline workflows, analyses of radiomics datasets are
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FIGURE 2

Axial contrast-enhanced T1-weighted MR image with fat suppression of a 70-year-old male with leiomyosarcoma of the posterolateral calf (A), with
corresponding texture parameter maps for Gray-Level Co-Occurrence Matrix (GLCM) homogeneity (B), GLCM contrast (C), GLCM energy (D) and
GLCM correlation (E). The GLCM homogeneity map (B) reflects the closeness of the distribution of elements in the GLCM map relative to the GLCM
diagonal. Highly homogenous regions (i.e., regions with less variation; close to the GLCM diagonal) receive a value of 1, while highly heterogenous
regions receive a value of 0. The GLCM contrast map (C) measures the intensity contrast between an index pixel and its neighborhood pixels.
Regions of high contrast show high heterogeneity in values up to a maximum value of 1. A constant image receives a value of 0. In some studies,
contrast may also be referred to as variance and inertia. The GLCM energy map (D) measures the sum of the squared elements in the GLCM,
whereby highly homogenous regions receive values of 1 and highly heterogenous regions receive values of 0. In some studies, energy may also be
referred to as angular second moment, uniformity, or uniformity of energy. The GLCM correlation map (E) reflects how correlated a given pixel is to
its neighboring pixels, with highly correlated regions receiving values of 1. In general, a neighborhood of 3 × 3 was adopted for the GLCM approach.
Original image (A) courtesy of The Cancer Genome Atlas Sarcoma Collection (TCGA-SARC) based on data generated by the TCGA research network:
http://cancergenome.nih.gov/ (38, 39).
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often necessarily complex and difficult to comprehend. Moreover,

segmentation approaches (i.e., manual vs. semi-automated vs.

fully-automated) can likewise affect the extracted radiomics

parameters and—particularly in the case of manual segmentation

—be a source of intra- and inter-observer variability (51, 52).

Initial statistical considerations should include descriptive

analyses to evaluate for skewness, kurtosis, and outlier detection,

which in turn hold implications for the reproducibility of a study

(53). Missing data may arise from situations where a given

radiomics approach does not yield a numerical value, possibly

due to image quality degradation or methodological failure.

When working with sufficiently high-quality images, missing

radiomics data are rarely encountered; however, missing data

become much more prevalent as image quality degrades, and, in

such cases, imputation methods will often be inaccurate (54, 55).

Given this, we believe best practice is to simply exclude subjects

with poor image quality and high numbers of missing radiomics

features in order to avoid spurious associations. In cases of

random missing phases in multiphase studies, we have found in

our own research paradigms that imputation methods, such as

the Markov Chain Monte Carlo (MCMC) method, work well

given high correlation of radiomics features between contrast

phases (56).
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Data dimensionality reduction methods have often been

described in the literature with both supervised and unsupervised

machine learning constructions in an attempt to optimize

classifier performance. These approaches mainly include data

filtering, principal component analysis (PCA), and elimination of

highly correlated features (57). However, if used, dimensionality

reduction techniques must only be conducted with the training

data in order to avoid information leakage, which can in turn

bias the decision classifiers and lead to problems of overfitting

(58). For example, PCA often suffers from poor reproducibility

when applied to test data because its components are derived to

maximize the variance explained in the training data (57, 59).

Instead, we recommend that removal of highly correlated data

(e.g., redundant features with r > 0.8 suggesting collinearity)

should be performed as the initial approach for dimensionality

reduction (60).

Reporting of machine learning performance for radiomics

based models is commonly done using area under the curve

(AUC) of the receiver operating characteristic (ROC). In

general, while AUC can well-represent overall model prediction

accuracies, it is prone to overestimating performance in cases of

unbalanced classification outputs. To overcome this, a common

approach is to report confusion matrices—including sensitivity
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(recall), specificity (selectivity), positive predictive value

(precision), and negative predictive value—corresponding to

various cut points for model predicted probability. These values

likewise tend to be more easily understood by clinical

colleagues, whereby diagnostic cut points in some ways hold

more tangible clinical significance with respect to other forms

of diagnostic testing. To obtain optimal cut points, common

practice includes statistical approaches such as Youden’s J

statistic (also referred to as Youden’s index), defined as J =

sensitivity + specificity—1, or simply selecting the cut points

that maximize the product of sensitivity and specificity (61, 62).

An arguably more sophisticated approach would be to adapt

the concept of decision analysis. Decision analysis includes

assessing for clinical value by also considering clinical

consequences when making determinations of cut point

appropriateness, such as weighing the benefits of finding a

malignant tumor against the harms of unnecessary biopsies

(63). Finally, reporting of machine learning performance should

also highlight the variables of importance (VOIs). VOIs are

defined as those metrics which are identified as having the

greatest impact on classification accuracy and tend to be the

most robust features for predicting the queried clinical

outcomes. While different machine learning approaches have

different methods for selecting VOIs, many also incorporate

some form of ranking procedure based on the relative

contribution of each metric or class of metrics. These rankings

may in turn be useful for identifying potential correlative

relationships between the investigated quantitative imaging

features and phenotypic observations of disease state (64, 65).
Conclusion

Machine learning analyses of radiomics feature sets have been

applied to a wide array of classification and prognostication tasks in

oncologic imaging. Spatial assessments in particular have shown

great potential to quantitatively evaluate features of intratumoral

heterogeneity and may one day prove to be important prognostic

biomarkers of phenotypic behavior in oncologic care. In this

review, we discussed some of the most common approaches to

spatial assessment of texture in radiologic imaging as well as
Frontiers in Radiology 05101
familiar reporting metrics to assess model performance in

machine learning studies.
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advances in artificial intelligence
for contrast-enhanced
mammography
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CA, United States, 3Department of Radiology, Keck School of Medicine, University of Southern
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Artificial intelligence (AI) applications in breast imaging span a wide range of tasks
including decision support, risk assessment, patient management, quality
assessment, treatment response assessment and image enhancement.
However, their integration into the clinical workflow has been slow due to the
lack of a consensus on data quality, benchmarked robust implementation, and
consensus-based guidelines to ensure standardization and generalization.
Contrast-enhanced mammography (CEM) has improved sensitivity and
specificity compared to current standards of breast cancer diagnostic imaging
i.e., mammography (MG) and/or conventional ultrasound (US), with
comparable accuracy to MRI (current diagnostic imaging benchmark), but at a
much lower cost and higher throughput. This makes CEM an excellent tool for
widespread breast lesion characterization for all women, including
underserved and minority women. Underlining the critical need for early
detection and accurate diagnosis of breast cancer, this review examines the
limitations of conventional approaches and reveals how AI can help overcome
them. The Methodical approaches, such as image processing, feature
extraction, quantitative analysis, lesion classification, lesion segmentation,
integration with clinical data, early detection, and screening support have been
carefully analysed in recent studies addressing breast cancer detection and
diagnosis. Recent guidelines described by Checklist for Artificial Intelligence in
Medical Imaging (CLAIM) to establish a robust framework for rigorous
evaluation and surveying has inspired the current review criteria.

