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QTL mapping and BSA-seq map
a major QTL for the node of the
first fruiting branch in cotton

Xiaoyun Jia, Shijie Wang, Hongxia Zhao, Jijie Zhu, Miao Li*

and Guoyin Wang

Institution of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences/Hebei
Laboratory of Crop Genetics and Breeding/Hebei Key Laboratory of Crop Cultivation Physiology and
Green Production, Shijiazhuang, China
Understanding the genetic basis of the node of the first fruiting branch (NFFB)

improves early-maturity cotton breeding. Here we report QTL mapping on 200 F2
plants and derivative F2:3 and F2:4 populations by genotyping by sequencing (GBS).

BC1F2 population was constructed by backcrossing one F2:4 line with the maternal

parent JF914 and used for BSA-seq for further QTL mapping. A total of 1,305,642

SNPs were developed between the parents by GBS, and 2,907,790 SNPs were

detected by BSA-seq. A high-density genetic map was constructed containing

11,488 SNPs and spanning 4,202.12 cM in length. A total of 13 QTL were mapped in

the 3 tested populations. JF914 conferred favorable alleles for 11 QTL, and JF173

conferred favorable alleles for the other 2 QTL. Two stable QTL were repeatedly

mapped in F2:3 and F2:4, including qNFFB-D3-1 and qNFFB-D6-1. Only qNFFB-D3-

1 contributed more than 10% of the phenotypic variation. This QTL covered about

24.7 Mb (17,130,008–41,839,226 bp) on chromosome D3. Two regions on D3

(41,779,195–41,836,120 bp, 41,836,768–41,872,287 bp) were found by BSA-seq

and covered about 92.4 Kb. This 92.4 Kb region overlapped with the stable QTL

qNFFB-D3-1 and contained 8 annotated genes. By qRT-PCR, Ghir_D03G012430

showed a lower expression level from the 1- to 2-leaf stage and a higher

expression level from the 3- to 6-leaf stage in the buds of JF173 than that of

JF914. Ghir_D03G012390 reached the highest level at the 3- and 5-leaf stages in

the buds of JF173 and JF914, respectively. As JF173 has lower NFFB and more early

maturity than JF914, these two genes might be important in cell division and

differentiation during NFFB formation in the seedling stage. The results of this study

will facilitate a better understanding of the genetic basis of NFFB and benefit cotton

molecular breeding for improving earliness traits.

KEYWORDS

cotton earliness, node of the first fruiting branch, QTL mapping, BSA-seq, candidate gene
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Introduction

Upland cotton (Gossypium hirsutum L. AADD, 2n=52) is the

most important fiber crop in the world, accounting for more than

90% of global cotton production (Chen et al., 2007; Ma et al., 2021).

Cottonseed is also a good source of edible oil and vegetable protein

(Zhang et al., 2015). Thus, upland cotton has significant value in

dealing with the increasing human population. Earliness is one of the

vital breeding goals to meet the needs of mechanism practice,

especially during cotton harvesting (Jia et al., 2016; Li et al., 2021).

Besides, early-maturity cotton, also known as short-season cotton, has

many advantages in inter-cropping between cereal crops and cotton

to increase land utilization efficiency in China (Cheng et al., 2021;

Zhao et al., 2022). Earliness is a typical characteristic of early-maturity

cotton. As yield and fiber quality have dominated cotton breeding for

decades, little attention has been paid to earliness.

In terms of plant development, cotton earliness is described as

flowering time (FT), whole growth period (WGP), and flowering-to-

boll opening period (FBP) (Richmond and Radwan, 1962; Li et al.,

2020). Plant height (PH), node of the first fruiting branch (NFFB),

and height of NFFB (HNFFB) are also important indexes for earliness

(Godoy and Palomo, 1999; Jia et al., 2016). NFFB is the most reliable

index in terms of indicating cotton earliness, which has better

consistency among environments, and significantly positively

correlates with FT, WGP, PH, and HNFFB (Guo et al., 2008; Su

et al., 2016; Zhang et al., 2021). All six traits mentioned above have

relatively high broad-sense heritabilities and significant

environmental influences (Jia et al., 2016; Li et al., 2020; Li

et al., 2021).

Several studies for cotton earliness genetic detection through QTL

mapping and GWAS analysis have been published (Li et al., 2020).

Guo et al. (2008); Guo et al., 2009 mapped QTL for NFFB in two F2
populations and used the results to measure flowering time. Li et al.

(2013) mapped 54 QTL for cotton earliness in two F2 and their F2:3
populations, and a common QTL for the budding period could

explain 12.6% of the phenotypic variation. Benefiting from high-

throughput sequencing techniques and high-quality genome

sequences of TM-1 and NDM8, the efficiency and accuracy of QTL

mapping and GWAS analysis have been significantly improved (Li

et al., 2015; Zhang et al., 2015; Hu et al., 2019; Wang et al., 2019; Ma

et al., 2021). Jia et al. (2016) constructed a high-density genetic map

containing 6295 SNP and 139 SSR markers for a RIL population by

RAD-seq, mapped 247 QTL for cotton earliness in six consecutive

years, and found an extremely prominent chromosome region on D3

with six stable major QTL. Li et al. (2017) constructed a SNP-based

genetic map for an F2 population by GBS, mapped 47 QTL for cotton

earliness, and found a major region on D3 overlapping with the

results of Jia et al. (2016). Su et al. (2016) developed 81,675 SNPs in

355 upland cotton accessions; 13 significant associations between SNP

and earliness traits were found by GWAS, a major locus and a

candidate gene were also mapped on D3. Li et al. (2021) re-

sequenced 436 cotton accessions and developed 10,118,884 SNPs

and 864,132 InDels; 307 significant SNPs were found for cotton

earliness by GWAS, including 43 SNPs in a 3.7 Mb region on D3

overlapping with previous results. The reports mentioned above

imply the significant role of chromosome D3 in controlling cotton

earliness, which has been emphasized again by Ma et al. (2018) and
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Zhang et al. (2021). Besides, Li et al. (2018) developed 49,650 SNPs in

169 upland cotton accessions by CottonSNP80K array; 29 significant

SNPs and two candidate genes were found for cotton earliness.

However, QTL fine mapping for cotton earliness, especially NFFB,

has rarely been reported until now, and the genetic basis under

earliness traits is still unclear.

This study used a nationally certified variety, Jifeng914 (JF914),

with about 120 d WGP and 8 NFFB as the maternal parent, an early

maturity inbred line Jifeng173 (JF173) with about 108 d WGP and 5

NFFB was used as the paternal parent. QTL mapping was conducted

based on a high-density genetic map for an F2 population. The BC1F2
population was constructed and used for QTL mapping by BSA-seq.

One stable QTL for NFFB spanning 24.7 Mb was shortened to 92.4

Kb. Eight genes were annotated in this core region and 2 genes with

different expression patterns in the buds of JF173 and JF914 might be

the candidates.
Materials and methods

Experimental materials and phenotypic trait

Jifeng 914 (JF914) (a larger phenotype cultivar with about 120 d

WGP and 8 NFFB) was crossed with Jifeng 173 (JF173) (a smaller

phenotype inbred line with about 108 WGP and 5 NFFB). An F2
population containing 417 plants was developed at Shijiazhuang in

2019; 200 plants from the F2 were randomly selected and

continuously self-pollinated to F2:3 and F2:4 generations. The F2:3
and F2:4 populations were planted with two replicates in a completely

randomized block design at Shijiazhuang in 2020 and 2021. One F2:4
line with low NFFB and a similar phenotype to JF914 was chosen and

backcrossed with JF914 in 2021. And 23 BC1 plants were self-

pollinated at Hainan in the winter of 2021 to construct the BC1F2
population containing 561 plants, which was planted in 2022 at

Shijiazhuang. The materials were planted in single lines (5 m long

and 70 cm between adjacent lines), and conventional field

management was carried out.

The node of the first fruiting branch (NFFB) was tested. Every

plant in the F2 and BC1F2 was measured. Ten plants in the middle of

each line were measured in the F2:3 and F2:4 populations. Excel 2010

and SPSS 17 were used for data analysis.
DNA sequencing

Genomic DNA was extracted by the CTAB method (Paterson

et al., 1993). The genotyping-by-sequencing (GBS) method was

applied for the F2 plants as detailed by Zhang et al. (2016); Li et al.

(2017), and Zhou et al. (2016). Briefly, DNA was incubated at 37°C

withMse I (New England Biolabs, NEB), T4 DNA ligase (NEB), ATP

9NEB, andMse Y adapter N containing barcodes. Hae III and RcoR I

(NEB) were added into the MseI digestions to further digest the

fragments at 37°C. Fragments of 397–420 bp were purified and

paired-end 150-bp sequenced on the Illumina HiSeq™ platform.

High-quality reads were filtered based on (1) removing reads with ≥

10% unidentified nucleotides (N); (2) removing reads with > 50%

based on having Phred quality < 5; (3) removing reads with 10 nt
frontiersin.org
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aligned to the adapter, allowing ≤ 10% mismatches; and (4) removing

reads containing Hae III or EcoR I.

For BSA-seq, 30 high NFFB plants and 30 low NFFB plants were

selected from the BC1F2 population; the DNA of each plant was

extracted and mixed to construct two DNA pools (high and low).

Four samples were subjected to re-sequencing, including JF914,

JF173, and high and low DNA pools. The GenoBaits DNA-seq

Library Prep kit was used for library construction. First, 4 ml of
GenoBaits End Repair Buffer and 2.7 ml of GenoBaits End Repair

Enzyme were added to 200 ng DNA and incubated for 20min at 37°C

and 20min at 72°C. Second, 2 ml of GenoBaits Ultra DNA ligase, 8 ml
of GenoBaits Ultra DNA ligase Buffer, and 2 ml of GenoBaits Adapter
were added and incubated for 30 min at 22°C. Third, fragments were

purified by adding 48 ml of Beckman AMPure XP Beads. Fragments of

200–300 bp were reserved and sequenced on the MGI-2000/MGI-T7

planform. High-quality reads were filtered based on (1) removing the

adaptor; (2) removing reads with >10% N; and (3) removing reads

with >40% low-quality bases (Q ≤ 20).

The BWA software was used to align the clean reads against the

reference genome of TM-1 (Wang et al., 2019). The GATK software

was used for variation calling (Mckenna et al., 2010). SnpEff and

ANNOVAR software were used for annotation (Wang et al., 2010;

Cingolani et al., 2014).
QTL mapping

Polymorphic markers developed from the F2 population were

classified into eight segregation patterns (aa×bb, ab×cc, ab×cd, cc×ab,

ef×eg, hk×hk, lm×ll, nn×np), and the aa×bb pattern SNPs were chosen

to construct the genetic map. SNPs with segregation distortion

(p<0.001) or integrity (<40%) or in the same reads or abnormal

bases were filtered. SNP markers were sorted into 26 chromosomes

according to their physical position on the reference genome. And then,

the genetic map was constructed chromosome by chromosome using

JoinMap 4.0 with a LOD score threshold of 6.0–20.0. The ICIMmethod

in the QTL IciMapping software was used to detect QTL (Li et al.,

2007). Parameters were set as 1 cM per step, PIN=0.001, and the LOD

score was determined by a 1000 permutation test.

The D(SNP-index) and ED (Euclidean distance) methods were

used to analyze the candidate region between the pools. The

parameters of SNP-index and D(SNP-index) were calculated as

follows: SNP-index(high) = Mhigh/(Mhigh + Phigh), SNP-index

(low) = Mlow/(Mlow + Plow), and D(SNP-index) = SNP-index

(low) – SNP-index(high). The M and P parameters represent the

sequencing depth in JF914 and JF173, respectively. The parameters of

ED were calculated as follows:
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(Ahigh-AlowÞ2 + ðThigh-TlowÞ2 + ðChigh-ClowÞ2 + ðGhigh-GlowÞ

q

A, T, C, and G are the four base types. Ahigh, Thigh, Chigh, and

Ghigh are the frequency of relevant bases in the high pool. Alow,

Tlow, Clow, and Glow are the frequency of relevant bases in the low

pool. The ED4 was used to eliminate background noise. The median

+3SD was used as the threshold.
qRT-PCR

For JF914 and JF173, total RNA was extracted from the bud and

leaf at 1- to 6-leaf stages using a Plant RNA Purification Kit (Tiangen,

Beijing, China). First-strand cDNA was reverse transcribed from 1 mg
total RNA using a FastKing gDNA Dispelling RT SuperMix Kit

(Tiangen, Beijing, China). qRT-PCR was carried out with the SYBR

Premix Ex Taq (TAKARA, Japan) on a LightCycler480 instrument

(Rotkreuz, Switzerland).
Results

Phenotypic variation

The NFFB of JF914 (7.8–8.5) is significantly bigger than that of

JF173 (5.1–5.5). The maximum and minimum values of NFFB in the

F2, F2:3, and F2:4 populations reveal transgressive segregation

(Table 1). The mean value of NFFB in the segregation populations

lies within the range of the two parents. Based on the absolute values

of skewness and kurtosis, NFFB showed an approximately

normal distribution.
Sequence data and quality

A total of 416 G sequence data was obtained by genotyping by

GBS, with an average of 25.91 G and 9× depth in the parents, 1.82 G

and 0.7× depth in the F2 plants. The Q30 score reached 95.68%. And

99.63% of the F2 sequence data was successfully mapped to the

reference genome, with an average coverage rate of 14.81%

(Additional file 1).

A total of 318.81 G sequence data was obtained by re-sequencing

for the four samples (Table 2). The sequence depths of the pools

reached 31×, and Q30 scores are larger than 90%. More than 88% of

the reference genome was covered.
TABLE 1 The statistics of NFFB in the parents, F1, and segregated populations.

Trait JF914 JF173
F2 F2:3 F2:4

Max Min Mean Skew Kurt Max Min Mean Skew Kurt Max Min Mean Skew Kurt

NFFB (cm) 7.8-8.5** 5.1-5.5 9.0 5.0 6.6 -0.4 0.3 8.1 5.5 6.6 -0.2 0.3 8.7 5.1 6.3 0.1 0.3
frontiers
NFFB, the node of the first fruiting branch; Max, maximum; Min, minimum; Skew, skewness; Kurt, kurtosis; **, p<0.01.
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Genetic map construction

A total of 1,305,642 SNPs were developed between the parents,

and 7 SNP types were detected (Table 3). Only the SNP in aa×bb type

was used to genotype the F2 plants and construct a genetic map. A

high-density genetic map containing 11,488 SNPs was constructed

(Figure 1, Table 4, Additional file 2). The genetic map spanned

4,202.12 cM in length, ranging from 150.74 cM on A3 to 178.90

cM on A9. The SNPs were unevenly distributed on the 26 linkage

groups, with only 30 SNPs on A2 and 1 318 SNPs on D5. The quality

of the genetic map was analyzed by colinearity analysis, which

demonstrated the accurate SNP position on the constructed genetic

map (Table 4, Figure 2).
QTL mapping

A total of 13 QTL were mapped and distributed on 11

chromosomes (Table 5). Two stable QTL were mapped, including

qNFFB-D3-1 and qNFFB-D6-1 mapped in F2:3 and F2:4. JF914

conferred favorable alleles for 11 QTL, and JF173 conferred for the

other two QTL. Only qNFFB-D3-1 contributed more than 10% of the

phenotypic variation. Thus, this QTL might be vital loci regulating

NFFB in the tested population.

A total of 2,907,790 SNPs were detected by BSA-seq, including

1,926,811 transition types and 979,643 transversion types (Figure 3).

After filtration, 348,074 high-quality SNPs were reserved (Additional

file 3). And SNP index was calculated for 337,651 SNPs (Additional

file 4). A total of 197 and 99 regions were found through D(SNP-
index) analysis and ED analysis, respectively (Additional file 5).

Thirty-nine regions containing 2310 SNPs on 12 chromosomes

were common between the results of D(SNP-index) analysis and

ED analysis, which were recognized as the candidate regions for

NFFB (Additional file 6). Two regions on D3 (41,779,195–41,836,120
Frontiers in Plant Science 049
bp and 41,836,768–41,872,287 bp) overlapped with the stable QTL

qNFFB-D3-1 (17,130,008–41,839,226 bp). Thus, the 24.7 Mb interval

of qNFFB-D3-1 might be shortened to the 92.4 Kb key interval.
Candidate gene analysis

Eight genes were annotated in the 92.4 Kb interval of the stable

QTL qNFFB-D3-1 (D3, 41,779,195–41,836,120 bp and 41,836,768–

41,872,287 bp) (Table 6). By qRT-PCR, 2 genes showed significant

different and regular expression patterns between the buds of JF914

and JF173 (Figure 4). Ghir_D03G012430 expressed at a lower level at

1- and 2-leaf stages and increased sharply to a higher expression level

at 3- to 6-leaf stages in the bud of JF173 than that of JF914.

Ghir_D03G012390 reached the highest expression level in the buds

of JF173 and JF914 at 3- and 5-true leaf stages, respectively. The

expression levels of the above mentioned genes in leaves showed no

regular patterns. Thus, these 2 genes might be involved in

NFFB regulation.
Discussion

As a labor-intensive crop, cotton is increasingly unsuitable for

manual planting in China, which raises the very pressing need for

whole-process mechanization (Ma et al., 2019). Earliness is a vital trait

for the practice of mechanism. Xinjiang is one of the most important

cotton-growing regions in the world, accounting for 84.94% of China

and ~19% of the world of cotton production (Han et al., 2020).

Unstable weather conditions during the cotton planting season may

cause heavy losses, especially in northern Xinjiang. Late sowing by

planting early-maturity cotton is a useful method to avoid adverse

weather in spring (Cheng et al., 2021). Besides, early-maturity cotton

can optimize farmland cropping systems by directly planting cotton

after wheat harvesting (Li et al., 2020). Thus, to improve efficiency and

breed early maturity varieties suitable for mechanical harvesting,

there is more need for the genetic detection of cotton earliness. In

this study, an F2 population containing 417 plants was constructed to

map QTL for cotton earliness. High-quality and density SNP markers

were detected by high-throughput genome sequencing. A high-

density genetic map containing 11,488 SNP and spanning 4,202.12

cM was constructed using 200 F2 plants, which is comparable with the

genetic maps used for cotton earliness-related QTL mapping

previously reported by Jia et al. (2016) (6434 loci, 4071.98 cM, 137

RILs) and Li et al. (2017) (3978 SNP, 2480 cM, 170 F2 plants).

The genetic basis of earliness-related traits is complex, involving

WGP, FT, FBP, PH, NFFB, and HNFFB, all of which are quantitative

traits controlled by large amounts of minor effect genes (Lacape et al.,
TABLE 2 Sequence data of the parents and pools.

Sample Raw Bases (bp) Clean Bases (bp) Q20 (%) Q30 (%) Align rate (%) Average depth (×) Coverage (%)

high 100,641,873,900 99,983,581,254 96.58 90.50 78.73 31.99 88.17

low 143,699,754,900 142,505,777,730 96.66 91.09 79.36 34.63 88.40

JF914 26,169,828,600 26,013,215,006 96.4 89.87 81.46 8.77 86.80

JF173 48,300,015,000 47,983,815,204 96.63 90.63 81.10 15.62 87.67
TABLE 3 Parent marker types and the number of SNPs.

Marker type SNP number

aa×bb 410726

ab×cc 159

cc×ab 47

ef×eg 340

hk×hk 325126

lm×ll 162538

nn×np 406706
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TABLE 4 Detailed information on the genetic map.

Chr. No. of Marker Length (cM) Average interval (cM) Largest gap (cM) Coe. of collinearity

A1 165 157.86 0.96 10.09 -1.00

A2 30 161.10 5.56 28.19 -1.00

A3 487 150.74 0.31 9.25 -1.00

A4 514 164.16 0.32 10.77 -0.99

A5 488 168.17 0.35 3.43 -1.00

A6 152 162.13 1.07 14.63 -1.00

A7 583 162.98 0.28 9.13 -0.90

A8 414 156.02 0.38 7.74 -0.84

A9 624 178.90 0.29 7.61 -1.00

A10 415 161.14 0.39 8.91 -0.99

A11 338 161.48 0.48 6.49 -1.00

A12 270 160.78 0.60 13.61 -1.00

A13 1115 172.27 0.15 2.51 -0.82

At 5595 2117.74 0.74 28.19 –

D1 752 159.88 0.21 6.18 -0.68

D2 311 161.47 0.52 8.92 -1.00

D3 83 166.45 2.03 21.48 -1.00

D4 82 161.89 2.00 19.21 -1.00

D5 1318 162.01 0.12 2.60 -1.00

D6 241 170.41 0.71 13.22 -1.00

D7 359 157.39 0.44 25.66 -1.00

D8 900 155.69 0.17 2.66 -0.97

D9 349 160.44 0.46 8.78 -1.00

D10 743 161.22 0.22 9.77 -0.98

D11 236 151.28 0.64 7.66 -1.00

D12 323 161.79 0.50 17.07 -1.00

D13 196 154.46 0.79 7.64 -1.00

Dt 5893 2084.38 0.61 25.67 –

total 11488 4202.12 0.37 28.19 –
F
rontiers in Plan
t Science
 0510
Chr., chromosome; No., number; Coe., coefficient; cM, centi morgan.
FIGURE 1

Marker distribution of the constructed genetic map.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1113059
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Jia et al. 10.3389/fpls.2023.1113059
2013; Su et al., 2016; Li et al., 2021). The 247 QTL reported by Jia et al.

(2016) could explain 0.28–29.37% of the phenotypic variation, and 52

QTL could be detected in at least 2 years. The 47 QTL reported by Li

et al. (2017) could explain 3.07–32.57% of the phenotypic variation,

and none could be detected repeatedly. The SNPs for earliness traits

detected by GWAS could explain 5.36%-15.56% of the phenotypic

variation (Su et al., 2016). This study mapped 13 QTL with a 4.74–

10.11% phenotypic variation explanation rate for NFFB. Two QTL
Frontiers in Plant Science 0611
could be detected in 2 generations, including qNFFB-D3-1 and

qNFFB-D6-1, and qNFFB-D3-1 explained more than 10% of the

phenotypic variation. At the same time, it is difficult to dissect the

genetic basis under cotton earliness clearly, of the lack of both major

and stable QTL (Li et al., 2020).

NFFB is an important index for earliness, such as in cotton (Jia

et al., 2016) and pepper (Zhang et al., 2019). And NFFB was

considered the most reliable and practical measurement of cotton
FIGURE 2

Colinearity analysis between the genetic map and reference genome sequence.
TABLE 5 Detailed information of the mapped QTL.

QTL Name Pop Pos (cM) Left marker Right marker LOD PV (%) Add Dom

qNFFB-A4-1 F2 40.00 chr4_75497483 chr4_75488413 2.81 5.03 -0.04 0.39

qNFFB-A7-1 F2:4 24.00 chr7_96247777 chr7_92676059 5.13 9.03 -0.14 0.09

qNFFB-A7-2 F2:3 28.00 chr7_92674198 chr7_92670233 3.50 6.93 -0.18 -0.01

qNFFB-A11-1 F2 3.00 chr11_119686364 chr11_119649722 4.03 8.63 -0.05 0.84

qNFFB-D2-1 F2:3 71.00 chr15_61609865 chr15_61609728 2.73 5.30 -0.13 -0.07

qNFFB-D3-1
F2:3 51.00 chr16_41836768 chr16_17130088 4.16 8.21 -0.18 0.01

F2:4 50.00 chr16_41839226 chr16_41836768 5.62 10.11 -0.17 0.13

qNFFB-D5-1 F2:3 9.00 chr18_61260861 chr18_61249526 3.30 6.35 0.00 -0.47

qNFFB-D6-1
F2:3 106.00 chr19_12617417 chr19_12617401 3.34 6.52 0.06 -0.24

F2:4 106.00 chr19_12617417 chr19_12617401 3.43 5.75 0.06 -0.18

qNFFB-D7-1 F2:4 95.00 chr20_15136585 chr20_14955163 4.35 7.49 -0.16 -0.02

qNFFB-D8-1 F2 139.00 chr21_5256024 chr21_5235564 3.01 5.87 -0.27 0.00

qNFFB-D10-1 F2 161.00 chr23_67766849 chr23_67763158 3.51 6.71 -0.31 -0.20

qNFFB-D12-1 F2 0.00 chr25_62606647 chr25_62552111 2.68 5.06 -0.04 -0.45

qNFFB-D12-2 F2 138.00 chr25_2807174 chr25_2714956 2.57 4.74 -0.17 -0.26
frontie
Pop, population; Pos, position; PV, phenotypic variation; Add, additive effect; Dom, dominance effect; Note: PH, plant height; NFFB, the node of the first fruiting branch; FBP, flowering-to-boll
opening period; FT, flowering timing; WGP, whole growth period.
rsin.org

https://doi.org/10.3389/fpls.2023.1113059
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Jia et al. 10.3389/fpls.2023.1113059
earliness (Ray and Richmond, 1966; Guo et al., 2008). Previously, at

least 80 QTL for NFFB were mapped on almost all 26 cotton

chromosomes and most of these QTL have tiny genetic effect (Guo

et al., 2008; Guo et al., 2009; Li et al., 2012; Jia et al., 2016; Li et al.,

2017). As a typical quantitative trait, map a stable major QTL for

NFFB is very precious for excavating candidate genes. The

chromosome D3 was repeatedly mapped with outstanding QTL: by

Jia et al. (2016); Su et al. (2016); Li et al. (2017), and Ma et al. (2018).

Thus, it is interesting and hopeful that D3 contains vital genes

regulating NFFB. In this study, one stable QTL qNFFB-D3-1 was

mapped in F2:3 and F2:4 generations and explained 8.21–10.11% of

phenotypic variation. The confidence interval of qNFFB-D3-1 locates

between 17.1 to 41.8 Mb, spans a long region of about 24.7 Mb. QTL

at this region have been reported repeatedly such as by Jia et al. (2016)

(qNFFB-D3-1, qNFFB-D3-2, qNFFB-D3-3, qNFFB-D3-4), Li et al.
Frontiers in Plant Science 0712
(2017) (qNFFB-D3-1), Li et al. (2021) (rsD03_39122594), and

Zhang et al. (2021) (qNFFB-Dt3-3). Candidate genes for cotton

earliness in this region were found, such as GhEMF2 by Jia et al.

(2016) and Ma et al. (2020), Gh_D03G0885 and Gh_D03G0922 by Li

et al. (2017), Ghir_D03G011310 by Li et al. (2021), and GhAPL and

GhHAD5 by Zhang et al. (2021). Other candidate genes for earliness

on chromosome D3 were reported, such as GhCIP1 and GhUCE by

Ma et al. (2018) and CotAD_01947 by Su et al. (2016). Thus, it seems

likely that qNFFB-D3-1 contains candidate genes for cotton earliness.

In recent years, BSA-seq has become an efficient method in QTL

mapping and functional gene mining and has been widely applied,

such as in rice (Takagi et al., 2013; Zhang et al., 2021), tomato (Illa-

Berenguer et al., 2015), melon (Hu et al., 2022), Brassica napus (Ye

et al., 2022), maize (Chen et al., 2021), and cucumber (Lu et al., 2014).

In cotton, genes controlling oil content (Liu et al., 2020), virescent
FIGURE 3

Statistic number of each SNP type.
TABLE 6 The eight annotated genes in the 92.4 Kb interval.

Gene ID Gene Name Description

Ghir_D03G012380 Bicc1 Protein bicaudal C homolog 1

Ghir_D03G012390 FAM214B Protein FAM214B

Ghir_D03G012400 At1g54610 Probable serine/threonine-protein kinase At1g54610

Ghir_D03G012410 AGAP005782 ATPase ASNA1 homolog

Ghir_D03G012420 SAE1B-2 SUMO-activating enzyme submit 1B-2

Ghir_D03G012430 pan1 Actin cytoskeleton-regulatory complex protein pan1

Ghir_D03G012440 HSD1 11-beta-hydroxysteroid dehydrogenase 1B

Ghir_D03G012450 RPL7A-2 60S ribosomal protein L7a-2
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(Zhu et al., 2017; Gao et al., 2021), nulliplex-branch (Chen et al., 2015;

Wen et al., 2021), and NFFB (Zhang et al., 2021) were mapped by

BSA-seq. By combining QTL mapping and BSA-seq, QTL can be

finely mapped to a very small interval, significantly improving the

mining efficiency of vital genes under important quantitative traits

(Chen et al., 2022; Hu et al., 2022). In this study, aiming to map

candidate genes for NFFB, one line from the F2:4 population with low

NFFB and similar phenotype to JF914 was used as the maternal

parent and backcrossed with JF914. A BC1F2 population containing

561 plants was constructed. A total of 60 plants with extremely high

(30 plants) or low (30 plants) NFFB from the BC1F2 population were

selected to construct the high and low pools. And 39 candidate

regions were found by D(SNP-index) and ED methods. Two

regions on D3 (41,779,195–41,836,120 bp, 41,836,768–41,872,287

bp) overlapped with the stable QTL qNFFB-D3-1 (17,130,008–

41,839,226 bp). Thus, the stable QTL qNFFB-D3-1 spanning 24.7

Mb was shortened to 92.4 Kb key interval, and eight genes

were annotated.

By qRT-PCR, Ghir_D03G012430 was expressed at a lower level at

1- and 2-leaf stages and increased sharply to a higher level at 3- to 6-

leaf stages in the bud of JF173 than that of JF914. Ghir_D03G012390

reached the highest expression level in the buds of JF173 and JF914 at

3- and 5-true leaf stages, respectively. Ghir_D03G012430 is a pan1

gene. As reported, pan1 functions in cell asymmetric division and

development (Best et al., 2021; Lu et al., 2022). Ghir_D03G012390

codes a FAM214B protein, which is vital in cell aging (Hernandez-

Segura et al., 2017; Macedo et al., 2018). As JF173 has lower NFFB and

better early maturity, the different expression patterns of

Ghir_D03G012430 and Ghir_D03G012390 imply that they may be

involved in NFFB formation and earliness regulation in cotton.
Frontiers in Plant Science 0813
Data availability statement

The data presented in the study are deposited in the SRA

repository, accession number PRJNA821354.
Author contributions

ML and XJ: conceived the project and set the scientific objectives.

JZ, HZ, GW, and SW contributed to equipment preparation and data

acquisition. XJ: wrote the manuscript. ML and GW: reviewed and

edited the manuscript. All authors contributed to the article and

approved the submitted version.
Funding

This research was funded by Basic research funds of the Hebei

Academy of Agriculture and Forestry Sciences (2021060206), the

National Natural Science Foundation of China (32201758), Hebei

Modern Agricultural Industry Technology System Innovation Team

Construction Project - Mechanic Picked Variety Breeding

(HBCT2018040202), and HAAFS Science and Technology Innovation

Project (2022KJCXZX-LYS-14).

Acknowledgments

We thank the staff of Shanghai Majorbio Bio-pharm Technology

Co., Ltd. (Shanghai, China) for their support during the genomic

data analysis.
FIGURE 4

Gene expression level in the bud and leaf of JF914 and JF173. *, the difference reached p=0.05 significance level; **, the difference reached p=0.01
significance level.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1113059
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Jia et al. 10.3389/fpls.2023.1113059
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated
Frontiers in Plant Science 0914
organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fpls.2023.1113059/

full#supplementary-material
References
Best, N. B., Addo-Quaye, C., Kim, B., Weil, C. F., Schulz, B., Johal, G., et al. (2021).
Mutation of the nuclear pore complex component, aladin1, disrupts asymmetric cell
division in Zea mays (maize). G3 Genes|Genomes|Genetics 11, jkab106. doi: 10.1093/
g3journal/jkab106

Cheng, S., Chen, P., Su, Z., Ma, L., Hao, P., Zhang, J., et al. (2021). High-resolution
temporal dynamic transcriptome landscape reveals a GhCAL-mediated flowering
regulatory pathway in cotton (Gossypium hirsutum l.). Plant Biotechnol. J. 19, 153–166.
doi: 10.1111/pbi.13449

Chen, Z. J., Scheffler, B. E., Dennis, E., Triplett, B. A., Zhang, T., Guo, W., et al. (2007).
Toward sequencing cotton (Gossypium) genomes. Plant Physiol. 145, 1303–1310.
doi: 10.1104/pp.107.107672

Chen, Z., Tang, D., Hu, K., Zhang, L., Yin, Y., Ni, J., et al. (2021). Combining QTL-seq
and linkage mapping to uncover the genetic basis of single vs. paired spikelets in the
advanced populations of two-ranked maize×teosinte. BMC Plant Biol. 21, 572.
doi: 10.1186/s12870-021-03353-3

Chen, W., Yao, J., Chu, L., Yuan, Z., Li, Y., and Zhang, Y.. (2015). Genetic mapping of
the nulliplex-branch gene (gb_nb1) in cotton using next-generation sequencing. Theor.
Appl. Genet. 128, 539–547. doi: 10.1007/s00122-014-2452-2

Chen, D., Zhou, X., Chen, K., Chen, P., Guo, J., Liu, C., et al. (2022). Fine-mapping and
candidate gene analysis of a major locus controlling leaf thickness in rice (Oryza sativa l.).
Mol. Breeding 42, 6. doi: 10.1007/s11032-022-01275-y

Cingolani, P., Platts, A., Wang, L. L., Coon, M., Nguyen, T., Wang, L., et al. (2014). A
program for annotating and predicting the effects of single nucleotide polymorphisms,
SnpEff. Fly 6, 80–92. doi: 10.4161/fly.19695

Gao, J., Shi, Y., Wang, W., Wang, Y., Yang, H., Shi, Q., et al. (2021). Genome
sequencing identified novel mechanisms underlying virescent mutation in upland cotton
Gossypiuma hirsutum. BMC Genomics 22, 1–10. doi: 10.1186/s12864-021-07810-z

Godoy, A., and Palomo, G. (1999). Genetic analysis of earliness in upland cotton
(Gossypium hirsutum l.). i. morphological and phenological variables. Euphytica 105,
155–160. doi: 10.1023/A:1003490016166

Guo, Y., McCarty, J. C., Jenkins, J. N., An, C., and Saha, S. (2009). Genetic detection of
node of first fruiting branch in crosses of a cultivar with two exotic accessions of upland
cotton. Euphytica 166, 317–329. doi: 10.1007/s10681-008-9809-z

Guo, Y., McCarty, J. C., Jenkins, J. N., and Saha, S. (2008). QTLs for node of first
fruiting branch in a cross of an upland cotton, Gossypium hirsutum l., cultivar with
primitive accession Texas 701. Euphytica 163, 113–122. doi: 10.1007/s10681-007-9613-1

Han, Z., Hu, Y., Tian, Q., Cao, Y., Si, A., Si, Z., et al. (2020). Genomic signatures and
candidate genes of lint yield and fibre quality improvement in upland cotton in xinjiang.
Plant Biotechnol. J. 18, 2002–2014. doi: 10.1111/pbi.13356

Hernandez-Segura, A., de Jong, T. V., Melov, S., Guryev, V., Campisi, J., Demaria, M.,
et al. (2017). Unmasking transcriptional heterogeneity in senescent cells. Curr. Biol. 27,
2652–2660. doi: 10.1016/j.cub.2017.07.033

Hu, Y., Chen, J., Fang, L., Zhang, Z., Ma, W., Niu, Y., et al. (2019). Gossypium
barbadense and Gossypium hirsutum genomes provide insights into the origin and
evolution of allotetraploid cotton. Nat. Genet. 51, 739–748. doi: 10.1038/s41588-019-
0371-5

Hu, Z., Shi, X., Chen, X., Zheng, J., Zhang, A., Wang, H., et al. (2022). Fine-mapping
and identification of a candidate gene controlling seed coat color in melon (Cucumis melo
l. var. chinensis pangalo). Theor. Appl. Genet. 135, 803–815. doi: 10.1007/s00122-021-
03999-5

Illa-Berenguer, E., Van Houten, J., Huang, Z., and van der Knaap, E. (2015). Rapid and
reliable identification of tomato fruit weight and locule number loci by QTL-seq. Theor.
Appl. Genet. 128, 1329–1342. doi: 10.1007/s00122-015-2509-x

Jia, X., Pang, C., Wei, H., Wang, H., Ma, Q., Yang, J., et al. (2016). High-density linkage
map construction and QTL analysis for earliness-related traits in Gossypium hirsutum l.
BMC Genomics 17, 909. doi: 10.1186/s12864-016-3269-y
Lacape, J., Gawrysiak, G., Cao, T., Viot, C., Llewellyn, D., Liu, S. , et al. (2013). Mapping
QTLs for traits related to phenology, morphology and yield components in an inter-
specific Gossypium hirsutum×G. barbadense cotton RIL population. Field Crops Res. 144,
256–267. doi: 10.1016/j.fcr.2013.01.001

Li, F., Fan, G., Lu, C., Xiao, G., Zou, C., Kohel, R., et al. (2015). Genome sequence of
cultivated upland cotton (Gossypium hirsutum TM-1) provides insights into genome
evolution. Nat. Biotechnol. 33, 524–530. doi: 10.1038/nbt.3208

Li, C., Fu, Y., Liu, Q., Du, L., and Trotsenko, V. (2020). A review of genetic mechanisms
of early maturity in cotton (Gossypium hirsutum l.). Euphytica 216, 120. doi: 10.1007/
s10681-020-02656-0

Liu, H., Zhang, L., Mei, L., Quampah, A., He, Q., Zhang, B., et al. (2020). qOil-3, a major
QTL identification for oil content in cottonseed across genomes and its candidate gene
analysis. Ind. Crops Products 145, 112070. doi: 10.1016/j.indcrop.2019.112070

Li, C., Wang, Y., Ai, N., Li, Y., and Song, J. (2018). A genome-wide association study of
early-maturation traits in upland cotton based on the CottonSNP80K array. J. Integr.
Plant Biol. 60, 970–985. doi: 10.1111/jipb.12673

Li, C., Wang, C., Dong, N., Wang, X., Zhao, H., Converse, R., et al. (2012). QTL
detection for node of first fruiting branch and its height in upland cotton (Gossypium
hirsutum l.). Euphytica 188, 441–451. doi: 10.1007/s10681-012-0720-2

Li, C., Wang, X., Dong, N., Zhao, H., Xia, Z., Wang, R., et al. (2013). QTL analysis for
early-maturing traits in cotton using two upland cotton (Gossypium hirsutum l.) crosses.
Breed. Sci. 63, 154–163. doi: 10.1270/jsbbs.63.154

Li, H., Ye, G., and Wang, J. (2007). A modified algorithm for the improvement of
composite interval mapping. Genetics 175, 361–374. doi: 10.1534/genetics.106.066811

Li, L., Zhang, C., Huang, J., Liu, Q., Wei, H., Wang, H., et al. (2021). Genomic analyses
reveal the genetic basis of early maturity and identification of loci and candidate genes in
upland cotton (Gossypium hirsutum l.). Plant Biotechnol. J. 19, 109–123. doi: 10.1111/
pbi.13446

Li, L., Zhao, S., Su, J., Fan, S., Pang, C., Wei, H., et al. (2017). High-density genetic
linkage map construction by F2 populations and QTL analysis of early-maturity traits in
upland cotton (Gossypium hirsutum l.). PloS One 12, e182918. doi: 10.1371/
journal.pone.0182918

Lu, H., Lam, S., Zhang, D., Hsiao, Y., Li, B., Niu, S., et al. (2022). R2R3-MYB genes
coordinate conical cell development and cuticular wax biosynthesis in phalaenopsis
aphrodite. Plant Physiol. 188, 318–331. doi: 10.1093/plphys/kiab422

Lu, H., Lin, T., Klein, J., Wang, S., Qi, J., Zhou, Q., et al. (2014). QTL-seq identifies an
early flowering QTL located near Flowering locus t in cucumber. Theor. Appl. Genet. 127,
1491–1499. doi: 10.1007/s00122-014-2313-z

Macedo, J. C., Vaz, S., Bakker, B., Ribeiro, R., Bakker, P. L., Escandell, J., et al. (2018).
FoxM1 repression during human aging leads to mitotic decline and aneuploidy-driven full
senescence. Nat. Commun. 9, 2834. doi: 10.1038/s41467-018-05258-6

Ma, Z., He, S., Wang, X., Sun, J., Zhang, Y., Zhang, G., et al. (2018). Resequencing a core
collection of upland cotton identifies genomic variation and loci influencing fiber quality
and yield. Nat. Genet. 50, 803–813. doi: 10.1038/s41588-018-0119-7

Ma, J., Pei, W., Ma, Q., Geng, Y., Liu, G., Liu, J., et al. (2019). QTL analysis and
candidate gene identification for plant height in cotton based on an interspecific backcross
inbred line population of Gossypium hirsutum ×Gossypium barbadense. Theor. Appl.
Genet. 132, 2663–2676. doi: 10.1007/s00122-019-03380-7

Ma, Q., Qu, Z., Wang, X., Qiao, K., Mangi, N., and Fan, S.. (2020). EMBRYONIC
FLOWER2B, coming from a stable QTL, represses the floral transition in cotton. Int. J.
Biol. Macromolecules 163, 1087–1096. doi: 10.1016/j.ijbiomac.2020.07.116

Ma, Z., Zhang, Y., Wu, L., Zhang, G., Sun, Z., Li, Z., et al. (2021). High-quality genome
assembly and resequencing of modern cotton cultivars provide resources for crop
improvement. Nat. Genet. 53, 1385–1391. doi: 10.1038/s41588-021-00910-2

Mckenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K., Kernytsky, A., et al.
(2010). The genome analysis toolkit: a mapreduce framework for analyzing next-
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fpls.2023.1113059/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fpls.2023.1113059/full#supplementary-material
https://doi.org/10.1093/g3journal/jkab106
https://doi.org/10.1093/g3journal/jkab106
https://doi.org/10.1111/pbi.13449
https://doi.org/10.1104/pp.107.107672
https://doi.org/10.1186/s12870-021-03353-3
https://doi.org/10.1007/s00122-014-2452-2
https://doi.org/10.1007/s11032-022-01275-y
https://doi.org/10.4161/fly.19695
https://doi.org/10.1186/s12864-021-07810-z
https://doi.org/10.1023/A:1003490016166
https://doi.org/10.1007/s10681-008-9809-z
https://doi.org/10.1007/s10681-007-9613-1
https://doi.org/10.1111/pbi.13356
https://doi.org/10.1016/j.cub.2017.07.033
https://doi.org/10.1038/s41588-019-0371-5
https://doi.org/10.1038/s41588-019-0371-5
https://doi.org/10.1007/s00122-021-03999-5
https://doi.org/10.1007/s00122-021-03999-5
https://doi.org/10.1007/s00122-015-2509-x
https://doi.org/10.1186/s12864-016-3269-y
https://doi.org/10.1016/j.fcr.2013.01.001
https://doi.org/10.1038/nbt.3208
https://doi.org/10.1007/s10681-020-02656-0
https://doi.org/10.1007/s10681-020-02656-0
https://doi.org/10.1016/j.indcrop.2019.112070
https://doi.org/10.1111/jipb.12673
https://doi.org/10.1007/s10681-012-0720-2
https://doi.org/10.1270/jsbbs.63.154
https://doi.org/10.1534/genetics.106.066811
https://doi.org/10.1111/pbi.13446
https://doi.org/10.1111/pbi.13446
https://doi.org/10.1371/journal.pone.0182918
https://doi.org/10.1371/journal.pone.0182918
https://doi.org/10.1093/plphys/kiab422
https://doi.org/10.1007/s00122-014-2313-z
https://doi.org/10.1038/s41467-018-05258-6
https://doi.org/10.1038/s41588-018-0119-7
https://doi.org/10.1007/s00122-019-03380-7
https://doi.org/10.1016/j.ijbiomac.2020.07.116
https://doi.org/10.1038/s41588-021-00910-2
https://doi.org/10.3389/fpls.2023.1113059
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Jia et al. 10.3389/fpls.2023.1113059
generation DNA sequencing data. Genome Res. 20, 1297–1303. doi: 10.1101/
gr.107524.110

Paterson, A. H., Brubaker, C. L., and Wendel, J. F. (1993). A rapid method for
extraction of cotton (Gossypium spp.) genomic DNA suitable for RFLP or PCR analysis.
Plant Mol. Biol. Reporter 11, 122–127. doi: 10.1007/BF02670470

Ray, L., and Richmond, T. (1966). Morphological measures of earliness of crop maturity in
cotton. Crop Sci. 6, 527–531. doi: 10.2135/cropsci1966.0011183X000600060008x

Richmond, T., and Radwan, S. (1962). A comparative study of seven methods of
measuring earliness of crop maturity in cotton. Crop Sci. 2, 397–400. doi: 10.2135/
cropsci1962.0011183X000200050010x

Su, J., Pang, C., Wei, H., Li, L., Liang, B., Wang, C., et al. (2016). Identification of
favorable SNP alleles and candidate genes for traits related to early maturity via GWAS in
upland cotton. BMC Genomics 17, 687. doi: 10.1186/s12864-016-2875-z

Takagi, H., Abe, A., Yoshida, K., Kosugi, S., Natsume, S., Mitsuoka, C., et al. (2013).
QTL-seq: rapid mapping of quantitative trait loci in rice by whole genome resequencing of
DNA from two bulked populations. Plant J. 74, 174–183. doi: 10.1111/tpj.12105

Wang, K., Li, M., and Hakonarson, H. (2010). ANNOVAR: functional annotation of
genetic variants from high-throughput sequencing data. Nucleic Acids Res. 38, e164.
doi: 10.1093/nar/gkq603

Wang, M., Tu, L., Yuan, D., Zhu, D., Shen, C., Li, J., et al. (2019). Reference genome
sequences of two cultivated allotetraploid cottons, Gossypium hirsutum and Gossypium
barbadense. Nat. Genet. 51, 224–229. doi: 10.1038/s41588-018-0282-x

Wen, T., Liu, C., Wang, T., Wang, M., Tang, F., and He, L.. (2021). Genomic mapping
and identification of candidate genes encoding nulliplex-branch trait in sea-island cotton
(Gossypium barbadense l.) by multi-omics analysis. Mol. Breeding 41, 1–12. doi: 10.1007/
s11032-021-01229-w
Frontiers in Plant Science 1015
Ye, S., Yan, L., Ma, X., Chen, Y., Wu, L., Ma, T., et al. (2022). Combined BSA-seq based
mapping and RNA-seq profiling reveal candidate genes associated with plant architecture
in Brassica napus. Int. J. Mol. Sci. 23, 2472. doi: 10.3390/ijms23052472

Zhang, T., Hu, Y., Jiang, W., Fang, L., Guan, X., Chen, J., et al. (2015). Sequencing of
allotetraploid cotton (Gossypium hirsutum l. acc. TM-1) provides a resource for fiber
improvement. Nat. Biotechnol. 33, 531–537. doi: 10.1038/nbt.3207

Zhang, J., Jia, X., Guo, X., Wei, H., Zhang, M., Wu, A., et al. (2021). QTL and candidate gene
identification of the node of the first fruiting branch (NFFB) by QTL-seq in upland cotton
(Gossypium hirsutum l.). BMC Genomics 22, 882. doi: 10.1186/s12864-021-08164-2

Zhang, B., Qi, F., Hu, G., Yang, Y., Zhang, L., Meng, J., et al. (2021). BSA-Seq-based
identification of a major additive plant height QTL with an effect equivalent to that of semi-
dwarf 1 in a large rice F2 population. Crop J. 9, 1428–1437. doi: 10.1016/j.cj.2020.11.011

Zhang, X., Wang, G., Dong, T., Chen, B., Du, H., Li, C., et al. (2019). High-density
genetic map construction and QTL mapping of first flower node in pepper (Capsicum
annuum l.). BMC Plant Biol. 19, 167. doi: 10.1186/s12870-019-1753-7

Zhang, Z., Wei, T., Zhong, Y., Li, X., and Huang, J. (2016). Construction of a high-
density genetic map of Ziziphus jujuba mill. using genotyping by sequencing technology.
Tree Genet. Genomes 12, 76. doi: 10.1007/s11295-016-1032-9

Zhao, H., Chen, Y., Liu, J., Wang, Z., Li, F., and Ge, X.. (2022). Recent advances and future
perspectives in early-maturing cotton research. New Phytol. doi: 10.1111/nph.18611

Zhou, Z., Zhang, C., Zhou, Y., Hao, Z., Wang, Z., Zeng, X., et al. (2016). Genetic
dissection of maize plant architecture with an ultra-high density bin map based on
recombinant inbred lines. BMC Genomics 17, 178. doi: 10.1186/s12864-016-2555-z

Zhu, J., Chen, J., Gao, F., Xu, C., Wu, H., Chen, K., et al. (2017). Rapid mapping and cloning
of the virescent-1 gene in cotton by bulked segregant analysis-next generation sequencing and
virus-induced gene silencing strategies. J. Exp. Botany 68, 4125–4135. doi: 10.1093/jxb/erx240
frontiersin.org

https://doi.org/10.1101/gr.107524.110
https://doi.org/10.1101/gr.107524.110
https://doi.org/10.1007/BF02670470
https://doi.org/10.2135/cropsci1966.0011183X000600060008x
https://doi.org/10.2135/cropsci1962.0011183X000200050010x
https://doi.org/10.2135/cropsci1962.0011183X000200050010x
https://doi.org/10.1186/s12864-016-2875-z
https://doi.org/10.1111/tpj.12105
https://doi.org/10.1093/nar/gkq603
https://doi.org/10.1038/s41588-018-0282-x
https://doi.org/10.1007/s11032-021-01229-w
https://doi.org/10.1007/s11032-021-01229-w
https://doi.org/10.3390/ijms23052472
https://doi.org/10.1038/nbt.3207
https://doi.org/10.1186/s12864-021-08164-2
https://doi.org/10.1016/j.cj.2020.11.011
https://doi.org/10.1186/s12870-019-1753-7
https://doi.org/10.1007/s11295-016-1032-9
https://doi.org/10.1111/nph.18611
https://doi.org/10.1186/s12864-016-2555-z
https://doi.org/10.1093/jxb/erx240
https://doi.org/10.3389/fpls.2023.1113059
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Frontiers in Plant Science

OPEN ACCESS

EDITED BY

Ting Peng,
Henan Agricultural University, China

REVIEWED BY

Milind B. Ratnaparkhe,
ICAR Indian Institute of Soybean Research,
India
Jinping Zhao,
Texas A&M University, United States

*CORRESPONDENCE

Liping Xu

xlpmail@126.com

Youxiong Que

queyouxiong@126.com

SPECIALTY SECTION

This article was submitted to
Plant Breeding,
a section of the journal
Frontiers in Plant Science

RECEIVED 24 November 2022
ACCEPTED 23 January 2023

PUBLISHED 02 February 2023

CITATION

Lu G, Wang Z, Pan Y-B, Wu Q, Cheng W,
Xu F, Dai S, Li B, Que Y and Xu L (2023)
Identification of QTLs and critical genes
related to sugarcane mosaic
disease resistance.
Front. Plant Sci. 14:1107314.
doi: 10.3389/fpls.2023.1107314

COPYRIGHT

© 2023 Lu, Wang, Pan, Wu, Cheng, Xu, Dai,
Li, Que and Xu. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that
the original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

TYPE Original Research

PUBLISHED 02 February 2023

DOI 10.3389/fpls.2023.1107314
Identification of QTLs and critical
genes related to sugarcane
mosaic disease resistance

Guilong Lu1,2, Zhoutao Wang1, Yong-Bao Pan3, Qibin Wu1,
Wei Cheng1, Fu Xu1, Shunbin Dai1, Boyu Li1,
Youxiong Que1* and Liping Xu1*

1Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs,
Fujian Agriculture and Forestry University, Fuzhou, China, 2Institute of Vegetables, Tibet Academy of
Agricultural and Animal Husbandry Sciences, Lhasa, China, 3USDA-ARS, Sugarcane Research Unit,
Houma, LA, United States
Mosaic viral diseases affect sugarcane productivity worldwide. Mining disease

resistance-associated molecular markers or genes is a key component of disease

resistance breeding programs. In the present study, 285 F1 progeny were produced

from a cross between Yuetang 93-159, a moderately resistant variety, and ROC22, a

highly susceptible variety. The mosaic disease symptoms of these progenies, with

ROC22 as the control, were surveyed by natural infection under 11 different

environmental conditions in the field and by artificial infections with a mixed

sugarcane mosaic virus (SCMV) and sorghum mosaic virus (SrMV) inoculum.

Analysis of consolidated survey data enabled the identification of 29 immune, 55

highly resistant, 70 moderately resistant, 62 susceptible, and 40 highly susceptible

progenies. The disease response data and a high-quality SNP geneticmapwere used

in quantitative trait locus (QTL) mapping. The results showed that the correlation

coefficients (0.26~0.91) between mosaic disease resistance and test environments

were significant (p< 0.001), and that mosaic disease resistance was a highly heritable

quantitative trait (H2 = 0.85). Sevenmosaic resistance QTLs were located to the SNP

genetic map, each QTL accounted for 3.57% ~ 17.10% of the phenotypic variation

explained (PVE). Furthermore, 110 pathogen response genes and 69 transcription

factors were identified in the QTLs interval. The expression levels of nine genes

(Soffic.07G0015370-1P , Soffic.09G0015410-2T , Soffic.09G0016460-

1T, Soffic.09G0016460-1P, Soffic.09G0017080-3C, Soffic.09G0018730-3P,

Soffic.09G0018730-3C, Soffic.09G0019920-3C and Soffic.03G0019710-2C) were

significantly different between resistant and susceptible progenies, indicating their

key roles in sugarcane resistance to SCMV and SrMV infection. The seven QTLs and

nine genes can provide a certain scientific reference to help sugarcane breeders

develop varieties resistant to mosaic diseases.

KEYWORDS

sugarcane (Saccharum spp. hybrids), sugarcane mosaic disease, QTL mapping, gene
mining, expression profiles
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Introduction

Sugarcane mosaic disease (SMD) is a worldwide issue that has

long plagued sugarcane production. The disease is mainly caused by

single or co-infection of Sugarcane mosaic virus (SCMV), Sorghum

mosaic virus (SrMV), and Sugarcane streak mosaic virus (SCSMV)

(Lu et al., 2021). SMD exhibiting typical “mosaic” symptoms

(Grisham, 2011) can seriously reduce the photosynthetic capacity

(Bagyalakshmi et al., 2019), yield, and quality of sugarcane (Singh

et al., 2003; Viswanathan and Balamuralikrishnan, 2005). Pandemic

SMD has occurred many times in history and caused huge economic

losses and even bankruptcies to many sugar companies (Koike and

Gillaspie, 1989; Grisham, 2011). Breeding and rationally planting of

SMD-resistant varieties are the most economical and effective

methods to prevent and control the disease.

So far, both natural infection disease surveys and artificial

inoculation-induced infection disease surveys are used in SMD

resistance assessments. Using the natural infection method, Li et al.

(2013); Da-Silva et al. (2015a); Yang et al. (2020), and Lavıń-Castaeda

et al. (2020) successively screened sugarcane breeding materials,

cultivars, or hybrid offspring populations. A few varieties (lines)

with immunity or good resistance to SMD provided good material

for mosaic disease resistance gene mining and hybrid breeding.

Although this method is simple and saves labor and time, it

requires a high level of professional ability and is often affected by

environments. Alternatively, several artificial inoculation methods,

including friction (Da-Silva et al., 2015b; De-Souza et al., 2017), spray

(Dean, 1960), stalk cutting (Li et al., 2013; Li et al., 2018), and

injection inoculations (Zhou, 2015), can be well controlled and be

evaluated under a set stress. Roossinck (2015) assumed that the

occurrence and prevalence of plant diseases depended on a

compound effect among host plants, pathogens, and environmental

factors. Therefore, it is of vital importance to choose the most suitable

growth stage and the optimum inoculation methods for improved

accuracy of resistant phenotype identification during field evaluation.

The development of practical molecular markers and related

detection methodology are the basis for molecular marker-assisted

breeding. Currently, traditional DNA markers, such as amplified

fragment length polymorphism (AFLP), restriction fragment length

polymorphism (RFLP), and simple sequence repeats (SSR), are being

used in quantitative trait locus (QTL) mapping or bulk segregant

analysis (BSA) research (Xia et al., 1999; Duble et al., 2000; Xu et al.,

2000; Dussle et al., 2003; Yuan et al., 2004). Several SCMV-resistance

markers were identified in corn (Zea mays L., 2n = 2x = 20; genome

size ~2,300 Mb) (Schnable et al., 2009). Single nucleotide

polymorphisms (SNP) markers are superior markers due to wide

distribution, huge quantity, high stability, strong representativeness,

and bi-allelicity (Rafalski, 2002). SNP chips represent a high-

throughput, automated, and relatively cost-effective genotyping

method (Laframboise, 2009), which has been used to identify

resistance genes to Bean common mosaic virus in soybean (2n = 2x

= 40) (Bello et al., 2014) and to Soil-borne wheat mosaic virus in wheat

(2n = 6x = 42) (Liu et al., 2014). However, due to the complexity of the

sugarcane genome (2n = 12x = 100~130 and genome size ~10 Gb)

(Roach, 1989; D'Hont et al., 1998), sequencing technology, and high

cost, only two SNP chips, namely, the 345K chip of Aitken et al.

(2017) and the 100K chip of You et al. (2019), have been developed in
Frontiers in Plant Science 0217
sugarcane. The 100K SNP chip has a polymorphism rate of up to

77.04% and has been successfully used in QTL mapping of disease

resistance markers to yellow leaf disease (You et al., 2019), ratoon

stunting disease (You et al., 2020), and leaf blight disease (Wang et al.,

2021) in sugarcane.

In plants, compared to qualitative resistance traits, quantitative

resistance traits are more broad-spectrum and persistent and play an

important role in preventing large-scale disease outbreaks due to the

loss of a single gene resistance (Poland et al., 2009). For instance, a

QTL locus qMdr9.02 was found to be associated with resistance to

southern leaf blight, northern leaf blight, and gray leaf spot in maize

(Yang et al., 2017). However, to date, only four SCMV resistance-

associated markers (AFLP-346, AFLP-372, AFLP-538, and CV29.13),

each accounting for 5.51 to 14.02% of PVE, were reported by Burbano

et al. (2022). The objectives of this study were to construct a genetic

mapping population, to evaluate the SMD response of the mapping

population, and to develop SMD resistance-associated QTL markers

and suggest candidate genes for the improvement of the efficiency and

accuracy of sugarcane breeding.
Materials and methods

Plant material and field planting

Two hundred and eighty-five F1 progeny were produced from a

cross between YT93-159 (moderately resistant to SMD) and ROC22

(highly susceptible to SMD). The cross was made in 2014 at the

Hainan Sugarcane Breeding Station, Yacheng, Hainan, China. After

vegetative propagation, stems of these progeny were planted at five

different ecological sites, namely, Cangshan (119˚14’E, 26˚5’N),

Longchuan (97˚53’E, 24˚15’N), Suixi (110˚10’E, 21˚6’N), Tianyang

(107˚0’E, 23˚39’N), and Yuanjiang (101˚59’E, 23˚36’N) (Figure 1;

Supplementary Table 1). A randomized block design was adopted for

field planting. Specifically, the trial design in Cangshan and

Longchuan contained three replications, Suixi and Yuanjiang

contained two replications, and Tianyang contained one replicate.

Specific row spacing and planting density were shown in

Supplementary Table 2. The five ecological sites were routinely

managed according to conventional planting measures, and stalk-

cutting was done at the end of December each year.
Mosaic disease survey

By natural infection
To identify the appropriate survey season, SMD symptoms on a

field grown, highly susceptible progeny FN14-255 were monitored

monthly on the campus of Fujian Agriculture and Forestry University

(FAFU) (119˚14’E, 26˚5’N). Three typical +1 leaves were sampled for

comparison. The three periods showing the most severe symptoms

were selected for investigating natural SMD incidence.

By artificial inoculation
Before planting, a machete was used to cut the stem of FN14-255

into single-bud pieces, which were rinsed in running water overnight.

Only single-bud pieces that met the criteria of 1) having one full and
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healthy bud, and 2) with flat incisions without any cracks were kept. A

super constant temperature tank (Ningbo Prandt Instrument Co.,

Ltd, Ningbo, China) was used for hot water treatment. Water

temperature was set and kept at ± 0.2°C of 50°C (CK), 55°C, 57°C,

59°C, and 61°C. Water level was maintained at about 2/3 tank full.

Treatment was for 30 minutes. Once the treatment was completed,

the stems were rinsed in running water until the buds cooled

complete ly . The buds were cul tured in a greenhouse

(Supplementary Figure 1) under 12 h light/12 h dark with a light

intensity of 15,000 Lx and a relative humidity of 60%. Greenhouse

temperature was set to 28°C before inoculation and 25°C after

inoculation. Each treatment had 30 buds with three replications.

After 30 d, the one-step multiplex reverse transcription PCR (RT-

PCR) method of Shan et al. (2020) was used to detect different

sugarcane mosaic virus. The oligonucleotide sequence of species-

specific RT-PCR primers and the length of targeted fragments are

shown in Table 1.

The method of Li et al. (2013) was used to configure the viral

inoculum mixture. The viral source was SMD symptomatic leaves

from sugarcane variety Funong 41 that was planted on the Sugarcane

Farm on the campus of FAFU. SCMV and SrMV pathogens were

detected in these leaves by RT-PCR (Supplementary Figure 2). YT93-
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159 and ROC22 were used to test different inoculation methods,

including spray, micro-injection, quartz sand friction, abrasive cloth

friction, rasp friction, young stem cut, single bud soaking, single bud

soaking and quartz sand friction (Supplementary Figure 3,

Supplementary Table 3), and to choose the best inoculation method

to inoculate the test population. In 2021, three batches of viral

inoculums were administered successively. One was conducted at

the sugarcane station of FAFU during February to April. Another was

conducted in a climate-controlled greenhouse of the Key Laboratory

of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture

and Rural Affairs, FAFU from May to July. A final inoculation was

conducted in the same greenhouse from October to December. For

each genotype, 15 single buds were inoculated with three replications

and were kept in the dark for 24 h after inoculation. Four weeks post

inoculation, SMD incidence was investigated for three consecutive

sessions with an interval of one week.
Resistance evaluation

One growth cycle at one ecological site and a batch of artificial

inoculation treatments were considered as one environment. The
FIGURE 1

Ecological survey sites and sugarcane crop density in China based on the data from the 2020 Statistical Yearbook.
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highest SMD incidence rate out of the three surveys was used to

determine the level of SMD resistance for each F1 progeny in a single

environment. Comprehensive evaluation was based on the maximum

value of resistance across multiple natural and artificial inoculation

infection environments. The SMD grading system was set according

to the method of Li et al. (2000) (Table 2). During comprehensive

evaluation, if the disease incidence rate of ROC22 (control) in an

environment was more than 66.01%, the external SMD stress was

considered sufficient, and the survey data valid. If the disease

incidence rate of ROC22 (control) in an environment was less than

66.01%, then the external SMD stress was assumed to be insufficient,

and the environmental data discarded. The following formula was

used to calculate SMD incidence rate (%):

SMD incidence rate (%) = number of diseased plants/total

number of plants per F1 progeny × 100%.
Correlation analysis and generalized
heritability estimation

The QTL IciMapping V4.2 software (Chinese Academy of

Agricultural Sciences, Beijing, China) was used to analyze the

correlation and calculate the generalized heritability (H2) using the

following calculation formula:

H2 = s 2
g =(s

2
g +

s 2
ge

n
+
s2
e

nr
), ;

Where s 2
g is genotype variance, s 2

e is error variance, s 2
ge is

genotype-by-environment interaction variance, n is the number of

environments; and r is number of survey periods within

each environment.
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QTL mapping

The SMD resistance grading data of the F1 progeny population

and the sugarcane 100K SNP chip-based genetic map (Supplementary

Table 4) (Wang et al., 2021) were used to conduct QTL mapping

using the inclusive composite interval mapping (ICIM) of GACD 1.2

software (Chinese Academy of Agricultural Sciences, Beijing, China),

with a logarithm of odds (LOD) threshold of 2.5 and other default

parameters. Loci with ≥ 10% phenotypic variation explained (PVE)

values were defined as major QTLs, and loci with< 10% PVE were

minor QTLs. QTLs were named according to McCouch et al. (1997)

with “q” plus the sugarcane mosaic disease resistance (Rsm) trait,

followed by linkage group number in italics. R software (R-Tools

Technology Inc., Ontario, Canada), Origin 9.0 software (OriginLab

Inc., Massachusetts, USA), and Adobe Illustrator CS6 software

(Adobe Systems Inc., California, USA) were used to draw the

position of QTL on the linkage group.
Candidate gene mining

The protein sequences of all genes in the QTL interval were

extracted according to the GFF annotation file of a Saccharum

officinarum genome (http://sugarcane.zhangjisenlab.cn/sgd/html/-

index.html). The Plant Pathogen Receptor Genes database (PRGdb

4.0, http://prgdb.org/prgdb4/) was used to search for genes related to

disease resistance. At the same time, disease resistance-related

transcription factors were extracted from the plant transcription

factor database (TFDB 5.0, http://planttfdb.gao-lab.org/index.php)

(Osuna-Cruz et al., 2018).
Critical gene and functional
structure prediction

Stems of Yuetang 93-159, ROC22, five immune, and five highly

susceptible progeny were detoxified in a hot water bath as previously

described. Plants with 2~3 fully expanded leaves from the detoxified

buds were inoculated with a mixed inoculum of SCMV and SrMV by

quartz sand friction. Leaf samples were taken on 0 d, 1 d, and 4 d post

inoculation, RT-PCR was conducted to detect the viruses at 4 d post

inoculation (Supplementary Figure 4). There were four plants in each

of the three biological replicates. RNA was extracted by the Trizol

method, and the integrity of the extracted RNA samples was checked
TABLE 2 Resistance grading based on SMD incidence.

Grade Resistance SMD Incidence (%)

1 Immune 0

2 Highly resistant 0.01~10.00

3 Moderately resistant 10.01~33.00

4 Susceptible 33.01~66.00

5 Highly susceptible 66.01~100
TABLE 1 Species-specific RT-PCR primers for the detection of three sugarcane mosaic viruses.

Virus Primer sequence (5’!3’) Annealing temperature (°C) Amplification size (bp)

SCMV
F: GCGCGGTATGCATTTGACTT

58

200
R: CACTCCCAACAGAGAGTGCAT

SrMV
F: AACAGGATGCCGATGCGAAA

450
R: CGTTGATGTTCGGTGAGCAA

SCSMV
F: GAACGCAGCCACCTCAGAAT

800
R: CCAAAATGAGCGCCTCCGAT
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using an Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara,

CA, USA). The integrity number of a qualified RNA sample was

considered greater than 6.0, and the detection quality was A-level

(Supplementary Table 5). The qualified RNA samples were sent to

Novogene Bioinformatics Technology Co., Ltd. (Beijing, China) for

transcriptome sequencing. The DNBSEQ-T7 (Shenzhen Huada

Intelligent Technology Co., Ltd., Shenzhen, China) sequencing

platform was used for paired-end sequencing, and each library

yielded ≥ 12 Gb of sequence data (Supplementary Table 6). The

Transcripts Per Kilobase Million (TPM) normalization method

(Wang et al., 2021) was used to calculate the expression levels of all

genes. TBtools V1.0986 software (South China Agricultural

University, Guangzhou, China) was used to draw an expression

heat map of candidate genes, and to locate significantly

differentiated key genes in the S. officinarum genome. An online

tool GSDS V2.0 (http://gsds.gao-lab.org/) was used to describe the

gene structure. The Arabidopsis genome (https://www.arabidopsis.

org/Blast/index.jsp) was referred for functional annotation with e-

value threshold set to 1e-10.
Data statistics and analysis

A Canon EOS 60D camera (Canon Inc., Tokyo, Japan) was used

to capture the images of SMD symptoms. Data were achieved as Excel

2010 (Microsoft Inc., Washington, USA) spreadsheets. Duncan’s

significant difference test and descriptive statistics were performed

using IBM SPSS® V25 software (International Business Machines

Inc., California, USA).
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Results

Phenotypic analysis and evaluation

Determination of the natural survey period
The SMD symptoms of a highly susceptible progeny (FN14-255) are

shown in Figure 2. The figure shows the symptoms of infected sugarcane

leaves were more clearly distinguishable during February to April and

October to December, with mosaic symptoms covering the entire leaf.

Nevertheless, the symptoms were significantly weakened in January and

inMay to September, especially from June to August, the symptoms were

suppressed by high temperature, and can only be observed at the bottom

of the leaves. Therefore, the field natural incidence survey was arranged

in March, April and November, respectively.

Hot-water detoxification and artificial inoculation
Germination time was obviously delayed, and germination rate was

significantly reduced with increasing hot water temperature

(Supplementary Table 7). On the other hand, mild leaf symptoms

could be seen from the 50°C treatment. And even barely visible from

the 55°C treatment. However, no symptomwas observable from the 57°

C, 59°C, and 61°C treatments. As shown in Supplementary Figure 5, no

band was visible on the gels, indicating that all three target viruses were

not detectable for the samples treated at 59°C and 61°C. Therefore, a

hot water treatment at 59°C for 30 min can completely detoxify the

viruses, albeit with a germination rate of about 30% (Supplementary

Table 7). The ‘single bud soaking + quartz sand friction’ method had

the highest inoculation efficiency (Supplementary Table 8). Therefore,

this method was used to inoculate the mapping population material.
FIGURE 2

SMD symptoms of a highly susceptible progeny (FN14-255) observed in different months CK1: disease free control (January); CK2: disease free control
(December); (A–L): January-December, respectively.
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Comprehensive evaluation
The SMD survey data for the F1 mapping population from 11

natural infection and 3 artificial inoculation infection environments

during 2020 to 2022 are shown in Supplementary Table 9. The

frequency distribution of SMD resistance grades within this

population in 14 environments is shown in Supplementary

Figure 6. The data from two environments at Cangshan ecological

site (block 2) were excluded from the comprehensive evaluation and

resistance analysis due to insufficient pathogen stress. Accordingly,

the population was comprehensively evaluated based on nine natural

environments and three artificial inoculation environments. Among

the 285 progenies, 29 immune, 55 highly resistant, 70 resistant, 62

susceptible, and 40 highly susceptible progenies were identified. The

remaining 29 progenies had inconsistent SMD responses. The SMD

resistance trait segregated widely within the F1 mapping population

and showed an obvious hybrid vigor (Heterosis) phenomenon

(Figure 3). That was in line with the typical characteristics of a

quantitative trait, indicating its suitability for QTL analysis.
Correlation analysis and
generalized heritability

Certain differences of SMD incidence were observed in the

mapping population across different environments. For example,

SMD incidence in the ratoon crop was significantly higher than the

plant cane crop. The SMD tended to accumulate when the sugarcane

crop underwent prolonged ratooning. Correlation coefficients

between the resistance trait and different environments were

0.26~0.91 (Supplementary Table 10), all these values were very

significant (p< 0.001), indicating that the SMD resistance was a

stable trait. Not surprisingly, the estimated broad sense heritability

(H2) of SMD resistance in this mapping population under 14

environments was 0.85, which implied that the SMD resistance trait

was mainly determined by genetic factors.
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QTL mapping

Seven SMD resistance-related QTLs were detected (Table 3),

which could explain 46.53% of the PVE. One major QTL, qRsm-

Y12, could explain 17.10% of the PVE. The other six were minor

QTLs, each could explain 3.57% ~ 7.70% of PVE. Four QTLs were

detected on the YT93-159 map, and the remaining three QTLs were

detected on the ROC22 map (Figure 4). The maximum genetic

distance of each QTL from the nearest marker was 2.4 cM, the

minimum was 0, and the average genetic distance was about 1.1 cM.
Candidate gene mining

According to the sequence information of the markers on either

side of the QTL (Supplementary Table 11), 1,525 candidate genes

were searched in the seven QTLs regions. In total, 110 disease

resistance candidate genes were identified, whose gene products

included CC-TM (coiled-coil plus transmembrane receptor), LRR

(leucine rich repeats), RLK (receptor-like protein kinases), WAK

(wall-associated receptor kinase), and others domain. In addition,

69 transcription factors were identified, including AP2 (APETALA2),

bHLH (basic helix-loop-helix), bZIP (basic region/leucine zipper),

ERF (ethylene response factor), MYB (myeloblastosis), SBP

(squamosa promoter binding protein) and other types of

transcription factors (Supplementary Table 12). These genes and

transcription factors may directly or indirectly involve in regulating

sugarcane response to mosaic virus infection.
Critical gene prediction

The gene expression levels of 110 pathogen-responsive genes and

69 transcription factors obtained by map mapping were presented in

Figure 5. Among the candidate genes related to disease resistance, it

was found tha t genes such as So ffi c .07G0015370-1P ,

Soffic.09G0016460-1T, and Soffic.09G0018730-3P had significant

expression differences between resistant and susceptible progenies,

including three transcription factors and six pathogen response genes.

These nine genes contained conserved domains such as

bHLH_AtILR3_like, LRR, STKc_SNT7_plant and that were closely

related to plant disease resistance (Table 4). The genomic positions,

conserved domains and gene structures of the nine predicted genes

are shown in Figure 6. It is speculated that these genes may be key to

the resistance of sugarcane to SCMV and SrMV, and can be a focus

for future research.
Discussion

Mosaic disease is one of the most important viral diseases in

sugarcane and has threatened the security and sustainability of the

world sugarcane industry for a long time (Wu et al., 2012). In recent

years, with the increasing pressure of natural stress, the differentiation

of plant viruses has accelerated (Roossinck, 2015). The genetic basis of

modern sugarcane cultivars is narrow, and the utilization of resistant

genes and genotypes is limited. There is an increasing chance of a large-
FIGURE 3

Distribution of five SMD resistance grades (Table 2) within a sugarcane
mapping population YT93-159 belongs to Grade 3 and ROC22
belongs to Grade 5.
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scale epidemic of mosaic diseases. Since different sugarcane varieties

may have different resistances to the virus, breeding and careful

distribution of disease-resistant varieties is the most economical and

effective method to control mosaic disease. Therefore, it is imperative to

fully explore the specifics of germplasm resistance and expand research

on resistance-related molecular markers or key genes to further

improve breeding efficiency.

In this study, SMD surveys were based on the “mosaic” symptom

manifested under multiple environments. The results of resistance to

mosaic disease in the experimental population showed that the overall

disease incidence upon artificial inoculation was significantly higher

than that upon natural infection. Due to many years of sugarcane

production and greater levels of pathogen pressure, the overall disease

incidence in sugarcane production areas of Guangxi and Yunnan is

significantly higher than other ecological regions in China

(Supplementary Table 9). In our study, inconsistent SMD

incidences were observed across different habitats. The pathogen

pressure of SMD was not high enough on the newly planted

sugarcane crop at Cangshan ecological site (block 2) in 2020 and

2021, therefore, the survey data from these two environments were

discarded. Therefore, the evaluation was only carried out with the

progeny with the highest level of resistance across nine natural

infection environments and three artificial inoculation infection

environments. Excluding 29 F1 progeny with inconsistent levels of

SMD resistance across different environments, 256 progeny of the F1
mapping population were included in further analysis. The 29 F1
progenies that were immune to SMD will be valuable in molecular

breeding to develop SMD resistant sugarcane cultivars.

Sugarcane is a vegetatively propagated crop, and multiple sets of

a mapping population can be propagated genetic research (Asnaghi

et al., 2004). This study showed that the correlation coefficients

among SMD resistance data sets from the various environments

were highly significant (p< 0.001) at 0.26 ~ 0.91 (Supplementary
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Table 10). This indicates that SMD resistance is stable under

different environmental conditions. The consolidated survey

results showed that the frequency of the five grades followed a

continuous normal distribution and that the Grades 1 and 2

contained 84 super-parent segregants with a better resistance level

than the parent YT93-159, which is resistant to SMD (Grade 3)

(Figure 3). This is in line with the typical characteristics of a

quantitative trait controlled by polygenes. The generalized

heritability (H2) of the SMD resistance across different

environments was 0.85, which is obviously higher than the H2

values reported on sugar content (0.57), plant height (0.57),

effective stem number (0.65), single stem weight (0.56), and yield

(0.49) (Barreto et al., 2019). This may be due to the long-term

accumulation and habitation of the virus in sugarcane and the less

effective management of SMD than on plant yield-related traits. The

SMD resistance trait is mainly controlled by genetic factors, which

can be identified using the map mapping method.

Mapping population size and molecular marker density directly

affect the accuracy and resolution of marker localization for the target

trait (Beavis, 1994). So far, most of the sugarcane populations for QTL

mapping of agronomic traits are made up of between 100 and 200

individuals with traditional markers, such as AFLP, RFLP or SSR

(Raboin et al., 2006; Yang, 2015; Singh et al., 2016). Due to the lack of

detection tools, high-density genotyping of large populations, the

genetic distance between the QTL markers and the gene of interest is

relatively large (Daugrois et al., 1996; Raboin et al., 2006). In this

study, linkage analysis was performed using a high-density map

constructed by the Axiom Sugarcane 100K SNP chip, which

contains 100,097 low-dose SNPs with a broad genetic basis and

mainly distributed in gene regions. This chip includes 64,726

single-dose markers and 35,371 double-dose markers (You et al.,

2019). Furthermore, the F1 progeny mapping population used in this

study consisted of 256 eligible F1 progeny, which is significantly more
TABLE 3 SMD resistance-related QTLs in a F1 progeny mapping population from the YT93-159 × ROC22 cross.

QTL Position Left/Right markers LOD PVE
(%)

Effect
female

Effect
male

Effect
FM

GD
(cM) Markera Distance

(cM)b

qRsm-
Y12

16
AX-171367442/AX-

171312668
10.19 17.10 -0.01 -0.05 0.50 9.5

AX-
171312668

0.9

qRsm-
Y41

35
AX-171308038/AX-

171265900
2.72 3.57 0.06 -0.21 -0.11 6.8

AX-
171308038

1.5

qRsm-
Y52

4
AX-171266761/AX-

117172243
3.25 4.90 0.27 -0.04 -0.02 25.3

AX-
171266761

0.4

qRsm-
Y57

60
AX-171332119/AX-

171288089
3.37 5.12 0.19 -0.03 0.22 5.6

AX-
171288089

2.4

qRsm-
R14

0
AX-171290689/AX-

171329853
2.52 3.88 -0.11 -0.10 0.19 1.8

AX-
171290689

0

qRsm-
R23

17
AX-171330585/AX-

171286409
3.44 7.70 0.11 0.13 -0.25 0.7

AX-
171286409

0.2

qRsm-
R92

3
AX-171360287/AX-

171296656
2.62 4.26 -0.22 0.12 -0.09 5.3

AX-
171296656

2.3
“Y”, YT93-159; “R”, ROC22; LOD, logarithm of odds; PVE, phenotypic variation explained; GD, genetic distance between left and right markers; a Nearest marker from the QTL peak, b Distance of
nearest marker from the respective QTL peak.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1107314
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Lu et al. 10.3389/fpls.2023.1107314
than those of previous studies (Raboin et al., 2006; Yang et al., 2015;

Singh et al., 2016).

The genetic analysis of SMD resistance was analyzed in this study.

Seven SMD resistance-related QTLs were detected, only one of which,

qRsm-Y12, was a major QTL that could explain 17.1% of the PVE.

The genetic effect of qRsm-Y12 is similar to the PVE effects seen for

SCMV resistance (14.02%) by marker AFLP-346 in sugarcane

(Burbano et al., 2022) and the 15.3% ~ 15.8% PVE effect of a major

QTL R-scm3 related to SCMV resistance in maize (Zhang et al., 2003).

The seven QTLmarkers identified in this study range in distance from

the nearest marker from 0 to 2.4 cM, with an average of 1.1 cM, which

is similar to those seen for sugarcane brown rust resistance-associated

markers (0.1 cM ~ 8.1 cM) (Yang et al., 2017) and sugarcane orange

rust markers (0.2 cM ~ 2.2 cM) (Yang et al., 2018). This further

demonstrated the feasibility and reliability of using SNP genetic maps

to locate target trait-related QTLs. However, even with a high-quality
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sugarcane SNP map, the distance of the closest markers on either side

of the QTL is relatively large (Wang et al., 2021). For example, the

distance between QTL qRsm-Y57 and the closest marker is 2.4 cM,

which makes target trait localization difficult and highlights the need

for fine localization of SNP markers.

The major disease resistance traits in plants may generally be

described by a gene-for-gene mechanism. The Avr products of

pathogen-encoded avirulence genes are specifically recognized

directly or indirectly by specific proteins encoded by the cognate

plant disease resistance genes (Flor, 1971; Jia et al., 2000; Yakupjan

et al., 2015). When plants sense a pathogen invasion signal, the

disease resistance genes are activated through a series of signal

transmissions. During this process, transcription factors play an

important role in the defensive responses. For example, they may

inhibit or activate the transcriptional expression of target genes by

binding to specific DNA sequences in target gene promoters (Zhang
FIGURE 4

Location of seven SMD resistance-related QTLs (q) on sugarcane genetic linkage maps “Rsm”, resistance trait to sugarcane mosaic disease; “Y”, YT93-
159; and “R”, ROC22. The colored text values, phenotypic variation explained (PVE).
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et al., 2009). Plant leucine-rich repeat (LRR) receptor-like protein

kinases represent a large group of protein families that play important

roles in disease resistance (Smakowska-Luzan et al., 2018). Zhang

et al. (2021) showed that a homologous OsRLP1 gene regulated rice

resistance to Rice black-streaked dwarf virus infection. Qi et al. (2014)

found that a mutant of A. thaliana protein kinase AVRPPHB

susceptible (PBS1) was defective in sensing the avirulence gene

avrPphB of Pseudomonas syringae. Lee et al. (2015) showed that a

serine/threonine kinase domain protein encoded by OsPBL1 gene
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might play a role in rice stripe resistance. Chang et al. (2022) found a

FKBP-type peptidyl-prolyl cis-trans isomerase (PPIase) could interact

with the motor protein of Tomato leaf curl New Delhi virus, and its

transient overexpression reduced the virus replication. Aparicio and

Pallás (2017) confirmed that bHLH transcription factor can promote

salicylic acid-dependent defense signaling by interacting with the

Alfalfa mosaic virus CP protein. Studies have also shown that

MdMYB73 can improve apple’s resistance level to Botryosphaeria

dothidea through the salicylic acid pathway (Gu et al., 2020). The
BA

FIGURE 5

Expression of SMD resistance-related candidate genes (A) disease response-related genes; (B). disease resistance-related transcription factors.
TABLE 4 Information for SMD resistance-related key genes.

No. QTL Candidate
gene

Arabidopsis homologous
gene

Conserved
domain Gene description

1
qRsm-
R14

Soffic.07G0015370-
1P

AT2G43560 FkpA super family FKBP-like peptidyl-prolyl cis-trans isomerase family protein

2
qRsm-
Y52

Soffic.09G0015410-
2T

AT5G54680 bHLH_AtILR3_like
basic helix-loop-helix (bHLH) DNA-binding superfamily

protein

3
qRsm-
Y52

Soffic.09G0016460-
1T

AT5G01920 STKc_SNT7_plant Protein kinase superfamily protein

4
qRsm-
Y52

Soffic.09G0016460-
1P

AT5G01920 STKc_SNT7_plant Protein kinase superfamily protein

5
qRsm-
Y52

Soffic.09G0017080-
3C

AT3G12480 BUR6 super family nuclear factor Y, subunit C11

6
qRsm-
Y52

Soffic.09G0018730-
3P

AT5G25930 LRR
kinase family with leucine-rich repeat domain-containing

protein

7
qRsm-
Y52

Soffic.09G0018730-
3C

AT5G25930 LRR
kinase family with leucine-rich repeat domain-containing

protein

8
qRsm-
Y52

Soffic.09G0019920-
3C

AT1G68830 PLN03225 Serine/Threonine kinase domain protein

9
qRsm-
Y52

Soffic.03G0019710-
2C

AT5G23000 PLN03091 super family myb domain protein 37
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expression of a MYB transcription factor CaPHL8 was upregulated in

Ralstonia solanacerum infected pepper plants. The upregulated

expression activated the expressions of immune-related genes to

enhance the defense response of pepper (Noman et al., 2019).

O’Conner et al. (2021) showed that overexpression of GmNF-YC4-2

in soybean increased seed protein content, exhibited a broad disease

resistance, and accelerated soybean maturation.

In this study, a total of 110 pathogen-responsive genes and 69

transcription factors were identified in the interval regions of the QTLs.

Among them, nine candidate genes were obtained in the interval region

of the major QTL qRsm-Y12, including one transcription factor and eight

resistance genes. Basically, plants share a common resistance mechanism

to the same type of pathogen (Jones and Dangl, 2006; Li et al., 2020).

SCMV and SrMV are the most widely distributed sugarcane mosaic virus

in the world, with SCSMV mainly distributed in Asia (Lu et al., 2021).

Therefore, we used an artificial inoculum that only contained SCMV and

SrMV. Combined with the TPM normalization results of RNA-seq gene

expression after inoculation of SCMV and SrMV, six genes and three

transcription factors had significantly different levels of expression

between resistant and susceptible materials. Two genes,

Soffic.09G0018730-3P and Soffic.09G0018730-3C, contained LRR

domains. Two genes, Soffic.09G0016460-1T and Soffic.09G0016460-1P,

encoded kinase superfamily proteins. Gene Soffic.09G0019920-3C

encoded a serine/threonine kinase domain protein. Gene

Soffic.07G0015370-1P encoded a PPIase family protein. Among the

transcription factors, Soffic.09G0015410-2T is a bHLH transcription

factor, Soffic.03G0019710-2C encodes a MYB transcription factor, and

Soffic.09G0017080-3C encodes a NF-YC transcription factor. It is thus

speculated that these six genes and three transcription factors may have

potential functions in sugarcane mosaic disease resistance.
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Conclusions

This study showed that the SMD resistance trait of 256 F1
progeny of a cross (YT93-159 × ROC22) tested under different

environments was significantly correlated (p< 0.001) with

correlation coefficients of 0.26~0.91, and hence was a highly

heritable quantitative trait (H2 = 0.85). Based on the consolidated

multiple data sets of SMD resistance, 29 immune, 55 highly

resistant, 70 moderately resistant, 62 susceptible, and 40 highly

susceptible F1 progeny were identified. Using a high-quality SNP

chip, seven SMD resistance-related QTLs were located. One major

QTL, qRsm-Y12, explained 17.10% of the PVE and six minor QTLs,

namely, qRsm-Y41, qRsm-Y52, qRsm-Y57, qRsm-R14, qRsm-R23,

and qRsm-R92, explained 3.57% ~ 7.70% of the PVE. A total of 110

SMD response genes and 69 transcription factors were screened for

association with SMD resistance. Six key genes, namely,

Soffic.07G0015370-1P, Soffic.09G0016460-1T, Soffic.09G0016460-1P,

S o ffi c . 0 9 G 0 0 1 8 7 3 0 - 3 P , S o ffi c . 0 9 G 0 0 1 8 7 3 0 - 3 C , a n d

Soffic.09G0019920-3C and three transcription factors, namely,

S o ffi c . 0 9 G 0 0 1 5 4 1 0 - 2 T , S o ffi c . 0 9 G 0 0 1 7 0 8 0 - 3 C , a n d

Soffic.03G0019710-2C , were identified. These genes and

transcription factors can be further explored and utilized in the

marker-assisted breeding for mosaic disease resistance in sugarcane.
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Genetic mapping of QTLs
controlling brown seed coat
traits by genome resequencing
in sesame (Sesamum indicum L.)

Han Wang1†, Chengqi Cui2,3†, Yanyang Liu2,3,
Yongzhan Zheng2,3, Yiqing Zhao1, Xiaoqin Chen1, Xueqi Wang1,
Bing Jing1*, Hongxian Mei2,3* and Zhonghua Wang1*

1State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F
University, Yangling, China, 2Henan Sesame Research Center, Henan Academy of Agricultural
Sciences, Zhengzhou, China, 3The Shennong Laboratory, Zhengzhou, China
Introduction: Sesameseedshavebecomean irreplaceablesourceofedibleoilsand

foodproductswith rich nutrients and a unique flavor, and theirmetabolite contents

and physiological functions vary widely across different seed coat colors. Although

the quantitative trait loci (QTLs) for genetic variation in seed coat color have been

extensively investigated, the identification of unique genetic loci for intermediate

colors such as brown has not been reported due to their complexity.

Methods: Here, we crossed the white sesame ‘Yuzhi No. 8’ (YZ8) and the brown

sesame ‘Yanzhou Erhongpi’ (YZEHP) to construct a recombinant inbred line (RIL)

population with consecutive self-fertilization for ten generations.

Results: The selfed F1 seeds were brown which was controlled by a dominant

gene. Based on the genotyping by whole-genome resequencing of the RILs, a

major-effect QTL for brown coat color was identified through both bulk

segregant analysis (BSA) and genetic linkage mapping in sesame, which was

located within a 1.19 Mb interval on chromosome 6 (qBSCchr6). Moreover, we

found that the YZEHP seed coat initially became pigmented at 20 days post-

anthesis (DPA) and was substantially colored at 30 DPA. We screened 13 possible

candidate genes based on the effects of genetic variants on protein coding and

predicted gene functions. Furthermore, qRT‒PCR was used to verify the

expression patterns of these genes in different post-anthesis developmental

periods. We noted that in comparison to YZ8 seeds, YZEHP seeds had expression

of SIN_1023239 that was significantly up-regulated 2.5-, 9.41-, 6.0-, and 5.9-fold

at 15, 20, 25, and 30 DPA, respectively, which was consistent with the pattern of

brown seed coat pigment accumulation.

Discussion: This study identified the first major-effect QTL for the control of the

brown seed coat trait in sesame. This finding lays the foundation for further fine

mapping and cloning as well as investigating the regulatory mechanism of seed

coat color in sesame.

KEYWORDS

sesame, seed coat color, whole-genome resequencing, BSA, QTL mapping, qRT-PCR
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1 Introduction

Sesame (Sesamum indicum L.) is an exceptional and essential

oilseed crop; it is one of the oldest such crops known to mankind,

having been domesticated from its wild progenitor S. malabaricum

on the Indian subcontinent approximately 5000 years ago

(Bedigian, 2003; Fuller, 2003). Sesame seeds are used for a wide

variety of applications, both as condiments and as a source of edible

oil. Sesame oil is commonly used for its distinctive flavor, in

addition to being a key component in the production of

margarine, soap, and lubricants (Hwang, 2005). One of the main

distinguishing characteristics of sesame seeds is the color of the seed

coat. Seed coat color is a crucial aspect of seed quality and is related

to the biochemical properties of the seed and to the activity and

content of its antioxidant substances (Shahidi et al., 2006; Kermani

et al., 2019). These different biochemical and antioxidant properties

may be most closely related to higher levels of sesamol, sesaminol,

alpha-tocopherol, and flavonoids in the seed coats of colored

sesame than that of white sesame seeds (Xu et al., 2005).

However, it has not yet been possible to identify the genes that

regulate the metabolic pathways and mechanisms of interaction

that determine sesame seed coat color, which is typically thought to

show a complicated pattern of quantitative inheritance (Zhang

et al., 2013).

Mature sesame seeds come in a variety of natural coat colors,

including black, gray, brown, gold, yellow, beige, and white (Prasad

and Gangopadhyay, 2011; Pandey et al., 2013). As seed coat color is

one of the central targets of sesame breeding programs, research into

the inheritance of the trait and the corresponding gene loci have been

of considerable scientific interest. In 1931, a Japanese researcher

initially suggested that the inheritance of sesame seed coat color

potentially fit a segregation pattern involving three allelic genes

(Teshima, 1931). Zhang et al. (2013) identified and analyzed the

genetic segregation of quantitative trait loci (QTLs) for sesame seed

coat color over six generations and concluded that two major-effect

genes with additive-dominant-epistatic effects and multiple minor-

effect genes with additive-dominant-epistatic effects were responsible

for controlling the seed coat color trait. Moreover, seven QTLs that

control sesame seed coat color traits were identified by Du et al.

(2019). In addition, Wang et al. (2016) mapped three QTLs that were

repeatedly detected and accounted for 80% of the phenotype

variation by resequencing a RIL population. According to the

annotation of genes anchored to genomic intervals combined with

transcriptome analysis, the polyphenol oxidase (PPO) gene may be

involved in the production of the black seed coat in sesame, and this

finding has been supported by several investigations (Wei et al., 2015;

Wang et al., 2016; Wei et al., 2016; Wang et al., 2020). Furthermore,

since the development of next-generation sequencing technologies,

whole-genome association analysis has been used to dissect complex

traits in crops, as QTL mapping research in the segregating progeny

of classical hybrids is limited by a low number of recombination

events and cultivar-specific allelic loci (Nordnorg and Welgel, 2008;

Guo et al., 2013). By resequencing an association analysis panel of 366

sesame germplasm lines, Cui et al. (2021) demonstrated complex

genetic variation in seed coat color. The results revealed that 22

significant single-nucleotide polymorphisms (SNPs) were located
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within the reported QTL confidence intervals and that the four

most reliable and significant flanking regions of these SNPs

contained 92 candidate genes. However, researchers have been

unable to perform additional in-depth investigations on the locus

that controls the seed coat color trait in sesame due to gaps in the

QTL mapping studies regarding intermediate seed coat colors.

Furthermore, it is not possible to validate the currently available

genetic loci against each other because much of the existing sesame

QTLmapping research has been based on independent genetic maps.

Thus, to meet the needs of molecular breeding, QTL mapping

research on sesame seed coat color should be expanded using high-

quality genomes anchored to chromosomes.

Plant seed color is mainly characterized by the accumulation of

pigmentedmetabolites in the seedcoat. In this context, abrownseedcoat

has been identified as possibly being regulated by theflavonoid synthesis

pathway in several plant species. The genes thatmay regulate the brown

seedcoat inArabidopsis include those encoding theTransparentTesta12

(TT12) and EXO70 exocyst subunit (EXO70B1) transporter proteins

and the proanthocyanidin (PA) oxidase enzyme (TT10) (Debeaujon

et al., 2001; Pourcel et al., 2005; Kulich et al., 2013). Moreover,

Transparent Testa Glabra2 (TTG2) was found to interact with TTG1

to form a complex that directly regulates the expression of TT12 to

produce brown Arabidopsis seed coats (Gonzalez et al., 2016). Among

other crops, many transcription factors, such as MYB, basic helix-loop-

helix (bHLH), and WD40 proteins, have been identified as potentially

being involved in the regulation offlavonoid biosynthesis (Zhang et al.,

2009; Gillman et al., 2011; Hong et al., 2017; Ren et al., 2017). Small

interfering RNAs (siRNAs) were also found to silence the expression of

transposable elements (TEs) or protein-coding genes and thereby affect

the synthesis and regulation offlavonoidmetabolites (Jia et al., 2020). In

addition, PPOs such as laccase, tyrosinase, and even peroxidase are

involved in the oxidation steps of PA, lignin, and melanin biosynthesis

(Pourcel et al., 2007; Yu, 2013).

In this study, we used a RIL population and the whole-genome

resequencing technique to perform QTL mapping for seed coat

color in sesame. A major-effect QTL, qBSCchr6, controlling the

brown seed coat trait in sesame was revealed by the combination of

BSA and high-density genetic linkage mapping. The candidate

genes involved in the regulation of the brown seed coat were

screened based on the evaluation of the effect of genetic variants

on protein coding and predicted gene functions. The expression

patterns of these genes in different developmental periods at post-

anthesis were analyzed using qRT−PCR. The results of this study

will enhance the development of research on the genetic and

molecular mechanisms of sesame seed coat color regulation and

provide a basis for functional gene cloning studies.
2 Materials and methods

2.1 Plant materials

The cultivar Yanzhou Erhongpi (YZEHP) has a brown seed coat

and is a landrace collected from Shandong Province, China. The

Yuzhi No. 8 (YZ8) cultivar, which was bred by Henan Academy of

Agricultural Science, produces seeds with a white coat. A mapping
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population of 315 recombinant inbred lines (RILs, F10 generation)

was constructed from a cross between YZEHP and YZ8 using the

single-seed descent (SSD) method. The lines showed obvious

differences in traits such as plant height, thousand grain weight,

capsule length, and seed coat color. The RIL population and both

parents were planted in 2020 at experimental sites in Sanya, Hainan

Province (SY, N18°140′, E109°290′), Zhumadian, Henan Province

(ZMD, N32°59′, E114°42′), and Nanyang, Henan Province (NY,

N32°54′, E112°24′). All the plants were arranged in a randomized

block design with two replicates, and 10 representative plants of

each line were harvested for the investigation of seed coat color.
2.2 Seed coat color evaluation and
statistical analysis

Initially, we superficially observed both brown and white

mature seed coat types. Additionally, a Colorflex EZ

spectrophotometer (Hunter Associates Laboratory Inc, Virginia,

USA) was used to measure the colors of the seed coats in three

different environments. Mature seeds were scanned in a quartz box

to quantify the L*, a*, and b* values for seed coat color. The L*

value, which represents brightness, ranges from 0 (black) to 100

(white), while the values of a* and b*, which represent color shades,

range from -60 for green to +60 for red and -60 for blue to +60 for

yellow, respectively (Aruldass et al., 2014). Phenotypic statistics

were calculated using SAS v9.1 (SAS Institute, Inc., Cary, NC, USA).

Based on the mean values of L*, a*, and b* for the sesame seed coat

color phenotype among replicates and different environments, the

broad-sense heritability was calculated using the AOV module in

QTL IciMapping v4.2 (Meng et al., 2015). Furthermore, the color

phenotypes observed for each line corresponded to the L*, a*, and

b* values and were visualized by ggplot2 v3.3.6 (Wickham, 2016).
2.3 Sequencing and SNP/InDel calling

Genomic DNA was extracted from seedling leaves of the parents

andRILsusing amodified cetyltrimethylammoniumbromide (CTAB)

method (Mei et al., 2017). The quality of the genomic DNA was

examinedwithaNanoDrop2000 (ThermoFisher Scientific,Waltham,

MA, USA) and by 1.0% agarose gel electrophoresis. After ultrasound

fracturing, the DNA was sequentially end repaired, sequencing

junction ligated, and enriched by magnetic bead adsorption to

obtain fragments with a genomic length of approximately 400 bp.

These fragments were then amplified by PCR to establish a sequencing

library. The IlluminaNovaSeq 6000 platformwas used to sequence the

quality-checked libraries with a total sequencing read length of 300 bp

using the IlluminaPE150 sequencing strategy. The twoparents and the

RILs were sequenced at depths of approximately 15× and 5×,

respectively. The reads were filtered to eliminate adapters and low-

quality reads. Based on the seed coat color phenotypes of the RILs

grown in ZMD, we merged the clean reads of 50 randomly selected

lines fromwhite and brown sesame, respectively, to construct extreme

bulks. The clean reads of all samples were aligned to the reference

genome (Wang et al., 2016) using Burrows–Wheeler Aligner (BWA)
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v0.7.17 (Li and Durbin, 2009). SNPEff v4.3T (Cingolani et al., 2012)

and the gene annotation information of the reference genome were

used to functionally annotate SNPs and small InDels after correction

and detection by using Genome Analysis Toolkit (GATK) v4.0.11.0

(McKenna et al., 2010) andSAMtools v1.9.0 (Li et al., 2009).According

to genetic principles, all markers were examined for parental

polymorphism. Variant sites that differed between the parents were

selected andcodedasmolecularmarkers, and thegenotypesof theRILs

and bulks were extracted for additional analysis.
2.4 BSA, genetic map construction, and
QTL mapping

The QTL-seq method was implemented to calculate the DSNP
index (Takagi et al., 2013). The SNP index represents the proportion of

short reads harboring SNPs that differ from the reference sequence to

the total reads coveringaparticular genomic position (Abe et al., 2012).

The SNP index of the extremebulkswas statistically analyzed based on

the averageSNPindexwithineachgenomic interval containing20SNP

variants, which was individuallymeasured using a slidingwindow of 5

SNP variants. The DSNP index is the average SNP index difference

between the two extreme bulks (99.9% quantile as the threshold), and

this analysis revealed significant differences in genotype frequencies

between the extreme bulks (Hill et al., 2013).

We selected polymorphic markers of the aa×bb type between

the parents as valid markers, and these markers were screened for

abnormal bases, completeness, and segregation distortion after

being used to genotype the RIL population. Moreover, we utilized

a reference genome assisted correction-based linkage group

ordering scheme. We completed the construction of the genetic

map using MstMap (Wu et al., 2008), and we then used ASMapR

v1.0-4 and R/qtl v1.44-9 to evaluate the monomeric origin and

recombination relationships (Broman et al., 2003; Taylor and

Butler, 2017). In addition, we analyzed the collinearity of the

linkage map with the physical map. Finally, the visualization of

the genetic map was completed using LinkageMapViewR v2.1.2

(Ouellette et al., 2018). R/qtl was used for standard and stepwise

interval mapping with 1000 permutations and a p value of 0.05 as

the logarithm of odds (LOD) significance detection threshold.

Composite interval mapping (CIM) was performed based on a 5

cM marker window size and a step of 1 cM. The location of each

QTL was determined based on the location of the LOD peak for

each QTL and the surrounding area. The percentage of phenotypic

variation explained (R2) by the QTL was estimated at the highest

probability peak (Tao et al., 2022).
2.5 Bioinformatic analysis

Gene sequence information was obtained based on the

candidate intervals. The functions of the candidate genes were

annotated by using the NR (http://www.ncbi.nlm.nih.gov/),

UniProt (http://www.uniprot.org/), Gene Ontology (GO) (http://

www.geneontology.org/), Kyoto Encyclopedia of Genes and

Genomes (KEGG) (http://www.genome.jp/kegg/) databases, and
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the Basic Local Alignment Search Tool (BLAST) program in the

EggNOG (http://eggnog-mapper.embl.de/) database for annotation.

Moreover, the analysis of protein coding variants included variants

annotated by SNPEff with sequence ontology terms for assessing

sequence changes and impacts, and categorized the impact of

SNP/InDel within the candidate interval into four classes: High,

Moderate, Low, and Modifier, in descending order according to the

effect of the variant on protein coding (Supplementary Table 1)

(Cingolani et al., 2012; Oren et al., 2022).
2.6 RNA extraction and qRT−PCR analysis
of candidate genes

We also sampled parental seeds at 10, 15, 20, 25, and 30 DPA in

Yangling, Shaanxi Province (N34°27′, E108°07′), in 2022.

Quantitative color analysis of the seed coat was performed with a

CIE-Lab color scale (Colorimeter, CS-820, Hangzhou, China) with

a 6 mm aperture due to the small sample size (Dong et al., 2022). All

samples were flash frozen in liquid nitrogen and stored at -80°C in

the refrigerator until needed. Total seed RNA was extracted using a

kit (DP441, TIANGEN, China) and first-strand cDNA was

synthesized by the PrimeScript RT reagent kit (#6210A, Takara,

Kusatsu, Japan). Three independent biological replicates of the qRT

−PCR (#RR820A, Takara, Kusatsu, Japan) protocol were tested

using cDNA as the template for each experiment. The sesame actin

gene (SIN_1006268) was used as the internal reference gene (Wei

et al., 2015), and relative gene expression was calculated using the 2−

DDCT method (Livak and Schmittgen, 2001).
3 Results

3.1 Phenotypic and genetic analysis of the
brown seed coat in sesame

To reveal the genetic basis of the brown seed coat color in

sesame, a RIL population including 315 lines was developed using

YZEHP (male, brown seeds) and YZ8 (female, white seeds) as two
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parental lines in this study. We first investigated the phenotypes of

seed coat color traits for several generations. The contemporary

hybrid seeds obtained from the maternal plants were white

(consistent with the YZ8 phenotype), while the selfed seeds

developed from the F1 generation were brown (consistent with

YZEHP phenotype) (Figure 1A). The brown seed coat in sesame is

dominant to the white seed coat. Notably, angiosperm seed coats

develop from bead tepals (Haughn and Chaudhury, 2005).

Therefore, the genotype of the sesame seed coat is consistent with

that of the female parent because the inheritance of sesame seed

coat traits is matrilineal, as found in previous studies (Wang et al.,

2016; Das et al., 2018). We performed visual observations of mature

seed color phenotypes and identified 162 and 153 lines among 315

RILs with brown and white seed coats, respectively (data not

shown). Furthermore, we quantified the seed coat color by using

a colorimeter and found that the L*, a*, and b* values of the brown

and white seeds of the RILs differed significantly (P<0.001) across

the three environments (Figure 1B). Interestingly, the L*, a*, and b*

values showed a bimodal continuous distribution in the RIL

population (Supplementary Figure 1). Additionally, the mean

coefficients of variation (CV) for the L*, a*, and b* values across

environments were 6.54%, 27.86%, and 12.80%, respectively. The L*

value for RILs across environments ranged from 49.23~64.63, the a*

value ranged from 4.51~11.18, and the b* value ranged from

18.36~28.97. The L*, a*, and b* values presented average broad-

sense heritabilities of 94.95%, 96.87%, and 95.67%, respectively

(Figure 1B; Table 1). The results suggest that the phenotype of

the brown seed coat trait in sesame is determined (in order from

highest to lowest) by redness, yellowness, and brightness.
3.2 Sequencing the RIL population for BSA
analysis and marker identification

Whole-genome resequencing was used to analyze the two

parents and 315 RILs. A total of 455.90 Gb of clean bases was

obtained after sequencing and filtering; the average Q30 quality

score was over 90.98%; the average matching efficiency of the

samples to reference genome was 97.18%; and the GC content
A B

FIGURE 1

Phenotypic analysis of parents and RILs. (A) Seed coat color of the parents and hybrid offspring. (B) Distribution of quantitative values of L*, a*, and
b* in the RIL population, Significant levels were determined by T-test, with *** representing p<0.001 level.
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ranged from 36.67~39.3%. The amounts of data obtained for

YZEHP and YZ8 were 5.24 Gb and 4.93 Gb, respectively, and the

actual average amount of data obtained for the RILs was 1.41 Gb,

and the average sequencing coverage was 18.61× for the parents and

5.16× for the RIL population (Supplementary Figure 2;

Supplementary Table 2). It was evident that all samples showed a

sufficient amount of data, normal distribution, and regular

sequencing results when compared to the sesame reference

genome, suggesting that they could be used for subsequent

analysis. Then, we merged the clean reads separately from 50

lines to develop the following two extreme bulks: one with 231

million reads in a white seed coat bulk and the other with 240

million reads in a brown seed coat bulk (Supplementary Table 2).

These two extreme bulks were screened for 38,752 SNP markers,

which were used to calculate genotype frequencies (Supplementary

Table 3). Additionally, 1,284,658 SNP/InDel markers were detected

between two parental lines, of which 167,862 were valid markers of

the aa×bb type with a sequencing depth of no less than 2 in the RILs

and 10 in the parental lines (Supplementary Figure 3). After

screening the markers for abnormal bases, completeness, and

segregation distortion, 7,908 high-quality markers remained after

genotyping the RIL population with validated polymorphic markers

were used for the following analysis.
3.3 Construction of a high-density
genetic map

Among the remaining 7,908 markers, 7,817 were ordered into

13 linkage groups based on the reference genome. The length of the

high-density linkage map was 1833.89 cM, and the average distance

between markers was 0.23 cM (Supplementary Figure 4; Table 2;

Supplementary Table 4). The linkage group with the highest

number of markers was LG5, which contained 1,667 markers. We

next performed a quality assessment analysis of the genetic map.
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First, based on haplotype map analysis of recombination

breakpoints, 7,817 markers were used to genotype the RILs, and

the sources of recombination blocks were specifically explained

(Supplementary Figure 5). Second, we analyzed the relationships

between the positions of all mapped markers in the genetic map and

the physical map of the reference genome, and the Spearman

correlation coefficient between them exceeded 0.89, with a high

observed collinearity (Supplementary Figure 6; Supplementary

Table 5). Third, we used a heatmap to directly reflect

recombination rates and LOD scores between markers, and no

switched alleles were discovered; switched alleles were indicated by

low LOD scores and low recombination fractions (Supplementary

Figure 7) (Maldonado-Taipe et al., 2022). In summary, we

constructed an accurate and reliable genetic map which was

suitable for QTL mapping.
3.4 BSA and QTL mapping reveal the
physical position of the locus controlling
the brown seed coat in sesame

We identified QTLs using both BSA and traditional linkage

mapping methods. In BSA, the SNP index of the two extreme bulks

was calculated and visualized using sliding window analysis along

chromosomes. Based on a 99.9% quantile threshold, we identified a

significant physical interval (16.36Mb~21.46Mb) on chr6 by analyzing

the SNP index of the two bulks throughout the 38,752 SNP markers

(Figure 2A). In particular, the mean SNP index of the two bulks within

the 18,323,068 to 20,213,179 bp sliding window was 0.89 and 0.14,

respectively (Supplementary Table 6). This result suggests that there

was a strong signal in this genomic region which may be controlled by

a powerful QTL. To map brown seed coat-related QTLs more

accurately, linkage mapping was performed based on the high-

density genetic map and quantitative data for RILs seed coat color.

We examined QTLs in three environments for L*, a*, and b* values.
TABLE 1 Descriptive statistics and broad-sense heritability (H2) for three seed coat color related traits of RILs.

Trait Environment Mean SD Range CV (%) Excess Kurtosis Skewness H2 (%)

L* SY 57.51 3.41 50.54-63.99 5.94 -1.33 0.04 94.95

NY 58.01 3.95 49.36-65.59 6.82 -1.32 0.06

ZMD 57.01 3.92 47.79-64.3 6.88 -1.04 0.01

Mean 57.51 3.76 49.23-64.63 6.54 -1.23 0.04

a* SY 7.86 2.09 4.77-11.07 26.55 -1.76 -0.07 96.87

NY 7.67 2.28 4.37-11.01 29.78 -1.81 -0.04

ZMD 8.04 2.21 4.39-11.46 27.49 -1.65 -0.14

Mean 7.86 2.19 4.51-11.18 27.86 -1.74 -0.08

b* SY 23.99 2.85 18.87-28.40 11.87 -1.63 -0.12 95.67

NY 24.34 3.20 18.64-29.72 13.15 -1.65 -0.09

ZMD 23.64 3.16 17.57-28.80 13.35 -1.49 -0.14

Mean 23.99 3.07 18.36-28.97 12.80 -1.59 -0.12
front
SD, standard deviation; CV, coefficient of variation; H2 broad-sense heritability.
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Under the threshold condition of LOD≥3.10 (p value=0.05), three

major QTLs were detected in all three environments within a genetic

interval of 89.17~101.29 cM on chr6 (Figure 2B; Table 3). The mean

LOD values of the QTLs for L*, a*, and b* in the three environments

were 24.27, 33.02, and 31.51, respectively, and the mean R2 were

33.64%, 36.63%, and 34.55%, respectively. Additionally, a weaker QTL

on chr3 for the L* value was detected in all three environments. The

mean LOD value of the QTL was 4.34, and the mean R2 was 4.41%,

which suggests that this QTL plays a minor role in regulating brown

seed coat brightness (Table 3). We continued our analysis of the

intervals on chr6 identified by BSA and QTL mapping. Both analysis

methods repeatedly identified approximately the same interval. This
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supports the identification of this interval and its surrounding region as

a reliable major-effect QTL controlling brown seed coat traits. The

flanking markers chr_16989955 and chr_20193451 spanned a physical

distance of 3.2 Mb in the reference genome (chr6: 16.99 Mb~20.19

Mb). Notably, the 1.19 Mb region on chr6 between the markers

chr_18323068 and chr_19517928 overlapped with other QTL

intervals identified in all environments and is the closest to the LOD

peak (Figure 3; Table 3). In summary, by combining BSA and

traditional QTL mapping methods, we confirmed the mapping of

major-effect QTL regulating the brown coat trait in sesame in the

merged region of 18,323,068~19,517,928 bp on chr6, with a physical

distance of 1.19 Mb. We designated this QTL qBSCchr6.
TABLE 2 Basic information of the high-density genetic linkage map of RIL population.

Linkage group ID Total marker Total distance (cM) Average distance (cM) Max gap (cM) Gaps < 5cM (%)

LG1 333 125.16 0.38 6.20 98.50

LG2 340 155.93 0.46 13.84 97.94

LG3 691 153.39 0.22 7.04 99.42

LG4 533 146.11 0.27 9.34 98.31

LG5 1667 142.25 0.09 12.18 99.94

LG6 881 125.09 0.14 8.40 99.55

LG7 817 143.49 0.18 7.72 99.14

LG8 508 164.67 0.32 11.47 98.62

LG9 402 121.01 0.30 9.74 99.00

LG10 784 127.72 0.16 8.53 99.74

LG11 297 121.37 0.41 11.41 97.64

LG12 527 143.52 0.27 10.41 99.43

LG13 37 164.19 4.56 18.37 67.57

Total 7817 1833.89 0.23 18.37 99.08
A

B

FIGURE 2

QTL identification across chromosomes and linkage groups using BSA and genetic linkage mapping, respectively. (A) QTL-seq analysis with the
number of SNPs as the sliding window, with the red dashed line representing the significance threshold. (B) QTL scanning of the brown seed coat
for the total linkage groups.
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3.5 Screening of candidate genes and
preliminary validation by qRT−PCR

To extract additional information for qBSCchr6, we identified a

total of 1,720 SNPs/InDels in this interval, among which there were 50

effective SNPs and 16 effective InDels (Supplementary Table 7). In

total, therewere 118 genes in this candidate region, with intro variants,

frameshift variants, disruptive inframe deletions, and missense

variants of 45, 8, 4, and 29, respectively (Supplementary Table 8).

Ultimately, 42 genes were predicted to show high and moderate
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variance effects on protein coding (Supplementary Table 9). It was

previously reported that seed coat color may be associated with the

synthesis offlavonols, anthocyanins, lignin, andmelanin (Pourcel et al.,

2007; Yu, 2013).We found that 13of these 118 genesmaybe associated

with brown seed coat color regulation based on their function. Five of

these genes showed high or moderate effects on protein coding;

SIN_1023218, SIN_1023231, SIN_1023270, and SIN_1023287 were

annotated as missense variants, and SIN_1023210 was annotated as a

frameshift variant and disruptive in-frame insertion. These variants

with high or moderate effects on protein coding may cause the loss of
TABLE 3 QTL information for brown seed coat-related traits detected in the RIL population.

Trait Environment chr Position (cM) LOD R2 (%) Start (cM) End (cM) Physical interval (bp)

L* SY 3 21.60 4.46 4.31 17.00 23.29 22465300-23218480

NY 21.60 3.42 4.05 21.60 23.11 22465436-22607606

ZMD 21.60 5.13 4.87 17.00 23.29 22465300-23218480

SY 6 93.19 32.84 35.68 93.19 96.87 18323068-19517928

NY 96.87 12.21 35.79 93.19 101.29 18323068-20193451

ZMD 93.19 27.76 29.46 89.17 96.87 16989955-19517928

a* SY 6 93.19 33.97 37.79 93.19 96.87 18323068-19517928

NY 93.19 35.85 39.62 93.19 96.87 18323068-19517928

ZMD 93.19 29.25 32.49 89.17 96.87 16989955-19517928

b* SY 6 93.19 33.74 36.02 89.17 96.87 16989955-19517928

NY 93.19 34.73 38.60 93.19 96.87 18323068-19517928

ZMD 93.19 26.06 29.02 89.17 96.87 16989955-19517928
FIGURE 3

Position of qBSCchr6 on the chr6 physical map. Colored boxes represent the physical distance spanned on chr6 for QTL identified by BSA and QTL
mapping.
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the original function and thus interrupt the accumulation of pigments

in the seed coat (Supplementary Table 10).

Additionally, we observed the phenotypes of the parental

characteristics at different days post-anthesis and found that the

seed coat color appeared slightly different between the parents

starting at 20 DPA, and that some areas of the seeds of YZEHP

were colored at 25 DPA and substantially colored at 30 DPA

(Figures 4A, B). Next, we performed preliminary qRT−PCR

validation of 13 genes with possible functions associated with

seed coat color and found that the expression level of

SIN_1023239 in YZEHP was significantly up-regulated than YZ8

with 2.5-, 9.4-, 6.0-, and 5.9-fold at 15 DPA, 20 DPA, 25 DPA, and

30 DPA, respectively (Figure 4C). There was no discernible pattern

in the expression of the remaining 12 genes in white seeds of YZ8

and brown seeds of YZEHP (Supplementary Figure 8;

Supplementary Table 11). Therefore, it was the expression pattern

of SIN_1023239 that was consistent with the color accumulation

characteristics of the brown seed coat in YZEHP, and thus, it may

be crucial for brown seed coloration.
4 Discussion

Seed coat color is a commercially important trait in sesame;

seeds with different coat colors show specific characteristics in terms

of microelement content, and it aids in the indirect selection of

genotypes with high mineral content (Pandey et al., 2017). We

performed separate observations and instrumental quantifications

of RIL population phenotypes, and used the whole-genome
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to map QTLs for the sesame brown seed coat trait. qBSCchr6 was

identified as a major-effect QTL that spans a physical interval of

1.19 Mb on chr6. Moreover, based on the effect of gene variants on

protein coding and the potential expression pattern of the gene for

pigment accumulation during seed coat development, we identified

possible candidate genes within this interval.

Laurentin and Benıt́ez (2014) developed four F2 populations

using two white sesame cultivars and one brown sesame cultivar in

reciprocal crosses, and phenotypic investigations revealed that all

showed consistency with a 3:1 segregation ratio and that brown was

dominant to white. This is consistent with our observation that

dominant genes controlled the brown seed coat. However, the

bimodal continuous distribution of L*, a*, and b* values in the

RIL population indicates that a minor-effect genetic locus may also

control the brown seed coat trait. Therefore, the use of high-

throughput phenotypic data and an increased marker density are

both effective ways to improve the efficacy of QTL detection (Li

et al., 2010). In addition, the values of L*, a*, and b* obtained in the

three environments, showed high heritability. Previous studies have

also demonstrated that over 90% of the phenotypic variation in

sesame seed coat color is genetically controlled and slightly

influenced by environmental factors (Zhang et al., 2013).

Moreover, due to indeterminate inflorescence growth, climate,

and harvest time, differences in seed maturity at harvest can also

cause differences in seed coat color, leading to instability in

phenotypic and QTL analyses, as reported based on seed coat

color mapping in Brassica napus (Yan et al., 2009). Interestingly,

in the present study, the mean CV (from high to low) were 27.86%,
A

B C

FIGURE 4

Phenotype and gene expression of parental seed coat at different developmental stages. (A) Longitudinal sections of capsules, red line segments
indicate 0.5 mm. (B) Values of L*, a*, and b* for different developmental stages of the parental seed coat. (C) Relative expression of SIN_1023239
gene in the two parents. Significant levels of relative gene expression were determined by T-test, with ns, *, and *** representing nonsignificant, and
significant at p<0.05 and p<0.001 levels, respectively.
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12.80%, and 6.54% for a*, b*, and L* values, respectively, indicating

that a* value had the highest dispersion in the RIL population and

best represented the phenotypic characteristics of the brown coat

color trait in sesame, while the opposite was true for L* value.

A high-quality genetic map is the basis of QTL mapping for

agronomic traits. QTL mapping by whole-genome low coverage

sequencing has been successfully applied to chickpea and peanut

(Kale et al., 2015; Sun et al., 2022). In these studies, the parental

sequencing depths ranged from ~7.9× to 34.58×, the population

sequencing depths ranged from 0.72× to 1.4×, and the number of

markers used for mapping ranged from ~53,000 to ~210,000. The

actual sequencing coverage obtained in whole-genome resequencing

averaged 18.61× in the parents and 5.16× in the RIL population, which

was considered sufficient for QTL mapping in this study

(Supplementary Table 2). Although the number of markers we

obtained for mapping was only ~160,000, possibly due to our strict

filtering of the marker sequencing depth, this did not affect our ability

to construct a reliable and stable genetic map and use it for subsequent

QTL mapping. In addition, we found that most of the linkage groups

were separated into subgroups due to the uneven distribution of

adjacent markers and large gaps (up to ~18 cM), and the calculation

of recombination scores was affected by the lack of markers.We further

validated collinearity with physical maps (such as LG8, LG10, and

LG12) and found that most markers were located in the central region

of chromosomes, allowing each chromosome to be split into several

contiguous groups, similar to what has been found in wheat and quinoa

(Langlands-Perry et al., 2021; Maldonado-Taipe et al., 2022).

Importantly, this did not affect our subsequent QTL mapping

analysis, which passed several independent tests for quality.

Most previous studies on QTLs regulating sesame seed coat color

have included co-mapping for black sesame or segregation of various

colors and have not been able to separate the QTLs or mechanisms of

interaction mapped to individual seed coat colors. Through 10

successive generations of self-fertilization, we created a population of

RILs with stable inheritance and eventually identified a major-effect

QTL controlling brown seed coat traits on chr6. Furthermore, we

compared qBSCchr6 with QTLs associated with seed color from

previous reports. However, only the results from a genome-wide

association study (GWAS) of seed coat color in 366 natural

populations included the same physical interval (Cui et al., 2021). In

particular, most of the significant SNPs in the GWAS results were

mapped to the confidence intervals of qSCa-4.1/qSCb-4.1/qSCl-4.1,

qSCa-8.1/qSCb-8.1/qSCl-8.1 and qSCl-8.2 identified by Wang et al.

(2016), which further suggests the specificity and accuracy of qBSCchr6

in controlling brown seed coat color. Other comparable QTLs were not

mapped to our confidence interval (Wei et al., 2015; Wang et al., 2016).

Some previous studies applied independent genetic maps and genomes,

making it difficult to determine the relationships between their results

and qBSCchr6 (Zhang et al., 2013; Du et al., 2019; Li et al., 2021). In the

present study, the linkage analysis also revealed a minor-effect QTL for

L* color values on chr3 across the three environments, with LOD

values between 3.42 and 5.13 and R2 between 4.05% and 4.87%

(Table 3). However, the DSNP index in the BSA did not fluctuate

within this interval, probably because QTL-seq is not suitable for

detecting minor-effect QTLs without the repeated measurement of

phenotypes across multiple years (Takagi et al., 2013). Phenotypic data
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also showed the smallest dispersion of L* values in the three

environments, and it is possible that weak changes in brightness do

not cause visually detectable differences.

The presentation of seed color in various plants is complex and

diverse, involving the main components of flavonols, PAs

(concentrated tannins), and some phenolic substances such as lignins

andmelanins (Yu, 2013).We sampled seeds every 5 days from 10 DPA

until we observed significant differences in the seed coat color between

the parental plants. From 20 DPA onward, we observed the greatest

variation in L* values, with YZEHP seeds being darker than YZ8 seeds,

and we eventually noted a clear color difference at 30 DPA.Wang et al.

(2020) found that black sesame seeds started to synthesize and

accumulate melanin gradually at 8 DPA and that a significant

difference in seed coat color appeared at 14 DPA. These results were

not exactly the same as ours, and we speculate that this might be due to

the different metabolic pathways involved in the accumulation of

pigmented substances. A search for candidate genes within the

confidence interval of qBSCchr6 was further performed. Among the

13 screened genes, SIN_1023210 has been annotated as encoding the

UDP-glycosyltransferase 87A2 protein associated with catalytic

glycosylation (one of the final steps in the production of secondary

metabolites) and plays an important role in determining the coloration

of flowers, leaves, seeds, and fruits (Le Roy et al., 2016; Foong et al.,

2020). SIN_1023231 and SIN_1023270 are annotated as exocyst

subcomplex-containing subunit (EXO70) proteins associated with

the vesicle-dependent autophagy-related pathway of anthocyanin-

containing vesicles from the endoplasmic reticulum into the vesicle

lumen (Kulich et al., 2013). SIN_1023248, SIN_1023249, SIN_1023303,

and SIN_1023305 all encode peroxidases, which may be related to

lignin formation and coloration during fruit ripening (Pourcel et al.,

2007; Ring et al., 2013). SIN_1023218 encodes alanine glyoxylate

aminotransferase 2, which is involved in the transfer and catalysis of

amino acids (Liepman and Olsen, 2003). SIN_1023221 and

SIN_1023287 encode 2-oxoglutarate-dependent dioxygenase and

beta-glucosidase, respectively, which are essential enzymes in

flavonoid and phenylpropanoid biosynthesis (Farrow and Facchini,

2014; Munir et al., 2019). These are all potential regulatory pathways

related to seed coat pigment accumulation. Furthermore,

SIN_1023237, SIN_1023239, and SIN_1023240 all encode laccase 3

(LAC3), a multicopper glycoprotein that catalyzes and activates the

oxidation of diphenol substrates in the presence of molecular oxygen in

poplar (Ranocha et al., 1999). However, we found that only

SIN_1023239 was significantly up-regulated in YZEHP seeds at

different developmental periods compared to its expression in YZ8,

and the expression pattern was consistent with the phenotypic trend. In

Arabidopsis, TT10 (laccase 15) is involved in the oxidation of

concentrated tannins in the seed coat, resulting in brown coat color

at harvest, and the other 16 laccase enzymes do not seem to

compensate for the loss of activity in the TT10 mutant (Pourcel

et al., 2005). In addition, preliminary evidence based on

bioinformatics suggests the presence of one or more forms of

epigenetic modification in the coding sequences of the eight laccase

enzymes including AtLAC3 (Turlapati et al., 2011). In poplar, LAC3

increased the content of soluble phenols in the seed coat, participated in

the oxidation of lignin, and affected the structure and integrity of the

cell wall (Ranocha et al., 2002). In maize, ZmLAC3 is also involved in
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the polymerization of phenolic compounds (Caparrós-Ruiz et al.,

2006). In addition to flavonoids and anthocyanins, some researchers

have surmised that lignins or phenolics affect the seed colors of plants,

although the available evidence is not sufficient to support this

conclusion (Qu et al., 2013). A recent study by Dossou et al. (2022)

focused on the metabolomics of four sesame cultivars and found that

the developmental regulation of black, brown, yellow, and white

sesame seed coat colors may be different, resulting in different

coloration due to variations in the major bioactive phenolic

compounds in sesame seeds. Nevertheless, our identification of long

fragments of InDels or SNPs may be missed. Further development of

markers for fine mapping is needed, and multiomics techniques should

be combined to analyze the deposition of sesame seed coat pigments to

identify the regulatory mechanisms underlying different color traits.
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SUPPLEMENTARY FIGURE 1

Frequency distribution of L*, a*, and b* values in the three environments of

the RIL population.

SUPPLEMENTARY FIGURE 2

Statistical information on individual sequencing data of parents and RILs. (A)
Clean data size distribution. (B) Information on the mapped ratio.

SUPPLEMENTARY FIGURE 3

Statistical information on genetic markers used to construct genetic maps. (A)
Marker type and quantity statistics. (B) Statistical information of valid SNP/

InDel genetic markers in each linkage group.

SUPPLEMENTARY FIGURE 4

High-density genetic map of RIL population. Each vertical line represents the

position of the marker in the linkage groups.

SUPPLEMENTARY FIGURE 5

Haplotype assessment of recombination breakpoints for each sample of the
RIL population.

SUPPLEMENTARY FIGURE 6

Analysis of collinearity betweengenetic andphysicalmapsof sesame.Horizontal
coordinates indicate the genetic distance of each linkage group, and vertical

coordinates indicate the physical length of each chromosome, and marker
collinearity in genomic and genetic maps is represented in the form of scatter.

SUPPLEMENTARY FIGURE 7

Heatmap of pairwise recombination and LOD scores based on 7,817 markers.

Estimated recombination scores between markers are shown above the
diagonal line, and LOD scores are shown below the diagonal line. Red

indicates closely linked markers (high LOD scores and low recombination
scores) and blue indicates non-linked markers (low LOD scores and high

recombination scores).

