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Editorial on the Research Topic
Drug discovery and development explained: introductory notes for the
general public

Finding new medications is a complex and costly process. Yet, as we work towards
creating better, safer, and faster treatments, it is essential to make this process more
understandable and accessible to everyone. This Research Topic is dedicated to introducing
the main concepts and methods in a way that is accessible to all. With contributions from
experts across the field, this Research Topic aims to demystify the drug development
pipeline and address some of the its most pressing challenges (Figure 1).

The article by Singh et al. provides a comprehensive overview of the entire drug
discovery process, explaining the key steps from basic research to the final stages of clinical
trials and post-market surveillance. By laying out the five main stages of drug discovery: pre-
discovery, discovery, preclinical development, clinical trials, and approval, this article serves
as a primer for readers unfamiliar with the field. The review also explains what are the main
therapeutic agents (e.g., small molecules, peptides, biologics like antibodies. . .), the pros and
cons of drug repurposing and highlights the high cost, long timelines and high attrition rates
associated with drug discovery and development. The integration of artificial intelligence
(AI) with traditional or novel experimental technologies, offers promising avenues to
eventually streamline the process. Yet, many obstacles remain, including the lack of high
quality data and the difficulty in understanding the disease state and human biology.

Chavez-Hernandez et al. explore the critical role of chemical and biological data in drug
discovery. Their review underscores the importance of balancing the quantity and quality of
data, especially as AI and machine learning methods become integral to the drug design
process. The authors advocate for a better reporting of both active and inactive compounds
to foster a more comprehensive understanding of bioactivity, emphasizing the need for
balanced datasets that should drive more accurate predictions and hopefully lead to better
treatments.
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Gadiya et al. explain the concept of FAIR (Findable, Accessible,
Interoperable, Reusable) data management. In an era where data is
often siloed within institutions and companies, the lack of accessible
datasets hinders progress. The authors first suggest that embracing
FAIR principles across the drug discovery pipeline can enhance
collaboration and thus improve the process. Then they further
mention that the FAIR approach should help drug developers to
learn from past efforts, thus reducing redundancy and accelerating
the development of new therapies.

Two articles discuss specifically the most commonly used types
of therapeutics: small molecules. Southey and Brunavs explore small
molecule drug discovery, outlining the various steps and the
challenges in the field. They note that despite well-established
protocols and novel knowledge, the process still remains very
complex. The authors then present emerging technologies aimed
at overcoming current limitations, hopefully making the path to new
drug approvals more efficient. In a related discussion, Giraud
provides a mini-review explaining how high-throughput
screening and biophysical methods are used in the early stages of
drug discovery. The article highlights the twomain strategies used in
the field: target-based and phenotypic-based discovery.

Munsier et al. present a compelling and timely review on the
transformative potential of AI in the discovery of biologics, with a

particular focus on antibodies, a major therapeutic area driving
innovation in drug development. Traditionally, antibody discovery
relied heavily on animal models and lengthy experimental processes.
The authors highlight the advancements in in silico approaches,
which are now capable of accelerating antibody design while
reducing reliance on animal testing. AI-driven approaches are
presented to showcase the shift towards more efficient and de-
risked antibody discovery processes, marking the beginning of an
exciting new chapter in developing biologic treatments.

Public engagement and participation are crucial components of
advancing drug development. Wang et al. present the results of a
survey on public awareness and willingness to participate in drug
clinical trials (DCTs) in China. Their findings reveal significant gaps
in knowledge and highlight the demographic factors influencing
participation rates. The authors call for improved public outreach
and communication strategies to foster greater understanding and
involvement in DCTs. This could have a significant impact on the
success of treatments.

The focus of several articles is about the growing concern of
using animal models in drug discovery. Marshall and Conlee discuss
the limitations of animal testing, noting the high failure rates of drug
candidates that appear safe in animals but prove ineffective or toxic
in humans. The article suggests to move towards human biology-

FIGURE 1
The graph illustrates a semantic network constructed automatically (i.e., without human-in-the-loop) using the LightRAG framework (https://arxiv.
org/abs/2410.05779) and the abstracts of this Research Topic. LightRAG builds upon existing retrieval-augmented generation (RAG) methodologies by
integrating graph-based retrieval in a more efficient, context-aware, and dynamic manner. It uses advanced language processing and a large language
model (LLM, here we used Mistral-7B Instruct) to identify key concepts (nodes) and their relationships (edges) within a selected document. This
process involves breaking down the text, embedding it into a high-dimensional space, and extracting meaningful entities and their interactions, resulting
in a visual map that highlights the main themes and connections across the analyzed text. Such AI methods (and many others), used on scientific results
and data, may assist the drug discovery process in a near future.
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based testing methods, which not only promise to be more
predictive of human responses but also align with ethical
imperatives to reduce animal use. Krebs and Herrmann provide
an overview of the international movement towards reducing
animal testing in biomedical research. They review new non-
animal research approaches that mimic human physiology.
Despite of the emergence of these new approaches, the authors
acknowledge the persistence of an animal methods bias. They call
for a cultural shift in the scientific community, supported by
changes in regulatory policies and funding incentives. Hartung
offers a balanced perspective on the role of animal models in
medical research. This author acknowledges their historical
contributions but also highlight their limitations. The article
argues for better, more humane alternatives that use novel
methods, envisioning a future where drug development is both
more effective and ethical.

Together, these articles offer a comprehensive yet accessible
overview of the drug discovery process. This Research Topic aims to
help the public and patient communities better understand the
world of drug discovery, empowering them to engage in the
dialogue surrounding drug development. As the field continues
to evolve, informed public involvement will be key to shaping a
more transparent, efficient, and patient-centered approach to
discovering new medicines.
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Drug discovery and development:
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Finding new drugs usually consists of five main stages: 1) a pre-discovery stage in
which basic research is performed to try to understand themechanisms leading to
diseases and propose possible targets (e.g., proteins); 2) the drug discovery stage,
during which scientists search for molecules (two main large families, small
molecules and biologics) or other therapeutic strategies that interfere or cure
the investigated disease or at least alleviate the symptoms; 3) the preclinical
development stage that focuses on clarifying the mode of action of the drug
candidates, investigates potential toxicity, validates efficacy on various in vitro and
in vivo models, and starts evaluate formulation; 4) the clinical stage that
investigates the drug candidate in humans; 5) the reviewing, approval and
post-market monitoring stage during which the drug is approved or not. In
practice, finding new treatments is very challenging. Despite advances in the
understanding of biological systems and the development of cutting-edge
technologies, the process is still long, costly with a high attrition rate. New
approaches, such as artificial intelligence and novel in vitro technologies, are
being used in an attempt to rationalize R&D and bring new drugs to patients faster,
but several obstacles remain. Our hope is that one day, it becomes possible to
rapidly design inexpensive, more specific, more effective, non-toxic, and
personalized drugs. This is a goal towards which all authors of this article have
devoted most of their careers.

KEYWORDS

drug discovery, drug development, therapeutic agent, biologics, small molecules,
artificial intelligence (AI)
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GRAPHICAL ABSTRACT

Introduction

Drug discovery has a long history and dates back to the early
days of human civilization. In those ancient times, treatments were
often discovered by chance or resulted from observation of nature,
typically but not exclusively, using ingredients extracted from
plants/animals, and not just used for physical remedy but also
for spiritual healing. Modern drug discovery research started to
being performed around the early 1900s. Nowadays, the
development of a new medicine usually starts when basic
research, often performed in academia, identifies a
macromolecule (i.e., a molecule with a large molecular weight
like genes/proteins), or a dysfunctional signaling pathway or a
molecular mechanism apparently linked to a disease condition
(pre-discovery stage) (Figure 1; Table 1) (Hefti, 2008; Hughes
et al., 2011; Mohs and Greig, 2017; Villoutreix, 2021). In general,
at this stage, research teams attempt to identify the so-called
therapeutic targets (often a protein) that are linked to the disease
state (Gashaw et al., 2012). To be nominated therapeutic target,
scientists will also have to find therapeutic agents that modify the
function of the perturbed target and restore health or alleviate
symptoms. Finding the right target is however extremely
challenging. Further, drugs are efficient in humans because of
specific actions on the intended therapeutic target but also due to
interactions with other, unintended (often unknown) targets! The
process continues with the search of therapeutic agents followed by a
preclinical phase, during which potential drugs are tested in a battery
of animal models, to demonstrate safety and select drug candidates

(novel strategies to avoid animal testing are being developed, see
below). Clinical studies in humans can then get started to establish
safety and efficacy of the drugs in patients with the highest benefit-
to-risk ratio (Kandi and Vadakedath, 2023). The studies are then
submitted to regulatory agencies, which review the documents and
decide about market approval. If the review is positive, the drug can
then be released to the market and be administrated to patients.
Once a drug has been approved, investigations continue to monitor
putative side effects that could be caused, over time, by the new
treatment. This last step is often referred to as pharmacovigilance
studies (or real-world evidence), generally dubbed “phase 4” clinical
trial. The entire drug discovery and development process involves
many disciplines, years of efforts and is very expensive. It also
implies the generation and use of vast amount of data usually
obtained via different types of high-throughput technologies.
Many of these experiments and the analysis of the results can be
automated via computer-assisted methods to speed-up some steps of
the process, gain knowledge and reduce mistakes.

As mentioned above, to act on a disease, the problematic
target(s) have to be modulated by a therapeutic agent (or
several). There is a wide variety of agents that traditionally fits
into two major classes, the so-called “small molecules” (small
chemical compounds, some modified short peptides. . .) and the
“biologics” (typically macromolecules such as recombinant proteins,
antibodies, siRNAs, long peptides, cells, genes . . . and vaccines).
There are major differences between biologics and small molecules
(Figure 2; Table 2) and we will essentially focus here on small
molecules. It is also important to note that gene therapy is different
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from the other types of therapeutic agents because it is a technique
that modifies a person’s genes to treat or cure a disease. In this case,
the target is a disease-causing gene which has to be modified with a
healthy copy of the gene, or the disease causing gene could be
inactivated. Thus, beside technical issues, there are a number of
ethical questions surrounding gene therapy and genome editing
strategies that are not easy to answer. Further, some therapeutic
agents are not acceptable to some parts of the population, as seen
during the COVID-19 crisis and vaccine hesitancy. This is often due
to misunderstanding of the biological processes and
misinformation, resulting in fears, but yet this has to be
considered. Also, about 5%–10% of the population are non-
responders and have to receive other medications than vaccines.
The division into small molecules and biologics is far from being
perfect as some therapeutic agents combine a small molecule grafted
onto a biologic (e.g., tisotumab vedotin is an antibody-drug
conjugate used to treat cervical cancer). Therapeutic agents can
be administrated to patients via different routes, called “routes of
administration”. Small molecules can in general be administrated
orally (the most convenient route for patients), while biologics
usually need to be injected. The choice of a route of
administration is also governed by the patient’s condition, for
instance, in acute situations in hospitals, drugs are most often
given intravenously. Other critical medical interventions that will
not be discussed here are surgery, radiotherapy and psychological
support.

Drug discovery and development:
overview of the process

There are several stages in the drug discovery process that
require numerous skills and the use of various advanced

technological platforms (often a combination of computational
and experimental approaches) to validate targets and search for
therapeutic agents. When initial experimental compounds have
been sufficiently optimized to be selective, potent and safe in
preliminary in vitro experiments and animal models, they can be
nominated as drug candidates. At this stage, the project focus shifts
from drug discovery to drug development to enable human clinical
trials. If the therapeutic agent is successful in all three phases of the
clinical trials, it goes through regulatory registration and the drug
can be marketed (Hefti, 2008; Hughes et al., 2011; Mohs and Greig,
2017).

Now, we will take a closer look at the process with the
discovery of small molecules as an example. The process
usually begins by focusing on a disease and the search of
possible targets, often proteins, that can be modulated by
small compounds (Hughes et al., 2011) (Figure 1). These
compounds are expected to interfere or prevent the disease or
at least limit the development of symptoms. These targets can be
identified using cellular assays, genomic studies, proteomic
studies, among many others. Then, thousands (to millions or
even billions when using computer-aided drug design approaches
prior to vitro assays) of small molecules have to be tested in
various types of assays and a few promising molecules are then
evaluated in animal models (and in alternative in vitromodels) of
human diseases. It is worth mentioning here that animal models
can be misleading (e.g., a drug found toxic in animal models may
not be toxic to humans or the opposite) (Pognan et al., 2023). At
the same time, absorption, distribution and elimination studies
(ADME) are conducted. After years of research, a few compounds
will hopefully be safe and effective enough to take forward to
trials in patients. The different stages can have different names in
the scientific literature, often they are referred to as: the pre-
discovery and basic research stage (around 5–6 years) in which

FIGURE 1
Drug discovery and development. The main stages are represented in a highly simplified manner. The process varies depending on the molecular
mechanisms expected to be linked to the disease and the type of therapeutic agents that needs to be developed. The approximate cost is around US
$2.8 billion and the time needed to complete the entire process is around 12–15 years.

Frontiers in Drug Discovery frontiersin.org03

Singh et al. 10.3389/fddsv.2023.1201419

9

https://www.frontiersin.org/journals/drug-discovery
https://www.frontiersin.org
https://doi.org/10.3389/fddsv.2023.1201419


TABLE 1 Glossary.

Targets or drug targets A therapeutic target is in general a macromolecule (typically a protein), which may cause or be associated with a
particular disease, that can be modulated by a therapeutic agent in a measurable way

Genes Genes are macromolecules, made up of deoxynucleic acid (DNA) bases. In humans, genes vary in size from a few
hundred DNA bases to more than 2 million bases and about 20,000 to 25,000 genes have been identified

Proteomics Proteomics is the process of separation and characterization of all the proteins of a biological system. Target
identification with proteomics can be performed by comparing the protein expression levels in normal and diseased
tissues

Biologics Diverse molecules from biological origins that include, nucleic-acids, various (recombinant) proteins, antibodies . . .
some types of peptides. Biologics typically have a high molecular weight

Proteins Proteins are large biomolecules (up to thousands of atoms) that comprise one or more chains of amino acids.
Proteins perform a vast array of functions within organisms, often through interactions with other macromolecules.
Proteins are products of genes; they generally fold into a specific three-dimensional (3D) structure that determines
their activities. There are different types of proteins with different functions and locations in the body

Peptides Peptides are short chains of amino acids. They can be modified to include non-natural amino acids (up to hundreds
of atoms). Some peptides belong to the category of glycopeptide or lipopeptide, among others. Very short and
modified peptides can behave like small molecules while longer peptides (e.g., insulin which is used to manage
diabetes) fit in the category of biologics. At present, there are very few approved peptides that can be given by oral
route but important work is ongoing in this field to enable oral delivery

Small molecules Any organic compound with around 80–100 atoms. Most are made synthetically (aspirin), while others can be
derived from natural product (e.g., morphine, which is used to relieve moderate to severe pain)

Drug candidates A molecule suitable for clinical testing. The molecule is expected to bind selectively to a target involved in the disease
process, to elicit the desired functional responses in vivo, often in animal models of the human disease, to have
adequate bioavailability and bio-distribution within the body to reach the intended target and to pass formal toxicity
evaluation in various in vitro and animal models

Bioinformatics, Chemoinformatics, Artificial
Intelligence (AI)

Bioinformatics is a branch of molecular biology that involves extensive analysis of biological data using computers

Chemoinformatics is a field that attempts to solve chemical problems on the computer, including chemical structure
coding, properties modeling and development of databases

Artificial Intelligence (AI), as used today (the so-called weak-AI), combines computer sciences and mathematics and
uses (large) datasets to enable problem-solving. It includes various learning approaches, natural language processing,
knowledge representation and reasoning, among others

ADMET Absorption, distribution, metabolism, excretion, and toxicity. A drug has to reach the intended target(s), elicit the
desired functional response with no or limited toxicity and be eliminated from the body (typically via the liver or
kidneys). These are critical properties of the drug candidates that are commonly investigated at various stages of the
process

PB/PK Physiologically-based pharmacokinetic modeling and simulation (PB/PK) is a computer modeling approach that
incorporates blood flow and tissue composition of organs to define the pharmacokinetics (PK) of drug candidates

PK Pharmacokinetics (PK) is the time-concentration profile of drugs administered in vivo to living organisms. PK
parameters include clearance, volume of distribution, peak plasma concentration . . . PK is sometimes described as
“what the body does to a drug”

PD Pharmacodynamics (PD) refers to the relationship between drug concentration at the site of action and the resulting
effect, including the time course and intensity of therapeutic and adverse effects. PD parameters include minimum
effective concentration, maximum safe concentration, onset of action, therapeutic range and therapeutic index. PD
describes how biological processes in the body respond to or are impacted by a drug

PK/PD Relationship of the drug effect (pharmacodynamics) to the drug concentrations in the body compartments (e.g.,
blood, organs) as a function of time after drug administration

Off-target activity Action of a drug on targets other than the intended biological target. Such events commonly contribute to adverse
effects or toxicity, however, in some cases, off-target activity can be valuable for therapeutic purposes

On-target toxicity A drug is usually designed to interact with its intended target. In some situations, the drug induces exaggerated and
adverse pharmacological effects at the target of interest. This is commonly referred in the literature to as on target
toxicity

Adverse events Unintended pharmacological effects that occur when a medication is administered correctly. There are different
types of reactions (mild, moderate or severe) that can be dose-dependent or not

Side effects Secondary unwanted effects that occurs due to the drug therapy. Side effects are usually known and patients are
informed about such effects

(Continued on following page)
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targets and modifying small molecules are searched in silico
(i.e., using a computer), in vitro (i.e., in the test tube), ex vivo
(e.g., on tissues or organs) and in vivo using simple animal models
(i.e., in a living organism, typically rats or mice) and a preclinical
stage (2–3 years) during which the best small molecules are
selected using various in silico, in vitro and in vivo
experiments. In general, after all these steps, only a few
compounds progress to the next stage. Toxicity is investigated
further on at least two animal models [one rodent (e.g., rat) and
one non-rodent (e.g., dogs, mini-pigs)] often using different
administration routes before they become nominated clinical
candidates and get a regulatory permission to proceed to
human clinical trials. Prior to starting clinical trials, a so-
called Investigational New Drug (IND) application is
submitted to regulatory agencies (e.g., the Food and Drug
Administration in the United States). Such documents, at least
up to now (see below), usually include animal efficacy data and
toxicity (Good Laboratory Practice (GLP)-compliant animal
toxicology data are performed supporting the dose, dosing
schedule, administration), manufacturing information, clinical
protocols (e.g., patient population, number of patients, duration

of the study) proposed for the clinical trials and information
about the investigators of the study.

If the IND is approved, then clinical trials start (4–7 years)
(Kandi and Vadakedath, 2023). In some specific cases such as
cancer, a so-called phase 0 may get started, which involves the
use of very small doses of the new drug in a limited number of people
and sometimes in patients. This is an exploratory study with the goal
of quickly exploring if and how the drug may work. In Phase I, the
safety, and tolerability of the therapeutic agent (usually a single dose
at first and then short-term multi-dose studies) is tested in a small
number of healthy individuals (e.g., 20–80 people). Other
parameters are investigated including the dose. Phase II typically
involves 100–500 patients and the study can take place in several
hospitals located in different countries. The study is designed to
determine whether or not the therapeutic agent provides the desired
therapeutic effect. Safety studies continue through the phase II trials.
In the first part of phase II, referred to as phase IIa, the goal is to
further refine the dose required to provide the desired therapeutic
impact or monitored endpoints for the clinical candidate. Once the
proper dose levels are determined, phase IIb studies can be initiated.
The goal of the phase IIb is to determine the overall efficacy of the

TABLE 1 (Continued) Glossary.

Preclinical development Preclinical studies are a stage of research that precedes clinical trials (testing in humans). The therapeutic agents are
tested in animal models of human diseases or in systems that simulate human diseases. The main goals are to
determine a starting, safe dose for first-in-human study and assess potential toxicity. Research into early
formulations (e.g., tablet, capsule, intramuscular injection, intravenous, sublingual. . .) is also performed

Clinical trials Research studies performed in humans aiming at evaluating the efficacy (does the drug cure or slow the progression
of a disease?) and safety (does the drug cause undesired effects, or toxicity?) of drug candidates. Human clinical
research is tightly regulated by authorities around the world (e.g., US Food and drug Administration or US FDA and
EuropeanMedicines Agency or EMA). Pharmaceutical companies and other organizations developing drugs have to
conduct extensive preclinical evaluations, propose the design of clinical trials and formally submit these data and a
clinical plan to regulatory authorities. If regulatory authorities approve the proposed strategy, Phase I (first-in-
humans) clinical trial can start. Each study has its own pre-defined rules about which patients can or cannot
participate, which is called eligibility

Phase I Aka “first-in-humans” trial. Test on 20–80 healthy volunteers to assess the safety and pharmacokinetics, absorption,
metabolism, and elimination, actions on the body, as well as possible side effects, formulation, and dose. In some
cases, a placebo can be used. For some drugs, a phase 0 can be sometime performed before phase I to evaluate some
properties of the drug on few patients or on healthy individuals

Phase II Assesses drug safety and efficacy on about 100–500 patients (suffering from a specific disease), some of which may
receive a placebo or an approved drug for that disease, called “standard of care”. Analysis of optimal dose is
performed while adverse events and risks are recorded

Phase III Phase III enrolls numerous patients (e.g., 1,000–5,000), enabling medication labeling and instructions for proper
drug use. Efficacy, dose, and toxicity are observed and adjustments to the final medication label are being made based
on such information

Phase IV or pharmacovigilance or “real world evidence” Following drug approval and manufacturing, regulatory agencies require companies to monitor the safety of the
approved drug. Drug makers, health professionals, hospitals and patients report adverse events occurring when
taking the approved drug

Therapeutic window The dosage (a range of concentrations) of a drug that provides efficacious therapy and is safe (without serious side
effects)

Drug formulation The process in which the therapeutic agent is combined with different substances to produce a final medicinal
product (e.g., a tablet, infusion solution, etc.). Formulation optimization is ongoing throughout pre-clinical and
clinical stages. It ensures drugs are absorbed into the body and delivered to the proper organ at the right time and in
the right amount

Patent A patent is an exclusive right granted by the governments for an invention. Patents give an inventor (academic group
or a private company) the exclusive right to prevent others from making, using, selling, or importing a product or
process based on the patented invention without the inventor’s prior permission, such as through a patent license.
Patent protection is limited to the country or region where it was issued and limited in time, typically 20 years from
the date of patent application filing. Pharmaceutical patents can be extended for new indications or novel
formulations
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candidate drugs in a limited population of subjects. Numerous drug
candidates fail in phase II due to safety issues or lack of efficacy. In
phase III, the efficacy of the drug candidate is evaluated in a larger
patient population. These studies are typically randomized and
involve 1,000–5,000 patients at multiple clinical trial centers and
are designed to determine the efficacy of the candidate compound
relative to the current standard of care or a placebo, possible

interactions with other medications and re-assess different doses
(optimal dose is important for medication effectiveness). When
neither the clinicians nor the patients know which of the treatments
the patient is getting, the study is said to be double-blind. The cost
and time associated with this phase can vary dramatically depending
on the disease and the clinical endpoint under investigation. Phase
III clinical trials are the most expensive part of drug discovery and

TABLE 2 General characteristics of small molecule drugs and biologics.

Property Small molecules Biologics

Size Low molecular weight (around 80–100 atoms) High molecular weight (hundreds to several thousand atoms)

Stability Usually stable at room temperature Usually unstable at room temperature (need to be stored in refrigerators and freezers)

Three-dimensional structure Relatively simple Complex

Route of administration Often oral Typically, via injection or infusion

Cell membrane permeability High Low

Tissue distribution Easily distributed via circulation Limited distribution via circulation and lymphatics

Immunogenicity Limited Possible

Treatment cost Relatively low Relatively high

Attrition (business aspect) Relatively high Relatively low

Competition (business aspect) Very high (after patent expiration or before) Less severe competition (after patent expiration or before)

FIGURE 2
Small molecules, peptides and biologics. The properties and sizes of the therapeutic agents vary greatly. Threemolecules are presented at the same
scale, these involve rivaroxaban, a small chemical molecule used to treat thrombosis and pulmonary embolism, cyclosporine, a short immunosuppressive
cyclic peptide (11 amino-acids, a biologic that still resembles to a certain extent to a small molecule) used to treat post-transplant organ rejection and a
biologic, pembrolizumab (antibody, over 1300 amino-acids), used to treat various types of cancer.
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development as it has a complex design and requires a large number
of patients. Last but not least, formulation and stability studies are
performed during the development stage to characterize the
impurities present (either in batches or during storage conditions
worldwide), and to determine the best formulation. Upon
completion of the phase III trial, a New Drug Application
(NDA) is submitted to the regulatory agencies to demonstrate
drug safety and efficacy. Regulatory reviews can lead to requests
for additional information, or even additional clinical trials to
further establish either safety or efficacy. Ideally, these reviews
lead to regulatory approval, including labelling requirements, and
approval to market (review and approval ~1–2 years). For approval,
the drug must have adequate pharmaceutical quality, therapeutic
effectiveness, and safety. It has to have a favorable “risk-benefit
ratio”. Drugs offering important advances in treatment of a
condition are given priority. Approval of regulatory bodies does
not, however, signal the end of clinical trials. In many cases,
regulatory agencies will require additional follow-up studies,
often referred to as phase IV or post-marketing surveillance
(“real-world evidence” trials) with infinite duration. In general,
these studies are designed to detect rare adverse effects across a
much larger population of patients or long-term adverse effects. The
impact of phase IV studies can include alterations to labelling based
on safety observations, contraindications for use of the new drug in
combination with other medications, or even the withdrawal of
marketing approval if the findings are severe enough.

Drug repurposing: challenges and
opportunities

Drug repurposing or repositioning aims to take a drug
(approved or in advanced clinical stages or even a drug that has
been withdrawn from the market, most of the time it involves small
molecules but biologics like antibodies are also explored), thus a
molecule that has undergone extensive safety and efficacy testing,
and use it for an additional or unrelated indication (van den Berg
et al., 2021; Roessler et al., 2021; Schipper et al., 2022). In some
situations, even a withdrawn drug can be repurposed like
thalidomide, originally intended as a sedative and then used for
treating a wide range of other conditions, including morning
sickness in pregnant women. Thalidomide was then withdrawn
due to causing birth defects but then was approved to treat
leprosy (in 1998) and multiple myeloma (in 2006) (Begley et al.,
2021). Drug repurposing approach can be very valuable in most
cases including emergency situation like a pandemic, for rare and
neglected diseases [for which specific drug developments are in
general missing in pharmaceutical companies (Scherman and Fetro,
2020; Roessler et al., 2021)]. This strategy is promoted as a cost- and
time-effective approach for providing novel medicines. It is often
claimed that repurposing drugs can be faster, more economical, less
risky, and carry higher success rates as compared to traditional
approaches, primarily because it is in theory possible to bypass early
stages of development such as establishing drug safety. Other
benefits that come with this approach include readily available
products and manufacturing supply chains. Drug repurposing
can be very profitable as in the case of fenfluramine (in 2022,
acquisition of Zogenix by UCB Pharma for about US$ 1.9 billion,

https://www.ucb.com/stories-media/Press-Releases/article/UCB-
Completes-Acquisition-of-Zogenix-Inc), a drug initially developed
for weight loss, withdrawn and now used in several countries for the
treatment of some forms of epilepsy (Odi et al., 2021). Yet, despite
advantages, drug repurposing suffers from several issues. One
problem is that there are no possibilities for optimization of the
therapeutic molecule without losing the repurposing potential
because any small change in the structure of the therapeutic
agent means a new full manufacture process validation and
preclinical safety development. Identifying an optimal dosage and
formulation for the new disease indication can also be time
consuming and requires novel investigations while side effects
can indeed arise due to the new indication or in cases doses need
to be changed. Also, assessing the patent status of the drug to
repurpose requires very specific skills. The molecules that are
investigated for repurposing are either patented or off-patent,
and in some cases the intellectual property protection for the
new indication may not be strong enough to engage in such
project. Overall, while drug repurposing is intuitively attractive as
it offers shorter routes to the clinic, challenges throughout the entire
process are usually substantial. Investigating molecular mechanisms
behind repurposing can however be very valuable as it can help
identifying novel targets and as the repurposed drugs could be
considered as starting point for the development of novel
compounds (e.g., lenalidomide and pomalidomide are superior
molecules derived from thalidomide) and as such emerge as
breakthrough innovation in a reduced amount of time and still
reduced cost compared to starting from scratch. It could also be of
interest to combine several approved drugs (in some cases with a
newer drug) to increase effectiveness.

Artificial intelligence: trust, but verify

Providing efficient and safe drug to patients is a long and
complex process. The amount of data generated during this
process or that can be collected from various sources is massive.
It is thus necessary to integrate as much as possible quality data so as
to be able to make decision in real time. Artificial Intelligence (AI or
indeed, most of the time, machine learning) can definitely contribute
here as it involves the use of powerful computers and efficient
program algorithms to integrate large volume of data to train expert
systems to perform a complex task (Brogi and Calderone, 2021;
Ruffolo et al., 2021; Jayatunga et al., 2022; Sadybekov and Katritch,
2023). During the early discovery phases, AI is used to rationalize
processes, and to assist in project management (e.g., definition of a
target product profile that allows to locate each compound with
regard to the expected final drug specifications in a complex multi-
dimensional space), to summarize information, to understand better
complex biological systems (e.g., using for instance system biology
and chemogenomics approaches), or to propose original
compounds or biologics (e.g., small molecules, peptides)
generated by the machine under various types of constraints
(e.g., ADMET constraints or affinity to the target) (Lambert,
2010; Gupta et al., 2021; Paul et al., 2021; Kontoyianni, 2022;
Vijayan, et al., 2022). Most of the well-known success stories of
AI have been in image recognition (e.g., in the early days, the
approach was trained to for instance recognize cat and dog images,
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but today the method can be used to analyze biopsies or guide
surgery) while also advertised in reducing time to reach phase I
clinical trial. In the latter case, one can site the story of compound
DSP-1181, developed by Exscientia and Sumitomo Dainippon
Pharma, intended to treat obsessive compulsive disorder where
time from first screening to the development stage was 4 time
faster than using a conventional approach (although,
unfortunately, the molecule failed in phase I, for numerous
reasons including a difficult target while it was also observed that
the molecules generated by AI were not novel) (Santa Maria Jr et al.,
2023) (https://www.science.org/content/blog-post/another-ai-
generated-drug; https://www.cas.org/resources/cas-insights/drug-
discovery/ai-designed-drug-candidates). Similar observations have
been posted by hundreds of financial analysts and research scientists
about results obtained by other AI companies. In other words, the AI
predictions are not perfect and indeed cannot be perfect at present
(Bajorath, 2021; Bender and Cortés-Ciriano, 2021). This situation
reflects the dependency of AI/machine learning to quality, size and
diversity of the data used to train the mathematical models. There
are millions of compounds (most will never be a drug) tested via
standard experiments available in various databases, but there are
only a few thousand approved in humans that are annotated on
which to learn from, highlighting the so-called data gap (i.e., there
are billions of pictures of dogs and cats to learn from, but a limited
amount of quality data is available in the field of drug discovery
despite the use of numerous the high-throughput approaches). The
predictions can thus be misleading, because we do not have enough
quality data as input and/or because we do not understand enough
the complexity of the biological systems (Moingeon et al., 2022).
During the drug development phases, in human, AI is associated to
data-mining to for instance model some properties (e.g., PB/PK, PK/
PD or population-based simulations and analysis, prediction of
drug-drug interactions . . .). At this stage, these computer
approaches can also be used to select the most informative
population profile to be included in clinical trials or to explain
the variability of effects, or provide « virtual » patients or
populations, and applied to, for example, pediatric formulation
using as input data collected on adults (Lang et al., 2021).
Related to these, the concept of digital twins (which has been
around for a while in other areas of research), now starts to be
explored in the context of drug discovery and development. The
overall idea would be to collect data about a particular disease, how it
progresses, about the current treatments, about specific patients, and
about a whole population, encapsulate all these data into a computer
model so as to create a digital representation of a biological system or
of a person and be able to simulate, for example, what might happen
if one were to take a novel drug. While the concept is attractive, there
are still major challenges and obstacles ahead but progresses are
being made (An and Cockrell, 2022). Overall, AI, in the field of drug
discovery and development, is still in the infancy stage and it will
take time to fully integrate the technology into the R&D process
(Hillisch et al., 2015). AI-discovered drugs do not guarantee success
in clinical trials. The understanding of the data used as well as the
critical mind of the scientists are key points that lead to the success
or failure of AI-assisted drug research and development processes.
The technology, in some circumstances, can make the process faster
and more cost-effective, however, AI needs quality data to produce
meaningful results and still today requires significant experimental

validation. As such, it is important to trust AI, but verify the
predictions (Schneider et al., 2020; Bajorath, 2021).

Rising cost: from drug discovery to new
treatments

Analyses across all therapeutic areas indicate that the
development of a new medicine, from target identification
through approval for marketing, takes around 12–15 years and
often longer. The cost to develop a new drug is very high, in part
because failure is endemic in drug discovery, and success is rare.
While various numbers have been reported, the latest formal
assessment is around US $2.8 billion (DiMasi, 2020). There are
many factors that contribute to this situation: the lack of
understanding of what causes the disease can lead to the
selection of the wrong therapeutic target; the impossibility of
reaching the target with a sufficient concentration of drug in vivo
without leading to adverse effects; no formulation compatible with
the use of the drug in human; the therapeutic agent developed
during years is found in phase III to have very low efficacy; the
therapeutic agents or a metabolite (e.g., case of a small molecule) can
interacts, specifically or not, with other drugs or with hundreds of
molecules in the body, these interactions are usually not known in
details and can lead to numerous adverse effects; animal
experiments that are used to evaluate potency, selectivity, and
toxicity during the different stages of the process can be highly
misleading; stricter regulatory guidelines; duration of patents; the
identified therapeutic molecule can be toxic in some patients but this
could not be anticipated during the clinical trials due to the relatively
small number of patients treated. Next and related to the cost of
R&D, comes the cost of the treatments. Although there is a very
complex protocol to determine the price tag of a drug (it varies from
country to country, it can consider the insurance system, whether
the drug is curative and represents a major advance to both patients
and the health system or it has a minor effect on the disease), but in
the end, biologics are generally much more expensive than small
molecules, in part due to the complex manufacturing process.
Studies suggest that on average, the daily dose of biologics costs
22 times more than a small molecule (Makurvet, 2021). It is
important to keep in mind that the healthcare systems, in many
countries, are about to collapse and that about half of the world
population cannot get access to basic treatments (Ozawa et al.,
2019). Biologics have been here for several decades already and are
becoming increasingly important in several therapeutic areas. For
example, cancer checkpoint inhibitors (e.g., the antibody
ipilimumab and about 4–5 others at the time of writing) have
received considerable and broad interest because of their ability
to generate responses in many hitherto intractable malignant
tumors. Yet, many recent studies suggest that such molecules
lead to responses in less than 10%–15% of patients with cancer.
Clearly, such molecules offer hope but also rise many questions
(Fojo et al., 2014; Kantarjian and Rajkumar, 2015). That is, in some
cases, biologics are real innovative breakthroughs, but in other
situations, the strategy is pursued only for commercial reasons
and alternative molecules such as small molecules are not even
considered. These questions are, in theory, investigated by
regulatory agencies [The United States Food and Drug
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Administration (FDA), European Medicines Agency (EMA),
Pharmaceuticals and Medical Devices Agency (PMDA)] so as to
try to avoid speculative drugs but more transparent processes would
certainly be beneficial to patients and the general population.
Although finding new treatments is very difficult, it is a
profitable market, with global drug sales expected to grow to US$
1.9 trillion by 2027 (Mullard, 2023).

