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QTL mapping and BSA-seq map
a major QTL for the node of the
first fruiting branch in cotton

Xiaoyun Jia, Shijie Wang, Hongxia Zhao, Jijie Zhu, Miao Li*
and Guoyin Wang
Institution of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences/Hebei

Laboratory of Crop Genetics and Breeding/Hebei Key Laboratory of Crop Cultivation Physiology and
Green Production, Shijiazhuang, China

Understanding the genetic basis of the node of the first fruiting branch (NFFB)
improves early-maturity cotton breeding. Here we report QTL mapping on 200 F,
plants and derivative F,.z and F,.4 populations by genotyping by sequencing (GBS).
BC;F, population was constructed by backcrossing one F;.4 line with the maternal
parent JF914 and used for BSA-seq for further QTL mapping. A total of 1,305,642
SNPs were developed between the parents by GBS, and 2,907,790 SNPs were
detected by BSA-seq. A high-density genetic map was constructed containing
11,488 SNPs and spanning 4,202.12 cM in length. A total of 13 QTL were mapped in
the 3 tested populations. JF914 conferred favorable alleles for 11 QTL, and JF173
conferred favorable alleles for the other 2 QTL. Two stable QTL were repeatedly
mapped in F.5 and F,.4, including gNFFB-D3-1 and gNFFB-D6-1. Only gNFFB-D3-
1 contributed more than 10% of the phenotypic variation. This QTL covered about
24.7 Mb (17,130,008-41,839,226 bp) on chromosome D3. Two regions on D3
(41,779,195-41,836,120 bp, 41,836,768-41,872,287 bp) were found by BSA-seq
and covered about 92.4 Kb. This 92.4 Kb region overlapped with the stable QTL
gNFFB-D3-1 and contained 8 annotated genes. By qRT-PCR, Ghir_D03G012430
showed a lower expression level from the 1- to 2-leaf stage and a higher
expression level from the 3- to 6-leaf stage in the buds of JF173 than that of
JF914. Ghir_D03G012390 reached the highest level at the 3- and 5-leaf stages in
the buds of JF173 and JF914, respectively. As JF173 has lower NFFB and more early
maturity than JF914, these two genes might be important in cell division and
differentiation during NFFB formation in the seedling stage. The results of this study
will facilitate a better understanding of the genetic basis of NFFB and benefit cotton
molecular breeding for improving earliness traits.

KEYWORDS

cotton earliness, node of the first fruiting branch, QTL mapping, BSA-seq, candidate gene
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Introduction

Upland cotton (Gossypium hirsutum L. AADD, 2n=52) is the
most important fiber crop in the world, accounting for more than
90% of global cotton production (Chen et al., 2007; Ma et al., 2021).
Cottonseed is also a good source of edible oil and vegetable protein
(Zhang et al., 2015). Thus, upland cotton has significant value in
dealing with the increasing human population. Earliness is one of the
vital breeding goals to meet the needs of mechanism practice,
especially during cotton harvesting (Jia et al., 2016; Li et al., 2021).
Besides, early-maturity cotton, also known as short-season cotton, has
many advantages in inter-cropping between cereal crops and cotton
to increase land utilization efficiency in China (Cheng et al., 2021;
Zhao et al., 2022). Earliness is a typical characteristic of early-maturity
cotton. As yield and fiber quality have dominated cotton breeding for
decades, little attention has been paid to earliness.

In terms of plant development, cotton earliness is described as
flowering time (FT), whole growth period (WGP), and flowering-to-
boll opening period (FBP) (Richmond and Radwan, 1962; Li et al,
2020). Plant height (PH), node of the first fruiting branch (NFFB),
and height of NFFB (HNFFB) are also important indexes for earliness
(Godoy and Palomo, 1999; Jia et al., 2016). NFFB is the most reliable
index in terms of indicating cotton earliness, which has better
consistency among environments, and significantly positively
correlates with FT, WGP, PH, and HNFFB (Guo et al,, 2008; Su
et al, 2016; Zhang et al.,, 2021). All six traits mentioned above have
relatively high broad-sense heritabilities and significant
environmental influences (Jia et al., 2016; Li et al., 2020; Li
et al,, 2021).

Several studies for cotton earliness genetic detection through QTL
mapping and GWAS analysis have been published (Li et al., 2020).
Guo et al. (2008); Guo et al., 2009 mapped QTL for NFFB in two F,
populations and used the results to measure flowering time. Li et al.
(2013) mapped 54 QTL for cotton earliness in two F, and their F,3
populations, and a common QTL for the budding period could
explain 12.6% of the phenotypic variation. Benefiting from high-
throughput sequencing techniques and high-quality genome
sequences of TM-1 and NDMS8, the efficiency and accuracy of QTL
mapping and GWAS analysis have been significantly improved (Li
et al, 2015; Zhang et al,, 2015; Hu et al., 2019; Wang et al., 2019; Ma
et al,, 2021). Jia et al. (2016) constructed a high-density genetic map
containing 6295 SNP and 139 SSR markers for a RIL population by
RAD-seq, mapped 247 QTL for cotton earliness in six consecutive
years, and found an extremely prominent chromosome region on D3
with six stable major QTL. Li et al. (2017) constructed a SNP-based
genetic map for an F, population by GBS, mapped 47 QTL for cotton
earliness, and found a major region on D3 overlapping with the
results of Jia et al. (2016). Su et al. (2016) developed 81,675 SNPs in
355 upland cotton accessions; 13 significant associations between SNP
and earliness traits were found by GWAS, a major locus and a
candidate gene were also mapped on D3. Li et al. (2021) re-
sequenced 436 cotton accessions and developed 10,118,884 SNPs
and 864,132 InDels; 307 significant SNPs were found for cotton
earliness by GWAS, including 43 SNPs in a 3.7 Mb region on D3
overlapping with previous results. The reports mentioned above
imply the significant role of chromosome D3 in controlling cotton
earliness, which has been emphasized again by Ma et al. (2018) and
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Zhang et al. (2021). Besides, Li et al. (2018) developed 49,650 SNPs in
169 upland cotton accessions by CottonSNP80K array; 29 significant
SNPs and two candidate genes were found for cotton earliness.
However, QTL fine mapping for cotton earliness, especially NFFB,
has rarely been reported until now, and the genetic basis under
earliness traits is still unclear.

This study used a nationally certified variety, Jifeng914 (JF914),
with about 120 d WGP and 8 NFFB as the maternal parent, an early
maturity inbred line Jifengl73 (JF173) with about 108 d WGP and 5
NFEB was used as the paternal parent. QTL mapping was conducted
based on a high-density genetic map for an F, population. The BC,F,
population was constructed and used for QTL mapping by BSA-seq.
One stable QTL for NFFB spanning 24.7 Mb was shortened to 92.4
Kb. Eight genes were annotated in this core region and 2 genes with
different expression patterns in the buds of JF173 and JF914 might be
the candidates.

Materials and methods
Experimental materials and phenotypic trait

Jifeng 914 (JF914) (a larger phenotype cultivar with about 120 d
WGP and 8 NFFB) was crossed with Jifeng 173 (JF173) (a smaller
phenotype inbred line with about 108 WGP and 5 NFFB). An F,
population containing 417 plants was developed at Shijiazhuang in
2019; 200 plants from the F, were randomly selected and
continuously self-pollinated to F,; and F,., generations. The F,;
and F,.4 populations were planted with two replicates in a completely
randomized block design at Shijiazhuang in 2020 and 2021. One F,4
line with low NFFB and a similar phenotype to JF914 was chosen and
backcrossed with JF914 in 2021. And 23 BC, plants were self-
pollinated at Hainan in the winter of 2021 to construct the BC,F,
population containing 561 plants, which was planted in 2022 at
Shijiazhuang. The materials were planted in single lines (5 m long
and 70 cm between adjacent lines), and conventional field
management was carried out.

The node of the first fruiting branch (NFFB) was tested. Every
plant in the F, and BC,F, was measured. Ten plants in the middle of
each line were measured in the F,; and F,., populations. Excel 2010
and SPSS 17 were used for data analysis.

DNA sequencing

Genomic DNA was extracted by the CTAB method (Paterson
et al, 1993). The genotyping-by-sequencing (GBS) method was
applied for the F, plants as detailed by Zhang et al. (2016); Li et al.
(2017), and Zhou et al. (2016). Briefly, DNA was incubated at 37°C
with Mse I (New England Biolabs, NEB), T4 DNA ligase (NEB), ATP
9NEB, and Mse Y adapter N containing barcodes. Hae III and RcoR I
(NEB) were added into the Msel digestions to further digest the
fragments at 37°C. Fragments of 397-420 bp were purified and
paired-end 150-bp sequenced on the Illumina HiSeqTM platform.
High-quality reads were filtered based on (1) removing reads with >
10% unidentified nucleotides (N); (2) removing reads with > 50%
based on having Phred quality < 5; (3) removing reads with 10 nt
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aligned to the adapter, allowing < 10% mismatches; and (4) removing
reads containing Hae III or EcoR L

For BSA-seq, 30 high NFFB plants and 30 low NFFB plants were
selected from the BC;F, population; the DNA of each plant was
extracted and mixed to construct two DNA pools (high and low).
Four samples were subjected to re-sequencing, including JF914,
JF173, and high and low DNA pools. The GenoBaits DNA-seq
Library Prep kit was used for library construction. First, 4 ul of
GenoBaits End Repair Buffer and 2.7 pl of GenoBaits End Repair
Enzyme were added to 200 ng DNA and incubated for 20min at 37°C
and 20min at 72°C. Second, 2 ul of GenoBaits Ultra DNA ligase, 8 ul
of GenoBaits Ultra DNA ligase Buffer, and 2 pl of GenoBaits Adapter
were added and incubated for 30 min at 22°C. Third, fragments were
purified by adding 48 pl of Beckman AMPure XP Beads. Fragments of
200-300 bp were reserved and sequenced on the MGI-2000/MGI-T7
planform. High-quality reads were filtered based on (1) removing the
adaptor; (2) removing reads with >10% N; and (3) removing reads
with >40% low-quality bases (Q < 20).

The BWA software was used to align the clean reads against the
reference genome of TM-1 (Wang et al., 2019). The GATK software
was used for variation calling (Mckenna et al, 2010). SnpEff and
ANNOVAR software were used for annotation (Wang et al., 2010;
Cingolani et al., 2014).

QTL mapping

Polymorphic markers developed from the F, population were
classified into eight segregation patterns (aaxbb, abxcc, abxcd, ccxab,
efxeg, hkxhk, ImxIl, nnxnp), and the aaxbb pattern SNPs were chosen
to construct the genetic map. SNPs with segregation distortion
(p<0.001) or integrity (<40%) or in the same reads or abnormal
bases were filtered. SNP markers were sorted into 26 chromosomes
according to their physical position on the reference genome. And then,
the genetic map was constructed chromosome by chromosome using
JoinMap 4.0 with a LOD score threshold of 6.0-20.0. The ICIM method
in the QTL IciMapping software was used to detect QTL (Li et al.,
2007). Parameters were set as 1 cM per step, PIN=0.001, and the LOD
score was determined by a 1000 permutation test.

The A(SNP-index) and ED (Euclidean distance) methods were
used to analyze the candidate region between the pools. The
parameters of SNP-index and A(SNP-index) were calculated as
follows: SNP-index(high) = Mhigh/(Mhigh + Phigh), SNP-index
(low) = Mlow/(Mlow + Plow), and A(SNP-index) = SNP-index
(low) - SNP-index(high). The M and P parameters represent the
sequencing depth in JF914 and JF173, respectively. The parameters of
ED were calculated as follows:

TABLE 1 The statistics of NFFB in the parents, F;, and segregated populations.

Fa

JF914 JF173

Mean Skew Kurt

Max Min

10.3389/fpls.2023.1113059

ED=

/(Ahigh-Alow)? + (Thigh-Tlow) + (Chigh-Clow)’ + (Ghigh-Glow)?

A, T, C, and G are the four base types. Ahigh, Thigh, Chigh, and
Ghigh are the frequency of relevant bases in the high pool. Alow,
Tlow, Clow, and Glow are the frequency of relevant bases in the low
pool. The ED* was used to eliminate background noise. The median
+3SD was used as the threshold.

qRT-PCR

For JF914 and JF173, total RNA was extracted from the bud and
leaf at 1- to 6-leaf stages using a Plant RNA Purification Kit (Tiangen,
Beijing, China). First-strand cDNA was reverse transcribed from 1 g
total RNA using a FastKing gDNA Dispelling RT SuperMix Kit
(Tiangen, Beijing, China). qRT-PCR was carried out with the SYBR
Premix Ex Taq (TAKARA, Japan) on a LightCycler480 instrument
(Rotkreuz, Switzerland).

Results
Phenotypic variation

The NFFB of JF914 (7.8-8.5) is significantly bigger than that of
JF173 (5.1-5.5). The maximum and minimum values of NFFB in the
F,, F,.3, and F,., populations reveal transgressive segregation
(Table 1). The mean value of NFFB in the segregation populations
lies within the range of the two parents. Based on the absolute values
of skewness and kurtosis, NFFB showed an approximately
normal distribution.

Sequence data and quality

A total of 416 G sequence data was obtained by genotyping by
GBS, with an average of 25.91 G and 9x depth in the parents, 1.82 G
and 0.7x depth in the F, plants. The Q30 score reached 95.68%. And
99.63% of the F, sequence data was successfully mapped to the
reference genome, with an average coverage rate of 14.81%
(Additional file 1).

A total of 318.81 G sequence data was obtained by re-sequencing
for the four samples (Table 2). The sequence depths of the pools
reached 31x%, and Q30 scores are larger than 90%. More than 88% of
the reference genome was covered.

F2:3

Mean Skew Kurt Max Min Skew Kurt

NFEB (cm) 7.8-8.5%* 5.1-5.5 9.0 5.0 6.6 -0.4 0.3

8.1 ‘ 5.5 ‘ 6.6 ‘ -0.2 0.3 8.7 5.1 6.3 0.1 0.3

NFFB, the node of the first fruiting branch; Max, maximum; Min, minimum; Skew, skewness; Kurt, kurtosis; **, p<0.01.
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TABLE 2 Sequence data of the parents and pools.
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Sample Raw Bases (bp) Clean Bases (bp) Q20 (%) Q30 (%) Align rate (%) Average depth (x) = Coverage (%)
high 100,641,873,900 99,983,581,254 ‘ 96.58 ‘ 90.50 ‘ 78.73 31.99 ‘ 88.17
low 143,699,754,900 142,505,777,730 ‘ 96.66 ‘ 91.09 79.36 34.63 88.40
JF914 26,169,828,600 26,013,215,006 ‘ 96.4 ‘ 89.87 81.46 8.77 86.80
JF173 48,300,015,000 47,983,815,204 ‘ 96.63 ‘ 90.63 ‘ 81.10 15.62 ‘ 87.67

Genetic map construction

A total of 1,305,642 SNPs were developed between the parents,
and 7 SNP types were detected (Table 3). Only the SNP in aaxbb type
was used to genotype the F, plants and construct a genetic map. A
high-density genetic map containing 11,488 SNPs was constructed
(Figure 1, Table 4, Additional file 2). The genetic map spanned
4,202.12 cM in length, ranging from 150.74 ¢tM on A3 to 178.90
cM on A9. The SNPs were unevenly distributed on the 26 linkage
groups, with only 30 SNPs on A2 and 1 318 SNPs on D5. The quality
of the genetic map was analyzed by colinearity analysis, which
demonstrated the accurate SNP position on the constructed genetic
map (Table 4, Figure 2).