SUPPLEMENTARY FIGURE 8

Relative expression levels of candidate genes that were inconsistent with the
pattern of phenotypic variation among parents at different developmental

stages of the seed coat. Significant levels of relative gene expression
differences between parents at each period of seed development were

tested by T-test, with ns, *, **, and *** representing nonsignificant,

significant at the p<0.05, p<0.01, and p<0.001 level, respectively.
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Genetic dissection of QTLs
for oil content in four
maize DH populations

Xiaolei Zhang1†, Min Wang2†, Haitao Guan1, Hongtao Wen1,
Changzheng Zhang3, Changjun Dai1, Jing Wang1, Bo Pan1,
Jialei Li4 and Hui Liao1*

1Quality and Safety Institute of Agricultural Products, Heilongjiang Academy of Agricultural Sciences,
Harbin, Heilongjiang, China, 2National Maize Improvement Center of China, College of Agronomy
and Biotechnology, China Agricultural University, Beijing, China, 3Maize Yufeng Biotechnology LLC,
Beijing, China, 4Food Processing Institute, Heilongjiang Academy of Agricultural Sciences, Harbin,
Heilongjiang, China
Oil is one of the main components in maize kernels. Increasing the total oil

content (TOC) is favorable to optimize feeding requirement by improving maize

quality. To better understand the genetic basis of TOC, quantitative trait loci

(QTL) in four double haploid (DH) populations were explored. TOC exhibited

continuously and approximately normal distribution in the four populations. The

moderate to high broad-sense heritability (67.00-86.60%) indicated that the

majority of TOC variations are controlled by genetic factors. A total of 16 QTLs

were identified across all chromosomes in a range of 3.49-30.84% in term of

phenotypic variation explained. Among them, six QTLs were identified as the

major QTLs that explained phenotypic variation larger than 10%. Especially, qOC-

1-3 and qOC-2-3 on chromosome 9 were recognized as the largest effect QTLs

with 30.84% and 21.74% of phenotypic variance, respectively. Seventeen well-

known genes involved in fatty acid metabolic pathway located within QTL

intervals. These QTLs will enhance our understanding of the genetic basis of

TOC in maize and offer prospective routes to clone candidate genes regulating

TOC for breeding program to cultivate maize varieties with the better

grain quality.

KEYWORDS

Maize, DH, kernel, oil, QTL
1 Introduction

The modern maize (Zea mays L.) kernels are composed of approximately 72% starch,

10% protein, 4% oil, and 14% other constituents (Laurie et al., 2004; Ranum et al., 2014).

Oil predominantly accumulates in the embryo and is stored in the form of triacylglycerols,

which is composed of roughly 59% polyunsaturated, 24% monounsaturated and 13%

saturated fatty acid (Dupont et al., 1990; Lambert, 2001). The proper ratio of unsaturated to

saturated fatty acids in maize oil is considered as a character of high-quality oil for human
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health (Han et al., 1987; Benitez et al., 1999; Lambert et al., 2004). In

addition, the high energy and proportion of polyunsaturated fatty

acids is highly valued for animal feed, industrial applications and an

alternative to fossil fuels (Hou et al., 2022). Thus, the ability to

improve oil quantity and quality has been a key target for plant

breeding and biotechnology-assisted improvement (Yang et al.,

2012; Li et al., 2013).

High-oil maize hybrids (oil concentration > 6%) are considered

as an important crop with valued nutrient (Wei et al., 2009). A

series of genetic resources have been generated by long-term

artificial selection of high-oil maize populations (Fang et al.,

2021). The oil concentration of initial open-pollinated variety

Illinois High Oil (IHO) reached about 20% after 100 generations

of selection (Dudley and Lambert, 2004). A normal maize synthetic

Zhongzong No. 2, which was synthesized with 12 inbred lines of

Lancast heterotic group, was used to produce the Beijing High Oil

(BHO) with oil concentration increased from 4.71 to 15.55% after

18 selection cycles (Song and Chen, 2004). The inbred line By804

was derived from the high-oil population ‘Beinongda’ and its oil

concentration reached 11.22% (Zhang et al., 2008).

As the unique and precious resources, these high oil materials

provide an opportunity to understand the genetic architecture of oil

and fatty acid biosynthesis, which in turn increase the efficiency of

selection to improve oil concentration and quality (Wassom et al.,

2008a; Wassom et al., 2008b; Yang et al., 2010; Li et al., 2020).

Combined with map-based cloning, QTL mapping is the most

powerful and efficient strategy to identify the genomic region that

controls complex quantitative traits in plants (Goldman et al., 1994;

Lima et al., 2006; Messmer et al., 2009). The total oil content (TOC) is

a quantitative trait, and many quantitative trait loci (QTL) have been

demonstrated to control the seed oil accumulation in a randomly

mated F2:3 population IHO × ILO (Alrefai et al., 1995; Berke and

Rocheford, 1995; Laurie et al., 2004; Clark et al., 2006; Dudley, 2008).

These studies revealed that TOC was controlled by numerous genes

with individually small effects and mainly additive gene action (Yang

et al., 2010). In addition, using a recombinant inbred line (RIL)

population derived from B73 × By804, a relatively small number of

QTL were detected and accounted for a large percentage of the total

phenotypic variation (Song and Chen, 2004; Zhang et al., 2008; Yang

et al., 2010; Pan et al., 2012; Yang et al., 2012). These studies also

indicated that epistasis is a key factor affecting the genetic basis of oil

content in maize kernel (Wassom et al., 2008b; Yang et al., 2010).

Similar results were also obtained in two publicly available maize

genetic resources, NAM (the nested association mapping population)

and AMP508 (association mapping population) based on high-

resolution and high power QTL analysis (Lambert et al., 2004;

Cook et al., 2012). A high-oil QTL (qHO6) on chromosome 6 has

been cloned and the candidate gene encodes an acyl-CoA:

diacylglycerol acyltransferase (DGAT1-2), which catalyzes the final

step of oil synthesis (Zheng et al., 2008). The major QTL QTL-Pal9

explaining 42% of the phenotypic variation in palmitic acid content

was identified on maize chromosome 9 in a bi-parental segregating

population and the candidate gene Zmfatb encodes acyl-ACP

thioesterase (Li et al., 2011).

Distinct mapping populations were featured with advantages

and limitations, which results in significant impacts on QTL
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outputs (Odell et al., 2022). DH segregating populations have

been commonly used in QTL analysis for several specific

advantages (Chaikam et al., 2019). Complete homozygosity of DH

lines allows accurate phenotyping over multiple locations and years

compared to families in early selfing generations (Foiada et al., 2015;

Yan et al., 2017). In this study, we utilized four DH populations

derived from the practical breeding program to further dissect the

genetic basis and QTLs controlling the phenotypic variation of TOC

in maize kernels. Our intention was to describe the genetic

architecture of oil variation in extensive scale and provide the

prospective targets to identify candidate genes for increasing oil

concentration in commercial maize germplasms.
2 Materials and methods

2.1 Plant materials and field experiments

Four DH populations (TOC1, TOC2, TOC3 and TOC4) were

constructed as previously method described (Chaikam et al., 2019;

Du et al., 2020). The eight inbred parental lines exhibiting the

variation in TOC (Table 1) were belonged to Maize Yufeng

Biotechnology LLC (Beijing, China) and selected as elite inbred

lines used for optimizing grain nutritional quality breeding

program. Parents of TOC1 and TOC2 belong to maize Lancaste

germplasm, and parents of TOC3 and TOC4 belong to Reid Yellow

Dent germplasm. The populations (TOC1, TOC2, TOC3 and

TOC4) including 123, 129, 281 and 160 lines, respectively

(Table 1). Each population with its parents were planted in 2021

at Liaoning province, China (LN, 40°`82′N, 123°56′E) with three

replication blocks. All lines were planted in a single row plot with

the length of 150 cm and 60 cm using a complete randomized block

design under natural field conditions. All plants were self-pollinated

and kernels from middle part of three well-grown ears were

harvested and dried for oil measurement. We declare that all the

collections of plant and seed specimens related to this study were

performed in accordance with the relevant guidelines and

regulations by Ministry of Agriculture (MOA) of the People’s

Republic of China.
2.2 Evaluation of oil content and statistical
analysis of phenotypic data

Near infrared reflectance (NIR) spectrometer (DA 7250, Perten

Instruments Inc., Sweden) was used to measure TOC in maize

kernels as previously described with a few modifications (Chen and

Hu, 2017). The reflectance spectra were collected in a range of 400

to 2500 nm with 10-nm intervals in the NIR region. A minimum of

50 kernels per sample was scanned three times and the average was

taken as final phenotypic value.

All statistical analyses were performed by using R Version 4.0.1

(www.R-project.org) as previously described (Zhang et al., 2021;

Zhang et al., 2022). The R ‘AOV’ function was used to estimate the

variances of TOC. The model for the variance analysis was as

following: y = m + ag + be + ϵ, where ag is the effect of the g
th line, be
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is the effect of the eth environment, and ϵ is the error. The effects in
the model were defined by random. The broad-sense heritability

(h2) analyzed in the populations was calculated according to Knapp

et al., 1985. The formula was h2 = sg2/(sg2 + sϵ2/e), where s2
g is the

genetic variance, s2
e is the residual error, and e is the number of

environments. The best linear unbiased predictor (BLUP) value of

each line was calculated as: yij = m + ei + fj + ϵij, where yij is the

phenotypic value of individual j in environment i, m is the grand

mean, ei is the effect of different environments, fj is the genetic effect,

and ϵij is the random error. The grand mean was fitted as a fixed

effect, and genotype and environment were considered random

effects (Wang et al., 2015). All of these variances were estimated

using the ‘LME4’ R package. The BLUP values were used for

phenotypic description statistics and QTL analysis.
2.3 Genotyping and constructing genetic
linkage map

The four DH populations with their parents were genotyped

using the GenoBaits Maize 1K marker panel (Mol Breeding

Biotechnology Co., Ltd., Shijiazhuang, China). A total of 4,589

SNP markers were identified on the basis of genotyping by target

sequencing platform (Guo et al., 2019). The minor allele frequency

(MAF) and missing rate were estimated in each population and the

SNPs with MAF < 0.1 or missing rate > 0.6 were filtered out. After

quality control, the polymorphic SNPs between two parental lines

were used to construct the genetic linkage maps using the R/qtl
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package functions est.rf and est.map (Broman et al., 2003) with the

kosambi mapping method.
2.4 QTL mapping

Composite interval mapping (CIM) method followed by

multiple QTL mapping analysis was performed using Windows

QTL Cartographer 2.5 and R language (Wang et al., 2010a). The

whole genome was scanned at every 1.0 cM interval with a window

size of 10 cM. A forward and backward stepwise regression with five

controlling markers was conducted to control background from

flanking markers. The empirical logarithm of the odds (LOD)

threshold was calculated using 1,000 permutations at a

significance level of p = 0.05 (Churchill and Doerge, 1994). These

threshold LOD values were in a range of 2.76 to 3.06 in four DH

populations. QTLs with LOD value greater than the threshold were

considered for further analysis. With the 1.5-LOD support interval

method, the confidence interval for each QTL position was

estimated (Lander and Botstein, 1989). The additive × additive

epistatic interactions was performed by “IM-EPI” method in

IciMapping Version 4.2.
2.5 Gene annotation

QTLs were delimited to a single peak bin interval based on bin

map. The protein-coding genes within intervals were listed
TABLE 1 Phenotypic performance, variance, and broad-sense heritability of TOC in the four DH populations.

Trait a Populations

TOC1 TOC2 TOC3 TOC4

Parents

means ± SD (%)
KB717001 4.14 ± 0.17 KB717001 4.14 ± 0.17 AJ519002 4.30 ± 0.10 AJ519004 4.43 ± 0.02

KB519009 3.50 ± 0.15 KB719010 3.16 ± 0.05 AJ519001 4.90 ± 0.09 AJ519006 4.95 ± 0.09

p value b 0.008** 0.006** 0.002** 0.007**

DHs

Size 123 129 281 160

means ± SD (%) 4.57 ± 0.41 4.42 ± 0.40 4.50 ± 0.42 5.02 ± 0.41

Range (%) 3.64 - 5.58 3.59 - 5.48 3.10 - 5.42 4.06 - 6.13

sg2 c 0.205 0.183 0.186 0.168

se2 d 0.027 0.059 0.023 0.009

sϵ2 e 0.126 0.085 0.274 0.197

h2 (%) f 83.00% 86.60% 67.00% 71.80%
fro
aTOC;
bP value based on a t-test evaluating two parental lines;
cgenetic variance;
denvironmental variance;
eresidual variance;
fbroad-sense heritability (h2);
** p ≤ 0.01.
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according to MaizeGDB database (V2). Each of the corresponding

gene were annotated by performing BLASTP searches at the NCBI

(blast.ncbi.nlm.nih.gov/Blast.cgi).
3 Results

3.1 Phenotypic variation and heritability of
TOC in maize kernel

Four DH populations, TOC1-TOC4 were developed from eight

inbred lines (TOC with a range of 3.16-4.95%). Each population

contained 123-281 lines, respectively (Table 1). Within each DH

population, TOC exhibited a continuously and approximately

normal distribution, which is the typical characteristic of

quantitative trait (Figure 1 and Table 1). Analysis of variance

(ANOVA) revealed that the genotype variance was greater than

environmental variance in all populations (Table 1), indicating that

phenotypic variations were mainly controlled by genetic factors.

Broad-sense heritability estimates were calculated and showed high

for TOC1 and TOC2 populations (83.00-86.60%), and moderate for

TOC3 and TOC4 populations (67.00-71.80%) (Table 1). The

moderate to high heritability indicated that most of TOC

variations in these DH populations were genetically controlled

and suitable for further QTL mapping.
3.2 Genotyping and genetic linkage map

A GenoBaits Maize 1K SNP marker panel was used for

genotyping all DH lines in the four populations. After quality

control, a total of 1,217, 575, 1,022 and 1,039 polymorphic SNPs

were identified for TOC1-TOC4 populations, respectively. These

high-fidelity SNPs were used to construct the genetic linkage map

with the missing rate in most lines less than 2% (Figure S1). In total,

925.92, 684.23, 860.81 and 836.67 cM genetic distances spanned in

four linkage maps (Figure S2), and the average genetic distance

between every two adjacent markers was 0.77, 1.21, 0.85, and 0.81

cM in each DH population, respectively (Table S1).
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3.3 Identification of QTLs for TOC in four
DH populations

A total of 16 QTLs were identified with a LOD threshold of

above 3.00 at the 0.05 significance level (Table 2 and Figure 2).

Among them, 3, 4, 5 and 4 QTLs were detected in TOC1, TOC2,

TOC3 and TOC4, respectively. The average genetic intervals of

these QTLs was 82.69 cM in a range of 36.56-125.29 cM. The

average physical interval was 102.58 Mb in a range of 11.96-232.42

Mb. The contribution to phenotypic variation for each population

ranged from 40.99 (TOC3) to 62.05% (TOC2) with an average of

51.10%. The explained phenotypic variation were less than broad-

sense heritability (Tables 1, 2), suggesting that only part of QTLs

have been detected in these bi-parent populations.

In TOC1, three QTLs (qOC-1-1, qOC-1-2 and qOC-1-3)

distributed on chromosome 3, 5 and 9. The QTL, qOC-1-3, with

the largest effect (30.84% of the phenotypic variation) was located

on chromosome 9. The parental KB717001 allele at this locus had

an additive effect of 0.24% for increased oil content. The second

QTL qOC-1-2 was located on chromosome 5, and explained 11.64%

of phenotypic variance with an additive effect of 0.15%. qOC-1-1 on

chromosome 3 explained 7.50% of the phenotypic variance and

considered as a minor QTL. The parent KB717001 allele at all of

mapped loci had increasing effects for TOC.

In TOC2, four QTLs (qOC-2-1, qOC-2-2, qOC-2-3 and qOC-2-

4) were identified and accounted for 62.50% of the total phenotypic

variance. One major QTL qOC-2-3 located on chromosome 9 and

contributed to 21.74% of the explained phenotypic variance. The

second QTL qOC-2-2 on chromosome 2 explained 13.53% of

phenotypic variance with an additive effect of 0.15%. The qOC-2-

1 and qOC-2-4 explained 5.72% and 7.26% of the phenotypic

variance, respectively The parent KB717001 allele increased the

TOC for qOC-2-1, qOC-2-2 and qOC-2-3, but decreased the TOC

for qOC-2-4.

In TOC3, a total of five QTLs (qOC-3-1, qOC-3-2, qOC-3-3,

qOC-3-4 and qOC-3-5) were detected and explained 40.99% of the

total phenotypic variance. qOC-3-3 on chromosome 4 was the

major QTL explaining phenotypic variation of 12.99% with an

additive effect of 0.15%. The parent AJ519002 allele at qOC-3-2
FIGURE 1

Phenotypic variation in TOC in the four DH populations. The x-axis showed the TOC and the triangle color indicated the TOC in parents.
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increased the TOC, whereas the parent AJ519001 allele at other

QTLs increased the TOC.

In TOC4, a total of four QTLs were identified (qOC-4-1, qOC-4-

2, qOC-4-3 and qOC-4-4) and accounted for 45.54% of the total

phenotypic variance. qOC-4-2 on chromosome 6 and qOC-4-3 on

chromosome 8 were two major QTLs explaining the phenotypic

variation of 13.05% and 16.20%, respectively. qOC-4-1 and qOC-4-3

were two minor QTLs explaining 8.84% and 5.07% phenotypic

variation, respectively. The parent AJ519006 allele at all these QTLs

increased the TOC.
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3.4 Genetic overlap of QTLs in the four DH
populations with other populations

Several overlapped QTLs regions were detected across the four

populations, including a 37.32 Mb overlap between qOC-1-1 and

qOC-3-2, and a 5.05 Mb overlap between qOC-3-4 and qOC-4-1

(Figure 3). Moreover, qOC-1-2 and qOC-2-3 located within qOC-3-

5 and qOC-1-3, respectively (Figure 3).

To investigate whether these newly-identified QTLs shared

across different genetic background, we compared their genomic
TABLE 2 Individual QTL for TOC in the four DH populations.

Populations QTL Chr.a G-Peak
(cM)b

P-Peak (Mb)
_V4c

G-
Range
(cM)d

P-Range (Mb)
_V4e LOD PVE

%f Add.g Parent
h+

PVE(%)
-ALLi

TOC1

qOC-
1-1

3 48.55 162.54
41.05-
52.23

112.37-169.00 4.68 7.50 0.12 KB717001

55.82
qOC-
1-2

5 53.92 193.53
50.84-
58.39

191.47-199.14 5.61 11.64 0.15 KB717001

qOC-
1-3

9 34.02 125.24
31.10-
41.66

113.85-143.02 12.24 30.84 0.24 KB717001

TOC2

qOC-
2-1

1 19.15 12.72
8.15-
29.13

12.72-26.18 4.17 7.26 0.11 KB717001

62.05

qOC-
2-2

2 20.42 30.39
13.01-
24.42

11.17-30.39 8.67 13.53 0.15 KB717001

qOC-
2-3

9 27.23 129.70
25.45-
28.83

122.00-130.80 12.80 21.74 0.20 KB717001

qOC-
2-4

10 23.05 55.99
23.05-
24.63

55.99-79.47 4.03 5.72 -0.10 KB719010

TOC3

qOC-
3-1

2 42.18 58.26
40.75-
42.18

46.13-58.26 3.49 3.49 -0.08 AJ519001

40.99

qOC-
3-2

3 37.82 22.64
29.65-
44.47

11.58-149.70 7.37 8.39 0.12 AJ519002

qOC-
3-3

4 47.22 232.42
43.03-
56.33

196.02-241.81 11.71 12.99 -0.15 AJ519001

qOC-
3-4

5 30.81 43.18
23.31-
38.99

15.74-85.58 5.33 5.41 -0.10 AJ519001

qOC-
3-5

5 65.51 202.27
58.23-
79.97

188.27-207.38 7.58 8.26 -0.12 AJ519001

TOC4

qOC-
4-1

5 24.43 11.96
15.65-
31.84

6.09-20.79 5.12 8.84 -0.13 AJ519006

45.54

qOC-
4-2

6 36.45 131.71
35.42-
45.25

129.11-140.52 6.83 13.05 -0.15 AJ519006

qOC-
4-3

7 54.69 165.51
54.69-
54.69

146.02-168.32 3.04 5.07 -0.10 AJ519006

qOC-
4-4

8 21.13 63.28
19.12-
22.76

10.65-65.48 8.82 16.20 -0.18 AJ519006
f

aChromosome;
bGenetic position in centimorgans (cM) of QTL with the highest LOD;
cPhysical position of QTL based on the B73 reference sequence (V4);
dGenetic position range in centimorgans (cM) of QTL with the highest LOD;
ePhysical position range of QTL based on the B73 reference sequence (V4);
fPercentage of the phenotypic variation explained by the additive effect of QTL;
gAdditive effect of QTL;
hwhich parental allele increased the TOC;
iPercentage of the phenotypic variation explained by the additive effect of all QTL.
rontiersin.org

https://doi.org/10.3389/fpls.2023.1174985
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zhang et al. 10.3389/fpls.2023.1174985
locations with QTLs related to oil traits from the other eight

previous studies (Mangolin et al., 2004; Wassom et al., 2008a;

Wassom et al., 2008b; Wang et al., 2010b; Cook et al., 2012; Yang

et al., 2012; Li et al., 2013; Yang et al., 2016; Karn et al., 2017; Fang

et al., 2020 and Fang et al., 2021). A total of 56 genomic regions

related to oil synthesis and accumulations were identified to be

overlapped with QTLs in our four DH populations (Figure 3). These

results indicated that although unique and specific QTLs were

detected in each population, some genetic loci may have common

effects on TOC among different types of populations.
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4 Discussion

4.1 QTL mapping precision

The genetic architecture of a quantitative trait consists of a set of

parameters that explain the genetic component of trait variation

within or among populations (Laurie et al., 2004). These parameters

include the number of QTL affecting the trait, their locations in the

genome, the frequencies of alternative genotypes segregating at the

QTL, the pattern of linkage disequilibria among QTL, and the
A B

DC

FIGURE 2

The distribution of QTLs across the entire genome in the four DH populations. The upper of each picture displayed LOD score (y-axis) against the
physical position (x-axis) of markers, while the bottom of the picture displayed additive effect (y-axis) against the physical position (x-axis) of markers.
(A–D) designated TOC1, TOC2, TOC3 and TOC4, respectively.
FIGURE 3

Co-localization of TOC QTLs in maize kernels identified in the present and previous studies. The QTLs identified in this study were represented on
top. QTLs detected in previous studies were displayed in the form of references. The lower layer showed the number of detected QTLs.
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magnitudes of additive, dominance, and epistatic effects (Laurie

et al., 2004). Different types of populations used in QTL mapping

tend to vary with two main characteristics: (1) their ability to

capture genetic diversity, and (2) their power to detect QTL of small

effect (Odell et al., 2022). The advantages of DH populations are the

capability of removing any residual heterozygosity to ensure

genetically identical replicates and increasing selection response

by stabilizing heritability of various traits during perse and test cross

evaluation (Bordes et al., 2006; Gallais and Bordes, 2007; Mayor and

Bernardo, 2009; Odell et al., 2022).

SNP markers are the most frequent variations in genomes and

the application of SNP markers in plant breeding has guaranteed

the precision of QTL mapping and genetic analysis (Bhattramakki

et al., 2002; Mammadov et al., 2012; Flutre et al., 2022; Kaur et al.,

2022). By conditioning linked markers in the test, the sensitivity of

the test statistic to the position of individual QTLs is increased, and

the precision of QTL mapping can be improved (Zeng, 1994).

Subsequently, with the development of sequencing technology, an

increasing number of molecular markers have been applied to QTL

mapping, which greatly improves the accuracy of QTL mapping

(Schnable et al., 2009; Chia et al., 2012; Bukowski et al., 2018; Fang

et al., 2021). In this study, a total of 16 QTLs were found and

distributed across all ten chromosomes. 13 QTLs spanned physical

intervals of less than 50 Mb, and two span less than 10 Mb. Thus,

the resolution in this study is considerably improved because of the

large number of markers and the appropriate population type. The

resolution is probably on the order of 2-3 cM, since pairs of markers

any farther apart rarely have substantial levels of linkage

disequilibrium (Laurie et al., 2004).
4.2 Genetic basis of TOC in our
DH populations

Within the four DH populations, a broad range of phenotypic

variation with normal distribution was observed for TOC with

transgressive segregation, indicating quantitative genetic control

(Figure 1). The identification of loci controlling oil-related traits

should contribute to a better understanding of oil synthesis and

storage in maize kernels. The genetic analysis indicated TOC is

highly heritable and the heritability (67.00-86.60%) is fairly high in

all populations, indicating of superior genetic effect on TOC in DH

populations. The high heritability estimates are very favorable for

detecting marker-trait associations (Laurie et al., 2004). Among the

16 detected QTLs controlling TOC, 11 QTLs were identified as the

major QTLs with the explaining phenotypic variation larger than

10%. Especially qOC-1-3 with the largest effect (30.84% of the

phenotypic variance) and qOC-2-3 with the second largest effect

(21.74% of the phenotypic variance) were located on chromosome 9.

These region have been chosen as our primary QTL for further study

because of the higher contribution. The parent allele at this locus had

an additive effect of 0.20-0.24% for increased TOC. An additional

seven QTLs were identified on chromosomes 2, 4, 5, 6 and 8,

explaining between 11.64 and 16.20% of the phenotypic variation.

The other minor QTLs each explained 3.49-8.39% of the phenotypic

variance with moderate additive effects on TOC. In addition, except
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for environment variation, none of QTLs were shared by all DH

populations, reflecting the complexity of TOC regulation in diverse

maize populations. These results indicated that oil content is

controlled by a few large-effect QTLs, together with a large

number of minor-effect QTLs (Dudley, 1977; Laurie et al., 2004).

Results of QTL detection derived from different studies may

exhibit consistency to a certain degree across different germplasms

or genetic backgrounds and environments. For instance, the largest

and second effective QTL qOC-1-3 and qOC-2-3 was located in the

QTL m240 with a 29.17 Mb and 8.81 Mb overlap interval length,

respectively, which was related to maize TOC in RIL population

(Cook et al., 2012). qOC-3-4 co-localized with koc5b associated to

the kernel oil content in a F2:3 tropical maize population (Mangolin

et al., 2004). According to Li et al. (2013), the QTL qOC-2-1, qOC-3-

1, qOC-3-3, qOC-4-1 and qOC-4-1more or less co-localized with the

QTLs controlling protein and TOC simultaneously and might affect

protein and TOC in opposite directions (Li et al., 2013). These

results suggested that increases in grain TOC might be associated

with increases in grain protein content, both traits could be

improved simultaneously. Congruence in QTLs detected in this

study with previous reports indicates the robustness of our results.

Moreover, these QTLs definitely worth conducting further research

on this QTL via NILs, fine mapping, molecular marker-assisted

selection (MAS) and ultimate cloning.
4.3 Importance of QTLs relevant to TOC in
maize genetic and breeding

Oil in maize kernels mainly exists in the form of triacylglycerol

(TAG), which composed of fatty acids and glycerol (Du et al., 2016;

Zhang et al., 2019). Maize oil mainly accumulates in the embryo,

and the fatty acids are typically comprised of approximately 11%

palmitic acid (C16:0), 2% stearic acid (C18:0), 24% oleic acid

(C18:1), 62% linoleic acid (C18:2), and 1% linolenic acid (C18:3)

(Lambert, 2001). The quality and utilization of maize oil is

determined by their fatty acid composition (Du et al., 2016).

Saturated fatty acids, such as palmitic (C16:0) and stearic acids

(C18:0), are stable and tolerant to heat and oxidation (Hu et al.,

1997). Certain unsaturated fatty acids, such as oleic (C18:1), linoleic

(C18:2), and linolenic (C18:3) acids, are beneficial to human health

but susceptible to heat and oxidation (Hu et al., 1997). Biosynthesis

of storage oil in plant seeds is complex and involved in

multitudinous physiological and biochemical processes (Ohlrogge

and Browse, 1995; Liu et al., 2008; Zhang et al., 2009; Guo et al.,

2013; Dong et al., 2015; Glowinski and Flint-Garcia, 2018; Zhang

et al., 2018). The co-location analysis of candidate genes underlying

QTLs associated with related trait could provide information about

functional relationships between gene expression and some QTLs of

the complex biosynthesis pathway (Prioul et al., 1997; Thévenot

et al., 2005). In our study, of 189 genes involved in the fatty acid

biochemical processes, including 17 well-known genes encoding

key enzymes in maize lipid synthesis and metabolism, were located

within QTL intervals (Figure 4 and Table S2).

The genes related to the TAG synthesis pathway are key

regulatory factors in the accumulation process of TOC in corn
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(Zhang et al., 2019). Comparison of the positions of candidate genes

and QTL was a suitable strategy to investigate the molecular basis of

quantitative traits. Additionally, the positioned candidate genes can

be used to develop functional markers for increasing selection

efficiency by marker-assisted selection in plant breeding

(Andersen and Lübberstedt, 2003). Five KCS genes encoding b-
ketoacyl CoA synthase isozymes in qOC-1-3, qOC-2-1, qOC-3-4 and

qOC-4-4 are mainly involved in the process of elongation of the

C16:0- and C18:0-CoAs into very-long-chain fatty acids (VLCFAs)

(Gonzales-Vigil et al., 2017). The maize isozymes reflected

differences in the enzymatic capability to elongate fatty acids

(Stenback et al., 2022). The FAD genes in qOC-1-3 and qOC-2-2

were identified as fatty acid desaturase-coding and are responsible

for the production of trienoic fatty acids by unsaturation at the w-3
position and the cDNAs corresponding to the loci have been

isolated (Ohlrogge and Browse, 1995; Gao et al., 2015; Zhao et al.,

2019). Stearoyl-acyl carrier protein desaturases (SACD) encoded by

the genes in qOC-1-1, qOC-2-4 and qOC-3-4 are the key enzymes

that converts stearic acid to oleic acid by introducing the first double

bond into stearoyl-ACP between carbons 9 and 10 (Asamizu et al.,

1998; Liu et al., 2009). These enzymes are significantly more

abundant in expression in high-oil maize than in normal maize,

not only at the mRNA and protein levels, but also at the product

level (Liu et al., 2009). LACS2 in qOC-3-3 encoded the long-chain

acyl-CoA synthetase (LACS), which plays key roles in activating

fatty acids to fatty acyl-CoA thioesters and then further involved in

lipid synthesis and fatty acid catabolism (Lü et al., 2009; Zhao et al.,

2010; Jessen et al., 2011 and Jessen et al., 2015). TAG biosynthesis

involves three consequential acylation steps of a glycerol backbone

via the Kennedy pathway (Ohlrogge and Browse, 1995; Iskandarov

et al., 2017; Müller and Ischebeck, 2018). The process starts with the

acylation of glycerol-3-phosphate (G3P) by glycerol-3-phosphate

acyltransferase (GPAT) and lysophosphatidic acid acyltransferase

(LPAAT), and finalized by diacylglycerol acyltransferase (DGAT),

which catalyzes the last acylation step of the pathway (Ohlrogge and
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Browse, 1995). The high-oil QTL (qHO6) affecting maize seed oil

and oleic-acid contents encodes DGAT1-2 (Zheng et al., 2008; Yang

et al., 2010; Hao et al., 2014). The gene GPAT12 in our study was

also detected on chromosome 6 and showed 96% identities with

DGAT1-2 (Zm00001d036982), which indicated that GPAT12 may

be one of DGAT isozymes. The seed oils are packaged in spherical

intracellular oil bodies, which have a TAG matrix surrounded by a

layer of phospholipids embedded with unique and abundant

proteins termed oleosins (Lee and Huang, 1994). Oleosins

interact with the surface phospholipids and matrix triacylglycerols

to form a stable amphipathic layer on the surface of the oil body and

possibly act as recognition signals for the binding of lipase during

germination (Lee and Huang, 1994; Lee et al., 1995; Ting et al.,

1996). It suggested that OLE1 in qOC-2-2 was an important gene

that would facilitate lipase action during germination. The above

analysis suggested that the QTLs in this study were related to a

series of genes encoding key enzymes relevant to oil content and

lipid metabolism. Especially, qOC-4-2 contained a DGAT1-2

homologous protein coding gene and had no common region

with qHO6 which was the major oil content QTL (Cook et al.,

2012). Therefore, these QTLs will pave a path to explore molecular

markers and offer prospective routes to improve maize oil content

through molecular marker-assisted selection in maize

breeding program.
5 Conclusion

In this study, four DH populations were constructed for genetic

analysis of kernel TOC and the TOC exhibited continuously and

approximately normal distribution in all populations. Six major and

ten minor effect QTLs were identified based on the genetic linkage

map with LOD threshold of 3.00 and accounted for 3.49-30.84% of

oil variation. The result was consistent with Yang et al., 2010 that

OC in maize kernel is a complex quantitative trait and controlled by
FIGURE 4

Association of candidate genes with kernel oil QTLs. The QTLs identified in four DH populations are represented as vertical rectangles of different
colors next to each chromosome. The horizontal light blue bars on each chromosome show the positions of the 189 identified genes. The left labels
denote known genes that co-localized with the QTLs.
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a few large-effect QTLs and numerous minor QTLs. Besides, 17

well-known genes involved in fatty acid synthesis and metabolic

pathway were located within QTL intervals. This information

provides insight that will help to further understanding of genetic

variation in TOC in maize kernels and will thus enhance the

feasibility of cloning QTL, lay the foundation to explore candidate

genes associated with maize kernel TOC.
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Genome-wide alternative
polyadenylation dynamics
underlying plant growth
retardant-induced dwarfing
of pomegranate

Xinhui Xia1, Minhong Fan1, Yuqi Liu1, Xinyue Chang1,
Jingting Wang2, Jingjing Qian2* and Yuchen Yang1*

1State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen, China,
2College of Agriculture, Anhui Science and Technology University, Fengyang, China
Dwarfed stature is a desired agronomic trait for pomegranate (Punica granatum

L.), with its advantages such as lower cost and increased yield. A comprehensive

understanding of regulatory mechanisms underlying the growth repression

would provide a genetic foundation to molecular-assisted dwarfing cultivation

of pomegranate. Our previous study induced dwarfed pomegranate seedlings via

exogenous application of plant growth retardants (PGRs) and highlighted the

important roles of differential expression of plant growth-related genes in

eliciting the dwarfed phenotype of pomegranate. Alternative polyadenylation

(APA) is an important post-transcriptional mechanism and has been

demonstrated to act as a key regulator in plant growth and development.

However, no attention has been paid to the role of APA in PGR-induced

dwarfing in pomegranate. In this study, we characterized and compared APA-

mediated regulation events underlying PGR-induced treatments and normal

growth condition. Genome-wide alterations in the usage of poly(A) sites were

elicited by PGR treatments, and these changes were involved in modulating the

growth and development of pomegranate seedlings. Importantly, ample

specificities were observed in APA dynamics among the different PGR

treatments, which mirrors their distinct nature. Despite the asynchrony

between APA events and differential gene expression, APA was found to

regulate transcriptome via influencing microRNA (miRNA)-mediated mRNA

cleavage or translation inhibition. A global preference for lengthening of 3’

untranslated regions (3’ UTRs) was observed under PGR treatments, which was

likely to host more miRNA target sites in 3’ UTRs and thus suppress the

expression of the corresponding genes, especially those associated with

developmental growth, lateral root branching, and maintenance of shoot

apical meristem. Together, these results highlighted the key role of APA-

mediated regulations in fine-tuning the PGR-induced dwarfed stature of

pomegranate, which provides new insights into the genetic basis underlying

the growth and development of pomegranate.

KEYWORDS

alternative polyadenylation, plant growth retardant, pomegranate, post-transcriptional
regulation, dwarfing
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Introduction

Pomegranate (Punica granatum L.) is one type of the economic

fruit trees that are widely cultivated across the globe. Because it is

rich in vitamins and has antioxidant and anti-inflammatory

properties in fruits, the health benefits of pomegranate are highly

regarded, such as preventing or alleviating diseases and lowering

high blood pressure or high cholesterol levels (National Center for

Complementary and Integrative Health, NCCIH; Bourekoua et al.,

2018; Shahamirian et al., 2019; Asrey et al., 2020; Turrini et al., 2020).

With the fast-rising demand for pomegranate products, more and

more attention has been paid to screen and breed pomegranate

cultivars with the desired high fruit yield and quality. Dwarfing

cultivation is one of the major focuses because of its advantages in

plant photosynthetic efficiency, fruit production, and disease

resistance compared to normal growing mode (Seleznyova et al.,

2008; Foster et al., 2017; Wang et al., 2018; Zhou and Underhill,

2021). Qian et al. (2022) demonstrated that exogenous application of

plant growth retardants (PGRs) can successfully elicit dwarfed

pomegranate seedlings. Comparative transcriptome analysis

further unraveled that PGR-mediated downregulation of plant

growth hormone synthesis played a central role in inducing the

dwarfed stature of pomegranate, providing new clues for molecular

breeding of favorable dwarfed pomegranate varieties. Besides gene

transcription, plant transcriptome is also under the regulation of

post-transcriptional mechanisms, which have been demonstrated as

a key contributor to the phenotypic plasticity of plants (Ye et al.,

2019; Zhou et al., 2019; Singh and Roychoudhury, 2021). However,

our current knowledge on the functional importance of post-

transcriptional processes in pomegranate is still limited.

Polyadenylation [poly(A)] is an important post-transcriptional

mechanism in eukaryotes that modulates mRNA maturation from

the precursor mRNA (pre-mRNA). It includes two coupled steps:

endonucleolytic cleavage at the 3’ end of pre-mRNA and the

addition of a poly(A) tail at the cleavage sites (Colgan and

Manley, 1997; Tian and Manley, 2017). More importantly, for

many genes, the cleavage and poly(A) signal recognition occur at

multiple positions, that is, giving rise to multiple mRNA isoforms

with different lengths, which is referred to as alternative

polyadenylation (APA). APA events have been demonstrated to

be widespread across genomes; for example, over 70% of the

Arabidopsis genes were found to possess more than one poly(A)

site (Wu et al., 2011; Elkon et al., 2013). These APA events may alter

the stability and translation of mRNA or the length of the resulting

protein products; thus, APA serves as a key contributor to the

complexity of eukaryotic transcriptome (Shen et al., 2008; Di

Giammartino et al., 2011; Sun et al., 2012; Tian and Manley,

2017). Recent studies have highlighted the biological importance

of APA in regulating plant growth, development, and resistance to

environmental stresses (de Lorenzo et al., 2017; Zhou et al., 2019;

Yu et al., 2022; Wang et al., 2023). For instance, Yu et al. (2022)

performed a genome-wide investigation to APA dynamics

underlying Arabidopsis leaf ontogeny and showed that the largest

changes in poly(A) site usage occurred at the early stage of true leaf

development, while the APA levels experienced a reduction along

the developmental process. Furthermore, it was shown that these
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APA genes participated in modulating the biological processes

associated with leaf development, for example, response to

phytohormone. These findings highlighted the essential roles of

APA-mediated post-transcriptional regulations in plant growth and

development. However, the APA mechanisms underlying PGR-

induced dwarfing have not been investigated in pomegranate.

In this study, we reanalyzed the published RNA-seq datasets

(Qian et al., 2020) and characterized the genome-wide APA

dynamics in the pomegranate seedlings treated with three kinds

of PGRs, paclobutrazol, B9, and mannitol, to decipher the biological

significance of APA-mediated mechanisms underlying PGR-

induced dwarfing in pomegranate. Furthermore, we also

compared the APA regulation to the gene expression changes,

with the aim of dissecting the different contributions of

transcriptional and post-transcriptional mechanisms to growth

repression in pomegranate. Our findings will broaden our

understanding of the genetic basis behind the PGR-elicited

dwarfed stature of pomegranate and provide a foundation for

future molecular-assisted dwarfing cultivation of pomegranate.
Materials and methods

Plant materials and data preprocessing
In our previous study, gene expression was characterized for the

seedlings untreated (control group, CK) and treated with each of the

three PGRs at different concentrations (paclobutrazol: 6 and 8 mg/L;

B9: 6 and 8 mg/L; mannitol: 2.5 and 15 g/L) (Qian et al., 2022). Here,

we reanalyzed the 14 RNA-seq datasets (two biological replicates for

each scenario), which were deposited in the Gene Expression

Omnibus (GEO) database of the National Center for Biotechnology

Information (NCBI) under the accession number GSE195722, to

investigate genome-wide poly(A) usage dynamics under the PGR

treatments over CK. Data preprocessing was performed following the

pipelines described in Qian et al. (2022). Briefly, for each dataset, low-

quality bases, whose quality score < 20, and adapter contamination

were first trimmed from the end of reads using Trim Galore (https://

www.bioinformatics.babraham.ac.uk/projects/trim_galore/).

Simultaneously, the reads with either error rate > 0.1 or ambiguous/N

bases > 15 were discarded from the dataset. Finally, the sequences

with length after trimming < 50 bp were also excluded from the

downstream analysis. The clean reads were mapped to the

pomegranate reference genome (the soft-seeded pomegranate

cultivar “Tunisia”) via HISAT2 (Kim et al., 2019; Luo et al., 2020).

The reads uniquely aligned to the genome were extracted and

converted into bedgraph format using the sub-command

genomecov of the BEDTools suite for downstream analysis

(Quinlan and Hall, 2010).
Differentially expressed alternative
polyadenylation analysis

The gene model file for the reference genome in 12-column bed

format (bed12) was converted from the GTF-format genome
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annotations file using the UCSC tools, gtfToGenePred and

genePredToBed (https://genome.ucsc.edu/). The alignment result

in bedgraph format and the gene model file were used as the

inputs for the APA dynamics analysis using the APAtrap toolkit (Ye

et al., 2018). Specifically, the annotated 3’ untranslated regions (3’

UTRs) were first refined and novel 3’ UTRs or 3’ UTR extensions

were detected based on the mapping results of all the samples by the

identifyDistal3UTR program. All the putative APA sites, as well as

the usage level of APA sites, were predicted using predictAPA with

default parameter settings. Differential usage analysis was

performed for APA sites between CK and each of the treatment

scenarios using the R package deAPA. The genes with an adjusted p-

value < 0.05 and percentage difference (PD) ≥ 0.1 were considered

to be significantly different in APA site usage between two groups,

which were denoted as “differentially expressed APA genes

(DAGs)”. The functional importance of the DAGs was assessed

by Gene Ontology (GO) enrichment analysis using Fisher’s exact

test, where the GO terms with p-value < 0.05 were considered to be

significantly overrepresented compared to the genome background.
Prediction of putative microRNA
target sites

The majority of APA events occur in 3’UTRs, that is, producing

mRNA isoforms with 3’ UTRs of different lengths. Changes in the

length of 3’ UTRs may cause the presence or loss of cis-regulatory

elements, and thus pose influences on the stability, nuclear export,

and translation efficiency of mRNA (Shen et al., 2008; Di

Giammartino et al., 2011; Sun et al., 2012; Tian and Manley,

2017). Here, for each comparison, the DAGs were first grouped

into two categories based on the Pearson product moment

correlation coefficient r: (1) DAGs with r < 0 were supposed to

contain more abundant proximal poly(A) site/shortened 3’ UTR

under the treatment than CK, while (2) DAGs with r > 0 were

indicated to use more distal poly(A) site/lengthened 3’ UTR in the

treatment scenario. For each DAG of each category, the DNA

sequence of each APA isoform was extracted from the reference

genome using the sub-command fastaFromBed of BEDTools, and

the putative microRNA (miRNA) target sites were identified in the

3’ UTR by screening against the collected miRNA sequences in

miRBase (Release 21) using the psRNATarget web server (http://

plantgrn.noble.org/psRNATarget/). The maximum cutoff of

complementary matching score was set to 4.0. The isoforms

undergoing 3’ UTR lengthening were supposed to be under the

extra regulation of the miRNAs whose target sites were located in

the lengthened 3’ end, compared to those with shorter 3’ UTRs.
Comparison between differentially
expressed alternative polyadenylation
and differentially expressed genes

To further investigate the different regulatory roles of gene

transcription and APA in PGR-induced dwarfing, we compared the

DAGs to the differentially expressed genes (DEGs) detected in our
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previous study (Qian et al., 2022). The overlapping between DAGs

and DEGs was visualized by a Venn diagram using the

draw.pairwise.venn function of the R package VennDiagram. GO

enrichment analysis was implemented with a cutoff p-value of 0.05

for the genes from each of the three categories: (1) the genes under

the regulation of both differential expression and APA; (2) the genes

specifically regulated by differentially expressed APA (DA-specific

genes); and (3) the genes specifically regulated by differential

expression (DE-specific genes).
Results

PGR-induced alternative polyadenylation
changes play a substantial role in
regulating pomegranate growth

Compared to CK, exogenous applications of PGRs elicited 289–

2,553 DAGs with significant differentiations in APA usage

(Figure 1A). Functional enrichment analysis showed that these

PGR-responsive APA events were associated with the biological

processes of plant growth and development (Figures 1B–D). For

instance, the DAGs induced by 8 mg/L B9 were enriched in auxin

transport, root development, and maintenance of shoot apical

meristem identity (Figure 1B), and mannitol-responsive DAGs

were predominantly involved in the GO terms of leaf

development and senescence, photomorphogenesis, stomatal

movement, and cellular response to osmotic stress (Figure 1C).

The application of 6 mg/L paclobutrazol was found to affect growth

regulation and cell wall biosynthesis, and DAGs under the 8 mg/L

treatment was overrepresented in leaf development (Figure 1D).

For all the PGRs, the treatment at high concentration could

provoke more alterations in APA profiles than that at low level

(Figure 1A), which was consistent with their larger effects on

suppressing the growth of pomegranate seedlings (Qian et al.,

2022). With regard to paclobutrazol, 341 DAGs were shared

between the treatments at the two concentrations, which were

overrepresented in the regulations of growth rate and leaf

senescence (Figure 2A). Comparatively, 241 and 2,212 genes

displayed 3’ UTR alterations specifically under 6 and 8 mg/L

treatment, respectively (Figure 2A). In particular, the DAGs

specifically induced by 6 mg/L paclobutrazol were enriched in leaf

development and thylakoid, whereas those responsive to 8 mg/L

treatment were involved in cell tip growth and stomatal movement

regulation (Figure 2A). Similar concentration-level specificities

were also observed in the treatments of B9 and mannitol

(Supplementary Figure 1). For instance, the 6 mg/L B9 treatment

altered the poly(A) site usage of the genes related to seedling

development, shoot apical meristem development, and cell wall

thickening, and the DAGs identified under the 8 mg/L treatment

were overrepresented in auxin transport, developmental process,

and maintenance of shoot apical meristem identity (Supplementary

Figure 1B, left panel). Together, these functional specificities of

APA events unraveled the dose–response relationships of PGR

treatments, which may assist to determine the optimal

concentration for PGR application.
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Different alternative polyadenylation
regulations were elicited by different PGRs

The APA changes also showed substantial specificities among

different PGR treatments (Figure 2B). In total, 1,308, 693, and 109

APA events occurred exclusively when exogenously applied with 8 mg/

L paclobutrazol, 8 mg/L B9, and 15 g/L mannitol, respectively, while

only 147 events were observed in all these three treatments. Functional

enrichment analysis showed that, the commonly changed events were

supposed to mainly affect leaf development and senescence, stomatal

closure, hydrogen peroxide transmembrane transport, and cellular

response to redox state (Figure 2B). Comparatively, the DAGs

specifically elicited by 8 mg/L paclobutrazol were enriched in the GO

terms of mitochondrial respiratory chain complex I, thylakoid, cellulose

biosynthesis, and karrikin response, while those exclusively occurring

under the 8 mg/L B9 treatment were overrepresented in auxin
Frontiers in Plant Science 0454
transport, xanthophyll biosynthesis, and phototropism (Figure 2B).

The biological processes involved in leaf development, tricarboxylic

acid transmembrane transport, signal transduction, and hydrogen

peroxide biosynthesis were enriched for the specially induced DAGs

by 15 g/L mannitol (Figure 2B).

Variations in the expression level of core polyadenylation

factors, including polyadenylation machinery components, RNA-

binding proteins, and transcription-related process, have been

found to regulate APA (Hunt et al., 2012; Tian and Manley,

2017). Here, we first identified the genes encoding the subunits of

four types of plant polyadenylation factors, cleavage stimulatory

factor (CstF), cleavage and polyadenylation specificity factor

(CPSF), poly(A) binding proteins (PABPs), and factor interacting

with poly(A) polymerase (FIP1), in the pomegranate genome and

compared their expression profiles under each treatment scenario

to CK. The results showed that there were several polyadenylation
A

B DC

FIGURE 1

Numbers of DAGs induced by three PGRs and the corresponding enriched GO terms. (A) Numbers of DAGS identified under the treatment of B9
(blue), mannitol (yellow), and paclobutrazol (red). (B–D) Featur GO terms significantly enriched for the DAGs responsive to B9 (B), mannitol (C), and
paclobutrazol (D).
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factors significantly differentially expressed in response to the

application of PGRs, which may play an important role in APA

regulations (Figure 3). It is noteworthy that the expression profiles

of polyadenylation apparatuses also displayed ample specificities

among different treatments. Only one factor, PABP 7B, was

commonly differentially expressed across all the three PGRs. In

contrast, the expression of PABP 5 and 6 was specifically altered

under the treatment of B9, and the gene that encodes PABP 9 and

CPSF subunit 6 had an exclusively differential expression when

treated with 8 mg/L paclobutrazol (Figure 3).
Frontiers in Plant Science 0555
Alternative polyadenylation and gene
transcription variations play a relatively
independent role in growth regulation

To explore the different roles of gene transcription and APA

dynamics in the regulation of PGR-induced dwarfing in

pomegranate, we compared DAGs identified in each treatment to

DEGs of the corresponding scenario. When treated with PGRs, most

genes were specifically under the regulation of either gene expression or

APA (Figure 4 and Supplementary Figures 2, 3). For instance, 24 and
A

B

FIGURE 2

Overlap of the DAGs across treatments. (A) DAGs overlapped between 6 and 8 mg/L paclobutrazol treatments, and the representative GO terms
enriched for each category. Circle size and color represent the significance level (p-value) of enrichment. (B) DAGs overlapped among the
treatments of 8 mg/L paclobutrazol, 8 mg/L B9, and 15 g/L mannitol, and the representative GO terms enriched for the DAGs of different categories
(highlighted by different colors).
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572 out of the 582 and 2,553 DAGs, which accounted for 4.1% and

22.4%, were also differentially expressed under the treatment of 6 and 8

mg/L paclobutrazol, respectively (Figures 4A, D). The DE-specific

genes induced by 6 mg/L paclobutrazol were highly represented in

cell proliferation, auxin biosynthesis, and brassinosteroid (BR) response

(Figure 4B), while the DA-specific genes were predominantly involved

in growth regulation, pectinesterase activity, and responses to salicylic

acid and strigolactone (Figure 4C). When exposed to 8 mg/L

paclobutrazol, genes related to superoxide dismutase activity and

root hair elongation were likely to be exclusively differentially

expressed compared to CK (Figure 4E), whereas those participating

in cellulose biosynthesis, oxidative stress regulation, and responses to

salicylic acid and karrikin showed different APA usages (Figure 4F).

A similar pattern was also observed under the treatment of B9

and mannitol: only 4.2%–14.2% of DAGs were overlapped with

DEGs (Supplementary Figures 2A, E and 3A, E). When treated with

8 mg/L B9, for one example, the DA-specific genes were

significantly enriched in the processes of root development,

maintenance of shoot apical meristem identity, and auxin

transport (Supplementary Figure 2F), while the DE-specific genes

were overrepresented in cell wall catabolism and oxidative stress
Frontiers in Plant Science 0656
responses (Supplementary Figure 2G). With regard to the

application of 2.5 g/L mannitol, the DA-specific genes were

highly represented in cellular response to osmotic stress, callose

deposition in cell wall, and leaf senescence (Supplementary

Figure 3B), and the GO terms related to cell proliferation, growth,

and development were found to be enriched for the genes

specifically regulated by differential expression (Supplementary

Figure 3C). Comparatively, when treated with 15 g/L

mannitol, the light-mediated leaf development, leaf senescence,

and photoperiodism were mainly regulated by APA events

(Supplementary Figure 3F), whereas the genes involved in auxin

metabolism, cell development-related programmed cell death, cell

wall thickening, secondary shoot formation, superoxide radical

removal, and L-ascorbic acid transmembrane transport were

largely under the control of different expression (Supplementary

Figure 3G). Taken together, these results suggested that, in many

scenarios, APA and gene transcription regulate different aspects of

the growth and development of pomegranate seedlings and together

contribute to the PGR-induced dwarfed stature.
Changes in 3’ UTR length affect microRNA
target sites

APA events were also found to substantially modulate gene

expression at post-transcriptional and translational levels.

Compared to CK, DAGs in the PGR-treated seedlings displayed a

global preference for using distal poly(A) sites (Figures 5A, B and

Supplementary Figures 4A, 5A). For example, under the treatment

of 8 mg/L paclobutrazol, 2,360 DAGs exhibited a higher abundance

of the isoforms with longer 3’ UTRs, while only 305 genes used

more proximal poly(A) sites (Figure 5B). These lengthened 3’ UTRs

were supposed to host more miRNA target sites, which can further

modulate mRNA abundance by influencing their stability.

Consistently, 65.99%–74.07% of the isoforms using longer 3’

UTRs were inferred to consist of extra miRNA target sites,

compared to those using shorter ones, under all the treatment

scenarios (Figures 5A, B and Supplementary Figures 4B, 5B). For up

to 61 isoforms, more than 10 putative miRNA targets were under

the impact of the changes in 3’ UTR length (Figure 5C and

Supplementary Figures 4C, 5C). Most of these miRNAs, both

constitutive (existing in isoforms with both short and long 3’

UTRs) and lengthened 3’ UTR-specific miRNAs, were identified

to function in cleavage of the corresponding mRNA, while 9.00%–

12.73% of the miRNAs specific to the extended 3’ UTRs were

supposed to inhibit mRNA translation (Figure 5D and

Supplementary Figures 4D, 5D). More important, up to 259

DAGs with lengthened 3’ UTRs targeted by miRNAs were

significantly downregulated under the treatment of PGRs

(Supplementary Figures 4E, 5E, 6). When treated with 8 mg/L

paclobutrazol, the miRNA-mediated downregulated genes were

overrepresented in the GO terms of developmental growth, lateral

root branching, maintenance of shoot apical meristem identity, and

cellular response to strigolactone, indicative of their important roles

in regulating the growth and development of pomegranate

seedlings (Figure 5E).
FIGURE 3

Heatmap illustrating the log2fold-change in the expression level of
polyadenylation factor subunits under different treatments. *
indicates the subunits of significantly differential expression under
the treatment condition compared to CK.
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Discussion

In the current study, we explored the PGR-induced APA

dynamics using the RNA-seq data from our previous study and

showed that all the PGR treatments, even at low concentrations,
Frontiers in Plant Science 0757
provoked genome-wide alterations in the usages of poly(A) sites

(Figure 1A). These changes were found to substantially influence

how pomegranate seedlings grew and developed. For example, the

poly(A) site usages of the genes involved in auxin transport and

growth regulation were significantly altered after the treatments
A

B

D

E F

C

FIGURE 4

Comparison between DAGs and DEGs under the treatments of paclobutrazol. (A) Venn diagram illustrating the overlap between DAGs and DEGs
when treated with 6 mg/L paclobutrazol. (B, C) GO terms enriched for the DA-specific (B) and DE-specific genes (C) under treatment of 6 mg/L
paclobutrazol. (D) Venn diagram illustrating the overlap between DAGs and DEGs when treated with 8 mg/L paclobutrazol. (E, F) GO terms enriched
for the DA-specific (E) and DE-specific genes (F) under the treatment of 8 mg/L paclobutrazol.
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A

B

D

EC

FIGURE 5

Overview of DAGs with lengthened/shortened 3’ UTR and the putative miRNAs targeting to the lengthened 3’ UTRs under the treatment of
paclobutrazol. (A, B) Left panels: 3D volcano plot illustrating the DAGs displaying 3’ UTR lengthening (red) and shortening (blue) when treated with 6
(A) and 8 mg/L paclobutrazol (B). The bar above each volcano plot shows the number of DAGs using more longer (red) and shorter 3’ UTRs (blue).
Right panels: Pie charts showing the proportion of isoforms with (blue) or without (gray) putative miRNAs targeting the lengthened area of 3’ UTRs
under 6 mg/L (A) and 8 mg/L paclobutrazol treatment (B). (C) Frequency distribution illustrating the number of miRNA target sites identified
specifically in lengthened 3’ UTRs across genes, when treated with 6 mg/L (green) and 8 mg/L paclobutrazol (orange), respectively. (D) Numbers of
constitutive (existing in isoforms with both short and long 3’ UTRs) or lengthened 3’ UTR-specific miRNAs that were predicted with putative mRNA
cleavage (green) and translation inhibition potentials (light green) under two paclobutrazol treatment scenarios, respectively. (E) Representative GO
terms enriched for the DAGs that were with miRNAs targeting the lengthened 3’ UTR area and significantly downregulated in response to 8 mg/L
paclobutrazol treatment.
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(Figures 1B–D). In particular, one DAG encodes protein PIN-

LIKES, which functions as an efflux carrier that mediates the

unidirectional auxin flow (Polar auxin transport, PAT) among

plant tissues (Krěček et al., 2009). The gene encoding mitogen-

activated protein kinase kinase 2 (MKK2) also displayed

significantly different APA profiles under the treatment. MKK2,

together with mitogen-activated protein kinase 10 (MPK10), forms

a module of mitogen-activated protein kinase (MAPK) signaling

pathways that serves as a key regulator for PAT in plants (Jagodzik

et al., 2018). These alterations in auxin transport may make

contributions to the repressed growth and development in

pomegranate. Correspondingly, the APA usages of the genes

involved in shoot apical meristem identity maintenance and leaf

development were also changed in response to PGR treatments

(Figures 1, 2B). One of such genes is the calpain-type cysteine

protease encoding gene DEK1. Studies in Physcomitrella patens

highlighted the important function of DEK1 in controlling the cell

fate transition from 2D to 3D growth, where DEK1 knockout in P.

patens led to aberrant cell divisions and developmental arrest in

buds (Demko et al., 2014; Johansen et al., 2016). Together, these

widespread alterations in APA profiles under PGR treatments

indicate the substantial significance of post-transcriptional

mechanisms in modulating the dwarfed stature of pomegranate.

The APA dynamics display ample specificities among the

treatments of different types/concentrations of PGRs (Figures 1, 2),

which correspond to their distinct nature. The DAGs induced by 8

mg/L paclobutrazol were particularly associated with the response for

karrikins, a type of plant growth regulator that controls plant

development (Wang et al., 2020), while the genes with significant

APA changes under 8 mg/L B9 treatment were overrepresented in

phototropism and xanthophyll biosynthesis (Figure 2B). It is

consistent with our previous observations from the transcriptome

data that genes responsive to strigolactones, a type of plant signaling

compound with similar biochemical properties and physiological

activities to karrikins, were specifically downregulated when

exposed to 8 mg/L paclobutrazol, whereas those involved in

photosynthesis and photosystem II assembly/repair were

suppressed by the application of B9 (Qian et al., 2022). Compared

to B9 and paclobutrazol, mannitol treatments at both concentrations

were found to elicit cellular response to osmotic stress (Figure 1C),

corresponding to its specific mechanism that mannitol represses

plant growth and development by increasing ambient osmatic

pressure and causing drought stress to plants (Bhat and Chandel,

1993); thus, antioxidant reactions were activated to alleviate the

oxidative damage. These results indicated that different regulatory

mechanisms underlying the pomegranate dwarfing elicited by

different PGRs were employed.

In the current study, we found that, in most scenarios, APA and

transcriptional regulations are not synchronized and modulate PGR-

induced growth repression via different routes, as manifested by both

the little overlap between DAGs and DEGs and the differences in the

pathways modulated by DAGs and DEGs (Figures 4A, D and

Supplementary Figures 2A, E and 3A, E). The transcriptome data

revealed that paclobutrazol obviously downregulated the genes related

to the tryptophan-independent auxin biosynthetic process (Qian et al.,

2022). Comparatively, APA events predominantly affected the polar
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transport of auxin among tissues. Similarly, when treated with 2.5 g/L

mannitol, the cell wall modification process was modulated by the

changes in both gene transcription and APA, although in distinct ways

(Supplementary Figure 3). In particular, the gene encoding

endoglucanase 8 (CEL1), which is a type of cellulose-hydrolyzing

enzyme that regulates the cell wall relaxation associated with cell

growth and expansion, was significantly downregulated (Tsabary

et al., 2003; Shani et al., 2006). Consequently, the suppression of

CEL1 would disrupt the differentiations of the plant vascular system

and lead to shorter roots and shoots (Tsabary et al., 2003). In contrast,

UTP-glucose-1-phosphate uridylyltransferase (also referred to as UDP-

glucose pyrophosphorylase, UGPase), which supplies UDP-glucose

substrate for the formation of secondary cell wall in plants, displayed

substantial poly(A) usage variations. Moreover, Payyavula et al. (2014)

showed that the maintenance of UGPase’s function was important for

the normal growth of Populus deltoides. These results suggested that

both APA and gene transcription make key contributions to the

intricate regulatory network underlying the dwarfing stature

of pomegranate.

Despite the independent function of APA in regulation, APA is

able to modulate transcriptome via influencing the presence or absence

of regulatory elements located in 3’ UTRs. Here, the DAGs induced by

PGR treatments, especially at high concentrations, displayed a global

preference for 3’ UTR lengthening (Figures 5A, B left panel and

Supplementary Figures 4A, 5A), which anchor more miRNA target

sites than the corresponding shorter 3’UTRs (Figures 5A, B right panel

and Supplementary Figures 4B, 5B). The majority of these extra

“burdens” were supposed to suppress gene expression by causing the

cleavage or destabilization of mRNA (Figure 5D and Supplementary

Figures 4D, 5D). In particular, 259 DAGs with miRNAs specifically

targeted in the lengthened 3’UTRs were significantly downregulated in

response to the 8 mg/L paclobutrazol treatment (Supplementary

Figure 6). These genes were found to participate in developmental

growth, lateral root branching, and maintenance of shoot apical

meristem (Figure 5E). Of them, the gene encoding E3 ubiquitin-

protein ligase (KEG) is known by its negative regulatory activity of

abscisic acid (ABA) signaling, and the suppression of its expression has

been shown to retard the growth of A. thaliana (Stone et al., 2006). As

another example, the expression of the gene that encodes ammonium

transporter 1 member 1 (AMT1;1) was also supposed to be suppressed.

AMT1;1 plays an important role in ammonium uptake from soil

solution by roots and the subsequent root-to-shoot transport of

ammonium; thus, the inhibition of AMT1;1 would lead to nitrogen

deficiency and growth defect in pomegranate seedlings (Mayer and

Ludewig, 2006). Together, these results highlight the role of APA events

in fine-tuning gene expression in response to PGR treatments, which

makes a key contribution to the retarded growth and development in

the dwarfed pomegranate seedlings.
Conclusion

In this study, we, for the first time, identified and characterized

the APA dynamics underlying PGR-elicited dwarfing in

pomegranate. Our findings highlight the biological importance of

post-transcriptional mechanisms in modulating pomegranate
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growth and development, which adds a new dimension to the

genetic basis of the agronomic trait of pomegranate. However, since

our study is mainly based on the prediction from RNA-seq, we

might be lacking in power to capture all of the signals and miss

some of the true APA events. Thus, in the future, a more

comprehensive investigation on the poly(A) usage alterations in

pomegranate is essential using efficient technology to measure 3’

UTR dynamics, such as Poly(A) tag sequencing (PAT-seq).
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A genome-wide association
study and genomic prediction
for Phakopsora pachyrhizi
resistance in soybean

Haizheng Xiong1*, Yilin Chen1, Yong-Bao Pan2, Jinshe Wang3*,
Weiguo Lu3 and Ainong Shi1*

1Department of Horticulture, University of Arkansas, Fayetteville, AR, United States, 2Sugarcane
Research Unit, Untied State Department of Agriculture – Agriculture Research Service (USDA-ARS),
Houma, LA, United States, 3Henan Academy of Crops Molecular Breeding, National Centre for Plant
Breeding, Zhengzhou, China
Soybean brown rust (SBR), caused by Phakopsora pachyrhizi, is a devastating

fungal disease that threatens global soybean production. This study conducted a

genome-wide association study (GWAS) with seven models on a panel of 3,082

soybean accessions to identify the markers associated with SBR resistance by

30,314 high quality single nucleotide polymorphism (SNPs). Then five genomic

selection (GS) models, including Ridge regression best linear unbiased predictor

(rrBLUP), Genomic best linear unbiased predictor (gBLUP), Bayesian least

absolute shrinkage and selection operator (Bayesian LASSO), Random Forest

(RF), and Support vector machines (SVM), were used to predict breeding values of

SBR resistance using whole genome SNP sets and GWAS-based marker sets.

Four SNPs, namely Gm18_57,223,391 (LOD = 2.69), Gm16_29,491,946 (LOD =

3.86), Gm06_45,035,185 (LOD = 4.74), and Gm18_51,994,200 (LOD = 3.60),

were located near the reported P. pachyrhizi R genes, Rpp1, Rpp2, Rpp3, and

Rpp4, respectively. Other significant SNPs, including Gm02_7,235,181 (LOD =

7.91), Gm02_7234594 (LOD = 7.61), Gm03_38,913,029 (LOD = 6.85),

Gm04_46,003,059 (LOD = 6.03), Gm09_1,951,644 (LOD = 10.07),

Gm10_39,142,024 (LOD = 7.12), Gm12_28,136,735 (LOD = 7.03),

Gm13_16,350,701(LOD = 5.63), Gm14_6,185,611 (LOD = 5.51), and

Gm19_44,734,953 (LOD = 6.02), were associated with abundant disease

resistance genes, such as Glyma.02G084100 , Glyma.03G175300 ,

G l yma . 0 4 g 1 8 9 500 , G l yma . 0 9G02 3 800 , G l yma . 1 2G 1 6 0400 ,

Glyma.13G064500 , Glyma.14g073300 , and Glyma.19G190200 . The

annotations of these genes included but not limited to: LRR class gene,

cytochrome 450, cell wall structure, RCC1, NAC, ABC transporter, F-box

domain, etc. The GWAS based markers showed more accuracies in genomic

prediction than the whole genome SNPs, and Bayesian LASSO model was the

ideal model in SBR resistance prediction with 44.5% ~ 60.4% accuracies. This

study aids breeders in predicting selection accuracy of complex traits such as

disease resistance and can shorten the soybean breeding cycle by the

identified markers
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Introduction

Soybean brown rust (SBR) is one of the most devastating fungal

diseases of soybean (Glycine max) (Hartman et al., 2005). It first

emerged around 1900 as a threat to soybean production in China

and Japan and has since spread globally, in part due to human

activities and meteorological phenomena (Hartman et al., 1991).

The disease arrived in Africa and the Pacific Islands in the 1980s

and 1990s and later reached the American continents in the 2000s

(Miles et al., 2004). The risk of SBR attracted more attention with

the disease outbreak in China in 1975 and in Brazil in 2001, that

caused 10 billion US dollar losses in each country (Yorinori et al.,

2005; Godoy et al., 2016). Comparing to the native American rust

pathogen (Phakopsora meibomiae), the exotic one (Phakopsora

pachyrhizi) was much more aggressive and caused an epidemic

on soybean in South America and spread to North America

(Pivonia and Yang, 2004).

Soybean plants are susceptible to SBR at any stage of growth

and development and Phakopsora pachyrhizi can quickly spread

over a long-range through wind-borne urediniospores (Isard et al.,

2005). Therefore, it is important to develop control strategies for

controlling SBR. Currently, the SBR can be managed by applying

fungicides and employing specific cultivation practices (Levy, 2005).

However, considering the high cost and the harm to non-target

beneficial fungi, a more economic, safer, and environmental

friendly solution is to raise varieties’ own resistance by developing

new resistance lines through breeding or engineering (Bromfield

and Hartwig, 1980). In the past 30 years, the well-known Rpp 1–7

genes were mapped to chromosome 3, 6, 16, 18, and 19 (Garcia

et al., 2008; Pandey et al., 2011; Li et al., 2012; Kashiwa et al., 2020).

However, Rpp genes were race-specific and provided resistance

exclusively to specific P. pachyrhizi isolates. Currently, there is no

resistant soybean genotype that can ward off all known P. pachyrhizi

isolates (Childs et al., 2018a). In addition, Rpp gene-mediated

resistance can be overcome swiftly in the field due to pathogen’s

adaptation and evolution to resistant host (Godoy and Meyer,

2020). Pyramiding three or more Rpp genes into one genotype to

obtain broader and/or more durable resistance has been reported on

other crops like wheat or barley, but traditional breeding is still

time-consuming and may introduce unwanted traits (Childs et al.,

2018a). Another promising strategy for sustainable and effective

SBR resistance is to utilize alternative R gene combinations and

dynamic turnover in the field (Childs et al., 2018a). However, the

identity of these Rpp genes needs to be revealed (Gebremedhn et al.,

2020). Under the current conditions, it is also impractical to rely

only on several major genes or combinations of these genes to

control the SBR disease in field production.

In addition to major genes, many recent molecular studies have

revealed more disease-resistant pathways in soybeans (Childs et al.,

2018b). The resistance usually occurs in the form of signals,

transcription factors, NB-LRR, or secondary metabolites

(Gebremedhn et al., 2020; Waheed et al., 2021). They usually

improve not only the resistance to a particular pathogen but the

overall resistance of the plant as well. In addition, many minor

resistance/tolerance genes are widely distributed throughout the

whole soybean genome and exhibit partial defense response (PDR)
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to SBR (Langenbach et al., 2016). PDR is characterized by low

infection frequency, long-lasting latency, small lesions, and reduced

spore production per uredinium (Langenbach et al., 2016). At the

molecular level, their specific functions are sometimes very similar

or overlapping to the context components; however, they are more

complex and obscure (Langenbach et al., 2016). Screening for or

silencing susceptibility is another strategy that can provide durable

disease resistance in breeding, because of susceptible (S) gene

function either as susceptibility factors or suppressors of plant

defense, thus potential targets of fungal effectors (De Wit, 1992).

For example, absence of the S gene Mlo in barley results in an

incompatibility interaction with Blumeria graminis hordei that

resembles nuclear hormone receptors (Büschges et al., 1997;

Lucas, 2020). However, the identification and mapping of S gene

are more difficult than those of major R genes by linkage mapping,

and only one [Cys(2)His(2) zinc finger TF palmate-like

pentafoliata1, PALM1] would classify as a S gene so far

(Uppalapati et al., 2012).

Molecular marker-assisted selection (MAS) has been applied

in soybean breeding to accelerate the development of disease-

resistant varieties, and the GWAS is of vital help to MAS

(He et al., 2014). Comparing with linkage mapping, GWAS can

not only find the major genes, but also has the incomparable

ability to map and identify the minor and S genes. Moreover,

since the mapping populations such as natural population and

multi-parent advanced generation inter-cross, contain more

diversity, the markers developed have more universal

applicability (Visscher et al., 2012). So far, only one SBR-

related GWAS has been reported by Chang et al. (2016), who

used GWAS to discover five SBR-related loci from USDA

germplasm. Genomic selection (GS) has gained popularity in

recent years in modern and large-scale crop breeding programs.

GS can predict the breeding value of an individual plant based on

its genotype to estimate the field performance of the plant,

whereas MAS relies on the detection of a few QTLs using a

simple linear model. Therefore, molecular breeding would shift

from marker-assisted selection to genomic selection, as the

genetic architecture of resistance changes from a single major R

gene to multiple minor diffusion gene architectures (Poland and

Rutkoski, 2016). Additionally, GS has been reported to be a useful

tool in soybean breeding to predict a wide range of traits,

including both agronomic and quality traits (Lorenz et al.,

2011). However, no research has been done with respect to

investigating GS accuracy for SBR resistance/tolerance.

The objectives of this study were to identify SBR resistance-

associated SNP markers and to characterize the ability of genomic

prediction in order to use SNP markers in selecting soybean

breeding lines highly resistant to SBR.
Materials and methods

Plant materials and phenotyping

SBR disease scores and phenotyping data of 3,082 soybean

accessions (Table S1) were downloaded from the USDA GRIN
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website (https://npgsweb.ars-grin.gov/gringlobal/method?

id=492634) (Miles et al., 2006). Based on the website, a

greenhouse study was initiated. Soybean plants of 3,082

accessions were spray-inoculated between the first and second

trifoliate stage with a mixture of urediniospores (60,000 spores

per ml) from four Phakopsora pachyrhizi isolates, incubated

overnight in a dew chamber at 22–25°C, and placed in a

greenhouse at 20–25°C for 14 days. Disease severity was evaluated

on the first trifoliate leaves for most accessions; however, the

unifoliate leaves were evaluated for a few accessions due to slow

germination (Miles et al., 2006). Based on the symptom and lesion

development, a disease severity scale of 1 to 5 was used, where 1 =

no visible symptom, 2 = light infection: only a few small (less than

1 cm) rust lesion present on the leaves, 3 = light to moderate

infection: moderately sized (1–2 cm) rust lesion present on a limited

number of leaves, 4 = moderate to severe infection: large (greater

than 2 cm) rust lesion present on a significant number of leaves, and

5 = severe infection: nearly all leaves are covered in large rust lesion,

and the disease is causing a significant damage to the plant growth

(Walker et al., 2011).
Genotyping

The Soy50K SNP Infinium Chips (Song et al., 2013) and a total

of 42,292 SNPs across 3,082 soybean accessions were downloaded

from the Soybase at https://www.soybase.org/snps/download.php.

SNPs with >10% missing data, >8% heterozygous genotypes,

and <10% minor allele frequencies (MAF) were removed, and

30,314 SNPs were included in the GWAS study.
Population structure and genetic diversity

LEA is an R package for population structure and genomic

signature analysis of local adaptation. The inference algorithms

used by R are based on a fast version of structure available from

the R package LEA (Frichot and François, 2015). The structure

analysis identifies K clusters by measuring an optimum DK based

on the SNP data provided. A preliminary analysis was performed

in multiple runs by inputting successive values of K from 2 to 20.

After an optimum K was determined, each soybean accession was

assigned to a cluster (Q) based on the probability that the

accession belonged to that cluster. The cut-off probability for

the assignment to a cluster was 0.5. Based on the optimum K, a bar

plot with “Sort by Q” was obtained to visualize the population

structure among the 3,082 accessions. Phylogenetic relationships

among the accessions was generated by TASSEL 5.2.13 and

phylogenetic tree was drawn using R package: Phytologist and

Phytools (Revell, 2012). During the drawing of the phylogeny

trees, the population structure and the cluster information were

imported for the combined analysis of genetic diversity. For sub-

tree of each Q (cluster), the shape of “Node/Subtree Marker” and

the “Branch Line” was drawn using the same color scheme of the

STRUCTURE analysis.
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Linkage disequilibrium analysis and SNP
based haplotype blocks

TASSEL 5.0 (Bradbury et al., 2007) was used to calculate the

linkage disequilibrium (LD) for all pairwise loci. Only SNPs with a

minor allele frequency (MAF) greater than 0.10 and less than 10%

missing data were included in the LD estimation process. Haplotype

blocks (HAP) were estimated by Plink 2.0 (Purcell et al., 2007) within

200kb (r2 ≈ 0.4), and a minimum threshold value 0.05 for MAF.
Genome-wide association study

GWAS was performed using the Generalized Linear Model

(GLM), Mixed Linear Model (MLM) (Jiang and Nguyen, 2021),

Compressed Mixed Linear Model (CMLM), Multiple Loci Mixed

Model (MLMM) (Wen et al., 2018), Settlement of MLM Under

Progressively Exclusive Relationship (SUPER) (Wang et al., 2014),

Fixed and Random Model Circulating Probability Unification

(FarmCPU) (Liu et al., 2016), and Bayesian-information and

Linkage-disequilibrium Iteratively Nested Keyway (BLINK)

(Wang et al., 2014) in R software GAPIT 3 (Genomic Association

and Prediction Integrated Tool version 3) (Wang and Zhang, 2021;

Lipka et al., 2012; https://zzlab.net/GAPIT/index.html; https://

github.com/jiabowang/GAPIT3) by setting PCA = 6, with the

Kinship for MLM, CMLM, MLMM, SUPER; and Pseudo QTNs

for FarmCPU and BLINK.
SNP selection accuracy and
selection efficiency

The accuracy and efficiency of SNP selection were computed to

evaluate the significant SNP by the allele proportion in

the population.

Selection accuracy (SA) = 100*[(Number of S or R genotypes

with the favorable SNP allele)/(Number of R genotypes with the

favorable SNP allele + Number of S genotypes with the favorable

SNP allele)]/DE, where DE = E1/E2, E1 = Observed number of S or R

genotypes/(Number of R genotypes + Number of S genotypes); E2=

Expected number of S or R genotypes/(Number of R genotypes +

Number of S genotypes).

Selection efficiency (SE) =100*[(Number of S or R genotypes with

the favorable SNP allele)/(Total number of S or R genotypes)]/DF,
where DF = F1/F2, F1 = Observed allele frequency of SNP, and F2 =

Expected allele frequency of SNP. In this study we set the E2 and F2 as

an ideal equilibrium value (50%).
Candidate gene prediction

Candidate genes were selected based on the peak significant SNP

in each LD region located within 50 kb on either side of significant

SNPs (Zhang et al., 2016), and furtherly by 0 kb (on the gene), 1 kb, 5

kb, 10 kb, 20 kb, 30 kb, and 50 kb, respectively. Candidate genes were
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retrieved from the reference annotation of the soybean reference

genomeWm82.a2.v1 from the SoyBase (http://www.soybase.org) and

the Phytozome database (https://phytozome.jgi.doe.gov).
Genomic prediction

GP was conducted using seven SNP sets: All SNP set (30,314

SNPs) and six GWAS-derived SNP marker sets. The six GWAS-

derived SNP marker sets consisted of those significant SNPs from

highest LOD [–log(P-value)] to low LOD value (2.0) to make each

set as 28, 100, 500, 1,000, 2,000, and 5,000 SNPs, respectively.

Genomic estimated breeding value (GEBV) was computed using

five statistical models: Ridge regression best linear unbiased

predictor (rrBLUP) (Endelman, 2011), Genomic best linear

unbiased predictor (gBLUP) (Zhang et al., 2007), Bayesian least

absolute shrinkage and selection operator (Bayesian LASSO)

(Heslot et al., 2012), Random Forest (RF) (Poland et al., 2012),

and Support vector machines (SVM) (Ogutu et al., 2011) (Table S2).

A five-fold cross-validation was performed for each GP. The

association panel was randomly divided into 5 disjoint subsets, 4

subsets were used as training set, and the remaining set was

considered testing set. A total of 100 replications were conducted at

each fold. Mean and standard errors corresponding to each fold were

computed. Genomic prediction accuracy was obtained by computing

the Pearson’s correlation coefficient (r) between GEBV and the

observed phenotypic value for the testing set (Shikha et al., 2017).
Results

Germplasm evaluation of
Phakopsora pachyrhizi

Out of 3,082 soybean accessions evaluated for TAN lesion type,

71 (2.3%) were rated 1~2, 1,009 (32.7%) were rated 2.3~3, 1,746

(56.7%) were rated 3.1~4; and 256 (8.3%) were rated 4.2~5 in a

rating scale of 1 to 5. Accessions with a mean severity of 2.7 or less

(299, 9.5%) were considered resistant, while those with a mean

severity of 4.0 or more (791, 25.6%) were considered susceptible.

Accessions between the two categories were considered moderate.

There was a large range in the distribution of each category

(Figure 1). Majority of accessions displayed a disease severity

rating of 3 or 4 being susceptible to SBR.
SNP profile

A total of 30,314 high quality SNPs were used to perform

GWAS in the soybean accessions. Number of SNPs per

chromosome ranged from 1,027 on chr20 to 1,898 on Chr16,

with an average of 1,515.7 SNPs (Figure 2). The average distance

between two SNPs per chromosome varied from 23.6 kb to 46.6 kb,

with an average of 33.1 kb. The shortest average distance between

SNPs was found on Chr18, whereas the longest one was on Chr20.

Average MAF per chromosome ranged between 25.8% and 30.1%,
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with an average of 28.7% (Table S3). Percentage of heterozygous

SNPs across all chromosomes were below 0.7%, and the percentage

of missing SNPs per chromosome varied from 0.3% to 0.7%.
Population structure and LD haplotype

The structure analysis helped identify the most promising

genetic variations to better understand the genetic basis of the

trait. The population structure of the soybean accessions was

analyzed using the R packages “LEA” and the peak of DK was

observed at K = 6, indicating of the presence of six subpopulations

or clusters (Figure 3A). A total of 337 (10.9%) accessions were

assigned to subpopulation Q1; 306 (9.9%) assigned to Q2; 543

(17.6%) assigned to Q3; 534 (17.3%) assigned to Q4; 358 assigned to

Q5; and 1,004 (32.5%) assigned to Q6 (Figure 3B). Phylogenetic

analysis and population admixture map using R packages “Phytool”

and “LEA” also revealed that the clustering of accessions was

consistent with that inferred by structure K = 6 (Figure 3C).

Additionally, there was a clear tendency of clustering by

geographical areas. The controlling for population structure by

taking geography into account is crucial for accurate GWAS

results and for identifying true genetic associations with the trait
FIGURE 1

Combined violin-boxplots based on SBR ranking of the 3,082
soybean accessions, including Susceptible (red), Moderate (yellow)
and Tolerant (green) groups.
FIGURE 2

The distribution of 30,314 SNPs among the 20 chromosomes of
soybean within 1 Mb size.
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of interest. As Q6 was dominant in South and Central China and

Southeast Asia, Q3 and Q4 were main populations in Northeast and

Northwest Asia, and the population in Europe was dominated by

Q2 and Q5 (Figure 3D and Table S1). Kinship matrix, based on

30,314 polymorphic SNPs for the studied genotypes, indicated that

there was no clear clustering among the 3082 genotypes.

We examined the linkage disequilibrium (LD) decay patterns by

30,314 genome-wide SNPs. To visualize the LD decay patterns across

distances, we plotted the LD decay curves by GAPIT 3 (Figure 4). The

LD decay curves showed a clear distance-dependent pattern, with steeper

decay curves at longer distances. Specifically, at a distance of 103 kb, the

LD decayed with an R2 value of 0.6, indicating a relatively strong LD

correlation between nearby variants. At 216 kb, the LD decayed with an

R2 value of 0.4, indicating a moderate level of LD correlation between

nearby variants. Finally, at 296 kb, the LD decayed with an R2 value of

0.2, indicating a weak level of LD correlation between nearby variants

(Figure S1). A total of 4,940 haplotype blocks were identified based on

30,314 SNPs. Number of blocks per chromosome varied from 170 on

Chr11 to 357 on Chr18. Number of SNPs within each block varied from

2 to 67. Many haplotype blocks contained more than two significant

SNP markers, for example, Gm01_47,462,126, Gm01_47,476,910,

Gm01_47,481,216, Gm01_47,495,955, Gm01_47,503,665,

Gm01_47,516,500, and Gm01_47,548,257 were in the same haplotype

block on Chr1 (Table S4).
Genome-wide association study

The high convergence and consistency of the GWAS were

observed among seven models. For example, the top six
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significant SNPs from the FarmCPU model including:

Gm09_1 ,951 ,644 (10 .06 ) , Gm20_36 ,724 ,867 (6 .54 ) ,

Gm03_38 , 913 , 0 29 ( 6 . 1 0 ) , Gm19_44 , 7 34 , 953 ( 5 . 7 ) ,

Gm02_7,235,181 (5.18), and Gm04_47,132,429 (5.06) also had

the high LOD values, which were at least 5.20, 2.67, 3.77, 3.59,

3.69, and 4.00 in other models. SNPs Gm04_45,884,688,

Gm10_39,142,024, Gm14_2,492,139, Gm16_4,935,328, etc. were

significant among all seven models (Figures 4, S2). A total of 100

SNPs were collected in this study by considering both model

consistency and significance (Table S5). These SNPs were

positioned at 47 haplotype blocks (Table S4). Then the top 28

SNPs with LOD > 5.50 were listed in Table 1 for future discussion.

These 28 SNPs were located on 13 chromosomes (Chr. 2, 3, 4, 6, 8,

9, 10, 12, 13, 14, 16, 19, and 20), indicating their wide distribution

and presence of genes that confer SBR resistance across the genome.

Several SNPs were found in the same blocks, such as

Gm02_7,235,181 and Gm02_7,234,594 in block 436;

Gm09_1,944,730, Gm09_1,943,831, and Gm09_1,951,644 in block

1902; Gm10_5,573,877, Gm10_5,573,007, Gm10_5,559,592,

Gm10_5,541,691, and Gm10_5,578,693 in block 2331; and

Gm10_39,142,024 and Gm10_3,9147,121 in block 2215, which

might be due to the gene clustering or pleiotropy.
Candidate genes of significant SNPs

Due to variations in LD decay across different regions, a

conservative distance of 50 kb was set to select candidate genes as

the region of the significant SNPs. There are four SNPs (loci) out of

the top 100 associated markers, including Gm18_57,223,391,
FIGURE 3

Structural and phylogenetic analysis of 3,082 soybean accessions based on 30,314 SNPs. (A) Delta K values for different numbers of populations
assumed (K=20) in the STRUCTURE analysis. (B) Classification of soybean accessions in six groups (K=6) using STRUCTURE. The distribution of
accessions to different populations is color coded, Q1 (green), Q2 (blue), Q3 (yellow), Q4 (pink), Q5 (red), Q6 (cyan). The x-axis shown the accessions of
each subgroup, and the number on the y-axis shows the Q likelihood of accessions. (C) Phylogenetic analysis of the 3,082 soybean accessions with the
corresponded labels used in (B). (D) Geographical distribution of the soybean accessions by colored pie chart corresponding with the group
proportion (B).
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Gm16_29,491,946, Gm06_45,035,185, and Gm18_51,994,200, were

identified to locate in close proximity to four main P. pachyrhizi R

genes Rpp1, 2, 3, and 4, respectively, which were verified and

reported in last decades.

Thirty-five candidate genes that might be associated with SBR

disease resistance were found in the regions of the top 28 significant

SNP markers (Table 1). Disease related annotations of these

candidate genes were included but not limited to: LRR (Leucine

Rich Repeat class protein), cytochrome 450, cell wall structure,

RCC1 (regulator of chromosome condensation 1), AKR (ankyrin

repeat-containing protein), F-box domain, NAC (NAM, ATAF and

CUC family). Furthermore, most of the top 28 significant SNP

regions were harboring more than one candidate gene, for example,

the region of Gm02_7,235,181 and Gm02_7,234,594 contained

three candidate genes, Glyma.02G083500, Glyma.02G083300, and

Glyma.02G084100, coding for cell wall constituent, LRR-RLK, and

RCC1, respectively.
Selection accuracy and selection efficiency

Selection accuracy (SA) and Selection efficiency (SE) reflect the

contributions of selected alleles from the top 100 significant SNP to

the resistance or susceptibility to Phakopsora. For the resistance

alleles, SE varied from 50.0% to 84.2%, with an average of 57.5%;

and the SA varied from 50.0% to 82.2%, with an average of 58.2%.

SNP Gm09_1,951,644 had the highest values in both SA and SE in

resistance effect. For susceptible alleles, the SE varied from 50.0% to

69.8%, with an average of 55.1%; and the SA varied from 50.3% to

56.9%, with an average of 52.7%. SNP Gm04_46,295,839 (52.7%)

had the highest values in both SA and SE in susceptible effect
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(Table S6). This result identified the specific nucleotide of SBR-

related alleles.
Genomic prediction

The 100 significant SNPs not only had the highest LOD value

but were most repeatable across all GWAS methods as well.

Following the same approach, six additional GWAS-based SNP

sets were created, each consisting of 28, 100, 500, 1,000, 2,000, and

5,000 SNPs, respectively. In this study, we applied seven datasets,

namely, All_SNPs (30,314), GWAS_5000SNPs, GWAS_2000SNPs,

GWAS_1000SNPs, GWAS_500SNPs, GWAS_100SNPs and

GWAS_28SNPs for GP analysis by five different GS models

(Figure 5). The average GS accuracies of the All_SNPs set were at

a medium level that was similar to those, ranging from 28.0% (RF)

to 32.4% (gBLUP), among all the models.

Although the number of SNPs fluctuated by GWAS datasets, all

the accuracy curves showed a similar pattern among the five models.

The trend depicted by the left side of the curves indicated that as the

number of SNPs decreases from 5,000 to 1,000, the accuracy of the

prediction increases, too. The highest accuracies were observed when

using the 1,000 SNP set, which were varying from 35.7% (RF) to

60.4% (Bayesian LASSO). And, as the number of SNPs continued to

decrease from 1,000 to 100, the accuracy of GP also decreased. In all

six GWAS based SNP sets, the Bayesian LASSO achieved the highest

average GS accuracy of 53.0%, followed by rrBLUP with an average

accuracy of 51.9%. On the other hand, the lowest accuracy of 36.2%

was recorded when using the RF model. The GS accuracies of gBLUP

and SVM models were at almost the same level but were relatively

lower using the SVM model (Table S7).
FIGURE 4

The circular Manhattan plots of seven GWAS models: (A) Settlement of MLM Under Progressively Exclusive Relationship (SUPER), (B) Bayesian-
information and Linkage-disequilibrium Iteratively Nested Keyway (BLINK), (C) Fixed and Random Model Circulating Probability Unification
(FarmCPU), (D) Multiple Loci Mixed Model (MLMM), (E) Mixed Linear Model (MLM), (F) Generalized Linear Models (GLM) and (G) Compressed Mixed
Linear Model (CMLM) for SBR. The red asterisk points to the significant spots associated with SBR on 20 chromosomes. The outmost circle indicates
the hotspots associated with SBR response among seven models.
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TABLE 1 The genes within 50 kb genomic region of the top 28 significant SBR-associated SNPs with functional annotations.

SNP GWAS model (Ranking) LOD Allele
Type Gene name Functional annotations

Gm02_7235181
SUPER(1), FarmCPU, CMLM(5),

MLMM(10)
7.91 T/C Glyma.02G083500

Glyma.02G083300
Glyma.02G084100

LRR; RCC1; response to bacterial origin; defense
response; structural constituent of cell wall

Gm02_7234594 SUPER(2), MLMM(11) 7.61 C/T

Gm02_7315227
SUPER(3), GLM,MLM, Blink(5),

MLMM(6)
7.52 G/A

Glyma.02G084100
Glyma.02G084900

RCC1 repeat; Ankyrin repeat family protein/
domain

Gm03_38913029
GLM, MLM, Blink (2), FarmCPU,

CMLM(3), MLMM(7), GLM
6.85 T/C

Glyma.03G175800
Glyma.03G177400
Glyma.03G175300

Response to aluminum ion; cell wall; ABC
transporter

Gm04_45884688
MLM, Blink(7), SUPER(15), MLMM

(16), FarmCPU, CMLM(26)
6.23 T/C Glyma.04g188000 LRR

Gm04_46003059 SUPER(20), MLMM(24) 6.03 G/A
Glyma.04G189300,
Glyma.04g189500

Membrane; Cytochrome P450

Gm04_46295839 SUPER(16), MLMM(18) 6.08 C/T
Glyma.04G192300 Cell wall organization; cellular membrane fusion;

Gm04_46389651 SUPER(22), MLMM(27) 5.94 C/T

Gm04_47132429
MLMM(4), FarmCPU, CMLM(6),
GLM, MLM, Blink(13), SUPER(25)

5.78 T/C
Glyma.04G211100,
Glyma.04G212000

NAC domain

Gm06_36808946
SUPER(6), GLM, MLM, Blink(9),

FarmCPU, CMLM(34)
6.73 G/A Glyma.06G232500 Response to molecule of bacterial origin

Gm08_43955878
FarmCPU, CMLM(19), SUPER(32),

MLMM(33)
5.61 A/C

Glyma.08g319300,
Glyma.08G321700

LRR; response to abscisic acid stimulus/cold/water
deprivation

Gm09_1944730 MLMM(2), SUPER(27) 5.77 C/A

Glyma.09G024700 LRR-RLKs
Gm09_1943831 MLMM(3), SUPER(28) 5.73 G/A

Gm09_1951644
FarmCPU, CMLM, MLMM (1),

GLM, MLM,
Blink (4),SUPER(18)

10.07 T/G

Gm10_5573877
SUPER(5), MLMM(12), GLM, MLM,

Blink(14)
6.73 C/T

Glyma.10G060100,
Glyma.10G060200,
Glyma.10G060600

Respiratory burst involved in defense response,
response to bacterium/chitin; cell wall organization

Gm10_5573007 SUPER(7), MLMM(15) 6.58 C/T

Gm10_5559592 SUPER(9), MLMM(20) 6.48 C/A

Gm10_5541691 SUPER(33), MLMM(44) 5.60 C/T

Gm10_5578693 SUPER(23), MLMM(32) 5.93 G/A

Gm10_39142024
GLM, MLM, Blink(1), MLMM(8),
SUPER(10), FarmCPU, CMLM(14)

7.12 C/T
Glyma.10g157500 LRR-RLKs, regulation of plant immunity

Gm10_39147121 MLMM(9), SUPER(21) 6.02 T/G

Gm12_28136735
SUPER(4),GLM,MLM, Blink(8),

MLMM(39)
7.03 G/A

Glyma.12G160100,
Glyma.12G160400

NAC domain protein; Cytochrome P450

Gm13_16350701
FarmCPU, CMLM(16), GLM, MLM,

Blink(23), SUPER(29)
5.63 T/C Glyma.13G064500

F-box and WD40 domain protein, disease resistance
protein

Gm14_2492139
GLM, MLM, Blink(6), SUPER(13),
FarmCPU, CMLM(25), MLMM(26)

6.26 A/C
Glyma.14G034200,
Glyma.14G040000

RCC1 family protein; LRR-RLKs

Gm14_6185611
MLMM(28), SUPER(36), GLM,

MLM, Blink(46)
5.51 C/T

Glyma.14g073300,
Glyma.14G073800

F-box domain; regulation of defense response

Gm16_4935328
GLM, MLM, Blink(10), MLMM(22),
SUPER(31), FarmCPU, CMLM(32)

5.61 T/G
Glyma.16G051800,
Glyma.16G052200

NAC domain protein; LRR-RLKs

Gm19_44734953
GLM, MLM, Blink(3), FarmCPU,

CMLM(4), MLMM(25)
6.02 G/A

Glyma.19G189900,
Glyma.19G190200,
Glyma.19G190800

Defense response to bacterium; LRR-RLKs; plant-
type cell wall

Gm20_36724867 FarmCPU, CMLM(2) 6.54 C/T Glyma.20G124700 QSOX1 regulates plant immunity
F
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Discussion

Phenotype

Resistance to P. pachyrhizi is commonly evaluated based on three

types of SBR lesions: “TAN”, “RB”, and “Mixed”. The “TAN” lesion

type is characterized by heavy fungal sporulation typically develop on

susceptible soybean leaves, while the RB or “reddish-brown” lesion

type has been linked to resistance in known single gene resistance.

The “Mixed” reaction is recorded when both RB and TAN lesions

were observed on the same leaf (Miles et al., 2006). The simple

classification of TAN and RB lesions had been widely used decades

ago; however, it had been noted as oversimplified to the symptom

observation. Nowadays, the appropriate practice is to separately

divide TAN and RB into multiple classes to provide more accurate

descriptions of disease symptoms while taking into account variations

in fungal sporulation. Considering data consistency and method

popularity, we took the TAN lesion as the phenotype of the

association analysis for this study, which had sufficient observations

and good distribution of SBR resistance. In the present study, the

resistance resources were primarily sourced from China, Japan, and

Korea, comprising 40%, 16%, and 21% of the total resources,

respectively. These figures closely align with the respective

proportions of 43%, 13%, and 18% observed in the overall

population. In addition, according to the ANOVA between groups,

it is obvious that the variability (99%) within groups is greater than

the variability (1%) between groups (Table S8).
GWAS and candidate genes

Specific resistance to P. pachyrhizi is controlled by seven single

dominant genes, namely, Rpp1 (Chr 18), Rpp2 (Chr16), Rpp3 (Chr6),

Rpp4 (Chr7), Rpp5 (Chr3), Rpp6 (Chr18), and Rpp7 (Chr19) (Calvo

et al., 2008; Meyer et al., 2009; Lemos et al., 2011; Childs et al., 2018b).

The single genes played an important role in SBR resistance, but this

kind of resistance is not durable, and the usefulness of the sources

loses its effectiveness once it is identified and applied in breeding

(Chander et al., 2019). GWAS was performed in efforts to discover

loci contributing SBR resistance, thus helping find all genes for SBR

control (Chang et al., 2016). Multiple models were developed for
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GWAS based on linkage disequilibrium, including GLM, MLM,

CMLM, MLMM, SUPER, FarmCPU, and BLINK (Wang and

Zhang, 2021). Previous studies demonstrated that the differences of

the models were caused by the interactions between the methods and

other factors, including populations, sample size, mapping resolution,

trait complexity, and quality of the data. Typically, all GWAS

methods perform well when the aforementioned factors are

favorable; however, each model may have varying numbers of false

positives depends on the strengths and weaknesses of the model in

different circumstance. Therefore, it is important to carefully consider

the advantages and limitations of each GWAS method and choose

the most appropriate one for the specific study and data.

Additionally, multiple methods and independent replication studies

are often used to confirm the validity of the results and minimize the

risk of false positive findings. However, GWAS studies on SBR

resistance were scarce, with the exception of a few studies that used

a single model to discover loci contributing to general disease

resistance in soybean (Kang et al., 2012; Chang et al., 2016). In this

study, we applied all seven models and also considered both

significance and consistency of each model for candidate SNPs of

SBR resistance to hedge the false positives.

A total of four significant SNPs were located on or nearby the

reported R genes. SNP Gm06_45,035,185 in chromosome 6 was

located at gene Rpp3; Gm18_51,994,200 and Gm18_57,223,391 in

chromosome 18 were nearby the genes Rpp4/Rpp4-b and Rpp1/

Rpp1-b, respectively; and Gm16_29,491,946 in chromosome 16 was

located at Rpp2, which showed the promise of GWAS on SBR

resistance (Sharma and Gupta, 2006). However, we only observed

moderate significance for these four SNPs in GWAS analysis,

probably due to the following reasons: 1) different genetic

variants contributing to the trait, rather than a single major gene;

2) major genes are often rare, the signal from a major gene may be

diluted by underrepresented or even missing gene(s) in the samples.

Except for the major Rpps, some significant SNPs also associate

with LRR class genes that were considered to be the majority of

disease resistance genes in plants (Kang et al., 2012). Genes encoding

cytochrome P450 have been shown to contribute to both plant

development and defense under pathogen attack (Siminszky et al.,

1999). The F-box family proteins have been demonstrated to be

directly involved in plant defense against pathogens(Liu and Xue,

2011). The QSOX1 (quiescin sulfhydryl oxidase homolog) were
FIGURE 5

Genomic prediction (GP) accuracy for rust using five GP models: Ridge regression best linear unbiased predictor (rrBLUP) = blue, Genomic best
linear unbiased predictor (gBLUP) = dark yellow, Bayesian least absolute shrinkage and selection operator(Bayesian LASSO) = red, Random Forest
(RF) = green, Support vector machines (SVM) = purple based on seven datasets: All_SNPs (30314), and six GWAS based SNP sets with top28, 100,
500, 1,000, 2,000 and 5,000 SNPs.
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reported to negatively regulate plant immunity against a pathogen

(Chae et al., 2021); WD40 repeat-containing proteins which played

an important effect on plant defense (Miller et al., 2016). The results

were indicative of the robustness of the significant SNPs identified in

this study. Other functional annotations pertaining to the candidate

genes of cell wall structure/organization/construction and membrane

fusion/proteins/structure/transporters have been demonstrated to

play some roles in plant passive defense to pathogens (Mellersh

and Heath, 2001; Hématy et al., 2009). The RCC1, NAC domain

protein, ABC (ATP-binding cassette) transporters, etc. involve in

many plant response-associated physiological activities to biotic or

abiotic stresses and are widely annotated to the candidate genes

(Table 1, S5) (Langenbach et al., 2016; Gautam et al., 2020; Oh et al.,

2022). Furthermore, previous studies have reported the involvement

of LRR (leucine-rich repeat), ABC transporters and F-box proteins in

conferring resistance to rust fungi in other crop species belonging to

the same order of Pucciniales, including wheat (Vikas et al., 2022),

barley (Sallam et al., 2017), and maize (Juliana et al., 2018).
Selection accuracy and selection efficiency

SE and SA were computed for the significant SNPs associated

SBR resistance or susceptibility (Ravelombola et al., 2017). The SA

and SE of the marker were measured by relative proportion of an

allele type (A/T/C/G) in resistant or/and susceptible accessions, as has

been highlighted in other GWAS-related reports (Shi et al., 2016;

Ravelombola et al., 2019). Specifically, the proportion of allele type for

a completely un-associated SNP should be close to 50% in either

resistant or susceptible group. Therefore, when the SA or SE value of

the allele type is more than 50%, it contributes positively to the

corresponding trait, or vice versa. In general, the two different

nucleotides of any significant SNP must have opposite effects on

disease resistance or susceptibility, which are defined as “R” or “S”

alleles. We observed significant difference between “R” and “S” alleles

in one SNP. For example, the “R” allele of SNP Gm04_46,295,839(C/

T) has a “C” nucleotide with low SE and SA values (52.6% and

53.9%), but its “S” allele has a “T” nucleotide with high SE and SA

values (67.8% and 57.%). This locus may relate to a S gene encoding a

cellular membrane fusion protein as annotated in this study. On the

contrary, the “A” allele of SNP Gm08_46,674,632(G/A) has high SE

(84.2%) and SA (82.2%) values with resistance effect, whereas its “G”

allele has low SE (51.5%) and SA (51.4%) values with susceptible

effect. This locus is more likely to associate with a R gene coding for a

LRR-containing protein in this study. In this study, all significant

SNPs have higher than expected SA and SE values (>50%), suggesting

that these SNPs can be used for further marker-assisted selection to

enhance SBR resistance breeding in soybean.
Genomic prediction

The study discovered 28 significant SNPs located in 20 loci with

genes that are associated with plant disease response or resistance.

However, before applying these findings in breeding, further

verification work is needed (Jannink et al., 2010; Crossa et al., 2017).
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GS has gained popularity in recent years in large-scale crop breeding

programs. Previous studies have shown that GS achieves a more

robust prediction of genotypic values compared to QTLs for traits

controlled by many genes with small effects. GS tends to have a better

and more reliable prediction than the traditional QTL approach,

because it uses more markers that are distributed throughout the

genome and captures more genetic variation of a trait (Bhat et al.,

2016). GS can make predictions about an individual’s performance

even before it is phenotyped, which can save time and resources in the

breeding process (Zhang et al., 2016; Ravelombola et al., 2019).

However, no research has investigated GS or GP for SBR

resistance/tolerance. In this study, we performed GP with seven

models on one All_SNP set and six GWAS-based SNP sets. The

accuracies of All_SNP set (28.0%~32.4%) were similar to former

studies on resistance/tolerance traits to abiotic and biotic stresses of

several plant species, including wheat (Poland and Rutkoski, 2016),

rice (Xu, 2013), maize (Technow et al., 2013), canola (Jan et al.,

2016), alfalfa (Hawkins and Yu, 2018), cassava (Ly et al., 2013), oats

(Asoro et al., 2011), miscanthus (Olatoye et al., 2020), grapevine

(Brault et al., 2022), and intermediate wheatgrass (Crain et al.,

2020). On the other hand, GWAS_SNPs-based GP accuracies were

higher than those of All_SNP set-based, demonstrating the

importance and contribution of significant SNPs in SBR

resistance/tolerance. The accuracy using linear model gBLUP

(45.5% in average) was close to those from machine learning

(SVM), 47.5% in average, but lower than rrBLUP (51.2% in

average) and Bayesian LASSO (52.0% in average) that had been

considered to be the optimal approaches (Ravelombola et al., 2019).

Consistently with former reports (Bao et al., 2014; Li et al.,

2018), we observed in this study that the accuracy of GP varied by

the number of SNPs. For those GWAS-based SNP sets, a greater

proportion of SNPs with more significance were retained for GS

after further filtering of markers from 5,000 to 1,000, which led to

increased accuracy. The accuracies of all models were improved

until the number of SNPs reached 1,000, after which the accuracies

began to decline until the number of markers dropped to 28. The

apex of predictive accuracy was observed at a SNP count of 1,000,

likely due to its ability to robustly capture LD and account for

relatedness among soybean genotypes. An excess of SNPs beyond

this threshold would introduce extraneous information to the

models and elevate model complexity, while a SNP count lower

than 1,000 would result in the loss of relevant information regarding

LD and relatedness capture. Then again, the objective of this GWAS

study was primarily to identify the associated loci and candidate

genes related to SBR. The use of multiple SNP sets and GS models

was employed to ensure the consistency of the GWAS results, rather

than to quantitatively evaluate the superiority or variations between

the models and data sets. However, the above results can still serve

as a reference for future GS research in disease resistance.

Phenotypic selection has been successfully implemented for

disease resistance, but without controlled experiments, it is difficult

to determine whether the resistance is quantitative or qualitative.

Therefore, it is difficult to determine whether the resistance will be

durable in the long term. In this study, the SBR-related markers we

identified can be used to select for both quantitative and qualitative

disease resistance within the breeding lines to bypass the need for
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controlled experiments through the use of conventional MAS.

Additionally, by utilizing GP, the breeders can select for the

accumulation of QTL associated with resistance, thereby taking

advantage of both quantitative and qualitative resistance genes, even

those that have not yet been characterized. This allows them to

select the most promising lines for further development and testing

without multiple generations of phenotyping.
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SUPPLEMENTARY FIGURE 1

The linkage disequilibrium decay rate was estimated as squared correlation

coefficient (r2) using all pairs of SNPs located within 4 Mb of physical distance

in euchromatic. The red line is the moving average of the (r2) value of the ten
adjacent markers.

SUPPLEMENTARY FIGURE 2

The Manhattan plots for SBR by multi-GWAS models: (A) Blink, (B) GLM, (C)
MLM, (D) CMLM, (E) FarmCPU, (F) SUPER, (G) MLMM. Additionally: (H) QQ-

plots of the above seven models.
References
Asoro, F. G., Newell, M. A., Beavis, W. D., Scott, M. P., and Jannink, J. L. (2011).
Accuracy and training population design for genomic selection on quantitative traits in
eli te north American oats . Plant Genome 4, 132–144. doi : 10.3835/
plantgenome2011.02.0007

Bao, Y., Vuong, T., Meinhardt, C., Tiffin, P., Denny, R., Chen, S., et al. (2014).
Potential of association mapping and genomic selection to explore PI 88788 derived
soybean cyst nematode resistance. Plant Genome 7, 2840–2854. doi: 10.3835/
plantgenome2013.11.0039

Bhat, J. A., Ali, S., Salgotra, R. K., Mir, Z. A., Dutta, S., Jadon, V., et al. (2016).
Genomic Selection in the Era of Next Generation Sequencing for Complex Traits in
Plant Breeding. Front Genet. 7, 221–2854. doi: 10.3389/fgene.2016.00221

Bradbury, P. J., Zhang, Z., Kroon, D. E., Casstevens, T. M., Ramdoss, Y., and Buckler,
E. S. (2007). TASSEL: software for association mapping of complex traits in diverse
samples. Bioinformatics 23, 2633–2635. doi: 10.1093/bioinformatics/btm308

Brault, C., Segura, V., This, P., Le Cunff, L., Flutre, T., François, P., et al. (2022).
Across-population genomic prediction in grapevine opens up promising prospects for
breeding. Horticult. Res. 9, uhac041. doi: 10.1093/hr/uhac041

Bromfield, K., and Hartwig, E. (1980). Resistance to soybean rust and mode of
inheritance. Crop Sci. 20, 254–255. doi: 10.2135/cropsci1980.0011183X002000020026x
Büschges, R., Hollricher, K., Panstruga, R., Simons, G., Wolter, M., Frijters, A., et al.
(1997). The barley mlo gene: a novel control element of plant pathogen resistance. Cell
88, 695–705. doi: 10.1016/S0092-8674(00)81912-1
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Early blight (EB), caused by Alternaria linariae (Neerg.) (syn. A. tomatophila)

Simmons, is a disease that affects tomatoes (Solanum lycopersicum L.)

throughout the world, with tremendous economic implications. The objective

of the present study was to map the quantitative trait loci (QTL) associated with

EB resistance in tomatoes. The F2 and F2:3 mapping populations consisting of 174

lines derived from NC 1CELBR (resistant) × Fla. 7775 (susceptible) were evaluated

under natural conditions in the field in 2011 and in the greenhouse in 2015 by

artificial inoculation. In all, 375 Kompetitive Allele Specific PCR (KASP) assays

were used for genotyping parents and the F2 population. The broad-sense

heritability estimate for phenotypic data was 28.3%, and 25.3% for 2011, and

2015 disease evaluations, respectively. QTL analysis revealed six QTLs associated

with EB resistance on chromosomes 2, 8, and 11 (LOD 4.0 to 9.1), explaining

phenotypic variation ranging from 3.8 to 21.0%. These results demonstrate that

genetic control of EB resistance in NC 1CELBR is polygenic. This study may

facilitate further fine mapping of the EB-resistant QTL and marker-assisted

selection (MAS) to transfer EB resistance genes into elite tomato varieties,

including broadening the genetic diversity of EB resistance in tomatoes.

KEYWORDS

early blight, heritability estimates, QTL analysis, tomatoes, Solanum lycopersicum (L.)
Introduction

Early blight (EB), caused by Alternaria linariae (Neerg.) (syn. A. tomatophila)

Simmons, once classified within A. solani), is a serious threat to tomato-producing areas

across the globe and particularly in the Southeast USA (Nash and Gardner, 1988). EB

symptoms are typically characterized by the formation of dark necrotic lesions with

concentric rings on the leaves. Consequently, blighted leaves are defoliated, which can
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reduce fruit quality and yield (Basu, 1974; Jones, 1991; Rotem,

1994). Due to a lack of cultivars with efficacious resistance, tomato

growers have relied on other control measures, such as field

sanitation, crop rotation, cultural practices, and intensive

calendar-based fungicide application programs (Gleason et al.,

1995; Keinath et al., 1996; Louws et al., 1996). One of the

strategies to manage EB in tomatoes is the frequent application of

quinone-oxidizing inhibitors (QoI; strobilurins), such as

azoxystrobin and pyraclostrobin (a single site mode of action

fungicide), or protectant fungicides, such as mancozeb and

chlorothalonil (Ivors et al., 2007). In potato fields, a shift of A.

linariae isolates toward QoI fungicide resistance has been reported

due to the F129L mutation (Pasche et al., 2005; Pasche and

Gudmestad, 2008), and resistant strains have been confirmed in

NC (Inga Meadow, personal communication). In the past decades,

three EB forecast systems have been developed and used to curtail

the costs of and to optimize disease management (Madden et al.,

1978; Pennypacker et al., 1983; Pitblado, 1992; Gleason et al., 1995;

Keinath et al., 1996; Louws et al., 1996; Cowgill et al., 2005). Among

the disease forecasting systems, Tomato Disease Forecaster (TOM-

CAST) was deemed an effective strategy to determine the proper

timing of fungicide sprays (Pitblado, 1992).

While the use of fungicides can manage EB, it is preferred to

grow a resistant variety to manage the disease. So far, no single-gene

conferring resistance to EB has been identified in the cultivated

tomato or its wild relatives (Zhang et al., 2003). Although a great

deal of effort has been made toward developing tomato cultivars

resistant to EB at North Carolina State University (NCSU), only a

few moderately resistant lines and cultivars have been identified

(Gardner, 1984; Gardner, 1988; Nash and Gardner, 1988; Adhikari

et al., 2017). These tomato lines and cultivars exhibited partial

resistance to EB under severe epidemics but were either late

maturing or low-yielding (Foolad et al., 2002; Zhang et al., 2003).

In many cases, resistance to EB in tomatoes has been reported to be

a complex trait and controlled by quantitative and partially

dominant genes with epitasis (Gardner, 1988; Nash and Gardner,

1988; Gardner and Shoemaker, 1999; Gardner and Panthee, 2012).

To resolve these problems, quantitative trait loci (QTL) mapping

can serve as a suitable approach to unraveling the genetic control of

complex and polygenic traits in segregating populations and can

provide valuable information on phenotypic trait–molecular

marker associations (Wurschum, 2012).

In the past, different molecular markers have been used to

identify QTL for EB resistance and to develop consensus genetic

maps in tomatoes. Among these, restriction fragment length

polymorphisms (RFLPs), microsatellites or simple sequence

repeats (SSRs), and resistance gene analogs (RGAs) have been

widely used to identify specific genomic regions associated with

resistance to EB (Foolad et al., 2002; Zhang et al., 2003; Chaerani

et al., 2007; Adhikari et al., 2017). The development of single

nucleotide polymorphisms (SNP) molecular markers (Jiménez-

Gómez and Maloof, 2009), which are the most abundant source

of variation in the genome for both intragenic and intergenic

regions, represents a valuable tool to identify polymorphisms

among closely related lines and to develop highly saturated

genetic maps (Sim et al., 2012b).
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In this study, the 174 F2-derived F3 (F2:3) population, from a

cross between the resistant tomato line NC 1CELBR and the

susceptible tomato cultivar Fla. 7775, was phenotyped for EB

resistance in the field and under controlled conditions in the

greenhouse and genotyped with single nucleotide polymorphism

(SNP) molecular markers. QTL analysis was performed to identify

the putative genomic regions associated with resistance to EB in

the tomato.
Materials and methods

Plant materials

Tomato breeding line NC 1CELBR was developed at North

Carolina State University (NCSU). It is a large-fruited fresh-market

tomato line with determinate growth habits and is resistant to EB.

The line was developed by multiple crosses involving wild species S.

habrochaites and S. pimpinellifolium (Gardner and Panthee, 2010).

Dr. Jay Scott, University of Florida, kindly provided the seed of the

susceptible cultivar Fla. 7775. Despite other similar characteristics,

contrasting EB reactions in NC 1CELBR and Fla. 7775 provided

ideal materials to develop a population for genetic mapping studies.

Crosses were made in the fall of 2009 at the Mountain Horticultural

Crops Research and Extension Center (MHCREC), (NCSU), Mills

River, North Carolina (NC). The F2 seeds were produced in the

spring of 2010 by selfing the F1. Subsequently, 174 F2:3 families were

developed and used for phenotypic evaluation in the field and

greenhouse, SNP marker analysis, and QTL mapping.
Phenotyping of the F2 population in the
field in 2011 in Waynesville, NC

To evaluate plants for resistance to EB in the field, the

experiment was conducted in 2011. Seeds were planted in 72 cell

flats (56 × 28 cm2) in potting mix in the first week of May, and

transplants at about six weeks from seed were planted. In the first

week of June 2011, greenhouse-grown seedlings of the 174 F2 and F1
hybrid (NC 10175), susceptible controls (Fletcher, NC123S and NC

30P), resistant controls (NC 2CELBR and Mountain Merit), and

resistant and susceptible parents (NC 1CELBR and Fla. 7775) were

planted at the Mountain Research Station, Waynesville, NC.

Spacing was 45 cm between plant-to-plant and 150 cm between

row-to-row. The soil was a clay-loam texture, and the natural

daylight photoperiod was about 14/10 hr, with temperatures

averaging 25-30°C at their high and 14-16°C at their low. This

field site was chosen because A. linariae inoculum naturally occurs

each year almost three weeks after transplanting. Parents and F1
were planted as a control to make sure that the disease developed

well in the susceptible parent and that the resistant parent was

healthy even under high inoculum pressure. No fungicide

application was made to control the EB whereas late blight and

Septoria leaf spot-specific fungicides were applied to control those

diseases by spraying Presidio every week in combination with

others as per the fungicide spray guide in NC (Ivors, 2011). Each
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plant was assessed for EB symptoms six weeks after planting to the

field using a Horsfall and Barratt (1945) rating scale of 1 to 11,

where 1 indicates no EB symptoms on the leaf surface, and 11

indicates complete defoliation. Humid and warm conditions favor

A. linariae development, which was conducive to EB development

in 2011.
Phenotyping of the F2:3 population in the
greenhouse in 2015 in Mills River, NC

Seeds of the 174 F2:3 population and resistant and susceptible

parents (NC 1CELBR and Fla. 7775) were surface-sterilized and

sown in the greenhouse at Mills River. Seeds were sown in 4P soil

mixture (Fafard®, Florida, USA) in flatbed metal trays in a standard

seeding mix (2:2:1 v/v/v) peat moss: pine bark: vermiculite with

macro- and micro-nutrients (Van Wingerden International Inc.,

Mills River, NC) in March 2015. After ten days, seedlings were

transplanted to 24-cell flats (56 cm x 28cm). Three plants per

genotype were planted with two replications, and the experiment

was conducted in a completely randomized design. Plants in the

greenhouse study were fertilized using a 20:20:20 ratio of nitrogen,

phosphorus, and potassium, respectively. Standard greenhouse

pesticide application was used for possible insect and bacterial

disease control. A single-spore isolate of A. linariae Sorauer

collected from naturally infected tomato plants in Hendersonville,

NC was used in this study. The fungus was isolated from infected

leaf tissues and grown on potato dextrose agar (PDA, 39 g of Difco

PDA, Becton, Dickinson and Company, Sparks, MD) in 10-cm

Petri dishes and incubated at 23° C under white fluorescent lamps

with a 12-h photoperiod. This isolate collected from the field was

confirmed as A. solani using microscopic examination and PCR-

based assays (Gannibal et al., 2014). After 10-12 days, conidia were

harvested by flooding the plates with sterile distilled water. The

inoculum concentration was adjusted to 1 × 107 conidia mL-1 using

a hemocytometer. Before inoculation, a drop (~10 µL) of Tween 20

(Polyoxyethylene-20-sorbitan monolaurate) was added to the

inoculum suspension to facilitate uniform spore deposition onto

leaves. Nine-week-old plants were artificially inoculated using a

hand sprayer (R & D Sprayers Inc., Opelousas, LA, USA). After

inoculation, plants were placed in the dark for 24 h and covered

entirely with white plastic to create a relative humidity of > 95%.

Each inoculated plant was scored for EB symptoms using a

Horsfall-Barratt rating scheme (Horsfall and Barratt, 1945) at 14

and 21 days after inoculation, as described above. Average disease

scores were used to measure resistance to EB and to identify QTL in

the greenhouse trials.
DNA isolation and SNP genotyping

Genomic DNA of young leaf tissues of each parent and

individual plant from F2 generation was extracted using the

DNeasy Plant Mini Kit (Qiagen Inc., Valencia, CA). A NanoDrop

(Model ND-2000, Thermo Scientific Inc., Wilmington, DE) was

used to quantify each DNA sample. Approximately, 50 ng/µl of
Frontiers in Plant Science 0376
DNA was prepared from each sample for SNP genotyping. We used

an optimized subset of 384 SNPs markers that were derived from

the 7,725 SNP array developed by the Solanaceae Coordinated

Agricultural Project (SolCAP) (Sim et al., 2012a; Sim et al., 2012b).

The subset of markers was selected based on polymorphism rates

among six fresh market tomato accessions, including Fla.7776, Fla.

8383, NC33EB-1, 091120-7, Fla. 7775, and NC 1CELBR. Also, the

genetic position in the genome based on recombination (Sim et al.,

2012a) and the physical position was considered important

selection criteria to ensure genome coverage. These 384 SNPs

were analyzed using the Kompetitive Allele Specific PCR (KASP)

genotyping platform (LGC Genomics, Beverly, MA).
Data analysis

The visual illustration of the correlation matrix and principal

component analysis (PCA) was done by using the R language v3.2.3

coupled with the RStudio interface v1.0.143 and R packages

(“FactoMineR”, “factoextra”, “ggplot2”, “ggplots”, “corrplot”),

respectively (R Core Team, 2018; Amanullah et al., 2022). The

summary statistics and normal probability plots were calculated

using the UNIVARIATE procedure of SAS. The heritability was

estimated for each environment by calculating variance

components using the ‘ASYCOV’ function in PROC MIXED in

SAS (SAS Institute Inc., 2012).

Broad-sense heritability (H2) was estimated using the following

variance components from the F2 population (Nyquist, 1991;

Falconer and Mackay, 1996):

H2 =
VG
VP

=
VA + VD

VA + VD + VE

Narrow-sense heritability (h2) was determined using a regression

analysis of offspring on parent approach, using data from the F2 and

F3 generations as has been used by Ohlson and Foolad (2015) and as

follows (Nyquist, 1991; Falconer and Mackay, 1996):

h2 =
VA

VA + VD + VE
=

Cov(F3xF2)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(VF3xVF2)

p

Where, H= broad-sense heritability, h2= narrow-sense heritability,

VG=genetic variance, VP=phenotypic variance, VA = additive

variance, VD= dominance variance, VE=error variance, VF2 =

Variance at F2 generation, VF3 = Variance at F3 generation, and

Cov (F3xF2) = Covariance of individuals at F2 and F3 generations.
Linkage map construction of F2 and
QTL analysis

Of the 384 SNP markers tested, 375 were polymorphic between

the two parental lines, NC 1CELBR and Fla. 7775, that were used for

genetic map construction (Meng et al., 2015). The linkage map was

constructed using JoinMap 4.0 (van Ooijen, 2006). The grouping

mode was set as the autonomous limit of detection, the mapping

algorithm was used to perform regression mapping (limit of

detection > 2.5, recombination frequency< 0.4, and jump = 5)
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(Asekova et al., 2021). The Kosambi mapping function was used to

convert recombination frequencies into map distance (Kosambi,

1943). Independent limit of detection and maximum likelihood

algorithms were used for grouping and ordering of markers,

respectively. The ordering of the markers within each

chromosome was based on the recombination events between the

markers. Linkage groups were compared with published tomato

linkage maps.

QTL analysis was conducted using windows QTL Cartographer

v 2.5 (Wang et al., 2010) software. The Composite Interval Mapping

(CIM) method was used with the default parameters (model 6). A

backward regression was used to perform the CIM analysis to enter

or remove background markers from the model. The walking speed

was set at one cM for the detection of QTL. The additive effect and

the proportion of the phenotypic variation (R2) for each QTL were

also obtained using this software. A 1000 permutation option was

chosen to determine the likelihood of an odd (LOD) score threshold

to identify the presence of QTL in both environments (Li et al.,

2007; Li et al., 2008; Meng et al., 2015). We used 5 cM scanning

steps for the detection of QTL. The coefficient of variance (R2-

value), the relative contribution of genetic components, was

calculated and described as the proportion of genetic variance

explained by the QTL out of the total phenotypic variation. QTLs

explaining more than 10% of the phenotypic variance were

considered major QTLs, and QTLs found in at least two

environments were considered to be consistent.

To designate each QTL, the letter ‘q,’ followed by an

abbreviation of EB resistance (EBR) was used as ‘qEBR.’

Additionally, each QTL was classified by the chromosome in

which a QTL was detected and then categorized by QTL number.

Any QTL within a 5 cM distance on the same chromosome was

regarded as a single QTL.
Results

Phenotypic data analysis

The disease symptoms of infected tomato plants in the

greenhouse experiment varied from chlorotic and necrotic areas

of leaves with concentric rings to defoliation and death. The two

parental lines exhibited distinguished responses to EB, with NC

1CELBR being consistently resistant (disease score 3.0), and Fla.

7775 being susceptible (disease score 9.0) (Figure 1). The inoculated

plants were scored for EB symptoms using a Horsfall-Barratt rating

scheme (Horsfall and Barratt, 1945) at 14 and 21 days after
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inoculation. In field experiments, higher disease severities (6 to

11) were observed in 2011 (Figure 1A). There was a significant

variation among F2:3 lines for visual disease rating (Figure 1 and

Table 1). Distribution of both field and greenhouse phenotypic data

was continuous, indicating quantitative and polygenic control of EB

resistance in tomatoes (Figure 1).

The minimum and maximum EB development in 2011 in the

population was 6 and 11, respectively, with an average of 8.1. In

2015, the minimum and maximum disease developments in this

population were 1 and 11, with an average of 6.8 (Figure 1 and

Table 1). These basic statistics over the years indicated that there

was a good distribution of EB resistance in this population. The

broad-sense heritability estimate for phenotypic data was 28.3%,

and 25.3% for 2011, and 2015 disease evaluations, respectively. The

disease score values showed a negative correlation between the years

2011 and 2015 (Figure 2A). The PCA bi-plot showed the possible

association and high percentage of phenotypic variability was

observed between the data sets of EB resistance in both

environments (Figure 2B). The dimension of the first PC (Dim1)

broadly outlined and explained 51.8% of the phenotypic variability

for EB resistance in 2011 (Figure 1B). The dimension of the second

PC (Dim2) also distinguished the 48.4% of phenotypic variability

for EB resistance in 2015 at opposite angles of the PCA biplot

(Figure 2B). This data also showed that EB resistance is controlled

by multiple genes.
FIGURE 1

Frequency distribution for disease rating in a population of 174 F2
and F2.3 progenies. EB2011HB, the F2 population was tested in a
naturally-infected field at the Mountain Research Station,
Waynesville, NC in 2011, and EB2015HB the F2.3 progenies were
evaluated in an artificial inoculation with a single A. linariae isolate in
the greenhouse at Mountain Horticultural Research and Extension
Center (MHCREC), Mills River, NC in 2015. Each inoculated plant
was scored for EB symptoms using a Horsfall-Barratt rating scheme
(Horsfall and Barratt, 1945). The values are the means of the parents
and progenies, and arrows indicate resistant and susceptible parents.
Bars denote the standard deviation.
TABLE 1 Basic statistics of early blight development measured using a Horsfall and Barratt (1945) scale in the tomato population developed from NC
1CELBR × Fla. 7775.

Year Environment Sample size Mean Standard deviation Minimum Maximum Variance Heritability (%)

2011 Field (Waynesville) 174 8.1 0.62 6 11 0.36 28.3

2015
Greenhouse
(Mills River)

174 6.8 1.7 1 11 9.61 25.3
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Linkage map construction of F2

A total of 375 SNP markers were polymorphic between the

parents. Those markers were used to genotype the population. A

linkage map was constructed with these markers which covered

approximately 737.17 cM genetic distance. The map results yielded
Frontiers in Plant Science 0578
a total of 12 linkage groups which are comparable with other

tomato linkage maps and the number of tomato chromosomes.

The Individual chromosomes had 18 to 65 markers with lengths

ranging from 42.04 to 88.87 cM (Figure 3). Nearly 65 SNP markers

were mapped on chromosome 4, followed by 42 SNP markers on

chromosome 12 (Figure 3).
FIGURE 2

Analysis of phenotypic variability and correlation for early blight resistance in the mapping population. (A) Pearson’s correlation between EB2011HB
and EB2015HB (B) Principal component analysis (PCA) explains the potential phenotypic variability.
FIGURE 3

The linkage genetic map of the population of 174 F2 progenies. The genetic map was developed from a cross between the resistant tomato line NC
1CELBR and the susceptible tomato cultivar Fla. 7775 using Solanaceae Coordinated Agricultural Project (SolCAP) derived Kompetitive Allele Specific
PCR (KASP) markers.
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QTL analysis

We identified QTLs for EB resistance using 174 F2:3 derived

lines and the SNP-based linkage map in two environments (Figure 4

and Table 2). In total, 6 QTLs, including major and minor effects,

common for both environments were identified across the genome,

explaining phenotypic variation (R2) ranging from 3.8 to 21.0%

(Figure 4 and Table 2). The QTLs on chromosomes 2, 8, and 11

(qEBR2011-2, qEBR2011-8, and qEBR2011-11) were detected in

2011, respectively. The QTLs qEBR2011-2 (LOD: 4.2), qEBR2011-

8 (LOD: 4.2), and qEBR2011-11 (LOD: 4.0) explained 3.8%, 12.1%

and 11.7% of total phenotypic variations (Figure 4 and Table 2). The

QTLs on same chromosomes were detected in 2015 as well (Figure 4

and Table 2). The QTLs qEBR2015-2 (LOD: 5.0), qEBR2015-8

(LOD: 5.2), and qEBR2015-11 (LOD: 9.1) explained 21%, 11.4%

and 19.8% of total phenotypic variations (Figure 4 and Table 2). We

used the linked markers of the resistant QTLs to compare the

resistance levels and allelic effects in the mapping population

(Figure 5). As shown in the box plots, the homozygous resistant

genotypes BB were associated with enhanced resistance compared

to the homozygous susceptible genotype AA for all the QTLs in

both environments (Figure 5). It also confirmed that all the resistant

alleles in mapping population were inherited from NC 1CELBR.