Innovation in regulatory science and
methodologies

It is important to note that, in step with the scientific progress in
human tissue models research in the past decades, in the US, new
medicines may not have to be tested in animals, according to
legislation signed by the President Joe Biden in late December
2022 (“Text–S.5002–117th Congress (2021–2022): FDA
Modernization Act 2.0.” 29 September 2022. https://www.
congress.gov/bill/117th-congress/senate-bill/5002/text).
Accordingly, US FDA is already accepting data from in vitro studies
as part of the formal submission to the Agency (Wadman, 2023).
Additionally, at the same time, following the leadership of some
academic researchers (e.g., Guzelian et al., 2005; Hoffmann and
Hartung, 2006), major European and US agencies started using
evidence-based methodologies, such as systematic reviews and
systematic maps, in toxicological assessment. These
methodologies were developed and tested over the last 40 years
in clinical research, spearheaded by Cochrane Collaboration (www.
Cochrane.org) to compare the effectiveness of treatments, and have
been applied to toxicological assessment of data-rich substances by
the European Food Safety Authority (EFSA, 2017) and US
Environmental Protection Agency’s (US EPA, https://cfpub.epa.
gov/ncea/iris_drafts/recordisplay.cfm?deid=356370). While some
of the aspects of these methodologies are not entirely applicable
to drug-discovery because of the proprietary nature of the work, the
main principles of evidence-based approaches, which encourage
pre-publishing the methodologies before the research is conducted,
comprehensiveness and transparency in data selection,
minimization of bias (or systematic error), are in line with basic
principles of the scientific method, and are applicable to drug
discovery. Programs and drug candidates are all too frequently
selected based on a biased opinion of a few scientists who are
bound by similar training, scientific methodologies and beliefs.
Opening-up drug discovery to scrutiny by other scientists with
different training and opinions may lead to more failures in the
earlier discovery stage, but less failures in the clinic, resulting in
enhanced efficiency and more successes, benefiting the patients who
need new treatments, first and foremost.

Concluding remarks

Drug discovery and development is a long and difficult
endeavor; all novel ideas and strategies that can improve the
process are valuable to explore. It is interesting to note that
despite the steady increase in research and development
expenditure, and major scientific advances in proteomics and
genomics, the discovery of new drugs either seems to be drying-

up some years or to remain essentially stable (Laermann-Nguyen
and Backfisch, 2021). This situation has various origins (e.g., many
diseases with no treatment are extremely difficult to study), while,
certainly, industry scientists would benefit from greater exposure to
new ideas from public research and public researchers would benefit
from the private sector to move beyond exploration of molecular
mechanisms towards the end goal of efficient development of
candidate therapeutic agents. Along these lines, some countries
like the United States and United Kingdom have been working
extensively at improving academic drug discovery (e.g., all the skills
and platforms connected via open research networks with rational
protocols) but in the others, the process is fragmented (no
coordination, no intent, duplication of efforts and inefficient
investments . . .) and, thus, not capable of producing desired
results compared to the time, energy and money spent. A first
step could be to develop strong academic drug discovery networks in
countries where this type of activity is not coordinated or not
considered. Strong collaborations between the private sector,
academia and not-for-profit institutions are clearly of major
importance and have led to some successes in the past but such
partnerships can be difficult to maintain over a long period of time
(Yildirim et al., 2016; Takebe et al., 2018). The rationale being that
open interconnections between the different scientific disciplines
involved in drug research allow a “cross-fertilization”, each of them
benefiting from the advances of the other fields. Obviously, such
collaborations tend to be easier when academic and private research
teams are located on the same campus, with possibilities of sharing
ideas or technologies. Other types of collaboration imply building
consortia, often for around 4–5 years, with research teams located in
different cities or countries (unfortunately, most of the time, when
the consortia have been built, they function as closed systems not
allowing new scientists or novel research teams to join). Therefore,
novel strategies need to be pursued, and among the novel public-
private models that are being investigated, open science
partnerships, could be of interest, if correctly implemented (e.g.,
the system must be open to all interested scientists, teams and
relevant disciplines) (Gold and Edwards, 2022). Open science
projects (Chodera et al., 2020), like the consortia models
discussed above, are built on the differential expertise of the
various partners, with generally academic and governmental
partners taking on a larger role in the earlier stages and big
pharmas leading in the later stages (e.g., advanced preclinical
investigations, product development, manufacturing, and
distribution). But in open science projects, results, publications,
data, tools, and materials are open without regard for intellectual
property. At some points, the various partners are free to use the
results and develop their own proprietary products if deemed
appropriate.

Next, novel technologies including AI could be a game changer
in the years to come, even more so once we get past the hype stage.
Novel approaches to replace animal models by more efficient,
ethical, human-biology-based in vitro approaches could also play
a significant role this next decade. Indeed, new tools and
understanding, in, for instance, the area of investigative
toxicology, are continually being implemented to reduce safety-
related attrition in drug development (Aleo et al., 2020). Combining
all these strategies, methods and know-how should definitively
facilitate the design of more specific, effective, non-toxic, and
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patient-tailored drugs, thereby, providing a more optimistic outlook
to the field. As a last note, we encourage the general public and
patients to become more curious about the process of finding novel
therapies, from the pre-discovery to the post-marketing stages.
Further, crowd-funded citizen science initiatives are emerging in
various areas of drug discovery and development (e.g.,https://www.
clinicaltrialsarena.com/news/citizen-science-as-an-open-trials-tool-
for-post-marketing-and-drug-repurposing-5909331-2/; see also the
CTSA program at NIH), these projects are definitively valuable to
the field.
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Chemical and biological data are the cornerstone of modern drug discovery
programs. Finding qualitative yet better quantitative relationships between
chemical structures and biological activity has been long pursued in medicinal
chemistry and drug discovery. With the rapid increase and deployment of the
predictive machine and deep learning methods, as well as the renewed interest in
the de novo design of compound libraries to enlarge the medicinally relevant
chemical space, the balance between quantity and quality of data are becoming a
central point in the discussion of the type of data sets needed. Although there is a
general notion that the more data, the better, it is also true that its quality is crucial
despite the size of the data itself. Furthermore, the active versus inactive
compounds ratio balance is also a major consideration. This review discusses
the most common public data sets currently used as benchmarks to develop
predictive and classificationmodels used in de novo design.We point out the need
to continue disclosing inactive compounds and negative data in peer-reviewed
publications and public repositories and promote the balance between the
positive (Yang) and negative (Yin) bioactivity data. We emphasize the
importance of reconsidering drug discovery initiatives regarding both the
utilization and classification of data.
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1 Introduction

Data and the increasing role of predictive models, including
machine and deep learning (Mouchlis et al., 2021; Bajorath et al.,
2022), are the cornerstone of modern drug discovery programs
(Zhang et al., 2022). The increasing use of computational methods
that recently included deep learning is reducing the time and
financial costs of finding drug candidates (Zhang et al., 2022).
For instance, computer-aided drug design (CADD) has led to the
discovery of more than seventy approved drugs (Sabe et al., 2021)
including remdesivir as an emergency treatment against SARS-CoV-
2 in 2021 (Dos Santos Nascimento et al., 2021).

CADD methods are typically divided into two main categories,
structure-based drug design (SBDD) and ligand-based drug design
(LBDD) that rely on the three-dimensional (3D) structure data
available for one or more molecular targets, or the structure-activity
data of ligands, respectively. Examples of deep learning applications
in SBDD include AlphaFold to assist in homology modeling, and
DiffDock in molecular docking. AlphaFold predicts 3D protein
structures according to their amino acid sequences (Jumper et al.,
2021), and DiffDock predicts the binding mode between the ligand
and specific protein target (Corso et al., 2022). One of the most
notable approaches in LBDD are quantitative structure-activity
relationships (QSAR) (Dos Santos Nascimento et al., 2021).
Current QSAR methods use machine learning and deep learning
(Soares et al., 2022) that can be divided into linear methods and
nonlinear methods (Patel et al., 2014; Greener et al., 2022). Linear
methods include linear regression, multiple linear regression, partial
least squares, and principal component analysis (Patel et al., 2014).
Nonlinear methods include artificial neural networks, k-nearest
neighbors, and Bayesian neural nets, to name a few examples
(Patel et al., 2014; Greener et al., 2022).

Advances in deep learning models have a significant progress
in molecule generation, representing a big step forward in bridging
the gap between chemical entities and drug-like properties
(Krishnan et al., 2021). Deep learning algorithms are currently
used in the renewed interest in the de novo design of chemical
libraries. In 2020, the successful application of deep learning in
drug discovery, that included the de novo design using deep
learning, was selected by the Massachusetts Institute of
Technology Technology Review as one of the top ten
breakthrough technologies (Juskalian et al., 2023).

De novo design is aimed at generating new chemical entities
(NCE) with desired properties (Palazzesi and Pozzan, 2022). De
novo design based on deep learning algorithms (Palazzesi and
Pozzan, 2022) requires a large number of compounds that may
demand significant computational resources. However, bioactivity
data for a biological endpoint is not always sufficient. The lack of
data has led to the development of new methods for compound
selection and applications for deep learning algorithms are being
developed (Guo M et al., 2021).

Knowledge-based drug design frequently involves quality data
(Perron et al., 2022b) to develop models with useful predictions
(Schneider et al., 2020). To this end, rethinking the methodologies
used for drug discovery and development campaigns is crucial. The
quality of data sets, decoy data sets and inactive compounds used in
predictive models, and de novo design models need to be reviewed
and discussed.

The main purpose of this manuscript is discussing the
importance of quality data, decoy data sets, and the balance
needed between inactive (i.e., “Yin”) and active (“Yang”)
compounds currently employed in de novo design and
developing predictive models of biological activity to generate
NCE. Following up on previous studies (Schneider et al., 2020;
Bajorath et al., 2022; Cherkasov, 2023), we comment on the need to
rethink the way to drug design and develop campaigns. The
manuscript is organized into four main sections. After this
Introduction, Section 2 presents an overview of de novo design.
Section 3 discusses the main public data sources used to develop
predictive models. Section 4 discusses criteria to generate quality
data sets. The last section presents a summary of conclusions and
perspectives.

2 De novo design overview

De novo design aims to generate new chemical structures from
scratch with desired predicted properties, e.g., absorption,
distribution, metabolism, excretion, toxicity (ADMET), other
drug-likeness properties, and biological activities (Palazzesi and
Pozzan, 2022). The two main strategies for de novo design can be
classified into SBDD and LBDD (vide supra) (Zhang et al., 2022). A
recent example of a structured-based de novo design is the
RELATION model that learns from the desired geometric
features of protein-ligand complexes to generate new molecules
(Wang et al., 2022). The generation process applies a fragment-
based strategy given an initial chemical scaffold embedded in the
binding site of the target protein. The pre-trained model generates
molecules iteratively by sequentially adding, deleting, inserting, or
replacing and linking fragments (Zhang et al., 2022).

In contrast, ligand-oriented de novo design focuses on the
ligands themselves, thereby generating compounds with new
chemical structures with novel scaffolds from active compounds
while optimizing the desired properties (Xie et al., 2022). A general
workflow is schematically summarized in Figure 1 which has seven
main steps (Krishnan et al., 2021; Zhang et al., 2022): 1) Selecting
compound data sets from public or in-house sources (further
discussed in Section 3); 2) Filtering molecular data sets with
desired properties such as drug-likeness. In the example of
Figure 1 a data set with three subsets of compounds is
represented with a star, triangle, and circle, respectively. The
compounds represented with a star have drug-like properties
(Lipinski et al., 2001; Veber et al., 2002); those represented with
triangles comply with some of the drug-likeness properties, and
those represented with circles are not compliant. Other approaches
to select compounds from the data sets use molecular fingerprints
(Kadurin et al., 2017) or filter compounds directly via similarity-
based virtual screening instead of designing NCE from scratch
(Tong et al., 2021). 3) Selecting the molecular representation as a
basis to learn and represent the structures and properties of
molecules, e.g., SMILES (Weininger, 1988), SELFIES (Krenn
et al., 2020) or molecular graphs (Simonovsky and Komodakis,
2018). 4) Developing and validating the model for molecule
generation using metrics such as the operating characteristic
curve. 5) Optimizing the model by combining reinforcement
learning and property prediction (Olivecrona et al., 2017). 6)
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Generating molecules de novo, 7) Assessing the biological activity of
the compounds designed in relevant in vitro or in vivo models.

Deep learning, currently used in ligand-based de novo design,
learns the probability distribution of molecular data and generates
continuous or discrete latent representations for molecules with
property optimization (Gómez-Bombarelli et al., 2018). The

algorithms map the learned probability distribution and molecule
representation into novel molecules while optimizing molecular
properties (Bilodeau et al., 2022) through the tuning of
hyperparameters (Perron et al., 2022a; Bender et al., 2022).
Advances in deep learning are significantly advancing molecule
generation, representing a big step forward in bridging the gap

FIGURE 1
Overview of ligand-based de novo design. 1) Selecting data sets. 2) Filteringmolecular data sets with desired properties such as drug-likeness. In this
example, compounds represented with stars comply with drug-likeness properties (Lipinski et al., 2001; Veber et al., 2002). 3) Choosing a molecular
representation. 4) Selecting a de novo designmodel. 5) Developing, validating and optimizing themodel. 6) Generatingmolecules de novo. 7) Testing the
compounds in a relevant biological experiment.

Frontiers in Drug Discovery frontiersin.org03

Chávez-Hernández et al. 10.3389/fddsv.2023.1222655

20

https://www.frontiersin.org/journals/drug-discovery
https://www.frontiersin.org
https://doi.org/10.3389/fddsv.2023.1222655


between chemical entities and drug-like properties (Krishnan et al.,
2021).

Ligand´s properties can be optimized in two steps: 1)
property-based generation, wherein models would learn the
chemical space of molecules with desirable properties; and 2)
novel molecules are generated within a desired property space
(Bilodeau et al., 2022). Examples of ligand-based de novo design
are deep neural networks (DNN), recurrent neural networks
(RNNs) (Olivecrona et al., 2017), and variational autoencoders
(VAE) (Gómez-Bombarelli et al., 2018). Olivercroma et al.
(Olivecrona et al., 2017) proposed the REIVENT model that
uses RNN for de novo design. They introduced a reinforcement
learning method to fine-tune the pre-trained RNN so the model
could generate structures with desirable properties. Recently,
Blaschke et al. released REINVENT 2.0 (Blaschke et al., 2020)
making the code freely accessible in Github.

Ligand-based de novo design using DNN (Palazzesi and
Pozzan, 2022) requires a large number of compounds that
demand more computational resources. The DNN
architecture is prone to problems because of fitting numerous
parameters. For this reason, a large training data set is needed to
reduce the risk of overfitting. However, sufficient bioactivity
data for a biological endpoint is not always available (Wu et al.,
2018). The lack of sufficient data has led to using methods for
compound selection or the development of new methods for
compound selection. Altae-Tran et al. (Altae-Tran et al., 2017)
demonstrated how the one-shot learning paradigm can be used
to address the overfitting problem; they used DNN to transform
small molecules into embedding vectors in a continuous feature
space whose similarity measures are then iteratively learned.
They showed that this DNN architecture offers convincing
performance in many activity prediction tasks given limited
amounts of training. On the other hand, computer scientists
advise using algorithms that can detect meaningful patterns in
small data sets, which is a typical case in the early stage of drug
discovery (Schneider and Clark, 2019). For instance, an initial
approach to de novo design is to start from small data sets of
compounds with diverse structures and diverse properties of
pharmaceutical relevance (Chávez-Hernández and Medina-
Franco, 2023).

The availability of gold standard datasets as well as
independently generated data sets are valuable in generating
well-performing models (Vamathevan et al., 2019).
Dissimilarity-based compound selection could be improved if
one focused the selection on a structural diverse dataset (for
instance derived from natural products). Some approaches
proposed suggest using quality data sets using a dissimilarity-
based compound selection method such as the MaxMin or
MaxSum algorithms (Leach and Gilleteds, 2007). Recently, we
reported the use of the MaxMin algorithm for the selection of
natural product subsets (Chávez-Hernández and Medina-Franco,
2023) using the Universal Natural Product Database (UNPD) (Gu
et al., 2013). In that study, the natural product subsets generated
had the most diverse chemical structures with physicochemical
properties of pharmaceutical interest similar to the original data
set. Chemical structures in the natural product subsets were
represented with SMILES encoding chirality, an important
feature of natural products.

3 Main sources of data sets used to
develop generative and predictive
models

3.1 Current status of reference and
benchmark datasets

The first step in de novo design is to select, from the vast
chemical space, the appropriate subset of all possible molecules
for a desired biological activity (Schneider et al., 2000). To have an
idea, the size of the chemical space has been estimated at around 1060

small molecules and between 1020–1024 for all molecules up to
30 atoms that comply with Lipinski’s rule-of-five (Reymond,
2015). According to Yang et al. compound data sets can be
classified into on-demand databases, collections containing
bioactivity data, compounds databases commercially available,
and natural products databases (Yang et al., 2019). Herein, we
include benchmark, decoy and inactive compounds data sets as
others categories as illustrated in Figure 2. In this figure, on-demand
databases are further divided into commercially available (e.g.,
Enamine-REAL, CHEMriya and Freedom Space) (Chemspace,
2023) and in-house (e.g., Pfizer and AstraZeneca). The figure
shows examples of compound databases in other categories
which are discussed in the remainder of this section.

Among the different types of chemical databases, de novo design
employs libraries from different categories outlined in Figure 2.
Specific examples are ChEMBL (Davies et al., 2015; Mendez et al.,
2019), PubChem (Kim et al., 2023), DrugBank (Wishart et al., 2006;
Wishart et al., 2008; Wishart et al., 2018), Enamine´s REadily
AccessibLe (REAL) (Enamine, 2023), CHEMriya (CHEMriya,
2023), Freedom Space (Chemspace, 2023), ZINC-22 (Tingle

FIGURE 2
Classification of compound databases and representative
examples of each one. For the discussion of this manuscript,
databases are split into six main categories: on-demand, commercial
availability, bioactivity, natural products, benchmark and decoys.
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et al., 2023), and MoleculeNet (Wu et al., 2018) which more details
for each one are provided in Table 1 and further commented in the
next sections.

3.2 On-demand databases

Early approaches to ligand-based de novo design involved fragment
compounds into unique building blocks which could be recombined to
make new molecules. A number of commercial suppliers of chemical
samples offer large make-on-demand collections that can be reliably
synthesized because the building blocks are available as well as the
synthetic routes and methods (Warr et al., 2022; Korn et al., 2023).
There are also large collections of fragments or building blocks
commercially available. Examples of on-demand compound
databases and suppliers are REAL (Enamine) (Enamine, 2023),
CHEMriya (OTAVA) (CHEMriya, 2023), and Freedom Space
(Chemspace) (Chemspace, 2023) (Table 1). REAL database
(Enamine, 2023) comprises over 6 billion molecules that comply
with the traditional drug-likeness criteria. CHEMriya (CHEMriya,
2023) contains 12 billion novel and synthetically feasible small
molecules whose molecules are not explicitly listed in the public
domain. Freedom Space (Chemspace, 2023) contains 201 million
molecules and 73% of its compounds are drug-like (as assessed with
the “rule of five”). Examples of on-demand in-house databases from the
pharmaceutical industry are 1015 compounds of AZ Space
(AstraZeneca) (Grebner, 2022), 1019 compounds of JFS (Johnson &
Johnson) (Warr, 2021), 1018 compounds of PGVL (Pfizer) (Hu et al.,
2012), 1017 compounds BICLAIM (Boehringer Ingelheim) (Korn et al.,
2023), and 1020 compoundsMASSIV (Merck/EMD) (Korn et al., 2023).

3.3 Commercially available databases

One of the largest and long-standing compendiums of
commercially available compounds in ZINC. The most

recent version, ZINC-22 (Tingle et al., 2023) contains over
37 billion enumerated, searchable, commercially available
compounds in 2D. Over 4.5 billion have been built in
biologically relevant ready-to-dock 3D formats (Tingle et al.,
2023). Some examples of de novo design using ZINC include the
design of inhibitors of DDR1 (discoidin domain receptor 1, a
kinase target implicated in fibrosis and other diseases)
(Zhavoronkov et al., 2019) and compounds with activity
towards the dopamine receptor D2 (Liu et al., 2019;
Maziarka et al., 2020).

3.4 Bioactivity databases

De novo design based on deep learning algorithms frequently
use PubChem, ChEMBL, and DrugBank to select subsets of
compounds focused on a biological target or biological
endpoint as the design of ligands (Li et al., 2018; Li et al., 2022;
Liu et al., 2019). PubChem (Kim et al., 2023) is a freely accessible
database from the US National Institutes of Health (NIH) with
over 115 million compounds. At the time of writing, the most
recent version release of ChEMBL is 32 (Davies et al., 2015;
Mendez et al., 2019) and contains 2,354,965 compounds
bioactive drug-like small molecules with 2D structures and
calculated properties. DrugBank (Wishart et al., 2006; Wishart
et al., 2008; Wishart et al., 2018) version 5.1.10 (released 2023-01-
04) contains 15,448 drug entries including 2,740 approved small
molecule drugs, 1,577 approved biologics (proteins, peptides,
vaccines, and allergens), 134 nutraceuticals and over
6,717 experimental (discovery-phase) drugs. Some applications
include the de novo design of SARS-CoV-2 Mpro inhibitors (Li
et al., 2022), the design of ligands against the adenosine receptor
(A2AR) (Liu et al., 2019), and the generation of compounds analogs
to celecoxib (used to manage symptoms of various types of arthritis
pain and reduce precancerous polyps in the colon) (Li et al., 2018;
DRUGBANK, 2023).

TABLE 1 Main sources of public molecular data sets used in de novo design.

Data sets Category Description Ref.

ChEMBL Bioactivity Database with 2,354,965 bioactive drug-like small molecules with 2D structures and calculated
properties.

Davies et al. (2015), Mendez
et al. (2019)

PubChem Bioactivity Database at the US National Institutes of Health with 115 million compounds. It includes names,
molecular formulas, structures, physical properties, and biological activities.

Kim et al. (2023)

DrugBank Bioactivity Version 5.1.10 contains 15,448 drug entries including 2,740 approved small molecule drugs. Wishart et al. (2006)

ZINC-22 Commercial Database with over 37 billion enumerated, searchable, commercially available compounds in 2D. Tingle et al. (2023)

CHEMriya On-demand Database with 12 billion novel and synthetically feasible small molecules. CHEMriya (2023)

Freedom Space
(Chemspace)

On-demand Database with 201 million molecules; 73% of its compounds comply with drug-likeness
properties.

Chemspace (2023)

Enamine-REAL On-demand Database with 6 billion synthetic compounds that comply with drug-likeness properties. Enamine (2023)

MoleculeNet Benchmark Compilation of 17 datasets with over 700,000 compounds in total used for comparison of
different machine learning algorithms.

Wu et al. (2018)

MOSES Benchmark Dataset with 1,936,962 molecules from ZINC Clean Lead suitable for hit identification and
ADMET optimization. It does have metrics to detect common issues in generative models such as
overfitting or if the model does not limit to producing only a few typical molecules.

Polykovskiy et al. (2020)
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3.5 Natural product databases

Natural product databases (Gómez-García and Medina-Franco,
2022; Saldívar-González et al., 2022) are important in drug
discovery. From drugs approved by 2020 about 23% are natural
products or derivatives (Newman and Cragg, 2020). Natural
products have a diversity of privileged scaffolds (Atanasov et al.,
2021; Grigalunas et al., 2022) and molecular fragments (Chávez-
Hernández et al., 2020a; Chávez-Hernández et al., 2020b) that
depend on the particular source (Medina-Franco et al., 2022b); a
diversity of chiral centers; and a larger fraction of sp3 carbon atoms
and functional groups (Atanasov et al., 2021; Grigalunas et al., 2022).

Privileged structures were defined by Evans et al. (Evans et al.,
1988) as chemical structures capable of providing useful ligands for
more than one receptor judicious modification of such structures
could be a viable alternative in the search for new receptor agonists
and antagonists. Schneider and Schneider (2017) define a privileged
structure as a chemical structure that may be considered to possess
geometries suitable for decoration with side chains, such that the
resulting products bind to different target proteins or a ligand that

potently interacts with one (selective binder) or many target
receptors (promiscuous binder). To this end, natural products are
used in the development of pseudo-natural products, compounds
that are generated through a de novo combination of natural product
fragments, allowing the exploration of uncharted areas of
biologically relevant chemical space that are different from the
chemical space covered by the compounds from which they are
derived (Grigalunas et al., 2022).

Representative natural product datasets that can be used in de
novo design are Collection of Open NatUral ProdUcTs
(COCONUT) (Sorokina et al., 2021), SuperNatural 3.0 (Gallo
et al., 2023), UNPD (Gu et al., 2013), NuBBEDB (Pilon et al.,
2017; Saldívar-González et al., 2019), SistematX (Scotti et al.,
2018; Costa et al., 2021), CIFPMA (Olmedo et al., 2017; Olmedo
and Medina-Franco, 2020), PeruNPDB (Barazorda-Ccahuana et al.,
2023), BIOFACQUIM (Pilón-Jiménez et al., 2019; Sánchez-Cruz
et al., 2019), UNIIQUIM(UNIIQUIM, 2015), and are summarized
in Table 2.

SuperNatural 3.0, COCONUT and UNPD are the most
extensive natural product databases. SuperNatural 3.0 (Gallo

TABLE 2 Examples of natural product databases in the public domain.

Data sets Description Ref.

COCONUT Extensive database with 406,076 unique structures. Sorokina et al. (2021)

SuperNatural 3.0 A database with 449 058 natural compounds and derivatives. It
includes chemical structure, physicochemical information,
information on pathways, mechanism of action, toxicity, vendor
information if available, drug-like chemical space prediction for
several diseases such as antiviral, antibacterial, antimalarial,
anticancer, and target-specific cells.

Gallo et al. (2023)

UNPD Second-largest database with around 229,000 natural products that
contain chirality information.

Gu et al. (2013)

TCM Database@Taiwan Database with more than 20,000 pure compounds isolated from
453 TCM ingredients.

Chen (2011)

IMPPAT Database of 9,596 phytochemicals from 1,742 Indian medicinal
plants.

Mohanraj et al. (2018)

AfroDB Compound collection with more than 1,000 compounds from
African medicinal plants.

Ntie-Kang et al. (2013)

NuBBEDB Brazilian database with 2,223 natural products encoding as
SMILES, InChI, and InChIKey strings, Ro5 and Veber descriptors,
source, therapeutic effect, and reference.

Valli et al. (2013), Pilon et al. (2017), Saldívar-González et al.
(2019)

SistematX Brazilian database with 9,514 unique secondary metabolites
encoding as SMILES, InChI, and InChIKey strings, and include
physicochemical drug-like descriptors, predicted biological
activities, and reference.

Scotti et al. (2018), Costa et al. (2021)

CIFPMA Database developed at the University of Panama. It contains
natural products that have been tested in over 25 in vitro and in
vivo bioassays, for different therapeutic targets.

Olmedo et al. (2017), Olmedo and Medina-Franco (2020)

PeruNPDB Peru database developed at the Catholic University of Santa Maria.
The current version has 280 natural products from animals and
plants.

Barazorda-Ccahuana et al. (2023)

BIOFACQUIM Mexican database with structures of 531 natural products isolated
and characterized at UNAM and other Mexican institutions.

Pilón-Jiménez et al. (2019), Sánchez-Cruz et al. (2019)

UNIIQUIM Mexican database with 1,112 plant natural products mostly
isolated and characterized at the Institute of Chemistry of the
UNAM.

UNIIQUIM (2015)

Other libraries of natural products with an emphasis on commercial availability are listed on the NIH website (NIH, 2023).
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et al., 2023) is arguably the most extensive natural product database
with 449,058 natural compounds and derivatives; followed by
COCONUT (Sorokina et al., 2021) with 406,076 unique
structures (no encoding stereochemistry) and UNPD (Gu et al.,
2013) with 197,201 natural products that contain chirality
information.

Several public natural products databases compile the
compounds isolated and characterized from a geographical
region or the country of origin as China, India and Africa. For
instance, Chinese Traditional Medicine (TCM) Database@Taiwan
(Chen, 2011) is a non-commercial TCM database with more than
20,000 pure compounds isolated from 453 TCM ingredients; A
curated database of Indian Medicinal Plants, Phytochemistry And
Therapeutics (IMPPAT) (Mohanraj et al., 2018) is a manually
curated database of 9,596 phytochemicals from 1,742 Indian
medicinal plants; and AfroDB (Ntie-Kang et al., 2013) with more
than 1,000 small and structural diversity compounds from African
medicinal plants.

Representative Latin American databases (Gómez-García and
Medina-Franco, 2022) are NuBBEDB (Pilon et al., 2017; Saldívar-
González et al., 2019), SistematX (Scotti et al., 2018; Costa et al.,
2021) from Brazil; CIFPMA (Olmedo et al., 2017; Olmedo and
Medina-Franco, 2020) from Panama; PeruNPDB (Barazorda-
Ccahuana et al., 2023) from Peru; BIOFACQUIM (Pilón-Jiménez
et al., 2019; Sánchez-Cruz et al., 2019) and UNIIQUIM
(UNIIQUIM, 2015) from Mexico. The current version of NuBBEDB
(Pilon et al., 2017; Saldívar-González et al., 2019) contains 2,223 natural
products encoding as linear notations as SMILES. SistematX (Scotti
et al., 2018; Costa et al., 2021) has 9,514 unique secondary metabolites
arising from 20,934 botanical occurrences across five families. Other
natural product collections from Latin America are CIFPMA, the
Natural Products Database from the University of Panama, Republic
of Panama (Olmedo et al., 2017; Olmedo and Medina-Franco, 2020)
with 354 compounds. CIFPMA molecules have the potential to show
target selectivity in biochemical assays and are useful molecules to
identify reference compounds for virtual screening campaigns (Olmedo
et al., 2017; Olmedo andMedina-Franco, 2020). The first version of the
Peruvian Natural Products Database (PeruNPDB) had 280 natural
products isolated fromplants and animal sources (Barazorda-Ccahuana
et al., 2023). BIOFACQUIM (Pilón-Jiménez et al., 2019; Sánchez-Cruz
et al., 2019) contains 531 natural products isolated and characterized at
the School of Chemistry of the National Autonomous University of
Mexico (UNAM) and other Mexican institutions. UNIIQUIM
(UNIIQUIM, 2015) with 1,112 plant natural products mostly
isolated and characterized at the Institute of Chemistry of the UNAM.

3.6 Benchmark databases

The development of reliable machine learning algorithms has
been limited due to the lack of standard benchmark datasets to
compare the efficacy of the methods proposed (Jain and Nicholls,
2008). Furthermore, machine learning in chemistry compared with
other areas such as computer speech and vision has a main
disadvantage, the data recovery (Wu et al., 2018; Guo et al.,
2022), because of measuring chemical properties often requires
specialized instruments; as a result, datasets with experimentally
determined results are small and often not sufficiently large to cover

the high-demanding needs of machine-learning tasks (Wu et al.,
2018). Another challenge is data splitting (the way in which datasets
are split into training data and testing data). Some are random
selection and rational selection. The former is randomly extracting a
compound’s fraction from the data set. In contrast to rational
selection, training and testing are selected from the same clusters
of compounds. Random selection is common in machine learning
but is often not correct for chemical data (Sheridan, 2013). In
response to these challenges, standard benchmark data sets are
being developed to evaluate de novo design protocols [(Wu et al.,
2018; Brown et al., 2019; Polykovskiy et al., 2020). One example is
MoleculeNet (Wu et al., 2018), a large-scale data set built upon
multiple public databases. MoleculeNet is organized into regression
and classification datasets and has over 700,000 compounds tested
on a range of different properties subdivided into four categories
(quantum mechanics, physical chemistry, biophysics, and
physiology). Another example is the Molecular Sets (MOSES)
(Polykovskiy et al., 2020) that contains 1,936,962 molecules (split
into training, testing and scaffold datasets) and a set of metrics to
evaluate the quality and diversity of generated structures. Metrics
detect common issues in generative models such as overfitting or if
the de novo design model just generates fairly common (not novel)
structures (Brown et al., 2019; Polykovskiy et al., 2020). The
developers of MOSES implemented and compared several
molecular generation models and suggested using the results as
reference points for further advancements in generative chemistry
research.

3.7 Current decoy data sets and inactive
compounds

Accuracy of predictive models depends on data quality and
quantity. Also, the balance between active and inactive compounds
is important, which remains an issue to resolve. Historically, the
publication of active compounds in a given assay or with a particular
endpoint has been prioritized over inactive molecules. For example,
a recent comprehensive analysis of published screening bioactivity
data shows that in ChEMBL V.29 (release in 2022) there is a large
number of active compounds (ca. 71%) with respect to the inactive
ones (ca. 31%); contrary to what it would be expected (López-López
et al., 2022). These results highlight the relevance of changing the
mindset about the importance and utility of inactive or negative data
(keeping in mind that the definition of “inactive” is subjective as it
depends on the particular biological assay and the predefined
threshold to deem a compound inactive).

Decoy data sets have been developed in an attempt to reduce the
gap between inactive (or negative) and active compounds. Decoy
molecules are assumed non-active but have high physicochemical
property similarity (but not topologically) to reference compounds
(Réau et al., 2018). Decoys are useful to evaluate benchmark models
that were assembled in the absence of inactive compounds
experimentally measured (Irwin, 2008) and can be used to enrich
de novo design models. Table 3 summarizes examples of large
databases of experimentally tested active or inactive compounds,
decoy datasets, and tools to generate decoys for specific projects.

Decoy compounds have been used to describe, explore, and
expand the knowledge of active molecules. For example,
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rationalizing the physicochemical, chemical, biological, and clinical
data of active compounds (López-López et al., 2021a). Recently,
decoys can be employed in several de novo protocols based on ligand
or structure as summarized in Table 4.

4 Criteria to generate compound
datasets with high quality

The quality of a data set is multifaceted. Commonly, it is
associated with the experimental reproducibility of each data

point and the experimental similarities between the protocols
used to derive such data. Another important aspect of data
quality is the balance between active and inactive compound.
The latter is specially a challenge in public data sets due to the
overall lack of published negative data. Finding qualitative yet better
quantitative relationships between chemical structures and
biological activity has been long pursued in medicinal chemistry
and drug discovery. With the rapid increase and deployment of the
predictive machine and deep learning methods, as well as the
increased interest in the de novo design of chemical libraries
(Mouchlis et al., 2021), the quantity and quality of data are

TABLE 3 Examples of potential inactive and decoy resources for enriching de novo design models.

Datasets with active and inactive compounds Criteria to select inactive data Ref.

ChEMBL Reported activity data. Davies et al. (2015), Mendez et al. (2019)

PubChem Kim et al. (2023)

Binding DB Reported ligand-receptor affinity. Chen et al. (2002)

Decoy datasets Common decoy selection criteria

ZINC Compounds that share drug-like properties with the reference
(active) compounds.

Tingle et al. (2023)

DUD-E Mysinger et al. (2012)

DUD Database with 2950 annotated ligands and 95,316 property-
matched decoys for 40 targets.

Irwin (2008)

MUV Compounds that share structural similarity with active
reported compounds.

Rohrer and Baumann (2009)

DEKOIS 2.0 Compounds that share drug-like properties and structural
similarity with the reference (active) compounds.

Bauer et al. (2013)

Decoy tools Common decoy compound selection criteria

DecoyFinder Allows the automatic creation of datasets of compounds with
physicochemical similarity and without structural similarity
respect to the reference (active) compounds.

Cereto-Massagué et al. (2012)

RADER Allows the automatic generation of datasets of compounds
with physicochemical and structural similarity with respect to
the reference (active) compounds.

Wang et al. (2017)

ZINC pharmer Enables the automatic identification of compounds with
pharmacophore similarity with respect to the reference (active
and inactive) compounds.

Koes and Camacho (2012)

Decoy Developer Allows the automatic generation of peptides decoys. Shipman et al. (2019)

TABLE 4 Examples of applications of decoys in de novo design.

Approach Purpose of using decoy sets Ref.

Ligand-based

• Validation of new protocols and scoring functions based on similarity
metrics and 3D shape.

(Arús-Pous et al. (2020); Awale and Reymond. (2015); Cao et al. (2020);
Medina-Franco et al. (2019); Norinder et al. (2019); Papadopoulos et al.

(2021); Skalic et al. (2019b); Skalic et al. (2019a); Ullanat (2020)
• Improvement of the accuracy of AI-based models.

• Improvement of the accuracy of QSAR models.

• Enrichment of inactive “dark regions” in chemical space.

Structure-
based

• Validation of new protocols and scoring functions based in docking,
molecular dynamics, and pharmacophore modeling.

Balius et al. (2013); Beato et al. (2013); Guo J et al. (2021); Ma et al. (2021);
Niitsu and Sugita (2023)

• Peptide and protein design.
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becoming a central point in the discussion of the type of data sets
needed (Schneider et al., 2020). While the more data (Cherkasov,
2023), the better, it is also true that the quality of the data available
(that might not be quite large) is also crucial. Furthermore, the
balance between active and inactive compounds is also a major
consideration (López-López et al., 2022). Table 5 summarizes
criteria for generating quality data sets. The list is not exhaustive
but covers what the authors consider key points based on experience
and what has been discussed extensively in the literature. Each point
is supported by the references indicated in the table and further
commented in the next subsections.