KEYWORDS

contrast enhanced mammography, radiomics, artificial intelligence, machine learning,

deep learning, quantitative analysis, breast cancer detection

1 Introduction

Breast cancer is the second most leading cause of cancer death in women globally (1),

and early detection is crucial for improved prognosis (2–5). Digital Mammography (DM)

is known to reduce breast cancer related deaths by 40%. However, among specific patients,

heightened breast density poses a challenge in detecting early-stage small cancers, resulting

in a higher rate of false positive callbacks and interval cancers (6, 7). Currently 43% of all
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women, 40–85 in age, have dense breasts warranting the need for

additional screening beyond DM (8). In recent years, CEM has

emerged as a potential option for offering improved sensitivity

and specificity compared to current standards of breast cancer

diagnostic imaging i.e., mammography (MG) and/or conventional

ultrasound (US) (9, 10). CEM uses iodinated contrast to visualize

tumour neovascularity and dual-energy DM to create a

recombined or iodine image that highlights just the enhancing

lesion in the breast (11, 12). CEM has comparable sensitivity to

MRI with a much higher specificity, potentially at a much lower

cost and higher throughput (13–15). As a natural progression,

multiple studies report of the benefits of using CEM for the

screening, diagnosis of breast cancers as a cost-effective and viable

alternative to the current standards, particularly in women with

dense breasts and at relatively higher risk of breast cancer.

From a technical standpoint, CEM employs anode and cathode

components in x-ray tubes similar to conventional DM (16). It

utilizes low and high-energy x-rays to highlight contrast agent-

induced differences, aiding in tissue composition and distribution

assessment (17, 18). Thus, CEM employs dual-energy method to

produce high-resolution, low-energy digital mammogram images.

These images are recombined to create a digitally subtracted

image, which can be useful to identify vascularity of a particular

lesion (12). Studies have suggested, low energy mammograms

obtained as part of CEM protocols is comparable to conventional

mammography (19, 20) and though with the added advantage of

emphasizing regions of contrast enhancement (21). CEM is

currently offered on five different systems across 4 vendors (11,

22). Although a general consensus on how to perform CEM has

been followed, a standardized implementation has not been

established. This is a difficult task considering the differences in

system characteristics across vendors.

CEM has several drawbacks (11), including the risk of mild to

severe hypersensitivity reactions due to iodinated contrast

administration (23). Patients should be evaluated for a history of

contrast material allergy. CEM radiation dose on average requires

slightly higher radiation exposure when compared to

conventional mammography in phantom studies, though do tend

to fall beneath the 3 mGy threshold dose limit set by

Mammography Quality Standards guidelines (24, 25).

Furthermore, despite enhanced sensitivity of CEM, certain breast

lesions may still be undetectable due to their location within the

breast; supplementary breast MRI may be required if lesions are

anticipated in these areas such as region near chest wall (26).

Finally, due to use subtraction techniques, certain CEM-specific

artifacts may be visible on the recombined image which likewise

can obscure subtle lesion detection (27–29).

In recent years, there has been significant improvement in the

field of Artificial Intelligence (AI) in healthcare, leading to better

and more prompt treatment for patients. AI is a useful tool to

supplement the abilities and knowledge of radiologists,

oncologists, and pathologists, ultimately resulting in more precise

and effective identification and treatment of breast cancer. The

insights offered by Mongan et al. (30) regarding the importance

of systematically presenting research findings resonate deeply

within the academic and scientific community. Their assertion
Frontiers in Radiology 02105
highlights that, beyond achieving optimal results in research, the

meticulous and structured presentation of these findings is of

paramount significance. These guidelines promote transparency,

reproducibility, and the ability to generalize research findings.

They standardize reporting, elevate research quality, and ensure

clinical relevance, providing a shared foundation for researchers,

reviewers, and clinicians to understand and assess deep learning

studies effectively.

The goal of this review is to provide an overview of some of the

basic ideas and advances in the use of for the detection of breast

cancer using CEM. The limitations of conventional approaches

will be addressed, as well as the ways in which these limitations

can be removed using AI. Importantly, the review will include

research that has looked at existing AI capabilities, as well as

ideas on how these skills can be used in the clinical field.
2 Method

The literature review was conducted on the use of contrast-

enhanced mammography (CEM) and artificial intelligence (AI)

techniques for predicting malignancy. PubMed database was

searched for articles published between 1st January 2018 and 5th

October, 2023, using a query: “(contrast-enhanced mammography)

AND (deep learning OR radiomics OR artificial intelligence OR

quantitative analysis) AND (classification OR detection)”. 53 articles

that met this initial criteria were identified. Subsequently, each article

was rigorously evaluated to ensure that it used CEM in conjunction

with AI techniques to predict malignancy, resulting in a final

selection of 14 articles. This rigorous selection process was

documented in accordance with the PRISMA framework (31),

which provides a transparent and structured methodology for article

inclusion as shown in Figure 1. The following sections will discuss

end-to-end malignancy detection pipelines using contrast-enhanced

mammography. Flowchart of these methods is presented in Figure 2.
3 Image acquisition

The availability of CEM in commercial systems from vendors

like GE Healthcare, Hologic, and Siemens Healthineers

represents a significant advancement in breast imaging, as

demonstrated in Table 1, with information sourced from Jeukens

(32), Jochelson et al. (11). While optimal imaging parameters for

CEM have not been extensively documented in published studies,

there are a few generally accepted guidelines. Commonly, low-

osmolarity iodine-based contrast in concentrations ranging from

300 mg/ml to 370 mg/ml at 1.5 ml/kg body weight (maximum

150 ml) is intravenously injected prior to image acquisition.

Injection rates typically range from 2 to 3 ml per second (11).

Among the reviewed studies, a total of 9 investigations made use

of GE Healthcare systems, while 1 opted for Hologic systems and

3 opted to use data from both as mentioned in Table 2.

However, it is important to acknowledge that providing explicit

details regarding image acquisition methods and the sources of

ground truth data is essential for establishing a common
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FIGURE 1

Diagram of systematic evaluation for article selection.
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platform for comparing existing studies. While the majority of

researchers have embraced transparency and rigor in their

research processes, there are exceptions where such critical

information remains undisclosed. This underscores the

importance of robust reporting standards and transparency

within the scientific community to ensure the credibility and

reproducibility of research findings. For example, information

regarding vendor, model, and acquisition protocol must be

provided in the publications. This is crucial since across the 4

major CEM vendors, there exist different strategies for

performing dual-energy mammography, using different tube

voltage ranges, anode materials, filter materials/thicknesses, and

image reconstruction algorithms for creating the recombined
Frontiers in Radiology 03106
CEM images. These differences can be a major source of inter-

operator bias when using multivendor CEM within a multicenter

study. Studies exploring harmonization/standardization strategies

prior to using multivendor CEM data for multicenter studies

are warranted.
4 Image pre-processing

Image preprocessing is crucial for models in contrast-enhanced

imaging datasets, overcoming challenges like noise and artifacts.

Steps like noise reduction, removal of background pixels, contrast

enhancement, and data normalization improve image quality (47).
frontiersin.org
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FIGURE 2

Flowchart for malignancy detection in CEM images.

TABLE 1 Vendors for CEM imaging acquisition system.

Vendors/system
characteristic

Low—energy imaging: anode and
filter material and thickness

High—energy imaging: anode and
filter material and thickness

Mean
glandular dose

Total acquisition
time

Vendor 1 Mo/Mo, Mo/Rh, Rh/Rh Mo (0.03 mm), Rh
(0.025 mm)

Mo/AI + Cu, Rh/AI + Cu Al (0.3 mm), Cu
(0.3 mm)

1.6–2.8 mGy 3–8 s

Vendor 2 Mo/Mo, Rh/Ag Mo (0.03 mm), Ag (0.03 mm) Mo/Cu, Rh/Cu (0.25 mm) 0.7–2.3 mGy 2–5 s

Vendor 3 W/Rh, W/Ag (0.050 mm) W/Cu (0.3 mm) 3.0 mGy Less than 2 s

Vendor 4 W/Rh (0.050 mm) W/Ti (1.0 mm) – 15–22 s

Vendor 1 offers GE Healthcare’s Senographe Essential and Senobright, Vendor 2 offers GE Healthcare Pristina and Senobright HD. Vendor 3 offers Hologic Selenia

Dimensions and 3Dimensions I—View, and Vendor 4 offers Siemens Healthineers Mammomat Revelation Titanium CEM system. The low-energy tube voltage range

for these vendors spans 26 to 34 kV, while the high-energy range extends from 45 to 49 kV. Essential anode and filter materials include silver (Ag), aluminium (Al),

copper (Cu), molybdenum (Mo), rhodium (Rh), titanium (Ti), and tungsten (W). The data within this table is sourced from Jeukens (32), Jochelson at al (11).
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Techniques like data augmentation, ROI extraction, and data

balancing enhance model generalization and feature detection.