These results indicated that multiple genes/QTLs are contributing

to EB resistance.
Discussion

We developed F2 and F2-derived mapping populations from a

cross between the tomato breeding line NC 1CELBR (EB-resistant)
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and the susceptible tomato cultivar Fla. 7775 (EB-susceptible). The

population was assessed for resistance to EB in the field trial and

replicated greenhouse trials and genotyped with SNP molecular

markers. Both field and greenhouse phenotypic data exhibited

continuous distributions. The CIM analysis revealed 6 QTL

conferring resistance to A. linariae. These QTLs explained up to

21% of the phenotypic variation confirming that genetic control for

resistance to EB in NC 1CELBR is polygenic. The discovery of

multiple QTL suggested that EB resistance in NC 1CELBR

contributed different degrees of resistance to EB and behaved as a

quantitatively inherited trait.

The estimate of broad-sense heritability (H2) was 28.3% in the

field test; whereas, in the greenhouse experiments it was 25.3%,

suggesting a significant environmental effect on EB development in

this mapping population. It is not surprising to have low narrow-

sense heritability in this population since the heritability was

determined from early (F2 and F3) generations. If the disease were

evaluated at later generations, the level of homozygosity would go

up, heterozygosity would go down, and resistance loci would have

been fixed. The environmental effect could be minimized, and the

genetic effect could be maximized, which is ultimately heritability.

Disease severity was high in the 2011 field test, and presumably, this

could be due to the dispersal of inoculum in the field, and within the

plant canopy and variations in micro-climatic conditions,

particularly dew and rain events, that would influence disease

development during the tomato growing period (Rotem and

Reichert, 1964). To avoid such confounding effects, phenotypic

data are likely more reliable when large population sizes or even

advanced populations such as recombinant-inbred lines (RILs) are

evaluated in different environments with multiple replicates

(Gardner, 1990). Nonetheless, we found the F2 population had
FIGURE 4

QTL analysis for early blight (EB) resistance in the F2:3 mapping populations. Genetic linkage groups showing markers and the locations of EB-
resistant QTLs in two different environments with the genetic distance shown in centimorgans (cM) for the mapping population evaluated during
2011and 2015.
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considerable resistance to EB and can be used to advance our effort

to develop EB-resistant tomatoes and to combine multiple disease

resistance with good fruit quality, which was started by releasing

improved breeding lines and hybrids from our program before

(Gardner and Panthee, 2010; Panthee and Gardner, 2010).

Furthermore, NC 1 CELBR is the first identified tomato line that

combines early blight resistance with the Ph-2 and Ph-3 genes for

late blight resistance. The line was developed by performing crosses

comprising wild species S. habrochaites and S. pimpinellifolium

(Gardner and Panthee, 2010; Panthee and Gardner, 2010). It is

worthwhile as parents in developing multiple disease resistant F1
hybrids as well as parental lines for future tomato breeding

programs with joint resistance to late blight and early blight

without a linkage drag.

The results suggested that a functionally related QTLs

conferring resistance to EB in the field and greenhouse had

identical genetic regions. Although the QTLs were identified in

the same genetic region, phenotypic variations in disease reaction

between the field and greenhouse tests differed. In general,

phenotypic variations in the 2011 field trial were lower compared
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to 2015 greenhouse trial. These results further emphasize that

multiple replicated trials are necessary to conduct field EB

evaluation and QTL identification. Furthermore, QTL detection is

dependent on the level of precise phenotyping. We used foliar

disease rating in the present study. Stem lesion was found to

correlate better with the level of disease resistance, mainly when

experiments are conducted in the greenhouse (Gardner, 1990).

Anderson et al. (2021) have reported three QTLs from

chromosomes 1, 5 and 9 based on foliar and stem lesions scoring.

Therefore, it may be worth using stem lesions as well as foliar

symptoms for EB QTL analysis in future studies.

Molecular markers and genetic maps are powerful tools to

dissect complex traits and develop marker-assisted breeding

strategies in tomatoes (Panthee and Chen, 2010; Foolad and

Panthee, 2012). Foolad et al. (2002) developed BC1, and BC1S1
populations of the Solanum lycopersicum x S. habrachaites cross

and tested these in fields from 1998 - 2000. They identified ten

major QTLs for resistance to EB using interval mapping. In

another study, Zhang et al. (2003) identified six QTLs, four as

major QTLs on chromosomes 5, 8, 10, and 11, and two as minor
FIGURE 5

Box plots of resistance level regulated by linked markers to QTLs in F2 segregating populations. Genotypes were grouped based on the associated
SNP markers. AA: Fla. 7775, BB: NC 1CELBR, HH: Heterozygous.
TABLE 2 Quantitative trait loci (QTL) for early blight (EB) resistance in tomato detected by composite interval mapping (CIM) in a population of 174
F2.3 progenies.

Trait QTLs Linkage group Position (cM) LOD R2 (%) Additive Dominant

EB2011HB qEBR2011-2 2 20.01 4.17 3.8 -1.42 -2.53

EB2011HB qEBR2011-8 8 51.31 4.18 12.1 -1.44 -2.64

EB2011HB qEBR2011-11 11 50.91 4.03 11.7 -1.44 -2.65

EB2015HB qEBR2015-2 2 16.61 5.02 21.0 0.71 -5.91

EB2015HB qEBR2015-8 8 32.41 5.24 11.4 2.81 3.91

EB2015HB qEBR2015-11 11 44.12 9.11 19.8 -2.19 -5.81
f
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QTLs on chromosomes 3 and 8. Both previous studies identified

QTLs for resistance to EB using RFLP, SSR, and RGA markers

(Foolad et al., 2002; Zhang et al., 2003), and they concluded that a

high level of similarity between the two field studies was indicative

of the stability of QTLs across populations and environments. In

the present study, the reported QTLs were found in at least two

experiments that were regarded as consistent QTLs as defined

above. Although a different mapping population and markers

were used, the QTLs detected on chromosomes 8 and 11 in this

study agreed with the results of the previous studies (Foolad et al.,

2002; Zhang et al., 2003). Ashrafi and Foolad (2015) identified

four QTLs that are associated with EB from chromosomes 2, 5, 6,

and 9. The positions of the QTLs found in the present study could

not be compared because of the different marker types and

genetic distance on the map. Furthermore, in the present

study, even QTLs were detected at similar locations but the

explained phenotypic variations were differ in different

environments attributing to the environmental effects. The

present study utilized SNP markers to identify QTLs resistance

to EB and appeared to be useful for mapping and marker-assisted

selection. Although we identified several SNP markers associated

with QTLs for resistance to EB, these QTLs are likely to play

distinct roles in plant defenses and plant innate immunity. The

biological functions of these QTLs or genes in this pathosystem

remain a critical unanswered question. Cloning, molecular

characterization, and functional analysis of these QTLs in the

tomato A. linariae interactions deserve further study.
Conclusion

The NC 1CELBR × Fla. 7775 derived mapping population was

used to construct a genetic linkage map and QTL analysis for EB

resistance. We detected a total of 6 QTLs, among them all QTLs

conferring resistance to EB were inherited from NC 1CELBR. The

SNP markers identified in this study are closely associated with

putative EB- resistant QTLs and may be involved in host defense

responses. To validate these results, additional mapping population

development and fine mapping are necessary to determine their

resistance spectrum to multiple isolates of A. linariae. Developing

multiple advanced crosses and pyramiding resistance genes with

superior quality is necessary to achieve enhanced resistance to early

blight in tomatoes through MAS.
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Construction of a high-density
genetic map for faba bean (Vicia
faba L.) and quantitative trait loci
mapping of seed-related traits

Na Zhao, Dong Xue, Yamei Miao, Yongqiang Wang,
Enqiang Zhou, Yao Zhou, Mengnan Yao, Chunyan Gu,
Kaihua Wang, Bo Li, Libin Wei* and Xuejun Wang*

Department of Economic Crops, Jiangsu Yanjiang Institute of Agricultural Science, Nantong, China
Faba bean (Vicia faba L.) is a valuable legume crop and data on its seed-related

traits is required for yield and quality improvements. However, basic research on

faba bean is lagging compared to that of other major crops. In this study, an F2
faba bean population, including 121 plants derived from the cross WY7×TCX7,

was genotyped using the Faba_bean_130 K targeted next-generation

sequencing genotyping platform. The data were used to construct the first

ultra-dense faba bean genetic map consisting of 12,023 single nucleotide

polymorphisms markers covering 1,182.65 cM with an average distance of

0.098 cM. The map consisted of 6 linkage groups, which is consistent with the

6 faba bean chromosome pairs. A total of 65 quantitative trait loci (QTL) for seed-

related traits were identified (3 for 100-seed weight, 28 for seed shape, 12

for seed coat color, and 22 for nutritional quality). Furthermore, 333 candidate

genes that are likely to participate in the regulation of seed-related traits were

also identified. Our research findings can provide a basis for future faba bean

marker-assisted breeding and be helpful to further modify and improve the

reference genome.

KEYWORDS

vicia faba L., single nucleotide polymorphisms (SNP), high-density genetic map, seed
related traits, quantitative trait loci (QTL)
1 Introduction

Faba bean (Vicia faba L.), also called horse bean, is a member of the Fabaceae family

(grain legume) that originated in the Near East, and is an important cool-season food

legume (Cubero, 1974). It is currently widely cultivated in Africa, Asia, Europe, Australia,

and North America (Alghamdi et al., 2012). Faba bean can be used as a green manure as it

has nitrogen fixation capabilities and can thus improve soil quality (Jensen et al., 2010).
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Additionally, faba bean is used as a type of food for humans and as a

feed for animals (Martineau-Côté et al., 2022), and the fresh seeds

can be consumed as vegetables (Zong et al., 2009). Furthermore, due

to its rich nutritional value and high protein and lysine content, it

can be effectively utilized as a source of plant protein (Etemadia

et al., 2019), and is also rich in phenols (Amarowicz and Shahidi,

2017). The edible part of the seed thus directly affects its yield and

quality. It is therefore important to clarify the genetic basis of the

related traits in faba bean breeding programs. The phenotypic and

quality traits of faba bean seeds are mostly complex and easily

affected by the environment, and consequently, the use of molecular

technologies is required to fully understand them. The genetic

linkage map is an effective tool that can help to improve our

understanding of the inheritance of traits at a genome-wide level

(Verma et al., 2015). Furthermore, the fine mapping of quantitative

trait loci (QTL) and candidate genes related to specific traits has

traditionally been performed using high-resolution genetic linkage

maps (Zhang et al., 2016).

Faba bean has one of the largest genomes among crop legumes,

and is diploid with 2n = 12 chromosomes and a large genome of

13,000 Mb (Johnston et al., 1999). As a result, basic research on faba

bean is lagging behind that of other major crops that have relatively

complete genetic maps, such as maize (Zea mays L.), rice (Oryza

sativa L.), and wheat (Triticum aestivum L.) (Wang H et al., 20122).

Initially, some traditional markers, including morphological

and isoenzyme, random amplified polymorphic DNA,

and microsatellite markers, were used to construct several faba

bean genetic maps (Torres et al., 1993; Satovic et al., 1996;

Patto et al., 1999; Román et al., 2002; Ávila et al., 2004; Román

et al., 2004; Ávila et al., 2005; Ellwood et al., 2008; Dıáz-Ruiz et al.,

2009; Dıáz-Ruiz et al., 2010; Cruz-Izquierdo et al., 2012; Gutiérrez

et al., 2013). With the development of high-throughput sequencing

technologies, simple sequence repeats (SSR) and single nucleotide

polymorphisms (SNP) have been extensively used to construct

genetic maps and identify QTLs in faba beans (Arbaoui et al.,

2008; Ma et al., 2013; Satovic et al., 2013; Kaur et al., 2014; Sallam

et al., 2016; Webb et al., 2016; Catt et al., 2017; Ocaña−Moral et al.,

2017; Yang et al., 2019). Sudheesh et al. (2019) constructed an

integrated genetic map for faba bean spanning 1,439 cM, with an

average distance of 0.80 cM per marker using a total of 1,850

markers. Carrillo-perdomo et al. (2020) constructed a high-

density genetic map containing gene-based SNP markers with a

length of 1,547.71 cM, and an average distance of 0.89 cM. Recently,

an integrated genetic linkage map containing 6,895 SNPs, with a

length of 3,324.48 cM was constructed from two F2 populations by

Li et al. (2023).The construction of a fine linkage map for faba bean
Abbreviations: CV, Coefficient of variation; FC, Fiber content; HSW, 100-seed

weight; LG, Linkage group; LC, Lipid content; LOD, Logarithm of odds; MAS

Marker-assisted selection; PC, Protein content; QTL, Quantitative trait loci; SA

Seed area; SC-B, Seed coat color B value; SC-G, Seed coat color G value; SC-R

Seed coat color R value; SD, Standard deviation; SL, Seed length; SLWR Seed

length and width ratio; SNP, Single-nucleotide polymorphism; SP, Seed

perimeter; SSR, Simple sequence repeats; ST, Seed thickness; StC, Starch

content; SW, Seed width; TC, Tannin content; TNGS, Targeted next

generation sequencing.
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can greatly improve the efficiency of related genetic research and

crop breeding and enable the establishment of marker selection and

QTL mapping associated with economically important traits

(Khazaei et al., 2014; Aguilar−Benitez et al., 2021; Gutierrez and

Torres, 2021; Carrillo-Perdomo et al., 2022).

To date, although there have been some studies on QTL

mapping associated with seed-related traits in faba bean, few

related genes have been mapped. The QTL associated with 100-

seed weight was first identified on chromosome 6 and significantly

correlated with 20 markers (Patto et al., 1999). Furthermore, Ávila

et al. (2017) identified five QTLs related to 100-seed weight. The F2
populations generated from Yun122 and TF42 were used to

construct genetic maps, and four QTLs controlling seed length,

width, and 100-seed weight were identified (Tian et al., 2018).

Macas et al. 1993a mapped the chromosomal positions of genes

encoding seed storage proteins. Gutierrez et al. (2007) identified two

SCAR markers tightly linked to a gene controlling tannin deficiency

in faba beans and Hou et al. (2018) screened one SSR marker

(SSR84) closely linked to the tannin content (zt-1) gene using 596

SSR markers and 100 ISSR markers, which could aid in accurate

prediction of the zt-1 genotypes. Recently, 15 markers were

identified with seed size associations based on genome-wide

association study (Jayakodi et al., 2023). Li et al. (2023) identified

32 QTLs related to seed size and 6 QTLs related to seed coat color.

The efficiency and precision of QTL mapping are restricted by

the low density of molecular markers in the resulting genetic maps;

however, this can be addressed using high-throughput DNA

microarray (DNA chip) technologies. Wang et al. (2021) utilized

a large-scale transcriptome and a large number of SNP markers to

develop the Faba_bean_ 130 K SNP targeted next-generation

sequencing (TNGS) genotyping platform, which contains 130,514

SNPs and can be used for high-density genetic linkage map

development and QTL mapping.

In this study, an ultra-dense genetic map from an F2 population

was constructed using the Faba_bean_ 130 K SNP TNGS

genotyping platform. QTLs for 15 seed-related traits, including

100-seed weight (HSW), seed area (SA), seed perimeter (SP), seed

length (SL), seed width (SW), seed length and width ratio (SLWR),

seed thickness (ST), seed coat color R value (SC-R), seed coat color

G value (SC-G), seed coat color B value (SC-B), protein content

(PC), starch content (StC), fiber content (FC), lipid content (LC),

and tannin content (TC), which were mapped based on the

phenotypic data from F2 and F2:3 populations. The ultra-dense

genetic map and QTLs produced from this study can be used for

faba bean marker-assisted selection (MAS), gene mapping, and

reference genome improving. MAS is a method used in plant

breeding, once the linkage has been established between physical

markers and the target traits, individuals with desirable traits can be

selected by detecting the molecular markers.
2 Article types

This article was submitted to Plant Breeding, a section of the

journal Frontiers in Plant Science.
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3 Materials and methods

3.1 Plant materials and phenotypic
data evaluation

An interspecific F2 population containing 121 individual plants

was generated from WY7 and TCX7 parent materials. The female

parent WY7 is a germplasm resource introduced from the UK with

a medium seed size and dark-purple seed coat color. The male

parent TCX7 has a large seed size, with a white seed coat, is of good

quality, and is cultivated by the Jiangsu Yanjiang Institute of

Agricultural Sciences, China. The F2 individual plants and their

parents were planted in Xueyao, Jiangsu Province, China from

2020–2021, and the F2:3 plant lines and their parents were planted

in Xueyao and Jiuhua respectively, Jiangsu Province, China, from

2021–2022. Each faba bean line was planted in one row of 2.4 m in

length, with a row distance of 0.8 m, and plant spacing of 0.2 m.

Field management was consistent with local production practices

throughout the whole growth period. Ten seed phenotypic traits

and five nutritional quality traits of the parents, F2 individual plants,

and F2:3 families in two environments (Xueyao and Jiuhua) were

investigated. Ten plants in each F2:3 line and their parents were

harvested. The seed shape traits assessed were SA, SP, SL, SW,

SLWR, and ST. The average indicators of HSW, SA, SP, SL, SW, and

SLWR used an automatic seed testing system (SC-A1, Hangzhou

Wanshen Detection Technology Co., Ltd., Hangzhou, China). The

average values of the 10 thickest parts of the seeds were regarded as

ST. The seed coat color traits including SC-R, SC-G, and SC-B were

measured by spectrophotometer (YS3020, 3NH, China).

Nutritional quality traits PC, StC, FC, LC, and TC were

determined using a DA7250 NIR analyzer (Perten Instruments,

Hägersten, Sweden) with three replicates.

Statistical analysis of the data, such as frequency distribution,

coefficient of variation, standard deviation, skewness and kurtosis

analysis, was performed using the ANOVA function of IciMapping

4.2.53. The phenotypic correlation between these traits was

obtained by Pearon’s correlation analyses using SPSS software.

Ver. 26 (IBM SPSS Statistics, Chicago, IL, USA) and R software

(version 3.2.2, http://www.r-project.org).
3.2 Genotyping

The total genomic DNA of the F2 individuals and their parental

lines was extracted from fresh leaves using the CTAB method

(Doyle and Doyle, 1987). A NanoDrop spectrophotometer

(Thermo Fisher Scientific, USA) was used to determine the

optical density ratios of OD260/280 (>1.8) and OD260/230 >1.5).

A Qubit was used for precise quantification, and gel electrophoresis

was used to monitor and assess the quality and contamination of all

DNA samples. The Illumina sequencing library was constructed by

binding biotin-labeled RNA probes to spliced DNA fragments using
Frontiers in Plant Science 0385
restriction enzymes and was sequenced using the China Golden

Maker (Beijing) Biotech Co. Clean data were derived from the raw

sequencing data after quality control (filter parameters:

trimmomatic-0.36.jar PE -phred33 ILLUMINACLIP: fa: 2:30:10:8:

true LEADING:3 TRAILING:3 SLIDINGWINDOW: 4:15

MINLEN:100) and then matched to the faba bean transcriptome

(Wang et al., 2021) by using BWA software (version 0.7.17) with

parameters: MEM -T 4 -K 32 -M -R). Based on the results of the

sequence alignment, SNPs from the populations genomic data were

detected with GATK (version 4.1.2.0) and filtered with VCFtools

(version 0.1.13). The detailed criteria and analysis methods were in

accordance with Wang et al. (2021).
3.3 Construction of the genetic map

The harvested genotypes of the samples were firstly filtered

before genetic map construction. Based on the filtered genotypes,

for each loci, the individuals were coded as “A” (if same with parent

TCX7), “B” (same with the parent WY7), “H” (heterozygous

containing 2 alleles from each of the parents) or “missing” (all

other scenarios). The discarded loci include 1) the loci which were

heterozygous in either parent, and 2) the loci with the missing rate

above 80% in the population. This was done by using a python

script from Li et al. (2021). The genetic map construction used a

similar procedure as Li et al. (2021). Briefly, the coded “ABH”

genotype matrix was firstly filtered to discarding distortion loci with

the threshold P value = 0.01, and then was fed to Lep-Map3 (Rastas,

2017). The default parameters and a logarithm of odds (LOD) score

of 12 were used in Lep-Map3. Linkage groups (LGs) with markers

less than 100 were removed, and Kosambi function was applied to

covert the recombinant rate into LG length (cM, centi-Morgan).
3.4 QTL mapping

Based on the genetic map constructed above and the phenotypes

from multiple environments, we conducted QTL mapping in 2

programs, i.e. QTL Cartographer 2.5 (Wang S et al., 2012) and

IciMapping 4.2.53 (Meng et al., 2015). In QTL Cartographer, CIM

(Composite interval mapping) method was used, and the parameters

were set up as: control markers = 5, window size = 10.0 cM, walk speed

= 1.0 cM, and the LOD threshold was determined by 500 times

permutation tests. For the Icimapping program, ICIM (Inclusive

composite interval mapping) method was selected, and the flowing

parameters were used: “missing phenotype = Deletion”, “mapping step

= 1 cM” and “LOD threshold = 1000 times permutation at type I error

0.05”. In the mapping result, VG/VP value reflects the explanation rate

of phenotypic variance, and the confidence interval of a QTL was

determined by the outermost 2 markers above threshold. The QTLs

were named as follows: q + trait abbreviation + chromosome number +

QTL number.
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3.5 Candidate gene identification and
annotation

The splice junction sequences in the Faba_bean_ 130 K SNP TNGS

genotyping platform were searched within the QTL intervals and then

mapped to 243,120 unigenes (Wang et al., 2021), which were referred

to in order to obtain the candidate genes and their gene annotations.
3.6 Reference genome mapping

Sequence of the genes in genetic map alignment with reference

genome (https://projects.au.dk/fabagenome/genomics-data) and

the candidate genes were visual mapped to the reference genome

using TB tools software.
4 Results

4.1 Phenotypic analyses

The two parent materials showed significant differences in

HSW, SA, SP, SL, SW, SC-R, SC-G, SC-B, FC, TC, StC and LC

(Table 1). The statistical results of the phenotypic variations in the

seed-related traits among the parents, F2 populations, and F2:3
individuals (Supplementary Table S1) suggested that HSW, SA,

SP, SL, SW, SLWR, PC, StC, FC, LC, and TC showed continuous
Frontiers in Plant Science 0486
variation. The absolute values of skewness and kurtosis were almost

less than 1, approximately conforming to the normal distribution,

meeting the requirements of QTL analysis (Figure 1; Table 1).
4.2 Correlation analyses among
different traits

Significant Pearson’s correlations (p < 0.01) for the same trait

showed a significant positive relationship between the F2 and F2:3
populations in Xueyao and Jiuhua (Supplementary Table S2).

Phenotypic correlations (p < 0.01) among the different traits are

shown in Figure 2. Seed shape traits, including HSW, SA, SP, SL,

and SW, were positively correlated with PC, and negatively correlated

with StC. Seed coat color traits, including SC-R, SC-G, and SC-B, were

positively correlated with FC and StC and negatively correlated with

LC. There was no significant correlation between the seed shape traits

and seed coat color traits in this study.
4.3 Genetic map construction

A total of 121 F2 plants and their parents were genotyped using

130,514 SNPs in the Faba_bean_ 130 K SNP TNGS genotyping

platform, showing excellent results, quality, and matching scores

(Supplementary Tables S3; S4). There were 12,023 SNP-tagged gene

microarrays with polymorphism between parents (Supplementary
TABLE 1 Details of average of F2, two environments of F2:3 individuals and their parents.

Trait
Parents Population

WY7 TCX7 Min Max Mean SD Variance CV% Skewness Kurtosis

HSW 133.05** 245.54** 113.62 230.34 170.20 27.72 762.07 16.29 0.23 -0.69

SA 290.20 ** 526.83 ** 245.00 484.25 360.25 59.28 3,485.39 16.46 0.24 -0.85

SP 65.46** 89.15 ** 55.94 87.59 73.38 6.53 42.26 8.90 0.08 -0.59

SL 22.56 ** 30.61 ** 19.18 29.60 25.22 2.13 4.52 8.46 0.00 -0.46

SW 16.00** 21.62** 13.56 20.88 17.63 1.55 2.37 8.77 0.09 -0.65

SLWR 1.43 1.42 1.30 1.53 1.44 0.05 0.00 3.46 -0.33 -0.35

ST 9.03 9.97 6.67 10.92 8.93 0.71 0.49 7.91 -0.03 0.28

SC-R 64.22** 136.62 ** 53.34 158.93 94.16 31.80 1,002.93 33.77 0.64 -1.12

SC-G 56.89* 119.36 * 46.84 137.25 80.35 25.73 656.80 32.03 0.70 -0.98

SC-B 61.94 * 91.37 * 54.26 104.06 74.90 11.92 141.00 15.92 0.49 -0.70

FC 5.67 * 10.95* 3.02 12.83 7.98 2.06 4.19 25.78 -0.15 -0.35

TC 0.53 ** 0.65 ** 0.43 0.72 0.57 0.06 0.00 9.84 0.16 -0.27

StC 32.66 * 35.95 * 29.56 37.58 33.95 1.53 2.32 4.50 -0.23 0.42

PC 30.90 31.40 28.19 34.05 31.12 1.22 1.48 3.93 -0.19 -0.29

LC 1.30 * 1.01 * 0.83 1.48 1.12 0.13 0.02 11.53 0.07 -0.23
fro
SD standard deviation, CV coefficient of variation, HSW 100-seed weight (g), SA seed surface area (mm2), SP seed perimeter (mm), SL seed length (mm), SW seed width (mm), SLWR seed length
and width ratio, ST seed thickness (mm), SC-R seed coat color R value, SC-G seed coat color G value, SC-B seed coat color B value, FC fiber content (%), TC tannin content (%), StC starch
content (%), PC protein content (%), LC lipid content (%). Significant differences between two parental lines WY7 and TCX7 are marked by * and **, which were determined by the Student’s t
test at P < 0.05 and P < 0.01, respectively.
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Table S5), and they were successfully genotyped into “A,” “B,” and

“H” types in the population. All co-isolated markers were defined as

one bin, and 1106 bin markers were used to construct a genetic map

containing 6 LGs. The overall length of the genetic map was

1,182.65 cM with an average marker spacing of 0.098 cM. Each

LG range was from 157.08–296.82 cM, and the average distance

between markers was from 0.079–0.114 cM. LG1 had the largest

number of markers with 3,325 SNPs. The smallest gap identified in

the map was 0.826 cM, the total number of gaps > 5 cM was 9, and

the largest gap was 11.78 cM LG6. Additionally, the ratio of marker

intervals < 5 cM for all LGs was > 97% (Figure 3; Table 2).
4.4 QTL analysis

QTL mapping was performed using QTL lciMapping and QTL-

Cart CIM, and 65 (Supplementary Table S6) and 50

(Supplementary Table S7) QTLs were identified for all 15 seed-

related traits detected in the F2 and F2:3 populations, respectively.

Together, these two mapping strategies identified 28 overlapping

QTLs (Supplementary Table S8). Of these, the QTL intervals

observed using the CIM method were usually wider, whereas the

intervals from the ICIM method were narrower. Consequently,

the results obtained using the lCIM method were used in this study.

The genetic effect (the explanation rate of phenotyte variance or

VG/VP) of the QTLs detected using ICIM for 15 seed-related traits

ranged from 4.90–73.99%, with peak LOD values ranging from
Frontiers in Plant Science 0587
4.48–35.25 (Supplementary Table S6). Among the 65 loci, there

were 11 QTLs that were detected for more than two traits

(Supplementary Table S9). There were 39 QTLs identified that

individually accounted for > 10% of the phenotypic variation

(Table 3) and 1 QTL explained < 5% of the phenotypic variation

(Supplementary Table S6). A total of 41 and 21 QTLs were found to

have positive and negative additive effects, respectively.

4.4.1 Seed morphology traits
Three QTLs of HSW were detected and had peak LOD scores of

4.64–17.81, which explained 7.26%–38.88% of the HSW variation.

One was located on LG4, and two were mapped to LG5 (Table 3).

QTLs detected more than two times among F2, F3-XY and F3-JH

were considered environmentally stable. qHSW5.1 was detected in

F2 and F3-JH (Table 3; Supplementary Table S10).

A total of 28 QTLs were found for several seed shape traits, and

6 were regarded as stable (Table 3; Supplementary Table S10). Five

QTLs were detected on LG5 with a peak LOD score of 4.69–24.81,

and they explained 4.90–51.51% of the SA variation. qSA5.1 was

detected in F2 and F3-XY. Only one environmentally stable QTL

(qSP5.1) of SP was identified on LG5 with a peak LOD score ranging

from 14.82–23.55, and it explained 40.13–55.47% of the SP

variation. Four QTLs associated with SL had peak LOD scores

ranging 4.73–28.30, which explained 5.50–48.32% of the SL

variation and were located on LG1, LG3, LG5, and LG6.

According to the results, qSL5.1 was a stable QTL, which detected

in F2, F3-XY and F3-JH.
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FIGURE 1

Frequency distributions of seed-related traits in 121 F2 derived from a cross between WY7 andTCX7. HSW 100-seed weight (g), SA seed surface area
(mm2), SP seed perimeter (mm), SL seed length (mm), SW seed width (mm), SLWR seed length and width ratio, ST seed thickness (mm), SC-R seed
coat color R value, SC-G seed coat color G value, SC-B seed coat color B value, FC fiber content (%), TC tannin content (%), StC starch content (%),
PC protein content (%), LC lipid content (%).
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Five QTLs explained 6.64–42.93% of the SW variance, with

peak LOD scores ranging from 4.48–22.55, which were identified in

linkage groups LG2 (1), LG3 (1), LG5 (1), and LG6 (2). An

environmentally stable QTL (qSW5.1) was also identified. Five
Frontiers in Plant Science 0688
QTLs explained 9.59–25.02% of the SLWR variance, and the peak

LOD scores varied from 5.33–11.11, and qSW6.1 was stable.

For ST, eight QTLs were detected in LG4 (3), LG5 (3), and LG6

(2), with LOD scores ranging from 4.48–12.25, and they explained

6.65–24.78% of the total phenotypic variation. qST5.1 was detected

in F2, F3-XY and F3-JH. Among these QTLs, four were overlapping

for seed shape traits.

For seed coat color traits, 12 QTLs were detected, including 3, 5,

and 4 QTLs for R, G, and B, respectively. The phenotypic variation

explained by each individual QTL ranged from 5.00–73.99%, with a

peak LOD of 4.53–35.25 (Table 3). Three were overlapping QTLs

and one was a stable QTL, both located in linkage group LG1

(Supplementary Table S10).

4.4.2 Nutritional quality traits
The results from the QTL analysis identified 22 QTLs associated

with nutritional quality traits (Table 3; Supplementary Table S10), 7

QTLs explained 9.25–21.35% of the FC variance, 2 QTLs explained

22.70–17.61% of the TC variance, 7 QTLs explained 7.09–18.44% of

the StC variance, 2 QTLs explained 13.65–17.32% of the PC

variance, and 4 QTLs explained 6.74–21.35% of LC variance.

qFC3. 3 was considered stable.
4.5 Analysis of candidate genes

The genes in the QTL intervals were screened using the

Faba_bean_ 130 K SNP TNGS genotyping platform (Table 4). The

results showed that 333 genes and 610 SNPs were detected at 65 QTL

intervals. Among the 333 genes, HSW, seed shape, seed coat color, and

nutritional quality traits contained 8, 117, 100, and 109 genes,

respectively, and 173 genes were functionally annotated by database

comparison. A total of 67 candidate genes within the environmentally

stable QTL intervals were detected, including 2, 20, 39, 3 genes related

to HSW, seed shape, seed coat color, and nutritional quality traits,

respectively. The results showed that 213 genes in 41 QTLs explained >

10% of the observed phenotypic variance, and they were further

assessed (Supplementary Table S11). There were 6 genes related to

HSW within these QTL intervals, and 5 were annotated, including the

CCCH-type zinc finger protein and calcium-binding protein. There

were 53 seed shape-related genes and 30 genes were annotated,

including serine/threonine phosphatase, bHLH transcription factor,

calcium-binding protein Ca2+/H+-exchanging protein, and other

functional genes. Seed color-related genes included 39 and 19 genes

that were annotated, including ubiquitin-like protein, the WD40

family, and transcription factors. There were 79 genes associated

with nutritional quality traits, and 41 genes were annotated,

including numerous genes encoding enzymes, functional genes, and

some transcription factors.
4.6 Reference genome mapping

Sequences of gene in our genetic map were well alignment with

the recent published reference genome of faba bean (Supplementary
FIGURE 2

Correlation analysis of different traits in 0.01 probability level.HSW
100-seed weight (g), SA seed surface area (mm2), SP seed perimeter
(mm), SL seed length (mm), SW seed width (mm), SLWR seed length
and width ratio, ST seed thickness (mm), SC-R seed coat color R
value, SC-G seed coat color G value, SC-B seed coat color B value,
FC fiber content (%), TC tannin content (%), StC starch content (%),
PC protein content (%), LC lipid content (%).
FIGURE 3

The ultra−high density genetic linkage map of faba bean based on bin
makers and QTLs of seed-related traits. Note: Only the QTLs with the
phenotypic variation > 10% were shown. Red words means QTLs
detected in the F2, blue words means QTLs detected in the F2:3 of
Jiuhua and green words means QTLs detected in the F2:3 of Xueyao.
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TABLE 3 QTLs distribution of 15 seed-related traits with responsible for more than 10% of the explained phenotypic variation.

Trait LG QTL environment
Left maker Right maker

VG/VP (%) Peak LOD Add
name pos name pos

HSW 5 qHSW5.1 F2(2020) yDN135233_c2_g1_2027 19.5 yDN120969_c0_g1_320 22.5 35.84 17.81 345.255

F2:3-JH(2021) yDN135233_c2_g1_2027 19.5 yDN120969_c0_g1_320 22.5 38.88 15.79 214.079

qHSW5.2 F2:3-XY(2021) yDN151173_c1_g2_816 18.5 yDN135233_c2_g1_2027 19.5 25.71 10.42 228.937

SA 5 qSA5.1 F2(2020) yDN151173_c1_g2_816 18.5 yDN135233_c2_g1_2027 19.5 51.51 18.41 81.633

F2:3-XY(2021) yDN151173_c1_g2_816 18.5 yDN135233_c2_g1_2027 19.5 40.33 15.13 54.410

qSA5.2 F2:3-JH(2021) yDN135233_c2_g1_2027 18.5 yDN120969_c0_g1_320 22.5 39.64 24.81 49.392

qSA5.3 F2:3-JH(2021) hDN150254_c0_g5_96 26.5 dDN52935_c3_g4_215 28.5 15.19 11.34 5.348

SP 5 qSP5.1 F2(2020) yDN151173_c1_g2_816 18.5 yDN135233_c2_g1_2027 19.5 46.06 15.55 8.962

F2:3-JH(2021) yDN151173_c1_g2_816 18.5 yDN135233_c2_g1_2027 19.5 55.47 23.55 5.636

F2:3-XY(2021) yDN151173_c1_g2_816 18.5 yDN135233_c2_g1_2027 19.5 40.13 14.82 5.828

SL 5 qSL5.1 F2(2020) yDN151173_c1_g2_816 18.5 yDN135233_c2_g1_2027 19.5 42.65 14.06 2.724

F2:3-JH(2021) yDN151173_c1_g2_816 18.5 yDN135233_c2_g1_2027 19.5 48.32 28.30 1.756

F2:3-XY(2021) yDN151173_c1_g2_816 18.5 yDN135233_c2_g1_2027 19.5 35.96 13.79 1.904

SW 5 qSW5.1 F2(2020) yDN151173_c1_g2_816 18.5 yDN135233_c2_g1_2027 19.5 39.37 14.92 1.857

F2:3-JH(2021) yDN151173_c1_g2_816 18.5 yDN135233_c2_g1_2027 19.5 42.93 22.55 1.165

F2:3-XY(2021) yDN151173_c1_g2_816 18.5 yDN135233_c2_g1_2027 19.5 36.78 12.90 1.356

6 qSW 6.1 F2(2020) yDN128644_c0_g1_417 71.5 hDN154119_c0_g2_776 75.5 10.69 5.07 0.866

SLWR 3
qSLWR
3.1 F2:3-JH(2021) yDN154982_c0_g1_462 95.5 yDN150491_c1_g1_2729 96.5 18.23 6.37 0.004

qSLWR
3.2 F2:3-XY(2021) hDN149791_c1_g1_342 129.5 yDN133005_c0_g1_512 130.5 17.24 11.11 -0.036

qSLWR
3.3 F2:3-XY(2021) yDN155504_c1_g2_308 147.5 yDN155504_c1_g2_253 149.5 16.78 9.38 -0.036

6
qSLWR
6.1 F2(2020) yDN145987_c0_g1_369 67.5 yDN138086_c0_g1_82 71.5 25.02 7.34 -0.046

F2:3-XY(2021) yDN145987_c0_g1_369 67.5 yDN138086_c0_g1_82 70.5 10.40 6.21 0.032

ST 4 qST4.1 F2:3-XY(2021) hDN131761_c0_g1_1016 45.5 hDN122802_c0_g1_447 46.5 16.90 12.25 0.127

(Continued)
F
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TABLE 2 Summary of the consensus reference genetic map of faba bean in this study.

Linkage groups SNP count Bin
count

Length (cM) Average interval (cM) Largest gap size (cM) Numbers of gaps > 5 cM

LG1 3,325 285 296.818 0.089 5.811 1

LG2 2,207 173 173.630 0.079 6.651 1

LG3 2,121 184 182.697 0.086 4.975 0

LG4 1,758 157 157.084 0.089 4.975 0

LG5 1,597 156 181.963 0.114 6.650 3

LG6 1,015 151 190.461 0.188 11.784 4

Total 12,023 1106 1182.653 0.098 11.784 9
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Table S12). It was found that about 60% of the genes in each LG

were mapped to the corresponding chromosome. Specifically, LG1–

LG6 were assigned to chromosome 1, chromosome 3, chromosome

2, chromosome 5, chromosome 4 and chromosome 6, respectively.
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Candidate genes were mapped to the reference genome and most

annotated genes were located on other five chromosomes except the

chromosome 3 (Supplementary Figure S1; Supplementary Table 11).

Twenty-five genes were located on chromosome 1L (the long arm of
TABLE 3 Continued

Trait LG QTL environment
Left maker Right maker

VG/VP (%) Peak LOD Add
name pos name pos

5 qST5.1 F2(2020) yDN131562_c0_g2_1383 23.5 dDN54339_c2_g2_203 24.5 24.78 7.29 0.646

F2:3-JH(2021) yDN131562_c0_g2_1383 23.5 dDN54339_c2_g2_203 24.5 19.19 9.38 0.452

qST5.2 F2:3-JH(2021) hDN154491_c1_g8_222 98.5 hDN152331_c2_g3_311 99.5 10.07 4.78 0.123

qST5.3 F2:3-XY(2021) hDN148575_c1_g1_723 7.5 yDN151173_c1_g2_935 9.5 10.66 8.58 0.475

SC-R 1 qSC-R1.1 F2(2020) hDN132853_c1_g2_224 71.5 dDN45140_c0_g1_2482 72.5 68.60 35.13 24.007

qSC-R1.2 F2(2020) hDN125239_c1_g4_1476 75.5 yDN127251_c0_g1_756 76.5 12.90 11.02 11.943

F2:3-JH(2021) hDN125239_c1_g4_1476 75.5 yDN127251_c0_g1_756 76.5 73.99 34.76 35.411

F2:3-XY(2021) hDN125239_c1_g4_1476 75.5 yDN127251_c0_g1_756 76.5 65.35 29.45 34.151

SC-G 1 qSC-G1.1 F2(2020) hDN125239_c1_g4_1476 75.5 yDN127251_c0_g1_756 76.5 51.48 35.25 17.308

F2:3-JH(2021) hDN125239_c1_g4_1476 75.5 yDN127251_c0_g1_756 76.5 66.97 28.88 25.116

F2:3-XY(2021) hDN125239_c1_g4_1476 75.5 yDN127251_c0_g1_756 76.5 68.34 33.01 36.541

qSC-G1.2 F2(2020) yDN157063_c3_g3_806 295.5 yDN157063_c3_g3_836 296 12.36 12.19 -11.891

SC-B 1 qSC-B1.1 F2(2020) yDN147029_c0_g1_601 56.5 yDN142452_c3_g4_331 57.5 24.62 15.73 9.483

qSC-B1.2 F2(2020) hDN135643_c3_g1_514 63.5 yDN151467_c2_g1_440 64.5 22.55 16.11 7.153

qSC-B1.3 F2(2020) hDN125239_c1_g4_1476 75.5 yDN127251_c0_g1_756 76.5 10.63 8.93 -6.273

F2:3-JH(2021) hDN125239_c1_g4_1476 75.5 yDN127251_c0_g1_756 76.5 37.04 12.09 9.231

F2:3-XY(2021) hDN125239_c1_g4_1476 75.5 yDN127251_c0_g1_756 76.5 54.25 20.22 16.479

FC 1 qFC1.1 F2(2020) yDN145946_c2_g3_400 107.5 yDN125063_c0_g1_87 108.5 21.37 9.44 2.049

qFC1.2 F2:3-JH(2021) dDN53089_c3_g1_46 109.5 yDN129665_c0_g3_238 110.5 14.85 6.26 1.379

3 qFC3.1 F2:3-XY(2021) yDN148417_c0_g1_302 48.5 hDN142257_c0_g1_1594 49.5 15.43 5.97 1.057

qFC3.2 F2:3-XY(2021) yDN119514_c0_g1_312 166.5 hDN145176_c0_g1_497 167.5 13.65 5.32 -0.962

4 qFC4.1 F2:3-JH(2021) hDN122239_c0_g2_1049 98.5 hDN154311_c1_g1_631 99.5 10.16 4.97 1.008

6 qFC6.1 F2:3-XY(2021) yDN145987_c0_g1_369 67.5 yDN138086_c0_g1_82 71.5 10.82 4.65 0.686

TC 1 qTC1.1 F2(2020) hDN124375_c0_g1_451 255.5 dDN47789_c0_g1_281 256.5 22.70 6.46 -0.061

qTC1.2 F2:3-JH(2021) hDN122621_c4_g3_51 249.5 yDN154539_c0_g2_558 251.5 17.61 5.17 -0.034

StC 1 qStC1.1 F2(2020) dDN40232_c0_g1_396 162.5 yDN134012_c0_g1_800 163.5 13.77 8.19 -1.306

qStC1.2 F2:3-XY(2021) hDN148143_c3_g2_213 34.5 yDN141447_c5_g1_240 35.5 18.44 5.53 1.041

5 qStC5.1 F2(2020) hDN148575_c1_g1_723 7.5 yDN151173_c1_g2_935 9.5 11.38 6.64 -1.192

PC 1 qPC1.1 F2(2020) dDN40232_c0_g1_396 162.5 yDN134012_c0_g1_800 163.5 17.32 6.12 1.070

5 qPC5.1 F2(2020) dDN41265_c0_g1_1106 0 dDN41265_c0_g1_1104 0.5 13.65 4.99 0.875

LC 1 qLC1.1 F2(2020) hDN155223_c0_g1_2012 86.5 hDN146106_c2_g1_2134 88.5 20.78 5.91 -0.141

3 qLC3.1 F2:3-XY(2021) yDN119514_c0_g1_312 166.5 hDN145176_c0_g1_497 167.5 21.35 12.72 -0.130
front
The QTL with underlines means stable QTL for each trait. HSW 100-seed weight (g), SA seed surface area (mm2), SP seed perimeter (mm), SL seed length (mm), SW seed width (mm), SLWR
seed length and width ratio, ST seed thickness (mm), SC-R seed coat color R value, SC-G seed coat color G value, SC-B seed coat color B value, FC fiber content (%), TC tannin content (%), StC
starch content (%), PC protein content (%), LC lipid content (%), JH Jiuhua, XY Xueyao.
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chromosome 1) and 17 genes were located on chromosome 1S (the

short arm of chromosome 1). Seven, eleven, one and seven of these

annotated genes were located on chromosome 2, chromosome 4,

chromosome 5, chromosome 6, respectively. Furthermore, there were

also seven genes located on free chromosomes (the unassigned scaffolds

that cannot be placed on any known chromosome).
5 Discussion

5.1 The first ultra-dense genetic map for
faba bean
Owing to the rapid development of high-throughput

sequencing technologies, sufficient molecular markers can now be

obtained to facilitate the mapping of high-density genetic maps and

research on map-based gene cloning (Yang et al., 2012; Zhang et al.,

2016; Zhou et al., 2018; Gaur et al., 2020; Gu et al., 2020; Sa et al.,

2021). The molecular genetic analysis of faba bean is currently

lagging in comparison to that of many other crops due to its large

genome size (Adhikari et al., 2021). Establishing a reliable linkage

map between genetic markers and traits is one of the key

approaches to improve molecular breeding without a reference

genome (Chapman et al., 2022). In this study, a genetic map of

faba beans was constructed using high-throughput genotyping

platforms. To date, genetic map construction using microarray

chips has been successfully reported in several crops, such as pea
Frontiers in Plant Science 0991
(Tayeh et al., 2015), wheat (Liu et al., 2018; Ren et al., 2021), cotton

(Gu et al., 2020) and pepper (Cheng et al., 2016). In addition, the

130 K liquid-phase gene chip used in this study was developed using

transcriptome data, which contains large-scale information.

Furthermore, all marker sequences provided valuable gene

information, indicating that this liquid-phase gene chip is an

effective and feasible tool to utilize for genetic map construction.

There have been more than 20 genetic maps reported for faba

beans. Of these, the genetic map constructed by Carrillo-perdomo

et al. (2020) containing 1,728 markers, with a total length of

1,547.71 cM and an average genetic distance of 0.89 cM. To date,

one of the two SNP genetic map constructed by Li et al. (2023) had

the highest density, containing 5,103 markers, with a total length of

1,333.31 cM and an average genetic distance of 0.26 cM. In the

present study, an ultra-dense genetic map was constructed,

encompassing 12,023 markers in 6 LGs, with an average distance

of 0.098 cM. The number, density, and distribution quality of the

new molecular markers was thus significantly higher when

compared with previous genetic maps. The presented genetic map

only has 9 gaps > 5 cM, and thus, it can be effectively utilized for

faba bean gene mapping and MAS breeding.
5.2 Comparison with previous QTL reports

QTL mapping and the analysis of candidate genes within QTL

intervals is an effective strategy to investigate numerous crop traits
TABLE 4 Details of genes and SNPs of 15 seed-related traits in QTL interval based on 130K TNGS.

Trait Total QTL
number SNP number Gene number VG/VP >10 QTLs interval Gene number Stable QTLs interval gene number

HSW 3 15 8 6 5

SA 5 23 13 9 2

SP 1 4 2 2 2

SL 4 37 20 2 2

SW 5 31 22 9 2

SLWR 5 38 20 15 2

ST 8 61 40 23 10

SC-R 3 74 30 25 13

SC-G 5 88 42 14 13

SC-B 4 63 28 21 13

FC 7 28 20 17 3

TC 2 91 49 49 0

StC 7 30 21 10 0

PC 2 5 4 4 0

LC 4 22 15 7 0

Total 65 610 333 213 67
HSW100-seed weight (g), SA seed surface area (mm2), SP seed perimeter (mm), SL seed length (mm), SW seed width (mm), SLWR seed length and width ratio, ST seed thickness (mm), SC-R seed coat color
R value, SC-G seed coat color G value, SC-B seed coat color B value, FC fiber content (%), TC tannin content (%), StC starch content (%), PC protein content (%), LC lipid content (%).
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(Bornowski et al., 2020; Chen et al., 2021), and can contribute to the

development of molecular marker-assisted breeding (Torres et al.,

2010). The 100-seed weight, seed shape, and nutritional quality of

faba beans are all quantitative traits susceptible to environmental

influence. To improve the accuracy of QTL mapping for seed traits,

QTL analysis was performed in the F2 and F2:3 populations in two

locations. There was a total of 65 seed trait-related QTLs detected

(Supplementary Table S6), of which, 11 were repeatedly detected in

different environments (Supplementary Table S9).

Patto et al. (1999) used a genetic map constructed using the F2
population and found that most of the QTLs related to seed weight

were located on chromosome 6 for faba bean. Using the

recombinant in bred line (RIL6) population constructed using

Vf6 and Vf27, Ávila et al. (2017) identified 5 QTLs for HSW,

which were located on 4 different chromosomes. Tian et al. (2018)

identified two QTLs for seed weight using an F2 population

derived from Yun122/TF42, which were located on two different

LGs. In this study, we identified three QTLs linked to HSW, one at

LG4, and two at LG5. These results indicate that faba bean seed

weight is controlled by multiple main-effect QTLs. qHSW5.1, one

of the three QTLs related to HSW, was also associated with SA,

and qHSW5.2 was associated with SA, SP, SL, and SW, which

indicated that these two QTLs are also involved in controlling seed

shape (Table 3).

Seed shape traits are among the most important factors used

to determine seed size. The localization and cloning of seed shape

genes are of great importance when aiming to increase crop yield

and improve appearance quality (Austin and Lee, 1996; Song et al.,

2007; Verma et al., 2015; Cheng et al., 2017; Murube et al., 2020).

According to the Gramene website (http://archive.gramene.org/

qtl/), more than 400 rice grain shape-related genes/QTLs have

been identified through genetic mapping and correlation analysis.

However, few studies have reported QTL mapping for the seed

shape traits of faba bean, a seed length-related QTL and a seed

width-related QTL were identified by Tian et al. (2018), 8 QTLs

related to seed length, 9 QTLs related to seed width and 8 QTLs

related to seed thickness were identified by Li et al. (2023). In this

investigation, 28 QTLs for 6 seed-shape traits were identified using

linkage analysis, and most were located on LG5(Table 3;

Supplementary Table S6). Compared to these QTLs reported,

those identified as controlling seed shape in this study were

new, and could thus be applied to the subsequent fine mapping

of seed shape traits and the investigation of related genes in faba

bean. qSA5.1, qSLWR6.1 and qST5.1 were stable QTLs explained >

10% of phenotypic variation, while qSA5.1 was also associated

with SP, SL, and SW. which indicated that these QTLs can be used

for further fine mapping and superior gene discovery of seed

shape traits.

Seed coat color is a key factor affecting seed quality

(Yoshimura et al., 2012; Garcı ́a-Fernández et al., 2021).

Different seed coat colors may have different functions

(Debeaujon et al., 2003), and the different seed coat colors of

faba beans may also be associated with different nutritional

qualities. The results of the correlation analysis among seed

traits showed that seed coat color was positively correlated with

FC and StC, and negatively correlated with LC. Mendel first
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proposed that the seed coat color of peas is controlled by a pair

of genes and considered a qualitative trait (Myers, 2004), while the

seed coat color of soybeans is controlled by multiple genetic loci

(Choung et al., 2001), and more than 30 molecular marker loci on

different chromosomes that control seed coat color in soybean

have been detected (Yuan et al., 2022). However, few studies on

the QTLs for seed coat color in faba bean have been reported.

WY7 and TCX7, the parents used in this study, have purple and

white coats, respectively. A total of 12 QTLs, mainly located on

LG1, were detected by quantitative measurement of the SC-R, SC-

G, and SC-B. qSC-R1.2 was also located with SC-G and SC-B

(Table 3), which could explain the > 50% phenotypic variation.

qSC-R1.1 is located with SC-G, and qSC-R1.3 is located with SC-B

(Supplementary Table S6). These three QTLs are key objects for

further study of grain coat color traits.

The main nutrients in faba bean seeds are protein and starch, with

low lipid and fiber content levels, as well as tannin (Zanotto et al.,

2020), pyrimidine glucoside, and other bioactive substances

(Björnsdotter et al., 2021). QTL mapping for quality traits can help

to improve the utilization and value of faba beans. At present, there are

relatively few studies on the QTL mapping of quality traits in broad

beans. Only five genes that control grain proteins have been identified

(Macas et al. 1993b). In this study, 22 QTLs linked to quality traits were

detected using SNPmarkers for the first time, including 7 QTLs for FC,

7 for StC, 4 for LC, 2 for PC, and 2 for TC (Supplementary Table S6). In

particular, qFC1.1, qTC1.1, qLC1.1, and qLC3.1 could explain > 20% of

the phenotypic variation, and qStC1.1 was also associated with PC

(Table 3). These QTLs could thus be used to identify the candidate

genes for faba bean quality traits.
5.3 Candidate genes for the QTLs
controlling seed-related traits

To identify candidate genes for seed-related traits in faba bean, we

focused on 213 genes within 41 QTL intervals that explained > 10% of

the phenotypic variation. According to the results of the functional

annotation, 57.28% of these genes had been annotated. Signaling

pathways that regulate seed size in plants include the ubiquitin-

protease pathway, mitogen-activated protein kinase signaling

pathway, transcriptional regulation, G-protein signaling pathway,

IKU pathway, and plant hormones (Gnan et al., 2014; Li and Li,

2016; Li et al., 2019). Jayakodi et al. (2023) identified 15 marker–seed

size associations, and most prominent signal was located on

chromosome 4 within the Vfaba.Hedin2.R1.4g051440 gene. In this

investigation, there were 30 genes annotations among the 59 genes

linked to HSW and seed shape (Supplementary Table S11). Thirteen of

these annotation genes located on chromosome 4 by whole genome

sequence alignment. dou_TRINITY_DN52935_c3_g4 and hua_TRINI

TY_DN119282_c0_g1 encode serine/threonine phosphatase and the

transcription factor bHLH, respectively, which are reportedly involved

in regulating seed size (Savadi, 2018). dou_TRINITY_DN38848_c0_g1

encodes a CYP gene and CYP is involved in protein folding, signal

transduction, and RNA processing (Krücken et al., 2009). There

are also two calcium signaling pathway genes, including a calcium-

binding protein gene ye_TRINITY_DN120969_c0_g1 and a Ca2+/H+-
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exchanging protein gene hua_TRINITY_DN154119_c0_g2, which

may be involved in the Ca signaling pathway to regulate seed

development. Other unannotated candidate genes could also

potentially regulate seed size.

The seed coat color of plants is affected by numerous factors, but

flavonoids are the decisive pigments (Lepiniec et al., 2006). In this

study, there were 34 candidate genes for seed coat color, 19 of which

were annotated (Supplementary Table S11). Among these genes, the

translated product of ye_TRINITY_DN150431_c0_g1 is a ubiquitin-

like protein that plays an important role in pigment accumulation

(Tang et al., 2015). ye_TRINITY_DN150347_c0_g1 and

ye_TRINITY_DN139828_c0_g1 are WD40 family genes, which have

been suggested to regulate the formation of proanthocyanidins in seed

coats (Shirley et al., 1995; Walker et al., 1999). Furthermore, the other

16 annotated genes and 15 unannotated genes may also be required for

the pigment composition of different seed coat colors, but this requires

further verification.

In this study,79candidategeneswereassociatedwithfivenutritional

quality traits, of which, 41 were annotated (Supplementary Table S11).

There were 7 genes for LC, 4 of which were annotated, but no functions

related to lipid synthesis and accumulation were reported.

hua_TRINITY_DN145176_c0_g1, a crude fiber candidate gene, is a

triose-phosphate transporter gene that reportedly affects starch and

glucose transport in transgenic tobacco (Häusler et al., 1998). dou_TR

INITY_DN53089_c3_g1 and ye_TRINITY_DN155843_c1_g1 are GD

SL esterases that may also be involved in fiber metabolism. Condensed

tannins, also known as proanthocyanidins, exhibit antioxidant,

antibacterial, anticancer, and anti-mutation activities (Gutierrez et al.,

2020). The two genes zt-1 and zt-2 are the most studied for controlling

tannin content in faba bean (Gutierrez et al., 2006; Gutierrez et al., 2007;

Gutierrez et al., 2008). Of the candidate genes related to tannins, dou_T

RINITY_DN58315_c1_g1 encodes a bHLH transcription factor gene,

which is reportedly involved in themechanismsof tanninbiosynthesis in

faba bean (Gutierrez et al., 2020). Other tannin-annotated genes

obtained in the target intervals have not been reported in faba bean,

and thus may be candidate genes affecting tannin content. Further

studies are required to confirm the functions of these genes.
5.4 Reference genome mapping analysis

Compared to chromosomes and gene locations of the reference

genome, the number of linkage groups in our genetic map was

consistent with their respective chromosomes, but there were

variations in the order of genes on the chromosome, and about

25% of them were not found in the genome (Supplementary Table

S12). Eighty-five candidate genes within the QTL interval were

mapped to the reference genome, seven of which were located on

the contigs (Supplementary Figure S1). Therefore, a part of contigs

on the reference genome can be assembled to the genome of faba
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bean based on the map constructed in this study, which is

conducive to the further improvement of the physical map of

faba bean.
6 Conclusions

A high-density genetic map with 12,023 SNPs in 6 LGs was

constructed using the faba_bean_ 130 K SNP TNGS genotyping

platform. A total of 65 QTLs for seed-related traits were identified (3

for 100-seed weight, 28 for seed shape, 12 for seed coat color, and 22 for

nutritional quality). Furthermore, 333 candidate genes were identified

that are likely to participate in the regulation of seed-related traits. This

is the first ultra-dense genetic map of faba bean and it provides a

foundation for further genetic analyses, MAS breeding, and reference

genome assembly research. This study will also be useful for faba bean

gene isolation and functional genomics research.
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Garcıá-Fernández, C., Campa, A., and Ferreira, J. J. (2021). Dissecting the genetic
control of seed coat color in a RIL population of common bean (Phaseolus vulgaris l.).
Theor. Appl. Genet. 134, 3687–3698. doi: 10.1007/s00122-021-03922-y

Gaur, R., Verma, S., Pradhan, S., Ambreen, H., and Bhatia, S. (2020). A high-density
SNP-based linkage map using genotyping-by-sequencing and its utilization for
improved genome assembly of chickpea (Cicer arietinum l.). Funct. Integr. Genomics
20, 763–773. doi: 10.1007/s10142-020-00751-y

Gnan, S., Priest, A., and Kover, P. X. (2014). The genetic basis of natural variation in
seed size and seed number and their trade-off using Arabidopsis thalianaMAGIC lines.
Genetics 198, 1751–1758. doi: 10.1534/genetics.114.170746

Gu, Q. S., Ke, H. F., Liu, Z. W., Lv, X., Sun, Z. W., Zhang, M., et al. (2020). A high
−density genetic map and multiple environmental tests reveal novel quantitative trait
loci and candidate genes for fibre quality and yield in cotton. Theor. Appl. Genet. 133,
3395–3408. doi: 10.1007/s00122-020-03676-z

Gutierrez, N., Avila, C. M., Duc, G., Marget, P., Suso, M. J., Moreno, M. T., et al.
(2006). CAPs markers to assist selection for low vicine and convicine contents in faba
bean (Vicia faba l.). Theor. Appl. Genet. 114, 59–66. doi: 10.1007/s00122-006-0410-3

Gutierrez, N., Avila, C. M., Moreno, M. T., and Torres, A. M. (2008). Development
of SCAR markers linked to zt-2, one of genes controlling absence of tannins in faba
bean. Aust. J. Agr Res. 59, 62–68. doi: 10.1071/AR07019

Gutierrez, N., Avila, C. M., Rodriguez-Suarez, C., Moreno, M. T., and Torres, A. M.
(2007). Development of SCAR markers linked to a gene controlling absence of tannins
in faba bean. Mol. Breed. 19, 305–314. doi: 10.1007/s11032-006-9063-9

Gutierrez, N., Avila, C. M., and Torres, A. M. (2020). The bHLH transcription factor
VfTT8 underlies zt2, the locus determining zero tannin content in faba bean (Vicia faba
l.). Sci. Rep. 10, 14299. doi: 10.1038/s41598-020-71070-2
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fpls.2023.1201103/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fpls.2023.1201103/full#supplementary-material
https://doi.org/10.3389/fpls.2021.744259
https://doi.org/10.1038/s41598-021-92680-4
https://doi.org/10.1007/s10681-012-0658-4
https://doi.org/10.1016/j.jff.2017.04.002
https://doi.org/10.1007/s10681-008-9654-0
https://doi.org/10.1007/BF00221893
https://doi.org/10.1007/s11032-017-0688-7
https://doi.org/10.1007/s00122-003-1514-7
https://doi.org/10.1038/s41477-021-00950-w
https://doi.org/10.1007/s00122-020-03656-3
https://doi.org/10.3389/fpls.2022.970865
https://doi.org/10.3389/fpls.2022.970865
https://doi.org/10.1038/s41598-020-63664-7
https://doi.org/10.1007/s10681-017-1910-8
https://doi.org/10.1111/nph.18021
https://doi.org/10.3389/fpls.2021.774270
https://doi.org/10.1007/s00122-017-2896-2
https://doi.org/10.1038/srep33293
https://doi.org/10.1021/jf010550w
https://doi.org/10.1007/s00122-012-1952-1
https://doi.org/10.1007/BF00283475
https://doi.org/10.1105/tpc.014043
https://doi.org/10.1105/tpc.014043
https://doi.org/10.1071/CP08190
https://doi.org/10.1007/s00122-009-1220-1
https://doi.org/10.1186/1471-2164-9-380
https://doi.org/10.1016/j.hpj.2019.04.004
https://doi.org/10.1007/s00122-021-03922-y
https://doi.org/10.1007/s10142-020-00751-y
https://doi.org/10.1534/genetics.114.170746
https://doi.org/10.1007/s00122-020-03676-z
https://doi.org/10.1007/s00122-006-0410-3
https://doi.org/10.1071/AR07019
https://doi.org/10.1007/s11032-006-9063-9
https://doi.org/10.1038/s41598-020-71070-2
https://doi.org/10.3389/fpls.2023.1201103
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zhao et al. 10.3389/fpls.2023.1201103
Gutiérrez, N., Palomino, C., Satovic, Z., Ruiz-Rodrıǵuez, M. D., Vitale, S., Gutiérrez,
M. V., et al. (2013). QTLs for orobanche spp. resistance in faba bean: identification and
validation across different environments.Mol. Breed. 32, 909–922. doi: 10.1007/s11032-
013-9920-2

Gutierrez, N., and Torres, A. M. (2021). QTL dissection and mining of candidate
genes for ascochyta fabae and orobanche crenata resistance in faba bean (Vicia faba l.).
BMC Plant Biol. 21, 551. doi: 10.1186/s12870-021-03335-5

Häusler, R. E., Schlieben, N. H., Schulz., B., and Flügge, U.-I. (1998). Compensation
of decreased triose phosphate/phosphate translocator activity by accelerated starch
turnover and glucose transport in transgenic tobacco. Planta 204, 366–376.
doi: 10.1007/s004250050268

Hou, W. W., Zhang, X. J., Yan, Q. B., Li, P., Sha, W. C., Tian, Y. Y., et al. (2018).
Linkage map of a gene controlling zero tannins (zt-1) in faba bean (Vicia faba l.) with
SSR and ISSR markers. Agronmy 8, 80. doi: 10.3390/agronomy8060080

Jayakodi, M., Golicz, A. A., Kreplak, J., Fechete, L. I., Angra, D., Bednár,̌ P., et al.
(2023). The giant diploid faba genome unlocks variation in a global protein crop.
Nature 615 (7953), 652–659. doi: 10.1038/s41586-023-05791-5

Jensen, E. S., Peoples, M. B., and Hauggaard-Nielsen, H. (2010). Faba bean in
cropping systems. Field Crop Res. 115, 203–216. doi: 10.1016/j.fcr.2009.10.008

Johnston, J. S., Bennett, M. D., Rayburn, A. L., Galbraith, D. W., and Price, H. J.
(1999). Reference standards for determination of DNA content of plant nuclei. Am. J.
Bot. 86, 609–613. doi: 10.2307/2656569

Kaur, S., Kimber, R. B. E., Cogan, N. O. I., Materne, M., Forster, J. W., and Paull, J. G.
(2014). SNP discovery and high-density genetic mapping in faba bean (Vicia faba l.)
permits identification of QTLs for ascochyta blight resistance. Plant Sci., 217, 47–55.
doi: 10.1016/j.plantsci.2013.11.014

Khazaei, H., O’Sullivan, D. M., Sillanpää, M. J., and Stoddard, F. L. (2014). Use of
synteny to identify candidate genes underlying QTL controlling stomatal traits in faba
bean (Vicia faba l.). Theor. Appl. Genet. 127, 2371–2385. doi: 10.1007/s00122-014-
2383-y

Krücken, J., Greif, G., and Samson-Himmelstjerna, G. (2009). In silico analysis of the
cyclophilin repertoire of apicomplexan parasites. Parasit Vectors 2, 27. doi: 10.1186/1756-
3305-2-27

Lepiniec, L., Debeaujon, I., Routaboul, J. M., Baudry, A., Pourcel, L., Nesi, N., et al.
(2006). Genetics and biochemistry of seed flavonoids. Annu. Rev. Plant Biol. 57, 405–
430. doi: 10.1146/annurev.arplant.57.032905.105252

Li, C., Duan, Y. H., Miao, H. M., Ju, M., Wei, L. B., and Zhang, H. Y. (2021).
Identification of candidate genes regulating the seed coat color trait in sesame
(sesamum indicum l.) using an integrated approach of QTL mapping and
transcriptome analysis. Front. Genet. 12. doi: 10.3389/fgene.2021.700469

Li, M. W., He, Y. H., Liu, R., Li, G., Wang, D., Ji, Y. S., et al. (2023). Construction of
SNP genetic map based on targeted next-generation sequencing and QTL mapping of
vital agronomic traits in faba bean (Vicia faba l.). J. Integr. Agric. 22, 2095-3119
doi: 10.1016/j.jia.2023.01.003

Li, N., and Li, Y. H. (2016). Signaling pathways of seed size control in plants. Curr.
Opin. Plant Biol. 33, 23–32. doi: 10.1016/j.pbi.2016.05.008

Li, N., Xu, R., and Li, Y. H. (2019). Molecular networks of seed size control in plants.
Annu. Rev. Plant Biol. 70, 435–463. doi: 10.1146/annurev-arplant-050718-095851

Liu, J. J., Luo, W., Qin, N. N., Ding, P. Y., Zhang, H., Yang, C. C., et al. (2018). A 55 K
SNP array−based genetic map and its utilization in QTL mapping for productive tiller
number in common wheat. Theor. Appl. Genet. 131, 2439–2450. doi: 10.1007/s00122-
018-3164-9

Ma, Y., Bao, S. Y., Yang, T., Hu, J. G., Guan, J. P., He, Y. H., et al. (2013). Genetic
linkage map of Chinese native variety faba bean (Vicia faba l.) based on simple
sequence repeat markers. Plant Breed. 132, 397–400. doi: 10.1111/pbr.12074

Macas, J., Dolezel, J., Lucretti, S., Pich, U., Meister, A., Fuchs, J., et al. (1993a).
Localization of seed protein genes on flow-sorted field bean chromosomes.
Chromosome Res. 1, 107–115. doi: 10.1007/BF00710033

Macas, J., Weschke, W., Bümlein, H., Pich, U., Houben, A., Wobus, U., et al. (1993b).
Localization of vicilin genes via polymerase chain reaction on microisolated field bean
chromosomes. Plant J. 3, 883–886. doi: 10.1111/j.1365-313X.1993.00883.x
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Identification of novel
candidate loci and genes
for seed vigor-related traits
in upland cotton (Gossypium
hirsutum L.) via GWAS

Libei Li1†, Yu Hu1†, Yongbo Wang2†, Shuqi Zhao3, Yijin You1,
Ruijie Liu1, Jiayi Wang1, Mengyuan Yan1, Fengli Zhao4,
Juan Huang5*, Shuxun Yu1* and Zhen Feng1*

1The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College
of Advanced Agricultural Sciences, Zhejiang A&F University, Lin’an, Hangzhou, China, 2Cotton
Sciences Research Institute of Hunan, Changde, Hunan, China, 3Cotton and Wheat Research
Institute, Huanggang Academy of Agricultural Sciences, Huanggang, Hubei, China, 4State Key
Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, China,
5Research Center of Buckwheat Industry Technology, Guizhou Normal University, Guiyang, China
Seed vigor (SV) is a crucial trait determining the quality of crop seeds. Currently,

over 80% of China’s cotton-planting area is in Xinjiang Province, where a fully

mechanized planting model is adopted, accounting for more than 90% of the

total fiber production. Therefore, identifying SV-related loci and genes is crucial

for improving cotton yield in Xinjiang. In this study, three seed vigor-related traits,

including germination potential, germination rate, and germination index, were

investigated across three environments in a panel of 355 diverse accessions

based on 2,261,854 high-quality single-nucleotide polymorphisms (SNPs). A

total of 26 significant SNPs were detected and divided into six quantitative trait

locus regions, including 121 predicted candidate genes. By combining gene

expression, gene annotation, and haplotype analysis, two novel candidate genes

(Ghir_A09G002730 and Ghir_D03G009280) within qGR-A09-1 and qGI/GP/

GR-D03-3 were associated with vigor-related traits, and Ghir_A09G002730 was

found to be involved in artificial selection during cotton breeding by population

genetic analysis. Thus, understanding the genetic mechanisms underlying seed

vigor-related traits in cotton could help increase the efficiency of direct seeding

by molecular marker-assisted selection breeding.
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Introduction

Upland cotton (Gossypium hirsutum L.) is one of the world’s

most important cash crops and a major source of natural fibers,

accounting for more than 95% of global cotton production (Chen

et al., 2007). Lint yield depends largely on the quality of cotton

seeds, while seed vigor (SV) is crucial for evaluating seed quality

(Sawan, 2016). SV also determines the growth of crops and food

safety; for example, rapidly and uniformly germinating seeds can

significantly increase the emergence rate in the field and suppress

weed growth (He et al., 2019a). In addition, with the widespread

application of mechanized direct seeding (DS) in cotton production,

cotton seeds with low vigor will make it difficult to sow all seedlings

at once, leading to many problems such as uneven seedling age and

weak seedling vigor (Qun et al., 2007; Liu et al., 2015). Therefore,

the identification of loci and genes related to SV is urgently needed

for DS of cotton.

Seed germination is a key factor affecting SV traits in plants.

Phytohormones such as gibberellin (GA) and abscisic acid (ABA)

have been reported to be essential for the regulation of seed

germination (Yamaguchi, 2008; Ryu and Cho, 2015)—for

example, GA and ABA synthesis pathway-related genes

(GA20ox3, GA3ox1, GA2ox5, ABI3, and ABI5) have a strong

effect on seed germination (Yamauchi et al., 2004; Yamaguchi,

2008; Iglesias-Fernandez and Matilla, 2009). When plants are under

abiotic stress, ABA in the plant will increase rapidly, and high levels

of ABA will close the stomata and activate complex signaling

pathways mediated by kinase/phosphatase regulation (Kim et al.,

2010). Low levels of reactive oxygen species (ROS) act as signaling

particles to promote dormancy release and trigger seed germination

(Li et al., 2022)—for example, OsCDP3.10 promotes the

accumulation of H2O2 during the early stage of seed germination

by increasing the amino acid content (Peng et al., 2022). The

relationship between seed germination and the ROS scavenging

system has been validated in many crops and other plants, such as

Arabidopsis (Leymarie et al., 2012), wheat (Ishibashi et al., 2008),

and rice (Ye et al., 2012). Furthermore, crosstalks between ABA and

ROS signaling pathways have also been reported in plants. In rice,

qSE3 significantly increased ABA biosynthesis and activated ABA

signaling responses, resulting in decreased H2O2 levels in

germinating seeds under salinity stress (He et al., 2019b).

SV-related traits are quantitative traits controlled by both genetic

and environmental factors (Li W. et al., 2021). These traits include

germination rate (GR), germination percentage (GP), germination

index (GI), vigor index (VI), seedling shoot length (SL), and shoot

fresh weight (FW) (Dai et al., 2022; Si et al., 2022). In recent years,

linkage mapping has been widely used to identify SV-related

quantitative trait loci (QTLs) in crops, and multiple QTLs have

been cloned (Fujino et al., 2004; Fujino et al., 2008; He et al., 2019b;

Jiang et al., 2020; Veisi et al., 2022). By using BC1F5 populations

derived from a rice intraspecific cross (‘WTR-1’ × ‘Y134’), 28 SV-

related QTLs were identified by a SNP genotyping array, and one

major QTL (q1stGC11.2) explaining 19.9% of the phenotypic variation
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(PV) was flanked by SNP_11_27994133 on chromosome 11

(Dimaano et al., 2020). In wheat, a total of 49 QTLs were detected

on 12 chromosomes, including seven SV candidate genes involved in

the processes of cell division during germination of aged seeds,

carbohydrate and lipid metabolism, and transcription (Shi et al.,

2020). Wang L. et al. (2022) constructed a linkage map based on

specific-locus-amplified fragment sequencing (SLAF-seq) SNP

markers in melon; 2020/2021-qsg5.1 was significant in both

environments, and MELO3C031219.2, in this region, exhibited a

significant expression difference between the parental lines during

multiple germination stages (Wang L. et al., 2022). Under low

temperature conditions, three QTLs (qLTG-3-1, qLTG3-2, and

qLTG-4) related to GR were identified by 122 backcross inbred

lines, and the phenotypic variation explained (PVE) by qLTG-3-1

was 35.0% (Fujino et al., 2004). Subsequently, qLTG-3-1 was cloned,

which was closely related to tissue vacuolation, by covering the

embryo (Fujino et al., 2008). Furthermore, the genome-wide

association study (GWAS) approach is a method in which

germplasm resources are used to study the genetic structure of

target traits. Compared to traditional QTL mapping, GWAS can

provide higher resolution by using ancestral recombination events

and has been successfully applied to identify significant SNP loci and

potential candidate genes associated with important agronomic traits

in major crops (Zhu et al., 2008; Shikha et al., 2021)—for example,

SV-related QTLs were identified in 346 rice accessions using GWAS,

while 51 significant SNPs were detected for SL, GR, and FW (Dai

et al., 2022). In addition, a previous study involving 187 rice

accessions identified the candidate gene OsSAP16; the loss of

OsSAP16 function reduced the rice seed germination rate (Wang

et al., 2018). Recently, a candidate gene (Gh_A09G1509) responsible

for seed germination was detected through a GWAS panel in upland

cotton by using whole-genome resequencing (Si et al., 2022). These

results suggest that genome-wide association analysis is an effective

method for identifying genes associated with seed germination.

To date, many quantitative traits have been reported in cotton,

such as fiber quality traits (Su et al., 2016b; Zhang et al., 2019), early

maturity traits (Li et al., 2017; Li L. et al., 2021), and yield

component traits (Su et al., 2016a; Feng et al., 2022). However,

SV-related traits in cotton have received little attention, and most

research have focused on seed germination in relation to stress

tolerance (Yuan et al., 2019; Chen L. et al., 2020; Gu et al., 2021; Guo

et al., 2022). Few candidate genes for cotton SV-related traits have

been identified (Si et al., 2022), and the mechanism of seed

germination needs further study. In this study, GR, GP, and GI

were determined in a natural population of upland cotton in three

environments, and whole-genome resequencing was used to achieve

deep coverage and obtain high-quality SNP markers. In addition,

six stable QTLs and two novel candidate genes (Ghir_A09G002730

and Ghir_D03G009280) for SV-related traits were further identified

by a GWAS panel, laying the foundation for understanding the

genetic mechanism underlying SV and providing potential

information for applying these potential elite loci for marker-

assisted selection (MAS) in cotton breeding.
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Materials and methods

GWAS population and field experiments

The 355 upland cotton germplasm resources collected by

laboratories worldwide represent a natural population. Previous

studies focused on early maturity (Li L. et al., 2021), fiber quality (Su

et al., 2016b), fiber yield (Su et al., 2016a; Feng et al., 2022), and

plant architecture component traits based on abundant phenotypic

variations in this population (Su et al., 2018). These upland cotton

varieties are from different countries and represent accessions

resulting from more than 100 years of global upland cotton

breeding. Seeds of the GWAS population used for phenotyping

SV-related traits were collected from three environments, including

Huanggang in Hubei Province (30°57′ N, 114°92′ E) in 2021 (E1:

Huanggang-2021) and Sanya in Hainan Province (18°36′ N, 109°
17′ E) in two consecutive years (2021 and 2022) (E2: Sanya-2021

and E3: Sanya-2022). The field experiments in Sanya and

Huanggang were conducted following a randomized complete

block design with two and three replications, respectively.
Phenotyping for SV-related traits
and statistical analysis

The phenotyping of SV-related traits was carried out by the

sandponic method based on previously described methods (Si et al.,

2022). Cotton seeds collected from the field were ginned, and cotton

fuzz was removed by concentrated sulfuric acid. Then, all seeds

were sun-dried for 2 days to break dormancy uniformly. A total of

150 plump seeds with uniform size and full grain were selected,

disinfected with 15% sodium hypochlorite for 10 min, and then

washed clean with distilled water. Then, each line was evenly

planted in a plastic sand box containing 800 g of dry quartz sand

with a size of 13 cm × 19 cm × 12 cm. Subsequently, the seeds were

covered with 250 g of dry quartz sand, and 200 mL of distilled water

was added. The number of germinated seeds was counted each day

until the seventh day. All experiments were conducted in a

phytotron with 16 h of light (25°C) and 8 h of darkness (18°C).

Three biological replicates were included for each accession, and 50

seeds were used for each replicate. Moreover, three SV-related traits

(GR, GP, and GI) were selected for measurement. The full name,

abbreviation, and measurement method of each trait are listed in

Table 1 as described by Yuan et al. (2019). The statistical analysis of
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the maximum value, minimum value, average value, etc., was

performed using R software (version: 4.2.2).
Development of SNP markers

The resequencing data (PRJNA389777) of the 355 upland

cotton germplasms used in this study were reported in a previous

study (Li L. et al., 2021). The Illumina HiSeq4000 platform was used

for paired-end read sequencing, with an average sequencing depth

of more than 10×. Based on previously released data, the new

variation map of the natural population was employed in the

‘HaplotypeCaller’ module of GATK (version: 4.2.6.1) (Mckenna

et al., 2010). Briefly, the variation detection process was as follows:

(1) The quality of paired-end reads from 355 accessions was

assessed using FastQC (version: 0.11.9) (Andrews, 2010); (2)

Sequencing quality control was carried out with fastp software

(version: 0.23.2) to obtain high-quality reads with the following

parameters: ‘-w 16 -c -l 80 -5 -3 -W 4 -M 20 -f 10 -F 13 -t 3 -T 3 -q

20 -u 40’ (Chen et al., 2018); (3) All high-quality reads were mapped

to the ‘TM-1’ (version: HAU_v1.1) reference genome using BWA

(version: 0.7.17-r1188) (Li, 2013; Wang et al., 2019); (4) Then,

Picard software (https://github.com/broadinstitute/picard) was

used to sort the BAM file and mark duplicate reads; (5) The

‘HaplotypeCaller’ module of GATK (version: 4.2.6.1) was used to

identify variant sites and perform SNP filtering with the following

conditions: ‘QUAL <30, DP <1,340, DP >10,050, QD <2.0, MQ <35,

FS >70, SOR >3, MQRankSum <-12.5, and ReadPosRankSum

<-4.0’; (6) The SNP clusters with at least three SNPs detected

within a 10-base window were removed; (7) SNPs within five

base pairs of an InDel were filtered out by BCFtools software

(version: 0.1.19-44428cd) (Danecek et al., 2021); and (8) SNPs

with a minor allele frequency (MAF) <5% and missing rate <20%

were discarded by VCFtools (version: 0.1.16) (Danecek et al., 2011).
GWAS and genetic diversity analysis

Genome-wide association analysis was performed by

combining 2,262,367 high-quality SNPs with the phenotype data

of 355 upland cotton accessions collected in three environments for

SV-related traits using linear mixed models in GEMMA (version:

0.98.3) and executed by vcf2gwas software (version: 0.8.7) (Zhou

and Stephens, 2012; Vogt et al., 2022). P <1 × 10-6 was used as the

threshold to detect significant SNP loci. Additionally, the PVE by
TABLE 1 Method of measurement for seed vigor-related traits.

Trait
Trait

abbreviation
Measurement methods for each trait

Germination
potential

GP The number of germinated seeds in the early stage of germination (3 days)/the number of seeds tested

Germination rate GR The number of germinated seeds on the 7th day after planting/the number of tested seeds

Germination index GI
GI = ∑(Gt/Dt), where Gt represents the number of germinated seeds per day and Dt represents the number of days

corresponding to Gt
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each marker was calculated as previously reported (Feng et al.,

2022). The nucleotide diversity (p)a value was calculated using

VCFtools based on the release years (before the 1950s, 1950s–1970s,

1980s–1990s, and 2000s–2020s) and geographical distribution

(early maturity region: NSER, Yellow River region: YRR, Yangtze

River region: YZRR, and Northwest Inland region: NIR) of the 355

accessions. The packages ‘CMplot’ (https://github.com/YinLiLin/

CMplot), ‘LDheatmap’ (Shin et al., 2006), and ‘ggplot2’ (Wickham,

2011) in R software were used to generate Manhattan plots and for

linkage disequilibrium (LD) block analysis and haplotype analysis.
Candidate gene identification and
expression analysis

Based on the ‘TM-1’ reference genome (HAU_v1.1) (Wang

et al., 2019), the genes in the interval located 200 kb upstream and

downstream of the significant SNPs were defined as candidate

genes. The protein sequences of the candidate genes were

obtained from Cottongene (https://www.cottongen.org/). Then,

local BLAST software was used to compare the protein sequence

of the candidate gene with the Arabidopsis protein database (https://

www.arabidopsis.org) to obtain the homologous sequence, and the

criterion was set to less than E-60 (Johnson et al., 2008). The

expression patterns of SV candidate genes in upland cotton were

determined by RNA-seq and quantitative reverse-transcription

PCR (qRT-PCR) analysis. RNA isolation method was performed

as described by Feng et al. (2022). GhUBQ7 was used as an internal

control. Quantitative analysis method was performed using a Roche

real-time qPCR system (Light Cycler 480 II) and SYBR with three

biological repeats. The public RNA-seq data (PRJNA248163)
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including SRR1695160, SRR1695161, and SRR1695162 were

downloaded from NCBI (https://www.ncbi.nlm.nih.gov/

bioproject/). The Illumina Hiseq2000 platform was used to

perform RNA sequencing on ‘TM1’ seeds soaked in water for 0,

5, and 10 h, and the paired-end clean reads length was more than

100 bp. The gene expression values were normalized by the average

expression levels (log2) based on transcripts per million values. The

clustered heat map was drawn by the R package ‘pheatmap’

(Kolde, 2012).
Results

Characterization and distribution of SNPs
in the upland cotton genome

Resequencing of the natural population libraries by the Illumina

HiSeq 4000 platform with 150 bp paired-end reads, as described in

previous reports (Li L. et al., 2021), yielded approximately 65,013

million reads in total for the 355 cotton genotypes. Approximately

88.3% of the total bases were successfully mapped to the cotton

reference genome, and the statistical sequencing depth

corresponded to 11.7-fold in the 355 upland cotton accessions. A

total of 2,262,367 SNPs distributed across the cotton genome with a

MAF >0.05, and missing rate of resequencing data of less than 20%

was used for the GWAS of the 355 cotton germplasm accessions, of

which the At and Dt subgenomes contained 1,404,637 and 857,730

SNPs, resulting in an average SNP density of 993.44 and 1045.91

SNP/Mb, respectively (Table 2; Figure 1). The percentage of the

SNPs in each chromosome varied from 1.4% on chromosome D04

to 11.4% on chromosome A08 (Figure 1). Most of the SNPs were
TABLE 2 Distribution and frequency of single-nucleotide polymorphisms (SNPs) identified using the resequencing approach in upland cotton.

Chromosome
Chromosome
length (Mb)

SNP
number

Density
(SNP/
Mb)

Chromosome
Chromosome
length (Mb)

SNP
number

Density
(SNP/
Mb)

A01 117.76 102,597 871.25 D01 63.21 97,337 1,539.92

A02 108.09 56,850 525.94 D02 69.84 86,010 1,231.56

A03 113.06 73,858 653.27 D03 52.70 37,138 704.70

A04 85.15 48,890 574.16 D04 56.43 33,068 586.00

A05 109.42 93,469 854.23 D05 62.93 49,985 794.25

A06 124.06 216,693 1,746.73 D06 66.87 95,435 1,427.18

A07 97.78 82,817 846.95 D07 59.26 85,111 1,436.29

A08 122.38 259,187 2,117.94 D08 69.04 93,091 1,348.38

A09 82.10 82,034 999.16 D09 52.82 74,192 1,404.64

A10 114.85 102,498 892.44 D10 68.01 59,948 881.51

A11 123.21 85,696 695.52 D11 72.94 44,642 612.02

A12 107.67 65,645 609.67 D12 62.69 55,606 886.94

A13 108.38 134,403 1,240.15 D13 63.34 46,167 728.84

Total 1,413.91 1,404,637 993.44 Total 820.08 857,730 1,045.91
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located in intergenic regions (84.38%), whereas the exonic and

intronic genome regions contained only 0.89% and 3.03% of SNPs,

respectively (Supplementary Table S1). In addition, SNPs in the

coding regions (coding sequences, CDSs) included 33.26%

synonymous mutations and 64.13% nonsynonymous mutations.
PV of SV-related traits

The three SV-related traits (GI, GP, and GR) of natural

population accessions were measured in three environments. The

values followed a normal distribution for the GI and GP but showed

a skewed distribution for GR based on Shapiro–Wilk tests

(Supplementary Table S2). The frequency histograms of SV-

related traits are shown in Figures 2A–I. The lowest average GI
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was 55.23 in the E1 environment, and the highest average GI was

58.92 in the E2 environment, with a coefficient of variation (CV)

ranging from 6.52% to 12.02% (Supplementary Table S2). For GP,

the E1 environment had the lowest average value of 70.92%, while

the E2 environment had the highest average value of 79.61%; the

CV in the E1 environment (11.67%) was higher than that in the E2

environment (9.21%) and the E3 environment (9.37%)

(Supplementary Table S2). For GR, the lowest average value was

87.37% in the E1 environment, and the highest average value was

93.25% in the E2 environment, with a CV ranging from 3.71% to

10.48% (Supplementary Table S2). Two-way analysis of variance

(ANOVA) showed that genotype (G) and the genotype-by-

environment interaction (G × E) had significant effects on the GI,

GP, and GR (P < 0.001) (Supplementary Table S3). Furthermore,

the heritability of these three SV-related traits ranged from 74.23%

(GR) to 81.75% (GP), whereas that of GI was 76.03%

(Supplementary Table S3). These results suggested that SV-related

traits have extensive PV in the GWAS panel, which is suitable for

further GWAS.
GWAS of SV-related Traits in
Upland Cotton

A total of 292 significant SNPs for three SV-related traits were

identified on 11 chromosomes using the linear mixed model

(Figure 3; Supplementary Table S4; Supplementary Figures S1-

S3). Only 11 SNPs were identified in the At subgenome, whereas

281 SNPs were localized to the Dt subgenome. Among them,

chromosome D03 had the highest number of SNPs (281), with a

total of 254, and the range of -log10(p) values was from 6.00 to 8.27.

Furthermore, 26 stable SNPs were identified in a minimum of two

environments (including for the best linear unbiased predictor,
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FIGURE 2

Phenotypic variation analysis of seed vigor (SV)-related traits. (A–I) Distributions of the mean values for the germination index (GI), germination
potential (GP), and germination rate (GR) in three environments, respectively. (J) Correlation analysis of SV-related traits (GI, GP, and GR) in three
environments (**P < 0.01). E1, Huanggang-2021; E2, Sanya-2021; and E3, Sanya-2022.
FIGURE 1

Single-nucleotide polymorphism distributions in the upland cotton
genome. The number of SNPs within a 10-Mb window. A01–A13
and D01–D13 on the Y axis are the numbers of the 26
chromosomes. The X axis represents chromosome length (Mb).
frontiersin.org

https://doi.org/10.3389/fpls.2023.1254365
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Li et al. 10.3389/fpls.2023.1254365
BLUP) or two traits, which were declared as six stable QTLs,

focusing on chromosomes A09, A10, and D03. Notably, a QTL

region (qGR-A09-1) located on chromosome A09 showed a strong

SNP cluster associated with GR, which had a PVE of 6.76–8.56%

and -log10(P) ranging from 6.19 to 7.74. qGP-A10-1 on

chromosome A10 had only one SNP that explained 8.15% of the

observed PVE, with a LOD score of 7.39. Four QTLs on

chromosome D03 (qGR/GI-D03-1, qGI/GR-D03-2, qGI/GP/GR-

D03-3, and qGI/GP/GR-D03-4) were identified in two, three,

three, and four environments, explaining 6.61–7.39%, 6.72–7.79%,

6.65–8.43%, and 6.61–8.90% of the observed PVE, respectively.

Interestingly, a stable QTL (qGI/GP/GR-D03-3) region was revealed

on chromosome D03 from 31.68 to 32.61 Mb and was flanked by

regions associated with the GI, GP, and GR in the E1, E3, and BLUP

environments. Thus, the QTLs qGR-A09-1 and qGI/GP/GR-D03-3

could be treated as major QTLs for further dissection.
Identification of a candidate gene for GR
on chromosome A09

In this study, a novel QTL, qGR-A09-1, exhibited a significant

SNP cluster (rsA09_7745467, rsA09_7791621, rsA09_7878527,

rsA09_7908017, rsA09_7954329, rsA09_7954353, and
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rsA09_7962794) occupying a physical region of 0.2 Mb on

chromosome A09 (Figure 4A). Meanwhile, 22 genes were

annotated in this QTL region based on the G. hirsutum reference

genome (Wang et al., 2019), except for Ghir_A09G002720 and

Ghir_A09G002760, which did not have annotation information

(Supplementary Table S5). We further conducted LD analysis on

the significant SNP rsA09_7962794, and LD blocks were found in

this region (Figure 4A). In this QTL interval, rsA09_7962794 on

chromosome A09 showed a strong association with GR, with 7.95%

of the PVE downstream of Ghir_A09G002730 (Table 3).

rsA09_7962794 had two haplotypes, GG and AA, which resulted

in the accessions carrying the AA genotype having a significantly

higher GR than those carrying the GG haplotype in three

environments (P < 0.01) (Figure 4B). In addition, to gain a

further understanding of the genetic characteristics of

rsA09_7962794 in relation to geographic distribution, the 355

upland cotton accessions were divided into four groups: NIR,

YZRR, YRR, and NSER. Interestingly, YRR and NSER showed an

extraordinarily low frequency of the nonfavorable haplotype (GG),

while the accessions obtained from YZRR and NIR had a relatively

high frequency of the favorable haplotype (AA) (>75%) (Figure 4C).

Furthermore, the genetic diversity of Ghir_A09G002730 decreased

following the breeding period. Cotton accessions released before the

1980s showed greater diversity than accessions bred from the 1980s
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FIGURE 3

Genome-wide association study results for seed vigor-related traits. (A–C) Manhattan plots of GI-BLUP, GP-BLUP, and GR-BLUP for single-
nucleotide polymorphism (SNP) markers, respectively. Significant SNP markers are distinguished by black lines. (D–F) QQ plots for GI-BLUP, GP-
BLUP, and GR-BLUP, respectively.
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to the 2000s, while accessions bred after the 2000s showed the

lowest diversity (Figure 4D). Specifically, Ghir_A09G002730

belongs to the pentatricopeptide repeat (PPR) superfamily protein

family and has higher expression levels during the seed germination

stage from 0 to 10 h than other genes (Figure 4E). The qRT-PCR

analysis also showed that Ghir_A09G002730 had higher expression

levels in the accessions (‘Liaomian27’ and ‘Xinluzhong35’) carrying

the AA allele than in accessions (‘PB12-1-8’ and ‘Xiazao2’) with GG

allele during the seed germination stage (Supplementary Figure S4).
Identification of a candidate gene for GR
on chromosome D03

As mentioned above, another distinct SNP enrichment QTL

region, qGI/GP/GR-D03-3, was detected for the GI, GP, and GR
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across multiple environments, which could explain the relatively

high PVE of 6.65–8.43%, indicating that a major gene in this

genomic interval may improve seed germination (Table 3).

Interestingly, 12 associated SNPs were located within the most

significant haplotype block, which was almost 920 kb long and

contained five haplotypes (Figures 5A, B). A haplotype analysis

revealed that qGI/GP/GR-D03-3 had two major haplotypes

according to SNP location. Comparatively, Hap1 had a higher GP

than Hap1 (Figures 5C, D). In total, 46 candidate genes contained in

the qGI/GP/GR-D03-3 region on chromosome D03 were identified.

Among them, Ghir_D03G009280 was annotated as auxin response

factor 9 (ARF9) in Arabidopsis (Supplementary Table S6), and its

homologs played a crucial role in seed dormancy. The RNA-seq and

qRT-PCR assays also showed that Ghir_D03G009280 had higher

expression levels during the seed germination stage, suggesting a

positive regulatory effect (Figure 5E; Supplementary Figure S5).
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FIGURE 4

Variation analysis of the germination rate (GR)-associated gene Ghir_A09G002730 in the candidate region. (A) Local Manhattan plots for GR-related
genes on chromosome A09 and linkage disequilibrium heat map for the candidate region within 21.9 kb. (B) Box plots for GR of the two haplotypes
mentioned above (**P < 0.01). (C) Differentiation of the genetic diversity distribution of Ghir_A09G002730 in four geographic areas (NIR, Northwest
Inland region; YZRR, Yangtze River region; YRR, Yellow River region; and NSER, Northern Specific Early-Maturity region). (D) Gene structure diversity
of Ghir_A09G002730 across three breeding stages. (E) Heat map of candidate gene expression patterns in the seed germination stage (0, 5, and
10 h) on chromosome A09.
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TABLE 3 Significant quantitative trait locus (QTLs) associated with seed vigor-related traits.

QTLs SNP
Chromosome

Position
(bp) Trait Environment

Allele
-log10
(P)

Phenotypic variation
explained (%)

qGR-A09-1

rsA09_7745467

A09

7,745,467 GR BLUP; E1 T/C 6.19 6.76

rsA09_7791621 7,791,621 GR BLUP; E1 A/G 6.25 6.82

rsA09_7878527 7,878,527 GR BLUP; E1; E2 T/C 7.74 8.56

rsA09_7908017 7,908,017 GR BLUP; E1 A/G 6.20 6.76

rsA09_7954329 7,954,329 GR BLUP; E1; E2 G/C 6.88 7.55

rsA09_7954353 7,954,353 GR BLUP; E1; E2 A/G 6.88 7.55

rsA09_7962794 7,962,794 GR BLUP; E1; E2 G/A 7.22 7.95

qGP-A10-1 rsA10_112752002 A10 112,752,002 GP BLUP; E2; E3 C/T 7.39 8.15

qGR/GI-
D03-1

rsD03_15149331 D03 15,149,331
GI E1 C/T 6.74 7.39

GR E1; E2 C/T 6.07 6.61

rsD03_15180622 D03 15,180,622
GI E1 T/C 6.08 6.62

GR E2 T/C 6.24 6.81

qGI/GR-
D03-2

rsD03_16442805 D03 16,442,805 GR BLUP; E2 T/A 6.25 6.81

rsD03_17044820 D03 17,044,820
GI E1 A/G 6.16 6.72

GR E2 A/G 6.40 6.99

rsD03_17639861 D03 17,639,861
GI E1 A/T 7.08 7.79

GR E2 A/T 6.49 7.10

qGI/GP/GR-
D03-3

rsD03_31686969 D03 31,686,969 GP BLUP; E1 A/C 6.61 7.24

rsD03_31912853 D03 31,912,853
GI BLUP; E1 C/T 7.64 8.43

GP BLUP; E1 C/T 7.40 8.16

rsD03_32121851 _D03 32,121,851 GP BLUP; E1 G/A 6.85 7.52

rsD03_32123311 D03 32,123,311
GP E1 A/G 7.12 7.84

GR E3 A/G 6.39 6.98

rsD03_32217200 D03 32,217,200 GP BLUP; E1 A/G 7.03 7.72

rsD03_32235852 D03 32,235,852
GP E1 T/C 6.83 7.49

GR E3 T/C 6.10 6.65

rsD03_32407516 D03 32,407,516 GP BLUP; E1 A/G 6.64 7.28

rsD03_32411896 D03 32,411,896 GP BLUP; E1 T/C 7.04 7.74

rsD03_32414028 D03 32,414,028 GP BLUP; E1 G/A 6.67 7.31

rsD03_32429655 D03 32,429,655 GP BLUP; E1 G/A 7.31 8.05

rsD03_32518414 D03 32,518,414 GP BLUP; E1 A/G 7.12 7.83

rsD03_32611645 D03 32,611,645 GP BLUP; E1 A/G 6.86 7.53

qGI/GP/GR-
D03-4

rsD03_36696073 D03 36,696,073

GI E1 A/C 6.07 6.61

GP E1 A/C 8.04 8.90

GR BLUP; E2; E3 A/C 6.53 7.15
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Discussion

The importance of seed vigor
for field production

SV is an indispensable indicator of seed quality, which directly

affects the rapid and uniform germination of seeds and the robust

growth of seedlings and affects the tolerance of plants to abiotic

stress in the early stage of seedling growth (Qun et al., 2007; Fujino

et al., 2008). In recent years, mechanical DS of cotton has been

widely used due to its cost-saving and labor-saving advantages,

leading to rapid and uniform seed germination becoming necessary

conditions for high yield and mechanization in the cotton industry.

However, seeds with low SV make it difficult for mechanical DS to

achieve full seeding, which leads to problems such as subsequent

filling of the gaps with seedlings and final singling of seedlings (Xie

et al., 2014)—for example, Xinjiang Province is the major cotton-

growing area in China and experiences serious saline–alkali stress
Frontiers in Plant Science 09105
(He et al., 2023). A high SV of cotton varieties will improve seed

germination in the field and thus increase the yield. In addition,

cotton breeding without plastic film in Xinjiang Province to

eliminate “white pollution” has become popular. The germination

rate and seedling emergence rate of seeds have higher requirements

for cotton without plastic film (CWPF). CWPF needs to quickly

establish robust seedlings after seed germination to resist the

invasion of diseases, insect pests, adverse environments, and other

factors in the field. Importantly, SV is the result of genetic and

environmental factors and is thus often difficult to effectively select

in conventional breeding (Dai et al., 2022). This study utilized high-

throughput sequencing to generate widely distributed SNP markers

that cover the whole genome (Figure 1), and over 200,000,000 high-

quality SNPs were detected in a diverse set of 355 cotton accessions.

Combining phenotype data from multiple environments for GWAS

analysis can be used to effectively identify genetic loci and candidate

genes that improve SV in upland cotton, providing an effective way

to improve cotton yield in Xinjiang when using the MAS method.
B

C

D

E

A

FIGURE 5

Variation analysis of seed vigor (SV)-related traits associated with qGI/GP/GR-D03-3 in the candidate region. (A) Local Manhattan plots for SV-
related genes on chromosome D03 from 30 to 33 Mb. (B) Top two haplotypes of qGI/GP/GR-D03-3 in 355 upland cotton accessions. (C)
Comparison of germination potential between accessions containing Hap1, Hap2, Hap3, Hap4, and Hap5. Letters on the violin plot indicate
significant differences according to one-way ANOVA (LSD test; P < 0.05). (D) Comparison of seed germination status for 3 days between Hap1 and
Hap2. (E) Heat map of candidate gene expression patterns in the seed germination stage (0, 5, and 10 h) on chromosome D03.
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Comprehensive analysis of SV-related traits
at multiple environments

To ensure the accuracy of the GWAS results, phenotypic

identification in multiple environments was conducted with at

least three replicates per environment. The three SV-related traits

(GI, GP, and GR) were measured for seeds collected from three

locations: E1, E2, and E3. Among them, GR and GP did not show an

absolute normal distribution, which was also found in previous

studies (Dai et al., 2022; Si et al., 2022), indicating a complex genetic

basis for these SV-related traits. Through phenotypic correlation

analysis, it was found that there were significant positive

correlations between the three traits. The GI showed a strong

correlation with GR and GP (0.71 and 0.76, respectively)

(Figure 2J). The highest GI was accompanied by the highest GP

and GR, which is consistent with previous findings (Si et al., 2022).

Furthermore, according to the measurement results for each trait,

the CV of SV-related traits in upland cotton is affected by the

environment (Supplementary Table S2), resulting in different

variations in the seeds of each accession harvested in different

planting locations and years—for example, the CV of the GI and GR

in E1 showed a larger range of variation than that in E2 and E3.

Previous studies have shown that the environment in the planting

area has a great influence on the growth and development of seeds

(Fenner, 1992). It is speculated that the E2 and E3 (Sanya City,

Hainan Province) environments with tropical climates are more

suitable environments for seed growth, and the performance of the

seeds may be relatively stable. In contrast, the E1 environment

(Huanggang City, Hubei Province) has high precipitation and

temperature during the seed maturation period, which can affect

the success of pollination.
Candidate genes related to SV

In the past two decades, GWAS has become a powerful and

widely used tool for analyzing the genetic mechanisms underlying

complex quantitative traits in crops (Tibbs Cortes et al., 2021). At

present, most research on SV mainly focuses on the mechanism

under stress in upland cotton (Sun et al., 2018; Yuan et al., 2019;

Zheng et al., 2021), while genetic analysis of SV-related traits

associated with normal seed germination is less common (Si et al.,

2022). In this study, a GWAS panel was used to measure three SV-

related traits of seeds harvested in three environments. In total, six

significant QTLs were stably identified on three different cotton

chromosomes (Table 3), including 26 SNPs. Numerous studies

have reported that several pathways are involved in regulating SV

in plants, such as phytohormone signaling (GA, ABA, and auxin),

amino acid metabolism, and the reactive oxygen pathway, which play

a crucial role in the seed germination process and have a significant

effect on the molecular mechanisms related to SV (Reed et al., 2022).

It has been reported that high concentrations of ABA promote

dormancy and inhibit seed germination, while high concentrations

of GA promote seed germination by reversing dormancy, leading to

an endogenous balance of the ABA/GA ratio but not the absolute

hormone contents (Finch-Savage and Leubner-Metzger, 2006; Chen
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H. et al., 2020). Ghir_A09G002650 was annotated on chromosome

A09, belonging to the GA-regulated family of proteins and encoding

a protein containing the GASA domain, which is most closely related

to the known homologGASA14 inArabidopsis. GASA14 regulates the

increase in plant growth through GA induction and DELLA-

dependent signal transduction, which could increase resistance to

abiotic stress by reducing the accumulation of ROS (Sun et al., 2013).

Thus, it is speculated that Ghir_A09G002650 has the potential to

improve the SV of cotton under stress. MYB-type and bHLH-type

transcription factors have been reported to be involved in the

regulation of seed germination signaling in plants (Penfield et al.,

2005; Reyes and Chua, 2007; Kim et al., 2015; Wang X. et al., 2022; Xu

et al., 2022). Specifically, Ghir_D03G006550 is in the qGI/GR-D03-2

region and is homologous to MYB52. It has been previously shown

that its shared common targets with ERF4 regulate the development

of the seed coat in Arabidopsis (Ding et al., 2021). Ghir_D03G010510

encoded bHLH-type family proteins in the QTL region of qGI/GP/

GR-D03-4, sharing 35.52% sequence identity with the PIF8 protein in

Arabidopsis, which binds to promoter regions of AtPIF6. The

expression level of AtPIF6 during seed development plays a crucial

role in establishing primary seed dormancy levels (Peters et al., 2010).

Notably, Ghir_A09G002730 and Ghir_D03G009280 were

detected in two distinct enriched regions located on chromosome

A09 (qGR-A09-1) and chromosome D03 (qGI/GP/GR-D03-3)

(Figure 3). Interestingly, Ghir_A09G002730, within the strong-LD

region at 21.9 kb upstream of rsA09_7962794 and highly expressed

during the development of seed germination (Figures 4A, E),

encodes a PPR superfamily protein in Arabidopsis. SOAR1

belongs to the PPR protein family and acts as a core negative

regulator downstream of ABAR and upstream of ABI5 ,

participating in ABA signaling regulation of seed germination and

seedling growth processes (Ma et al., 2020). We also discovered that

cotton accessions carrying rsA09_7962794-A with a higher GR had

a much higher allele frequency for Ghir_A09G002730 in YZRR and

NIR than in YRR and NSER (Figures 4B, C). It is possible that the

planting mode of seedling raising and transplanting in YZRR and

mechanized planting in the NIR all employed single-seed sowing,

which increased the selection frequency of rsA09_7962794-A. In

addition, we compared the genetic diversity of the region on

chromosome A09 containing Ghir_A09G002730 in different

breeding periods, and it was found that cultivars bred after the

2000s had lower genetic diversity than cultivars from other stages,

implying that with the continuous increase in cotton SV during the

breeding process, this gene was associated with artificial selection

(Figure 4D). Therefore, it is reasonable to postulate that

Ghir_A09G002730 is a new candidate gene influencing SV in

cotton. Ghir_D03G009280 caught our attention based on the gene

annotation of cotton. This gene encodes an auxin response factor.

Recent studies have shown that ARF16 interacts with ABI5 and

positively regulates the ABA response during seed germination

(Mei et al., 2023). Furthermore, Ghir D03G009280, tightly linked

with haplotype Hap1, showed a significant association with GP

(Figure 5C), and materials carrying the Hap1 haplotype had longer

roots (Figure 5D). The RNA-seq analysis showed a high expression

level of this gene during seed germination (Figure 5E). From the

above-mentioned results, we inferred that Ghir_A09G002730 and
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Ghir_D03G009280 were two major candidate genes that may play

an important role in cotton SV.
Conclusions

In the present study, there was a total of 121 predicted

candidate genes within six stable QTL regions. Furthermore,

Ghir_A09G002730 and Ghir_D03G009280 caught our attention

based on gene expression (RNA-seq and qRT-PCR), gene

annotation, and haplotype analysis, which may play a key role

in regulating the germination of cotton seeds. These results will

enhance our understanding of the molecular–genetic regulation of

SV in cotton.
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Biotic stress is one of the major threats to stable rice production. Climate change

affects the shifting of pest outbreaks in time and space. Genetic improvement of

biotic stress resistance in rice is a cost-effective and environment-friendly way to

control diseases and pests compared to other methods such as chemical

spraying. Fast deployment of the available and suitable genes/alleles in local

elite varieties through marker-assisted selection (MAS) is crucial for stable high-

yield rice production. In this review, we focused on consolidating all the available

cloned genes/alleles conferring resistance against rice pathogens (virus, bacteria,

and fungus) and insect pests, the corresponding donor materials, and the DNA

markers linked to the identified genes. To date, 48 genes (independent loci) have

been cloned for only major biotic stresses: seven genes for brown planthopper

(BPH), 23 for blast, 13 for bacterial blight, and five for viruses. Physical locations of

the 48 genes were graphically mapped on the 12 rice chromosomes so that

breeders can easily find the locations of the target genes and distances among all

the biotic stress resistance genes and any other target trait genes. For efficient

use of the cloned genes, we collected all the publically available DNA markers

(~500 markers) linked to the identified genes. In case of no available cloned

genes yet for the other biotic stresses, we provided brief information such as

donor germplasm, quantitative trait loci (QTLs), and the related papers. All the

information described in this review can contribute to the fast genetic

improvement of biotic stress resistance in rice for stable high-yield

rice production.

KEYWORDS

biotic stress, marker-assisted selection, brown planthopper, blast, bacterial blight,
marker, rice
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1 Introduction

Rice (Oryza sativa L.) is a staple food of more than 50% of the

world’s population; notably, it is the most important crop in Asian

countries. Recently, rice consumption has been rapidly increasing in

Africa as well (Seck et al., 2012). Stable high-yield production of rice

is highly associated with global food security (Bandumula, 2018).

However, rice plants are inevitably encountering pressing

challenges from different types of biotic/abiotic stresses that cause

significant rice grain yield reduction (Khush, 2005; Dixit et al.,

2020). Biotic stresses caused by pests and diseases pose a significant

risk to global rice yield production by 52%, of which approximately

30% of these damages are due to pathogen infection (Savary et al.,

2019; Jamaloddin et al., 2021). In addition, global climate change is

a major threat to global food security (Schneider and Asch, 2020). A

changing climate will influence the distribution and possibly the

impact of rice diseases (Bebber, 2015; Chaloner et al., 2021) as well

as host and disease interactions, mechanism, reproduction, and

survival of pathogens (Velásquez et al., 2018).

Rice plants are attacked by diverse biotic agents, including

insect pests, fungal and bacterial pathogens, and viruses. The

prevalence of species of pathogens and biotypes/pathotypes is

variable based on the environmental condition and geographical

locations. Over the past decades, outbreaks due to pests and diseases

have caused serious economic damage to rice-growing countries

from time to time, locally and globally. For instance, some

devastating damage from brown planthopper (BPH) infestation

has been reported in different years in many rice-growing countries,

including tropical and temperate Asia (Dyck and Thomas, 1979;

Jena and Kim, 2010). Rice blast disease causes a loss of rice yield

sufficient to feed 60 million people worldwide (Fahad et al., 2019;

Singh et al., 2020). As a viral disease, a series of large-scale outbreaks

of tungro were recorded in many tropical Asian countries, and it

causes yield losses of 5% to 10% annually (Dai and Beachy, 2009). In

Africa, rice yellow mottle virus (RYMV) is one of the most

problematic biotic stresses, it reduces grain yield by 10%–100%,

and severe attacks can lead to plant death (Kouassi et al., 2005). Still,

today, severe biotic stress damage is reported in local or national

media, implying that biotic stress damage affects local rice farmers,

particularly small and marginal farmers.

There are several practical methods used to control pathogens,

such as chemical spraying, crop rotation, field management, and

host resistance. Among these, genetic improvement of host

resistance by introgression of resistance genes through breeding

and cultivation of resistant varieties is the most cost-effective and

environmental-friendly strategy for controlling biotic agents. Thus,

much effort has been exerted by scientists and breeders in isolating

germplasms possessing resistance to a variety of biotic stresses from

cultivars, landraces, and wild rice species in the genus Oryza.

Through genetic analysis, they have also identified the genetic

factors (quantitative trait loci (QTLs)/genes) that provide

resistance from the isolated germplasm.

Once the genetic factors conferring biotic stress resistance are

identified, they can be easily and effectively transferred to the target

background varieties by marker-assisted selection (MAS) compared
Frontiers in Plant Science 02111
to the conventional phenotype-based selection. DNA markers that

can discriminate the alleles (sequences) between the donor and elite

susceptible variety play important roles in efficiently deploying the

identified genetic factors. Different types of molecular markers have

been developed based on the types of sequence variations (short or

long InDels and single-nucleotide polymorphisms (SNPs)) and

successfully applied in the genetics and breeding of rice. Among

them, the PCR-gel-based markers such as simple sequence repeat

(SSR) markers, also called rice microsatellite (RM) markers, InDel

markers, dominant PCR markers, tetra-primer method markers,

and cleaved amplified polymorphic sequence (CAPS: PCR-

restriction enzyme application-gel) markers are the most

common in rice MAS breeding due to simplicity, in-house

accessibility, and easiness to breeders (McCouch et al., 2002;

Chen H, et al., 2011; Wang et al., 2012; Kim et al., 2016; Nadeem

et al., 2018).

To improve the genetic potential of biotic stress resistance

through MAS, two key factors are essential: genetic factors (QTLs

and genes) and molecular tools (DNA markers). Compared to the

QTL level of genetic factors, the cloned genes/alleles have some

advantages: i) the genetic effect will be quite reliable because it was

functionally validated by using transgenic approaches such as

complementation test, RNAi, and CRISPR tools; ii) the exact

physical location of the gene is identified, and thus, it enables a

precision marker-assisted introgression of the target gene without

linkage drag caused by the neighboring genes. Many biotic stress

resistance genes were cloned from cultivars, landraces, and wild rice

germplasm possessing “natural variations”, but some of the genes

were identified by transgenic approaches such as overexpression,

RNAi, and CRISPR and also by using rice T-DNA tagging lines.

Several review papers already covered recent advances in

understanding the molecular mechanism of biotic stress

resistances for BPH (Yan et al., 2023), blast (Liu W, et al., 2013;

Li et al., 2019), and bacterial blight (Jiang et al., 2020; Pradhan et al.,

2020) and also broad-spectrum disease resistance in rice (Ke et al.,

2017; Liu et al., 2021). In this review, we focused on consolidating all

the available cloned genes/alleles with corresponding donors

possessing “natural variations” and all the related DNA markers

for the breeding aspects. In addition, we briefly described some

review papers and recent publications about the QTLs or

germplasm if the cloned genes are not available for specific

pathogens. We aimed to provide breeding-related information so

that breeders can easily select the available resistant genes/alleles

and the associated markers for the fast deployment of the proper

genes/alleles in their breeding programs to deal with stable high-

yield rice production and climate change.
2 Precision marker-assisted breeding
by using the cloned genes/alleles

Deployment of QTLs and genes through marker-assisted

breeding has been successfully improving the genetic potential of

target traits in many crops. However, occasional acquisition of

biotic stress resistance by the breeding process used to be associated
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with yield penalties in crops (Brown, 2002) and also grain quality in

rice (Fukuoka et al., 2009) probably due to the presence of

unfavorable genes located in the vicinity of the target biotic stress

resistance locus (also called linkage drag). Thus, precise

introgression of biotic stress resistance genes through marker-

assisted breeding of the cloned genes can reduce unexpected

penalties in yield, grain qualities, and also other agronomic traits

in the final breeding products. Recent advances in DNA sequencing,

genotyping technologies, genome-wide association study (GWAS),

functional genomics, and gene validation by using transgenic

approaches have been accelerating the identification of the causal

genes governing the target traits. Notably, many biotic stress

resistance genes from the previously identified major QTLs have

been gradually cloned. The cloned genes/alleles possessing natural

variations are valuable for the genetic improvement of biotic stress

resistance in rice. Furthermore, unlike QTL level genetic factors

(more than several hundred kb), breeders can precisely introgress

the gene (100 kb) using marker-based recombinant selection to

avoid unwanted phenotypes caused by linkage drag in the final

breeding lines because the exact physical location of the causal gene

is clearly known. To date, 48 genes have been cloned for the major

rice biotic stress, including bacterial blight (BB), blast, BPH, and rice

viruses. The cloned gene names, gene IDs of rice databases (RAP-

DB andMSU), encoding proteins, the physical location of the genes,

donor germplasm, and its original research papers are summarized

in this review. In some cases, the previously reported major QTLs

from different sources were identified as the same gene (same locus)

with different alleles (different sequences). For example,

BPH1=BPH10=BPH18=BPH21/BPH2=BPH26/BHP7/BPH9 on the

long arm of Chr 12 (“=“ and “/” means identical and different

alleles, respectively) and Pi9/Pi2/Piz-t/Pi50/PigmR on the short arm

of Chr 6 are the different resistant alleles but the same locus. Due to

the same physical locations, those alleles cannot be pyramided, and

thus, the potential best allele should be selected and used in the

breeding program. In this review, we focused on the cloned biotic

stress resistance genes with the gene-linked markers. Moreover, we

briefly mentioned some genetic resources such as QTLs or donor

materials if there are no cloned genes yet for some biotic stresses.
3 Insect pests and available
genetic resources

Globally, more than 100 species of insects attack rice plants, and

approximately 20 of them can cause economic damage (Pathak and

Khan, 1994). Major insect pests of rice are stem borers, leafhoppers

and planthoppers, gall midges, and grain-sucking bugs. Efforts to

isolate the resistant germplasm and genetic factors against insect

pests identified a number of QTLs for the major insect pests. At the

gene level, a handful of genes were cloned for only BPH resistance,

but to date, no genes have been cloned yet for other insect pest

resistance. Here, we described BPH resistance genes cloned and

some genetic resources (QTLs and donor sources) for other

insect pests.
Frontiers in Plant Science 03112
3.1 Brown planthopper (Nilaparvata lugens)

Among the major insect pests, BPH is one of the most

destructive pests, especially in Asian countries including both

tropical and temperate zones, causing severe economic loss to the

rice crop through directly sucking phloem sap, often causing

“hopper burn”, and it serves as a vector for transmission of rice

ragged stunt virus (RRSV) and rice grassy stunt virus (RGSV)

(Cabauatan et al., 2009). To date, more than 45 genetic loci

providing BPH resistance have been identified from diverse plant

materials, including cultivars, landraces, and wild rice species.

Among them, seven genes (seven independent loci) comprising

10 different alleles for BPH resistance were cloned, that is, BPH14,

BPH30 , BPH17 , BPH6 , BPH29 , BPH32=BPH3 , and

BPH1=BPH10=BPH18=BPH21/BPH2=BPH26/BHP7/BPH9. The

cloned genes with physical locations, RAPDB/MSU gene ID,

protein encoded, donor sources, and corresponding references are

summarized in Table 1. BPH14 gene encoding nucleotide-binding

site (NBS) and leucine-rich repeats (LRRs), “NBS-LRR” or “NLR” in

short, was first cloned from the previously mapped Qbp1 on Chr 3

of the Oryza officinalis introgression by genetic mapping and

following transgenic complementation test (Du et al., 2009). With

similar approaches, the BPH17 QTL on Chr 4S of the Sri Lankan

rice variety, Rathu Heenati (Sun et al., 2005), revealed that three

repeats of lectin receptor kinase gene (OsLecRK1-OsLecRK3) are

responsible for BPH resistance (Liu et al., 2015). However, Liu et al.

(2015) named the gene identified from the BPH17 QTL as BPH3

gene, and thus, it might cause confusion with the original BPH3

QTL mapped on Chr 6S of donors (PTB33 and Rathu Heenati

varieties) (Jairin et al., 2007). To avoid confusion, we followed the

original BPH17 QTL name as BPH17 gene name in this review.

Afterward, Ren et al. (2016) cloned the causal gene of BPH

resistance from the previously fine-mapped BPH3 locus of PTB33

(Jairin et al., 2007) using bioinformatics and transgenic validation

experiments. The cloned gene encodes an unknown short

consensus repeat (SCR) domain-containing protein and the BPH3

QTL was renamed as BPH32 (BPH32=BPH3) (Ren et al., 2016).

Some of the BPH-resistant loci from different sources overlapped at

the same locus, resulting in four clusters on chromosomes 4S, 4L,

6S, and 12L (Fujita et al., 2013; Du et al., 2020). From the largest

BPH QTL cluster on Chr 12L containing BPH1, BPH2, BPH7,

BPH9, BPH10, BPH18, BPH21, and BPH26 (Fujita et al., 2013),

BPH26 encoding NBS-LRR protein was first cloned from the BPH26

QTL derived from ADR52 (Tamura et al., 2014). Then, BPH18 from

the BPH18 QTL originated from the Oryza australiensis

introgression line (IL) (IR65482-7-216-1-2) was cloned and

identified as the same gene with BPH26 because physically two

genes are located at the same locus on Chr 12L. However, the

sequences, including promoter and protein-coding sequences

(CDS) and also BPH reactions, were different between BPH26

and BPH18 (Ji et al., 2016). BPH9 derived from Pokkali was also

identified as the same gene as BPH18/BPH26, but it showed

different gene sequences and also different BPH reactions (Zhao

et al., 2016), suggesting that all three are the same gene (locus) but
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functionally different alleles. Based on the sequence analysis of the

Chr 12L BPH cluster, Zhao et al. (2016) classified the eight genes

into four a l le lo types , BPH1=BPH10=BPH18=BPH21 /

BPH2=BPH26/BHP7/BPH9. However, the BPH near-isogenic

lines (NILs) with the same allele types (BPH10, BPH18, and

BPH21) showed slightly different BPH resistance among the same

allele types (Jena et al., 2017). Although four different functional

alleles were identified on Chr 12L, they cannot be pyramided by

MAS breeding due to their same locations. Guo et al. (2018) cloned

the BPH6 encoding NBS-LRR protein from the previously found

BPH6 QTL originating from the Swarnalata variety, which exhibits

resistance to biotype 4, the most devastating BPH biotype in South

Asia, of Bangladesh BPH populations (Kabish and Khush, 1988).
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The recessive gene BPH29 located at Chr 6 was found to encode a

B3-domain containing protein from the RBPH54 IL possessing

BPH resistance derived from the wild rice species Oryza rufipogon

(Wang Y, et al., 2015). BPH30 gene located on Chr 4 of the indica

variety AC-1613 was identified as a gene that encodes a novel

protein with two leucine-rich domains (Shi et al., 2021). In addition

to the cloned BPH genes, a number of QTLs and fine-mapped QTLs

are also available (Fujita et al., 2013; Naik et al., 2018; Du et al.,

2020). Moreover, using 10 different BPH genes/QTLs, 25 NILs

possessing single or two to three genes were developed in an indica

variety background, IR24 (Jena et al., 2017). The set of BPH NILs

will be useful for screening suitable BPH genes/alleles against

regional BPH biotypes and for genetic improvement of BPH
TABLE 1 The cloned BPH resistance genes.

Gene Chr
Location
(bp)(a)

MSU_ID RAPDB_ID
Encoding
protein

Resistant/
donor
allele

Inheritance
pattern of
R- allele

Reference

BPH14 3 35,693,286 Os03g63150 Os03g0848700 NBS-LRR
Oryza

officinalis IL
Dominant Du et al., 2009

BPH30 4 929,966 Os04g02520 –

Protein with
two leucine-
rich domains

(LRDs)

AC-1613 Dominant Shi et al., 2021

BPH17(b) 4 6,940,275
Os04g12540–
Os04g12560–
Os04g12580

Os04g0201900–
Os04g0202300–
Os04g0202500

A cluster of
three genes
encoding
plasma

membrane-
localized lectin

receptor
kinases

(OsLecRK1-
OsLecRK3)

Rathu
Heenati

Dominant Liu et al., 2015

BPH6 4 21,396,879 Os04g35210 Os04g0431700 Atypical LRR Swarnalata Dominant
Guo et al.,

2018

BPH29 6 484,346 Os06g01860 Os06g0107800
B3 domain-
containing
protein

RBPH54
(Oryza

rufipogon IL)
Recessive

Wang Y, et al.,
2015

BPH32
=BPH3©

6 1,223,069 Os06g03240 Os06g0123200

Unknown
short

consensus
repeat (SCR)
domain-
containing
protein

Ptb33 Dominant
Ren et al.,

2016

BPH1=BPH10=BPH18=BPH21/
BPH2=BPH26/BHP7/BPH9(d)

12 22,886,341 Os12g37290 Os12g0559400 NBS-LRR

IR65482-7-
216-1-2
(BPH18),
ADR52

(BPH26), T12
(BPH7),
Pokkali
(BPH9)

Dominant

Tamura et al.,
2014 (BPH26),
Ji et al., 2016
(BPH18),
Zhao et al.,
2016 (BPH9
and other
alleles)
“=“ means the identical allele, and “/” means the different alleles at the same locus.
(a)Location of the translation start codon (ATG) of the cloned genes on the rice reference genome IRGSP1.0 (https://rapdb.dna.affrc.go.jp/).
(b)BPH17 was identified from the mapping populations derived from the cross Rathu Heenati (R) and 02428 variety (S) by Sun et al. (2005). In a subsequent study, Liu et al. (2015) cloned the BPH
resistance gene from the same materials, but the gene was probably mistakenly named BPH3 in the publication. Hence, to avoid confusion with previously reported BPH3 QTL (Jairin et al.,
2007), the original name QTL name (BPH17) was given in this review.
(c)BPH32 was identified by using bioinformatics and transgenic gene validation experiments by Ren et al. (2016) from the previously fine-mapped BPH3 locus (Jairin et al., 2007).
(d)Eight BPH genes clustered on Chr 12L were identified as multi-alleles with four different sequences (four allele types) at the same locus (Zhao et al., 2016). However, the NILs with the same
allele types (BPH10, BPH18, and BPH21) showed a bit different BPH resistance among the same allele types (Jena et al., 2017).
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resistance in the local elite variety backgrounds. To achieve durable

and broad-spectrum resistance, QTL/gene pyramiding approaches

are widely used in breeding programs. Overall, the BPH-NILs with

two to three genes exhibited more strong and broad-spectrum

resistance than the NILs harboring a single BPH gene (Jena et al.,

2017). In addition, pyramiding effects of two to three BPH gene

combinations such as BPH14 + BPH15, BPH6 + BPH12, and BPH13

+ BPH14 + BPH15 were observed in different backgrounds or

breeding programs (Hu et al., 2012; Qiu et al., 2012; Hu et al., 2016).
3.2 Other planthoppers

A handful of genetic factors governing resistance against

planthoppers, including small brown planthopper (SBPH:

Laodelphax striatellus), white-backed planthopper (WBPH:

Sogatella furcifera), green leafhopper (GLH: Nephotettix

virescens), and green rice leafhopper (GRH: Nephotettix

cincticeps), have been identified from diverse germplasms and are

well summarized in a few review papers (Fujita et al., 2013; Du et al.,

2020). In this review, we only included recent progress on genetic

factors to other planthoppers. A stable locus showing WBPH

resistance in 2 years was found in the RM280-RM6909 region on

Chr 4L from the Cheongcheong variety (Kim et al., 2021). The high

resistance locus designated as Bph38 to both BPH and WBPH was

identified from O. rufipogon and was fine-mapped to a 79-kb region

on Chr 4 (Yang et al., 2020). Phi et al. (2019) identified a major QTL

(qGRH4.2=GRH6) conferring GRH resistance from a wild species

(Oryza nivara_IRGC105715) and fine-mapped the locus to ~31-kb

region on Chr 4. Recent studies showed a possibility that increasing

resistance to multiple insects could be achieved by the pyramiding

of insect resistance loci. For example, both GLH and GRH

resistance was obtained by pyramiding of two GRH resistance

genes, GRH2 and GRH4 (Horgan et al., 2018); enhanced

resistance against multiple herbivore species, including zig-zag

leafhopper (Recilia dorsalis), BPH, and WBPH, was shown by

pyramiding of two to three GRH resistance loci (GRH2 and

GRH4-6) (Horgan et al., 2019).
3.3 Rice gall midge (Orseolia oryzae)

To date, 12 potential genetic factors (Gm1–Gm12) conferring

resistance against Asian rice gall midges (O. oryzae) have been

reported. Among them, 10, except for Gm9 and Gm10, are mapped

on rice chromosomes (Bentur et al., 2016; Leelagud et al., 2020).

Although noGm genes have been fully validated by using transgenic

approaches, four QTLs were fine-mapped with potential candidate

genes: gm3 (donor: RP2068-18-3-5 breeding line from

Velluthacheera) on 560-kb region of Chr4L (Sama et al., 2014),

Gm4 (donor: Abhaya) on 300-kb region of Chr 8 (Divya et al.,

2015),Gm8 (donor: Aganni) on 430-kb region of Chr 8 (Divya et al.,

2018), and gm12 (donor: MN62M) on 345-kb region of Chr 2

(Leelagud et al., 2020). These four QTLs might be useful in a

breeding program. However, the donor sources showing resistance

against Indian gall midge biotypes, including Velluthacheera (gm3),
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Abhaya (Gm4), and Aganni (Gm8), were susceptible to all eight

Thailand gall midge populations (Leelagud et al., 2020), suggesting

that the suitable genetic factors should be selected based on the

potential biotypes of insects.
3.4 Other insect pests

Five QTLs associated with leaf-folder (Cnaphalocrocis

medinalis) resistance, with 8.0%–21.1% phenotypic variance

explained (PVE), were found from the double haploid population

(CJ06 × TN1), and pyramiding of QTLs affected resistance to leaf-

folder (Rao et al., 2010). However, reliable genetic factors

controlling other insect resistance, including stem borer and

grain-sucking bugs, have not been reported yet.
4 Fungal diseases and available
genetic resources

Several major fungal pathogens threaten stable high-yield rice

production. The major fungal diseases of rice are “bakanae disease”

(pathogen: Gibberella fujikuroi, syn. Fusarium fujikuroi), “brown

spot” (pathogen: Cochliobolus miyabeanus, syn. Bipolaris oryzae,

Helminthosporium oryzae), “narrow brown leaf spot” also called

“narrow brown spot” (pathogen: Sphaerulina oryzina, syn.

Cercospora janseana, Cercospora oryzae), “false smut” (pathogen:

Ustilaginoidea virens), “leaf scald” (pathogen: Microdochium

oryzae), “sheath blight” (pathogen: Rhizoctonia solani, syn.