QTL mapping

A total of 13 QTL were mapped and distributed on 11
chromosomes (Table 5). Two stable QTL were mapped, including
gNFFB-D3-1 and gNFFB-D6-1 mapped in F,; and F,.,. JF914
conferred favorable alleles for 11 QTL, and JF173 conferred for the
other two QTL. Only gNFFB-D3-1 contributed more than 10% of the
phenotypic variation. Thus, this QTL might be vital loci regulating
NFFB in the tested population.

A total of 2,907,790 SNPs were detected by BSA-seq, including
1,926,811 transition types and 979,643 transversion types (Figure 3).
After filtration, 348,074 high-quality SNPs were reserved (Additional
file 3). And SNP index was calculated for 337,651 SNPs (Additional
file 4). A total of 197 and 99 regions were found through A(SNP-
index) analysis and ED analysis, respectively (Additional file 5).
Thirty-nine regions containing 2310 SNPs on 12 chromosomes
were common between the results of A(SNP-index) analysis and
ED analysis, which were recognized as the candidate regions for
NFFB (Additional file 6). Two regions on D3 (41,779,195-41,836,120

TABLE 3 Parent marker types and the number of SNPs.

Marker type SNP number
aaxbb 410726
abxcc 159

cexab 47

efxeg 340
hkxhk 325126
ImxIl 162538
nnxnp 406706
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bp and 41,836,768-41,872,287 bp) overlapped with the stable QTL
gNFFB-D3-1 (17,130,008-41,839,226 bp). Thus, the 24.7 Mb interval
of gNFFB-D3-1 might be shortened to the 92.4 Kb key interval.

Candidate gene analysis

Eight genes were annotated in the 92.4 Kb interval of the stable
QTL gNFFB-D3-1 (D3, 41,779,195-41,836,120 bp and 41,836,768-
41,872,287 bp) (Table 6). By qRT-PCR, 2 genes showed significant
different and regular expression patterns between the buds of JF914
and JF173 (Figure 4). Ghir_D03G012430 expressed at a lower level at
1- and 2-leaf stages and increased sharply to a higher expression level
at 3- to 6-leaf stages in the bud of JF173 than that of JF914.
Ghir_D03G012390 reached the highest expression level in the buds
of JF173 and JF914 at 3- and 5-true leaf stages, respectively. The
expression levels of the above mentioned genes in leaves showed no
regular patterns. Thus, these 2 genes might be involved in
NFEB regulation.

Discussion

As a labor-intensive crop, cotton is increasingly unsuitable for
manual planting in China, which raises the very pressing need for
whole-process mechanization (Ma et al., 2019). Earliness is a vital trait
for the practice of mechanism. Xinjiang is one of the most important
cotton-growing regions in the world, accounting for 84.94% of China
and ~19% of the world of cotton production (Han et al., 2020).
Unstable weather conditions during the cotton planting season may
cause heavy losses, especially in northern Xinjiang. Late sowing by
planting early-maturity cotton is a useful method to avoid adverse
weather in spring (Cheng et al., 2021). Besides, early-maturity cotton
can optimize farmland cropping systems by directly planting cotton
after wheat harvesting (Li et al., 2020). Thus, to improve efficiency and
breed early maturity varieties suitable for mechanical harvesting,
there is more need for the genetic detection of cotton earliness. In
this study, an F, population containing 417 plants was constructed to
map QTL for cotton earliness. High-quality and density SNP markers
were detected by high-throughput genome sequencing. A high-
density genetic map containing 11,488 SNP and spanning 4,202.12
cM was constructed using 200 F, plants, which is comparable with the
genetic maps used for cotton earliness-related QTL mapping
previously reported by Jia et al. (2016) (6434 loci, 4071.98 cM, 137
RILs) and Li et al. (2017) (3978 SNP, 2480 cM, 170 F, plants).

The genetic basis of earliness-related traits is complex, involving
WGP, FT, FBP, PH, NFFB, and HNFFB, all of which are quantitative
traits controlled by large amounts of minor effect genes (Lacape et al.,
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TABLE 4 Detailed information on the genetic map.
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D13

Chr. No. of Marker Length (cM) Average interval (cM) Largest gap (cM) Coe. of collinearity
Al 165 157.86 0.96 10.09 -1.00
A2 30 161.10 5.56 28.19 -1.00
A3 487 150.74 031 9.25 -1.00
A4 514 164.16 032 10.77 -0.99
A5 488 168.17 035 343 -1.00
A6 152 162.13 1.07 14.63 -1.00
A7 583 162.98 0.28 9.13 -0.90
A8 414 156.02 038 7.74 -0.84
A9 624 178.90 0.29 7.61 -1.00
A10 415 161.14 0.39 8.91 -0.99
All 338 161.48 0.48 6.49 -1.00
Al2 270 160.78 0.60 13.61 -1.00
Al3 1115 17227 0.15 251 -0.82
At 5595 2117.74 0.74 28.19 -
D1 752 159.88 021 6.18 -0.68
D2 311 161.47 0.52 8.92 -1.00
D3 83 166.45 2.03 21.48 -1.00
D4 82 161.89 2.00 1921 -1.00
D5 1318 162.01 0.12 2.60 -1.00
D6 241 170.41 071 13.22 -1.00
D7 359 157.39 0.44 25.66 -1.00
D8 900 155.69 0.17 2.66 -0.97
DY 349 160.44 0.46 8.78 -1.00
D10 743 161.22 022 9.77 -0.98
DIl 236 151.28 0.64 7.66 -1.00
D12 323 161.79 0.50 17.07 -1.00
D13 196 154.46 0.79 7.64 -1.00
Dt 5893 2084.38 0.61 25.67 -
total 11488 4202.12 037 28.19 -

Chr., chromosome; No., number; Coe., coefficient; cM, centi morgan.
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Genome sequence
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FIGURE 2

Colinearity analysis between the genetic map and reference genome sequence.

2013; Suetal,, 2016; Liet al,, 2021). The 247 QTL reported by Jia et al.
(2016) could explain 0.28-29.37% of the phenotypic variation, and 52
QTL could be detected in at least 2 years. The 47 QTL reported by Li
et al. (2017) could explain 3.07-32.57% of the phenotypic variation,
and none could be detected repeatedly. The SNPs for earliness traits
detected by GWAS could explain 5.36%-15.56% of the phenotypic
variation (Su et al,, 2016). This study mapped 13 QTL with a 4.74-
10.11% phenotypic variation explanation rate for NFFB. Two QTL

TABLE 5 Detailed information of the mapped QTL.

Genetic map

could be detected in 2 generations, including gNFFB-D3-1 and
qNFFB-D6-1, and gNFFB-D3-1 explained more than 10% of the
phenotypic variation. At the same time, it is difficult to dissect the
genetic basis under cotton earliness clearly, of the lack of both major
and stable QTL (Li et al., 2020).

NFFB is an important index for earliness, such as in cotton (Jia
et al, 2016) and pepper (Zhang et al, 2019). And NFFB was
considered the most reliable and practical measurement of cotton

QTL Name Pop Pos (cM) Left marker Right marker LOD PV (%) Add Dom
gNFFB-A4-1 F, 40.00 chr4_75497483 chr4_75488413 281 5.03 -0.04 039
gNFFB-A7-1 Fau 24.00 chr7_96247777 chr7_92676059 5.13 9.03 -0.14 0.09
gNFFB-A7-2 Fas 28.00 chr7_92674198 chr7_92670233 3.50 6.93 -0.18 -0.01
gNFFB-Al11-1 F, 3.00 chrll_119686364 chrl1_119649722 4.03 8.63 -0.05 0.84
gNFFB-D2-1 Fas 71.00 chr15_61609865 chr15_61609728 273 5.30 -0.13 -0.07

Fas 51.00 chrl6_41836768 chr16_17130088 4.16 8.21 -0.18 0.01
gNFFB-D3-1

Fpu 50.00 chrl6_41839226 chr16_41836768 5.62 10.11 -0.17 0.13
gNFFB-D5-1 Fas 9.00 chr18_61260861 chr18_61249526 330 635 0.00 -0.47

Fas 106.00 chr19_12617417 chr19_12617401 334 6.52 0.06 -0.24
gNFFB-D6-1

Foy 106.00 chr19_12617417 chr19_12617401 343 575 0.06 -0.18
gNFFB-D7-1 Foy 95.00 chr20_15136585 chr20_14955163 435 7.49 -0.16 -0.02
gNFFB-D8-1 F, 139.00 chr21_5256024 chr21_5235564 3.01 5.87 027 0.00
gNFFB-D10-1 F, 161.00 chr23_67766849 chr23_67763158 351 6.71 -0.31 -0.20
gNFFB-DI2-1 F, 0.00 chr25_62606647 chr25_62552111 2.68 5.06 -0.04 -0.45
gNFFB-D12-2 F, 138.00 chr25_2807174 chr25_2714956 257 4.74 -0.17 -0.26

Pop, population; Pos, position; PV, phenotypic variation; Add, additive effect; Dom, dominance effect; Note: PH, plant height; NFFB, the node of the first fruiting branch; FBP, flowering-to-boll

opening period; FT, flowering timing; WGP, whole growth period.
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Statistic number of each SNP type.

earliness (Ray and Richmond, 1966; Guo et al., 2008). Previously, at
least 80 QTL for NFFB were mapped on almost all 26 cotton
chromosomes and most of these QTL have tiny genetic effect (Guo
et al., 2008; Guo et al.,, 2009; Li et al., 2012; Jia et al., 2016; Li et al.,
2017). As a typical quantitative trait, map a stable major QTL for
NFFB is very precious for excavating candidate genes. The
chromosome D3 was repeatedly mapped with outstanding QTL: by
Jia et al. (2016); Su et al. (2016); Li et al. (2017), and Ma et al. (2018).
Thus, it is interesting and hopeful that D3 contains vital genes
regulating NFFB. In this study, one stable QTL gNFFB-D3-1 was
mapped in F,; and F,, generations and explained 8.21-10.11% of
phenotypic variation. The confidence interval of gNFFB-D3-1 locates
between 17.1 to 41.8 Mb, spans a long region of about 24.7 Mb. QTL
at this region have been reported repeatedly such as by Jia et al. (2016)
(gNFFB-D3-1, gNFFB-D3-2, gNFFB-D3-3, gNFFB-D3-4), Li et al.

TABLE 6 The eight annotated genes in the 92.4 Kb interval.

5 07 <A P o7 p P P o o

[}

(2017) (gNFFB-D3-1), Li et al. (2021) (rsD03_39122594), and
Zhang et al. (2021) (gNFFB-Dt3-3). Candidate genes for cotton
earliness in this region were found, such as GREMF2 by Jia et al.
(2016) and Ma et al. (2020), Gh_D03G0885 and Gh_D03G0922 by Li
et al. (2017), Ghir_D03G011310 by Li et al. (2021), and GhAPL and
GhHADS5 by Zhang et al. (2021). Other candidate genes for earliness
on chromosome D3 were reported, such as GhCIP1 and GhUCE by
Ma et al. (2018) and CotAD_01947 by Su et al. (2016). Thus, it seems
likely that gNFFB-D3-1 contains candidate genes for cotton earliness.

In recent years, BSA-seq has become an efficient method in QTL
mapping and functional gene mining and has been widely applied,
such as in rice (Takagi et al., 2013; Zhang et al., 2021), tomato (Illa-
Berenguer et al,, 2015), melon (Hu et al.,, 2022), Brassica napus (Ye
etal., 2022), maize (Chen et al., 2021), and cucumber (Lu et al., 2014).
In cotton, genes controlling oil content (Liu et al., 2020), virescent

Gene ID Gene Name Description

Ghir_D03G012380 Biccl Protein bicaudal C homolog 1

Ghir_D03G012390 FAM214B Protein FAM214B

Ghir_D03G012400 At1g54610 Probable serine/threonine-protein kinase At1g54610
Ghir_D03G012410 AGAP005782 ATPase ASNA1 homolog

Ghir_D03G012420 SAE1B-2 SUMO-activating enzyme submit 1B-2
Ghir_D03G012430 panl Actin cytoskeleton-regulatory complex protein panl
Ghir_D03G012440 HSD1 11-beta-hydroxysteroid dehydrogenase 1B
Ghir_D03G012450 RPL7A-2 60S ribosomal protein L7a-2
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FIGURE 4

Gene expression level in the bud and leaf of JF914 and JF173. *, the difference reached p=0.05 significance level; **, the difference reached p=0.01

significance level.

(Zhuetal., 2017; Gao et al,, 2021), nulliplex-branch (Chen et al., 2015;
Wen et al.,, 2021), and NFFB (Zhang et al., 2021) were mapped by
BSA-seq. By combining QTL mapping and BSA-seq, QTL can be
finely mapped to a very small interval, significantly improving the
mining efficiency of vital genes under important quantitative traits
(Chen et al,, 2022; Hu et al,, 2022). In this study, aiming to map
candidate genes for NFFB, one line from the F,., population with low
NFFB and similar phenotype to JF914 was used as the maternal
parent and backcrossed with JF914. A BC,F, population containing
561 plants was constructed. A total of 60 plants with extremely high
(30 plants) or low (30 plants) NFFB from the BC,F, population were
selected to construct the high and low pools. And 39 candidate
regions were found by A(SNP-index) and ED methods. Two
regions on D3 (41,779,195-41,836,120 bp, 41,836,768-41,872,287
bp) overlapped with the stable QTL gNFFB-D3-1 (17,130,008-
41,839,226 bp). Thus, the stable QTL gNFFB-D3-1 spanning 24.7
Mb was shortened to 92.4 Kb key interval, and eight genes
were annotated.