This preprocessing standardizes datasets, enhancing performance

and accuracy. Therefore, it is critical to establish image quality

standards prior to inclusion into ML/DL applications for

reliable pre-processing.
4.1 Removal of background pixels

The presence of artifacts in medical images can introduce

confusion or even mimic lesions, potentially leading to

unnecessary medical procedures. Therefore, the removal of these

artifacts plays a pivotal role in enhancing the accuracy of

diagnoses. Several techniques have been developed for artifact

removal, including thresholding, clustering, graph-cut algorithms,
Frontiers in Radiology 04107
and deep learning methods. Thresholding is particularly effective

in addressing large and well-defined artifacts (47, 48). Clustering,

on the other hand, groups similar pixels together to tackle

artifact removal (48). Otsu’s thresholding method has been

applied in two notable studies (33, 43) for malignancy detection.

In the case of (33), a two-step approach was employed, involving

Contrast Limited Adaptive Histogram Equalization (CLAHE)

before applying Otsu’s thresholding. This preprocessing step,

utilizing CLAHE, improved the image quality by mitigating

issues related to uneven lighting conditions and varying contrast

across different regions. Additionally, graph-cut algorithms

provide another avenue for artifact removal, segmenting images

based on pixel similarity (48). Deep learning techniques have

also gained prominence, as they train neural networks to identify

and subsequently remove artifacts (43). The choice of artifact

removal technique hinges on the specific image characteristics
frontiersin.org
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TABLE 2 Review of existing work in AI for CEM imaging.

Research
work

Methodology CEM system Data
size

Benign/
Malignant

Accuracy Other metrics

Beuque et al. (33) Mask RCNN with ResNet101 GE Healthcare – 227/363 (External
data set)

73% AUC = 0.86
Sensitivity = 0.83
Specificity = 0.75

Wang et al. (34) Least absolute shrinkage and selection operator
(LASSO) logistic regression

GE Healthcare 226 101/125 88.2% AUC = 0.96
Sensitivity = 0.90
Specificity = 0.93

Petrillo et al. (35) Logistic Regression with LASSO Hologic, USA and GE
Healthcare

182 64/118 91.67% Sensitivity = 0.90
Specificity = 0.92

Wang et al. (36) Logistic regression GE Healthcare 226 101/125 94.6% AUC = 0.96
Sensitivity = 0.97
Specificity = 0.91

Fusco et al. (37) Support Vector Machine Hologic, USA and GE
Healthcare

104 39/65 87% AUC = 0.90
Sensitivity = 0.86
Specificity = 0.87

Wang et al. (38) Least absolute shrinkage and selection operator
(LASSO

GE Healthcare 223 101/122 – AUC = 0.940

Sun et al. (39) Least absolute shrinkage and selection operator
(LASSO) regression

GE Healthcare 161 47/114 89.5% AUC = 0.92
Sensitivity = 0.89
Specificity = 0.908

Miller et al. (40) Penalized Linear Discriminant analysis – 159 70/89 71.25% AUC = 0.81
Sensitivity = 0.56
Specificity = 0.75

Gao et al. (41) ResNet along with Convolutional Neural Network
(CNN)

Hologic, USA 49 23/26 89% AUC = 0.91
Sensitivity = 0.93
Specificity = 0.86

Jailin et al. (42) YOLOv5 with CSPDarknet as backbone GE HealthCare, USA 7,443 3,739/3,704 estimated 90% AUC = 0.964
FPR = 0.128

Zheng et al. (43) RefineNet and Xception + Pyramid pooling (PPM) GE Healthcare 1,802 493/1,309 87.6% Sensitivity = 0.95
Specificity = 0.70

Savaridas et al. (44) Artificial Neural Network (ANN) Hologic and GE
Healthcare

269 14/255 91.4% AUC = 0.97
Sensitivity = 0.95
Specificity = 0.89

Chen et al. (45) DenseNet 121 with Convolutional Neural Network
(CNN)

GE Healthcare, USA 1,903 490/1,413 87.1% AUC = 0.912
Sensitivity = 0.947
Specificity = 0.714

Qian et al. (46) VGG16 with Convolutional Neural Network (CNN) GE Senographe Essential 2,496 765/1,731 85% AUC = 0.92
Sensitivity = 0.86
Specificity = 0.85
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and the desired outcome. Thresholding proves effective for larger

and more distinct artifacts (49, 50) while clustering or graph-cut

algorithms are better suited for smaller or grouped artifacts,

offering a versatile array of tools to address artifact-related

challenges in medical imaging.
4.2 Resampling

Resampling CEM images holds significance due to their high

resolution, variable scan times, and diverse imaging protocols.

Resampling is performed when there is a difference in the pixel

resolution of an image. Image acquisition timing impacts

appearance and generalization. Standardizing resolution and

acquisition times enhances dataset consistency and diminishes

model variance, ultimately reducing false negatives, thus

improving model performance (51). Wang et al. (34) conducted

a study that used data from two different centers and successfully

standardized their dataset using resampling techniques. In study

by Wang et al. (38) they performed resampling before feature
Frontiers in Radiology 05108
extraction. Resampling CEM datasets with different resolutions in

multi-source data scenarios is recommended, as it is likely to

improve model performance.
4.3 Normalization

Given the wide variation in study protocols, acquisition

systems, and contrast injection dosages, it is clear that these

factors have a significant impact on the brightness, contrast, and

color balance of CEM images. Normalization is performed when

there is a difference in the pixel intensity values of the image.

Certain image features, such as texture and contrast, are more

sensitive to fluctuations in these parameters than others.

Normalization techniques offer a critical solution to mitigate

these sensitivities. By normalizing CEM images, the impact of

variable brightness, contrast, and color balance is minimized

(52). This, in turn, enhances the reliability and precision of

feature extraction processes from CEM images. For instance, in a

study by Zheng et al. (43) the researchers used data from three
frontiersin.org
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different sources. They used one source for training, and the other

two for external testing. To ensure that the dataset was consistent,

they used normalization. Qian et al. (46) enhanced CEM images by

adjusting pixel values to improve contrast and highlight lesions and

then performed min-max normalization. This normalization

process was essential for harmonizing the diverse data sources

and ensuring that the dataset was coherent and free of

inconsistencies. Adopting these steps in studies is strongly

recommended as they strengthen the reliability of their findings

and conclusions and data integrity in multi-source studies.
4.4 Data augmentation

Being a relatively new technique, CEM studies face the

challenges of being limited in size and imbalanced class

distribution. These inherent characteristics pose a significant risk

of overfitting, a scenario where the model becomes excessively

attuned to the intricacies of the training data, hindering its

ability to effectively generalize to unseen data. In response to this

issue, data augmentation emerges as a valuable strategy. Data

augmentation techniques, such as horizontal image mirroring,

global intensity adjustments, realistic transformations of breast

geometry (53), horizontal flipping, rotation, scaling, reducing size

(54) and horizontal and vertical shifting have been effectively

used in studies by Jailin et al. (42), Zheng et al. (43), Qian et al.