4.1 Balance

As discussed previously, several current data sets in the public
domain are unbalanced due to the infrequent practice of reporting
inactive compounds and negative data in general. Historically, the
negative and inactive data of preclinical compounds has been ignored
by most journals that favor the publication of most active compounds
and positive results (Medina-Franco and López-López, 2022).
However, inactive and negative data are essential in drug design
and development. For example, the analysis of high-quality inactive
and negative data improves clinical success rate, reduces costs
associated with drug development, and reduces the side effects
rates (Hayes and Hunter, 2012; López-López and Medina-Franco,
2023). Moreover, data mining and AI approaches are largely
benefitted from inactive compounds (Yu, 2021; López-López et al.,
2022). The use of inactive and negative data allows real data
augmentation to develop AI models, improve their accuracy, and
reduce the rate of false-positive cases (Korkmaz, 2020; IBM, 2022).
Also, the inactive and negative data facilitates the generation of QSPRs
models that allows the rationalization of basically any property
(Kramer and Lewis, 2012; Norinder et al., 2019).

4.2 Confidence of the activity data

An unwritten rule on AI and computational projects in general
is "garbage in, garbage out". This perspective has direct implications
in drug design (Bajorath et al., 2022). Recent studies have
demonstrated that the use of quality data allows generating of AI
models with higher accuracy than the AI models generated from
larger datasets but with low-quality.

4.3 Chemical and structural diversity

In general, a compound dataset with a large or broad
applicability domain, as captured by the diversity of the contents,
can give rise to predictive models with a large coverage. This is,
molecules from diverse chemical structures could be conveniently
interpolated in those models. As a comparison in an experimental
setting, high-throughput screening of chemical diverse libraries
increases the chances to find hit compounds for targets for which
no hit compounds have been previously identified.

Due to the rapid expansion of the chemical universe, recently
called the ‘Big Bang’ of the chemical universe (Cherkasov, 2023) it is
relatively easy to have access to large and diverse regions of the
chemical space. However, a practical challenge is to manage such
large compound data sets computationally while developing and
testing new models. A similar practical problem emerged when
combinatorial chemistry was at its peak: it was challenging to design
rationally novel large and diverse combinatorial libraries. To tackle
this problem numerous diversity selection algorithms have been
developed (Leach and Gillet, 2007). We recently applied a
dissimilarity-based compound selection method to obtain three
diverse subsets of natural products (with 14,994, 7,497, and
4,998 compounds, respectively) from the UNP. The subsets, that
are freely available, can be readily used for the novo design

TABLE 5 Overview of suggested general criteria to generate quality datasets useful in de novo design.

Criteria Brief description Ref.

Balance • Quality and quantity data allow the exploration of substantial regions of
chemical space.

Scannell et al. (2022); Yang et al. (2023)

Quality
(confidence) data

• The reliability of the activity data (active or inactive) is crucial to develop
predictive models. This is the activity data reproducibility.

Kumar et al. (2022)

Diversity • Datasets with a high chemical and structural diversity improve the generation
of novel molecules.

Saldívar-González and Medina-Franco (2022)

Preparation or
curation

• Dataset curation must be focused on one or multiple drug targets. Therefore,
molecular descriptors and the cut-off threshold used for the curated must be
properly selected.

• Dataset should be oriented to resolve specific outcomes and avoid Pan-Assay
Interference Compounds (PAINS) structures or chemical structures related to
side effects.

• In small datasets it is very important to have as much accurate data as possible.
The maximum observable accuracy of classification models also depends on
the experimental uncertainty and the distribution of the measured values. For
instance, datasets with large noise are not recommended for the comparison of
different models.

Fourches et al. (2016); Kramer and Lewis (2012)

Complete
information

• According to the main objective of each project, the dataset used must contain
reliable data related to the project’s objective. For example, structure
containing chemical and physicochemical information, bioactivity data for the
related biological endpoint, or outcomes from clinical trials, etc.

López-López et al. (2021b); López-López and Medina-Franco.
(2023); Wu et al. (2023a); Wu et al. (2023b)
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applications and as benchmarks for similarity/diversity analysis
(Chávez-Hernández and Medina-Franco, 2023).

4.4 Preparation or curation

A general curation protocol used on drug discovery datasets is to
eliminate duplicate structures, canonize their SMILES
representation, eliminate salts, and metals. However, according to
the main goal of the de novo design model, additional steps to
prepare a dataset could be taking into account, for example: 1)
eliminating compounds with structural PAINS to reduce the rate of
false-positive compounds prediction; 2) deleting compounds
reported with side effects and/or ADMET deficiencies, to
prioritize the generation of safe and optimization compounds.; or
3) making sure to keep in the dataset compounds with high activity
confidence to improve the quality of predicted outputs. This list
must be adapted according to the main goal of the de novo design
model. It is also noted the need to develop robust and consistent
protocols that take into scout metal-containing compounds as they
have a major role in medicinal inorganic chemistry (Medina-Franco
et al., 2022a).

4.5 Completeness

Chemical structures should contain the required or relevant
information for the goals of the study. For instance, compounds
should be annotated with stereochemistry information if the 3D
structure and conformation is critical; electronic density and
quantum chemical data if the reactivity is key point to predict;
the type of the biological activity data such as biochemical, cell-based
or functional assays; drug-drug interaction data,
pharmacogenomics, or post-marketing annotations; should be
aligned with the type of outcome to be predicted and later
validated experimentally.

5 Perspectives of de novo design

One of the major perspectives of the de novo design is using
balanced data sets (as much as experimental data is available) to
build reliable models. Similar to QSAR predictive models, it is
also crucial the validation of de novo protocols using standard
and well-curated benchmark datasets (discussed in Section 3.6).
With the increasing data availability to generate and train new
models, it is becoming increasingly easy to explore regions of
chemical space previously uncharted and continue contributing
to the so-called “big bang” expansion of the chemical space. A
major perspective in this direction is to explore biologically
relevant compounds but outside the traditional small molecule
chemical space (Medina-Franco et al., 2014). For instance,
exploring metallodrugs (Medina-Franco et al., 2022a),
macrocycles (Liang et al., 2022), peptides, or the combination
of commonly explored chemical spaces, e.g., pseudo-natural
products (discussed in Section 3.5).

6 Conclusion

Among the main types of datasets used in the novo design are
on-demand collections, compounds annotated with biological
activity, commercially available libraries, and natural products.
More recently, a large benchmark data set was developed for
machine learning applications. Although there is a general
agreement in machine learning that the more data, the better,
it is becoming more and more evident to consider the reliability
and the quality of the data sets as critical features of the data.
Part of the quality is associated with the balance between
inactive and active compounds (in a rough analogy with the
Yin-Yang concept), tasks that are not always feasible due to the
general scarcity of negative (inactive compounds). The later
point further emphasizes the continued need to publish and
disclose negative results. Due to the fact that the experimental
data of inactive compounds are not common, the community is
using decoy data sets that by themselves are subject to design
and refining using rational approaches. Decoy data sets try to fill
the void of experimentally determined inactive molecules.
Major criteria to take into account to generate compound
data sets with high quality include balanced data sets in
terms of active and inactive compounds (when the
experimental information is available), structural and
chemical diversity, curation or preparation according to the
goals of the project, and complete information. All these
together contribute to the perspectives of de novo design that
foresees a continued and rapid expansion of molecules with the
potential to become drugs.
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The drug discovery community faces high costs in bringing safe and effective
medicines tomarket, in part due to the rising volume and complexity of data which
must be generated during the research and development process. Fully utilising
these expensively created experimental and computational data resources has
become a key aimof scientists due to the clear imperative to leverage the power of
artificial intelligence (AI) and machine learning-based analyses to solve the
complex problems inherent in drug discovery. In turn, AI methods heavily rely
on the quantity, quality, consistency, and scope of underlying training data. While
pre-existing preclinical and clinical data cannot fully replace the need for de novo
data generation in a project, having access to relevant historical data represents a
valuable asset, as its reuse can reduce the need to perform similar experiments,
therefore avoiding a “reinventing thewheel” scenario. Unfortunately, most suitable
data resources are often archived within institutes, companies, or individual
research groups and hence unavailable to the wider community. Hence,
enabling the data to be Findable, Accessible, Interoperable, and Reusable (FAIR)
is crucial for thewider community of drug discovery and development scientists to
learn from thework performed and utilise the findings to enhance comprehension
of their own research outcomes. In this mini-review, we elucidate the utility of
FAIR data management across the drug discovery pipeline and assess the impact
such FAIR data has made on the drug development process.

KEYWORDS

drug discovery, FAIR principles, data management, data sharing, machine learning

Introduction

Ensuring effective exploitation of experimental and computational data resources is a
major issue within the drug discovery community, which faces rising costs in bringing safe
and effective medicines to market. As part of the search for new medicines, large amounts of
data are generated in order to support decision-making on the efficacy, safety, and
developability of a potential new drug as it progresses along the discovery pipeline.
These new data are generated on a daily basis as a part of in silico, laboratory, or
clinical studies, and the high cost incurred directly impacts the overall capacity of the
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pharmaceutical and biotech industries to bring treatments to the
clinic. The average cost of research and development (R&D) to bring
a new drug to market is estimated to be around 900 million to
2.8 billion dollars (Wouters et al., 2020; Simoens and Huys, 2021).
Research expenditure is eventually transferred to the price of
treatments and represents a significant part of healthcare
spending. To add a further burden, in recent years, the volume
and complexity of data generated by scientists involved in research
and development have increased exponentially, creating what has
been termed a “Big Data” challenge. This has followed the increased
adoption of large-scale automated experimentation methods. For
example, it is routine to sequence cancer patients’ tumour biopsies to
identify which specific genetic mutations are associated with their
individual tissue malignancies. As part of drug research efforts, these
same tumour-derived tissues can then be analysed using powerful
high-resolution imaging microscopes to help identify prototype
drugs which kill the tumour cells and have the potential to be
further developed into new medicines. The challenge scientists now
must face in the light of economic constraints is to make the data
which has been expensively generated within their studies reusable
so that the entire community has the chance to learn from the work
performed and, ideally, apply the results to understand the results of
their own studies better. It is far more cost-effective to reuse well-
validated results from a trusted database rather than repeat the same
experimental study again. This situation has led to the previously
“un-exciting” process of data management becoming increasingly
important in drug discovery, as it directly supports the use of
artificial intelligence (AI) and machine learning (ML) based
analyses. Such advanced analyses are highly dependent on the
quality, consistency, and scope of the training data upon which
predictive models are built. In situations where effective data
management and quality assessments are not prioritised, then
there is a risk of low-quality, poorly controlled or out-of-scope
training data emerging, which in the worst case can lead to a
counter-productive “garbage-in garbage-out” scenario.

The costs associated with data generation are distributed across
the pre-clinical and clinical stages of drug discovery. In the
preclinical stage, complex and diverse data are generated, mainly
on cellular or in-vivo models, to establish the development and
toxicity profile of potential drug candidates. In clinical stages, where
the major costs of a development programme are incurred, drug
candidates are tested for safety and then efficacy in humans,
resulting in large amounts of electronic health record-type data.
These clinical trial data may be simple numerical results, for
example, the level of a diagnostic marker in a blood sample, or
highly complex data, which require additional analysis tools such as
a low-dose CT image of a patient’s lung. Although existing
preclinical and clinical data cannot fully replace the need to
generate new data in clinical trials, especially when developing a
new drug that has not been tested in the clinic before, they are very
valuable as they can help to reduce the need to perform redundant
research. An additional potential strategy is the usage of “virtual
clinical cohorts”, created based on information in electronic health
records (Tan et al., 2021). Electronically assembled cohorts can act
as placebo or control arms in both Phase 2 and 3 trials (wherein the
drug is administered to a larger diseased population and observed
for long-term effects) creating a situation where all trial participants
have the chance to benefit from the therapeutic, as well as reducing

the total number of individuals involved. At this point, it is
important to highlight that up to 90% of the cost of bringing a
drug to market is incurred when conducting clinical trials. In most
cases, these cannot be replaced by accessing existing data because the
drug being developed is novel and has not been in the clinic
previously, rather, the existing data can enable directed decision-
making for novel drugs (for, e.g., drugs with active scaffolds).
Nevertheless, it has been estimated that the availability of high-
quality data could reduce the capitalised R&D costs by about
200 million dollars for each new drug brought to the clinic
(Simoens and Huys, 2021). On the other hand, it has been
estimated that a high quality data platform in neurology could
bring more efficient research and development of new drugs with an
annual value of 2.8 billion dollars (https://www.mckinsey.com/
industries/life-sciences/our-insights/better-data-for-better-
therapies-the-case-for-building-health-data-platforms).

Despite the value represented by large data resources, many are
often archived within institutes, companies, or individual research
groups and hence effectively unavailable to the wider community.
As a consequence, they are in practice “invisible” to the wider
community and in some cases even divisions within the same
company. This leads to the need for data to be Findable,
Accessible, Interoperable, and Reusable (FAIR) (Wilkinson et al.,
2016). Each FAIR aspect can be tackled individually. Associating
standardised metadata (i.e., information that describes the data) to
globally unique and persistent identifiers can then readily ensure the
findability of the data it describes. Data needs to be accessible and
should be made available via repositories (which are storage spaces
for researchers to deposit data sets associated with their research)
with a clearly-defined access protocol potentially integrating an
authentication and authorisation procedure to control access.
Overall FAIR data should be “as open as possible and as close as
necessary” (Collins et al., 2018): “open” in order to foster the
reusability, or, if relevant, “closed” to safeguard the privacy of the
information. This is very important for commercial organisations
seeking to generate intellectual property, as they can protect their
data and control its sharing for instance during a patent deposition
or for collaborations (van Vlijmen, 2020). Similarly, it is important
to protect sensitive personal data, such as patients’ medical records
and to ensure compliance with data protection regulations. Then is
the interoperability factor, which involves adopting standards using
consistent models, formats, dictionaries (ontologies) and
vocabularies for the terms and documentation of the data,
including the methods used to generate the data. Several
standards exist with their applicability to the Life Sciences
(https://fairsharing.org/search?fairsharingRegistry=Standard).
Failure to ensure data are interoperable can lead to extensive time
and resource expenditure since additional curation must occur
before data can be used. Finally, information about the
restrictions defined in consent, local and international laws and
rules, or user licences for the data collected ensures that a firm legal
framework exists to support the eventual reuse of the data by others.
Academic and industry research groups have acknowledged the
need to drive reusability and have adopted changes to working
practices, for example, collaborating with scientific journals to
implement better documentation and deposition of research data
in public repositories (McNutt, 2014; van Vlijmen, 2020).
Furthermore, pharmaceutical industries have adopted data
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standards aligned with FAIR principles to strengthen cross-
collaborations with academic and industry partners in the
research years. Roche and AstraZeneca have provided a holistic
overview of their FAIRification pipelines alongside their
downstream impact (Harrow et al., 2022). Despite these efforts,
there’s still a considerable need to regularly improve the state of
FAIR data (Begley and Ioannidis, 2015; Baker, 2016). This simply
indicates that FAIR is a journey and needs to be re-visited at specific
time points during data evolution to ensure the data follows a FAIR
path as addressed by Harrow et al. (2022).

In the following part of this mini-review, we will illustrate with
examples the application of FAIR data at various stages within the
drug discovery pipeline, starting from the preclinical through to the
clinical stages. Beyond these applications, FAIR data is a valuable
resource supporting research across multiple scientific and non-
scientific fields.

Preclinical applicability of FAIR data

As mentioned, large efforts have been initiated to organise and
structure data commonly used in research and development. These
involve the establishment of large-scale open-source repositories
such as UniProt (UniProt Consortium, 2023) which reports data
related to the proteins potentially involved in disease processes,
ChEMBL (Gaulton et al., 2012) which includes results on drug-like
compounds which are investigated in the early discovery phase,
and SureChEMBL (Papadatos et al., 2016) which covers patent-
related data. Such repositories serve two main functions within the
FAIR context: first, the formalisation of a structure for storing
domain-specific information, and second, the open source feature
of the repositories allow researchers across the globe to store,
access, and interpret the underlying data. As machine-readable
and interpretable resources, the data stored in these repositories
can become training data for advanced machine algorithms such as
artificial intelligence (AI). A compelling example of the impact of
data reuse is provided by AlphaFold, an AI model developed by
DeepMind (Jumper et al., 2021). The model can predict protein 3-
D organisation, thus expanding the repertoire of knowledge from
the existing “known” protein structures (which had been solved
experimentally) to now include previously “unknown” protein
structures. In the drug discovery field, such predictive models
play a role in identifying protein-protein and drug-protein
interactions that contribute to our understanding of how drugs
act at a molecular level. An important aspect of such modelling
systems is that they allow computational assessment of the binding
efficiency of a molecule to a protein of interest for which an
experimentally derived 3-D structure is not available. This can save
costs when identifying new compounds which bind proteins and
also creates new ways to help understand how the function of the
protein can be modulated to change a disease process in a
beneficial way. The model owes its success to the presence of
open-access and FAIR data repositories and infrastructures.
AlphaFold has been trained on data available in UniProt for
sequence-based similarity and Protein Data Bank (PDB) for
computation of the 3D structure of the model (Berman et al.,
2000). Without such repositories supported by machine-
interpretable data formats, the training and building of a

groundbreaking AI model such as AlphaFold would not have
been possible.

It is, unfortunately, the case that only a limited subset of data in
the drug discovery field is FAIR and efforts to mobilise the
community to implement FAIR-compliant systems need to be
initiated (Wise et al., 2019). One prominent effort leading the
way in bringing FAIR into practice is the IMI Innovative
Medicines Initiative (IMI) FAIRplus project (https://fairplus-
project.eu/). FAIRplus was established with the aim to generate
reproducible workflows for data FAIRification in the life science
field and promoting the FAIR principles among academic and
industrial researchers. One project, focussed on reducing drug-
associated toxicology, is a useful example of how FAIR data can
be leveraged to enable automated downstream tasks. For each
potential compound, toxicity data associated with specific
chemical structural features can be identified and act as a guide
when designing novel compounds with fewer or less acute safety
issues. Acknowledging the importance of effectively reusing
toxicology data, the project IMI eTOX (http://www.etoxproject.
eu/) was established. Within eTOX, a database of preclinical
toxicity data from participating pharmaceutical companies was
created. After the completion of the project, the FAIR pipelines
built by IMI FAIRplus for eTOX were provided to the IMI
eTRANSAFE project for further reuse (Custers et al., 2021).
Similarly, the IMI CARE project was initiated in response to the
COVID-19 pandemic, and as part of the project, ~5,500 FDA-
approved drugs and clinical candidates were screened in vitro for
anti-SARS-CoV-2 activity. Therefore, IMI FAIRplus project assisted
in disseminating these data into the ChEMBL public repository
(Custers et al., 2022). While these data did not lead to the discovery
of an eligible compound for further development to treat COVID-
19, they are still very valuable information for informing
community-wide COVID-19 drug development efforts. The
eTRANSAFE (https://etransafe.eu/) project also developed
predictive models for translational clinical research. A common
tool, known as FLAME, was published in the project, which reused
the bioactivity data within ChEMBL and assisted in activity
prediction, specifically toxicity, for compound libraries of interest
(Pastor et al., 2021). A key advantage of the tool is its ability to be
repurposed for datasets not available in public repositories, such as
in-house pharmaceutical company databases (Steger-Hartmann
et al., 2018; Sanz et al., 2023). Thus, researchers can re-use the
tool for proprietary data by simply harmonising the data format for
in-house generated bioassay data to a ChEMBL-compliant format.

FAIR data in clinical studies

During the latter clinical phases of drug development, testing of
candidate drugs in patients is done to assess the drug’s efficacy for
the intended indication. Furthermore, an investigational drug’s
short- and long-term effects are measured to confirm the safety
and tolerability profile of the drug. A recently proposed alternative
approach to the design of clinical trials involves generating synthetic
patients in the form of virtual cohorts. Such virtual cohorts can
represent the diverse human population that differs across ethnicity,
anatomy, genetics, environmental, and lifestyle factors, and can be
constructed using access to standardised, anonymised FAIR clinical
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data. Of particular utility is the potential to replace control cohort
participants in trials, patients who normally receive a placebo or
comparator drug treatments (Azizi et al., 2021). This diverse
population representation allows for two significant advantages:
first, the ability to evaluate virtually large patient groups
irrespective of geographic location or condition; second, it is
relatively cost-efficient since analyses are computational in nature.

Two fundamental ingredients are needed to generate useful
synthetic data that can mimic the features of a real dataset:
advanced algorithms/methods and access to high-quality clinical
data and healthcare records. Many ML-based methods have been
derived for the method aspect, acknowledging the interest of the
drug discovery industry in synthetic patient generators. Models such
as Synthea (Walonoski et al., 2018) and SASC (Khorchani et al.,
2022) leverage statistical rules defined on real-world healthcare data
to generate the synthetic patient cohort. On the other hand, deep
neural network-based models like autoencoder-based VAMBN
(Gootjes-Dreesbach et al., 2020) or an agent-based simulation
model (Popper et al., 2021) have accelerated the field with virtual
patient simulation being closer to the real patient. With respect to
the data ingredient, resources have been built towards different types
of data related to biomedical research. The clinicaltrials.gov is a large
open-access database for clinical trial data. The European Health
Data & Evidence Network (EHDEN, www.ehden.eu) has built a
federated network to enable FAIRness of electronic health record
data. A broader list of synthetic data resources has been summarised
in the FAIR Cookbook (https://w3id.org/faircookbook/FCB069).
Overall, there are ongoing efforts to improve and automate the
process of cohort generation, given the benefits which can be
accrued in terms of flexibility to share virtual clinical data, lower
costs, and reduced data privacy needs relative to real-world clinical
data. In summary, it is essential to note that although synthetic data
is closed aligned with FAIR principles (given its seamless data
sharing and reuse without infringing on privacy), the importance
of this data is mainly in building ML/AI algorithms that can mimic
real-world scenarios. Consortiums like Common Infrastructure for
National Cohorts in Europe, Canada, and Africa (CINECA, https://
www.cineca-project.eu/) have aligned their mission in this direction.

FAIR data and drug repurposing

In the scenarios discussed above, we have examined the role
played by the analysis of FAIR data in the classical drug discovery
process, in which the goal is the identification of new drug
candidates for the disease in question. Equally, however, re-
use of data can be applied in the search among existing
marketed drugs for new therapeutic purposes. This approach
is referred to as “drug repurposing” or “repositioning” and is of
particular interest in the search for treatment for rare diseases,
where the very small number of patients hampers the conduct of
clinical trials (Whicher et al., 2018; Pushpakom et al., 2019). The
identification of repurposed drugs is supported by resources such
as the Drug Repurposing Hub (https://clue.io/repurposing) that
comprehensively aggregate pre-clinical and clinical data to assist
in decision-making (Corsello et al., 2017). Furthermore, the open
resources with curated data generated during pre-clinical and
clinical drug discovery pipelines like Open Targets (Koscielny

et al., 2017), SureCHEMBL (Papadatos et al., 2016), PubChem
(Kim et al., 2016), allow for tools such as Swiss Target Prediction
(Gfeller et al., 2014), COVID-19 Pharamcome (Schultz et al.,
2021), Patent EnrichMent Tool PEMT (Gadiya et al., 2023a), and
others to access, extract, evaluate, and predict patterns in the
underlying data. The COVID-19 Pharamcome based approach
by Schultz et al. (2021) enabled the integration of existing data
(both literature and experimental) on Sars-CoV-2 allowing for
the identification of synergistic drug combinations like
remdesivir-thioguanosine and nelfinavir-raloxifene. On the
other hand, the applicability of the PEMT tool by Gadiya
et al. (2023B) focused on retrospective analysis of patent
documents to identify the reasoning behind existing drug
repurposing cases like Cleave Biosciences’s CB-5083, from
cancer to rare diseases, for its target specificity. Both these
approaches emphasise the significance of adopting a legacy
data perspective to inform future decisions in drug discovery.
Furthermore, these endeavours have garnered recognition from
European communities resulting in the launch of drug
repurposing initiatives such as REPO4EU (https://repo4.eu/)
and REMEDI4ALL (https://remedi4all.org/).

Discussion

There is an urgent need to lower the costs and accelerate the
process of drug discovery. To help achieve these necessary
improvements, access to FAIR data can make a major
contribution to community-wide learning of lessons from past
failures and successes. FAIR data can also support ML predictions
based on well-curated findings from past experiences. The
increased adoption of ML methods also drives the further
adoption of FAIR principles. FAIR data management involves
ensuring that data is easily located, accessible to all who need it
(and by machines/automated access and analyses), structured in a
way that allows it to be used with other data, and accompanied by
sufficient metadata to make it understandable and interpretable.
The implementation of FAIR principles in data management
comes with an initial cost but has the potential to significantly
accelerate scientific discovery by enabling the effective use of data
across a range of domains and disciplines. Given the benefits of
following the FAIR data principles, it is clear that the effort of
making data FAIR is considerable. Any attempt to implement
FAIR should be carefully planned, and its benefits should be
evaluated prior to starting. Obstacles, as well as potential solutions
or strategies to overcome them, have been reviewed in recent
works (Gu et al., 2021; Alharbi et al., 2022). Through the journey
of making data FAIR, maintaining a close watch on FAIR
pipelines’ reusability is always encouraged by FAIR Doers. This
has led to the establishment of practical recipes on how to
implement FAIR in practices such as the FAIR Cookbook
(https://faircookbook.elixir-europe.org, Rocca-Serra et al., 2023)
created by biopharmaceutical and academic professionals and
guidance on data management practices, such as the RDMKit
(https://rdmkit.elixir-europe.org/); both community-driven
resources welcome contributions from knowledgeable
individuals to share examples and showcase resources that help
researchers in their FAIR journey.
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Introduction to small molecule
drug discovery and preclinical
development
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Over 90% of marketed drugs are small molecules, low molecular weight organic
compounds that have been discovered, designed, and developed to prompt a
specific biological process in the body. Examples include antibiotics (penicillin),
analgesics (paracetamol) and synthetic hormones (corticosteroids). On average, it
takes 10–15 years to develop a new medicine from initial discovery through to
regulatory approval and the total cost is often in the billions. For every drug that
makes it to the market, there are many more that do not, and it is the outlay
associated with abortive efforts that accounts for most of this expense. The
discovery of new drugs remains a significant challenge, involving teams of
researchers from chemistry, biology, drug development, computer science and
informatics. In this article wewill discuss the key concepts and issues encountered
in small molecule preclinical drug discovery and introduce some of the emerging
technologies being developed to overcome current obstacles.
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multimodalities

1 Introduction

Small molecule drugs are synthetic medicinal chemicals designed to mimic, enhance, or
diminish the behaviour of natural substances or products within the body. They have
relatively simple structures, customizable to meet specific therapeutic goals. They are
generally stable and rarely need specialized storage conditions. Their behaviour in the
body, or in vivo, is usually predictable, leading to straightforward, often oral, dosing
protocols that patients find easy to manage. They can treat a wide variety of diseases
because they can move through the body easily, transferring from the gut via the blood
stream to the site of action, permeating through cell membranes to reach intracellular targets.
They can be administered as pills, inhalers, suppositories or injectables, making them very
flexible.

The chemical structure of small molecules can be designed to interact selectively with
specific biological targets. By altering the atomic composition of small molecules, their
overall properties can be fine-tuned to a particular purpose, eliciting only the desired
response. The flexibility afforded by being able to explore all “chemical space” in this way,
offers small molecule approaches a marked advantage over other modalities. The process of
inventing a small molecule drug and ensuring that it performs precisely as it should,
minimizing unwanted side effects, involves meticulous design and synthetic mastery from
researchers, often over several years.

Compared to therapeutic proteins, or biologics, they are also easier to develop
(Makurvet, 2021). Once optimized, small molecule drugs can be manufactured very
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reproducibly, an advantage for researchers seeking a return on their
investment. Once patent life expires, non-branded generic forms of
the medicine will increase availability to patients.

In this mini-review we will describe the key concepts and
considerations involved in the discovery of small molecule drugs,
covering traditional approaches, and discuss how recent advances
such as the rise of artificial intelligence and innovative new
modalities have reinvigorated the field.

1.1 How do small molecules interact with
biological targets?

Proteins are the most common therapeutic targets; they are large
complex molecules that play important roles in the body. Proteins
are comprised of small building blocks known as amino acids. The
sequence in which these amino acids are arranged determines the
precise shape and function of the protein.

There are many ways in which small molecules work to elicit a
therapeutic response in the human body (Silverman, 1992; Patrick,
2001; Young, 2009). Three of the most common are listed below:

1. Enzyme inhibitors—enzymes are proteins that catalyze
biochemical reactions. By blocking the activity of these
proteins, small molecules can interfere with disease processes
to provide therapeutic benefits. Statins are a class of enzyme
inhibitor drugs; they work by inhibiting the activity of an enzyme
involved in the production of cholesterol in the liver. By reducing
overall cholesterol levels in the body, they reduce the risk of heart
disease and stroke.

2. Receptor agonist/antagonists—small molecules that can interact
with proteins that exist on the surface of cells, usually in one of
two ways: agonists which activate the receptor, mimicking the
natural signaling molecule or antagonists which block the
receptor, inhibiting the binding of the natural signaling
molecule and reducing activation. Albuterol is a receptor
agonist prescribed for the treatment of asthma which activates
the receptor responsible for opening the airways in the lung.

3. Ion channel modulators—ion channels are proteins embedded in
cell membranes which are responsible for regulating the flow of
ions into and out of those cells. They play a key role in a wide
variety of physiological processes including regulation of
heartbeat and neurotransmission. Small molecule drugs can
modulate the opening and closing of these channels to treat
diseases such as epilepsy.

Many of the mechanisms of action described above involve a
well-defined region on the protein into which a small molecule
can fit and bind. These regions are known as active sites, and the
geometric arrangement of their amino acids is such that they
only have affinity for a few naturally occurring molecules, or
substrates, within the body. This mechanism is often referred to
as the “lock and key” theory. By understanding the requirements
of the lock, researchers can create the best small molecule “key”
to fit it and thereby generate the desired response. The stronger
and the more specific the compound interaction with the amino
acids of the targeted active site is, the less likely that compound
will be to bind to different proteins. In turn, the fewer side effects

it will have. Thus, the design of small molecule drugs is highly
specialized.

As a result of better disease understanding and the development
of innovative technologies, more diverse approaches for disease
modulation by small molecules have evolved that exploit
different mechanisms of action. Examples include the modulation
of protein-protein interactions (PPI) (Wells and McClendon, 2007)
(Trisciuzzi, et al., 2023), bifunctional protein degraders (Sun, et al.,
2019) and stabilizers (Dong, et al., 2021; Henning, et al., 2022;
Mullard, 2023). Some of these other modalities are explored later in
the article. Table 1 shows some of the small molecule drugs that have
reached the clinic over the last century, highlighting the evolution of
their structural complexity as well as their mechanisms of action.

2 The preclinical drug discovery
process

Paths towards the identification of a preclinical drug candidate
that successfully reaches the market are complicated, and depend
upon a variety of factors including the complexity of the disease and
the rigorous validation and testing required to meet regulatory
approval requirements. The general process is outlined in
Figure 1. In the following sections we will discuss each stage of
the process in more detail.

2.1 Target discovery

Before drug discovery programs are prosecuted, the chosen
biological target must be validated as relevant. This can be a time-
consuming process as researchers try to demonstrate the role of the
target in a particular biological pathway, process, or disease of interest
(Schenone, et al., 2013). Upon validation, the assumption is made that
modulation of that target will elicit the desired effect. Proteins remain
the most represented class of therapeutic targets (Santos, et al., 2017),
but other types of biological molecules can also be targeted by drugs,
such as nucleic acids (DNA and RNA) (Kulkarni, et al., 2021).
Therapeutic targets are chosen based on the disease being treated
and the potential to interfere with the mechanisms of disease
progression. For example, many anti-cancer drugs target proteins
responsible for abnormal cell growth and division whilst for
Alzheimer’s disease, a common target is amyloid beta, a protein
that forms plaques (Ramanan and Day, 2023). Drugs can be
developed to prevent plaque formation or degrade those that have
already formed.

2.2 Screening and lead identification

Once the research team understands the physiological role
played by the target, they can assess how its modulation will
affect the disease state and begin their search for a chemical
agent to achieve the desired outcome.

If researchers know little or nothing about a target at the outset
of their work (maybe the utility of the target has only just been
discovered, and the team is seeking to be first-in-class) then the
simplest approach is a random high throughput screen (HTS). In this
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approach a large library of structurally diverse compounds (usually
over 100 K) will be tested against the target, in the hope that some
will prove active. These can be compounds that the researchers have
purchased or made before, or purified natural products. Hit rates are

typically low (~1%, or sometimes lower!) but the goal is to find
something, and build the project up from the actives, or seeds, identified.

Medicinal chemists continually wrestle to ensure that the
compound collections they use for screening are fit for purpose.

TABLE 1 Examples of small molecule drugs that have reached the clinic and the mechanisms of action associated with them.

Name Molecular structure Smiles Mechanism
of action

Clinical
stage

Indication

Aspirin CC(=O)Oc1ccccc1C(O)=O Enzyme Inhibitor Approved 1915 Pain

Salbutamol
(Albuterol)

CC(C)(C)NCC(O)C1=CC(CO)=C(O)C=C1 |c:
15,t:8,12|

Receptor Agonist Approved 1974 Asthma

Ciprofloxacin OC(=O)C1=CN(C2CC2)c2cc(N3CCNCC3)
c(F)cc2C1=O |t:3|

Enzyme Inhibitor Approved 1987 Antibiotic

Atorvastatin CC(C)c1c(C(=O)Nc2ccccc2)c(c(-c2ccc(F)cc2)
n1CC[C@@H](O)C[C@@H](O)CC(O)=O)-
c1ccccc1

Enzyme Inhibitor Approved 1996 High
Cholesterol

Lenalidomide Nc1cccc2C(=O)N(Cc12)C1CCC(=O)NC1=O Degrader Approved 2005 Multiple
Myeloma

Ivacaftor CC(C)(C)c1cc(c(NC(=O)
C2=CNc3ccccc3C2=O)cc1O)C(C)(C)C |t:11|

Ion Channel
Potentiator

Approved 2012 Cystic Fibrosis

Ibrutinib NC1=NC=NC2=C1C(=NN2[C@@H]
1CCCN(C1)C(=O)C=C)
C1=CC=C(OC2=CC=CC=C2)C=C1 |c:
3,5,8,30,32,35,t:1,23,25,28|

Covalent Approved 2013 Mantle Cell
Lymphoma

Venetoclax CC1(C)CCC(CN2CCN(CC2)c2ccc(C(=O)
NS(=O)(=O)c3ccc(NCC4CCOCC4)c(c3)
[N+]([O-])=O)c(Oc3cnc4[nH]ccc4c3)
c2)=C(C1)c1ccc(Cl)cc1 |c:57|

PPI modulator Approved 2016 Chronic
Myeloid

Leukaemia

Bavdegalutamide
(ARV-110)

FC1=C(C=C2C(=O)N(C3CCC(=O)NC3=O)
C(=O)C2=C1)N1CCN(CC2CCN(CC2)
C2=NN=C(C=C2)C(=O)NC2CCC(CC2)
OC2=CC(Cl)=C(C=C2)C#N)CC1 |c:
20,37,39,56,58,t:1,3,35,53|

PROTAC Phase II
(NCT05177042)

Prostate
Cancer

RM-6291 CCN1C2=C3C=C(C=C2)N2CCO[C@H](C2)
C[C@H](NC(=O)[C@H](C(C)C)N(C)C(=O)
C2(F)CCN(CC2)C(=O)C#CC(C)(C)N(C)C)
C(=O)N2CCC[C@H](N2)C(=O)OCC(C)(C)
CC3=C1C1=C(N=CC=C1)[C@H](C)OC |c:
5,7,66,71,73,t:3,69|

Molecular Glue Phase I
(NCT05462717)

Non-Small
Cell Lung
Cancer
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It is estimated that the total number of compounds that make up oral
druglike chemical space is 1060 (Reymond, et al. 2010). Even a
screening set containing a million compounds—which is
rare—barely scratches the surface of available druglike space. In
cases where more is known about a target (perhaps the binding site
of the agents has already been ascertained), the screening set can be
more focused. To create that focus, virtual screening can be
undertaken. Docking experiments, in which compounds are fitted
into the known binding site using a software package, can be carried
out ahead of the physical testing. In this way researchers can
eliminate compounds that have no hope of binding and promote
those that have a better chance. This process is known as structure-
based virtual screening because it is enabled by knowledge of the
protein structure. This type of screening is designed to evaluate
specific compound binding hypotheses, unlike the random HTS
experiments described earlier.