By qRT-PCR, Ghir_D03G012430 was expressed at a lower level at
1- and 2-leaf stages and increased sharply to a higher level at 3- to 6-
leaf stages in the bud of JF173 than that of JF914. Ghir_D03G012390
reached the highest expression level in the buds of JF173 and JF914 at
3- and 5-true leaf stages, respectively. Ghir_D03G012430 is a panl
gene. As reported, panl functions in cell asymmetric division and
development (Best et al., 2021; Lu et al., 2022). Ghir_D03G012390
codes a FAM214B protein, which is vital in cell aging (Hernandez-
Segura et al.,, 2017; Macedo et al., 2018). As JF173 has lower NFFB and
better early maturity, the different expression patterns of
Ghir_D03G012430 and Ghir_D03G012390 imply that they may be
involved in NFFB formation and earliness regulation in cotton.
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Mosaic viral diseases affect sugarcane productivity worldwide. Mining disease
resistance-associated molecular markers or genes is a key component of disease
resistance breeding programs. In the present study, 285 F; progeny were produced
from a cross between Yuetang 93-159, a moderately resistant variety, and ROC22, a
highly susceptible variety. The mosaic disease symptoms of these progenies, with
ROC22 as the control, were surveyed by natural infection under 11 different
environmental conditions in the field and by artificial infections with a mixed
sugarcane mosaic virus (SCMV) and sorghum mosaic virus (SrMV) inoculum.
Analysis of consolidated survey data enabled the identification of 29 immune, 55
highly resistant, 70 moderately resistant, 62 susceptible, and 40 highly susceptible
progenies. The disease response data and a high-quality SNP genetic map were used
in quantitative trait locus (QTL) mapping. The results showed that the correlation
coefficients (0.26~0.91) between mosaic disease resistance and test environments
were significant (p< 0.001), and that mosaic disease resistance was a highly heritable
quantitative trait (H% = 0.85). Seven mosaic resistance QTLs were located to the SNP
genetic map, each QTL accounted for 3.57% ~ 17.10% of the phenotypic variation
explained (PVE). Furthermore, 110 pathogen response genes and 69 transcription
factors were identified in the QTLs interval. The expression levels of nine genes
(Soffic.07G0015370-1P, Soffic.09G0015410-2T, Soffic.09G0016460 -
1T, Soffic.09G0016460-1P, Soffic.09G0017080-3C, Soffic.09G0018730-3P,
Soffic.09G0018730-3C, Soffic.09G0019920-3C and Soffic.03G0019710-2C) were
significantly different between resistant and susceptible progenies, indicating their
key roles in sugarcane resistance to SCMV and SrMV infection. The seven QTLs and
nine genes can provide a certain scientific reference to help sugarcane breeders
develop varieties resistant to mosaic diseases.

KEYWORDS

sugarcane (Saccharum spp. hybrids), sugarcane mosaic disease, QTL mapping, gene
mining, expression profiles
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Introduction

Sugarcane mosaic disease (SMD) is a worldwide issue that has
long plagued sugarcane production. The disease is mainly caused by
single or co-infection of Sugarcane mosaic virus (SCMV), Sorghum
mosaic virus (StMV), and Sugarcane streak mosaic virus (SCSMV)
(Lu et al, 2021). SMD exhibiting typical “mosaic” symptoms
(Grisham, 2011) can seriously reduce the photosynthetic capacity
(Bagyalakshmi et al., 2019), yield, and quality of sugarcane (Singh
et al., 2003; Viswanathan and Balamuralikrishnan, 2005). Pandemic
SMD has occurred many times in history and caused huge economic
losses and even bankruptcies to many sugar companies (Koike and
Gillaspie, 1989; Grisham, 2011). Breeding and rationally planting of
SMD-resistant varieties are the most economical and effective
methods to prevent and control the disease.

So far, both natural infection disease surveys and artificial
inoculation-induced infection disease surveys are used in SMD
resistance assessments. Using the natural infection method, Li et al.
(2013); Da-Silva et al. (2015a); Yang et al. (2020), and Lavin-Castaeda
et al. (2020) successively screened sugarcane breeding materials,
cultivars, or hybrid offspring populations. A few varieties (lines)
with immunity or good resistance to SMD provided good material
for mosaic disease resistance gene mining and hybrid breeding.
Although this method is simple and saves labor and time, it
requires a high level of professional ability and is often affected by
environments. Alternatively, several artificial inoculation methods,
including friction (Da-Silva et al., 2015b; De-Souza et al., 2017), spray
(Dean, 1960), stalk cutting (Li et al., 2013; Li et al, 2018), and
injection inoculations (Zhou, 2015), can be well controlled and be
evaluated under a set stress. Roossinck (2015) assumed that the
occurrence and prevalence of plant diseases depended on a
compound effect among host plants, pathogens, and environmental
factors. Therefore, it is of vital importance to choose the most suitable
growth stage and the optimum inoculation methods for improved
accuracy of resistant phenotype identification during field evaluation.

The development of practical molecular markers and related
detection methodology are the basis for molecular marker-assisted
breeding. Currently, traditional DNA markers, such as amplified
fragment length polymorphism (AFLP), restriction fragment length
polymorphism (RFLP), and simple sequence repeats (SSR), are being
used in quantitative trait locus (QTL) mapping or bulk segregant
analysis (BSA) research (Xia et al., 1999; Duble et al., 2000; Xu et al.,
2000; Dussle et al., 2003; Yuan et al., 2004). Several SCMV -resistance
markers were identified in corn (Zea mays L., 2n = 2x = 20; genome
size ~2,300 Mb) (Schnable et al.,, 2009). Single nucleotide
polymorphisms (SNP) markers are superior markers due to wide
distribution, huge quantity, high stability, strong representativeness,
and bi-allelicity (Rafalski, 2002). SNP chips represent a high-
throughput, automated, and relatively cost-effective genotyping
method (Laframboise, 2009), which has been used to identify
resistance genes to Bean common mosaic virus in soybean (2n = 2x
=40) (Bello et al., 2014) and to Soil-borne wheat mosaic virus in wheat
(2n =6x=42) (Liu et al,, 2014). However, due to the complexity of the
sugarcane genome (2n = 12x = 100~130 and genome size ~10 Gb)
(Roach, 1989; D'Hont et al., 1998), sequencing technology, and high
cost, only two SNP chips, namely, the 345K chip of Aitken et al.
(2017) and the 100K chip of You et al. (2019), have been developed in

Frontiers in Plant Science

17

10.3389/fpls.2023.1107314

sugarcane. The 100K SNP chip has a polymorphism rate of up to
77.04% and has been successfully used in QTL mapping of disease
resistance markers to yellow leaf disease (You et al., 2019), ratoon
stunting disease (You et al., 2020), and leaf blight disease (Wang et al.,
2021) in sugarcane.

In plants, compared to qualitative resistance traits, quantitative
resistance traits are more broad-spectrum and persistent and play an
important role in preventing large-scale disease outbreaks due to the
loss of a single gene resistance (Poland et al., 2009). For instance, a
QTL locus gMdr9.02 was found to be associated with resistance to
southern leaf blight, northern leaf blight, and gray leaf spot in maize
(Yang et al., 2017). However, to date, only four SCMV resistance-
associated markers (AFLP-346, AFLP-372, AFLP-538, and CV29.13),
each accounting for 5.51 to 14.02% of PVE, were reported by Burbano
et al. (2022). The objectives of this study were to construct a genetic
mapping population, to evaluate the SMD response of the mapping
population, and to develop SMD resistance-associated QTL markers
and suggest candidate genes for the improvement of the efficiency and
accuracy of sugarcane breeding.

Materials and methods
Plant material and field planting

Two hundred and eighty-five F; progeny were produced from a
cross between YT93-159 (moderately resistant to SMD) and ROC22
(highly susceptible to SMD). The cross was made in 2014 at the
Hainan Sugarcane Breeding Station, Yacheng, Hainan, China. After
vegetative propagation, stems of these progeny were planted at five
different ecological sites, namely, Cangshan (119°14’E, 26°5'N),
Longchuan (97°53’E, 24°15'N), Suixi (110°10’E, 21°6'N), Tianyang
(107°0’E, 23°39'N), and Yuanjiang (101°59’E, 23°36'N) (Figure I;
Supplementary Table 1). A randomized block design was adopted for
field planting. Specifically, the trial design in Cangshan and
Longchuan contained three replications, Suixi and Yuanjiang
contained two replications, and Tianyang contained one replicate.
Specific row spacing and planting density were shown in
Supplementary Table 2. The five ecological sites were routinely
managed according to conventional planting measures, and stalk-
cutting was done at the end of December each year.

Mosaic disease survey

By natural infection

To identify the appropriate survey season, SMD symptoms on a
field grown, highly susceptible progeny FN14-255 were monitored
monthly on the campus of Fujian Agriculture and Forestry University
(FAFU) (119°14°E, 26°5'N). Three typical +1 leaves were sampled for
comparison. The three periods showing the most severe symptoms
were selected for investigating natural SMD incidence.

By artificial inoculation

Before planting, a machete was used to cut the stem of FN14-255
into single-bud pieces, which were rinsed in running water overnight.
Only single-bud pieces that met the criteria of 1) having one full and
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FIGURE 1

Ecological survey sites and sugarcane crop density in China based on the data from the 2020 Statistical Yearbook.

healthy bud, and 2) with flat incisions without any cracks were kept. A
super constant temperature tank (Ningbo Prandt Instrument Co.,
Ltd, Ningbo, China) was used for hot water treatment. Water
temperature was set and kept at + 0.2°C of 50°C (CK), 55°C, 57°C,
59°C, and 61°C. Water level was maintained at about 2/3 tank full.
Treatment was for 30 minutes. Once the treatment was completed,
the stems were rinsed in running water until the buds cooled
completely. The buds were cultured in a greenhouse
(Supplementary Figure 1) under 12 h light/12 h dark with a light
intensity of 15,000 Lx and a relative humidity of 60%. Greenhouse
temperature was set to 28°C before inoculation and 25°C after
inoculation. Each treatment had 30 buds with three replications.
After 30 d, the one-step multiplex reverse transcription PCR (RT-
PCR) method of Shan et al. (2020) was used to detect different
sugarcane mosaic virus. The oligonucleotide sequence of species-
specific RT-PCR primers and the length of targeted fragments are
shown in Table 1.

The method of Li et al. (2013) was used to configure the viral
inoculum mixture. The viral source was SMD symptomatic leaves
from sugarcane variety Funong 41 that was planted on the Sugarcane
Farm on the campus of FAFU. SCMV and SrMV pathogens were
detected in these leaves by RT-PCR (Supplementary Figure 2). YT93-
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159 and ROC22 were used to test different inoculation methods,
including spray, micro-injection, quartz sand friction, abrasive cloth
friction, rasp friction, young stem cut, single bud soaking, single bud
soaking and quartz sand friction (Supplementary Figure 3,
Supplementary Table 3), and to choose the best inoculation method
to inoculate the test population. In 2021, three batches of viral
inoculums were administered successively. One was conducted at
the sugarcane station of FAFU during February to April. Another was
conducted in a climate-controlled greenhouse of the Key Laboratory
of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture
and Rural Affairs, FAFU from May to July. A final inoculation was
conducted in the same greenhouse from October to December. For
each genotype, 15 single buds were inoculated with three replications
and were kept in the dark for 24 h after inoculation. Four weeks post
inoculation, SMD incidence was investigated for three consecutive
sessions with an interval of one week.

Resistance evaluation

One growth cycle at one ecological site and a batch of artificial
inoculation treatments were considered as one environment. The
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TABLE 1 Species-specific RT-PCR primers for the detection of three sugarcane mosaic viruses.

Primer sequence (5'—3’)

F: GCGCGGTATGCATTTGACTT

SCMV
R: CACTCCCAACAGAGAGTGCAT
F: AACAGGATGCCGATGCGAAA
SrMV
R: CGTTGATGTTCGGTGAGCAA
F: GAACGCAGCCACCTCAGAAT
SCSMV

R: CCAAAATGAGCGCCTCCGAT

highest SMD incidence rate out of the three surveys was used to
determine the level of SMD resistance for each F; progeny in a single
environment. Comprehensive evaluation was based on the maximum
value of resistance across multiple natural and artificial inoculation
infection environments. The SMD grading system was set according
to the method of Li et al. (2000) (Table 2). During comprehensive
evaluation, if the disease incidence rate of ROC22 (control) in an
environment was more than 66.01%, the external SMD stress was
considered sufficient, and the survey data valid. If the disease
incidence rate of ROC22 (control) in an environment was less than
66.01%, then the external SMD stress was assumed to be insufficient,
and the environmental data discarded. The following formula was
used to calculate SMD incidence rate (%):

SMD incidence rate (%)
number of plants per F; progeny x 100%.

number of diseased plants/total

Correlation analysis and generalized
heritability estimation

The QTL IciMapping V4.2 software (Chinese Academy of
Agricultural Sciences, Beijing, China) was used to analyze the
correlation and calculate the generalized heritability (H?) using the
following calculation formula:

2

O O,
2 2.2 ge
H —O'g/(Gg+—n +

2
=), :
nr

o7 is error variance, 0';@ is

genotype-by-environment interaction variance, n is the number of

Where O'g2 is genotype variance,

environments; and r is number of survey periods within
each environment.

TABLE 2 Resistance grading based on SMD incidence.

Grade Resistance SMD Incidence (%)
1 Immune 0
2 Highly resistant 0.01~10.00
3 Moderately resistant 10.01~33.00
4 Susceptible 33.01~66.00
5 Highly susceptible 66.01~100
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QTL mapping

The SMD resistance grading data of the F; progeny population
and the sugarcane 100K SNP chip-based genetic map (Supplementary
Table 4) (Wang et al, 2021) were used to conduct QTL mapping
using the inclusive composite interval mapping (ICIM) of GACD 1.2
software (Chinese Academy of Agricultural Sciences, Beijing, China),
with a logarithm of odds (LOD) threshold of 2.5 and other default
parameters. Loci with > 10% phenotypic variation explained (PVE)
values were defined as major QTLs, and loci with< 10% PVE were
minor QTLs. QTLs were named according to McCouch et al. (1997)
with “q” plus the sugarcane mosaic disease resistance (Rsm) trait,
followed by linkage group number in italics. R software (R-Tools
Technology Inc., Ontario, Canada), Origin 9.0 software (OriginLab
Inc., Massachusetts, USA), and Adobe Illustrator CS6 software
(Adobe Systems Inc., California, USA) were used to draw the
position of QTL on the linkage group.

Candidate gene mining

The protein sequences of all genes in the QTL interval were
extracted according to the GFF annotation file of a Saccharum
officinarum genome (http://sugarcane.zhangjisenlab.cn/sgd/html/-
index.html). The Plant Pathogen Receptor Genes database (PRGdb
4.0, http://prgdb.org/prgdb4/) was used to search for genes related to
disease resistance. At the same time, disease resistance-related
transcription factors were extracted from the plant transcription
factor database (TFDB 5.0, http://planttfdb.gao-lab.org/index.php)
(Osuna-Cruz et al., 2018).

Critical gene and functional
structure prediction

Stems of Yuetang 93-159, ROC22, five immune, and five highly
susceptible progeny were detoxified in a hot water bath as previously
described. Plants with 2~3 fully expanded leaves from the detoxified
buds were inoculated with a mixed inoculum of SCMV and SrMV by
quartz sand friction. Leaf samples were taken on 0 d, 1 d, and 4 d post
inoculation, RT-PCR was conducted to detect the viruses at 4 d post
inoculation (Supplementary Figure 4). There were four plants in each
of the three biological replicates. RNA was extracted by the Trizol
method, and the integrity of the extracted RNA samples was checked
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using an Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara,
CA, USA). The integrity number of a qualified RNA sample was
considered greater than 6.0, and the detection quality was A-level
(Supplementary Table 5). The qualified RNA samples were sent to
Novogene Bioinformatics Technology Co., Ltd. (Beijing, China) for
transcriptome sequencing. The DNBSEQ-T7 (Shenzhen Huada
Intelligent Technology Co., Ltd., Shenzhen, China) sequencing
platform was used for paired-end sequencing, and each library
yielded > 12 Gb of sequence data (Supplementary Table 6). The
Transcripts Per Kilobase Million (TPM) normalization method
(Wang et al., 2021) was used to calculate the expression levels of all
genes. TBtools V1.0986 software (South China Agricultural
University, Guangzhou, China) was used to draw an expression
heat map of candidate genes, and to locate significantly
differentiated key genes in the S. officinarum genome. An online
tool GSDS V2.0 (http://gsds.gao-lab.org/) was used to describe the
gene structure. The Arabidopsis genome (https://www.arabidopsis.
org/Blast/index.jsp) was referred for functional annotation with e-
value threshold set to e *°.