(46). These techniques increase the diversity of the dataset, which

improves the robustness of research findings.
4.5 Lesion segmentation

In the realm of radiomics, the extraction of features from lesion

areas is a fundamental prerequisite. Achieving this necessitates the

segmentation of lesions, a critical step in the process. Segmentation

can be approached in two distinct ways.

4.5.1 Manual segmentation
Manual segmentation remains a widely adopted and trusted

technique for precisely delineating lesions in CEM images. This

method involves the meticulous outlining of lesion boundaries.

Typically executed by skilled radiologists. In several studies

reviewed (34, 35, 37, 38, 40, 55) manual segmentation approach

was the chosen method. This approach underscored the

importance of detailed and careful delineation of lesion contours,

taking into account both the CC and MLO views, thus

emphasizing its role in achieving precision and accuracy in

radiological assessments. It is crucial to recognize that manual

segmentation, despite its accuracy and reliability, demands a

substantial investment of time and effort. The involvement of

skilled radiologists is paramount to its success. If radiologist

availability is limited, a single radiologist may need to handle

segmentation. However, for high accuracy and precision

demands, involving multiple radiologists to review and segment

the image could be advantageous. Also, although this labor-

intensive process remains indispensable for not only its inherent
Frontiers in Radiology 06109
precision but also its pivotal role in facilitating the development

and evaluation of new automated segmentation methods.

4.5.2 Automatic segmentation
Automatic segmentation is a rapidly developing field with the

potential to improve the efficiency and practicality of CEM

image analysis. Automatic segmentation methods leverage the

power of deep learning models to develop a comprehensive

understanding of lesion features in contrast-enhanced

mammography (CEM) images, enabling them to autonomously

outline lesion contours. Alternatively, whole-organ analysis, the

analysis of the entire breast, can be performed instead of lesion-

specific segmentation. Consequently, automatic segmentation

methods have the potential to reduce analysis time and effort,

while also enhancing the accuracy and reproducibility of

segmentation outcomes. Numerous studies have contributed to

the development and evaluation of automatic segmentation

methods tailored for CEM images. By merging manual

segmentation with artificial intelligence, Zheng et al. (43)

introduced an approach that improved lesion segmentation

accuracy and efficiency. Wang et al. (56) introduced

methodology that emphasizes lesion localization, providing a

user-friendly and efficient alternative to conventional

segmentation techniques, specifically by applying a deep learning

model to detect and localize lesions in CEM images. Meanwhile,

Beuque et al. (33) utilized the Mask R-CNN model (57), a

region-based deep learning model that is optimized for object

detection and segmentation. Jailen et al. (42) employed the

YOLO v5 model, a single-stage deep learning model that is faster

and more generalized than Mask R-CNN. These examples

exemplify the diversity of approaches within the realm of

automatic segmentation, and highlight the different trade-offs

between accuracy, speed, and generalization.

However, it is crucial to acknowledge that automatic

segmentation methods are still in the process of development,

and several significant challenges must be addressed before they

can find widespread application in clinical practice. One pressing

challenge pertains to the sensitivity of these methods to the

quality of the training data. In cases where training data is

noisy or incomplete, the model’s ability to accurately grasp

lesion features may be compromised. Additionally, the

computational demands of automatic segmentation methods pose

a formidable hurdle, especially in clinical settings characterized

by limited resources.
5 Feature extraction

Feature extraction is a critical technique for training CEM

model training, enhancing the accuracy, efficiency, and

interpretability of deep learning models (58). Common

techniques include shape features, texture features, and kinetic

features. Shape features describe the shape of the lesion, texture

features describe its brightness, contrast, and homogeneity, and

kinetic features describe the changes in the lesion over time. It is

the foundational step that lays the groundwork for subsequent
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model training. Feature extraction can be approached in two

distinct ways, each bearing its own significance in the realm of

medical imaging.
5.1 Handcrafted radiomics

The first method involves the extraction of handcrafted

radiomics features from lesion regions, which have been

meticulously annotated, segmented, or localized, as we previously

discussed in the context of lesion segmentation. This approach,

as observed in the reviewed studies, provides valuable insights

into the characteristics of the lesion. These handcrafted features

have been extracted using tools such as the PyRadiomics package

and the Texture toolbox by MATLAB according to Image

Biomarker Standardization Initiative (IBSI) (59), as elaborated in

(33–37). Once these features are extracted, it becomes imperative

to refine them to enhance data quality. This often involves

normalization techniques to standardize the data and,

importantly, assessing feature correlations using Spearman’s

coefficient. The subsequent crucial step to this feature extraction

is feature selection (60) or the elimination of redundant features.

The reviewed studies (34, 39, 55) have employed various

methods for this purpose, such as interobserver agreement tests,

Boruta’s approach, Fisher criteria, maximum relevance minimum

redundancy (mRMR), mutual information (MI), LASSO logistic

regression (61), probability of error, pairwise correlations and

average correlation (POE + ACC). Stratified 10-fold cross-

validation is used in the XG Boost classifier to perform feature

elimination (33). This process ensures that only the most

informative and non-redundant features are retained for

model training.
5.2 Transfer learning

Transfer learning is a valuable technique in deep learning

pipelines for feature extraction. It utilizes pre-trained models to

efficiently extract relevant features from new data, enhancing

performance. This approach is particularly beneficial when

working with small or noisy datasets, as it leverages knowledge

learned from larger and more diverse datasets. This technique

involves the use of pre-trained networks, such as Inception V3,

CSP Darknet, Resnet, Xception, RetinaNet, VGG16 as observed

in the reviewed studies (41–43, 45, 46, 55). Transfer learning

offers computational efficiency and leverages higher-level features

learned from extensive data, thus simplifying the feature

extraction process from CEM images.

The choice between handcrafted radiomics and transfer

learning hinges on the specific model being developed.

Handcrafted radiomics requires lesion segmentation for feature

extraction, while transfer learning allows for the utilization of

either entire images or patches of lesions. This adaptability

underscores the importance of selecting the most suitable

approach based on the objectives and requirements of the model

under consideration. In essence, feature extraction serves as the
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linchpin in the AI pipeline for malignancy detection and

segmentation, determining the quality and effectiveness of

subsequent model training.
6 Handling imbalanced data

Handling data imbalance is a critical step in the AI pipeline,

often underestimated but profoundly influential in obtaining

accurate outputs. Failure to balance data properly can result in

false positives and false negatives, as data imbalance introduces

bias toward the majority class, undermining the minority class.

There are several common methods to tackle this problem:
6.1 Over-sampling

This approach involves generating synthetic samples for the

minority class to bolster its representation in the training dataset.

Techniques like SMOTE (Synthetic Minority Over-sampling

Technique) (44) and ROSE (Random Over-Sampling Examples)

can be employed for this purpose. For example, in studies (33,

35) the authors utilized Adaptive Synthetic Sampling (ADASYN).
6.2 Under-sampling

In contrast, under-sampling entails removing samples from the

majority class to diminish its presence in the training dataset.

Various techniques, such as random under-sampling and Tomek

links, can be applied to implement under-sampling effectively. As

indicated, the use of under-sampling may not be advisable for

CEM Images due to the issue of limited data availability. In such

cases, the removal of samples from the majority class could

further exacerbate the data scarcity problem, potentially leading

to inadequate representation of the majority class and negatively

impacting the model’s performance.
6.3 Cost-sensitive learning

This method assigns different costs to the misclassification of

samples from different classes. By assigning a higher cost to the

minority class, this approach compels the model to give more

attention to it, often resulting in improved performance on

imbalanced datasets as done in study (41).
6.4 Ensemble learning

Ensemble learning entails training multiple models on different

subsets of the data and then averaging their predictions. This

technique helps reduce model variance and enhances

performance on imbalanced datasets.