Thanatephorus cucumeris), “aggregate sheath spot” (pathogen:

Rhizoctonia oryzae-sativae), “sheath rot” (pathogen: Sarocladium

oryzae), “stem rot” (pathogen: Sclerotium oryzae, syn. Nakataea

oryzae), and “blast” (pathogen: Magnaporthe oryzae, syn.

Pyricularia oryzae). Among fungal diseases, blast has been

intensively studied compared to other fungal diseases. As a result,

a handful of blast-resistance genes have been cloned, but no cloned

genes are available yet for other fungal diseases.
4.1 Blast (pathogen: M. oryzae,
syn. P. oryzae)

Among the fungal diseases, rice blast is the most devastating

fungal disease of rice worldwide, causing a serious threat to the

world’s food security. The blast pathogen can affect all above-

ground parts of a rice plant, including the leaf, collar, node, neck,

parts of the panicle, and sometimes the leaf sheath (IRRI Rice

Knowledge Bank). Blast disease occurs in 85 countries, and it causes

a 10%–35% loss of harvest (Fisher et al., 2012), and the amount of

rice damaged by blast annually is sufficient to feed 60 million people

worldwide (Pennisi, 2010; Fahad et al., 2019; Singh et al., 2020).

There are over 100 blast resistance QTLs/loci identified from

diverse germplasm including cultivars, landraces, and wild

relatives of rice (Ashkani et al., 2016; Li et al., 2019). The Pib

(donor: indica cultivar Engkatek) and Pita (donor: indica cultivar

Tadukan) were the first cloned blast resistance genes, and both
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encode NBS-LRR domains predicted to be cytoplasmic proteins

(Wang et al., 1999; Bryan et al., 2000). To date, 23 genes (23

independent loci) consisting of ~35 different alleles have been

cloned, including three panicle blast resistance genes Pb1–Pb3

(Table 2). The cloned genes were distributed across the rice

chromosomes except for chromosomes 5, 7, and 10.

Chromosomes 6 and 11 harbored four and six blast genes,

respectively (Pi9 alleles, Pid4, Pid3 alleles, and Pid2 on Chr 6; Pia

alleles, Pi54rh alleles, Pik alleles, Pb1, Pb2, and Pb3 on Chr 11).

Several blast-resistant QTLs were identified at the same location on

the short arm of Chr 6 (10.4-Mb region) from different germplasms.

Finally, the causal genes were located at the NLR gene-repeated

cluster (Pi9 locus), and they are regarded as the same genes with

different alleles (Pi9/Pi2=Piz-5/Piz-t/Pi50/Pigm/Pizh). At the Pi9

locus, two to 13 repeats of NLR gene were laid next to each other,
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and the blast-resistant donors possessed nine repeats (Pi9 and Pi2)

or 13 repeats (Pigm) of NLR genes (Deng et al., 2017). There were

sequence variations among the alleles of the responsive NLR gene at

the Pi9 locus, and they showed different reactions to the blast

strains. In addition to the cloned genes/alleles, one major QTL

(Pi40) was identified at the Pi9 locus from the O. australiensis-

derived IL (IR65482-4-136-2-2) through fine mapping (Jeung et al.,

2007). The Pi40 introgression in Korean and Turkish varieties

showed resistance to a wide range of blast strains in Korea and

Turkey (Jeung et al., 2007; Beser et al., 2016). Another major cluster

was found on Chr 11 (25.2-Mb region) (Pik locus) from various

donor materials, and they (Pik/Pik-m/Pik-p/Pi1/Pi7) were identified

as allelic (Table 2). Interestingly, most of the cloned blast genes

encode NBS-LRR (NLR) protein, except for four genes: bsr-d1

(C2H2-type zinc finger protein), pi21 (proline-rich protein), Pid2
TABLE 2 The cloned blast resistance genes.

Gene Chr
Location

(bp)
MSU_ID RAPDB_ID

Encoding
protein

Resistant/donor
allele

Inheritance
pattern of
R-allele

Reference

Pit 1 2,681,220 Os01g05620 Os01g0149500 NBS-LRR K59 Dominant Hayashi K, et al., 2010

Pi64 1 33,098,082 Os01g57280 Os01g0781200 NBS-LRR Yangmaogu Dominant Ma et al., 2015

Pi37 1 33,120,499 Os01g57310 Os01g0781700 NBS-LRR St. No. 1 Dominant Lin et al., 2007

Pish/Pi35 1 33,136,846 Os01g57340 Os01g0782100 NBS-LRR
Nipponbare (Pish),
Hokkai 188 (Pi35)

Dominant
Takahashi et al., 2010
(Pish), Fukuoka et al.,

2014 (Pi35)

Pib 2 35,118,769 Os02g57310 Os02g0818500 NBS-LRR Engkatek Dominant Wang et al., 1999

bsr-d1 3 18,435,990 Os03g32230 Os03g0437200
C2H2-type
zinc finger
protein

Digu Dominant Li et al., 2017

pi21 4 19,835,206 Os04g32850 Os04g0401000
Proline-rich
protein

Owarihatamochi Recessive Fukuoka et al., 2009

Pi63 4 31,554,480 Os04g52970 Os04g0620950 NBS-LRR Kahei Dominant Xu et al., 2014

Pi9/
Pi2=Piz-
5/Piz-t/
Pi50/
PigmR(e)/
Pizh

6 10,387,509 Os06g17900 Os06g0286700 NBS-LRR

Oryza minuta IL (75-1-
127) (Pi9), C101A51
(Pi2), Toride 1 (Piz-t),
Er-Ba-Zhan (Pi50),
Gumei 4 (PigmR),

ZH11 (Pizh)

Dominant

Qu et al., 2006 (Pi9),
Zhou et al., 2006 (Pi2

and Piz-t), Su et al., 2015
(Pi50), Deng et al., 2017
(PigmR), Xie et al., 2019

(Pizh)

Pid4 6 10,435,819 Os06g17950 Os06g0287500 NBS-LRR Digu Dominant Chen et al., 2018

Pid3/
Pi25/
Pid3-I1

6 13,054,818 Os06g22460 Os06g0330100 NBS-LRR
Digu (Pid3), Gumei2

(Pi25), MC276 (Pid3-I1)
Dominant

Shang et al., 2009 (Pid3),
Chen J, et al., 2011

(Pi25), Inukai et al., 2019
(Pid3-I1)

Pid2 6 17,160,333 Os06g29810 Os06g0494100
B-lectin
receptor
kinase

Digu Dominant Chen et al., 2006

Pi36 8 2,878,884 Os08g05440 Os08g0150150 NBS-LRR
Kasalath (formerly
known as Q61)

Dominant Liu et al., 2007

Pi5 9 9,681,913 Os09g15840 Os09g0327600 NBS-LRR RIL260-Moroberekan Dominant Lee et al., 2009

Pi56 9 9,777,527 Os09g16000 Os09g0328951 NBS-LRR
Sanhuangzhan No 2

(SHZ2)
Dominant Liu Y, et al., 2013

(Continued)
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(B-lectin receptor kinase), and Ptr=Pita2 (armadillo repeat protein).

The majority of blast-resistant donor alleles/genes are dominant

except for pi21, which is recessive (Liu W, et al., 2013). Pi21 encodes

a proline-rich protein, and the loss-of-function allele from the

resistant donor (Owarihatamochi) confers non-race-specific

resistance. pi21 gene was closely linked to the gene providing

poor eating quality. However, the genes were successfully

separated by recombination between two genes in the breeding

lines, and blast resistance with good eating quality was achieved

(Fukuoka et al., 2009). Thus, precise introgression with the cloned

target genes is able to reduce the presence of unwanted phenotypes

in the final breeding products caused by “linkage drag”. Among the

cloned blast genes, Pi50, Pizh, Pi54rh, Pi56, Pi64, PigmR, and

Ptr=Pita2 alleles were known as broad-spectrum resistance (Liu

et al., 2021). A few sets of NILs with blast resistance sources were

developed in both japonica and indica backgrounds: 20 NILs with

11 blast QTLs/genes in japonica background Lijiangxintuanheigu

(LTH) (Telebanco-Yanoria et al., 2010) and 28 NILs with 14 QTLs/

genes in an indica background, CO39 (Telebanco-Yanoria et al.,

2011). Moreover, both NIL sets were tested by 20 blast isolates

collected in the Philippines. Recently, 21 NILs with 18 QTLs/genes

in another indica background, US-2, were developed, and the NILs

were tested with 31 isolates from Asia (Japan, China, the

Philippines, Indonesia, Vietnam, Cambodia, Bangladesh, and

Laos) and Africa (Nigeria, Kenya, and Benin) (Fukuta et al.,

2022). In blast bioassay with the NIL sets above, most of the

genes/QTLs showed differential reactions against different isolates,

even in the same country collections, suggesting that the selection of

suitable blast genes/alleles based on the local pathotypes/isolates is

important to develop blast resistant varieties. Among the blast genes
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used in the NIL development above, NIL-Pi9 exhibited resistance or

moderate resistance to all 31 isolates from Asia and Africa (Fukuta

et al., 2022), suggesting that Pi9 allele might be useful to breed blast-

resistant variety across the rice cultivation countries. The sets of

NILs and blast screening data against various isolates will be very

useful to pathology studies, the selection of suitable genes/alleles

against regional isolates, and breeding programs. To achieve

durable and broad-spectrum resistance, pyramiding of resistance

genes (two or more) in one background is usually used in the

breeding program. There are various gene combinations of blast

genes that prove the enhanced blast resistance in both indica and

japonica rice against several blast isolates. Two genes–pyramided

lines with Pi37 + Pid3, Pi5 + Pi54, Pi54 +Pid3, and Pigm + Pi37

exhibited significantly enhanced resistance and observable additive

effects (Jiang et al., 2019). The gene combinations Pigm + Pi1, Pigm

+ Pi54, and Pigm + Pi33 displayed broad-spectrum resistance (Wu

et al., 2019). Broad-spectrum blast resistance was also achieved in

the temperate japonica varieties by pyramiding three to four genes

with Piz, Pib, Pik, Pita, and Pita2 (Zampieri et al., 2023). As proven

in many previous studies, stacking suitable blast genes/alleles has

strong potential to obtain durable and broad-spectrum resistance in

the breeding program.

In contrast to leaf blast resistance, genetic resources for blast

disease on other organs/tissues are relatively poor. The first panicle

blast resistance gene, Pb1, encoding NBS-LRR was cloned from an

indica cultivar Modan (Hayashi N, et al., 2010). Afterward, it was

found that panicle blast resistance by Pb1 is dependent on at least

four other loci (Inoue et al., 2017), suggesting that a level of panicle

blast resistance with Pb1 will be influenced by other genetic factors

or background materials. Recently, two additional panicle blast
TABLE 2 Continued

Gene Chr
Location

(bp)
MSU_ID RAPDB_ID

Encoding
protein

Resistant/donor
allele

Inheritance
pattern of
R-allele

Reference

Pia/Pi-
CO39

11 6,541,924
Os11g11790–
Os11g11810

Os11g0225100–
Os11g0225300

Two genes
encoding
NBS-LRR

Sasanishiki (Pia), CO39
(Pi-CO39)

Dominant
Okuyama et al., 2011

(Pia), Cesari et al., 2013
(Pi-CO39)

Pi54rh/
Pi54=Pik-
h

11 25,263,336 Os11g42010 Os11g0639100 NBS-LRR
Oryza rhizomatis

(Pi54rh), Tetep (Pi54)
Dominant

Das et al., 2012 (Pi54rh),
Zhang et al., 2018 (Pi54)

Pik/Pik-
m/Pik-p/
Pi1/Pi7

11 27,983,597
Os11g46200-
Os11g46210

Os11g0688832–
Os11g0689100

Two genes
encoding
NBS-LRR

Kusabue (Pik),
Tsuyuake (Pik-m), K60
(Pik-p), C101LAC (Pi1),

IRBL7-M (Pi7)

Dominant

Zhai et al., 2011 (Pik),
Ashikawa et al., 2008

(Pik-m), Yuan et al., 2011
(Pik-p), Hua et al., 2012
(Pi1), Gan et al., 2010

(Pi7)

Pita 12 10,606,359 Os12g18360 Os12g0281300 NBS-LRR Tadukan Dominant Bryan et al., 2000

Ptr =
Pita2

12 10,822,534 Os12g18729 Os12g0285100
Armadillo
repeats
protein

Katy (Ptr), IRBLta2-Re
(Pita2)

Dominant
Zhao et al., 2018 (Ptr),
Meng et al., 2020 (Pita2)

Pb1 11 22,862,447 Os11g38580 Os11g0598500 NBS-LRR Modan Dominant Hayashi N, et al., 2010

Pb2 11 27,608,621 Os11g45620 – NBS-LRR Jiangnanwan ND Yu et al., 2022

Pb3 11 27,282,232 Os11g45090 Os11g0675200 NBS-LRR Haplotype A, Bodao ND Ma et al., 2022
ND, not determined.
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resistance genes, Pb2 and Pb3, were identified through GWAS and

validated by transgenic approaches (Ma et al., 2022; Yu et al., 2022).

Both genes encode NBS-LRR proteins and are physically close to

each other (~360-kb distance between Pb2 and Pb3). Some of the

cloned leaf blast genes, such as Pi25 (Chen J, et al., 2011), PigmR

(Deng et al., 2017), and Pid4 (Chen et al., 2018), also showed some

level of panicle blast resistance.
4.2 Bakanae disease (pathogen:
G. fujikuroi, syn. F. fujikuroi)

To identify the genetic factors governing bakanae disease

resistance, QTL mapping and GWAS have been conducted and

identified a handful of QTLs on chromosomes 1, 3, 4, 9, and 10

from several different donors, but no genes have been cloned yet.

Three major QTLs (qBK1, qBK1.1, and qFfR1) were fine-mapped on

the Chr 1 region between 23.32 and 23.67 Mb (Lee et al., 2021).
4.3 False smut (pathogen: U. virens)

A number of QTLs for false smut resistance have been identified

by QTL mapping with bi-parental populations (Andargie et al.,

2018; Han et al., 2020; Neelam et al., 2022) and GWAS (Hiremath

et al., 2021). The results suggested that false smut resistance seems

to quantitate traits governed by multiple genes. Among the QTLs,

qFsr8–1 originated from the Chinese rice landrace MR183–2 and

showed the highest PVE (26.0%).
4.4 Sheath blight (pathogen: R. solani,
syn. T. cucumeris)

More than 200 QTLs associated with sheath blight (ShB) resistance

have been identified from the diverse mapping populations (Zarbafi

and Ham, 2019; Goad et al., 2020). Among all the identified ShB QTLs,

two loci on Chr 9 (qShB9-2) and Chr 11 (qSBR11-1) contribute 25%

and 14% of PVE, respectively, are the major effect QTLs (Molla et al.,

2020), and may be useful in a breeding program.
4.5 Brown spot (pathogen: C. miyabeanus,
syn. B. oryzae, H. oryzae)

For brown spot (BS) resistance, susceptible and resistant

germplasms were identified by several studies. Several cultivars

that have been categorized as resistant did not show complete

resistance (immunity), but they showed quantitative resistance to

BS. To date, more than 20 QTLs with low–mild phenotypic

variation (<20%) were identified from several mapping

populations, including recombinant inbred lines (RILs), doubled

haploid lines (DHLs), and chromosome segment substitution lines

(CSSLs) from several different donors (reviewed byMizobuchi et al.,

2016). One major QTL, qBSR11-kc, showing 23.0%–25.9% of the
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total phenotypic variation was identified from indica variety CH45

(Matsumoto et al., 2017).
4.6 Narrow brown leaf spot also called
“narrow brown spot” (pathogen: S. oryzina,
syn. C. janseana, C. oryzae)

The genetic architecture of narrow brown spot (narrow brown

leaf spot) resistance was almost unknown. A recent genetic analysis

using the RIL population derived from the cross between two US

varieties (Cypress and LaGrue) identified a single large-effect QTL,

CRSP-2.1, explaining 81.4% of the phenotypic variation (Addison

et al., 2021). The causal gene is not confirmed yet, but the major

QTL might be useful in a breeding program.
4.7 Aggregate sheath spot (pathogen:
R. oryzae-sativae)

Aggregate sheath spot disease has been reported in many Asian

countries, as well as the USA, South America, and Australia, and it

can cause ~20% of yield loss (Lanoiselet et al., 2007). Good levels of

resistance to aggregate sheath spot were identified from O.

rufipogon and successfully transferred into cultivars (McKenzie

et al., 1994). Recent GWAS with tropical japonica and indica

populations identified a handful of QTLs (Rosas et al., 2018).
4.8 Sheath rot (pathogen: S. oryzae)

Rice sheath rot diseases are found in most rice-growing areas of

the world and cause 20%–85% ranges of yield losses, making it an

emerging ubiquitous destructive disease of rice (Bigirimana et al.,

2015). However, rice sheath rot is less studied, and no reliable

germplasm or genetic factors have been identified yet.
4.9 Stem rot (pathogen: S. oryzae,
syn. N. oryzae)

Stem rot disease resistance was found in wild rice species (O.

nivara and O. rufipogon) and weedy rice (O. sativa f. spontanea)

(Figoni et al., 1983), and the stem rot resistance was successfully

transferred from O. rufipogon to California rice cultivars through

interspecific hybridization (Oster, 1992). Recently, several QTLs for

stem rot resistance were identified from indica germplasm through

a GWAS analysis (Rosas et al., 2018).
5 Bacterial diseases and available
genetic resources

Rice productions are significantly affected by several major

bacterial diseases: BB (pathogen: Xanthomonas oryzae pv. oryzae
frontiersin.org

https://doi.org/10.3389/fpls.2023.1247014
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Simon et al. 10.3389/fpls.2023.1247014
(Xoo)), “bacterial leaf streak” (BLS) (pathogen: X. oryzae pv.

oryzicola (Xoc)), “bacterial sheath brown rot” also called “rice

sheath rot” (pathogen: Pseudomonas fuscovaginae), and “bacterial

seedling rot” (BSR), and “bacterial grain rot” (BGR) caused by the

same pathogen (Burkholderia glumae). To date, a handful of genes

have been cloned for BB resistance, but none yet for other bacterial

diseases. Here, we described BB resistance genes cloned and some

genetic resources for other bacterial pathogens.
5.1 Bacterial blight (pathogen: X. oryzae pv.
oryzae (Xoo))

Among the bacterial diseases, BB caused by Xoo is the most

destructive bacterial disease in rice. Thus, it has been intensively

studied for the isolation of BB-resistant germplasm, genetic

analysis, gene identification, and molecular mechanism of wars

between Xoo and rice. To date, at least 47 Xoo resistance QTLs and

genes (named Xa genes) have been identified from diverse

germplasms, including cultivated rice, rice mutant lines, and wild

rice species. Xa21 from Oryza longistaminata introgression line

(IRBB21) was first cloned in 1995 by Song et al. and followed by Xa1

from the IRBB1 line (Yoshimura et al., 1998). Later, Xa2, Xa31(t),
Frontiers in Plant Science 09118
CGS-Xo1, Xa14, and Xa45(t) were identified as a group of Xa1

allelic R genes (Ji et al., 2020). Currently, 13 different genes/loci

consisting of ~23 allelotypes have been cloned and characterized

(Table 3), that is, Xa1/Xa2=Xa31(t)/Xa14/Xa45(t)/CGS-Xo1,

Xa3=Xa26, Xa4, xa5, Xa7, Xa10, xa13/OsSWEET11/Os8N3, Xa21,

Xa23, Xa47(t), xa25/OsSWEET13/OsMtN3, Xa27, and xa41(t)/

OsSWEET14/Os11N3. The 13 cloned BB resistance genes encode

several types of proteins: NBS-LRR (Xa1/Xa1 alleles and Xa47(t)),

leucine-rich repeat receptor-like kinases (LRR-RLKs) (Xa3=Xa26

and Xa21), a cell wall-associated kinase (WAK) (Xa4), executor R

proteins (Xa7, Xa10, Xa23, and Xa27), SWEET/sugar transporter

proteins (xa13/OsSWEET11, xa25/OsSWEET13, and xa41(t)/

OsSWEET14), and a transcription factor gamma subunit protein

(xa5). The genes encoding NBS-LRR, LRR-RLK, and WAK are

involved in pathogen recognition and activation of the innate

immune system, whereas the genes encoding executor R proteins

are transcriptionally activated by the Xoo transcription activator-

like (TAL) effector protein and trigger programmed cell death

(PCD)-based hypersensitive response (HR). Thus, for the genes

mentioned above, the functional alleles from the BB-resistant donor

sources are dominant. In contrast, BB resistance is caused by

sequence mutations at the TAL effector binding sites in the

promoter of the SWEET (Sugar Will Eventually be Exported
TABLE 3 The cloned bacterial blight resistance genes.

Gene Chr
Location

(bp)
MSU_ID RAPDB_ID

Encoding
protein

Resistant/donor allele
Inheritance
pattern of
R-allele

Reference

Xa1/
Xa2=Xa31
(t)/Xa14/
Xa45(t)/
CGS-Xo1

4 31,638,099 Os04g53120 Os04g0622600 NBS-LRR

IRBB1 (Xa1), IRBB2 (Xa2),
IRBB14 (Xa14), Zhachanglong
(Xa31(t)), Carolina Gold Select

(CGS-Xo1), Oryza nivara
IRGC102463 (Xa45(t))

Dominant
Yoshimura

et al., 1998; Ji
et al., 2020

xa5 5 437,043 Os05g01710 Os05g0107700

Transcription
factor IIA
gamma
subunit

IRBB5 Recessive

Blair et al.,
2003; Iyer and
McCouch,

2004

Xa27 6 23,653,851 Os06g39810 Os06g0599600
Executor R
protein

IRBB27/Oryza minuta
IRGC101141

Dominant Gu et al., 2005

Xa7(a) 6 28,015,259 – –
Executor R
protein

IRBB7 Dominant
Chen et al.,
2021; Wang
et al., 2021

xa13/
OsSWEET11/
Os8N3

8 26,725,952 Os08g42350 Os08g0535200
SWEET-type

protein
IRBB13 Recessive

Chu et al.,
2006

xa41(t)/
OsSWEET14/
Os11N3

11 18,171,707 Os11g31190 Os11g0508600
SWEET-type

protein

African wild and cultivated rice
species Oryza barthii and Oryza

glaberrima
Recessive

Hutin et al.,
2015

Xa21 11 21,277,443 Os11g36180 Os11g0569733
LRR receptor
kinase-like
protein

IRBB21 (Oryza longistaminata
IL)

Dominant
Song et al.,

1995

Xa10 11 22,181,556 Os11g37570 Os11g0586400
Executor R
protein

IRBB10, CAS209 Dominant
Tian et al.,

2014

Xa23 11 22,204,131 – Os11g0586701
Executor R
protein

CBB23/Oryza rufipogon Dominant
Wang C, et al.,

2015

(Continued)
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Transporter) genes and thus a recessive allele. BB resistance of xa5

gene relies on one amino acid difference between resistance and

susceptible lines in Xa5 protein (a general eukaryotic transcription

factor), and the BB-resistant allele is recessive (Iyer and McCouch,

2004). The cloned 13 genes are distributed on six chromosomes

(one gene each on Chr 4, 5, 8, and 12; two genes on Chr 6; six genes

on Chr 11) (Table 3, Figure 1). Six cloned genes on Chr 11 are

closely located to each other in ~10.2-Mb size (18.2–28.4-Mb region

on Chr 11) (Figure 1). Thus, in the case of gene pyramiding using

the six genes on Chr 11, breeders need to consider producing

enough progenies for obtaining pyramided alleles that occur by

recombination between two closely located genes. Several cloned

genes, including Xa7, Xa23, xa41, and Xa47, were reported as

broad-spectrum resistance genes/alleles (Liu et al., 2021). NILs

with single BB resistance genes were developed through IRRI-

Japan collaboration designated as “IRBB” lines (Ogawa et al.,
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1991), and additional NILs (IRBB) with single or multiple BB

resistance genes (two to five genes) were developed in the BB-

susceptible background IR24 at IRRI, Philippines. Differential

reactions of the NILs (IRBB lines) with single and pyramided Xa

genes to 11 races in the Philippines were observed, and the results

are available at the IRRI Rice knowledge bank (http://

www . k n ow l e d g e b a n k . i r r i . o r g / r i c e b r e e d i n g c o u r s e /

Breeding_for_disease_resistance_Blight.htm). The IRBB lines

possessing multiple Xa genes (two to five genes) exhibited broad-

spectrum resistance than the single gene introgression IRBB lines.

Similarly, pyramiding of Xa genes such as Xa21 + Xa33, Xa21 +

xa13 + xa5, and Xa4 + xa5 + Xa7 + xa13 + Xa21 offers greater and

broader resistance to Xoo than an individual resistance gene

(Pradhan et al., 2015; BalachIranjeevi et al., 2018; Hsu et al.,

2020). The IRBB sets were also tested with 16 isolates in Korea,

and the results showed that xa5 was strong and broad-spectrum
TABLE 3 Continued

Gene Chr
Location

(bp)
MSU_ID RAPDB_ID

Encoding
protein

Resistant/donor allele
Inheritance
pattern of
R-allele

Reference

Xa47(t) 11 27,983,597 Os11g46200 Os11g0688832 NBS-LRR O. rufipogon Dominant
Xing et al.,

2021

Xa4(b) 11 28,357,055 Os11g47140 Os11g0694100
cell wall-
associated

kinase (WAK)
IRBB4 Dominant Hu et al., 2017

Xa3=Xa26 11 28,399,360 Os11g47210 –

LRR receptor
kinase-like
protein

Minghui 63, IRBB3 Dominant
Sun et al.,

2004

xa25/
OsSWEET13/
OsMtN3

12 17,302,127 Os12g29220 Os12g0476200
SWEET-type

protein
Minghui 63 Recessive Liu et al., 2011
(a)The sequence of Xa7 is completely absent in the Nipponbare reference genome (IRGSP1.0) and also most of japonica varieties. Thus, the location of the closest marker (M10) to Xa7 by Chen
et al. (2021) is given in the above table.
(b) The sequence of xa4 gene was not fully aligned in the Nipponbare reference genome (IRGSP1.0). Thus, the information of the highest homology sequence was described above.
FIGURE 1

Physical locations of the 48 cloned genes conferring biotic stress resistance in rice. The cloned genes were mapped on the rice reference genome
(Os-Nipponbare-Reference-IRGSP-1.0). Blue, red, green, and black bars mean brown planthopper (BPH), blast, bacterial blight, and virus resistance
genes, respectively. Biotic stress resistance gene-rich region was highlighted by yellow background (out of 48 genes, 14 genes were on the 10.41-
Mb region of the long arm of Chr 11).
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resistant than any other Xa genes (Jeung et al., 2006). Rice

possessing Xa7 exhibited less disease than lines without Xa7 over

11 years in the Philippines, even though the virulence of Xoo field

populations increased. In addition, Xa7 restricted disease more

effectively at high temperatures, while other Xa genes were less

effective at high temperatures (Webb et al., 2010). The IRBB lines

and stacked information including gene reactions, spectrum,

durability, and influence of environments will be useful to select

suitable genes/alleles for regional/local breeding programs and also

for the development of durable and broad-spectrum resistant

rice varieties.
5.2 Bacterial leaf streak (pathogen:
X. oryzae pv. oryzicola (Xoc))

For BLS resistance, a handful of QTLs with low-to-moderate

PVEs (2.64%–15.93%) were identified (Tang et al., 2000). In

addition, a recent GWAS using 510 diverse rice accessions

identified 79 quantitative trait nucleotides (QTNs) reflecting 69

QTLs for BLS resistance (Xie et al., 2021). However, no BLS

resistance gene has been cloned yet. Among the BLS-resistant

QTLs, the highest effect QTL, qBlsr5a (12.84%–15.93% PVE), was

fine-mapped to 30.0-kb interval on Chr 5, and the resistant parent

allele of Os05g01710 gene within the fine-mapped region was

identical to xa5, which is one of major BB resistance genes,

suggesting that Os05g01710 (xa5) is possibly the candidate gene

of qBlsr5a (Xie et al., 2014).
5.3 Bacterial sheath brown rot also called
rice sheath rot (pathogen: P. fuscovaginae)

“Rice sheath rot” disease symptoms can be caused by the

bacterial pathogen “P. fuscovaginae” and also by the fungal

pathogen “S. oryzae”. A recent pathobiomes study revealed that P.

fuscovaginae and S. oryzae were prevalent in symptomatic rice

samples in highland and lowland, respectively, in Burundi,

indicating that the pathogens exist independently and are not

part of a complex disease (Musonerimana et al., 2020). However,

no reliable resistant germplasm and genetic factors have been

identified yet.
5.4 Bacterial panicle blight, bacterial
seedling rot, and bacterial grain rot
(pathogen: B. glumae)

Bacterial panicle blight (BPB), BSR, and BGR are caused by the

same bacterial pathogen, B. glumae. It was first reported as BGR in

Japan in 1955. Since then, BPB has been found in more than 18

countries globally including Asia, Africa, and North and South

America (Zhou, 2019; Ortega and Rojas, 2021). Although it is an

emerging disease globally, only several cultivars with partial

resistance and 12 QTLs associated with partial resistance have

been reported (Zhou, 2019). Regarding BSR resistance, one QTL
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(RBG1/qRBS1) was identified from the CSSL population (Nona

Bokra introgressions in Koshihikari background) (Mizobuchi et al.,

2016). For BGR resistance, 13 QTLs have been found from the two

mapping populations: a BIL from Kele (R) × Hitomebore (S) and a

RIL from TeQing (R) × Lemont (S) (Mizobuchi et al., 2016).
6 Viral diseases and available
genetic resources

Seventeen rice viruses have been reported, including rice black-

streaked dwarf virus (RBSDV), rice bunchy stunt virus (RBSV), rice

dwarf virus (RDV), rice gall dwarf virus (RGDV), rice giallume

virus (RGV), RGSV, rice hoja blanca virus (RHBV), rice necrosis

mosaic virus (RNMV), RRSV, rice stripe necrosis virus (RSNV),

rice stripe virus (RSV), rice transitory yellowing virus (RTYV) also

named as rice yellow stunt virus (RYSV), rice tungro bacilliform

virus (RTBV), rice tungro spherical virus (RTSV), RYMV, southern

rice black-streaked dwarf virus (SRBSDV), and rice stripe mosaic

virus (RSMV) (Hibino, 1996; Qin et al., 2019). Since most of the

above viruses are arthropod-borne, damages may become more

severe as the population of vector insects increases. Among the rice

virus diseases, rice tungro disease (RTSV and RTBV), RYMV, and

RSV have been causing serious yield loss in South/Southeast Asia,

Africa, and temperate Asia, respectively. Thus, a few genes

providing resistance to the major viruses above have been cloned.

The use of viral disease resistance may significantly reduce the

damage of viral diseases. In addition to this, the management of

corresponding vector insects may mitigate the damage of viral

diseases in the field.
6.1 Rice tungro disease caused by RTSV
and RTBV

Rice tungro disease is a serious threat to rice production in

South and Southeast Asia. Tungro disease viruses are transmitted

from tungro-infected plant to another by leafhoppers. The most

efficient vector is the green leafhopper (IRRI Rice Knowledge Bank).

Tungro was found to be associated with two distinct viruses: RTSV

and RTBV. A series of large-scale outbreaks of tungro were

recorded in India, Thailand, Indonesia, Malaysia, the Philippines,

Thailand, China, and Bangladesh. Tungro, as one of the destructive

diseases of rice, causes yield losses of 5% to 10% annually and is

estimated to cause an annual loss in rice production of

approximately 1.5 billion US dollars worldwide (Dai and Beachy,

2009). In the late 1990s, several tungro-resistant sources, including

landrace and wild species, were isolated and used in the breeding

program by IRRI, and the most promising breeding lines were

developed by crossing with Utri Merah donor (Azzam and

Chancellor, 2002). Afterward, Encabo et al. (2009) revealed that

RTBV and RTSV are inherited separately from rice accession Utri

Merah, conferring resistance to both RTBV and RTSV, and Lee

et al. (2010) cloned the causal recessive gene (named as tsv1)

involved in RTSV resistance in Utri Merah. TSV1 encodes

eukaryotic translation initiation factor 4G (eIF4G), and mutation
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on the protein-coding sequence of TSV1 in Utri Merah (tsv1 allele)

may impair the RTSV RNA translation, resulting in tungro

resistance. The tsv1-Utri Merah allele is widely used for tungro

resistance improvement in many breeding programs.
6.2 Rice yellow mottle virus

Since RYMV was first discovered in Kenya in 1970, it has been

reported from only the countries in the African continent. RYMV

causes the most serious damage in Africa among all the rice

diseases. Primary infection of RYMV in rice fields is mediated by

beetle family chrysomelids, and secondary spread occurs mainly

through mechanical contact between infected and healthy leaves by

wind (Kouassi et al., 2005). In the past, farmers have been advised to

use chemicals to eliminate beetle vectors. The most effective and

sustainable way to manage RYMV is to use tolerant and resistant

varieties (Abo et al., 1997).

High RYMV resistance was found in one African rice cultivar

(Oryza glaberrima), Tog5681, and one O. sativa cultivar, Gigante.

Evaluation of the crosses of these two highly RYMV-resistant

cultivars suggests the presence of a single recessive gene

(Ndjiondjop et al., 1999). Later, it was discovered that the gene is

RYMV1, and the gene encodes a eukaryotic translation initiation

factor, eIF4(iso)4G (Albar et al., 2006). In sequence comparisons

with the dominant susceptible allele (Rymv1-1), four different

recessive resistant alleles from one O. sativa var. Gigante (rymv1-

2) and threeO. glaberrima accessions (Tog5681 (rymv1-3), Tog5672

(rymv1-4), and Tog5674 (rymv1-5)) were characterized by the

presence of short amino acid substitutions or short deletions in

the MIF4G domain of the protein (Albar et al., 2006; Thiémélé et al.,

2010). Allele-specific markers targeting mutations or deletions

characterizing different RYMV1 were developed for improving

MAS for the introduction of the resistance alleles into susceptible

cultivars of O. sativa or O. glaberrima (Thiémélé et al., 2010). In the

second major recessive resistance gene, RYMV2, it was identified

that 1-bp deletion on the coding sequence of the rice homolog of the

Arabidopsis CPR5 gene, known to be a defense mechanism

regulator, from the resistant African rice (O. glaberrima) Tog7291

provided RYMV resistance (Orjuela et al., 2013). A single dominant

resistant gene RYMV3 encoding NBS-LRR protein was identified

from theO. glaberrima Tog5307 (Pidon et al., 2017). Novel resistant

alleles and accessions for RYMV2 and RYMV3 were identified by

screening 268 O. glaberrima accessions and sequencing (Pidon

et al., 2020), and five new resistant germplasm were isolated from

Korean rice lines (Asante et al., 2020). The cloned genes with

different resistant alleles will be useful to improve RYMV resistance,

especially for the breeding program for the African continent.
6.3 Rice stripe virus

RSV is an RNA-type virus belonging to the genus Tenuivirus,

and it is transmitted by SBPHs. RSV has been reported only in

China, Japan, Korea, and Taiwan, where japonica rice is cultivated,

and it caused severe damage to the rice fields in Eastern China,
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Japan, and Korea. While most indica varieties are resistant to RSV,

the majority of japonica varieties are highly susceptible. A number

of RSV-resistant QTLs have been reported from diverse indica-

resistant donors, and the major QTLs were repeatedly detected on

Chr 11 among several QTL mapping (Cho et al., 2013). Finally, the

major QTL, qSTV11, originated from an indica variety Kasalath and

was cloned (Wang et al., 2014). STV11-Kasalath allele encodes a

sulfotransferase (OsSOT1) protein catalyzing the conversion of

salicylic acid (SA) into sulfonated SA (SSA), whereas the protein

encoded by the susceptible allele STV11 loses this activity. STV11

gene will be useful in improving RSV resistance in the

japonica varieties.
7 Physical locations of the cloned
genes/alleles on rice chromosomes

Graphical mapping of the cloned genes on 12 rice chromosomes

will be useful information for MAS breeding, especially for gene

pyramiding, as well as mapping new biotic stress resistance genes.

We mapped the physical locations of all the cloned 48 biotic stress

resistance genes on the 12 rice chromosomes (Figure 1). The cloned

genes were not evenly distributed across the rice genome. No biotic

stress resistance gene was cloned yet on Chr 10. In contrast, Chr 11

possesses the highest number of genes (15 genes), following Chr 6

(eight genes), Chr 4 (seven genes), and Chr 12 (four genes), with

these four chromosomes harboring 34 genes out of 48 cloned genes

(70.83%). Interestingly, 14 cloned genes associated with blast,

bacterial blight, and virus resistance were on the 10.41-Mb region

of the long arm of Chr 11 (Chr 11: 17.98–28.39 Mb), and it took

29.16% of the cloned genes. Biotic stress resistance genes are ~10

times more enriched in this specific region than any other loci (the

expected distribution is ~1.2 cloned gene/10 Mb). Another

interesting point is that the bacterial blight resistance gene Xa47

(t) (Os11g46200) encoding NBS-LRR is overlapped with the blast

resistance gene Pik/Pik-m/Pik-p/Pi1/Pi7 consisting of two NBS-LRR

genes (Os11g46200 and Os11g46210). In some loci, different

resistance alleles at the same locus, such as BPH1 locus, Pi9 locus,

Pik locus, and Xa1 locus, were identified (Tables 1–3). Although

some of them among the alleles showed different reactions to

pathotypes, unfortunately, they cannot be pyramided by MAS due

to the same physical location among the alleles. Thus, breeders need

to choose one suitable allele among the alleles based on the regional

pathotypes/isolates. Similarly, in gene pyramiding/stacking,

breeders should also consider the physical distance between/

among the target genes. If the two target genes are closely located

with each other (<~1Mb) on the same chromosome (for example,

Xa10 and Pb1 on Chr 11, Pik and Xa4 on Chr 11, and Pita and

Ptr=Pita2 on Chr 12; see Figure 1), breeders need to produce many

progenies to obtain the gene pyramided plants through the selection

of the recombinant plants between the two target loci. In rice, a

handful of recombination hot and cold regions are reported, and the

average recombination frequency is approximately 4.35 cM per Mb

(Si et al., 2015). In addition, breeders also need to check the target

loci whether the important genes governing other agronomic traits

are present near the target biotic stress resistance gene to avoid
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linkage drag. For instance, a key amylose synthesis gene Waxy/

GBSS1 (1.76-Mb location on Chr 6) is tightly linked with BPH32

(1.22 Mb on Chr 6), and a major heading date gene Hd1 (9.33 Mb

on Chr 6) is closely located with Pi2 gene (10.38 Mb on Chr 6).

Thus, breeders should consider the locations of the important

agronomic traits genes near the target genes, especially when the

breeders try to retain the original characteristics of the elite

background variety, except for the target biotic stress resistance.

A map of the physical locations of the cloned genes (Figure 1) will

be helpful for consideration of the above points in MAS

breeding programs.
8 Available DNA markers for
MAS breeding

DNA markers are essential tools for genetic analysis as well as

marker-assisted breeding. We tried to collect all the markers

published and used in the previous breeding programs, and we

collected ~500 markers in total for the cloned biotic stress resistance

genes (Table S1). We filed essential information on the markers for

the potential users, including marker types (InDel, CAPS/dCAPS,

dominant markers, and tetra-primer method markers) and primer

sequences. Also, we cited the original references of each marker so

that breeders can obtain detailed and additional information if

needed. Furthermore, we mapped the location of all the markers in

the rice reference genome sequence (Os-Nipponbare-Reference-

IRGSP-1.0: https://rapdb.dna.affrc.go.jp/). This information

provides physical distance between the target gene and the

markers, and it will be helpful to reduce the selection of false

positives during MAS. For examples, some markers for the BPH1,

BP17, xa13, Xa27, Pi9, Piz-t, Pizh, Pish, Pi5, Pita2, and RYMV1

genes/alleles are a bit far (>1 Mb) from the gene locus (Table S1).

Selection of genic or gene-tightly linked markers would reduce

false-positive selection. In cases of multi-alleles for the same gene,

such as BPH1 and Pi9, all the available markers for the same gene

can be tested to check the possibility of polymorphism between the
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parents, and the selected polymorphic markers can be used in MAS

breeding (for example, BPH18 markers for BPH26 MAS breeding).

All the information on the markers is described in Table S1.
9 Conclusions and perspective

In this review, we summarized all the cloned genes associated

with biotic stress resistance (Tables 1–4), mapped the physical

location of the genes on 12 rice chromosomes (Figure 1), and

consolidated the available markers associated with the cloned genes

(Table S1). Furthermore, we also briefly introduced genetic

resources such as QTLs and donor sources for some biotic stress

if the cloned genes are not available yet. The information presented

in this review will be helpful for checking the available genetic

resources for biotic stress resistance and also for MAS breeding for

the genetic improvement of biotic stress resistance in rice. As shown

in many previous reports, pyramiding of QTLs/genes might be a

practical solution to breed durable and broad-spectrum

resistant varieties.

Approximately 48 genes, which are natural alleles and provide

biotic stress resistance, have been cloned only for the major biotic

stresses, including BPH, blast, BB, and some viruses. However, no

genes have been cloned yet for other biotic stresses. Preparation of

the reliable genetic factors (genes/QTLs) associated with currently

problematic and emerging pathogens is very important for stable

high-yield rice production, and thus, scientists/geneticists need to

put much effort into this pending issue. Screening wild relatives of

rice in the genus Oryza will be one of the ideal approaches. Many

biotic stress resistance genes were already cloned from wild

germplasm (see Tables 1–3), such as BPH14 (O. officinalis), Pi9

(Oryza minuta), and Xa21 (O. longistaminata). More than 4,500

accessions of wild rice species are stored in the IRRI Genebank

(Banaticla-Hilario and Sajise, 2022), and most of the germplasms

were not screened yet. Recently, a genome-wide InDel marker set

(475 polymorphic markers) discriminating the alleles between O.

sativa and the other seven AA-genomeOryza species was developed
TABLE 4 The cloned virus resistance genes.

Gene Chr
Location

(bp)
MSU_ID RAPDB_ID Encoding protein Resistant/donor allele

Inheritance
pattern of
R-allele

Reference

tsv1 7 22,114,961 Os07g36940 Os07g0555200
Eukaryotic

translation initiation
factor 4G (eIF4G)

Utri Merah (UM82) Recessive
Lee et al.,
2010

RYMV1 4 24,946,171 Os04g42140 Os04g0499300

Eukaryotic
translation initiation
factor isoform 4G-1

(eIF(iso)4G1)

Oryza sativa Gigante (rymv1-2)/Oryza
glaberrima accessions Tog5681, Tog5672,
and Tog5674 for rymv1-3, rymv-4, and
rymv-5, respectively

Recessive

Albar et al.,
2006;

Thiémélé
et al., 2010

RYMV2 1 40,073,727 Os01g68970 Os01g0918500
Constitutive

expresser of PR
genes5 (CPR5)

O. glaberrima Tog7291 Recessive
Orjuela

et al., 2013

RYMV3 11 26,380,866 Os11g43700 Os11g0657900 NBS-LRR O. glaberrima Tog5307 Dominant
Pidon et al.,

2017

STV11 11 17,985,011 Os11g30910 Os11g0505300
Sulfotransferase

(OsSOT1)
Kasalath ND

Wang et al.,
2014
fr
ND, not determined.
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to harness AA-genome wild species (Hechanova et al., 2021). The

genes identified from wild germplasm will be rare alleles due to

mostly untapped and unused materials in breeding, and thus, they

will be effective in most indica and japonica backgrounds.

The incidence of pathogens and insect pests will change in time

and space; notably, it will be also influenced by climate changes. As

examples, some BPH resistance genes were affected by artificial

climate change conditions (the atmospheric temperature with

corresponding carbon dioxide at the ambient, year 2050 and year

2100) (Kuang et al., 2021) and also by nitrogen fertilizer treatments

(Lin et al., 2022). Moreover, most of the genes/QTLs reported were

tested with limited numbers of isolates/biotypes, which were

collected in specific locations and years. Thus, the identified

genes/QTLs could not guarantee resistance across locations, time,

and environments. Testing donor germplasm, especially sets of

NILs possessing specific genes/QTLs such as NILs for BPH (Jena

et al., 2017), blast (Telebanco-Yanoria et al., 2010; Telebanco-

Yanoria et al., 2011; Fukuta et al., 2022), and BB (Ogawa et al.,

1991; IRBB lines), with prevalence races/biotypes in the target

regions, would be a good strategy to select effective genes/alleles

in breeding program.

DNA markers are essential tools for genetic analysis and

breeding. DNA markers could reduce the time and effort in

developing and improving biotic-resistant cultivars through

marker-assisted breeding. Due to the accessibility and technical

simplicity for the rice breeders, most of the markers are PCR and

gel-based markers, including SSR (RM) markers, InDel markers,

CAPS markers, tetra-primer PCR markers, and dominant PCR

markers (Table S1). These markers have contributed much to MAS

breeding. However, the gene/allele-specific markers are limited to

some specific genes, and a high portion of the markers are the gene-

linked makers (sometimes more than a few Mb distance from the

gene), probably causing that false-positive selection in MAS

breeding. Thus, breeders should check the marker–gene linkage

(distance between the gene and markers) and also marker quality

(reproducibility and polymorphism between parents) before

starting MAS breeding. For efficient and precious introgression of

the target genes, currently, available markers might be insufficient.

Developments of breeder-friendly allele-specific markers and

enough number of po lymorphic markers wi th high

reproducibility for many biotic stress resistance genes/alleles are

urgently needed. This will help the rapid deployment of target biotic

stress resistance genes in the elite local varieties.

In addition to MAS breeding, CRISPR-based genome editing

technologies might be an alternative solution for the fast

improvement of biotic stress resistance. The advantage of genome

editing is that the techniques can directly improve target traits in

elite backgrounds without crossing with the donor lines. Thus, some

unexpected phenotypes caused by linkage drag or other donor

introgressions happening during MAS breeding will not be

considered in genome editing-based trait improvement. Recently,

its potential was already shown in BB resistance improvement by

CRISPR-based promoter editing of three SWEET genes in rice

(Oliva et al., 2019) and in tungro virus resistance by editing of

TSV1 gene (Macovei et al., 2018). Another advantage is that
Frontiers in Plant Science 14123
genome-edited products are regulated with lesser stringency in

many countries compared to conventional genetically modified

organisms (GMOs). Together with cross-based breeding, genome

editing technologies can contribute fast genetic improvement of

target traits in the elite variety backgrounds without linkage drag

and other donor introgressions.
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Genome-wide association
mapping for yield-related traits
in soybean (Glycine max) under
well-watered and drought-
stressed conditions

Shengyou Li, Yongqiang Cao, Changling Wang, Chunjuan Yan,
Xugang Sun, Lijun Zhang, Wenbin Wang* and Shuhong Song*

Institute of Crop Research, Liaoning Academy of Agricultural Sciences, Shenyang, China
Soybean (Glycine max) productivity is significantly reduced by drought stress.

Breeders are aiming to improve soybean grain yields both under well-watered

(WW) and drought-stressed (DS) conditions, however, little is known about the

genetic architecture of yield-related traits. Here, a panel of 188 soybean

germplasm was used in a genome wide association study (GWAS) to identify

single nucleotide polymorphism (SNP) markers linked to yield-related traits

including pod number per plant (PN), biomass per plant (BM) and seed weight

per plant (SW). The SLAF-seq genotyping was conducted on the population and

three phenotype traits were examined in WW and DS conditions in four

environments. Based on best linear unbiased prediction (BLUP) data and

individual environmental analyses, 39 SNPs were significantly associated with

three soybean traits under two conditions, which were tagged to 26 genomic

regions by linkage disequilibrium (LD) analysis. Of these, six QTLs qPN-WW19.1,

qPN-DS8.8, qBM-WW1, qBM-DS17.4, qSW-WW4 and qSW-DS8 were identified

controlling PN, BM and SW of soybean. There were larger proportions of

favorable haplotypes for locus qPN-WW19.1 and qSW-WW4 rather than qBM-

WW1, qBM-DS17.4, qPN-DS8.8 and qSW-DS8 in both landraces and improved

cultivars. In addition, several putative candidate genes such asGlyma.19G211300,

Glyma.17G057100 and Glyma.04G124800, encoding E3 ubiquitin-protein ligase

BAH1, WRKY transcription factor 11 and protein zinc induced facilitator-like 1,

respectively, were predicted. We propose that the further exploration of these

locus will facilitate accelerating breeding for high-yield soybean cultivars.

KEYWORDS

drought stress, favorable haplotypes, GWAS, soybean (Glycine max), yield-related traits
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1 Introduction

Soybean (Glycine max) is known as the main source of plant oil

and protein in the world (Cerezini et al., 2016). However, the

sustainability of soybean production is threatened by persistent

droughts with the climatic changes (Chen et al., 2016). Field and

greenhouse experiments have shown significant reduction of 24-

50% in soybean grain yield by drought stress (Frederick et al., 2001).

Reduction of grain yield is maximal while water deficiency happens

during flowering and podding stage, which is due to decreases in

pod number per plant (PN), biomass per plant (BM) and seed

weight per plant (SW) in soybean. Due to carbohydrate deprivation,

drought-induced lower photosynthetic capacity increased pod

abortion and decreased dry matter production after anthesis (Liu

et al., 2004). Thus, Breeding for new soybean cultivars with high SW

as well as PN and BM both under well-watered and drought-

stressed conditions is therefore an important strategy for addressing

this imminent threat to food security.

Selecting genotypes with better genetic gains in soybean can

improve the efficiency of cultivar development programs based on

genomic information of these yield-related traits (Yoosefzadeh

Najafabadi, 2021). The traditional QTL linkage mapping of pod

number per plant (PN) (Sun et al., 2022), biomass per plant (BM)

(Yang, 2021), and seed weight per plant (SW) (Hacisalihoglu et al.,

2018) in soybean, has made some progress, but there are certain

limitations, such as the limited allelic variation in biparental

segregation populations, time consumption for mapping

population construction, and limited mapping resolution (Sehgal

et al., 2016). In contrast to linkage mapping, GWAS exploits

ancestral recombination events in a population, thus providing

higher allelic diversity at the loci, resulting in a better association

between the marker and the target trait (Kaler et al., 2020).

The application of GWAS to complex quantitative traits of

model organisms and crops has increased over the past few years

(Atwell et al., 2010; Chen et al., 2014). In soybean, GWAS has

successfully identified many high-precision loci associated with

yield-related traits. For example, twenty significant SNPs

associated with PN have been identified from 211 germplasm by

GWAS, and three stable QTL regions were on chromosomes 4, 18

and 20 (Bhat et al., 2022). Wang et al. (2023) used a diverse panel,

including 121 wild soybeans, 207 landraces, and 231 improved

cultivars to perform GWAS on BM and identified ten important

loci, encompassing 47 putative candidate genes. Ayalew et al. (2022)

evaluated a germplasm population composed of 541 genotypes and

detected 19 QTLs associated with SW by GWAS, of which two

stable QTLs on chromosomes 9 and 17 were consistently detected

in at least three environments. A large number yield-related loci

have been identified, but the genetic basis for production formation

regulation has not been fully understood as the complexity of its

genetic mechanism, especially under DS conditions.

In this study, we evaluated 188 diverse soybean genotypes under

WW and DS conditions across four environments for three yield-

related traits, including PN, BM and SW. Furthermore, we used the

GWAS approach to analyze genetic loci and key candidate genes

related to these traits under WW and DS conditions, which could
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provide theoretical support for improved yield performance under

WW and DS conditions.
2 Materials and methods

2.1 Plant materials and growth conditions

There are 188 diverse genotypes of soybean used in the current

GWAS study; which include 95 and 48 genotypes originating from

Northeast soybean ecological region and Huanghuaihai region in

China, respectively, and 45 genotypes from the United States,

Korean, Japan, Russia, etc (Table 1). Of thses, 49 germplasm were

landrace, and 139 were improved cultivars. These soybean

germplasm were evaluated under WW and DS conditions by both

field trials and pot-culture experiments.

Field trials were conducted at Fuxin (121.73788E, 42.13649N)

in Liaoning Province, China, in 2018 and 2019 cropping seasons

(hereafter referred as FX2018 and FX2019). The climate of this site

is a typical semi-arid continental climate with an annual

temperature and rainfall of 7.7°C and 450-550 mm, respectively.

Three replicates were performed under WW and DS conditions in a

randomized block design. Each plot consisted of two rows, 0.6 m

apart that were 2 m in length, and the planting density was 165,000

plants per ha. The water supply of WW condition was delivered by

drip irrigation, while that of DS treatment was delivered by

natural precipitation.

The pot-culture experiments were conducted under open field

conditions at Liaoning Academy of Agricultural Sciences, Shenyang

(123.56265E, 41.83179N), Liaoning Province, China, in 2020 and

2021 cropping seasons (hereafter referred as SY2020 and SY2021).

Soybean seeds were planted in plastic pots (30 cm × 30 cm × 25 cm)

with 16.0 kg soil. In a randomized block design, three replications

(pots) contained three plants each. The DS treatment was carried

out throughout the flowering and podding periods of soybean. Soil

moisture content was maintained at 80% of the field’s capacity to

hold water under WW conditions, whereas it was 60% under water

stress conditions. We measured the soil water content every three

days and replenished it as needed.
2.2 Phenotypic evaluations and
descriptive statistics

Data of three yield-related traits were collected at maturity (R8).

In field trials (FX2018 and FX2019), a random sample of 10 plants

from each plot were used to determine the yield-related traits,

including pod number per plant (PN), biomass per plant (BM) and

seed weight per plant (SW). In pot-culture experiments (SY2020

and SY2021), three plants of each pot were used to measure the

above traits.

Phenotypic values under WW and DS conditions in the

FX2018, FX2019, SY2020 and SY2021 environments were used

for analysis. An ANOVA table was used to calculate each trait’s

broad-sense heritability (Zhao et al., 2020). The best linear unbiased
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prediction (BLUP) for each phenotypic value across all

environments was calculated using the lmer function in the R

package lme4 (ht tp : / /www.R-project .org/ ) to reduce

environmental variation (Bates et al., 2012). R version 3.5.1 was

used to determine Pearson’s correlation coefficients (r) for WW and

DS conditions separately.
2.3 Genotyping of soybean germplasm

Using a modified CTAB method, DNA from leaves of about 60 d

after germination was extracted (Saghai Maroof et al., 1984). SLAF-

seq technology (Sun et al., 2013) was used to generate molecular

markers in 188 soybean germplasm samples. Our restriction enzymes

of choice were RsaI and HaeIII (NEB, Ipswich, MA, United States)

(http://phytozome.jgi.doe.gov/pz/portal.html). Adenine was added to

the 3’ end of the digested fragments, and the Dual-index was used to

distinguish raw sequencing data from digested fragments (Kozich

et al., 2013). We obtained SLAF tags by digestion of each soybean

germplasm, fragment ligation, PCR amplification, and selection of

target fragments for SLAF libraries (Sun et al., 2013). Following

quality certification, SLAF-seq using the Illumina HiSeqTM 2500

platform (Illumina, Inc., San Diego, CA, United States) was

performed. SLAF libraries were evaluated by comparison them

with rice (Oryza sativa L. ssp. japonica cv. Nipponbare) libraries

(http://rice.plantbiology.msu.edu/), which were constructed and

sequenced using the same procedures.

In order to ensure the quality of the bioinformatics analysis, a

standard protocol was followed in the grouping and genotyping of

SLAF-seq data. We compared the filtered sequencing reads with the

reference genome using the BWA software (http://bio-

bwa.sourceforge.net/) (Li, 2013). In order to classify SLAF makers

into polymorphic, non-polymorphic, and repetitive categories,

allele frequencies and gene sequence differences were taken into

account. SLAF tags were used to identify polymorphic SNP loci

mostly using GATK (McKenna et al., 2010). In addition, to ensure

the reliability of SNPs identified using GATK, SAMtools also was

used to detect SNPs with reference to Li et al. (2009). SNPs that are

reliable for further analysis have been identified by both GATK and

SAMtools. SNPs with minor allele frequencies (MAF) > 0.05 and

marker integrity frequencies > 80% (Zhou et al., 2017) were selected

for further analysis.
2.4 Population structure, clustering and
linkage disequilibrium analysis

Admixture software was used to generate admixture ratios for K

values 1-10 by analyzing population structure 1000 times. Using the

valley value of cross-validation error rates, the optimal number of

subgroups was determined according to cluster results (Fu and

Perry, 2020). Taxonomic and evolutionary relationships between

188 genotypes were assessed using 67,929 SNP markers through

phylogenetic analyses. On the basis of the distance matrix, the

distance between the materials was calculated using SNP markers

from the population. The phylogenetic tree was then constructed
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using Tree Best (v1.9.2) using the neighbor-joining (NJ) method

(Vilella et al., 2009). PopLDdecay software (Zhang et al., 2019) was

used to analyze LD for SNPs within a 1 Mb window.
2.5 Genome-wide association studies

A general linear model (GLM) was used for each SNP and trait

to test for association between them using TASSEL 5.0. The GLM is

based on P + Q matrices, where P is the phenotype matrix and Q is

the population structure matrix. The statistical model for the GLM

is: y = Xb + e. In this case, y is the data of individual environment or

adjusted BLUPs for each trait, X is the known design matrix, b is the

fixed effects vector, and e is the random residues vector. A 1000-

permutation test was run for the GLM analyses. The Bonferroni-

corrected threshold for the p-value was 0.05/67 929 (p=a/n,
a=0.05). For simplicity, p<7.36E-07 was used as the threshold

value. Manhattan plots were used to visualize significant markers,

and quantile-quantile (Q-Q) plots to show important p-value

distributions (expected versus observed p-values on a -log10).
2.6 Candidate gene analysis

Based on the GWAS results, pairwise linkage disequilibrium

measures were calculated between SNPs in the genomic regions

containing significant SNPs. A QTL interval was defined as one

where the squared allele frequency correlation between markers was

higher than 0.4. We scanned the genome regions in Soybase

(www.soybase.org) to identify genes underlying QTLs of interest.
3 Results

3.1 Phenotypic traits evaluation

Three yield-related traits of 188 diverse soybean germplasm was

determined under WW and DS conditions in four environments

(FX2018, FX2019, SY2020 and SY2021) and the BLUP data for these

traits was calculated. The PN, BM and SW under WW and DS

conditions exhibited normal distribution, which was basically the

same in the four environments as well as the BLUP data (Figure 1).

Under WW and DS conditions, as expected, there was significant

positive correlations among these yield-related traits. Table 2 shows

that PN, BM, and SW had extensive phenotypic variation in soybean

germplasm across all four environments. By using BLUP data, the

variation ranges of PN, BM and SW under WW condition (hereafter

referred as PN-WW, BM-WW and SW-WW) were 21.12-134.52,

22.90-93.08 g, and 2.67-41.08 g, respectively, while those under DS

condition (hereafter referred as PN-DS, BM-DS and SW-DS) were

8.66-92.89, 10.93-81.97 g, and 1.18-31.00 g, respectively. The analysis

of variance revealed highly significant differences in genotype,

environment, and genotype-environment interactions for three

yield-related traits. Apart from SW-DS, the effect of environment

was larger than that of genotype for these traits. It appears that these

yield-related traits are quantitative traits controlled by multiple genes
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and easily influenced by environment. The heritability of PN, BM and

SWunderWWcondition was 88%, 86%, and 76%, respectively, while

that under DS condition was 88%, 95%, and 85%, respectively.
3.2 Population structure and
linkage disequilibrium

Seven subgroups were identified based on the cross-validation

error rate and K-values for the 188 genotypes in the Admixture

analysis (Figures 2A, B). Further analysis of genetic differentiation
Frontiers in Plant Science 04131
was conducted using NJ-based clustering for samples from

Northeast and Huang-Huai-Hai regions in China as well as other

countries (Figure 2C). According to the phylogenetic tree, there are

seven main clusters; each of these groups corresponded to a major

subgroup of the Admixture analysis, which supports dividing the

population into seven major groups. Further marker-trait

association mapping was performed using the Q matrix at K=7.

In addition, 188 soybean accessions were assessed for genome-wide

LD using a subset of high-quality markers. At a threshold of r2 = 0.3,

the average decay distance of LD was 178.7 kb for all 188 soybean

accessions (Figure 2D).
FIGURE 1

Pearson’s correlation coefficients describing associations of three yield-related traits evaluated under well-watered (WW) and drought-stressed (DS)
conditions in four environments and best linear unbiased prediction (BLUP) data. PN, pod number per plant; BM, biomass per plant; SW, seed weight
per plant. The diagonal line illustrates the distribution of six trait-treatments. The scatter plot is displayed below the diagonal line. Above the diagonal
line are the correlation coefficient and significant deference. *** represents significant difference at p<0.001.
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3.3 GWAS identified significant SNPs
associated with yield-related traits

Using a threshold of 7.36E-07, 122 SNPs were significantly

associated with PN-WW, BM-WW, SW-WW, PN-DS, BM-DS and

SW-DS in the individual environment, which included 40 SNPs in

FX2018, 13 SNPs in FX2019, 41 SNPs in SY2020, and 28 SNPs in

SY2021 (Supplementary Table S1). By using the BLUP data, a total

of 41 SNPs were significantly associated with these traits, as

evidenced by the Manhattan and quantile-quantile plots (Q-Q)

(Figure 3). For the PN, six significant SNP loci were detected on

chromosome 4 and 19 under WW condition, and 12 significant

SNP loci were detected on chromosome 8 under DS condition

(Figure 3A), which explained about 11-18% of the phenotypic

variation (Supplementary Table S1). For the BM, eight significant

SNP loci were detected on chromosome 1, 3, 8 and 15 under WW

condition, and seven significant SNP loci were detected on

chromosome 17 and 18 under DS condition (Figure 3B),

which explained about 11-16% of the phenotypic variation

(Supplementary Table S1). For the SW, five significant SNP loci

were detected on chromosome 1, 4 and 20 under WW condition,

and three significant SNP loci were detected on chromosome 8

under DS condition (Figure 3C), which explained about 13-17% of

the phenotypic variation (Supplementary Table S1).
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3.4 Haplotype analysis in landraces
and improved cultivars

In total, 39 significant SNPs were detected simultaneously in the

BLUPmodel and in at least one environment (Supplementary Table

S1), which were further used to limit QTL intervals related to the

target trait. In the genomic regions of these significant SNPs, the LD

blocks were determined. Only 26 QTLs were identified for all 39

significant SNPs, distributed on chromosomes 1, 3, 4, 8, 15, 17, 18,

19, and 20 (Table 2). Of these, six QTL qPN-WW19.1, qPN-DS8.8,

qBM-WW1, qBM-DS17.4, qSW-WW4 and qSW-DS8 had at least

three significant SNP loci with significant genetic correlation and

close genetic relationship. During subsequent haplotype analysis,

two or three distinct haplotypes for each QTL were revealed.

QTL qPN-WW19.1 and qPN-DS8.8 that controlled the PN

under WW and DS conditions, were detected in approximate

interval of 245-kb and 495-kb on chromosome 19 and 8,

respectively (Figure 4). For qPN-WW19.1, 91% of landraces and

81% of improved cultivars possessed Hap2, which had greater PN

than Hap1 under WW condition.

Two QTL qBM-WW1 and qBM-DS17.4 that controlled the BM

under WW and DS conditions, were detected in approximate 184-

kb interval on chromosomes 1 and 28-kb interval on chromosomes

17, respectively (Figure 5). For qBM-WW1, only 28% of landraces
TABLE 1 Geographical source of 188 soybean germplasm in this study.

Geographical source Landrace Improved cultivar Total

Northeast, China Heilongjiang 9 21 30

Jilin 13 15 28

Liaoning 9 25 34

InnerMongolia 1 5 6

Huang-Huai-Hai, China Beijing 0 8 8

Hebei 8 6 14

Shandong 2 3 5

Shanxi 3 4 7

Henan 1 3 4

Anhui 0 1 1

Jiangsu 3 3 6

Other country Korea 0 2 2

Japan 0 3 3

Russia 0 2 2

France 0 2 2

Italy 0 1 1

Switzerland 0 1 1

Ukraine 0 1 1

US 0 33 33

Total 49 139 188
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and 31% of improved cultivars were included Hap2, which had

larger BM than Hap1 under WW condition. For qBM-DS17.4, only

6% of landraces and 10% of improved cultivars were included Hap3,

which had larger BM than Hap1 and Hap2 under DS condition.
Frontiers in Plant Science 06133
Two QTL qSW-WW4 and qSW-DS8 that controlled the SW

underWW and DS conditons, were detected in approximate 212-kb

interval on chromosomes 4 and 12-kb interval on chromosomes 8,

respectively (Figure 6). For qSW-WW4, 93% of landraces and 96%
TABLE 2 Descriptive statistics and variance parameters estimated for three traits studied on 188 soybean germplasms under well-watered (WW) and
drought-stressed (DS) conditions in four environments and BLUP data.

Environment
PN (/plant) BM (g/plant) SW (g/plant)

WW DS WW DS WW DS

FX2018 Mean 57.54 38.29 47.90 25.59 14.04 9.07

Std 23.14 17.39 15.06 10.90 6.69 5.45

CV(%) 40.21 45.41 31.44 42.60 47.63 60.06

Min 16.95 6.74 18.55 6.51 2.28 0.76

Max 119.72 94.80 113.06 75.18 42.29 32.79

H2 0.95 0.98 0.90 0.95 0.98 0.97

FX2019 Mean 56.35 39.32 52.93 29.75 16.23 9.87

Std 22.65 17.51 17.44 14.59 7.61 5.87

CV(%) 40.19 44.54 32.95 49.05 46.87 59.47

Min 15.05 9.03 17.84 2.48 4.57 1.04

Max 116.91 87.87 109.52 96.05 46.10 33.88

H2 0.95 0.96 0.90 0.97 0.95 0.96

SY2020 Mean 70.69 50.68 58.42 33.79 17.68 10.70

Std 27.81 22.79 19.24 15.97 8.34 6.24

CV(%) 39.34 44.96 32.94 47.26 47.19 58.32

Min 21.17 11.09 22.70 8.36 2.34 0.83

Max 162.39 114.31 119.76 98.71 52.86 37.45

H2 0.96 0.96 0.91 0.97 0.97 0.97

SY2021 Mean 65.48 45.64 45.79 31.06 15.71 10.02

Std 24.73 19.67 23.25 17.53 6.61 5.64

CV(%) 37.77 43.09 50.78 56.43 42.07 56.27

Min 22.00 10.03 9.43 6.62 2.34 0.95

Max 143.20 94.05 127.29 106.95 38.57 30.29

H2 0.95 0.95 0.96 0.97 0.95 0.97

BLUP Mean 62.31 41.48 50.58 29.65 15.43 9.93

Std 23.71 17.94 14.93 13.16 6.61 5.49

CV(%) 38.06 43.24 29.52 44.39 42.84 55.33

Min 21.12 8.66 22.90 10.93 2.67 1.18

Max 134.52 92.89 93.08 81.97 41.08 31.00

H2 0.88 0.88 0.86 0.95 0.76 0.85

F value G 228.24*** 294.50*** 104.63*** 306.06*** 258.93*** 338.82***

E 874.98*** 1327.10*** 659.85*** 914.71*** 614.78*** 236.91***

G × E 5.82*** 7.91*** 16.43*** 17.67*** 18.05*** 13.17***
fron
BLUP, best linear unbiased prediction; PN, pod number per plant; BM, biomass per plant; SW, seed weight per plant; G, genotype; E, environment; G×E genotype×environment; H2, broad-sense
heritability. *** represents significant difference at p<0.001.
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of improved cultivars were included Hap2 and Hap3, which had

higher SW than Hap1 under WW condition. For qSW-DS8, 3% of

landraces and 13% of improved cultivars were included Hap2,

which had higher SW than Hap1 under DS condition.
Frontiers in Plant Science 07134
3.5 Candidate gene analysis in QTL regions

Using the Glycine max reference genome database (https://

www.soybase.org/), we searched for genes associated with yield-
A B
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FIGURE 2

Population structure and linkage disequilibrium (LD) analysis of 188 soybean germplasm. (A) Cross validation error rate for 188 samples based on
clustering from 1 to 10; X-axis is K-value 1-10, Y-axis is cross-validation error rate. (B) Colors represent separate groups in clustering analysis when
there are seven subgroups. (C) Phylogenetic tree of 188 soybean germplasm. Red represents the soybean germplasm from Northeast region, China;
Blue represents the soybean germplasm from Huanghuaihai region, China; Green represents the soybean germplasm from other countries.
(D) A plot of genome-wide LD decay for all 188 soybean germplasm. R2 indicates the squared allele frequency correlation between each pair of SNP
markers. On the X-axis is the distance between each pair of markers.
A B C

FIGURE 3

Circular manhattan plot and QQ plot for the best linear unbiased prediction (BLUP) values of pod number per plant (PN) (A), biomass per plant (BM)
(B), and seed weight per plant (SW) (C), under well-watered (WW) and drought-stressed (DS) conditions, respectively. The p-values at the
significance thresholds of 7.36E-07.
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related traits and drought tolerance in QTL regions detected under

WW and DS conditions, respectively (Table 3). In QTL regions of

qSW-WW1, qPN-DS8.3 and qPN-DS8.5, no gene has been found.

A total of 208 genes were identified in the 23 remaining QTL

regions, and the number of genes varied from 1 to 37 in each QTL

region. In this analysis, the number of candidate genes was reduced

to 22 genes using annotations based on functional annotations.

Under WW condition, there were three, three, and two

candidate genes for PN, BM, and SW, respectively. A total of

eight candidate genes were found to be involved in nucleotide

transport and metabolism, transcription, carbohydrate transport

and metabolism, and cell wall biogenesis. For three important QTL

qPN-WW19.1, qBM-WW1 and qSW-WW4, the putative candidate
Frontiers in Plant Science 08135
genes were Glyma.19G211300 , Glyma.01G119500 and

Glyma.04G124800, which encoding E3 ubiquitin-protein ligase

BAH1, AMP deaminase, and Protein Zinc induced facilitator-like

1, respectively.

In this study, due to their lack of detection under control

conditions, the QTLs found under DS conditions were considered

drought-responsive. Under DS condition, a total of seven, six and

one candidate genes for PN, BM, and SW, respectively, obtained as

putative ones for drought responsive in soybean. These 14

candidate genes were involved in transcription, signal

transduction mechanisms, secondary metabolites biosynthesis,

transport and catabolism, amino acid transport and metabolism,

and cell cycle control. For three important QTL qPN-DS8.8, qBM-
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FIGURE 4

Genome-wide association study results for pod number per plant (PN) under well-watered (WW) and drought-stressed (DS) conditions and the
analysis of the QTLs qPN-WW19.1 and qPN-DS8.8. (A) Manhattan plots for PN under WW and DS conditions. Using the horizontal line as a threshold,
the arrows indicate the location of the main peaks. (B) Locations of four SNP loci on chromosomes 19 and 8 and their LD based on paired R2 values.
(C) 188 soybean germplasm were genotyped by significant SNPs to detect haplotypes. (D) Haplotype differences in PN.
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DS17.4 and qSW-DS8, the putative candidate genes were

Glyma.08G269800, Glyma.17G057100 and Glyma.08G020900,

which encoding floral homeotic protein APETALA 1, WRKY

transcription factor 11, and ethylene-responsive transcription

factor CRF2, respectively.
4 Discussion

Three yield-related traits of 188 soybean germplasm were

analyzed under WW and DS conditions in four environments by

the GWAS approach. We investigated the genetic basis of

phenotypic differences in soybean yield traits, which can serve as

a reference for improving soybean molecular breeding under

normal as well as drought conditions.
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4.1 Yield-related traits analysis

Several complex molecular, physiological, and morphological

factors control the reduction in grain yield and yield-related traits

under drought stress (Mohammadi, 2014; Kadam et al., 2018).

During this experiment, the water deficit was adequate to assess the

genotypes’ ability to cope with drought, since there was a strong

reduction in productivity as well as variations in PN, BM and SW

range among accessions. For GWAS analysis, we used BLUP values

from four environments to eliminate environmental and locational

differences. Both random genetic effects and fixed environments

were considered simultaneously in BLUP. It is possible to improve

the accuracy of BLUP value prediction by predicting values in

different environments and among individuals with different

genotypes (Piepho et al., 2008). There has been extensive use of
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FIGURE 5

Genome-wide association study results for biomass per plant (BM) under well-watered (WW) and drought-stressed (DS) conditions and the analysis
of the QTLs qBM-WW1 and qBM-DS17.4. (A) Manhattan plots for BM under WW and DS conditions. Using the horizontal line as a threshold, the
arrows indicate the location of the main peaks. (B) Locations of four SNP loci on chromosomes 1 and 17 and their LD based on paired R2 values.
(C) 188 soybean germplasm were genotyped by significant SNPs to detect haplotypes. (D) Haplotype differences in BM.
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this method in QTL mapping, genome-wide association analyses,

and the selection of crops based on genome sequences (Wang et al.,

2016). Using the BLUP data, large phenotypic variations for the PN,

BM and SW can be observed in all the tested materials, especially

under DS condition. For all traits scored under WW condition,

heritability estimates ranged from 0.76 to 0.88, whereas under DS

condition, heritability estimates ranged from 0.85 to 0.95, indicating

that these three traits are highly heritable. Therefore, these traits can

be used by soybean breeders in selection programs to improve yield

and drought tolerance.
4.2 GWAS analysis and gene
prediction of key QTLs

By population structure analysis, all the tested materials were

divided into seven categories, indicating some variation within the
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populations. Similar results were found in phylogenetic analyses,

suggesting that these analyses can help prevent false positives in

GWAS (Eltaher et al., 2018). LD decayed to half the r2 (0.30) at

178.7 kb, and LD contained a number of significant SNPs,

suggesting that GWAS can be used to identify significant

markers-trait associations (Schwarz et al., 2015). In the Q-Q

diagram analysis results, most points were on the diagonal for all

traits, which explains the population structure well (Paterne

et al., 2021).

We identified 39 significantly SNPs associated with three traits

under WW and DS conditions by BLUP data and individual

environmental analyses. For these traits, no overlapping SNPs

were observed between WW and DS conditions, which indicates

the difficulty of improving soybean yield-related traits

simultaneously under different evaluation conditions. Based on

the LD analysis, only 26 genomic regions was chosen as the QTL

regions with an average of 176-kb intervals.
A

B

D

C

FIGURE 6

Genome-wide association study results for seed weight per plant (SW) under well-watered (WW) and drought-stressed (DS) conditions and the
analysis of the QTLs qSW-WW4 and qSW-DS8. (A) Manhattan plots for SW under WW and DS conditions. Using the horizontal line as a threshold, the
arrows indicate the location of the main peaks. (B) Locations of four SNP loci on chromosomes 4 and 8 and their LD based on paired R2 values.
(C) 188 soybean germplasm were genotyped by significant SNPs to detect haplotypes. (D) Haplotype differences in SW.
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TABLE 3 List of candidate genes located within the identified QTLs.

Trait
QTL
name

Significant SNP Chr
QTL

position

No.
of

genes

Candidate
gene
ID

Gene annotation

PN-
WW

qPN-WW4 rs042851 4
32575507-
32592587

0 NA NA

qPN-
WW19.1

rs194311,rs194316,rs194317 19
46284103-
46530081

37 Glyma.19G210900 E3 ubiquitin-protein ligase BAH1

qPN-
WW19.2

rs194339 19
46792316-
47006486

25 Glyma.19G217000 WRKY transcription factor 35

qPN-
WW19.3

rs194352 19
47278155-
47341447

9 Glyma.19G221600 Polygalacturonase

BM-
WW

qBM-WW1 rs012000,rs012001,rs012002 1
41066040-
41250284

5 Glyma.01G119500 AMP deaminase

qBM-WW3 rs030672,rs030673 3
6246003-
6246085

1 Glyma.03G048500 Disease resistance protein

qBM-
WW15

rs151122 15
17027720-
17203787

9 Glyma.15G178700 Eukaryotic translation initiation factor 3

SW-
WW

qSW-WW1 rs012795 1 51274755 NA NA

qSW-WW4 rs041398,rs041399,rs041401 4
16307361-
16520021

8 Glyma.04G124800
Protein ZINC INDUCED FACILITATOR-

LIKE 1

qSW-
WW20

rs202237 20
37043984-
37047052

1 Glyma.20G129100 Protein TIC 21

PN-DS qPN-DS8.1 rs081307 8
23302580-
23778598

17 Glyma.08G258800 Aspartic proteinase-like protein 2

qPN-DS8.2 rs081390 8
24998891-
25197286

3 Glyma.08G261200 Homocysteine S-methyltransferase 1

qPN-DS8.3 rs081420 8
25808374-
26012431

0 NA NA

qPN-DS8.4 rs081438 8
26079563-
26228773

1 Glyma.08G261700 NA

qPN-DS8.5 rs081461,rs081462 8
26498358-
26498365

0 NA NA

qPN-DS8.6 rs081509 8
27277729-
27586943

1 Glyma.08G262500 U-box domain-containing protein 14

qPN-DS8.7 rs081715,rs081722 8
30932153-
31426811

3 Glyma.08G265200 Calcium-binding protein CML21

qPN-DS8.8 rs081921,rs081922,rs081923 8
34768849-
35264470

12 Glyma.08G269800 Floral homeotic protein APETALA 1

qPN-DS8.9 rs082209 8
40748092-
40990195

18 Glyma.08G293300 Transcription factor MYB1R1

BM-DS
qBM-
DS17.1

rs170162 17
3412747-
3466772

1 Glyma.17G045900 Embryogenesis-associated protein EMB8

qBM-
DS17.2

rs170177 17
3870840-
4016954

19 Glyma.17G052200 UBP1-associated proteins 1C

qBM-
DS17.3

rs170185 17
4029241-
4068527

7 Glyma.17G053500 Casein kinase 1-like protein 1

qBM-
DS17.4

rs170193,rs170195,rs170199 17
4294571-
4322918

20 Glyma.17G057100 WRKY transcription factor 11

qBM-
DS17.5

rs173557 17
38770868-
38770949

1 Glyma.17G232500 RNA-binding protein 1

(Continued)
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Six QTL regions containing at least three significant SNP loci

with significant LD tend to co-inherit, which can be useful for

further genetic validation as well as marker-assisted selection.

Among these QTLs, three were consistent with previously

reported soybean QTLs. For example, within the previous

reported QTL interval (Chr19:386234-49312675) controlling PN

(Zhang J. et al., 2015), the present QTL qPN-WW19.1 associated

PN under WW condition was detected in SY2020, FX2021 and

BLUP data. Moreover, one SNP loci (Chr19:46340503) significantly

associate with plant height in soybean was previously reported by

Fang et al. (2017), which was also located within the interval of

qPN-WW19.1 (Chr19: 46284103-46530081). Within the QTL

interval of qPN-WW19.1, a gene Glyma.19G211300, encoding E3

ubiquitin-protein ligase BAH1, was predicted here as the putative

candidate gene. Members of the protein family E3 ubiquitin-protein

ligases play a significant role in the ubiquitin-proteasome pathway

to affect yield (Ge et al., 2016; Lv et al., 2022), such as GW2 in rice

(Choi et al., 2018), ZmGW2 in maize (Kong et al., 2014), and

TaGW2 in wheat (Lv et al., 2022).

The QTL qBM-DS17.4 associated BM under DS condition was

detected in FX2018, SY2020, FX2021 and BLUP data, which located

within the previous reported QTL interval (Chr17:5891979-

4629130) controlling shoot dry weight in soybean (Liang et al.,

2010). Within the QTL interval of qBM-DS17.4, a gene

Glyma.17G057100, encoding WRKY transcription factor 11, was

predicted here as the putative candidate gene. WRKY transcription

factors participate in various physiological and developmental

processes (Rushton et al., 2010), such as seed development

(Lagacã and Matton, 2004), seed dormancy and germination

(Zentella et al., 2007), senescence (Silke and Imre, 2002), and

development (Johnson et al., 2002). Plant hormones, including

abscisic acid (Zhang L. et al., 2015), jasmonic acid (Shimono

et al., 2007) and gibberellin (Zhang L. et al., 2015), are signaled

by WRKY proteins, according to recent findings. WRKY

transcription factors have been demonstrated to confer drought

tolerance in wheat (Gao et al., 2018; El-Esawi et al., 2019) and

soybean (Zhou et al., 2008; Shi et al., 2018).

The QTL qSW-WW4 associated SW under WW condition was

detected in FX2018, SY2020 and BLUP data, which located within

the previous reported QTL interval (Chr17:12310119-32617784)

that evaluated for the SW for a population grown in a low

phosphorus environment (Liang et al., 2010). Within the QTL

interval of qBM-DS17.4, a gene Glyma.04G124800, encoding

Protein Zinc induced facilitator-like 1, was predicted here as the

putative candidate gene. Due to their specialized role in

phytosiderophores efflux and auxin homeostasis, a subset of the
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zinc-induced facilitators are also proven to impart tolerance to

micronutrient deficiencies. In the case of Zn deficiency, crop yield is

affected (Krithika and Balachandar, 2016), while Fe deficiency can

impair several vital functions, such as photosynthesis and

respiration (Marschner, 1995). ZIFL genes contributes to

mobilization of Zn2+ in rhizospheric regions and mobilization of

Fe there by secreting phytosiderophores (Haydon and Cobbett,

2007; Meena et al., 2021)

QTL are considered validated if they are detected in a different

background as it is a true association across many genotypes. In this

study, all QTLs detected except the validated ones can be considered

novel locus that should be tested in another population. For

example, within the QTL interval of qSW-DS8, a gene

Glyma.08G020900, encoding ethylene-responsive transcription

factor CRF2, was predicted here as the putative candidate gene.

In many species, members of the AP2/ERF superfamily regulate

flower and seed development, and thus play a critical role in

regulating seed weight and further controlling seed yield (Jiang

et al., 2020). A subfamily of ERF proteins called cytokinin response

factors (CRFs) contributes to plant growth, development, nitrogen

uptake, and stress resistance (Zong et al., 2021). Recently, the gene

GmCRF4a in soybean has been reported to regulate plant height

and auxin biosynthesis, which would facilitate future molecular

breeding practice to improve soybean architecture (Xu et al., 2022).
4.3 Favorable haplotypes for
soybean breeding

Using the base types of SNP markers and distributions of alleles

associated with a trait, some haplotypes were identified, and

favorable haplotypes were identified based on their phenotypic

values using t-tests. The cultivars with favorable haplotypes in

qPN-WW19.1, qBM-WW1 and qSW-WW4 usually had greater

PN, BM and SW, respectively, under WW condition, while those in

qBM-DS17.4, qPN-DS8.8 and qSW-DS8 also had more desirable

phenotypes, respectively, under DS condition. During soybean

breeding, these important QTLs had been subjected to various

levels of selection, resulting in different proportions of favorable

haplotypes for each locus.

It has been well documented that the development of soybean

breeding has led to a change in agronomic traits. Linear increases in

PN and SW accounted for most of the historical yield improvement

(Morrison et al., 2000; Cui and Yu, 2005; Jin et al., 2010). In this

study, we found larger proportions of favorable haplotypes for locus

qPN-WW19.1 and qSW-WW4 in both landraces and improved
TABLE 3 Continued

Trait
QTL
name

Significant SNP Chr
QTL

position

No.
of

genes

Candidate
gene
ID

Gene annotation

qBM-DS18 rs184014,rs184015 18
37970702-
38400499

8 Glyma.18G164100
1-aminocyclopropane-1-carboxylate oxidase

homolog 12

SW-DS qSW-DS8
rs080050,rs080051,rs080052,

rs080053
8

1692570-
1704747

2 Glyma.08G020900
Ethylene-responsive transcription factor

CRF2
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cultivars, suggesting the selection for these favorable haplotypes by

breeders played an important role during historical yield

improvement. In this study, about 59.04% of the population,

including improved cultivar ‘Liaodou69’ (32.60 g/plant),

‘Liaodou32’ (31.92 g/plant), ‘Liaodou36’ (31.54 g/plant),

‘Liaodou14’ (30.49 g/plant), ‘Zhonghuang35’ (30.03 g/plant), and

‘Tiefeng31’ (28.04 g/plant) carried both superior haplotypes for

locus qPN-WW19.1 and qSW-WW4 and produced greater yields

under WW condition, suggesting that these QTLs had aggregated

by soybean breeding. Although the historical yield improvement

was primarily driven by higher BM (Balboa et al., 2018), we found

less proportions of favorable haplotypes for qBM-WW1, especially

in landraces. Moreover, the proportions of favorable haplotypes for

locus qBM-DS17.4, qPN-DS8.8 and qSW-DS8 were only 23%, 6%

and 3% in landraces, respectively, even though in improved

cultivars those were 18%, 10% and 13%, respectively. It may be

due to the belief that crop improvement has reduced their ability to

cope with future challenges, such as drought (Byrne et al., 2018;

Swarup et al., 2020). Our results implied that these QTLs qBM-

DS17.4, qPN-DS8.8 and qSW-DS8 had not experienced strong

selection during drought tolerant soybean breeding but had

potential for increasing soybean drought tolerance.
5 Conclusion

In this study, we genotyped 188 soybean germplasm using

SLAF-seq technology and evaluated their yield-related traits

under WW and DS conditions. By using BLUP data and

individual environmental analyses in GWAS, a total of 39 SNPs

were significantly associated with three traits under two conditions,

which were tagged to 26 genomic regions by linkage disequilibrium

(LD) analysis. Six locus could play a key role in determining PN,

BM and SW of soybean. The favorable haplotypes for locus qPN-

WW19.1 and qSW-WW4 had experienced strong selection during

historical yield improvement, while those for qBM-WW1, qBM-

DS17.4, qPN-DS8.8 and qSW-DS8 had not been fully utilized,

especially for drought tolerant soybean breeding. It was believed

that the superior haplotypes for these loci should be integrated to

improve yield-related traits. As a result of this study, a better

understanding of the genetic architecture driving high yields will

be gained and the foundation for marker-assisted breeding will be

laid in soybean.
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T decreases the first flower
node in bitter gourd
(Momordica charantia L.)
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Jichi Dong1, Jia Liu1, Chunfeng Zhong1, Jiaowen Cheng1*

and Kailin Hu1*
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Horticulture, South China Agricultural University, Guangzhou, China, 2Horticulture Research Institute,
Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, China, 3Department of Horticulture,
Foshan University, Foshan, China, 4Henry Fok School of Biology and Agricultural, Shaoguan
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In Cucurbitaceae crops, the first flower node (FFN) is an important agronomic

trait which can impact the onset of maturity, the production of female flowers,

and yield. However, the gene responsible for regulating FFN in bitter gourd is

unknown. Here, we used a gynoecious line (S156G) with low FFN as the female

parent and a monoecious line (K8-201) with high FFN as the male parent to

obtain F1 and F2 generations. Genetic analysis indicated that the low FFN trait was

incompletely dominant over the high FFN trait. A major quantitative trait locus

(QTL)-Mcffn and four minor effect QTLs-Mcffn1.1, Mcffn1.2, Mcffn1.3, and

Mcffn1.4 were detected by whole-genome re-sequencing-based QTL

mapping in the S156G×K8-201 F2 population (n=234) cultivated in autumn

2019. The Mcffn locus was further supported by molecular marker-based QTL

mapping in three S156G×K8-201 F2 populations planted in autumn 2019

(n=234), autumn 2020 (n=192), and spring 2022 (n=205). Then, the Mcffn

l ocus was fine-mapped in to a 77 . 98-kb phy s i c a l r eg ion on

pseudochromosome MC06 using a large S156G×K8-201 F2 population

(n=2,402). MC06g1112, which is a homolog of FLOWERING LOCUS T (FT), was

considered as themost likelyMcffn candidate gene according to both expression

and sequence variation analyses between parental lines. A point mutation

(C277T) in MC06g1112, which results in a P93S amino acid mutation between

parental lines, may be responsible for decreasing FFN in bitter gourd. Our

findings provide a helpful resource for the molecular marker-assisted selective

breeding of bitter gourd.

KEYWORDS

bitter gourd, first flower node, quantitative trait locus, fine-mapping, FLOWERING
LOCUS T
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Introduction

The appearance of the first flower is a signal of the pivotal

transition from vegetative to reproductive growth in flowering

plants (Pnueli et al., 1998; Zahid et al., 2021). Both the time of

first flowering and the first flower node (FFN) are useful for the

evaluation of crop maturity, and are thus considered important

agronomic traits in crop improvement endeavors (Yuan et al., 2008;

Zhang et al., 2018; Zhang et al., 2019). In the model plant

Arabidopsis thaliana, FLOWERING LOCUS T (FT) is an

important regulator gene in determining the flowering time

(Corbesier et al., 2007; Turck et al., 2008). The function of the FT

gene has also been characterized in several Cucurbitaceae crops. In

cucumber (Cucumis sativus), the CsFT gene has been reported to

explain 52.3% of the phenotypic variation in flowering time, and is

theorized to have been crucial to the spread of this species from its

origin in the tropics to higher latitudes (Lu et al., 2014; Wang et al.,

2020). The overexpression of CsFT, as well as Cm-FTL1 and Cm-

FTL2 from squash (Cucurbita maxima) and CmFT from melon

(Cucumis melo), in Arabidopsis promotes early flowering (Lin et al.,

2007; Yang et al., 2022). Furthermore, the overexpression of

Arabidopsis-derived AtFT in squash also results in early flowering

(Lin et al., 2007).

Several studies have reported that other genes are also

associated with the regulation of flowering time in Cucurbitaceae

crops. For example, in cucumber, silencing CsGL2-LIKE results in

delayed male flowering through inhibition of CsFT expression (Cai

et al. (2020). Yi et al. (2020), utilizing haplotype analysis, report that

ClGA2/KS is associated with flowering time in watermelon

(Citrullus lanatus). The overexpression of cucumber-derived

CsTFL1b, a homolog of TERMINAL FLOWER 1 (TFL1), results

in later flowering in transgenic Arabidopsis (Zhao et al., 2018; Cai

et al., 2020). Contrarily, the overexpression of cucumber-derived

CsBCAT (CsBCAT2, CsBCAT3, and CsBCAT7) and CsMADS02 has

been shown to accelerate flowering in transgenic Arabidopsis (Lee

et al., 2019; Zhou et al., 2019). Although the function of these genes

has not been universally verified, these initial reports provide clues

for the further dissection of the regulation of flowering time in

Cucurbitaceae crops. In addition, several quantitative trait loci

(QTLs) have been reported to be associated with flowering time

in cucurbits. Pan et al. (2017) and Sheng et al. (2020) identified

three and two QTLs associated with flowering time in cucumber,

respectively. McGregor et al. (2014) identified a major QTL

associated with male flowering time in watermelon, which was

later verified by Gimode et al. (2020).

Bitter gourd (Momordica charantia), so named because of its

characteristically bitter taste, is an edible and medicinal cucurbit

that has been used to treat hypertension, cancer, diabetes, infection,

hyperlipidemia, and obesity (Akihisa et al., 2007; Zhang et al., 2012;

Wang et al., 2017). Bitter gourd originated in Africa (Schaefer et al.,

2009; Schaefer and Renner, 2010) and has become an important

crop across Asia, Africa, the Caribbean, and South America, among

other regions (Basch et al., 2003). In bitter gourd, low FFN or early

flowering is usually considered as an important indicator of the

early maturity trait. To date, genetic mapping studies have revealed
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at least 21 QTLs associated with female flowering time and 12 QTLs

associated with male flowering time in bitter gourd (Wang and

Xiang, 2013; Cui et al., 2018; Gangadhara Rao et al., 2018; Kaur

et al., 2022). However, there are currently no research reports about

genetic mapping of the FFN trait in bitter gourd.

Thanks to the completion of the fully sequenced and assembled

bitter gourd genome (Urasaki et al., 2017; Cui et al., 2020;

Matsumura et al., 2020), the mapping and cloning of genes

controlling important agronomic traits has become easier. Like

typical cucurbits species such as cucumber or melon, there are many

types of sexual plants in bitter gourd, of which monoecy that carries

both unisexual male and female flowers and gynoecy that harbors

only female flower have been reported (Kole, 2020; Zhong et al.,

2023). Here, we used a segregating F2 populations crossing from a

gynoecious female parent and a monoecious male parent to

elucidate the molecular mechanism of FFN regulation in bitter

gourd. We first performed a whole-genome re-sequencing-based

QTL mapping to rapidly identify FFN-associated genetic loci. Next,

we conducted a molecular marker-based classical QTL mapping to

confirm the stability of the major effected QTL in three F2
population cultivated three different environments, respectively.

Finally, we fine-mapped the identified candidate gene. Both

expression and sequence variation analyses suggest that the

candidate gene MC06g1112 regulates FFN in bitter gourd. The

results of this study will be invaluable for breeding improved bigger

gourds, and further our understanding of the regulation of floral

timing in cucurbits.
Materials and methods

Plant materials

A gynoecious, low-FFN (7-10th nodes) inbred line (S156G, P1)

(Figure 1A) and a monecious, high-FFN (16-19th nodes) inbred line

(K8-201, P2) (Figure 1B) were used as the female and male parents,

respectively, to construct the F1 generation, which was then self-crossed

to generate the F2 population. Both of the parental lines (S156G and

K8-201) had been previously whole-genome re-sequenced (Zhong

et al., 2022). All plants, representing four generations (P1, P2, F1, and

F2), were cultivated across three quarters (autumn 2019, autumn 2020,

and spring 2022) at the experimental field of the SCAU Teaching &

Research Base in Zengcheng District, Guangzhou, China (23.24N,

113.64E), under standard agronomic management. Plants from the

S156G×K8-201 F2 population (n=234), which were cultivated in

autumn 2019, were used to preliminarily map FFN-associated

genetic loci by whole-genome re-sequencing-based QTL mapping.

Plants from three S156G×K8-201 F2 populations, cultivated in

autumn 2019 (n=234), autumn 2020 (n=192), and spring 2022

(n=205), were employed for molecular marker-based QTL mapping

to confirm the stability of the major effected QTL. Finally, a large

S156G×K8-201 F2 population (n=2,402) was used to fine-map the

candidate region associated with FFN. The number of nodes from the

node with the first alternate leaf to the node carrying the first flower

was used to quantify FFN in bitter gourd.
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DNA library preparation for whole-genome
re-sequencing

The CTAB method (Porebski et al., 1997) was used to isolate

genomic DNA (gDNA) from young leaves, and each sample was

stored at -20°C prior to analysis. gDNA isolated from the

S156G×K8-201 F2 population (n=234) was utilized to construct

DNA sequencing libraries with a KAPA-Hyper Plus Kit (KAPA

Biosystems, MA, USA). Briefly, DNA was fragmented by

ultrasonication to sizes of 250-350 bp, which were utilized for

end-repairing and 3’ adenylation. After the adapters were ligated

to the ends of these 3’-adenylated fragments, the products were

purified by gel recovery. The recovered products were amplified by

polymerase chain reaction (PCR) to construct the DNA sequencing

libraries. The quality of the DNA sequencing libraries was evaluated

using an Agilent 2100 Bioanalyzer (Agilent Technologies, CA, USA)

and a Real-Time PCR (qPCR) System (Bio-Rad, CA, USA). Finally,

the qualified DNA sequencing libraries were sequenced on an

Illumina Nova-Seq platform (Illumina, CA, USA).

Whole-genome re-sequencing-based
QTL mapping

Quality control of raw whole-genome re-sequencing data,

including removal of adapter sequences and low-quality reads,

was conducted with Fastp (Chen et al., 2018). Clean reads were

aligned to the Dali-11 reference genome with BMA-MEM2

(Vasimuddin et al., 2019; Cui et al., 2020), and the alignment
Frontiers in Plant Science 03145
results were evaluated with Qualimap2 (Okonechnikov et al., 2016).

Both single nucleotide polymorphisms (SNPs) and insertions and

deletions (InDels) were called with BCTtools (Li, 2011), and all

variations were annotated with ANNOVAR (Wang et al., 2010).

SNPs with a minor allele frequency <0.05 or a missing call

frequency >0.1 were removed with VCFtools (Danecek et al.,

2011). High quality SNPs were further used to QTL mapping

using QTL package in R language. First, the multiple imputation

method was used to calculate the LOD value by QTL scanning, and

then the significant threshold of LOD value was obtained by 1000

permutation test. Finally, the confidence interval of the selected

QTL was identified by LOD support intervals evaluation method.
Molecular marker-based QTL mapping

The variation in SNPs and InDels between the two parental

lines (S156G and K8-201) was obtained by aligning the clean re-

sequencing data to the Dali-11 reference genome using SOAP2 (Li

et al., 2009). Primers for SNP and InDel molecular markers within

the whole-genome re-sequencing-based QTL mapping-delimited

candidate region were designed with Primer3 Plus (https://

www.primer3plus.com), and SNPs were converted to cleaved

amplified polymorphic sequences (CAPS) or derived CAPS

(dCAPS) markers. Primer sequences are listed in Supplementary

Table 1. PCR was carried out in a 10 µL of reaction volume

consisting of 0.2 µL of forward and reverse primers (10 µmol/L),

50-100 ng of DNA template, 5 µL of Green Taq Mix (Vazyme,

Nanjing, China), and 3.6 µL of nuclease-free water. The PCR
FIGURE 1

Phenotypic evaluation of the FFN trait. (A) Low-FFN (7-10th nodes) inbred line S156G (P1). Bar=10 cm. (B) High-FFN (16-19th nodes) inbred line K8-
201(P2). Bar=10 cm. The red arrows in (A, B) indicate FFNs. (C) Average ( ± SD) FFN values of the S156G, K8-201, and S156G×K8-201 F1 generations
recorded from autumn 2019, autumn 2020, and spring 2022. Different lowercase letters indicate statistical significance at the 0.01 level. (D)
Phenotypic distribution of the FFN trait from the three S156G×K8-201 F2 populations cultivated in autumn 2019, autumn 2020, and spring 2022.
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procedure was as follows: initial denaturation at 94 °C for 3 min; 34

cycles of denaturation at 94 °C for 15 s, annealing at 55 °C for 15 s,

and extension at 72 °C for 30 s; and final extension at 72 °C for 5

min. The InDel primer-amplified PCR products were directly

visualized with 6% polyacrylamide gel electrophoresis (PAGE).

The CAPS- or dCAPS-amplified PCR products were first digested

with corresponding restriction endonucleases (Supplementary

Table 1) at a stationary temperature of 37 °C for 30 min, and the

digested products were then visualized with 6% PAGE.

Polymorphic markers from within the molecular marker-based

QTL mapping-delimited candidate region were utilized to genotype

the three F2 populations cultivated between autumn 2019, autumn

2020, and spring 2022. Genetic distances of those polymorphic

markers were calculated with JoinMap 4.0 (Van Ooijen, 2006).

Based on marker genotypes and FFN phenotypes of the three F2
populations, FFN-associated QTL mapping was conducted with

MapQTL 6.0 using the multiple QTL model (MQM mapping)

procedure (Van Ooijen, 2009).
Fine-mapping

Recombinant and non-recombinant members of the three F2
populations were identified using two markers flanking the

candidate region identified by molecular marker-based QTL

mapping. Non-recombinant plants were divided into three groups

(dominant homozygote, recessive homozygote, and heterozygote)

depending on whether both flanking markers were identical to

S156G, K8-201, or S156G×K8-201 F1, respectively. During the

process of fine-mapping, the average FFN values of the recessive

homozygote and heterozygote groups were used as a reference to

evaluate the FFN phenotype of the recombinant plant.

Recombinant plants were divided into two groups: group one

plants contained a recombination of the dominant homozygote

and heterozygote genotypes, and group two plants contained a

recombination of the recessive homozygote and heterozygote

genotypes. Only group two plants were utilized for further

genotyping with six newly-developed markers from within the

flanked region. By using a combination of FFN phenotype data

and genotype markers obtained from the group two plants, we

identified a more accurate candidate region and two new flanking

markers. These two new flanking markers were used to screen the

S156G×K8-201 F2 population (n=2,402) for plants containing a

recombination of the recessive homozygote and heterozygote

genotypes. The selected recombinant plants were then grown in

the field to evaluate their FFN phenotypes, and genotyped using

nine markers from within the newly-identified flanked region.

Finally, by using a combination of FFN phenotype data and

genotype markers obtained from these recombinant plants, we

delimited the FFN-associated fine-mapping interval.
Expression analysis and cloning of the
candidate genes

Prior to RNA extraction, tissue samples, including roots, leaves,

petioles, female flowers, sarcocarps, and stems (including the 5th,
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10th, 15th, 20th, and 25th node [shoot tip, ST]), were collected from

parental plants at the 25-leaf stage and frozen in liquid nitrogen.

Three biological replicates were used for all analyses. Total RNA

was extracted with an Eastep Super Total RNA Extraction kit

(Promega, Shanghai, China), and first-strand cDNA was

synthesized with an Eastep RT Master Mix kit (Promega,

Shanghai, China), according to the manufacturer’s instructions.

Quantitative real-time PCR (qRT-PCR) was performed using a TB

Green Premix Ex TaqTM II kit (Takara Bio, Shiga, Japan) on a

CFX384 Real-Time System (Bio-Rad, CA, USA). All primers are

listed in Supplementary Table 1. Six categories of tissue samples,

including roots, stems (15th node), leaves, petioles, female flowers,

and sarcocarps, were utilized to perform qRT-PCR for the genes

annotated within the fine-mapped interval. The five categories of

stem samples were utilized to perform qRT-PCR for the FNN-

associated candidate gene. Three technical replicates were used for

all assays. The relative expression level of each gene was normalized

using the bitter gourd beta-actin gene (MC02g1395) and quantified

using the delta-delta Ct method (2-DDCt) (Livak and

Schmittgen, 2001).

The primer sequences used to clone the full-length cDNA of the

FNN-associated candidate gene were designed according to the

gene annotation of Dali-11 reference genome (Cui et al., 2020)

(Supplementary Table 1). PCR amplifications of cDNA collected

from parental stem (15th node) samples were performed with

Phanta Max Super-Fidelity DNA Polymerase (Vazyme, Nanjing,

China), according to the manufacturer’s instructions. The PCR

products were purified and then ligated into the pMD19-T vector

(Takara, Shiga, Japan). At least three positive colonies per amplicon

were selected for Sanger sequencing, and the generated sequences

were assembled with ContigExpress (Lu andMoriyama, 2004). Both

nucleotide and amino acid sequences were aligned with ESPript 3.0

(https://espript.ibcp.fr/ESPript/cgi-bin/ESPript.cgi).
Results

FFN phenotypic characteristics across
four generations

We evaluated the FFN phenotype of each plant across four

generations, including P1 (S156G), P2 (K8-201), F1, and F2, planted

respectively in autumn 2019, autumn 2020, and spring 2022. Across

all three quarters, the FFN of the P1 (S156G) was significantly lower

than that of the P2 (K8-201) generation, with the FFN of the P1
(S156G) generation ranging from the 7th to the 9th node (average of

~8th node) and the FFN of the P2 (K8-201) generation ranging from

the 15th to the 19th node (average of ~17th node) (Figures 1A-C).

The FFN of the F1 generation was significantly higher than the P1
(S156G) generation and lower than the P2 (K8-201) generation,

ranging from the 9th to the 13th node (average of ~11th node)

(Figure 1C), indicating that the low FFN trait is incompletely

dominant over the high FFN trait. The FFN of plants in the three

F2 populations was highly stratified but tended toward the low FFN

of the P1 (S156G) generation, ranging from the 6th to the 23th node

(Figure 1D; Supplementary Table 2).
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Whole-genome re-sequencing-based
QTL mapping detects FFN-associated
genetic locus

Whole-genome re-sequencing of the 234 F2 individuals planted

in autumn 2019 resulted in the generation of 557.9 Gb of raw data,

and 533.9 Gb of clean data was obtained after filtering

(Supplementary Table 3). The clean data exhibited a Q20 of 97.3%

and an average sequencing depth of 7.6×, indicating that the data was

of high quality enough for subsequent bioinformatics analysis.

Approximately 98.0% of the clean reads were aligned to Dali-11

reference genome, with a sample-specific genomic coverage of 88.6%

(Supplementary Table 4). After aligning the clean reads to the Dali-11

reference genome (Cui et al., 2020), a total of 175,019 high-quality

SNPs were obtained (Supplementary Figure 1). A QTL mapping

combining FFN phenotype and SNP data from the 234 F2 individuals

identified one ~3.77 Mb FFN-associated major effected QTL

designated as the Mcffn locus located between 9.26 Mb and 13.03

Mb on pseudochromosome MC06 (hereafter referred to as MC06),

and four minor effected QTLs namedMcffn1.1,Mcffn1.2,Mcffn1.3, and

Mcffn1.4 located in pseudochromosome MC01, MC02, MC03, and

MC08, respectively. (Figure 2A, Supplementary Table 5).
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The Mcffn locus is narrowed into a
1.61-Mb interval by molecular
marker-based QTL mapping

Eleven polymorphic InDel markers (FN1-FN11) were

developed within the ~3.77 Mb candidate region (Supplementary

Table 1) and used to genotype 631 F2 individuals cultivated in

autumn 2019 (n=234), autumn 2020 (n=192), and spring 2022

(n=205). QTL mapping combining FFN phenotype and marker

genotype data revealed that the 11 polymorphic InDel markers

exhibited different LOD values between the three quarters: 8.50-

53.81 in autumn 2019, 3.27-47.01 in autumn 2020, and 6.90-58.70

in spring 2022 (Figure 2B). These results suggested that all of the 11

InDel markers were linked to the FFN phenotypes. It is worth

noting that the maximum LOD values of 56.73, 52.87, and 59.76,

which explained 67.3%, 71.9%, and 73.9% of the variation in the

FFN phenotype in the three F2 populations planted in autumn 2019,

autumn 2020, and spring 2022, respectively, were all located

between two markers, FN5 and FN6 (Figure 2B). Accordingly, we

suggested that the Mcffn locus was located within a 1.61-Mb

physical interval between the FN5 (11,262,463 bp) and FN6

(12,873,591 bp) markers on MC06 (Figure 2C).
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FIGURE 2

Preliminary mapping of the Mcffn locus. (A) Whole-genome re-sequencing-based QTL mapping in the S156G×K8-201 F2 mapping population (n=234)
planted in autumn 2019. (B) Molecular marker-based QTL mapping in the Mcffn locus in three S156G×K8-201 F2 mapping populations planted in
autumn 2019, autumn 2020, and spring 2022. (C) Physical map of the molecular markers used for molecular marker-based QTL mapping. The numbers
under the bar correspond to the physical positions (Mb). The red bar represents the region of the Mcffn locus delimited by QTL analysis.
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The Mcffn locus is fine-mapped into a
77.98-kb interval

Based on genotyping with the two flanking markers (FN5 and

FN6), the 631 F2 individuals were divided into 579 non-

recombinant plants and 52 recombinant plants. In order to study

the relationship betweenMcffn genotypes and FFN phenotypes, the

579 non-recombinant plants were divided into three groups: 142

dominant homozygotes, 128 recessive homozygotes, and 309

heterozygotes. The FFN phenotype was significantly different

between groups across all three quarters, while within-group

differences were not significant (Table 1), suggesting that the FFN

trait is genetically, rather than environmentally, determined. To

reduce the possibility of errors when categorizing plants as either

dominant homozygotes or heterozygotes during the fine-mapping

process, we used the FFN value of 11.6 ± 2.6 for the heterozygote

genotype and 18.3 ± 2.0 for the recessive homozygote genotype

(autumn 2019) as reference criteria (Table 1).

The 52 recombinant plants were divided into two groups: group

one plants (n=30) contained a recombination of the dominant

homozygote and heterozygote genotypes, and group two plants

(n=22) contained a recombination of the recessive homozygote and

heterozygote genotypes. The group two plants were further divided

into nine haplotypes using six newly-developed markers (FN12-

FN17) (Figure 3A). By utilizing the FFN phenotype and marker

genotype data of the group two plants, as well as the FFN as the

reference, the Mcffn locus was further mapped into a 463.01-kb

physical interval between the FN13 (11,585,385 bp) and FN16

(12,048,398 bp) markers on MC06 (Figures 3A, B).

To determine a more precise region for the Mcffn locus, the

S156G×K8-201 F2 population (n=2,402) was genotyped using the

two new flanking markers (FN13 and FN16). Of these, 41 plants

containing a recombination of the recessive homozygote and

heterozygote genotypes were obtained. Using the FN14 and FN15

markers, and seven newly-developed markers (FN18-FN24), these

recombinant plants were divided into 14 haplotypes (Figure 3C and

Supplementary Table 1). By utilizing the FFN phenotype and

marker genotype data of the 41 recombinant plants, as well as the

FFN reference criteria, theMcffn locus was finally fine-mapped into

a 77.98-kb physical interval between the FN20 (11,722,144 bp) and

FN22 (11,800,118 bp) markers on MC06 (Figures 3C, D).
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Differential expression reveals MC06g1112
as the Mcffn candidate gene

By examining the annotation of the Dali-11 reference genome

(Cui et al., 2020), we identified four annotated genes (MC06g1110,

MC06g1111, MC06g1112, and MC06g_new0263) within the 77.98-

kb fine-mapping interval. We consideredMC06g1111 a pseudogene

because its predicted cDNA is only a 72-bp short nucleotide

fragment lacking a complete gene structure and because no

transcripts were detected in any sampled tissues (Cui et al., 2020).

Only minimal (Cq>35) express ion was detected for

MC06g_new0263 across tissues in both parental lines, and no

significant differences in the relative expression of MC06g1110

were detected across tissues between parental lines (Figure 4A).

However, MC06g1112 exhibited significantly different relative

expression across tissues between parental lines (Figure 4B).

Furthermore, MC06g1112 exhibited different relative expression

across the five different stem categories, increasing from the 5th to

the 15th node, and decreasing from the 15th to the 25th node, with

almost no expression at the ST (Figure 4C). Additionally,

MC06g1112 exhibited significantly higher expression in the stems

of P1 (S156G) plants than in the stems of P2 (K8-201) plants at all

nodes from the 5th to the 20th (Figure 4C). Accordingly, we

proposed that MC06g1112 was the FFN-associated Mcffn

candidate gene.
A point mutation of MC06g1112 may
decrease the FFN

By comparing the genomic sequences of the parental lines, we

identified seven single-nucleotide variations (SNV-1~SNV-7)

within the 77.98-kb fine-mapping interval (Supplementary

Table 6). Of these, only SNV-2 (11,775,926 bp) was located

within the MC06g1112 coding region, while the other six SNVs

were located in the intergenic spacer region (Supplementary

Table 6). The full-length MC06g1112 cDNA sequences of parental

lines were cloned and compared, as a result, MC06g1112 gene

consisted of 540 base pairs, which is a homolog of the FT gene

encoding a phosphatidylethanolamine-binding protein (PEBP), and

therefore was called McFT; additionally, we identified a point
TABLE 1 Statistical analysis of FFN trait across three genotypes.

Genotypea Autumn 2019 Autumn 2020 Spring 2020

No. Mean ± SDe SEg No. Mean ± SD SE No. Mean ± SD SE

RHb 50 18.3 ± 2.0 af 0.28 38 18.4 ± 1.4 a 0.23 40 18.2 ± 1.7 a 0.20

Hc 112 11.6 ± 2.6 b 0.24 94 12.2 ± 2.3 b 0.24 103 12.2 ± 2.2 b 0.22

DHd 54 8.9 ± 1.6 c 0.23 40 8.8 ± 1.5 c 0.24 48 8.5 ± 1.7 c 0.27
frontiers
aGenotype determined by FN5 and FN6,
bRecessive homozygote,
cHeterozygote,
dDominant homozygote,
eThe average FFN value ± standard deviation,
fDifferent lowercase letters indicate significance at the 0.01 level,
gStandard error.
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B CA

FIGURE 4

Relative expression of candidate genes. (A) The relative expression of MC06g1110 in different tissues at the 25-leaf stage. (B) The relative expression
of MC06g1112 in different tissues at the 25-leaf stage. (C) The relative expression of MC06g1112 at different stem node at the 25-leaf stage. R, root.
L, leaf. P, petiole. FF, female flower. Sa, sarcocarp. St-5, stem at 5th node. St-10, stem at 10th node. St-15, stem at 15th node. St-20, stem at 20th

node. ST, stem at 25th node. The expression levels are presented as the mean ± SD (n=3). ** represents significance at the 0.01 level (Student’s t test).
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FIGURE 3

Fine-mapping of the Mcffn locus. (A) Nine haplotypes representing the 22 recombinant plants screened (with flanking markers FN5 and FN6) from
the three F2 populations planted in autumn 2019, autumn 2020, and spring 2022. The dotted red lines indicate the boundaries of the Mcffn locus.
RH, recessive homozygote. H, heterozygote. N, number. FFN, first flower node. (B) Physical map of the molecular markers used to genotype the 22
recombinant plants. The red bar represents the Mcffn locus. (C) Fourteen haplotypes representing the 41 recombinant plants screened (with flanking
markers FN13 and FN16) from the large F2 population (n=2,402). (D) Physical map of the molecular markers used to genotype the 41 recombinant
plants (fine-mapping).
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mutation (C>T) located 277 bp away from the MC06g1112 start

codon, which leaded proline (P) of K8-201 to serine (S) of S156G

(hereinafter referred to as P93S) (Figure 5).

To further verify the association of SNV-2 (C277T) and FFN,

we designed a dCPAS marker to target SNV-2 by introducing a

mismatched base (C) at the end of forward primer to create aMsp I

restriction enzyme site, which can theoretically produce a 184-bp

single fragment with the DNA template of K8-201, a 205-bp single

fragment with the DNA template of S156G, and double fragments

of 184-bp and 205-bp with the DNA template of S156G×K8-201 F1
generation (Supplementary Figure 2). Actually, however, the results

of marker genotyping showed that both S156G and S156G×K8-201

F1 generation displayed double fragments of 184-bp and 205-bp,

and K8-201 displayed a single 184-bp fragment; in 234 S156G×K8-

201 F2 individuals (autumn 2019), all dominant homozygous and

heterozygous plants exhibited double fragments of 184-bp and 205-

bp, and all recessive homozygous plants exhibited a single 184-bp

fragment (Supplementary Figure 3). Therefore, we conducted

Sanger sequencing targeting SNV-2, which indicated that

the SNV-2 locus in both DNA and cDNA of K8-201 were

recessive homozygous genotype (C), in cDNA of S156G was

dominant homozygous genotype (T), while in DNA of S156G

was heterozygous genotype (C/T) (Supplementary Figure 4),

which implied that the region where SNV-2 is located might have

two or multiple copies on the bitter gourd genome.

The McFT proteins of the two parental lines were compared

with previously-characterized FT from C. sativus (CsFT), C. melo

(CmFT), C. lanatus (ClFT), Benincasa hispida (BhiFT), Lagenaria

siceraria (LsiFT), Cucurbita maxima (Cm-FTL1 and Cm-FTL2),

Cucurbita moschata (Cmo-FTL1 and Cmo-FTL2), Nicotiana

tabacum (NtFT), Oryza sativa (OsFT/Hd3a), and Arabidopsis

thaliana (AtFT). Sequence alignment and phylogenetic analysis

indicated that the McFT proteins from S156G and K8-201 were

highly homologous with these previously-characterized FTs,

especially FTs of cucurbits species, sharing between 73.63 and

97.21% sequence identity (Figure 6 and Supplementary Figure 5).
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Additionally, P93 was a strictly-conserved amino acid across all of

the examined species, with only one mutant S93 identified in S156G

(Figure 6). We speculated that the P93S mutation might be

responsible for the decreased FFN exhibited by S156G, since the

FFN of S156G was significantly lower than that of K8-201.
Discussion

The onset of flowering, which signals the transition from

vegetative to reproduction growth, is a particularly important

agronomic trait in Cucurbitaceae crops, as this trait can influence

the onset of maturity, the production of female flowers, and yield

(Lu et al., 2014; Zhao et al., 2018; Wen et al., 2019). Previous

research on the timing of flowering in bitter gourd has primarily

focused on the time of onset of flowering, either female or male,

from sowing, and has led to the identification of flowering-

associated QTLs through genetic mapping (Wang and Xiang,

2013; Cui et al., 2018; Gangadhara Rao et al., 2018; Kaur et al.,

2022). However, the gene responsible for regulating flowering time

in bitter gourd remained unidentified.

As one of the model plants for research on sex differentiation,

Cucurbitaceae species harbor all three basic types of flower sexes,

namely female, male, and hermaphroditic flowers (Dellaporta and

Calderon-Urrea, 1993; Schaefer and Renner, 2011). All these three

basic types carry both pistil and stamen primordia at early

development stage of flower bud, and the formation of female and

male flowers are resulted by the arrest of stamen and pistil

development, respectively (Bai et al., 2004). Previous studies have

revealed that the “arrest” processes are genetically controlled, such

as the loss of function of CmWIP1, CsWIP1, and ClWIP1 lead to

gynoecious lines in melon, cucumber, and watermelon, respectively

(Martin et al., 2009; Hu et al., 2017; Zhang et al., 2020). Also, our

previous works using S156G×K8-201 F2 population have confirmed

that the gene locus responsible for gynoecy in bitter gourd is located

at the end of MC01 (Zhong et al., 2023). In addition, our results of
FIGURE 5

Alignment of full-length cDNA and amino acid sequences of MC06g1112 between S156G and K8-201. Black boxes represent cDNA sequences and
red boxes represent amino acid sequences.
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phenotype investigation showed that there was no direct

relationship between gynoecy and FFN in the three S156G×K8-

201 F2 populations (Supplementary Table 2). Hence, we speculate

that gynoecy and FFN are independently inherited in bitter gourd.

Here, we used FFN as a proxy for flowering time in bitter gourd

and detected a main effect QTL (Mcffn) associated with FFN via

whole-genome re-sequencing-based QTL mapping (Figure 2A).

Then molecular marker-based QTL mapping indicated that Mcffn

could explain 67.3-73.9% of the variation in the FFN phenotype

(Figure 2B), which is higher than the explanatory power reported

for QTLs related to either female or male flowering time in bitter

gourd (Wang and Xiang, 2013; Cui et al., 2018; Gangadhara Rao

et al., 2018; Kaur et al., 2022). Furthermore, the consecutive

variation in FFN exhibited by the segregating F2 populations

(Figure 1D) implies that there may be multiple QTLs associated

with flowering time in bitter gourd, which is consistent with our

QTL mapping results (Figure 2A). Based on fine-mapping, gene

expression, and sequence comparison analyses, the MC06g1112

(McFT) gene was identified as the most likely FFN-associated

Mcffn candidate gene (Figures 3–5). In cucumber, CsFT has been

found to explain 52.3% of the variation in flower time, and two large

structural variations upstream of CsFT are associated with earlier

flowering (Lu et al., 2014; Zhao et al., 2018; Gimode et al., 2020).

Previous comparative genome analyses have shown that most of
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genomic sequences of pseudochromosome MC06 of bitter gourd,

including the genomic fragment whereMcFT is located, are mapped

to the chromosome 1 of cucumber (Cui et al., 2020). It is worth

mentioning that CsFT is just in this collinear genomic interval (Lu

et al., 2014), which may imply that bitter gourd and cucumber

evolved from the same ancestor and the molecular mechanism

regulating FFN or flowering time is highly similar in bitter gourd

and cucumber. In squash, the ectopic expression of Arabidopsis-

derived AtFT, which is responsive to inductive short-day (SD)

photoperiods, has highly effective in mediating floral induction

under long-day (LD) treatment (Lin et al., 2007). These evidences

indicate that FT genes of cucurbit species may be conserved, and

thus its development and application are beneficial to early maturity

breeding for cucurbit crops.

Several previous studies have confirmed that the FT gene is the

downstream target of many transcription factors (TFs) associated

with flowering time, such as CONSTANS (CO), PHYTOCHROME

INTERACTING FACTOR4 (PIF4), FLOWERING LOCUS C (FLC),

and PHYTOCHROME AND FLOWERING TIME 1 (PFT1), among

others (Putterill et al., 1995; Cerdán and Chory, 2003; Crevillén and

Dean, 2011; Kumar et al., 2012), and hence plays a vital role in

regulating flowering time across diverse flowering plants, including

Arabidopsis, rice (O. sativa), and winter oilseed rape (Brassica

napus), among others (Komiya et al., 2008; Ho and Weigel, 2014;
FIGURE 6

Alignment of amino acid sequences of FT proteins across different species of flowering plants. McFT, Momordica charantia; CsFT, Cucumis sativus;
CmFT, Cucumis melo; ClFT, Citrullus lanatus; BhiFT, Benincasa hispida; LsiFT, Lagenaria siceraria; NtFT5, Nicotiana tabacum; OsFT/Hd3a, Oryza
sativa; AtFT, Arabidopsis thaliana; Cm-FTL1 and Cm-FTL2, Cucurbita maxima; Cmo-FTL1 and Cmo-FTL2, Cucurbita moschata. The blue arrow
indicates the P93S amino acid mutation. The source of each FT protein sequence is listed in Supplementary Table 7.
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Vollrath et al., 2021). In Arabidopsis, the FT mRNA is expressed in

the vasculature of cotyledons and leaves while the FT protein

interacts with a bZIP TF (FD) in the shoot apex to promote floral

transition and initiate floral development (Abe et al., 2005; Wigge

et al., 2005). Lin et al. (2007), using squash as a model system, report

that the FT protein is translocated long distances through the

phloem to the shoot apical meristem, where it induces flowering.

Because of this, FT is generally considered a long-distance signal, or

a leaf-to-apex communicator, for the induction of flowering

(Corbesier et al., 2007; Lin et al., 2007). In this study, we detected

almost no expression of McFT in STs of both parental lines

(Figure 4C), suggesting that the functional mechanism of McFT

in bitter gourd may be similar with previously-reported squash (Lin

et al., 2007). In addition, previous studies have focused on FT

expression in cucumber mainly using leaf tissues (Lu et al., 2014;

Wang et al., 2020; Yang et al., 2022). Unlike these previous studies,

we examined FT expression in several bitter gourd tissues and

found that this gene was expressed in all tissues (with the exception

of STs), and the expression was particularly high in stem tissues

(Figure 4B). Our results suggest that the stem tissue may have the

greatest impact on flowering time, although the precise regulatory

mechanism underlying McFT expression requires further study.

In general, FT is a highly conserved protein which is robust to a

wide range of mutations and plays a similar functional role in many

species (Lin et al., 2007; Ho and Weigel, 2014; Putterill and

Varkonyi-Gasic, 2016). However, Ho and Weigel (2014) reported

that the P93 mutation of the FT protein may alter flowering time in

Arabidopsis, with the P93A and P93T mutations resulting in early

flowering and the P93H mutation resulting in delayed flowering. In

the present study, we displayed the conservatism of P93 of FT

protein across cucurbit species and some other flowering plant

species, and identified a P93S amino acid mutation of the McFT

protein in bitter gourd (Figure 6). We speculate that the P93S

mutation may be responsible for the decreased FFN exhibited by

S156G (Table 1). Furthermore, the results of genotypes and Sanger

sequencing targeting SNV-2 (C277T) suggested that the region

where SNV-2 is located might have two or multiple copies on the

bitter gourd genome (Supplementary Figure 3 and 4). The genome

replication events may still be the cause of the change of FFN, such

as CsACS1G, which is a copy of CsACS1 and leads to gynoecy in

cucumber (Mibus and Tatlioglu, 2004; Li et al., 2020). Overall, our

results suggest that the FT genes may be highly conserved across

cucurbits, and thus they should be considered targets for the

molecular breeding of early-maturing Cucurbitaceae crops.
Conclusions

FFN of bitter gourd is regulated by a major effect QTL named

Mcffn, with the low FFN is incompletely dominant over the high

FFN. The Mcffn locus was fine-mapped into a 77.98-kb physical

region on MC06. MC06g1112, a homolog of FT, was considered as

the most likely Mcffn candidate gene according to expression and
Frontiers in Plant Science 10152
sequence variation analyses. A point mutation (C277T) in

MC06g1112, which results in a P93S amino acid mutation

between parental lines, may be responsible for decreasing FFN in

bitter gourd.
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1College of Agriculture, Guangxi University, Nanning, China, 2School of Breeding and Multiplication
(Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, China, 3School of Tropical
Agriculture and Forestry (School of Agriculture and Rural Affairs, School of Rural Revitalization),
Hainan University, Haikou, Hainan, China, 4Department of Botany, University of Agriculture Faisalabad,
Faisalabad, Pakistan
Sugarcane (Saccharum spp. hybrids) is a worldwide acclaimed important

agricultural crop used primarily for sugar production and biofuel. Sugarcane’s

genetic complexity, aneuploidy, and extreme heterozygosity make it a

challenging crop in developing improved varieties. The molecular breeding

programs promise to develop nutritionally improved varieties for both direct

consumption and commercial application. Therefore, to address these

challenges, the development of simple sequence repeats (SSRs) has been

proven to be a powerful molecular tool in sugarcane. This study involved the

collection of 285216 expressed sequence tags (ESTs) from sugarcane, resulting

in 23666 unigenes, including 4547 contigs. Our analysis identified 4120 unigenes

containing a total of 4960 SSRs, with the most abundant repeat types being

monomeric (44.33%), dimeric (13.10%), and trimeric (39.68%). We further chose

173 primers to analyze the banding pattern in 10 sugarcane accessions by PAGE

analysis. Additionally, functional annotation analysis showed that 71.07%, 53.6%,

and 10.3% unigenes were annotated by Uniport, GO, and KEGG, respectively. GO

annotations and KEGG pathways were distributed across three functional

categories: molecular (46.46%), cellular (33.94%), and biological pathways

(19.6%). The cluster analysis indicated the formation of four distinct clusters

among selected sugarcane accessions, with maximum genetic distance

observed among the varieties. We believe that these EST-SSR markers will

serve as valuable references for future genetic characterization, species

identification, and breeding efforts in sugarcane.
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1 Introduction

Sugarcane (Saccharum spp. hybrids) is a global economic and

energy crop, with China ranking third in sugar production. This

perennial herb is known for its photosynthetic efficiency, higher

biomass accumulation, aneuploid polyploidy (≥8), and genetic

heterogeneity (Cordeiro et al., 2003). Conventional sugarcane

breeding, primarily by stem cutting is laborious and time-

consuming, often taking decades to produce new varieties. The

complex genetic background of sugarcane cultivars was derived

from interspecific hybridization of S. spontaneum L. and S.

officinarum L. (Garsmeur et al., 2018). The commercial sugarcane

cultivars inherit ~70–80% of their chromosomes from S.

officinarum, ~10–15% from S. spontaneum, and the remaining

~5–10% from interspecific recombination (D'hont et al., 1996).

The limited introgression in sugarcane breeding has led to a narrow

genetic basis in commercial cultivars (Singh et al., 2013).

Simple Sequence Repeats (SSRs) are highly polymorphic short

tandem repeats (1 – 6 bp) of nucleotide sequences ubiquitous in

the genomes of both eukaryotic and prokaryotic organisms (Tóth

et al., 2000). SSRs offer several advantages including transferability

between species, co-dominance, minimal expertise, instrumentation

dependencies, and reproducibility (Mccouch et al., 2001; Cai et al.,

2019). They are widely used in genetic diversity studies (Biswas

et al., 2020), population structure analysis (Zalapa et al., 2012),

association mapping (Gyawali et al., 2016), and linkage mapping

(Sugita et al., 2013). The International Sugarcane Microsatellite

Consortium (ISMC) has curated 221 SSR markers in sugarcane

cultivar R570 (French Reunion) and Q124 (Australian) (Oliveira

et al., 2009). Wu et al. (2019) developed an additional 226 SSR

markers using a combined fluorescence-labeled SSR and a high-

performance capillary electrophoresis (HPCE) system for parental

germplasm of the sugarcane breeding programs in China. Similarly,

You et al. (You et al., 2015) successfully employed expressed

sequence tag-SSR (EST-SSR) to establish the relationship among

69 varieties of Colocasia esculenta. Chen et al. (Chen et al., 2017)
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characterized 11 varieties of Lycium by EST-SSRs. Ukoskit et al.

(2019) identified 185 EST-SSRs in cultivated sugarcane “Phil6607”

and S. spontaneum “S6”. Recently, Xiao et al. (Xiao et al., 2020)

identified 46,043 SSRs in the diverse panel of sugarcane

(22 accessions).

Genome sequencing revolutionized the discovery and

application of SSRs in various plant species, including sugarcane.