Data statistics and analysis

A Canon EOS 60D camera (Canon Inc., Tokyo, Japan) was used
to capture the images of SMD symptoms. Data were achieved as Excel
2010 (Microsoft Inc., Washington, USA) spreadsheets. Duncan’s
significant difference test and descriptive statistics were performed
using IBM SPsS® V25 software (International Business Machines
Inc., California, USA).

10.3389/fpls.2023.1107314

Results
Phenotypic analysis and evaluation

Determination of the natural survey period

The SMD symptoms of a highly susceptible progeny (FN14-255) are
shown in Figure 2. The figure shows the symptoms of infected sugarcane
leaves were more clearly distinguishable during February to April and
October to December, with mosaic symptoms covering the entire leaf.
Nevertheless, the symptoms were significantly weakened in January and
in May to September, especially from June to August, the symptoms were
suppressed by high temperature, and can only be observed at the bottom
of the leaves. Therefore, the field natural incidence survey was arranged
in March, April and November, respectively.

Hot-water detoxification and artificial inoculation
Germination time was obviously delayed, and germination rate was
significantly reduced with increasing hot water temperature
(Supplementary Table 7). On the other hand, mild leaf symptoms
could be seen from the 50°C treatment. And even barely visible from
the 55°C treatment. However, no symptom was observable from the 57°
C, 59°C, and 61°C treatments. As shown in Supplementary Figure 5, no
band was visible on the gels, indicating that all three target viruses were
not detectable for the samples treated at 59°C and 61°C. Therefore, a
hot water treatment at 59°C for 30 min can completely detoxify the
viruses, albeit with a germination rate of about 30% (Supplementary
Table 7). The ‘single bud soaking + quartz sand friction’ method had
the highest inoculation efficiency (Supplementary Table 8). Therefore,
this method was used to inoculate the mapping population material.

FIGURE 2

(December); (A-L): January-December, respectively.
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Comprehensive evaluation

The SMD survey data for the F; mapping population from 11
natural infection and 3 artificial inoculation infection environments
during 2020 to 2022 are shown in Supplementary Table 9. The
frequency distribution of SMD resistance grades within this
population in 14 environments is shown in Supplementary
Figure 6. The data from two environments at Cangshan ecological
site (block 2) were excluded from the comprehensive evaluation and
resistance analysis due to insufficient pathogen stress. Accordingly,
the population was comprehensively evaluated based on nine natural
environments and three artificial inoculation environments. Among
the 285 progenies, 29 immune, 55 highly resistant, 70 resistant, 62
susceptible, and 40 highly susceptible progenies were identified. The
remaining 29 progenies had inconsistent SMD responses. The SMD
resistance trait segregated widely within the F, mapping population
and showed an obvious hybrid vigor (Heterosis) phenomenon
(Figure 3). That was in line with the typical characteristics of a
quantitative trait, indicating its suitability for QTL analysis.

Correlation analysis and
generalized heritability

Certain differences of SMD incidence were observed in the
mapping population across different environments. For example,
SMD incidence in the ratoon crop was significantly higher than the
plant cane crop. The SMD tended to accumulate when the sugarcane
crop underwent prolonged ratooning. Correlation coefficients
between the resistance trait and different environments were
0.26~0.91 (Supplementary Table 10), all these values were very
significant (p< 0.001), indicating that the SMD resistance was a
stable trait. Not surprisingly, the estimated broad sense heritability
(H?) of SMD resistance in this mapping population under 14
environments was 0.85, which implied that the SMD resistance trait
was mainly determined by genetic factors.

80
® YT93-159
/.\ A ROC22
v 60F
L _/
=)
)
£ a0f A
G
o
=}
Z 20t
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1 2 3 4 5
SMD resistance grade
FIGURE 3

Distribution of five SMD resistance grades (Table 2) within a sugarcane
mapping population YT93-159 belongs to Grade 3 and ROC22
belongs to Grade 5

Frontiers in Plant Science

21

10.3389/fpls.2023.1107314

QTL mapping

Seven SMD resistance-related QTLs were detected (Table 3),
which could explain 46.53% of the PVE. One major QTL, gRsm-
Y12, could explain 17.10% of the PVE. The other six were minor
QTLs, each could explain 3.57% ~ 7.70% of PVE. Four QTLs were
detected on the YT93-159 map, and the remaining three QTLs were
detected on the ROC22 map (Figure 4). The maximum genetic
distance of each QTL from the nearest marker was 2.4 cM, the
minimum was 0, and the average genetic distance was about 1.1 cM.

Candidate gene mining

According to the sequence information of the markers on either
side of the QTL (Supplementary Table 11), 1,525 candidate genes
were searched in the seven QTLs regions. In total, 110 disease
resistance candidate genes were identified, whose gene products
included CC-TM (coiled-coil plus transmembrane receptor), LRR
(leucine rich repeats), RLK (receptor-like protein kinases), WAK
(wall-associated receptor kinase), and others domain. In addition,
69 transcription factors were identified, including AP2 (APETALA2),
bHLH (basic helix-loop-helix), bZIP (basic region/leucine zipper),
ERF (ethylene response factor), MYB (myeloblastosis), SBP
(squamosa promoter binding protein) and other types of
transcription factors (Supplementary Table 12). These genes and
transcription factors may directly or indirectly involve in regulating
sugarcane response to mosaic virus infection.

Critical gene prediction

The gene expression levels of 110 pathogen-responsive genes and
69 transcription factors obtained by map mapping were presented in
Figure 5. Among the candidate genes related to disease resistance, it
was found that genes such as Soffic.07G0015370-1P,
Soffic.09G0016460-1T, and Soffic.09G0018730-3P had significant
expression differences between resistant and susceptible progenies,
including three transcription factors and six pathogen response genes.
These nine genes contained conserved domains such as
bHLH_AtILR3_like, LRR, STKc_SNT7_plant and that were closely
related to plant disease resistance (Table 4). The genomic positions,
conserved domains and gene structures of the nine predicted genes
are shown in Figure 6. It is speculated that these genes may be key to
the resistance of sugarcane to SCMV and SrMV, and can be a focus
for future research.

Discussion

Mosaic disease is one of the most important viral diseases in
sugarcane and has threatened the security and sustainability of the
world sugarcane industry for a long time (Wu et al., 2012). In recent
years, with the increasing pressure of natural stress, the differentiation
of plant viruses has accelerated (Roossinck, 2015). The genetic basis of
modern sugarcane cultivars is narrow, and the utilization of resistant
genes and genotypes is limited. There is an increasing chance of a large-
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TABLE 3 SMD resistance-related QTLs in a F; progeny mapping population from the YT93-159 x ROC22 cross.

o . Effect Effect Effect GD Distance
TL Position  Left/Right markers = LOD

Q 9 female male FM (cM)P
qRsm- AX-171367442/AX- AX-

16 1019 | 17.10 -0.01 -0.05 0.50 95 0.9
Y12 171312668 171312668
qRsm- AX-171308038/AX- AX-

35 272 357 0.06 021 -0.11 6.8 1.5
Y41 171265900 171308038
qRsm- AX-171266761/AX- AX-

4 3.25 4.90 0.27 -0.04 -0.02 253 04
Y52 117172243 171266761
qRsm- AX-171332119/AX- AX-

60 3.37 5.12 0.19 -0.03 022 56 24
Y57 171288089 171288089
Rsm- AX-1712 AX- AX-
arsm 0 71290689/ 2.52 3.88 -0.11 -0.10 0.19 18 0
RI4 171329853 171290689
Rsm- AX-171330585/AX- AX-
arsm 17 3.44 7.70 0.11 0.13 -025 0.7 02
R23 171286409 171286409
qRsm- AX-171360287/AX- AX-

3 2.62 426 022 0.12 -0.09 53 23
R92 171296656 171296656

“Y”, YT93-159; “R”, ROC22; LOD, logarithm of odds; PVE, phenotypic variation explained; GD, genetic distance between left and right markers; * Nearest marker from the QTL peak, ® Distance of

nearest marker from the respective QTL peak.

scale epidemic of mosaic diseases. Since different sugarcane varieties
may have different resistances to the virus, breeding and careful
distribution of disease-resistant varieties is the most economical and
effective method to control mosaic disease. Therefore, it is imperative to
fully explore the specifics of germplasm resistance and expand research
on resistance-related molecular markers or key genes to further
improve breeding efficiency.

In this study, SMD surveys were based on the “mosaic” symptom
manifested under multiple environments. The results of resistance to
mosaic disease in the experimental population showed that the overall
disease incidence upon artificial inoculation was significantly higher
than that upon natural infection. Due to many years of sugarcane
production and greater levels of pathogen pressure, the overall disease
incidence in sugarcane production areas of Guangxi and Yunnan is
significantly higher than other ecological regions in China
(Supplementary Table 9). In our study, inconsistent SMD
incidences were observed across different habitats. The pathogen
pressure of SMD was not high enough on the newly planted
sugarcane crop at Cangshan ecological site (block 2) in 2020 and
2021, therefore, the survey data from these two environments were
discarded. Therefore, the evaluation was only carried out with the
progeny with the highest level of resistance across nine natural
infection environments and three artificial inoculation infection
environments. Excluding 29 F, progeny with inconsistent levels of
SMD resistance across different environments, 256 progeny of the F,
mapping population were included in further analysis. The 29 F,
progenies that were immune to SMD will be valuable in molecular
breeding to develop SMD resistant sugarcane cultivars.

Sugarcane is a vegetatively propagated crop, and multiple sets of
a mapping population can be propagated genetic research (Asnaghi
et al., 2004). This study showed that the correlation coefficients
among SMD resistance data sets from the various environments
were highly significant (p< 0.001) at 0.26 ~ 0.91 (Supplementary
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Table 10). This indicates that SMD resistance is stable under
different environmental conditions. The consolidated survey
results showed that the frequency of the five grades followed a
continuous normal distribution and that the Grades 1 and 2
contained 84 super-parent segregants with a better resistance level
than the parent YT93-159, which is resistant to SMD (Grade 3)
(Figure 3). This is in line with the typical characteristics of a
quantitative trait controlled by polygenes. The generalized
heritability (H?) of the SMD resistance across different
environments was 0.85, which is obviously higher than the H”
values reported on sugar content (0.57), plant height (0.57),
effective stem number (0.65), single stem weight (0.56), and yield
(0.49) (Barreto et al, 2019). This may be due to the long-term
accumulation and habitation of the virus in sugarcane and the less
effective management of SMD than on plant yield-related traits. The
SMD resistance trait is mainly controlled by genetic factors, which
can be identified using the map mapping method.

Mapping population size and molecular marker density directly
affect the accuracy and resolution of marker localization for the target
trait (Beavis, 1994). So far, most of the sugarcane populations for QTL
mapping of agronomic traits are made up of between 100 and 200
individuals with traditional markers, such as AFLP, RFLP or SSR
(Raboin et al., 2006; Yang, 2015; Singh et al., 2016). Due to the lack of
detection tools, high-density genotyping of large populations, the
genetic distance between the QTL markers and the gene of interest is
relatively large (Daugrois et al., 1996; Raboin et al.,, 2006). In this
study, linkage analysis was performed using a high-density map
constructed by the Axiom Sugarcane 100K SNP chip, which
contains 100,097 low-dose SNPs with a broad genetic basis and
mainly distributed in gene regions. This chip includes 64,726
single-dose markers and 35,371 double-dose markers (You et al,
2019). Furthermore, the F; progeny mapping population used in this
study consisted of 256 eligible F; progeny, which is significantly more
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FIGURE 4

Location of seven SMD resistance-related QTLs (g) on sugarcane genetic linkage maps “Rsm”, resistance trait to sugarcane mosaic disease; "Y", YT93-
159; and "R", ROC22. The colored text values, phenotypic variation explained (PVE).

than those of previous studies (Raboin et al., 2006; Yang et al., 2015;
Singh et al,, 2016).

The genetic analysis of SMD resistance was analyzed in this study.
Seven SMD resistance-related QTLs were detected, only one of which,
qRsm-Y12, was a major QTL that could explain 17.1% of the PVE.
The genetic effect of gRsm-Y12 is similar to the PVE effects seen for
SCMV resistance (14.02%) by marker AFLP-346 in sugarcane
(Burbano et al,, 2022) and the 15.3% ~ 15.8% PVE effect of a major
QTL R-scm3 related to SCMYV resistance in maize (Zhang et al., 2003).
The seven QTL markers identified in this study range in distance from
the nearest marker from 0 to 2.4 cM, with an average of 1.1 ¢cM, which
is similar to those seen for sugarcane brown rust resistance-associated
markers (0.1 cM ~ 8.1 cM) (Yang et al., 2017) and sugarcane orange
rust markers (0.2 ¢cM ~ 2.2 ¢cM) (Yang et al,, 2018). This further
demonstrated the feasibility and reliability of using SNP genetic maps
to locate target trait-related QTLs. However, even with a high-quality
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sugarcane SNP map, the distance of the closest markers on either side
of the QTL is relatively large (Wang et al,, 2021). For example, the
distance between QTL gqRsm-Y57 and the closest marker is 2.4 cM,
which makes target trait localization difficult and highlights the need
for fine localization of SNP markers.