These methods illustrate the versatility required to address data

imbalance effectively and emphasize the importance of choosing
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the most suitable technique based on the specific dataset, as used

by Gao et al. (41).
7 Quantitative analysis

Quantitative analysis of handcrafted features in CEM images

encompasses the application of statistical and mathematical

techniques to derive significant insights from the visual data.

Following the extraction of these features from the lesion regions,

it becomes imperative to subject the extracted features to

rigorous measurement, quantification, and analysis before using

these features for model training. Univariate and multivariate

analysis represent two primary categories of quantitative

methodologies extensively employed for the examination of

handcrafted features within CEM images.
7.1 Univariate analysis

Univariate analysis is a fundamental statistical method focused

on analyzing a single variable. It helps describe the variable’s

distribution, detect outliers, and identify trends, providing

valuable insights into data characteristics. The non-parametric

Wilcoxon-Mann-Whitney test is used for univariate analysis for

handcrafted radiomics features in CEM research, as

demonstrated in studies (35, 37). Its key benefits include not

requiring specific data distribution assumptions, robustness

against outliers, suitability for both ordinal and continuous data,

and applicability to small sample sizes and non-normally

distributed data. This is important because radiomics features are

often non-normally distributed and can be susceptible to outliers.

These attributes make it a valuable tool for comparing CEM

radiomics features, ensuring robust and reliable research results.

Another technique in study (37, 38) is the Intraclass Correlation

Coefficient (ICC), which plays a vital role in univariate analysis

for handcrafted radiomics features in CEM. The ICC assesses

measurement reliability, identifies variability sources, aids in

quality control, informs study design, facilitates feature reliability

comparison, and determines clinical utility. By ensuring the

consistency and trustworthiness of radiomics data, the ICC is

essential for both research and clinical applications in CEM.

In univariate analysis, conducting Receiver Operating

Characteristic (ROC) analysis and calculating the Youden index

is a crucial step for determining the optimal cut-off value for

each feature, also used by Wang et al. (36) to set optimal

threshold for calculating accuracy and other parameters. This

allows for the assessment of their discriminatory power and the

identification of the point that maximizes sensitivity and

specificity, which is essential for interpreting the performance of

features, particularly in diagnostic or predictive modeling

scenarios. Univariate analysis by Sun et al. (39) revealed that

larger lesion sizes and rim or ripple artifacts were associated with

more misclassifications of benign lesions and smaller lesion sizes

were associated with more misclassifications of malignant lesions.
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7.2 Multivariate analysis

Multivariate analysis involves the simultaneous examination of

multiple variables, offering a powerful approach to uncover

relationships among the features, classify data, and construct

predictive models. It is a versatile tool for gaining deeper insights

from complex datasets. Methods used for multivariate analysis of

handcrafted radiomics features in CEM images include Principal

Component Analysis (PCA) for dimensionality reduction, Linear

Discriminant Analysis (LDA) (37, 62) for group discrimination,

Logistic Regression (35) for binary outcome modeling, Random

Forests for robust classification and regression, KNN (37) to

handle outliers and non-linear relationships and Support Vector

Machines (SVMs) for high-dimensional data analysis. These

methods offer diverse approaches to extract insights from

radiomics data, but their choice depends on research objectives

and data characteristics. We recommend selecting the analytics

technique that aligns with the specific criteria and research

objectives. Multivariate analysis by Sun et al. (39) revealed that

smaller lesion size and air trapping artifacts were associated with

the misclassification of malignant lesions.

Our findings indicate that few studies have used handcrafted

radiomics features, either independently or in conjunction with

CEM images. Additionally, not all studies have conducted feature

analysis. We strongly recommend incorporating these techniques

into research endeavours. This would provide a more

comprehensive understanding of the data, ultimately facilitating

more effective model tuning during training.
8 Classification of lesions

After refining data from all the AI pipeline that we discussed in

previous sections, the next important step in the AI pipeline for

malignancy detection is to train a model to classify the data

according to respective standards of ground truth. This can be

done in two ways using machine learning techniques or using

convolutional neural networks (CNNs).
8.1 Machine learning approach

Machine learning techniques play a vital role in malignancy

detection from CEM images by distinguishing between malignant

and benign lesions. In a review of 14 studies using CEM datasets

as mentioned in Table 2, it was found that 7 of them used

machine learning techniques for classification. Machine learning

offers several advantages, including interpretability, which

provides insights into how the model arrives at its outcomes.

However, machine learning may not be the best choice for

handling image data, such as CEM images, which are intricate

and present challenges that traditional machine learning

approaches may not effectively address. Machine learning is a

highly suitable and effective choice for tasks where handcrafted

features are used as the training data. Machine learning
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techniques can effectively harness the valuable insights extracted

from handcrafted features to develop robust models for making

informed predictions. Here is a comprehensive overview of the

key methodologies:

8.1.1 Logistic regression
Logistic regression is a binary classification technique known

for its simplicity and effectiveness in distinguishing between two

primary lesion categories. It plays a significant role in expediting

cancer diagnosis. In study (34–36, 38, 39) it has been utilized

alongside the Least Absolute Shrinkage and Selection Operator

(LASSO), demonstrating good sensitivity for model outcomes.

This combination of techniques provides a powerful approach for

addressing classification challenges in medical research.

8.1.2 Support vector machine
Support vector machine (SVM) is versatile tool that can be

used for both binary and multi-class classification tasks. It is

particularly well-suited for handling the complex high-

dimensional radiomics data derived from CEM images, making it

an invaluable asset in the pursuit of precise malignancy

detection, as used by (37).

8.1.3 Random forest
Random forest is a robust ensemble learning technique that

combines multiple decision trees to improve prediction accuracy.

Its innate resistance to noise and overfitting makes it dependable

choices for navigating the complexities of radiomics data,

emerging as steadfast allies when precision is of paramount

concern as used by (36, 39).

8.1.4 Linear discriminant analysis
Linear discriminant analysis (LDA), a supervised learning

algorithm, can identify optimal linear feature combinations to

discriminate between different data groups. Its utility is even

more significant in the realm of high-dimensional radiomics

data, where it facilitates the effective categorization of lesions as

used by (37, 40).
8.2 CNN approach in deep learning

Convolutional Neural Network (CNN) is a deep learning

technique that uses artificial neural networks to learn from data.

Neural networks are inspired by the human brain and can learn

complex patterns from data. CNN is well-suited for image

analysis tasks, including malignancy detection in CEM images.

CNN models can learn to identify subtle features in images that

may be difficult or impossible for humans to see, making them

very effective at distinguishing between malignant and benign

lesions. In a review of 14 studies, 7 used CNNs for model

training. 6 out of 7 studies used transfer learning with a pre-

trained network as the backbone for their CNN architecture. Of

these, 2 studies (33, 41) used the ResNet pre-trained network.

ResNet (63) pre-trained network is a popular choice for training

CNNs on medical datasets due to their depth, accuracy, and
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efficiency. They have been shown to be effective for a variety of

medical image classification tasks and can be easily adapted to

different datasets and tasks. In addition to ResNet, other pre-

trained networks such as XceptionNet, CSPDarkNet, and

Inception models (64) were also used in the reviewed studies.

Some studies using CNNs have not provided adequate

information about key hyperparameters, such as learning rate

schedule, optimization algorithm, minibatch size, dropout rates,

and regularization parameters. Additionally, studies often fail to

discuss why specific objective functions were chosen or how they

align with the study’s goals. We recommend researchers to define

their criteria for selecting the best-performing model and clearly

indicate when and how certain model parameters are restricted

or frozen, especially in transfer learning scenarios. Adhering

to these reporting standards would enhance transparency

and reproducibility in CNN-based research for clinical and

scientific purposes.
9 Cross validation

Cross-validation is essential for malignancy detection using

CEM datasets because it prevents overfitting. CEM datasets are

often small, making models more likely to overfit. Cross-

validation assesses a model’s ability to generalize by repeatedly

testing it on different data subsets. It helps with model selection,

hyperparameter tuning, and providing a robust performance

estimate, ensuring reliable results in medical diagnosis.