The release of the S. spontaneum genome in 2018 (Zhang et al.,

2018) has provided a valuable resource for sugarcane cultivar

breeders. Previous efforts have yielded a relatively small number

of SSR markers in sugarcane, for instance, 351 EST-SSRs were

identified from 4085 EST sequences (Singh et al., 2013), 406 EST-

SSR markers with 63 were verified as polymorphic (Ul Haq et al.,

2016), and 2005 markers were identified from EST sequences with

65.5% showed polymorphism (Oliveira et al., 2009). Therefore, the

development of markers to assess the genetic relationships with a

comprehensive set of EST information has become an imperative

task. In this study, we attempt to screen EST-SSR based on

sugarcane unigenes, particularly those associated with functional

genes, and assess the genetic diversity among other sugarcane

accessions (10 in total) that have been previously overlooked.

Additionally, we also investigate the evolutionary relationship

between the sugarcane genome to those of sorghum and maize.

We believe that these newly developed EST-SSR markers will

provide a valuable reference for sugarcane breeding programs and

facilitate species screening and identification.
2 Materials and methods

2.1 Plant materials

A panel of diverse sugarcane accessions including wild type and

eight cultivated were sources from Guangxi, Yunnan, Taiwan, and

Fujian. These accessions were maintained at Guangxi University,

Nanning, China (Table 1).
TABLE 1 Information of sugarcane accessions.

Accession Number Type Genotypes Origin Pedigree

1 Wild S. officinarum Guangxi Unknown

2 Wild S. spontaneum Guangxi Unknown

3 Cultivated Yunrui05-782 Yunnan Hybrid of wild species

4 Cultivated Yunrui05-767 Yunnan Hybrid of wild species

5 Cultivated ROC10 Taiwan ROC5 × Taitang152

6 Cultivated ROC22 Taiwan ROC5 × 69-463

7 Cultivated Guitang28 Guangxi CP80-1018 × CP88-2032

8 Cultivated Guitang32 Guangxi Yuenong73-204 × CP67-412

9 Cultivated Funong40 Fujian
Funong93-3406×Yuetang91-

976

10 Cultivated Funong39 Fujian Yuetang91-976 ×CP84-1198
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2.2 EST retrieval and mining

The raw EST sequences (approximately 285216) of sugarcane

were downloaded from the NCBI (National Center for

Biotechnology Information; http://www.ncbi.nlm.nih.gov/dbEST/,

on January 14, 2013). The raw sequences were cleaned to remove

the poly A (5′ or 3′ end) or poly T stretches using EST-Trimmer

software (http://pgrc.ipk-gatersleben.de/misa/download/

est_trimmer.pl). Subsequently, we assembled the EST sequences

using Contig Assembly Program 3 (CAP3, http://doua.prabi.fr/

software/cap3) DNA sequences assembly program, with

parameter set as 90% identity and 40 bp overlap.
2.3 Identification of SSR motifs and primer
pair design

The assembled EST sequences were subjected to a search for

SSR motif using the Microsatellite program (MISA; http://pgrc.ipk-

gatersleben.de/misa/) with default parameters as follows: 10 for

monomeric repeats, 6 for dimeric repeats, and 5 for trimeric,

tetrameric, pentanucleotide, and hexameric repeats each.

Subsequently, the primer pair was designed in the program

Primer 3.0 with the standard criteria as a primer size of 18 to 27

bp and approximately 20 bp, PCR product size of 100 to 300 bp, GC

content from 40 – 60%, and melting temperature (Tm) variation

from 57 - 63°C.

For each SSR locus, we selected three primer pairs, and the pair

yielding the highest-scoring DNA was selected for subsequent SSR

marker studies. In-silico PCR analysis of the SSR primer pair was

performed using MFEprimer3.2.6 (https://mfeprimer3.ige

netech.com/) with default parameter setting, except the Tm was

set to 50°C (Yu and Zhang, 2011). The primers were synthesized

from Sangon Biotech (Shenzhen, China).
2.4 Genomics DNA extraction and
SSR genotyping

The genomic DNA (gDNA) was extracted from young

sugarcane leaves using the cetyltrimethylammonium bromide

(CTAB) method. A Nanodrop spectrophotometer (thermos

Scientific, USA) was used for gDNA quantification followed by

1% agarose gel electrophoresis for the quality of gDNA. Finally, the

DNA was normalized to 10 ng mL−1 for PCR amplification. The

PCR reaction was performed in a total reaction volume of 10 uL

containing 30−50 ng of gDNA, 2.0 mL of 10×Taq buffer (Mg2+), 0.2

mM each of dNTPs, 0.5 mM each forward and reverse primer, and

0.5 U of Taq DNA polymerase (Clontech, Takara, Shanghai). The

resulting PCR products, along with a 2000 bp DNA marker, were

separated on an 8% polyacrylamide gel through electrophoresis and

visualized using silver staining.

SSR genotyping data were recorded as one (band present) and

zero (band absent). The Polymorphism Information Content (PIC)

values were computed using the following formula:
Frontiers in Plant Science 03157
PIC = 1 −  o
n

i=1
Pɡ2

where Pg represents the frequency of a unique genotype if each

SSR marker represents a single locus with n SSR genotypes.

The presence and absence of SSR genotyping data were used to

construct the phylogenetic tree of 10 sugarcane accessions using the

Neighbor-joining (NJ) method based on Nei’s genetic distance with

the MEGAX program.
2.5 Unigenes annotation in sugarcane and
comparison with sorghum and maize

We annotated all the unigenes containing SSRs against Gene

Ontology (GO, http://www.geneontology.org) and Kyoto

Encyclopedia of Genes and Genomes (KEGG, http://

www.genome.jp/kegg/) databases. To assess the conservation of

sugarcane unigenes, we conducted BLASTN searches against the

sorghum (Z3116) and maize (B73) genomes, using an e-value

threshold of -15 for sorghum and -10 for maize. Our selection

criteria included a sequence identity of more than 80% and a

sequence length exceeding 100bp.
3 Results

3.1 Distribution of SSR markers

For SSR analysis, a dataset of 285,216 EST sequences retrieved

from the NCBI was subjected to quality and redundancy by the

CAP3 program. A total of 23666 unigenes sequences including 4547

contigs were generated (Supplementary Table S1). The unigenes’

length ranged from a minimum of 101 bp to a maximum length of

4040 bp, with approximately 17467 unigenes’ length varying

between 600 to 1200 bases, and 826 unigenes measuring 1800-

2400 nucleotides in length (Figure 1A). A summary of the

sequencing results is presented in Table 2. Using the MISA

identification tool, we predicted 4120 unigenes containing 4960

SSRs, with a frequency of one SSR/4.43 kb of the available ESTs.

Among these sequences, 685 ESTs contained more than one SSR,

with 415 being compound SSRs featuring multiple types of

repeat motifs.

SSR motifs in the S. spontaneum genome were found to be

highly frequent within gene regions (Figure 2 and Table S1). Of the

4960 SSR loci, we predicted a total of 133 motif types. Analyzing the

abundance of SSR types in sugarcane ESTs, we found that

monomeric (44.33%), dimeric (13.10%), and trimeric (39.68%)

were the most abundant, followed by tetrameric (1.62%),

pentameric (0.58%), and hexameric (0.65%) repeat types

(Figure 1B and Table 3). Furthermore, we observed that the

majority of the SSRs had a length of less than 20 bp, with SSRs

between 5 – 7 bp and 10 – 12 bp accounting for 75.90% of all the

SSRs identified. Additionally, the number of motif types for

monomeric, dimeric, trimeric, tetrameric, pentameric,

and hexameric were 2, 6, 30, 47, 22, and 26, respectively
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http://www.ncbi.nlm.nih.gov/dbEST/
http://pgrc.ipk-gatersleben.de/misa/download/est_trimmer.pl
http://pgrc.ipk-gatersleben.de/misa/download/est_trimmer.pl
http://doua.prabi.fr/software/cap3
http://doua.prabi.fr/software/cap3
http://pgrc.ipk-gatersleben.de/misa/
http://pgrc.ipk-gatersleben.de/misa/
https://mfeprimer3.igenetech.com/
https://mfeprimer3.igenetech.com/
http://www.geneontology.org
http://www.genome.jp/kegg/
http://www.genome.jp/kegg/
https://doi.org/10.3389/fpls.2023.1199210
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Jiang et al. 10.3389/fpls.2023.1199210
(Supplementary Table S2). The frequency distribution of identified

SSRs is shown in Figure 1C and Supplementary Table S3. Notably,

the most copious motif was A/T (1929) followed by CCG/CGG

(948), AG/CT (363), AGC/CTG (343), C/G (270), AGG/CCT (199),

ACG/CGT (152), ACC/GGT (122), AT/AT (121), AC/GT (114),

AAG/CTT (81), ATC/ATG (52), CG/CG (52), AAC/GTT (40),

ACT/AGT (17), and AAT/ATT (14). The remaining 67 motif types

had a total count of 143 (Figure 1C and Supplementary Table S3).

Among the monomeric repeats, the A/T motif was the most

abundant accounting for 88% of all mono repeats (Figure 3A). For

dimeric repeats, the AG/CT motif dominated, constituting 56% of

dimeric repeats, followed by AT/AT (19%), AC/GT (17%), and CG/CG

(8%) motif types (Figure 3B). In trimeric repeats, CCG/CGG was the

most frequent repeat motif, accounting for 48% of trimeric repeats,
Frontiers in Plant Science 04158
followed by CGC/CTG (17%), AGG/CCT (10%), ACG/CGT, and

ACC/GGT (each at 8%) (Figure 3C). Within tetrameric repeats,

AGGC/CCTG, AGGG/CCCT, and ATCC/ATGG (10%) were the

most abundant repeat motifs, followed by AAAG/CTTT (8%), and

AGAT/ATCT (6%). However, 41% of other types of repeats were also

detected in tetrameric repeats (Figure 3D). Within Pentameric repeats,

AAAAG/CTTTT (21%) was the most abundant repeat motif, followed

by ACAGG/CCTGT (14%), AAGGG/CCCTT (10%), and AGAGG/

CCTCT (10%) (Figure 3E). Regarding hexameric repeat, AACATG/

ATGTTC (7%) was the most plentiful motif. Other hexameric repeats

included AAGCCG/CGGCTT, ACCAGC/CTGGTG, AGAGGG/

CCCTCT, and AGGCGG/CCGCCT each accounting for 6%.

Additionally, approximately 69% of hexameric repeats were grouped

as other types of repeats (Figure 3F).
3.2 Conservation of SSR in maize
and sorghum

To study the evolutionary relationship among sugarcane, maize,

and sorghum species and identify unique motifs, we analyzed each

motif for the presence of other species. The results showed that

sugarcane unigenes were aligned with 11049 unigenes (68.97% of

sugarcane unigenes) in sorghum. Of these unigenes, 9382 unigenes

were anchored at a single locus, 1002 at two loci, 256 at three loci

and four loci, and more for the remaining 409 unigenes. This

distribution corresponds to ratios of 84.91%, 9.07%, 2.32%, and

3.70%, respectively. Similarly, 8516 alignments (53.16% of

sugarcane unigenes) were revealed between sugarcane and maize;

among these unigenes, 4806 mapped to a single locus, 2479 to two

loci, 477 to three loci, and 754 unigenes to four loci or more. This

distribution corresponds to ratios of 56.43%, 29.11%, 5.60%, and

8.85%, respectively. These results indicate a closer evolutionary

relationship between sugarcane and sorghum than that between

sugarcane and maize.
3.3 Validation and polymorphisms of
SSR primers

The results from in-silico PCR analysis showed that 235 of 240

SSR primer pairs had potential amplicons in at least one of the three
B CA

FIGURE 1

Characteristics of unigenes and SSR from the Saccharum spontaneum ESTs (A) The number of unigenes based on the number of nucleotides in
each, (B) the number of SSR motifs in monomeric, dimeric, trimeric, tetrameric, pentameric, and hexameric, and (C) the number of different SSR
motifs in the unigenes of Saccharum spontaneum.
TABLE 2 Details of ESTs and SSRs identified in sugarcane.

Parameters Numbers

Total raw EST-sequences 285,216

Contig 4547

Total number of sequences examined 23666

Total size of examined sequences (bp) 22487037

Minimum length of unigenes (bp) 101

Maximum length of unigenes (bp) 4040

Total number of identified SSRs 4960

Number of SSR containing sequences 4120

Number of sequences containing more than 1 SSR 685

Number of SSRs present in compound formation 415

Number of primers designed 3632

Monomeric repeats 2199

Dimeric repeats 650

Trimeric repeats 1968

Tetrameric repeats 82

Pentameric repeats 29

Hexameric repeats 32

Number of motif types 133
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sequenced species including S. spontaneum, maize, and sorghum.

Interestingly, five of the 242 SSR primer pairs failed to produce

potential amplicon in any of these species. Besides, we observed that

9, 13, and 7 SSR primer pairs exclusively generated potential

amplicons in the genomes of S. spontaneum, maize, and sorghum

genome, respectively. Furthermore, 46 SSR primer pairs had

potential amplicons in both maize and sorghum genomes, while 9

SSR primer pairs shared potential amplicons in both S. spontaneum

and sorghum genomes. It is noteworthy that 18 SSR primer pairs

were found to have potential amplicons both in S. spontaneum and

maize genomes. Astonishingly, 133 SSR primer pairs were observed

to have potential amplicons in all three genomes (Supplementary

Table S4A).

Subsequent analysis of the predicted SSR motifs within the

potential amplicons generated by SSR primer pairs showed that 219

of 235 SSR primer pairs had the predicted SSR motif in potential

amplicons. Of these, 16 SSR primer pairs only existed in both S.

spontaneum and maize, while 19 SSR primer pairs were found in the

sorghum genome. Similarly, 34 SSR primer pairs had SSR motifs

present in both maize and sorghum genomes, and 17 SSR primer

pairs shared SSR motifs in both S. spontaneum and sorghum

genomes. Additionally, 21 SSR primer pairs showed SSR motifs in

both S. spontaneum and maize genomes. In contrast, 106 SSR

primer pairs presented SSR motifs in all three genomes

(Supplementary Table S4A).

Among 235 primer pairs with potential amplicons, 40 SSR

primer pairs showed at least one base of the primer sequence that

did not match with the amplicon. Further analysis of the binding
Frontiers in Plant Science 05159
sites of SSR primer pairs with the potential amplicons showed that

53, 10, and 17 SSR primer pairs fully match with at least one of the

potential amplicons in the S. spontaneum, maize, and sorghum

genome, respectively. Nine SSR primer pairs were found to fully

match in both maize and sorghum genomes. Thirty-two SSR primer

pairs showed full matches in both S. spontaneum and sorghum

genomes, and 20 SSR primer pairs fully matched in both S.

spontaneum and maize genomes. Intriguingly, 54 SSR primer

pairs were found to fully match in all three genomes

(Supplementary Table S4A).

For the applicability of the deduced SSR markers, we selected

173 primer pairs for the analysis in 10 sugarcane accessions

including maize and sorghum using PAGE analysis (Figure 4).

After optimization, we retained 163 of 173 primers due to clear

banding patterns and ease of identification. Among these, 4 were

monomeric, 16 were dimeric, 125 were trimeric, 4 were tetrameric,

single pentameric, and 3 were hexameric with length ranges

spanning from 21 to 109 bp. These 163 SSR loci were capable of

amplifying 3-21 alleles within selected accessions, with an average of

9.46 alleles per locus. These SSR markers can be used effectively in

genetic diversity analysis, population genetics, and germplasm

identification. The polymorphism information content (PIC)

values for these SSR loci range from 0.292 to 0.972, with an

average PIC value of 0.808, indicating a high level of genetic

diversity (Supplementary Table S4B).

Additionally, we gained more insights by integrating in-silico

PCR analysis and amplification of three primer pairs for each locus.

We detected expected PCR products containing SSR loci in both in-
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silico PCR analysis and PCR amplification for all three primer pairs

in sugarcane. Notably, unexpected PCR bands were amplified for

three primer pairs. However, potential amplicons with long

fragments, especially more than 1000 bp, were not amplified in

maize and sorghum (Table 4 and Figure 4). Additionally, the 265/

266 bp bands amplified with primer PW2-23 fully matched in

sugarcane and maize were amplified successfully, while the partially

matched potential amplicon of 265 bp in sorghum was also

amplified. However, for primer pairs PW2-28 and PW2-29, no

potential amplicon of the expected PCR products was found

in maize and sorghum (Table 4). Nonetheless, an almost identical

PCR pattern to sugarcane was observed in maize and

sorghum (Figure 4).
3.4 Functional annotation of sugarcane
unigenes harboring the SSRs

To explore the potential functions of SSR-containing unigenes,

all of these unigenes were annotated against the publicly available

functional databases. This analysis indicated that 38.75% of

unigenes were associated with GO, while 43.96% were linked to

the KEGG. These SSR-containing unigenes were further classified

into three major GO functional categories including, biological

process, cellular component, and molecular function (Figure 5A

and Supplementary Table S5A). Within biological processes,

unigenes related to post-embryonic development, photosynthesis,

fruit ripening, DNA metabolic process, flower development, and

regulation of molecular function accounted for the largest

proportion. The cellular component category primarily

represented unigenes involved in peroxisome, cytoskeleton, and

mitochondrion. In the molecular function category, the most

enriched unigenes were involved in signaling receptor activity,

protein binding, structural molecule activity, and transporter

activity binding.

Furthermore, these unigenes annotated 195 KEGG metabolism

pathways, which were classified into six categories including cellular

processes, environmental information processing, genetic

information processing, metabolism, organismal systems, and

brite hierarchies (Figure 5B). In the second level of the pathway

classification, prominent categories included carbohydrate

metabolism, translation, signal transduction, transport and

catabolism, environmental adaptation, protein families: genetic

information processing, and protein families associated with

signaling and cellular processes. Additional details of each

category are provided in Figure 5B and Supplementary Table S5B.
3.5 Genetic diversity and relationships
among genotypes

To explore the genetic similarity of sugarcane accession, we

conducted a cluster analysis based on a matrix for the presence and

absence of deduced alleles. Figure 5 represents the clustering results

in the form of phylogenetic trees. The phylogenetic clustering

unveiled four distinct accession clusters: “S. robustum”,
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“Yunrui05-767”, “ROC10”, “ROC22” , “Guatang28” , and

“Guatang32” form a major cluster; Cluster-I, “Funong40”, and

“Funong39” are present in Cluster-II. “Yunrui05-782” and “S.

spontaneum” formed a separate cluster each (Cluster-III and IV)

at the bottom of the phylogenetic tree (Figure 5). The accession in

Cluster-I shares a genetic distance value of 7.4 in relation to other

accessions in Cluster-II. Notably, the Taiwan accessions, “ROC22”

and “ROC10”, as well as the Fujian varieties, “Funong40” and

“Funong39” showed a genetic distance of 2.5 between them,

indicating a higher degree of similarity as determined by the

studied SSR markers. The largest genetic distances were recorded

between Yunnan varieties clustered in different clades.
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4 Discussion

SSRs are known for their repeatability and polymorphism,

extensively being used in unveiling the genetic diversity and

markers of assisted breeding programs (Wang et al., 2010) of

various plant species including cucumber, cotton, foxtail millet,

rice, citrus, horse gram, maize, and sweet cane (Zhou et al., 2021).

However, the application of EST-SSR markers has been limited in

Sugarcane (Saccharum spp.) (Zhang et al., 2012). For instance, Xiao

et al. (2020) identified a set of 349 EST-SSR markers. In this study,

we have significantly expanded these marker resources by

developing a novel set of 4960 EST-SSR markers. Among these
B C

D E

A

F

FIGURE 3

The proportion of different repeat motif types in (A) Monomeric, (B) Dimeric, (C) Trimeric, (D) Tetrameric, (E) Pentameric, and (F) Hexameric.
FIGURE 4

EST-SSR verification profiles of 10 accessions from Sacchraum, and single accessions from maize and sorghum each detected by polyacrylamide gel
electrophoresis. The EST-SSR profiles with PW2-23, PW2-28, and PW2-29 primer pairs were visualized by silver staining. Lanes 1 to 12 were
Yunrui05-782, Yunrui05-767, S. robustum, S. spontaneum, ROC22, ROC10, Guitang28, Guitang32, Funong40, Funong39, B73 (Maize), Z3116
(Sorghum), respectively. M, BM2000 + 1.5K DNA marker. The arrows show the expected PCR products/potential amplicons.
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EST-SSRs, 163 primer pairs proved effective for identifying 10

sugarcane accessions, demonstrating the suitability of

transcriptome sequences as valuable resources for SSR

markers’ development.

The cluster results aligned well with the origin and pedigrees of

10 sugarcane accessions, providing insights into their relationships

(Figure 6 and Table 1). For instance, sugarcane accessions from

Fujian, Guangxi, and Taiwan clustered according to their breeding

regions, while those with common parents clustered together.

Additionally, our analysis revealed that S. officinarum shared a

closer relationship with cultivated sugarcane compared to S.

spontaneum. Interestingly, two cultivated sugarcane lines

(Yunrui05-782 and Yunrui05-767) derived from hybrid wild

species were distinct from other cultivated sugarcane varieties,

highlighting the potential of wild species in expanding the genetic

basis of cultivated sugarcane through sexual hybridization. We also

explored the distribution of SSRs within the genomes of 10

sugarcane cultivars, observing a relatively high frequency of SSRs,

approximately 1/4.43 kb. This frequency is comparable to certain
Frontiers in Plant Science 08162
other plant species such as P. violascens (1/4.45 kb), Chinese

cabbage (1/4.67 kb), and Wheat (1/5.46 kb) but significantly

higher than in Arabidopsis (1/13.83 kb) (Cardle et al., 2000; Peng

and Lapitan, 2005; You et al., 2015; Cai et al., 2019). The types of

repeat motifs in this study were not uniformly distributed in the

sugarcane genome. In general, unlike former research studies on

sugarcane (Table 4) by Singh et al. (2013); Xiao et al. (2020);

Ukoskit et al. (2012), and Ul Haq et al. (2016), we found that the

monomeric repeats accounted for the largest proportion, at 44.33%

followed by tetrameric and dimeric repeats which were 39.68% and

13.10%, respectively (Table 3). These results are different from Xiao

et al. (2020) in which trimeric repeats were most abundant. Dimeric

and trimeric repeats were predominant when excluding monomeric

repeats. Additionally, we found that the proportion of tetrameric,

pentameric, and hexameric repeats was significantly lower than

those reported by Xiao et al. [16] and other species (Table 5).

Overall, our findings contribute to a deeper understanding of the

SSR landscape in sugarcane and its implications for genetic studies

and breeding programs.
TABLE 4 Potential amplicon analysis results with PW2-23, PW2-28, and PW2-29 primer pairs in sugarcane (S. spontaneum), Maize (B73) and Sorghum
(Z3116) genome.

Name
SSR
motif

Potential amplicon with SSR motif Potential amplicon without SSR motif

S. spontaneum B73 Z3116 S. spontaneum B73 Z3116

PW2-23 (CG)6 265(5)* 266(4) 411(3) None 160 120

271(4) 443(3) 371 126

522(3) 378 227

858(3) 522 265

1139(3) 641 371

1315(3) 642 955

1660(3) 647 1211

1712(5) 690 1370

837 1749

1022 1769

1633 1793

PW2-28 (GAG)5 253(2) 737(2) None None 209 None

255(2) 738(2)

258(2) 738(2)

738(2)

738(2)

778(2)

PW2-29 (CGT)5 157(5) 888(2) 1768(2) None 60 131

158(5) 1200(2) 60 335

158(5) 1991(2) 328 744

1961
fr
*: 265(5) represents the size of potential amplicon is 265 bp and 5 SSR motif copies exist in amplicon, respectively. Bold means primer pair fully match with binding site.
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As shown in Figure 2, the A/T motif was the predominant

monomeric repeat (88%). In contrast, the GC/CT repeats accounted

for 56%, which was higher than what was reported by Xiao et al.

(2020) in sugarcane. Additionally, the abundance exceeded in other
Frontiers in Plant Science 09163
species such as taro (52.86%) (You et al., 2015), pigeon pea (16.7%)

(Dutta et al., 2011), and wheat (8.7%) (Peng and Lapitan, 2005). Of

trimeric repeats, CCG/CGG was the most predominant (48%),

higher than the previous findings in taro (You et al., 2015),
BA

FIGURE 5

Summary of functional annotation of SSR-containing unigenes. (A) GO and (B) KEGG represent different classes based on the predicted function of
the top 50 SSR-containing unigenes. The y-axis indicates the number of genes in each specific category.
FIGURE 6

Cluster analysis of Sugarcane accession by SSR markers. The scale at the bottom represents the genetic distance between all the accessions.
TABLE 5 Comparison of frequency of microsatellites of different species.

Plant Sugarcane* Sugarcane** Arabidopsis†
Triticum
aestivum†

Dendrocalamus
latiflorus†

Phyllostachys
violascens†

Di- 23.55 22.06 26.27 20.77 16.1 48.06

Tri- 71.30 29.90 73.04 74.26 47.7 48.84

Tetra- 2.97 9.51 0.72 3.36 26.1 2.54

Penta- 1.05 24.03 0 1.12 6.9 0.42

Hexa- 1.15 15.48 0 0.5 3.3 0.14

Total 2761 37055 1070 43598 22305 9257
*this study; **Xiao et al., 2020; †Cai et al., 2019 all values in percent % except total number of SSR markers.
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sugarcane (4.84%) (Xiao et al., 2020), and rice and maize (Cardle

et al., 2000). The CGC/GCG trimeric repeat at 17% was the second

most abundant, which was lower than in P. violascens (3.45%) (Cai

et al., 2019) and sugarcane (4.74%) (Xiao et al., 2020). The

prevalence of trimeric repeat, CCG/CGG, a characteristic trimeric

repeat in monocots was verified by our results but was rare in

dicotyledonous plants (You et al., 2015; Cai et al., 2019; Xiao et al.,

2020). The PIC is a critical metric in assessing the level of

polymorphism of SSR markers, with a PIC value greater than 0.5

indicating a high level of polymorphism (Botstein et al., 1980). In

our study, based on 163 EST-SSR markers, PIC values ranged from

0.292 to 0.972 with an average PIC value of 0.809 (Table S4). These

findings align with Xiao et al. (2020) (0.70–0.94), Singh et al. (Singh

et al., 2013) (0.12–0.99; 0.85), and Ul Haq et al. (2016) (0.51–

0.93; 0.83).

In general, EST-SSR primer pairs and corresponding SSR loci were

designed and aligned in S. spontaneum, sorghum, and maize in this

study, which provided a possible way to develop EST-SSRs for

sugarcane breeders. First, we developed EST-SSRs using sugarcane

ES sequences or functional genes in the sugarcane genome. Some of the

EST-SSR primer pairs were synthesized and successfully amplified by

PCR in 10 sugarcane cultivars with sorghum and maize. Interestingly,

our analysis revealed that a subset of SSR primer pairs (9 in S.

spontaneum, 13 in maize, and 7 in sorghum) produced potential

amplicons exclusively in one of these genomes. This observation

suggests that while these species share some genetic similarities, they

have also undergone unique evolutionary processes that have led to the

development of distinct SSR loci. Such species-specific SSRmarkers can

serve as important indicators of genetic divergence and could shed light

on the evolutionary history of these species.

In sunflowers, most SSR-containing genes are involved in

various biological processes such as cellular and metabolic

processes (Lulin et al., 2012). Parmar et al., (Parmar et al., 2022)

reported that most of the SRR-containing genes are involved in

biological regulation and metabolic processes, which is consistent

with the present study. The most important molecular functions of

the GO-enriched genes in the present study are transport activity,

binding, signaling receptor activity, protein activity, and catalytic

activity. Additionally, the key biological processes associated with

GO enrichment genes include fruit ripening, post-embryonic

development, photosynthesis, and regulation of molecular

functions. KEGG analysis of SSR-containing genes showed an

important metabolic pathway such as carbohydrate metabolism

and amino acid metabolism. The genetic information processing

category was the second largest group.
5 Conclusion

In the present study, we achieved several significant outcomes. We

successfully aligned sugarcane unigenes with sorghum and maize,
Frontiers in Plant Science 10164
leading to the identification and development of a valuable set of

EST-SSR markers in sugarcane. A total of 4960 potential SSR markers

were identified and of 240 randomly selected primer pairs, 173 were

assessed for polymorphism. Among these, 163 primer pairs exhibited

polymorphism when applied to 10 sugarcane accessions. Furthermore,

we annotated 4203 SSR-containing unigenes into GO and KEGG

databases, shedding light on their potential functions and pathways.

Notably, we found that 56.43% of sugarcane unigenes mapped inmaize

genome to a single locus, 29.11% at two loci, 5.6% at three loci, and

8.58% with other loci. This suggests a distinct evolutionary relationship

between sugarcane and sorghum with more duplication events

occurring in maize chromosome segments. We believe these results

have broad implications, contributing an important resource for future

genomic and genetic studies in sugarcane but also serving as a powerful

tool for studying evolutionary adaptation and genetic relationships in

other related species.
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Tóth, G., Gáspári, Z., and Jurka, J. (2000). Microsatellites in different eukaryotic
genomes: survey and analysis. Genome Res. 10, 967–981. doi: 10.1101/gr.10.7.967

Ukoskit, K., Posudsavang, G., Pongsiripat, N., Chatwachirawong, P., Klomsa-Ard, P.,
Poomipant, P., et al. (2019). Detection and validation of EST-SSR markers associated
with sugar-related traits in sugarcane using linkage and association mapping. Genomics
111, 1–9. doi: 10.1016/j.ygeno.2018.03.019

Ukoskit, K., Thipmongkolcharoen, P., and Chatwachirawong, P. (2012). Novel
expressed sequence tag-simple sequence repeats (EST-SSR) markers characterized by
new bioinformatic criteria reveal high genetic similarity in sugarcane (Saccharum spp.)
breeding lines. Afr. J. Biotechnol. 11, 1337–1363. doi: 10.1016/j.ygeno.2018.03.019

Ul Haq, S., Kumar, P., Singh, R. K., Verma, K. S., Bhatt, R., Sharma, M., et al. (2016).
Assessment of functional EST-SSR markers (Sugarcane) in cross-species transferability,
genetic diversity among poaceae plants, and bulk segregation analysis. Genet. Res. Int.
2016:7052323. doi: 10.1155/2016/7052323

Wang, Z., Fang, B., Chen, J., Zhang, X., Luo, Z., Huang, L., et al. (2010). De novo
assembly and characterization of root transcriptome using Illumina paired-end
sequencing and development of cSSR markers in sweetpotato (Ipomoea batatas).
BMC Genomics 11, 1–14. doi: 10.1186/1471-2164-11-726

Wu, J., Wang, Q., Xie, J., Pan, Y.-B., Zhou, F., Guo, Y., et al. (2019). SSR Marker-
Assisted Management of Parental Germplasm in Sugarcane (Saccharum spp. hybrids)
Breeding Programs. Agronomy 9 (8), 449. doi: 10.3390/agronomy9080449

Xiao, N., Wang, H., Yao,W., Zhang, M., Ming, R., and Zhang, J. (2020). Development and
evaluation of SSR markers based on large scale full-length transcriptome sequencing in
sugarcane. Trop. Plant Biol. 13, 343–352. doi: 10.1007/s12042-020-09260-5

You, Y., Liu, D., Liu, H., Zheng, X., Diao, Y., Huang, X., et al. (2015). Development and
characterisation of EST-SSR markers by transcriptome sequencing in taro (Colocasia
esculenta (L.) Schoot). Mol. Breed. 35, 134. doi: 10.1007/s11032-015-0307-4

Yu, B., and Zhang, C. (2011). “In silico PCR analysis,” in Methods in molecular
biology (Clifton, N.J.: Springer) 760, 91–107. doi: 10.1007/978-1-61779-176-5_6

Zalapa, J. E., Cuevas, H., Zhu, H., Steffan, S., Senalik, D., Zeldin, E., et al. (2012).
Using next-generation sequencing approaches to isolate simple sequence repeat (SSR)
loci in the plant sciences. Am. J. Bot. 99, 193–208. doi: 10.3732/ajb.1100394

Zhang, J., Nagai, C., Yu, Q., Pan, Y.-B., Ayala-Silva, T., Schnell, R. J., et al. (2012).
Genome size variation in three Saccharum species. Euphytica 185, 511–519. doi:
10.1007/s10681-012-0664-6

Zhang, J., Zhang, X., Tang, H., Zhang, Q., Hua, X., Ma, X., et al. (2018). Allele-defined
genome of the autopolyploid sugarcane Saccharum spontaneum L. Nat. Genet. 50 (11),
1565–73.

Zhou, Y., Wei, X., Abbas, F., Yu, Y., Yu, R., and Fan, Y. (2021). Genome-wide identification
of simple sequence repeats and assessment of genetic diversity in Hedychium. J. Appl. Res.
Medicinal Aromatic Plants 24, 100312. doi: 10.1016/j.jarmap.2021.100312
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fpls.2023.1199210/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fpls.2023.1199210/full#supplementary-material
https://doi.org/10.1038/s41598-020-75553-0
https://doi.org/10.3389/fpls.2019.00050
https://doi.org/10.1093/genetics/156.2.847
https://doi.org/10.1371/journal.pone.0184736
https://doi.org/10.1016/S0168-9452(03)00157-2
https://doi.org/10.1007/BF02174028
https://doi.org/10.1186/1471-2229-11-17
https://doi.org/10.1007/s11032-016-0496-5
https://doi.org/10.1371/journal.pone.0038653
https://doi.org/10.1142/9789812814296_0008
https://doi.org/10.1139/G08-105
https://doi.org/10.1038/s41598-021-03848-x
https://doi.org/10.1007/s10142-004-0128-8
https://doi.org/10.1016/j.gene.2013.03.125
https://doi.org/10.1007/s11032-013-9844-x
https://doi.org/10.1101/gr.10.7.967
https://doi.org/10.1016/j.ygeno.2018.03.019
https://doi.org/10.1016/j.ygeno.2018.03.019
https://doi.org/10.1155/2016/7052323
https://doi.org/10.1186/1471-2164-11-726
https://doi.org/10.3390/agronomy9080449
https://doi.org/10.1007/s12042-020-09260-5
https://doi.org/10.1007/s11032-015-0307-4
https://doi.org/10.1007/978-1-61779-176-5_6
https://doi.org/10.3732/ajb.1100394
https://doi.org/10.1007/s10681-012-0664-6
https://doi.org/10.1016/j.jarmap.2021.100312
https://doi.org/10.3389/fpls.2023.1199210
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Frontiers in Plant Science

OPEN ACCESS

EDITED BY

Ting Peng,
Henan Agricultural University, China

REVIEWED BY

Milind B. Ratnaparkhe,
ICAR Indian Institute of Soybean Research,
India
Juliano Lino Ferreira,
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Sugarcane (Saccharum spp.) is a widely cultivated crop that fulfils approximately

75% of the sucrose demand worldwide. Owing to its polyploidy and complex

genetic nature, it is difficult to identify and map genes related to complex traits,

such as sucrose content. However, associationmapping is one of the alternatives

for identifying genes or markers for marker-assisted selection. In the present

study, EST-SSR primers were obtained from in silico studies. The functionality of

each primer was tested using Blast2Go software, and 30 EST-SSR primers related

to sugar content were selected. These markers were validated using association

analysis. A total of 70 F1 diverse genotypes for sugar content were phenotypes

with two check lines. All parameters related to sugar content were recorded. The

results showed a significant variation between the genotypes for sugar yield traits

such as Brix value, purity, and sucrose content, etc. Correlation studies revealed

that the Brix%, sucrose content, and sucrose recovery were significantly

correlated. An association analysis was performed using mixed linear model to

avoid false positive associations. The association analysis revealed that the SEM

407marker was significantly associated with Brix% and sucrose content. The SEM

407 primers are putatively related to diphosphate-fructose-6-phosphate 1-

phosphotransferase which is associated with Brix% and sucrose content. This

functional marker can be used for marker-assisted selection for sugar yield traits

in sugarcane that could accelerate the sugarcane breeding program.

KEYWORDS

sugarcane, EST-SSR, candidate genes, sugar content, association mapping, marker-
assisted selection
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Introduction

Sugarcane (Saccharum spp.) belongs to the Poaceae/Gramineae

family of the Andropogoneae tribe. Saccharum and its species were

commercially used for sugar production owing to their high

biomass and sucrose accumulation (Godshall and Legendre,

2003). The sugarcane genome is complex polyploid in nature,

with S. officinarum having a basic chromosome number of x = 10

(2n = 80) and S. spontaneum x = 8 (2n = 40-128). Thus, there are

two distinct chromosomes that coexist in modern cultivars (D'Hont

et al., 1994; Zhang et al., 2018).

Sucrose is a commercial component of sugarcane, and the

improvement of sugar recovery is the primary focus of any crop

improvement program. The identification of genes or marker for

sugar yield is an important strategy for the improvement of

sugarcane. The mapping of genes is a promising tool for

characterizing genetic architecture such as yield component traits,

such as sucrose yield, cane yield, stalk diameter, stalk height, stalk

number, and stalk weight, as well as resistance to diseases, pests, and

abiotic stresses (Aitken et al., 2008; Welham et al., 2010; Singh et al.,

2013; Gazaffi et al., 2014; Margarido et al., 2015; Balsalobre et al.,

2016; Balsalobre et al., 2017; Yang et al., 2018). The complex

polyploid and highly heterogeneous genetic nature of sugarcane

association mapping could establish the QTL from linkage

disequilibrium between the markers and the trait. Surveying a large

number of genotypes in the existing germplasm of sugarcane can be

helpful in finding associations between the markers and traits, using

association mapping (Wei et al., 2006; Banerjee et al., 2015). To avoid

spurious associations, the population structure and kinship of the

association map population were employed to elucidate inferences

(Lander and Schork, 2006). Validation of all those markers linked

with QTL will have been identified by means of association mapping

in a diverse population (Korir et al., 2013; Picañol et al., 2013; Ukoskit

et al., 2019).

The expressed sequence tag (EST) database was used to identify

the targeted SSR markers because ESTs are considered effective for

the direct association with the trait of interest (Dudhe and Sarada,

2012). The interspecific transferability of expressed sequence tags

derived from simple sequence repeats (EST-SSRs) and genomic SSRs

is well established (Wen et al., 2010). EST-SSR primers are more

beneficial than anonymous SSRs from untranslated regions (UTRs)

or non-coding sequences, being frequently more transferrable

between closely related genera (Pashley et al., 2006; Chapman et al.,

2009). Due to the primer target sequences’ location in the expressed

DNA regions, which are predicted to be reasonably well preserved,

there is a higher likelihood that the marker will be transferable across

species borders (Varshney et al., 2005). EST-SSRs appear to disclose

comparable amounts of polymorphism compared to SSRs found in

UTRs despite their potential to reflect selectively harmful frame-shift

mutations in coding areas. This is most likely because these coding

regions have evolved to contain tri-nucleotide repeats (Ellis and

Burke, 2007). Since EST-SSRs are physically connected to expressed

genes, they constitute potentially useful markers. EST-SSR markers

have a greater average rate of transferability between species than

genomic SSRs because they reflect the expressed regions of a genome

(Gupta et al., 2003). EST-SSR markers have been effectively used in
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gene tagging, linkage map construction, and QTL mapping (Qiu

et al., 2010). Varietal crop improvement in various crops has become

more feasible with the establishment of EST-SSR markers (Qiu et al.,

2010; Ukoskit et al., 2019). EST-SSRs are highly regarded as a tool for

breeding practices, perhaps because of their direct association with

the genes of interest. It is also used in the identification of candidate

genes in breeding and conservation input and population genetics

studies (Yu et al., 2011). A mapping population obtained from a cross

between commercial cultivars indulges in the introduction of EST-

SSR markers into sugarcane linkage mapping (Oliveira et al., 2007;

Palhares et al., 2012). There are some published reports of association

mapping in sugarcane for traits such as biotic stress, cane yield, and

sugar content (Wei et al., 2006; Wei et al., 2010; Débibakas et al.,

2014; Banerjee et al., 2015; Gouy et al., 2015; Singh et al., 2016;

Barreto et al., 2019; Fickett et al., 2019; Ukoskit et al., 2019; Coutinho

et al., 2022). There are only a few studies that have investigated the

identification of markers or genes for sugar yield traits using

interspecific crosses (Reffay et al., 2005; Ukoskit et al., 2019).

However, an association analysis requires a large population size

and numerous EST-SSR primers. Moreover, these limitations could

be avoided by choosing a diverse population with candidate genes for

sugar yield for the validation of markers using an association study.

Therefore, the present study was conducted to identify different

candidate gene-based EST-SSR markers from in silico studies, and

these markers were validated using the association analysis of a

diverse collection of sugarcane genotypes.
Materials and methods

Plant material

A total of 70 F1 diverse sugarcane genotypes for sugar yield traits

were obtained from 14 different crosses, and five genotypes were

chosen from each cross. The parents of all crosses were developed by

crossing of Saccharum officinarum and Saccharum spontaneum. A

few genotypes (BO102GC, BO137GC, and BO139GC) were also

developed by general crosses (GC) for more variability. Seventy

genotypes with two check lines (CoP16437 and CoP2061) were

used in this study (Supplementary Table S2). These parents had

contrasting natures for sugar and fiber yields. Because of limited

seeds, these 70 genotypes were planted in an augmented complete

block designed in the year 2021 at the Pusa farm of Dr. Rajendra

Prasad Central Agricultural University, Samastipur, India. All

genotypes were grown in seven different blocks, and each block

had 10 genotypes with two check lines. The check lines were planted

randomly in each block. The plot size of each block was 5.4 m2. All

standard agronomic practices were followed to raise the crops.
Phenotypic data and field data analysis

The population of 70 F1 genotypes was a phenotype for sugar-

related traits after harvesting all genotypes. Brix, polarization (pol),

sugar yield, and purity were recorded from four random stalks

taken from each plot.
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(1) Brix value (%): Brix value was measured using a hand-held

refractometer. One degree of Brix is equal to the presence of 1 g sucrose

in 100 g of the solution, and 1°Brix = 1% Brix. The strength of the

solution was measured as a percentage of its mass. The reading was

recorded using a refractometer with a sharp needle pierced through the

stalk, and the collected substance was placed on a refractometer glass.

The reading was recorded by the angle of the refractive index.

(2) Sucrose (%): Sucrose percentage was calculated using the

following formula (Mehareb and Abazied, 2017):

Sucrose ( % ) =
Brix %�purity %

100

(3) Purity (%): The percentage purity of the juice was calculated

using the following formula (Mehareb and Abazied, 2017):

Purity   ( % ) =
Mass of the pure substance
Mass of the impure sample

where pure sample: sucrose (%) and impure sample: Brix (%).

(4) Sugar recovery (CCS %): It was calculated using the

following formula (Mehareb and Abazied, 2017):

CCS% = ½Sucrose%   − Brix %−Sucrose%f g   x   0:4�   x   0:73
(5) Sugar yield (t/ha)

Sugar yield was calculated using the following formula

(Mehareb and Abazied, 2017):

Sugar yield =
Cane yield � CCS%

100
Phenotypic data analysis

Pearson’s correlation coefficients (r) between traits were

calculated using the SAS CORR procedure based on trait means.

Traits that were distributed normally with the Shapiro–Wilk test

were considered normal data (Weber and Moorthy, 1952).

Morphological data were used for the principal component

analysis (PCA) using R studio. The data were imported in Excel

format, and the eigenvalue must be greater than 1 for the variables.

A bi-plot analysis was conducted using eigenvalues.
Extraction of DNA

A total of 500 mg of young leaf tissue was collected for marker

analysis, and DNA was extracted using the cetyltrimethylammonium

bromide method of Srivastava and Gupta (2008). DNA quantity and

quality were determined using 1.0% agarose gel electrophoresis and

nanodrop spectrophotometry, respectively.
Identification of a suitable EST-SSR marker
and its validation by association study

Sugarcane is a polyploid crop, and its genome size and structure

vary from genotype to genotype. Therefore, EST-SSR markers are
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best suited for tagging complex traits such as sugar yield. A total of

213 EST-SSR primers of sugarcane were identified in an in silico

study (Supplementary Table S1). Furthermore, the functionality of

these primers was tested using Blast2Go software. A total of 30 EST-

SSR primers related to sugar yield were selected for this study based

on their functionality (Supplementary Table S3). The PCR products

were separated at 3.5–4.0% agarose gel. Out of 30, a total of 25

primers were amplified by PCR and used for further analysis. All 25

primers were scored based on the presence (1) or absence (0) of

bands in the 70 genotypes of the mapping population.
Validation of EST-SSR primers using
association mapping

The similarity coefficient among the genotypes was calculated

using the genetic distance (Nei and Li, 1979). A neighbor-joining

dendrogram was constructed using Past3 software. N-J analysis was

performed using multivariate clustering, and the tree was

constructed by Euclidean genetic distance with bootstrap

replications of 100. The population structure was analyzed using

STRUCTURE software to estimate the number of groups/

subpopulations by setting the burning period length to 100,000,

and each value of K was run three times with the K value varying

from 1 to 10. Furthermore, a Q value below 0.9 was described as an

admixture. An association analysis was performed using a mixed

linear model as described by Yu and Buckler (2006). It was

performed using TASSEL incorporating the Q matrix and K

matrix to avoid false positives. The significant threshold for

association was set at P<0.05.
Results and discussion

Sugarcane is polyploid crop with a complex genome, and it is

difficult to interpret genome data. Less information about the

sugarcane genome makes gene manipulation very difficult, but the

identification of the functional genes responsible for sucrose

accumulation makes it possible. EST-SSR markers were

considered to be a highly regarded breeding tool as they are able

to localize the functional gene by marker association (Palhares et al.,

2012) since they may be directly associated with the gene expressing

a particular trait.
Phenotypic yield data analysis

The germplasms used in this study were produced using an

inter-varietal cross to validate primers for sugar yield traits in

sugarcane. The yield distribution showed that the selected

genotypes varied for sugar yield traits (Supplementary Figure S1).

These germplasms were derived by crossing the sugarcane

genotypes with contrasting sugar yield, and a few crosses were

produced by general cross. The maximum, minimum, and mean

values of all five phenotypic traits showed variation in the

population for sugar yield traits. The Brix (%) values vary from
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19.27% to 22.72%, with a mean of 20.65%. Similar trends were

recorded for purity, sucrose content, sugar recovery, and sugar

yield. This indicates that the selected germplasm shows variability

and is appropriate for the study. The phenotypic correlations

between the five traits were significant. The highest phenotypic

correlation was found between sucrose content and sugar recovery,

while the lowest phenotypic correlation was found between Brix

value and purity (Table 1).
Population structure and
genetic relationship

Many studies were conducted on sugarcane considering its

complex polyploid genome, and several assumptions are not

fulfilled for its complex structure; therefore, the applicability of

this algorithm may be limited in sugarcane (Wei et al., 2006).

Analyzing the sugarcane subpopulation using Structure software

and mixed linear model provides an opportunity to track the gene

related to complex traits of sugar yield in sugarcane. In the present

study, minimum population size with a maximum variation was

used, which is the most favorable for association analysis (Wei

et al., 2006). Spurious associations were controlled, while the

power to detect true associations was maximized using PCA as a

random component to control for population structure (Pastina

et al., 2012). PCA, as a random component, is included in the

analysis, and the large population structure is captured with the

first few axes that account for most of the variation, while the

more subtle relationships among individuals are captured by the

remaining significant axes. The population showed a clear and

continuous variation in its structure, PCA, and neighbor-joining

dendrogram (Fickett et al., 2019; Ukoskit et al., 2019).

Furthermore, most of the structures found in these genotypes

seem to originate from subtle kinship relationships rather than a

large-scale population structure. The mapping population was

diverse and highly heterozygous, and environmental conditions
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play a major role in the formation of sugar. The PCA results

showed that Brix%, sucrose content, and CCS% were highly

positively correlated, and the CCS and cane yield are highly

negatively correlated (Figure 1). The results of the PCA and

neighbor-joining dendrogram were coherent and showed no

disjuncture in the population. The biplot of PCA overlays both

individuals and the variables in a single graph. The loading range

was varied from -5 to 5. The high absolute loadings were directed

to either positively or negatively describe the variable that strongly

influences the component, and a value less than that of the high

loading indicates that they had a weak influence on the

component. Sucrose content, Brix, and CCS% were highly

positively correlated, as identified by PCA, and they showed

49% of the total variation in the phenotypic data (Figure 1).

Hence, the traits directly related with sugar yield showed

significant variability and indicate the diverse genotypic nature

of germplasms.

The markers were identified by surveying the sugarcane database

SUCEST, with their functionality scored by BLAST to determine the

homology and putative function of the marker sequence

(Supplementary Table S1). EST-SSR markers are derived from the

expression regions of the genome and have greater potential for the

direct association of the trait. The data Blast2Go showed that, at every

18.60 kb, one SSR motif was found to be very similar to cotton and

wheat (Cardle et al., 2000). Pinto et al. (2004) reported the density of

SSR in sugarcane at every 16.90 kb.

The neighbor-joining dendrogram is a bottom-up clustering

method designed to provide a single tree and may be able to

produce more than one dendrogram from the same data (Saitou

and Nei, 1987). This method provides faster and better results than

UPGMA, and most implementations provide a single tree (Page

and Holmes, 2009). The dendrogram of the neighbor-joining

relationship based on EST-SSR allele frequencies separated the

populations into three differentiated clusters: A, B, and C. Cluster

A has 33 genotypes, cluster B has 31 genotypes, and cluster C has six

genotypes (Figure 2).
TABLE 1 Mean performance and the correlations between traits at the time of harvesting of sugarcane.

Statistics Brix Purity Sucrose content Sugar recovery Sugar yield

Mean 20.65 85.88 18.12 14.33 10.4

Maximum 22.72 87.79 20.06 15.97 16.41

Minimum 19.27 83.45 16.9 13.2 6.76

Correlationa

Brix

Purity 0.127ns

Sucrose content 0.952* 0.139ns

Sugar recovery 0.947* 0.208* 0.981*

Sugar yield 0.272* 0.345* 0.267* 0.301*

Significant* P<0.05
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The Q matrix was calculated, and grouping of the population

was performed using genotypic data. The result showed the

marker-based kinship of the population. The number of

subpopulations (DK) was identified by structure and

maximized at K = 5. Populations with a single color were not

shared by any other group, indicating that they were genetically

distinct. The populations showed that the sharing of colors was

similar to that of another group of individuals in the population

(Figures 3, 4). The marker-based kinship matrix underlying the

study of Yu et al. (2006) was determined based on the definition
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that random pairs of genotypes are unrelated, whereas Zhao et al.

(2007) defined pairs of genotypes that do not share any allele as

unrelated. The results clearly indicated that most of the

genotypes were different.
Validation of EST-SSR markers

Sugarcane crops are polyploid and exhibit a high level of

variation in the F1 generation. Therefore, validation of primers
FIGURE 1

Biplot of principal component analysis PC1 (Dim1) and PC2 (Dim2); Where the dot represents the genotypes (70); Arrow represents the traits.
FIGURE 2

Dendrogram showing the relationship among 70 genotypes of sugarcane using EST-SSR markers.
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using a simple chi-square is not possible. Hence, the primers were

validated using association mapping. If the number of primers is a

major limitation of the study, then the candidate gene approach for

association mapping is best suited. A total of 30 EST-SSR markers

were used for the association analysis of sugar yield traits. Of the 30

primers, 25 were amplified, and all these primers were tested for

association studies. EST-SSR markers are a tool for association

studies (Ukoskit et al., 2019; Coutinho et al., 2022). The EST-SSR

markers related to sucrose content could be more effective than

markers that focus on the varied functions of the gene. The linkage

disequilibrium (LD) decay plot for the r2 values between the

markers was plotted against the genetic distance. The highest

frequency of loci pair in LD is mapped less than 3 bp. The lowest

frequency of loci pair was more than 20 bp, indicating that the

probability of LD is low between distinct loci pairs. The majority of

the loci pairs in LD with r2 >0.01 at P<0.05 were found in ≤ 20bp

(Figure 5). The values decreased as the genetic distance between the

loci pairs increased. EST-SSR marker represented by the different

regions of the genome was associated with the trait of interest at a P-

value of 0.05. SEM407 was significantly associated with Brix%,

sucrose content, and sugar recovery (CCS%) (Table 2). Except for

SEM407, other EST-SSR markers did not show any association with
Frontiers in Plant Science 06171
sugar yield traits because the functional allele discovered in the

mapping population might not be recognized in plants because it is

rare in the larger germplasm. Compared to the genes tagged in the

mapping population, the sugarcane accessions in the association

population may have various trait-related alleles of various genes at

various sites. Additional functional alleles that are absent from the

mapping population may be found by validating the marker–trait

relationship (Peace and Norelli, 2009). Although the number of

markers used in this study is relatively low, the marker–trait

association of SEM407 was significant. This marker was found to

be significant for the sugar-related yield traits of genotypes. These

results suggest that the association approach used in this study is

consistent with the detection of QTL associated with sugar yield

traits. The marker identified to the respective QTLs or genes should
FIGURE 3

STRUCTURE analysis of bar plot. Populations with one solid color that is not shared by another group are genetically distinct Populations that share
colors are more similar. Bar graphs for five sub-populations are indicated by different colors. The vertical coordinates indicate the membership
coefficient of each individual and the horizontal represents the genotypes.
FIGURE 4

Delta K of STRUCTURE software using Evanno’s criterion.
FIGURE 5

Linkage Disequilibrium Decay Plot.
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be used for marker-assisted selection (MAS). MAS for simply

inherited traits are gaining increasing importance in breeding

programs, allowing the acceleration of the breeding process

of sugarcane (Francia et al., 2005). This study would be helpful

for the plant breeders in marker-assisted selection in the prospect

of achieving higher sugar yields while designing their

crossing program.
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TABLE 2 Associations study between EST-SSRs and sugar-related traits at P<0.05.

Markers Association mappin2

Brix% Purity Sucrose content Sugar recovery (CCS %) Sugar yield

P value P value P value P value P value

SEM2 0.07 0.47 0.08 0.1 0.2

SEM58 0.29 0.44 0.3 0.3 0.38

SEM112 0.3 0..2 0.29 0.3 0.2

SEM117 0.70 0.68 0.5 0.47 0.25

SEM159 0.70 0.77 0.64 0.62 0.22

SEM168 0.72 0.39 0.79 0.82 0.74

SEM191 0.99 0.26 0.84 0.90 0.56

SEM199 – – – – –

SEM203 0.43 0.91 0.41 0.43 0.96

SEM358 0.89 0.5 0.77 0.82 0.39

SEM368 0.12 0.85 0.3 0.27 0.48

SEM369 0.95 0.86 0.59 0.57 0.76

SEM407 0.002* 0.70 0.002* 0.002* 0.70

SEM425 0.29 0.40 0.2 0.1 0.55

SEM428 0.92 0.77 0.95 0.95 0.97

SEM430 0.58 0.61 0.56 0.58 0.38

SEM432 0.91 0.25 0.98 0.93 0.92

SEM433 0.63 0.46 0.7 0.63 0.56

SEM435 0.83 0.1 0.77 0.86 0.57

SEM436 0.73 0.87 0.62 0.63 0.41

SEM437 0.15 0.86 0.12 0.13 0.28

SEM439 0.76 0.12 0.74 0.80 0.11

SEM440 0.92 0.43 0.98 0.93 0.43

SEM454 0.46 0.96 0.59 0.56 0.30

SEM456 0.99 0.79 0.87 0.85 0.23
The experiment-wise threshold was based on the Bonferroni corrected method.
The thresholds for marker significance were at *P<0.05.
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Xiyuan Ni1* and Jianyi Zhao1
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Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Science,
Hangzhou, China, 3Institute of Biotechnology, Zhejiang Academy of Agricultural Science,
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Effective weed control in the field is essential for maintaining favorable growing

conditions and rapeseed yields. Sulfonylurea herbicides are one kind of most

widely used herbicides worldwide, which control weeds by inhibiting

acetolactate synthase (ALS). Molecular markers have been designed from

polymorphic sites within the sequences of ALS genes, aiding marker-assisted

selection in breeding herbicide-resistant rapeseed cultivars. However, most of

them are not breeder friendly and have relatively limited application due to

higher costs and lower throughput in the breeding projects. The aims of this

study were to develop high throughput kompetitive allele-specific PCR (KASP)

assays for herbicide resistance. We first cloned and sequenced BnALS1 and

BnALS3 genes from susceptible cultivars and resistant 5N (als1als1/als3als3

double mutant). Sequence alignments of BnALS1 and BnALS3 genes for

cultivars and 5N showed single nucleotide polymorphisms (SNPs) at positions

1676 and 1667 respectively. These two SNPs for BnALS1 and BnALS3 resulted in

amino acid substitutions and were used to develop a KASP assay. These

functional markers were validated in three distinct BC1F2 populations. The

KASP assay developed in this study will be valuable for the high-throughput

selection of elite materials with high herbicide resistance in rapeseed

breeding programs.

KEYWORDS

KASP assay, herbicide resistance, SNPs, ALS genes, marker-assisted selection
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Highlights
Fron
• Developed KASP assays for BnALS genes are high

throughput, low-cost, and capable of screening for

herbicide-resistant alleles for marker-assisted selection.
Introduction

Rapeseed (Brassica napus L., AACC) is one of the most

important oil-producing crops worldwide, with an annual

production of more than 28 million tons of vegetable oil globally

(USDA ERS, 2021) and also provides important raw material for

biofuel and other industrial products (Ohlrogge, 1994; Thelen and

Ohlrogge, 2002). Weeds, especially the broad leaf cruciferous

species, are well adapted to compete with rapeseed for sunlight,

water, soil nutrients and physical space in the fields (Miki et al.,

1990; Larue et al., 2019). Hence, weeds are a significant problem and

greatly limit rapeseed yield. The development of herbicide-tolerant

varieties is a high priority for varietal development and the most

cost-effective tool to manage weeds (Tan et al., 2005; Green, 2014).

Acetolactate synthase (ALS) is the key enzyme for the

biosynthesis of the branched chain amino acids, including valine,

leucine, and isoleucine (Duggleby et al., 2008; Garcia et al., 2017).

ALS has been proved to be the target site of several important

herbicides, such as sulfonylurea (SU), imidazolinone (IMI),

triazolopyrimidine (TP), pyrimidinyl-thiobenzoates (PTB) and

sulfonyl- aminocarbonyl-triazolinone (SCT) (Yu and Powles,

2014). ALS harboring amino acid substitutions caused by gene

editing or ethyl methane sulfonate (EMS) mutagenesis has been

found to confer high resistance to sulfonylurea herbicides in crops

including wheat, rapeseed and watermelon (Tian et al., 2018; Zhang

et al., 2019; Guo et al., 2020). The genome information derived from

Brassica napus cultivars Darmor-bzh and ZS11 shows that there are

five copies in the BnALS gene family (Chalhoub et al., 2014; Sun

et al., 2017). Of these, BnALS1 and BnALS3 are highly conserved,

and constitutively expressed in all tissues (Wu et al., 2020). Thus,

BnALS1 and BnALS3 are regarded to be essential ALS housekeeping

genes and the ideal herbicide-resistance targets for genetic

manipulation (Rutledge et al., 1991; Wu et al., 2020).

Single nucleotide polymorphism (SNP) is a kind of DNA

polymorphism in a genome which results from a single nucleotide

change in a DNA sequence (Drenkard et al., 2000; Vignal et al., 2002).

Because amino acid substitution caused by single nucleotidemutation

may change protein function to some extent, single nucleotide

changes provide new insights into protein function (Henikoff and

Comai, 2003). Specific single nucleotide change can alter protein

function, which is closely related with agronomic traits, then was used

as an important tool for crops genetic improvement (You et al., 2018;

Zhang et al., 2018). Functional markers derived from polymorphic

sites within genes causally affect phenotypic variation. Functional

markers are superior to random DNA markers such as RFLPs, SSRs

and AFLPs owing to complete linkage with trait locus alleles, and are
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considered to be more accurate and efficient for gene identification

and marker-aided selection (Andersen and Lubberstedt, 2003;

Varshney et al., 2005; Zhou et al., 2013; Li et al., 2022). Over the

past few decades, allele-specific PCR (AS PCR) markers, cleaved

amplified polymorphic sequences (CAPS) markers, derived CAPS

(dCAPS) markers and loop-mediated isothermal amplification

(LAMP) markers were developed in plants based on single

nucleotide polymorphisms (Michaels and Amasino, 1998;

Drenkard et al., 2000; Zhou et al., 2013; Pan et al., 2014; Guo et al.,

2020; Wu et al., 2020; Wang et al., 2022). All these markers are used

to detect and select interesting traits by differentiating between

homozygous and heterozygous states of plants. However, these

markers require fragments separation by electrophoresis and/or

digestion with restriction enzyme after PCR amplification, making

their application relatively limited due to higher costs and

lower throughput.

The development of user-friendly tools and platforms makes

the wide-scale use and application of SNP markers possible in

breeding programs. The KASP (kompetitive allele-specific PCR)

genotyping assay utilizes a unique form of competitive allele-

specific PCR combined with a novel, homogeneous, fluorescence-

based reporting system for the identification and measurement of

genetic variation occurring at the nucleotide level to detect SNPs

(He et al., 2014). With the advantages of being low-cost and high

throughput for genotyping SNPs, the KASP technology has been

extensively used in the fields of human, animal and plant genetics

(He et al., 2014; Semagn et al., 2013).

In this study, we aimed to develop the KASP assays for high-

throughput genotyping for herbicide resistance. The SNPs were

identified on the basis of Sanger sequencing of cloned BnALS1 and

BnALS3 genes from both the resistant 5N and susceptible cultivars

of B. napus. Allele-specific assays were developed on the basis of

SNPs at positions 1676 and 1667 bp from BnALS1 and BnALS3,

respectively. The practical utility of the developed KASP assays was

established by validating these in three segregating backcross

progeny populations varying for herbicide resistance.
Materials and methods

Plant material

Three elite semi-winter B. napus cultivars (namely ZY50, ZY51

and ZS72) in Zhejiang province of China, and a double mutant 5N

(als1als1/als3als3) with herbicide resistance (Guo et al., 2020) were

used in this study. The seeds were sown usually in late September or

early October and harvested around late May in Yangdu, Haining,

Zhejiang Province.
Development of segregation populations
with herbicide-resistant 5N

To obtain herbicide-resistant rapeseed lines with good

agronomic and quality traits, three backcross progenies (BC1s)
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were developed from crosses of ZY50/5N//ZY50, ZY51/5N//ZY51

and ZS72/5N//ZS72. The heterozygous lines (ALS1als1/ALS3als3)

from these three BC1F1 populations were then screened using newly

developed KASP markers (Table 1; Figures 1A, B) and self-

pollinated to produce three distinct BC1F2 populations for further

analysis. The plants were cultivated in the experimental fields

located in Yangdu, Haining, Zhejiang province.
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Amplification and Sequence analysis of
BnALS1 and BnALS3 Genes

Genomic DNA of young rapeseed leaves from each plant was

extracted with a modified cetyltriethylammnonium bromide

(CTAB) method (Shi et al., 2017). Full-length BnALS1 (2228 bp)

and BnALS3 (2027 bp) genes were isolated and amplified separately
B

C D

A

FIGURE 1

Kompetitive allele-specific PCR (KASP) genotyping using functional marker KASP-C-1676 and KASP-A-1667 in the segregating rapeseed populations
for the selection of herbicide-resistant lines. (A, B) KASP genotyping of BnALS1 gene on BC1F1 lines (A) and BnALS3 gene on BC1F1 lines (B)
respectively. The red, purple and black dots represent homozygous alleles (G/G), heterozygous alleles (G/T) and non-template control, respectively.
(C, D) KASP genotyping of BnALS1 gene on BC1F2 lines (C) and BnALS3 gene on BC1F2 lines (D) respectively. The blue, red, purple and black dots
represent homozygous alleles (T/T), homozygous alleles (G/G), heterozygous alleles (G/T) and non-template control, respectively.
TABLE 1 List of primer sequences used for KASP assays.

Gene Allele Primer Sequence (5’-3’)

BnALS1 G/T KASP-C-1676-COM TGGCGAACCCTGATGCGATTGTTGTGGAT

KASP-C-1676-HEX GAAGGTCGGAGTCAACGGATTTAGCTTTGTAGAACCGATCTTCCA

KASP-C-1676-FAM GAAGGTGACCAAGTTCATGCTGCTTTGTAGAACCGATCTTCCC

BnALS3 G/T KASP-A-1667-COM TGGCGAACCCTGATGCGATTGTTGTGGAC

KASP-A-1667-HEX GAAGGTCGGAGTCAACGGATTTAGCTTTGTAGAACCGATCTTCCA

KASP-A-1667-FAM GAAGGTGACCAAGTTCATGCTGCTTTGTAGAACCGATCTTCCC
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from ZY50, ZY51, ZS72 and 5N using gene-specific primers as

described (Guo et al., 2020). The resultant DNA fragments were

sequenced by the Sanger dideoxy chain termination method on a

capillary electrophoresis system (ABI 3730XL, Applied Biosystems,

United States).

Nucleotide and amino acid multiple-sequence alignments were

constructed using the CLUSTAL OMEGA program (Madeira et al.,

2022) and colored by use of the GeneDoc 3.2 program with the

default BLOSUM score. The sequence of the ALS gene from A.

thaliana (GenBank accession no. NM_114714) was used as a

reference. The nucleotide and amino acid sequences of BnALS1

and BnALS3 from three cultivars and 5N are listed in

Supplementary data sheets 1, 2.
Primer design for BnALS1 and BnALS3
genes

BnALS1 and BnALS3 sequences from susceptible cultivars

(ZY50, ZY51 and ZS72) and the double mutant 5N were

amplified and analyzed as mentioned above. Two herbicide-

resistant SNPs, G1676T for BnALS1 and G1667T for BnALS3,

were used to develop functional markers. The KASP primers were

designed according to the standard guidelines. Because BnALS1 and

BnALS3 sequences are highly identical (97.6%), flanking sequence

(including SNPs between BnALS1 and BnALS3) of different alleles

at each locus were extracted and used for primer design

(Supplementary Figure 1). For each gene, the KASP marker

consisted of two SNP-specific primers and one common primer.

Of these three primers, two G/T alleles were linked to the FAM and

HEX fluorescent linker-specific sequence of the LGC KASP reagents

at the 5’ end. The primer sequences are shown in Table 1.
Kompetitive allele-specific PCR genotyping

The genotyping assays of the developed KASP markers were

performed on a 96-well plate. The KASP assay was performed in a

1.6 mL PCR reaction mix that consisted of 0.8 mL of KASP Master

mix (LGC, Biosearch Technologies), approximately equal to 0.05 mL
of primer, and 0.8 mL of DNA at a concentration of 10-20 ng/mL.
The amplifications were performed using an IntelliQube (LGC,

Biosearch Technologies) with the following cycling conditions: 94°

C for 15min, 10 touchdown cycles (94°C for 20 s; touchdown at 61°

C, dropping to -0.6°C per cycle 60 s) and followed by 26 cycles of

amplification (94°C for 20 s, 55°C for 60 s).
Inheritance analysis

The susceptible rapeseed cultivars (ZY50, ZY51 and ZS72), 5N

and the developed distinct BC1F2 populations were grown in the

field, and seedlings at the 4-6 leaf stage were sprayed with

tribenuron-methyl (TBM) at 20.25 g.a.i.ha-1. Resistance of the

parents and their derived BC1F2 populations was evaluated 20

days after treatment. The response phenotypes were scored as
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resistant (R) if they showed no herbicide damage or only slight

injury, or susceptible (S) if they died. The segregation of each

population was assessed using a Chi square test.
Further herbicide resistance analysis of the
homozygous genotypes

Three distinct BC1F2 populations were derived from the crosses

ZY50/5N//ZY50, ZY51/5N//ZY51 and ZS72/5N//ZS72. For each

population, the seedlings of BC1F2 populations was analyzed for the

four homozygous genotypes (AABB, AAbb, aaBB and aabb) using

the composite KASP markers. These homozygous lines were then

self-pollinated to generate BC1F3 seeds.

These BC1F3 homozygous lines from the three distinct BC1F2
populations were sown and grown in plastic pots (diameter, 10cm)

containing a 1:1:1 mixture of peat moss, perlite and vermiculite

under natural light conditions.

At least twenty BC1F3 seedlings from each of the four

homozygous lines from the three distinct BC1F2 populations were

sprayed with serial concentrations of 20.25, 30.38, 40.50 and

135 g.a.i.ha-1TBM at the 4-6 leaf stage. Symptoms were recorded

as resistant (R - no herbicide damage or only slight injury), mid-

resistant (M - chlorosis or necrosis on some leaves, but no death) or

susceptible (S - dead plants) at 20 days after the treatment.
Results

Phenotypic symptom of herbicide
resistance

To observe the resistance to herbicide, the seedlings of ZY50,

ZY51, ZS72 and 5N were sprayed with TBM at a concentration of

20.25 g.a.i.ha-1. After exposure to TBM for 14 days, ZY50, ZY51 and

ZS72 were growth injured with yellow or chlorotic leaves

(Figures 2A, B). However, 5N, which harbored two resistant

alleles, exhibited complete resistance, having no symptoms of

chlorosis or necrosis (Figures 2A, B). Our results suggested that

novel herbicide-resistant materials with good agronomic and

quality traits could be developed through the crosses between the

elite rapeseed cultivars and 5N.
Development of kompetitive allele-specific
PCR marker for BnALS1 and BnALS3 genes

To detect single nucleotide polymorphisms (SNPs), BnALS1

and BnALS3 genes were separately cloned by PCR amplification

from 5N and three cultivars, ZY50, ZY51 and ZS72 (Supplementary

data sheet 1). Compared with 5N, these three cultivars have a

common SNP at position G/T (1676) in BnALS1 and a common

SNP at position G/T (1667) in BnALS3 (Supplementary Figure 1). A

comparison of the amino acid sequences of susceptible cultivars/

resistant 5N showed changes at W/L (474 in BnALS1; 471 in

BnALS3) as compared to the changes at the two positions for the
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nucleotide sequence of BnALS1 and BnALS3 (Figure 3). A previous

study proved that the substitutions of W/L in BnALS1 and BnALS3

could endow high herbicide resistance (Guo et al., 2020). Therefore,

G1676T and G1667T were selected as the genotyping targets for

BnALS1 and BnALS3 respectively. The KASP markers were

designed for a SNP at position 1676 in BnALS1 and for a SNP at

position 1667 in BnALS3 (Supplementary Figure 1). Both the

marker KASP-C-1676 (specific to G1676T in BnALS1) and the

marker KASP-A-1667 (specific to G1667 in BnALS3) could clearly

distinguish type alleles GG, GT and TT among cultivars, cultivars/

5N and 5N (Supplementary Figure 2). These two markers were also
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validated on BC1F1 populations, and formed separate clusters for

heterozygous (GT) and homozygous (GG) alleles (Figures 1A, B).
Validation of kompetitive allele-specific
PCR assays on BC1F2 populations

To confirm the KASP assay on herbicide resistance, three

distinct BC1F2 populations were genotyped using KASP-C-1676

and KASP-A-1667. DNA was extracted from the first true leaves of

seedlings before the herbicide treatment. Seedlings at the 4-6 leaf
B

A

FIGURE 2

Herbicide resistance phenotypes of three cultivars ZY50, ZY51 and ZS72 and 5N mutant. (A) Phenotypes of cultivars ZY50, ZY51 and ZS72 and 5N mutant
grown under normal condition. (B) Symptoms of cultivars ZY50, ZY51 and ZS72 and 5N mutant 14 days after treatment with 20.25 g.a.i.ha-1 TBM.
FIGURE 3

Alignment of partial amino acid sequence of ALS proteins from Arabidopsis, ZY50, ZY51, ZS72 and herbicide-resistant mutant 5N (als1als1/als3als3).
AtALS (GenBank accession no. NM_114714), BnALS1-ZY50, BnALS1-ZY51, BnALS1-ZS72, BnALS1-5N, BnALS3-ZY50, BnALS3-ZY51, BnALS3-ZS72 and
BnALS3-5N (B. napus L. cv. ZY50, ZY51, ZS72 and 5N). The red arrow represents point mutations occurred in ALS1 and ALS3 of 5N. The shading of
the alignment presents as follows: identical residues in black and different residues in dark gray. “*”indicates positions which have a single, fully
conserved residue.
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stage were sprayed with TBM at a concentration of 20.25 g.a.i.ha-1.

Phenotypic symptoms were observed at 20 days after the treatment.

The KASP assays were used for specific amplification of BnALS1

and BnALS3. The frequency of the KASP alleles showed equivalence

with the segregation expected for the BC1F2 populations

(Figures 1C, D).

The combination of the KASP markers resulted in nine

genotypes as shown by analysis of the seedlings in the BC1F2
populations (Table 2). These were AABB, AABb, AAbb, AaBB,

AaBb, Aabb, aaBB, aaBb and aabb, and the ratio of isolation of these

genotypes is 1:2:1:2:4:2:1:2:1 in the three distinct BC1F2 populations.

In the three BC1F2 populations developed from crosses ZY50/5N//

ZY50, ZY51/5N//ZY51 and ZS72/5N//ZS72, five, five and six

homozygous plants with genotype AABB exhibited sensitivity to

TBM treatment at 20 days after the treatment (Table 2). However,

plants with other genotypes showed resistance to 20.25 g.a.i.ha-1
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TBM treatment (Table 2). The ratio of susceptible lines to resistant

lines is 1:15 in the three distinct BC1F2 populations (Table 2).
Further validation of genotype effect on
herbicide resistance

To further validate the effect of genotype on herbicide

resistance, we chose the BC1F3 plants with genotypes AABB,

AAbb, aaBB and aabb developed from three distinct BC1F2
populations for resistance analysis. Plants with genotype AABB

displayed serious damage with yellow leaves and eventual death

within 20 days after treatment at all concentrations of TBM

(Table 3). Plants with genotype AAbb exhibited resistance to

20.25-40.50 g.a.i.ha-1 TBM (Table 3). Plants with genotype aaBB

showed resistance to 20.25-30.38 g.a.i.ha-1 TBM and mid-resistance
TABLE 3 The effects of four homozygous genotypes on herbicide resistance.

Genotype TBM (g.a.i.ha-1)

20.25 30.38 40.50 135

AABB S S S S

AAbb R R R S

aaBB R R M S

aabb R R R R
A/a represents herbicide susceptible/resistant allele for BnALS1 gene; B/b represents herbicide susceptible/resistant allele for BnALS3 gene. R represents resistant to TBM;.
M represents mid-resistant to TBM; S represents susceptible to TBM.
TABLE 2 Validation of the KASP assays for herbicide resistance in distinct BC1F2 populations of B. napus.

Genotype BC1F2
(No of samples)

Phenotype

ZY50/5N//ZY50 ZY51/5N//ZY51 ZS72/5N//ZS72

AABB 5 5 6 S

AABb 24 24 20 R

AAbb 9 10 7 R

AaBB 16 16 20 R

AaBb 54 34 44 R

Aabb 22 22 27 R

aaBB 8 12 12 R

aaBb 18 17 24 R

aabb 4 6 9 R

Total 160 146 169 –

P value
(1:2:1:2:4:2:1:2:1)

0.0958 0.5322 0.6678 –

c2 13.5 7.0411 5.8166 –

– 0.0875 0.0875 0.0770 P value
(1:15)

– 2.9192 2.9192 3.1277 c2
A/a represents herbicide susceptible/resistant allele for BnALS1 gene; B/b represents herbicide susceptible/resistant allele for BnALS3 gene. The seedlings were treated with 20.25 g.a.i.ha-1 TBM at
the 4-6 leaf stage, and phenotypes of the seedlings were observed 20 days after the treatment. R represents resistant to TBM; S represents susceptible to TBM.
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to 40.50 g.a.i.ha-1 TBM (Table 3). However, at higher concentration

of 135 g.a.i.ha-1 TBM, Plants with genotype AAbb and aaBB showed

chlorotic stunting, destroyed apex and eventual death (Table 3). By

contrast to plants with genotype AAbb and aaBB, plants with

genotype aabb exhibited complete resistance, having no chlorosis

or necrosis, even to the higher concentration of 135 g.a.i.ha-1

TBM (Table 3).
Discussion

Successful weed management helps to improve crop yield in

modern agricultural production systems. Resistant cultivars are the

most effective and environmentally responsible strategy for

protecting crops from weeds. Thus, developing new cultivars with

high resistance to herbicides is now a major breeding objective in

rapeseed. Acetolactate synthase encoded by ALS gene is responsible

for biosynthesis of the branched chain amino acids, including

valine, leucine, and isoleucine (Haughn and Somerville, 1990).

The mutation of ALS gene may result in amino acid substitutions

of ALS and inhibit the binding of the ALS enzyme with herbicides,

which endows the plants with resistance to herbicide (Duggleby

et al., 2008; Murphy and Tranel, 2019; Guo et al., 2020; Wu et al.,

2020). Functional markers, such as AS-PCR (Hu et al., 2015) and

CAPS (Li et al., 2015; Hu et al., 2017; Guo et al., 2020; Huang et al.,

2020), have been developed to discriminate the allelic variation for

the ALS genes. However, all these are gel based markers, and have

relatively limited potential for high-throughput application. Thus,

the development of a high-throughput and relatively cost-efficient

marker system is important and necessary for improving

breeding strategies.

As a key enzyme for the biosynthesis of branched chain amino

acids, improper mutation of ALS can destroy its function and result

in plant death. However, ALS harboring point mutations could

confer sufficient tolerance to some kinds of herbicides with little

damage to plant growth (Yu et al., 2010; Zhao et al., 2020; Cheng

et al., 2021). We independently cloned and sequenced BnALS1 and

BnALS3 from three cultivars ZY50, ZY51 and ZS72, and from the

5N mutant. DNA sequence alignment showed that 5N contains a

single-nucleotide mutation (G1676T) in BnALS1 and a single-

nucleotide mutation (G1667T) in BnALS3 based on sequence

comparison with the three herbicide-susceptible cultivars; ZY50,

ZY51 and ZS72 (Supplementary Figure 1), resulting in amino acid

alterations, W474L (W574L, numbered according to ALS sequence

in Arabidopsis) in BnALS1 and W471L (W574L) in BnALS3

(Figure 2). The W574L substitution has been reported to confer

resistance to ALS inhibitors in rapeseed, sunflower and cocklebur

(Bernasconi et al., 1995; Hattori et al., 1995; Sala et al., 2012; Hu

et al., 2017; Guo et al., 2020). Mutation at P197 also conferred good

tolerance to sulfonylureas in Arabidopsis, rapeseed and wheat (Li

et al., 2015; Chen et al., 2017; Zhang et al., 2019; Huang et al., 2020;

Wu et al., 2020; Cheng et al., 2021; Guo et al., 2022). In addition,

mutations at the sites of Ala122, Ala205 and Ser653 of ALS have

been reported to confer resistance to ALS inhibitors (Tan et al.,

2005; Murphy and Tranel, 2019). These SNPs in ALS genes can be

used for marker-assisted breeding.
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5N is an important herbicide-resistant material with

simultaneous mutations in BnALS1 and BnALS3 genes (Guo

et al., 2020). We planned to design KASP markers for BnALS1

and BnALS3 genes in the 5N double mutant. Considering the highly

similar (97.6%) sequence of BnALS1 and BnALS3, it is difficult to

develop high throughput markers capable of discriminating

homozyous and heterozygous lines in these segregating

populations. In this study, two KASP functional markers, KASP-

C-1676 and KASP-A-1667, were successfully developed based on

the specific characteristics of BnALS1 and BnALS3 genes from the

cultivars and 5N (Table 1). These KASP markers will faciliate the

use of 5N mutant for herbicide resistant rapeseed breeding.

The two KASP markers can clearly distinguish the genotypes of

parents and hybrids (Supplementary Figure 2). Genotyping results

performed by the two markers are highly consistent with the results

of phenotypic evaluation (Figure 1; Table 2). Furthermore, these

two KASP markers can distinguish the homozygous/heterozygous

lines in three distinct segregated populations (BC1F2) developed

from ZY50, ZY51, ZS72 and 5N (Table 2), which proved the high

effectiveness of the KASP markers for genotyping under different

genetic backgrounds. All these results suggested that the developed

KASP markers are stable and effective to differentiate homozygous/

heterozygous state of alleles in distinct populations and can be used

for marker-assisted selection in rapeseed breeding projects.

In plants, synergistic effect is an important genetic phenomenon

exhibited in the processes of hormone interaction, flower

development and signal transduction (Poduska et al., 2003;

Replogle et al., 2013; Yang et al., 2017). Synergistic effects have

also been shown for herbicide resistance in crops. In B. napus, 5N

(BnALS1-2R, W574L; BnALS3R, W574L) and DS3 (BnALS1-3R,

P197L; BnALS3R, W574L) showed stronger herbicide resistance

than mutants with single-point mutations (Guo et al., 2020 and Guo

et al., 2022). In soybean, Als1 (P197S) and Als2 (W574L) exhibited

synergistic resistant effects to ALS herbicides, and the combination

of Als1 and Als2 conferred stronger tolerance to SU (Walter et al.,

2014). In this study, four homozygous genotypes were characterized

and selected using the developed KASP markers. We analyze the

effects of four genotypes on herbicide resistance. Our results showed

that the lines containing two mutated alleles exhibited relatively

stronger TBM resistance compared with those lines with a single

mutated allele (Table 3), which is consistent with the findings

reported previously (Guo et al., 2020). Altogether, these results

suggested that the developed KASP markers are valuable functional

markers and could be used for the high throughput selection of

superior herbicide resistant materials by providing precise

genotypic information, which will expedite the process of

breeding herbicide-resistant rapeseed.
Conclusion

In this study, two KASP markers for BnALS1 and BnALS3,

KASP-C-1676 and KASP-A-1667, were successfully developed on

the basis of SNPs in the ALS genes. These assays are highly gene

specific and can effectively distinguish target genotype states. The

developed KASP assays are high throughput and cost effective as
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compared to gel-based markers and can be used for marker-assisted

selection of herbicide resistance.
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A source of resistance against
yellow mosaic disease in
soybeans correlates with a novel
mutation in a resistance gene

Saleem Ur Rahman1,2, Ghulam Raza1*, Rubab Zahra Naqvi1,
Evan McCoy3, Muhammed Hammad1, Peter LaFayette3,
Wayne Allen Parrott3, Imran Amin1, Zahid Mukhtar1,
Abdel-Rhman Z. Gaafar4, Mohamed S. Hodhod5

and Shahid Mansoor1,6*

1National Institute for Biotechnology & Genetic Engineering College, Pakistan Institute of Engineering
and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Pakistan, 2Department of Allied Health Sciences,
Pak-Austria Fachhochscule-Institute of Applied Sciences and Technology (PAF-IAST), Mang, Haripur,
Khyber Pakhtunkhwa, Pakistan, 3Institute of Plant Breeding, Genetics & Genomics, University of
Georgia, Athens, GA, United States, 4Department of Botany and Microbiology, College of Science,
King Saud University, Riyadh, Saudi Arabia, 5Department of Biotechnology, October University for
Modern Sciences and Arts, 6th of October City, Egypt, 6Jamil ur Rehman Center for Genome
Research, International Center for Chemical and Biological Sciences (ICCBS), University of Karachi,
Karachi, Pakistan
Yellow mosaic disease (YMD) is one of the major devastating constraints to

soybean production in Pakistan. In the present study, we report the identification

of resistant soybean germplasm and a novel mutation linked with disease

susceptibility. Diverse soybean germplasm were screened to identify YMD-

resistant lines under natural field conditions during 2016-2020. The severity of

YMD was recorded based on symptoms and was grouped according to the

disease rating scale, which ranges from 0 to 5, and named as highly resistant (HR),

moderately resistant (MR), resistant (R), susceptible (S), moderately susceptible

(MS), and highly susceptible (HS), respectively. A HR plant named “NBG-SG

Soybean” was identified, which showed stable resistance for 5 years (2016-

2020) at the experimental field of the National Institute for Biotechnology and

Genetic Engineering (NIBGE), Faisalabad, Pakistan, a location that is a hot spot

area for virus infection. HS soybean germplasm were also identified as NBG-47

(PI628963), NBG-117 (PI548655), SPS-C1 (PI553045), SPS-C9 (PI639187), and cv.

NARC-2021. The YMD adversely affected the yield and a significant difference

was found in the potential yield of NBG-SG-soybean (3.46 ± 0.13a t/ha) with HS

soybean germplasm NARC-2021 (0.44 ± 0.01c t/ha) and NBG-117 (1.12 ± 0.01d t/

ha), respectively. The YMD incidence was also measured each year (2016-2020)

and data showed a significant difference in the percent disease incidence in the

year 2016 and 2018 and a decrease after 2019 when resistant lines were planted.

The resistance in NBG-SG soybean was further confirmed by testing for an

already known mutation (SNP at 149th posit ion) for YMD in the

Glyma.18G025100 gene of soybean. The susceptible soybean germplasm in

the field was found positive for the said mutation. Moreover, an ortholog of the

CYR-1 viral resistance gene from black gram was identified in soybean as
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Glyma.13G194500, which has a novel deletion (28bp/90bp) in the 5`UTR of

susceptible germplasm. The characterized soybean lines from this study will

assist in starting soybean breeding programs for YMD resistance. This is the first

study regarding screening and molecular analysis of soybean germplasm for

YMD resistance.
KEYWORDS

yellow mosaic disease, soybean, screening, resistance source, NBG-soybean
1 Introduction

Yellow mosaic disease (YMD) is one of the major devastating

diseases that severely hampers soybean production. The disease is

mainly caused by the mungbean yellow mosaic India virus

(MYMIV), mungbean yellow mosaic virus (MYMV), horsegram

yellow mosaic virus (HgYMV), and dolichos yellow mosaic virus

(DoYMV). These viruses cause characteristic symptoms of yellow

mosaic patterns on the leaf surfaces and are collectively named

legume yellow mosaic viruses (LYMVs) (Qazi et al., 2007; Ilyas

et al., 2009; Rahman et al., 2023a). Among LYMVs, HgYMV and

DoYMV are rarely found, while MYMV and MYMIV are very

common and infect many important legume crops (Maruthi et al.,

2006; Rahman et al., 2023a). Previously, both MYMIV and MYMV

species were found in India, while in Pakistan, MYMIV was the

most frequent species found to infect major legume crops (Ilyas

et al., 2009; Ilyas et al., 2010). However, recently a comprehensive

study was conducted and found that MYMIV and MYMV have an

equal role in causing infection in soybean cultivars in Pakistan

(Rahman et al., 2023a; Rahman et al., 2023b). The exact data on

yield loss due to YMD is not available, as the incidence of YMD

varies in different locations and also varies for different crops

(Varma and Malathi, 2003). In 1996, YMD caused a significant

yield loss in soybean production, of approximately 105,000 metric

tonnes. It has been reported that if the disease appears in the early

stage of plant growth, the yield loss reaches up to 100% (Wrather

et al., 1997; Kitsanachandee et al., 2013). Official reports on YMD

from soybeans are lacking in Pakistan as soybean was only recently

grown as a major legume in the country, however, anecdotal

evidence from virologists suggests the disease is very common.

Identification of resistant soybean germplasm is a method of

choice to prevent soybean cultivars from contracting YMD. In

India, many resistant and susceptible soybean cultivars have been

identified for YMD (Ram et al., 1984; Lal et al., 2005; Rani et al.,

2017), but in Pakistan, no resistant cultivars have been identified or

tested. Identification of virus-resistant germplasm is also the first

step toward the identification of resistant (R) genes. These R genes

have an important role in disease control. In 2012, the marker-

assisted breeding technique was used for the identification of R

genes and many genes have been identified that were found linked

with YMD, such as the CYR-1 gene in black gram (Maiti et al.,

2012). The CYR-1 gene was also found completely linked with
02185
MYMIV resistance in urdbean and mungbean (Maiti et al., 2011).

In 2016, it was reported that the recessive form (cyr-1) of the CYR-1

gene is a susceptibility factor for YMD in black gram (Patel et al.,

2016). In urdbean, RGA-1, CEDG180, ISSR811, and YMV-1 were

found to be closely linked with MYMIV resistance (Basak et al.,

2005; Souframanien and Gopalakrishna, 2006; Gupta et al., 2013).

In mungbean and black gram, the resistance gene analog (RGA)

marker has been found to be linked with MYMV resistance.

However, very little information is available on YMD-resistance

genes in soybeans, except single nucleotide polymorphism (SNP)

in an LRR-like protein kinase gene (chromosome 18;

Glyma18g02850), which was found to be associated with soybean

susceptibility to MYMIV (Yadav et al., 2015).

Studies regarding natural resistance sources for YMD and

resistance genes from soybeans in Pakistan are lacking and the

subject is in dire need of investigation. This study highlights the

identification of both resistant and susceptible soybean germplasm

and markers for YMD resistance in soybean cultivars, which will be

used for the screening of resistant sources in soybean breeding

programs in the future.
2 Materials and methods

2.1 Screening of soybean
germplasm for YMD

A total of 1,007 soybean accessions were screened from 2016 to

2020. These accessions were acquired from the Plant Genetic

Resources Institute (PGRI, Pakistan) and the Agriculture

Research Service of the United States Department of Agriculture

(USDA-ARS), USA. Local cultivars were provided by the National

Agriculture Research Center (NARC), Islamabad, and Agriculture

Research Center (ARS), Swat, Khyber Pakhtunkhwa, Pakistan as

well as Ayub Agriculture Research Institute (AARI), Faisalabad,

Pakistan. The imported germplasm, along with locally adapted

cultivars, (Faisal soybean, NARC-2021, cv. Ajmeri) were grown in

three replicates in single row plots that were 4.5 m long and were

located at an experimental field, NIBGE, Faisalabad (31°25'0"N 73°

5'28" E). The trial location is a regional hub for begomoviruses of

crops commonly grown in the area, such as cotton and mungbean

(Habib et al., 2007; Ilyas et al., 2010). The plant-to-plant distance
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was 10 cm and the row-to-row distance was 30 cm. The experiment

was performed during the autumn seasons (from August to

November) of the years 2016-2020. Recommended agronomic

practices were performed for soybean management. The field was

plowed two to three times before seed sowing. The recommended

seed rate of 85 kg/ha of soybean was used. To achieve high

nodulation and better nitrogen fixation, seeds were inoculated

with plant growth-promoting rhizobacteria (PGPR) in the form

of Bradyrhizobium japonicum (10 g per kg of soybean seeds).

Recommended fertilizer rates of 25:60:50 kg/ha of Nitrogen (N),

Phosphorus (P), and Potassium (K) were applied, respectively, by

utilizing commercially available fertilizers (Urea, DAP, and SOP).

During seedbed preparation, a full dose of P and K and a half dose

of N were applied as basal doses. The remaining N was used at the

flowering stage. To keep the crop free from weeds, the pre-

emergence herbicide, Dual Gold (S-Metolachlor; Syngenta,

Switzerland), at a concentration of 960g/L was used. Before

sowing, the seeds were also treated with an antifungal, Hombre

Ultra (Imidacloprid; Bayer, Germany). All the agronomic practices

were kept uniform for all treatments except the soybean cultivars

under study. The soybean crop was irrigated five to six times during

the season. The field was routinely visited after sowing to document

the appearance of symptoms of YMD. When YMD emerged, such

as yellow mosaic spots on the leaf surface, the infection percentage

was measured. The disease severity index (DSI)/percent infection

(PI) of each cultivar was recorded. For DS, six different groups,

namely, highly resistant (HR), resistant (R), moderately resistant

(MR), moderately susceptible (MS), susceptible (S), and highly

susceptible (HS), were formed as previously described (Islam

et al., 2010) as shown in Table 1. HR represents high resistance to

viruses having no symptoms. The percentage scale shows the plant

infection severity of leaves and plant area affected. The DSI was

calculated using the following formula (Habib et al., 2007):

individual  DSI =
Sum of individual plant rating
Total number of observed plants

i
�100

Where DSI is the disease severity index, the disease rating is 0-5

as reported (Habib et al., 2007), and the individual plant rating was

based on the symptoms of the leaves of each plant affected by the

disease (Figure 1). The overall mean of disease rating for individual

cultivars was recorded for the entire period (2016-2020). The

percentage of disease incidence (PDI) was also measured by

selecting the diseased (YMD) plants. In this case, the plants were
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classified as diseased or healthy irrespective of symptom severity.

Several plants were randomly recorded at five positions in the entire

field and classified as YMD or healthy. For each position, data from

multiple plants were recorded. A total of 100 plants were classified in

the entire field. The PDI was calculated using the following formula:

PI   =
Number of YMD plants

Total number of observed plans

� �
� 100
2.2 Molecular characterization of
viruses causing YMD

For the identification of begomoviruses causing YMD in

soybeans, both symptomatic (susceptible) and asymptomatic

(resistant) samples were collected, and the DNA was extracted

using the modified CTAB method (Doyle and Doyle, 1987). The

viral DNA was amplified using the primer pair MYMIV-F/

MYMIV-R and MYMV-F/MYMV-R (Table S-2). A total of 10

PCR amplified products (MYMIV and MYMV) with respective

sizes (~2.6-2.8 kb) were purified from agarose gel and cloned in a

pTZ57R/T vector (Thermo Scientific, USA). The confirmed clones

were sequenced using the Applied Biosystems 3730XL DNA

sequencer. These clones were sequenced with M13 forward and

M13 reverse primer pair, and then by primer walking strategy to get

the complete sequence of each clone in both directions. Sequences

were analyzed using Lasergene (DNAStar Inc.), and reads were

assembled in SeqMan (Lasergene, DNAStar Inc., Madison, USA).

After trimming the vector portion, a consensus contig was saved

and analyzed. The sequences were submitted to the GenBank of

NCBI (MN885463 and MK098184).
2.3 Confirmation of known SNP in
soybean germplasm

For the confirmation of the already known resistant gene,

Glyma.18G025100 in soybean (Yadav et al., 2015), highly resistant

and highly susceptible genotypes of soybean in Pakistan were

selected. The total genomic DNA was extracted using a modified

CTAB method (Doyle and Doyle, 1987) and the DNA was

amplified using the primer pair: 18G025100-F: TCGTACTCA

CGAAGGTGGA; 18G025100-R: AATGCGTTCTGAAGCTGTCC
TABLE 1 Criteria for percent infection of YMD in soybean germplasm.

Percent Infection Disease Severity/Scale Infection Category Reaction Group

No symptoms 0 Highly resistant HR

1-10% 1 Resistant R

11-20% 2 Moderately resistant MR

21-30% 3 Moderately susceptible MS

31-50% 4 Susceptible S

More than 50% 5 Highly susceptible HS
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(Yadav et al., 2015). The PCR products with the expected size (~2.6-

2.8 kb) were gel-eluted and sequenced using the Applied Biosystems

3730XL DNA sequencer. The sequencing results were cleaned and

compared using the BLASTn search tool in the NCBI data bank.
2.4 Confirmation of CYR-1
ortholog in soybean

To identify the ortholog of the black gram CYR-1 gene (Patel

et al., 2016) in soybean, the complete sequence of the gene was

retrieved from the Phytozome database (https://phytozome-

next.jgi.doe.gov/), and BLASTP search engine was used to find the

most similar sequences in the soybean genome. The most identical

sequences of the predicted genes in soybeans were picked, which

were further confirmed by wet lab experiments. The total DNA was

extracted using a modified CTAB method (Doyle and Doyle, 1987)

and amplified using a diverse range of overlapping primers (Table S-

3) to sequence the complete gene. These overlapping primers were

based on the predicted gene that followed the chromosome-walking

strategy. These primers were designed in the available Geneious

bioinformatics software. Overlapping primers were applied on both

susceptible and resistant soybean cultivars identified in the present

study. The PCR products were resolved using gel electrophoresis,

purified and Sanger sequenced.
2.5 In silico analysis of 5`UTR and
CYR-1 protein from resistant and
susceptible germplasm

The transcription factor binding sites (TFBSs) were detected in

both 5`UTR regions from the CYR-1 gene from resistant and
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susceptible germplasm by using PlantPAN3.0 (http://

plantpan.itps.ncku.edu.tw/). The ProtParam tool at Expasy (https://

web.expasy.org/protparam/) was employed to identify the differences

in CYR-1 protein from resistant and susceptible germplasm. The

protein sequences of CYR-1 protein from resistant and susceptible

germplasm were subjected to protein structure prediction and

structure-based alignment by I-TASSER (https://zhanggroup.org/I-

TASSER/) and TM-align (https://zhanggroup.org/TM-align/). Protein

structures were visualized by PyMOL2.5 (https://pymol.org/2/). The

interaction of both the CYR-1 gene from resistant germplasm and the

CYR-1 gene from susceptible germplasm with the MYMIV viral coat

protein was checked using PSOPIA (https://mizuguchilab.org/

PSOPIA/) and ISLAND (https://island.pythonanywhere.com/).
2.6 Statistical analysis

The data were analyzed using a one-way analysis of variance

(ANOVA) and the Tukey test was applied at a =0.05 (95% interval)

using GraphPad Prism 6 (https://graphpad-prism.software.informer.

com/6.0/).
3 Results

3.1 Evaluation of soybean
germplasm for YMD

The soybean accessions (Table S-1) were evaluated during five

successive years 2016-2020 in the autumn season (from August to

November). In the year 2016, out of 128 entries, 18 entries found

HR and 30 were HS (Table 2). The disease severity index was higher

in the year 2016 (Figure 2). The HR and HS entries proceeded
FIGURE 1

Representation of YMD severity percentage on soybean leaf.
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further along with those accessions having high yield and resistance

to YMD. There were more resistant lines in 2019 as crosses and

mutants were included, which increased the resistance gene pool

further. The individual leaf disease severity scale was converted to

individual plants and identified HS and HR soybean germplasm

(Figure 3). A highly resistant plant, selected from cv. Jack

(PI540556) and named SG-soybean, was identified in the year

2016. The resistance in this line was stable in the entire growing

period (2016-2020). The SG-soybean line showed complete

resistance with no viral symptoms (Figure 4), while the approved

cultivars, such as cv. Ajmeri and NARC-2021, were found to be HS.

The accession NBG-117 (PI548655) and exotic genotypes were also

found to be susceptible. The cv. NARC-2021 was previously

recorded as NARC-16, which was approved recently in the year

2023 for general cultivation in Khyber Pakhtunkhwa, Pakistan. The

incidence of disease in susceptible cultivars was more in check

cultivars: cv. Ajmeri and NARC-2021 (Figure 4). The persistent

nature of these cultivars to virus resistance showed that the

susceptibility and resistance in these cultivars were stable

(Table 3). The SG-soybean line was not only resistant to YMD

but was resistant to multiple viruses. To have a complete picture of

each cultivar, the reaction of each cultivar in each year and the
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overall mean reaction are summarized in Table 3. The YMD

incidence was measured in the years 2016-2020 (Figure 2). The

disease incidence was found to be very high (Figure 2) in 2016 and

2019, while it was significantly low (P< 0.05) in the years 2018

and 2020.
3.2 Yield and yield-linked traits

The yield of the resistant SG-Soybean line was higher (3.46 ±

0.13a t/ha) than that of the susceptible NARC-2021 (0.44 ± 0.01c t/

ha) and NBG-117 (1.12 ± 0.01d t/ha) (Table 3). The increase in SG

soybean was ~7.9 times that of NARC-2021 and ~3 times that of

NBG-117 (Table 3). Although the SPP and PPP of HS germplasm

(NARC-2021 and NBG-117) were high, the germination growth

was badly affected by YMD in these cultivars, so the number of

plants in these germplasm was lower as compared to the SG-

soybean line; hence the yield of these HS soybean germplasm was

less than that of the SG-soybean line (Table 3).
3.3 Molecular analysis for YMD

As the YMD is caused by both MYMIV and MYMV, to confirm

the YMD for both the viral strains, the susceptible and resistant

cultivars were evaluated (Table 2). All the YMD symptomatic plants

were positive for MYMIV/MYMV. The sequences of MYMIV and

MYMV identified in the field were submitted inNCBI and are available

under accession nos. MN885463 and MK098184, respectively.
3.4 Confirmation of known SNP in soybean
resistant gene

In the current study, the highly resistant and susceptible

germplasm of soybeans in Pakistan were checked for the known

SNP in the Glyma.18G025100 gene on chromosome 18. The primer

pair : 18G025100-F: TCGTACTCACGAAGGTGGA and

18G025100-R: AATGCGTTCTGAAGCTGTCC was used for the

amplification of the gene carrying the SNP for C to G transversion.

The gel electrophoresis confirmed the expected fragment size
TABLE 2 Number of YMD resistant and susceptible soybean genotypes during autumn (2016-2020).

Reaction
Number of Genotypes

2016 2017 2018 2019 2020 Total

HR 18 01 01 04 1 25

R 23 00 10 32 6 71

MR 11 00 32 56 11 110

MS 12 01 47 79 16 155

S 34 06 37 127 19 223

HS 30 28 174 160 31 423

Total 128 36 301 458 84 1007
fronti
FIGURE 2

Year-wise YMD incidence (%) in soybeans. Lower case letters show
significant difference.
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(Figure 5A). However, the PCR product was further confirmed by

Sanger sequencing, which found the same C to G transversion, as

shown in Figure 5B.
3.5 Confirmation of the CYR-1 gene
ortholog in soybean

To identify the ortholog of the CYR-1 gene in soybean, the

sequence of the CYR-1 gene was aligned with the soybean genome.
Frontiers in Plant Science 06189
The sequence of the CYR-1 gene of black gram showed 65% identity

with the soybean gene Glyma.13G194500. The overlapping primers

were designed to cover the whole gene with 100 bp apart from the

gene covering 5` UTR and 3` UTR (Table S-3; Figure 6A). The 128

amino acid deletion was not identified in the closely related gene,

however, in one susceptible variety (Minsoy), a deletion (28bp) in

the 5` UTR was identified. This deletion was also observed when

resolved on agarose gel (Figure 6B). The deletion was confirmed

by Sanger sequencing, which was identified in 5` UTR of

Glyma.13G194500 (Figure 6C).
FIGURE 3

Resistant and susceptible soybean germplasm for YMD tested in 2016-2020.
FIGURE 4

Pictorial view of resistant and susceptible soybean germplasm under natural field conditions.
TABLE 3 Agronomic performance of highly resistant and susceptible soybeans.

Genotype DF DM PH (cm) PPP SPP GY (t/ha)

SG-soybean 41 ± 3.0a 98 ± 2.0a 37.3 ± 2.0a 70.6 ± 3.0a 2.86 ± 0.15a 3.46 ± 0.13a

NARC-2021 65 ± 2.6c 91.6 ± 3.5a 38.3 ± 7.2a 93.6 ± 5.5b 2.93 ± 0.05a 0.44 ± 0.01c

NBG-117 40 ± 2.5a 102.3 ± 2.5ab 62.6 ± 8.0ab 127.3 ± 12.0bc 2.96 ± 0.05a 1.12 ± 0.01d
f

The small letters "a-c" etc shows the significant difference.
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4 Discussion

Soybean is one of the most important crops grown in many

countries (Rathore et al., 2021). However, Pakistan grows soybeans

in a negligible area. Many reasons lead to the low cultivation and

production of this crop in the country. Among these, YMD is the

main problem in soybean production in the region, based on typical

symptoms of YMD observed in the field in Pakistan. YMD also has

an important role and impact on the production of mungbean in

India as well as in Pakistan (Ilyas et al., 2009; Nair et al., 2017;

Ashok, 2018). In India, this disease not only infects mungbean, but

also poses a serious threat to other legume crops as well as to

soybean production (Gazala et al., 2013). However, India has

applied multiple approaches to find ways to control YMD in

soybean crops, such as producing resistant cultivars (Mishra

et al., 2020). However, despite the dire need for the cultivation of

soybeans in Pakistan, there are no reports available regarding

cultivars of soybeans resistant to YMD in the country.

Multiple approaches are applied for the control of

begomoviruses that cause multiple diseases in plants. One such

method is to control their vectors, such as whiteflies, which not only

spread the viral disease but also suck plant saps and damage plant

growth. Heavy insecticide spray is being used to control this pest at

different plant growth stages. Many such insecticide sprays are not

safe for humans and lead to pollution as they persist for a long time
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in the environment (Zikankuba et al., 2019). Another approach is to

identify/develop resistant germplasm, which could be high-yielding

and will be the source of resistance in future breeding programs

(Snehi et al., 2015). The identification of these resistant cultivars is

of high importance as these cultivars have less impact on the cost of

production as compared to insecticide sprays, which are more

expensive for the control of vectors transmitting these viruses

(Habib et al., 2007). This approach was applied in mungbean to

identify different resistant cultivars against YMD (Habib et al.,

2007). The marker-assisted breeding approach was also used to

screen and identify the YMD-resistant and high-yielding mungbean

cultivars, which helped the farmers to grow mungbean (Binyamin

et al., 2015). The success of conventional breeding for the control of

YMD in mungbean encouraged us to acquire soybean germplasm

from national and international sources and to identify virus-

resistant germplasm. We screened the germplasm for a period of

5 years (2016-2020) under field conditions in the autumn season

(August-November) when the incidence of yellow mosaic disease

was at its maximum, and successfully identified YMD-resistant

germplasm. This would be highly helpful for the soybean breeding

program in the future.

The accessions were reduced with selected lines in successive

generations by selecting only the HS, R, and HR soybean

germplasm, but at the same time, new entries were also added to

obtain the best possible gene pool for disease resistance. All the lines
B

C

A

FIGURE 6

(A) Representation of overlapping primers designed to amplify complete CYR-1 gene; Glyma.13G194500 (B) PCR amplification of CYR-1 gene;
Glyma.13G194500 (C) Alignment of Glyma.13G194500 of YMD resistant and susceptible soybean. The symbol * shows homology.
BA

FIGURE 5

(A) PCR amplification of resistant and susceptible germplasm for gene Glyma.18G25100 validation. (B) Chromatogram of Glyma.18G25100 showing
G/C transversion in soybean germplasm.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1230559
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Rahman et al. 10.3389/fpls.2023.1230559
were screened at least for three years. During the experiments, the

populations of breeding and mutants of locally established cultivars

were also developed (results not shown). These plant materials were

also tested for YMD resistance (Table 3). Initially, the germplasm

imported from the USDA along with the local cultivar (NARC-

2021) were screened. It has been observed that single plant selection

(SPS) is very important for disease resistance in crops (Foxe, 1992).

So, for this reason, the SPS was also performed in the same cultivar

having high disease severity, and all single plants resistant to YMD

were selected and screened in the next generations.

Although symptoms on plant leaves are the initial indication of

viruses, these symptoms are not reliable for the exact identification

of viral strains or species in plants until the whole genome

sequencing of the viral genome is performed (González-Garza,

2017) as the YMD is caused by four different species of LYMVs,

namely, MYMIV, MYMV, HgYMV, and DoYMV (Qazi et al.,

2007). So, molecular characterization of these species causing

YMD in soybeans was needed before further evaluation. For this

reason, the total DNA was extracted from both resistant and

susceptible soybean samples and was characterized for MYMIV

and MYMV. Both the viral species were identified in susceptible

cultivars and there was no identification of other LYMVs (Table 2).

This shows that both species (MYMIV and MYMV) are responsible

for the YMD in soybean at the tested location (Faisalabad,

Pakistan), and the data have been reported (Rahman et al.,

2023a). The sequences for each of the species MYMIV and

MYMV were submitted in NCBI with accession nos. MN885463

and MK098184, respectively.

Regarding YMD severity, the highest severity was found in

many soybean cultivars such as NBG-22, NBG-31, NBG-47, NBG-

117, NARC-2021, SPS-C1, and SPS-C9 (Table 3). In 2018, more

germplasm were added which were developed by hybridization with

local cultivars and mutation. These were given the code CF in cross

and M for mutant seeds. The YMD incidence was higher in 2016

and 2019, and lower in 2018 and 2020 (Figure 2). The increase in

disease incidence in 2019 was due to new soybean entries, whereas

the decrease in disease incidence was due to recurrent selections of

advanced disease-resistant soybean material throughout the period

(2016-2020).

In the studied soybean lines, initially, no germplasm were

HR for YMD and there was one single plant in one germplasm

(cv. Jack) that was HR to YMD. However, after 2016, many lines

showed complete immunity to YMD but the majority of these

HR germplasm lost the resistance in the next generations, which

shows that, initially, it was pseudo-resistance. Only one line

cultivar named “SG-soybean”, an SPS from cv. Jack in the year

2016, maintained complete resistance in respective generations

(Table 3). This shows that the resistance in the SG-soybean line

is stable. Stable resistance is very important in plant breeding

programs (Stuthman et al., 2007), although in most cases the

resistance is not stable and is lost due to the emergence of new

viral strains/species, which is a routine phenomenon that

viruses use for their survival and transmission. Hence, this

change in the viral genome leads to the production of highly

resistant viral strains/pathogens. This has been shown by the

appearance of MYMIV in India, which is a novel species of
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LYMVs. Before the appearance of MYMIV, MYMV was the

dominant species that caused YMD, and the resistance was lost

due to the emergence of this novel species of MYMIV. However,

it could be possible to identify the new resistance source against

these two species of LYMVs. Similarly, the resistance break was

also observed in cotton for CLCuD by the emergence of new

strains of the cotton leaf curl virus, which caused epidemics in

Pakistan (Zubair et al., 2017). In tomatoes, it has been observed

that the reassortment of the tomato spotted wilt virus led to new

strains and broke previously resistant cultivars (Margaria et al.,

2015). In our previous investigation, there were many strains

and species of begomoviruses identified, including both

MYMIV and MYMV (Rahman et al., 2023a; Rahman et al.,

2023b), however, the SG-soybean line was found resistant to

high disease pressure and there were no symptoms on the SG-

soybean line (2016-2020) in all generations (Figure 4), although

the disease vector, namely, whiteflies, were present in a soybean

field, which further strengthens the claim of stable resistance in

the SG-soybean line. Second, the presence of MYMIV and

MYMV in the field confirms the resistant cultivar having

stable resistance. Another possibility of stable resistance could

be the presence of the expression of resistance genes that

interact and degrade viral proteins. The most resistant protein

has been identified for MYMIV in black gram, which interacts

with the rep protein of the virus (Patel et al., 2016). The

resistance in plants is also governed by gene silencing. It has

been found that the resistant cultivar induces viral RNA

degradation earlier than the susceptible cultivars after

infection (Yadav et al., 2009). Based on previous literature, it

is predicted that the SG-soybean line also has some resistance

genes that lead to resistance or the cultivar is resistant to

whitefly. Further research is needed to determine the

mechanism of resistance in the SG-soybean line.

YMD has a significant impact on plant yield and yield-linked

agronomic traits (Baghel et al., 2010). Therefore, in the current

study, the impact of YMD on soybeans was recorded based on the

agronomic parameters (DF, DM, and PH) and yield-related

parameters (PPP, SPP, and GY) of susceptible soybeans compared

to resistant soybeans. The potential yield of NARC-2021 is 3000kg/

ha. The yield of the SG-soybean line was found to be 7.9 times

higher as compared to NARC-2021 and 3 times higher as compared

to NBG-117 (Table 3). In Pakistan, the Nuclear Institute for

Agriculture and Biology (NIAB) produced YMD-resistant

cultivars of mungbean. High-yielding mungbean cultivars with

susceptibility were crossed with resistant cultivars to further

increase the yield (Khattak et al., 2008). This approach could be

used to produce YMD-resistant and high-yielding soybean

cultivars. The SG-soybean is of short stature (37.3 ± 2.0a cm),

having purple flowers, brown pods, golden yellow seeds, off-black

hilum, and narrow leaves with dark green color (Figure 7). The dark

color is a clear indication that the phytochemicals are high, which is

of high importance in disease resistance. Further studies are needed

to investigate the phytochemical profiles of YMD-resistant and

susceptible soybean cultivars.

After the identification of resistant and susceptible cultivars

through screening, molecular identification of host genes is very
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important for a breeding program. There are no such reports in

soybeans for YMD resistance genes (Singh et al., 1974). Yadav

et al. (2015) identified a SNP that leads to resistance against

MYMIV. They found that the mutation, which is a transversion

of C to G (Glyma.18G25100), leads to the susceptibility of

soybeans to YMD. We hypothesized that the same mutation is

responsible for disease susceptibility in tested germplasm. To

investigate this, the highly resistant and susceptible genotypes

of soybeans were tested for the said mutation. We identified the

same SNP in the Glyma.18G025100 gene on chromosome 18 in

the susceptible cultivars; however, this mutation was missing in

some susceptible cultivars (Figure 5B). It has also been reported

that monogenic resistance is of high importance in the initial

stages of infection, but in most cases, the monogenic resistance

is not durable as the pathogens mutate DNA for their survival

(Stuthman et al., 2007).

In 2016, Patel et al. (2016) reported a deletion of 128 amino acids at

the start of the dominant CYR-1 allele that leads to protein truncation

and susceptibility to YMD. We, therefore, hypothesized that the

ortholog of the CYR-1 gene is present in soybeans, which may also

lead to YMD susceptibility. To test this hypothesis, the sequence of the

CYR-1 gene was aligned with the whole-genome sequence (WGS) of

soybeans. We found the closest match to be the 65% sequence

similarity of the soybean gene, Glyma.13G194500, which was selected

for further study. We used overlapping primers to amplify the ortholog

in the resistant and susceptible soybean germplasm. Interestingly, we

identified a novel deletion of 28 bp in the 5`UTR of the

Glyma.13G194500 gene in only one susceptible soybean accession

(Figure 6C), while this deletion was not observed in other susceptible

cultivars. We named the gene Glyma.13G194500 as cyr-1. This deletion

was something unusual, and based on the observation it was expected

that the RNA would also be truncated, which would lead to truncated

protein or no expression (no protein synthesis). To test this, the total

RNA was extracted to synthesize the cDNA, which was used as a

template to amplify the cyr-1 gene transcripts. There was no

amplification in the susceptible cultivar, whereas transcripts were

amplified in the resistant cultivar. This showed that the RNA is not

synthesized in the susceptible cultivar, which may lead to susceptibility
Frontiers in Plant Science 09192
in soybeans. Western blotting is also needed to further confirm the

absence of the resulting protein.

The bioinformatics analysis by PlantPAN3.0 (Chow et al.,

2019) revealed the presence of 14 TFBS spots common in both

5`UTR regions from the CYR-1 gene from resistant and

susceptible germplasm, whereas one binding site, bHLH, was

additionally found in the 5`UTR region of the CYR-1 gene of

resistant germplasm but was absent in the 5`UTR of the CYR-1

gene in susceptible germplasm (Table S-4), which reveals the

importance of the 5`UTR region in YMD resistance. The

ProtParam tool detected slight differences in some parameters

of both proteins (Gasteiger et al., 2005). Both proteins have 644

amino acid length, however, resistant CYR-1 has 70805.07 Da

molecular weight while susceptible CYR-1 protein has 70779.03

Da. Other features have been highlighted in Table S-5. Protein

structures obtained from I-TASSER (Zhou et al., 2022) and TM-

align (Zhang and Skolnick, 2005) visualized in PyMOL are

shown in Figures 8A–D. Both proteins from resistant and

susceptible germplasm were superimposed and aligned, which

showed a 0.87219 TM-score and root-mean-square deviation

(RMSD) score of 3.72, displaying the same folds for both

proteins. These results conveyed that the proteins with SNP

differences only showed minor variations in structure and

parameters. Furthermore, the in-silico interaction of CYR-1

both from resistant and susceptible germplasm with the

MYMIV viral coat protein exhibited a 0.3537 PSOPIA score

(Murakami and Mizuguchi, 2014). Binding affinity in terms of

DDG values was detected at the same rate of -10.861 for both

proteins through ISLAND (Abbasi et al., 2020), showing no

difference in binding affinity of both resistant and susceptible

CYR-1 protein to the viral coat protein, which could further be

subjected to validation in future studies.

The present investigation has prime importance to uplift

soybean research and cultivation in the country. The resistant

germplasm could be used to transfer resistance to susceptible

cultivars. Identified susceptible and resistant cultivars could also

be used as a check in YMD screening experiments. Faisalabad is a

hub for YMD incidence under natural field conditions, so the
FIGURE 7

Different growth stages of resistant germplasm, NBG-SG-soybean, in the field.
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resistant cultivars at this location will be of high importance (Sudha

et al., 2013). Moreover, the SNP and CYR-1 ortholog could be used

in marker-assisted breeding to screen YMD-resistant and

susceptible soybean germplasm. In the future, the YMD chart

(Figure 1) developed in the present study can be used for disease

scoring in soybeans, facilitating the work of plant virologists to

measure disease severity with accuracy.

To the best of our knowledge, this is the first report on the

identification of resistant/susceptible cultivars and molecular

marker identification against YMD in soybean cultivars.
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González-Garza, R. (2017). Evolution of diagnostic technics for plant viruses. Rev.
Mex. Fitopatol. 35, 591–610. doi: 10.18781/r.mex.fit.1706-1

Gupta, S., Gupta, D. S., Anjum, T. K., Pratap, A., and Kumar, J. (2013). Inheritance
and molecular tagging of MYMIV resistance gene in blackgram (Vigna mungo L.
Hepper) Euphytica. 193, 27–37. doi: 10.1007/s10681-013-0884-4

Habib, S., Shad, N., Javaid, A., and Iqbal, U. (2007). Screening ofmungbean germplasm for
resistance/tolerance against yellow mosaic disease. Mycopath 5 (2), 89–94.

Ilyas, M., Qazi, J., Mansoor, S., and Briddon, R. W. (2009). Molecular
characterisation and infectivity of a “Legumovirus” (genus Begomovirus: family
Geminiviridae) infecting the leguminous weed Rhynchosia minima in Pakistan.
Virus. Res. 145, 279–284. doi: 10.1016/j.virusres.2009.07.018

Ilyas, M., Qazi, J., Mansoor, S., and Briddon, R. W. (2010). Genetic diversity and
phylogeography of begomoviruses infecting legumes in Pakistan. J. Gen. Virol. 91,
2091–2101. doi: 10.1099/vir.0.020404-0

Islam, S., Munshi, A., Mandal, B., Kumar, R., and Behera, T. (2010). Genetics of
resistance in Luffa cylindrica Roem. against Tomato leaf curl New Delhi virus.
Euphytica 174, 83–89. doi: 10.1007/s10681-010-0138-7

Khattak, G. S. S., Saeed, I., and Shah, S. A. (2008). Breeding high yielding and disease
resistant mungbean (Vigna radiata (L.) Wilczek) genotypes. Pak. J. Bot. 40, 1411–1417.

Kitsanachandee, R., Somta, P., Chatchawankanphanich, O., Akhtar, K. P., Shah, T.
M., Nair, R. M., et al. (2013). Detection of quantitative trait loci for mungbean yellow
mosaic India virus (MYMIV) resistance in mungbean (Vigna radiata (L.) Wilczek) in
India and Pakistan. Breed. Sci. 63, 367–373. doi: 10.1270/jsbbs.63.367
Lal, S., Rana, V., Sapra, R., and Singh, K. (2005). Screening and utilization of soybean
germplasm for breeding resistance against Mungbean Yellow Mosaic Virus. Soybean
Genet. News Lett. 1, 32.

Maiti, S., Basak, J., Kundagrami, S., Kundu, A., and Pal, A. (2011). Molecular marker-
assisted genotyping of mungbean yellow mosaic India virus resistant germplasms of
mungbean and urdbean. Mol. Biotechnol. 47, 95–104. doi: 10.1007/s12033-010-9314-1

Maiti, S., Paul, S., and Pal, A. (2012). Isolation, characterization, and structure
analysis of a non-TIR-NBS-LRR encoding candidate gene from MYMIV-resistant
Vigna mungo. Mol. Biotechnol. 52, 217–233. doi: 10.1007/s12033-011-9488-1

Margaria, P., Ciuffo,M., Rosa, C., and Turina,M. (2015). Evidence of a tomato spotted wilt
virus resistance-breaking strain originated through natural reassortment between two
evolutionary-distinct isolates. Virus Res. 196, 157–161. doi: 10.1016/j.virusres.2014.11.012

Maruthi, M., Manjunatha, B., Rekha, A., Govindappa, M., Colvin, J., and Muniyappa,
V. (2006). Dolichos yellow mosaic virus belongs to a distinct lineage of Old World
begomoviruses; its biological and molecular properties. Ann. Appl. Biol. 149, 187–195.
doi: 10.1111/j.1744-7348.2006.00075.x

Mishra, G. P., Dikshit, H. K., Tripathi, K., Kumar, R. R., Aski, M., Singh, A., et al. (2020).
Yellow mosaic disease (YMD) of mungbean (Vigna radiata (L.) Wilczek): current status and
management opportunities. Front. Plant Sci. 11. doi: 10.3389/fpls.2020.00918

Murakami, Y., and Mizuguchi, K. (2014). Homology-based prediction of interactions
between proteins using averaged one-dependence estimators. BMC Bioinf. 15 (1), 1–11.
doi: 10.1186/1471-2105-15-213

Nair, R., Gotz, M., Winter, S., Giri, R., Boddepalli, V., Sirari, A., et al. (2017).
Identification of mungbean lines with tolerance or resistance to yellow mosaic in fields
in India where different begomovirus species and different Bemisia tabaci cryptic species
predominate. Eur. J. Plant Pathol. 149, 349–365. doi: 10.1007/s10658-017-1187-8

Patel, A., Maiti, S., Kumar, S., Ganguli, S., and Pal, A. (2016). An integrated approach
to comprehend MYMIV-susceptibility of blackgram Cv. T9 possessing allele of CYR1,
the cognate R-gene. Am. J. Plant Sci. 7, 267. doi: 10.4236/ajps.2016.72026

Qazi, J., Ilyas, M., Mansoor, S., and Briddon, R. W. (2007). Legume yellow mosaic
viruses: genetically isolated begomoviruses.Mol. Plant Pathol. 8, 343–348. doi: 10.1111/
j.1364-3703.2007.00402.x

Rahman, S. U., Domier, L. L., Raza, G., Ahmed, N., McCoppin, N. K., Amin, I., et al.
(2023b). Metagenomic study for the identification of viruses infecting soybean in
Pakistan. Australas. Plant Pathol. 52, 191–194. doi: 10.1007/s13313-023-00909-9

Rahman, S. U., Raza, G., Zubair, M., Ahmed, N., Domier, L. L., Jamil, N., et al.
(2023a). Multiple begomoviruses infecting soybean; a case study in Faisalabad,
Pakistan. Biologia 78 (2), 609–620. doi: 10.1007/s11756-022-01290-6

Ram, H. H., Singh, K., and Verma, V. (1984). Breeding for resistance to yellow mosaic
virus through interspecific hybridization in soybean. Soybean Genet. Newslett. 11, 46–48.

Rani, A., Kumar, V., Rathi, P., and Shukla, S. (2017). Linkage mapping of Mungbean
yellow mosaic India virus (MYMIV) resistance gene in soybean. Breed. Sci. 67, 95–100.
doi: 10.1270/jsbbs.16115

Rathore, V., Sharma, H., and Narvariya, R. (2021). Growth rate of cost of cultivation of
soybean in Maharashtra States of India. Pharm. Innov. J. 10 (3), 84–89. doi: 10.22271/
tpi.2021.v10.i3Sb.5838

Singh, B., Singh, B., and Gupta, S. (1974). PI 171.443 and G. formosana-resistant
lines for yellow mosaic of soybean. Soybean Genet. Newslett. 1, 17–18.

Snehi, S., Raj, S., Prasad, V., and Singh, V. (2015). Recent research findings related to
management strategies of begomoviruses. J. Plant Pathol. Microbiol. 6, 6. doi: 10.4172/
2157-7471.1000273

Souframanien, J., and Gopalakrishna, T. (2006). ISSR and SCAR markers linked to
the mungbean yellow mosaic virus (MYMV) resistance gene in blackgram [Vigna
mungo (L.) Hepper]. Plant Breed. 125, 619–622. doi: 10.1111/j.1439-0523.2006.01260.x
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fpls.2023.1230559/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fpls.2023.1230559/full#supplementary-material
https://doi.org/10.1186/s13040-020-00231-w
https://doi.org/10.5958/j.0975-4261.2.3.034
https://doi.org/10.1007/s11032-005-0238-6
https://doi.org/10.1007/s11032-005-0238-6
https://doi.org/10.4238/2015.March.31.13
https://doi.org/10.4238/2015.March.31.13
https://doi.org/10.1093/nar/gky1081
https://doi.org/10.1007/BF01974467
https://doi.org/10.1007/s13337-013-0161-0
https://doi.org/10.18781/r.mex.fit.1706-1
https://doi.org/10.1007/s10681-013-0884-4
https://doi.org/10.1016/j.virusres.2009.07.018
https://doi.org/10.1099/vir.0.020404-0
https://doi.org/10.1007/s10681-010-0138-7
https://doi.org/10.1270/jsbbs.63.367
https://doi.org/10.1007/s12033-010-9314-1
https://doi.org/10.1007/s12033-011-9488-1
https://doi.org/10.1016/j.virusres.2014.11.012
https://doi.org/10.1111/j.1744-7348.2006.00075.x
https://doi.org/10.3389/fpls.2020.00918
https://doi.org/10.1186/1471-2105-15-213
https://doi.org/10.1007/s10658-017-1187-8
https://doi.org/10.4236/ajps.2016.72026
https://doi.org/10.1111/j.1364-3703.2007.00402.x
https://doi.org/10.1111/j.1364-3703.2007.00402.x
https://doi.org/10.1007/s13313-023-00909-9
https://doi.org/10.1007/s11756-022-01290-6
https://doi.org/10.1270/jsbbs.16115
https://doi.org/10.22271/tpi.2021.v10.i3Sb.5838
https://doi.org/10.22271/tpi.2021.v10.i3Sb.5838
https://doi.org/10.4172/2157-7471.1000273
https://doi.org/10.4172/2157-7471.1000273
https://doi.org/10.1111/j.1439-0523.2006.01260.x
https://doi.org/10.3389/fpls.2023.1230559
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Rahman et al. 10.3389/fpls.2023.1230559
Stuthman, D., Leonard, K., and Miller-Garvin, J. (2007). Breeding crops for durable
resistance to disease. Adv. Agron. 95, 319–367. doi: 10.1016/S0065-2113(07)95004-X

Sudha, M., Karthikeyan, A., Nagarajan, P., Raveendran, M., Senthil, N., Pandiyan,
M., et al. (2013). Screening of mungbean (Vigna radiata) germplasm for resistance to
Mungbean yellow mosaic virus using agroinoculation. Can. J. Plant Pathol. 35, 424–430.
doi: 10.1080/07060661.2013.827134

Varma, A., and Malathi, V. (2003). Emerging geminivirus problems: a serious threat to
crop production. Ann. Appl. Biol. 142, 145–164. doi: 10.1111/j.1744-7348.2003.tb00240.x

Wrather, J. A., Anderson, T., Arsyad, D., Gai, J., Ploper, L., Porta-Puglia, A., et al.
(1997). Soybean disease loss estimates for the top 10 soybean producing countries in
1994. Plant Dis. 81, 107–110. doi: 10.1094/PDIS.1997.81.1.107

Yadav, C. B., Bhareti, P., Muthamilarasan, M., Mukherjee, M., Khan, Y., Rathi, P.,
et al. (2015). Genome-wide SNP identification and characterization in two soybean
cultivars with contrasting mungbean yellow mosaic India virus disease resistance traits.
PloS One 10, e0123897. doi: 10.1371/journal.pone.0123897
Frontiers in Plant Science 12195
Yadav, R. K., Shukla, R. K., and Chattopadhyay, D. (2009). Soybean cultivar resistant to
Mungbean Yellow Mosaic India Virus infection induces viral RNA degradation earlier than
the susceptible cultivar. Virus. Res. 144, 89–95. doi: 10.1016/j.virusres.2009.04.011

Zhang, Y., and Skolnick, J. (2005). TM-align: a protein structure alignment
algorithm based on the TM-score. Nucleic Acids Res. 33 (7), 2302–2309.
doi: 10.1093/nar/gki524

Zhou, X., Zheng, W., Li, Y., Pearce, R., Zhang, C., Bell, E. W., et al. (2022). I-TASSER-
MTD: a deep-learning-based platform for multi-domain protein structure and function
prediction. Nat. Protoc. 17, 2326–2353. doi: 10.1038/s41596-022-00728-0

Zikankuba, V. L., Mwanyika, G., Ntwenya, J. E., and James, A. (2019). Pesticide
regulations and their malpractice implications on food and environment safety. Cogent.
Food. Agric. 5, 1601544. doi: 10.1080/23311932.2019.1601544

Zubair, M., Zaidi, S.-e., Shakir, S., Farooq, M., Amin, I., Scheffler, J. A., et al. (2017).
Multiple begomoviruses found associated with cotton leaf curl disease in Pakistan in early
1990 are back in cultivated cotton. Sci. Rep. 7, 1–11. doi: 10.1038/s41598-017-00727-2
frontiersin.org

https://doi.org/10.1016/S0065-2113(07)95004-X
https://doi.org/10.1080/07060661.2013.827134
https://doi.org/10.1111/j.1744-7348.2003.tb00240.x
https://doi.org/10.1094/PDIS.1997.81.1.107
https://doi.org/10.1371/journal.pone.0123897
https://doi.org/10.1016/j.virusres.2009.04.011
https://doi.org/10.1093/nar/gki524
https://doi.org/10.1038/s41596-022-00728-0
https://doi.org/10.1080/23311932.2019.1601544
https://doi.org/10.1038/s41598-017-00727-2
https://doi.org/10.3389/fpls.2023.1230559
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Frontiers in Plant Science

OPEN ACCESS

EDITED BY

Ting Peng,
Henan Agricultural University, China

REVIEWED BY

Guizhen Kan,
Nanjing Agricultural University, China
Yuri Shavrukov,
Flinders University, Australia

*CORRESPONDENCE

Zenglu Li

zli@uga.edu

RECEIVED 07 October 2023
ACCEPTED 28 November 2023

PUBLISHED 20 December 2023

CITATION

Souza R, Rouf Mian MA, Vaughn JN and Li Z
(2023) Introgression of a Danbaekkong
high-protein allele across different
genetic backgrounds in soybean.
Front. Plant Sci. 14:1308731.
doi: 10.3389/fpls.2023.1308731

COPYRIGHT

© 2023 Souza, Rouf Mian, Vaughn and Li. This
is an open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

TYPE Original Research

PUBLISHED 20 December 2023

DOI 10.3389/fpls.2023.1308731
Introgression of a
Danbaekkong high-protein
allele across different genetic
backgrounds in soybean
Renan Souza1, M. A. Rouf Mian2, Justin N. Vaughn1,3

and Zenglu Li1*

1Department of Crop and Soil Sciences, University of Georgia, Athens, GA, United States,
2Soybean and Nitrogen Fixation Research Unit, United States Department of Agriculture -
Agricultural Research Service (USDA-ARS), Raleigh, NC, United States, 3Genomics and
Bioinformatics Research Unit, United States Department of Agriculture - Agricultural Research
Service (USDA-ARS), Athens, GA, United States
Soybean meal is a major component of livestock feed due to its high content

and quality of protein. Understanding the genetic control of protein is essential

to develop new cultivars with improved meal protein. Previously, a genomic

region on chromosome 20 significantly associated with elevated protein

content was identified in the cultivar Danbaekkong. The present research

aimed to introgress the Danbaekkong high-protein allele into elite lines with

different genetic backgrounds by developing and deploying robust DNA

markers. A multiparent population consisting of 10 F5-derived populations

with a total of 1,115 recombinant inbred lines (RILs) was developed using

“Benning HP” as the donor parent of the Danbaekkong high-protein allele. A

new functional marker targeting the 321-bp insertion in the gene

Glyma.20g085100 was developed and used to track the Danbaekkong high-

protein allele across the different populations and enable assessment of its

effect and stability. Across all populations, the high-protein allele consistently

increased the content, with an increase of 3.3% in seed protein. A total of 103

RILs were selected from the multiparent population for yield testing in five

environments to assess the impact of the high-protein allele on yield and to

enable the selection of new breeding lines with high protein and high yield. The

results indicated that the high-protein allele impacts yield negatively in general;

however, it is possible to select high-yielding lines with high protein content.