The major disease resistance traits in plants may generally be
described by a gene-for-gene mechanism. The Avr products of
pathogen-encoded avirulence genes are specifically recognized
directly or indirectly by specific proteins encoded by the cognate
plant disease resistance genes (Flor, 1971; Jia et al., 2000; Yakupjan
et al, 2015). When plants sense a pathogen invasion signal, the
disease resistance genes are activated through a series of signal
transmissions. During this process, transcription factors play an
important role in the defensive responses. For example, they may
inhibit or activate the transcriptional expression of target genes by
binding to specific DNA sequences in target gene promoters (Zhang
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et al., 2009). Plant leucine-rich repeat (LRR) receptor-like protein
kinases represent a large group of protein families that play important
roles in disease resistance (Smakowska-Luzan et al., 2018). Zhang
et al. (2021) showed that a homologous OsRLPI gene regulated rice
resistance to Rice black-streaked dwarf virus infection. Qi et al. (2014)
found that a mutant of A. thaliana protein kinase AVRPPHB
susceptible (PBS1) was defective in sensing the avirulence gene
avrPphB of Pseudomonas syringae. Lee et al. (2015) showed that a
serine/threonine kinase domain protein encoded by OsPBLI gene

TABLE 4 Information for SMD resistance-related key genes.

might play a role in rice stripe resistance. Chang et al. (2022) found a
FKBP-type peptidyl-prolyl cis-trans isomerase (PPlase) could interact
with the motor protein of Tomato leaf curl New Delhi virus, and its
transient overexpression reduced the virus replication. Aparicio and
Pallas (2017) confirmed that bHLH transcription factor can promote
salicylic acid-dependent defense signaling by interacting with the
Alfalfa mosaic virus CP protein. Studies have also shown that
MdAMYB73 can improve apple’s resistance level to Botryosphaeria
dothidea through the salicylic acid pathway (Gu et al.,, 2020). The

Candidate Arabidopsis homologous Conserved .
QTL P 9 . Gene description
gene gene domain
Rsm- Soffic.07G0015370-
1 qRSI’Z offc P AT2G43560 FkpA super family FKBP-like peptidyl-prolyl cis-trans isomerase family protein
) qRsm- Soffic.09G0015410- AT5G54680 bHLH_ A(ILR3. like basic helix-loop-helix (bHLH).DNA—binding superfamily
Y52 2T protein
Rsm- Soffic.09G0016460-
3 qY;Z offic o AT5G01920 STKc_SNT7_plant Protein kinase superfamily protein
Rsm- Soffic.09G0016460-
4 qy;; offic P AT5G01920 STKc_SNT7_plant Protein kinase superfamily protein
Rsm- Soffic.09G0017080-
5 qYSS’Z offic 30 AT3G12480 BURG super family nuclear factor Y, subunit C11
6 qRsm- Soffic.09G0018730- AT5G25930 LRR kinase family with leucine—rich. repeat domain-containing
Y52 3P protein
; qRsm- Soffic.09G0018730- AT5G25930 LRR kinase family with leucme-rlch. repeat domain-containing
Y52 3C protein
Rsm- Soffic.09G0019920-
8 qYSan offc 3 ATI1G68830 PLN03225 Serine/Threonine kinase domain protein
Rsm- Soffic.03G0019710-
9 qYS;; offic 2 AT5G23000 PLN03091 super family myb domain protein 37
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FIGURE 6
The genomic location, conserved domain, and gene structure of SMD resistance-related candidate key genes (UTR, untranslated region; CDS, coding sequence).

expression of a MYB transcription factor CaPHLS8 was upregulated in
Ralstonia solanacerum infected pepper plants. The upregulated
expression activated the expressions of immune-related genes to
enhance the defense response of pepper (Noman et al, 2019).
O’Conner et al. (2021) showed that overexpression of GmNF-YC4-2
in soybean increased seed protein content, exhibited a broad disease
resistance, and accelerated soybean maturation.

In this study, a total of 110 pathogen-responsive genes and 69
transcription factors were identified in the interval regions of the QTLs.
Among them, nine candidate genes were obtained in the interval region
of the major QTL gRsm-Y12, including one transcription factor and eight
resistance genes. Basically, plants share a common resistance mechanism
to the same type of pathogen (Jones and Dangl, 2006; Li et al., 2020).
SCMYV and SrMV are the most widely distributed sugarcane mosaic virus
in the world, with SCSMV mainly distributed in Asia (Lu et al,, 2021).
Therefore, we used an artificial inoculum that only contained SCMV and
StMV. Combined with the TPM normalization results of RNA-seq gene
expression after inoculation of SCMV and SrMYV, six genes and three
transcription factors had significantly different levels of expression
between resistant and susceptible materials. Two genes,
Soffic.09G0018730-3P and Soffic.09G0018730-3C, contained LRR
domains. Two genes, Soffic.09G0016460-1T and Soffic.09G0016460-1P,
encoded kinase superfamily proteins. Gene Soffic.09G0019920-3C
encoded a serine/threonine kinase domain protein. Gene
Soffic.07G0015370-1P encoded a PPlase family protein. Among the
transcription factors, Soffic.09G0015410-2T is a bHLH transcription
factor, Soffic.03G0019710-2C encodes a MYB transcription factor, and
Soffic.09G0017080-3C encodes a NF-YC transcription factor. It is thus
speculated that these six genes and three transcription factors may have
potential functions in sugarcane mosaic disease resistance.
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Conclusions

This study showed that the SMD resistance trait of 256 F,
progeny of a cross (YT93-159 x ROC22) tested under different
environments was significantly correlated (p< 0.001) with
correlation coefficients of 0.26~0.91, and hence was a highly
heritable quantitative trait (H? = 0.85). Based on the consolidated
multiple data sets of SMD resistance, 29 immune, 55 highly
resistant, 70 moderately resistant, 62 susceptible, and 40 highly
susceptible F; progeny were identified. Using a high-quality SNP
chip, seven SMD resistance-related QTLs were located. One major
QTL, gRsm-Y12, explained 17.10% of the PVE and six minor QTLs,
namely, qRsm-Y41, qRsm-Y52, qRsm-Y57, qRsm-R14, qRsm-R23,
and gRsm-R92, explained 3.57% ~ 7.70% of the PVE. A total of 110
SMD response genes and 69 transcription factors were screened for
association with SMD resistance. Six key genes, namely,
Soffic.07G0015370-1P, Soffic.09G0016460-1T, Soffic.09G0016460-1P,
Soffic.09G0018730-3P, Soffic.09G0018730-3C, and
Soffic.09G0019920-3C and three transcription factors, namely,
Soffic.09G0015410-2T, Soffic.09G0017080-3C, and
Soffic.03G0019710-2C, were identified. These genes and
transcription factors can be further explored and utilized in the
marker-assisted breeding for mosaic disease resistance in sugarcane.
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controlling brown seed coat
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in sesame (Sesamum indicum L.)
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Bing Jing™, Hongxian Mei*** and Zhonghua Wang™
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University, Yangling, China, ?Henan Sesame Research Center, Henan Academy of Agricultural
Sciences, Zhengzhou, China, *The Shennong Laboratory, Zhengzhou, China

Introduction: Sesame seeds have become anirreplaceable source of edible oilsand
food products with rich nutrients and a unique flavor, and their metabolite contents
and physiological functions vary widely across different seed coat colors. Although
the quantitative trait loci (QTLs) for genetic variation in seed coat color have been
extensively investigated, the identification of unique genetic loci for intermediate
colors such as brown has not been reported due to their complexity.

Methods: Here, we crossed the white sesame "Yuzhi No. 8’ (YZ8) and the brown
sesame "Yanzhou Erhongpi’ (YZEHP) to construct a recombinant inbred line (RIL)
population with consecutive self-fertilization for ten generations.

Results: The selfed F1 seeds were brown which was controlled by a dominant
gene. Based on the genotyping by whole-genome resequencing of the RILs, a
major-effect QTL for brown coat color was identified through both bulk
segregant analysis (BSA) and genetic linkage mapping in sesame, which was
located within a 1.19 Mb interval on chromosome 6 (qBSCchr6). Moreover, we
found that the YZEHP seed coat initially became pigmented at 20 days post-
anthesis (DPA) and was substantially colored at 30 DPA. We screened 13 possible
candidate genes based on the effects of genetic variants on protein coding and
predicted gene functions. Furthermore, gRT-PCR was used to verify the
expression patterns of these genes in different post-anthesis developmental
periods. We noted that in comparison to YZ8 seeds, YZEHP seeds had expression
of SIN_1023239 that was significantly up-regulated 2.5-, 9.41-, 6.0-, and 5.9-fold
at 15, 20, 25, and 30 DPA, respectively, which was consistent with the pattern of
brown seed coat pigment accumulation.

Discussion: This study identified the first major-effect QTL for the control of the
brown seed coat trait in sesame. This finding lays the foundation for further fine
mapping and cloning as well as investigating the regulatory mechanism of seed
coat color in sesame.

KEYWORDS
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1 Introduction

Sesame (Sesamum indicum L.) is an exceptional and essential
oilseed crop; it is one of the oldest such crops known to mankind,
having been domesticated from its wild progenitor S. malabaricum
on the Indian subcontinent approximately 5000 years ago
(Bedigian, 2003; Fuller, 2003). Sesame seeds are used for a wide
variety of applications, both as condiments and as a source of edible
oil. Sesame oil is commonly used for its distinctive flavor, in
addition to being a key component in the production of
margarine, soap, and lubricants (Hwang, 2005). One of the main
distinguishing characteristics of sesame seeds is the color of the seed
coat. Seed coat color is a crucial aspect of seed quality and is related
to the biochemical properties of the seed and to the activity and
content of its antioxidant substances (Shahidi et al., 2006; Kermani
et al,, 2019). These different biochemical and antioxidant properties
may be most closely related to higher levels of sesamol, sesaminol,
alpha-tocopherol, and flavonoids in the seed coats of colored
sesame than that of white sesame seeds (Xu et al., 2005).
However, it has not yet been possible to identify the genes that
regulate the metabolic pathways and mechanisms of interaction
that determine sesame seed coat color, which is typically thought to
show a complicated pattern of quantitative inheritance (Zhang
et al., 2013).

Mature sesame seeds come in a variety of natural coat colors,
including black, gray, brown, gold, yellow, beige, and white (Prasad
and Gangopadhyay, 2011; Pandey et al., 2013). As seed coat color is
one of the central targets of sesame breeding programs, research into
the inheritance of the trait and the corresponding gene loci have been
of considerable scientific interest. In 1931, a Japanese researcher
initially suggested that the inheritance of sesame seed coat color
potentially fit a segregation pattern involving three allelic genes
(Teshima, 1931). Zhang et al. (2013) identified and analyzed the
genetic segregation of quantitative trait loci (QTLs) for sesame seed
coat color over six generations and concluded that two major-effect
genes with additive-dominant-epistatic effects and multiple minor-
effect genes with additive-dominant-epistatic effects were responsible
for controlling the seed coat color trait. Moreover, seven QTLs that
control sesame seed coat color traits were identified by Du et al.
(2019). In addition, Wang et al. (2016) mapped three QTLs that were
repeatedly detected and accounted for 80% of the phenotype
variation by resequencing a RIL population. According to the
annotation of genes anchored to genomic intervals combined with
transcriptome analysis, the polyphenol oxidase (PPO) gene may be
involved in the production of the black seed coat in sesame, and this
finding has been supported by several investigations (Wei et al., 2015;
Wang et al., 2016; Wei et al,, 2016; Wang et al., 2020). Furthermore,
since the development of next-generation sequencing technologies,
whole-genome association analysis has been used to dissect complex
traits in crops, as QTL mapping research in the segregating progeny
of classical hybrids is limited by a low number of recombination
events and cultivar-specific allelic loci (Nordnorg and Welgel, 2008;
Guo et al,, 2013). By resequencing an association analysis panel of 366
sesame germplasm lines, Cui et al. (2021) demonstrated complex
genetic variation in seed coat color. The results revealed that 22
significant single-nucleotide polymorphisms (SNPs) were located
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within the reported QTL confidence intervals and that the four
most reliable and significant flanking regions of these SNPs
contained 92 candidate genes. However, researchers have been
unable to perform additional in-depth investigations on the locus
that controls the seed coat color trait in sesame due to gaps in the
QTL mapping studies regarding intermediate seed coat colors.
Furthermore, it is not possible to validate the currently available
genetic loci against each other because much of the existing sesame
QTL mapping research has been based on independent genetic maps.
Thus, to meet the needs of molecular breeding, QTL mapping
research on sesame seed coat color should be expanded using high-
quality genomes anchored to chromosomes.

Plant seed color is mainly characterized by the accumulation of
pigmented metabolites in the seed coat. In this context, a brown seed coat
has been identified as possibly being regulated by the flavonoid synthesis
pathway in several plant species. The genes that may regulate the brown
seed coat in Arabidopsis include those encoding the Transparent Testal2
(TT12) and EXO70 exocyst subunit (EXO70B1) transporter proteins
and the proanthocyanidin (PA) oxidase enzyme (TT10) (Debeaujon
et al., 2001; Pourcel et al., 2005; Kulich et al., 2013). Moreover,
Transparent Testa Glabra2 (TTG2) was found to interact with TTG1
to form a complex that directly regulates the expression of TT12 to
produce brown Arabidopsis seed coats (Gonzalez et al., 2016). Among
other crops, many transcription factors, such as MYB, basic helix-loop-
helix (bHLH), and WD40 proteins, have been identified as potentially
being involved in the regulation of flavonoid biosynthesis (Zhang et al.,
2009; Gillman et al.,, 2011; Hong et al., 2017; Ren et al., 2017). Small
interfering RN As (siRNAs) were also found to silence the expression of
transposable elements (TEs) or protein-coding genes and thereby affect
the synthesis and regulation of flavonoid metabolites (Jia et al., 2020). In
addition, PPOs such as laccase, tyrosinase, and even peroxidase are
involved in the oxidation steps of PA, lignin, and melanin biosynthesis
(Pourcel et al., 2007; Yu, 2013).

In this study, we used a RIL population and the whole-genome
resequencing technique to perform QTL mapping for seed coat
color in sesame. A major-effect QTL, gBSCchr6, controlling the
brown seed coat trait in sesame was revealed by the combination of
BSA and high-density genetic linkage mapping. The candidate
genes involved in the regulation of the brown seed coat were
screened based on the evaluation of the effect of genetic variants
on protein coding and predicted gene functions. The expression
patterns of these genes in different developmental periods at post-
anthesis were analyzed using QRT-PCR. The results of this study
will enhance the development of research on the genetic and
molecular mechanisms of sesame seed coat color regulation and
provide a basis for functional gene cloning studies.

2 Materials and methods
2.1 Plant materials

The cultivar Yanzhou Erhongpi (YZEHP) has a brown seed coat
and is a landrace collected from Shandong Province, China. The

Yuzhi No. 8 (YZ8) cultivar, which was bred by Henan Academy of
Agricultural Science, produces seeds with a white coat. A mapping
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population of 315 recombinant inbred lines (RILs, F;, generation)
was constructed from a cross between YZEHP and YZ8 using the
single-seed descent (SSD) method. The lines showed obvious
differences in traits such as plant height, thousand grain weight,
capsule length, and seed coat color. The RIL population and both
parents were planted in 2020 at experimental sites in Sanya, Hainan
Province (SY, N18°140’, E109°290’), Zhumadian, Henan Province
(ZMD, N32°59’, E114°42’), and Nanyang, Henan Province (NY,
N32°54’, E112°24"). All the plants were arranged in a randomized
block design with two replicates, and 10 representative plants of
each line were harvested for the investigation of seed coat color.