Where the binding site is not known, it may still be possible to
create a focused screening set if agents active against the target have
been identified in previous efforts. In what is known as a ligand-
based virtual screen, compounds with similar structures to the
known actives are selected, in the hope that these will provide a
best-in-class solution. These might contain motifs structurally
similar to those in the comparator actives, or different while still
bearing similar protein interaction properties. These scaffold
hopping searches can be conducted in two- or three-dimensions,
and success often opens new intellectual property space.

The concept of the fast follower takes the focus concept even
further. Here a synthetic effort will start from a validated active
discovered during a previous effort, to address residual target
selectivity, drug stability or toxicological concerns as rapidly as
possible. Often, this can result in the discovery of one or more
new chemical series.

Having identified a suitable set of compounds for test, whether
that be a random HTS with many compounds, or a smaller focused
set informed by prior knowledge, the search is then performed. Lots
of preparation goes into this: an assay must be created, expressing

the target protein in relevant cell systems, validated using
appropriate control compounds, and the correct concentrations
at which to test compounds determined through pilot work.

2.3 Lead expansion

Hopefully, the researchers will get some hits. These may all come
from the same structural class of compounds, or chemotype, or from
several different ones. Either way, attention will now focus strongly
on the active chemotypes, and the elucidation of the structure-
activity relationship (SAR).

In a manner akin to the ligand-based virtual screening described
above, researchers will seek to augment their knowledge around hit
chemotypes by searching compound databases for additional,
structurally related test materials. Such databases could be
corporate, in-house compound collections, or the catalogues of
commercial suppliers. If key compounds prove unavailable, the
team will synthesize them.

Armed with the additional information this augmentation
provides, researchers will first verify that there really is an SAR. A
group of structurally related compounds which are all active is a
potential red flag: genuinely bioactive compounds interact with
the target protein and cases should exist where those interactions
are suboptimal, and activity is reduced. If a chemotype is active
across all its members (a “flat” SAR) this may indicate false
positivity, arising from an artefactual phenomenon in the assay
and not the desired interaction. Such chemotypes would drop out
of contention.

Having removed these duds, the surviving chemotypes are
compared to see which ones are most likely to generate a
marketable clinical candidate down the line. Several factors
inform the decision. For instance, can new members of the
chemotype be synthesized quickly so that its optimization will be
cost effective? Are the actives already known in the literature, and/or
the intellectual property of competitors? Can the probable side effects

FIGURE 1
An overview of the drug discovery process from target discovery to market approval.
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of the compounds or their stability in vivo be anticipated, through
modelling and testing, and plans created to discharge such risks?

Researchers will execute a design-make-test-analyse (DMTA)
cycle to explore a chemotype through synthesis and assay.
Computational scientists help to design the compounds best able
to complete the study in the fewest number of cycles, deploying
models to assess risks and predict activity, refining their forecasts
and guiding the research ever more accurately over time as further
data are acquired. In this way, the team builds a data package for
each chemotype, allowing them to make an informed choice
between them and create an issue-focused plan as they move
forward into the optimization phase.

2.4 Lead optimization to preclinical
development

At this stage of the process the objective is to gain as much
knowledge as possible about the lead compounds’ efficacy and safety
before they are tested in humans during clinical trials. This usually
involves a multitude of laboratory tests, or assays, to assess both the
drug’s action on the body and the body’s action on the drug.

A successful drug needs to be able to reach its target and exert a
medicinal effect for the required length of time. Depending on the
indication, this timeframe can varymarkedly. A sleeping pill must reach
its site of action quickly and be eliminated from the body by morning,
whereas a drug designed to alleviate more chronic indications, such as
cancer or dementia, will ideally last much longer. While target
interaction, or engagement, is essential for a small molecule to have
the desired pharmacological effect, it is equally vital that drugs be able to
reach the location of the target efficiently and in sufficient concentration
to effect that target engagement. It must also do so as selectively as
possible to minimize potential toxicity and undesired side effects.

The engagement of a compound with the target of interest is
investigated using structural biology techniques, through the
computational creation and exploration of 3D models of the target.
These structural models are central to the further design and
optimization of compounds during the lead optimization phase, as
researchers endeavour to improve the “fit” of the compound to the
active site.

DMPK (drug metabolism and pharmacokinetics) studies allow
researchers to understand how their compounds are absorbed into,
distributed around, and eliminated from the body whilst
pharmacodynamics (PD) studies the interactions of the drug
with the body and tells the team about the potency and
effectiveness of the compound. These assessments drive
decisions during the discovery process, combining lab-based
experimentation with the use of computational modelling and
machine learning methods to make early predictions of various
DMPK outcomes (Obrezanova, 2023). They help to determine the
optimal dosage, side effect profile and toxicity risks. Toxicity can
arise directly, through the action of the compound itself
(insufficient selectivity for the required target) or indirectly, by
interfering with the action of other drugs. Such drug-drug
interactions (DDIs) are often problematic: if one drug inhibits
critical enzymes then another might endure in the body to a much
greater extent than is safe. This is a major concern in geriatric care
for instance, where frail patients often take many medicines at once.

Thus, there are a vast number of consider researchers must think
through at this stage to ensure their agents are safe and effective, and the
DMTA cycle continues until this is achieved. Researchers will make
modifications to the structures of their leading compounds to arrive at a
better balance of DMPK properties. They will seek to bring about the
desired clinical outcome from the smallest possible dose—another good
strategy for the elimination of side effects. At the same time, they will
seek to ensure that any structural changes they make will neither
diminish potency against their target nor reduce selectivity. Drug
discovery researchers often find themselves optimizing multiple,
often competing parameters to find the “sweet spot” that will deliver
the optimal properties for a given indication.

Prior to entering clinical trials, compounds are assessed both
in vitro and in vivo. The latter involves the use of animal models,
usually but not exclusively rodents, to represent the systems and
functions of the human body. Such studies reveal important
pharmacological and toxicological information, and until such
time as computer modelling becomes so accurate that we can
turn confidently to human volunteers when testing new drugs in
vivo for the first time, their use will always have a place. At the same
time, ethical concerns clearly have a huge role in driving the future of
drug discovery, and pharmaceutical companies continue to drive
animal testing down to the bare minimum needed, cognizant of the
fact that in vivo responses in such testing do not always translate
effectively to humans. There is continued heavy investment in more
and better in vitro and ex vivo testing, and computer modelling, to
meet this important challenge (Powell, 2018).

Many times, despite months of costly effort, it proves impossible
to design a drug which is both safe and efficacious (DiMasi et al.,
2003). At other times though, success is achieved. A drug candidate
is developed with the activity, safety and DMPK profile needed to
combat the targeted disease with a dose regimen that best suits the
lifestyle of the patient. These compounds move forward to clinical
trials.

3 Emerging technologies in small
molecule drug discovery

Despite the large amount of money invested in drug discovery,
there are still only around 500 treatments but over 7,000 human
diseases (Austin, 2021). Drug discovery is expensive and time-
consuming, with high rates of late-stage attrition due to lack of
efficacy or compound related safety issues. The high failure rate
underlines the complexity of drug discovery; learning from past
mistakes and exploring new technologies is crucial if the industry is
to improve its success rate. The implementation of innovative
methodologies such as artificial intelligence (AI) and the
development of new modalities to target “undruggable” targets
are two ways the industry is evolving to improve the chances of
producing new therapies and better patient outcomes.

3.1 Artificial intelligence (AI)

AI techniques offer the potential to improve the speed, efficiency
and therefore cost of the drug discovery process on the basis that
computers are more efficient at analyzing and processing large
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amounts of data to help researchers make less biased, more informed
decisions (Brown, et al., 2020). A current example of AI application
is in compound screening (Sadybekov and Katritch, 2023).
Traditional high throughput screening is limited to hundreds of
thousands of compounds at best, but AI can be used to screen millions
of compounds virtually, solving the chemical space conundrum in a
much more cost-effective way to identify potential novel drug
candidates. Some commercial vendors have enormous compound
libraries of synthetically tractable compounds which can be made to
order if a virtual screen suggests they will be active. The ability of AI to
explore broader chemical space improves the chances of success in
finding potential leads and is especially pertinent given the rise of
clinically approved compounds that reside outside traditional “oral
druglike chemical space” (Doak, 2014). In other areas, advanced
machine learning models are trained utilizing neural networks,
imitating the biological network of the human brain, and used
to predict the efficacy of compounds and safety endpoints
(Cavasatto and Scardino, 2022). In turn, better informed
decisions are made at an earlier stage in the process, mitigating
the risk of more costly late-stage failure (Vamathevan, et al., 2019).
Natural language processing (Gruetzemacher, 2022) can mine and
process millions of scientific research articles to reveal insights into
disease mechanisms and biology. AI tools now commonly used in
drug discovery can design molecules from first principles (Vanhaelen
et al., 2020), repurpose (Prasad and Kumar 2021; Roessler, et al., 2021)
known drugs for the treatment of other diseases and even help plan
synthetic routes (Thakkar, et al., 2021) based on prior knowledge.

This all highlights one of the key challenges with AI in drug
discovery (Bender and Cortés-Ciriano, 2021). To be well enough
informed to make accurate decisions, AI tools require large volumes
of data from which they are “trained”. In the absence of sufficient
quality and volume of data, these tools can be unreliable and inaccurate.

One of the most cited examples of how transformative AI can be
in the field of life sciences is the release of DeepMind’s AlphaFold,
which uses deep learning technology to predict three-dimensional
protein structures from amino acid sequences (Jumper, et al., 2021).
The neural network system used was trained on a vast dataset of
protein structures and sequences, learning the intricate relationship
between amino acid sequences and their preferred spatial
arrangements with high accuracy. Whilst this has revolutionized
the field of protein structure prediction, its full impact on the field of
drug discovery is only just starting to be realized (Arnold, 2023).

AI holds much promise and has achieved some notable
successes so far but human researchers are clearly far from being
replaced; their experience is key to the validation of AI tools and the
interpretation of their predictions (Jiménez-Luna et al., 2020). The
synergistic integration of AI technologies, traditional screening
approaches and human wisdom remains essential for modern
drug discovery programs to successfully deliver new treatments
(Griffen et al., 2020).

3.2 New modes of action for small
molecules

The occupancy-based mode of action for many small molecule
drugs has historically precluded a significant portion of the genome.
For example, non-enzymatic and/or intrinsically disordered

proteins do not possess well-defined active sites to which small
molecules can bind. Such targets have been considered
“undruggable”, but innovative strategies to chemically modulate
these proteins are emerging and have attracted huge interest in drug
research and development, offering the potential to treat many more
diseases and address at least some of the gaps in unmet patient need
(Blanco and Gardinier, 2020).

For instance, certain amino acids on the surface of a target
protein, even in otherwise featureless active sites, are capable of
bonding chemically to covalent drugs. Since such compounds
directly attach to target proteins, rather than interact transiently,
they offer benefits such as increased efficacy and specificity as well as
extended duration of action. An example of a marketed covalent
drug is ibrutinib, approved by the FDA in 2013 for the treatment of
various blood cancers, which works by blocking the activity of a
protein involved in the growth and survival of cancer cells (Shaywitz,
2013).

Another new modality for small molecules is their use in the
disruption/modulation of the interactions between two or more
target proteins. Biological processes are frequently regulated
through such protein-protein interactions (PPIs), so directly
targeting them can bring about therapeutic benefits. Venetoclax
is an approved PPI drug prescribed for the treatment of acute
myeloid leukemia (AML) and chronic lymphocytic leukemia
(CLL). Its mode of action involves disrupting the interaction of
two proteins that would otherwise work together to promote cancer
cell survival (Roberts and Huang, 2017).

Protein degrader therapies take advantage of the body’s
natural processes to schedule disease-causing proteins for
degradation. The degrader recruits undesirable proteins to the
cellular machinery responsible for protein breakdown, leading to
their elimination. Lenalidomide (Armoiry et al., 2008) is a
degrader that promotes the removal of a protein promoting
cancer cell growth, FDA-approved for the treatment of
multiple myeloma in 2005. This approach has been developed
further in recent years, giving rise to a new class of drugs called
PROTACs (proteolysis-targeting chimeras). Bavdegalutamide is
an example of a PROTAC drug currently in Ph II trials for the
treatment of prostate cancer (Gao, et al., 2022).

4 Conclusion

The field of small molecule drug discovery continues to evolve
and remains a highly promising path in the pursuit of novel
therapeutics (Härter, et al., 2022; Howes, 2023). Through
meticulous design and rigorous testing in both preclinical and
clinical settings, researchers in both the pharmaceutical industry
and academia are advancing our understanding of disease biology.
Compounds entering the clinic in recent years have successfully
challenged previous dogma regarding the molecular properties
required for an oral drug and the methodology by which disease
progression can be arrested. Ongoing investment and advances in
biology, computational technologies and innovative synthetic
chemistry are providing researchers with increasingly efficient
and precise tools for small molecule discovery and design. The
synergistic partnership between scientific expertise and
technological progress still holds great promise for the discovery
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and development of small molecule medications and treatments in
the future.
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In the quest for the discovery of new therapies, the identification of the initial
active molecules is a major challenge. Although significant progress in chemistry
and biology has been made in recent years, the process remains difficult. In this
mini-review, we will explain the major approaches and experimental methods
that can be used to identify these molecules. Two main approaches are
described, target-based and phenotypic-based and a focus is made on some
high throughput technologies and biophysical methods.
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drug discovery, small organic compounds, screening methods, HTS, biophysics

1 Introduction

Despite scientific and methodological advances made over the last 20 years, identifying and
developing new therapies remain long and costly processes (Wouters et al., 2020). Indeed, the
marketing and distribution to the general public of small molecules, antibodies or therapeutic
proteins take several years; for instance, a small chemicalmolecule is commercially available after
12–15 years. As the duration of certain developmental phases, such as clinical trials, can hardly
be reduced, a great effort has been made to spend less time on the first steps of the process (pre-
discovery, drug discovery and preclinical). New biophysical, biochemical, biological and in silico
technologies have emerged to accelerate the discovery stage.

In this review we will focus on small organic compounds; vaccines, cellular therapy,
therapeutic antibodies and other biologics will not be addressed.We will particularly discuss
the main methods for identifying the first bioactive small molecules, also known as “hits”.
The definition of a hit can vary across the scientific community, but in this article a hit will
be considered as a molecule whose activity is confirmed in one or several primary biological
and/or biophysical assays. These hits will then be optimized through an iterative cycle
involving biology, biophysics, chemistry and AI-based methods (Vemula et al., 2023) to
obtain a new drug, displaying a high efficacy and a low or even no toxicity.

The identification of new small organic molecules-based therapies requires a set of
molecules to be tested and a robust validated assay. These molecules can be obtained in
different ways, which will not be detailed herein, however here are some commons sources:

(1) Natural products: nature has always been a source of valuable bioactive molecules.
Natural products and their derived molecules have been used since ancient times to
treat diseases. These molecules are found in plants, microbes, aquatic organisms,
animals, fungi and insects. Many drugs, such as antibiotics and anticancer agents,
were originally derived from natural sources. (Newman and Cragg, 2020; Naeem
et al., 2022).
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(2) Synthetic compounds: pharmaceutical companies and research
institutions often maintain libraries of synthetic chemical
compounds. Combinatorial and parallel chemistry have been
used to generate thousands of molecules by systematically
varying chemical structures. Today more rational approaches
are used to design and synthesized specificmolecules intended to
inhibit particular targets like kinases, ion channels, GPCR or
biological mechanisms like protein-protein interactions or DNA
methylation. Artificial intelligence and machine learning
algorithms are also used to identify potential drug candidates
by analyzing huge datasets and predicting the biological activity
of molecules. (Yu and MacKerell, 2017).

(3) Repurposing of existing drugs: sometimes existing drugs that
were developed for one indication can be repurposed for
treating different diseases. This approach emerged in the early
1990s and has been proven to be a viable alternative to the
identification of new drugs. (Gns et al., 2019).

(4) Drug design: this rational methodology consists in designing
potential active compounds, i.e., compounds that bind to a
particular target, based on structural data of the target or
based on data of the ligand. Many computational techniques
have recently emerged that help researchers identify
innovative compounds. (Hoffer et al., 2018; Singh et al., 2020).

2 How to identify new
bioactive molecules?

To identify new hits, a screening strategy (or method) must be
adopted. A set of specific assays must be carried out to identify and
optimize potential drugs that then become drug candidates for
clinical trials. Two major kinds of approaches exist (Figure 1),

namely, those that require the identification of a target and
validation of the relationship between that target and a particular
disease–called target-based approaches–and those that work in a
target agnostic fashion known as phenotypic approaches. The latter
consist in observing the effect(s) of a new potential therapy at the
level of cells or whole organisms. Phenotypic approaches require an
experimental model as close as possible of the pathology and
symptoms observed in human.

2.1 Target-based screening

Target-based screening relies primarily on the identification of a
disease-relevant target; typically, for example, proteins and nucleic
acids. This type of screening can be performed in vitro using
biochemical and biophysical methods, or in cellulo using cellular
models to assess the activity of the compound towards the target in a
cellular context. The assays developed to perform the screening are
designed either to measure the interaction between a potential drug
and the chosen target, or the ability of a drug to modulate a cellular
function through its interaction with the target. The aim of these
methods is to develop an assay that produces a detectable signal in
order to visualize, primarily through the emission of light (in the
visible or fluorescence spectra), the activity of a given compound
towards the target. The development of an assay is not trivial and can
take time as it must be sensitive, reliable and reproducible enough to
provide comparative results when thousands of compounds
are screened.

2.1.1 High Throughput Screening (HTS)
High Throughput Screening consists in the screening of large

libraries of compounds (from thousands to sometime millions) in

FIGURE 1
Schematic representation of hit identification.
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order to identify hits (Blay et al., 2020). This approach is based on
the automation of biological and biophysical assays that can be
miniaturized and must be a highly sensitive method to identify
active compounds. At its inception, HTS screening campaigns were
carried out using 96-well plates, now screens are conducted in 384-
well or 1,536-well plates of the same dimension as their predecessor.
This means that the number of reactions that can be performed in
parallel has significantly increased over the last 2 decades, and that
the time needed to screen large libraries has thus been considerably
reduced. However, it still takes several weeks to months to complete
a screen, and the typical hit rate is around 1%. The success of an HTS
screening largely depends on the design of the assay and the
achieved statistical performance. The robustness of the assay can
be assessed using a statistical parameter like the Z’ score (Zhang,
1999). This parameter has been widely used to determine the
suitability of an HTS assay but other parameters like the
distribution of standard deviation have been described
(Hanley, 2019)

HTS was the gold standard in the 1990s and gave good results.
Today it is used alongside other approaches, like structure-based
drug design or other computational techniques (Macarrón and
Hertzberg, 2011). In order to be robust and not too expensive,
an HTS assay should not comprise too many steps. To that effect,
several homogeneous-phase assays have been developed, in which
all reagents are mixed and no washing step is required. Among the
homogeneous-phase techniques, HTRF (Homogeneous Time
Resolved Fluorescence) is widely used (Gotoh et al., 2010; Shin
et al., 2023). This technique is based on the transfer of energy
between two fluorophores, a donor and an acceptor. This transfer
occurs when both fluorophores are in close proximity, resulting in a
measurable fluorescent signal. This kind of methodology is used for
a number of applications, such as the detection of protein-protein
interactions (each fluorophore being linked to one of the proteins),
enzymatic activities or receptor binding. Another technology named
ALPHAscreen (Amplified Luminescent Proximity Homogenous
Assay) is also based on a signal obtained when two entities are in
close proximity or linked. In this assay the donor and the acceptor
are microbeads that are brought together by the molecular
interaction of the binding partners that are linked to these beads.
Fluorescence polarization which measures the rate of rotation of a
fluorescent-labeled ligand is also a powerful method to identify hits
and to obtain information during the optimization process (Lea and
Simeonov, 2011; Hua et al., 2023).

2.1.2 Cell-based assay
Cell-based assays also played a crucial role in the identification and

validation of bioactive compounds serving as versatile tools to assess
cellular responses to various stimuli and compounds. These assays use
living cells to investigate drug efficacy on cell viability, proliferation or
specific cellular functions. These assays differ from phenotypic
screening in terms of complexity of the readouts. While phenotypic
assays generally involve the simultaneous analysis of multiple cellular
parameters (shape, size, surface, biomarkers of specific pathways), cell-
based assays focus on a single parameter. One notable example is the
MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide)
assay, where the reduction of a yellow tetrazolium salt to purple
formazan product by metabolically active cells is measured,
providing an indirect assessment of cell viability.

Specific target-based screens like protein-protein interactions
can also be conducted using cell-based assays. For example,
bimolecular complementation assays, also known as PCA
(Protein-fragments Complementation assays) have been
developed in the last decade (Kodama and Hu, 2012; Sharma
and Anand, 2016; Bellón-Echeverría et al., 2018). In these assays,
a fluorescent reporter protein is divided into two non-functional
fragments. Each fragment is then fused to two proteins of interest.
When these proteins are in close proximity, the split fragments of
the reporter protein reassemble, restoring its functionality and
resulting in a measurable signal. One of the limitations of the
system is that complex reassembly is irreversible; hence, more
dynamic systems have recently been developed (Tebo and
Gautier, 2019).

Protein-protein interactions within cells can also be monitored, for
instance using energy transfer as in FRET (Fluorescence Resonance
Energy Transfer) (Song et al., 2011) or BRET (Bioluminescence
Resonance Energy Transfer) (Machleidt et al., 2015; Cho and Dalby,
2021). Both methodologies rely on the transfer of energy between a
donor and an acceptor, one being a bioluminescent protein in the case
of BRET. The major advantage of cell-based assays is that it addresses
the activity of a candidate compound in a specific cellular context. If an
effect is detected this means that the compound is able to cross the
cellular membrane and to reach a target. Additionally, if cells tolerate
the compound, this is a first indication that the compound is not toxic
for the cell.

2.1.3 Structural and biophysical methods
Structural an biophysical methods are now systematically

integrated into the hit identification and validation process, as well
as in the subsequent steps of candidatemolecule optimization. Their use
for hit identification dates back to the 1990s, via Nuclear Magnetic
Resonance (NMR) and X-ray crystallography coupled with
computational analyses. Since then, several techniques have been
developed or adapted particularly in terms of throughput, and they
have become complementary to biochemical or cellular biology
methods fostering a positive selection of the compounds. These
technologies have provided scientists with important information for
the development of compounds, such as evidence that the compound
binds to the target, the kinetics of the binding, the affinity (measurement
of the strength) of the binding, or thermodynamic parameters. In
addition, these techniques can also help to identify the binding mode
and the binding pocket of molecules. This information is essential for
developing a molecule with the right mode of action. Indeed, as an
example an enzyme can be inhibited by a molecule that binds in the
active site or at a distal site (allosteric inhibition).

A wide range of techniques is now available and their use in drug
discovery has been reviewed elsewhere (Renaud et al., 2016;
Holdgate and Bergsdorf, 2021). A majority of these methods
focus on analyzing isolated targets, which implies producing and
purifying the target, albeit more recent methods can now be
performed using cellular extracts. Some of them require labeling
of the target with a fluorochrome or use a native unmodified target,
the ultimate goal for all these techniques being to demonstrate that a
candidate compound binds to the target.

Among the most frequently employed methods, we can mention:
(i) Calorimetry techniques (like Isothermal Titration

Calorimetry (ITC) or Differential Scanning Calorimetry (DSC)
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provides thermodynamic data about the protein-ligand complex.
For example, ITC measures the consumption or generation of heat
when a compound binds to the protein (Falconer et al., 2021). (ii)
Temperature-related intensity change that measures the
modification of fluorescence intensity of a fluorochrome when
the target and the compound are bound (Jerabek-Willemsen
et al., 2014). (iii) NMR that relies on the behavior of certain
atomic nuclei when placed in a strong magnetic field and
exposed to a specific frequency of radiofrequency radiation
(Shimada et al., 2019). (iv) Surface plasmon resonance detects
changes in the refractive index near a metal surface. (v) Mass
spectrometry that determines the mass-to-charge ratio of ions
(Gavriilidou et al., 2022) (vi) X-ray diffraction that measures the
diffraction angles and changes of intensities of X-rays can be
applicable to crystals (X-ray crystallography) (Maveyraud and
Mourey, 2020) but also to proteins in solution like enzymes
(Byer et al., 2023) (vii) cryo-electron microscopy (cryo-EM) is a
powerful technique used for imaging macromolecules at near atomic
resolution. This technique is now complementary to NMR or X-ray
diffraction in small molecule drug design ((Vénien-Bryan et al.,
2017; Renaud et al., 2018)

These techniques all rely on high-standard equipment, and
depending on the method employed the throughput can vary from
a few compounds a day to a few compounds a week or month. These
methodologies are part of the drug discovery process from the early
phases to the selection of the preclinical candidate therapy.

2.2 Phenotypic-based screening

Historically, the discovery of medicines relied on phenotypic
approaches, however with the advent of genomics in the 1980s and
the sequencing of the human genome in 2001, these approaches were
neglected. Nevertheless, over the last decade there has been renewed
interest in phenotypic approaches, as they are valuable at identifying
novel therapeutic agents (Ege et al., 2021; Vincent et al., 2022). One of
the advantages of phenotypic assays is that they explore a broader
spectrum of biological responses than target-based approaches,
elucidating complex biological pathways and uncovering unforeseen
interactions, thus offering a holistic perspective of the potential effect of
a new agent. Technological advances have played a pivotal role in
boosting phenotypic screening. Assay miniaturization, development of
high-throughput screening platforms (gathering automated equipment
to rapidly test a huge quantity of samples rapidly), automated imaging
(microscopy technology) and data analysis systems have opened new
avenues to perform phenotypic analyses. One such technique is
fluorescence imaging, which enables scientists to visualize and
quantify various biological processes at the cellular and subcellular
levels. This technique uses fluorescent probes, markers or genetically-
encoded fluorescent proteins to highlight specific cellular structures,
proteins, or functional activities. High content screening (a combination
of powerful imaging tools and biochemical/molecular biology assays)
captures dynamic cellular events in real-time; for instance, the
monitoring of processes like cell migration, proliferation,
modification of the cellular morphology (shape, size. . .) and cell
death. Additionally, it allows the concomitant assessment of
multiparametric data including protein localization, analysis of
subcellular organelles or responses to external stimuli. Numerous

approved therapies for cardiovascular diseases, viral infections,
neurodegenerative disorders and cancers originate from phenotypic
screening (Blay et al., 2020). Despite, many advantages that have led to
the identification of innovative therapies that could not have been
identified without this approach, phenotypic screening has one major
drawback–this global approach makes it difficult to decipher the
molecular mechanisms of action of a drug and to identify its
target(s), both necessary to optimize the potency of a drug and for
its further development in the clinic.

3 Conclusion

Drug discovery is a long and challenging process which involves
various fields of expertise. A crucial step of the development of a new
small organic-based therapy is the identification of hits. Target-
based, phenotypic-based and biophysical methods can be employed
throughout the process to identify these hits and to participate in the
optimization and development process of a new promising therapy.
Despite significant advances in scientific and technological methods,
the identification and development of new therapies remain arduous
and resource-intensive. The journey from identifying bioactive
molecules to developing a marketable drug involves an intricate
interplay of biology, biophysics, chemistry and cutting-edge
technologies. As science continues to advance, the hope is to
streamline this process, making drug discovery more efficient and
accessible for the benefit of patients.
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The case of the missing mouse—
developing cystic fibrosis drugs
without using animals

Lindsay J. Marshall* and Kathleen M. Conlee

Animal Research Issues, The Humane Society of the United States, Gaithersburg, MD, United States

Creating and developing new drugs can take decades, costs millions of dollars,
requires untold human effort and usually, takes thousands of animal lives. Despite
regulators professing confidence in non-animal approaches and guidance
documents that permit submission of non-animal data, toxicity testing is
routinely carried out in animals, employing rodents (invariably mice) and non-
rodents. However, extensive preclinical testing in animals is still no guarantee that
drugs will be safe and/or effective. In fact, more than nine out of every ten drugs
that appear safe from animal trials will fail when tested in people, often due to
unexplained toxicity or a lack of efficacy. This paper will describe recent advances
in drug development where non-animal approaches have been used, to explore
how and where these could be applied more widely to revolutionize the drug
development pipeline and accelerate the creation of safe and effective
medicines. As one case study, we look at the small molecule channel
modifiers developed to address the consequences of the mutated chloride
channel in the fatal genetic condition, cystic fibrosis. We then take a closer
look at where drug development could be accelerated by focusing on innovative,
human biology-based testing methods. Finally, we put forward
recommendations, targeting all stakeholders, including the public, that will be
needed to put this into practice and enable drug development to become more
efficient - focusing on human-biology based testing and cutting out the
middle-mouse.

KEYWORDS

cystic fibrosis, in vitro, drug development, cystic fibrosis transmembrane conductance
regulator, new approach methodologies

1 Introduction

“The child with the salty brow shall die.” This was the prognosis for people born with
cystic fibrosis (CF), before the condition had even been named. There was terrible
recognition that tasting salt when you kissed your baby was a harbinger of doom.
Decades of tireless research by (among others) Dorothy Andersen and Paul di
Sant’Agnese provided the key observations that children dying of this condition were
not producing digestive enzymes from their pancreas (Andersen, 1938); that the levels of
salt (sodium chloride) in their sweat was much higher than healthy children (Di
Sant’Agnese et al., 1953) and this led to the condition being named as cystic fibrosis. In
1989, an important breakthrough occurred when the gene responsible for CF disease was
identified (Rommens et al., 1989). This study revealed that the “CF gene,” encoded a protein
called the cystic fibrosis transmembrane conductance regulator (CFTR), responsible for
regulating chloride ion movement out of cells.
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1.1 Understanding cystic fibrosis

Identification of the gene was a crucial advance that was hailed as
the last piece of the puzzle in the search for a cure for CF. However, as
is customary for modelling human genetic diseases, the identification
of a specific, causative gene leads to the creation of multiple “artificial”
animal models, since animals do not naturally have CF. Identification
of the gene associated with CF was confirmed in 1989 and the first
animal model was created a couple of years later (Snouwaert et al.,
1992). Animal models of CF initially used mice, but since these
manipulated mice failed to fully recapitulate the human condition,
and the animals did not have symptoms of the lung disease, this
expanded to other animals including rats, ferrets, sheep and pigs.
There are now more than 750 different genetic animal models of CF,
of whichmore than 690 usemice (Leenaars et al., 2020). Since animals
do not have CF naturally, there has to be some manipulation of the
animal in order to generate symptoms of the disease and this requires
either genetic mutation techniques, used for the genetic models, or
non-genetic approaches, including the use of drugs, deliberate
infection with pathogens, or grafting human tissues into the
animals’ lungs. There are more than 220 non-genetic animal
models for CF, again the majority of these use mice, but there are
also rats, pigs, monkeys, and rabbits (Leenaars et al., 2021).

The Canadian database which logs the differentmutations in CFTR
that give rise to CF currently stands at 2,114 (http://www.genet.sickkids.
on.ca/StatisticsPage.html). Even before considering the ethics and
scientific relevance of this exercise, the costs and time required to
develop an animal model for each of these mutations would be
exorbitant. One commercial service offering development of
genetically modified animals charges a basic fee of around $4,000 for
a single mutation and this does not include technical support (such as
animal care and surgery) or consumables (e.g., surgical equipment)
(https://brcf.medicine.umich.edu/cores/transgenic-animal-model/fees/;
https://www.umassmed.edu/globalassets/transgenic-animal-modeling-
core/documents/whycostsomuch2015.pdf). To create one animal
version of each CF mutation found in people would therefore cost
more than 8 million US dollars. This is a very conservative estimate
since costs would be greater for larger animals (rabbits costs at least
twenty times more than mice and mini pigs are over one hundred
times more costly than mice https://minipigs.dk/products-services/
enquiries) and it is more expensive and time consuming to create
the complex models which would more accurately represent the
patient population (almost half of the UK CF population have two
different mutations https://www.cysticfibrosis.org.uk/sites/default/
files/2020-12/2019%20Registry%20Annual%20Data%20report_Sep%
202020.pdf). Developing pig models of the spectrum of CF mutations
found in humans would cost upwards of 190 million US dollars.

However, CF is a great example of how human-centred
interventions (as opposed to animal-based research) have
played a great role in improving understanding of CF such
that the bleak prognosis for the child with the salty brow has
improved over time. In the 1960s and ‘70s, increased survival was
associated with the creation of dedicated CF centers, these were
crucial for sharing best practices for nutrition and physiotherapy
and for fast, aggressive treatment of infections. With these
interventions and the knowledge sharing offered by the
dedicated networks of CF physicians, parents and families, the
median survival age for babies born with CF reached 11 years in

the 70s and is still on the increase (Matthews et al., 1964;
Doershuk et al., 1965) (Figure 1).

1.2 The drug development pipeline today

Traditionally, animals are used in drug development (Figure 2) to
demonstrate the safety of the preparation (for a comprehensive review
of the drug development process, see the paper by Singh et al. in this
edition (Singh et al., 2023)). As stated by Dr van Norman in her
2019 article about animal use for drug safety testing, “[t]here is no doubt
that the use of animals in science and medicine has significantly
benefitted human beings.” However, despite an historical reliance on
animals for medical advances, drug attrition rates of more than 90%
(Sun et al., 2022) indicate that animals are not predictive for humans
and a drug that is safe for animals is not always safe (or effective) in
people (Van Norman, 2019; Van Norman, 2020). Unfortunately, it is
not possible to carry out a stringent comparison of the possible failure
rates if drugs were tested using the non-animal approaches. The data
submitted by the pharmaceutical companies as part of the regulatory
approval are not publicly available and whilst the current legislative
requirements do not demand animal data, many of the drug safety
guidelines to which pharmaceutical companies refer make reference to
submission of preclinical pharmacology data from animals. It is
therefore not possible to calculate the likely “failure rate” of a drug
tested solely on human based methods or using human data. Despite a
mounting body of evidence that the human based tools are (and will be)
more predictive than animals, we cannot simply assume that the non-
animal tests will always accurately predict human responses. However,
as data fromhuman relevant tools accumulate, thismay change. Indeed,
the case study of CF presented here indicates that patient-derived
samples and developing tests using human cells offer insight into the
biological effects of potential drugs and can revolutionise treatments.

The new approach methodologies (NAMs) are innovative methods
that no longer rely on the use of live animals, these include human cells,
tissues and organs, organ-chips or microphysiological systems (MPS),
use of human data or human volunteers, and computer modelling.
When considering the uniquely human nature of a disease, these
methods offer a more relevant and physiologically accurate approach
to understanding the disease features and therefore developing an
effective treatment. They also provide more confidence in the
predictivity of the data obtained—recent research has shown that
MPS can recreate species-specific effects (Jang et al., 2019) and that
MPS using human liver cells are better able to predict toxic drugs than
animal testing (Ewart et al., 2022). In fact, analysis of possible savings that
could be realised if human liver MPS were included for safety testing
within the drug development pipeline revealed that these might reach
around 3 billion USD in drug development costs (Ewart et al., 2022).

For drug safety testing, there are national and international
guidance documents that have to be adhered to, and these indicate
that animal studies should be undertaken (e.g., the International
Council on Harmonisation guidance M3 (R2) for “Non-clinical
safety studies for the Conduct of Human Clinical Trials and
Marketing Authorization for Pharmaceuticals” states that “The
development of a pharmaceutical is a stepwise process involving
an evaluation of both animal and human efficacy and safety
information” and goes on to detail what number and species of
animals should be used throughout the process U. S. Food and Drug
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Administration). However, many of the regulatory agencies claim that
they do not require data from animals and that they would be willing
to examine data from the non-animal methods and the UK
government recently declared that [“t]here is no United Kingdom
legislation that mandates animal testing” (UK Parliament, 2023).
Indeed, the Food and Drug Administration Modernization Act 2.0,
which was signed into US law in 2022, permits drug developers to
make use of “certain alternatives to animal testing, including cell-
based assays and computer models, to obtain an exemption from the
Food and Drug Administration to investigate the safety and
effectiveness of a drug” (One hundred and seventeenth Congress
of the United States, 2023). Likewise, for drug efficacy testing, (these
are studies undertaken to evaluate whether a treatment will be
effective), the regulatory agencies do not insist on animal data
although animal models of disease are often used here, and so it
seems that the door is open for non-animal data to be submitted to
support product registration.