An analysis of inheritance of the Chr 20 high-protein allele in Danbaekkong

indicated that it originated from a Glycine soja line (PI 163453) and is the same

as other G. soja lines studied. A survey of the distribution of the allele across 79

G. soja accessions and 35 Glycine max ancestors of North American soybean

cultivars showed that the high-protein allele is present in all G. soja lines

evaluated but not in any of the 35 North American soybean ancestors. These

results demonstrate that G. soja accessions are a valuable source of favorable

alleles for improvement of protein composition.
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1 Introduction

Soybean [Glycine max (L.) Merr.] is one of the most important

sources of protein and oil for direct and indirect human use.

Soybean oil is omnipresent in the food industry, while soybean

meal is the primary source of protein for livestock. Over the past 33

years, soybean yield in the United States increased 40.8%; however,

the protein content went in an opposite direction, decreasing from

35.8% to 33.5% (Naeve and Miller-Garvin, 2021). Farmers and

grain processors historically have had no incentive to produce and

deliver soybeans with high protein and therefore no focus has been

given in improving this seed component. The reduction in seed

protein has negative effects on soybean value, as lower protein

content makes it difficult to meet the requirements of the livestock

industry for feed (Brumm and Hurburgh, 1990; de Borja Reis

et al., 2020).

The genetic component is a major factor in the determination of

seed composition in soybean. Lee et al. (2019) demonstrated the

importance of the genetic factors for protein composition

(heritability of 0.94) and confirmed the antagonist relationship

between protein and oil (r = −0.75; p < 0.0001). More than 160

protein quantitative trait loci (QTLs) from 35 different studies have

been reported (Patil et al., 2017) and one of these QTLs, located on

chromosome (Chr) 20, has been repeatedly identified in several

studies (Diers et al., 1992; Hwang et al., 2014; Vaughn et al., 2014;

Warrington et al., 2015; Qi et al., 2016). This QTL has received the

attention of many researchers because of its high additive effect and

stability (Lestari et al., 2013). Warrington et al. (2015) demonstrated

that this QTL explained 55% of the phenotypic variation of seed

protein content in a bi-parental population derived from a cross of

“Benning” (PI 595645) (Boerma et al., 1997) and Danbaekkong (PI

619083) (Kim et al., 1996). Danbaekkong is a South Korean cultivar

that contributed to high protein content in the population

(Warrington et al., 2015).

Despite the negative relationship of protein with oil and yield,

there were reports on the feasibility of developing lines with

increased protein content and high yield (Cober and Voldeng,

2000; Brzostowski et al., 2017). Prenger et al. (2019) developed

Benning HP as a near-isogenic line (NIL) with a high-protein allele

on Chr 20 by backcrossing an F5-derived line from Benning ×

Danbaekkong to the recurrent parent Benning. This line has high

protein content and yield equivalent to the recurrent parent

Benning, demonstrating that it is possible to mitigate the negative

effects of the high-protein allele on yield with progeny selection.

However, it is still not clear how the protein and yield relationship

work in multiple genetic backgrounds.

A Chr 20 QTL for protein content was detected in the same

location of previous mapping studies in a genome-wide association

study (GWAS) with accessions from the USDA Soybean

Germplasm Collection conducted by Vaughn et al. (2014).

Bandillo et al. (2015) also analyzed 12,000 accessions from the

same collection and identified a protein QTL in the same region.

The GWAS hits in these studies were associated with the alleles

frequently found in Korean accessions. Using the similar dataset,

Patil et al. (2017) performed a genome-wide phylogenetic analysis

comparing Danbaekkong, North American Soybean Ancestors
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(NASA), Asian landraces, and several Glycine soja lines. When all

SoySNP50K SNPs were considered, Danbaekkong was clustered

with the NASA; however, when SNPs in the range of 27–32 Mb on

Chr 20 were analyzed, Danbaekkong was clustered separately from

NASA. This result indicated that NASA likely have a different allele

from Danbaekkong at the Chr 20 and introgression of the high-

protein allele into elite soybean lines could improve the seed

protein content.

Soybean accessions in the USDA Germplasm Collection have

great variation for protein content, with accessions reaching up to

57% of seed protein (USDA, 2023). This resource can be tapped to

increase the overall protein content and quality in soybean breeding

programs. It has been observed that G. max cultivars developed in

Asia, especially in South Korea, usually have a higher content of

seed protein than those developed in other countries (Vaughn et al.,

2014; Bandillo et al., 2015; Patil et al., 2017). It is likely a result of the

historical breeding efforts in that region to focus on the

improvement of seed composition for soy food products, such as

tofu and soy sauce (Lee et al., 2015). Danbaekkong is a cultivar

developed in South Korea based on the selection for seed yield,

protein content, quality, and tofu yield (Kim et al., 1996). The

Korean accessions with high protein content are an important

source of genetic diversity that can be used in U.S. soybean

breeding programs to improve nutritional composition.

Recently, a gene was identified underlying control of the protein

QTL on Chr 20. Fliege et al. (2022) performed fine mapping in

multiple populations using a G. soja line (PI 468916) as the QTL

donor and narrowed the QTL interval to a region of 77.8 kb. In this

interval, a 321-bp fragment was present in the 4th exon of the gene

Glyma.20g085100 in low-protein lines. Using an RNAi experiment,

the authors demonstrated that the variation in Glyma.20g085100

was responsible for the difference in protein content. Similarly,

Goettel et al. (2022) indicated that Glyma.20g085100 is the gene

responsible for elevated protein at the Chr 20 QTL and soybean

lines without the 321-bp insertion exhibit increased protein content,

while the lines with the 321-bp insertion had low protein. The

authors concluded that the insertion was likely caused by a

transposable element, and during the domestication process, the

insertion allele is fixed in most G. max lines.

In the present research, we aimed to validate the Chr 20 QTL

from Danbaekkong for increased protein content, introgress the

allele into a wide range of genetic backgrounds for protein

improvement, and elucidate the inheritance of the Danbaekkong

high-protein allele.
2 Materials and methods

2.1 Plant materials and
population development

The population consisting of 140 recombinant inbred lines (RILs)

derived from Benning × Danbaekkong originally used tomap the Chr

20 QTL was analyzed to saturate the QTL region. The seeds, original

phenotypic data, and genotypic data were obtained fromWarrington

et al. (2015). To enable identification of polymorphisms in the QTL
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region, seven soybean lines with high and low protein content were

selected for genome sequencing (Supplementary Table S1). The elite

parent Benning and the high-protein parent Danbaekkong (PI

619083) were sequenced together with one high-protein G. soja

accession (PI 163453) and three high-protein G. max lines (PI

398589, PI 408012, and PI 602447) that have a haplotype in the

QTL region similar to Danbaekkong. The sequence of the G. soja

accession PI 468916 that was used in the original mapping study of

the Chr 20 QTL by Diers et al. (1992) was obtained from Zhou et al.

(2015) and Bayer et al. (2021).

A set of 10 populations was developed by crossing Benning HP

with 10 elite lines in 2016 (Supplementary Table S2). Benning HP is

a MG VII NIL of Benning (PI 595645), carrying the introgression of

the Chr 20 high-protein allele from Danbaekkong (PI 619083)

(Prenger et al., 2019). The populations have a structure of a nested

association mapping population, where Benning HP is the hub

parent (Supplementary Figure S1).

The F1 generation was grown in the University of Georgia (UGA)

greenhouse in Athens, GA during the winter of 2016–2017. During

the summer of 2017, the F2 generation was grown at the UGA Iron

Horse Farm in Watkinsville, GA, and then two cycles of single seed

descent advancement were conducted to advance the F3 and F4
generations during the winter of 2017–2018 in the Puerto Rican

nursery. In 2018, the F5 generation was grown at the UGA IronHorse

Farm and plants from each population were harvested and threshed

individually. In the summer of 2019, plant rows were grown in an

unreplicated augmented design along with the parents and three

commercial check cultivars AG5534, AG6534, and AG7934.
2.2 Whole genome re-sequencing

The lines selected for sequencing were grown in a greenhouse

and leaf tissue was collected 3 weeks after planting. For each

genotype, a bulked sample of 12 plants were collected and leaf

tissue was lyophilized and ground. Genomic DNA was extracted

using the GeneJet Plant Genomic DNA purification mini kit

(Thermo Scientific, Boston, MA, USA) and 150-bp DNA

fragments were sequenced with the NextSeq Sequencing

instrument (Illumina, San Diego, CA). Adapters were removed

from the raw Fastq files using Trimmomatic v0.36 (Bolger et al.,

2014), and sequencing reads were mapped to the soybean genome

Wm82.a2.v1 (https://data.jgi.doe.gov) with Bowtie2 v2.3.3.1

(Langmead and Salzberg, 2012). SNP and indel calls were

performed with the GATK HaplotypeCaller software (McKenna

et al., 2010) and variants were annotated with SNPeff version 4.3t

(Cingolani et al., 2012). Variant visualization in the Chr 20 QTL

region was performed with the Integrative Genomics Viewer (IGV -

v2.9.5) (Robinson et al., 2011).
2.3 Marker design and genotyping

The RILs from the Benning × Danbaekkong population were

planted in the greenhouse and DNA extraction was performed on

leaf tissue using the CTAB method (Keim et al., 1988). For the
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multiparent population, DNA was extracted from seed samples

from all 1115 RILs in the 10 populations with a modified Edwards

extraction (Edwards et al., 1991). KASP (LGC, Hoddesdon, UK)

and TaqMan assays (Applied Biosystems, Foster City, CA) were

designed using Geneious Primer version 2021.2 based on

polymorphisms present in the QTL region identified from the

SoySNP50K data (Song et al., 2013) and whole genome sequence

of the seven sequenced soybean lines (Danbaekkong, Benning, PI

163453, PI 398589, PI 408012, PI 602447, and PI 468916)

(Supplementary Tables S3–S5). The gene-specific marker

GSM1252 targeting the 321-bp insertion at the gene

Glyma.20g085100 was designed based on information previously

published by Fliege et al. (2022) and Goettel et al. (2022).

KASP reactions were performed in a 4-mL volume with 2 mL of

master mix (1.97 ml of KASP 2X and 0.053 mL of primers) and 2 mL
of 10–20 ng/mL genomic DNA. Similarly, TaqMan reactions were

also conducted in a 4-mL volume including 2 mL of master mix (2 mL
of TaqMan Universal Master Mix II and 0.2 mL of 5X Custom

TaqMan SNP Genotyping Assay) and 2 mL of 10–20 ng/mL genomic

DNA. PCR was performed in the BioRad C1000 Touch Thermal

Cycler and PCR plates were read in either LightCycler® 480 (Roche,

Germany) or TECAN infinite M200 microplate reader (Tecan US,

Inc, Durham, NC) using the software KlusterCaller (version

2.24.0.11, LGC Genomics). Cycling conditions for the KASP assays

were 15 min at 94°C, 10 cycles of 15 s at 94°C and 1 min at 65°C and

30 cycles of 20 s at 94°C and 1 min at 57°C. Cycling conditions for

the TaqMan followed a modified touchdown PCR with an initial 10

min at 95°C, 10 cycles of 20 s at 95°C and 1 min at 71°C, decreasing

0.5°C each cycle, and 30 cycles of 15 s at 92°C and 1 min at 58°C.
2.4 Diversity panel

To analyze the distribution of the Chr 20 high-protein QTLs, 35

NASA (Gizlice et al., 1994) and 79 diverse G. soja accessions (La

et al., 2019) were genotyped using the gene-specific TaqMan marker

GSM1252. The 35 G. max soybean ancestors contributed 95% of the

genes found in modern soybean cultivars (Gizlice et al., 1994) and

the 79 G. soja lines are a core set that represent the genetic diversity

within the entire USDA G. soja Collection (La et al., 2019). These

accessions were planted in the greenhouse and leaf tissue was

collected 2 weeks after planting. DNA extraction was performed

with the CTAB method (Keim et al., 1988).

The seed composition of the 79 G. soja accessions was obtained

from La et al. (2019) and the data for 25 of 35 North American

Soybean ancestors were collected with the Near-Infrared

Spectroscopy Perten DA 7250 Analyzer (PerkinElmer Inc.,

Waltham, MA, USA) from seeds harvested in the USDA winter

nursery in Puerto Rico in 2018. The phenotypes of the remaining 10

accessions were retrieved from USDA GRIN (https://npgsweb.ars-

grin.gov/gringlobal/).

Another panel of 35 G. soja lines was assembled to compare the

genome sequence variation at the gene level and survey the

distribution of the high-protein allele. The raw sequencing data

were generated in previous studies (Bayer et al., 2021; Valliyodan

et al., 2021) and are available at the Short Read Archive (SRA)
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database at NCBI (www.ncbi.nlm.nih.gov). Adapters were removed

from the raw Fastq files using Trimmomatic v0.36 (Bolger et al.,

2014) and sequencing reads were mapped to the soybean genome

Wm82.a2.v1 with Bowtie2 v2.3.3.1 (Langmead and Salzberg, 2012).
2.5 Yield trials of selected RILs

To understand the effects of the Danbaekkong high-protein allele

on yield in different genetic backgrounds, a set of RILs from the

multiparent populations with high and normal protein content were

selected for evaluation in yield trials. A total of 103 lines were planted

in three locations in 2020 and 2021. In 2020, all the lines were grown

in a randomized complete block design with two replications per

location and each line was planted in a 2-row plot with a length of 4.9

m spaced by 76.2 cm and a planting density of 27 seeds m–1. A total

of 46 lines were selected based on yield and agronomic performance

and grown in 2021 in a randomized complete block design with three

replications in a 4-row plot with the same plot length and row

spacing. The commercial cultivars AG 64X8RR2X, AG 74X8RR2X,

and AGS 738RR were used as checks across the different

environments. Agronomic practices followed the recommended

guidance for soybean production in Georgia (Bryant, 2020). All

plots were end-trimmed before harvest to avoid edge effect, resulting

in a length of 3.7 m. The two center rows were harvested, and weight

and moisture were measured on combines. Approximately 200 seeds

were sampled from each plot for seed composition analysis.
2.6 Seed composition analysis

The contents of protein and oil were determined using the NIR

Perten DA 7250 Analyzer (PerkinElmer Inc., Waltham, MA, USA)

and the instrument was calibrated by the manufacturer using

thousands of samples with known seed composition values for

whole seed and ground seed samples. Seed composition was

reported on a dry matter basis. Analysis of the multiparent

population was performed on the seeds from single plants in

2018 and from the plant rows in 2019. For the yield trials in 2020

and 2021, samples of 200 seeds were obtained from each plot.
2.7 Statistical and QTL analyses

Phenotypic and genotypic data were analyzed in RStudio (R

version 3.4.4) using the packages lme4 (Bates et al., 2015) and

BreedR (Muñoz and Rodriguez, 2020), and data visualization was

created with ggplot2 (Wickham, 2016). The phenotypic values for

the QTL analysis of the multiparent population were calculated by

fitting a model with the subpopulation and year effects as fixed and

the genotype effect as random. For the data from the Benning ×

Danbaekkong RIL population, best linear unbiased predictions

(BLUPs) were obtained by fitting a model with the environment

(location + year) as a fixed effect and genotype and replication as

random effects. Analysis of the phenotypic data from yield trials

with the 103 selected breeding lines was performed by fitting a
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model with the QTL within each subpopulation as a fixed effect, and

genotype, environment, and replication as random effects.

To saturate the QTL region identified in the Benning ×

Danbaekkong RIL population, additional markers were developed

in the QTL interval based on comparison of the sequencing data

from the seven sequenced genotypes. Linkage map construction and

QTL analysis were performed with the R package R/qtl (Broman

et al., 2003). Associations between markers and protein content

were established with a regression function using a LOD

significance threshold determined by 1,000 permutations.

Recombination distances were calculated using Kosambi’s

mapping function with simple interval and composite interval

mapping methods in the QTL position estimation. To understand

the effects of the QTL in a broad genetic background, a multiparent

population QTL analysis was performed using an R package mppR

(Garin et al., 2020). In each round of mapping, the population was

randomly partitioned into five subsets and one of the subsets was

used for validation of the parameters calculated in the other four

subsets. Composite interval mapping was performed in each subset

100 times and the QTL position was determined by the location of

the most significant marker across all iterations.
3 Results

3.1 Danbaekkong high-protein allele

The RIL population derived from the Benning × Danbaekkong

cross (N = 140) was genotyped with the Chr 20 QTL flanking

markers previously used by Warrington et al. (2015) and 17 new

additional markers designed based on variants found in the

comparison of the seven sequenced lines. The markers were

combined to saturate the Chr 20 QTL region and one of the

markers used (GSM1252) specifically targeted the 321-bp insertion

in the gene Glyma.20g085100 identified by Fliege et al. (2022). The

QTL interval was identified in a genomic region between 27.7 and

33.0 Mb across all environments tested and the marker GSM1252

designed from the gene Glyma.20g085100 was one of the most

significant markers across the environments (Figure 1). In this

population, the QTL explained 47.5% of the phenotypic variation

and had an additive effect of 1.3% in the protein content. The

homozygous RILs for the low-protein allele at the GSM1252 locus

had an average protein content of 43.8%, while the lines with the

homozygous high-protein allele had a protein content of 46.4%.

QTL mapping was also performed in the multiparent

population and the QTL region was identified to the interval

between 31.8 and 32.2 Mb (markers GSM1252 and GSM0455).

This region is located within the QTL interval identified in the

analysis of the Benning × Danbaekkong RIL population (Figure 2).

After the estimation of the QTL parameters, an association analysis

between the Glyma.20g85100 marker (GSM1252) and the content

of protein and oil was performed using the lines in the multiparent

population. The high-protein allele from Danbaekkong was

associated with an increase in the protein of 3.3% on average

(ranging from 2.6% to 3.7%) across all populations. The highest

increase in protein content was observed in population G13-6299 ×
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Benning HP, with protein content going from 40.8% to 44.5%. The

highest average value of protein obtained was in the population

Woodruff × Benning HP with lines carrying the high-protein allele

reaching 45.4% (Figures 3, 4; Supplementary Table S6).

The increase in the protein content was accompanied by a

reduction in oil content in all populations, ranging from a reduction

of 1.4% in Benning HP × G10PR-56444R2 to 2.0% in N10-711 ×

Benning HP and Benning HP × G11PR-56238R2. On average, for

every 1.8% increase in protein, there was a decrease of 1% in oil. The

populations N08-174 × Benning HP and Benning HP × G10PR-

56444R2 had an average oil content ≥20% and protein content

≥43.5%, demonstrating the possibility of having high protein and

oil above 20% (Supplementary Table S6).

The fact that BenningHPwas used either as amale or female parent

in the multiparent population enabled evaluation of any maternal effect

of the Danbaekkong high-protein allele. It was observed that the

Danbaekkong high-protein allele increased the protein in a similar

magnitude having the Benning HP as the female (44.5%) or the male

(44.3%) parent in the cross (Supplementary Table S6).
3.2 Effects of the Danbaekkong high-
protein allele on yield

To assess the effects of the protein QTL on yield, 103 RILs were

selected from the multiparent population based on agronomic
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performance and visual assessment of plant appearance, lodging,

and maturity to enter the 2020 and 2021 yield trials. Population

N10-711 × Benning HP had the highest number of lines in the

trials (27 in 2020 and 13 in 2021), while Benning HP × G11PR-

56238R2 had the lowest number, with three lines in the yield

trials. Overall, all pedigrees had lines with the high-protein allele

or low-protein allele variant evaluated in both years, except for the

Benning HP × G11PR-56238R2 population, which was evaluated

only in 2020 and Benning HP × G10PR-56444R2 did not have

lines with the high-protein allele tested. Having lines with and

without the Danbaekkong high-protein allele evaluated in

yield trials in 9 of the 10 pedigrees enabled a comparison of the

effects of the increased protein content on yield in multiple

genetic backgrounds.

In the yield trials, the lines carrying the high-protein allele had a

consistently higher protein content across all the populations, with an

average increase of 2.0% in protein content. The only exception was

population R12-514 × Benning HP, in which lines with the high-

protein allele in the population did not have a significant increase in

protein content. Population G13-6299 × Benning HP had the highest

increase in protein, from 40.1% to 43.2% and population N10-711 ×

Benning HP had the highest average value of protein, with 43.8%

(Figure 5A). The oil content had an overall reduction of 1%, but

variation was observed across the different populations, ranging from

a 2% reduction in Benning HP × G11PR-56238R2 to no detectable

reduction in R12-514 × Benning HP (Figure 5B). In the comparison
FIGURE 1

The Chr 20 QTL region identified by Warrington et al. (2015) in the RIL population derived from Benning × Danbaekkong and saturated with
additional KASP markers and the gene-specific TaqMan marker GSM1252 is indicated in red with an asterisk. Red lines indicate Composite Interval
Mapping and blue lines indicate Simple Interval Mapping. Marker distances are given in centimorgan (cM). Additional information about the markers
is presented in Supplementary Tables S3–S5.
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of the protein production per hectare, the populations also had

different performances. Lines with the high-protein allele from the

population N10-711 × Benning HP had an increase of 94 kg ha−1 in

protein production, but in the population N05-7432 × Benning HP,

the lines with the high-protein allele had a decrease of 218 kg ha−1.

When considering the performance of all populations together, there

was no difference (p = 0.41) in the protein production per hectare in

the lines with or without the Danbaekkong high-protein allele, 2,048

vs. 2,080 kg ha−1, respectively (Figure 5C; Supplementary Table S7).

Overall, the high protein negatively impacts the yields, with an

average reduction of 313 kg ha−1. However, there was variation

across the different populations, with population N05-7432 ×

Benning HP having a yield reduction of 719 kg ha−1 to the

population N10-711 × Benning HP with a yield reduction of only

55 kg ha−1 in the lines with the high-protein allele. Of the 103 lines

evaluated, 20 lines from different populations had yield similar to or

higher than the commercial check AGS 738RR, and 14 of these lines

had a protein content higher than 40% (Figure 5D; Supplementary

Table S8). The line G19-11395 from population N05-7432 ×

Benning HP did not have the high-protein allele but stood out

with the highest overall yield, 5,880 kg ha−1, 13.8% higher but not

significantly different from AGS-738RR. The line G19-11191 from

population Woodruff × Benning HP was the only line carrying the

high-protein allele (43.6% protein) that had yield comparable to the
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AGS 738RR (100.4%), with 5,189 kg ha−1. Three other lines, G19-

11422 (N05-7432 × Benning HP), G19-11111 (G13-6299 × Benning

HP), and G19-2139R2 (Benning HP × G11PR-56151R2), carrying

the high-protein allele at GSM1252, had a protein content

exceeding 43% and yielded >95% of AGS 738RR (Supplementary

Table S8). These results exemplify the possibility of combining high

yield with improved seed composition.
3.3 Effect of maturity on seed protein

The association between maturity and the high-protein alleles

was evaluated across the different pedigrees in the multiparent

population. Nine out of 10 populations studied had the lines

carrying the high-protein allele reaching maturity earlier than

those with normal protein. Overall, high-protein lines reached

maturity 3.5 days earlier than those with low protein (Table 1).

The population with the biggest difference was N05-7432 × Benning

HP, in which the lines having the high-protein allele matured 6.1

days earlier than those with the low-protein allele. On the other

hand, there was no significant difference in maturity between lines

with the high-protein allele and those with the low-protein allele in

the population N08-174 × Benning HP.
FIGURE 2

Multiparent population QTL analysis for seed protein and oil content. QTL analysis was performed 500 times (5 random subsets with 100
replications) using the composite interval mapping function. The average LOD value of all values is indicated in the bold line. Mapping was
performed with the KASP markers and the gene-specific TaqMan marker GSM1252 indicated in red with an asterisk. Marker position is given in Mb
based on Wm82.a2.v1. Additional information about the markers is presented in Supplementary Tables S3–S5.
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3.4 Distribution of the Chr 20 high-protein
allele among the soybean ancestors and
G. soja lines

The presence of the Danbaekkong high-protein allele was

surveyed using the gene-specific TaqMan marker GSM1252 in a

panel of 35 G. max ancestral lines that contributed 95% of the genes

found in modern soybean cultivars (Gizlice et al., 1994). These lines

provided a good opportunity to understand the distribution of the

high-protein allele in the North American soybean breeding pool.

The results indicated that all 35 G. max ancestors have the low-

protein allele at the gene Glyma.20g085100, and the average protein

content was 41.6% (ranging from 38.1% to 45.7%) (Table 2; Figure 6).

Another analysis was performed to study the distribution of the

high-protein allele acrossG. soja accessions. A panel of 79 diverse G.

soja that represent the genetic diversity in USDA Soybean

Germplasm Collection was surveyed (La et al., 2019). All the G.

soja lines evaluated presented the high-protein allele on the Chr 20

and had an average protein content of 44.4% (ranging from 39.8%

to 49.4%) (Table 3; Figure 6). To confirm the presence of the high-

protein allele in G. soja, the sequence of 35 accessions that have not

been studied previously was analyzed for the presence of the

insertion in Glyma.20g085100. Confirming the previous results, all

G. soja lines evaluated have the high-protein allelic variant

(Supplementary Table S9).
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4 Discussion

4.1 Danbaekkong high-protein allele

Using new molecular markers positioned in the interval where the

protein QTL has been repeatedly identified (29.8 to 34.3 Mb),

genotyping was performed in the Benning × Danbaekkong RIL

population (N = 140) and in a multiparent population (N = 1,115).

Of these markers, GSM1252 was developed based on previous research

that identified Glyma.20g085100 controlling the protein at the Chr 20

QTL (Fliege et al., 2022; Goettel et al., 2022). GSM1252 was developed

as a TaqMan marker with one probe targeting the flanking regions of

the insertion aiming to capture the alleles without the 321-bp insertion

and another probe that binds to a fragment of the insertion and the

right flanking site (Supplementary Figure S2). Overall, the marker

exhibited a good performance in separating the lines with and without

the insertion and it is a useful tool to select lines for high protein. The

QTL analysis confirmed the variation in Glyma.20g085100 to be

associated with protein content in the populations derived from

Danbaekkong. However, instead of GSM1252, marker GSM1122 was

the most significant marker at the locus. This can be attributed to the

fact that Chr 20 QTL is a region of strong linkage disequilibrium

(Vaughn et al., 2014). The data analysis in Benning × Danbaekkong

and the multiparent population indicated a confidence interval of

503,806 bp between the markers GSM1252 and GSM0455
FIGURE 3

Effects of the Danbaekkong Chr 20 high-protein allele on seed protein in 10 RIL populations evaluated in 2018–2019. The X axis indicates the allele
at the Glyma.20g085100 (GSM1252). HP and LP represent the high- and low-protein alleles as indicated by the gene-specific marker GSM1252,
respectively. Protein content is on a dry matter basis.
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FIGURE 4

Effects of different alleles at Glyma.20g085100 on protein content across the multiparent RIL populations. HP indicates the high-protein allele and
LP indicates the low-protein allele at GSM1252.
B

C D

A

FIGURE 5

Comparison of breeding lines with and without the Danbaekkong Chr 20 high-protein allele in each population. Red indicates lines with the high-
protein allele (HP) and blue indicates lines with the low-protein allele (LP). (A) Comparison of the protein content, (B) Oil content, (C) Production of
protein per hectare, and (D) Seed yield. A total of 103 RILs were evaluated in five environments (Athens 2020 and 2021, Plains 2020 and 2021, and
Tifton 2021) with two to three replications per environment. Error bar indicates standard error. Checks C1, C2, and C3 correspond to AG 64X8RR2X,
AG 74X8RR2X, and AGS 738RR, respectively. *, **, and *** indicate significance at the 0.05, 0.01, and 0.001 probability level and NS indicates
not significant.
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TABLE 1 Effects of the high-protein QTL on maturity.

Population Pedigree
Maturity†

Difference
HP lines LP lines

P1 G13-6299 × Benning HP 52.8 55.3 2.5*

P2 Woodruff × Benning HP 53.0 55.5 2.5***

P3 N10-711 × Benning HP 47.8 52.3 4.5***

P4 N05-7432 × Benning HP 51.1 57.2 6.1***

P5 N11-7046 × Benning HP 48.7 52.0 3.3**

P6 N08-174 × Benning HP 41.4 41.9 0.5ns

P7 R12-514 × Benning HP 40.7 44.2 3.4*

P8 Benning HP × G10PR-56444R2 52.4 55.3 2.9***

P9 Benning HP × G11PR-56151R2 48.7 54.3 5.6***

P10 Benning HP × G11PR-56238R2 48.4 53.5 5.1***
F
rontiers in Plant Science
 09204
HP indicates the high-protein allele and LP indicates the low-protein allele at GSM1252.
*, **, and *** indicated significant differences at the 0.05, 0.01, and 0.001 probability level, respectively.
† Maturity is indicated as days after August 31.
TABLE 2 Distribution of the low-protein allele (321-bp insertion) among North American soybean ancestral lines as defined by Gizlice et al. (1994).

ID Origin MG Protein (%) Oil (%) GSM1252†

1 FC 31745 – VI 40.2 21.5 LP

2 FC 33243 – IV 38.1 22.5 LP

3 PI 180501‡ Germany 0 39.1 21.3 LP

4 PI 240664‡ Philippines X 44.8 21.1 LP

5 PI 360955B‡ Sweden 0 42.7 18.2 LP

6 PI 438471 Sweden 0 38.2 20.3 LP

7 PI 438477 Sweden 0 39.6 19.7 LP

8 PI 548298 China III 43.0 19.9 LP

9 PI 548302 Japan II 42.2 17.8 LP

10 PI 548311‡ Canada 0 42.0 20.4 LP

11 PI 548318‡ China III 39.1 21.6 LP

12 PI 548325 Russia 0 41.5 19.7 LP

13 PI 548348 China III 41.5 20.0 LP

14 PI 548352‡ North Korea III 41.4 19 LP

15 PI 548356‡ North Korea II 41.4 19.9 LP

16 PI 548360 North Korea II 39.7 21.4 LP

17 PI 548362 United States III 38.4 22.9 LP

18 PI 548379 China 0 38.4 20.9 LP

19 PI 548382‡ – 0 43.1 17.6 LP

20 PI 548391 China II 43.0 20.3 LP

21 PI 548402‡ China IV 38.2 18.5 LP

22 PI 548406 China II 41.6 19.0 LP

(Continued)
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(31,778,817–32,282,623 bp) (Wm82.a2.v1). This region overlaps

perfectly with previously published mapping work that identified the

Chr 20 QTL (Bolon et al., 2010; Vaughn et al., 2014; Warrington et al.,

2014; Lee et al., 2019; Wang et al., 2021). In the analysis of the

multiparent mapping population, the flat QTL peak in the region

between 31.8 and 32.8 Mb indicated that this genomic region has a

large linkage disequilibrium block.

To elucidate the origins of the Danbaekkong high-protein allele,

an analysis of the Danbaekkong pedigree was conducted. One of the

Danbaekkong’s parents is the cultivar Dongsan 69 from South

Korea and the pedigree of this cultivar is unknown since no

release information is available. The other parent is D76-8070,

which is an MG V line developed by Edgar Hartwig in his effort to

breed soybean cultivars with increased protein content (Hartwig,

1990). D76-8070 was developed through the selection of progeny

from multiple crosses (“Hill” × “Sioux”, FC 31745 × D49-2510, Hill

× PI 96983, and D49-24914 × PI 163453). The progeny from each of

these crosses were selected for disease resistance, agronomic traits,

and high protein content (>45%) and the selected lines were

intercrossed to develop D76-8070 (Supplementary Figure S3). PI

163453 is the only G. soja line present in the pedigree of D76-8070

and was hypothesized as the origin for the high-protein QTL. To

verify this hypothesis, the haplotypes of PI 163453 and

Danbaekkong were compared using the 6,353 SNPs between 30

and 34 Mb on Chr 20 called from the sequencing data. The genetic
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similarity analysis showed that the Danbaekkong haplotype at the

Chr 20 QTL region is 99.95% identical to PI 163453

(Supplementary Table S10). To confirm the inheritance of the

protein QTL, D76-8070 was also genotyped with GSM1252 and

the results indicated that it carries the same allele as PI 163453,

Danbaekkong, and Benning HP (Supplementary Table S11).

To quantify the Chr 20 fragment that was transferred from PI

163453 to Danbaekkong, 408 SNPs from the SoySNP50K SNP

dataset distributed along the Chr 20 were used and it was observed

that the PI 163453 fragment that was transferred to D76-8070 spans

from 21 to 34.6 Mb and the D76-8070 fragment that was transferred

to Danbaekkong starts at 2 Mb and ends at 36 Mb. Subsequently, a

fragment from 0.2 to 37 Mb from Danbaekkong was transferred to

Benning HP (Supplementary Figure S4). These results indicate that

the high-protein allele is originally from PI 163453, and it was

transferred to D76-8070 through the work of Hartwig. Then, D76-

8070 was used in South Korea to develop Danbaekkong, which

eventually returned to the United States and was used to develop the

isogenic line Benning HP.

The haplotype of PI 163453 was also compared to the G. soja

line PI 468916 used in the mapping study that identified the Chr 20

QTL (Diers et al., 1992). The comparison revealed that PI 163453 is

only 43% similar to PI 468916 when considering all the SNPs in the

30–34 Mb window, but when comparing the sequence of the gene

Glyma.20g085100, it was observed that PI 163463 is also missing the
TABLE 2 Continued

ID Origin MG Protein (%) Oil (%) GSM1252†

23 PI 548438 North Korea VI 44.7 19.2 LP

24 PI 548445 China VII 45.7 19.0 LP

25 PI 548456 North Korea VI 41.0 19.1 LP

26 PI 548461 United States VIII 40.5 22.5 LP

27 PI 548477 United States VI 42.9 20.2 LP

28 PI 548484 North Korea VI 42.1 20.2 LP

29 PI 548485 China VII 42.1 20.7 LP

30 PI 548488 China V 43.8 18.9 LP

31 PI 548603 United States IV 40.5 21.9 LP

32 PI 548657 United States VII 40.3 21.9 LP

33 PI 71506 China IV 41.0 22.6 LP

34 PI 80837‡ Japan IV 42.4 18.2 LP

35 PI 88788 China III 43.4 15.7 LP

Benning § United States VII 41.9 21.3 LP

Benning HP § United States VII 45.6 19.0 HP

Danbaekkong¶ South Korea V 48.0 18.5 HP
Protein and oil analyzed with near-infrared (NIR) spectroscopy using a sample of approximately 200 seeds harvested in 2018.
Benning, Benning HP, and Danbaekkong are controls.
† GSM1252 indicates the presence of the high-protein allele (HP) or the low-protein allele (LP).
‡ Protein and oil content retrieved from GRIN. https://npgsweb.ars-grin.gov/gringlobal/.
§ Benning and Benning HP values are averages from 3 years of tests (2019, 2020, and 2021).
¶ Danbaekkong value is the average from 2 years of tests (2017 and 2021).
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BA

FIGURE 6

Genotyping with the gene-specific TaqMan marker GSM1252. (A) 35 North America Glycine max ancestors and (B) 79 Glycine soja accessions.
Benning and Benning HP were used as controls four times on each plate for the low-protein (LP) and the high-protein allele (HP), respectively.
Points in green, blue, and black colors denote the high-protein allele, low-protein allele, and no template control, respectively.
TABLE 3 Distribution of the high-protein allele among the USDA Glycine soja core set as defined by La et al. (2019).

Name Origin MG Protein (%) Oil (%) GSM1252†

1 PI 101404A China II 45.7 16.2 HP

2 PI 339871A South Korea V 42.9 16.6 HP

3 PI 342622A Russia I 43.7 16.1 HP

4 PI 366122 Japan IV 44.1 16.6 HP

5 PI 378683 Japan VI 46.7 16.4 HP

6 PI 378684B Japan VI 47.3 16.0 HP

7 PI 378686B Japan VI 46.0 16.3 HP

8 PI 378690 Japan VII 45.3 16.3 HP

9 PI 378696B Japan VI 43.7 16.7 HP

10 PI 378697A Japan V 44.5 16.5 HP

11 PI 407020 Japan V 44.0 16.8 HP

12 PI 407038 Japan V 45.4 16.5 HP

13 PI 407042 Japan V 44.9 16.3 HP

14 PI 407052 Japan V 46.8 16.1 HP

15 PI 407059 Japan – 46.7 16.1 HP

16 PI 407085 Japan VI 44.8 16.5 HP

(Continued)
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TABLE 3 Continued

Name Origin MG Protein (%) Oil (%) GSM1252†

17 PI 407096 Japan VII 47.2 16.3 HP

18 PI 407156 Japan VI 44.7 16.5 HP

19 PI 407157 Japan VI 47.8 16.3 HP

20 PI 407171 South Korea IV 43.8 16.4 HP

21 PI 407179 South Korea V 44.4 16.8 HP

22 PI 407191 South Korea V 46.2 16.5 HP

23 PI 407195 South Korea IV 44.4 16.5 HP

24 PI 407206 South Korea V 46.4 16.3 HP

25 PI 407214 South Korea V 46.7 16.4 HP

26 PI 407228 South Korea V 49.5 15.8 HP

27 PI 407231 South Korea V 44.4 16.5 HP

28 PI 407240 South Korea V 46.3 16.5 HP

29 PI 407248 South Korea V 44.6 16.6 HP

30 PI 407287 Japan V 45.6 16.3 HP

31 PI 407300 China V 46.1 16.2 HP

32 PI 407314 South Korea V 44.2 16.9 HP

33 PI 424004B South Korea II 43.6 16.5 HP

34 PI 424007 South Korea V 42.3 16.8 HP

35 PI 424025B South Korea V 46.3 16.4 HP

36 PI 424035 South Korea V 43.3 16.7 HP

37 PI 424045 South Korea V 42.6 16.5 HP

38 PI 424070B South Korea V 43.3 16.5 HP

39 PI 424082 South Korea V 44.1 16.1 HP

40 PI 424083A South Korea V 45.4 16.4 HP

41 PI 424102A South Korea V 43.6 16.5 HP

42 PI 424116 South Korea IV 43.7 16.6 HP

43 PI 424123 South Korea V 44.0 16.1 HP

44 PI 447003A China 0 43.8 16.8 HP

45 PI 458536 China 0 48.3 16.3 HP

46 PI 464890B China I 47.2 16.2 HP

47 PI 479746B China II 46.6 16.1 HP

48 PI 479751 China III 43.7 16.8 HP

49 PI 479752 China I 41.2 16.4 HP

50 PI 479768 China 0 44.8 16.4 HP

51 PI 483466 China V 43.9 16.2 HP

52 PI 507618 Japan V 44.1 16.4 HP

53 PI 507624 Japan VII 44.6 16.4 HP

54 PI 507641 Japan V 45.9 16.6 HP

55 PI 507656 Japan VII 45.9 16.3 HP
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321-bp fragment as PI 468916 (Supplementary Table S11,

Supplementary Figure S5). These results indicate that although PI

163453 and PI 468916 are different at the haplotype level, they carry

the same high-protein allele in Glyma.20g085100.

Goettel et al. (2022) indicated that the Glyma.20g085100 high-

protein allele was transferred from G. soja to G. max in three

independent events likely during the process of domestication in East

Asia. In the present research, it was demonstrated that the
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Danbaekkong high-protein allele came from the intentional

introgression conducted by Edgar Hartwig where the G. soja PI

163453 was used as a grand parent to develop D76-8070 (Hartwig,

1990). Analyzing the haplotypes in the Glyma.20g085100 region

(Chr20, 29–34 Mb) revealed that both PI 163453 and Danbaekkong

were grouped into cluster 3 identified by Goettel et al. (2022) (Figure 7).

Cluster 3 is predominantly composed of the accessions from China

except Danbaekkong that is a derived progeny from PI 163453.
TABLE 3 Continued

Name Origin MG Protein (%) Oil (%) GSM1252†

56 PI 507761 Russia I 42.4 16.4 HP

57 PI 522209B Russia II 43.2 16.4 HP

58 PI 522226 Russia 000 43.3 16.3 HP

59 PI 522233 Russia I 44.3 16.1 HP

60 PI 522235B Russia I 41.6 16.2 HP

61 PI 549032 China III 44.0 15.9 HP

62 PI 549046 China III 39.9 17.1 HP

63 PI 549048 China III 41.0 17.6 HP

64 PI 562547 South Korea V 41.2 16.5 HP

65 PI 562551 South Korea V 43.9 16.5 HP

66 PI 562553 South Korea V 47.4 16.3 HP

67 PI 562561 South Korea V 47.1 16.0 HP

68 PI 562565 South Korea IV 43.2 16.4 HP

69 PI 593983 Japan III 45.0 16.7 HP

70 PI 597448D China 0 45.2 16.2 HP

71 PI 597458C China V 43.5 17.2 HP

72 PI 597460A China IV 42.9 16.8 HP

73 PI 597461B China V 39.8 17.5 HP

74 PI 597462B China IV 42.5 17.1 HP

75 PI 639586 Russia – 42.0 17.0 HP

76 PI 639588B Russia – 41.8 17.1 HP

77 PI 639621 Russia – 41.8 17.1 HP

78 PI 639623A Russia – 44.2 16.5 HP

79 PI 639635 Russia – 43.3 16.4 HP

PI 163453 China VI 44.7 12.0 HP

PI 468916 China III 44.0 10.1 HP

Benning‡ United States VII 41.9 21.3 LP

Benning HP‡ United States VII 45.6 19.0 HP

Danbaekkong§ South Korea V 48.0 18.5 HP
Protein and oil contents for G. soja accessions were obtained from La et al. (2019).
All G. soja accessions have black seed coat color.
Benning, Benning HP, and Danbaekkong are controls. PI 163453 is the G. soja ancestor of Danbaekkong and PI 468916 is the G. soja used in Fliege et al. (2022).
† GSM1252 indicates the presence of the high-protein allele (HP) or the low-protein allele (LP).
‡ Benning and Benning HP values are averages from 3 years of tests (2019, 2020, and 2021).
§ Danbaekkong value is the average from 2 years of tests (2017 and 2021).
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4.2 Distribution of the Chr 20 high-protein
allele among the soybean ancestors and
G. soja lines

An analysis of the distribution of the high-protein allele was

performed using 35 G. max that represents the diversity of the

North American soybean cultivars (Gizlice et al., 1994). The results

indicated that none of the 35 G. max ancestors carry the high-

protein allele in Glyma.20g085100. However, three soybean

ancestors, CNS (PI 548445), Arksoy (PI 548438), and Bilomi No.

3 (PI 240664), have protein content higher than 44% but do not

carry the Chr 20 high-protein allele. CNS, Arksoy, and Bilomi No. 3

were originally collected in China, North Korea, and Philippines,

respectively, and it is possible that these three accessions harbor

protein QTLs in other genomic regions. To our knowledge, these

ancestors have not been used in QTL mapping studies yet and they

could reveal more information about the genetic control of protein

in soybean.

Soybean lines with protein content reaching values of 47.2%

have been developed (Wilcox and Cavins, 1995), and some lines

have been released as cultivars in the United States in an effort to

improve the seed composition, such as Protana with 43% protein

(Probst et al., 1971), Prolina with 46% protein (Burton et al., 1999),

and Prohio with 44.1% protein (Mian et al., 2008). More recently,

soybean breeders focused on combining high yield and improved

protein content and several breeding lines have been released. Chen

et al. (2017) developed UA 5814HP as a new soybean cultivar with

high seed protein content (45.5%) and yield comparable to elite

checks. Pantalone and Smallwood (2018) released TN11-5102 as a

high-yield and high-protein line with 42% protein. Shannon et al.

(2022) developed S09-13185, with 44% protein content and Li et al.

(2022) released G11-7013 with a protein content of 43.6%. Despite
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these efforts, the proportion of high-protein lines in North

American germplasm is low. According to Patil et al. (2017),

most soybean cultivars in the United States are fixed for the low-

protein allele at the Chr 20 locus, and the introgression of the high-

protein allele has the potential to improve the seed protein content

in soybean cultivars in North America.

Goettel et al. (2022) analyzed a panel of 398 G. max (259

Cultivars and 139 Landraces) and 150 G. soja accessions from the

USDA Soybean Germplasm Collection and observed that only 21G.

max lines had the Chr 20 high-protein allele. Of these 21 G. max

lines that have the high-protein allele, 1 line was from India, 2 lines

were from Japan, 4 lines were from China, and 14 lines were from

South Korea, where Danbaekkong originated. Eight of the 14

Korean lines are cultivars with yellow seed coat, indicating that

the Chr 20 high-protein allele has been selected and used in the

development of soybean cultivars in Korean breeding programs. Lee

et al. (2015) conducted a pedigree reconstruction of Korean soybean

varieties and demonstrated that since 1913, soybean breeding

programs have focused primarily on the improvement of seed

protein composition for processing as soy food, such as soy sauce

and tofu.

Differently from G. max, it was observed that all 79 G. soja from

the USDA core collection analyzed carry the high-protein allele at

Glyma.20g085100. When analyzing the sequence of additional 35 G.

soja accessions, all of them also carry the high-protein allele. In a

similar way, Goettel et al. (2022) analyzed a panel of 150 G. soja

accessions and found that 147 lines had the high-protein allele

confirmed. Owing to the widespread presence in G. soja of the high-

protein allele in Glyma.20g085100 and the low frequency in G. max,

and the fact that G. soja is the closest ancestor to G. max, it is

possible to infer that the high-protein allele is the original state of

the gene. A few G. soja accessions present a low protein content,
FIGURE 7

Comparison of PI 163453 and Danbaekkong haplotypes with the three introgression groups identified by Goettel et al. (2022) using hierarchical
complete linkage cluster analysis. Analysis was based on 82 SNPs from the SoySNP50K at the Chr 20 QTL region between 29 and 34 Mb.
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despite having the high-protein allele, especially the accessions PI

549046 and PI 597461B that showed a protein content lower than

40%. In fact, other studies have shown that on very few occasions,

lines with the high-protein allele might have a low protein content,

such as PI 407877B, PI 423954, and PI 424148 in Fliege et al. (2022).

Goettel et al. (2022) indicated few wild soybean lines with a lower

protein content but the overall mean protein of the G. soja with the

high-protein allele was higher than the G. max with the low-protein

allele. Vaughn et al. (2014) have also observed some cases where

lines with the high-protein haplotype present a relatively low

protein content. This is not fully understood; however, Kim et al.

(2023) suggested that the protein content could be regulated by the

interaction of multiple genes located at approximately 30 Mb on

chromosome 20. Despite this, Glyma.20g085100, which is the gene

targeted in this study, is likely the major gene in this regulation. The

Chr 20 QTL has been shown to explain up to 55% of the variation

(Warrington et al., 2015). Since it is not 100%, soybean genotypes

can have relatively high or low protein through background

segregation of these polygenic effects.
4.3 Effects of the Danbaekkong high-
protein allele

A single marker analysis with the Glyma.20g085100marker was

performed to understand the stability and effect of the gene across

different genetic backgrounds. The analysis revealed that the high-

protein allele inherited from Danbaekkong increased the protein by

3.3% on average (ranging from 2.6% to 3.7%) across all 10

populations tested in 2018 and 2019. The increase in protein

content was also observed in the yield trials conducted in 2020

and 2021. In these trials, the high-protein allele had an average

increase of 2.0% in the protein and only the population R12-514 ×

Benning HP did not show a significant increase in protein. This

protein increase is similar to the estimate by Brzostowski et al.

(2017), when the introgression of the Danbaekkong allele into two

soybean lines caused an increase of 2% across four environments.

The present results are close to the estimates by Warrington et al.

(2015), where the author indicated a gain of 2.7% in protein with

the Danbaekkong allele.

One of the well-known effects of the increase of protein content

is the reduction of oil (Cober and Voldeng, 2000; Chung et al., 2003;

Vaughn et al., 2014; Patil et al., 2018). According to Hanson et al.

(1961), this relationship is dictated by a ratio of 2:1, in which the

energy demanded to synthesize 2 protein units corresponds to 1

unit of oil. Other studies have shown that the protein-to-oil ratio is

between 1.5 and 1.7 (Hartwig and Kilen, 1991; Chung et al., 2003).

In the present research, it was observed that for every 1% increase in

protein, there was a decrease of 0.55% in oil, representing a ratio

of 1.8:1.

Several studies have indicated a negative relationship between

protein and yield, with correlation values reaching up to −0.62

(Cober and Voldeng, 2000; Sebolt et al., 2000; Cunicelli et al., 2019).

Overall, a negative correlation between these two traits appears to

be common, but contrary to the omnipresent antagonist

relationship between protein and oil, protein and yield do not
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have a consistent correlation when comparing multiple

environments (Wilcox and Cavins, 1995; Prenger et al., 2019). In

the present research, lines with the high-protein allele in general

yield 313 kg ha−1 less (55 to 719 kg ha−1) than those with the low-

protein allele within the same population. Brzostowski et al. (2017)

found a yield reduction ranging from −273 to −558 kg ha−1 when

introgressing the Danbaekkong allele into two soybean lines. In the

same way, Goettel et al. (2022) indicated that the low-protein allele

at Glyma.20g085100 is associated with a yield increase of 150.3 kg

ha−1. Despite the negative effect of the high-protein allele on yield, it

was possible to identify lines carrying the high-protein allele (>43%

protein) with comparable yield to the commercial checks (>95%

yield). This shows that there is potential to couple high yield and

high protein content with selection during breeding, and the

negative association between protein and yield can be minimized.

An association between the presence of the high-protein allele

in Glyma.20g085100 and maturity was observed across different

populations, where lines with the high-protein allele matured

approximately 3.7 days earlier than their counterparts in the same

population. Similar results were found by Prenger et al. (2019),

where lines carrying the Danbaekkong allele matured earlier than

those without the allele. The gene Glyma.20g085100 is located 1.4

Mb upstream of the maturity locus E4 (Liu et al., 2008). Since

Danbaekkong is an MG V cultivar, it is possible that it possesses the

early maturity allele at the E4 locus linked with the high-protein

allele in a coupling phase. Therefore, the difference in maturity in

lines with high protein derived from Danbaekkong is due to linkage

between the high-protein QTL and the maturity gene E4.

To our knowledge, the present study was the first time a QTL

for protein content in soybean has been fully assessed in a wide

variety of genetic background simultaneously with several

environments of yield trials, and its breeding history from G. soja

to G. max has been described. This study complements and

validates the findings of previous research about the role of

Glyma.20g085100 in determining the protein content in soybeans,

providing more information about the effects and stability of the

QTL, and confirming the value of its use to improve soybean

seed composition.
5 Conclusions

In this research, a gene-specific marker, GSM1252, was

designed for Glyma.20g085100 and genotyping the bi-parental

and multiparental populations confirmed the effectiveness of this

marker as well as other flanking markers. This information can be

useful resources for breeding programs to introgress the high-

protein allele into elite lines. The analysis of the distribution of

the Glyma.20g085100 alleles revealed that the 35 G. max accessions

that represent the genetic diversity of North American soybean

cultivars have the low-protein allele, while the 79 G. soja accessions

surveyed possess the high-protein allele. The analysis of the

pedigree of Danbaekkong indicated that its high-protein allele

was inherited from G. soja PI 163453, which is the same as the

one from PI 468916. The Danbaekkong high-protein allele

increased the protein content in all populations tested in 2018
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and 2019 with an average of 3.3%, ranging from 2.6% in Benning

HP × G10PR-56444R2 to a 3.7% increase in G13-6299 × Benning

HP. The yield trials in 2020 and 2021, the allele increased the

protein in 2% on average and was stable across multiple

environments. It was observed that the increase in protein was

accompanied by an overall decrease in oil and yield. However, it was

possible to select breeding lines with the high-protein allele and

yield comparable to elite checks, and this will enable the

development of new cultivars with high protein content and

high yield.
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Introduction: Simple sequence repeats (SSR), also known as microsatellites, are

crucial molecular markers in both animals and plants. Despite extensive previous

research on SSRs, the development of microsatellite markers in Brassica crops

remains limited and inefficient.

Methods: Krait software was used to identify microsatellites by genome-wide

and marker development based on three recently sequenced basic species of

Brassica crops in the triangle of U (Brassica rapa, B. nigra and B. oleracea), as well

as three allotetraploids (B. juncea, B. napus and B. carinata) using public

databases. Subsequently, the primers and the characteristics of microsatellites

for most of them were accordingly designed on each chromosome of each of

the six Brassica species, and their physical locations were identified,and the

cross-transferability of primers have been carried out. In addition, a B-genome

specific SSR marker was screened out.

Results: A total of 79341, 92089, 125443, 173964, 173604, and 222160 SSR loci

have been identified from the whole genome sequences of Brassica crops within

the triangle of U crops, B. rapa (AA), B. nigra (BB), B. oleracea (CC), B. napus

(AACC), B. juncea (AABB) and B. carinata (BBCC), respectively. Comparing the

number distribution of the three allotetraploid SSR loci in the three subgenomes

AA, BB and CC, results indicate that the allotetraploid species have significant

reduction in the number of SSR loci in the genome compared with their basic

diploid counterparts. Moreover, we compared the basic species with their

corresponding varieties, and found that the microsatellite characters between

the allotetraploids and their corresponding basic species were very similar or

almost identical. Subsequently, each of the 40 SSR primers was employed to

investigate the polymorphism potential of B. rapa (85.27%), B. nigra (81.33%) and

B. oleracea (73.45%), and B. rapa was found to have a higher cross-transfer rate

among the basic species in the triangle of U. Meanwhile, a B-genome specific

SSRmarker, BniSSR23228 possessing the (AAGGA)3 sequence characteristics was

obtained, and it located in chromosome B3 with a total length of 97 bp.
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Discussion: In this study, results suggest that the pattern of distribution may be highly

conserved during the differentiation of basic Brassica species and their allotetraploid

counterparts. Our data indicated that the allotetraploidization process resulted in a

significant reduction in SSR loci in the three subgenomes AA, BB and CC. The reasons

may be partial gene dominated chromosomal homologous recombination and

rearrangement during the evolution of basic diploid species into allotetraploids. This

study provides a basis for future genomics and genetic research on the relatedness of

Brassica species.
KEYWORDS

Brassica L, simple sequence repeats, microsatellite, primer development, genomewide, B-

genome specific SSR marker
1 Introduction

Brassica, as a diverse and important genus within the

cruciferous family, includes many important vegetable and oilseed

crops for human consumption or food production, such as Chinese

cabbage, turnip, cabbage, cauliflower, broccoli, Brussels sprouts,

kohlrabi, kale, collards, mustard, and rapeseed. These crops can be

stored for a long time and provide sufficient food reserves in winter.

Not only several Brassica species are economically important oil

seeds, spices and vegetables, but also they are rich in essential

nutrients such as vitamin C and glucosinolates, which has been
02214
associated with a reduced risk of many cancers (Kristal and Lampe,

2002). The genetic relationships between the top six Brassica species

can be described by the triangle of U model (Nagaharu, 1935)

(Figure 1). Therein, three ancestral diploid species B. rapa (A

genome, n=10), B. nigra (B genome, n=8) and B. oleracea (C

genome. n=9) have been cross-bred over time to produce three

allotetraploids: B. juncea (AB genome, n=18), B. napus (AC

genome, n=19) and B. carinata (BC genome, n=17). Some

Brassica crops were also found to be capable in crossing with

other important cruciferous crops such as wild radish (Raphanus)

(Beckie et al., 2003; FitzJohn et al., 2007). This potential to hybridize
FIGURE 1

Brassica species in the triangle of U. The three diploid basic species are referred to by AA, BB and CC genomes, and the three allotetraploid species
are referred to by AABB, AACC and BBCC. The diploid chromosome number (2n) is shown. The image is adapted from U (1935).
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with a wide range of inbreds and the diversity of non-domesticated

forms of key crop species makes Brassica an integral part of global

gene banks.

The detection of DNA sequence variation is a crucial step in

studying the Brassica genome. Over the past two decades, various

molecular markers have been used in genetic breeding studies of

Brassica, such as restriction fragment length polymorphisms

(RFLP), random amplified polymorphic DNA (RAPD), amplified

fragment length polymorphisms (AFLP), simple sequence repeats

(SSRs), sequence-related amplified polymorphisms (SRAP),

sequence-characterized amplified regions (SCAR), and single

nucleotide polymorphisms (SNP) (Ananga et al., 2006; Rahman

et al., 2010; Zeng et al., 2010; Christensen et al., 2011; Panigrahi

et al., 2011; Rezaeizad et al., 2011; Shirasawa et al., 2011). Among

these molecular markers, SSRs or microsatellites are characterized

by high polymorphism, reproducibility, ease of detection by

polymerase chain reaction (PCR), co-dominance, adaptability,

transferability, and genomic abundance. Thus, SSRs have been

widely used in genetic diversity studies, quantitative trait loci and

genetic mapping analysis, gene localization, germplasm

classification and evolution and comparative genomics, and it is

still one of the important molecular markers in genetic breeding

research (Wang et al., 2014).

Traditional methods for developing SSRs involve the probe

hybridization of genomic and cDNA libraries containing repetitive

motifs, followed by DNA sequencing (Lowe et al., 2004), or the in

silico analysis of publicly available bacterial artificial chromosome

(BAC) sequences (Burgess et al., 2006; Xu et al., 2010), genomic

survey sequences and whole-genome shotgun sequences (Cheng

et al., 2009; Li et al., 2011). These procedures are time-consuming,

costly and labor-intensive; however, with the expansion of DNA

sequence information in public databases, the development of SSRs

from publicly available DNA sequences has become a rapid and

cost-effective alternative (McCouch et al., 2002; Song et al., 2005;

Shoemaker et al., 2008). Currently, genome-wide SSR-based

development is commonly used in crops such as cocoa, grapes,

maize, kidney beans, and prunes (Cai et al., 2009; Cao et al., 2013;

Qu and Liu, 2013). This approach has also proved useful in

developing SSRs in expressed sequence tags in many agricultural

crops, including rice, wheat, cotton, barley, groundnut, cowpea, and

radish (Cardle et al., 2000; Kantety et al., 2002; La Rota et al., 2005;

Park et al., 2005; Liang et al., 2009; Gupta and Gopalakrishna, 2010;

Shirasawa et al., 2011).

With the rapid advancement of whole genome sequencing

technology, the genome sequence of cabbage has been released

and is available online (http://www.ocri-genomics.org/bolbase/

index.html) (Liu et al., 2014). Genome sequences provide a

powerful pool of information for genome-wide microsatellite

characterization. At the same time, studies on the development of

SSRs based on the whole genome of Brassica have been limited (Shi

et al., 2014). Therefore, in this study, we analyzed the genome-wide

SSR information distribution of six Brassica species, and located the

physical position of SSRs on each chromosome to analyze the

relatedness between these species. To evaluate the newly

developed genome-wide SSR markers in representative self-

crossed lines, we attached these SSR primers of these species as
Frontiers in Plant Science 03215
Supplementary Files and screened a number of specific SSR markers

by PCR amplification. Moreover, a B-genome specific SSR marker,

BniSSR23228, was screened out. These results provide great value in

relevant research fields including introgression line tracking, genetic

diversity analysis, marker-assisted breeding, and so on.
2 Materials and methods

2.1 Source of the whole genome sequence

The genome sequences of three basic species [B. rapa

(Brara_Chiifu_V3.5), B. nigra (Brana_ NI100_V2) and B. oleracea

(Braol_JZS_V2.0)] and three allotetraploids [B. juncea

(Braju_tum_V1.5), B. napus (Brana_Dar_V5) and B. carinata

(http://brassicadb.bio2db.com/download.html)] of the genus

Brassica were downloaded from the Brassica Info (http://

www.Brassica.info/) website (Chen et al., 2010; Liu et al., 2014).

The sequences obtained for B. rapa, B. nigra, B. oleracea, B. juncea,

B. napus and B. carinata were 353140194 bp, 506000232bp,

561157886 bp, 937030072 bp, 850292103 bp, and 1086987601 bp

in length, respectively.
2.2 SSR screening

The Krait identification tool was employed to search for the

presence of SSR motifs in the genomic sequences (Du et al., 2018).

The parameters were set as follows: the minimum number

of repeat units was 12 single nucleotides, 7 dinucleotides,

5 trinucleotides, 4 tetranucleotides and pentanucleotides, and

4 hexanucleotides. The frequency and length of the searched SSRs

were counted and analyzed.
2.3 Genomic SSR primer design

The primer pairs on both sides of the SSR loci were designed

using Krait software (Du et al., 2018). The main parameters were set

as follows: the primer length was controlled between 18 and 27 bp,

with an optimal size of 20 bp; the melting temperature was 58°C to

65°C, with an optimal temperature of 60°C; the GC content was in

the range of 30% to 80%; and the predicted PCR product was in the

range of 100-300 bp. All other parameters were set as default.
2.4 Plant material and DNA extraction

The plant materials used in the experiment were from B. rapa

(AA), B. nigra (BB), B. oleracea (CC), B. juncea (AABB), B. napus

(AACC), B. carinata (BBCC), Raphanus sativus (RR) and

Arabidopsis thaliana (At) specimens. The total genomic DNA was

extracted from young frozen leaf tissues using the SDS method. The

genomic DNA concentrations (ng/µL) were adjusted to an

experimentally specific 100 ng/µL using a NanoDrop 1000

spectrophotometer (Thermo Fisher Scientific, USA).
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2.5 Detection of the transferability of
SSR markers

From the SSR primers designed based on the genomes of the six

chosen species, 40 pairs of primers were randomly selected in each

of the three diploid species, B. rapa, B. nigra and B. oleracea. To

perform PCR amplification, a reaction mixture containing 1 µL (100

ng/µL) of template genomic DNA, 1µL (10 µmol/L) of each primer

and 12.5 µL of 2×T5 Super PCR Mix (PAGE) buffer was added,

followed by the addition of ddH2O to 25 µL total volume of the

reaction mixture. The PCR assay amplification procedure included

pre-denaturation at 94°C for 3 min, then 35 cycles involving

denaturation at 94°C for 30 s, annealing at 53°C for 30 s, and

extension at 72°C for 30 s, and finally, extension at 72°C for 7 min.

The PCR reaction procedure was performed on a BIO-RAD

S1000TM Thermal Cycler instrument, and samples were stored at

4°C. The SSR cross-transfer rate refers to the number of the

amplified bands obtained from the other seven related species

except for itself/total bands×100%.
2.6 Polyacryamide gel electrophoresis
detection of the PCR product

The PCR product was detected by 12% PAGE following a

method modified from “Molecular Cloning: A Laboratory

Manual” (Sambrook et al., 2001).
Frontiers in Plant Science 04216
2.7 Statistical analysis

The obtained SSR marker loci were analyzed and calculated

using MG2C (http://mg2c.iask.in/mg2c_v2.1/) to locate the

physical position of the SSR on each chromosome (Chao et al.,

2021). A binary matrix of ‘1’ and ‘0’ was prepared for the SSR

marker allele data for all genotypes. The polymorphic information

content (PIC) values, gene diversity and heterozygosity were

calculated using PowerMarker 3.0 software (Liu and Muse, 2005).
3 Results

3.1 Genome-wide SSR identification of
Brassica species in the triangle of U

From the genomic sequences of B. rapa, B. nigra, B. oleracea, B.

napus, B. juncea, and B. carinata with lengths of 340, 490, 541, 893,

824 and 1085.44 Mb, respectively, we identified 79341, 92089,

125443, 173964, 173604 and 222160 complete mono-nucleotide

to hexanucleotide repeat sequence microsatellites with total

frequencies of 226, 182, 223.6, 231.31, 235.12 and 204.42 loci per

Mb, respectively (Tables 1, 2).

In the genomic SSRs of the six studied species, the distribution

of microsatellite motif lengths was almost identical except in B.

nigra (BB); mononucleotide, dinucleotide, trinucleotide and

tetranucleotide repeats accounted for a very similar and relatively
TABLE 1 Distribution of the main SSR types in the genomes of the three basic species.

Motif
B. rapa B. oleracea B. nigra

Number (%) Total Length (%) Number (%) Total Length (%) Number (%) Total Length (%)

Mono 34314 (43.25) 507875 (34.34) 62204 (49.59) 953125 (42.83) 31373 (34.07) 410790 (20.93)

A 32275 (40.68) 470914 (31.84) 57629 (45.94) 862833 (38.78) 31308 (34.00) 409999 (20.89)

C 2039 (2.57) 36961 (2.50) 4575 (3.65) 90292 (4.06) 65 (0.07) 791 (0.04)

Di 28637 (36.09) 663746 (44.88) 41560 (33.13) 892714 (40.12) 38893 (42.23) 1037216 (52.84)

AT 18181 (22.92) 403818 (27.30) 27267 (21.74) 577378 (25.95) 22769 (24.72) 515530 (26.26)

AG 8780 (11.07) 231352 (15.64) 12321 (9.82) 282280 (12.69) 12718 (13.21) 458946 (23.38)

AC 1670 (2.1) 28490 (1.93) 1968 (1.57) 32994 (1.48) 3400 (3.69) 62654 (3.19)

CG 6 (0.01) 86 (0.01) 4 (0.00) 62 (0.00) 6 (0.00) 86 (0.00)

Tri 10667 (13.44) 193242 (13.07) 13652 (10.88) 247191 (11.11) 12929 (14.04) 256068 (13.05)

AAG 3287 (4.14) 58542 (3.96) 4436 (3.54) 80292 (3.60) 4372 (4.75) 86421 (4.40)

AAT 1848 (2.33) 38862 (2.63) 2548 (2.03) 49839 (2.24) 2429 (2.64) 58134 (2.96)

AAC 1398 (1.76) 25053 (1.69) 1338 (1.07) 22425 (1.01) 1453 (1.58) 24603 (1.25)

ACC 720 (0.91) 11982 (0.81) 875 (0.70) 14634 (0.66) 819 (0.89) 13995 (0.71)

ACG 513 (0.65) 8619 (0.58) 520 (0.41) 8652 (0.39) 552 (0.60) 8991 (0.46)

AGG 1106 (1.39) 18759 (1.27) 1604 (1.28) 30024 (1.35) 1210 (1.31) 23403 (1.19)

ATC 1617 (2.04) 28551 (1.93) 2156 (1.72) 38541 (1.73) 1926 (2.09) 37851 (1.93)

(Continued)
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TABLE 1 Continued

Motif
B. rapa B. oleracea B. nigra

Number (%) Total Length (%) Number (%) Total Length (%) Number (%) Total Length (%)

CCG 1748 (0.22) 2874 (0.19) 175 (0.14) 2784 (0.13) 168 (0.18) 2670 (0.14)

Tetra 3684 (4.64) 65896 (4.46) 4884 (3.89) 86840 (3.90) 5832 (6.33) 178216 (9.08)

AAAC 390 (0.49) 6680 (0.45) 457 (0.36) 7856 (0.35) 428 (0.46) 7452 (0.38)

AAAG 446 (0.56) 7960 (0.54) 567 (0.45) 10240 (0.46) 564 (0.61) 10472 (0.53)

AAAT 1473 (1.86) 24908 (1.68) 1992 (1.59) 34120 (1.53) 1678 (1.82) 28808 (1.47)

AACT 148 (0.19) 2624 (0.18) 238 (0.19) 4220 (0.19) 147 (0.16) 2468 (0.13)

AATT 167 (0.21) 2800 (0.19) 458 (0.37) 9460 (0.43) 219 (0.24) 3712 (0.19)

ATAC 109 (0.14) 2088 (0.14) 126 (0.10) 2284 (0.10) 131 (0.14) 3648 (0.19)

ATAG 164 (0.21) 4992 (0.34) 304 (0.24) 5476 (0.25) 495 (0.54) 84172 (4.29)

Others 787 (0.99) 13844 (0.94) 742 (0.59) 13184 (0.59) 2170 (2.36) 37484 (1.91)

Penta 1341 (1.69) 28340 (1.92) 1781 (1.42) 37885 (1.70) 1713 (1.86) 37650 (1.92)

AAAAC 119 (0.15) 2515 (0.17) 145 (0.12) 3130 (0.14) 155 (0.17) 3400 (0.17)

AAAAT 234 (0.29) 4940 (0.34) 327 (0.26) 6900 (0.31) 316 (0.34) 6750 (0.34)

AACCG 199 (0.25) 4115 (0.28) 382 (0.30) 7885 (0.35) 157 (0.17) 3245 (0.17)

ACTGG 7 (0.01) 150 (0.01) 17 (0.01) 355 (0.02) 1 (0) 20 (0.00)

Others 782 (0.99) 16620 (1.12) 910 (0.73) 19615 (0.88) 1084 (1.18) 24235 (1.23)

Hexa 698 (0.88) 19932 (1.35) 1362 (1.09) 37452 (1.68) 1349 (1.46) 42990 (2.19)

AAAAAC 45 (0.06) 1440 (0.10) 58 (0.05) 1512 (0.07) 52 (0.06) 1770 (0.09)

AAAAAG 26 (0.03) 690 (0.05) 70 (0.06) 1806 (0.08) 198 (0.22) 5850 (0.30)

AAAAAT 85 (0.11) 2388 (0.16) 86 (0.07) 2244 (0.10) 84 (0.09) 2946 (0.15)

AAAACC 22 (0.03) 576 (0.04) 19 (0.02) 480 (0.02) 14 (0.02) 438 (0.02)

AAAGAG 15 (0.02) 402 (0.03) 20 (0.02) 522 (0.02) 16 (0.02) 402 (0.02)

AAATAT 21 (0.03) 1122 (0.08) 30 (0.02) 822 (0.04) 14 (0.02) 372 (0.02)

Others 484 (0.61) 13314 (0.90) 1079 (0.86) 30066 (1.35) 971 (1.05) 31212 (1.59)

Total 79341 (100) 1479031 (100) 125443 (100) 2225207 (100) 92089 (100) 1962930 (100)
F
rontiers in Pla
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TABLE 2 Distribution of the main SSR types in the genomes of the three allotetraploids.

Motif
B. juncea B. napus B. carinata

Number (%) Total Length (%) Number (%) Total Length (%) Number (%) Total Length (%)

Mono 80518 (46.28) 1177653 (38.33) 79106 (45.57) 1173689 (31.13) 91679 (41.27) 1398206 (25.63)

A 77106 (44.32) 1117561 (36.38) 73785 (42.5) 1061674 (28.16) 89382 (40.23) 1368065 (25.08)

C 3412 (1.96) 60092 (1.96) 5321 (3.07) 112015 (2.97) 2297 (1.03) 30141 (0.55)

Di 56568 (32.52) 1185154 (38.58) 60145 (34.64) 1868030 (49.54) 84030 (37.82) 2815754 (51.32)

AT 29808 (17.13) 567802 (18.48) 37598 (21.66) 946490 (25.10) 54026 (24.32) 1841142 (33.75)

AG 22521 (12.95) 543962 (1.76) 19371 (11.16) 865648 (22.96) 24539 (11.05) 861550 (15.79)

AC 4226 (2.43) 73206 (2.38) 3162 (1.82) 55680 (1.48) 5450 (2.45) 112836 (2.07)

CG 13 (0.01) 184 (0.00) 14 (0.01) 212 (0.01) 15 (0.01) 226 (0.01)

(Continued)
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high proportion, while pentanucleotide and hexanucleotide repeats

were relatively uncommon. The mononucleotide repeat motifs were

the most abundant of the repeat types, with frequencies largely

above 40%, and even close to 50% in B. oleracea (Figure 2A).

The type distribution of microsatellite motifs was almost

identical in the whole genome sequences of B. rapa, B. nigra, B.
Frontiers in Plant Science 06218
oleracea, B. napus, B. juncea, and B. carinata (Figure 2B). In other

words, the mononucleotide to hexanucleotide motifs making up the

major part of the genome sequences of the six Brassica species and

those that are scarce were essentially the same. From Figure 2B, it is

interesting to find that among the mononucleotide repeat

sequences, A has the most repetitive motifs; among the
TABLE 2 Continued

Motif
B. juncea B. napus B. carinata

Number (%) Total Length (%) Number (%) Total Length (%) Number (%) Total Length (%)

Tri 23901 (13.74) 435792 (14.18) 22032 (12.69) 460536 (12.21) 26760 (12.05) 632148 (11.59)

AAG 8145 (4.68) 154041 (5.01) 7216 (4.16) 158442 (4.20) 8752 (3.94) 201657 (3.70)

AAT 3661 (2.10) 71178 (2.31) 4110 (2.37) 103179 (2.74) 5038 (2.27) 132789 (2.43)

AAC 2658 (1.53) 45213 (1.47) 2393 (1.38) 42348 (1.12) 2795 (1.26) 51114 (0.94)

ACC 1596 (0.92) 26676 (0.87) 1302 (0.75) 21654 (0.57) 1909 (0.86) 39012 (0.72)

ACG 1098 (0.63) 18114 (0.59) 952 (0.55) 15978 (0.42) 112 (0.05) 1803 (0.03)

AGG 2603 (1.50) 44328 (1.44) 2109 (1.21) 36276 (0.96) 2740 (1.23) 60408 (1.11)

ATC 3822 (2.20) 71109 (2.31) 3631 (2.09) 77541 (2.06) 4091 (1.84) 104343 (1.91)

CCG 318 (0.18) 5133 (0.17) 319 (0.18) 5118 (0.14) 394 (0.18) 23763 (0.44)

Tetra 8570 (4.93) 166296 (5.41) 7791 (4.49) 157596 (4.18) 11798 (5.31) 279644 (5.13)

AAAC 908 (0.52) 15660 (0.51) 833 (0.48) 14284 (0.38) 862 (0.39) 17548 (0.32)

AAAG 1068 (0.61) 19532 (0.64) 927 (0.53) 17536 (0.47) 1157 (0.52) 22680 (0.42)

AAAT 2860 (1.64) 48480 (1.58) 3179 (1.83) 54672 (1.45) 3777 (1.7) 74496 (1.37)

AACT 284 (0.16) 5000 (0.16) 453 (0.22) 8052 (0.21) 75 (0.03) 1756 (0.03)

AATT 337 (0.19) 5812 (0.19) 456 (0.26) 9724 (0.26) 776 (0.35) 22872 (0.42)

ATAC 260 (0.15) 5680 (0.18) 215 (0.12) 4156 (0.11) 259 (0.12) 7848 (0.15)

ATAG 934 (0.54) 33156 (1.08) 469 (0.27) 26228 (0.70) 1570 (0.71) 61660 (1.13)

Others 1919 (1.12) 32976 (1.07) 1259 (0.73) 22944 (0.61) 3322 (1.49) 70784 (1.30)

Penta 2739 (1.57) 59810 (1.95) 2770 (1.60) 60990 (1.62) 4238 (1.91) 134265 (2.46)

AAAAC 295 (0.17) 6420 (0.21) 271 (0.16) 5800 (0.15) 276 (0.12) 6030 (0.11)

AAAAT 518 (0.30) 10915 (0.36) 530 (0.31) 11405 (0.30) 716 (0.32) 19415 (0.36)

AACCG 386 (0.22) 8095 (0.26) 508 (0.29) 10445 (0.28) 671 (0.30) 18425 (0.34)

ACTGG 30 (0.02) 630 (0.02) 49 (0.03) 1005 (0.03) 23 (0.01) 475 (0.01)

Others 1510 (0.86) 33750 (1.10) 1412 (0.84) 32335 (0.86) 2552 (1.16) 89920 (1.65)

Hexa 1668 (0.96) 47610 (1.55) 1760 (1.01) 49902 (1.32) 3655 (1.65) 195090 (3.58)

AAAAAC 134 (0.08) 3960 (0.13) 99 (0.06) 2730 (0.07) 118 (0.05) 3306 (0.06)

AAAAAG 159 (0.09) 4236 (0.14) 80 (0.05) 2034 (0.05) 243 (0.11) 16302 (0.30)

AAAAAT 118 (0.07) 3048 (0.10) 159 (0.09) 4332 (0.11) 327 (0.15) 15234 (0.28)

AAAACC 28 (0.02) 786 (0.03) 23 (0.01) 636 (0.02) 34 (0.02) 2394 (0.04)

AAAGAG 30 (0.02) 822 (0.03) 34 (0.02) 912 (0.02) 44 (0.02) 1200 (0.02)

AAATAT 15 (0.01) 432 (0.01) 36 (0.02) 1626 (0.04) 74 (0.03) 3558 (0.07)

Others 1184 (0.67) 34326 (1.12) 1329 (0.77) 37632 (1.00) 2815 (1.27) 153096 (2.81)

Total 173694 (100) 3072315 (100) 173604 (100) 3770743 (100) 222160 (100) 5455107 (100)
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dinucleotide repeat sequences, AT has the most repetitive motifs,

followed by AG; among the trinucleotide repeat sequences, AAG

has the most repetitive sequences, followed by AAC; among the

tetranucleotides AAAT has the most repetitive sequences; among

the five and six nucleotides, AAAAT and AAAAAT are also more

common than other combinations. Most of the single to

hexanucleotide sequences that account for the major motifs

contained abundant A\T, while the G\C motifs are all among the

scarce motifs. This is in good agreement with previous reports of

microsatellites identified in B. rapa, B. oleracea and B. napus. It is

also clearly seen that the genomic sequences of B. rapa have a much

higher content of A\T relative to C\G.
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Among the whole genome sequences of B. rapa (AA), B. nigra,

B. oleracea, B. napus, B. juncea, and B. carinata, the distribution

pattern of the number of motif repeats of microsatellites is

essentially the same, except for B. nigra, where 12 repeats have

the highest proportion of all repeats. (Figure 2C). At the same time,

we can see that the microsatellite abundance decreases significantly

as the number of motif repeats increases, with the rate of change

being the flattest for dinucleotides, followed by single nucleotide as

well as trinucleotide repeats, and more drastic changes can be

observed for long repeat motifs. (Figures 3, 4).

In addition, we compared the corresponding motif lengths

(Figure 5), mono- to hexanucleotide microsatellite numbers and
FIGURE 3

Distribution with respect to the motif repeat number of the individual mono- to hexanucleotide repeat microsatellites in the whole genomes of B.
rapa, B. nigra and B. oleracea. The vertical axis shows a large number of microsatellites with different motif repeat numbers (from 4 to 20), which are
distinguished by different colors.
A B C

FIGURE 2

Distribution with respect to the motif length (A), type (B) and repeat number (C) of microsatellites in the whole genomes of B. rapa, B. nigra and B.
oleracea. The vertical axis represents the abundance (%) of microsatellites of different motif lengths, types or number of repeats, which are
distinguished by different colors. For (B), due to the limited number of items in Excel, the abundance of representative single to pentanucleotide
motifs was selected, while the abundance of other motifs was shown in Supplementary Table 2.
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motif repeat numbers between the basic species and the two

heterotetraploid variants from which they diverged. As can be seen

from the figure, the patterns of variation are very similar in the

genomic SSRs of the six studied species, but comparisons between

them reveal a more similar trend in microsatellite length distribution

between B. rapa (AA), B. napus (AACC) and B. juncea (AABB)

(Figure 5A); among B. nigra (BB), B. juncea (AABB) and B. carinata

(BBCC), the microsatellite length distribution trends are more similar

between B. nigra (BB) and B. carinata (BBCC) (Figure 5B); whereas
Frontiers in Plant Science 08220
among B. oleracea (CC), B. napus (AACC) and B. carinata (BBCC),

the microsatellite length distribution trends are more similar between

B. oleracea (CC) and B. napus (AACC) (Figure 5C). However, these

differences are not highly significant.

By comparing the number distribution of the three allotetraploid

SSR loci in the three subgenomes AA, BB and CC, we can find that the

allotetraploid species have significant differences in the number of SSR

loci in the genome compared with their basic diploid counterparts

(Table 3). It is worth mentioning that the reduction in SSR loci is the
FIGURE 4

Distribution with respect to the motif repeat number of the individual mono- to hexanucleotide repeat microsatellites in the whole genomes of B.
juncea, B. napus and B. carinata. The vertical axis shows a large number of microsatellites with different motif repeat numbers (from 4 to 20), which
are distinguished by different colors.
A B C

FIGURE 5

Distribution with respect to the motif length of microsatellites in the whole genomes of Brassica species in the triangle of U. (A) Distribution with
respect to the motif length of microsatellites in the whole genomes of B. rapa, B. napus and B. juncea. (B) Distribution with respect to the motif
length of microsatellites in the whole genomes of B. nigra, B. juncea and B. carinata. (C) Distribution with respect to the motif length of
microsatellites in the whole genomes of B. oleracea, B. napus and B. carinata. The vertical axis shows the abundance (%) of microsatellites with
different motif lengths, which are distinguished by different colors.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1259736
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Sun et al. 10.3389/fpls.2023.1259736
highest during the allotetraploidization of B. napus (AACC), which is

31.3% and 37%, respectively, compared with the diploid AA and CC

genome. Furthermore, the reduction in SSR loci is intermediate during

the allotetraploidization of B. juncea (AABB) L, which is 7.3% and

13.0%, respectively, compared with the diploid AA and BB genome.

Moreover, the reduction in SSR loci is the lowest during the

allotetraploidization of B. carinata (BBCC) L, which is 1.7% and

6.0%, respectively, compared with the diploid BB and CC genome

(Table 3). We also compared the distribution of subgenomic

chromosome SSR loci in the three basic species and the three

allotetraploids respectively, and found that although the number of

SSR loci in most chromosomes showed a downward trend, a few

chromosomes showed an increase (Supplementary Table 1). For

example, in B. juncea, the A subgenomic chromosomes A01 and

A02 increased by 5.55% and 2.60% compared with the basic species,

respectively. Moreover, in B. carinata, the B subgenomic chromosomes

B01, B03 and B04 increased by 49.53%, 11.17% and 3.13%, respectively

(Supplementary Table 1). These results suggest that the cytological and

genetic mechanisms of allotetraploid evolution are complex and

worthy of further study in the future.
3.2 Distribution and physical location of
SSRs on each chromosome of the whole
genome of Brassica species in the triangle
of U

Based on sequencing the whole genome chromosomes of

Brassica species in the triangle of U, the characteristics of

microsatellites on each chromosome of each of the six considered

Brassica species and their physical location were investigated.

The characteristics of length, type and number of repeats on each

chromosome of the six Brassica species were consistent with the
Frontiers in Plant Science 09221
overall microsatellite characteristics of each species described above.

However, the number of microsatellites distributed on each

chromosome was extremely heterogeneous. For the basic species B.

rapa (AA) (Supplementary Table 2), B. nigra (BB) (Supplementary

Table 3) and B. oleracea CC (Supplementary Table 4), the number of

microsatellites was the highest on A09 (11214), B02 (13909) and C03

(18286), respectively. In contrast, for the four allotetraploid variants

B. napus (AACC) (Supplementary Table 5), B. juncea (AABB)

(Supplementary Table 6) and B. carinata (BBCC) (Supplementary

Table 7), the microsatellite numbers were the highest on C03 (12561),

B02 (12452) and C01 (16036), respectively. This may have occurred

because the number of microsatellites is closely related to the length

of the chromosomes; the greater the length of a chromosome, the

larger the number of its corresponding microsatellites.

In order to explore the exact distribution of microsatellites on

each chromosome, the relationship between microsatellites and

chromosomes and that between the three basic species and their

corresponding allotetraploids should be analyzed more clearly. We

used mapping software to locate the physical position of each

microsatellite to the corresponding chromosome. The results

show that, for the six Brassica species, B. rapa (AA), B. nigra

(BB), B. oleracea (CC), B. juncea (AABB), B. napus (AACC), and B.

carinata (BBCC), all chromosomes have higher microsatellite

frequencies at and near the ends, and they present lower

microsatellite frequencies in and near the middle region. This is

consistent with previous studies on the location of microsatellites

on chromosomes and may correspond to the distribution around

the telomeres and the thylakoids. Secondly, the physical distribution

of microsatellites across all chromosomes of the six different species

of Brassica is highly heterogeneous, suggesting that microsatellites

do not occur randomly but their presence is most likely highly

correlated with gene function around them. By comparison, we can

also find that microsatellite distribution is more concentrated in B.

nigra (BB) based on the physical position of microsatellites among

the three basic species. Meanwhile, in the three allotetraploids,

microsatellite distribution is more concentrated in B. carinata

(BBCC), which may be due to the more concentrated distribution

of genes on B. nigra (BB) and B. carinata (BBCC). The more

concentrated distribution of genes on the latter two species is

probably related. Moreover, the high concordance between

microsatellites and genes strongly suggests the putative role of

microsatellites in regulating genome function and in tagging

genes using SSR molecules.
3.3 SSR primer design of the whole
genome of Brassica species in the triangle
of U

Using Krait software, primer pairs were successfully designed

for each of the six species of B. rapa (AA), B. nigra (BB), B. oleracea

(CC), B. napus (AACC), B. juncea (AABB) and B. carinata (BBCC),

respectively, yielding a total of 52356, 62290, 82984, 111276, 120324

and 144149 primer pairs named in the order of BrSSR00001 ~

BrSSR52356, BniSSR00001 ~ BniSSR62290, BolSSR000001 ~

BolSSR082984, BnaSSR000001 ~ BnaSSR111276, BjuSSR000001 ~
TABLE 3 The number of SSR loci in different genomes in the B Brassica
species in the triangle of U.

Species
AA

genome/
subgenome

BB
genome/

subgenome

CC
genome/

subgenome

B
rapa (AA)

79341 0 0

B
nigra (BB)

0 92089 0

B
oleracea
(CC)

0 0 125443

B
juncea
(AABB)

73584 (7.3% ↓) 80149 (13.0% ↓) 0

B
napus

(AACC)
54500 (31.3% ↓) 0 79084 (37.0% ↓)

B
carinata
(BBCC)

0 90569 (1.7% ↓) 117871 (6.0% ↓)
“↓” means reducing of the number SSR loci.
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BjuSSR120324, and BcaSSR000001 ~ BcaSSR144149, respectively.

The primer sequence, TM value, SSR motif, expected product

length, and start/end position on the chromosome for each SSR

marker were determined (Supplementary Tables 8–13).
3.4 Transferability evaluation of the whole
genome of Brassica species in the triangle
of U

In this study, to enrich the SSR marker library of cruciferous

crops and confirm the validity of the designed SSR primers, we

randomly selected 120 primer pairs (Supplementary Tables 14–16) in

three basic species and used genomic DNA from eight cruciferous

species as DNA template, namely, B. rapa (AA), B. nigra (BB), B.

oleracea (CC), B. juncea (AABB), B. napus (AACC), B. carinata

(BBCC), R. sativus (RR), and A. thaliana (At). The cross-

transferability of SSR markers from B. rapa (40 SSRs), B. nigra (40

SSRs) and B. oleracea (40 SSRs) was assessed and the affinities of the

three basic species in forming three allotetraploids were speculated.

We used a total of 120 SSRs, 40 from B. rapa, 40 from B. nigra, and 40

from B. oleracea for cross-amplification studies.

For the 40 primer pairs of B. rapa, a total of 310 positive

amplifications were made in the eight species, resulting in a total of

325 alleles amplified with a cross-transfer rate of 85.27% (Table 4

and Supplementary Figure 1A). This high cross-transfer rate

presumes the validity of these SSR markers for the study of the

genomes of other species of cruciferous crops. Among these 325

amplified markers, the PIC values ranged from 0.32 to 0.84 with a

mean value of 0.73. The gene diversity ranged from 0.41 to 0.86 with

a mean value of 0.7461, and the heterozygosity values ranged from

0.21 to 0.70 with a mean value of 0.55.

For the 40 primer pairs of B. nigra, a total of 280 positive

amplifications were made across the eight species, resulting in a

total of 301 alleles amplified with a cross-transfer rate of 81.33%

(Supplementary Table 17 and Supplementary Figure 1B). From this

high rate of cross-transfer, we speculate that these SSR markers have

some validity for genomic studies of other species of cruciferous

crops. The PIC values of these 301 amplified markers ranged from

0.33 to 0.73 with a mean value of 0.50. The gene diversity ranged

from 0.38 to 0.71 with a mean value of 0.58, and the heterozygosity

values ranged from 0.10 to 0.53 with a mean value of 0.41.

For the 40 primer pairs of B. oleracea, a total of 303 positive

amplifications were made across the eight species, resulting in a

total of 310 amplified alleles with a cross-transfer rate of 73.45%

(Supplemntary Table 18 and Supplementary Figure 1C). This

indicates that the SSR cross-transfer rate of B. oleracea has

limitations in terms of its validity for studying the genomes of

other species of cruciferous crops. Among these 310 amplified

markers, the PIC values ranged from 0.48 to 0.85 with a mean of

0.67. The gene diversity ranged from 0.54 to 0.81 with a mean of

0.64, and the heterozygosity values ranged from 0.0 to 0.71 with a

mean of 0.41.

When comparing the polymorphism potential of B. rapa

(85.27%), B. nigra (81.33%) and B. oleracea (73.45%), B. rapa was

found to have a higher cross-transfer rate (85.27%). In addition, the
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mean values of PIC, genetic diversity and heterozygosity of B. rapa-

derived SSR markers were relatively high, indicating that among

cruciferous plant species, B. rapa has better polymorphic potential

than B. nigra and B. oleracea. The cross-species transferability has

been demonstrated in Brassica crops, while the degree of SSR cross-

transfer depends on the evolutionary distance among species

(Thakur et al., 2022).
3.5 Application of SSR molecular markers
of Brassica species in the triangle of U

A B-genome specific SSR marker, BniSSR23228, was obtained

from 40 selected SSR primers of black mustard (Supplementary

Figure 1B). After PCR amplification, polyacrylamide gel

electrophoresis, cloning verification screening and sequence

alignment were carried out to validate the existence of this

specific SSR marker (Figure 6). The validity experiment results

indicated that BniSSR23228 possessing (AAGGA)3 sequence

characteristics located in chromosome B3 with a total length of

97 bp (Supplementary Figure 2). Subsequently, this molecular

marker can effectively screen the B genome of Brassica, and can

be used for variety and parent identification, introgression line

tracking, genetic diversity analysis, and marker-assisted breeding.
4 Discussion

4.1 Distribution feature of the SSR in the
whole genome of Brassica

Krait software was used to search for 79341, 92089, 125443,

173964, 173604, and 222160 SSR loci from the whole genome

sequences of six species of Brassica, namely, B. rapa (AA), B. nigra

(BB), B. oleracea (CC), B. napus (AACC), B. juncea (AABB), and B.

carinata (BBCC), respectively. The frequency of SSR occurrences

(average SSRs per Mb) was 226 loci/Mb, 182 loci/Mb, 223.6 loci/Mb,

231.31 loci/Mb, 235.12 loci/Mb and 204.42 loci/Mb, respectively. In a

previous report, the PERL5 script MIcroSAtellite (MISA; http://

pgrc.ipkgatersleben.de/misa/) was employed for the genomes of B.

rapa, B. oleracea and B. napus to obtain 140998, 229389 and 420991

SSR markers, respectively (Shi et al., 2014). Using Karit enabled SSR

identification and subsequent primer design in less time than MISA,

and the long microsatellites identified in this way were more

polymorphic and useful. Among the SSR single nucleotide

sequences identified in the six species, B. rapa (AA), B. nigra (BB),

B. oleracea (CC), B. napus (AACC), B. juncea (AABB), and B.

carinata (BBCC), the A sequence repeats were present in 29518

(42.5%), 31308 (34.00%), 57629 (45.94%), 73785 (42.5%), 77106

(44.32%), and 89382 (40.23%) single nucleotides, respectively. They

were therefore regarded as the most important of such repeats, while

the C sequence was less represented in single nucleotides. This result

is consistent with previous studies performing SSR analysis of the

whole grapevine genome (Cai et al., 2009). For the dinucleotide repeat

type AT, the number of repeats were 13915 (20.04%), 22769

(24.72%), 27267 (21.74%), 37598 (21.66%), 29808 (17.13%) and
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TABLE 4 Amplification results of the B. rapa cross-transferability test.

SSR B. rapa B. nigra B. oleracea B. juncea B. napus B. carinata A. thaliana R. sativus

BrSSR00004 + + - + + + + +

BrSSR01587 + + + + - - + +

BrSSR03830 + + + + + + + +

BrSSR03677 + + + + + + + +

BrSSR01972 + + + + + + + +

BrSSR30590 + + + + + + + +

BrSSR06092 + + + + + + - -

BrSSR09075 + + + + + + - +

BrSSR14973 + + - + + + + +

BrSSR15994 + + + + + + - -

BrSSR13664 + + - + + - - -

BrSSR11198 + - + + + + + +

BrSSR17217 + + - + + + + -

BrSSR18858 + + + + + - - -

BrSSR16468 + + + + + + + +

BrSSR18217 + + + + + + + +

BrSSR18436 + + + + + + + +

BrSSR21863 + + + + + + + +

BrSSR23017 + + + + + + + +

BrSSR24442 + + + + + + + +

BrSSR28675 + - + + - - - -

BrSSR25854 + + + + + - - -

BrSSR31751 + + + + + + - -

BrSSR34080 + + - + + - + +

BrSSR33336 + + + + + - + -

BrSSR34987 + + + + + + + -

BrSSR36313 + + - + + - - -

BrSSR37152 + + - + + - - -

BrSSR37224 + + + + + + + -

BrSSR36383 + + + + + + + +

BrSSR38719 + - - - + - - -

BrSSR39889 + + - + + - + -

BrSSR42556 + + + + + + + +

BrSSR44040 + - + + + + - -

BrSSR44329 + + - + + - - -

BrSSR45708 + + + + + + - -

BrSSR47369 + + + + + + + +

BrSSR48533 + + - + + + + -
F
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+ means positive result which show the expectant amplification band; - means negative result which show none of the expectant amplification band.
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54026 (24.32%) respectively. This is therefore considered as the most

significant of this replicate type, consistent with previous studies

using SSR analysis of the whole B73 maize genome (Qu and Liu,

2013). The frequency of single nucleotide repeats was the highest of

all repeat types, a result that differs from previous SSR analysis studies

using MISA in B. rapa, B. oleracea and B. napus (Shi et al., 2014).

Moreover, Shi et al. study results showed the microsatellite

frequencies of Brassica, Arabidopsis and other angiosperm species

were significantly negatively correlated with both their genome sizes

and transposable elements contents (Shi et al., 2013). Qin et al. (2015)

investigated the evolutionary regularities of SSRs during the evolution

of plant species and the plant kingdom by analysis of twelve

sequenced plant genome sequences. The results showed that, SSRs

not only had the general pattern in the evolution of plant kingdom,

but also were associated with the evolution of the specific

genome sequence.

Probably, the deviation may be due to differences in the SSR

software algorithms, parameter settings and the original databases

used. In addition, our data indicated that the allotetraploidization

process resulted in a significant reduction in SSR loci in the three

subgenomes AA, BB and CC. The reasons may be partial gene-

dominated chromosomal homologous recombination and

rearrangement during the evolution of basic diploid species into

allotetraploids (Song et al., 2021). Meanwhile, there are a large

number of transposable elements (TE) in the Brassica species in the

triangle of U genome (Cai et al., 2022), and TE insertion seems to

result in chromosomal translocation, leading to the reduced

number of SSR loci in the three subgenomes AA, BB and CC

during the process of allotetraploidization. Of course, further

experiments are required to prove this hypothesis. Shi et al.

(2014) carried out microsatellite characterization based on

genome-wide and marker development in three recently

sequenced Brassica crops, and suggested that the distribution

pattern of microsatellites may be conserved in the genus Brassica.

This view was reinforced by the use of Krait to identify SSR
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signatures of six species of Brassica, suggesting that the

distribution patterns of microsatellites are likely to be conserved

in all Brassica species. Thus far, the comprehensive identification,

characterization and primer development of SSRs for six Brassica

species in the triangle of U have not been carried out. However, in

this study, based on the complete whole genome sequences of six

Brassica species in the triangle of U, not only were the SSRs of each

variety comprehensively analyzed, but also the differences between

the Brassica crops in the triangle of U were compared and a

comprehensive primer design for the SSRs was carried out. To

our knowledge, this is the first report to identify the SSR loci and

design the SSR primers based on the complete whole genome

sequences of six Brassica species in the triangle of U together.

These markers will act as a powerful tool for future genomic and

genetic studies of Brassica cruciferous crops in the near future.
4.2 Enrichment of the repertoire of SSR
markers of Brassica using the cross-
transferability approach

High transferability has been reported for SSRs of different

plant species, such as “Chiifu” of B. rapa, that is, 95% of its SSRs

could amplify a fragment of other species (Wang et al., 2011).

Thakur et al. (2018) study result indicated 100% cross-

transferability was obtained for B. juncea and three subspecies of

B. rapa with 124 Brassica-derived SSR loci assayed, while lowest

cross-transferability (91.93%) was obtained for Eruca sativa. The

average % age of cross-transferability across all the seven species

was 98.15%. In addition, 47% of EST-SSR markers developed from

B. rapa, B. oleracea, and B. napus were transferable to six Brassica

species (An et al., 2011). Sim et al. randomly selected 41 SSR

markers of thistle and alfalfa, and found that the transferability was

53% to 71% in the leguminous plant (alfalfa) and 33% to 44% in the

non-leguminous plant (thistle). About 57% of cereal EST-SSRs
FIGURE 6

PCR amplification result of validity for BniSSR23228 in different Brassica species in the triangle of U. 1, 2: B. nigra (BB); 3, 4: B. juncea (AABB); 5, 6: B.
carinata (BBCC); 7, 8, 9, 10, and 11: B. rapa (AA), B. oleracea (CC), B. napus (AACC), R. sativus (RR) and A. thaliana (At), respectively.
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could also be amplified in ryegrass (Sim et al., 2009). Additionally,

about 60% of EST-SSR markers from barley could be amplified in

wheat and rye (Castillo et al., 2008). Cui et al. (2005) used 69 pairs of

SSR primers of non-heading Chinese cabbage in eight varieties of

Brassica crops, and found that the transferability amplification rate

was 49.3% to 85.5% and that 33% of the SSR primers in the inter-

specific hybrids of Brassica presented abundant diversity.

Based on the 1176 SSR-containing ESTs in cabbage, a total of

978 primer pairs have been successfully designed and assessed by

validation of the amplification on two inbreed lines (Chen et al.,

2010). Subsequently, the results indicated that the developed SSRs

from ESTs of B. oleracea were valid and practicable in marker-

assisted selection and QTL analysis in cabbage (Su et al., 2015).

Some useful information about SSR and sequence analysis in

Brassica crops can also be obtained on the website of Brassica DB

database (http://Brassica.bbsrc.ac.uk/).

In this work, the functional utility of SSR markers derived from

B. rapa (AA), B. nigra (BB) and B. oleracea (CC) was evaluated by

analyzing their cross-transferability among B. rapa (AA), B. nigra

(BB), B. oleracea (CC), B. juncea (AABB), B. napus (AACC), B.

carinata (BBCC), R. sativus (RR), and A. thaliana (At). From our

results, it was inferred that the cross-transferability of SSR markers

from B. rapa (AA) showed higher potential than those from B. nigra

(BB) and B. oleracea (CC) among these eight species, with cross-

transferability rates of 85.27%, 81.33% and 73.45%, respectively. In

fact, enriching other varieties with SSR markers alleviates the hassle

of the expansion and development process and can facilitate the

genetic improvement of new varieties by the genomes of superior

varieties. Our findings suggest that genomic SSR markers with high

transferability can be used for different Brassica species and even

non-Brassica species. Therefore, these genomic SSR markers with

clear location and uniform nomenclature system have high

potential to be more widely used in several fields, such as gene

localization, genetic mapping, evolutionary analysis, molecular

marker-assisted breeding, and provide marker materials for

genetic and comparative genomics analysis to further introduce

some important agronomic traits into other superior Brassica

species lacking these traits.
4.3 BniSSR23228 is a B-genome specific
SSR marker

Alien chromosome additions have been used to link species-

specific characteristics to particular chromosomes (Kapoor et al.,

2011). The plasticity of the Brassica genome and existence of natural

amphiploids have made it possible to develop several alien

chromosome additions by dissecting the B. rapa, B. oleracea, and

B. nigra genomes (Chevre et al., 1996; Gu et al., 2009; Li et al., 2013).

Compared with the single species-specific SSR marker obtained by

comparison between two species developed in previous studies (Gu

et al., 2009; Li et al., 2013), the specific SSR developed in this study,

BniSSR23228, has been verified among Brassica species in the

triangle of U and their closely related species, radish and

Arabidopsis. The results revealed that it is a B-genome specific
Frontiers in Plant Science 13225
SSR marker, therefore has more significant B-genome specificity

and more extensive application value in the future.
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SUPPLEMENTARY FIGURE 1

Transferability analysis on the designed SSR primers for the three basic species.
(A), PCR amplification results of SSR primers for part of the AA genome; (B), PCR
amplification results of SSR primers for part of the BB genome; C, PCR
amplification results of SSR primers for part of the CC genome.

SUPPLEMENTARY FIGURE 2

Genomic sequence of BniSSR23228 and sequence alignment results for the

BB, AA and CC genomes. (A), Genomic sequence of BniSSR23228; (B),
Sequence alignment result for the BB genome; (C), Sequence alignment

result for the AA genome; (B), Sequence alignment result for the CC genome.
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Omics-driven exploration and
mining of key functional genes
for the improvement of food
and fiber crops
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Shahid Mansoor1,2, Imran Amin1* and Muhammad Asif1*

1Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic
Engineering College Pakistan Institute of Engineering and Applied Sciences, Faisalabad, Pakistan,
2International Center for Chemical and Biological Sciences, University of Karachi,
Karachi, Pakistan
The deployment of omics technologies has obtained an incredible boost

over the past few decades with the advances in next-generation sequencing

(NGS) technologies, innovative bioinformatics tools, and the deluge of

available biological information. The major omics technologies in the

limelight are genomics, transcriptomics, proteomics, metabolomics, and

phenomics. These biotechnological advances have modernized crop

breeding and opened new horizons for developing crop varieties with

improved traits. The genomes of several crop species are sequenced, and

a huge number of genes associated with crucial economic traits have been

identified. These identified genes not only provide insights into the

understanding of regulatory mechanisms of crop traits but also decipher

practical grounds to assist in the molecular breeding of crops. This review

discusses the potential of omics technologies for the acquisition of biological

information and mining of the genes associated with important agronomic

traits in important food and fiber crops, such as wheat, rice, maize, potato,

tomato, cassava, and cotton. Different functional genomics approaches for

the validation of these important genes are also highlighted. Furthermore, a

list of genes discovered by employing omics approaches is being represented

as potential targets for genetic modifications by the latest genome

engineering methods for the development of climate-resilient crops that

would in turn provide great impetus to secure global food security.
KEYWORDS

omics, NGS, crops, agriculture, breeding
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Introduction

The majority of efforts to increase crop productivity have

focused on conventional breeding techniques, such as

phenotyping-based selection. The advancement in genomics over

the past 20 years has further boosted the precision and efficiency of

breeding programs (Varshney et al., 2005) in many temperate crop

species (Eathington et al., 2007). Moreover, the scientific

community has invested in the development of genomic resources

as well as in intelligent decision support systems (a decision support

system that makes extensive use of artificial intelligence (AI)) that

result in the reduction of the genotype-phenotype gap and provide

effective strategies to develop next-generation climate-resilient crop

species (Batley and Edwards, 2016). Being sessile, plants are prone

to several stresses that limit their yield. A sound technical

knowledge of the gene networks that govern plant stress

responses is required to efficiently produce climate-resilient crops.

Integrated omics approaches are of great importance as they help in

elucidating the essential genetic basis of gene networks that are

involved in crop development and plant stress responses

(Großkinsky et al., 2018; Muthamilarasan et al., 2019; Naqvi

et al., 2022). Omics technologies have been widely utilized to

identify the mechanisms involved in plant development, stress

responses, yield, and other economically vital traits in important

food and fiber crops, such as wheat, rice, maize, potato, tomato,

cassava, cotton, etc. In this review, we highlight certain omics-based

approaches and their implementation from the perspective of crop

improvement. Furthermore, we also described the recent

discoveries of crop genomics, transcriptomics, and phenomics

and the genes identified through these approaches. Moreover, we

have highlighted other technologies (e.g., metabolomics and

ionomics) that, if integrated with transcriptomics, can provide

deeper insights into the mining of hub genes, which could be

employed for developing climate-smart crops. We also provided a

list of genes identified from transcriptomics analysis of important

food and fiber crops. Lastly, the genes identified from these omics

approaches could further be validated through functional genomics

techniques, e.g., overexpression, virus-induced gene-silencing

(VIGS), and genome editing.
Genomics-assisted breeding for
sustainable agriculture

Several types of molecular markers have been employed for

crop improvement. Marker-assisted selection using molecular

markers greatly increases the speed of crop breeding by allowing

traits to be selected without the need to perform phenotyping. The

reduced cost, high read accuracy, and long reads of modern

sequencing platforms have further enhanced the application of

these molecular markers for crop breeding (Kang et al., 2016).

For designing tailored crops, one or more of the following

genomics-assisted breeding (GAB) approaches, namely marker-

assisted recurrent selection (MARS), marker-assisted backcrossing

(MABC), advanced backcross quantitative trait loci (AB-QTL),

marker-assisted selection (MAS), promotion/removal of allele
Frontiers in Plant Science 02229
through genome editing (PAGE/RAGE), haplotype-based

breeding, and genomics selection (GS), have been utilized in

breeding programs. The initial step for MAS is the identification

of specific molecular markers, which are strongly linked with the

genomic regions/QTLs regulating the traits of interest. Ultimately,

these individual or multiple QTLs can be pyramided through

breeding into an elite cultivar through MABC. Successful stories

of MABC include the introgression of QTL-hotspot into elite

varieties of chickpeas for improved yield under drought

conditions (Bharadwaj et al., 2021) and improving the yield and

stress tolerance in rice variety IR64. This rice variety has improved

cooking quality, earliness, high yield, and disease resistance, which

has made it registered worldwide (Swamy et al., 2013; Kumar et al.,

2014). Other crops such as barley, sorghum, rice, etc. have also been

improved for multiple yield and stress-related traits using a similar

approach (Hasan et al., 2015; Gorthy et al., 2017; Xu et al., 2018;

Cobb et al., 2019; Kim et al., 2021). MAS has also been applied to

improve drought tolerance in multiple crops such as maize, rice,

sorghum, wheat, sunflower, and soybean (Borrell et al., 2014; Rama

Reddy et al., 2014; Khan et al., 2016). Most agronomically valuable

genes were cloned by QTL mapping in plants, i.e., by using

biparental mapping populations including doubled-haploid

libraries (DHLs), recombinant inbred line (RILs), backcross

inbred lines (BILs), chromosomal segment substitution lines

(CSSLs), fine mapping, and gene validation by using transgenic

approaches. Some valuable genes were also cloned by reverse

genetics by using insertional mutant pools (Krishnan et al., 2009;

Viana et al., 2019).

The GS approach has gained much attention as it enables the

selection of traits based on a larger set of markers rather than a few,

as in MAS. The examples exhibiting the potential application of GS

in cereal breeding included the transfer of eyespot (Rhizoctonia

cerealis) resistance genes, Pch1 andmlo, for barley powdery mildew,

and recessive resistance genes rym4/rym5 against barley yellow

mosaic viruses (Varshney et al., 2021). The evaluation of GS

mainly depends on the genomic-estimated breeding values

(GEBVs), and to calculate GEBVs, intensive phenotypic and

genome-wide marker information is utilized. The benefit of

GEBVs is that they allow the prediction of better-performing

individuals compared to their parents and are fit for the next

breeding cycle; they can also enter directly into the pipeline for

variety release (Crossa et al., 2017). The breakthrough success

stories in which GS applied for cultivar improvement against

diseases include blast in rice, rust in wheat, and bacterial blight

(Viana et al., 2019). Moreover, among abiotic stresses, tolerance to

salinity, submergence, and drought remained the preferred traits for

improvement. Knowledge of specific marker-trait associations is

not required for GS. However, the inclusion of a substantial set of

markers, such as outcomes of genome-wide association studies

(GWAS), into GS models has improved the prediction accuracy

(Li et al., 2018). Thus, GS has attracted attention in plant breeding

over traditionally employed strategies. With the availability of

effective and economical genotyping platforms and advancements

in predictive algorithms, GS is anticipated to be a regular method

like MAS/MABC in crop breeding programs. The haplotype-based

GWAS and selective sweeps are crucial explanations for
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understanding genetic diversity in the field of population genetics

and genomics, particularly when researching the evolution,

adaptability, and stress responses of plant species (Shokat et al.,

2020; Bhat et al., 2021; Shokat et al., 2023). A study involving

diverse exotics and historical elites developed 2,867 pre-breeding

lines for agronomic traits. The study revealed selection footprints

and exotic-specific associations, and it uncovered connections

specific to invasive species and selection footprints. Many pre-

breeding lines contained substantial exotic contributions, despite

bias in favor of elite genomes. The selected seven lines were

subjected to a varietal release process, and 95 lines have been

adopted by national breeding programs for the improvement of

the germplasm (Singh et al., 2021). Multiple haplotype and SNP-

based model analyses were used to elucidate significant associations

within the selection sweeps in tomatoes, which revealed

evolutionary insights and potential candidate genes regulating the

fruit metabolite content and weight (Zhao et al., 2022). The

genomic characterization through NGS and phenotyping data

showed 16.1%–25.1% exotic imprints, among which a favorable

rare haplotype on chromosome 6D was detected to show minimal

grain yield loss upon heat stress. The SNP region annotation

showed hits with the isoflavone reductase IRL-like protein of

wheat progenitor Aegilops tauschii. The overall positive

contribution of exotic germplasm was demonstrated, and it was

inferred that selected sweeps could be potentially used to secure

food insecurity, particularly under climate change threats (Singh

et al., 2018).
Pangenomics: capturing the genetic
diversity in a species

Increased genomic sequence information from diverse

accessions has allowed the development of pangenomes (Zhou

et al., 2015; Varshney et al., 2017). Pangenomics is an ideal and

comprehensive approach to capturing all the variations in a species

as well as representing the combined genetic repertoire of a species.

A pangenome generally consists of two components: the core

genome and the dispensable genome. Plant studies have

discovered that the core genome has a larger size, contributing

the maximum portion of genes (Zhao et al., 2018) while the

dispensable genome is more likely to contain polymorphic genes,

which could account for survival and adaptation in diverse

environments. The comparison of the wild species’ core genome

and the dispensable genome of cultivated species uncovers the effect

of domestication (Li et al., 2014). At present, pangenomes of several

crops, including wheat, rice, soybean, sesame, and tomato, have

been published, revealing structural variations and eliminating the

single-sample bias of “reference” genomes. Pangenomics has the

capability to exhibit an almost full assessment of the diversification

existing in a plant species (Montenegro et al., 2017; Yu J. et al.,

2019). Recently, a tomato pangenome has been assembled from 725

phylogenetically and geographically distinct accessions. The

recognition of 351 Mbp of sequences that were missing in the

reference genome was done using a map-to-pan strategy, which also
Frontiers in Plant Science 03230
detected a 4-bp substitution in the TomLoxC gene’s regulatory

region entailing their role in modification in fruit flavor, thus

highlighting the selection of fruit quality during the course of

domestication (Gao et al., 2019). The advent of robust long-read

sequencing technologies and bioinformatics tools is making

pangenomics more powerful to aid in discovering crucial genes

for trait improvement in major crops.
Exome sequencing applications in
crop improvement

Exome sequencing enables researchers to pinpoint important

genes involved in the improvement of traits like disease resistance,

heat tolerance, and drought resistance by staying focused on the

protein-coding portions of the genome. Exome sequencing is

utilized for capturing and sequencing 1%–2% of high-value

genomic regions, enriched for functional variants and low

repetitive regions. It has proven successful in solving biological

questions, understanding molecular variation, marker

development, and developing genomic resources for complex

crop plants (Kaur and Gaikwad, 2017; Bayer et al., 2019; Xiong

et al., 2023). Exome-capturing sequencing yielded 27.8 Gb data,

identifying 217,948 SNP and 13,554 Indels in wheat, where

functionally important SNPs and Indels were identified at 5.0%

and 5.3%, respectively. The exome variations in 12 mutant wheat

lines provided insights into mutagenic effects, and functionally

enriched genes were found in metabolic pathways like plant–

pathogen interactions and ADP binding (Li et al., 2022). The

G1674A mutation in a barley gene on chromosome 1HL,

encoding cellulose synthase-like C1 protein (HvCSLC1), was

identified through whole exome sequencing. It was inferred that

this mutation leads to the retention of the second intron and

premature termination of the HvCSLC1 protein (Gajek et al.,

2021). The combined bulk segregant analysis and whole exome-

capturing methods employed in potatoes for studying tuber sprout

elongation corroborated different QTL sites, helped to narrow down

the related genomic regions, and discovered novel QTLs (Sharma

et al., 2021). Overall, with this focused strategy, crop development

efforts are more precisely made while simultaneously speeding up

the breeding process. Exome sequencing, along with other omics

technologies, provides breeders with insights that allow them to

develop food and fiber crops that can survive in changing

environmental conditions, which eventually contributes to a more

sustainable and resilient global food supply.
Transcriptomics as a tool to discover
vital genes

Transcriptomics aids in investigating the differential gene

expression and identification of potential genes involved in

response to a particular biotic or abiotic stress. Identification of

important genes and elucidation of gene expression is thus a potent

strategy to develop crops with improved traits (Abdurakhmonov
frontiersin.org

https://doi.org/10.3389/fpls.2023.1273859
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Naqvi et al. 10.3389/fpls.2023.1273859
et al., 2016). The availability of well-annotated reference genomes

through NGS in the postgenomic era has enabled robust

transcriptome profiling. RNA-sequencing (RNA-seq) provides a

global representation and coverage of differential gene expression,

along with the detection of novel transcripts. Several transcriptome

studies have shed light on gene and transcript profiling in crop

plants. NGS-based transcriptomics has been utilized for all types of

RNA with the advances in massively parallel sequencing platforms.

NGS-based RNA sequencing techniques include RNA-seq (whole

transcriptome quantification or assembly), small RNA-seq

(characterization of small RNA, including micro- and noncoding

RNA), PRO-seq (detection of nascent RNA), degradome-seq

(typical ly for miRNA target predict ion), SMART-seq

(quantification of low input RNA), and ScRNA-seq (detection of

gene expression in an individual cell) (Dong and Chen, 2013; Olsen

and Baryawno, 2018). The latest bioinformatics tools also provide

help in the identification of hub genes through weighted co-

expression analysis and genome-wide analysis of gene families

(Zaidi et al., 2020; Ehsan et al., 2023). Alternative splicing studies

through transcriptomics allow the investigation of genetic diversity

in different crops (Glushkevich et al., 2022; Farooq et al., 2023). The

innovations in NGS technology have empowered gene expression

profiling and annotation of transcriptomes in major food and feed

crops, including wheat, rice, maize, potato, tomato, cotton, and

cassava, under different conditions and stimuli. The important

genes ident ified in recent years by RNA-seq-based

transcriptomics linked to certain responses in major crops are

highlighted in Table 1.
Metabolomics, ionomics,
and proteomics

Metabolites have essential roles in plant growth, development,

yield, and defense mechanisms. Metabolite profiling through

metabolomics is a vital tool for studying crop interactions with

environmental stresses. Different techniques being utilized to study

crop metabolites include gas chromatography-mass spectrometry

(GC-MS), liquid chromatography-mass spectrometry (LC-MS),

and nuclear magnetic resonance (NMR), each with their own

sample preparation protocols and sensitivity (Pretorius et al.,

2021). Metabolomics predicts the biochemical markers linked to

phenotypic traits, enabling it to be used as a primary detection tool

for the identification of favorable traits, which in combination with

genetic analysis can be exploited in crop breeding programs (Peng

et al., 2015; Razzaq et al., 2019; Raza, 2020). Comparative

metabolomics in the roots and leaves of soybean cultivars

(sensitive vs. moderately tolerant) through NMR exhibited

primary and secondary metabolites. Among these metabolites,

alanine, acetate, citrate, GABA, sucrose, and succinate were found

to accumulate in plant roots under flooding conditions, however

low levels of these metabolites were detected in leaves (Coutinho

et al., 2018). Whitefly-resistant and susceptible cassava accessions

were compared through metabolomics, which showed that low
Frontiers in Plant Science 04231
levels of lignification are associated with whitefly susceptibility

(Perez-Fons et al., 2019).

Ultra-performance liquid chromatography-mass spectrometry

(UPLC-MS) has been utilized to study comprehensive metabolite

profiling of drought-tolerant and sensitive genotypes of Chinese

wheat. Guo et al. showed that seedlings of drought-tolerant wheat

genotype harbored higher levels of phenolics and 13-fold higher

thymine than drought-sensitive genotype (Guo et al., 2020). GC-MS

analysis was done for fatty acids profiling in cottonseed (Illarionova

et al., 2020) and NMR-based metabolomics has been used to explore

metabolites in Bt vs. non-Bt cotton for insect resistance (Shami

et al., 2023).

The advances in functional genomics, along with the availability

of statistical and bioinformatics tools, allow metabolic profiling to

be used as a phenotypic input for genetic association studies, like

QTL, thus facilitating crop improvement. The metabolome analysis

of 81 accessions of barley under drought and heat stress revealed 57

metabolite QTLs, which were mostly involved in antioxidant

defense responses (Templer et al., 2017). Metabolite-based GWAS

is another powerful tool to link genetic factors with primary and

secondary metabolites. It provides a prospect for identifying

candidate genes by exploiting the information from integrated

genetics and metabolites. This approach was used efficaciously in

tomatoes and detected 44 loci associated with fruit metabolites

(Sauvage et al., 2014). mGWAS in 175 rice accessions showed 323

associations among SNPs and metabolites (Matsuda et al., 2015).

Another mGWAS study displayed 16 metabolites related to

threonine-producing genes in rice under abiotic stress

(Muthuramalingam et al., 2018). Thus, metabolomics has great

potential to identify candidate genes and quantitative loci that can

be used for crop improvement.

Ionomics is another powerful approach, introduced around a

decade ago which provides information on the metabolism of

elemental composition in plants. It is a high-throughput

technique to study the organism’s molecular mechanistic basis of

mineral nutrients and their trace element components (also termed

the ionome) (Huang and Salt, 2016). For instance, the functional

analysis of wheat ionome showed variation in sulfur and

phosphorous content associated with grain’s phenotype (Fatiukha

et al., 2020). Furthermore, the genome-ionome linkage study in rice

revealed 12 micronutrients linked to brown rice, which exhibited its

nutrient-dense properties (Pasion et al., 2023). Ionome study

combined with GWAS and QTL analysis has shown that shoot

and root ionomes in rice were associated with 114 genomic regions

where the most significant regions were associated with cadmium,

manganese, molybdenum, and sulfur, thus displaying the strength

of this approach to manipulate and interrogate the complex traits

(Cobb et al., 2021). Ionome and transcriptome combined analysis of

two cotton varieties under salinity stress showed accumulation

variation of different nutrients in different plant tissues and

expressional changes in ion transport-related genes (Guo H.

et al., 2019).

Proteomics allows for the study of expressed proteins in crops

under specific conditions. A combination of crop proteomics with
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TABLE 1 Potential gene targets identified via transcriptomics in food and fiber crops.

Variety Condition
or stress

Tissue Sequencing
platform

Approach No. of
DEGs
or
variants

Important
genes/pathways

Reference

Wheat

Nongda 015
and FZ30

Powdery mildew Leaf Illumina
HiSeq 4000

2-step bulked
segregant
RNA
sequencing
(BSR-Seq)

31 and 20 Pm5e (Xie
et al., 2020)

Yunong211 Dithiothreitol and
tauroursodeoxycholic
acid for endoplasmic
reticulum stress

Seedling Illumina HiSeq RNA-Seq 8,204 Photosynthesis-related genes,
antioxidants, phytohormones,
transcription factors

(Yu X.
et al., 2019)

PBW677
and PBW703

Nitrogen
use efficiency

Root
and shoot

Illumina
Nextseq500

RNA-Seq 2,406 ABC and SWEET transporters,
MYB, bHLH, WRKY, zinc-
finger nuclease

(Kaur
et al., 2022)

Zhengmai 366
and
Chuanmai 42

Drought Root Illumina
HiSeq 6000

RNA-Seq 11,083 16 dehydrin genes (Xi
et al., 2023)

Rice

IR36 and Weigu Salinity Bursting
bud

Illumina HiSeq
X Ten

RNA-Seq and
QTL-Seq

5 OsSAP16 (Lei
et al., 2020)

Sahabhagidhan
and Geetanjali

Cold Leaf Illumina
HiSeq2000

RNA-Seq 13,930
and 10,599

AP2/ERF, MYB, WRKY (Pradhan
et al., 2019)

02428 and YZX Seed vigor Seed
and
seedling

Illumina HiSeq GWAS, QTL,
and RNA-Seq

44 OsEXPA17, OsLEA4, hsp20,
OsGH3.8, GA, and IAA-
responsive genes

(Guo T.
et al., 2019)

IR64 and Apo Drought Leaf Illumina GAIIx RNA-Seq 170 and 4 Dehydrin, MYB, NAC, zinc finger,
bZIP, HSF-type DNA-
binding protein

(Ereful
et al., 2020)

Maize

Zao 8-3 and
Ji 853

Low temperature Seed
embryo

Illumina
NovaSeq 6000

GWAS and
RNA-Seq

10 MAPK and fatty acid metabolism (Zhang
et al., 2020)

B73 Nitrogen stress Seedling Illumina
HiSeq 2500

Small
RNA-Seq

226 miR169, miR398, miR408,
miR1214, miR2199

(Yang
et al., 2019)

K12 and W64A Deep seeding Mesocotyl Illumina NovaSeq BSA-Seq and
RNA-Seq

24 Cell wall, phytohormones, circadian
clock-related genes

(Zhao and
Niu, 2022)

Potato

Kufri Gaurav Nitrogen
use efficiency

Leaf, root,
and
stolon

Ion Proton RNA-Seq 206,
144, 775

Superoxide dismutase, GDSL
esterase lipase, proline-rich proteins,
probable phosphatase 2C, nitrate
and sugar transporters, SPX domain,
VQ motif, bHLH

(Tiwari
et al., 2020)

Longshu No. 3 Wound healing Tuber Illumina
HiSeq 2500

RNA-Seq 7,665 WRKY, NAC, MYB, sugar and
starch metabolism,
phytohormone regulation

(Jiang
et al., 2022)

Vanderplank
and Innovator

Powdery scab Tuber Illumina
HiSeq 2000

RNA-Seq 2,058 StMRNA, StWRKY6, StUDP, StLOX,
StSN1, StPRF

(Lekota
et al., 2019)

Tomato

LA1698
and LA2093

Heat Leaf BGISEQ-500 RNA-Seq and
QTL-Seq

23,458 SlCathB2, SlGST, SlUBC5,
and SlARG1

(Wen
et al., 2019)

(Continued)
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advanced phenomics and other omics technologies can further

assist in the breeding of climate-smart crops (Komatsu et al.,

2013). Proteomic studies most predominantly use two-

d imens iona l ge l e l e c t rophores i s (2 -DE) and l iqu id

chromatography (LC)-based techniques that bring forth the

proteomes as well as post-translational modifications. Proteomic

analysis of soybean varieties by a 2-DE-based procedure under

drought and heat stress demonstrated 25 important proteins (Das

et al., 2016). The combined metabolome and proteome of maize

inbred lines and hybrids showed an abundance of photosynthesis-

related proteins, depicting the correlation of hybrid vigor with
Frontiers in Plant Science 06233
efficient removal of toxic compounds in hybrids through

photorespiration and higher levels of photosynthesis (Li et al.,

2020). Comparative proteomics in two rice cultivars under H2O2

stress revealed proteins related to oxidative metabolism,

photosynthesis, and cell defense mechanisms (Bhattacharjee et al.,

2023). Metabolomics coupled with proteomics in cassava cultivars

under Sri Lankan cassava mosaic virus stress linked results from

both approaches and identified pathways involved in plant viral

interactions (Siriwan et al., 2023). Thus, proteomics can deliver

candidate genes that could be utilized for marker-assisted breeding

programs (Jan et al., 2023).
TABLE 1 Continued

Variety Condition
or stress

Tissue Sequencing
platform

Approach No. of
DEGs
or
variants

Important
genes/pathways

Reference

Moneymaker Short- and long-
term hypoxia

Root Illumina
Nextseq500

RNA-Seq 267
and 1,421

CS9, RBOHB, CAT, MT2B,
and ACO1

(Safavi-Rizi
et al., 2020)

Local variety Heat Leaf Illumina
HiSeq 2500

RNA-Seq and
proteome
analysis

91 HSPs, HSFs, BAGs, NAC, MBF1C (Ding
et al., 2020)

Ailsa Craig and
SlBES1-RNAi-8

Fruit softening Fruit Illumina Miseq RNA-Seq 24 SlBES1 and PMEU1 (Liu
et al., 2021)

Cassava

South
China 6068

Waterlogging Leaf
and Root

Illumina RNA-Seq 2,538
and 13,364

MYBs, WRKYs, NACs, AP2/ERFs,
glycolysis, photosynthesis, and
galactose metabolism

(Cao
et al., 2022)

8
cassava varieties

Cassava brown
streak disease

Leaf Illumina
HiSeq 2500

RNA-Seq 8,971 Cinnamic acid, PAL1, PAL2, and
chalcone synthase

(Kavil
et al., 2021)

Arg7 and W14 Abiotic and
biotic stresses

Leaf,
stem,
and root

Illumina GA II RNA-Seq 91 MePOD genes (Wu
et al., 2019)

Cotton

G. hirsutum acc.
TM-1 and G.
barbadense cv.
Hai7124 and
acc. 3-79

Fiber development Buds Illumina Novaseq RNA-Seq and
co-
expression
analysis

1,850
and 1,050

GhP2C72, bHLH, MYB, GhIAA16,
HD-ZIP, TCP, GhARF2b, WRKY

(Zhang J.
et al., 2022)

G.
arboreum (Ravi)

Whitefly-
mediated CLCuD

Leaf Illumina
HiSeq 2500

RNA-Seq and
co-
expression
analysis

50 CRT, b-1,3-glucanase, HSP40,
HSP70, NADH, COX1, COX3,
MYB, NRT1/PTR family

(Naqvi
et al., 2017)

G. arboreum
(FDH 228)

Drought and whitefly Leaf PacBio IsoSeq
and Illumina

RNA-Seq 1,343 CRT1, ERF, bZIP, bHLH, ColI,
JAZ1, WRKY, MAPK

(Farooq
et al., 2023)

G.
hirsutum
(Karishma)

Whitefly-
mediated CLCuD

Leaf Illumina
HiSeq 2500

RNA-Seq and
co-
expression
analysis

53 AOS, MYB, NAC, bHLH, Auxin,
cytokinin, ABA, ethyltransferases

(Naqvi
et al., 2019)

G.
hirsutum
(Mac7)

Whitefly-
mediated CLCuD

Leaf Illumina
HiSeq 2500

RNA-Seq and
co-
expression
analysis

55 NRT1/PTR family, nitrate reductase,
IAA4, SAUR-36, cytochrome P450,
E3 ubiquitin-protein ligase

(Zaidi et al.,
2020; Aslam
et al., 2022)

G. hirsutum
SG747 and G.
barbadense
Giza75

Oil accumulation Ovule Illumina
HiSeq 2500

RNA-Seq and
co-
expression
analysis

14 GhCYSD1, TAG, FAD3, BGAL (Song
et al., 2022)
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Phenomics, artificial intelligence, and
speed breeding

Phenotypic information is crucial to be utilized in crop

breeding; however, recording the phenotypic information in

breeding programs remains laborious and time-consuming. The

advances in high-throughput computing, remote sensing, artificial

intelligence, machine learning, and robotics have made automated

phenotyping possible through an approach known as phenomics

(Ohyanagi et al., 2022). High-throughput phenomics allows for the

measurement of different plant traits, including stress and disease,

with automation and precision. A phenomics-based collection of

large datasets can be handled, analyzed, and interpreted by modern

machine learning algorithms to gain useful intuitions and future

predictions of incidence. Neural networks, vector machines, and k-

nearest neighbors have been employed in maize, soybean, and

wheat for the detection and classification of insect pests

(Kasinathan et al., 2021). Hyperspectral imaging, nonimaging

spectroscopy, and red–green–blue (RGB) imaging based

automated techniques have been emphasized as potential

methods for real-time differentiation between crops and weeds in

the field for timely management of the weeds (Su, 2020). Artificial

neural network-based classification was used to detect blast disease

in rice plants with 100% accuracy (Ramesh and Vydeki, 2019).