2.2 Seed coat color evaluation and
statistical analysis

Initially, we superficially observed both brown and white
mature seed coat types. Additionally, a Colorflex EZ
spectrophotometer (Hunter Associates Laboratory Inc, Virginia,
USA) was used to measure the colors of the seed coats in three
different environments. Mature seeds were scanned in a quartz box
to quantify the L*, a*, and b* values for seed coat color. The L*
value, which represents brightness, ranges from 0 (black) to 100
(white), while the values of a* and b*, which represent color shades,
range from -60 for green to +60 for red and -60 for blue to +60 for
yellow, respectively (Aruldass et al., 2014). Phenotypic statistics
were calculated using SAS v9.1 (SAS Institute, Inc., Cary, NC, USA).
Based on the mean values of L*, a*, and b* for the sesame seed coat
color phenotype among replicates and different environments, the
broad-sense heritability was calculated using the AOV module in
QTL IciMapping v4.2 (Meng et al,, 2015). Furthermore, the color
phenotypes observed for each line corresponded to the L*, a*, and
b* values and were visualized by ggplot2 v3.3.6 (Wickham, 2016).

2.3 Sequencing and SNP/InDel calling

Genomic DNA was extracted from seedling leaves of the parents
and RILs using a modified cetyltrimethylammonium bromide (CTAB)
method (Mei et al,, 2017). The quality of the genomic DNA was
examined with a NanoDrop 2000 (Thermo Fisher Scientific, Waltham,
MA, USA) and by 1.0% agarose gel electrophoresis. After ultrasound
fracturing, the DNA was sequentially end repaired, sequencing
junction ligated, and enriched by magnetic bead adsorption to
obtain fragments with a genomic length of approximately 400 bp.
These fragments were then amplified by PCR to establish a sequencing
library. The Illumina NovaSeq 6000 platform was used to sequence the
quality-checked libraries with a total sequencing read length of 300 bp
using the [llumina PE150 sequencing strategy. The two parents and the
RILs were sequenced at depths of approximately 15x and 5x,
respectively. The reads were filtered to eliminate adapters and low-
quality reads. Based on the seed coat color phenotypes of the RILs
grown in ZMD, we merged the clean reads of 50 randomly selected
lines from white and brown sesame, respectively, to construct extreme
bulks. The clean reads of all samples were aligned to the reference
genome (Wang et al., 2016) using Burrows—Wheeler Aligner (BWA)
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v0.7.17 (Li and Durbin, 2009). SNPEff v4.3T (Cingolani et al., 2012)
and the gene annotation information of the reference genome were
used to functionally annotate SNPs and small InDels after correction
and detection by using Genome Analysis Toolkit (GATK) v4.0.11.0
(McKennaetal,, 2010) and SAMtools v1.9.0 (Li et al., 2009). According
to genetic principles, all markers were examined for parental
polymorphism. Variant sites that differed between the parents were
selected and coded as molecular markers, and the genotypes of the RILs
and bulks were extracted for additional analysis.

2.4 BSA, genetic map construction, and
QTL mapping

The QTL-seq method was implemented to calculate the ASNP
index (Takagi et al., 2013). The SNP index represents the proportion of
short reads harboring SNPs that differ from the reference sequence to
the total reads covering a particular genomic position (Abe et al., 2012).
The SNP index of the extreme bulks was statistically analyzed based on
the average SNP index within each genomic interval containing 20 SNP
variants, which was individually measured using a sliding window of 5
SNP variants. The ASNP index is the average SNP index difference
between the two extreme bulks (99.9% quantile as the threshold), and
this analysis revealed significant differences in genotype frequencies
between the extreme bulks (Hill et al., 2013).

We selected polymorphic markers of the aaxbb type between
the parents as valid markers, and these markers were screened for
abnormal bases, completeness, and segregation distortion after
being used to genotype the RIL population. Moreover, we utilized
a reference genome assisted correction-based linkage group
ordering scheme. We completed the construction of the genetic
map using MstMap (Wu et al,, 2008), and we then used ASMapR
v1.0-4 and R/qtl v1.44-9 to evaluate the monomeric origin and
recombination relationships (Broman et al., 2003; Taylor and
Butler, 2017). In addition, we analyzed the collinearity of the
linkage map with the physical map. Finally, the visualization of
the genetic map was completed using LinkageMapViewR v2.1.2
(Ouellette et al.,, 2018). R/qtl was used for standard and stepwise
interval mapping with 1000 permutations and a p value of 0.05 as
the logarithm of odds (LOD) significance detection threshold.
Composite interval mapping (CIM) was performed based on a 5
cM marker window size and a step of 1 cM. The location of each
QTL was determined based on the location of the LOD peak for
each QTL and the surrounding area. The percentage of phenotypic
variation explained (R®) by the QTL was estimated at the highest
probability peak (Tao et al., 2022).

2.5 Bioinformatic analysis

Gene sequence information was obtained based on the
candidate intervals. The functions of the candidate genes were
annotated by using the NR (http://www.ncbi.nlm.nih.gov/),
UniProt (http://www.uniprot.org/), Gene Ontology (GO) (http://
www.geneontology.org/), Kyoto Encyclopedia of Genes and
Genomes (KEGG) (http://www.genome.jp/kegg/) databases, and
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the Basic Local Alignment Search Tool (BLAST) program in the
EggNOG (http://eggnog-mapper.embl.de/) database for annotation.
Moreover, the analysis of protein coding variants included variants
annotated by SNPEff with sequence ontology terms for assessing
sequence changes and impacts, and categorized the impact of
SNP/InDel within the candidate interval into four classes: High,
Moderate, Low, and Modifier, in descending order according to the
effect of the variant on protein coding (Supplementary Table 1)
(Cingolani et al., 2012; Oren et al., 2022).

2.6 RNA extraction and qRT—PCR analysis
of candidate genes

We also sampled parental seeds at 10, 15, 20, 25, and 30 DPA in
Yangling, Shaanxi Province (N34°27’, E108°07'), in 2022.
Quantitative color analysis of the seed coat was performed with a
CIE-Lab color scale (Colorimeter, CS-820, Hangzhou, China) with
a 6 mm aperture due to the small sample size (Dong et al., 2022). All
samples were flash frozen in liquid nitrogen and stored at -80°C in
the refrigerator until needed. Total seed RNA was extracted using a
kit (DP441, TIANGEN, China) and first-strand cDNA was
synthesized by the PrimeScript RT reagent kit (#6210A, Takara,
Kusatsu, Japan). Three independent biological replicates of the qRT
—PCR (#RR820A, Takara, Kusatsu, Japan) protocol were tested
using cDNA as the template for each experiment. The sesame actin
gene (SIN_1006268) was used as the internal reference gene (Wei
etal, 2015), and relative gene expression was calculated using the 2~
AACT method (Livak and Schmittgen, 2001).

3 Results

3.1 Phenotypic and genetic analysis of the
brown seed coat in sesame

To reveal the genetic basis of the brown seed coat color in
sesame, a RIL population including 315 lines was developed using
YZEHP (male, brown seeds) and YZ8 (female, white seeds) as two

A YZ8 YZEHP B

10.3389/fpls.2023.1131975

parental lines in this study. We first investigated the phenotypes of
seed coat color traits for several generations. The contemporary
hybrid seeds obtained from the maternal plants were white
(consistent with the YZ8 phenotype), while the selfed seeds
developed from the F; generation were brown (consistent with
YZEHP phenotype) (Figure 1A). The brown seed coat in sesame is
dominant to the white seed coat. Notably, angiosperm seed coats
develop from bead tepals (IHaughn and Chaudhury, 2005).
Therefore, the genotype of the sesame seed coat is consistent with
that of the female parent because the inheritance of sesame seed
coat traits is matrilineal, as found in previous studies (Wang et al.,
20165 Das et al., 2018). We performed visual observations of mature
seed color phenotypes and identified 162 and 153 lines among 315
RILs with brown and white seed coats, respectively (data not
shown). Furthermore, we quantified the seed coat color by using
a colorimeter and found that the L*, a*, and b* values of the brown
and white seeds of the RILs differed significantly (P<0.001) across
the three environments (Figure 1B). Interestingly, the L*, a*, and b*
values showed a bimodal continuous distribution in the RIL
population (Supplementary Figure 1). Additionally, the mean
coefficients of variation (CV) for the L*, a*, and b* values across
environments were 6.54%, 27.86%, and 12.80%, respectively. The L*
value for RILs across environments ranged from 49.23~64.63, the a*
value ranged from 4.51~11.18, and the b* value ranged from
18.36~28.97. The L*, a*, and b* values presented average broad-
sense heritabilities of 94.95%, 96.87%, and 95.67%, respectively
(Figure 1B; Table 1). The results suggest that the phenotype of
the brown seed coat trait in sesame is determined (in order from
highest to lowest) by redness, yellowness, and brightness.

3.2 Sequencing the RIL population for BSA
analysis and marker identification

Whole-genome resequencing was used to analyze the two
parents and 315 RILs. A total of 455.90 Gb of clean bases was
obtained after sequencing and filtering; the average Q30 quality
score was over 90.98%; the average matching efficiency of the
samples to reference genome was 97.18%; and the GC content
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TABLE 1 Descriptive statistics and broad-sense heritability (H?) for three seed coat color related traits of RILs.

Trait Environment Range CV (%) Excess Kurtosis Skewness H? (%)

L SY 57.51 3.41 50.54-63.99 5.94 -1.33 0.04 94.95
NY 58.01 3.95 49.36-65.59 6.82 -1.32 0.06
ZMD 57.01 3.92 47.79-64.3 6.88 -1.04 0.01
Mean 57.51 3.76 49.23-64.63 6.54 -1.23 0.04

a* SY 7.86 2.09 4.77-11.07 26.55 -1.76 -0.07 96.87
NY 7.67 2.28 4.37-11.01 29.78 -1.81 -0.04
ZMD 8.04 2.21 4.39-11.46 27.49 -1.65 -0.14
Mean 7.86 2.19 4.51-11.18 27.86 -1.74 -0.08

b* SY 23.99 2.85 18.87-28.40 11.87 -1.63 -0.12 95.67
NY 2434 3.20 18.64-29.72 13.15 -1.65 -0.09
ZMD 23.64 3.16 17.57-28.80 13.35 -1.49 0.14
Mean 23.99 3.07 18.36-28.97 12.80 1.59 0.12

SD, standard deviation; CV, coefficient of variation; H> broad-sense heritability.

ranged from 36.67~39.3%. The amounts of data obtained for
YZEHP and YZ8 were 5.24 Gb and 4.93 Gb, respectively, and the
actual average amount of data obtained for the RILs was 1.41 Gb,
and the average sequencing coverage was 18.61x for the parents and
5.16x for the RIL population (Supplementary Figure 2;
Supplementary Table 2). It was evident that all samples showed a
sufficient amount of data, normal distribution, and regular
sequencing results when compared to the sesame reference
genome, suggesting that they could be used for subsequent
analysis. Then, we merged the clean reads separately from 50
lines to develop the following two extreme bulks: one with 231
million reads in a white seed coat bulk and the other with 240
million reads in a brown seed coat bulk (Supplementary Table 2).
These two extreme bulks were screened for 38,752 SNP markers,
which were used to calculate genotype frequencies (Supplementary
Table 3). Additionally, 1,284,658 SNP/InDel markers were detected
between two parental lines, of which 167,862 were valid markers of
the aaxbb type with a sequencing depth of no less than 2 in the RILs
and 10 in the parental lines (Supplementary Figure 3). After
screening the markers for abnormal bases, completeness, and
segregation distortion, 7,908 high-quality markers remained after
genotyping the RIL population with validated polymorphic markers
were used for the following analysis.

3.3 Construction of a high-density
genetic map

Among the remaining 7,908 markers, 7,817 were ordered into
13 linkage groups based on the reference genome. The length of the
high-density linkage map was 1833.89 c¢M, and the average distance
between markers was 0.23 ¢M (Supplementary Figure 4; Table 2;
Supplementary Table 4). The linkage group with the highest
number of markers was LG5, which contained 1,667 markers. We
next performed a quality assessment analysis of the genetic map.
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First, based on haplotype map analysis of recombination
breakpoints, 7,817 markers were used to genotype the RILs, and
the sources of recombination blocks were specifically explained
(Supplementary Figure 5). Second, we analyzed the relationships
between the positions of all mapped markers in the genetic map and
the physical map of the reference genome, and the Spearman
correlation coefficient between them exceeded 0.89, with a high
observed collinearity (Supplementary Figure 6; Supplementary
Table 5). Third, we used a heatmap to directly reflect
recombination rates and LOD scores between markers, and no
switched alleles were discovered; switched alleles were indicated by
low LOD scores and low recombination fractions (Supplementary
Figure 7) (Maldonado-Taipe et al., 2022). In summary, we
constructed an accurate and reliable genetic map which was
suitable for QTL mapping.

3.4 BSA and QTL mapping reveal the
physical position of the locus controlling
the brown seed coat in sesame

We identified QTLs using both BSA and traditional linkage
mapping methods. In BSA, the SNP index of the two extreme bulks
was calculated and visualized using sliding window analysis along
chromosomes. Based on a 99.9% quantile threshold, we identified a
significant physical interval (16.36 Mb~21.46 Mb) on chr6 by analyzing
the SNP index of the two bulks throughout the 38,752 SNP markers
(Figure 2A). In particular, the mean SNP index of the two bulks within
the 18,323,068 to 20,213,179 bp sliding window was 0.89 and 0.14,
respectively (Supplementary Table 6). This result suggests that there
was a strong signal in this genomic region which may be controlled by
a powerful QTL. To map brown seed coat-related QTLs more
accurately, linkage mapping was performed based on the high-
density genetic map and quantitative data for RILs seed coat color.
We examined QTLs in three environments for L*, a*, and b* values.
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TABLE 2 Basic information of the high-density genetic linkage map of RIL population.

Linkage group ID Total marker Total distance (cM)

Average distance (cM) Max gap (cM) Gaps < 5¢M (%)

LG1 333 125.16 0.38 6.20 98.50
LG2 340 155.93 0.46 13.84 97.94
LG3 691 153.39 0.22 7.04 99.42
LG4 533 146.11 0.27 9.34 98.31
LG5 1667 142.25 0.09 12.18 99.94
LG6 881 125.09 0.14 8.40 99.55
LG7 817 143.49 0.18 7.72 99.14
LG8 508 164.67 0.32 11.47 98.62
LGY 402 121.01 0.30 9.74 99.00
LG10 784 127.72 0.16 8.53 99.74
LG11 297 121.37 0.41 11.41 97.64
LGI2 527 143.52 0.27 10.41 99.43
LGI13 37 164.19 4.56 18.37 67.57
Total 7817 1833.89 0.23 18.37 99.08
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FIGURE 2

QTL identification across chromosomes and linkage groups using BSA and genetic linkage mapping, respectively. (A) QTL-seq analysis with the
number of SNPs as the sliding window, with the red dashed line representing the significance threshold. (B) QTL scanning of the brown seed coat

for the total linkage groups.