1.3 In vitro breakthroughs for CF show the
way forwards

In 2006, researchers at Vertex first used human cell cultures with
bronchial epithelial cells (taken from the upper airways of people) to
develop a method to measure the activity of the CFTR channel (Van
Goor et al., 2006). They used this human-relevant tool to screen

hundreds of thousands of different chemicals and identify
compounds that would increase CFTR activity. This assay revealed
many hundreds of compounds with the desired activity, and the
researchers then got rid of the ones that were unlikely to be
successful drugs based on chemistry (through comparing structures
to drugs that have been recognised as toxic). Fifty-three compoundswere
selected for further investigation using intestinal organoidmodels—note
that organoids are tiny, cell-based models that retain the structure and
function of the “parent” organ (Dekkers et al., 2013). Accessing bronchial
epithelial cells is quite difficult and can require sedation, making this a
complicated procedure to carry out in very young children (the intended
patient population), but the cells to create intestinal organoids are more
easily accessible and patients have reported limited discomfort with this
technique (Servidoni et al., 2013). Thus, intestinal organoids offer a
robust method for screening hundreds (or even thousands) of potential
drugs. Using this approach, several likely compounds can be rapidly and
efficiently assessed using the intestinal organoids, and the activity can be
verified with the airways model so that the most promising candidate(s)
can quickly move to the clinic.

1.4 Personalising medicine with
personalised tools

Another advantage to using intestinal organoids from people
with CF is that this offers a simple system with which to reveal

FIGURE 1
Increase in predicted survival over time for people born with CF. Improvements and advances in physiotherapy, antibiotic use and even lung
transplantation have all contributed to this increase. However, aside from drugs to reduce the thick, sticky mucus and improvements in antibiotics, there
were no specific treatments for CF - until 2012, when the first CFTR channel modifiers were approved for clinical use–note the steep increase in life
expectancy since that time.
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patient specific treatments. Organoids are three dimensional
structures, so that when CFTR is active, fluid influx leads to
swelling of the organoid and measuring the volume of the
organoid is a simple way to know whether the drug applied to
the organoid is activating CFTR (where increased volume indicates
active CFTR). Using this approach, patient-specific theratyping is
possible, where organoids from patients can be screened against
multiple compounds, or combinations of compounds, to find the
optimal dose and identity of drugs to give each individual patient
(Clancy et al., 2019; Conti et al., 2022). The major advantage is that
the organoid retains the exact same genetic mutation in CFTR as the
person, and so “treating” the organoid reflects what will happen in
that individual. This testing is just not possible using animal models,
or at least it would require that an animal model was available for
every single individual with CF, which would take time and money
and thousands of animal lives (as described above), and still does not
guarantee success, given that animals do not exhibit the lung disease
that we are trying to treat! Thus, adoption of the human cell-based
intestinal organoid models as a screening platform makes this a very
efficient way of screening individual people with CF, to ensure that
the medication given will be effective, and therefore can be used to
personalise treatment.

1.5 Non-animal methods could indicate
where drugs won’t work for patients

The example of curcumin demonstrates another way in which
in vitro, human cell-based tools can be used to help advance drug

discovery, or at least to prevent false hope. Curcumin is a
derivative of the spice turmeric; this was force-fed to
genetically modified CF mice (who bore the mutation most
frequently found in people with CF) for 3 days, before the
electrical activity of their airways and intestines was measured,
as an indicator of CFTR activity. The study also used cultures of
hamster kidney cells with mutated CFTR inserted in them and
tracked the processing of the CFTR protein, showing that
curcumin enhanced the insertion of CFTR in the appropriate
cellular localisation (Egan et al., 2004). These results suggested
that curcumin could correct the CFTR-dependent deficit but
unfortunately, this was not recapitulated for people with CF.
When the studies were repeated with airways epithelial cells
isolated from someone with CF, curcumin did not increase the
electrical activity (Song et al., 2004). These data are evidence of
the issue with translational failures–where data in animals are not
recapitulated in people and indicate that caution is needed in
interpreting data from non-human model systems. We suggest
that the incorporation of more human-relevant tools, such as the
airways models or intestinal organoids, in the drug discovery
pipeline, would help reduce these failures.

1.6 Comparing patients and mutations
allows wider drug use

The non-animal, human relevant tools can be used to reveal
insights into the association between physiology and disease
symptoms, that are not possible in animals, and that allow

FIGURE 2
The current drug development paradigm is time consuming and costly, partly due to a reliance on animals. Estimates suggest around 10 to 5 years
and 518 million to tens of billions of US dollars are required to progress from target identification (at the left of the figure) to regulatory approval (at the
right pf the figure). As of today, animals may be used throughout this process, but the use of animal models is no guarantee of success, as even after
approval, severe adverse effects in the extended patient population can result in drug withdrawal. More sustained, dedicated funding to themethods
described on the left here (in vitro studies etc.) could help to bypass animal studies completely. Image created with BioRender.com.
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researchers to estimate the likely clinical effect of a drug. For
example, clinical data comparing the electrical potential
difference across the airways in people with or without CF
indicates that increasing the amount of CFTR in the cell
membrane by around 15%–30% would help to “normalise” this
electrical activity (which is associated with ion movement, and
therefore CFTR activity) in CF. Researchers can then test
potential drugs, existing drugs and combinations of these, in
human airways cell models to find those compounds that
increase membrane CFTR and enhance CFTR activity. An
additional advantage of using human cell-based systems is the
ability to carry out direct comparisons. Models developed using
CF cells can be compared with non-CF cultures, but importantly
models from people with CF who have different mutations in their
CFTR can be compared. As we have already mentioned above,
research with genetically engineered animal models is almost
prohibitively expensive, time consuming, and cannot accurately
model human responses, whereas the human cell-based approach
allows researchers to clarify the relationship between themutation in
CFTR and its activity, and therefore to make intelligent decisions
regarding which CFTR modifiers may be helpful for individual
people with CF. Although there is one specific mutation that affects
the majority of people with CF (Kerem et al., 1989), as described
above, there are over 2000 different mutations. In vitro, cell-based
methods offer a more efficient manner with which to test the effects
of drugs on different mutations and combinations of mutations
(since people with CF may have two different mutations). It is very
gratifying to see this potential utility of non-animal models reflected
at some level of regulations, as the FDA granted a “label extension”
for one of the CFTR modifiers, based purely on data from human
cell models (Ratner, 2017), enabling the broader use of this drug for
many more people with CF.

1.7 Drug repurposing with cell-based tools

The realisation that patient-derived intestinal organoids could
be used to filter hundreds or compounds to detect possible CFTR
modifiers for treating CF led to another important advance - that of
the application of human relevant tools in drug repurposing, an
approach suitable for applications beyond CF. Drug repurposing is
an efficient way of finding new treatments as it employs existing,
approved drugs for a purpose other than that for which they were
approved, and so this bypasses the lengthy, expensive safety testing
that is needed for entirely new compounds.

This extends beyond CF: there are other examples of drug
repurposing where the efficacy data were obtained using human
cell-based approaches. For example, for SARS-CoV2, researchers
tested seven clinically approved drugs on airways models made of
human cells, measuring the ability of these drugs to prevent the
virus getting inside the cells (Si et al., 2020). When the drugs were
tested at concentrations and flow rate equivalent to those found in
human blood, they found that only two of them showed great
promise in terms of preventing infection and, soon after, a clinical
trial was set up to assess the effects of one of these drugs in people
with COVID. Additionally, a human stem cell-based system
showed that a biological therapeutic could be effective in a rare
neuropathy disease (Rumsey et al., 2022) and data from an organ

chip demonstrated that a medication used in Type 2 diabetes
could prevent chemotherapy-induced kidney toxicity (Cohen
et al., 2021). This is hopefully the start of a shift in the
regulatory paradigm and is indicative of enhancing flexibility
to enable accelerated access to safe and effective drugs for
all patients.

2 Discussion

This paper uses CF as an example to show how the
incorporation of non-animal tools into the drug development can
be transformational. Two examples of human cell-based systems
presented here -namely the use of intestinal organoids and airways
epithelial cell cultures—revealed the CFTR modifying activity of
small molecule therapeutics that have gone on to revolutionise life
for people with CF. Given the current regulatory requirements
(detailed in Figure 2) the CFTR modifier drugs were tested (for
toxicity) in animals, but there was no way that animal models of CF,
given the lack of respiratory involvement in mice, for example, could
show the efficacy that was needed to give the confidence that these
drugs would be disruptive for people living with CF and for parents
of babies born with CF.

3 Recommendations

Finally, by using cystic fibrosis as a case study, we offer a few
brief recommendations for some of the points where we see
implementation or action is needed to enable wider use of the
non-animal methods for drug development. For the purpose of this
review, we have focused on the development and application of the
non-animal approaches. We appreciate the historical advances that
occurred as a result of animal use, including, for example, the
discovery of insulin in 1921 and the advent of the polio vaccine
in 1953. However, we also believe that the successful, historical use
of animals, particularly in the face of rapidly evolving non-animal
technologies, does not scientifically justify their continued use. This
reflects the viewpoints reported in notable reviews such as the report
on the use of dogs as subjects of biomedical research (The National
Academies of Sciences, Engineering, and Medicine, 2020) and the
general public, who are invested in the use of non-animal
technologies to replace animals (Savanta, 2022). Therefore, the
recommendations below are directed at accelerating the
replacement of animals rather than considering how and where
animal use should be continued.

Regulatory transparency is key-the agencies should be
encouraged to publicly publish where they have accepted data
form non-animal methods, to ensure that animal use is not
duplicated.

Biobanking (where patient samples or volunteer biological
material is curated and stored for widespread use by researchers)
should be incentivized. This is particularly important for rare disease
like CF, where clinical trials are limited by the number of patients
with the same mutation in a specific geographic location. Providing
global access to the tissue, and developing methods for developing
assays based on these tissues, would help to address this disparity. It
is also important to ensure that the biological material deposited in
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the biobanks fully reflects the differences in the human population
(Ghosh et al., 2022).

Funding agencies need to analyse where their funding is not
providing the expected, or acceptable, return on investment. This
may require retrospective reviews of projects but would be
invaluable in identifying where projects or topics are failing to
deliver and therefore could inform future funding strategies.
Presently, over 90% of drugs fail in people (Sun et al., 2022) and
a proportion of this failure is directly related to the use of animals as
models (Van Norman, 2019). Understanding where the animal
models continually fail enables the decision to no longer fund
this sort of research, and could allow diversion of the award
money to in vitro, epidemiological, or computer modelling based
research that could help to advance the field. This is an issue that
should resonate with the public, given their role in research. In the
UK in 2018, £1.2billion funding originated from medical charities,
representing around 14% of all health related research funding in the
UK (Fraser of Allander Institute, 2021). In the US, the largest funder
of biomedical research is the National Institutes of Health (NIH),
which relies on taxpayer dollars. The NIH awards an estimated half
of its total budget of over 47 billion dollars to animal-based research
(U.S. Government Accountability Office, 2019), yet our analysis has
revealed that less than 1% of this is dedicated to organ chips, for
example. The public are therefore heavily invested in research, either
voluntarily through charitable donations, or through their taxes and
the same public is vocal in its desire to move away from using
animals in medical research (IPSOS MORI, 2018; Savanta, 2022),
although this depends on several factors, including the type of
animal and purpose of research (Brunt and Weary, 2021).

At the Humane Society of the United States, we are keen to
prioritise funding to development and use of the non-animal
methods. In 2023 we introduced a bill in Maryland that requires
that laboratories using animals have to contribute to a research fund
which is available for non-animal method developers. This
legislation creates a precedent for the transition toward the non-
animal methods of the future. The subsequent funding shift will help

to accelerate scientific discovery by allowing for early adoption of
promising non-animal methods. However, this shift impacts just
one state of the US and we need more. If the NIH and other
government funding agencies could make the commitment to shift
an annual 5%–10% of their budgets to non-animal research, we
might see more advances, like the CFTR modifier drugs,
more quickly.
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As in all sectors of science and industry, artificial intelligence (AI) is meant to have
a high impact in the discovery of antibodies in the coming years. Antibody
discovery was traditionally conducted through a succession of experimental
steps: animal immunization, screening of relevant clones, in vitro testing,
affinity maturation, in vivo testing in animal models, then different steps of
humanization and maturation generating the candidate that will be tested in
clinical trials. This scheme suffers from different flaws, rendering the whole
process very risky, with an attrition rate over 95%. The rise of in silico
methods, among which AI, has been gradually proven to reliably guide
different experimental steps with more robust processes. They are now
capable of covering the whole discovery process. Amongst the players in this
new field, the company MAbSilico proposes an in silico pipeline allowing to
design antibody sequences in a few days, already humanized and optimized for
affinity and developability, considerably de-risking and accelerating the
discovery process.
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1 Introduction

Antibodies have long been irreplaceable tools for research. They have more recently
emerged as powerful drugs, allowing considerably higher specificity than traditional
chemicals, and offering new treatment options in a growing number of pathologies (Lu
et al., 2020). Thanks to their half-lives, antibody drugs also have long-lasting effects as
compared to small-molecules, rendering them more adapted to chronic pathologies. Many
new formats derived from antibodies have been designed allowing to exploit their exquisite
specificity (Vega et al., 2022). Antibody-drug conjugates can be used to bring chemical
drugs to the precise location where their action is to take place, which is particularly useful
for chemotherapies involving very toxic molecules (Jin et al., 2022). Using an antibody to
bring the chemotherapy to the tumor allows to increase the doses, rendering cancer
therapies more efficient, and decreasing the side-effects. T-cells expressing chimeric antigen
receptors (CAR-T cells), recognize their target cells through antibody-like receptors
(Mehrabadi et al., 2022), for example, binding to markers of cancer, and destroy them.
Bispecifics recognize two different targets and can, for example, activate immune cells in the
micro-tumoral environment (Bejarano et al., 2021).
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As currently performed, antibody discovery starts by
immunizing animals: the target is injected into an animal (mostly
mice or rabbits), together with an immune booster. The immune
system of the animal reacts by producing antibodies against this
molecule. The second step is the screening, which consists in finding,
amongst the antibodies of the animal, those binding to the target of
interest. Successive rounds of selections, mainly based on refined
binding assays (in vitro cross-species binding, paralogs binding) and
both in vitro and in vivo functional assays, are applied to downsize
the number of initial hit molecules and to identify the final “leads”,
resulting in the well-known funnel-shaped process of antibody
discovery (Hoover et al., 2021). These successive elimination
steps are highly empirical, and depend more on the scalability of
wet-lab techniques than on the importance of the information
provided. Epitope mapping is a very good example of that.
Antibody/antigen complex is highly useful for further
engineering, and mandatory for IP protection, but requires time-
consuming and low throughput methods, like the gold-standards
X-ray crystallography or NMR. As a result, epitope mapping is
carried out very late in the cycle, as a check prior patenting, whereas
it would have made much sense at the very beginning of the project,
as a decision-making element (Bauer et al., 2023).

After these first selections, only a few leads actually display the
suitable physico-chemical properties to be qualified as candidate
molecules that could be moved to preclinical and clinical trials, and
ultimately become therapeutics. Maturation steps are hence often
engaged to optimize the affinity and the developability properties
(low immunogenicity, solubility at high concentrations,
manufacturability at large scale). Sequences are herein modified,
meaning that the number of molecules to test is increased back, and
that the final molecules are, strictly speaking, different from the
originally characterized ones. A new round of validations aiming at
requalifying the matured molecule is hence necessary, hoping that
the biological properties are retained along the process.

Artificial intelligence methods are gradually replacing all these
experimental steps, lowering the attrition rate and shortening the
whole process. This technological transition happened a decade
earlier for small chemical molecules, but the complexity of biologics
prevented any transfer of technology from one area to the other and
specific methods had to be designed. Here are described some of the
AI-based innovations dedicated at antibody discovery.

2 Methods and datasets in AI-based
antibody discovery methods

Artificial intelligence, theorized by Alan Turing in the 50 s, was
born with the description of genetic algorithms by J.H. Holland in
1975 (Holland, 1992). However, computers were not powerful
enough for these methods to be useful, and the real takeoff
happened 15 years later with the publication of David Golberg
Genetic Algorithms in Search, Optimization, and Machine
Learning (Golberg, 1989). AI methods have considerably
diversified and can be divided in two main categories: machine-
learning and knowledge-based methods (Figure 1). Machine-
learning methods are, by far, the most used, among which neural
networks. There are again many categories within neural networks,
the most popular being deep-learning. Once a model has been

trained or learned, for example, using a neural network, it allows
to either evaluate examples not present in the training stage, or even
generate new ones (generative AI). Language models are another
popular application of AI which bloomed after the arrival of the
iconic transformer paper “Attention is all you need” in 2017
(Vaswani et al., 2017). The model, often a deep neural network,
is fed with a corpus of texts, and it learns the meaning of word
ensembles in a context. This type of model has been generalized to
many types of objects (apart from texts), such as images,
molecules, etc.

A very important aspect of machine-learning methods in
general, is that they need to be trained on a set of data called
learning set. The result of a machine-learning campaign certainly
depends as much on the quality of this learning dataset than on the
detailed implementation. Many databases related to antibodies have
emerged these last years (Khetan et al., 2022), that can be used to
train machine-learning methods. However, most of these databases
have been themselves built using automated methods and are
lacking one or the other essential pieces of information like
affinity, aggregation parameters, or the epitope. One crucial piece
of information is the pairing between heavy and light chains, which
is missing in all the large databases. For this reason, we have
developed our own database, which contains more than
80,000 well-characterized antibodies: heavy and light chain
pairing, but also epitopes, affinities, in vitro and in vivo data,
cross-species reactivity, etc. This database is accessible through a
software platform, MAbFactory1.

3 Automatizing the different steps of
antibody discovery

3.1 Epitope mapping

The first area in which AI has been used in the context of
antibody discovery has been epitope and paratope prediction, which
consists in predicting the regions of each protein (the region on the
antibody side is called paratope and the region on the antigen side is
called epitope) involved in their interaction. Whereas initial trials at
tackling this problem only allowed to predict linear epitopes (which
represent only 10% of antibody epitopes (Rubinstein et al., 2008)),
gradual introduction of more complex algorithms, such as docking
and machine-learning trained scoring functions allowed to reach
useful accuracy levels (Zeng et al., 2023), such as epitope3D (da Silva
et al., 2022), RosettaDock (Lyskov and Gray, 2008) or MAbTope
(Bourquard et al., 2018; Tahir et al., 2021). MAbTope is docking-
based and uses a coarse-grained formalism, which requires only the
antibody sequences and allows high-throughput epitope mapping. It
allows identifying a correct epitope region in more than 80% of
cases. This method has been successfully applied to many examples
(Kizlik-Masson et al., 2017; Ashraf et al., 2019; Neiveyans et al., 2019;
Granel et al., 2020; Trilleaud et al., 2021; Vayne et al., 2021; Ugamraj
et al., 2022), including when the crystal structure of the target is
unknown, and a 3D homology model has to be built.

1 https://app-publicdemo-mabfactory-97288.azurewebsites.net/
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3.2 Screening clones

Whether working from immune animal or from already
established antibody banks, the first set of hits is mainly selected
on the recombinant target using classical biology approaches based
on hybridomas or display technologies, either in bacteriophages or
yeasts (Köhler and Milstein, 1975; Clackson et al., 1991). High
affinity is the main success criterion. This approach has three major
limitations: i/many leads displaying sub-optimal affinity or less
represented molecules are below the threshold of such
approaches and are de facto excluded from the selection, and ii/
the epitope cannot be selected, meaning that selected hits binding to
different places on the target molecule. Experimentally determining
the epitopes of these hits, or at least knowing which ones are in
competition (epitope binning) is far from trivial. The third
limitation is due to the process used for transferring the animal
immune repertoire to either bacteriophages or yeasts. Heavy and
light chain pairing is not maintained, and the resulting antibodies
are largely non-natural.

More recently, single B cells technologies have greatly improved the
process of this initial clone selection (Pedrioli and Oxenius, 2021).
Instead of building a bank from the immune repertoire, the B-cells of
the animal, which each express a unique antibody in their membrane,
can be directly selected on their affinity for the target using single-cell
technologies. The antibodies coded by the retained B-cells can then be
sequenced individually, resulting in natural-paired sequences. However,
this technology is also relying on high affinity selection, and leads
displaying sub-optimal affinity or less represented molecules are again
eliminated. Moreover, even within a few thousand clones,
experimentally characterization remains a problem.

Today, no published in silico method allows find leads against a
selected target while fully exploring the sequential space of a natural
repertoire, diverse both on the frameworks and CDRs (~109–1012 in
diversity). State-of-the-art methods still require a seed antibody to
guide the search. Deep-learning language models have had nice
successes in finding novel and better leads in very large artificial
library of CDR-degenerated parental antibodies, paving the way to
future extension to antibody repertoires (Liu et al., 2020; Mason
et al., 2021; Saka et al., 2021; Bachas et al., 2022). Examples are
mentioned in the affinity maturation section.

3.3 Affinity evaluation and optimization

The first step in antibody characterization is often affinity
evaluation, since the experimental technologies allow reasonably
high-throughput as compared to other in vitro assays. Rough but
large-scale evaluation is often performed in ELISA, while more
precise but low throughput evaluation is performed in SPR to
provide the ground-truth KD. However, these technologies
require the production of both antibody and antigen, limiting the
number of clones that can be evaluated. Affinity prediction from the
sequences and structures of antibody and antigen would therefore
allow the evaluation of much larger ensembles. Many computational
methods have been proposed for this task, and benchmarks
collected, but the models still have limited efficacy (Guest et al.,
2021). Moreover, many of these methods rely on the knowledge of
the accurate structural assembly of antibody and target, which is
generally not available, and certainly not for very large collections of
antibodies.

FIGURE 1
Artificial intelligence methods. Artificial intelligence methods can be divided in two main categories: knowledge-based methods and machine-
learning methods. Machine-learning methods can be further divided in evolutionary methods and neural networks. This last category contains deep-
learning methods. An artificial neuron (or node) receives input values (I1, I2, In), and computes an output value O, using a function and weights (w1, w2, wn).
Learning consists in optimizing these weights using input values for which the output value is known (learning set). The nodes are classified in five
main categories. There are many types of neuron networks, we show here only the most common ones. Finally, a neuron network is qualified as “deep”,
allowing to make deep-learning, if it has three or more layers of hidden nodes.
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Antibodies obtained either through immunization or by
screening existing antibody banks, often have insufficient
affinities. Experimental methods to enhance affinity rely on
random mutagenesis, usually restricted to the CDRs, and require
intensive wet-lab labor. Deep-learning language models proved
themselves successful at finding better binders than a parental
antibody. Using the same principle as the experimental approach,
language models start by building a library of the parental antibody
which CDR residues are degenerated and substituted in all 20 or
selected amino-acids. But the theoretical diversity to explore, even
considering only the CDRs, remains largely beyond the
interrogation by any wet-lab or computational means, and
maturation methods are constrained to consider only a few
mutated positions. As a matter of dimension, considering the
CDRH3 is 10 aa-long on average, testing its full theoretical
mutational space only raises the library to 1020. Bachas and
Mason (Bachas et al., 2022) used degenerated Trastuzumab
libraries, cloned either in bacteriophages or hybridomas, and
used their binding to a fluorescent HER2 (in FACS) to train
models which allowed them to retrieve better binders than the
parentals. They included up to 3 mutations on respectively 10 and
17 positions. Saka et al. (Saka et al., 2021) and Liu et al. (Liu et al.,
2020) created degenerated libraries of an anti-kinurenin and an anti-
VEGF-A (Rabinizumab), respectively, and trained a directed

evolution-based model from the enriched sequences along
panning rounds. The major limitation of such models, beside the
restricted number of mutations, is that they are learnt on a given
antibody-antigen pair, and that the resulting training set is not
target-agnostic. The whole procedure is not applicable to the
next target.

With the improvement of structure determination methods,
rational design of mutants has significantly increased the success
rate of affinity maturation (Li et al., 2023). Although rational design
leads to testing a much lower number of mutants than random
mutagenesis, it also requires to have precise structural data, which is
in itself a difficult task. To tackle this problem, many computational
methods allowing affinity prediction of mutants have appeared
recently (Li et al., 2023) with various success rates.
RosettaAntibodyDesign (Adolf-Bryfogle et al., 2018) is one of the
most successful.

3.4 Off-targets prediction

One parameter often underestimated during antibody discovery
is off-target binding. Indeed, if selectivity for the target is commonly
verified by evaluating the absence of binding to close homologs,
binding to unrelated proteins is usually not addressed, or very late in

FIGURE 2
Classical, AI-assisted and AI-fueled de novo discovery pipelines. In the classical discovery pipeline (left), initial candidates (hundreds to thousands)
are selected within the immune repertoire of an immunized animal, in vitro characterized (a few tens are retained) then in vivo evaluated, resulting in a few
leads. These leads are humanized and optimized for affinity and developability. The resulting antibodies are evaluated in vitro and in vivo to verify that
activity has been maintained. One of those is then selected for clinical trials. If antibodies have lost their activity during humanization and
optimization (rescue plan 1), or if the chosen candidate fails in clinical trials (rescue plan 2), new candidates have to be selectedwithin those characterized
in vitro, and later steps gone through again. In the AI-assisted discovery pipeline (center), selection, characterization and optimization steps are partially
conducted in silico, which accelerates the process, without changing its general organization. AI-based selection procedures allow to start from
databases rather than physical antibody banks. In the AI-fueled de novo discovery pipeline, starting point is a database. Moreover, some technologies,
such as those developed by MAbSilico, allow choosing the targeted epitope at the beginning. In this pipeline, all the antibodies of the initial database are
fully evaluated in parallel, resulting in a few hundred well qualified, humanized and optimized antibodies. These candidates are then evaluated in vitro and
in vivo to choose one lead for clinical trials. If this candidate fails, the next one can be chosen, without the need to repeat the whole process.
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the discovery process. Yet, there is now ample evidence that this
phenomenon, called cross-reactivity, is far from anecdotal, as it can
lead to auto-immune diseases (Cusick et al., 2012), and is most-
probably also responsible for some failures in clinical trials (Lecerf
et al., 2019; Cunningham et al., 2021; Loberg et al., 2021). However,
cross-reactivity can also be an advantage, as in the case of rituximab.
Indeed, rituximab not only binds its cognate target CD20, but also
the sphingomyelin-phosphodiesterase-acid-like-3b (SMPDL-3b),
and offers a treatment option for follicular segment
glomerulosclerosis (FSGS). Some experimental methods exist to
evaluate cross-reactivity, like tissue cross reactivity, or protein
arrays, but are lengthy and expensive. MAbSilico has developed a
computational method allowing to predict off-target binding with
good accuracy (Musnier et al., 2022). In this method, both sequence
and predicted 2D structure of antibodies are used to encode the
CDRs of the antibodies. These encodings can then be compared
using a specific score, based on the similarity of itemsets (Egho et al.,
2015). This method allowed us predicting that 238D2 (Jähnichen
et al., 2010), an anti-CXCR4 antibody, also binds hemagglutinin,
and 6 human proteins. We were able to experimentally validate these
predictions (Musnier et al., 2022). Using this method and our
database of more than 80.000 antibodies having known targets,
we are able to identify off-targets as soon as the sequences are
known, and this does not require the knowledge of the antigen’s
3D structure.

3.5 Developability prediction and
optimization

The last step of antibody discovery is the evaluation of
developability. The term developability generally covers different
aspects: (1) immunogenicity: will this antibody elicit immune
reaction when injected into human? (2) Producibility: will this
antibody have high production yields in bioproduction? (3)
Aggregation: will it be possible to make high concentration
solution, or will the antibody aggregate? The methods and
databases developed to date, are largely reviewed in (Khetan
et al., 2022). Briefly, for example, prediction of immunogenicity
is largely based on humanness scores, such as the OASis score
(Prihoda et al., 2022). These scores evaluate how close the antibody
of interest is to known human sequences, and are correlated with the
levels of anti-drug antibodies (ADA) observed in clinical trials.
Optimization of one antibody’s immunogenicity starts with its
humanization, which consists in modifying patterns to go back to
the closest human germline. MAbSilico’s CDR similarity measure
(see above) allows to performed humanization. In fact, since it can
identify the human antibody having themost similar CDRs, it can be
considered that the frameworks of the retrieved human antibody
constitute an optimal scaffold to support the CDRs. The CDRs of the
animal antibody can then be grafted into the human frameworks,
leading to a fully human candidate.

More general evaluation of developability can be obtained
through the Therapeutic Antibody Profiler (TAP) tool (Raybould
et al., 2019). This method allows to anticipate expression or
aggregation issues of antibodies based on characteristics such as
CDRH3 length, hydrophobicity within the CDRs or canonical
forms. Gentiluomo et al. (Gentiluomo et al., 2019) use

interpretable neural networks to successfully predict aggregation,
together with melting temperature. Hou et al. (Hou et al., 2020) have
developed the SOLart software, which uses both sequence and
structure, and is based on a random-forest algorithm.

Producibility prediction seems to be an even more difficult
challenge. Different studies show a correlation between the
production titer and the stability of the antibody (Goldenzweig
et al., 2016; Jain et al., 2017), especially the melting temperature and
solubility. Harmalkar et al. (Harmalkar et al., 2023) use pre-trained
language models and convolutional neural networks to predict
melting temperature. Avoiding antibodies predicted to have low
melting temperature or poor solubility is thus desirable, but is not a
guarantee of good production titers.

4 Chaining them all: de novo
antibody discovery

De novo antibody design holds the hope of being able to generate
a highly affine, soluble, non-immunogenic, and epitope-directed
antibody starting only from the name of the target. It implies
mastering, at least, affinity prediction, structural characterization,
and developability assessment. Solutions aiming at solving each
pitfall are developed, as mentioned above, but they are still used
individually along the funnel-shaped process dictated by the
classical biological pipeline. Chaining them all together, in a
virtuous circle, is certainly one key to success.

The whole design process must start by creating candidates,
either randomly which would imply subsequent rational selection,
or rationally, by “walking” on the target structure. Language-based
approaches were expected to fulfill the first approach at high
throughput but they are, as described above, still highly limited
on the antibody diversity that can be injected in the computations
(Liu et al., 2020; Mason et al., 2021; Saka et al., 2021; Lim et al., 2022).
The approach proposed by Aguilar Rangel et al. (Aguilar Rangel
et al., 2022) is based on a structural approach, computing CDR and
epitope peptide complementarity. Authors show that the method
can design de novo CDR peptides, which can then be grafted into
nanobodies binding to three different targets (human serum
albumin, SARS-CoV-2 spike protein, and trypsin), although with
limited affinities. The method proposed by Anishchenko et al.
(Anishchenko et al., 2021), which computes a structural
evaluation of randomly generated and modeled peptides, proved
accurate for protein design, but has not yet been applied to
antibodies.

At MAbSilico, we have designed our own algorithms for the
different steps, which allowed us to finally chain them all, unlocking
our ability to de novo design antibodies. Our new in silico pipeline is
target-agnostic and epitope-driven, and was successful at designing
binders against the immune checkpoint inhibitor TIGIT (T-cell
immunoreceptor with Ig and ITIM domains, unpublished) and
against the Receptor-Binding Domain of SARS-CoV-2 (data
presented at the Antibody Engineering and Therapeutics 2023;
Amsterdam). In the latter project, thousands of paired VH/VL
sequences were obtained from COVID-19 vaccinated patients,
modeled and selected against chosen epitopes of the RBD. We
identified 5 candidates, displaying nM and sub-nM affinities, and
cross-neutralizing several viral strains (pre- and post- Omicron
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lineage emergence). Our method was successfully scaled. In fact,
starting from a collection of 4.25 × 1012 VH/VL pairs (artificially
reconstituted from 1.7 × 106 VH, and 2.5 × 106 VL sequences
obtained by NGS of a human scFv library), 16 VHs and 22 VLs were
predicted as affine binders on a specified epitope of TIGIT. Amongst
the 352 possible pairings, 94% were binding in an ELISA assay, and
after developability optimization, the best binder had sub-
nanomolar affinity in BLI. We were also able to de novo design
binders against a GPCR, whose 3D structure has not yet been
determined and for which we built several homology models.
This demonstrates that our method does not require an
experimental structure of the target.

5 Concluding remarks

In silico methods are being developed to replace or support
antibody selection and their molecular characterization and
optimization. As shown Figure 2, AI-based methods covering one
step of the classical funnel-like discovery pipeline are undoubtedly
useful, but they do not change the global shaping of discovery.

De novo AI-fueled methodologies, such as the one developed by
MAbSilico allow to generate a few tens to a few hundred well-
qualified leads, which are predicted to have high affinity, low off-
target binding and good developability (Figure 2). These candidates
can then be tested in vitro and in vivo, without the need to optimize
or humanize them before clinical trials, which eliminates the risk of
losing activity in the process. The chances of success are
consequently much higher than in the classical process. Finally,
the initial in silico step only takes up to 21 days, considerably
shortening the process, and drastically abating the costs as the
number of biological assays needed is decreased and the chances
of success increased.

Among all characterization steps, the prediction of one
antibody’s biological function remains the least amenable to in
silico prediction, as the molecular mechanisms involved are either
not fully understood, or highly complex and target-specific.
Targeting a precise epitope can partially circumvent this issue.
For example, targeting the interaction region of a ligand on its
receptor will in most cases inhibit the action of the ligand. However,
antibodies having the same epitope can have different functions as
illustrated by Zaitseva et al. (Zaitseva et al., 2023). These authors
have generated different variants of an anti-Fn14 (fibroblast growth
factor (FGF)-inducible 14) antibody, and show that, despite all
binding the same epitope, they have different biological functions.
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Laws and policies are in place around the world to promote the replacement and
reduction of nonhuman animals in science. These principles are rooted not just in
ethical considerations for animals, but also in scientific considerations regarding
the limitations of using nonhuman animals to model human biology, health, and
disease. New nonanimal research approaches that use human biology, cells, and
data to mimic complex human physiological states and therapeutic responses
have become increasingly effective and accessible, replacing the use of animals in
several applications, and becoming a crucial tool for biomedical research and
drug development. Despite many advantages, acceptance of these new
nonanimal methods has been slow, and barriers to their broader uptake
remain. One such barrier is animal methods bias, the preference for animal-
based methods where they are not necessary or where animal-free methods are
suitable. This bias can impact research assessments and can discourage
researchers from using novel nonanimal approaches. This article provides an
introductory overview of animal methods bias for the general public, reviewing
evidence, exploring consequences, and discussing ongoing mitigation efforts
aimed at reducing barriers in the shift away from animal use in biomedical
research and testing.

KEYWORDS

animal methods bias, peer review, alternatives to animal experiments, scientific
publishing, biomedical research, drug development

Introduction: animal and human-based preclinical
research methods

Animal experiments are frequently performed for basic research (with the aim to gain
knowledge without specific applications) and for applied research (applying knowledge, for
example, to try to find new drugs for humans and to test for their toxicity or safety).
According to the directive on the use of animals in science in the European Union, animal
experiments must be replaced whenever possible, and EU Member States should make a
substantial effort to reduce and replace animal use in science (European Parliament, 2010).
A similar principle is applied in other regions, including the United States: the 3Rs principle
to replace, reduce, and refine animal use in science (Russell and Burch, 1959; Office of
Laboratory Animal Welfare, 2015). These principles are rooted not just in ethical
considerations for animals, but also in scientific considerations regarding the limitations
of using nonhuman animals to model human biology, health, and disease.

Animal tests are often expensive, take a long time to conduct, and can give
misleading results (Meigs et al., 2018). Approximately 92% of drugs in
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development fail to pass human clinical trials—mostly due to
failures during safety and efficacy testing—despite safe and
effective findings demonstrated in preclinical tests (Thomas
et al., 2021). A recent economic analysis estimated that the
use of more predictive preclinical nonanimal technologies
instead of animal tests could save over $24 billion (Ewart
et al., 2022). There is increasing recognition among
government, academic, and industry scientists that nonanimal
research methods have the potential to overcome some of the
scientific limitations of animal-based methods (Baran et al.,
2022; Gribaldo and Dura, 2022; Ingber, 2022; Advisory
Committee to the Director Working Group on Catalyzing the
Development and Use of Novel Alternative Methods to Advance
Biomedical Research, 2023).

In recent years, in vitro (in a dish) and in silico
(computational) research models have become increasingly
effective and accessible, replacing the use of animals in several
applications, and becoming a crucial tool for preclinical research.
These promising new models use human biology, cells, and data
to mimic complex human physiological states and therapeutic
responses (Shaker et al., 2021; Loewa et al., 2023). Examples of
innovative, human-biology based in vitro models are organoids,
organs-on-a-chip (also called organ chips and tissue chips), and
induced pluripotent stem cells. Organoids are three-dimensional
cell aggregates (also called spheroids) consisting of multiple cell
types and designed to imitate physiological processes. Human
organ-on-a-chip systems are microdevices composed of three-
dimensional cells and fluids to simulate physiological processes
in human organs. Induced pluripotent stem cells are adult
human-derived cells that have been genetically reprogrammed
to a stem cell-like state and then further engineered to one of a
variety of cell types that can be found throughout the body.