Commonly used CV methods encompass K-fold Cross-

Validation, as indicated in (34, 39, 40, 43) which divides the data

into subsets for rigorous evaluation. Stratified K-fold Cross-

Validation is particularly beneficial for handling imbalanced

datasets, ensuring that both malignant and benign cases are

adequately represented. Leave-One-Out Cross-Validation,

employed in (37, 41, 55) is suitable for smaller datasets but

demands more computational resources due to its one-sample-at-

a-time evaluation. Leave-P-Out Cross-Validation offers a middle

ground for modest datasets. Repeated K-fold Cross-Validation

enhances reliability by repeating the process multiple times.

Nested Cross-Validation, although not cited in specific studies,

plays a role in hyperparameter tuning. The choice of CV method

hinges on factors like dataset size, class distribution, and research

objectives, with Stratified K-fold commonly favored in CEM

datasets to ensure equitable evaluation of model performance.
10 Integration with clinical data

The integration of clinical data with CEM datasets is a

promising multi-modal approach for enhancing the accuracy and

clinical utility of machine learning models for malignancy

detection. This integration allows for a more holistic assessment

of breast lesions by incorporating not only image-based features

but also patient-specific clinical information. The extent to which

this integration has been explored and implemented varies across

studies. In addition to clinical data, some studies may also
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explore the combination of CEM with other imaging modalities,

such as ultrasound, MRI, etc. These multi-modal approaches seek

to leverage the complementary strengths of different data sources

to improve the overall performance of malignancy detection

models. The specific combination of modalities can vary

depending on the research objectives and data availability. In the

study by Miller et al. (40), they found that incorporating

demographic and clinical information into their models led to a

notably improved AUC-ROC compared to using only density

images, contrast images, or the combination of density and

contrast images. It is observed in study by Wang et al. (36),

the inclusion of clinical features to the radiomics features for

model training resulted in a significant increase in both accuracy

and sensitivity.

In the research article reviewed in the Table 2, we observed that

all of the studies used histopathology as their reference standard for

obtaining final ground truth diagnosis results, with a follow-up

period of 2 weeks to 2 years, depending on the study.
11 Future scope

In the current landscape of malignancy detection research, we

have explored the various strategies employed by studies to attain

their results. However, there exists a compelling scope in the

realm of multimodal approaches, particularly considering the

persistent challenge of data scarcity in medical image datasets.

The incorporation of multimodal data holds the potential to

revolutionize the field by augmenting the accuracy, sensitivity,

and AUC of detection models. The rationale behind exploring

multimodal approaches is rooted in the inherent strengths of

deep learning. This robust tool enables the extraction of intricate

features from one mode of data, which can subsequently be

integrated with knowledge derived from another modality. By

combining different sources of medical data, researchers can

overcome the limitations posed by data scarcity and achieve a

more comprehensive understanding of the underlying phenomena.

Multimodal data fusion can significantly improve malignancy

detection models by leveraging the unique strengths of each

modality. This approach can uncover hidden patterns and

correlations, leading to improved patient outcomes and clinical

decision-making. The future of malignancy detection research lies

in strategic utilization of multimodal data, overcoming individual

limitations and paving the way for more robust and accurate

detection models. The integration of multimodal approaches holds

the potential to redefine malignancy detection research.
12 Conclusion

In conclusion, advances in the field of Artificial Intelligence in

Contrast-Enhanced Mammography (CEM) have occurred, holding

enormous potential for changing breast cancer detection and

radiology practice, however, largescale validation is warranted.

This review study explored the many aspects of AI in CEM,

including image processing, lesion segmentation, feature
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extraction, quantitative analysis, lesion classification, and

integration with clinical data. The potential advantages are

undeniably enormous. Timely identification and accurate diagnosis

of breast abnormalities play a pivotal role in enhancing patient

prognosis and minimizing unnecessary biopsy procedures. AI-

powered CEM not only provides a more efficient and exact way of

reaching these goals, but it also aids medical experts in to their

decision-making processes. However, there is a lack of sufficient

reliable labeled training data and handling variability between

imaging systems, and protocols. Therefore, while AI analysis

shows promise for improving CEM diagnosis, larger studies

assessing its clinical value and real-world effectiveness are

required. For such studies to be designed and implemented, it is

critical that researchers, doctors, and technologists continue to

interact and push the bounds of artificial intelligence in CEM. The

synergistic partnership between AI and medical practitioners has

the potential to usher in a new era of breast cancer diagnosis that

prioritizes precision and efficiency. As a result, we can make great

progress in lowering the burden of breast cancer and improving

the lives of individuals afflicted by it.
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CA, United States, 2Viterbi School of Engineering, University of Southern California, Los Angeles, CA,
United States, 3Keck School of Medicine, University of Southern California, Los Angeles, CA,
United States, 4Department of Radiology & Biomedical Imaging, University of California, San Francisco,
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Recent advancements in artificial intelligence (AI) and machine learning offer
numerous opportunities in musculoskeletal radiology to potentially bolster
diagnostic accuracy, workflow efficiency, and predictive modeling. AI tools have
the capability to assist radiologists in many tasks ranging from image
segmentation, lesion detection, and more. In bone and soft tissue tumor
imaging, radiomics and deep learning show promise for malignancy stratification,
grading, prognostication, and treatment planning. However, challenges such as
standardization, data integration, and ethical concerns regarding patient data
need to be addressed ahead of clinical translation. In the realm of
musculoskeletal oncology, AI also faces obstacles in robust algorithm
development due to limited disease incidence. While many initiatives aim to
develop multitasking AI systems, multidisciplinary collaboration is crucial for
successful AI integration into clinical practice. Robust approaches addressing
challenges and embodying ethical practices are warranted to fully realize AI’s
potential for enhancing diagnostic accuracy and advancing patient care.

KEYWORDS

artificial intelligence, machine learning, deep learning, musculoskeletal, sarcoma

Key points

• Deep learning models have been developed for diagnosing MSK tumors and show

potential to achieve diagnostic efficacy comparable to radiologists in limited

classification tasks.

• AI algorithms can address issues related to variance in acquisition parameters and noise

between MR scans using techniques such as edge-preserving denoising and intensity

standardization.

• Multitasking AI systems that can efficiently perform multiple segmentation and

analytical tasks at once hold promise for potentially useful prospective

implementations in clinical practice.
Abbreviations

AI, artificial intelligence; ALTs, atypical lipomatous tumors; DL, deep learning; ML, machine learning; MSK,
musculoskeletal; STS, soft-tissue sarcomas; WDLs, well-differentiated liposarcomas; CNN, convolutional
neural network.
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Introduction

Developments in artificial intelligence (AI) and machine

learning (ML) have advanced the field of medicine and offer new

and powerful digital tools to facilitate the next transformation in

musculoskeletal (MSK) radiology. While it is important to

acknowledge that these AI applications are still mainly in the

experimental phase and need to be validated ahead of being fully

integrated into standard clinical workflows, it is worth noting

that they hold significant promise. In addition to streamlining

radiology processes and enhancing the detection of

abnormalities, AI techniques show potential for applications

including predicting progression of malignancy and providing

prognostic information (1–6). However, these potential

advantages are not without some inherent biases and drawbacks,

and radiologists must be aware of these pitfalls to allow for

optimal implementation of AI tools in clinical practice (7, 8). AI

may one day also enhance workflow productivity by automating

repetitive processes, allowing radiologists to focus on image

interpretation and clinical communication. Quality control may

also come to be bolstered through enhanced automated detection

of image artifacts and overall scan degradation. Finally, predictive

analytics can help tailor interventions and allow for personalized

modifications (9).