Under the threshold condition of LOD=3.10 (p value=0.05), three
major QTLs were detected in all three environments within a genetic
interval of 89.17~101.29 ¢cM on chr6 (Figure 2B; Table 3). The mean
LOD values of the QTLs for L*, a*, and b* in the three environments
were 24.27, 33.02, and 31.51, respectively, and the mean R? were
33.64%, 36.63%, and 34.55%, respectively. Additionally, a weaker QTL
on chr3 for the L* value was detected in all three environments. The
mean LOD value of the QTL was 4.34, and the mean R? was 4.41%,
which suggests that this QTL plays a minor role in regulating brown
seed coat brightness (Table 3). We continued our analysis of the
intervals on chr6 identified by BSA and QTL mapping. Both analysis
methods repeatedly identified approximately the same interval. This
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supports the identification of this interval and its surrounding region as
a reliable major-effect QTL controlling brown seed coat traits. The
flanking markers chr_16989955 and chr_20193451 spanned a physical
distance of 3.2 Mb in the reference genome (chr6: 16.99 Mb~20.19
Mb). Notably, the 1.19 Mb region on chr6 between the markers
chr_18323068 and chr_19517928 overlapped with other QTL
intervals identified in all environments and is the closest to the LOD
peak (Figure 3; Table 3). In summary, by combining BSA and
traditional QTL mapping methods, we confirmed the mapping of
major-effect QTL regulating the brown coat trait in sesame in the
merged region of 18,323,068~19,517,928 bp on chré, with a physical
distance of 1.19 Mb. We designated this QTL gBSCchré.
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TABLE 3 QTL information for brown seed coat-related traits detected in the

10.3389/fpls.2023.1131975

RIL population.

Environment chr Position (cM) LOD R? (%) Start (cM) End (cM)  Physical interval (bp)

L* SY 3 21.60 4.46 431 17.00 23.29 22465300-23218480
NY 21.60 3.42 4.05 21.60 23.11 22465436-22607606

ZMD 21.60 5.13 4.87 17.00 23.29 22465300-23218480

SY 6 93.19 32.84 35.68 93.19 96.87 18323068-19517928

NY 96.87 1221 35.79 93.19 101.29 18323068-20193451

ZMD 93.19 27.76 29.46 89.17 96.87 16989955-19517928

a* SY 6 93.19 33.97 37.79 93.19 96.87 18323068-19517928
NY 93.19 35.85 39.62 93.19 96.87 18323068-19517928

ZMD 93.19 29.25 32.49 89.17 96.87 16989955-19517928

b SY 6 93.19 33.74 36.02 89.17 96.87 16989955-19517928
NY 93.19 34.73 38.60 93.19 96.87 18323068-19517928

ZMD 93.19 26.06 29.02 89.17 96.87 16989955-19517928
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FIGURE 3

Position of gBSCchr6 on the chr6 physical map. Colored boxes represent the physical distance spanned on chr6 for QTL identified by BSA and QTL

mapping.
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3.5 Screening of candidate genes and
preliminary validation by gRT-PCR

To extract additional information for gBSCchr6, we identified a
total of 1,720 SNPs/InDels in this interval, among which there were 50
effective SNPs and 16 effective InDels (Supplementary Table 7). In
total, there were 118 genes in this candidate region, with intro variants,
frameshift variants, disruptive inframe deletions, and missense
variants of 45, 8, 4, and 29, respectively (Supplementary Table 8).
Ultimately, 42 genes were predicted to show high and moderate
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variance effects on protein coding (Supplementary Table 9). It was
previously reported that seed coat color may be associated with the
synthesis offlavonols, anthocyanins, lignin, and melanin (Pourcel et al.,
2007; Yu, 2013). We found that 13 of these 118 genes may be associated
with brown seed coat color regulation based on their function. Five of
these genes showed high or moderate effects on protein coding;
SIN_1023218, SIN_1023231, SIN_1023270, and SIN_1023287 were
annotated as missense variants, and SIN_1023210 was annotated as a
frameshift variant and disruptive in-frame insertion. These variants
with high or moderate effects on protein coding may cause the loss of
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the original function and thus interrupt the accumulation of pigments
in the seed coat (Supplementary Table 10).

Additionally, we observed the phenotypes of the parental
characteristics at different days post-anthesis and found that the
seed coat color appeared slightly different between the parents
starting at 20 DPA, and that some areas of the seeds of YZEHP
were colored at 25 DPA and substantially colored at 30 DPA
(Figures 4A, B). Next, we performed preliminary qRT-PCR
validation of 13 genes with possible functions associated with
seed coat color and found that the expression level of
SIN_1023239 in YZEHP was significantly up-regulated than YZ8
with 2.5-, 9.4-, 6.0-, and 5.9-fold at 15 DPA, 20 DPA, 25 DPA, and
30 DPA, respectively (Figure 4C). There was no discernible pattern
in the expression of the remaining 12 genes in white seeds of YZ8
and brown seeds of YZEHP (Supplementary Figure 8;
Supplementary Table 11). Therefore, it was the expression pattern
of SIN_1023239 that was consistent with the color accumulation
characteristics of the brown seed coat in YZEHP, and thus, it may
be crucial for brown seed coloration.

4 Discussion

Seed coat color is a commercially important trait in sesame;
seeds with different coat colors show specific characteristics in terms
of microelement content, and it aids in the indirect selection of
genotypes with high mineral content (Pandey et al, 2017). We
performed separate observations and instrumental quantifications
of RIL population phenotypes, and used the whole-genome
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resequencing technique and two computational analysis methods
to map QTLs for the sesame brown seed coat trait. gBSCchr6 was
identified as a major-effect QTL that spans a physical interval of
1.19 Mb on chr6. Moreover, based on the effect of gene variants on
protein coding and the potential expression pattern of the gene for
pigment accumulation during seed coat development, we identified
possible candidate genes within this interval.

Laurentin and Benitez (2014) developed four F, populations
using two white sesame cultivars and one brown sesame cultivar in
reciprocal crosses, and phenotypic investigations revealed that all
showed consistency with a 3:1 segregation ratio and that brown was
dominant to white. This is consistent with our observation that
dominant genes controlled the brown seed coat. However, the
bimodal continuous distribution of L*, a*, and b* values in the
RIL population indicates that a minor-effect genetic locus may also
control the brown seed coat trait. Therefore, the use of high-
throughput phenotypic data and an increased marker density are
both effective ways to improve the efficacy of QTL detection (Li
et al., 2010). In addition, the values of L*, a*, and b* obtained in the
three environments, showed high heritability. Previous studies have
also demonstrated that over 90% of the phenotypic variation in
sesame seed coat color is genetically controlled and slightly
influenced by environmental factors (Zhang et al., 2013).
Moreover, due to indeterminate inflorescence growth, climate,
and harvest time, differences in seed maturity at harvest can also
cause differences in seed coat color, leading to instability in
phenotypic and QTL analyses, as reported based on seed coat
color mapping in Brassica napus (Yan et al., 2009). Interestingly,
in the present study, the mean CV (from high to low) were 27.86%,
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Phenotype and gene expression of parental seed coat at different developmental stages. (A) Longitudinal sections of capsules, red line segments
indicate 0.5 mm. (B) Values of L*, a*, and b* for different developmental stages of the parental seed coat. (C) Relative expression of SIN_1023239
gene in the two parents. Significant levels of relative gene expression were determined by T-test, with ns, *, and *** representing nonsignificant, and

significant at p<0.05 and p<0.001 levels, respectively.
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12.80%, and 6.54% for a*, b*, and L* values, respectively, indicating
that a* value had the highest dispersion in the RIL population and
best represented the phenotypic characteristics of the brown coat
color trait in sesame, while the opposite was true for L* value.

A high-quality genetic map is the basis of QTL mapping for
agronomic traits. QTL mapping by whole-genome low coverage
sequencing has been successfully applied to chickpea and peanut
(Kale et al, 2015; Sun et al, 2022). In these studies, the parental
sequencing depths ranged from ~7.9x to 34.58x, the population
sequencing depths ranged from 0.72x to 1.4x, and the number of
markers used for mapping ranged from ~53,000 to ~210,000. The
actual sequencing coverage obtained in whole-genome resequencing
averaged 18.61x in the parents and 5.16x in the RIL population, which
was considered sufficient for QTL mapping in this study
(Supplementary Table 2). Although the number of markers we
obtained for mapping was only ~160,000, possibly due to our strict
filtering of the marker sequencing depth, this did not affect our ability
to construct a reliable and stable genetic map and use it for subsequent
QTL mapping. In addition, we found that most of the linkage groups
were separated into subgroups due to the uneven distribution of
adjacent markers and large gaps (up to ~18 cM), and the calculation
of recombination scores was affected by the lack of markers. We further
validated collinearity with physical maps (such as LG8, LG10, and
LG12) and found that most markers were located in the central region
of chromosomes, allowing each chromosome to be split into several
contiguous groups, similar to what has been found in wheat and quinoa
(Langlands-Perry et al., 2021; Maldonado-Taipe et al., 2022).
Importantly, this did not affect our subsequent QTL mapping
analysis, which passed several independent tests for quality.

Most previous studies on QTLs regulating sesame seed coat color
have included co-mapping for black sesame or segregation of various
colors and have not been able to separate the QTLs or mechanisms of
interaction mapped to individual seed coat colors. Through 10
successive generations of self-fertilization, we created a population of
RILs with stable inheritance and eventually identified a major-effect
QTL controlling brown seed coat traits on chr6. Furthermore, we
compared gqBSCchr6 with QTLs associated with seed color from
previous reports. However, only the results from a genome-wide
association study (GWAS) of seed coat color in 366 natural
populations included the same physical interval (Cui et al, 2021). In
particular, most of the significant SNPs in the GWAS results were
mapped to the confidence intervals of gSCa-4.1/gSCb-4.1/qSCl-4.1,
qSCa-8.1/gSCb-8.1/gSCI-8.1 and ¢SCI-8.2 identified by Wang et al.
(2016), which further suggests the specificity and accuracy of gBSCchr6
in controlling brown seed coat color. Other comparable QTLs were not
mapped to our confidence interval (Wei et al,, 2015; Wang et al., 2016).
Some previous studies applied independent genetic maps and genomes,
making it difficult to determine the relationships between their results
and gBSCchr6 (Zhang et al., 2013; Du et al,, 2019; Li et al., 2021). In the
present study, the linkage analysis also revealed a minor-effect QTL for
L* color values on chr3 across the three environments, with LOD
values between 3.42 and 5.13 and R’ between 4.05% and 4.87%
(Table 3). However, the ASNP index in the BSA did not fluctuate
within this interval, probably because QTL-seq is not suitable for
detecting minor-effect QTLs without the repeated measurement of
phenotypes across multiple years (Takagi et al., 2013). Phenotypic data
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also showed the smallest dispersion of L* values in the three
environments, and it is possible that weak changes in brightness do
not cause visually detectable differences.

The presentation of seed color in various plants is complex and
diverse, involving the main components of flavonols, PAs
(concentrated tannins), and some phenolic substances such as lignins
and melanins (Yu, 2013). We sampled seeds every 5 days from 10 DPA
until we observed significant differences in the seed coat color between
the parental plants. From 20 DPA onward, we observed the greatest
variation in L* values, with YZEHP seeds being darker than YZ8 seeds,
and we eventually noted a clear color difference at 30 DPA. Wang et al.
(2020) found that black sesame seeds started to synthesize and
accumulate melanin gradually at 8 DPA and that a significant
difference in seed coat color appeared at 14 DPA. These results were
not exactly the same as ours, and we speculate that this might be due to
the different metabolic pathways involved in the accumulation of
pigmented substances. A search for candidate genes within the
confidence interval of gBSCchr6 was further performed. Among the
13 screened genes, SIN_1023210 has been annotated as encoding the
UDP-glycosyltransferase 87A2 protein associated with catalytic
glycosylation (one of the final steps in the production of secondary
metabolites) and plays an important role in determining the coloration
of flowers, leaves, seeds, and fruits (Le Roy et al., 2016; Foong et al,
2020). SIN_1023231 and SIN_1023270 are annotated as exocyst
subcomplex-containing subunit (EXO70) proteins associated with
the vesicle-dependent autophagy-related pathway of anthocyanin-
containing vesicles from the endoplasmic reticulum into the vesicle
lumen (Kulich et al., 2013). SIN_1023248, SIN_1023249, SIN_1023303,
and SIN_1023305 all encode peroxidases, which may be related to
lignin formation and coloration during fruit ripening (Pourcel et al,
2007; Ring et al, 2013). SIN_1023218 encodes alanine glyoxylate
aminotransferase 2, which is involved in the transfer and catalysis of
amino acids (Liepman and Olsen, 2003). SIN_1023221 and
SIN_1023287 encode 2-oxoglutarate-dependent dioxygenase and
beta-glucosidase, respectively, which are essential enzymes in
flavonoid and phenylpropanoid biosynthesis (Farrow and Facchini,
2014; Munir et al,, 2019). These are all potential regulatory pathways
related to seed coat pigment accumulation. Furthermore,
SIN_1023237, SIN_1023239, and SIN_1023240 all encode laccase 3
(LAC3), a multicopper glycoprotein that catalyzes and activates the
oxidation of diphenol substrates in the presence of molecular oxygen in
poplar (Ranocha et al, 1999). However, we found that only
SIN_1023239 was significantly up-regulated in YZEHP seeds at
different developmental periods compared to its expression in YZ8,
and the expression pattern was consistent with the phenotypic trend. In
Arabidopsis, TT10 (laccase 15) is involved in the oxidation of
concentrated tannins in the seed coat, resulting in brown coat color
at harvest, and the other 16 laccase enzymes do not seem to
compensate for the loss of activity in the TT10 mutant (Pourcel
et al, 2005). In addition, preliminary evidence based on
bioinformatics suggests the presence of one or more forms of
epigenetic modification in the coding sequences of the eight laccase
enzymes including AtLAC3 (Turlapati et al,, 2011). In poplar, LAC3
increased the content of soluble phenols in the seed coat, participated in
the oxidation of lignin, and affected the structure and integrity of the
cell wall (Ranocha et al., 2002). In maize, ZmLAC3 is also involved in
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the polymerization of phenolic compounds (Caparros-Ruiz et al,
2006). In addition to flavonoids and anthocyanins, some researchers
have surmised that lignins or phenolics affect the seed colors of plants,
although the available evidence is not sufficient to support this
conclusion (Qu et al,, 2013). A recent study by Dossou et al. (2022)
focused on the metabolomics of four sesame cultivars and found that
the developmental regulation of black, brown, yellow, and white
sesame seed coat colors may be different, resulting in different
coloration due to variations in the major bioactive phenolic
compounds in sesame seeds. Nevertheless, our identification of long
fragments of InDels or SNPs may be missed. Further development of
markers for fine mapping is needed, and multiomics techniques should
be combined to analyze the deposition of sesame seed coat pigments to
identify the regulatory mechanisms underlying different color traits.
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SUPPLEMENTARY FIGURE 1
Frequency distribution of L*, a*, and b* values in the three environments of
the RIL population.

SUPPLEMENTARY FIGURE 2
Statistical information on individual sequencing data of parents and RILs. (A)
Clean data size distribution. (B) Information on the mapped ratio.

SUPPLEMENTARY FIGURE 3

Statistical information on genetic markers used to construct genetic maps. (A)
Marker type and quantity statistics. (B) Statistical information of valid SNP/
InDel genetic markers in each linkage group.