Animals have been used in research for so long that the
scientific community has been slow to accept novel nonanimal
methods. Some of these new methods have high entry costs and
can be difficult for researchers to operationalize in their
laboratories, highlighting the need for more funding and
expanded infrastructure (Busek et al., 2022). Acceptance of new
nonanimal methods can also be improved with good laboratory
practices to ensure that high-quality experiments are performed
and that findings can be reproduced by other researchers, and with
thorough model evaluation to confirm that experiments are
suitable for their intended use (Pamies et al., 2022; van der
Zalm et al., 2022).

Other barriers to the broader use of nonanimal methods are
more psychological, though, such as a bias or preference for
animal-based methods. This animal methods bias may be
especially prevalent when research that uses nonanimal
methods is being assessed during subjective evaluations of
studies for publication or proposals for grant funding. By
impacting publications and funding awards, animal methods
bias can be a barrier to the sharing and uptake of novel
nonanimal approaches, standing in the way of improved
preclinical predictiveness and further complicating drug
development. The concept of animal methods bias is further
expanded on below, including an overview of current evidence,
how it impacts research assessments, and ongoing efforts to
mitigate its harmful effects on human health research.

Animal methods bias: the bias toward animal
experimentation in research and publishing

Publishing plays a crucial role in the advancement of science,
helping to translate research findings into medical interventions. It
also impacts researchers’ careers, playing a role in hiring decisions
and other evaluations. The publishing process is not without biases,
though. According to the Catalogue of Bias, a database of
psychological, methodological, and reporting biases created by
The Center for Evidence-Based Medicine at Oxford University,
publication bias is defined as “when the likelihood of a study
being published is affected by the findings of the study” (DeVito
and Goldacre, 2019). But what if the likelihood of a study being
published is affected by the methods of the study, namely, animal or
animal-free methods?

In his article, Is it Time for Reviewer three to Request Human
Organ Chip Experiments Instead of Animal Validation Studies?, Dr.
Donald Ingber questioned why animal data is still considered the
gold standard in human health research, while presenting evidence
that organ chips may better suit this purpose (Ingber, 2020). He
framed this issue as a problem with peer review, describing an
increasingly common anecdote about reviewer requests for animal
experiments even though the author(s) explained why they did not
use animals for their experiments.

Animal methods bias in publishing is thus a newly defined type
of publishing bias, describing a preference for animal-based
methods where they are not necessary or where nonanimal
methods are suitable, which affects the likelihood of a manuscript
being accepted for publication or introduces a significant delay to
manuscript acceptance. Animal methods bias affects other aspects of
research too, including the review of grant applications, when
researchers apply for funds to enable their animal-free projects
but are held back by biased assessments of their proposals. It can
be likened to another kind of bias called scholarly bias, the favoring
of perspectives, theories, or methods that align with one’s own
(Langfeldt et al., 2023).

To further understand when and why this occurs, which in turn
informs solutions, the first author of this article and colleagues
conducted a small survey to assess the experiences and perceptions
of authors and reviewers related to animal- and human biology-
based experiments during peer review (Krebs et al., 2023b).
Respondents represented a broad range of biomedical research
and related fields, primarily worked in academic (74%) and
industry (10%) sectors, and in the United States (32%).

Twenty-one of the 68 total respondents indicated that they
have performed animal-based experiments for the sole purpose of
anticipating reviewer requests for them. In other words, they did
not think the experiments were necessary outside the context of
review. Thirty-one of the 68 total respondents indicated that they
have been asked by reviewers to add animal experiments to a
study that otherwise has no animal-based experiments. Among
those 31 respondents, just three indicated that they felt the
request was justified, while 14 respondents felt that it was
sometimes justified, and 11 did not think the request was
justified (three respondents did not provide an answer to
this question).

When asked to elaborate on their perceptions of these
requests, respondents expressed that reviewers ask for animal
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experiments out of habit, not because it is necessary or relevant.
Some respondents also indicated that more prominent journals
are more likely to request or expect animal experiments, which
acts as an incentive for conducting animal experiments or as a
punishment for researchers who use animal-free, human biology-
based methods. Overall, the survey identified the following
consequences of animal methods bias during manuscript peer
review: the conduct of animal experiments which would have
otherwise not been performed, as well as negative career
repercussions, including delays in publication, rejection, or
withdrawal of papers, and being forced to publish in less-
prominent journals.

The survey also asked questions about respondents’ experiences
as reviewers, and specifically regarding reasons for making requests
for additional animal experiments. Respondents indicated that their
preference for animal methods or their lack of awareness of
appropriate animal-free methods were reasons for making
requests for additional animal experiments.

Because of the pressures to publish, researchers may feel
compelled to comply with reviewer requests for animal
experiments even when they disagree with their necessity.
Alternatively, failing to comply with such requests may result in
negative career consequences. Altogether, animal methods bias
affects how nonanimal research is published and may even
discourage researchers from using these methods. In other words,
it is a barrier to the uptake and dissemination of nonanimal
research—important research that holds promise for improving
preclinical predictiveness and rates of translation from drug
discovery to clinical trial approvals.

How to mitigate animal methods bias

An April 2022 workshop to address animal methods bias in
scientific publishing was convened among academic and industry
researchers, journal editors, government representatives, and
advocates in order to: (1) explore a range of stakeholder
perspectives, (2) describe the current state of animal- and
nonanimal-based experimental systems, (3) describe animal
methods bias in publishing and related biases in publishing and
peer review, and (4) identify potential causes, consequences, and
potential mitigation strategies for animal methods bias in publishing
(Krebs et al., 2022).

Barriers to addressing animal methods bias were
identified, including:

• The high-pressure nature of the research environment,
• Impact factor, an index measuring the impact of scholarly
literature that represents the annual average number of
citations to articles published in each journal over the
past 2 years,

• Financial stakes,
• Animals as the “gold standard,” seen as the default method by
the research community,

• Institutional inertia and psychological lock-in (see
Gluck, 2019), and

• Lack of knowledge or desire to learn about animal-
free methods.

Workshop attendees also identified recommendations for
addressing animal methods bias geared toward the scientific
community, journals and publishers, and funders, governments,
and policymakers. Recommendations included the following:

• Build awareness about animal methods bias among editors,
peer reviewers, and the scientific community more broadly,
especially early-career researchers;

• Increase authors’ confidence in their ability to challenge reviewers’
requests for animal experiments, such as through the Author
Guide for Addressing Animal Methods Bias (Krebs et al., 2023a);

• Provide educational materials for reviewers, as recently
acknowledged by the US National Institutes of Health to
ensure the better evaluation of nonanimal research
(Advisory Committee to the Director Working Group on
Catalyzing the Development and Use of Novel Alternative
Methods to Advance Biomedical Research, 2023);

• Mandate that requests for addition of animal methods be
scrutinized by other reviewers; and

• Prioritize funding for animal-free, human biology-basedmethods,
including to improve accessibility and training for researchers.

After the workshop, attendees formed the Coalition to Illuminate
and Address Animal Methods Bias (COLAAB) to continue to explore
and address this issue.1 The COLAAB is currently gathering
additional evidence of animal methods bias and its consequences
and developing and implementing tools for overcoming it.

Conclusion

New nonanimal methods hold great promise for advancing
biomedical research and drug development. Although a lot of
work remains to improve the acceptance of nonanimal methods
within the scientific community, researchers are increasingly
turning to them to answer their research questions. Researchers
should be able to do so without unfair requests or expectations for
animal experiments from reviewers who prefer their own
methodologies or are ill-equipped to evaluate novel ones.

Animal methods bias is a serious issue that adds additional and
unnecessary work for researchers who use animal-free approaches,
and it perpetuates the idea that animal-free approaches are not
sufficiently valuable on their own. Animal methods bias is a
symptom of a research ecosystem that rewards animal use and
disincentivizes a shift toward potentially more reliable human-
biology based research methods, and is therefore a barrier to
changing the status quo from its reliance on animals.

To advance biomedical research and get safer and better drugs to
more patients, researchers, drug developers, and funding agencies
must address animal methods bias. Measures that empower
researchers to confront unfair requests for animal experiments,
prevent reviewers from making such requests, and advance the
standardization, evaluation, and infrastructure for nonanimal
research approaches will all be important. The public can play a

1 www.animalmethodsbias.org
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role too. Consumers and taxpayers have power in the market and with
publicly funded research, and they are already helping to turn the tide
by demanding cruelty-free cosmetics and supporting lawmakers’
shifts toward animal-free research and testing approaches.
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The (misleading) role of animal
models in drug development

Thomas Hartung1,2*
1Center for Alternatives to Animal Testing (CAAT), Bloomberg School of Public Health and Whiting
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Animals like mice and rats have long been used in medical research to help
understand disease and test potential new treatments before human trials.
However, while animal studies have contributed to important advances, too
much reliance on animal models can also mislead drug development. This article
explains for a general audience how animal research is used to develop new
medicines, its benefits and limitations, and how more accurate and humane
techniques—alternatives to animal testing—could improve this process.
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candidates experience during clinical development. Biased outcome reporting, it is easier to publish an
effect than no effect: this is a classic example of bias in the scientific literature; Blockbuster, a
blockbuster drug is a pharmaceutical product that generates annual sales of $1 billion or more for
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(metabolomics) changes as possible; REACH program, acronym for Registration, Evaluation,
Authorisation, and Restriction of Chemicals, a comprehensive regulation of the European Union
designed to ensure a high level of protection for human health and the environment from the risks
posed by chemicals. It was enacted on 1 June 2007; Reproducibility crisis, also known as the replication
crisis, refers to the growing concern that many scientific studies’ results are difficult or impossible to
reproduce; Selective analysis, aka subgroup analysis, focuses on part of the data, neglecting the overall
results, to obtain significant results. This is a common source for irreproducible results; Teratogenic
effects, causing birth defects.
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Introduction

Developing newmedications is long and challenging. Before a drug
can be sold, it must proceed through preclinical studies in cells and
animals and usually three phases of human clinical trials: healthy
volunteers, a small group of patients to assess patient safety, who
may differ greatly from healthy volunteers, and then a large patient trial
to prove the beneficial effect. This helps ensure the drug is reasonably
safe and effective for its intended use. Animal research in the preclinical
phase and in some safety studies continuing in parallel to the clinical
studies provides useful but imperfect information about how drugs will
behave in people. However, overreliance on animal models results—as I
will explain—in many clinical trial failures and unsafe drugs reaching
patients. Nevertheless, animals remain necessary until better techniques
are available and broadly accepted. This article summarizes for a general
audience how animals are used in drug development, their limitations
in predicting human responses, and how more accurate human-cell-
based and computer models could improve this process.

Historically, from the 1920s to the 1970s, animal experiments
were the predominant technology in life sciences. Figure 1 shows
how the use of laboratory animals peaked in the 1970s, largely for
drug development. Other methods have now begun to complement
and even replace animal testing, despite its continued high regard in
scientific and regulatory circles. Ethical concerns were the primary
drivers for questioning the use of animal experiments; the debate
over the justification of animal suffering for scientific advancement
varies, but public opinion is increasingly critical. In response, the
scientific community has implemented measures to make animal
experiments more rigorous, requiring formal justifications,
permissions, and adherence to rising standards of animal welfare.
Concurrently, there has been significant support for developing
alternatives.

Recent challenges to animal experiments extend beyond ethics.
They are resource-intensive, costly, time-consuming, and have
limited predictivity for humans—issues highlighted by the
European REACH program’s struggle to test thousands of
industrial chemicals and by the pharmaceutical industry’s crisis
of low success to the market. The latter refers to the extremely high
failure rate in clinical trials for drug candidates due to issues like lack
of efficacy or safety problems in human testing. These problems
have sparked a broader discussion on the “reproducibility crisis”
in science.

The drive to find alternatives to traditional animal
testing—notably in toxicology, which uses about 10% of all
experimental animals (according to European statistics)—has led
to significant work in this area. Reasons why most work into
alternatives takes place in toxicology include government
funding, legislative acts like the European cosmetics test ban and
REACH chemical legislation, and the relative stability of
internationally standardized guideline tests.

A simplified view of the drug
development process

Despite all biomedical progress, we are far from
understanding the complex networked systems of the human
organism and, even farther, their perturbation in disease.

Intervening in these disease mechanisms as a remedy involves
much trial and error. Increasingly, identifying a certain
mechanism of disease or a possible target for a drug can
change the odds of finding something that ultimately works.
Such so-called pharmacological “targets” can be, for example, a
misbehaving cell type or a receptor protein on cells in an organ
that positively influences the course of disease or ameliorates a
certain symptom. These observations (on the cell types or
receptors) may often occur in animal “models” of disease, and
this species difference compounds the difficulty with translating
observations from the laboratory bench to the clinic. It is still an
enormous undertaking to develop a therapy from this and bring a
successful drug to the market.

On average, drug development takes 12 years and costs
$2.4 billion. This 12-year timeframe, also called time-to-market,
has been quite stable over time. The main reason is that a patent’s
lifetime is only 20 years; when it expires, competitors can offer the

FIGURE 1
This figure, kindly provided byDr. AndrewRowan, shows that that
all animal use peaked in the 1970s in most industrialized countries.
Taken from Wellbeing International (WBI) newsletter 31 December
2021 with permission (https://wellbeingintl.org).

FIGURE 2
Visualizing the analogy of a gold rush to describe the drug
discovery process using DALL-E 3.
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same drug and so prices plummet. Longer development times
therefore eat into the time in which the company must at least
recoup the money it has invested. If we simplify that a company has
8 years to recoup $2.4 billion, then every additional day is worth
approximately $1 million. However, we must also factor in the many
abandoned drug projects which never lead to marketed product.
Forbes estimated that, already in 2012, about $4–11 billion was spent
by the industry for a single market release. This highlights the
importance of each step in the decision tree with respect to time and
forgone revenue.

However, some drugs do make tens of billions of dollars per
year. This creates a “goldrush” situation (Figure 2). There is in fact
some similarity between drug development and a goldrush: it takes
many for a few to find something—the abundance of pills on the AI-
generated image in Figure 2 is actually misleading. As in a real
goldrush, few get rich, and those who sell the sieves and shovels are
the ones getting rich. However, “gold washing” often describes the
process well, where many stones must be washed to find a rare
“golden” pill (Figure 3).

Indeed, as summarized in Figure 4, the drug development
process requires, as a rule of thumb, about 10,000 chemicals to
enter preclinical experiments to ultimately produce one marketed
drug. In recent decades, many companies start with even more
molecules (sometimes several million in what is called a “chemical
library”) to identify some promising structures through robotized
testing—so-called high-throughput screening. As no animals are
used in this step, it does not change the argument of this article.
However, this has also not dramatically changed development times
and success rates. Some companies start the search with biological
materials such as plants. They often contain several tens of
thousands of molecules in these “biological libraries” with the
later problem of finding out which in this mix has the desired
effect or just being stuck with a “phytopharmaceutical”—essentially,

a plant extract. Although many customers like such products, it
often requires difficult controls, such as the following: When to
harvest? How to process to maximize effects? Are all sources
equivalent? How stable is the product? Are there other
components in the mix which have negative effects? Such matters
will not be discussed here further as the challenge is to prove safety
and efficacy, and thus, the role of animal studies and their
alternatives is not much different.

To stay with the goldrush metaphor, companies typically hope
to make the really big find, not just “a few nuggets from the river.”
The dream is gold mines, not gold washing (Figure 5): companies
hope for the big wins, the “blockbuster” drug or technology which
brings in big money. A “blockbuster” is typically a drug which sells
more than $1 billion per year. This can mean finding new important
targets (how to change the course of disease), new drug entities such
as genetic drugs or nano-particles in more recent years, higher
throughput in drug development by faster methods (for example the
current discussion around AI-generated drugs—the novel tools that
employ artificial intelligence to accelerate drug discovery), and
anything promising to lower “attrition,” the so-called failure rate
in clinical trials leading to less side effects, earlier detection, or higher
efficacy of the resulting medicines. The attrition rate is really the
magic number for drug companies. A 2012 study by Arrowsmith
et al. showed that 95% of drug candidates failed in the clinical
development stage. This means somewhere between $0.9 billion for
preclinical development and $2.6 billion investment for full clinical
development (using the DiMasi data again), and 19 of 20 drug
development projects being abandoned. This is even lower than the
rule of thumb that only 1 in 10 substances entering the clinical phase

FIGURE 3
Visualization that the “golden pill” is actually a rare find among
many rocks, done with DALL-E 3.

FIGURE 4
Simplified drug development process.
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will make it to the market (Figure 4). Some 20%–40% fail because of
side effects, or toxicities. Even when a drug makes it to the market,
about 8% are later withdrawn, usually because of unacceptably
severe or even life-threatening side effects. It has been calculated
that 1 in 100 patients in hospital for any reason dies from adverse
drug reactions, often from interactions between drugs that patients

receive at the same time. The safety of drugs thus continues to be a
concern after marketing commences. Typically, a so-called phase-IV
trial monitors drugs entering the market to review their safety and
efficacy under real-life conditions, and possible drug side effects are
also recorded by physicians to build a knowledge base to find
rare problems.

As in any gold rush, there are many animals involved (Figure 6).
However, the first question for this article is how much do animals
really help? They are costly, take a long time, and have limited
reproducibility and predictivity for humans.

How and why are animal models used
in drug development?

Animals like mice, rats, dogs, and monkeys share much biology
with humans, enabling several types of preclinical studies (Box 1).
About a century ago, small rodents in particular became a primary
research tool in biomedicine, with a supply industry emerging. Until
the 1970s, they were the almost exclusive tool for finding new drugs
(Figure 2), often in the absence of any idea how they might work.
Then, most animals were used in drug development; today,
according to European figures, drug development is only
responsible for about 20% of all animal use (plus about 5% for
drug safety testing and 5% for vaccine batch control); this is an
overall drastic reduction of all animal use to about 40% of 1970s
numbers. And while drugs required most of animal use in 1970s, it is
now about 30%. It should be noted that a culture of systematically
testing candidate drugs only emerged after scandals in the 1930s. In
the USA, the 1937 sulfanilamide scandal (Figure 7) killed more than
100 people (mostly children), leading to legislation that empowered
the Food and Drug Administration (FDA). This disaster was pivotal
in the history of drug regulation in the United States. Sulfanilamide
was used to treat streptococcal infections and was effectively
formulated as a tablet and powder. However, in an attempt to
create a liquid formulation, the Massengill Company, a
pharmaceutical manufacturer, dissolved sulfanilamide in
diethylene glycol (DEG), an untested solvent. DEG is poisonous
to humans, but this was not well-known at the time. The company
did not conduct any safety tests on the new formulation, which was
marketed as “Elixir Sulfanilamide.” The product was distributed
widely and resulted in over 100 deaths, many of which were of
children, due to kidney failure caused by the DEG.

Box 1. Types of biomedical studies in drug development
In vivo: Studies in live animals

In vitro:Cells, tissues, or embryos studied outside a living organism

Microphysiological systems: Bioengineered in vitro systems,

which recreate aspects of organ architecture and functionality,

often with perfusion as vasculature equivalent forming (multi-)
organ-on-chip systems

Ex vivo: Analysis of organs, tissues, or biofluids from treated

animals

In silico: Computational models, increasingly based on artificial

intelligence (AI)

Toxicology (safety): Testing for toxic and adverse effects

Efficacy: Assessing potential treatment benefits

Pharmacokinetics: Absorption, distribution, metabolism, and

excretion of the drug

FIGURE 5
Visualization of the difference between gold washing and gold
mining as a metaphor for drug development breakthroughs, done
with DALL-E 3.

FIGURE 6
Many animals are used in drug development, staying in the
metaphor of a gold rush, done with DALL-E 3.
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This tragedy highlighted the lack of regulation in the drug
industry, particularly regarding the safety and testing of new
drug formulations. At the time, the FDA had little power to
regulate pharmaceuticals. The Federal Food, Drug, and Cosmetic
Act of 1938 was passed in direct response to this incident and
significantly increased the FDA’s authority. The Act mandated that
new drugs must be proven safe before being marketed, laying the
groundwork for modern drug approval processes. This incident is
often cited as a turning point in pharmaceutical regulation,
demonstrating the critical need for rigorous drug testing and
approval processes to ensure public safety.

The safety testing toolbox expanded continuously with problems
as a patch for the future. A prominent example was the thalidomide
(ConterganR) scandal in the late 1950s and early 1960s, one of the
most notorious medical disasters in history. Thalidomide, marketed
under the brand name Contergan among others, was introduced as a
sedative and later used widely to alleviate morning sickness in
pregnant women.

However, thalidomide was not adequately tested for its effects
during pregnancy. It was soon discovered that the drug caused
severe birth defects in thousands of children (Figures 8, 9) that
primarily affected limb development but also caused damage to the
ears, eyes, heart, and nervous system. The drug was available in
many countries, including Germany, the United Kingdom, and
Australia, but was not approved in the United States. The
tragedy led to a massive global overhaul of drug testing and
regulatory processes. The extent of the birth defects caused by
thalidomide brought to light the need for rigorous drug testing,
especially for teratogenic effects (the potential to cause fetal
abnormalities). In response, many countries strengthened their
drug regulation laws and the processes for drug approval, making
them more stringent and emphasizing the need for comprehensive
clinical trials, including assessing effects on pregnancy. Since then,
testing on animals has provided initial safety and efficacy data not
ethically possible from humans. However, due to biological
differences, small study sizes, and lack of diversity, animal
research has important limitations. The thalidomide scandal
remains a critical example in medical and regulatory circles of
the importance of thorough drug testing and the potential
consequences of inadequate drug regulation.

George Daston from Proctor and Gamble shared with me a letter
from the FDA to their company in 1966 (Figure 10), when the “patch”
for the reproductive effects of substances was created. It shows quite
nicely how the increasing number of toxicity concerns led to an enlarged
toolbox of safety tests. Notably, the letter ends “It must be realized that
even these improved guidelines reflect merely the ‘state of the art’ at the
present time, and undoubtedly further modifications will be needed in
the future as additional knowledge in this area is developed.” In fact, the
very demanding animal study done on rats and rabbits did not even
reliably detect the teratogenic effects (causing birth defects) of
thalidomide. Several factors contribute to this discrepancy:

FIGURE 7
Malformations caused by thalidomide, archive of the author.

FIGURE 8
Title page of German weekly journal Der Spiegel from
5 December 1962 titled “Sick by remedies”, archive of the author.
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• Species-specific differences in drug metabolism and
sensitivity: different species metabolize drugs differently.
Thalidomide’s teratogenic effects are highly species-specific.
It is known to cause birth defects in certain strains of mice,
primates, and specific breeds of rabbit, but not in others,
including the standard laboratory strains of rats and rabbits.
This highlights a crucial limitation of animal studies in
predicting human outcomes due to interspecies variability.

• Mechanism of action: thalidomide’s teratogenic mechanism is
complex and until recently not fully understood. It involves
multiple pathways and is influenced by genetic and
environmental factors that may not be present or that may
differ significantly in animal models compared to humans.

• Dosage and exposure timing: the manifestation of
thalidomide’s effects is highly dependent upon the timing
of exposure during pregnancy and the dosage. These factors
can vary greatly between humans and animals, affecting the
outcome and reliability of animal studies.

• Lack of early detection methods: when thalidomide was
introduced, the methodologies for detecting teratogenic
effects, especially subtle ones or those manifesting later in
development, were not as advanced as today. This limited the
ability to detect such effects in animal studies.

The thalidomide tragedy fundamentally changed the way drugs
are tested for safety, underscoring the need for more predictive and

FIGURE 9
Excerpt from 1966 letter by the FDA to Procter & Gamble on introduction of the two-generation study for reproductive toxicity, following the
thalidomide scandal (courtesy of Dr. George Daston, P&G).

FIGURE 10
Height distribution by gender, This dataset was created by an unknown author for the blog “Why Sex Differences Don’t Always Measure Up” available
at https://sugarandslugs.wordpress.com/2011/02/13/sex-differences/(last accessed 12 December 2023).
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human-relevant models in teratology. It led to stricter regulatory
requirements for drug testing, including the need for more
comprehensive animal testing and the development of alternative
methods to better predict human outcomes. However, the case of
thalidomide remains a classic example of the limitations of animal
models in accurately predicting human drug responses, especially in
the context of developmental and reproductive toxicity. It is also a
showcase of how, over almost 60 years, the “quick fix” of 1966 has
not been replaced. The shortcomings mentioned when introducing
the test have been forgotten, and it is now a standard that is difficult
to replace. “We just got used to it”, in the words of Petr Skrabanek
and James McCormick in their wonderful book Follies and Fallacies
in Medicine (Tarragon Press, Glasgow, 1989): “Learning from
experience may be nothing more than learning to make the same
mistakes with increasing confidence.”

On the other hand, aspirin, a widely used medication,
presents a notable case where animal studies (would have)
made findings that are not entirely relevant or predictive of its
effects in humans. In my 2009 article “Per aspirin ad astra,” I
critically examined the implications of traditional animal testing
methods, underscoring the paradox of aspirin’s toxicological
profile—its widespread acceptance was fortunate due to the
lack of stringent regulatory toxicology in 1899. In animal
models, aspirin has demonstrated a range of toxic effects that
are not typically observed in humans or that are observed under
different conditions. These discrepancies highlight the
limitations of extrapolating data from animal studies to
human physiology and medicine. Aspirin when ingested is
classified as harmful, with an LD50, or lethal dose of 50%, to
the rats used in testing, ranging from 150 to 200 mg/kg for the
rodents, which is exactly the maximum daily dose used in
humans. This is not a 100–1,000-fold safety factor usually
suggested by toxicologists to indicate acute toxicity. Aspirin
irritates the eyes, respiratory system, and skin. Although it is
not directly carcinogenic, it acts as a co-carcinogen, meaning that
it can promote cancer in the presence of other carcinogenic
agents. Its mutagenic potential remains unclear, suggesting
uncertainty about its ability to cause genetic mutations.
Studies in various animal models, including cats, dogs, rats,
mice, rabbits, and monkeys, have shown that it causes
embryonic malformations—but not in humans, where one
study analyzed 90,000 pregnancies. Due to this extensive
profile of harmful effects, it is likely that such a substance
would face significant challenges in the drug approval process
today, making it unlikely that it would be brought to the market.
In a 2009 article, I looked critically at traditional animal testing
methods using the example of aspirin. I highlighted the paradox
that aspirin is widely accepted and used despite results from
animal tests that might have blocked its initial approval under
today’s strict rules.

Animal studies show that aspirin can have a range of toxic effects
not typically seen in humans, or only at very high doses rarely used
in patients. For example, tests suggest that aspirin is quite toxic
based on lethal dose experiments in rats using the same maximum
daily levels given to people. Animal studies also indicate that it may
irritate eyes and airways and possibly act as a co-
carcinogen—promoting cancer development alongside other
chemicals. Its effects on potential gene mutations also remain

unclear. Meanwhile, additional animal research implies that
aspirin might cause birth defects, which over 90,000 human
pregnancies that have been tracked disproved.

Due to this concerning toxicology profile from animal tests,
aspirin likely would have faced major obstacles getting initially
approval if today’s stringent safety regulations existed back in
1899. The conflicting results between laboratory animals and
human patients highlight limitations in using animal studies
alone to predict safety in people. Findings in animals do not
always match up with outcomes when drugs are actually given to
diverse groups of people. Therefore, while useful, data from animal
models have major shortcomings that impact the progress of drugs
from early laboratories to patient bedsides.

Remarkably, until the 1970s, there were no efficacy data,
meaning that convincing evidence that drugs are promising for
curing a disease were formally required, just that they are not likely
to cause harm.

Developing targeted therapeutics: the
role of animal studies

Drugs today are developed to act through a defined target—a
structure or component of the body to be altered by the treatment.
Such targeted therapeutics are designed to specifically effect
molecules associated with disease, unlike traditional
chemotherapies, for example, that can also damage healthy cells.
This increased specificity aims to improve treatment effectiveness
and reduce side effects. However, developing a targeted therapeutic
is a long, expensive, and risky process, taking on average about
12 years. Extensive testing in animals plays a crucial role in this
process—typically 10-20,000 animals per drug development today.
The Nuffield Council on Bioethics has estimated that 5%–15% are
used to identify targets for drug action and possible medicines, 60%–

80% for lead identification and optimization—choosing the optimal
candidate substance—and 10%–20% for selecting candidate
medicines going into clinical trials. Notably, according to
European statistics, the pharmaceutical industry uses about 20%
of all laboratory animals for drug development, down from about
30% in 2005, despite increasing research spending indicating that
the industry is transitioning to other methods. The continuing need
for animals is because cell cultures and computer models cannot
replicate the full complex biology of a living organism. The
traditional view is that animal testing provides invaluable data
about real-world efficacy and safety that often cannot be
obtained by other means. Preclinical testing with a combination
of animals and, increasingly, other tools enables researchers to select
the most promising candidates to move forward into clinical trials.
This minimizes risks to human participants and increases the
chance of success in later-stage clinical testing. Although targeted
therapeutics provide exciting possibilities for treating disease,
developing them often requires extensive animal research.
Preclinical testing in appropriate animal models is still an
essential part of bringing safe, effective targeted therapies to the
clinic. The high degree of similarity between many animal species
and humans leads many researchers to believe that this enables key
data to be collected for guiding therapeutic development and
improving human health. This rather optimistic view of the role
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of animal studies in drug development is slowly being eroded, given
the perceived inefficacy of the process of drug development with its
many failures in the clinical (attrition) phase and increasing cases
where the limitations of animal testing have been apparent.
Importantly, the use of animals is also prompted by the
expectations of regulators of receiving such data for decision-
making and the fear of the industry that not meeting these
expectations will result in delay or even refusal of registration.

Once safety and efficacy are demonstrated in animals, the
most promising targeted therapeutic candidates advance to
testing in humans. Clinical trials are performed sequentially in
healthy volunteers and patients with disease to definitively
determine overall benefit and risk. Animal research provides
the foundation of knowledge necessary to justify testing new
drugs in people.

Limitations of animal models

Although the historic cases of thalidomide and aspirin shed
some light on how the safety testing of drugs was introduced and was
flawed from start, this section will address limitations more
systematically and with more recent examples. Although
somewhat useful, animal models frequently fail to predict human
clinical trial outcomes. Reliance on inadequate animal data results in
the following:

• Many false negative errors: potentially good drugs are
abandoned due to lack of efficacy or side effects in animals
that would not occur in human trials (which never happened
because of the animal findings).

• False positives: drugs that “work” in animals may still fail in
human trials.

• Adverse events and safety issues in human volunteers and
patients that were missed by prior animal testing.

• Several factors limit the accuracy of animal models, including
biological differences; inbred strains vs. genetic diversity in
humans; often young, healthy animals, unlike aged, sick
humans; molecular differences altering drug effects;
artificial experimental conditions; housing, diet, and
environments that differ from human lifestyles.

• Disease that is induced artificially may differ from naturally
occurring illness.

• Study design: small, short studies vs. lifelong human
exposures; high doses triggering irrelevant effects; each test
uses limited animal groups unlike large, diverse human trials.

• Animal research retirement is not yet feasible but should be
reduced. Imperfect animal models need to be supplemented
withmore reliable human-based techniques such as: miniature
bioengineered “organs-on-chips”; advanced computer models
of human disease; big data mining of patient health records
and genetic databases; small, carefully designed human
clinical studies.

Used intelligently in combination, old and new methods can
transform drug development to reliably predict safety and benefits
for patients. Scientists have an obligation to use the most predictive
tools available to efficiently develop effective medicines.

Animal testing has been an entrenched part of drug
development for decades. However, there are numerous
concerning examples where animal tests have misled clinical
development due to inherent physiological differences between
species, leading to dangerous outcomes in human trials.

The immunosuppressant drugs cyclosporine and tacrolimus,
widely used today to enable organ transplantation, were almost
abandoned because animal toxicities failed to predict efficacy and
safety in desperate patients. Corticosteroids, in contrast, appeared
beneficial in animal models of septic shock but worsened mortality
rates when administered to critically ill patients.

An Alzheimer’s vaccine caused severe brain swelling in early
human trials despite appearing safe in animal tests. A 2006 “cytokine
storm” induced by an immunomodulatory agent by Tegenero left
healthy volunteers with catastrophic organ failure, despite prior
animal studies being unremarkable. In 2016, one volunteer died and
four suffered severe neurological damage in a French trial, although
the drug showed promise and acceptable safety margins across four
animal species. Severe liver injury and multiple deaths forced the
termination of a hepatitis B drug trial despite earlier encouraging
animal data. Differential species sensitivity to drugs like
acetaminophen further highlights the pitfalls of reliance on
animal models. Gene therapy vectors that have been safe in
animal tests have caused liver failure and brain swelling in
children. HIV vaccines, stroke treatments, inflammatory disease
agents, and Alzheimer’s therapies have all elicited enthusiasm in
animal models yet utterly failed in human trials.

These sobering examples have played out over decades, leaving
patients dead or devastated in their wake. Notably, while these
included extreme examples of unanticipated side effects, many
milder problems might never be detected as patients already have
many health problems and the additional negative effects of drugs
are not easy to identify. On the other hand, many potentially
lifesaving medicines may have been lost at the same time because
they performed poorly in flawed animal models. Recurrent failures
speak to inherent limitations of evolving human treatments in
divergent species. These cautionary tales underscore growing calls
to move away from unreliable animal testing toward human-
relevant alternatives for future drug development.

Systematic evaluations of animal
experiments

The last chapter gave some anecdotal examples of limitations of
animal tests. Over the last decades an approach, which is called a
systematic review, has evolved, which defines clearly upfront the
question of interest and how to find the respective evidence and
analyze it. This has been applied to some extent also to the value of
animal testing.

The Systematic Review Centre for Laboratory-animal
Experimentation (SYRCLE) works to improve the quality and
reliability of animal studies used in drug discovery. One of the
main tools developed by SYRCLE is the “risk of bias” (RoB) tool,
which aims to assess the methodological quality of animal studies
and has been adapted for aspects of bias that play a role in animal
experiments. The tool is designed to enhance transparency and
applicability, and it includes signaling questions to facilitate
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judgment. The widespread adoption and implementation of this tool
are expected to facilitate and improve the critical appraisal of
evidence from animal studies. This may subsequently enhance
the efficiency of translating animal research into clinical practice
and increase awareness of the necessity of improving the
methodological quality of animal studies. SYRCLE identified that
a significant portion of animal research is conducted at a low
standard, leading to unreliable data. This includes low rates of
random allocation, allocation concealment, and blinded outcome
assessment, all of which contribute to an overestimation of the
benefits of experimental interventions. Furthermore, animal
research often suffers from selective analysis and biased outcome
reporting, where only the most positive outcomes are reported. This
leads to an inflated proportion of studies with positive results and an
overestimation of beneficial treatment effects. Systematic reviews
have also highlighted redundancy and waste in animal research, with
continued experimentation even after beneficial effects were already
well documented, leading to unnecessary use of animals and
resources. There is evidence that shortcomings in almost every
aspect of the scientific design, conduct, and reporting of animal
studies contribute to their inability to translate into benefits for
humans. Such findings indicate the need for improved
methodological quality in animal research to ensure its clinical
relevance and enhance its efficiency and reliability translating
into clinical practice.

SYRCLE also advocates for the registration of all animal
experiments at inception and the publication of protocols of
animal studies in various journals. These practices are expected
to improve the standard of research in animal sciences. However, it
is important to note that animal studies have inherent limitations
and can sometimes be misleading in drug discovery. For instance, a
drug that shows promise in animal models may not necessarily be
effective in humans due to species-specific influences and differences
in biology. Importantly, SYRCLE recommends that the risk of bias
assessment should be conducted by at least two independent
reviewers to ensure objectivity and that any disagreements be
resolved through consensus-oriented discussions or by consulting
a third person. This approach underscores the need for critical and
unbiased assessment in animal studies, which can significantly
impact the translation of research findings from animal models
to clinical applications. In summary, the work of SYRCLE,
particularly through its RoB tool, has been instrumental in
identifying and mitigating bias in animal studies, thereby
enhancing the reliability and translatability of these studies into
human clinical research—especially in the context of drug discovery.
Therefore, while tools like SYRCLE’s RoB tool can help improve the
quality of animal studies, they cannot completely eliminate these
fundamental challenges.

A review by researchers at Astra Zeneca found that over half of
the protocols for forthcoming animal experiments needed
amendment for proper experimental design, appropriate sample
sizes, and measures to control bias. Additionally, revealing reports
from pharmaceutical companies have found that much data from
academia are irreproducible, indicating problems of poor
experimental design and scientific conduct, as well as
incomplete reporting.