This review discusses key concepts and potential pitfalls of

AI and ML in MSK radiology and how they can potentially

be applied for diagnosis and treatment of soft tissue and

bone tumors.
Artificial intelligence and machine
learning in medicine

AI generally refers to computer systems that simulate or

mimic human intelligence (10). Beyond imaging interpretation

in radiology, AI may also have a wide range of applications

ranging from augmented structured reporting and clinical

support systems to radiomics-based predictive implementations

(11, 12).

ML defines a field of AI in which computers learn by analyzing

large amounts of aggregated data and improve algorithms by

iterative exposure and performance evaluation (11–14). ML

subtypes can be categorized as supervised, unsupervised,

reinforced, and semi-supervised. Supervised learning occurs via

supplied output, while unsupervised learning develops from

pattern recognition in input data without specific feedback.

Reinforcement learning uses punishments or rewards as decision

reinforcements. Semi-supervised learning involves fewer explicit

outputs validated against a ground truth label (11).

Deep learning (DL), a subset of ML, is a multilayered approach

which leverages hierarchical arrangement of multiple algorithms.

Some of the more common applications of DL in MSK radiology

include detection of spinal pathology, meniscal tears, fractures,

and osteoarthritis (11, 15).
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Musculoskeletal radiology

MSK radiology employs a variety of imaging modalities to

diagnose and assess disorders involving joints, muscles, soft

tissues, and osseous structures. Imaging also plays a key role in

initial assessment and treatment response characterization in

bone tumors and soft-tissue sarcomas (STS) (16).
Soft tissue tumors

Imaging techniques remain a pivotal component of the

diagnosis of benign and malignant soft tissue lesions. While in

many cases, specific clinical and imaging features may aid in

narrowing down the differential diagnoses, definitive diagnosis is

often made by tissue sampling and histopathologic interpretation

(17). Though malignant tumors tend to be larger, some small

soft tissue masses account for a significant portion of soft tissue

malignancies. These smaller masses are more likely to be missed

or be under-resected at surgery (18).

Lipomas and their malignant counterparts liposarcomas are

among the soft tissue masses originating from adipose tissue

(19). However, while well-differentiated liposarcomas (WDLs)

and atypical lipomatous tumors (ALTs) can appear similar to

intramuscular lipomas on imaging, the distinction holds

significant implication for prognosis and treatment (20, 21).

Specifically, treatment for higher-grade liposarcomas may require

wide local excision with or without neoadjuvant or adjuvant

chemotherapy and/or radiotherapy (19, 20). Similarly, while

benign lipomas may in many instances be amenable to clinical

observation or marginal resection, ALTs/WDLs may also require

wide excision and subsequent imaging surveillance (22, 23).

Even though histology remains the gold standard for diagnosis,

certain imaging modalities, mainly contrast enhanced MRI, may

help to narrow the differential considerations ahead of tissue

sampling. Nevertheless, traditional imaging modalities do possess

inherent acknowledged limitations in reliably differentiating

between benign and malignant soft tissue tumors (19, 22, 24).
Bone tumors

Bone tumors can be classified into two main categories:

primary tumors and secondary (metastatic) tumors. Malignant

primary bone tumors arise from osseous tissues though have the

potential to metastasize to other remote sites in the body (25).

Most benign bone tumors are chondrogenic in nature and are

often found to be enchondromas or osteochondromas.

Intermediate bone tumors such as giant cell tumors of bone may

be at risk for malignant transformation. Chondrogenic and

osteogenic tumors are among the most common primary bone

malignancies (26).

Diagnosing bone tumors combines several approaches which

consider clinical factors, histological sampling, and imaging (27).
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Radiography is often the initial imaging modality employed due to

its ability to localize lesions and provide rapid holistic assessment

of patterns of bony destruction, margins (zones of transition),

and/or presence of periosteal reaction. These destructive patterns

may provide insight into lesional biological activity and

aggressiveness (2, 28).

MRI is the preferred method for local evaluation and staging

due to its superiority in delineating associated soft-tissue

components and detecting invasion into surrounding structures

(29). Fluorine-18 fluorodeoxyglucose-PET scans can evaluate

tumor metabolic activity, which often correlates with

aggressiveness (27). PET/CT and PET/MRI are among the most

sensitive and specific modalities for evaluating skeletal metastatic

disease (30).
Artificial intelligence and machine
learning in musculoskeletal radiology

Various models have suggested that DL can, in relatively

narrow use cases, achieve relatively similar diagnostic

performance in comparison to human interpreting radiologists

(31, 32). However, relative to other organ systems, the MSK

system poses unique challenges for developing AI applications.

The complex biomechanical interplay of the various anatomical

structures makes it challenging for AI researchers to develop

robust algorithms amidst the many possible scan angles and

positional variations. Additionally, variability in acquisition

parameters, image noise, and the field strength often necessitates

complex preprocessing to improve and standardize image quality

prior to AI operations (15).

Keles et al. (15) emphasize the importance of “clean data”

for AI algorithms and discuss the need for preprocessing

techniques. In the case of MRI, there are three main categories of

challenges in medical images that need to be addressed with

preprocessing, namely image nonstandardness, noise, and

artifacts. The bias field artifact, also known as inhomogeneity,

affects the quantitative intensity values of pixels and can in turn

affect segmentation performance. In their preliminary studies,

Keles et al. (15) applied generalized-scale post-processing

to correct field inhomogeneities arising from the RF coil.

Edge-preserving denoising was used to smooth images and

thereby reduce image noise. To tackle signal intensity variations

between MRI acquisitions, the authors applied an intensity

standardization algorithm.

Segmentation of muscle, fat, and other regions of interest using

automated techniques can be difficult due to overlapping intensity

values of various tissues (15). LaLonde et al. present a DL

algorithm called SegCaps, which was introduced for biomedical

image segmentation tasks. The SegCaps algorithm leverages

“deconvolutional capsules” in a design which purportedly

requires fewer than 5% of the parameters necessary to execute

the popular U-Net architecture (33).

Zhao et al. (34) developed three DL models utilizing ce-MRI to

assist in the diagnosis of MSK neoplasms. This study’s findings

suggested that knowledge of the DL classifiers’ predicted
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probability of malignancy led to increased sensitivity of imaging

interpretation without significantly affecting specificity for

providers of varying years of experience and training across

oncology, MSK radiology, and orthopedic surgery (34).

DL may not only prove helpful in interpretation tasks but may

also come to play a role in image reconstruction. Wessling et al.

(35) employed a DL algorithm known as an “unrolled variational

network”, which leverages an iterative parallel imaging

reconstruction architecture to accelerate sequence acquisition

time. Their results suggested that DL-based reconstruction both

improved image quality and led to reductions in acquisition

times of up to 52%–59% as compared to conventional scanning

parameters (35).
Artificial intelligence in imaging of soft
tissue tumors

Regarding distinguishing lipomas from ALTs/WDLs in

lipomatous soft tissue tumors, Leporq et al. (19) developed an

MRI-based radiomics approach using fat-suppressed contrast-

enhanced T1-weighted sequences and found that their

classification models were able to distinguish between benign and

malignant lesions. In their study, radiomics features were

extracted from 2D, manually contoured tumor masks and

subsequently used for machine learning. Their findings suggested

that size features were most highly predictive of malignancy

while intensity distribution features held the least predictive

utility. However, they also found that shape features were most

subject to interobserver variability.