Unmanned aerial vehicle (UAV) imaging and support vector

machine classification were used for the crop’s texture

information for crop monitoring and yield forecasting (Kwak and

Park, 2019). Paudel et al. exploited machine learning models on five

crops, including barley, potato, sunflower, soft wheat, and sugar

beet in the Netherlands, Germany, and France, which provide

workflows to forecast crop yields (Paudel et al., 2021). Hitech

phenomics is also aiding in identifying nutrient deficiency and

water scarcity in crop-cultivated lands (Sahoo et al., 2023). Another

innovation of recent years, speed breeding, i.e., attaining multiple

crop generations with reduced generation time under controlled

conditions, is an influential approach for efficient plant breeding.

Speed breeding, along with advanced AI, provides a platform to

accelerate plant breeding programs via linking phenomics and

genomics, particularly under climate-changing scenario (Rai,

2022). Recent innovations in precision agricultural technologies

like remote sensing, the Internet of Things (IoT), and machine

learning can help breeders and farmers make informed decisions

and optimize their farming practices. These advanced technologies

can play a significant role in sustainable agriculture by improving

crop yield, reducing resource wastage, and enhancing overall

efficiency (Naqvi et al., 2020).
Functional genomics approaches for
tailored crop improvement

Most of the agronomically important traits are of complex

inheritance and challenging to improve. In this case, the mutant and

variant alleles can be identified by wide-association studies and QTL

mapping (as discussed above), which further need to be functionally
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validated before being utilized in the breeding program.

Understanding the molecular, genetic, and functional basis of a

particular gene can help breeders and researchers develop climate-

resilient, more productive, and stress-tolerant cultivars.

Conventionally, mutagenesis is an important strategy to

introduce mutations, which can be used as a tool for gene

functional study and to develop genetic variability. Moreover, to

evaluate the mutants and understand gene function, either a

forward genetics (from phenotype to genotype) or reverse

genetics (genotype to phenotype) strategy can be utilized.

Eliminating gene expression or disrupting gene structure exhibits

morphological changes in phenotype, providing evidence of the

relationship between a gene and its biological function. Although

the spontaneous mutation rates are very low (approximately 10−5 to

10−8) in plants, but mutagenesis is not always effective in gene

functional analysis of (Varshney et al., 2005) those genes that are

only required under specific biotic and abiotic stress; (2) those genes

which are involved in growth and development; and (3) redundant

genes because losing these gene function may not lead to

morphological changes (Jiang and Ramachandran, 2010; Wang

et al., 2013; Viana et al., 2019).

Another strategy of functional genomics is insertional

mutagenesis, which includes transfer DNA (T-DNA) insertions,

retrotransposon, and transposon tagging. These strategies have

been widely used in developing rice mutant libraries. In an

analysis of 206,668 insertion flanking sequence tags (FSTs), it was

found that 32,459 rice genes have already had insertion tags, and

about 50% of predicted protein-coding genes have been equipped

with insertional mutagenesis. This study showed the importance of

insertional mutagenesis but also had some drawbacks, such as

manual manipulations and high cost. However, new tools with

more directed, gene-specific methods are needed.

Over the past decade, several genes with substantial phenotypic

effects have been functionally validated in different crops via

clustered regularly interspaced short palindromic repeats

(CRISPR)/CRISPR-associated protein 9 (CRISPR/Cas9)-based

genome editing (GE) to improve crop performance against

changing climatic conditions. A key feature of CRISPR/Cas9 is

the generation of double-stranded breaks (DSBs) of DNA at target

loci, which can further be repaired by two cellular mechanisms:

nonhomologous end joining (NHEJ) and homology-directed repair

(HDR). This tool offers to target various sites simultaneously by

utilizing multiple sgRNAs while expressing a single Cas9 or Cpf1

protein (Chen et al., 2019).

Crop-specific functional genes have been exploited to generate

gene-edited crops, and approximately more than 60 success stories

have been published for drought tolerance, better cell-wall

expansion, improved oil quality, and other plant traits.

Furthermore, the crop genes that have been exploited by the

pathogens for virulence and pathogenicity can be targeted

through CRISPR/Cas9, providing an opportunity to break the life

cycle of the pathogen (Mahmood et al., 2022).

Several CRISPR-Cas nucleases and their engineered variants

have been momentously expanded beyond generating double-

stranded DNA breaks (Huang and Puchta, 2021). This technology

has advanced immensely owing to Cas variants and gene editing
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approaches aided by apt bioinformatics pipelines. For instance,

Cas9 and Cas12a systems have recognized different protospacer-

adjacent motif (PAM) for the diagnosis of DNA and RNA viruses

(Zhu et al., 2020), while the SHERLOCK system has been employed

in soybeans for genotyping and quantification of different traits

using crude extracts (Abudayyeh et al., 2019).

Through genomics and transcriptomics data, it has now become

possible to screen vital genes systematically. This is possible by using

silencing tools such as RNA interference (RNAi) and VIGS, which
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reduce the expression of specific host target genes and accelerate the

plant’s functional genomics. As recently reviewed (Lacomme, 2015;

Mahmood et al., 2023), many agricultural VIGS vectors derived

from both DNA and RNA viruses are presently available for a wide

range of plant species to knock out/down gene expression for

functional genomics. The innovative virus-induced genome editing

(VIGE) approach is an upgrade of VIGS based on a CRISPR system

that offers gene editing with higher efficiency without typical

laborious transformation protocols (Zhang C. et al., 2022).
FIGURE 1

Integrated omics technologies for food and fiber crop improvement. The schematic exhibits a holistic approach that aims to identify the favorable
alleles or purge the deleterious alleles in the plant genome for designing climate-resilient crops. (A) The plant genetic resources and experimental
populations from sites experiencing natural selection pressure are selected to serve as valuable sources for genetic variations. (B) Phenotyping
approaches consist of classical and high-throughput methods. The advanced imaging platforms span from those operating under controlled
conditions to field-based conditions. (C) Long-read sequencing methods provide high-quality reference genomes and facilitate pangenomic
analysis. (D) Advanced high-throughput genotyping approaches develop genome-wide marker information on these panels. (E) New genes/
haplotypes discovered from analyzing sequence information will be further validated by using the VIGS or CRISPR-Cas system, paving the way
forward for enhanced food and fiber crop improvement. MAGIC, multiparent advanced generation intercross; NAM, nested assisted mapping; DHLs,
doubled-haploid libraries; RILs, recombinant inbred line; BILs, backcross inbred lines; CSSLs, chromosomal segment substitution lines; VIGS, virus-
induced gene silencing; VIGE, virus-induced gene editing; GBS, genotype-by-sequencing; RAD-seq, restriction site-associated DNA sequencing;
REST-seq, restriction fragment sequencing.
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Conclusions and future prospects

State-of-the-art sequencing and bioinformatics approaches are

being widely used to explore genetic variations in crops. These

advances have paved the way for the exploitation of omics

technologies such as genomics, pangenomics, transcriptomics,

metabolomics, ionomics, proteomics, and phenomics for the

identification of potential molecular markers and genes for crop

improvement. Functional validation of these genes is possible using

VIGS or GE approaches. Identification of genes/markers using

integrated omics technologies has the potential to greatly enhance

trait selection and, when combined with speed breeding,

significantly accelerate crop improvement. In the era of food

insecurity and climate change, interconnected utilization of omics

technologies, artificial intelligence, speed breeding, and genome

editing (Figure 1) can certainly revolutionize breeding programs

to produce climate-smart food and fiber crops for meeting zero

hunger and feeding millions of people across the globe. The

unprecedented ability of CRISPR/Cas9 technology has led to the

tremendous advances in basic plant research and crop

improvement. Certain prospects, such as (1) CRISPR/Cas-

mediated multiplex gene regulation as a potential plant synthetic

biology tool; (2) exploring cop wild relatives (CWRs) by employing

omics technology; (3) improved CRISPR/Cas delivery systems; (4)

improved gene editing efficiency by HDR mechanism; and (5)

GMO regulatory landscape and concerns, have still been the

bottlenecks in the development of climate-resilient and future-

smart crops.
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Campos, G., et al. (2017). Genomic selection in plant breeding: methods, models, and
perspectives. Trends Plant Science 22 (11), 961–975. doi: 10.1016/j.tplants.2017.08.011

Das, A., Eldakak, M., Paudel, B., Kim, D.-W., Hemmati, H., Basu, C., et al. (2016).
Leaf proteome analysis reveals prospective drought and heat stress response
mechanisms in soybean. BioMed. Res. Int. 2016, 1–23. doi: 10.1155/2016/6021047

Ding, H., Mo, S., Qian, Y., Yuan, G., Wu, X., and Ge, C. (2020). Integrated proteome
and transcriptome analyses revealed key factors involved in tomato (Solanum
lycopersicum) under high temperature stress. Food Energy Security 9 (4), e239. doi:
10.1002/fes3.239

Dong, Z., and Chen, Y. (2013). Transcriptomics: advances and approaches. Sci.
China Life Sci. 56, 960–967. doi: 10.1007/s11427-013-4557-2

Eathington, S. R., Crosbie, T. M., Edwards, M. D., Reiter, R. S., and Bull, J. K. (2007).
Molecular markers in a commercial breeding program. Crop Science 47, S–154-S-63.
doi: 10.2135/cropsci2007.04.0015IPBS

Ehsan, A., Naqvi, R. Z., Azhar, M., Awan, M. J. A., Amin, I., Mansoor, S., et al. (2023).
Genome-wide analysis of WRKY gene family and negative regulation of ghWRKY25
and ghWRKY33 reveal their role in whitefly and drought stress tolerance in cotton.
Genes 14 (1), 171. doi: 10.3390/genes14010171

Ereful, N. C., L-y, L., Greenland, A., Powell, W., Mackay, I., and Leung, H. (2020).
RNA-seq reveals differentially expressed genes between two indica inbred rice
genotypes associated with drought-yield QTLs. Agronomy 10 (5), 621. doi: 10.3390/
agronomy10050621

Farooq, M., Naqvi, R. Z., Amin, I., Rehman, A. U., Asif, M., and Mansoor, S. (2023).
Transcriptome diversity assessment of Gossypium arboreum (FDH228) leaves under
control, drought and whitefly infestation using PacBio long reads. Gene 852, 147065.
doi: 10.1016/j.gene.2022.147065

Fatiukha, A., Klymiuk, V., Peleg, Z., Saranga, Y., Cakmak, I., Krugman, T., et al.
(2020). Variation in phosphorus and sulfur content shapes the genetic architecture and
phenotypic associations within the wheat grain ionome. Plant J. 101 (3), 555–572. doi:
10.1111/tpj.14554

Gajek, K., Janiak, A., Korotko, U., Chmielewska, B., Marzec, M., and Szarejko, I.
(2021). Whole exome sequencing-based identification of a novel gene involved in root
hair development in barley (Hordeum vulgare L.). Int. J. Mol. Sci. 22 (24), 13411. doi:
10.3390/ijms222413411

Gao, L., Gonda, I., Sun, H., Ma, Q., Bao, K., Tieman, D. M., et al. (2019). The tomato
pan-genome uncovers new genes and a rare allele regulating fruit flavor. Nat. Genet. 51
(6), 1044–1051. doi: 10.1038/s41588-019-0410-2

Glushkevich, A., Spechenkova, N., Fesenko, I., Knyazev, A., Samarskaya, V.,
Kalinina, N. O., et al. (2022). Transcriptomic reprogramming, alternative splicing
and RNA methylation in potato (Solanum tuberosum L.) plants in response to potato
virus Y infection. Plants 11 (5), 635. doi: 10.3390/plants11050635

Gorthy, S., Narasu, L., Gaddameedi, A., Sharma, H. C., Kotla, A., Deshpande, S. P.,
et al. (2017). Introgression of shoot fly (Atherigona soccata L. Moench) resistance QTLs
into elite post-rainy season sorghum varieties using marker assisted backcrossing
(MABC). Front. Plant science 8, 1494. doi: 10.3389/fpls.2017.01494

Großkinsky, D. K., Syaifullah, S. J., and Roitsch, T. (2018). Integration of multi-omics
techniques and physiological phenotyping within a holistic phenomics approach to
study senescence in model and crop plants. J. Exp. Botany 69 (4), 825–844. doi:
10.1093/jxb/erx333

Guo, H., Li, S., Min, W., Ye, J., and Hou, Z. (2019). Ionomic and transcriptomic
analyses of two cotton cultivars (Gossypium hirsutum L.) provide insights into the ion
balance mechanism of cotton under salt stress. PloS One 14 (12), e0226776.
doi: 10.1371/journal.pone.0226776

Guo, T., Yang, J., Li, D., Sun, K., Luo, L., Xiao, W., et al. (2019). Integrating GWAS,
QTL, mapping and RNA-seq to identify candidate genes for seed vigor in rice (Oryza
sativa L.). Mol. Breed. 39, 1–16. doi: 10.1007/s11032-019-0993-4

Guo, X., Xin, Z., Yang, T., Ma, X., Zhang, Y., Wang, Z., et al. (2020). Metabolomics
response for drought stress tolerance in chinese wheat genotypes (Triticum aestivum).
Plants 9 (4), 520. doi: 10.3390/plants9040520

Hasan, M. M., Rafii, M. Y., Ismail, M. R., Mahmood, M., Rahim, H. A., Alam, M. A.,
et al. (2015). Marker-assisted backcrossing: a useful method for rice improvement.
Biotechnol. Biotechnol. Equipment 29 (2), 237–254. doi: 10.1080/13102818.2014.995920

Huang, T.-K., and Puchta, H. (2021). Novel CRISPR/Cas applications in plants: from
prime editing to chromosome engineering. Transgenic Res. 30, 529–549. doi: 10.1007/
s11248-021-00238-x

Huang, X.-Y., and Salt, D. E. (2016). Plant ionomics: from elemental profiling to
environmental adaptation. Mol. Plant 9 (6), 787–797. doi: 10.1016/j.molp.2016.05.003

Illarionova, K., Grigoryev, S., Shelenga, T., and Rantakaulio, T. (2020).
“Metabolomics approach in digital assessment of fatty acids profile of cottonseed for
Frontiers in Plant Science 10237
biological activity improvement of cotton oil,” in IOP Conference Series: Materials
Science and Engineering (Philadelphia, United States: IOP Publishing).
Jan, N., Rather, AM-U-D, John, R., Chaturvedi, P., Ghatak, A., Weckwerth, W., et al.

(2023). Proteomics for abiotic stresses in legumes: present status and future directions.
Crit. Rev. Biotechnol. 43 (2), 171–190. doi: 10.1080/07388551.2021.2025033
Jiang, H., Li, X., Ma, L., Ren, Y., Bi, Y., and Prusky, D. (2022). Transcriptome

sequencing and differential expression analysis of natural and BTH-treated wound
healing in potato tubers (Solanum tuberosum L.). BMC Genomics 23 (1), 1–20. doi:
10.1186/s12864-022-08480-1

Jiang, S.-Y., and Ramachandran, S. (2010). Assigning biological functions to rice
genes by genome annotation, expression analysis and mutagenesis. Biotechnol. letters
32, 1753–1763. doi: 10.1007/s10529-010-0377-7

Kang, Y. J., Lee, T., Lee, J., Shim, S., Jeong, H., Satyawan, D., et al. (2016).
Translational genomics for plant breeding with the genome sequence explosion.
Plant Biotechnol. J. 14 (4), 1057–1069. doi: 10.1111/pbi.12449

Kasinathan, T., Singaraju, D., and Uyyala, S. R. (2021). Insect classification and
detection in field crops using modern machine learning techniques. Inf. Process.
Agriculture 8 (3), 446–457. doi: 10.1016/j.inpa.2020.09.006

Kaur, P., and Gaikwad, K. (2017). From genomes to GENE-omes: exome sequencing
concept and applications in crop improvement. Front. Plant science 8, 2164. doi:
10.3389/fpls.2017.02164

Kaur, S., Shamshad, M., Jindal, S., Kaur, A., Singh, S., and Kaur, S. (2022). RNA-seq-
based transcriptomics study to investigate the genes governing nitrogen use efficiency
in Indian wheat cultivars. Front. Genet. 13, 461. doi: 10.3389/fgene.2022.853910

Kavil, S., Otti, G., Bouvaine, S., Armitage, A., and Maruthi, M. N. (2021). PAL1 gene
of the phenylpropanoid pathway increases resistance to the Cassava brown streak virus
in cassava. Virol. J. 18, 1–10. doi: 10.1186/s12985-021-01649-2

Khan, A., Sovero, V., and Gemenet, D. (2016). Genome-assisted breeding for drought
resistance. Curr. Genomics 17 (4), 330–342. doi: 10.2174/1389202917999160211101417

Kim, M.-S., Yang, J.-Y., Yu, J.-K., Lee, Y., Park, Y.-J., Kang, K.-K., et al. (2021).
Breeding of high cooking and eating quality in rice by marker-assisted backcrossing
(MABc) using KASP markers. Plants 10 (4), 804. doi: 10.3390/plants10040804

Komatsu, S., Mock, H.-P., Yang, P., and Svensson, B. (2013). Application of
proteomics for improving crop protection/artificial regulation. Front. Media SA; 4,
522. doi: 10.3389/fpls.2013.00522

Krishnan, A., Guiderdoni, E., An, G., Hsing, Y.-i., Han, C.-d., Lee, M. C., et al. (2009).
Mutant resources in rice for functional genomics of the grasses. Plant Physiol. 149 (1),
165–170. doi: 10.1104/pp.108.128918

Kumar, A., Dixit, S., Ram, T., Yadaw, R., Mishra, K., andMandal, N. (2014). Breeding
high-yielding drought-tolerant rice: genetic variations and conventional and molecular
approaches. J. Exp. Botany 65 (21), 6265–6278. doi: 10.1093/jxb/eru363

Kwak, G.-H., and Park, N.-W. (2019). Impact of texture information on crop
classification with machine learning and UAV images. Appl. Sci. 9 (4), 643. doi:
10.3390/app9040643

Lacomme, C. (2015). Strategies for altering plant traits using virus-induced gene
silencing technologies. Plant Gene Silencing: Methods Protoc. 1287, 25–41. doi: 10.1007/
978-1-4939-2453-0_2

Lei, L., Zheng, H., Bi, Y., Yang, L., Liu, H., Wang, J., et al. (2020). Identification of a
major QTL and candidate gene analysis of salt tolerance at the bud burst stage in rice
(Oryza sativa L.) using QTL-Seq and RNA-Seq. Rice 13, 1–14. doi: 10.1186/s12284-020-
00416-1

Lekota, M., Muzhinji, N., and van der Waals, J. E. (2019). Identification of
differentially expressed genes in tolerant and susceptible potato cultivars in response
to Spongospora subterranea f. sp. subterranea tuber infection. Plant Pathology 68 (6),
1196–1206. doi: 10.1111/ppa.13029

Li, Y., Ruperao, P., Batley, J., Edwards, D., Khan, T., Colmer, T. D., et al. (2018).
Investigating drought tolerance in chickpea using genome-wide association mapping
and genomic selection based on whole-genome resequencing data. Front. Plant Science
9, 190. doi: 10.3389/fpls.2018.00190

Li, Y., Xiong, H., Zhang, J., Guo, H., Zhou, C., Xie, Y., et al. (2022). Genome-wide and
exome-capturing sequencing of a gamma-ray-induced mutant reveals biased variations
in common wheat. Front. Plant Science 12, 793496. doi: 10.3389/fpls.2021.793496

Li, Y.-h., Zhou, G., Ma, J., Jiang, W., Jin, L.-g., Zhang, Z., et al. (2014). De novo
assembly of soybean wild relatives for pan-genome analysis of diversity and agronomic
traits. Nat. Biotechnol. 32 (10), 1045–1052. doi: 10.1038/nbt.2979

Li, Z., Zhu, A., Song, Q., Chen, H. Y., Harmon, F. G., and Chen, Z. J. (2020).
Temporal regulation of the metabolome and proteome in photosynthetic and
photorespiratory pathways contributes to maize heterosis. Plant Cell. 32 (12), 3706–
3722. doi: 10.1105/tpc.20.00320

Liu, H., Liu, L., Liang, D., Zhang, M., Jia, C., Qi, M., et al. (2021). SlBES1 promotes
tomato fruit softening through transcriptional inhibition of PMEU1. Iscience 24 (8),
102926. doi: 10.1016/j.isci.2021.102926

Mahmood, M. A., Naqvi, R. Z., and Mansoor, S. (2022). Engineering crop resistance
by manipulating disease susceptibility genes. Mol. Plant 15 (10), 1511–1513. doi:
10.1016/j.molp.2022.09.010

Mahmood, M. A., Naqvi, R. Z., Rahman, S. U., Amin, I., and Mansoor, S. (2023).
Plant virus-derived vectors for plant genome engineering. Viruses 15 (2), 531. doi:
10.3390/v15020531
frontiersin.org

https://doi.org/10.1007/s00122-021-03848-5
https://doi.org/10.1016/j.envexpbot.2018.05.018
https://doi.org/10.1016/j.envexpbot.2018.05.018
https://doi.org/10.1016/j.tplants.2017.08.011
https://doi.org/10.1155/2016/6021047
https://doi.org/10.1002/fes3.239
https://doi.org/10.1007/s11427-013-4557-2
https://doi.org/10.2135/cropsci2007.04.0015IPBS
https://doi.org/10.3390/genes14010171
https://doi.org/10.3390/agronomy10050621
https://doi.org/10.3390/agronomy10050621
https://doi.org/10.1016/j.gene.2022.147065
https://doi.org/10.1111/tpj.14554
https://doi.org/10.3390/ijms222413411
https://doi.org/10.1038/s41588-019-0410-2
https://doi.org/10.3390/plants11050635
https://doi.org/10.3389/fpls.2017.01494
https://doi.org/10.1093/jxb/erx333
https://doi.org/10.1371/journal.pone.0226776
https://doi.org/10.1007/s11032-019-0993-4
https://doi.org/10.3390/plants9040520
https://doi.org/10.1080/13102818.2014.995920
https://doi.org/10.1007/s11248-021-00238-x
https://doi.org/10.1007/s11248-021-00238-x
https://doi.org/10.1016/j.molp.2016.05.003
https://doi.org/10.1080/07388551.2021.2025033
https://doi.org/10.1186/s12864-022-08480-1
https://doi.org/10.1007/s10529-010-0377-7
https://doi.org/10.1111/pbi.12449
https://doi.org/10.1016/j.inpa.2020.09.006
https://doi.org/10.3389/fpls.2017.02164
https://doi.org/10.3389/fgene.2022.853910
https://doi.org/10.1186/s12985-021-01649-2
https://doi.org/10.2174/1389202917999160211101417
https://doi.org/10.3390/plants10040804
https://doi.org/10.3389/fpls.2013.00522
https://doi.org/10.1104/pp.108.128918
https://doi.org/10.1093/jxb/eru363
https://doi.org/10.3390/app9040643
https://doi.org/10.1007/978-1-4939-2453-0_2
https://doi.org/10.1007/978-1-4939-2453-0_2
https://doi.org/10.1186/s12284-020-00416-1
https://doi.org/10.1186/s12284-020-00416-1
https://doi.org/10.1111/ppa.13029
https://doi.org/10.3389/fpls.2018.00190
https://doi.org/10.3389/fpls.2021.793496
https://doi.org/10.1038/nbt.2979
https://doi.org/10.1105/tpc.20.00320
https://doi.org/10.1016/j.isci.2021.102926
https://doi.org/10.1016/j.molp.2022.09.010
https://doi.org/10.3390/v15020531
https://doi.org/10.3389/fpls.2023.1273859
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Naqvi et al. 10.3389/fpls.2023.1273859
Matsuda, F., Nakabayashi, R., Yang, Z., Okazaki, Y., Yonemaru, Ji, Ebana, K., et al.
(2015). Metabolome-genome-wide association study dissects genetic architecture for
generating natural variation in rice secondary metabolism. Plant J. 81 (1), 13–23. doi:
10.1111/tpj.12681

Montenegro, J. D., Golicz, A. A., Bayer, P. E., Hurgobin, B., Lee, H., Chan, C. K. K.,
et al. (2017). The pangenome of hexaploid bread wheat. Plant J. 90 (5), 1007–1013. doi:
10.1111/tpj.13515

Muthamilarasan, M., Singh, N. K., and Prasad, M. (2019). Multi-omics approaches
for strategic improvement of stress tolerance in underutilized crop species: a climate
change perspective. Adv. Genet. 103, 1–38. doi: 10.1016/bs.adgen.2019.01.001

Muthuramalingam, P., Krishnan, S. R., Pandian, S., Mareeswaran, N., Aruni, W.,
Pandian, S. K., et al. (2018). Global analysis of threonine metabolism genes unravel key
players in rice to improve the abiotic stress tolerance. Sci. Rep. 8 (1), 9270. doi: 10.1038/
s41598-018-27703-8

Naqvi, R. Z., Farooq, M., Naqvi, S. A. A., Siddiqui, H. A., Amin, I., Asif, M., et al.
(2020). “Big data analytics and advanced technologies for sustainable agriculture,” in
Handbook of Smart Materials, Technologies, and Devices, vol. 40. (Springer Cham
Switzerland: Applications of Industry), 1–27. doi: 10.1038/s41598-017-15963-9

Naqvi, R. Z., Siddiqui, H. A., Mahmood, M. A., Najeebullah, S., Ehsan, A., Azhar, M.,
et al. (2022). Smart breeding approaches in post-genomics era for developing climate-
resilient food crops. Front. Plant Sci. 13. doi: 10.3389/fpls.2022.972164

Naqvi, R. Z., Zaidi, S.-e., Akhtar, K. P., Strickler, S., Woldemariam, M., Mishra, B.,
et al. (2017). Transcriptomics reveals multiple resistance mechanisms against cotton
leaf curl disease in a naturally immune cotton species, Gossypium arboreum. Sci. Rep. 7
(1), 15880.

Naqvi, R. Z., Zaidi, S.-e., Mukhtar, M. S., Amin, I., Mishra, B., Strickler, S., et al.
(2019). Transcriptomic analysis of cultivated cotton Gossypium hirsutum provides
insights into host responses upon whitefly-mediated transmission of cotton leaf curl
disease. PloS One 14 (2), e0210011. doi: 10.1371/journal.pone.0210011

Ohyanagi, H., Yano, K., Yamamoto, E., and Kitazumi, A. (2022). Plant Omics:
Advances in Big Data Biology (Wallingford, UK: CABI).

Olsen, T. K., and Baryawno, N. (2018). Introduction to single-cell RNA sequencing.
Curr. Protoc. Mol. Biol. 122 (1), e57. doi: 10.1002/cpmb.57

Pasion, E. A., Misra, G., Kohli, A., and Sreenivasulu, N. (2023). Unraveling the
genetics underlying micronutrient signatures of diversity panel present in brown rice
through genome–ionome linkages. Plant J. 113 (4), 749–771. doi: 10.1111/tpj.16080

Paudel, D., Boogaard, H., de Wit, A., Janssen, S., Osinga, S., Pylianidis, C., et al.
(2021). Machine learning for large-scale crop yield forecasting. Agric. Systems 187,
103016. doi: 10.1016/j.agsy.2020.103016

Peng, B., Li, H., and Peng, X.-X. (2015). Functional metabolomics: from biomarker
discovery to metabolome reprogramming. Protein Cell. 6 (9), 628–637. doi: 10.1007/
s13238-015-0185-x

Perez-Fons, L., Bohorquez-Chaux, A., Irigoyen, M. L., Garceau, D. C., Morreel, K.,
Boerjan, W., et al. (2019). A metabolomics characterisation of natural variation in the
resistance of cassava to whitefly. BMC Plant Biol. 19 (1), 1–14. doi: 10.1186/s12870-
019-2107-1

Pradhan, S. K., Pandit, E., Nayak, D. K., Behera, L., and Mohapatra, T. (2019). Genes,
pathways and transcription factors involved in seedling stage chilling stress tolerance in
indica rice through RNA-Seq analysis. BMC Plant Biol. 19 (1), 1–17. doi: 10.1186/
s12870-019-1922-8

Pretorius, C. J., Tugizimana, F., Steenkamp, P. A., Piater, L. A., and Dubery, I. A.
(2021). Metabolomics for biomarker discovery: Key signatory metabolic profiles for the
identification and discrimination of oat cultivars.Metabolites 11 (3), 165. doi: 10.3390/
metabo11030165

Rai, K. K. (2022). Integrating speed breeding with artificial intelligence for
developing climate-smart crops. Mol. Biol. Rep. 49 (12), 11385–11402. doi: 10.1007/
s11033-022-07769-4

Rama Reddy, N. R., Ragimasalawada, M., Sabbavarapu, M. M., Nadoor, S., and Patil,
J. V. (2014). Detection and validation of stay-green QTL in post-rainy sorghum
involving widely adapted cultivar, M35-1 and a popular stay-green genotype B35.
BMC Genomics 15, 1–16. doi: 10.1186/1471-2164-15-909

Ramesh, S., and Vydeki, D. (2019). Application of machine learning in detection of
blast disease in South Indian rice crops. J. Phytol. 11 (1), 31–37. doi: 10.25081/
jp.2019.v11.5476

Raza, A. (2020). Metabolomics: a systems biology approach for enhancing heat stress
tolerance in plants. Plant Cell Rep. 41, 741–763. doi: 10.1007/s00299-020-02635-8

Razzaq, A., Sadia, B., Raza, A., Khalid Hameed, M., and Saleem, F. (2019).
Metabolomics: A way forward for crop improvement. Metabolites 9 (12), 303. doi:
10.3390/metabo9120303

Safavi-Rizi, V., Herde, M., and Stöhr, C. (2020). RNA-Seq reveals novel genes and
pathways associated with hypoxia duration and tolerance in tomato root. Sci. Rep. 10
(1), 1–17. doi: 10.1038/s41598-020-57884-0

Sahoo, R. N., Viswanathan, C., Kumar, M., Bhugra, S., Karwa, S., Misra, T., et al.
(2023). “High-Throughput Phenomics of Crops for Water and Nitrogen Stress,” in
Translating Physiological Tools to Augment Crop Breeding (Singapore: Springer), 291–
310.
Frontiers in Plant Science 11238
Sauvage, C., Segura, V., Bauchet, G., Stevens, R., Do, P. T., Nikoloski, Z., et al. (2014).
Genome-wide association in tomato reveals 44 candidate loci for fruit metabolic traits.
Plant Physiol. 165 (3), 1120–1132. doi: 10.1104/pp.114.241521

Shami, A. A., Akhtar, M. T., Mumtaz, M. W., Mukhtar, H., Tahir, A., Shahzad-ul-
Hussan, S., et al. (2023). NMR-based metabolomics: A new paradigm to unravel
defense-related metabolites in insect-resistant cotton variety through different
multivariate data analysis approaches. Molecules 28 (4), 1763. doi: 10.3390/
molecules28041763

Sharma, S. K., McLean, K., Colgan, R. J., Rees, D., Young, S., Sønderkær, M., et al.
(2021). Combining conventional QTL analysis and whole-exome capture-based bulk-
segregant analysis provides new genetic insights into tuber sprout elongation and
dormancy release in a diploid potato population. Heredity 127 (3), 253–265. doi:
10.1038/s41437-021-00459-0

Shokat, S., Großkinsky, D. K., Singh, S., and Liu, F. (2023). The role of genetic
diversity and pre-breeding traits to improve drought and heat tolerance of bread wheat
at the reproductive stage. Food Energy Secur. 12, e478. doi: 10.1002/fes3.478

Shokat, S., Sehgal, D., Vikram, P., Liu, F., and Singh, S. (2020). Molecular markers
associated with agro-physiological traits under terminal drought conditions in bread
wheat. Int. J. Mol. Sci. 21 (9), 3156. doi: 10.3390/ijms21093156

Singh, S., Jighly, A., Sehgal, D., Burgueño, J., Joukhadar, R., Singh, S., et al. (2021).
Direct introgression of untapped diversity into elite wheat lines. Nat. Food. 2 (10), 819–
827. doi: 10.1038/s43016-021-00380-z

Singh, S., Vikram, P., Sehgal, D., Burgueño, J., Sharma, A., Singh, S. K., et al. (2018).
Harnessing genetic potential of wheat germplasm banks through impact-oriented-
prebreeding for future food and nutritional security. Sci. Rep. 8 (1), 1–11. doi: 10.1038/
s41598-018-30667-4

Siriwan, W., Vannatim, N., Chaowongdee, S., Roytrakul, S., Charoenlappanit, S.,
Pongpamorn, P., et al. (2023). Integrated proteomic and metabolomic analysis of
cassava cv. Kasetsart 50 infected with Sri Lankan cassava mosaic virus. Agronomy 13
(3), 945. doi: 10.3390/agronomy13030945

Song, J., Pei, W., Wang, N., Ma, J., Xin, Y., Yang, S., et al. (2022). Transcriptome
analysis and identification of genes associated with oil accumulation in upland cotton.
Physiologia Plantarum 174 (3), e13701. doi: 10.1111/ppl.13701

Su, W.-H. (2020). Advanced machine learning in point spectroscopy, RGB-and
hyperspectral-imaging for automatic discriminations of crops and weeds: A review.
Smart Cities 3 (3), 767–792. doi: 10.3390/smartcities3030039

Swamy, B. P. M., Ahmed, H. U., Henry, A., Mauleon, R., Dixit, S., Vikram, P., et al.
(2013). Genetic, physiological, and gene expression analyses reveal that multiple QTL
enhance yield of rice mega-variety IR64 under drought. PloS One 8 (5), e62795. doi:
10.1371/journal.pone.0062795

Templer, S. E., Ammon, A., Pscheidt, D., Ciobotea, O., Schuy, C., McCollum, C., et al.
(2017). Metabolite profiling of barley flag leaves under drought and combined heat and
drought stress reveals metabolic QTLs for metabolites associated with antioxidant
defense. J. Exp. botany 68 (7), 1697–1713. doi: 10.1093/jxb/erx038

Tiwari, J. K., Buckseth, T., Devi, S., Varshney, S., Sahu, S., Patil, V. U., et al. (2020).
Physiological and genome-wide RNA-sequencing analyses identify candidate genes in a
nitrogen-use efficient potato cv. Kufri Gaurav. Plant Physiol. Biochem. 154, 171–183.
doi: 10.1016/j.plaphy.2020.05.041

Varshney, R. K., Bohra, A., Yu, J., Graner, A., Zhang, Q., and Sorrells, M. E. (2021).
Designing future crops: genomics-assisted breeding comes of age. Trends Plant Science
26 (6), 631–649. doi: 10.1016/j.tplants.2021.03.010

Varshney, R. K., Graner, A., and Sorrells, M. E. (2005). Genomics-assisted breeding
for crop improvement. Trends Plant Science 10 (12), 621–630. doi: 10.1016/
j.tplants.2005.10.004

Varshney, R. K., Saxena, R. K., Upadhyaya, H. D., Khan, A. W., Yu, Y., Kim, C., et al.
(2017). Whole-genome resequencing of 292 pigeonpea accessions identifies genomic
regions associated with domestication and agronomic traits. Nat. Genet. 49 (7), 1082–
1088. doi: 10.1038/ng.3872

Viana, V. E., Pegoraro, C., Busanello, C., and Costa de Oliveira, A. (2019).
Mutagenesis in rice: the basis for breeding a new super plant. Front. Plant science 10,
1326. doi: 10.3389/fpls.2019.01326

Wang, N., Long, T., Yao, W., Xiong, L., Zhang, Q., and Wu, C. (2013). Mutant
resources for the functional analysis of the rice genome.Mol. Plant 6 (3), 596–604. doi:
10.1093/mp/sss142

Wen, J., Jiang, F., Weng, Y., Sun, M., Shi, X., Zhou, Y., et al. (2019). Identification of
heat-tolerance QTLs and high-temperature stress-responsive genes through
conventional QTL mapping, QTL-seq and RNA-seq in tomato. BMC Plant Biol. 19,
1–17. doi: 10.1186/s12870-019-2008-3
Wu, C., Ding, X., Ding, Z., Tie, W., Yan, Y., Wang, Y., et al. (2019). The class III

peroxidase (POD) gene family in cassava: identification, phylogeny, duplication, and
expression. Int. J. Mol. Sci. 20 (11), 2730. doi: 10.3390/ijms20112730
Xi, W., Hao, C., Li, T., Wang, H., and Zhang, X. (2023). Transcriptome analysis of

roots from wheat (Triticum aestivum L.) varieties in response to drought stress. Int. J.
Mol. Sci. 24 (8), 7245. doi: 10.3390/ijms24087245

Xie, J., Guo, G., Wang, Y., Hu, T., Wang, L., Li, J., et al. (2020). A rare single
nucleotide variant in Pm5e confers powdery mildew resistance in common wheat. New
Phytologist 228 (3), 1011–1026. doi: 10.1111/nph.16762
frontiersin.org

https://doi.org/10.1111/tpj.12681
https://doi.org/10.1111/tpj.13515
https://doi.org/10.1016/bs.adgen.2019.01.001
https://doi.org/10.1038/s41598-018-27703-8
https://doi.org/10.1038/s41598-018-27703-8
https://doi.org/10.1038/s41598-017-15963-9
https://doi.org/10.3389/fpls.2022.972164
https://doi.org/10.1371/journal.pone.0210011
https://doi.org/10.1002/cpmb.57
https://doi.org/10.1111/tpj.16080
https://doi.org/10.1016/j.agsy.2020.103016
https://doi.org/10.1007/s13238-015-0185-x
https://doi.org/10.1007/s13238-015-0185-x
https://doi.org/10.1186/s12870-019-2107-1
https://doi.org/10.1186/s12870-019-2107-1
https://doi.org/10.1186/s12870-019-1922-8
https://doi.org/10.1186/s12870-019-1922-8
https://doi.org/10.3390/metabo11030165
https://doi.org/10.3390/metabo11030165
https://doi.org/10.1007/s11033-022-07769-4
https://doi.org/10.1007/s11033-022-07769-4
https://doi.org/10.1186/1471-2164-15-909
https://doi.org/10.25081/jp.2019.v11.5476
https://doi.org/10.25081/jp.2019.v11.5476
https://doi.org/10.1007/s00299-020-02635-8
https://doi.org/10.3390/metabo9120303
https://doi.org/10.1038/s41598-020-57884-0
https://doi.org/10.1104/pp.114.241521
https://doi.org/10.3390/molecules28041763
https://doi.org/10.3390/molecules28041763
https://doi.org/10.1038/s41437-021-00459-0
https://doi.org/10.1002/fes3.478
https://doi.org/10.3390/ijms21093156
https://doi.org/10.1038/s43016-021-00380-z
https://doi.org/10.1038/s41598-018-30667-4
https://doi.org/10.1038/s41598-018-30667-4
https://doi.org/10.3390/agronomy13030945
https://doi.org/10.1111/ppl.13701
https://doi.org/10.3390/smartcities3030039
https://doi.org/10.1371/journal.pone.0062795
https://doi.org/10.1093/jxb/erx038
https://doi.org/10.1016/j.plaphy.2020.05.041
https://doi.org/10.1016/j.tplants.2021.03.010
https://doi.org/10.1016/j.tplants.2005.10.004
https://doi.org/10.1016/j.tplants.2005.10.004
https://doi.org/10.1038/ng.3872
https://doi.org/10.3389/fpls.2019.01326
https://doi.org/10.1093/mp/sss142
https://doi.org/10.1186/s12870-019-2008-3
https://doi.org/10.3390/ijms20112730
https://doi.org/10.3390/ijms24087245
https://doi.org/10.1111/nph.16762
https://doi.org/10.3389/fpls.2023.1273859
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Naqvi et al. 10.3389/fpls.2023.1273859
Xiong, H., Guo, H., Fu, M., Xie, Y., Zhao, L., Gu, J., et al. (2023). A large-scale whole-
exome sequencing mutant resource for functional genomics in wheat. Plant Biotechnol.
J. 21 (10), 2047–2056. doi: 10.1111/pbi.14111
Xu, Y., Zhang, X.-Q., Harasymow, S., Westcott, S., Zhang, W., and Li, C. (2018).

Molecular marker-assisted backcrossing breeding: an example to transfer a
thermostable b-amylase gene from wild barley. Mol. Breeding 38, 1–9. doi: 10.1007/
s11032-018-0828-8
Yang, Z., Wang, Z., Yang, C., Yang, Z., Li, H., and Wu, Y. (2019). Physiological

responses and small RNAs changes in maize under nitrogen deficiency and resupply.
Genes Genomics 41, 1183–1194. doi: 10.1007/s13258-019-00848-0
Yu, J., Golicz, A. A., Lu, K., Dossa, K., Zhang, Y., Chen, J., et al. (2019). Insight into

the evolution and functional characteristics of the pan-genome assembly from sesame
landraces and modern cultivars. Plant Biotechnol. J. 17 (5), 881–892. doi: 10.1111/
pbi.13022
Yu, X., Wang, T., Zhu, M., Zhang, L., Zhang, F., Jing, E., et al. (2019). Transcriptome

and physiological analyses for revealing genes involved in wheat response to
endoplasmic reticulum stress. BMC Plant Biol. 19 (1), 1–22. doi: 10.1186/s12870-
019-1798-7
Zaidi, S., Naqvi, R. Z., Asif, M., Strickler, S., Shakir, S., Shafiq, M., et al. (2020).

Molecular insight into cotton leaf curl geminivirus disease resistance in cultivated
cotton (Gossypium hirsutum). Plant Biotechnol. J. (Cham Switzerland: Springer) 18 (3),
691–706. doi: 10.1111/pbi.13236

Zhang, C., Liu, S., Li, X., Zhang, R., and Li, J. (2022). Virus-induced gene editing and
its applications in plants. Int. J. Mol. Sci. 23 (18), 10202. doi: 10.3390/ijms231810202
Frontiers in Plant Science 12239
Zhang, J., Mei, H., Lu, H., Chen, R., Hu, Y., and Zhang, T. (2022). Transcriptome
time-course analysis in the whole period of cotton fiber development. Front. Plant
Science 13, 804. doi: 10.3389/fpls.2022.864529

Zhang, H., Zhang, J., Xu, Q., Wang, D., Di, H., Huang, J., et al. (2020). Identification
of candidate tolerance genes to low-temperature during maize germination by GWAS
and RNA-seq approaches. BMC Plant Biol. 20, 1–17. doi: 10.1186/s12870-020-02543-9

Zhao, Q., Feng, Q., Lu, H., Li, Y., Wang, A., Tian, Q., et al. (2018). Pan-genome
analysis highlights the extent of genomic variation in cultivated and wild rice. Nat.
Genet. 50 (2), 278–284. doi: 10.1038/s41588-018-0041-z

Zhao, X., and Niu, Y. (2022). The combination of conventional QTL analysis,
bulked-segregant analysis, and RNA-sequencing provide new genetic insights into
maize mesocotyl elongation under multiple deep-seeding environments. Int. J. Mol. Sci.
23 (8), 4223. doi: 10.3390/ijms23084223

Zhao, J., Sauvage, C., Bitton, F., and Causse, M. (2022). Multiple haplotype-based
analyses provide genetic and evolutionary insights into tomato fruit weight and
composition. Horticulture Res. 9, uhab009. doi: 10.1093/hr/uhab009

Zhou, Z., Jiang, Y., Wang, Z., Gou, Z., Lyu, J., Li, W., et al. (2015). Resequencing 302
wild and cultivated accessions identifies genes related to domestication and
improvement in soybean. Nat. Biotechnol. 33 (4), 408–414. doi: 10.1038/nbt.3096

Zhu, H., Li, C., and Gao, C. (2020). Applications of CRISPR–Cas in agriculture and
plant biotechnology. Nat. Rev. Mol. Cell Biol. 21 (11), 661–677. doi: 10.1038/s41580-
020-00288-9
frontiersin.org

https://doi.org/10.1111/pbi.14111
https://doi.org/10.1007/s11032-018-0828-8
https://doi.org/10.1007/s11032-018-0828-8
https://doi.org/10.1007/s13258-019-00848-0
https://doi.org/10.1111/pbi.13022
https://doi.org/10.1111/pbi.13022
https://doi.org/10.1186/s12870-019-1798-7
https://doi.org/10.1186/s12870-019-1798-7
https://doi.org/10.1111/pbi.13236
https://doi.org/10.3390/ijms231810202
https://doi.org/10.3389/fpls.2022.864529
https://doi.org/10.1186/s12870-020-02543-9
https://doi.org/10.1038/s41588-018-0041-z
https://doi.org/10.3390/ijms23084223
https://doi.org/10.1093/hr/uhab009
https://doi.org/10.1038/nbt.3096
https://doi.org/10.1038/s41580-020-00288-9
https://doi.org/10.1038/s41580-020-00288-9
https://doi.org/10.3389/fpls.2023.1273859
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Frontiers in Plant Science

OPEN ACCESS

EDITED BY

Baohua Wang,
Nantong University, China

REVIEWED BY

Jindong Liu,
Chinese Academy of Agricultural Sciences,
China
Jian Ma,
Sichuan Agricultural University, China

*CORRESPONDENCE

Bo Feng

fengbo@cib.ac.cn

RECEIVED 02 October 2023
ACCEPTED 08 December 2023

PUBLISHED 08 January 2024

CITATION

Jiang C, Xu Z, Fan X, Zhou Q, Ji G, Liao S,
Wang Y, Ma F, Zhao Y, Wang T and Feng B
(2024) Genetic dissection of major QTL for
grain number per spike on chromosomes 5A
and 6A in bread wheat (Triticum aestivum L.).
Front. Plant Sci. 14:1305547.
doi: 10.3389/fpls.2023.1305547

COPYRIGHT

© 2024 Jiang, Xu, Fan, Zhou, Ji, Liao, Wang,
Ma, Zhao, Wang and Feng. This is an open-
access article distributed under the terms of
the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction
in other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 08 January 2024

DOI 10.3389/fpls.2023.1305547
Genetic dissection of major
QTL for grain number per
spike on chromosomes 5A
and 6A in bread wheat
(Triticum aestivum L.)
Cheng Jiang1,2,3, Zhibin Xu1, Xiaoli Fan1, Qiang Zhou1,
Guangsi Ji1,3, Simin Liao1,3, Yanlin Wang1,3, Fang Ma1,3,
Yun Zhao2, Tao Wang1,4 and Bo Feng1*

1Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China, 2College of Life
Sciences, Sichuan University, Chengdu, China, 3University of Chinese Academy of Sciences,
Beijing, China, 4The Innovative of Seed Design, Chinese Academy of Sciences, Beijing, China
Grain number per spike (GNS) is a crucial component of grain yield and plays

a significant role in improving wheat yield. To identify quantitative trait loci

(QTL) associated with GNS, a recombinant inbred line (RIL) population

derived from the cross of Zhongkemai 13F10 and Chuanmai 42 was

employed to conduct QTL mapping across eight environments. Based on

the bulked segregant exome sequencing (BSE-Seq), genomic regions

associated with GNS were detected on chromosomes 5A and 6A.

According to the constructed genetic maps, two major QTL QGns.cib-5A

(LOD = 4.35–8.16, PVE = 8.46–14.43%) and QGns.cib-6A (LOD = 3.82–

30.80, PVE = 5.44–12.38%) were detected in five and four environments,

respectively.QGns.cib-6A is a QTL cluster for other seven yield-related traits.

QGns.cib-5A and QGns.cib-6A were further validated using linked

Kompetitive Allele Specific PCR (KASP) markers in different genetic

backgrounds. QGns.cib-5A exhibited pleiotropic effects on productive tiller

number (PTN), spike length (SL), fertile spikelet number per spike (FSN), and

ratio of grain length to grain width (GL/GW) but did not significantly affect

thousand grain weight (TGW). Haplotype analysis revealed that QGns.cib-5A

and QGns.cib-6A were the targets of artificial selection during wheat

improvement. Candidate genes for QGns.cib-5A and QGns.cib-6A were

predicted by analyzing gene annotation, spatiotemporal expression

patterns, and orthologous and sequence differences. These findings will be

valuable for fine mapping and map-based cloning of genes underlying

QGns.cib-5A and QGns.cib-6A.
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QTL mapping, BSE-Seq, grain number per spike, haplotype analysis, wheat
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Introduction

Wheat (Triticum aestivum L.) is a vital crop that provides a

substantial portion of the world’s food. However, as the world

population continues to grow, the demand for food is increasing.

Despite the current annual growth rate of wheat production

reaching 0.9%, it falls short of the required annual growth rate of

approximately 2.4% needed to sustain the world population by 2050

(Ray et al., 2013; Gao, 2021). As a result, enhancing the yield

potential has become a fundamental objective in wheat breeding.

Grain yield is a complex quantitative trait mainly determined by

three factors: spike number per unit area, thousand grain weight

(TGW), and grain number per spike (GNS). Therefore, revealing

the genetic factors underlying GNS is essential to improve

yield potential.

The genetic regulatory pathways governing architecture of the

inflorescence play a crucial role in determining GNS in wheat.

Generally, spike development can be divided into three main

phases: the duration of the flowering transition; initiation,

distribution, and termination of spikelet meristem (SM);

formation and generation of floret meristem (FM) (Luo et al.,

2023). During the flowering transition period, several widely

recognized genes involved in flowering time participate in

regulating the timing of inflorescence meristem (IM)

differentiation and the initiation of spikelet and floret

development. During the vernalization-induced flowering process,

VERNALIZATION 1 (VRN1) serves as a central regulatory gene,

playing a crucial role in maintaining IM activity and controlling SM

characteristics. Similar to VRN1, FRUITFULL2 (FUL2) and

FRUITFULL3 (FUL3) redundantly facilitate the transition from

SAM to IM (Li et al., 2019). The photoperiod gene Photoperiod-1

(Ppd-1) in wheat influences inflorescence structure. Insufficient

Ppd-D1 leads to the formation of paired spikelet and an increase

in grain count under short sunlight conditions (Boden et al., 2015).

VRN3/TaFT1, a homolog of Flowering Locus T (FT) in Arabidopsis

and the Heading date 3a (Hd3a) in rice, interacts with the

transcription factor TaFDL2 to activate VRN1 (Yan et al., 2006; Li

and Dubcovsky, 2008). Additionally, VRN1 and Ppd-1 positively

regulate VRN3/TaFT1 and TaFT2, whereas VRN2 is known to act

as a transcriptional inhibitor of these genes (Yan et al., 2004; Chen

and Dubcovsky, 2012; Shaw et al., 2019). TaFT2 controls the

initiation and quantification of spikelets. PHYTOCHROME C

(PHYC) acts as an upstream regulatory factor, activating Ppd-1

and VRN3/TaFT1. The TCP transcription factor TEOSINTE

BRANCHED 1 (TaTB1) inhibits spike formation (Dixon

et al., 2018).

The transition from IM to SM is crucial for establishing the

inflorescence structure in Gramineae plants during spikelet

initiation, distribution, and termination. Overexpression of wheat

AGAMOUS-LIKE6 (TaAGL6) affects the expression of meristem-

active genes like FUL2 and TaMADS55, resulting in a significant

increase in the number of spikelets and grains per spike (Kong et al.,

2021). Wheat FRIZY PANICLE (WFZP), a member of the class II

AP2/ERF transcription factor (TF), directly activates VRN1-A and

HOMEOBOX4 (TaHOX4)-A. In addition, WFZP also acts as an

inhibitor of the spikelet formation gene BARREN STALK1 (TaBA1),
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exerting a dual effect (Poursarebani et al., 2015; Du et al., 2021; Li

et al., 2021). The microRNA156 (miR156)-SPL module is crucial in

initiating SM development during wheat spike development.

MiR156 regulates SPL family genes, including TaSPL3/17 in

wheat. TaSPL3/17 interacts with DWARF53 (TaD53) to regulate

the expression of genes TaTB1 and TaBA1, which are involved in

the differentiation of spikelet meristem and floral meristem. This

interaction ultimately affects wheat spikelet development (Liu et al.,

2017). The miR172-AP2 module also plays a critical role in the

proper development of spikelets (Debernardi et al., 2017; Zhong

et al., 2021). The q/ap2l5 mutant exhibits a significant reduction in

spikelet number, which can be attributed to the premature

transformation of spikelet meristem into terminal spikelet

(Debernardi et al., 2020).

The interactions amongMADS, SPL, TCP, and AP2 TFs play an

essential role in promoting or maintaining the characteristics of SM

and FM, which significantly influence the development of wheat

floret. The E-class SEP genes are primarily responsible for

regulating the floral organs’ development (Pelaz et al., 2000; Ditta

et al., 2004). Upregulation TaVRT2, a MADS-box gene belonging to

the SHORT VEGETATIVE PHASE (SVP) branch, causes the

downregulation of TaSEP1. As a result, the transformation of

spikelet into floret is delayed, resulting in an increased number of

basal spikelets (Backhaus et al., 2022). The SQUAMOSA proteins

VRN1 and FUL2 function as repressors of the SVP branch MADS

box genes, such as TaVRT2, TaSVP1, and TaSVP3. These proteins

stimulate the formation of small flowers following the transition to

flowering (Li et al., 2019; Li et al., 2021; Liu et al., 2021). Therefore,

the downregulation of SQUAMOSA protein for SVP gene

expression is essential to promoting SEP gene expression and

ensuring normal flower development (Li et al., 2021; Backhaus

et al., 2022). Upregulation of the miR156 target gene TaSPL13 leads

to an increased production of small flowers and grains per spike in

wheat (Li et al., 2020). Q/AP2L5 and AP2L2 redundantly recognize

and prevent small flowers from degenerating into glumes through

miR172-guided mechanisms (Debernardi et al., 2017; Debernardi

et al., 2020).

Like other traits related to yield, GNS is a quantitative trait

influenced by both genetic and environmental factors. As a result,

researchers have preliminarily focused on mapping quantitative

trait loci (QTL) in various genetic or natural populations of wheat.

Up to now, numerous QTL associated with GNS have been

identified across 21 chromosomes in previous studies (Börner

et al., 2002; Peng et al., 2003; Huang et al., 2004; Quarrie et al.,

2005; Liu et al., 2006; Kumar et al., 2007; Cuthbert et al., 2008;

Wang et al., 2009; McIntyre et al., 2010; Wang et al., 2011; Blanco

et al., 2012; Rustgi et al., 2013; Azadi et al., 2014; Gao et al., 2015;

Zhang et al., 2016; Roncallo et al., 2017; Guan et al., 2018; Liu et al.,

2019; Hu et al., 2020; Mizuno et al., 2021; Qiao et al., 2022; Hu et al.,

2023). However, few major QTL have been found that can be

detected in multiple environments and validated in different genetic

backgrounds, hindering their utilization in breeding programs.

Therefore, it is essential to identify and validate the novel QTL/

genes associated with GNS.

In the present study, we utilized bulked segregant exome

sequencing (BSE-Seq) and linkage analysis to identify QTL that
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control GNS. The major QTL were subsequently validated in

different genetic backgrounds, and potential candidate genes were

predicted. Additionally, an analysis of the haplotypes of the major

QTL was conducted.
Materials and methods

Plant materials and field trials

Three genetic populations obtained through the single-seed

descent method as well as a natural population were employed in

this study. They were (1) a recombinant inbred line (RIL)

population (13CM, 316 F7 lines) derived from the cross of

Zhongkemai 13F10 (ZKM13F10) and Chuanmai 42 (CM42); (2)

an F2 population (CZ5782, 184 individuals) derived from the cross

of Chuanmai 104 (CM104) and ZM5782; (3) an F2 population

(CS352, 126 individuals) derived from the cross of CM104 and

SH352; and (4) a natural population containing 321 wheat

accessions, including 59 widely grown cultivars during the last

two decades and 262 accessions of Chinese wheat mini-core

collection (88 modern cultivars, 17 introduced cultivars, and 157

landraces) (Li et al., 2022). The 13CM population was used to

construct genetic map and detect QTL; CZ5782 and CS352 were

used to validate the target QTL in different genetic backgrounds,

and the natural population was used for haplotype analysis.

ZKM13F10 (ZKM138/PW18) is a stable breeding line selected

by our lab characterized by high GNS. CM42 (Syncd768/SW3243//

Chuan6415) is a core cultivar that has been used as one of the

parents to develop more than 50 new cultivars in China. It possesses

desirable yield-related traits including high grain weight and wide

adaptability. CM104 is a cultivar derived from CM42 and inherits

its major elite traits (including high grain weight and long spike).

SH352 and ZM5782 are wheat lines to construct populations used

for validating the major QTL.

The 13CM population and its parents were cultivated in eight

different environments: Shuangliu (103°52′E, 30°34′N) during the

2017–2018, 2018–2019, 2019–2020, and 2020–2021 growing

seasons (referred to as E1, E3, E5, and E7, respectively), and

Shifang (104°11′E, 31°6′N) during the 2017–2018, 2018–2019,

2019–2020, and 2020–2021 seasons (referred to as E2, E4, E6, and

E8, respectively). CZ5782 and CS352 individuals were cultivated in

Shifang during the 2021–2022 growing season. Each plot had two

rows. The row length and row spacing were 1.2 m and 0.2 m,

respectively, and each row sowed 12 seeds. At sowing time, the

fertilizer (N: 25%, P2O5: 10%, K2O: 10%) was applied with 450 kg/

ha. The local standard practices were applied in field management.
Phenotypic evaluation and
statistical analysis

At maturity, eight plants from each line of 13CM, as well as the

parents, were randomly selected for phenotypic evaluation. Traits

including plant height (PHT), productive tiller number (PTN),
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spike length (SL), fertile spikelet number (FSN), and GNS were

measured manually. The average values of these traits from the

eight selected plants in each line were utilized for statistical analysis.

Additionally, after air-drying, grain length (GL), grain width (GW),

the ratio of GL to GW (GL/GW), and thousand grain weight

(TGW) were measured. The spike compactness (SC) was

calculated by dividing FSN by SL. GNFS was calculated by

dividing GNS by FSN. The detailed method was conducted as

described previously (Ji et al., 2021).

Descriptive statistics, Pearson’s correlation analysis, normal

distribution, and Student’s t-test were carried out using SPSS

v24.0 (SPSS, Chicago, USA). The QTL IciMapping v4.2 software

(https://isbreeding.caas.cn/rj/qtllcmapping/) was used to calculate

the broad-sense heritability (H2) and the best linear unbiased

estimation (BLUE) dataset for each trait. OriginPro v2019

(https://www.originlab.com/) was employed to create the

histogram distribution, scatter plot, and box plot. The Pearson’s

correlation coefficients were utilized to examine the correlations

between GNS and the other traits. Furthermore, by considering the

genotypes of the flanking markers, lines harboring different alleles

were compared using Student’s t-test, with a significance level set at

P < 0.05.
BSE-Seq analysis

The high-quality genomic DNA from 13CM lines and the

parents was extracted by a modified hexadecyltrimethylammonium

bromide (CTAB) method. Based on the phenotypic data obtained in

E1–E6, lines in each environment were rearranged from low to high.

To construct extreme mixing pools, 30 lines within each of two tails

with stable phenotype in at least four of the six environments were

selected. Two pools (GNS-H and GNS-L) were bulked using an equal

amount (1 µg) of DNA from the selected 30 individuals. The two

pools and the parents were utilized for BSE-Seq analysis performed

by Bioacme Biotechnology Co., Ltd. (Wuhan, China).

The raw data from this study have been deposited in the

Genome Sequence Archive (Chen et al., 2021) at the National

Genomics Data Center (CNCB-NGDC Members and Partners,

2022), which is a part of the China National Center for

Bioinformation/Beijing Institute of Genomics, Chinese Academy

of Sciences (GSA: CRA008821 for ZKM13F10 and CM42,

CAR009113 for GNS-H and GNS-L). These datasets are publicly

accessible and can be found at https://ngdc.cncb.ac.cn/gsa. The

processing of raw data was performed according to the previously

method (Ji et al., 2023). In this study, two methods Euclidean

distance (ED) and D(SNP-index) were employed to identify SNP

and InDel sites between the paired pools. The detailed analytical

method was described previously (Yu et al., 2022).
Development of molecular markers

Based on the BSE-Seq data, SNP/InDel in the associated genomic

regions between the parents and extreme pools were converted to
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develop Kompetitive Allele-specific PCR (KASP) markers for genetic

map construction. Common primers were designed from Triticae

Multi-omics Center (http://202.194.139.32/). FAM and HEX probe

sequences were added to the 5’ end of primers. The KASP genotype

identification was performed in the QuantStudio™ 3 Real-Time PCR

system designed by Thermo Fisher Scientific, with a reaction mixture

containing 5 µL 2× main mixture, 0.8 µL primer mixture, 3 µL

ddH2O, and 2 µL DNA template (50 ng/mL–100 ng/mL). The

conditions and procedures for touchdown PCR was referred to Yu

et al. (2022).
Genetic map construction and
QTL detection

The genetic map was constructed by JoinMap v4.1, and the QTL

was detected by QTL IciMapping v4.2 (Meng et al., 2015). Markers

that co-localized with others and had a missing rate more than 20%

were discarded. The maximum likelihood mapping algorithm and

Kosambi’s mapping function were utilized to establish marker order

and calculate marker distance. QTL detection in each environment

was conducted using the QTL IciMapping v4.2 software based on

the Inclusive Composite Interval Mapping (ICIM) method in the

Biparental Population (BIP) module, and the LOD threshold was

set as 2.5. The interaction of QTL×environment (QE) was

performed using QTL IciMapping v4.2 according to Multi-

Environment Trails module (LOD = 2.5, PIN = 0.001, and step =

4 cM). QTL repeatedly identified in at least three environments

were treated as stable. Moreover, QTL explaining more than 10% of

the phenotypic variation was considered as major. Confidence

intervals were estimated by the position ± 1 LOD. QTL with

overlapping confidence intervals were considered equivalent and

named according to the international genetic naming rules (http://

wheat.pw.usda.gov/ggpages/wgc/98/Intro.htm), where ‘cib’

represents ‘Chengdu Institute of Biology’.
Haplotype analysis

Haplotypes at the crucial regions of the major QTL were analyzed

based on the resequencing data of 145 landmark cultivars in China

(http://wheat.cau.edu.cn/Wheat_SnpHub_Portal/). Subsequently, a

natural population comprising 321 wheat accessions was used to

conduct haplotype analysis. These accessions were planted in Shifang

during the 2022–2023 growing season. The planting and phenotypic

evaluation were conducted following the same protocols as the

13CM lines.
Prediction of candidate genes

Based on the mapping results, the physical positions of the

flanking markers were converted from IWGSC RefSeq v1.0 to v2.1

using the Triticae Multi-omics Center (Zhu et al., 2021). The

annotation and function of the genes located between the
Frontiers in Plant Science 04243
flanking markers were analyzed using Uniport (https://

www.uniprot.org/). The expression pattern of the candidate genes

was obtained from expVIP (http://www.wheat-expression.com/).

These expression data were normalized using the ZeroToOne

method and further presented in the HeatMap drawn by TBtools

(Chen et al., 2020). The orthologues from rice (Oryza sativa L.

Japonica group) and Arabidopsis thaliana were identified using

Ensembl Plants (https://plants.ensembl.org/Triticum_aestivum/

Info/Index). The functional information of these orthologues was

obtained from China Rice Data Center (https://www.ricedata.cn/)

for rice orthologues and tair (https://www.arabidopsis.org/) for

Arabidopsis orthologues. In addition, based on the BSE-Seq data,

nonsynonymous SNPs present in the exon regions of genes within

the target regions were collected.
Results

Phenotypic performance

The GNS of ZKM13F10 was higher than that of CM42 in most

environments. Significant differences in GNS between ZKM13F10

and CM42 were observed in E1, E4, E7 and the BLUE dataset (P <

0.05 or P < 0.01) (Table 1). In the 13CM population, GNS showed

extensive and significant variation. Based on the BLUE dataset, the

range of GNS variation was 42.86–72.47. The estimated value of H2

of GNS was 0.83, indicating that GNS was mainly controlled by

genetic factors. The continuous distribution of GNS across eight

environments and the BLUE dataset showed that it is a typical

quantitative trait controlled by multiple genes (Supplementary

Figure 1 and Table 1). In multiple environments, the significant

Pearson correlation of GNS ranged from 0.27 to 0.99 (P < 0.001)

(Supplementary Figure 1).
Correlation analysis between GNS and
other yield-related traits

The Pearson’s correlation between GNS and other yield-related

traits was evaluated using the BLUE dataset (Figure 1). Significant

and negative correlations were detected between GNS and GL, GW,

GL/GW, TGW, and PHT (P < 0.01 or P < 0.001). Moreover, GNS

was significantly (P < 0.001) and positively correlated with FSN,

GNFS, and SC. No significant correlation was observed between

GNS and PTN (r = −0.069) or SL (r = 0.022). The correlation

coefficient between GNS and GNFS was highest (r = 0.83).
BSE-Seq analyses

Based on the BSE-Seq data from four libraries, genomic regions

associated with GNS were detected (Supplementary Table 1). After

filtering, the numbers of clean reads in the four libraries were

77,283,512 (ZKM13F10), 91,988,190 (CM42), 119,966,894 (GNS-

H), and 171,166,254 (GNS-L), respectively. This result indicates
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that the data volume is sufficient for the subsequent analysis

(Supplementary Table 2). Approximately 99.44% or higher of the

captured reads were successfully mapped to the reference genome.

The average sequencing depths ranged from 20.03× to 64.96×.

Moreover, the coverage ≥5× varied from 60.38% to 78.15% in the

four libraries, demonstrating high quality and adequate sequencing

depth for BSE-Seq analysis. A total of 5,969,324 SNPs were

identified in the dataset, and the number of SNPs per

chromosome ranged from 58,929 to 630,245.

The ED and D(SNP-index) methods were used to detect

genomic regions associated with GNS. Based on these results,

genomic regions associated with GNS were detected on

chromosomes 5A and 6A by ED and on chromosomes 4B, 5A,

and 6A by D(SNP-index), respectively (Figure 2 and Supplementary

Table 3). Specifically, the overlapping physical intervals detected by

both methods were found in the range of 404.14 Mb–440.88 Mb on

chromosome 5A and in 265.97 Mb–320.49 Mb on chromosome 6A.
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Genetic map construction and
QTL analysis

To confirm the preliminarily detected genomic regions

associated with GNS, the polymorphic SNP sites within expanded

regions (chr5A: 332.84 Mb–532.48 Mb; chr6A: 80.04 Mb–486.84

Mb) were converted into KASP markers (Supplementary Tables 4,

12). The phenotypic data evaluated in eight environments and the

combined analysis (the BLUE dataset was set as an additional

environment) were used for QTL mapping.

For chromosome 5A, 19 KASP markers were successfully

developed to construct a genetic map with a length of 41.1 cM.

According to this map, a major and stable additive QTL QGns.cib-

5A was detected in five environments including the BLUE dataset

(Figures 3A and 4). It explained 8.46%–14.43% of phenotypic

variance, and the LOD values varied from 4.35 to 8.16. The

favorable allele of QGns.cib-5A was contributed by ZKM13F10,
FIGURE 1

Coefficients of the pairwise Pearson’s correlations between grain number per spike (GNS) and other yield-related traits in the 13CM population. The
traits include productive tiller number (PTN), grain length (GL), grain width (GW), GL/GW, thousand grain weight (TGW), plant height (PHT), spike
length (SL), fertile spikelet number per spike (FSN), grain number per fertile spikelet (GNFS), and spike compactness (SC) (the coefficient of the
pairwise Pearson’s correlations between GNS and FSN, GNFS have been published in Jiang et al., 2023). ** and *** represent significance at P < 0.01
and P < 0.001.
TABLE 1 Phenotypic variation and heritability (H2) of grain number per spike (GNS) of the parents and 13CM lines in eight environments and the
BLUE dataset.

Env. Parents 13CM lines H2

ZKM13F10 CM42 Range Mean ± SD SK. Ku. CV (%)

E1 77.67 49.67** 43.17–86.50 60.75 ± 6.21 0.40 0.92 10.2 0.83

E2 N N 42.60–79.25 59.56 ± 5.88 0.15 0.14 9.6

E3 68.00 65.33 42.30–81.09 60.85 ± 0.38 0.20 0.30 9.8

E4 64.50 50.00* 43.45–80.84 59.46 ± 0.40 0.30 0.30 10.5

E5 60.30 63.71 38.67–71.17 56.15 ± 0.37 −0.14 0.22 10.1

E6 N N 41.30–75.82 57.30 ± 0.41 −0.06 0.22 10.9

E7 63.83 48.88** 39.32–76.16 56.84 ± 0.41 0.17 0.77 11.1

E8 63.17 53.00 29.00–80.88 60.83 ± 0.47 −0.37 0.86 11.9

BLUE 64.24 50.19* 42.86–72.47 58.52 ± 0.30 −0.03 0.27 7.9
Env., environment; BLUE, best linear unbiased estimation; SD, standard deviation; SK., skewness; Ku., kurtosis; CV, coefficient of variation; N, the data were missed; H2, broad-sense heritability;
* and ** represent significant at P < 0.05 and P < 0.01.
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and this QTL was located in a 2.8-cM genetic interval between the

markers KASP12 and KASP13 (Table 2).

For chromosome 6A, 19 KASP markers were developed and

the genetic map spanned 20.4 cM in length. QGns.cib-6A, a

major and stable additive QTL, was identified in E5, E7, E8, and

the BLUE dataset (Figures 3B and 5A). It explained 5.44%–

12.38% of phenotypic variance with the LOD values ranging

from 3.82 to 30.80. The favorable allele of QGns.cib-6A was

contributed by ZKM13F10. The QTL was located in a 0.2-cM

gene t i c in t e rva l be tween the marker s KASP26 and

KASP27 (Table 2).

In addition, seven QTL were identified between the markers

KASP26 and KASP27 on chromosome 6A (Supplementary Table 5).

Three major and stable QTL (QTgw.cib-6A, QGl.cib-6A, and

QGw.cib-6A) related to grain size and weight were detected

(Figures 5F–H). QTgw.cib-6A was detected in five environments

and the BLUE dataset and explained 10.26%–19.94% of phenotypic

variance, with the LOD values ranging from 7.20 to 15.02. The

QGl.cib-6A (LOD = 6.01–48.38; PVE = 8.68%–14.77%) was

detected in four environments and the BLUE dataset. QGw.cib-6A

(LOD = 5.70–12.48; PVE = 8.12%–16.74%) was detected in four

environments and the BLUE dataset. The favorable alleles of
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QTgw.cib-6A, QGl.cib-6A, and QGw.cib-6A were all contributed

by CM42.

For grain number-related traits, three QTL QFsn.cib-6A,

QGnfs.cib-6A, and QSc.cib-6A were also identified (Figures 5B, C,

E). QFsn.cib-6A (LOD = 5.22–7.40; PVE = 7.48%–10.34%), a major

and stable QTL, was detected in E5, E7, and the BLUE dataset.

QSc.cib-6A (LOD = 4.18–7.07; PVE = 6.21%–9.86%), a stable QTL,

was identified in E4, E6, and E7. QGnfs.cib-6A (LOD = 3.17–15.55;

PVE = 4.69%–4.99%), a minor QTL, was detected in E5 and the

BLUE dataset. The favorable allele of QFsn.cib-6A, QGnfs.cib-6A,

and QSc.cib-6A was all contributed by ZKM13F10.

Meanwhile, QPht.cib-6A, a stable QTL, was detected in six

environments (Figure 5D). It explained 6.62%–8.39% of phenotypic

variance with the LOD values ranging from 4.80 to 36.31. The

favorable allele of QPht.cib-6A was contributed by CM42.

Based on the mapping result, eight QTL, QGns.cib-6A,

QTgw.cib-6A, QGl.cib-6A, QGw.cib-6A, QFsn.cib-6A, QGnfs.cib-

6A, QSc.cib-6A, and QPht.cib-6A, were detected in the same

interval. Temporarily, we designated this common locus as

QClu.cib-6A.

In the QE interaction analysis, a total of 19 QTL were detected,

including the nine QTL identified in the single-environment
B

A

FIGURE 2

Locally weighted scatterplot smoothing (LOESS) fitting Manhattan plot for grain number per spike (GNS). Panels (A, B) show the LOESS fits of ED4

and |D(SNP-index)| for GNS, respectively. The cutoff values for the two methods are indicated by the dotted lines, with threshold values of 0.1214
and 0.3243 for the LOESS fits of ED4 and |D(SNP-index)|, respectively.
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analysis. Except for QGns.cib-5A, QGw.cib-6A, and QPht.cib-6A,

the PVE (A) of the remaining six QTL were significantly smaller

than that of PVE (AE), indicating that these QTL were not stable

across environments (Supplementary Table 6). No epistatic QTL

were found in this study (data not shown).
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Effects of major QTL on
corresponding traits

By analyzing the genotyping results of the flanking markers

KASP12 and KASP26, the effects of QGns.cib-5A and QGns.cib-6A
BA

FIGURE 3

Genetic maps of the major quantitative trait loci (QTL) QGns.cib-5A (A) and QGns.cib-6A (B) and their effects on grain number per spike (GNS). The
black area represents the genetic intervals of QGns.cib-5A and QGns.cib-6A. The effects of the major QTL on GNS are shown as box plots, calculated
after grouping the 13CM population into two classes based on the KASP marker. ZKM13F10 and CM42 indicate the lines with and without positive
alleles of QGns.cib-5A and QGns.cib-6A, respectively. ns, *, and *** represent significance at P > 0.05, P < 0.05, and P < 0.001.
FIGURE 4

Logarithm of the odds (LOD) profile of QGns.cib-5A in the 13CM population using the inclusive composite interval mapping (ICIM) method.
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on GNS were examined. For QGns.cib-5A, lines with homozygous

alleles from ZKM13F10 and CM42 were divided into two groups.

Significant differences (P < 0.05 or P < 0.001) in GNS were observed

between these groups. QGns.cib-5A was found to significantly

increase GNS by 4.35%–9.45% across five environments (E3, E4,

E6, E7, and the BLUE dataset) (Figure 3A). For QGns.cib-6A,

significant differences (P < 0.001) in GNS were observed between
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the groups in all environments. QGns.cib-6A significantly increased

GNS by 2.84%–8.23% (Figure 3B).

Effects of QClu.cib-6A, a QTL cluster, on other seven yield-

related traits except GNS were assessed. For three grain size and

weight traits, significant differences (P < 0.01 or P < 0.001) between

groups in all or eight environments were detected and QClu.cib-6A

significantly increased TGW, GL, and GW by 4.66%–15.92%,
TABLE 2 Quantitative trait loci (QTL) on chromosomes 5A and 6A for grain number per spike (GNS) identified across multiple environments and the
BLUE dataset in the 13CM population.

QTL Env. Genetic interval (cM) Flanking markers LOD PVE (%) Add Physical position (Mb)

QGns.cib-5A E3 8.50–10.50 KASP12–KASP13 4.35 8.46 1.70 435.62–441.15

E4 8.50–10.50 KASP12–KASP13 5.20 9.58 2.00

E6 8.50–10.50 KASP07–KASP08 6.55 12.24 2.22

E7 5.50–7.50 KASP12–KASP13 5.07 9.29 1.96

BLUE 8.50–10.50 KASP12–KASP13 8.16 14.43 1.78

QGns.cib-6A E5 8.50–9.50 KASP26–KASP27 30.80 11.47 4.05 236.95–263.29

E7 8.50–9.50 KASP26–KASP27 3.82 5.44 1.40

E8 8.50–9.50 KASP26–KASP27 22.95 5.58 4.36

BLUE 8.50–9.50 KASP26–KASP27 9.04 12.38 1.53
Env., environment; PVE, phenotypic variation explained; LOD, logarithm of the odd; Add, additive effect (positive values indicate that the alleles from ZKM13F10 increases the trait scores, and
negative values indicate that the allele from CM42 increases the trait scores); BLUE, best linear unbiased estimation.
B C D

E F G H

A

FIGURE 5

Logarithm of the odds (LOD) profile of QGns.cib-6A (A), QFsn.cib-6A (B), QGnfs.cib-6A (C), QPht.cib-6A (D), QSc.cib-6A (E), QTgw.cib-6A (F),
QGl.cib-6A (G), and QGw.cib-6A (H) in the 13CM population using the inclusive composite interval mapping (ICIM) method.
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1.55%–4.66%, and 1.70%–6.13%, respectively (Supplementary

Figures 2E-G). For three grain number-related traits, significant

differences (P < 0.05, P < 0.01, or P < 0.001) between groups were

detected in seven or six environments and QClu.cib-6A significantly

increased FSN, GNFS, and SC by 2.72%–3.44%, 2.34%–3.76%, and

4.90%–7.12%, respectively (Supplementary Figures 2B–D).

Meanwhile, significant differences (P < 0.05 or P < 0.001) on

plant height were found between groups in all environments, and

QClu.cib-6A significantly increased PHT by 3.82%–11.61%

(Supplementary Figure 2A).
Effects of QGns.cib-5A and QGns.cib-6A
on other yield-related traits

To detect the effects of QGns.cib-5A and QGns.cib-6A on other

yield-related traits, the 13CM lines were divided into two groups

based on the marker’s spectra of KASP12 and KASP26, respectively.

For QGns.cib-5A, the comparative analysis between the two groups

based on the BLUE dataset showed thatQGns.cib-5A had significant

effects on PTN, FSN, SL, and GL/GW (P < 0.05, P < 0.01, or P <

0.001) (Supplementary Figure 3). Significant differences in PTN and

SL were observed between the two groups for QGns.cib-6A (P <

0.001) (Supplementary Figure 4).
Additive effect of QGns.cib-5A and
QGns.cib-6A

In the present study, two QTL QGns.cib-5A and QGns.cib-6A

for GNS were identified. Subsequently, the additive effects of

QGns.cib-5A and QGns.cib-6A on GNS in the 13CM population

were analyzed. Compared with lines with unfavorable alleles, lines
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with a favorable allele of GNS at QGns.cib-5A or QGns.cib-6A

significantly increased GNS by 6.16% (P < 0.001) or 5.67% (P <

0.001), respectively. Compared with lines carrying unfavorable

alleles, lines with both favorable alleles exhibited a significant

increase in GNS by 12.85% (P < 0.001) (Figure 6).
Validation of QGns.cib-5A and QGns.cib-
6A in different genetic backgrounds

Two populations (CZ5782 and CS104) were used to evaluate the

effects of QGns.cib-5A and QGns.cib-6A in different genetic

backgrounds, respectively. KASP12 (closely linked to QGns.cib-

5A) and KASP26 (tightly linked to QGns.cib-6A) were used for

genotyping. For KASP12, polymorphism was detected in QGns.cib-

5A between CM104 and ZM5782. For KASP26, polymorphism was

detected in QGns.cib-6A between CM104 and SH352. According to

the genotyping results, the F2 individuals from CZ5782 and CS104

were divided into three groups: individuals with a CM42

homozygous allele, individuals with a non-CM42 homozygous

allele, and individuals with heterozygous allele. Significant

differences (P < 0.05, P < 0.01, or P < 0.001) in GNS were

identified between the groups with different alleles in both

populations. Lines with the favorable and homozygous alleles

significantly increased GNS by 6.44%–8.42% and 3.72%–8.86% in

CZ5782 and CS104 populations, respectively (Figure 7).
Candidate gene analysis of QGns.cib-5A
and QGns.cib-6A

After screening the physical interval of QGns.cib-5A (435.62

Mb–441.15 Mb) using IWGSC RefSeq v2.1, 150 prediction genes
FIGURE 6

Additive effects of QGns.cib-5A and QGns.cib-6A on grain number per spike (GNS) in the 13CM population. “+” and “–” represent lines with the
alleles from ZKM13F10 and CM42 of the target loci, respectively. *** represents significance at P < 0.001.
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including 76 high-confidence prediction genes were obtained

(Supplementary Table 7). Spatial expression patterns showed

that 26 genes were highly expressed in spike, indicating that they

might participate in spike development (Supplementary

Figure 5). In addition, according to gene annotation, and

homologous gene function in rice and/or Arabidopsis thaliana,

TraesCS5A03G0562600 might be related to spike development.

According to the BSE-Seq data, two SNPs and an InDel were

identified between the two parents of TraesCS5A03G0562600

(Supplementary Table 8).

For QGns.cib-6A, 144 prediction genes (including 35 high-

confidence genes) were detected in the physical interval of 236.95

Mb–263.29 Mb using IWGSC RefSeq v2.1 (Supplementary Table 7).

Expression patterns suggested that 16 genes were highly expressed

in spike, indicating that they might be related to spike development

(Supplementary Figure 6). Furthermore, according to the gene

annotation and the homologous gene function in rice and/or

Arab i d o p s i s t h a l i a n a , Tra e sCS 6A0 3G048 7 3 0 0 and

TraesCS6A03G0492700 might participate in spike development.

Based on the BSE-Seq data, an InDel and one InDel were found

in the upstream and exon of the TraesCS6A03G0487300 and

TraesCS6A03G0492700, respectively.
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Haplotype analysis of QGns.cib-5A and
QGns.cib-6A

According to the high-quality resequencing data of 145 Chinese

wheat accessions, the haplotypes in the key regions of QGns.cib-5A

and QGns.cib-6A were analyzed. Six and three haplotypes were

found in QGns.cib-5A and QGns.cib-6A , respect ive ly

(Supplementary Figures 7, 8). For QGns.cib-5A, six KASP

markers were successfully developed to differentiate the six

haplotypes and used to perform the haplotype analysis in our

natural population (321 wheat accessions). As expected, all six

haplotypes were detected, namely, haplotype-I, -II, -III, -IV, -V,

and -VI (Supplementary Figure 9A and Supplementary Table 11).

Based on the association analysis result, GNS of accessions with

hap-V (including ZKM13F10) was 12.27% and 2.10% higher than

that of accessions with hap-VI (including CM42) in ‘Cultivars’ and

‘Landraces’, respectively (Figure 8A).

For QGns.cib-6A, three KASP markers were developed to

distinguish the three haplotypes and haplotype analysis was

carried out in 321 wheat accessions. As expected, three

haplotypes (hap-I, -II, and -III) were detected (Supplementary

Figure S9B; Supplementary Table 11). According to association
B

A

FIGURE 7

Validation of QGns.cib-5A (A) and QGns.cib-6A (B) in different genetic backgrounds. The fluorescence PCR genotyping results of the Kompetitive
Allele-Specific PCR (KASP) markers KASP12 and KASP26 in the CZ5782 and CS352 populations, respectively. The effects of QGns.cib-5A and
QGns.cib-6A on grain number per spike (GNS) in the CZ5782 and CS352 populations, respectively. *, **, and *** represent significance at P < 0.05, P
< 0.01, and P < 0.001, respectively.
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analysis, significant difference on GNS was detected between

accessions with hap-I (including ZKM13F10) and hap-II

(including CM42) in ‘Cultivars’. However, a higher but non-

significant difference was detected between the two haplotypes in

‘Landraces’ (Figure 8B).
Discussion

Comparison of the detected QTL to those
reported in previous studies

In this study, two major and stable QTL, QGns.cib-5A and

QGns.cib-6A, were identified on chromosomes 5A and 6A,

respectively, using the BSE-Seq method and linkage analysis. To

detect if they overlap with QTL reported in previous studies, we

compared their physical intervals based on the CS reference genome

(Table 2 and Supplementary Table 9).

For QGns.cib-5A, 14 QTL controlling GNS on chromosome 5A

were screened in previous studies. Among them, QGN.perg-5A

(462.01 Mb) and an unnamed QTL (tightly linked marker

Xgwm186, 472.16 Mb) are located near the physical interval of

QGns.cib-5A (435.62 Mb–441.15 Mb) (Liu et al., 2006; Pretini et al.,

2021). QGns.cau-5A.2 (439.67 Mb) and an un-named QTL

(Xgwm415–Xgwm304, 107.10 Mb–664.99 Mb) were overlapped

with QGns.cib-5A (Su et al., 2009; Guan et al., 2018). However,

the unnamed QTL (Xgwm415–Xgwm304, 107.10 Mb–664.99 Mb)

was identified in a large interval and only detected in two

environments. Another unnamed QTL (tightly linked marker

Xgwm186, 472.16 Mb) was detected in only one environment,

suggesting it was unstable. QGns.cau-5A.2 was detected in six

environments and located within the physical interval of

QGns.cib-5A, but its PVE value is less than 10%, indicating that it

is a minor QTL. QGN.perg-5A is located near QGns.cib-5A and was

detected in three environments with a PVE value ranging from

14.6% to 17.5%, suggesting that it is a major and stable QTL. As a

result, whetherQGns.cib-5A is a novel QTL or allelic to the reported

loci remains to be revealed.
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For QGns.cib-6A, several cloned genes and QTL around the

candidate region associated with GNS have been reported in

previous studies (Supplementary Tables 9, 10). TaBT1-6A, located

near QGns.cib-6A and associated with grain size, weight, and grain

total starch content, was identified (Wang et al., 2019). However,

our remapping result showed that TaBT1-6A was not linked to

QGns.cib-6A, suggesting that TaBT1-6A is not the candidate gene of

QGns.cib-6A. Another gene, TaGW2-6A, is located within the

physical interval of QGns.cib-6A and plays pleotropic effects on

wheat agronomic traits (Su et al., 2011; Jaiswal et al., 2015). Based

on an SNP site (−593 bp, A/G) in the promoter region, a KASP

marker TaGW2-6A-593 was employed (Su et al., 2011)

(Supplementary Table 12). The remapping results indicated that

TaGW2-6A was not linked to QGns.cib-6A, suggesting that

TaGW2-6A is not the candidate gene of QGns.cib-6A. Meanwhile,

no previously reported QTL for GNS overlapped with QGns.cib-6A

(Supplementary Table 9), indicating that it may be a novel QTL.
Relationships between GNS and TGW and
pleiotropic effects of QGns.cib-5A and
QGns.cib-6A

Generally, a tradeoff between grain number and grain weight is

usually detected, which has been a major limitation in further

breeding program. In the present study, the significant and

negative correlations between GNS and TGW, GL, GW, and GL/

GW supports the tradeoff effect. According to statistics,

approximately 90% of the identified QTL controlling GNS have a

negative and pleiotropic effect on TGW (Yang et al., 2021). As a

result, QTL controlling GNS with no effect on TGW is essential for

breeding. In this study, QGns.cib-6A showed a significant and

negative effect on TGW, indicating a typical tradeoff effect between

GNS and TGW (Supplementary Figure 2E). On the other hand,

QGns.cib-5A had no significant effect on TGW (Supplementary

Figure 3G). This suggests that QGns.cib-5A can increase GNS

without reducing TGW and can be utilized in breeding program.
BA

FIGURE 8

Haplotypes and their distribution frequency of QGns.cib-5A (A) and QGns.cib-6A (B) in 321 wheat accessions. ‘C’ and ‘L’ represent ‘cultivars’ and
‘landraces’, respectively; ns and *** represent significance at P > 0.05 and P < 0.001.
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QGns.cib-5A and QGns.cib-6A are the
artificial selection loci during
wheat improvement

During the long history of wheat domestication and selection,

favorable haplotypes have been retained and enriched. However, the

limited availability of genomic information has restricted access to

haplotype information in wheat. Recently, more resequencing data of

wheat materials have become available. For instance, the Wheat

SnpHub Portal database has collected 13 resequencing datasets,

encompassing 3,253 wheat accessions. This provides us the

opportunity to analyze the haplotypes of a specific genomic region.

In the present study, the haplotypes for the crucial regions of

QGns.cib-5A and QGns.cib-6A were analyzed using the

resequencing data from 145 Chinese landmark cultivars (Hao

et al., 2020). Based on the haplotype analysis of 321 wheat

accessions, only one (0.65%) and two (1.29%) wheat accessions,

respectively, were detected in hap-V (containing ZKM13F10) and

hap-VI (containing CM42) in landraces, which suggests they were

both rare haplotypes of QGns.cib-5A. In cultivars, the distribution

frequency of the two haplotypes increased, with 18 accessions (hap-

V, 11.32%) and 7 accessions (hap-VI, 4.40%), respectively. This

finding indicates that both haplotypes have been artificially selected

and enriched during wheat improvement. For QGns.cib-6A, 50

(32.26%) and 17 (10.97%) wheat accessions were found in hap-I

(containing ZKM13F10) and hap-II (containing CM42) in

landrace, respectively. Moreover, in cultivar, the distribution

frequency of hap-I was doubled (97, 61.01%) whereas hap-II was

retained (10, 6.29%). These results suggest that hap-I was enriched.

Overall, both QGns.cib-5A and QGns.cib-6A appear to have been

the targets of artificial selection in wheat improvement.
Potential candidate genes for QGns.cib-5A
and QGns.cib-6A

Within the physical interval of QGns.cib-5A and QGns.cib-6A, 76

and 35 high-confidence prediction genes were detected in the CS

reference genome, respectively (Supplementary Table 7). Through

spatiotemporal expression patterns, homology analysis, function

annotation, and sequence difference analysis, we predicted

TraesCS5A03G0562600 as a potential candidate gene for QGns.cib-

5A. TraesCS5A03G0562600 is the orthologous gene of AUXIN

RESISTANT 4 (AXR4) in Arabidopsis, and it encodes the

pseudomolecule protein AUXIN RESPONSE 4 (Supplementary

Table 7). In Arabidopsis, AXR4 participates in biological processes of

auxin polar transport (Hobbie, 2006). Auxin plays a crucial role in

regulating plant growth, including the development of reproductive

organs (Lampugnani et al., 2013). The BSE-Seq data revealed that two

SNPs exist in the exon region of TraesCS5A03G0562600, which may

result in functional change of this gene.

For QGns.cib-6A, we predicted TraesCS6A03G0487300 and

TraesCS6A03G0492700 as potent ia l candidate genes .

TraesCS6A03G0487300 is the orthologous gene of SPATULA

(SPT) in Arabidopsis, encoding the pseudomolecule protein basic

he l ix– loop–he l ix (bHLH) DNA-binding super fami ly
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(Supplementary Table 7). In Arabidopsis, SPT participates in

biological processes of flower development, suggesting it involves

in regulating seed number (Pfannebecker et al., 2017). The BSE-Seq

data revealed the presence of one SNP in the upstream region and

two SNPs in the downstream regions of TraesCS6A03G0487300,

potentially resulting in changes in expression levels (Table S8).

TraesCS6A03G0492700 is the orthologous gene of OsUBP15 in rice

andUBIQUITIN-SPECIFIC PROTEASE 15 (UBP15) in Arabidopsis,

and it encodes the pseudomolecule protein ubiquitin carboxyl-

terminal hydrolase. OsUBP15 involves in regulating the number

of lateral cells in the glume and TGW in rice (Shi et al., 2019).

UBP15 participates in biological processes of cell division, flower

development, fruit development, leaf development, and protein de-

ubiquitination in Arabidopsis (Wu et al., 2022). Meanwhile,

according to BSE-Seq data, two InDels were detected between the

parents of TraesCS6A03G0492700 (Supplementary Table 8). In

summary, TraesCS5A03G0562600 may be the candidate gene

for QGns.cib-5A , whereas TraesCS6A03G0487300 and

TraesCS6A03G0492700 may be the candidate genes for QGns.cib-

6A, and their further investigation through map-based cloning

would be valuable.
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Improving the quality of the appearance of rice is critical to meet market

acceptance. Mining putative quality-related genes has been geared towards

the development of effective breeding approaches for rice. In the present

study, two SL-GWAS (CMLM and MLM) and three ML-GWAS (FASTmrEMMA,

mrMLM, and FASTmrMLM) genome-wide association studies were conducted in

a subset of 3K-RGP consisting of 198 rice accessions with 553,831 SNP markers.

A total of 594 SNP markers were identified using the mixed linear model method

for grain quality traits. Additionally, 70 quantitative trait nucleotides (QTNs)

detected by the ML-GWAS models were strongly associated with grain aroma

(AR), head rice recovery (HRR, %), and percentage of grains with chalkiness (PGC,

%). Finally, 39 QTNs were identified using single- and multi-locus GWAS

methods. Among the 39 reliable QTNs, 20 novel QTNs were identified for the

above-mentioned three quality-related traits. Based on annotation and previous

studies, four functional candidate genes (LOC_Os01g66110, LOC_Os01g66140,

LOC_Os07g44910, and LOC_Os02g14120) were found to influence AR, HRR (%),

and PGC (%), which could be utilized in rice breeding to improve grain

quality traits.
KEYWORDS

rice, grain quality, QTNs, candidate genes, GWAS
Introduction

Cultivated rice (Oryza sativa L.) is an important source of calories for more than half of

the global population. With improved living standards and increasing awareness among

people worldwide, there is a growing demand for the consumption of superior quality

healthier rice varieties (Bao, 2014; Adjah et al., 2020; Selvaraj et al., 2021; Hori and Sun,
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2022). Therefore, high-quality rice has become a paramount

consideration for rice breeders, consumers, and producers (Qiu

et al., 2021). The crucial determinants of rice grain quality include

appearance, milling, nutritional composition, aroma, and cooking

properties. Recently, more efforts have been made to breed rice

varieties with desirable traits in terms of higher head rice recovery

(HRR, %), and lower percentage of chalky grains (PGC, %) by

discovering key haplotype variations, thereby harnessing allelic

diversity in the germplasm (Selvaraj et al., 2021). Currently,

molecular advances and genome sequencing platforms with lower

costs have aided in cloning and functionally dissecting a series of

genetic factors/quantitative trait loci (QTLs) in rice (Varshney et al.,

2014; Abbai et al., 2019). Genetic studies have shown that multiple

factors control each quality trait reflecting the intricate nature of the

rice quality traits (Li et al., 2022). The genes affecting these

physicochemical characteristics are related to starch biosynthesis,

the metabolism of seed storage proteins (SSPs), and specific

nutraceutical compounds (Biselli et al., 2015). Grain chalkiness,

for example, is associated with many genes such as Flo2, Chalk5,

GIF2, LTPs, GBSS I, OsPUL, OsBT1, OsBE1, and SSIIa (Li et al.,

2014a; Wang et al., 2018), and several QTLs have been detected and

widely distributed across the rice genome (Zhang H. et al., 2019;

Hori et al., 2021), two of which have been fine-mapped by

association and linkage mapping, such as qPGWC-7 (Zhou et al.,

2009), qPGWC-8 (Guo et al., 2011; Zhao et al., 2016), and one QTL

cluster mapped on chromosome 4 by single and joint mapping

studies between the markers id4007289 and RM252. Loss of

function mutations and genic interactions between the alleles of

well-known genes responsible for biosynthesis of starch, viz., GBSSI,

SS2a, SS3a, SS4b, BE2b, and, ISA1 gene have been shown to increase

the amount of resistant starch in rice, which is believed to be crucial

for improving human health (Zhang C. et al., 2019; Fujita et al.,

2022; Miura et al., 2022).

Regarding the percentage of rice recovery determining rice

grain quality, approximately 34 genes/QTLs have been

documented in all rice chromosomes, which are largely

influenced by the environment (Bao, 2014). A common QTL for

grain size and head rice recovery was also detected on chromosome

3, suggesting a relationship between these two traits at the genetic

level (Tan et al., 2001). An increase in grain yield has been reported

in near-isogenic lines (NILs) introduced with the null allele of rice

chalkiness gene PDIL1-1, explaining significant differences in

phenotype between the genetic makeup of the rice cultivars;

however, there was an increase in grain chalkiness (Hori and Sun,

2022). The appearance and rice grain quality are closely related to

its rice grain size (Xie et al., 2013; Bao, 2019). Interestingly,

pleiotropic effects have been reported in 25 cloned QTLs

identified for multiple grain size-controlled traits, namely rice

yield, appearance, and grain quality (Wang et al., 2018).

Furthermore, the gw2 WY3 allele had positive effects on grain

yield, but reduced grain quality by increasing PGC (%) and

decreasing HRR (%) (Song et al., 2007).

Fragrant rice is a special group with a distinct aroma, flavor, and

medicinal, antioxidant, and stress-resistance properties. To date,

more than 200 aroma compounds have been documented in

fragrant rice (Champagne, 2008) and 2-acetly-1-pyrroline (2-AP)
Frontiers in Plant Science 02255
has been recognized as the most prominent compound contributing

to aroma production in rice (Poonlaphdecha et al., 2016; Wakte

et al., 2017) which is under the control of a recessive gene Badh2.

RNA Seq studies have shown that the expression of heavy metal

transporters in response to zinc at the transcriptional and post-

transcriptional levels, and their epigenetic modifications, regulate

the biosynthesis of 2-AP in aromatic rice varieties (Imran et al.,

2022). The haplotype diversity of the Badh2 gene was investigated

in 22 fragrant landraces from Thailand, identifying four new

haplotypes (H1, H2, H3, and H4). These badh2 alleles may serve

as functional markers, and landraces with a favorable haplotype

(H1) could be employed as genetic resources in rice breeding

programs (Chan-In et al., 2020). Several other genes affecting seed

development and quality traits have been characterized, such as

GW2 (Song et al., 2007), GS3 (Sun et al., 2018), GS2 (Hu et al.,

2015), GS5 (Xu et al., 2015), GS9 (Zhao et al., 2018), GW5 (Duan

et al., 2017), GLW7 (Si et al., 2016), and OsMAPK6 (Liu et al., 2015).

Therefore, understanding the molecular basis of these traits is a

prerequisite for identifying novel alleles and donors related to high

grain quality, which could considerably improve rice breeding

efficiency (Yano et al., 2016; Wang et al., 2017; Abbai et al., 2019;

Misra et al., 2019; Verma et al., 2021; Zhong et al., 2021). These

newly recognized superior versions of quality genes might then be

taken together through the rapid and undoubtedly proved concept

of ‘haplotype introgression’ (Bevan et al., 2017). Nevertheless, the

lack of information regarding the superior haplotype combinations

of several key grain quality genes has been one of the major

bottlenecks, and the 3000-rice genome project (3K-RGP) offers

enormous potential for harnessing the haplotype diversity of grain

quality genes in rice (Li et al., 2014b).

Genome-wide association studies (GWAS) have become

popular for the genetic dissection of complex traits into QTL/

candidate genes that might be deployed in precision breeding

programs aimed at crop improvement (Lipka et al., 2015, Tibbs et

al., 2021). It is considered more efficient than bi-parental mapping

approaches considering the naturally occurring genetic diversity,

high-density genetic markers, and fewer linkage disequilibrium to

identify candidate genes (Alqudah et al., 2020). Statistical methods

with varying degrees of reliability substantially influence the

significant MTAs determined by GWAS (Gawenda et al., 2015;

Visscher et al., 2017; Wen et al., 2018). The commonly used single-

locus mixed model independently scans each SNP marker for

association with a phenotypic trait (Waugh et al., 2014; Gupta

et al., 2019). However, this model lacks accuracy in estimating the

SNP effects and identifies false negatives if the desired trait is

governed by many genes at different loci (Wang et al., 2016),

which is a common scenario in most quantitative traits or in case

it requires a Bonferroni correction (Wen et al., 2018). It has also

been proposed that single-locus models fail to detect the epistatic

interactions that may exist between the closely linked genes

(Gawenda et al., 2015) and are less suitable for harnessing the

haplotype diversity of genes of interest that exist in the germplasm

(Lu et al., 2011; Contreras-Soto et al., 2017; N’Diaye et al., 2017). To

overcome the shortcomings of single-locus models, multi-locus

models such as multi-locus random SNP-effect MLM (mrMLM)

(Wang et al., 2016); multi-locus mixed model (MLMM) (Segura
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et al., 2012), iteractive modified sure-independence screening

expectation maximization Baysian least absolute shrinkage and

selection operator (ISIS EM-BLASSO) (Tamba et al., 2017),

FASTmrMLM (multi-locus random SNP-effect) (Tamba and

Zhang, 2018), FASTmrEMMA (fast multi-locus random-SNP-

effect efficient mixed model analysis) (Wang et al., 2016),

polygenic-background-control-based least angle empirical Bayes

(pLARmEB) (Zhang et al., 2017), and integration of Kruskal–

Wallis test with empirical Bayes (pKWmEB) (Ren et al., 2018)

were developed that test multiple SNP markers simultaneously to

capture the molecular basis underlying different complex traits in

different crop species (Wang et al., 2016) by overcoming the strong

population structure and high linkage disequilibrium between the

markers. In this investigation, we performed a GWAS and

conducted a candidate gene-based association study in a set of

3K-RGP panels, analyzed the haplotype diversity of candidate

genes, and evaluated the performance of different haplotypes

associated with grain aroma, head rice recovery (HRR, %), and

percentage of grains with chalkiness (PGC, %) to accelerate the

design of next-generation quality-rich rice varieties by

incorporating superior haplotypes for use in future rice

improvement programs.
Materials and methods

Plant materials and phenotyping

A subset panel of 3K re-sequenced genomes (https://doi.org/

10.1186/2047-217X-3-7) was obtained from the IRRI South Asia

Regional Center, NSRTC Campus, Varanasi, Uttar Pradesh, India.

The 196 rice accessions used in our investigation were collected from

89 countries belonging to four major populations: Xian(indica) (171),

aus/boro (22), tropical Geng (japonica) (3), intermediate type (2), and

two semi-dwarf varieties Pusa Basmati 1121 and PB-1

(Supplementary Table 1). The 198 accessions were planted in

randomized plots in the field at the ICAR-Indian Agricultural

Research Institute (IARI), New Delhi, India with four replications

within Kharif 2020 and Kharif 2021. The uniform growth of seedlings

was confirmed by germinating seeds on a raised seedbed, and 21 days

old plantlets were transplanted. Each accession was sown in two rows,

with each row consisting of 10 plants at a distance of 20 cm × 15 cm

within and between the two rows. Standard practices were followed

for field management. At maturity, paddy seeds from each plot were

collected in bulk and dried in hot air ovens. Approximately 150 g of

seeds was dehusked andmilled in a laboratory rice husker andmilling

machine (model JGMJ 8098, China) after cleaning the paddy with the

optimal level of moisture. Three traits related to grain quality were

recorded using the Standard Evaluation System in rice (http://

www.knowledgebank.irri.org/images/docs/rice-standard-evaluation-

system.pdf): grain aroma, head rice recovery (HRR, %), and

percentage of grains with chalkiness (PGC, %). The grain aroma

was estimated for each accession using a sensory method (Sood and

Siddiq, 1978). Two fragrant Basmati rice varieties, viz., Pusa-1121

with an aroma score of 3, PB-1 with an aroma score of 2, and a non-

aromatic rice Pusa-44, were used in the analysis, and each sample was
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evaluated by seven experts to confirm the phenotype. Following

milling, head rice recovery (HRR, %) and percentage of grains with

chalkiness (PGC, %) were calculated manually and using a

stereomicroscope based on the SES Scale 9, respectively.

Meanwhile, the range, mean value, deviation, and phenotypic

coefficient of variation (CV) were calculated for each trait using R

Studio (Supplementary Table 2). Correlations of quality traits among

themselves were also studied by measuring the linear correlation

calculated using the R package corrr (https://cran.r-project.org/bin/

windows/base/). Heritability was estimated for all three quality traits

using R package variability.
Genotyping

The genomic data of 198 accessions selected from the 3K RG

panel were analyzed. The SNP dataset (3K RG 1M GWAS SNP) was

downloaded from the repository of rice variants in the public

domain SNP-seek(http://snp-seek.irri.org/_download.zul). Missing

data were imputed using Beaglev5.4 software. Quality control was

performed using TASSELv5.2.82 software to obtain a filtered subset

of 553,831 SNPs with a minor allele frequency >5% and a major

allele frequency <95% for genome-wide association analysis.
Cluster analysis, population structure,
and kinship

Neighbor-joining clustering was performed based on the SNP

data using TASSELv5.2.82 software and visualized using the

interactive tree of life (iTOL) software. The subgroups were

assessed using a Bayes ian model-based approach in

STRUCTUREv2.3.4 (Pritchard et al., 2000) and PCA analysis.

The structural analysis was executed with the presumed number

of subgroups ranging between one and seven, with each K repeated

thrice. A burin-in period of 100,000 iterations followed by 100,000

Markov Chain Monte Carlo (MCMC) simulations were

implemented for every run, and the number of subgroups was

then determined using the Evanno DKmethod (Evanno et al., 2005)

embedded in the STRUCTURE HARVERSTER software (Earl and

VonHoldt, 2012). Component analysis was performed using the

Genome Association and Prediction Integrated Tool (GAPIT) R

package (Lipka et al., 2012). Number of significant principal

components explaining the population variance and structure

were determined by plotting a scree plot in R. For kinship

calculation, the Centered_identity-by-state (IBS) default method

was employed in TASSELv5.2.82 software (Bradbury et al., 2007).

The structure, kinship matrix, and average trait value of each

accession were used for the association studies based on SNP data.
Linkage disequilibrium analysis

Linkage disequilibrium (LD) decay distance between the pair of

SNP markers was calculated on each chromosome as the squared
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coefficient of correlation (r2) values of alleles using LDkit software.

The position on the chromosome at which the r2 value reduced to

half of its average maximum value was defined as the decay in LD

(Huang et al., 2010).
Candidate gene-based association analysis
and identification of superior haplotypes

We performed GWAS on 198 rice accessions using the MLM

and CMLM model with filtered 553,831 SNP markers and default

settings in GAPIT software to estimate the significant SNP-MTAs

for grain aroma, HRR%, and PGC%. Three multi-locus models,

namely mrMLM, FASTmrMLM, and FASTmrEMMA, were also

constructed using the mrMLM R package (https://cran.r-

project.org/web/packages/mrMLM/index.html) to accurately

detect the candidate QTN effect values and confirm the true

associations. Considering an LOD score value ≥3 as the threshold,

significant QTNs were identified (Duan et al., 2017). The common

QTNs detected by the two different ML-GWAS models and SL-

GWAS models were predicted to be good candidates for rice quality

traits. Local haplotype blocks of each robust QTN were generated

with all filtered SNP using PLINKv1.9 (www.cog-genomics.org/

plink/1.9/) as per standard methodology (Gabriel et al., 2002). LD

heatmaps were generated using the LDBlockShow tool. All genes

located within the LD decay distance of the identified QTNs were

extracted and subjected to comprehensive gene annotation studies

to identify the candidate loci for each quality trait using The Rice

Annotation Project-Database (RGAP, http://rice.uga.edu/),

Information Commons for Rice (IC4R, http://ic4r.org/), and

Gramene (https://www.gramene.org/) databases and used for gene

mining. The haplotypes for each of these candidate loci were

estimated considering the non-synonymous coding SNPs in the

SNP-Seek database (https://snp-seek.irri.org/), and Student’s t-test

was performed to test the significant differences among the

haplotypes. The haplotypes revealed and the phenotypic

distribution of each grain quality trait were then represented as

boxplots using the ggplot2 package in R Studio.
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Results

Trait variance and correlations

Three grain quality-related traits, grain aroma, head rice

recovery (HRR, %), and percentage of grains with chalkiness

(PGC, %), were investigated in the selected subset of 198

accessions sampled from 3,000 re-sequenced genomes in the IRRI

Rice Genome Project (3K-RGP). Rice accessions consisting of a

diverse set of Xian, japonica, aus/boro, intermediate type cultivars,

and two check varieties viz., PB-1121 and PB-1 were planted at the

research field of ICAR-IARI, New Delhi in 2020 and 2021. The

statistical parameters were estimated, and the results are listed in

Supplementary Table 2. HRR (%) and PGC (%) followed a

negatively skewed distribution, whereas the grain aroma followed

a positively skewed distribution (Figure 1). Furthermore,

correlation analysis among the three traits indicated a statistically

significant variation between the paired quality traits at the 5% and

1% levels of significance, except for the relationship between HRR

(%) and PGC (%). Grain aroma was positively associated with HRR

(%) (PCC = 0.28) and negatively associated with PGC (%) (PCC =

−0.17), which is consistent with several previous studies (Sanchez

et al., 2023; Song et al., 2007; Adjah et al., 2020; Qiu et al., 2021). In

addition, HRR (%) and PGC (%) had a very weak positive

correlation with a Pearson correlation coefficient (PCC) of 0.03,

which was also consistent with current correlation studies and

BLUP estimates (Sanchez et al., 2023; Nirmaladevi et al., 2015;

Vemireddy et al., 2015; Cruz et al., 2021; Ali et al., 2023). Broad-

sense heritability (H2) estimates were high for HRR (%) (0.99) and

PGC (%) (0.98) which was consistent with similar studies (Sanchez

et al., 2023; Ali et al., 2023). The considerably low H2 for grain

aroma (0.28) suggested that its environmental influence was

attributed to the experimental conditions, as pointed out in an

earlier study (Vemireddy et al., 2015). These findings indicate a

close relationship among the abovementioned quality traits and

suggest their potential role in the genetic improvement of rice

grain yield.
B CA

FIGURE 1

Phenotypic distribution of head rice recovery (HRR, %), grain aroma (AR), and percentage of grains with chalkiness (PGC, %) in a subset of 198
rice accessions.
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Population structure and linkage
disequilibrium analysis

According to principal component analysis, there were three

subpopulations in the selected rice panel (Figure 2C). The scree plot

suggested the significance of three PCs in the subset selected, with

the first two PCs (PC1 and PC2) explaining a cumulative percent

variance of 77.8 (Figure 2B). Neighbor-joining (NJ) clustering also

revealed three distinct clusters based on genetic distances derived

from SNP differences in the selected rice accessions (Figure 2A).

Cluster 1 was identified as the smallest cluster consisting of 4.04% of

indica rice accessions belonging to indx and ind1b subpopulations.

A total of 26.26% of the Xian subpopulations, viz., ind1a, ind1b,

ind2, and ind3, were included in cluster 2. However, cluster 3 was

recognized as the largest and the most diverse cluster, comprising

69.69% of the total accessions, were Xian, japonica, aus/boro, and

intermediate-type subpopulations. LD decay analysis was

conducted using the filtered SNPs. Maximum r2 estimated on the

90th percentile of chromosomes 1 to 12 was 0.3, 0.25, 0.35, 0.25,

0.35, 0.3, 0.3, 0.25, 0.3, 0.35, 0.25, and 0.25, respectively. As shown

in Figure 3, variations were observed in the LD decay distance

among the 12 chromosomes, with the fastest decay occurring in

chromosome 12. These SNPs were found to be distributed across

the whole rice genome, with an average number of SNP per kb 1.28

sufficiently dense to identify significant associations and QTLs.
Association analysis

Associations for all three traits (Aroma, HRR (%), and PGC

(%)) were studied using single-locus approaches (MLM and
Frontiers in Plant Science 05258
CMLM) for QTL detection and three multi-locus methodologies

(mrMLM, FASTmrMLM, and FASTmrEMMA) to identify QTNs.

Using the MLM method, 198, 198, and 198 single nucleotide

polymorphic (SNP) markers corresponding to 23, 22, and 32

QTLs were found to be associated with aroma, HRR (%), and

PGC (%), respectively, considering the threshold value of -log (P)

value = 3 (Supplementary Table 3), similar to multiple recent

GWAS studies (Kikuchi et al., 2017; Bheeanahalli et al., 2021; Hu

et al., 2022). Of these, 24 QTNs for aroma using mrMLM (10),

FASTmrMLM (11), and FASTmrEMMA (3). For HRR (%), eight,

11, and four QTNs were detected using mrMLM, FASTmrMLM,

and FASTmrEMMA, respectively, and 23 QTNs were correlated

with PGC (%) using mrMLM and FASTmrMLM (Supplementary

Figure 1). Manhattan and quantile-quantile plots of all the three

quality traits presented in Figure 4 implied that false associations

were controlled and the SNPs detected by ML-WAS methods were

true associations; however, we witnessed inflation in Q–Q plots

with incorporated population structure. This inflation persisted

because the mixed linear approach (accounting for structure)

utilized the first three PCs as covariates in the regression.

However, the PC-adjusted model-based estimates of standard

errors remove the structure problem, providing correctly

calibrated p-values, which has been well documented in several

studies (Price et al., 2006; Zhang et al., 2008; Voorman et al., 2011).

One of the QTNs detected for aroma (qAR-1-1) was located in

proximity to the well-known rice fragrance gene Badh2 (151 kb).

The recessive gene BADH2 is well established to govern the

synthesis of 2-acetyl-1-pyroline (2-AP) in aromatic rice (Imran

et al., 2022). Furthermore, we found that qHRR-3-1 existed in the

same region adjacent to OsRLCK113 (cysteine-rich receptor-like

kinase 28 precursor gene, LOC_Os03g31260) (Li et al., 2022) and the

gene encoding the ring zinc finger protein (LOC_Os03g31320) (65–
B

C

A

FIGURE 2

Model and PCA based analysis of genetic structure of 198 rice accessions. (A) NJ clustering of 198 rice accessions constructed using 5,53,229 SNPs
evenly distributed throughout the genome. (B) Scree plot depicting the genetic variation with principal components. PC1, PC2, and PC3 represent
the first, second, and third principal components, respectively. (C) Biplot depicting three clusters identified in the selected rice panel.
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66), with confirmed roles in controlling grain yield and quality traits

in rice. qPGC-3-1 and qPGC-3-2 were located adjacent to OsLTP1.3

(Ltpl28-Seed Storage/Protease Inhibitor/Ltp Family Protein

Precursor, LOC_03g59380), OsCESA2 (Cellulose Synthase,

LOC_03g59340) and OsCPK8 (Camk_Camk_Like.24- Calcium

Dependent Protein Kinases, LOC_03g59390) genes regulating
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grain quality traits in rice. Similarly, qPGC-7-2 overlapped with a

gene encoding a retrotransposon protein located in the vicinity of

no apical meristem genes ONAC65 (LOC_07g27330) and ONAC102

(LOC_07g27340), which serves as a regulator of starch and

accumulation of proteins, thereby improving grain quality in rice

(Wang et al., 2020).
B

C

A

FIGURE 4

GWAS for grain quality traits in rice accessions. Manhattan and Quantile-Quantile plots derived through the mrMLM, FASTmrMLM, and
FASTmeEMMA methods depicting the distribution of QTNs on 12 rice chromosomes for grain aroma (AR), head rice recovery HRR (%), and
percentage with grain chalkiness PGC (%). Pink dots indicate all the QTNs mapped by more than one GWAS method, while all the QTNs identified by
a single method are indicated by the light colored dots shown above the gray dotted lines. The known genes around QTNs are marked in red, and
putative candidates around the identified QTNs are marked in dark blue.
FIGURE 3

Chromosome-wise linkage disequilibrium decay based on 198 accessions. The decline in LD-r2 between SNP markers is presented as a function of
physical distance in base pairs.
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In addition, assessment of the results of SL-GWAS and ML-

GWAS revealed 39 QTNs in common based on a critical LOD score

≥3, explaining 0.03%–9.57% of the phenotypic variation (R2)

(Table 1). The fact that half of the detected QTNs (19/39)

overlapped with previously reported genes/QTLs supports the

consistency of our results. Among these, 7, 13, and 19 were
Frontiers in Plant Science 07260
associated with AR, HRR (%), and PGC (%), respectively. Seven

candidate QTNs significantly related to AR were located on

chromosomes 1, 3, 8, 10, 11, and 12. For HRR (%), 13 putative

QTNs were found to be distributed on chromosomes 2, 3, 6, 7, 8,

and 11. A total of 19 QTNs correlated with PGC (%) were found to

be located on chromosomes 1, 2, 3, 5, 7, 9, 10, 11, and 12. Of these,
TABLE 1 QTNs for the three quality traits detected concurrently by using single- and multi-locus GWAS methodologies.

Trait QTN Chr Position LOD R2(%)1 Method2 LOC3/QTL4

Aroma (AR) qAR-1-1 1 20227999 0.05–9.03 0.05–7.5 1,2,3,4,5

qAR-1-2 1 38383904 3.59 3.16 1,2,3 GA20ox-2

qAR-3-1 3 10338993 4.46–5.74 0.13–5.89 1,3,4

qAR-8-1 8 10892476 5.54–6.54 4.25–4.93 3,4 LTP48/CQAP1

qAR-10-1 10 17265187 4.503 0.09–2.57 1,2,5 OsCESA7

qAR-11-1 11 6394202 3.9514 0.03–6.53 1,2,3 OsSRP-PLP

qAR-12-1 12 15819670 6.1642 0.09–3.94 1,2,5 CQAP3

Head Rice Recovery
HRR (%) qHRR-2-1 2 24752396 5.0096 0.05–5.71 1,2,5 hwh1, AQCV031a

qHRR-3-1 3 17840988 3.9148 0.09–4.47 1,2,4 LOC_Os03g31310

qHRR-6-1 6 3667482 6.8549 0.08–8.20 1,2,3

qHRR-6-2 6 3730045 8.0183 0.09–5.51 1,2,3

qHRR-7-1 7 20413747 3.7534 0.05–3.97 1,2,5 LOC_Os07g34130

qHRR-7-2 7 26771672 4.1753 0.06–4.47 1,2,5 LOC_Os07g44830

qHRR-7-3 7 28019959 6.168 0.06–6.95 1,2,3

qHRR-8-1 8 4580996 6.3682 0.05–7.59 1,2,5

qHRR-8-2 8 16979079 3.2005 0.07–2.00 1,2,4

qHRR-11-1 11 21623134 6.7537 0.06–4.22 1,2,4 LOC_Os11g36640

qHRR-11-2 11 24456311 7.8223 0.06–7.02 1,2,4

qHRR-11-3 11 27996997 7.3025 0.07–4.78 1,2,4 OsPCBP

qHRR-11-4 11 28857401 6.0719 0.05–5.69 1,2,3 OsRhmbd18

Percentage with grain chalkiness PGC (%) qPGC-1-1 1 14474816 3.6322 3.59 1,2,3 LOC_Os01g25530

qPGC-1-2 1 5928150 3.2289 5.51 1,2,3 LOC_Os01g11110

qPGC-2-1 2 25081182 3.54–7.22 8.45–9.57 1,2,3,4 LOC_Os02g41720

qPGC-2-2 2 7633393 7.19 6.15 1,2,3 LOC_Os02g13990, AQGB108b

qPGC-2-3 2 7660595 5.08 2.95 1,2,4 AQGB109c, AQGB084d

qPGC-2-4 2 34652183 3.69 1.55 1,2,4 LOC_Os02g56565

qPGC-3-1 3 35098972 3.75–4.18 2.08–4.98 1,2,3,4

qPGC-3-2 3 33802678 3.99–4.48 2.8-6.1 1,2,3,4

qPGC-3-3 3 326950 4.87 3.52 1,2,3

qPGC-3-4 3 4530119 4.76 3.34 1,2,4

qPGC-5-1 5 6812458 4.23 8.51 1,2,3

qPGC-7-1 7 620874 6.4849 0.07–1.14 1,2,3

qPGC-7-2 7 15975911 3.07 2.35 1,2,4 LOC_Os07g27420

(Continued)
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four QTNs were detected by both SL-GWAS and at least two ML-

GWAS methods (qPGC-2-1, qPGC-3-1, qPGC-3-2, and qPGC-7-

3). As many as 75 cloned genes were closely associated with rice

yield and appearance quality within the genomic ranges ( ± 100 kb)

of the 39 QTNs detected by the SL-GWAS andML-GWASmethods

(Figure 5; Supplementary Table 4).
Mining of potential candidate loci

We selected common QTNs mapped using the SL-GWAS and

ML-GWAS algorithms for a detailed study. The candidate genes

were identified based on haplotype analysis of non-synonymous

coding SNPs in each candidate gene located inside the LD block

defined for the selected QTN.

qAR-1-2, located at 38,383,904bp on chromosome 1, showed

association signals with grain aroma using MLM, CMLM, and

mrMLM methods with a Logarithm of Odds (LOD) score of 3.59%

(Table 1). A total of 54 kb LD block (38,375,000 bp–38,429,000 bp)

was generated (Figure 6A) as per the method described above

(Gabriel et al., 2002). Gene annotations suggested five candidates

for this block: LOC_Os01g66100 (gibberellin20oxidase2 gene,

OsGA20ox2) , LOC_Os01g66110 (a methyltransferase) ,

LOC_Os01g66120 (no apical meristem protein-encoding gene,

OsNAC6), LOC_Os01g66130 (an armadillo/beta-catenin repeat

family protein, OsPUB16), and LOC_Os01g66140 (plus-3 domain-

containing protein). Among these, LOC_Os01g66110 is the most

likely gene because the heavy metal transporter genes involved in the

biosynthesis of 2-AP, which determines the aroma in fragrant rice,

are known to be regulated by DNA methylases via active histone

modifications (Imran et al., 2022). Missense mutations in

LOC_Os01g66110 resulted in three allelic combinations. Genotypes

with superior HapA exhibited higher average aroma scores, whereas

genotypes with HapB and HapC showed lower aroma scores

(Figure 6B). Another candidate gene, LOC_Os01g66140, directly

interacts with histone H4 and zinc ions, explaining its role in 2-AP

biosynthesis. Three haplotypes were observed for LOC_Os01g66140,

and haplotype A showed a significantly higher average aroma score

than the other two haplotypes.

The SL-GWAS and ML-GWAS test results verified peaks on

chromosome 7 for HRR (%). qHRR-7-2, located at 26,771,672 bp
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and encoding a proline-rich family protein, was significantly

linked to HRR (%) with the FASTmrEMMA method with an

LOD score of 4.17 (Table 1). Using MLM, this SNP showed

associations with HRR (%) with a high level of significance (p =

3.84 × 10−6) and an R2 of 5.43%. An LD block of 26,760,000 bp to

26,798,000 bp was constructed using pairwise estimation of LD

(Figure 7A). The fine mapping of this genetic region associated

with HRR (%) identified five candidate genes using genome

annotation tools: LOC_Os07g44830 belonging to the proline-rich

family, LOC_Os07g44840 encoding a transposon with unknown

func t i on , and LOC_Os07g44850 , LOC_Os07g44860 ,

LOC_Os07g44900, and LOC_Os07g44910 are gibberellin receptor

protein-encoding genes. The LOC_Os07g44910, annotated as

putatively expressed gibberellin receptor GID1L2 protein,

showed significant differences in HRR (%) between the

haplotypes (Figure 7B). Therefore, HapA is a superior genotype

and rice accessions with a higher frequency of HapA could be

selected from the current panel to improve head rice recovery (%)

in rice. Earlier studies clearly indicated the role of Gibberellic Acid

in controlling panicle architecture and yield traits in rice

(Deveshwar et al. , 2020). Moreover, LOC_Os07g44910

colocalized with the dense and erect panicle 2 (DEP2) gene,

which is mainly involved in rachis elongation and branching in

panicles (Li et al., 2003; Wan et al., 2005), and the GW7 gene,

which encodes a TONNEAU1-recruiting motif protein that

improves grain yield and quality by directly interacting with

GW8 (OsSPL16) (Li et al., 2010; Reig-Valiente et al., 2018). We

utilized the IC4R database to confirm the functional role and

analyzed the expression profile data of LOC_Os07g44910 in rice

and found that the gene encodes an alpha/beta hydrolase fold-3

domain-containing protein with the highest expression in the

seedlings and young shoots. Previous studies have reported that

the D14 gene encoding an alpha/beta hydrolase family protein

inhibits rice tillering via the strigolactone signaling pathway (Gao

et al., 2009; Wang et al., 2015; Guo et al., 2020); thus, it is likely

that LOC_Os07g44910 influences grain yield in rice.

qPGC-2-3 was another QTN detected by multiple models and

showed associations with the percentage of grains using chalkiness

FASTmrMLM methods with an LOD value of 5.08. This QTN was

also detected by the MLM and CMLM methods with a p value of

3.05 × 10−6. An LD block was defined for this QTN (83.63 kb), and
TABLE 1 Continued

Trait QTN Chr Position LOD R2(%)1 Method2 LOC3/QTL4

qPGC-7-3 7 16539429 3.9–5.16 3.9–5.37 1,2,3,4

qPGC-9-1 9 11755843 5.0082 2.7252 1,2,4

qPGC-9-2 9 16443727 5.696 3.528 1,2,4

qPGC-10-1 10 14524700 5.05 3.21 1,2,4

qPGC-11-1 11 8517398 3.5495 2.8693 1,2,4

qPGC-12-1 12 3125286 4.3352 3.4133 1,2,4
1R2(%): phenotypic variance explained.
2Methods 1–5 represent MLM, CMLM, mrMLM, FASTmrMLM, and FASTmrEMMA, respectively.
3Locus name based on MSU 7.0.
4QTL ID based on Gramene QTL Database. aLi et al. (2003); b,c,dWan et al. (2005).
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five candidate genes were identified in this region (Figure 8A).

LOC_Os02g13990 (U2 small nuclear ribonucleoprotein A) and

LOC_Os02g14000 (actin-related protein 2/3 complex subunit 3)

only had synonymous SNPs with a -log (P) value less than 3.