The Collaborative Approach to Meta-Analysis and Review of
Animal Data from Experimental Studies (CAMARADES) is a

research group that aims to improve the quality of preclinical
research, particularly in the context of animal studies used in drug
discovery. CAMARADES works to address these issues by promoting
rigorous, high-quality, and transparent animal research. This includes
advocating the use of systematic reviews and meta-analyses,
improving experimental design and reporting, and developing new
methodologies to assess the quality of preclinical research.
CAMARADES is a database that tracks the reliability and
limitations of animal research used in drug development and
disease research. It was created in response to the recognition that
animal studies frequently do not translate to humans, wasting
resources and potentially misleading medical research. For
example, one analysis found that only 37% of highly cited animal
research was translated at the level of human randomized trials.
Another study found that only 8% of basic science discoveries enter
routine clinical use within 20 years. The reasons why animal studies
can be misleading include differences in biology and physiology
between species, poor experimental design and reporting,
publication bias, and overinterpretation of results. CAMARADES
reviews animal studies systematically and critically to assess their
limitations and risk of bias. The goal is to improve the design, analysis,
and reporting of preclinical animal studies so that their results are
more relevant to human health and avoid wasted resources.
CAMARADES has reviewed numerous animal studies of drugs
and conditions like stroke, amyotrophic lateral sclerosis, and sepsis,
demonstrating how animal models failed to predict human outcomes.
Overall, CAMARADES aims to act as a watchdog for animal research,
promotingmore rigorousmethodology and cautious interpretation to
prevent animal studies from misleading medical research.

Why we still need animals for drug
development

While flawed, animal research remains necessary for developing
new medicines. Some of the reasons it persists include:

- Living systems: animals are complex living organisms that
cannot yet be mimicked in the laboratory. Seeing responses
across multiple organs over time requires whole-
animal studies.

- Rules and expectations: regulators overseeing drug safety
expect animal data before human trials can proceed.
Companies must comply to keep development programs
on track.

- Early safety checks: animal tests allow safety assessments at
high doses so that lower, likely safe human doses can be set.
Without animals as a first check, putting chemicals into people
would be too risky.

- Mechanism exploration: animal tests shed light on disease
mechanisms and biological pathways to help guide human
research, despite not always directly predicting outcomes.

Hence, while animals are far from ideal for predicting human
drug responses, they fill important gaps until technology like organ
chips and computer models can provide comparable living system
data (as discussed below). Animal research therefore remains
ingrained in medical advancement at present.
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Strategies to maximize animal
data value

Such strategies include the following:

1) Assessing for flaws: tools that help analyze the quality of
animal methods to improve their applicability to humans.

2) Tracking outcomes: the registration of animal trials enables the
subsequent tracing of results versus initial expectations.

3) Documentation: cataloging animal study successes versus
failures can inform realistic healthcare promises.

Additionally, boosting reproducibility—consistency in
results—returns more knowledge per animal used. This involves
careful experimental design and transparent outcome reporting,
whether positive, negative, or inconclusive. In summary, wasting
animal lives on poorly designed, biased research is unethical, but
ensuring the thoughtful conducted of robust animal studies via
quality checks while tracking outcomes will advance human
medicine with care while alternatives are developed.

Reproducibility of animal studies

A helpful estimate for the accuracy of a test is its reproducibility
as no test can be more accurate than it is reproducible.
Reproducibility in animal testing is a significant concern in the
scientific community, with many studies highlighting the challenges
and proposing strategies to improve the situation. One of the key
issues affecting reproducibility is biological variation, which can
cause organisms’ responses to experimental treatments to vary with
both genetic differences and environmental conditions. Another
contributing factor is the extreme standardization of trial design,
which can lead to different results with slight deviations in test
conditions. Even with well-planned and well-reported protocols,
reproducibility is not automatically guaranteed. This is known as the
“reproducibility crisis”, which has led to a growing awareness that
the rigorous standardization of experimental conditions may
contribute to the poor reproducibility of animal studies.

Estimating the overall accuracy of animal testing in predicting
efficacy and safety in human trials is challenging, based on available
data. Animal studies seem to have relatively low accuracy for
predicting efficacy—estimates range from about 37% to 60%
correlation with human outcomes, suggesting substantial
limitations. The models remain quite imperfect for their core
intended purpose. There are significant inter-species differences in
biology and disease progression for even highly conserved pathways.
However, animal studies seem moderately accurate regarding safety,
with estimates of about 70% accuracy for identifying toxic side effects
that also manifest in humans. So, while still imperfect, animal testing
appears, on average, better attuned to flagging potential safety issues
that translate across mammals. Overall, however, predicting efficacy
via animal models seems scarcely better than a coin flip based on
meta-analysis. However, for safety, animal testing achieves perhaps
higher accuracy under optimal conditions. Combined into an overall
likelihood of success, this aligns with very high late-stage drug failure
rates; animal studies do not sufficiently recapitulate human biology to
reliably identify those rare winning drug candidates out of the

thousands investigated. Improved models and biomarkers remain a
key necessity.

These accuracy limitations highlight why robust statistics and
good judgment are so crucial when interpreting pre-clinical animal
research for candidate prioritization and advancement decisions—a
nuanced understanding of what questions different models can
actually address is essential to avoid wasting of resources by
chasing false signals.

The testing challenge illustrated

Testing means that individual chemicals are subjected to a
measure to classify them as belonging, in the simplest case, to
either of two classes—for example, effective on a target or not, or
toxic/non-toxic. The problem is that there are no perfect tests,
and some misclassifications occur: “false-positives” (ascribing a
property which something does not have) and “false-negatives”
(missing an individual chemical that is, in fact, a property). The
basis for a test is that we can measure something which
distinguishes the two groups. For example, if we want to
distinguish male and female individuals, we might exploit the
difference in height. This might not be the best possible
characteristic, as Figure 10 shows. However, if we take a cut-
off of 1.70 m, we actually identify about 90% of women and
include only 35% of all men—27% of the below-1.70 m group are
men, or an accuracy of 77.7%. This is about the accuracy we can
hope to achieve with an animal experiment when looking for a
property. While this works astonishingly well, what happens
when there are less women in the group to be analyzed? If we
assume that the number of women is only one tenth of the actual
proportion, we now still find 90% of these and the same number
of men as before. The problem is that we still find the same
number of small men, who are now 79% of all identified, so the
false-positives (men mistaken as women based on height) now
predominate. The accuracy drops to 68% if we continue and
reduce the number of women in the group again to another 10th,
so the real women found are less than 4% of all small people
identified, corresponding to an accuracy of 66%. Why is the
accuracy still that good when only one woman per 25 men is
among those identified? Because the method is very good at
identifying non-women: the large number of tall men with now
very few tall women is making the test fairly reliable for
identifying them. This is a very fundamental problem, which
most people do not understand: we test our methods with more
or less equal numbers of what we want to identify, and our
methods do very well. Then, we move to real life, and there are
very few suitable substances we want to identify among those we
evaluate. This is called the prevalence problem (see next section).

This example can also serve to show how we can change the
performance of the test by setting our cut-off. We can make the
test more sensitive (find more of what we are looking for) or more
specific (minimize the false calls). The cut-off at 1.70 m found
90% of women, but of all called women, only 72.9% were in fact
women. Changing the cut-off to 1.60 m finds only 46% of all
women. Changing to 1.80 m finds 89.7% of all women but only
58.2% of those identified were correct. The accuracy of the test
drops from 77.7% to 64.1% and 62.4%, respectively. This
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illustrates how our choices allow us either to be confident in the
result (specific) or not to miss out on positive things (sensitive).
Translated to drug screening, this means either quickly reducing
the number of possible substances or being careful not to lose
the good ones.

The prevalence problem in
drug discovery

When developing new drugs, researchers face a tricky problem:
many of the effects they seek, both positive and negative, are quite
rare. For example, out of thousands of drug candidates tested, only a
small percentage end up being sufficiently safe and effective to bring
to market as approved treatments. Regarding safety, dangerous side
effects may also only occur in a tiny fraction of patients, still
prohibiting their use. This means that, even when using very
good laboratory tests and clinical trials, it can be hard to reliably
detect these rare events—a drug could fail late in development over
toxicity seen in 1 in 10,000 people, for instance. So scientists must
test large numbers of drug candidates and use very large patient
groups, which takes extra time and money. Careful testing design
and statistics are key to properly estimate the likely benefits and risks
of dealing with such low probabilities. Just as diagnostic tests in
medicine work best for common diseases, the drug development
process works far better for more prevalent drug effects. Clever ways
to accurately find “needles in the haystack” during development is a
permanent challenge; the intrinsic challenge of identifying rare yet
significant events hampers the discovery of a truly effective drug or
the detection of uncommon toxic effects of drug candidates. The vast
majority of compounds investigated do not make it to market, either
due to lack of efficacy or to adverse effects that may only be evident
in a small fraction of the population or under specific conditions.
This “needle in a haystack” problem is compounded by the fact that
preclinical models, such as animal studies, do not always accurately
predict human responses. Consequently, a drug that appears
promising in preclinical trials may fail in clinical phases due to
unforeseen toxicities or lack of therapeutic effect. On the other hand,
a potentially useful drug might be erroneously discarded if its
benefits are not readily apparent in the early stages of testing or
if its side effects are overrepresented in preclinical models.
Therefore, the efficiency of drug development is often hindered
by the difficulty of extrapolating data from a limited set of preclinical
results to the diverse human population, where genetic,
environmental, and lifestyle factors can greatly influence drug
responses. The prevalence problem underscores the need for
more predictive models and testing methods that can better
capture the complexity of human biology and disease. As in
diagnostics, the predictive value of clinical trials decreases
dramatically the less prevalent an outcome is. Companies must
account for this limitation with very large and lengthy studies, at
substantial cost. Clever trial designs to accurately detect these
“needles in the haystack” remain an ongoing necessity in drug
development.

Rare phenomena of high impact are sometimes called “black
swan events”. Nicolas Taleb in his book The Black Swan (2007) used
this metaphor to especially describe events on the stock market. He
defines black swan events by the “. . .triplet: rarity, extreme impact

and retrospective (though not prospective) predictability.” This is
exactly what drug discovery is: real hits are rare, they are a goldmine,
and arguably, we can explain why they work so well only in
retrospect. The identification of a new marketable drug requires
much searching and luck. The same can be said inversely of the rare
toxic effects of drugs coming to the market. Side effects which only
occur in one in 1000 or 10,000 patients cannot be predicted: they are
black swans. Taleb notes, “What is surprising is not the magnitude of
our forecast errors, but our absence of awareness of it.” This is when
the black swan hurts. “True, our knowledge does grow, but it is
threatened by greater increases in confidence, which makes our
increase in knowledge at the same time an increase in confusion,
ignorance, and conceit.” This notion can easily be translated to
adverse drug effects, where late discoveries of highly problematic
side effects are rare but game-changing events.

A prime example is the case of the painkiller Vioxx (rofecoxib).
Vioxx was initially hailed as a breakthrough for its effectiveness in
relieving pain with fewer gastrointestinal side effects than other
painkillers. This was a significant development, given that
gastrointestinal complications are a common and serious side
effect of the long-term use of such drugs. It was approved and
marketed for 5 years before being withdrawn due to increased risk of
heart attack and stroke. During clinical trials, it was observed that
2.4% of the 1,287 participants taking Vioxx suffered serious cardiac
events, such as heart attacks, chest pain, or sudden death. This rate
was notably higher than the less than 1% of patients who received a
placebo. This significant increase in risk, although relatively small in
percentage terms, led to the drug’s withdrawal from the market due
to safety concerns. The problem was that these cardiovascular risks
occurred in only a small proportion of patients—about 1 in 200 over
a year of treatment based on later analyses. So even with thorough
testing, this rare side effect was initially missed. The company had to
spend over $100 million on one study alone to properly detect these
risks, requiring a huge sample of over 24,000 arthritis patients. Since
heart disease progresses at a background rate regardless, only by
analyzing such large numbers could Vioxx’s small but real added
risk be identified. The Vioxx case illustrates why finding rare adverse
events or benefits is so difficult during development; even the most
rigorous testing can miss effects that occur at rates of less than 1 in
1000. In preclinical trials and early clinical studies, Vioxx did not
show significant adverse effects and was therefore approved by the
FDA. However, after it was widely marketed and prescribed, it
became apparent that there was an increased risk of heart attack and
stroke associated with its use, which was not evident in the smaller,
controlled clinical trials. The economic consequences of the Vioxx
withdrawal were profound and multifaceted. Vioxx, which had been
on the market since 1999, was generating over $2.5 billion annually
for Merck, accounting for approximately 10% of its worldwide sales.
When the drug was withdrawn in September 2004, Merck’s sales
plummeted, and the company’s stock value took a significant hit.
Moreover, the withdrawal triggered numerous high-profile product-
liability lawsuits, leading to years of litigation that cost Merck
billions of dollars. The Vioxx case remains a cautionary tale in
the pharmaceutical industry, illustrating the staggering financial
risks when safety concerns emerge post-market. The industry
continued to feel the repercussions of the Vioxx withdrawal up
to a decade later as it highlighted the vulnerabilities in drug safety
surveillance and the potential for significant economic loss when
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widely prescribed medications are retracted. The Vioxx case
demonstrates the prevalence problem where rare but critical
adverse events may not be detected until after a drug is approved
and taken by a large and diverse patient population. It also shows the
limitations of preclinical models in predicting human real-life
outcomes, given that the cardiovascular risks associated with
Vioxx use were not captured in earlier studies. This highlights
the need for more comprehensive and sensitive methods for
detecting rare events in drug safety and efficacy evaluations. We
will later discuss the opportunities of human-relevant bioengineered
models (microphysiological systems), mechanistic understanding,
and big-data-driven analyses and modeling.

Another prime example is the cholesterol-lowering drug
Lipobay (cerivastatin), which was withdrawn in 2001 after
reports of serious muscle toxicity (rhabdomyolysis). This side
effect occurred in approximately 1 out of every 1000 patients per
year who took the approved dose. While quite rare, the results could
be fatal. Even though cerivastatin had undergone extensive
laboratory testing and clinical trials with thousands of patients
prior to approval, this low probability meant that the risk was
initially missed. The analysis of over a million patient years of post-
approval prescription data was required to finally detect and
quantify the risk. The Lipobay case, like that of Vioxx,
demonstrates how developing or approved drugs can fail to
identify rare but dangerous risks that only show up when tested
in extremely large populations. As in medical diagnostics, even
rigorous testing can easily miss outcomes that occur at rates less than
around 1 in 1000. Companies must account for this limitation by
conducting very large and lengthy studies to properly estimate safety
and efficacy; however, even these might not be large enough to
conclusively rule out some risks. Careful trial analysis for faint
signals in the data is crucial.

Some number games and the difficulty
of finding rare things

As seen above, drug discovery means ultimately finding one
marketable drug out of more than 10,000 chemicals. The problem is
that our tools are far from perfect. This holds for both animal tests
and their alternatives. This is like solving a riddle with glasses not
tailored to our eyesight. Let us assume that an animal tests deliver
90% correct results—a relatively high bar, with no more than 80%
accuracy much more likely; however, for illustration, assume a 90%
accurate animal test to try to discover one approvable drug out of
10,000 chemical candidates. Testing 10,000 chemicals, the 90%
accurate test would correctly identify the one truly effective
compound that will ultimately make it to market. However, with
10% false positives, it would also flag around 999 other chemicals as
“hits” that will actually fail later. So, while not missing the promising
needle in the haystack, initial results are unable to distinguish it from
almost a thousand false positives. A large fraction of those
1000 extras would drop out in further rounds due to other
limitations of course—but companies might still fruitlessly pursue
100 through later stages as if they were promising, based on the
inaccurate early read. This thought exercise illustrates why, despite
relatively good animal tests, failure rates in human trials remain
high—rare actual positives get lost amongst the noise of greater

numbers of false signals when working in domains of very low
prevalence. Clever multi-parameter testing is important, but
statistics dictate inevitable disappointment much of the time.

Here is an illustration of what would happen if the
1000 chemicals flagged as positives from the first 90% accurate
animal test were run through a second, independent 90% accurate
animal test: putting those 1000 chemicals through a second 90%
accurate animal test independent of the first (an unlikely
assumption, but useful here) might help refine the list, but major
issues remain due to the low prevalence. The true promising drug
would be confirmed, while around 900 of the original 999 false
positives would now test negative and could be set aside. However,
around 100 (10%) of those false leads would be incorrectly flagged
positive again. Therefore, out of 110 total positives between the two
tests, only one is the real winner, over 100 remain misleading false
leads, and optimization between tests still cannot avoid this. Even
added testing helps far less than intuition would suggest when
fundamental probabilities are so low. Statistics dictate that
reliability decreases exponentially the less prevalent the needles
sought in research haystacks become. At huge scale, noise
drowns signal without escape. While these are simple examples
for illustration, these dynamics genuinely occur in real drug
development pipelines, contributing to late failure and showing
how proper expectations are vital when hunting for rare events
like a 1-in-10,000 for a future drug (Figure 11).

If we assume a series of independent 90% accurate animal tests
to narrow down the initial 10,000 compounds, we can analyze the
number of tests to get to 10 remaining candidates, and the
cumulative risk of losing the one truly promising compound:

* Round 1 test: ~1000 compounds flagged as positives (=
candidates, ~1 true, ~999 false)

* Round 2 test: ~100 compounds flagged as positive (on average
~1 true, ~99 false)

* Round 3: ~10 flagged (~1 true, ~9 false)

It thus takes three sequential 90% accurate tests to narrow the
10,000 down to 10 compounds (one likely true positive, nine
remaining false positives). However, there is in each round a 10%
chance of the truly promising compound testing negative in one of
the rounds and being incorrectly discarded. Over three tests, this
means that there is actually a 27% chance (1–0.93) that the best
candidate is lost along the way. This demonstrates how prevalence
limitations mean that even an unlikely-to-achieve series of nearly
perfect laboratory tests carries large risks of losing the rare “needle”
when searching complex multidimensional haystacks like potential
drug spaces. Confirming true signals remains improbable until late,
so balancing information gain versus discarding promising niche
opportunities remains an ongoing challenge throughout the drug
discovery pipeline. What happens when we use less than ideal tests?
Using 80% accurate tests, we need four rounds to get us to
~16 compounds, and the likelihood of still including the golden
one is 41%. Using a series of 70% accurate tests, six test rounds will
get us to ~7 compounds with only a 12% chance of still having the
one we are looking for included.

These calculations assume that there is only one marketable
substance in the 10,000 we start with. That is probably not the case.
Assuming that were ten suitable compounds among the 10,000 at
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start, a series of 90% accurate tests gets us, in three rounds, to
~17 compounds including seven possible winners, and 80% accurate
tests in four rounds to ~20 compounds with four possible winners,
as well as 70% accurate tests leading in six rounds to ~9 candidates
including one promising one. The latter scenario seems to best agree
with the experience that one in ten compounds later prove to work
in clinical trials, with some of the numbers around 70% for the
reproducibility of animal studies.

If we come back to the sensitivity vs. specificity discussion from
above, we can illustrate the consequences here. We saw that 70%
accurate tests (equal sensitivity and specificity) in six rounds brought
us to nine compounds (one good). If we now use 80% sensitive/60%
specific tests, we need seven rounds to get to 19 (two good ones),
while the opposite 60% sensitive/80% specific gets us to 17 in four
rounds (one good one). This again illustrates the compromise
between sensitivity and specificity: higher specificity sorts the
compounds faster at the risk of losing the winner; higher
sensitivity means more effort (seven rounds) but no real gain in
the probability of including the winner.

Do we know the accuracy (sensitivity and specificity of animal
tests)? Often not, because that requires an assessment of the assay
against some reference, such as chemicals, which are known to do
what the drug discovery is seeking. We call this “target validation”.
The above calculations thus better serve the purpose of explaining
why so much testing does not necessarily lead to substances which
succeed in the clinic.

Safety testing—that is, toxicology —traditionally occurs just
before human trials and in part concurrently. This means that
the ~10 compounds entering the clinical phase of drug
development need to be considered. Applying the estimated 70%
safety accuracy of animal studies to a scenario with a 20% prevalence
of a toxicity across 10 candidate compounds means that two
compounds would be truly toxic to humans and eight would be
truly safe. Using a hypothetical 70% sensitive/specific animal test on
the two toxic compounds, it would correctly flag one or two as toxic;
of the eight safe compounds, it would correctly identify six to seven.

It would also incorrectly flag one to two of the safe compounds as
toxic and misidentify one of the truly toxic compounds. Therefore,
even with a relatively high prevalence toxicity of 20% and a good
animal test with 70% accuracy, predictions can easily miss 25% of
the unsafe human compounds while allowing unsafe candidates
through at a 10%–20% rate. This demonstrates how testing
limitations can quickly add up, even under idealized
conditions—rare but dangerous outcomes get missed completely,
and false safety signals erode confidence in labeling. Layered risk
mitigation is key, but balancing information value against decision
risk given the constraints around rare event prediction remains
highly challenging throughout pharmaceutical pipelines.

How realistic are these number games?

In real life, not all steps will be run on all compounds. Such a
brute-force approach is simply not realistic and affordable. Early
rounds will likely be done with simple in vitro and in chemico tests
with limited scope but better reproducibility. With additional
information such as the intellectual properties for chemicals, ease
of synthesis, estimated environmental stability, and chemicophysical
properties, lead compound selection will proceed faster. Often, new
chemical structure variants will be brought in on the lead-
optimization phase. This does not necessarily improve the odds
of ultimate success as this is somewhat a gamble based on experience
and circumstantial information. It is quite possible that these
considerations have a similar accuracy of about 70% and thus
leave us within the calculations; in fact, 20 years ago, Romualdo
Benigni and colleagues had scientists guess the outcome of cancer
tests on chemicals and achieved 60%–65% accuracy. So, they were
about as good as mathematical models or the reproducibility of
cancer testing itself. The above scenario also assumes that the
different tests per round are independent; this is very unlikely as
they are all built around the same pharmacological target, which
reduces the probability of success. So this represents a theoretical

FIGURE 11
Illustration of the consequences of limited accuracy of finding 1 in 10,000 drug candidates The calculations show how less accurate tests require
more testing rounds to bring the candidates down to about 10, which can bemanaged in clinical trials but also increase the risk of losing the winning one.
If we assume that there are 10 equally good candidates, there is a much better chance that at least one will proceed to clinical trials.
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exercise of testing all and everything in a sequence of test rounds,
which serves mainly to illustrate how the tools stand up
against the task.

What can be done to improve the
probabilities of finding good drug
candidates in preclinical research?

There are a few approaches that can help improve the odds when
searching for extremely rare positive events, like 1-in-
10,000 successful drug candidates:

1) Test more compounds: this helps detect more of the few true
signals hiding amidst the noise. This is accomplished with
robotized testing—so-called high-throughput testing with
libraries of often millions of chemicals. Artificial intelligence
can examine even more theoretical structures, but the
contribution of this new approach is still to be shown.
However, returns of actual testing more compounds
diminish quickly and costs scale up, limiting feasibility.
This is only possible with broader use of non-animal methods.

2) Using more replicates per test such as larger animal groups:
while this increases the accuracy of tests when variability is the
problem, it again increases costs, effort, and animal use.

3) Multi-parameter testing: assessing multiple aspects of each
compound provides backup if the primary indicator is
misleading. However, interpreting interactions quickly
becomes complex, and such “multiple testing” can weaken
statistical power.

4) Seek supplementary data: extra information like structure analyses
or genetic associations can flag higher probability starting points
tied to known biology. This aids in prioritizingwhat to screen first,
especially when the quantity of substances is limited.

5) Refine models over time: statistical models predicting success
can incrementally improve as more test data accumulates
across pipelines.

6) Limit false positives: overly sensitive screenings should be
avoided, even if they capture most true hits; generating
excessive false leads that consume resources is
counterproductive when positives are the priority.

7) Expect imperfection: appreciating prevalence constraints
means properly setting expectations around reliability and
uncertainty given the state of knowledge.

8) Use methods with higher reproducibility, fidelity, and
accuracy. Most cell culture systems and, certainly,
computational models are more reproducible than animal
experiments. With respect to modeling human responses, at
least microphysiological systems (MPS) promise fewer species
differences. In general, models which are based on the same
mechanisms as in humans promise better fidelity. With
respect to accuracy, determining which model is more
accurate must be shown case-by-case; however, AI models
have already outperformed animal tests for a number of
toxicological hazards.

In the end, no solution can avoid the direct implications of
probability theory that extremely rare events intrinsically strain the

predictive capacity of any analytical approach. However, combining
strategic testing with an understanding of these inherent limitations
helps maximize the likelihood of teasing out promising needles from
the early biomedical haystacks faced during drug discovery.

The pharmaceutical industry differs
fromother industries in its use of animal
testing and adoption of
alternative methods

Pharmaceutical companies conduct a lot of animal testing
during drug development to establish safety and efficacy. Animal
studies play a critical role in preclinical testing and are used more
extensively in pharmaceutical R&D than in most other industries,
such as industrial chemicals, consumer products, or food. However,
pharmaceutical companies have also pioneered many alternative
methods and been early adopters of new technologies to reduce
animal use. Some key differences to other industries are as follows:

• Market pressures are different, with enormous upfront
investments rewarded by higher prices and profit margins.
Pharmaceutical companies face strong incentives to bring
drugs to market quickly, so they are motivated to use the
most predictive methods, whether animal or alternative. Speed
and human relevance are more valued than following
traditional protocols.

• R&D spending is massive, estimated at more than $2.6 billion
per successful drug development. Pharma devotes tens of
billions annually to R&D, giving it resources to implement
new technologies. The scale of animal use also makes
reduction efforts very cost-relevant.

• There is extensive regulation, but also flexibility. Drug
development is heavily regulated to ensure safety, but
regulatory agencies allow some discretion in test methods.
Pharma takes advantage of opportunities to waive animal tests
when alternatives exist.

• The range of tests required is broader. Pharma must assess a
wide range of endpoints, from pharmacodynamics to
carcinogenicity, which requires a diverse arsenal of animal
and non-animal methods.

• Product development cycles are long because development is
much more sophisticated. Drug development takes about 12
years on average, so new alternative methods may take time to
impact animal use. However, each marketed drug is tested for
years, so replacements can eventually have great impacts.

• Focus onmechanism.Understanding drugmolecularmechanisms,
especially with omics technologies (i.e., simultaneously measuring
as many active genes, or proteins and metabolite changes, as
possible) informs human biology relevance and helps justify
waivers of animal tests.

In summary, pharmaceutical companies are highly motivated to
implement improvements in safety testing that can accelerate drug
development, improve clinical predictivity, and reduce costs. This
has made them forerunners in adopting alternative methods for
efficacy testing, despite continuing extensive animal testing
requirements for safety.
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What are alternatives to animal testing
in preclinical drug development?

The philosopher Peter Singer once said, “I don’t think there’s
much point in bemoaning the state of the world unless there’s some
way you can think of to improve it. Otherwise, don’t bother writing
a book; go and find a tropical island and lie in the sun.” So, how
can we improve? The main alternatives to animal testing are
in vitro and in silico approaches (Figure 12). In vitro methods,
while cheaper and faster, face issues like genetic instability and
non-physiological culture conditions. However, advances in
technology and practices, such as Good Cell Culture Practice
(GCCP), are helping to overcome these limitations. In silico
methods are now central to life sciences as they have evolved
significantly, especially based on AI and also in regulatory
contexts. Tools like Good Read-Across Practices and
automated read-across, which leverage large toxicological
databases, are increasingly used in drug discovery and other
applications. Integrated testing strategies (ITS) are emerging
which combine in vitro, in silico, and sometimes in vivo
methods, recognizing that no single method can fulfill all
information needs. This strategy, still in its early stages, is
gaining traction in safety sciences with a more mechanistic
design approach.

The shift towards non-animal methods aligns with a stronger
focus on mechanistic research in biochemistry and molecular
biology, offering a deeper understanding of physiology and

disease. It is challenging to identify disease mechanisms in whole
organisms or test specific mechanisms using complex animal
models. Systems biology approaches are increasingly modeling
this complexity.

Increasingly, mechanistic studies—that is, work elucidating
the cellular and molecular aspects of disease and drug
action—lead to surrogate measures (“biomarkers”) of drug
effects which can then be used in clinical trials to monitor
efficacy more subtly and earlier than by clinical outcomes.
This is also known as “translational medicine”, which
translates from preclinical to clinical work.

In summary, the reliance on animals to study human physiology
and diseases is being questioned due to the emergence of alternative
methods. These alternatives, although partial and simplistic, offer
cheaper, faster, and potentially more robust means of data
generation. Combining these methods in ITS or systems biology
approaches is helping to overcome the limitations of each method,
leading to a decreased reliance on animal testing in the
scientific process.

Microphysiological systems such as
microfluidic human organ chips for
more predictive drug testing

Amajor challenge in developing new medications is that animal
studies often fail to accurately predict whether a drug will be safe and
effective in human patients. Animals differ from people in their
biology and physiology, so drugs may behave differently in humans
than in test animals. Conventional cell cultures also lack key features
of real human organs.

To address this problem, scientists have developed innovative
“organs on chips” that use microfluidic culture systems to mimic
aspects of living human organs and tissues. Tiny channels allow cells
to be cultured with flowing fluids that recreate blood flow and
breathing motions. Multiple cell types can interact, like blood vessel
cells linked to immune cells. Some systems even connect chips of
different organs, like gut, liver, and brain.

These “microphysiological systems” (MPS) aim to model
human biology more accurately than animal studies or regular
cell cultures. Their ultimate goal is to better predict patient
responses to drugs before human trials and thus reduce failures.
Early studies suggest organ chips could help:

• Model complex human diseases involving multiple organs.
• Identify possible targets for drug action on cellular and
molecular levels.

• Identify lead compounds out of a set of candidates.
• Optimize lead compounds by comparative testing of
modifications.

• Identify biomarkers of clinical success to be measured later in
clinical studies.

• Support an IND (initial drug development) review to move
into clinical studies (“first in humans”).

• Detect dangerous side effects missed in animal tests.
• Predict drug absorption, distribution, metabolism, and excretion.
• Test patient-derived cells for personalized medicine.

FIGURE 12
Increasing use of alternatives to animal testing in drug
development The figure uses the same simplified work flow as
Figure 4, where the new alternative approaches (green) discussed in
this article are predominantly used. MPS = microphysiological
systems, AI = artificial intelligence. It alsomakes the point that −50% of
new drugs are biologicals, which usually cannot be adequately tested
in animals anyway.
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Challenges remain in validating organ chips and gaining
regulatory acceptance. Nevertheless, combined with computer
models and small, careful human studies, they could transform
drug development to efficiently deliver effective, safe medicines
matched to individual patients. While still experimental, the
organ chip approach shows promise in providing more reliable
human data on drug effects than animal models.

Adverse outcome pathways to improve
drug safety testing

A major focus in the development of new drugs is detecting
potential safety issues early, before patients are harmed in clinical
trials. However, current safety testing methods often fail to predict
all the adverse effects that emerge later. This leads to expensive late-
stage drug failures and withdrawals of approved drugs.

To address this problem, the concept of “adverse outcome
pathways” (AOPs) is gaining interest. AOPs map the chain of
events from initial chemical–cell interactions to subsequent organ
responses that ultimately lead to adverse health effects. They
organize existing mechanistic knowledge into a sequence of:

• Molecular initiating events—how a chemical first interacts
with a biomolecule.

• Key events—cellular, tissue, and organ responses.
• Adverse outcome—the adverse health effect.
AOPs aim to represent established pathways that lead to
toxicity. Their development was driven by chemical safety
regulations but they are relevant for drug toxicity as well.
AOPs could improve drug toxicity prediction by the following:

• Elucidating species differences in toxicity pathways.
• Justifying when animal toxicity findings may not apply
to humans.

• Allowing more mechanism-based safety testing methods.

AOPs are strengthened by broader “pathway of toxicity” (PoT)
approaches that experimentally map early molecular perturbations
using advanced omics technologies. PoTs provide detailed, dynamic
networks while AOPs summarize established knowledge. Used
together, AOPs and PoTs can enhance mechanistic
understanding and modeling of drug safety.

Further efforts are still needed to expand and validate AOPs and
PoTs. Nevertheless, mapping adverse outcome pathways promises
to ultimately provide a compendium of toxicity mechanism
knowledge. This could transform chemical and drug safety
assessment to rely less on animal studies and more on human-
relevant pathway-based approaches. Understanding toxicity
pathways will enable the earlier and more reliable detection of
key human hazards, vastly improving the drug development process.

The promise of AI in transforming drug
development and toxicology

Pharmacology and toxicology have experienced a data
revolution, transitioning from a historically small-scale discipline
to one generating vast and heterogeneous evidence from high-

throughput assays, omics technologies, electronic health records,
and more. This exponential growth, coupled with increasing
computational power, has created major opportunities for
integrating artificial intelligence (AI) techniques to enhance
chemical selection and hazard assessment. Early rule-based expert
systems have given way to modern machine learning and, especially,
deep learning models that find patterns in large datasets to predict
toxicity. Notably, these methods are agnostic with respect to what
effects are predicted, and similar approaches are available to predict
pharmacological effects. Key developments include the following:

• Quantitative structure–activity relationships (QSARs) relating
chemical descriptors to bioactivity.

• Public toxicity data repositories like Tox21, enabling AI model
development.

• Deep neural networks that integrate chemical and bioassay
data to predict diverse hazards.

• Natural language processing, exemplified by the current boom
in large language models and mining legacy animal studies
and literature.

• Explaining model behavior through explainable AI (xAI)
techniques.

AI promises to transform areas like predictive toxicology,
drug design, mechanistic understanding, risk assessment, and
evidence integration. It can handle multifaceted data and capture
uncertainties for robust probabilistic risk modeling. AI-derived
knowledge graphs could link to adverse outcome pathways.
However, biases, reproducibility, and interpretability remain
challenges. AI models require extensive curated training data.
Multidisciplinary collaboration is essential for human-centered,
trustworthy systems tailored to enhance chemical safety
decisions. AI is not a panacea but rather an enabling tool that
must be thoughtfully designed and utilized alongside ongoing
efforts to improve primary evidence generation and appraisal. It
increasingly qualifies as a copilot but is not yet ready to take the
pilot’s seat. Overall, the symbiotic integration of AI and modern
data-rich toxicology has immense potential to transition the field
into a more predictive, mechanistic, and evidence-based
scientific discipline to effectively promote human and
environmental health.

Moving beyond animal testing with
integrated approaches

Toxicity testing has traditionally relied heavily on animal
models. However, differences between species mean that animal
data do not always accurately predict human responses. There is a
growing focus on new approach methodologies (NAMs) to replace
or reduce animal use for ethical and scientific reasons, but individual
alternative tests are often limited, requiring combination into
integrated strategies.

Integrated approaches to testing and assessment (IATA)
strategically combine results from multiple NAMs. Sources can
include computer models, cell cultures, organ chips, and lower
animal species. IATAs also incorporate existing data via weight-
of-evidence assessment.
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IATAs follow three key steps: 1) compile existing data on a
chemical, 2) evaluate data to determine if they are sufficient for
decision-making or if new data are needed, and 3) generate new data
through targeted testing to fill gaps. IATAs have been developed for
skin and eye hazard testing, incorporating animal-free methods like
reconstructed human tissue models. Work is ongoing for complex
endpoints like cancer and developmental toxicity.

Challenges for IATAs include 1) determining the best test
combinations, 2) assessing predictivity, 3) validating integrated
approaches, and 4) obtaining regulatory acceptance. IATAs do
not necessarily avoid animal tests completely, but they do
strategically combine new methods to significantly reduce and
refine animal use. An intelligent combination of advanced
models with computational approaches offers a path to enhanced
predictivity of human outcomes. IATAs represent a pragmatic
approach to transition from an animal-centered paradigm to
more human-relevant 21st century toxicology. Animal models
provide useful but limited data on drug effects in humans. Their
flaws lead to many trial failures and to unsafe drugs reaching
patients. However, animals remain necessary where better
techniques are lacking. Ongoing advances in human cell studies,
tissue chips, computer models, and innovative small human trials
can make drug development more accurate, ethical, and effective for
the diverse spectrum of patients needing safe and beneficial new
treatments. The concept of integrated testing strategies originated
mainly from the testing challenges for industrial chemicals.
However, the concept applies well to the drug discovery process.
This includes the combined use of tests with complementary
characteristics, with results analyzed together and not sequentially.

Conclusion: the paradox of preclinical
animal research in drug development

The journey of drug development is marked by a paradoxical
reliance on preclinical animal research, despite its inherent flaws and
limitations. This review has considered the complexities of this
relationship, highlighting both the indispensable role and significant
challenges posed by animal studies in the realm of therapeutic
development.