In a recent study, Sudjai et al. (20) developed a machine-

learning approach to differentiate between ALTs/WDLs and

intramuscular lipomas based on radiomics features and the

distance between tumor and bone on non-contrast T1-weighted

MR images. The model achieved high accuracy in separating

intramuscular lipomas from ALT/WDL, with an area under the

curve (AUC) of 0.88. The model’s performance was comparable

to that of two MSK radiologists with 22 and 7 years of

experience, respectively. Texture, shape, and histogram-based

features were identified as most important in determining the

model’s predicted probability of malignancy.

Cay et al. (36) similarly found that a radiomics-based support

vector machine algorithm was predictive of malignancy in

lipomatous masses, with a reported sensitivity of 96.8% and a

specificity of 93.72% for the machine learning approach. Regarding

individual feature performance, gray-level run length matrix

(GLRLM) based Run Length Non-Uniformity (RNLU)

demonstrated the best performance, with an area under the curve

(AUC) of 0.902 (36).

Fradet et al. (22) evaluated the relative performance of MRI

radiomics with ML analysis with and without batch correction

and DL models in predicting malignancy in lipomatous

neoplasms. The authors performed a radiomics analysis on post-

contrast fat-suppressed T1-weighted sequences with manual 3D

segmentations. Best numerical results were seen with models

trained on batch-corrected radiomics data (AUC of 0.80 vs. AUC
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of 0.70 in the external validation cohort for gradient boosting

trained on radiomics data with and without batch correction,

respectively). The Random Forest and Gradient Boosting models

also notably outperformed the ResNet50 DL model in external

validation, the latter of which only reached an AUC of 0.64.

Wang et al. (37) developed an ML radiomics-based nomogram

for detecting malignancy in unknown soft tissue masses. The

nomogram combined features of tumor margin, size, and

capsule, along with a calculated radiomics score, yielding AUC

values of 0.96 and 0.88 in validation testing.

Similarly, Fields et al. (24) reported that predictive models

developed from radiomics data using machine learning-

augmented approaches demonstrated effective discriminative

capabilities in correctly categorizing benign and malignant

lesions on preoperative MRI scans. Models built on unfiltered

radiomics datasets yielded AUC values of 0.77 for Real Adaptive

Boosting and 0.72 for Random Forest, respectively. Models

limited to metrics derived only from T2 fat-saturated and Short-

Tau Inversion Recovery sequences yielded similar performances,

with AUCs of 0.73 for Real Adaptive Boosting and 0.75 for

Random Forest. These results suggest that radiomics-based

models based on restricted subsets of sequences may still

maintain clinical relevance, which can help limit complexity and

shorten analytical processing steps in future prospective

implementations of machine learning-augmented workflows.

Navarro et al. (38) similarly developed DL models to stratify

between high-grade and low-grade soft tissue tumors based on pre-

treatment T2-weighted fat-saturated and contrast-enhanced T1-

weighted fat-saturated MRIs. Following manual segmentation,

separate DL models based on a pre-trained DenseNet-161

architecture were developed for each cohort of MRI sequences,

which achieved AUCs of 0.76 and 0.75 for T2-weighted fat-

saturated and contrast enhanced T1-weighted fat-saturated images,

respectively. The DL models notably outperformed comparator

regression models based on clinical features, tumor volume, and

combined tumor volume and clinical features, respectively (38).

Multi-parametric MRI is the modality of choice for evaluation of

treatment response in STS. However, the highly heterogeneous

nature of these changes and varying degrees of tumor cellularity

often confound evaluations and can contribute to clinical

uncertainty (39, 40). In a cohort study by Blackledge et al., the

authors suggested that ML can aid in evaluation of tumor

response to radiotherapy (41). The authors evaluated the utility of

eight different machine-learning approaches in differentiating

between five distinct intratumoral tissue classes. Naïve-Bayes in

combination with a Markov Random Field denoising algorithm

was able to quantify changes in tumor sub-regions in a limited

pre- and post-treatment cohort of 8 patients. These results suggest

an ability for machine-learning techniques to assess underlying

changes in tumor composition even in situations when overall

changes in size in response to treatment may not be overtly evident.

Despite limitations in operator dependence, ultrasound may

serve as a useful adjunctive modality for evaluation of soft-tissue

masses. In a study by Wang et al. (42), the authors trained a

convolutional neural network (CNN) to differentiate benign and

malignant soft tissue lesions on routine clinical ultrasound,
Frontiers in Radiology 04119
yielding an AUC of 0.91 and an accuracy of 79% on the test set.

Sensitivity (90%) and specificity (74%) were not significantly

different when compared to the performance of two interpreting

MSK radiologists. Another CNN model was trained to distinguish

between three different benign masses, namely benign nerve sheath

tumors, vascular malformations, and lipomas. For the classification

of lipomas, precision and recall of the model were 78% and 93%,

respectively; for the classification of benign nerve sheath tumors,

precision and recall were 71% and 42%, respectively; and for the

classification of vascular malformations, precision and recall were

60% and 64%, respectively (42).
Artificial intelligence in imaging of
bone tumors

Several studies suggest a moderate to high accuracy for AI-based

predictive models in differentiating between benign, intermediate

and malignant tumors (1, 2, 32). Gitto et al. (43) examined how

manual segmentation variability impacted the replicability of

texture analysis on CT and MRI scans of cartilaginous bone

tumors. The authors conducted 2D and 3D manual segmentations

on CT and MRI scans, then implemented marginal shrinkage to

assess impact on feature reproducibility. Overall, contour-focused

segmentation yielded higher rates of stable radiomics features for

3D (80%) as compared to 2D (75%) regions-of-interest for CT and

MRI. In comparison, marginal erosion performed more poorly for

3D features (p < 0.001) though was not statistically significant for

2D features (p = 0.343) (43).

He et al. (44) utilized DL on MRI images to predict the post-

curettage local recurrence of giant cell tumor of bone based on

preoperative MRI examinations. The results of CNN and CNN

regression models were compared against the performance of

four radiologists. The authors reported 75.5% accuracy and

85.7% sensitivity for the CNN model, and 78.6% accuracy and

87.5% sensitivity for the CNN regression model. This is in

comparison to 64.3% accuracy and 58.3% sensitivity for the

average performance of the radiologists (44).
Challenges and future directions

Despite promising trends of applying AI and ML in MSK

oncologic radiology, there exist several challenges and limitations

to implementation. While there remains great interest in

prospective implementations, achieving diagnostic accuracy is

crucial. Practicing radiologists should strive to gain a thorough

understanding of the use cases and associated challenges of AI

implementation in prospective clinical workflows so as to

maximize future applications in daily practice (14, 15).

Variations in implementation of AI applications is another major

hurdle. Neural networks, which strive to replicate human cognition,

require prolonged and frequently convoluted training and

refinement stages. Furthermore, differences in implementation

schemes across sites and institutions can significantly affect

performance (11, 45, 46). Standardization of workflows will serve to
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promote generalizability and repeatability, which will increase

diagnostic confidence in prospective applications (45).

Additionally, using such large amounts of patient data raise

unique considerations with respect to data use ethics (47). In

order to address these concerns, federated learning offers a

unique approach in allowing for local training of a centrally-

maintained AI model across many participating sites, thereby

obviating the need for centralized data repositories (48).

DL techniques may one day aid in supporting clinical decision-

making and automating certain lower-level tasks, allowing

radiologists to focus greater attention on higher level interpretive

tasks. Furthemore, radiomics and ML based classifiers working

alongside other -omics may synergistically work to advance

many AI modalities and more holistically capture unique aspects

of the patient experience (10).
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