LOC_Os02g14120 is a Brassinosteriod Insensitive 1 Associated

Receptor Kinase 1 precursor gene (OsBAK 1-9). Non-synonymous

mutations in OsBAK 1-9 resulted in three major haplotypes: HapA,

HapB, and HapC. The accessions with favorable HapA displayed

lower PGC (%) than accessions with HapB and HapC types

(Figure 8B). The identified favorable allele and functional site in

LOC_Os02g14120 reduces the degree of chalkiness in rice by

breeding. Differences in rice grain quality have been attributed to
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the regulation by a set of other genes involved in multiple pathways

that influence grain appearance quality. LOC_Os02g14110 is

annotated as an aminotransferase, Class I and Class II domain-

containing protein gene, and the third candidate gene,

LOC_Os02g14090, is a berberine and berberine-like domain-

containing protein gene. Previous research has also verified that

brassinosteroid-associated receptor kinase genes, putatively

expressed aminotransferases, and berberine and berberine

domain-containing protein genes govern quality traits, viz.,

chalkiness and grain shape (Biselli et al., 2015) in rice, which led

us to hypothesize that LOC_Os02g14120, LOC_Os02g14110, and

LOC_Os02g14090 may be rice grain PGC (%) regulatory genes.
FIGURE 5

Chromosomal distribution of all loci for grain quality traits using MLM, CMLM, mrMLM, FASTmrMLM, and FASTmeEMMA. The naming of QTNs starts
with a letter ‘q’ subsequently followed by two or three letter identifiers and the chromosome number. In case numerous QTNs are mapped for a
quality trait on corresponding chromosome at that point naming is done based on their relative location on the chromosome. Seventy-five known
genes are labelled with yellow script; black color represents candidate genes for the quality traits under study.
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B
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FIGURE 6

Haplotype analysis of LOC_Os01g66110. (A) Linkage disequilibrium (LD) based heatmap for qAR-1-2. (B) Boxplot for grain aroma depicting three
allelic combinations of LOC_Os01g66110. X-axis shows the three different alleles of LOC_Os01g66110 and Y-axis shows the average aroma scores.
B

A

FIGURE 7

Haplotype analysis of LOC_Os07g44910. (A) Linkage disequilibrium (LD) based heatmap for qHRR-7-2. (B) Boxplot of HRR (%) trait depicting three
allelic combinations of LOC_Os07g44910. The X-axis shows three different alleles of LOC_Os07g44910 and the Y-axis shows average HRR (%).
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Discussion

Increasing living standards underline the need to develop

healthier high-quality rice (Yu et al., 2013; Hori et al., 2015; Sahu

et al., 2017; Wang et al., 2017; Misra et al., 2019; Meng et al., 2022)

for traits such as color, aroma, lack of broken seed grains, grain

length, and flavor. To meet consumer preferences and market

demands, the development of tailored rice with preferred

appearance quality is of utmost importance after rice yield

enhancement (Arite et al., 2009; Abbai et al., 2019; Selvaraj et al.,

2021). Grain quality is a complex quantitative trait (Yu et al., 2013;

Hori et al., 2015; Misra et al., 2019; Meng et al., 2022) governed by

manifold genes, and there is a large gap in our perception of the

networks regulating grain quality in rice (Li et al., 2022). GWAS has

become a robust tool for the rapid identification of genetic factors

(Adjah et al., 2020) associated with traits governed by several genes

in crop plants that are diverse and provides goals for future efforts

aimed at rice improvement (Zhou et al., 2020). However, breeding

by design has achieved limited success because of the lack of

information on the correct genetic loci of desired traits and

precision in deciphering the favorable haplotype combinations of

these genes dissected to date (Fitzgerald et al., 2009; Abbai et al.,

2019; Selvaraj et al., 2021).

Resequencing-based germplasm lines enable the detection of

pre-existing variations, functional sites of genes, and novel alleles

associated with traits of interest (Begum et al., 2015), which may be

explored by GWAS analysis. In this context, the abundant genetic
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variations in 3K RG resequencing projects make it a valuable

reservoir of gene diversity and a prospective source of elite genes

that can be deployed in rice breeding (Abbai et al., 2019; Selvaraj

et al., 2021). Traditional single-locus models, which are commonly

adopted to identify genetic variants in several cereal crops, have

some limitations, neglecting small-effect QTLs in particular. Lower

false positives and higher statistical predictions of multi-locus

algorithms have been established by many association studies

(Yuan et al., 2017; Zhang P. et al., 2019), and researchers usually

combine facts about different ML-GWAS models to mine the genes

that control complex traits.

In the present study, we adopted two SL-GWAS methods and

three ML-GWAS methods to assess three quality traits of 198

selected rice accessions (a subset of 3K RGP). Subsequently,

198,198 and 198 significant SNPs, while 23,22 and 32 QTLs were

identified by MLM underlying AR, HRR (%), and PGC (%),

respectively (Supplementary Table 3). Similarly, 24,23 and 23

significant QTNs were detected using ML-GWAS methodologies

associated with the abovementioned three quality traits

(Supplementary Figure 1). Interestingly, the QTNs mapped by

multi-locus GWAS analysis were more dispersed than those

mapped by the MLM and CMLM methods. The significant loci

detected by the MLM method, for example, were confined to

specific chromosomes, indicating its failure to identify new loci

across the entire rice genome. Several QTNs identified by multi-

locus methods were distributed across the other chromosomes,

among which 39 common QTNs were considered powerful, robust,
B

A

FIGURE 8

Haplotype analysis of LOC_Os02g14120. (A) Linkage disequilibrium (LD) based heatmap for qPGC-2-3. (B) Boxplot of PGC (%) trait depicting three
allelic combinations of LOC_Os02g14120. X-axis shows three different alleles of LOC_Os02g14120 and Y-axis shows average PGC (%).
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and worthy when applied to discover low individual QTN effect

values for quality traits in rice.

Several rice grain quality genes, such as Badh2, DEP2, GW7,

OsCESA2, and OsCPK8, have been functionally characterized over

the past 10 years (Deveshwar et al., 2020; Imran et al., 2022; Yan

et al., 2022). Among these, Badh2, the fgr gene, the major gene

causing fragrance in rice and a frameshift mutation in its exonic

region, is the functional allele associated with fragrance (Quero

et al., 2018; Tibbs et al., 2021). DEP2/SRS1 encoding the dense and

erect panicle 2 gene positively regulates panicle morphology and its

outgrowth, suggesting its direct role in regulating rice grain size and

yield at the genetic level (Li et al., 2010). GW7 is annotated as a gene

encoding a TONNEAU1-recruiting motif protein that

simultaneously controls grain width and quality (Li et al., 2010).

Combining the cloned genes/QTLs reported in earlier genetic

studies, 19 QTNs and their ±100 kb genomic regions superimposed

the previously annotated grain-quality genes. QTNs clusters were

mapped for HRR (%) on chromosome 7 (qHRR-7-1, qHRR-7-2, and

qHRR-7-3) located in the vicinity of GW7 and DEP2, which are

responsible for grain yield and quality, and another cluster was

detected on chromosome 11 (qHRR-11-1, qHRR-11-2, qHRR-11-3,

and qHRR-11-4) near the F-box and DUF domain-containing genes

with confirmed roles in improving yield potential and quality in

rice. Additionally, 20 novel QTNs were excluded from the genomic

loci of earlier studies, and the markers detected may be the putative

QTNs governing quality traits in rice.
Dissecting four candidate genes of grain
quality traits

Using multiple models for association studies, three QTNs

(qAR-1-2, qHRR-7-2, and qPGC-2-3) were confirmed to have

major gene effects on grain quality. The candidate region of 38.37

Mb to 38.42 Mb in qAR-1-2 was fine-mapped considering a

threshold value of r2 >0.2 (Figure 6A). Five genes located in this

genomic region were possible candidates governing aroma in rice,

and haplotyping was performed for each of the five genes.

S ignificant di fferences in aroma scores between the

LOC_Os01g66110 and LOC_Os01g66140 haplotypes were

observed (F igure 6B) . LOC_Os01g66110 , a pu ta t i ve

methyltransferase, has been proposed to play a role in multiple

epigenomic modifications of heavy-metals transporters involved in

the 2-AP biosynthesis pathway. In recent years, the occurrence of

DNA methylation of all types (CHH, CHG, and CG) in genes

related to 2-AP biosynthesis has been reported in rice. ChIP-seq,

bisulfite-seq, and ATAC-seq data of aroma genes also showed active

chromatin modifications as key regulators (Imran et al., 2022) with

strong enrichment of H3K36me3 at 2-AP biosynthesis pathway-

related genes. Another candidate gene, LOC_Os01g66140,

annotated as a plus-3 domain-containing protein, is anticipated to

influence 2-AP biosynthesis genes with metal-binding properties

and DNA-binding domains. BLAST tool and STRING analysis

revealed that LOC_Os01g66140 directly interacts with histone H4

and zinc metal ions, confirming its role in regulating 2-AP content
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in aromatic rice. Prior studies have found that exogenous

application of micronutrients, specifically zinc, could upregulate

genes involved in the biosynthesis of 2-AP in aromatic rice due to

increased levels of proline and proline dehydrogenase (He and Park,

2015). Based on these findings, we propose that LOC_Os01g66110

and LOC_Os01g66140may be related to the grain aroma. Their role

in regulating heavy metal transporters in response to zinc is worthy

of comprehensive studies and confirmation.

The candidate qHRR-7-2 associated with HRR (%),

LOC_Os07g44910, annotated as the gibberellin receptor GID1L2,

is a type of F-box subunit of the S-phase kinase-associated protein 1

(SKP1)-cullin 1 (CUL1)-F-box protein (SCF) E3 complex that

encodes the alpha/beta hydrolase fold-3 domain-containing

protein containing 358 amino acids, belonging to the alpha/beta

hydrolase (ABH) superfamily. The F-box protein (SCF) E3 complex

plays a crucial role in regulating life processes such as cell division

and influences grain size and yield in rice by facilitating proteasomal

degradation of diverse regulatory proteins (Chen et al., 2008;

Nguyen and Busino, 2020). Its loss-of-function mutants, htd4 and

dta-34 have reduced panicle branching, grains/panicle, and seed

size, and show a dwarf phenotype (Wang et al., 2017; Liang et al.,

2019, Liu et al, 2009). For instance, Grain weight 2 (GW2), encoding

E3 ubiquitin ligase, regulates grain weight and grain yield by

ubiquitinating EXPLA 1 and promoting its degradation (Hu et al.,

2015; Mo et al., 2016; Deveshwar et al., 2020). In this study, GWAS

and haplotype analysis results indicated that LOC_Os07g44910

might govern grain weight and grain yield in rice (Figures 7A, B).

Members of this superfamily, such as GS5 (Grain Size 5, putative

serine carboxypeptidase) (Hu et al., 2015) and TGW6 (Thousand

Grain Weight 6, IAA-glucose hydrolase) (Mo et al., 2016), have

been characterized for their roles in influencing grain weight and

yield. These studies showed high consistency with our GWAS

analysis results, confirming with these printed reports proving

that LOC_Os07g44910 might be related to rice recovery % (HRR,

%) in rice.

In the candidate qPGC-2-3, involved in the percentage of grains

with chalkiness, LOC_Os02g14120 is a Brassinosteriod Insensitive 1

Associated Receptor Kinase 1 precursor gene (OsBAK 1-9).

OsBAK1/Top Bending Panicle 1 encodes a somatic embryogenesis

receptor kinase (SERK) domain-containing protein that acts as a

modulating factor in the brassinosteroid signaling pathway, thus

affecting the number of grains and yield in rice (Xing and Zhang,

2010; Gupta et al., 2022). Overexpression of OsBAK-1 drastically

reduced grain yield in rice (Lin et al., 2017), and its high-tillering

mutants are characterized by a reduction in panicle length and seed

size (Deveshwar et al., 2020). The central role of brassinosteroids

(BR) in regulating multiple biological processes such as flowering,

male fertility, and tillering, is becoming more apparent (Lin et al.,

2017; Yuan et al., 2017). Although, brassinosteroids have been

demonstrated to be positive regulators of plant growth processes

and grain development, they most often work in close association

with auxins and cytokinins to affect the efficiency of photosynthesis,

sugar metabolism, and mobilizing resources in crop plants to

influence grain filling (Mo et al., 2016; Deveshwar et al., 2020),

reiterating the need to consider the holistic approach of plant
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developmental processes and their architecture to improve crop

yields. These results suggest that LOC_Os02g14120 may be related

to the percentage of grains with chalkiness (PGC, %), and its role in

modulating the architecture, yield, and grain quality in rice is

valuable for further evaluation and validation.
Conclusions

In this GWAS analysis, 70 QTNs were detected for three grain

quality traits using different multi-locus methodologies. Among

these QTNs, qAR-1-2, qHRR-7-2, and qPGC-2-3, which are closely

associated with AR, HRR (%), and PGC (%), were identified using

both single- and multi-locus methods. In addition, four key

annotated genes (LOC_Os01g66110 , LOC_Os01g66140 ,

LOC_Os07g44910, and LOC_Os02g14120) that govern the three

target candidate genes mentioned above were mined. In conclusion,

several robust QTLs and four candidate functional genes were

shown to possibly control grain aroma, head rice recovery (%),

and the percentage of grains with chalkiness in rice. This

investigation provides valuable information for functional

characterization in the future and molecular marker-based

breeding design to improve appearance quality traits in rice.
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Accelerating haploid induction
rate and haploid validation
through marker-assisted
selection for qhir1 and
qhir8 in maize
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Thomas Lübberstedt4, Samart Wanchana5, Burin Thunnom5,
Wasin Poncheewin5, Theerayut Toojinda5,
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Kaen, Thailand, 3Plant Breeding Research Center for Sustainable Agriculture, Faculty of Agriculture,
Khon Kaen University, Khon Kaen, Thailand, 4Department of Agronomy, Iowa State University, Ames,
IA, United States, 5National Center for Genetic Engineering and Biotechnology (BIOTEC), National
Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand, 6Rice Science
Center, Kasetsart University, Nakhon Pathom, Thailand
Doubled haploid (DH) technology becomes more routinely applied in maize

hybrid breeding. However, some issues in haploid induction and identification

persist, requiring resolution to optimize DH production. Our objective was to

implement simultaneous marker-assisted selection (MAS) for qhir1 (MTL/

ZmPLA1/NLD) and qhir8 (ZmDMP) using TaqMan assay in F2 generation of four

BHI306-derived tropical × temperate inducer families. We also aimed to assess

their haploid induction rate (HIR) in the F3 generation as a phenotypic response to

MAS. We highlighted remarkable increases in HIR of each inducer family.

Genotypes carrying qhir1 and qhir8 exhibited 1 – 3-fold higher haploid

frequency than those carrying only qhir1. Additionally, the qhir1 marker was

employed for verifying putative haploid seedlings at 7 days after planting. Flow

cytometric analysis served as the gold standard test to assess the accuracy of the

R1-nj and the qhir1 marker. The qhir1 marker showed high accuracy and may be

integrated in multiple haploid identifications at early seedling stage succeeding

pre-haploid sorting via R1-nj marker.
KEYWORDS

hybrid breeding, doubled haploid, haploid induction, haploid identification,
molecular assay
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Introduction

Maize is one of the most important cereal crops in the world as

food, feed, and fuel (Prasanna, 2012). The success of hybrid maize

breeding relies on robust pipelines of germplasm, genetics,

phenotyping, and selection processes (Cooper et al., 2014).

Traditionally, the breeding process for the market release of a

new cultivar extended over a decade, until the advent of doubled

haploid (DH) technology (Chaikam et al., 2019). A notable

advantage of DH technology is associated with the substantial

reduction of breeding cycles required to develop fully

homozygous lines within just two generations (Geiger and

Gordillo, 2009). Haploids can be produced in vitro or in vivo. The

in vitro method requires laboratory procedures, where

gametophytic tissues such as microspores and egg cells are used

to produce paternal and maternal haploids, respectively. However,

this method gains low success rates due to the high levels of

genotype dependency (Jacquier et al., 2021). The in vivo method

involves four main steps: (1) haploid induction, (2) haploid

identification, (3) haploid genome doubling, and (4) self-

pollination of haploid plants to obtain DH0 seeds (Chaikam et al.,

2019). For maternal haploid induction, haploid inducers are used as

male parents to pollinate source germplasm for haploid induction.

Efficient DH line production depends on the availability of inducer

genotypes with high induction ability.

In 2012, a QTL study involving four populations, all sharing the

inbred inducer UH400 as common parent, identified 8 QTL. Notably,

qhir1 and qhir8 emerged as two major QTL located on chromosomes

1 and 9, explaining 66% and 20% of the genetic variance, respectively

(Prigge et al., 2012). The qhir1 region in bin 1.04 plays pivotal roles in

triggering haploid induction, gametophytic segregation distortion,

and embryo abortion (Barret et al., 2008; Prigge et al., 2012; Xu et al.,

2013). Mutation of the gene MTL/ZmPLA1/NLD in qhir1 has been

shown to generate an average haploid induction rate (HIR) up to

6.7% (Gilles et al., 2017; Kelliher et al., 2017; Liu et al., 2017).

However, qhir1 is not sufficient for commercial productions of DH

lines. To fully leverage this technology, the average HIR of modern

haploid inducers should surpass 10% (Hu et al., 2016). Zhong et al.

(2019) discovered a novel gene named ZmDMP underlying QTL

qhir8. A mutation of ZmDMPmarkedly enhances haploid induction,

resulting in a 2–3-fold increase in HIR. It is important to note that

bothMTL/ZmPLA1/NLD and ZmDMP act synergistically, suggesting

the potential for a substantial 5–6-fold increase in the HIR when both

mutations are present (Zhong et al., 2019). Marker assisted selection

(MAS) for qhir1 has been applied to improve the HIR of maternal

haploid inducers in different maize backgrounds. For instance,

Chaikam et al. (2018) were able to obtain promising second-

generation Tropically Adapted Inducer Lines (2GTAILs) with an

average HIR of 13.1%, a 48.9% improvement over TAILs. Liu et al.

(2022) developed an elite oil haploid inducer, CHOI4, with an

averaged HIR of 15.8%, a 58.0% increase compared to CAU2, the

founder parent of CHOI4. While these results are promising, further

enhancements could be achieved through MAS for two loci, qhir1

and qhir8. Considering that HIR is a polygenic trait, selection of a

single locus may not be sufficient to obtain inducers with optimum

HIR (Dong et al., 2014). Nevertheless, limited evidence exists to
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illustrate the feasibility of MAS for both loci simultaneously in

breeding haploid inducers for high HIR.

Haploids are commonly identified via the R1-navajo (R1-nj), a

dominant monogenic biomarker (Nanda and Chase, 1966) integrated

in haploid inducers. This marker distinguishes progeny seeds derived

from haploid induction based on anthocyanin expression in different

parts of the kernel. Haploid kernels show a purple crown in the

endosperm but a colorless scutellum in the embryo, while diploids

express both purple endosperm and embryo (Dermail et al., 2021).

Despite practical and non-destructive features, the effectiveness of R1-

nj expressions may be constrained by the presence of dominant C1

anthocyanin inhibitors (Chaikam et al., 2015), naturally occurring

anthocyanins in donor germplasm (Chaikam et al., 2016), morpho-

physiological kernel properties (Prigge et al., 2011; Trentin et al.,

2022), and environments (Sintanaparadee et al., 2022; Dermail et al.,

2023; Thawarorit et al., 2023). These factors contribute to high

misclassification rates (MCRs), hindering selection gains on HIR

and emphasizing the need for alternative markers for haploid

selection. While simple sequence repeat (SSR) has been successfully

used in maize haploid identification (Qiu et al., 2014; Dong et al.,

2018; Li et al., 2021), the practical use of SNP markers for that

purpose is still lacking. Since most paternal chromosomes of inducers

are excluded from haploid embryonic cells within a week after

pollination, the haploid individuals carry only maternal

chromosomes from the donor germplasm (Zhao et al., 2013).

Codominant SNP markers can differentiate between homozygotes

(donor female) and heterozygotes (F1 diploids). Considering

remarkable allelic variation for qhir1 and qhir8 haploid inducers

versus non-inducer genotypes, there is an encouraging prospect of

applying these loci for haploid identification using TaqMan probes.

Kelliher et al. (2017) employed TaqMan assays for qhir1, proposing

that haploids carry zero copies of the mtl allele and two copies of the

maternalMTL allele, whereas diploids carry one copy of themtl allele

and one copy of the MTL allele.

Our study aimed to utilize the qhir1 and qhir8 loci in marker-

assisted selection, with a dual focus on breeding haploid inducers

for high HIR and accurately identifying true haploids in maize. We

hypothesized that (i) inducer genotypes carrying qhir1 and qhir8

should demonstrate a higher capacity to induce haploids compared

to those carrying qhir1 alone and (ii) molecular markers using

TaqMan assay are more reliable than the R1-nj marker when

validated with flow cytometry. This study will provide an insight

into the advantages of molecular assays, especially TaqMan probes,

to accelerate the improvements of haploid inducers underpinning

HIR. Additionally, it seeks to enhance the accuracy of identifying

true haploids at early seedling stage.
Materials and methods

Breeding scheme, haploid induction, and
HIR evaluation

A temperate inbred inducer, BHI306, and four tropical inducer

families (K8, K11, KHI49, and KHI54) were selected as founder

parents. The BHI306 genotype, an RWS/RWK-76-derived haploid
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inducer, has 10–15% of HIR, carries both qhir1 and qhir8 loci

(Supplementary Table S1 and Supplementary Figure S1), kernel

anthocyanin R1-nj and red root Pl-1 selectable markers. BHI306

was developed by the DH Facility of Iowa State University (DHF-

ISU) (https://www.doubledhaploid.biotech.iastate.edu/). Four

genotypes, K8, K11, KHI49, and KHI54 belong to qhir1−/qhir8−

group (Supplementary Table S1 and Supplementary Figure S1),

Stock-6-derived haploid inducers, had low HIRs (<6.0%) but

possess favorable tropical adaptations. These genotypes were

developed by the Plant Breeding Research Center for Sustainable

Agriculture of Khon Kaen University in Thailand (Dermail et al.,

2021; Sintanaparadee et al., 2022; Thawarorit et al., 2023). A 1 × 4

factorial mating scheme was performed by assigning BHI306 as a

male and four tropical inducers as females to establish four tropical

× temperate inducer base populations including K8/BHI306, K11/

BHI306, KHI49/BHI306, and KHI54/BHI306. In the F2 generation,

approximately 100 F2 seedlings per inducer population underwent

randommarker-assisted selection (MAS) for qhir1 and qhir8. Plants

carrying qhir1 only and both qhir1 and qhir8 were labeled as qhir1

+/qhir8− and qhir1+/qhir8+ genotypes, respectively. These targeted

genotypes were subsequently transplanted into the field and self-

pollinated to obtain F3 seeds. At that generation, we did not perform

haploid induction. Thus, there was no preliminary information

regarding the actual HIR. At the F3 generation, repeated genotyping

of each individual plant and phenotyping on actual HIR were

performed in each population (Supplementary Table S1).

Maternal haploid induction was performed to evaluate HIRs. A

commercial hybrid Pacific789 (P789), developed by Pacific Seeds,

Thailand, was used as a donor female. This genotype is resistant to

tropical diseases, high-yielding, and large-seeded with flat embryos,

facilitating haploid selection based on the R1-nj marker at the seed
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stage. Each F3 inducer plant in each qhir genotype and family was

used to pollinate four donor ears to minimize the errors due to

unstable inducer pollen. Shoot bagging and detasseling of donor

plants were routinely performed to prevent pollen contamination.

Haploid seed was selected via the R1-njmarker at the seed stage.

Haploids showed a purple crown endosperm but a colorless

embryo, while diploids expressed purple colorations on both

crown endosperm and embryo (Nanda and Chase, 1966; Dermail

et al., 2023). The HIR was calculated as the frequency of haploid

seeds per induction cross, as follows:

HIR ð%Þ  ¼ seed number of putative haploid
seed set

 x 100

where seed set represents the total seed number of haploid seeds,

diploid seeds, and the seeds without the R1-nj marker.

About 10 putative haploid seeds per genotype in each inducer

family were sampled for further true haploid confirmation through

molecular assays.
Marker development

Two TaqMan® markers (qhir1 and qhir8) for two targeted genes

namely MATRILINEAL (MTL/ZmPLA1/NLD) and ZmDMP,

respectively, were constructed (Figure 1). The marker for the MTL

gene (GRMZM2G471240) was developed at 4 bp (CGAG) insertion

in the 4th exon of the gene that led to premature stop codon (Gilles

et al., 2017; Kelliher et al., 2017; Liu et al., 2017). The ZmDMP gene

(GRMZM2G465053) was developed at single nucleotide substitution

from T to C at 131 bp on coding sequence that led to amino acid

change from methionine to threonine (Zhong et al., 2019).
FIGURE 1

The schematic of TaqMan® probe design on MATRILINEAL gene (GRMZM2G471240) and ZmDMP gene (GRMZM2G465053).
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Genotyping and DNA extraction

High-quality genomic DNA (gDNA) was isolated from maize

leaves at 14 days after germination using the DNeasy® Plant Mini

Kit (QIAGEN, Germany). Genotyping for qhir1 and qhir8 markers

was carried out with ready-to-order TaqMan assays (Thermo Fisher

Scientific, Watham, MA USA) (Figure 1). In the amplification

process, 20 ng gDNA was utilized. For the PCR reaction, the total

volume was 5 µl composed of 2 µl of template DNA, 1.5 µl of 2X

TaqMan® Gene Expression Master Mix (Thermo Fisher Scientific,

Watham, MA USA), 0.0375 µl of TaqMan assay, and 1.4625 µl of

dH2O. The PCR cycling conditions were set at 95°C for 5 min,

followed by 36 cycles at 94°C for 30 s, 60°C for 1 min, and 60°C for

2 min. For the PCR product, the amplicons were melted at 60°C

using QuantStudio 6 Real-Time PCR Systems (Thermo Fisher

Scientific, Watham, MA USA) for 30 s to detect single nucleotide

polymorphism (SNP).
Flow cytometry analysis

Three subsets of populations derived from induction crosses

between female donor P789 and three male inducers, BHI306,

KHI49/BHI306, and KHI54/BHI306, were used for haploid

validation via flow cytometry analysis. The number of samples

was 24, derived from false positives previously assumed as putative

haploids based on the R1-nj marker but eventually true diploids

regarding the qhir1 marker. Those 24 samples composed of 1

putative haploid of P789/BHI306, 10 putative haploids of P789/

(KHI49/BHI306), and 13 putative haploids of P789/(KHI54/

BHI306). The FC analysis on those 24 samples served as the gold

standard classification method to verify if qhir1marker is reliable to

determine the true haploids. The FC graph of each sample can be

found in the Supplementary Figure S3, and the result of FC analysis

corresponding to the qhir1 marker assay can be found in Table 1.

Two maize leaves at 14 days after germination were cut about

3 cm in length (50-100 mg fresh weight) and placed into a plastic petri

dish on ice. Then, 1.5 ml of LB01 buffer (15 mM Tris, 2 mM

Na2EDTA, 0.5 mM spermine.4HCl, 80 mM KCl, 20 mM NaCl,

0.1% (v/v) Triton X-100, pH 7.5) (Dolež el, 1997) was added, and the

leaves were chopped in this buffer using a razor blade to facilitate the

release of the nuclei (Pfosser et al., 1995). After that, 500 ul of the cell

solution was transferred into a 1.5 ml tube. Propidium Iodide 1 mg/

mlI-stained nuclei and RNaseA were then added to the solution. The

BD Accuri™ C6 Plus flow cytometer (BD Biosciences, USA) was

employed for measurement. The ploidy status of each sample can be

determined by the fluorescence intensity of stained cell nuclei isolated

from plant tissue. The peak value (G1) of haploid is commonly set to

half of the diploid reference (Supplementary Figure S3).
Statistical analysis

A total of 237 inducer plants were evaluated for HIR

performance including K8/BHI306 (32 plants), K11/BHI306 (54

plants), KHI49/BHI306 (52 plants), and KHI54/BHI306 (99 plants).
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Each induced donor ear was represented as a technical replicate,

resulting in four replications for each inducer plant within each

genotype and family. The HIR for each genotype was calculated as

the mean HIR across these four replications. The data were

subjected to the unpaired samples t-test with 95% confidence

interval (CI), Tukey’s Honestly Significant Difference (HSD) Test

at 5%, and linear regression analysis.
Results

Haploid inducer breeding via marker-
assisted selection for qhir1 and qhir8

The median HIR of qhir1+/qhir8+ genotypes was significantly

(P<0.01) higher than that of the qhir1+/qhir8− genotypes within

each F3 inducer family (Figure 2A). Across the four families, the

average HIR for the qhir1+/qhir8+ genotype ranged from 3.85 to

9.48%, while the average HIR for the qhir1+/qhir8− genotype was

significantly (P<0.01) lower, ranging from 1.18 to 4.89% (Figure 2B;

Table 2). This suggests that inducer genotypes fixed for both

targeted loci for HIR, qhir1 and qhir8, have remarkable abilities

to induce haploids, showing an increase of 3–5% or 1–3-fold higher

than inducer genotypes fixed for qhir1 only.

The proportion of phenotypic variation explained (PVE) across

inducer families ranged from 17% to 39% (Table 2). These values,

within acceptable ranges, indicated that MAS for two loci was

effective in identifying haploid inducers with high HIR. We also

found that the HIR between families within the same qhir1+/qhir8+

genotype was significantly different (Table 2). For instance, families

K8/BHI306 and K11/BHI306 demonstrated a significantly higher

HIR than families KHI-49/BHI306 and KHI-54/BHI306. The

evidence of low %PVE (<50%) (Table 2), outliers, and

overlapping values between two inducer groups on HIR

(Figure 2), suggests the potential existence of other minor QTL

influencing HIR.
Haploid validation via qhir1 marker and
flow cytometry analysis

Marker-assisted selection (MAS) for qhir1 was applied to

validate putative haploids and diploids derived from the R1-nj

marker system as a preliminary haploid identification among the

F1 progenies of induction crosses. Both parents, BHI306 and P789,

were included as positive and negative controls for qhir1,

respectively (Figure 3). Through the TaqMan assay, all samples of

P789, the female donor, were found to be homozygous for qhir1−

(G/G), while all samples of BHI306, the male inducer, were

homozygous qhir1+ (GGAGC/GGAGC). The sample progenies

were then distributed into two pools according to haplotypes: (1)

the diploid class, heterozygous for qhir1 (G/GGAGC) and (2) the

haploid class, homozygous for qhir1− (G/G), which was grouped

with the donor female P789 (Figure 3B, Table 3). Similar results for

other populations can be seen in Supplementary Table S2 and

Supplementary Figure S2. A few numbers of false positives were
frontiersin.org

https://doi.org/10.3389/fpls.2024.1337463
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Khammona et al. 10.3389/fpls.2024.1337463
found in putative haploid populations derived from induction

crosses, accounting for 1, 10, and 13 samples in populations

P789/BHI306-F1, P789/(KHI49/BHI306-F3)-F1, and P789/

(KHI54/BHI306-F3)-F1, respectively (Table 3). The reliability of

the qhir1 for haploid determination was further validated by flow

cytometric analysis. We found that the result of FC analysis among

24 false positives (Supplementary Figure S3) corresponded to the

qhir1 marker, as indicated by R2 = 1.00 (Table 1). This implies that

the qhir1 marker using the TaqMan assay was effective to identify

true haploids, indicated by a 0-false positive rate, which could thus

serve as an alternative gold standard test compared to flow

cytometry in future. It also suggests that a single SNP marker,

like qhir1, is ultimately sufficient for haploid identification to reduce

the cost of genotyping.
Frontiers in Plant Science 05274
Discussion

Marker-assisted selection (MAS) may accelerate breeding

programs by indirectly selecting target traits using molecular

markers tightly linked to underlying genes (Xu and Crouch,

2008). Plant breeders can benefit from this approach especially

when targeted traits pose challenges for improvement through

traditional phenotypic selections. Technical issues such as

resource intensiveness and genetic properties like low heritability,

complex inheritance, and presence of recessive alleles make

phenotypic selection difficult (Koebner, 2004; Collard et al., 2005;

Xu et al., 2005). It is suitable for our breeding objectives to accelerate

the rates of haploid induction (HIR) possessing multiple recessive

alleles and QTL (Prigge et al., 2012) and prone to the environments

of haploid induction (Kebede et al., 2011; De La Fuente et al., 2018;

Sintanaparadee et al., 2022).

The effectiveness of MAS for qhir1 has been reported in the

breeding high-oil inducers (Dong et al., 2014) and the development

of CIMMYT second-generation Tropically Adapted Inducer Lines

(CIM2GTAILs) (Chaikam et al., 2018). Trentin et al. (2020)

suggested a stratified MAS approach, initially targeting the mtl

allele or qhir1 in a large F2 population and later for zmdmp allele or

qhir8 in F3 plants carrying the mtl allele or qhir1. In our study, we

validated the efficacy of simultaneous MAS for qhir1 and qhir8 in F2
segregating populations, leading to enhanced HIR in F3 genotypes

by 1–3-fold. We also noticed that the genotype of qhir1−/qhir8+

and heterozygous qhir1/qhir8+ showed lower HIR than genotypes

with qhir1+ (data not shown). Our findings align with Zhong et al.

(2019), who identified a novel mutation in the ZmDMP gene in the

CAUHOI (qhir1+) genotype and demonstrated its impact on HIR.

They found that the genotype with qhir1+/qhir8+ exhibited

inflating HIR by 5–6-fold compared to qhir1+/qhir8−. The

implementation of MAS in the early generations proves beneficial

by significantly reducing the number of F3 plants that need

evaluation for actual HIR through resource-intensive haploid

induction and haploid selection. Chen et al. (2020) also reported

the effectiveness of simultaneous MAS for qhir1 and qhir8, resulting

in a substantial increase in HIR by 3–14% and the elimination of

approximately 90% of low-HIR genotypes.

Our study did not include inducer families with qhir8 only

because we aimed to investigate the synergistic effects between qhir1

and qhir8 on HIR. Previous studies have reported that qhir8 alone

resulted in poor or even null HIR. For instance, Chen et al. (2020)

reported that the HIR of the plants with qhir8 only ranged from

0.70% to 1.04%, which was significantly lower than either those that

carried a heterozygous qhir1 allele or those that carried a

homozygous qhir1, with HIRs of 3.77% to 5.27% and 10.02% to

14.42%, respectively.

Previous studies reported six minor QTL (qhir2, qhir3, qhir4,

qhir5, qhir6, and qhir7) (Prigge et al., 2012) and a novel gene,

ZmPLD3 (Li et al., 2021). Mutations of the ZmPLD3 gene resulted

in a haploid induction rate (HIR) comparable to that of the

homozygous recessive MTL gene. This mutation showed

synergistic effects rather than functional redundancy in tripling

HIR in the presence of the homozygous recessive MTL gene. Later
TABLE 1 Haploid validation via qhir1 marker and flow cytometry (FC)
analysis of 24 false positives derived from subsets of F1 induction crosses
between female donor P789 and three male inducers BHI306, KHI49/
BHI306, and KHI54/BHI306.

No. Sample name qhir1 FC
qhir1 vs. FC

R2 p-value

1 P789/BHI306-F1_n-5 2n 2n

1.00 2.2E−16

2 P789/(KHI49/BHI-F3)-F1_n-1-2-6 2n 2n

3 P789/(KHI49/BHI-F3)-F1_n-1-3-2 2n 2n

4 P789/(KHI49/BHI-F3)-F1_n-1-4-8 2n 2n

5 P789/(KHI49/BHI-F3)-F1_n-1-6-5 2n 2n

6 P789/(KHI49/BHI-F3)-F1_n-1-7-1 2n 2n

7 P789/(KHI49/BHI-F3)-F1_n-1-14-7 2n 2n

8 P789/(KHI49/BHI-F3)-F1_n-1-15-3 2n 2n

9 P789/(KHI49/BHI-F3)-F1_n-1-20-10 2n 2n

10 P789/(KHI49/BHI-F3)-F1_n-2-2-6 2n 2n

11 P789/(KHI49/BHI-F3)-F1_n-2-2-9 2n 2n

12 P789/(KHI54/BHI-F3)-F1_n-1-1-3 2n 2n

13 P789/(KHI54/BHI-F3)-F1_n-1-1-6 2n 2n

14 P789/(KHI54/BHI-F3)-F1_n-1-2-3 2n 2n

15 P789/(KHI54/BHI-F3)-F1_n-1-3-4 2n 2n

16 P789/(KHI54/BHI-F3)-F1_n-1-4-3 2n 2n

17 P789/(KHI54/BHI-F3)-F1_n-1-10-1 2n 2n

18 P789/(KHI54/BHI-F3)-F1_n-1-11-1 2n 2n

19 P789/(KHI54/BHI-F3)-F1_n-1-12-7 2n 2n

20 P789/(KHI54/BHI-F3)-F1_n-1-16-2 2n 2n

21 P789/(KHI54/BHI-F3)-F1_n-1-17-1 2n 2n

22 P789/(KHI54/BHI-F3)-F1_n-1-18-1 2n 2n

23 P789/(KHI54/BHI-F3)-F1_n-1-19-2 2n 2n

24 P789/(KHI54/BHI-F3)-F1_n-2-3-10 2n 2n
R2 coefficient of determination.
All 24 false positives were previously classified as putative haploids based on the R1-njmarker,
but then they were verified as true haploids based on the qhir1 marker. The result of the FC
graph on each of the 24 samples can be found in Supplementary Figure S3.
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in 2022, Meng and colleagues manipulated the Stock6-derived

inducer lines by overexpressing maize CENH3 fused with

different fluorescent protein tags and found that the engineered

Stock6-derived lines showed a noticeable increase in the maternal

HIR up to 16.3%, which was increased by ~6.1% than Stock6-

derived lines control (Meng et al., 2022). Hu et al. (2016) found two

minor QTL responsible for HIR expression, namely qhir11 and

qhir12, which are closely linked to the major QTL qhir1. While the

qhir11 was not diagnostic for differentiating inducers and non-

inducers, the qhir12 had a haplotype allele common to all inducer

lines observed but not found in all non-inducers studied. In

addition, they noticed that the qhir12 region was related to three
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candidate genes involved in DNA or amino acid binding. (Nair

et al., 2017) performed a genome wide association study (GWAS)

and identified more than 20 SNPs associated with HIR in two

different association mapping panels. A recent genome-wide

association study (GWAS) involving 159 haploid inducers has

confirmed the polygenic nature of HIR and identified a major

gene near MTL, a significant QTL on chromosome 10, and other

minor QTL on six of the ten chromosomes (Trentin et al., 2023a). It

is conceivable that these QTL, or even undiscovered ones, may be

present in our inducer genotypes, highlighting the need for further

investigations to discover novel QTL conferring HIR. Drawing

insights from Prigge et al. (2012), this endeavor is feasible, as the

number of QTL and the magnitude of QTL effects for HIR can vary

across populations and generations.

This present study serves as a continuation of the haploid

inducer breeding program, focusing on achieving high HIR and

local adaptation to the tropical savanna in Thailand. In our previous

reports, relying solely on phenotypic selection in the breeding

strategy did not yield promising haploid inducers with

satisfactory HIR, i.e., below 6% in two families KHI49 and KHI54

(Dermail et al., 2021) and two populations K8 and K11 (Thawarorit

et al., 2023). The incorporation of genetic recombination with

BHI306, an elite inducer stock carrying favorable alleles for HIR,

and the implementation of precise selections such as MAS for

simultaneous loci have now enabled us to obtain promising inducer

genotypes. Notably, some individual plants within qhir1+/qhir8+

genotypes in families K8/BHI306 and K11/BHI306 demonstrated

HIRs exceeding 20%, surpassing both founder parents

(Supplementary Table S1).

The significant variations for HIR among families within the

same qhir1+/qhir8+ genotype (Table 2) imply the importance of the

genetic background of founder parents to establish those inducer

families. We noticed that families KHI-49/BHI306 and KHI-54/

BHI306 had significantly lower abilities to induce haploids than

families K8/BHI306 and K11/BHI306. Although the four females

(KHI-49, KHI-54, K8, and K11) derived from the same haploid

inducer, Stock-6, they experienced different selection schemes.

Regarding the pedigree information, the females KHI-49 and
A B

FIGURE 2

Haploid induction rate (HIR) in F3 inducer families with qhir1+/qhir8+ (++) and qhir1+/qhir8− (+−) genotypes involving (A) four different inducer
parents; and (B) averaged means over four respective inducer populations. *, and ** data significant through paired samples t-test at P<0.05 and
P<0.01, respectively.
TABLE 2 The mean comparison between qhir1+/qhir8+ and qhir1
+/qhir8− genotypes of each F3 family on haploid induction rate (HIR, %).

Population
name

Gene
combination

HIR
(%)

PNU TPN
p-

value
PVE
(%)

K8/
BHI306-F3

qhir1+/qhir8+
9.36
A 14

32
1.05E
−03 **

36

qhir1+/qhir8− 4.29 a 18

K11/
BHI306-F3

qhir1+/qhir8+
9.48
A 10

54
4.01E
−02 *

17

qhir1+/qhir8− 4.89 a 44

KHI-49/
BHI306-F3

qhir1+/qhir8+
3.85
B 31

52
6.21E
−08 **

39

qhir1+/qhir8−
1.18
b 21

KHI-54/
BHI306-F3

qhir1+/qhir8+ 5.61B 41

99
1.91E
−07 **

33
qhir1+/qhir8−

1.53
b 58
PNU the number of plants; TPN the total number of plants; PVE proportion of variance in
phenotypes explained (%).
HIR means (%) followed by different uppercase letters within the same qhir1+/qhir8+
genotype are significantly different based on Tukey’s Honestly Significant Difference (HSD)
Test at 5%.
HIR means (%) followed by different lowercase letters within the same qhir1+/qhir8−
genotype are significantly different based on Tukey’s Honestly Significant Difference (HSD)
Test at 5%.
* and ** data significant through paired samples t-test at P<0.05 and P<0.01, respectively.
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KHI-54 had experienced long-term selections, including six for

non-HIR related traits and the following three for R1-nj kernel

marker. Some favorable alleles responsible for HIR may be lost

during selections since Chaikam et al. (2019) argued that non-
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inducer pollen showed selection advantages over inducer pollen. In

contrast, the females K8 and K11 only experienced one selection

cycle among F2 populations derived from crosses between Stock-6

haploid inducer and non-inducer waxy maize germplasm. We

assumed that the proportion of HIR-related favorable alleles in

the K8 and K11 genotypes was higher than in KHI-49 and KHI-54.

Although per se on HIR can be altered by different testing

environments and donor germplasm (Kebede et al., 2011; Prigge

et al., 2011; De La Fuente et al., 2018; Sintanaparadee et al., 2022),

our currentfinding suggests the presence of transgressive segregants in

F3 families.We recommend further phenotypic evaluations in inducer

families with qhir1+/qhir8+ genotypes, focusing on traits related to the

ideotype ofhaploid inducers, suchas plantheight, earheight,flowering

behaviors, tassel and pollen attributes, and seed set. This assessment

will help determine the feasibility of those genotypes in haploid

induction stage, whether in induction nurseries or isolation fields

(Trentin et al., 2020; Trentin et al., 2023b). Considering the polygenic

nature governingHIR and thosementioned agronomic traits, genomic

selection approach can be applied to simultaneously identify

promising parents to generate progenies with favorable performance

on targeted traits prior to field evaluation. Almeida et al. (2020)

implemented genomic prediction for cross prediction and parental

selection in a haploid inducer breeding programwith varying levels of

accuracy depending on traits evaluated and suggested that HIR and

agronomic traits can be improved simultaneously.

In our study, we proved that MAS for qhir1 is effective to

confirm the true-to-type of haploids. The induced progenies were

clustered into two pools according to haplotypes. This allelic

clustering can be explained by two hypotheses: (1) single

fertilization occurs when only the egg or the central cell is

fertilized, resulting in kernels with haploid embryos (Sarkar and

Coe, 1966) and (2) selective elimination of inducer genomes from

embryonic cells (Zhao et al., 2013). Acknowledging the small

sample sizes used, Linnet (1999) suggested that the minimum

sample size for optimizing the regression analysis should fall
A B

FIGURE 3

Workflow for haploid identification through the R1-nj and haploid validation by MAS using qhir1 TaqMan assay (A) and the allelic distribution plot
from TaqMan assay (B). The diploid and haploid classes are represented by the green and red dots, respectively. Genotype BHI306 was used as male
inducer, whereas genotype P789 was used as female donor. The SNP graphs for other populations can be found in Supplementary Figure S2.
TABLE 3 Ploidy identification (haploid vs. diploid) via TaqMan assay for
qhir1 in a sub-set population of induction crosses between a male
inducer BHI306 and a female donor P789.

No Population name qhir1+
(GGAGC/
GGAGC)

qhir1
+/qhir1−
(GGAGC/

G)

qhir1
−

(G/
G)

Total

1 BHI306 – male inducer 10 0 0 10

2 KHI49/BHI306-F3 –
male inducer

31 0 0 31

3 KHI54/BHI306-F3 –
male inducer

41 0 0 41

4 P789 – female donor 0 0 7 7

5 P789/BHI306-F1 –
putative haploid

0 1 10 11

6 P789/BHI306-F1 –
putative diploid

0 10 0 10

7 P789/(KHI49/BHI306-
F3)-F1 – putative haploid

0 10 146 156

8 P789/(KHI49/BHI306-
F3)-F1 – putative diploid

0 27 0 27

9 P789/(KHI54/BHI306-
F3)-F1 – putative haploid

0 13 162 175

10 P789/(KHI54/BHI306-
F3)-F1 – putative diploid

0 28 0 28

Total 82 89 325 496
Plant samples with qhir1+/qhir1− are defined as true diploids.
Plant samples with qhir1− are defined as true haploids.
Putative haploid and diploid are based on the preliminary haploid identification via the R1-
nj marker.
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withing the range of 40 to 100 samples. Therefore, conducting

further replicated trials with a larger sample size is encouraged

before fully realizing the potential of this approach in haploid

identification in maize. As a practical proposal, molecular

markers could be employed to verify R1-nj-based putative

haploids at the early seedling stage, not exceeding seven days after

planting (DAP). This timeline aligns with the common practice of

haploid genome doubling using colchicine at 10-12 DAP (Vanous

et al., 2017). To prevent the risk of R1-nj marker misclassification,

an additional phenotypic marker, the red root phenotype at seedling

stage from Pl-1 gene, was used. This phenotype results from light-

independent anthocyanin production, although exposure to light

conditions can induce anthocyanin pigmentation for some

genotypes (Coe, 1994). Moreover, oil content was used as a

screening criterion for haploid and diploid using nuclear

magnetic resonance (NMR) (Wang et al., 2016). The success of

this method required high-oil haploid inducers (Liu et al., 2022).

Preventing high false positives through molecular assays can help to

reduce the DH line production costs, because false positives can be

discarded prior to haploid genome doubling (Baleroni et al., 2021).
Conclusions

Our study revealed that implementing marker-assisted selection

(MAS) for qhir1 and qhir8 at an early generation (F3) substantially

enhanced the haploid induction rate (HIR) of tropical × temperate

haploid inducer families. On average, the HIRs of families

homozygous for both qhir1+ and qhir8+ were 1–3-fold higher

than those homozygous for qhir1+ only. The qhir1 marker,

utilizing the TaqMan assay, effectively distinguished diploid/

haploid progenies at the early seedling stage (≤7 DAP) with high

accuracy (100%), as validated by flow cytometric analysis. We

propose the integration of MAS to expedite the breeding of

haploid inducers for high HIR, complementing the use of the R1-

nj marker for the identification of true haploids.
Data availability statement

The datasets presented in this study can be found in online

repositories. The names of the repository/repositories and accession

number(s) can be found in the article/Supplementary Material.
Author contributions

KK: Writing – original draft, Conceptualization, Data curation,

Formal analysis, Methodology. AD: Writing – original draft,

Conceptualization, Methodology, Writing – review & editing. KS:

Writing – review & editing, Conceptualization, Funding
Frontiers in Plant Science 08277
acquisition, Methodology, Supervision. TL: Supervision, Writing –

review & editing. SW: Supervision, Writing – review & editing. BT:

Supervision, Writing – review & editing. WP: Supervision, Writing

– review & editing. TT: Supervision, Writing – review & editing.

VR: Conceptualization, Methodology, Supervision, Writing –

review & editing. SA: Writing – review & editing, Supervision.
Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. The

National Science and Technology Development Agency (NSTDA)

(Grant No. P-20-52286, P-21-50610 and P-23-51489). Also, the

National Science, Research and Innovation Fund, Thailand Science

Research and innovation (TSRI).
Acknowledgments

The authors would like to thank the Plant Breeding Research

Center for Sustainable Agriculture, Faculty of Agriculture, Khon

Kaen University, Thailand, for providing plant materials and

research facilities. As well as the High-Quality Research Graduate

Development Cooperation Project between Kasetsart University

and the National Science and Technology Development Agency

(NSTDA) for providing the scholarship.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fpls.2024.1337463/

full#supplementary-material
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fpls.2024.1337463/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fpls.2024.1337463/full#supplementary-material
https://doi.org/10.3389/fpls.2024.1337463
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Khammona et al. 10.3389/fpls.2024.1337463
References
Almeida, V. C., Trentin, H. U., Frei, U. K., and Lübberstedt, T. (2020). Genomic
prediction of maternal haploid induction rate in maize. Plant Genome. 13, e20014.
doi: 10.1002/tpg2.20014
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Marker-assisted selection (MAS) plays a crucial role in crop breeding improving

the speed and precision of conventional breeding programmes by quickly and

reliably identifying and selecting plants with desired traits. However, the efficacy

of MAS depends on several prerequisites, with precise phenotyping being a key

aspect of any plant breeding programme. Recent advancements in high-

throughput remote phenotyping, facilitated by unmanned aerial vehicles

coupled to machine learning, offer a non-destructive and efficient alternative

to traditional, time-consuming, and labour-intensive methods. Furthermore,

MAS relies on knowledge of marker-trait associations, commonly obtained

through genome-wide association studies (GWAS), to understand complex

traits such as drought tolerance, including yield components and phenology.

However, GWAS has limitations that artificial intelligence (AI) has been shown to

partially overcome. Additionally, AI and its explainable variants, which ensure

transparency and interpretability, are increasingly being used as recognised

problem-solving tools throughout the breeding process. Given these rapid

technological advancements, this review provides an overview of state-of-the-

art methods and processes underlying each MAS, from phenotyping, genotyping

and association analyses to the integration of explainable AI along the entire

workflow. In this context, we specifically address the challenges and importance

of breeding winter wheat for greater drought tolerance with stable yields, as
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regional droughts during critical developmental stages pose a threat to winter

wheat production. Finally, we explore the transition from scientific progress to

practical implementation and discuss ways to bridge the gap between cutting-

edge developments and breeders, expediting MAS-based winter wheat breeding

for drought tolerance.
KEYWORDS

drought tolerance, GWAS, MAS, plant breeding, winter wheat, XAI, UAV remote
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1 Introduction

Water scarcity is seen as a key threat for the 21st century (Unesco,

2012), with global water demand expected to surpass supply by 40%

by 2030 (Gilbert, 2010). Even under the ‘Green Path’ Shared

Socioeconomic Pathway (SSP1), which envisions a future with

increased sustainability and reduced resource and energy

consumption (Riahi et al., 2017), Europe is projected to experience

a rise in the maximum annual temperature of over 5°C, a decrease in

precipitation of about -700 mm, and a reduction in soil water content

of up to -62 kg/m2 by 2060 relative to 2020 (see Figure 1A). Given

that agriculture is the primary user of freshwater, accounting for 70%

of total withdrawal globally (FAO, 2010; Hoekstra and Mekonnen,

2012), it is crucial to develop new strategies to enhance crop water use

efficiency through agronomy or breeding to tackle the impending

water crisis (Sposito, 2013; Turner et al., 2014; Bodner et al., 2015).

The yield of wheat, one of the key staple crops worldwide and

particularly in Western Europe (about 14% and 25% of total cropland

area respectively; FAO, 2023), has seen a steady increase during the

second half of the 20th century. However, this trend has shifted since

the 1990s, with yields reaching a peak and partially even slightly

decreasing, and showing an increasing variability year-to-year. Brisson

et al. (2010) suggested two main factors for this shift: (i) the effects of

climate change and (ii) a decrease in input intensity, primarily of N-

fertiliser, due to EU agri-environmental regulations. Therefore, future

production of key crops like wheat will have to cope with higher

resource constraints, in terms of both water and nutrients, even in

Europe’s temperate climate conditions. Particularly in sub-humid to

semi-arid regions, the balance between soil water supply and crop

water demand largely determines achievable yield levels (Lalic et al.,

2013). With projected higher temperatures and more unpredictable

rainfalls, the frequency of periods of crop water shortage is likely to

increase (Qin et al., 2023). Additionally, the co-occurrence of heat and

drought is expected to have the most significant impact on wheat yield,

with a predicted global reduction of 3.9% (Heino et al., 2023). On a

more regional scale, for instance, climate change projections for the

Pannonian lowlands, an important wheat-producing region in Europe,

indicate that the number of dry days with water deficit during the

vegetation period will increase (Trnka et al., 2011; Lalic et al., 2013;

Schils et al., 2018; van der Velde et al., 2018). Evaluation of past yield
02280
data and simulation model predictions point to a high risk for wheat

production under climatic conditions with hot temperatures (>25°C;

Lüttger and Feike, 2018; Figure 1B) and drought occurring at a sensitive

developmental stage, such as germination, tillering, flowering or grain

filling (Yu et al., 2018; Senapati et al., 2021; Xu et al., 2022). These

factors underscore the urgency to speed up the breeding process for

more drought (and heat) tolerant varieties to keep pace with the rate

and scale of climate change.

One of the methods that has revolutionised plant breeding by

improving its efficiency, speed and precision is marker-assisted

selection (MAS) (Collard and Mackill, 2008). There are different

MAS strategies such as MAS backcrossing, MAS pyramiding or early

generation MAS (Jeon et al., 2023), all of which use DNA-based

markers to help select lines with the desired traits. The limited

number of markers per trait and its restricted use for traits under

complex genetic control are major limitations of MAS. These

limitations led to the development of other marker-based strategies

such as genomic selection (GS) or crop growth models (Budhlakoti

et al., 2022; Zhang et al., 2022). Unlike MAS, GS uses all available

(genome-wide) markers to calculate a breeding value and has been

shown to outperform MAS in several studies (Arruda et al., 2016;

Degen and Müller, 2023). Despite these advancements, MAS is still

extensively used to efficiently screen for traits of interest. For instance,

MAS has been employed in wheat breeding to improve resistance to

biotic and abiotic stresses and to maintain yield potential (Song et al.,

2023; Subedi et al., 2023). A notable advantage of MAS may be that,

compared to the genome-wide approach of GS, only a few markers

ultimately need to be used by the breeder, making MAS –despite its

limitations– an affordable solution for practical breeding.

However, for a MAS programme to be successful, certain

prerequisites must be met: the generation of high-quality phenotypic

and genotypic data, the understanding of marker-trait associations, the

characterisation of reliable markers and, finally, the development of

cost-efficient and easy-to-use genotyping approaches. In this review, we

therefore attempt to cover this process using the example of winter

wheat breeding for increased drought tolerance. As a starting point, (i)

we revisit the physiological mechanisms and corresponding traits that

have been associated with drought tolerance in winter wheat under

different drought regimes (Section 2), (ii) we further discuss traditional

and modern phenotyping approaches focusing on airborne
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technologies and time series records and provide a guide for airborne

data acquisition for winter wheat (Section 3), (iii) we include genome-

wide association studies (GWAS), an important computational

approach that links the recorded phenotypes with the genotypes for

the identification of genetic markers used in MAS (Sections 4 and 5),

and finally, (iv) we address artificial intelligence (AI) models

accompanied by explainable AI (xAI) methods that could support

the breeding process at several steps in the context of smart agriculture

(Section 6). Attempting to bridge the gap between scientific

innovations and their application in practice, (v) we conclude this

review with an overview of the practical work of plant breeders (Section

7) and where these (novel) cutting-edge approaches could fit in and

help accelerate the breeding process.
2 Physiological mechanisms
underlying drought tolerance

Historically, advances in wheat breeding have largely been driven

by increased yield potential through better assimilate partitioning
Frontiers in Plant Science 03281
towards grain sinks, sustained by prolonged assimilate source activity

due to extended green canopy duration (Lichthardt et al., 2020).

However, under water-limited conditions, yield formation is a

complex function of total water uptake, water use efficiency, and

harvest index (Passioura, 1977). Ecophysiological theory has guided

trait-based breeding by uncovering stress adaptation strategies in

natural vegetation. Levitt’s scheme of dehydration avoidance,

dehydration tolerance, and drought escape (Levitt, 1980) serves as a

guiding framework for physiological breeding: plant traits underlying

individual stress response types aid targeted selection for crop

adaptation in water-limited environments (e.g., Richards, 2006;

Araus et al., 2008; Cattivelli et al., 2008).

The selection of relevant traits involved in drought tolerance

mechanisms that could potentially lead to better and more stable

yields strongly depends on the time when the drought occurs (van

Ginkel et al., 1998; Blum, 2011). For instance, the phenological

adaptation (‘drought escape’) of early maturity might be especially

sensitive to early drought events while thriving in summer-dry

regions with water deficiency during the grain-filling stage.

Dehydration avoidance by ‘water saving’ (Levitt, 1980) might
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FIGURE 1

Infographic depicting (A) climatic projections by 2060 in Europe based on the SSP1 scenario, (B) an increase of heat degree hours results in a decrease of
yield in wheat, and (C) a plant’s various physiological responses to water deprivation. Specifically, the projections in (A) show the change of the annual
maximum temperature [°C], the change of precipitation [mm], and the change of the soil moisture content [kg/m2] by 2060 relative to 2020 considering the
best case SSP1 narrative following the ‘Green Path’. In detail, maps are based on the GFDL-ESM4 model data provided by NOAA-GFDL, release year 2018
(Krasting et al., 2018) representing the SSP1-2.6 model made available through the Coupled Model Intercomparison Project, CMIP (Eyring et al., 2016).
Furthermore, in (B), a decrease of wheat yield [tonnes/ha] can be seen with rising heat degree hours over the vegetation period. On-farm yield data and heat
degree hours represent averages of six districts in Lower Austria during the years 2002–2014. The dashed line indicates a projection to 2040. An overview of
the physiological reactions of a plant to drought stress is presented in (C). Designed by Tatjana Hirschmugl and Eva M. Molin.
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result in suboptimal use of available water under moderate drought

regimes, while in situations with more severe drought and crop

growth largely dependent on stored soil moisture from off-season

rainfalls, a ‘conservative’ water use preserves water for grain filling

and yield formation (Mori et al., 2011).

As highlighted in Figure 1C, the regulation of plant water

balance forms the physiological basis for identifying potential

breeding traits for more drought-tolerant plants. Whether

transpiration can meet the potential demand, driven by the

atmospheric vapour pressure deficit, depends not only on the

availability of soil water but also on the transport capacity of soil

and plants under variable driving gradients (e.g., Maseda and

Fernandez, 2006). In coarse to medium-textured soils, the

transport of water through the tortuous soil pore system to the

root surface drops sharply when larger pores drain upon successive

soil drying, resulting in supply limitation (wilting) at a water

content substantially higher than the permanent wilting point

(Czyż et al., 2012). With successive drying, the root-soil contact

can be lost due to root shrinkage and air gap formation as well as

root mucilage becoming hydrophobic to protect root tissues from

dehydration (Carminati and Vetterlein, 2013; Affortit et al., 2023).

Stomata are the ultimate regulators of crop water transport,

providing a mechanism to prevent plants from dehydration

damage (cf. Figure 1C). Stomata thus act upon imbalances

between vapour losses from and liquid water transport to the

transpiring leaves. Root water uptake (Abdalla et al., 2022) and

xylem transport (Cruiziat et al., 2002) are crucial for stomata

regulation, mediated by chemical and hydraulic signals within

plant-specific safety margins (Sperry and Love, 2015). Sustained

xylem water flow under high-pressure gradients between soil and

atmosphere without interruption of transport vessels by air

embolism, leading to an eventual hydraulic failure of the

transport system, has been suggested as one of the key

bottlenecks for crop performance in dry environments (Sperry

et al., 1998; Vadez et al., 2013; Vadez, 2014). Plants relying on

high safety margins with sensitive stomata response to tissue

dehydration (isohydric behaviour; Tardieu and Simonneau, 1998;

Hochberg et al., 2018), also have to cope with increased leaf

temperature and high radiation load at the leaf, which leads to an

overproduction of reactive oxygen species that cause metabolic

disorders and limit plant growth and development (Mukarram

et al., 2021). Within this general framework of physiological

mechanisms and related traits, Blum (2009) points to maximising

water uptake as a focus for breeding because it is generally

compatible with high yields, i.e. genotypes that fall into the

category of ‘water wasters’ according to Levitt’s framework.

Efficient water uptake by the root system is a desirable breeding

objective (Vadez et al., 2007). In wheat, physiological and root

research studies indicate a significant contribution of the root

system to increased drought tolerance (e.g. MansChadi et al.,

2008; Palta et al., 2011; Becker et al., 2016; Li et al., 2021).

To expand the germplasm sources of (novel) stress tolerance

traits, landraces and crop wild relatives are a valuable resource

offering a wealth of diversity (Galluzzi et al., 2020) that could be

transferred into breeding programmes, as has been extensively

reviewed for wheat (Valkoun, 2001; Reynolds et al., 2006;
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Trethowan and Mujeeb-Kazi, 2008; Nakhforoosh et al., 2015;

Lehnert et al., 2022; Aloisi et al., 2023; Shokat et al., 2023).

Specifically, cereal genetic resources could contribute to improved

drought tolerance through higher water use efficiency (Konvalina

et al., 2010), rapid early development (Mullan and Reynolds, 2010),

stem reserve demobilisation, osmotic adjustment (Reynolds et al.,

2006), and even plant waxiness (Patidar et al., 2023). Several studies

also suggest a contribution of root traits (e.g., Reynolds et al., 2006;

Sanguineti et al., 2007; Trethowan and Mujeeb-Kazi, 2008; Lopes

and Reynolds, 2010; Nakhforoosh et al., 2014).

Despite these studies, further progress in physiological and

trait-based breeding to accelerate wheat improvement for future

environmental conditions critically depend on adequate selection

strategies that combine (advanced) targeted trait phenotyping (see

Section 3) with modern genetic tools (see Sections 4 and 5).
3 From traditional to
airborne phenotyping

The practice of measuring phenotypic traits dates back to Neolithic

agriculture when domesticated cereals were intentionally selected for

traits such as broad kernels (Zohary et al., 2012). Today, one of the

cornerstones of plant breeding is the selection of superior individuals

based on phenotypic traits (e.g., grain yield), and more recently, the

identification of genome regions controlling these traits (cf. Sections 4

and 5). With advancements in sensor technology, phenotyping has

evolved into a high-throughput process, including remote sensing and

machine learning (ML), offering solutions for precision agriculture and

digital plant breeding (Walter et al., 2015; Pieruschka and Schurr, 2019;

Holzinger et al., 2022a; Jeon et al., 2023). This diversity of phenotyping

approaches is mirrored in the wide range of data and data formats

obtained during the breeding process by different sensors (Thoday-

Kennedy et al., 2022), such as visual scorings, direct measurements of

plant phenotypic parameters, meteorological readings, and

hyperspectral and multispectral measurements (Heremans et al., 2015;

Adão et al., 2017; Becker and Schmidhalter, 2017; Hu et al., 2020;

Saranya et al., 2023), which we aim to cover in this review with respect

to wheat.
3.1 Traditional phenotyping

Modern plant breeding still depends on traditional phenotyping,

which includes visual scorings, plant measurements, and destructive

sampling followed by laboratory analysis (Furbank and Tester, 2011;

Atkinson et al., 2018). Each type has unique characteristics in terms

of precision and measurement speed. Non-destructive measurements

are easily measured, such as plant height and visual assessments of

disease occurrence, phenology, and plant architecture. These visual

assessments are commonly used and are also applied for official

national variety testing, e.g., in Austria (Kumar et al., 2016; Steiner

et al., 2017; Anderegg et al., 2020; AGES, 2023; Lunzer et al., 2023).

However, the precision of non-destructive measurements can be

limited by various factors such as observer variability and lighting

conditions. Conversely, destructive measurements involve the
frontiersin.org
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collection and analysis of plant samples to acquire data on above-

ground dry matter, grain yield, and quality traits like protein content

and baking quality. Despite offering high precision, these

measurements are time-consuming, destructive, and often limited

by cost considerations.

As for breeding experimental setups, they can be classified based

on the degree of control over environmental conditions (Hammer

and Hopper, 1997). Growth chambers provide highly controlled

conditions, where numerous environmental variables such as

temperature, light intensity, and CO2 concentration can be

manipulated (Rezaei et al., 2018). Semi-controlled conditions,

observed in, e.g., greenhouses and rain-out shelters, offer some

control over environmental factors, with greenhouses affording

greater control than rain-out shelters (Yadav, 2017; Rezaei et al.,

2018). Finally, experiments under field conditions feature the lowest

control over environmental variables. Nevertheless, field

experiments are undoubtedly relevant, since most of them are

conducted in the field under uncontrolled conditions (Hammer

and Hopper, 1997). They allow for scientific testing of experimental

factors under conditions similar to agriculture practice.

Experimental factors can include varying genotypes, sowing

times, fertilisation, plant protection, irrigation and disease

occurrence due to natural pressure as well as artificial inoculation

(Buerstmayr et al., 2000; Koppensteiner et al., 2022).

Observational units vary across setups, ranging from plots in field

experiments and rain-out shelters to pots in greenhouses and growth

chambers (Buerstmayr et al., 2000; Yadav, 2017; Rezaei et al., 2018;

Koppensteiner et al., 2022). In field trials, units of observation include

single seeds (Zhu et al., 2012), single rows (Buerstmayr et al., 2000),

micro-plots (Miedaner et al., 2006), and large plots (Koppensteiner

et al., 2022), e.g., 1.5 m by 7 m, depending on the amount of available

seed material of a genotype in the respective stages of the breeding

process. In the context of UAV-based sensor systems discussed in this

review, micro-plots and large plots are the most relevant observation

units. Measurements on more detailed levels are possible depending

on the specifications of sensor systems and operational flight height.

Despite the significance of field experiments, conducting field

phenotyping is arduous, time-intensive, and susceptible to human

and environmental variability. Therefore, there is a pressing need to

enhance field phenotyping capabilities to facilitate accurate and high-

throughput phenotyping, thus expediting crop breeding processes

(Yang et al., 2020).
3.2 Remote sensing

Remote phenotyping techniques in digital agriculture are prized

for their non-destructive nature and their ability to improve data

collection accuracy and efficiency (Sishodia et al., 2020; Jeon et al.,

2023). These techniques rely on remote sensing, which involves

detecting electromagnetic radiation across various wavelengths

emitted, reflected, or transmitted by objects. Remote sensing

measurements are categorised into direct and indirect methods.

Direct measurements involve directly gauging traits of interest, such

as plant height using digital surface and terrain models (Holman
Frontiers in Plant Science 05283
et al., 2016), while indirect measurements estimate traits using

statistical or ML models like biomass and water stress estimates

(Wang et al., 2016; Das et al., 2021).

Remote phenotyping can be conducted at various scales:

ground-based - handheld or vehicle-mounted (Kumar et al., 2020;

Tang et al., 2023), aerial - via aircraft or UAVs (Fei et al., 2023;

Nguyen et al., 2023), and satellite platforms like Sentinel-2 (Zhao

et al., 2020; European Space Agency, 2023a), Landsat (Zhou et al.,

2020; Darra et al., 2023; NASA, 2023), WorldView-2 and 3 (Tattaris

et al., 2016; Yuan et al., 2017; European Space Agency, 2023b), or

RapidEye (Eitel et al., 2007; European Space Agency, 2024). To

contextualise these platforms, key remote sensing features are

spatial, temporal, spectral, and radiometric resolutions (Verde

et al., 2018). Spatial resolution refers to pixel size, temporal

resolution to the time between measurements, spectral resolution

to the number of spectral channels, and radiometric resolution to a

sensor’s ability to detect varying energy quantities in a specific

spectral channel. Each phenotyping platform presents trade-offs; for

instance, ground-based techniques offer high spatial resolution but

require dedicated manpower, leading to lower time resolution.

Aerial technologies offer enhanced operational performance and

sub-centimetre spatial resolution (Bhandari et al., 2020) but are

weather-dependent, limiting time-series data availability. Satellites

provide densely populated time series but sacrifice spatial

resolution, with modern satellites offering resolutions as low as 31

cm in the case of Worldview-3 (European Space Agency, 2023b).

Moreover, in general, increasing sensor-object distance or

increasing the swath width of the satellite, i.e. the horizontal

distance covered by a satellite sensor, can improve temporal

resolution by allowing the sensor to revisit the same location

more frequently. However, this enhancement comes at the cost of

diminished spatial resolution (Kadhim et al., 2016). Other trade-offs

do not depend on the spatial resolution, but, for UAV, the

maximum weight of a payload determines the equipped camera

and therefore the spectral resolution available to be measured

(Mohsan et al., 2023).

Another key concept in remote sensing and therefore in remote

phenotyping is the Ground Sampling Distance (GSD), i.e. the

spatial spacing between the centres of two consecutive pixels as

measured on the ground. It is determined by several key factors:

altitude (h), denoting the height above the ground at which the

sensor is positioned and affecting the scale of the captured image;

sensor size (s), representing the physical size of the sensor in the

camera, typically measured in mm, larger sensors capturing more

detail and impacting the GSD; focal length (f), the distance from the

optical centre of the lens to the camera sensor, measured in mm,

influencing the field of view and magnification of the captured

image, and image resolution (r). The GSD is mathematically

represented as:

GSD (m) =
h (m)� s (mm)

f  (mm)� r (pixels)

This metric is important because it directly determines the

spatial resolution of the imagery, affecting the level of detail that can

be captured and the accuracy of any measurements or analyses
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conducted on the images. Generally, a smaller GSD indicates a

higher spatial resolution and finer detail in the imagery. GSD values

vary across different imaging platforms. For UAV imaging, GSD

can vary depending on factors like altitude and sensor

specifications, generally falling between 0.5 to 10 cm per pixel

(Yuan et al., 2018). This range allows for moderately detailed aerial

imagery suitable for various agricultural and environmental

applications. On the other hand, satellite imaging offers broader

coverage but typically lower spatial resolution. GSD for satellite

imagery can range from 30 cm to several m per pixel, depending on

the satellite platform, sensor, and imaging mode employed

(Chawade et al., 2019).

In plant breeding, the field experimental plot is the typical unit

of observation (Hammer and Hopper, 1997). While current satellite

systems’ spatial resolution may be inadequate for precise

phenotypic parameters at a plot level (Tattaris et al., 2016),

ground-based and aerial remote sensing approaches offer suitable

spatial resolution. UAVs, with their flexibility, extended operational

times, lower cost, and high spatial resolution in the low centimetre

range, emerge as promising phenotyping platforms for plant

breeding and precision agriculture (Sishodia et al., 2020; Guo

et al., 2021).
3.3 UAV-based remote phenotyping

UAV remote sensing coupled with ML provides a non-

destructive method that enables repeated plant measurements

over time. This is a significant improvement over traditional

methods, which are laborious, time-consuming and expensive

(Galieni et al., 2021; Nguyen et al., 2023). Therefore, the use of

UAVs for remote phenotyping has become a well-established

practise in plant breeding (Yang et al., 2020; Guo et al., 2021).

Compared to other remote sensing platforms, UAVs offer several

advantages. They are capable of swiftly collecting spectral data,

outperforming the speed of handheld devices. They can capture

data at a higher resolution compared to aerial cameras operated

from a manned aircraft, and they are not dependent on satellite

overpasses for data collection in the region of interest (Kim

et al., 2019).

3.3.1 An overview of UAV sensor systems
UAVs can be equipped with passive sensors, such as

multispectral, hyperspectral and thermal cameras, or active

sensors, such as Light Detection And Ranging (LiDAR) (Thoday-

Kennedy et al., 2022).

Since multispectral and hyperspectral cameras can capture data

at various wavelengths (also outside the visible spectrum), their use

in agricultural applications offers many benefits. They can identify

and monitor crop health and stress (Yang et al., 2009; Virnodkar

et al., 2020), determine and map corn emergence uniformity (Vong

et al., 2022) and quickly detect diseases and pests (Prabhakar et al.,

2012). Multispectral leaf reflectance data are very useful because

they contribute to computing indices widely used in agriculture (see

Table 1 for an overview of the main vegetation indices).
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Additionally, both multispectral and hyperspectral data can be

utilised to estimate crop yields using ML methods (Fei et al.,

2023; Joshi et al., 2023). In contrast to multispectral sensors,

which typically capture broader spectral bands with spectral

resolutions from 10 to 100 nm, hyperspectral sensors offer a

much higher spectral resolution, often within 1 to 10 nm (Adão

et al., 2017). They effectively capture a spectral continuum across

hundreds of contiguous, narrow bands, enabling detailed pixel-by-

pixel analysis. Hyperspectral cameras are capable of capturing not

only the visible (400-700 nm) and near-infrared (NIR, 700-2500

nm) wavelength ranges but also radiation from the ultraviolet (UV,

100-400 nm) to thermal infrared (TIR, 3000-15000 nm)

wavelengths. However, the large data storage required for

hyperspectral data can limit its use in large-scale applications

(Sun et al., 2019). Therefore, despite their significant advantages,

hyperspectral applications in large-scale wheat phenotyping could

face challenges related to data storage, management, and budget

constraints (Ang and Seng, 2021).

Thermal imaging, which operates within the broader long-

wave infrared (LWIR) wavelengths (from 8 to 15 μm), serves as a

valuable tool for detecting plant stress. Thermal measurements

can be used to evaluate the transpiration status, plant vigour, and

the spread of diseases in wheat cultivars (Mahlein et al., 2012) or,

together with measurement of the air temperature, to compute the

Crop Water Stress Index (CWSI). This index can then be

incorporated as a feature in an ML model to provide insights on

canopy head evapotranspiration or to segment image data into

temperature areas (Zhou et al., 2021b). Moreover, combining

thermal imaging data with other phenotypic traits improves the

holistic understanding of plant responses to environmental

conditions. This synergy enables researchers, breeders and

farmers to make well-informed decisions for optimal crop

management and resource allocation (Khanal et al., 2017; Stutsel

et al., 2021).

On the other hand, unlike camera-based systems that passively

capture reflected, transmitted, or emitted light, LiDAR is an active

technique that emits laser pulses and measures the time for these

pulses to reflect off objects, providing precise distance and spatial

data. This has been particularly useful in wheat breeding for

estimating plant biomass and plant height (Hütt et al., 2023).

Taking advantage of global navigation satellite systems (GNSS) and

laser altimetry, and using GIS software, accurate crop height

measurements can be obtained by subtracting a digital terrain

model from a digital surface model representing the crop canopy

surface (Jenal et al., 2021). Although LiDAR systems typically operate

at a single wavelength, combining geometric measurement with

spectral information is possible, such as registering multispectral

camera images with LiDAR point clouds (Hakula et al., 2023), or

using LiDAR systems with individual lasers at various frequencies,

e.g., Optech Titan (GEO3D, 2023).

3.3.2 Spectral indices supporting smart
wheat breeding

In the context of wheat breeding, an index is a mathematical

formula designed to provide a comprehensive representation of
frontiersin.org

https://doi.org/10.3389/fpls.2024.1319938
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Chang-Brahim et al. 10.3389/fpls.2024.1319938
various plant traits, physiological states and characteristics

(Reynolds and Langridge, 2016). It combines different desired

traits into a single numerical value, allowing breeders to assess

and compare the overall performance of different wheat varieties

more thoroughly (Myneni et al., 1995). The computation of these

indices creates a multidimensional profile, enriching the complexity

of the breeding problem and providing valuable input for machine-

learning approaches. Consequently, indices are crucial tools that

enable breeders to make informed decisions, optimise their

breeding strategies, and ultimately develop wheat varieties that

thrive in a wide range of agricultural and environmental

conditions in modern research (Radočaj et al., 2023).

In precision agriculture, vegetation indices are broadly

categorised into two main types: broadband and narrowband

(Thenkabail et al., 2002). Broadband indices, such as the

Normalised Difference Vegetation Index (NDVI) (Rouse et al.,

1974), integrate information from relatively wide spectral bands,

such as the NIR band. These indices offer a generalised measure of

vegetation vigour and health. This approach is efficient and simple,

making these indices suitable for large-scale agricultural monitoring
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and management tasks where rapid assessment is prioritised. In

contrast, narrowband indices, such as the Chlorophyll Absorption

Ratio Index (TCARI) (Haboudane et al., 2002), target specific

narrow spectral bands within the electromagnetic spectrum.

These indices focus on precise absorption features related to

chlorophyll content, leaf structure, and other biochemical

properties. Narrowband indices provide high spectral resolution

making them valuable for tasks requiring in-depth analysis of plant

health and stress. The choice of using either family of indices

depends on the specific physiological traits under investigation.

Table 1 presents several indices common in remote sensing for

wheat phenotyping. The practical rationale behind our selection of

these indices is the ease of computing them with standard

commercially available multispectral cameras (NIR - 700-2500 nm,

RGB - 400-700 nm, SWIR - 2500-3000 nm, Red Edge-700-730 nm)

and their recognised impact in assessing the plant water status,

general stress condition and phenological traits. Vegetation Indices

play a crucial role in assessing various aspects of vegetation health and

physiological traits. The Normalised Difference Vegetation Index

(NDVI) is widely utilised due to its computational simplicity,
TABLE 1 Most used indices of remote phenotyping applied in wheat breeding.

Name Formula Properties Reference

NDVI
Normalised Difference Vegetation Index

NIR − R
NIR + R

Vegetation density, plant health, and land
cover monitoring

(Carlson and
Ripley, 1997)

EVI
Enhanced Vegetation Index

GF
NIR − R

NIR + C1R − C2B + L
Sensitivity in high vegetation areas and

aerosol correction
(Matsushita et al., 2007)

SAVI
Soil Adjusted

Vegetation Index

(NIR − R)
(NIR + R + L)

(1 + L)
Vegetation index corrected for Soil

Condition
(Huete, 1988)

NDWI
Normalised Difference Water Index

NIR − SWIR
NIR + SWIR

Water presence detection and water
content sensitivity

(Gao, 1996)

LAI
Leaf Area Index

− ln P(q) cos (q)
G(q)W (q)

Green leaf area measurement and
ecosystem dynamics monitoring

(Nilson, 1971)

TCARI
Transformed

Chlorophyll Absorption in
Reflectance Index

3 · (R700 − R670) − 0:2(R700 − R550)
R700

R670

Chlorophyll estimation in vegetation (Haboudane et al., 2002)

GNDVI
Green Normalised

Difference Vegetation Index

NIR − G
NIR + G

Vegetation monitoring
(Rahman and
Robson, 2016)

MSAVI
Modified Soil Adjusted

Vegetation Index

2NIR + 1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(2NIR + 1)2 − 8(NIR − R)

p

2
Enhanced sensitivity to low vegetation (Qi et al., 1994)

ARI
Anthocyanin

Reflectance Index
ARI = R−1

550 − R−1
700 Detection of plant pigments (Gitelson et al., 2001)

NDRE
Normalised Difference Red Edge

NIR − Red   edge
NIR + Red   edge

Measurement of vegetation stress (Tilling et al., 2007)

CCCI
Canopy Chlorophyll Content Index

NDRE − NDREmin

NDREmax − NDREmin
Measurement of chlorophyll content in the canopies (Fitzgerald et al., 2010)
The LAI formula presented here is not the only one available. Other methods for computing LAI are referenced in Fang et al. (2019). SAVI/EVI: GF is a gain factor, C1 and C2 are the coefficients
to correct for aerosol influences in the red band and L is the Canopy background adjustment factor. LAI: P(q) represents the canopy gap fraction at the zenith angle q and G(q) is the projection
function corresponding to the fraction of foliage projected on the plane normal to the solar direction and Ω(q) is the canopy clumping index. ARI/TCARI: The term RY typically denotes the
measurement of the red colour at a wavelength denoted by Y, with the unit of measurement being nanometers (nm). CCCI:NDREmin and NDREmax represent the minimum and maximum values
of NDRE that have been recorded, respectively.
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facilitating assessments of vegetation density, plant health, and water

stress (Condorelli et al., 2018; Hassan et al., 2019; Huang et al., 2021).

However, limitations such as computational approximations and

instrument inaccuracies can occasionally hinder its effectiveness in

evaluating plant stress (Khan et al., 2018).

To address these limitations, several alternative indices have

been developed. The Enhanced Vegetation Index (EVI) enhances

the vegetation signal in high biomass areas and corrects for aerosol

factors (Khan et al., 2018). Additionally, the Soil-Adjusted

Vegetation Index (SAVI) and Modified Soil-Adjusted Vegetation

Index (MSAVI) correct for soil irradiation in areas with low canopy

cover (Prudnikova et al., 2019). The Normalised Difference Water

Index (NDWI) detects water presence and sensitivity to water

content (Wu et al., 2009). The Green Normalised Difference

Vegetation Index (GNDVI) specifically targets green vegetation,

utilising the green band instead of red. Furthermore, the

Normalised Difference Red Edge (NDRE) emphasises the red

edge region of the spectrum instead of the red band. These last

two indices correlate with leaf nitrogen content and are used for

controlling nitrogen leaf status (Li et al., 2019).

For other physiological traits, specialised indices have been

developed. The Transformed Chlorophyll Absorption Reflectance

Index (TCARI) estimates chlorophyll content in vegetation and

biomass (Wang et al., 2022). The Leaf Area Index (LAI) measures

foliage density within a canopy by comparing leaf surface area to

ground area. The Anthocyanin Reflectance Index (ARI) identifies

the presence of anthocyanins, aiding in the assessment of plant

stress, phenology, and disease infection (Koc et al., 2022). Lastly, the

Canopy Chlorophyll Content Index (CCCI) estimates chlorophyll

levels in vegetation by combining red and red edge bands

(Cummings et al., 2021).

Each of these indices offers unique insights that can inform

breeding decisions, including assessments of yield potential and

drought resistance, thus necessitating careful selection among

the myriad indices developed by the remote sensing community

(Xue and Su, 2017).

3.3.3 Machine learning for interpreting high-
throughput field phenotypic data

In these scenarios, ML techniques showcase their advantage over

conventional approaches in predicting phenotypes (Ansarifar et al.,

2021). As high-throughput phenotyping methods produce a large

volume of data, the use of ML becomes pivotal in accurately

interpreting and effectively leveraging this data, leading to more

precise phenotype predictions (Shaikh et al., 2022). For example,

Wang et al. (2016) presents how random forest (RF) models

outperform simple multilayer perceptrons (MLPs) and support

vector machines (SVMs) in predicting wheat biomass. Grinberg

et al. (2020) provides a comparative study of different ML models

on various phenotyping problems across different crops, including

wheat. The advent of deep learning enhances the classification of crop

images, offering unprecedented granularity in monitoring crop

quality, assessing yield, and pinpointing water stress at a pixel-wise

level (Chandel et al., 2021). Convolutional neural networks (CNNs)

further boost the model’s capabilities, automatically extracting key
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features and patterns to make reliable phenotype predictions (Jiang

and Li, 2020). Moreover, deep learning models have expanded the

range of possible predictions to include disease detection, stress

severity quantification, and yield (Mohanty et al., 2016; Giménez-

Gallego et al., 2019; Zhou et al., 2021a). An intriguing direction that

research has taken is semi-supervised approaches to the learning

problem (Tang et al., 2023; Zhou et al., 2023). Semi-supervised deep

learning is an ML paradigm where a model is trained using a

combination of labelled and unlabelled data. It uses the limited

labelled data to guide the learning process and improve the model’s

performance on tasks such as classification or regression, while also

benefiting from the larger pool of unlabelled data for generalisation

and enhanced feature representation (Yang et al., 2021). Deep

learning significantly improves the model’s ability to generalise and

enables accurate and reliable phenotyping models for high-

throughput approaches. However, a key drawback of deep learning

approaches is that each solution needs to be tailored to the data and

the phenotypic trait under investigation.

While traditional methods continue to hold their merits,

integrating (UAV-based) remote sensing coupled with ML in

phenotyping processes might be essential to obtain better and

more resilient crop varieties (Yang et al., 2020). In addition,

operational costs could be significantly reduced by cutting fixed

costs such as laboratory equipment and workforce. This would lead

to improved scalability in the approach and quicker results that are

passed over in the data pipeline.
3.4 A guide for UAV-based data acquisition
for winter wheat

Moving to the next stage, this Section presents a detailed

overview of a potential high-throughput field phenotyping system

specifically tailored for winter wheat. The main objective is to

facilitate the acquisition of phenotypic data for GWAS (see

Section 4) and MAS techniques in the frame of precision

agriculture. A schematic representation of the key components of

the pipeline is presented in Figure 2.

In this scenario, the fundamental premise revolves around the

division of the test field into georeferenced experimental plots,

overseen by experts tasked with gathering in-situ data. This

experimental arrangement mirrors established methodologies seen

across various research endeavours, aimed at facilitating controlled

crop cultivation (Bai et al., 2016; Haghighattalab et al., 2016;

Volpato et al., 2021). The grid structure delineating individual

plots within the field is visually represented in Figure 2. Typically,

experts conduct assessments and record measurements by visually

inspecting these plots, as demonstrated in Koc et al. (2022). It’s also

advantageous to conduct these measurements at specific intervals,

tailored to the trait being studied. For instance, in Fernandez-

Gallego et al. (2020), multispectral images were captured under

direct sunlight on three dates: June 6th, 25th, and July 3rd, 2018, in

Belgium, corresponding to the developmental stages flowering and

ripening, to monitor wheat ear development and count. During

each scheduled flight mission, a UAV systematically follows a
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predefined grid pattern, meticulously gathering data while

traversing the agricultural field.

The UAV could be equipped with a camera capable of capturing

a range of spectral information, including RGB, panchromatic, Red

Edge, NIR and thermal measures, during its flight (Holman et al.,

2016; Tattaris et al., 2016; Duan et al., 2017). The specific selection of

spectral bands depends on the particular index to be computed,

which in turn depends on the trait under investigation. Additionally,

the camera must undergo radiometric calibration to ensure the

acquisition of physically meaningful measurements. The spatial

resolution of the data acquired is influenced by both the altitude of

the UAV and the intrinsic parameters of the camera used. For

example, a standard multispectral camera (e.g. AgEagle Aerial

Systems Inc, 2023) with 3.2 MP captures images with 2.5 cm GSD

at an altitude of 60 m above the ground. The collected data is typically

processed using photogrammetric software like Pix4D or Agisoft

(Zhu et al., 2019). These software applications are used to create a

reflectance map of the agricultural field by orthorectification and

stitching individual images to reconstruct a high-resolution

representation of the target area. Subsequently, plot-level spectral

information is extracted using geospatial software, e.g. GIS, and

organised for easy access (Beltrame et al., 2024). This data is then

linked with specific plots and expert-acquired labelled information

(lower part of Figure 2) to create tuples for subsequent ML analysis.

These calibrated, cleaned, and standardised datasets can be used in

classical preprocessing operations, including image normalisation,

data augmentation, and sub-/oversampling techniques. To fully

harness the information-rich content obtained, it is essential to

select models that can handle the spatial complexity inherent in

high-resolution images. For instance, a basic deep learning
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architecture, such as CNNs, can be used to extract feature maps

from images and make accurate phenotype predictions (Kattenborn

et al., 2021; Nguyen et al., 2023).

Recent advancements in image analysis, data extraction, and

augmentation (Shorten and Khoshgoftaar, 2019), coupled with

innovative artificial image synthesis techniques (Lu et al., 2022),

and transfer learning (Hutchinson et al., 2017) are greatly

enhancing the development and the integration of remote sensing

technologies in agriculture. These advancements are starting to

contribute to overcoming the phenotyping bottleneck (Song et al.,

2021) and significantly enhance the provision of high-quality

phenotype data to genotype - phenotype association studies

ultimately resulting in an efficient and reliable MAS.
4 GWAS - a playground for the
identification of genetic markers

Besides a meticulous recording of phenotypic data, MAS

depends on the availability of genetic markers linked to the

phenotypic trait of interest. Identifying these genetic regions

associated with a phenotype is often not a straightforward task:

many traits are polygenic, which adds to the complexity of their

relationship with the phenotype (Korte and Farlow, 2013; Boyle

et al., 2017; Mills and Rahal, 2019; Pierce et al., 2020). The general

approach of linking genetic regions to traits, known as genetic

mapping, consists of two main strategies: (biparental) linkage

mapping (LM) and association mapping (AM) (March, 1999).

LM utilises closely related individuals to study the co-segregation

of markers and traits due to physical proximity, while AM uses
FIGURE 2

Illustration of a high-throughput UAV-based phenotyping configuration for plot-level analysis. The pipeline explains how to get from the raw data,
in-situ phenotype acquisitions and raw images, to a structured and cohesive dataset to be employed in ML operations. The depicted dimensions,
captured wavelengths, ML models, and traditional phenotyping methods serve as reference points. Designed by Tatjana Hirschmugl.
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diverse, unrelated populations to detect statistical associations

between markers and traits. AM, also known as linkage

disequilibrium mapping, exploits linkage disequilibrium (Mackay

and Powell, 2007), which is the nonrandom association pattern

between alleles at different loci within a population (Nordborg and

Tavaré, 2002; Gaut and Long, 2003). Since its introduction to plants

(Tenaillon et al., 2001; Thornsberry et al., 2001), AM has become

increasingly important in genetic research as cost-effective, high-

throughput technologies for genotyping single nucleotide

polymorphisms (SNPs) are now available, enabling dense marker

coverage (Syvänen, 2005). A particular concept of AM, namely

genome-wide association studies (GWAS), has become a common

technique for understanding complex traits in plants in general and

in many crop species, including wheat (Zhu et al., 2008; Cortes

et al., 2021).

The primary advantage of GWAS is that it tests thousands to

millions of genetic variants (e.g., SNPs) of many individuals from

different populations on a genome-wide scale, allowing more

complex genotype-phenotype relationships to be explained than

with LM. However, for a genome-wide analysis, the knowledge

about and the characterisation of SNPs is an essential part and is

driven by the sequencing of the whole genome of the target

organism. In the case of wheat, its genome was fully sequenced in

2018 (Appels et al., 2018) and has been continuously improved

since then Shi and Ling (2018); Guan et al. (2020); Gao et al. (2023),

including the creation of a pangenome (Montenegro et al., 2017;

Jayakodi et al., 2021), which provides a valuable knowledge base for

the development of a variety of high-density SNP arrays for high-

throughput genotyping (Wang et al., 2014; Rimbert et al., 2018; Sun

et al., 2020). Finally, to link these genotypic traits to the measured

phenotypes, a wide range of GWAS-based tools and statistical

methods are available, which have already been used in wheat, as

shown in Table 2, which are described in the following Section in

more detail.
4.1 GWAS modelling strategies

The modelling strategies underlying GWAS are diverse from a

statistical perspective, of which linear and Bayesian models are the

prevailing strategies. Linear models fit linear equations to the data

(genetic and phenotypic data), testing each specific marker and its

relationship with the phenotype independently, simplifying the

computational complexity that could arise from the genetic

intricacies in the data (Sabatti, 2013). Generalised linear models

(GLMs), as described in Nelder and Wedderburn (1972), add an

additional layer of complexity, including a link function to relate

input and output, thus providing certain flexibility from the rigidity

of linearity. Linear mixed models (LMMs) represent another logical

extension of linear models for GWAS and are widely applied (cf.

Table 2). LMMs include fixed and random effects to model

phenotypes, and can account for confounding factors such as

population stratification, family structure, etc (Alamin et al.,

2022). LMMs also offer versatility as they can analyse many

experimental designs (Yang, 2010). These models, as their name
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suggests, assume a linear relationship between genotype and

phenotype. They also assume that the random effects are

normally distributed and that there is homoscedasticity in the

variance of their errors (Warrington et al., 2014). These are the

two main concepts use for GWAS methods based on linearity.

Bayesian models have also been developed and used for

GWAS (cf. Table 2), fitting all markers simultaneously while

addressing the issue of data dimensionality, making them well

suited for polygenic traits (Fernando and Garrick, 2013; Miao

et al., 2019). These methods require the specification of prior

distributions, allowing knowledge of the data to be incorporated

into them to yield more accurate results, with the caveat that

deviation from the specified distribution can impair performance

and statistical power (Cortes et al., 2021). Bayesian GWAS aim to

identify sections of the genome that explain more than a

threshold of the variance (Fernando and Garrick, 2013; Cortes

et al., 2021). The multiple methods developed assume different
TABLE 2 Common GWAS tools and methods, and examples of their
application in wheat.

GWAS
tool

Tool
reference

GWAS
method

Application
in wheat

BayesCp
Habier

et al. (2011)
Bayesian GWAS

Zhao
et al. (2013)

BLINK
Huang

et al. (2019)
Bayesian GWAS

Devate
et al. (2022)

EMMAX Kang et al. (2010) Efficient mixed model
Daba et al.
(2018)

Li et al. (2022)

farmCPU Liu et al. (2016) Multiple loci LMM

Gahlaut et al.
(2021)
Rahimi

et al. (2023)

GAPIT
Lipka et al.

(2012) and Tang
et al. (2016)

Compressed mixed
linear model based
genomic prediction

Qaseem et al.
(2019)
Bennani

et al. (2022)

MA
Zhou and

Stephens (2012)
Genome-wide efficient

mixed model
Wu et al. (2021)
Ma et al. (2022)

JMP
Genomics

SAS Institute
Inc (2013)

GLMs
Gizaw

et al. (2018)

PLINK
Purcell et al.

(2007) and Chang
et al. (2015)

Mixed model GWAS

Gogna et al.
(2023)
Zhao

et al. (2023)

SNPtest
Marchini et al.
(2007) and

Marchini (2010)

Imputation
based GWAS

Manickavelu
et al. (2017)
Muhammad

(2021)

sommer
Covarrubias-
Pazaran (2016)

Mixed model GWAS

Vukasovic et al.
(2022)

Dallinger
et al. (2023)

TASSEL
Bradbury

et al. (2007)
Generalised models and
mixed linear models

Lehnert et al.
(2018)
Akram

et al. (2021)
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distributions for the calculation of the priors, having different

performance according to the deviation from their actual

distribution. Markov Chain Monte Carlo algorithms have been

used to infer model parameters using Gibbs-type processes, as in

Habier et al. (2011). The posterior probabilities of association, the

odds of a specific SNP being actually related to the trait, can be

calculated from the Bayes factor (Stephens and Balding, 2009).
4.2 Understanding the limitations of GWAS

Despite all these advancements, GWAS still have significant

limitations in their design and application (Korte and Farlow, 2013;

Wray et al., 2013; Tam et al., 2019; Cortes et al., 2021): they can be

limited to the populations that are more represented in the studies,

and there can exist a lack of transferability, as results may not

extrapolate to other groups (Bouaziz et al., 2011), or the number of

ostensible causal variations might be reduced if data from

genetically diverse populations were used, so it is paramount to

have an adequate representation of the population to reduce the

possible biases that can arise from this (Clyde, 2019; Uffelmann

et al., 2021). In addition, at this point, the causality or functionality

of the linked SNPs is still elusive and only can be validated

empirically through further experimentation (Hazelett et al., 2016;

Gallagher and Chen-Plotkin, 2018). Non-normality of the data can

also be a significant factor that increases error and reduces statistical

power (Yoosefzadeh-Najafabadi et al., 2022). When applying

GWAS, the risk of finding spurious correlations is ever-present,

thus careful consideration must be taken into the model to correct

when working with complex traits (Ball, 2013).

As the complexity of genetic architecture increases (Boyle et al.,

2017), GWAS methods often fail to identify all genetic

polymorphisms that have an effect on the phenotype. This

phenomenon, known as missing heritability (Brachi et al., 2011),

occurs when the genotype identified with these statistical methods

does not fully explain the target characteristics. Missing heritability

is thought to be caused partially by polymorphisms that have a

small correlation with the target trait, and thus not being significant

after Bonferroni correction (López-Cortegano and Caballero, 2019).

Bonferroni correction is a method of adjusting p values when

conducting multiple simultaneous tests on the same dataset; it

involves dividing the initial p value by the number of hypotheses

tested. In the context of GWAS, the relationship between specific

SNPs and the desired trait is considered a comparison, so the p

value is divided by the number of SNPs in the data (Napierala, 2012;

Tam et al., 2019). However, Bonferroni correction has its

drawbacks, for instance, when dealing with skewed phenotypic

data (John et al., 2022). Since many GWAS methods are based on

linear regression models, missing heritability could also be

addressed with non-linear models (Peng, 2020). Nonetheless,

some missing heritability might still be due to an underestimation

of the effect sizes of common alleles, unidentified common and rare

alleles, epigenetic changes, or in some cases, it might not even be

found within genetic information (Marian, 2012; Bourrat et al.,

2017). Colinearity is another potential source of reduced efficiency
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and statistical power for GWAS methodologies, and new strategies

are needed to mitigate this limitation (Zhang et al., 2019). Finally,

another important limitation of GWAS is high dimensionality of

the data (n≪p), where the number of features (e.g. SNPs) is much

larger than the number of cases (e.g. genotypes), a common issue

with biological data (Ramstein et al., 2019). Several AI concepts

have been applied to overcome these limitations and disadvantages

of GWAS (Szymczak et al., 2009; Nicholls et al., 2020; Enoma et al.,

2022), some of which already include certain explainability (e.g.,

Mieth et al. (2021), see also Section 6).

Many target traits of GWAS are highly quantitative and

complex. Grain yield and drought stress tolerance, for instance,

are affected by interactions between underlying component traits

(Allard and Bradshaw, 1964; Hammer et al., 2006). In Section 2, for

instance, a wealth of physiological mechanisms that influence

drought stress tolerance are presented. These interactions,

however, can be non-linear (Chang and Zhu, 2017), which is a

relevant challenge in GWAS. In this context, Technow et al. (2015)

proposes to incorporate a crop growth model (CGM) directly into

genomic analysis. Crop growth models can simulate biological and

physical processes in agricultural systems including plants,

environment and management (Holzworth et al., 2014). Relevant

CGMs in this context need to include genotype-specific parameters

(Oliveira et al., 2021). As a result, these models can capture the

effects of non-linear interactions between underlying component

traits on target traits (Technow et al., 2015). Gu et al. (2014), for

instance, applied QTL mapping and the crop growth model

GECROS to investigate the effect of genetic variation in leaf

photosynthetic rate on crop biomass in rice. Furthermore, CGMs

can help in identifying ideotypes to improve target traits and

suitability to specific weather and management conditions (Chang

et al., 2019; Bogard et al., 2021). Collins et al. (2021), for example,

investigated drought adaptation in Australian wheat using the crop

growth model APSIM and suggests limited-transpiration rate at

high evaporative demand as a promising trait for selection

by breeders.
5 GWAS to dissect drought tolerance
in wheat

Despite its limitations, GWAS has become a crucial method for

discovering loci for traits of interest, as discussed in the previous

section. Drought is one of the most important abiotic stressors

affecting wheat yield (Heino et al., 2023), prompting scientists and

breeders to identify loci associated with drought stress tolerance.

In addition to grain yield sensu stricto, numerous other drought

stress-related traits have been studied in wheat, including plant

height and root architecture, as well as phenological traits like days

to heading, anthesis or maturity (Mwadzingeni et al., 2016; Molero

et al., 2019; Khadka et al., 2020; Saini et al., 2022). A summary of

selected characterised markers and their associated traits in the

context of drought tolerance in wheat, including the GWASmethod

used, is given in Table 3 and will be further detailed in the

subsequent sections.
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5.1 Introduction to developmental stages
and yield components in wheat

To characterise marker-trait associations (MTAs) in the context

of drought, it is essential to understand the developmental stages of

wheat and to know at which stage drought can impact the traits of

interest that might also affect grain yield, e.g. yield components, as

highlighted in Figure 3. For the classification of the developmental

stages, we use the commonly applied BBCH-code (Hack et al.,

1992). Yield components are generally targets of high importance in

plant breeding (Araus et al., 2008). In cereals, grain yield is

described as the number of grains per m2 multiplied by the

average grain size. The number of grains per m2 can be further

differentiated into the number of spikes per m2 and the number of

grains per spike. Spikes per m2 and grains per spike are established

during the vegetative stage before anthesis, while the average grain

size is mainly determined later during the generative stage

(Geisler, 1983).

The number of spikes per m2 is the first yield component

determined during plant development. During the tiller

differentiation process (BBCH 20, tillering stage, cf. Figure 3), the

maximum number of tillers is established. Transitioning from

BBCH 20 to BBCH 30 (stem elongation stage, cf. Figure 3), the

number of established tillers is reduced to productive, spike-bearing

tillers. Both the differentiation and reduction process of tillers are

affected by drought stress. The tiller reduction process, however, is

much more sensitive to water shortage than the respective

differentiation process (Geisler, 1983). The differentiation process

of generative organs, e.g., grains, can be divided into the

establishment of spikelets and florets, whereby the primordia of

spikelets are already developed by the end of tillering stage (BBCH

20). During stem elongation (cf. Figure 3), most spikelets and florets
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differentiate, and the maximum number of spikelets and florets is

present at the beginning of BBCH 50 (heading). Afterwards,

reduction processes of spikelets and florets occur until anthesis.

The developmental stages from heading until anthesis are especially

sensitive to drought stress González-Navarro et al. (2015). If

drought stress is too severe, shedding of fertilised florets can

occur after anthesis. Furthermore, insufficient water supply can

also shorten the period for spikelet differentiation and thus reduce

the number of spikelets per spike. In comparison to the

simultaneous tiller reduction processes during stem elongation

stage, this effect is minor (Geisler, 1983). Starting with anthesis

(BBCH 60), the differentiation process of the caryopsis (the grain)

occurs, which determines average grain weight (cf. Figure 3). In

general, the longer the grain filling period during the stages of grain

development and ripening (BBCH 70 and 80), the higher the

average grain weight is (Ozturk et al., 2006; Klepeckas et al.,

2020). The duration of this phase, however, is highly affected by

environmental conditions. High temperature and insufficient water

supply lead to shorter grain filling periods and thus a low average

grain weight and even shrivelled grains (Spiertz, 1974; Klepeckas

et al., 2020), as well as a shorter duration for the translocation of

assimilates to the grain and thus lowers the harvest index of wheat

(Davidson and Campbell, 2011; Neugschwandtner et al., 2015;

Koppensteiner et al., 2022).
5.2 Markers associated to yield
components under drought stress

As the processes of differentiation and reduction for each

yield component occur at different developmental stages, they

can be significantly affected by temporal environmental
TABLE 3 Selected markers related to drought tolerance in wheat found with GWAS.

Selected
trait (s)

Drought
during

N° of
Markers
found

Important markers Method (tool) Reference

Leaf
chlorophyll content

seedling stage 28 IWB26948 LMM (GAPIT) Maulana et al. (2020)

Days to wilting seedling stage 104 WPT-2356 LMM GLM (TASSEL) Ahmed et al. (2021)

Grain yield
and biomass

whole season 73 wsnp_Ex_Rep_c67786_66472676 LMM (GAPIT) Bennani et al. (2022)

Grain yield whole season 94 IWA5483 GLM (JMP Genomics) Gizaw et al. (2018)

Grain yield whole season 192
IAAV619,

wsnp_Ex_c11120_18022932
LMM (TASSEL) Suliman et al. (2021)

Grain yield whole season 61 M7661 LMM GLM (TASSEL) Akram et al. (2021)

Grain yield whole season 37 M9766, M9769 Compressed LMM (GAPIT) Mathew et al. (2019)

Grain yield whole season 45 S7A_112977027 FarmCPU (NA) Bhatta et al. (2018)

Grain yield whole season 136 wsnp_BM134363A_Ta_2_4 LMM (GAPIT) Qaseem et al. (2018)

Stress
tolerance index

whole season 9 AX-111169510
LMM PCA + K
GWAS (GAPIT)

Zhao et al. (2023)

Days to maturity whole season 37 M1433, M6472, M1576 Compressed LMM (GAPIT) Mathew et al. (2019)
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conditions (Satorre and Slafer, 2000). For instance, high

temperature and water shortages can result in (i) accelerated

plant development and consequently shorter differentiation

processes for yield components, (ii) more intense reduction

processes of individual yield components, and (iii) decreased

photosynthetic activity, resulting in fewer available assimilates

for grain filling. Besides environmental effects, yield components

generally also depend on the genotype and crop management

practices, such as sowing, fertilisation, plant protection, and

irrigation (Geisler, 1983).

Numerous MTAs have already been characterised in

experiments comparing wheat varieties and their responses to

drought (Table 3). For example, Mathew et al. (2019) discovered

associations between markers and biomass allocation to grain yield.

Mwadzingeni et al. (2017) identified 334 MTAs with high

confidence for traits under both drought and non-drought

conditions. However, these markers explain only 20% of the

phenotypic variation, which could be a consequence of the

statistical stringency inherent in the methodology. The study

found that chromosome 5 in genome D included QTLs related to

grain yield, as seen in Quarrie et al. (2005). Among the 29 MTAs

found for grain yield, some were located in genes annotated as F-

box family protein or Sentrin-specific protease, described to have a

potential role in drought stress tolerance (Bhatta et al., 2018).
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Markers such as Xwmc273.3 and Xpsp3094.1 have been used in

the context of MAS of the yield-related QTL Qyld.csdh.7AL to

develop high-yielding drought tolerant genotypes (Gautam et al.,

2021). Bilgrami et al. (2020) identified SNPs (IWB39005 and

IWB44377) related to the number of fertile tillers and total tillers.

Suliman et al. (2021) explored grain yield and found 192 related

markers, where 25 highly significant SNPs on chromosome 5A have

a notable effect on grain yield, making this chromosome a relevant

target for yield improvement under drought conditions. Seedling

length, days to wilting, and leaf wilting were analysed in Ahmed

et al. (2021), who reported 104 associated markers. Multiple

phenotypic traits related to yield were used by Qaseem et al.

(2018) for GWAS, resulting in 136 MTAs relevant for winter

wheat’s positive response to drought conditions.
5.3 Traits associated with phenology under
drought conditions

It is well described that each developmental stage has its own

specific water supply requirements. If drought occurs during water-

sensitive developmental stages (cf. Figure 3), such as germination,

tillering, flowering, or grain filling (Yu et al., 2018; Senapati et al.,

2021; Xu et al., 2022), growth and subsequently yield can be
Macro 
stage

Developmental 
stage BBCH

0 Germination 0-9
1 Leaf development 10-19
2 Tillering 20-29
3 Stem elongation 30-39

4 & 5 Booting & heading 40-59
6 Anthesis 60-69

7, 8 & 9 Grain filling & ripening 70-99

5x 2x

2x

2x

2

0 1

3

4+

6

7+

FIGURE 3

The main developmental stages of winter wheat from germination to ripening are depicted. These developmental stages are contrasted by the most
important yield components (spikes/m2, grains/spike, and average grain weight and harvest index) as well as the BBCH classification in the adjacent
table. The magnifying glasses indicate a magnification for the respective drawings. Designed by Tatjana Hirschmugl.
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significantly impacted (Khadka et al., 2020). Therefore, the effects of

the concurrence of critical phenological stages and drought

conditions are critical (Langridge and Reynolds, 2021). Thus, in

traditional plant breeding, phenological parameters are measured

by expert-assessed visual scorings. Selection based on phenological

characteristics is then conducted by investigating the coincidence of

critical developmental stages with drought, heat, or other harsh

environmental conditions (Sallam et al., 2019). Maulana et al.

(2020) describes drought-related MTAs at the seedling stage of

wheat (Table 3). In addition, drought stress during stem elongation

can lead to yield reduction up to 71.52% (Ding et al., 2018). Early

vigour, the rapid development of leaf area, has been genetically

determined by 41 markers associated either with the NDVI or the

projected leaf area, which could be used to select for varieties

equipped with early vigour in the future (Vukasovic et al., 2022).

Farhad et al. (2023) discovered several QTLs (i.e. QDtb.bisa.2D.4)

that significantly relate to a shift in the time until booting (days to

booting) towards earlier planting. MTAs on chromosomes 2B, 3A

and 3D have been found to be related to the number of days to

anthesis (Molero et al., 2019). Utilising genetics to select suitable

varieties based on phenology is an important technique to face

intense drought events. Understanding the link between genotype

and phenology is essential to maximise grain yield in these scenarios.

Although these findings are significant and represent a

substantial step towards crop optimisation against drought, there

remains a large portion of heritability that is unaccounted for (see

Section 4). As a result, multiple markers that could be useful for

MAS might have gone unidentified. This missing heritability could

be due to multiple testing correction or because the statistical tests

assume a different distribution than that present in the actual data

(Brachi et al., 2011), needing the development of new methods to

tackle these issues.
6 Accelerating plant breeding
processes with explainable AI

Artificial intelligence (AI) is now applied in many areas of the life

sciences, thanks to the significant success of ML and particularly

neural networks (NNs) as problem solvers (Holzinger et al., 2023a),

which also has been enabled by the constant increase in computing

power and resources. AI has already made its way into modern crop

breeding, being used in the analysis of the increasing amount of plant

image data, as well as in the modelling of GS and GWAS, overcoming

some of the limitations of commonly used statistical methods

(Harfouche et al., 2019; Jeon et al., 2023; Najafabadi et al., 2023).

However, many AI algorithms have their caveats, as they often lack

explainability and transparency due to their complex architecture.

This is commonly referred to as the ‘black box problem’

(Castelvecchi, 2016), which can ultimately lead to the inability to

provide users with explanations for their decisions. The emerging

field of explainable AI (xAI) introduces newmethods aiming to make

AI systemsmore transparent and understandable (Arrieta et al., 2020;

Miller et al., 2022; Holzinger et al., 2022b), laying the foundation for

the digital transformation of smart agriculture, and especially plant

breeding (Harfouche et al., 2019; Holzinger et al., 2022a).
Frontiers in Plant Science 14292
6.1 Introduction into xAI methods

Although numerous xAI methods have been developed, and

new ones continue to emerge for various NN architectures, no

single xAI method or combination fully explains the decision-

making process of the models. Each of them sheds light on a

different aspect of the AI model’s computation and many times it

has been shown that there is no mutual consent between them,

leading to the so-called ‘disagreement’ problem (Krishna et al.,

2022). Currently, quality metrics for xAI methods (Doumard et al.,

2023; Schwalbe and Finzel, 2023) and benchmarks for its evaluation

are being defined (Agarwal et al., 2023) to motivate xAI research in

directions that support trustworthy, reliable, actionable and causal

explanations even if they don’t always align with human pre-

conceived notions and expectations (Holzinger et al., 2019;

Magister et al., 2021; Finzel et al., 2022; Saranti et al., 2022;

Cabitza et al., 2023; Holzinger et al., 2023c).

xAI methods have a coarse division between post-hoc and ante-

hoc methods: the post-hoc ones are applied after the training has

produced ‘sufficiently’ good results in terms of performance. For

example, local interpretable model-agnostic explanation (LIME)

(Ribeiro et al., 2016), which constructs local linear explanation

models from the synthetic neighbourhood around the inputs, and

Shapley additive explanations (SHAPs) (Shapley, 1952; Staniak and

Biecek, 2019; Frye et al., 2020; Gevaert et al., 2023), which use game-

theoretic notions to measure how influential features are to the

prediction of a model, are procedures that could give scientists an

interpretation of the ‘black box’ (Bach et al., 2015; Montavon et al.,

2019; Amparore et al., 2021; den Broeck et al., 2022; Holzinger et al.,

2022b). Counterfactual explanations, inspired by the work of Judea

Pearl (Pearl and Mackenzie, 2018), are defined as all possibilities

that deviate from the main course of events. In similar terms, the

question ‘what if’ is applicable to counterfactual explanations that

aim to provide information about features that, if they had different

values, would result in a different output for the classification/

regression problem (Sokol and Flach, 2019; Dandl et al., 2020). On

the other hand, ante-hoc methods do not consist of individual

software components applied after the model has converged and its

internal parameters have solidified. Instead, they are models with

built-in explainability. Decision trees (DTs) are one of the most

representative models in this category and are widely used. They

divide the space of possibilities into parts separated by feature

ranges, making this method one of the easiest to understand

(Safavian and Landgrebe, 1991). Generalised Additive Models go

beyond linear and logistic regression, allowing the output to be

expressed as an additive combination of pre-specified non-linear

functions (Wood, 2004). Typically, the family of B-splines provides

a balance between good performance and interpretability since

these functions can be considered as individual and non-

interacting. Bayesian Rule Lists contain IF-THEN statements in a

list that describes the decision of the model (Letham et al., 2015).

The Bayesian rule comes with the definition of a Dirichlet prior that

specifies the number of pseudo-counts for a probability

distribution, which is defined by a human domain expert (Koller

and Friedman, 2009; Holzinger et al., 2023b). The posterior

distribution is computed by a Bayesian update rule and
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incorporation of the number of times one observed each

output label.

Layer-wise relevance propagation (LRP) (Bach et al., 2015;

Montavon et al., 2019) is a propagation-based method that uses

the model’s internal decision parameters to redistribute explanatory

factors over the layers of the model, reaching the input variables and

obtaining how important those are to the prediction and the model.

While the computation of relevance of each feature or input

component is something that is achieved by other methods, like

sensitivity analysis (SA) (Simonyan et al., 2013) or SHAP, LRP

uniquely computes both positive and negative relevance values.

This is particularly important since the components that have

positive relevance ‘speak for’ the result (e.g., the predicted class in

a classification task), whereas those with negative relevance denote

elements that contain evidence against the prediction and weaken

the prediction confidence of the model. While this method is

applied after the training of the model is accomplished, it is not

entirely agnostic about the internal structure of the model. LRP has

different variations for different NN architectures; for example,

Long short-term memory (Hochreiter and Schmidhuber, 1997)

networks have an adequately adapted LRP variation (Arras et al.,

2017) that enables perturbation analysis of the input sequence and

correspondingly graph neural networks (GNNs) have GNN-LRP

(Schnake et al., 2020; Xiong et al., 2022) that uncovers positively and

negatively important graph paths. LRP has been used for

uncovering spurious correlations (so-called Clever-Hans

phenomena) between the input and the output of an NN and also

for clustered explanations with Whole Dataset Analysis

(Lapuschkin et al., 2019).
6.2 Explainable AI methods for modern
plant breeding

The plant breeding process, in its entirety, necessitates a high

degree of transparency and explainability. Breeders, for instance,

need more than just a predictive value to support their selection of

genotypes; they rely on a wealth of information to understand the

underlying biology and environmental interactions (Harfouche

et al., 2019). xAI can be used to confer these qualities into

effective ML models at several steps of the breeding process and

in a multitude of ways:
Fron
• Processing of UAV-sourced data: AI is required to

uncover the complex relationships between remotely

acquired visual feedback and phenotypical traits (see

Section 3.3). This is often a statistically ill-posed problem

due to the challenges of replicating exact conditions from

one year to another, the high number of external factors,

and the cost of acquiring large-scale datasets of carefully

measured phenotypical traits (Cheng et al., 2023). This

statistical ambiguity can lead to both under- and over-

fitting depending on the case. In this context, both ante-hoc

and post-hoc xAI methods are important, as exemplified in

Srivastava et al. (2022) for winter wheat yield prediction.

Ante-hoc methods intervene in the form of strong
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regularisation, or inductive biases, which limit the space

of possible models to those that closely follow a human-

defined formulation of the problem. For example, Ge et al.

(2023) predict rice distribution using a physically

interpretable model trained directly using feature

interpretation methods. These heavily regularised models

often take the form of simple, interpretable algorithmic

bricks that are trained to solve specific sub-problems, such

as Tang et al. (2022) who integrate the domain knowledge

that edge-detection is important directly into their winter

wheat lodging detection architecture. Post-hoc methods

serve as a necessary human-in-the-loop validation to

counteract the difficulty to acquire enough data for a

statistically significant validation. They serve as sanity

checks that verify if the features deemed important by the

model can be traced back to a physically understandable

relationship. Such examples abound both inside (Sun et al.,

2023) and outside (Temenos et al., 2022) winter

wheat literature.

• Understanding genotype-phenotype relationships: AI can

assist in unravelling the complex relationship between a

plant’s genotype and its phenotype in response to

environmental conditions. Especially xAI can identify

genetic variants that contribute to these traits, particularly

those that have non-linear interactions - something that

GWAS cannot do (Santorsola and Lescai, 2023). Feed-

forward NNs go beyond association testing and can use

several individuals with many SNPs to predict traits with an

acceptable performance (Sharma et al., 2020). After the end

of the training process, the xAI method DeepLift

(Shrikumar et al., 2017) can be applied and computed for

each input SNP attribution score that can take both positive

and negative values (indicating the direction of contribution

to the target variable). The SNPs with the highest

attribution values can be thought of as potential causal

causes and be investigated further for plausibility although

the results of this research show that in cases of highly

correlated features, DeepLift can perceive for one and the

same model different input features (SNPs) as important.

Building on their previous work (Mieth et al., 2016), Mieth

et al. (2021) demonstrated that xAI can enhance traditional

GWAS methods: NNs combined with statistical testing

driven by xAI can provide a robust framework to uncover

SNPs that play a decisive role in the classification result of

the NN. LRP (Bach et al., 2015; Montavon et al., 2019)

computes the relevance of each SNP used in the

classification as if they were p values used to compute

statistically significant associations. This approach

surpasses the deficiencies of previous architectures that

required Bonferroni correction for false rejections and

returns additional as well as weak associations that might

be significant. It also reduces the return of an incorrect

association (statistical noise). However, the biological

plausibility of the newly discovered SNPs needs to be

validated, particularly if there are no existing GWAS

results for them yet. Epistasis, the non-linear, non-
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additive interaction between SNPs, is another important

component of this relationship. It is often overlooked by

class ical GWAS methodologies , prompting the

development of many techniques to try and dissect it

(Niel et al., 2015). Romero (2022) describes an innovative

process of extracting this behaviour from iterative RFs

trained on this data (Basu et al., 2018). One of the

advantages of using RF models is that their own

architecture is easily interpretable Pfeifer et al. (2022).

• Understanding complex interactions: AI can be utilised for

modelling and predicting how certain genotypes would react

to conditions like drought. Unlike classical statistical multi-

omics methods (Yazdani et al., 2022), AI is an effective tool

for deciphering the complex interactions within a plant and

those interactions a plant has with its environment, such as

soil microbiome, weather, and other plants, which can

influence its stress tolerance. xAI can provide insights into

the reasoning behind these predictions, enhancing our

understanding and facilitating targeted breeding strategies.

In Niazian and Niedbała (2020), several cases of genotype-

environment interactions (G × E) used by several AI models

(having as input the genome sequence and output the

phenotype) with their corresponding xAI methods were

analysed, uncovering the decisive factors for these

interactions (Streich et al., 2020). It is also shown that NNs

outperform other AImodels performance-wise on these tasks

most of the time and the sensitivity analysis applied to the

NNs detects the most important input variables for a

prediction in different tasks such as assessment and

classification of genetic diversity, yield component analysis

and indirect selection (prediction), yield stability and G × E

interaction, biotic and abiotic stress assessment, classical

mating designs, and hybrid breeding programmes (Stein

et al., 2022).
Scientific progress is based on understanding and explaining

observable phenomena, and this is the advantage provided by the

use of xAI. AI has been able to find complex relationships between

genotype and phenotype, which could not have been found with

other methods. However, it is important to apply these techniques

with a higher degree of scientific rigour. Methods such as LRP,

LIME, or SHAP are able to provide a deeper understanding of the

behaviour of the model, and thus of the biological problem, a

prerequisite in modern plant breeding (Harfouche et al., 2019).
7 Towards the implementation of
modern tools for practical
plant breeding

The previous sections have outlined the advantages of employing

modern tools, such as GWAS for genetic marker characterisation,

UAV-based remote sensing phenotyping, and the integration of xAI

into the breeding process. In this concluding section, we aim to

provide an overview of the practical tasks undertaken by plant
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breeders and how the aforementioned tools can improve the

current state of the breeding process, as illustrated in Figure 4.

The responsibilities of a plant breeder can generally be

categorised into the following steps: (i) defining the breeding

objectives, (ii) creating genetic diversity, and (iii) selecting

genotypes. Ultimately, a new variety is registered, certified seed is

multiplied, and marketed (cf. Figure 4). The first step involves

identifying key traits that will define a future variety. The second

step aims to generate a high genetic diversity, particularly in target

traits defined in Step 1, often with limited resources, such as a

limited number of crosses or mutagenesis treatments. The third step

is centred on the selection of candidate genotypes. This step is

heavily reliant on data, necessitating efficient data collection and

decision-making, often with limited (financial and human)

resources, such as scorings, measurements, samplings and

laboratory analysis, as well as downstream data analysis.

Consequently, the methods and protocols developed by scientists

often need to be scaled down or simplified for easy application

within the breeding process.

For example, in GWAS, the ultimate objective is to develop

markers taking advantage of a plethora of tools (cf. Table 2) with

enough precision to predict the presence of a trait of interest.

Eventually, these markers (cf. Table 3) should be utilised by the

breeder, for instance, for screening potential crossing partners (Step

2) and MAS (Step 3). Saini et al. (2022) reviewed, that 86,122 wheat

varieties have been analysed with GWAS, resulting in 46,940 loci for

various agronomic, physiological, and quality traits. However, their

implementation often remains a challenge in many breeding

programmes due to several constraints, such as lack of

transferability or additional disproportionate costs. Transferability

concerns in GWAS are prevalent mostly between different

populations and environments, as was shortly discussed in

Section 4.2 (Guo et al., 2014; Blake et al., 2020; Mohammadi

et al., 2020). Limited transferability due to relevant genotype by

environment interactions can be addressed by, e.g., the inclusion of

crop growth models (Technow et al., 2015). Mid-range genotyping

platforms like KASP™ (Semagn et al., 2014) or MassArray® (Irwin,

2008) offer a relatively flexible, user-friendly, and affordable

solution for practical breeding by being capable of screening tens

to hundreds of markers in several hundreds of individuals. Both

platforms have already been used to design ready-to-use assays for

MAS in diverse sets of diploid crop species (e.g., Bomers et al.,

2022), and have been successfully applied in polyploid wheat

(Bérard et al., 2009; Rasheed et al., 2016; Makhoul et al., 2020; da

Costa Lima Moraes et al., 2023; Liu et al., 2023) or aim to do so

(Molin, 2024).

The objective of remote sensing phenotyping is to provide fast

and precise phenotypic measurements. Particularly for plant

breeding, UAV-based phenotyping offers an optimal combination

of spatial resolution and speed of measurement (Figure 2). This data

can be used by plant breeders primarily to enhance genotype

selection (Step 3), but also to identify phenotypic diversity (Step

2). Numerous studies have applied UAV-based phenotyping in the

context of plant breeding in the past (White et al., 2012; Chapman

et al., 2014; Araus et al., 2018; Thenkabail et al., 2018), using a

variety of sensors including multi- and hyperspectral, thermal,
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RGB, and LiDAR to investigate traits such as yield, biomass, plant

height, crop health and stress, diseases, pests, as well as nutrient and

water content (Yang et al., 2009; Prabhakar et al., 2012; Virnodkar

et al., 2020; Zhou et al., 2021b; Thoday-Kennedy et al., 2022; Hütt

et al., 2023; Joshi et al., 2023). However, its application in practical

breeding is still limited (Matese et al., 2023) due to the need for

expertise in several areas, such as drone piloting, legislation, flight

planning, photogrammetric processing as well as data processing,

modelling, and analysis (White et al., 2012; Chapman et al., 2014;

Reynolds et al., 2020; Guo et al., 2021).

In the current scientific dialogue, AI has emerged as a vital tool

for problem-solving and knowledge discovery, particularly in the life

sciences (Holzinger et al., 2023a). Its applications are manifold and

extend to specialised fields like plant breeding. In this context, AI

facilitates the analysis of plant image data and plays a crucial role in

GWAS and genomic selection (Zhang et al., 2017; Parmley et al.,

2019; Aono et al., 2022). AI’s usefulness extends beyond data analysis

and permeates the entire decision-making pipeline as depicted in

Figure 4, from initial data collection and preprocessing (step 1), to

feature selection and modelling (step 2), and finally to evaluation and

interpretation of results (step 3). The technology’s versatility and

computational prowess allow it to process large datasets, discern

patterns that may be overlooked by human experts, and provide

actionable insights. Essentially, AI acts as a decision support system

that enhances the abilities of domain specialists, such as plant

breeders, by furnishing them with more accurate and

comprehensive information.

The emergence of xAI further enhances the utility of AI in plant

breeding. xAI aims to make the complex decision-making processes

of AI algorithms transparent and understandable. This is achieved
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through various methods, such as feature importance ranking, DTs,

and counterfactual explanations, among others Holzinger et al.

(2021). The increased transparency provided by xAI not only

unravels the black-box nature of complex algorithms but also

promotes trust and acceptance among human decision-makers.

The importance of xAI goes beyond mere understanding of AI’s

operations; it addresses ethical and accountability concerns by

ensuring that algorithmic decisions can be audited and justified

Müller et al. (2022). This is particularly important in high-stakes

applications like plant breeding, where decisions can have enduring

impacts on agricultural productivity and sustainability. Therefore,

the integration of xAI into decision-making processes enhances the

trustworthiness and acceptance of AI systems, paving the way for

more responsible and effective applications of AI in the life sciences

(Holzinger et al., 2022a), including specialised domains such as

plant breeding (Harfouche et al., 2019).

In summary, the cutting-edge tools reviewed in this study,

encompassing UAV-based phenotyping, GWAS, MAS, bolstered by

ML, and the integration of xAI, collectively represent a transformative

shift in plant breeding (Figure 4). These innovative methods have the

potential to revolutionise the way how breeders gather field data,

interpret it, and ultimately make informed decisions throughout the

entire breeding process, representing a new era in smart agriculture. By

leveraging these technological capabilities, breeders can significantly

accelerate the development of new crop varieties with improved traits,

such as drought tolerance. This acceleration not only reflects the

progress in science and technology but also holds the promise of

addressing critical agricultural challenges, such as feeding an expanding

global population and mitigating the effects of climate change on

crop production.
FIGURE 4

The road to drought-tolerant wheat genotypes remains tedious and time-consuming, but cutting-edge technologies promise to speed up the
breeding process. UAV-based phenotyping, GWAS, and ultimately MAS are being increasingly used. However, a cross-process and crucial role is
played by xAI, which is not only applied in data analysis and interpretation, but also in decision-making within the entire breeding process, from the
definition of breeding goals to the final step of registration and marketing. Designed by Tatjana Hirschmugl.
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AI Artificial Intelligence

AM Association Mapping

B Blue band

CCCI Canopy Chlorophyll Content Index

CMIP Coupled Model Intercomparison Project

CNN Convolutional Neural Network

CWSI Crop Water Stress Index

DT Decision Tree

EVI Enhanced Vegetation Index

G Green band

GIS Geographic Information System

GLM Generalised Linear Model

GNDVI Green Normalised Difference Vegetation Index

GNN Graph Neural Network

GS Genomic Selection

GWAS Genome-wide Association Studies

L Canopy background adjustment factor

LAI Leaf Area Index

LIME Local Interpretable Model-agnostic Explanation

LM Linkage Mapping

LMM Linear Mixed Model

LRP Layer-wise Relevance Propagation

LWIR Long-wave Infrared

MAS Marker-assisted Selection

ML Machine Learning

MSAVI Modified Soil Adjusted Vegetation Index

MTA Marker-Trait Association

NDRE Normalised Difference Red Edge

NDVI Normalised Difference Vegetation Index

NDWI Normalised Difference Water Index

NIR Near-infrared

NN Neural Network

R Red band

SAVI Soil-adjusted Vegetation Index

SHAP Shapley Additive Explanation

SNP Single Nucleotide Polymorphism

SVM Support Vector Machine

SWIR Shortwave Infrared
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TCARI Transformed Chlorophyll Absorption in Reflectance Index

UAV Unmanned Aerial Vehicle

XAI Explainable Artificial Intelligence.
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