Flaws and limitations of animal studies, while being a
cornerstone of drug development, include physiological
differences and misleading outcomes. Even systematic
approaches, while improving methodological robustness, cannot
fully overcome the inherent limitations of animal models, such as
species-specific biological differences. The low translation to clinical
use of approximately of 8% within two decades underscores the
pitfalls of animal studies. The reproducibility of animal testing, a
cornerstone for the reliability of any test, is under significant
scrutiny. Biological variation and extreme standardization in trial
designs contribute to this crisis, leading to poor reproducibility and
questionable accuracy in predicting human efficacy and safety—the
reproducibility crisis.

Drug discovery confronts a unique challenge: the rarity of
both positive and negative effects sought in drug candidates. The
“needle in a haystack” problem is exacerbated by the fact that
preclinical models, such as animal studies, do not always

accurately predict human responses, making the identification
of effective drugs or the detection of toxic effects exceptionally
difficult. Drug discovery has been likened to searching for black
swan events—rare, impactful, and mostly unpredictable
occurrences. The identification of new marketable drugs and
the late discovery of significant side effects in widely used drugs
are quintessential examples of such events in the
pharmaceutical industry.

Several strategies to enhance the probability of identifying
successful drug candidates have been discussed here. In
summary, while animal research remains a crucial element in
therapeutic development, its limitations and flaws necessitate
continuous improvement in study design, methodology, and
complementary human-relevant systems. The complexity of
translating animal data to human applications underlines the
need for more predictive models and testing methods that can
better capture human biology and disease nuances, including but
not limited to microphysiological systems (MPS) and artificial
intelligence (AI). As the field evolves, a balanced approach that
acknowledges both the value and the limitations of animal studies
will be essential in advancing drug development. The new
approach methods are already performing, sometimes
astonishingly well. Franz Kafka once said, “There is a goal but
no way; what we call the way is our hesitation!” This sentiment
resonates in the context of animal experiments in drug safety
testing, and perhaps we should stop hesitating and just embrace
the new opportunities.
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Objective: The aims of this survey were to investigate the public awareness of 
drug clinical trials (DCTs) and willingness to participate the DCTs, and provide 
references for propaganda and science popularization of DCTs.

Methods: A self-designed questionnaire named “an online survey questionnaire 
on public awareness of DCTs” was used to conduct an online survey from 
January to March 2022. The demographic characteristics and the response 
of participants to the awareness and willingness to participate the DCTs were 
collected. The factors affecting the public awareness of DCTs were analyzed by 
single factor and binary logistic regression analysis.

Results: One thousand three hundred eighty valid questionnaires were collected, 
and the respondents’ awareness rate of DCTs was 61.1%. Thirteen demographic 
characteristics including age, gender, education, occupation, work fields, household 
type, marital status, city type, income, medical insurance, medical expenditure, 
pressure to seek medical care, financial pressure, both significantly affected the 
qualified rate of participants’ awareness of DCTs (p < 0.001) by single factor analysis. 
Binary logistic regression analysis indicated that education level, work fields, city type, 
medical insurance, and medical expenditure affected independently the participants’ 
awareness rate of DCTs (p < 0.001). 52.9% of the participants were willing to take part 
in DCTs. “to promote medical progress” (54.4%) or “believe doctors” (31.1%) were the 
most frequent reasons for subjects participating in DCTs.

Conclusion: The public awareness rate of DCTs and the willingness to participate 
in drug clinical were significantly affected by the demographic characteristics 
of subjects. Thus, targeting the needs of the public, propaganda, and science 
popularization of DCTs should be carried out and served public health.

KEYWORDS

drug clinical trials, public, awareness of drug clinical trials, willingness to participate 
the drug clinical trials, in northern China

1 Introduction

With the advancement of the economy, living standards, and national cultural in China, 
there has been a discernible shift towards a more scientifically informed public awareness 
regarding clinical trials. Consequently, an increasing number of pharmaceutical enterprises 
are directing significant attention towards harnessing clinical research resources within China. 
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Presently, China has emerged as a pivotal hub for clinical trials, owing 
to its vast population scale, abundant medical infrastructure, and 
comparatively lower research expenditure (1). Encumbered by the 
high costs associated with new drug research and limited clinical 
resources elsewhere, foreign pharmaceutical enterprises are 
progressively relocating their research centers to China.

The 14th Five-Year Plan has introduced a range of policies, 
notably including “Opinions on Reforming the Review and Approval 
System of Drugs and Medical Devices”,1 aimed at overhauling the 
regulatory framework governing drugs and medical devices while 
fostering biomedical innovation. Consequently, the research and 
development capabilities pertaining to innovative drugs, vaccines, and 
high-end medical devices have experienced consistent augmentation. 
This has led to a notable increase in the number of new drugs and 
medical devices advancing into clinical stages. Consequently, the 
demand for clinical trial resources, such as subjects, has witnessed a 
substantial annual upsurge. The quantity of registered clinical trials in 
China approached nearly 10,000 (2), yielding an impressive output 
value of 700 billion US dollars from 2016 to 2020. According to data 
from Informa Pharma Intelligence, the average annual growth rate for 
Phase I  to Phase IV clinical trials stood at 20% (3). These data 
underscore the heightened investment in funds for new drug research 
and development and signify the escalating health consciousness 
within China.

According to statistics, approximately 500,000 individuals 
participate to the DCTs in China annually, this figure that remains 
relatively small compared to the nation’s vast population base. 
However, the emergence of the COVID-19 pandemic (4) has reignited 
public interest in keywords such as “drug/vaccine clinical trials,” 
“clinical trials,” and “subjects.” Clinical trials serve as crucial avenues 
for offering additional treatment options, particularly for patients 
lacking access to effective remedies (5, 6), thereby presenting an 
opportunity for disease management and potential cure. Nonetheless, 
obstacles to subject participation in clinical trials consistently result in 
recruitment failure (7). Hence, it is crucial to explore public awareness 
of DCTs for subject recruitment. Unfortunately, a thorough 
investigation into the public awareness of DCTs in China has yet to 
be  undertaken. Thus, the present study aims to fill this gap by 
investigating public awareness of DCTs and identifying key factors 
influencing this awareness through the design and implementation of 
a questionnaire. The findings seek to furnish a theoretical foundation 
for enhancing public engagement in clinical trials.

2 Methods

2.1 Study population

This investigation constitutes a cross-sectional survey which 
employed non-random convenience and snowball sampling 
methodologies. From January to March 2022, healthy adults aged 18 
and above, possessing autonomy, adept in independent completion of 
electronic questionnaires, and exhibiting high cooperative tendencies, 
were recruited for participation. It is important to note that all 

1 https://www.nmpa.gov.cn/ylqx/ylqxjgdt/20150818200801163.html

participants voluntarily enrolled in this study. Excluding individuals 
with mental disorders, cognitive impairment, and inability to 
independently complete all items in the survey questionnaire.

2.2 Recruitment and enrollment

Adhering to the principles delineated by Professor Yan Yan in 
“Medical Statistics” (8), the sample size was determined to be 5–10 
times the count of independent variables, hence yielding a calculated 
sample volume of 420 individuals. To address potential errors and 
bolster questionnaire effectiveness, the sample size was augmented by 
10%, culminating in a confirmed cohort of 470 individuals.

The survey questionnaire was formulated and exported in the 
form of a two-dimensional code from the “Jinshuju” online data 
platform. Before the formal survey commenced, 20 preliminary 
questionnaires were disseminated, revealing incomplete responses. 
Measures were implemented to constrain each IP address to a 
single response and to mandate the completion of all items, 
reinforcing the scientificity and preciseness of the survey. Healthy 
individuals over 18 years of age from five provinces in the 
northern region of China were chosen as the study cohort. A 
liaison officer was designated to each province to disseminate 
information online within the community, including the objective 
and significance of survey, instructions for completing the 
questionnaire and notes on filling out the questionnaires. WeChat 
groups were established in each community for the distribution 
and retrieval of questionnaires. These questionnaires were 
scanned and completed using the two-dimensional code, enabling 
online data automatic collection.

Participants were tasked with anonymously addressing 42 
survey inquiries, with response validity hinging on completeness 
and the absence of missing elements. Subsequent to an elucidation 
of the research objectives, questionnaire completion protocols, and 
principles of confidentiality, the electronic questionnaire was shared 
with respondents following the procurement of their informed 
consent. Respondents were encouraged to independently progress 
through the questionnaire, receiving standardized instructions and 
annotations for item completion. The formulation of the 
questionnaire deliberately avoided suggestive prompts. Data in 
Excel format was exported from “Jinshuju” data platform and 
underwent reconciliation and cleaning by the researcher, including 
logical error checking to enhance the accuracy of source material, 
ultimately facilitating the identification of valid surveys while 
excluding those with incomplete or insincere responses. A total of 
1,462 surveys were collected in, with 82 deemed invalid, resulting 
in an effective response rate of 94.4%.

2.3 Development and validation of the 
survey questionnaire

This research initiative assembled a team of 5 investigators 
dedicated to questionnaire development, comprising 2 individuals 
with senior professional designations and 3 with intermediate 
professional affiliations. Their primary duties encompassed literature 
review and analysis, determination of questionnaire items, data 
collection and statistical analysis, questionnaire refinement, 
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assessment of questionnaire reliability and validity, and ultimately, 
questionnaire finalization.

Employing English search terms such as “drug/vaccine clinical 
trials,” “clinical trials,” “subjects,” “cognitively,” “willingness & drug 
clinical trials,” “attitude & drug clinical trials” and “awareness,” 
comprehensive literature searches were conducted across prominent 
databases including PubMed, Embase, The Cochrane Library, 
Biomedical Literature Databases, CNKI, and Wanfang Data 
Knowledge Service Platform. The exploration encompassed subject 
heading terms from the inception of the databases until December 
2021. Following the removal of duplicate literature, the remaining 
titles, abstracts, and full texts underwent sequential review. 
Encompassed study types included clinical practice guidelines, 
systematic reviews, clinical randomized controlled trials, cohort 
studies, observational studies, expert opinions, and other research. 
Exclusion criteria comprised duplicated publications or translated 
literature, incomplete data, and inaccessible full texts. Drawing from 
the outcomes of the literature review and analysis, the metrics of the 
questionnaire were defined, and the questionnaire items were 
initially formulated.

Following collaborative discussion, the initial iteration of the 
Online Survey Questionnaire on Public Awareness of DCTs was 
formulated, encompassing two sections. The first section covers 
general demographic information, consisting of 13 entries such as 
age, gender, education, occupation, work fields, household type, 
marital status, city type, income, medical insurance, medical 
expenditure, pressure to seek medical care, and financial pressure. 
The second section entails the public awareness survey of DCTs, 
incorporating two dimensions: public awareness of DCTs and 
willingness to participate the DCTs. Within the Public Awareness 
Survey of DCTs, 20 items were related to cognitive assessment of 
DCTs, encompassing aspects such as new drug clinical trial 
procedures, allocation methods, compensation for damages to 
subjects, free trial drugs and related physical examinations, ethics 
and more. Each item was evaluated on a 3-point scale: “yes,” “no,” 
“do not know” correlating to respective scores of 2, 1, and 0. A total 
of 20 items need to score according to the participants’ options of 
clinical trial-related questions in the questionnaires. Participants 
who achieved a score exceeding 24 points were deemed to exhibit a 
proficient understanding of DCTs. Each item on the scale was 
positively evaluated, with higher aggregate scores indicative of an 
elevated comprehension of DCTs. Moreover, the Public Willingness 
Survey to Participate the DCTs comprised 9 items addressing the 
inclination to partake in clinical trials, factors motivating 
participation, and related considerations. The outcome variables 
focused on public awareness of DCTs.

2.4 Assessment of the Questionnaire’s 
reliability and validity

Reliability was assessed through the utilization of Cronbach’s alpha 
coefficient, while validity underwent evaluation via Bartlett’s sphericity 
test. A significance level of p < 0.05 was stipulated for statistical 
significance. Generally, a Cronbach’s α coefficient exceeding 0.700 is 
deemed acceptable (9), with a value falling within the range of 0.800 to 
0.900 indicating an outstanding level of internal consistency reliability 

(10), thus meeting the benchmark for a foundational research 
instrument. The questionnaire was subjected to reliability and validity 
testing using SPSS 26.0, resulting in a total Cronbach’s α coefficient of 
0.973 and a KMO coefficient of 0.975, both approximating 1. 
Additionally, the Bartlett’s sphericity test produced an approximate χ2 
value of 28933.950, with a p < 0.001, aligning with the intended 
objectives. These outcomes signify robust reliability and validity within 
the questionnaire, rendering it suitable for implementation.

2.5 Quality control

The survey questionnaire is distributed online, and all 
respondents are willing to fill it out voluntarily. Measures are taken 
to ensure that all items in the questionnaire are completed before 
submission. Therefore, the collected questionnaires are those with 
all items completed. Through repeated distribution and snowball 
like online forwarding, extensive and multiple online education 
sessions have been conducted, expanding the scope of dissemination 
and increasing the number of participants. Through these methods, 
participant compliance is ensured, participant acceptance is 
improved, and sample size requirements are also met. Additionally, 
it is essential to select appropriate measurement tools and 
assessment methodologies, establish uniform standards and 
guidelines for researchers, and conduct thorough data review and 
verification to enhance data quality.

2.6 Statistical analysis

Utilizing SPSS 26.0 for data analysis, categorical data description 
entails the use of frequency and constituent ratio, Measures obeying 
normal distribution were analyzed by t-test and F-test for hypothesis 
testing of their overall means, whereas (x  ± s) is utilized for describing 
continuous data. While measures not obeying normal distribution 
were analyzed by non-parametric tests. The χ2 test is applied to 
compare discrepancies in the awareness of DCTs across demographics. 
Logistic regression analysis is employed to gauge the influence of 
demographic variables on public awareness of DCTs. Noteworthy 
demographic variables are singled out through univariate analysis and 
integrated into the ultimate logistic regression model. For the variables 
encompassed in the regression model, their odds ratios (OR) and 95% 
confidence intervals are computed. A significance threshold of p < 0.05 
denotes statistical significance.

3 Results

3.1 Demographic characteristics statistics

A total of 1,462 questionnaires were collected in the survey, 
among them, 82 questionnaires with incomplete information or 
obvious filling errors were removed and 1,380 valid questionnaires 
(94.4%) were used to analyze the study.

This study comprised 1,380 valid questionnaires, with 1,380 
distributed across 5 provinces and municipalities in northern China. 
Specifically, there were 328 from Shaanxi, 345 from Shanxi, 259 from 
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Gansu, 247 from Ningxia Hui Autonomous Region, and 201 from 
Henan Province. The survey respondents from Shaanxi and Shanxi 
were almost occupied 50%, all with a relatively even distribution of the 
population in each province and a good representation of the sample.

The study included 562 male participants (40.7%) and 818 
female participants (59.3%). Individuals under the age of 40 
constituted 81.23% of the total respondents. Additionally, 47.9% of 
the participants had attained a bachelor’s degree or higher level of 
education. Among the participants, the most prevalent occupations 
were students (43.5%), followed by individuals employed in public 
institutions (19.6%), and those working in enterprises (12.7%). 
Regarding household registration type, 56.6% of participants hailed 
from urban areas. Approximately 43.8% of the participants were 
married, and 47.3% reported a monthly income level ranging from 
0 to 2000 CNY. In terms of medical insurance, the majority of 
participants were enrolled in medical insurance for urban and rural 
residents (36.8%), followed by urban employee medical insurance 
(31.5%), and self-funded medical insurance (7.7%). Furthermore, 
38.2% of respondents stated that their medical expenditure 
accounted for less than half of their monthly income. Notably, over 
half of the participants experienced varying degrees of medical 
(56.4%) and financial pressure (67.9%). The demographic 
characteristics are summarized in Table 1.

3.2 Awareness rate of DCTs related 
knowledge for participants

To gauge public awareness of DCTs, we computed the qualified 
awareness rate among participants (refer to Table 2). Out of 1,380 
participants, the qualified awareness rate regarding DCTs stood at 
61.1%. Notably, 70.6% of participants affirmed that they had heard 
of DCTs, while 18.6% stated they were aware but not familiar with 
them. It is evident that individuals employed in medical-related 
fields exhibited a notably higher awareness rate compared to those 
in non-medical related occupations. Awareness rates exhibited 
variability across different demographic characteristics, spanning 
from 47.4 to 70.6%. Notably, awareness concerning compensation 
for injury events arising during clinical trials was notably low, 
registering at 47.4 and 48.9%, respectively. Additionally, only 59.1% 
of participants demonstrated an awareness of the basic definition 
of DCTs.

3.3 The influence of demographic 
characteristics on the qualified rate of 
awareness about DCTs by a single factor 
analysis

To explore the factors influencing the qualified awareness rate of 
DCTs, we conducted a single-factor analysis to compare differences 
across various demographic categories. The findings revealed that 
demographic characteristics such as gender, age, education, 
occupation, Work fields, household type, marital status, city type, 
income, medical insurance, medical expenditure, pressure to seek 
medical care, and financial pressure all significantly impacted the 
qualified awareness rate of participants, regarding DCTs (Table 2, 
p < 0.001).

3.4 Binary logistic regression analysis of 
influencing the participants’ awareness of 
DCTs

To mitigate the influence of interactions between factors on 
participants’ awareness rate of DCTs, binary logistic regression 
analysis was employed to evaluate the independent effects of each 
demographic characteristic. In this analysis, demographic 
characteristics served as independent variables, while qualification 
status (qualified = 1, unqualified = 0) was the dependent variable. As 
presented in Table  3, education, field of work, city type, medical 
insurance, and medical expenditure were identified as independent 
factors significantly impacting participants’ awareness rate of DCTs 
(p < 0.05).

Further analysis revealed significant associations between specific 
demographic characteristics and the awareness rate of DCTs. 
Specifically, higher education levels were linked to elevated awareness 
rate. For instance, participants with postgraduate degree exhibited a 
4.905-folds increase in awareness rate compared to those with under 
junior college education (95% CI: 2.405 ~ 10.002). Moreover, 
individuals engaged in medical-related occupations demonstrated a 
substantially higher awareness rate, with a 3.217-folds increase 
compared to those in non-medical related fields (95% CI: 2.287–
4.527). City type also exerted a notable influence on participants’ 
awareness of DCTs. Notably, individuals residing in second-tier cities 
exhibited a mere 0.612-fold awareness rate compared to those in first-
tier cities (95% CI: 0.404–0.928). Additionally, participants covered by 
medical insurance for urban and rural residents demonstrated a 
1.8268-folds increase in awareness rate compared to the general 
population covered by public medical insurance (95%CI:1.077 ~ 3.093). 
Furthermore, heightened medical expenditures were associated with 
enhanced awareness rate of DCTs. Specifically, participants allocating 
more than 50% of their monthly income to medical expenditure 
exhibited a 2.008-folds increase in awareness rate compared to those 
with no medical expenditures (95% CI: 1.019–3.956).

3.5 Analysis of willingness to participate in 
DCTs

In the survey, facilitators and barriers for participants considering 
participation in DCTs were analyzed. Among the participants, 52.9% 
expressed willingness to partake in such trials. The primary 
motivations cited included a desire to “promote medical progress” 
(54.4%) or a belief in the guidance of doctors (31.1%). Conversely, 
47.1% of participants declined participation in DCTs. The foremost 
reasons for refusal included concerns regarding the risks associated 
with the trial (62.1%), lack of awareness regarding DCTs (54.6%), 
reluctance to be  treated akin to laboratory mice (32.8%), and 
unwillingness to allocate additional time and effort (24.3%).

4 Discussion

Clinical trials play a crucial role in evaluating the efficacy and 
safety of new drugs prior to their introduction to the market. The 
success of clinical trials hinges largely on the recruitment of an 
adequate number of subjects (11). However, several obstacles hinder 
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the subject recruitment process, including patient preferences, 
concerns stemming from uncertainty, and apprehensions regarding 
information and consent procedures, among others (12). Hence, it is 
imperative to assess the public’s awareness of clinical trials and their 
willingness to participate in such endeavors. This survey scrutinized 
the public’s awareness of DCTs, their propensity for participation, and 
the factors influencing awareness in China.

A comprehensive questionnaire comprising 42 inquiries was 
developed to elicit respondents’ demographic characteristics, 
awareness of DCTs, and willingness to participate in such trials in 
China. Thirteen demographic characteristics were evaluated, 
including age, gender, education, occupation, field of work, household 
type, marital status, city type, income, medical insurance, medical 
expenditure, pressure to seek medical care, and financial pressure. 
This extensive range of demographic factors surpasses those reported 
in previous studies (13, 14). This approach allowed for the meticulous 
capture of a broad range of factors influencing public awareness of 
DCTs, providing deeper insight into participant attitudes 
and perceptions.

The 1,380 respondents were widely distributed across several cities 
in five northern Chinese provinces, with a significant concentration 
in Shaanxi and Shanxi, comprising 328 and 345 individuals, 
respectively. The population exhibited a more even distribution across 
provinces, thus offering a representative sample. In terms of age 
distribution, participants were evenly spread across four age brackets 
spanning 18 to 60 years, including 484 individuals aged 18–20, 336 
aged 21–30, 301 aged 31–40, and 225 aged 41–60. There were fewer 
individuals above the age of 60, possibly attributed to the online nature 
of the survey and the extensive 42-item questionnaire, which may 
have deterred older adult participation. Challenges in engaging with 
new media platforms (e.g., WeChat and TikTok) and smartphone 
technology may have contributed to decreased participation among 
the elderly due to lower usage frequency. Additionally, students, being 
more interested in novel experiences such as DCTs, exhibiting 
relatively high compliance and ease in completing questionnaires, 
represented a significant proportion of the survey at 43.5%.

The findings revealed that 61.1% of subjects exhibited a qualified 
awareness rate of drug clinical trials-related knowledge in China. This 
percentage closely aligns with a survey conducted in Saudi Arabia, 
where 58% of cancer patients demonstrated awareness of clinical 

TABLE 1 Demographic characteristics statistics.

Item Class n %

Age

18–20 years old 484 35.07

21–30 years old 336 24.35

31–40 years old 301 21.81

41-60 years old 225 16.30

> 60 years old 34 2.46

Gender
Male 562 40.72

Female 818 59.28

Education

Under junior college 481 34.86

Junior college 239 17.32

Undergraduate 470 34.06

Postgraduate 190 13.77

Occupation

Administration 

organization
38 2.75

Public institution 271 19.64

Enterprise 175 12.68

Student 600 43.48

Farmer 99 7.17

Retired 31 2.25

Other 166 12.03

Work fields
Non-medical related 737 53.41

Medical-related 643 46.59

Household type
Urban 599 43.41

Rural 781 56.59

Marital status
Unmarried 775 56.16

Married 605 43.84

City type

First-tier city 300 21.74

Second-tier city 323 23.41

Third-tier city 246 17.83

Fourth-tier city and 

below
511 37.03

Income

0 ~ 2000 CNY 653 47.32

2001 ~ 3,000 CNY 111 8.04

3,001 ~ 5,000 CNY 232 16.81

5,001 ~ 8,000 CNY 227 16.45

> 8,000 CNY 157 11.38

Medical insurance

Public medical care 124 8.99

Urban employee medical 

insurance
435 31.52

Urban and rural residents 

medical insurance
508 36.81

Out-of-pocket medical 

expenses
106 7.68

Private/commercial 

insurance
20 1.45

Other 187 13.55

(Continued)

Item Class n %

Medical expenditure

Negligible 793 57.46

< 50% of monthly income 527 38.19

≥50% of monthly income 60 4.35

Pressure to seek 

medical care

None 602 43.62

Mild 475 34.42

Moderate 220 15.94

Severe 83 6.01

Financial pressure

None 443 32.10

Mild 459 33.26

Moderate 317 22.97

Severe 161 11.67

TABLE 1 (Continued)

91

https://doi.org/10.3389/fpubh.2024.1276536
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Wang et al. 10.3389/fpubh.2024.1276536

Frontiers in Public Health 06 frontiersin.org

TABLE 2 Factors affecting the qualified rate of awareness of DCTs.

Item Class Unqualified Qualified χ
2 test

n % n % χ2 p

Age

18–20 years old 267 55.2% 217 44.8%

112.338*** 0.000

21–30 years old 69 20.5% 267 79.5%

31–40 years old 99 32.9% 202 67.1%

41-60 years old 73 32.4% 152 67.6%

> 60 years old 17 50.0% 17 50.0%

Gender
Male 250 44.5% 312 55.5%

16.685*** 0.000
Female 275 33.6% 543 66.4%

Education

Under junior college 325 67.6% 156 32.4%

305.686*** 0.000
Junior college 85 35.6% 154 64.4%

Undergraduate 98 20.9% 372 79.1%

Postgraduate 17 8.9% 173 91.1%

Occupation

Administration organization 8 21.1% 30 78.9%

201.261*** 0.000

Public institution 41 15.1% 230 84.9%

Enterprise 37 21.1% 138 78.9%

Student 289 48.2% 311 51.8%

Farmer 68 68.7% 31 31.3%

Retired 21 67.7% 10 32.3%

Other 61 36.7% 105 63.3%

Work fields
Non-medical related 420 57.0% 317 43.0%

240.839*** 0.000
Medical-related 105 16.3% 538 83.7%

Household type
Urban 148 24.7% 451 75.3%

79.857*** 0.000
Rural 377 48.3% 404 51.7%

Marital status
Unmarried 328 42.3% 447 57.7%

13.733*** 0.000
Married 197 32.6% 408 67.4%

City type

First-tier city 94 31.3% 206 68.7%

103.177*** 0.000
Second-tier city 61 18.9% 262 81.1%

Third-tier city 101 41.1% 145 58.9%

Fourth-tier city and below 269 52.6% 242 47.4%

Income

0 ~ 2000 CNY 323 49.5% 330 50.5%

130.555*** 0.000

2001 ~ 3,000 CNY 59 53.2% 52 46.8%

3,001 ~ 5,000 CNY 82 35.3% 150 64.7%

5,001 ~ 8,000 CNY 38 16.7% 189 83.3%

> 8,000 CNY 23 14.6% 134 85.4%

Medical insurance

Public medical care 42 36.9% 82 63.1%

116.329*** 0.000

Urban employee medical 

insurance
82 18.9% 353 81.1%

Urban and rural residents 

medical insurance
239 47.0% 269 53.0%

Out-of-pocket medical 

expenses
48 45.3% 58 54.7%

Private/commercial insurance 8 40.0% 12 60.0%

Other 106 56.7% 81 43.3%

(Continued)
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trials, indicating a similar level of awareness between the two studies 
(15). Moreover, only 3.37% of subjects were familiar with the rights 
and interests afforded to participants in DCTs, while 58% were 
knowledgeable about ethical committees and their functions in such 
trials. Although 70.6% of participants had heard of DCTs, a mere 
16.2% had actually participated in them to a limited extent. 
Additionally, 69.2% of participants were aware of the importance of 
protecting the privacy and personal information during DCTs, 
underscoring the significance attached to privacy by the public. 
However, awareness regarding subjects’ rights, such as the entitlement 
to receive clinical trial drugs free of charge and the ability to withdraw 
from the trial at any time for any reason, was relatively low at 57.5 and 
50.5%, respectively. This suggests a limited understanding among the 
public regarding their rights to participate in DCTs and the evolving 
trend toward patient-centered DCTs.

In recent years, there has been a notable increase in the approval 
and implementation of DCTs in China (16), leading to a gradual shift 
in focus toward China in international multi-center trials. The 
examination of factors influencing awareness rates regarding DCTs in 
this study encompassed both univariate and binary logistic regression 
analyses. Univariate analysis revealed that all demographic 
characteristics collected significantly impacted participants’ awareness 
rates of DCTs. However, binary logistic regression analysis highlighted 
that only education level, field of work, city type, medical insurance, 
and medical expenditure exerted significant effects on participants’ 
awareness rate of DCTs. These findings suggest that education level, 
field of work, city type, medical insurance, and medical expenditure 
are the primary factors influencing public awareness of DCTs in 
China. This aligns with findings by Primo et al., who identified income 
and education level as factors related to awareness of cancer clinical 
trials (17). Similarly, a survey conducted in Korea identified age, 
religion, financial level, and education level as significant determinants 
of public awareness of cancer clinical trials (18). These collective 
results underscore the crucial role of education level as an influential 
factor in shaping public awareness of DCTs on a global scale. 
Individuals with higher education levels are likely to have greater 
exposure to media, internet resources, and other forms of learning, 
facilitating a deeper understanding of DCTs and related knowledge.

In our survey, 52.9% of participants expressed a willingness to 
partake in clinical trials, while 50.6% stated that they would recommend 
their relatives and friends to participate as well. However, this relatively 
low motivation to engage in clinical trials among the public may 
be indicative of insufficient awareness and a general distrust of current 
clinical trial practices. A national survey study reported that only 25% of 
respondents were willing to participate in clinical trials (19), a markedly 
lower percentage compared to our findings. This discrepancy could 
potentially be attributed to variations in the demographic characteristics 
of the participants involved in the respective surveys.

The pressure of undergoing medical treatment emerged as a 
significant factor influencing respondents’ willingness to 
participate the DCTs. Participants tended to exercise caution in 
selecting treatment methods when they felt they had some control 
over their medical situation. However, when the pressure of 
medical treatment exceeded a certain threshold, individuals 
became more inclined to explore new treatment options. 
Consequently, it is essential to tailor communication approaches 
to individuals based on their level of pressure to seek medical care. 
For those experiencing mild pressure to seek medical care, 
recruiters should employ strategies aimed at alleviating their 
concerns through psychological counseling, thereby encouraging 
voluntary participation in clinical trials. Conversely, individuals 
facing high levels of pressure to seek medical care require a more 
nuanced approach. Before deciding whether to participate in 
clinical trials, it is crucial to emphasize the potential advantages 
and disadvantages of such involvement. This approach ensures 
that individuals fully understand the implications of their decision 
within the context of their medical circumstances.

Moreover, medical expenditure demonstrated a significant 
correlation with both participants’ awareness rates and their 
willingness to participate in DCTs. Individuals with high medical 
expenditures often undergo frequent medical treatments for various 
illnesses. Consequently, they tend to possess a better understanding 
of hospital procedures and have more opportunities to encounter 
ongoing DCTs, thereby increasing their awareness of drug clinical 
trial-related knowledge and their willingness to participate. It’s worth 
noting that DCTs typically offer drugs and relevant examinations free 

Item Class Unqualified Qualified χ
2 test

n % n % χ2 p

Medical expenditure

Negligible 308 38.8% 485 61.2%

22.782*** 0.000< 50% of monthly income 178 33.8% 349 66.2%

≥50% of monthly income 39 65.0% 21 35.0%

Pressure to seek 

medical care

None 243 40.4% 359 59.6% 23.537*** 0.000

Mild 146 30.7% 329 69.3%

Moderate 90 40.9% 130 59.1%

Severe 46 55.4% 37 44.6%

Financial pressure None 195 44.0% 248 56.0% 25.782** 0.000

Mild 141 30.7% 318 69.3%

Moderate 111 35.0% 206 65.0%

Severe 78 48.4% 83 51.6%

TABLE 2 (Continued)
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of charge, thereby reducing the overall treatment costs for patients. 
Consequently, individuals with lower incomes may exhibit a higher 
willingness to participate in DCTs compared to those with higher 
incomes. This is because participation in such trials presents an 
opportunity to access treatment at no cost, potentially alleviating the 
financial burden associated with medical care.

Some limitations existed in the survey. This study employed 
convenience sampling and snowball sampling techniques, resulting in 
a restricted representativeness and broad diversity in terms of 
occupation and age within the sampled population, inducing a measure 
of bias in the research outcomes. WeChat groups were established in 
each community for questionnaire distribution and retrieval, facilitated 
by the use of two-dimensional code for online data collection. For this 
reason, there are significant limitations regarding external validity, as 
the sample population may not be representative of the entire Chinese 
population. Moreover, calculating the survey response rate is 
unfeasible, and assessing internal validity becomes challenging.

The variables “pressure to seek medical care” and “financial 
pressure” are moderately subjective and liable to bias. These 
variables were incorporated to evaluate the impact of “pressure to 
seek medical care” and “financial pressure” on clinical trial 
participation. Patients encountering heightened “pressure to seek 

TABLE 3 (Continued)

Variables Exp (95% CI) p

Medical insurance

Public medical care 1.000

Urban employee medical 

insurance

1.687 (0.948 ~ 3.003) 0.076

Urban and rural residents 

medical insurance

1.826 (1.077 ~ 3.093) 0.025

Out-of-pocket medical 

expenses

1.382 (0.927 ~ 2.060) 1.112

Private/commercial 

insurance

1.505 (0.859 ~ 2.636) 1.153

Other 0.971 (0.329 ~ 2.867) 0.958

Medical expenditure

None 1.000

< 50% of monthly income 1.758 (0.890 ~ 3.472) 1.104

≥50% of monthly income 2.008 (1.019 ~ 3.956) 0.044

Pressure to seek medical care

None 1.000

Mild 1.358 (0.684 ~ 2.805) 0.366

Moderate 1.414 (0.583 ~ 2.235) 0.700

Severe 0.815 (0.413 ~ 1.608) 0.555

Financial pressure

None 1.000

Mild 0.980 (0.555 ~ 1.732) 0.946

Moderate 1.113 (0.658 ~ 1.881) 0.690

Severe 1.185 (0.708 ~ 1.983) 0.518

Constants 2.033 0.364

TABLE 3 Factors influenced the participants’ awareness rate of DCTs by 
logistic regression analysis.

Variables Exp (95% CI) p

Age

18–20 years old 1.000

21 ~ 30 years old 0.587 (0.208 ~ 1.660) 0.315

31–40 years old 0.933 (0.339 ~ 2.565) 0.893

41–60 years old 0.590 (0.230 ~ 1.517) 0.274

> 60 years old 0.994 (0.396 ~ 2.497) 0.991

Gender

Male 1.000

Female 1.100 (0.835 ~ 1.451) 0.497

Education

Under junior college 1.000

Junior college 1.719 (1.130 ~ 2.616) 0.011

Undergraduate 2.759 (1.792 ~ 4.247) 0.0011

Postgraduate 4.905 (2.405 ~ 10.002) 0.001

Occupation

Administration 

organization

1.000

Public institution 1.323 (0.314 ~ 1.057) 0.577

Enterprise 1.119 (0.314 ~ 1.057) 0.701

Student 1.552 (0.314 ~ 1.057) 0.127

Farmer 0.542 (0.314 ~ 1.057) 0.067

Retired 0.550 (0.314 ~ 1.057) 0.083

Others 0.400 (0.314 ~ 1.057) 0.080

Work fields

Non-medical related 1.000

Medical-related 3.217 (2.287 ~ 4.527) 0.000

Household type

Urban 1.000

Rural 1.002 (0.711 ~ 1.410) 0.993

Marital status

Unmarried 1.000

Married 0.801 (0.477 ~ 1.343) 0.400

City type

First-tier city 1.000

Second-tier city 0.612 (0.404 ~ 0.928) 0.021

Third-tier city 0.1.140 (0.745 ~ 1.746) 0.545

Fourth-tier city and below 1.015 (0.704 ~ 1.465) 0.936

Income

0 ~ 2000 CNY 1.000

2001 ~ 3,000 CNY 0.829 (0.394 ~ 1.741) 0.620

3,001 ~ 5,000 CNY 0.613 (0.288 ~ 1.306) 0.205

5,001 ~ 8,000 CNY 0.528 (0.278 ~ 1.003) 0.051

> 8,000 CNY 1.061 (0.546 ~ 2.062) 0.862

(Continued)
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medical care” and “financial pressure” manifest a higher inclination 
to partake in clinical trials and are also more prone to reap benefits 
from their participation.

The limited sample size of this study may not fully represent the 
broader situation in China. Therefore, future research should consider 
employing hierarchical randomization methods for demographic 
factors, expanding the sample size, and incorporating more 
representative questions related to DCTs.

In summary, our findings provide valuable insights into the 
public’s awareness of DCTs. Strengthening effective publicity efforts 
regarding drug clinical trials-related knowledge in the future is crucial. 
It is evident that the public’s willingness to participate in clinical trials 
in China is relatively low and significantly influenced by their 
professional backgrounds and relevant experiences. Therefore, it is 
imperative to conduct scientific outreach initiatives tailored to the 
public’s needs. This approach will not only enhance public awareness 
but also foster a greater willingness to participate in clinical trials. 
Ultimately, such efforts will contribute to the smooth progression of 
DCTs, promote advancements in medical care, and serve to improve 
public health overall.
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