SUPPLEMENTARY FIGURE 4
High-density genetic map of RIL population. Each vertical line represents the
position of the marker in the linkage groups.

SUPPLEMENTARY FIGURE 5
Haplotype assessment of recombination breakpoints for each sample of the
RIL population.

SUPPLEMENTARY FIGURE 6

Analysis of collinearity between genetic and physical maps of sesame. Horizontal
coordinates indicate the genetic distance of each linkage group, and vertical
coordinates indicate the physical length of each chromosome, and marker
collinearity in genomic and genetic maps is represented in the form of scatter.

SUPPLEMENTARY FIGURE 7

Heatmap of pairwise recombination and LOD scores based on 7,817 markers.
Estimated recombination scores between markers are shown above the
diagonal line, and LOD scores are shown below the diagonal line. Red
indicates closely linked markers (high LOD scores and low recombination
scores) and blue indicates non-linked markers (low LOD scores and high
recombination scores).

SUPPLEMENTARY FIGURE 8

Relative expression levels of candidate genes that were inconsistent with the
pattern of phenotypic variation among parents at different developmental
stages of the seed coat. Significant levels of relative gene expression
differences between parents at each period of seed development were
tested by T-test, with ns, *, ** and *** representing nonsignificant,
significant at the p<0.05, p<0.01, and p<0.001 level, respectively.
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Oil is one of the main components in maize kernels. Increasing the total oil
content (TOCQ) is favorable to optimize feeding requirement by improving maize
quality. To better understand the genetic basis of TOC, quantitative trait loci
(QTL) in four double haploid (DH) populations were explored. TOC exhibited
continuously and approximately normal distribution in the four populations. The
moderate to high broad-sense heritability (67.00-86.60%) indicated that the
majority of TOC variations are controlled by genetic factors. A total of 16 QTLs
were identified across all chromosomes in a range of 3.49-30.84% in term of
phenotypic variation explained. Among them, six QTLs were identified as the
major QTLs that explained phenotypic variation larger than 10%. Especially, gOC-
1-3 and gOC-2-3 on chromosome 9 were recognized as the largest effect QTLs
with 30.84% and 21.74% of phenotypic variance, respectively. Seventeen well-
known genes involved in fatty acid metabolic pathway located within QTL
intervals. These QTLs will enhance our understanding of the genetic basis of
TOC in maize and offer prospective routes to clone candidate genes regulating
TOC for breeding program to cultivate maize varieties with the better
grain quality.

KEYWORDS

Maize, DH, kernel, oil, QTL

1 Introduction

The modern maize (Zea mays L.) kernels are composed of approximately 72% starch,
10% protein, 4% oil, and 14% other constituents (Laurie et al., 2004; Ranum et al., 2014).
Oil predominantly accumulates in the embryo and is stored in the form of triacylglycerols,
which is composed of roughly 59% polyunsaturated, 24% monounsaturated and 13%
saturated fatty acid (Dupont et al., 1990; Lambert, 2001). The proper ratio of unsaturated to
saturated fatty acids in maize oil is considered as a character of high-quality oil for human
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health (Han et al., 1987; Benitez et al., 1999; Lambert et al., 2004). In
addition, the high energy and proportion of polyunsaturated fatty
acids is highly valued for animal feed, industrial applications and an
alternative to fossil fuels (Hou et al., 2022). Thus, the ability to
improve oil quantity and quality has been a key target for plant
breeding and biotechnology-assisted improvement (Yang et al,
2012; Li et al., 2013).

High-oil maize hybrids (oil concentration > 6%) are considered
as an important crop with valued nutrient (Wei et al., 2009). A
series of genetic resources have been generated by long-term
artificial selection of high-oil maize populations (Fang et al,
2021). The oil concentration of initial open-pollinated variety
Illinois High Oil (IHO) reached about 20% after 100 generations
of selection (Dudley and Lambert, 2004). A normal maize synthetic
Zhongzong No. 2, which was synthesized with 12 inbred lines of
Lancast heterotic group, was used to produce the Beijing High Oil
(BHO) with oil concentration increased from 4.71 to 15.55% after
18 selection cycles (Song and Chen, 2004). The inbred line By804
was derived from the high-oil population ‘Beinongda’ and its oil
concentration reached 11.22% (Zhang et al., 2008).

As the unique and precious resources, these high oil materials
provide an opportunity to understand the genetic architecture of oil
and fatty acid biosynthesis, which in turn increase the efficiency of
selection to improve oil concentration and quality (Wassom et al.,
2008a; Wassom et al., 2008b; Yang et al, 2010; Li et al., 2020).
Combined with map-based cloning, QTL mapping is the most
powerful and efficient strategy to identify the genomic region that
controls complex quantitative traits in plants (Goldman et al., 1994;
Lima et al., 2006; Messmer et al., 2009). The total oil content (TOC) is
a quantitative trait, and many quantitative trait loci (QTL) have been
demonstrated to control the seed oil accumulation in a randomly
mated F,3 population THO x ILO (Alrefai et al,, 1995; Berke and
Rocheford, 1995; Laurie et al., 2004; Clark et al., 2006; Dudley, 2008).
These studies revealed that TOC was controlled by numerous genes
with individually small effects and mainly additive gene action (Yang
et al., 2010). In addition, using a recombinant inbred line (RIL)
population derived from B73 x By804, a relatively small number of
QTL were detected and accounted for a large percentage of the total
phenotypic variation (Song and Chen, 2004; Zhang et al., 2008; Yang
et al, 2010; Pan et al, 2012; Yang et al., 2012). These studies also
indicated that epistasis is a key factor affecting the genetic basis of oil
content in maize kernel (Wassom et al., 2008b; Yang et al., 2010).
Similar results were also obtained in two publicly available maize
genetic resources, NAM (the nested association mapping population)
and AMP508 (association mapping population) based on high-
resolution and high power QTL analysis (Lambert et al., 2004;
Cook et al., 2012). A high-oil QTL (gHO6) on chromosome 6 has
been cloned and the candidate gene encodes an acyl-CoA:
diacylglycerol acyltransferase (DGAT1-2), which catalyzes the final
step of oil synthesis (Zheng et al., 2008). The major QTL QTL-Pal9
explaining 42% of the phenotypic variation in palmitic acid content
was identified on maize chromosome 9 in a bi-parental segregating
population and the candidate gene Zmfatb encodes acyl-ACP
thioesterase (Li et al., 2011).

Distinct mapping populations were featured with advantages
and limitations, which results in significant impacts on QTL
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outputs (Odell et al., 2022). DH segregating populations have
been commonly used in QTL analysis for several specific
advantages (Chaikam et al., 2019). Complete homozygosity of DH
lines allows accurate phenotyping over multiple locations and years
compared to families in early selfing generations (Foiada et al., 2015;
Yan et al,, 2017). In this study, we utilized four DH populations
derived from the practical breeding program to further dissect the
genetic basis and QTLs controlling the phenotypic variation of TOC
in maize kernels. Our intention was to describe the genetic
architecture of oil variation in extensive scale and provide the
prospective targets to identify candidate genes for increasing oil
concentration in commercial maize germplasms.

2 Materials and methods
2.1 Plant materials and field experiments

Four DH populations (TOCI, TOC2, TOC3 and TOC4) were
constructed as previously method described (Chaikam et al., 2019;
Du et al, 2020). The eight inbred parental lines exhibiting the
variation in TOC (Table 1) were belonged to Maize Yufeng
Biotechnology LLC (Beijing, China) and selected as elite inbred
lines used for optimizing grain nutritional quality breeding
program. Parents of TOCI and TOC2 belong to maize Lancaste
germplasm, and parents of TOC3 and TOC4 belong to Reid Yellow
Dent germplasm. The populations (TOC1, TOC2, TOC3 and
TOC4) including 123, 129, 281 and 160 lines, respectively
(Table 1). Each population with its parents were planted in 2021
at Liaoning province, China (LN, 40" 82'N, 123'56'E) with three
replication blocks. All lines were planted in a single row plot with
the length of 150 cm and 60 cm using a complete randomized block
design under natural field conditions. All plants were self-pollinated
and kernels from middle part of three well-grown ears were
harvested and dried for oil measurement. We declare that all the
collections of plant and seed specimens related to this study were
performed in accordance with the relevant guidelines and
regulations by Ministry of Agriculture (MOA) of the People’s
Republic of China.

2.2 Evaluation of oil content and statistical
analysis of phenotypic data

Near infrared reflectance (NIR) spectrometer (DA 7250, Perten
Instruments Inc., Sweden) was used to measure TOC in maize
kernels as previously described with a few modifications (Chen and
Hu, 2017). The reflectance spectra were collected in a range of 400
to 2500 nm with 10-nm intervals in the NIR region. A minimum of
50 kernels per sample was scanned three times and the average was
taken as final phenotypic value.

All statistical analyses were performed by using R Version 4.0.1
(www.R-project.org) as previously described (Zhang et al., 2021;
Zhang et al., 2022). The R ‘AOV’ function was used to estimate the
variances of TOC. The model for the variance analysis was as
following: y = L + o + B, + €, where 0, is the effect of the g™ line, B,
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TABLE 1 Phenotypic performance, variance, and broad-sense heritability of TOC in the four DH populations.

10.3389/fpls.2023.1174985

Parents
KB717001 4.14 £0.17 KB717001 4.14 £0.17 AJ519002 4.30 £ 0.10 AJ519004 4.43 +0.02
means * SD (%)
KB519009 3.50 + 0.15 KB719010 3.16 + 0.05 AJ519001 4.90 + 0.09 AJ519006 4.95 + 0.09
p value ® 0.008** 0.006** 0.002** 0.007**
DHs
Size 123 129 281 160
means + SD (%) 4.57 + 041 4.42 040 4.50 + 0.42 5.02 + 0.41
Range (%) 3.64 - 5.58 3.59 - 5.48 3.10 - 5.42 4.06 - 6.13
o, ¢ 0.205 0.183 0.186 0.168
¢ 0.027 0.059 0.023 0.009
o’ 0.126 0.085 0.274 0.197
(%) " 83.00% 86.60% 67.00% 71.80%
“TOC;

P value based on a t-test evaluating two parental lines;
“genetic variance;

denvironmental variance;

‘residual variance’

‘broad-sense heritability (h*);

“p < 0.01.

is the effect of the e™ environment, and € is the error. The effects in
the model were defined by random. The broad-sense heritability
(h?) analyzed in the populations was calculated according to Knapp
et al,, 1985. The formula was h? = <5g2/(()'g2 + 6.%/e), where (5; is the
genetic variance, G2 is the residual error, and e is the number of
environments. The best linear unbiased predictor (BLUP) value of
each line was calculated as: y;; = 1 + ¢; + f; + €;, where y;; is the
phenotypic value of individual j in environment i, [ is the grand
mean, ¢; is the effect of different environments, fJ is the genetic effect,
and ¢ is the random error. The grand mean was fitted as a fixed
effect, and genotype and environment were considered random
effects (Wang et al., 2015). All of these variances were estimated
using the ‘LME4’” R package. The BLUP values were used for
phenotypic description statistics and QTL analysis.

2.3 Genotyping and constructing genetic
linkage map

The four DH populations with their parents were genotyped
using the GenoBaits Maize 1K marker panel (Mol Breeding
Biotechnology Co., Ltd., Shijiazhuang, China). A total of 4,589
SNP markers were identified on the basis of genotyping by target
sequencing platform (Guo et al., 2019). The minor allele frequency
(MAF) and missing rate were estimated in each population and the
SNPs with MAF < 0.1 or missing rate > 0.6 were filtered out. After
quality control, the polymorphic SNPs between two parental lines
were used to construct the genetic linkage maps using the R/qtl
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package functions est.rf and estmap (Broman et al., 2003) with the
kosambi mapping method.

2.4 QTL mapping

Composite interval mapping (CIM) method followed by
multiple QTL mapping analysis was performed using Windows
QTL Cartographer 2.5 and R language (Wang et al., 2010a). The
whole genome was scanned at every 1.0 cM interval with a window
size of 10 cM. A forward and backward stepwise regression with five
controlling markers was conducted to control background from
flanking markers. The empirical logarithm of the odds (LOD)
threshold was calculated using 1,000 permutations at a
significance level of p = 0.05 (Churchill and Doerge, 1994). These
threshold LOD values were in a range of 2.76 to 3.06 in four DH
populations. QTLs with LOD value greater than the threshold were
considered for further analysis. With the 1.5-LOD support interval
method, the confidence interval for each QTL position was
estimated (Lander and Botstein, 1989). The additive x additive
epistatic interactions was performed by “IM-EPI” method in
IciMapping Version 4.2.

2.5 Gene annotation

QTLs were delimited to a single peak bin interval based on bin
map. The protein-coding genes within intervals were listed
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according to MaizeGDB database (V2). Each of the corresponding
gene were annotated by performing BLASTP searches at the NCBI
(blast.ncbi.nlm.nih.gov/Blast.cgi).

3 Results

3.1 Phenotypic variation and heritability of
TOC in maize kernel

Four DH populations, TOC1-TOC4 were developed from eight
inbred lines (TOC with a range of 3.16-4.95%). Each population
contained 123-281 lines, respectively (Table 1). Within each DH
population, TOC exhibited a continuously and approximately
normal distribution, which is the typical characteristic of
quantitative trait (Figure 1 and Table 1). Analysis of variance
(ANOVA) revealed that the genotype variance was greater than
environmental variance in all populations (Table 1), indicating that
phenotypic variations were mainly controlled by genetic factors.
Broad-sense heritability estimates were calculated and showed high
for TOC1 and TOC2 populations (83.00-86.60%), and moderate for
TOC3 and TOC4 populations (67.00-71.80%) (Table 1). The
moderate to high heritability indicated that most of TOC
variations in these DH populations were genetically controlled
and suitable for further QTL mapping.

3.2 Genotyping and genetic linkage map

A GenoBaits Maize 1K SNP marker panel was used for
genotyping all DH lines in the four populations. After quality
control, a total of 1,217, 575, 1,022 and 1,039 polymorphic SNPs
were identified for TOC1-TOC4 populations, respectively. These
high-fidelity SNPs were used to construct the genetic linkage map
with the missing rate in most lines less than 2% (Figure S1). In total,
925.92, 684.23, 860.81 and 836.67 cM genetic distances spanned in
four linkage maps (Figure S2), and the average genetic distance
between every two adjacent markers was 0.77, 1.21, 0.85, and 0.81
cM in each DH population, respectively (Table S1).

10.3389/fpls.2023.1174985

3.3 ldentification of QTLs for TOC in four
DH populations

A total of 16 QTLs were identified with a LOD threshold of
above 3.00 at the 0.05 significance level (Table 2 and Figure 2).
Among them, 3, 4, 5 and 4 QTLs were detected in TOC1, TOC2,
TOC3 and TOCH4, respectively. The average genetic intervals of
these QTLs was 82.69 cM in a range of 36.56-125.29 cM. The
average physical interval was 102.58 Mb in a range of 11.96-232.42
Mb. The contribution to phenotypic variation for each population
ranged from 40.99 (TOC3) to 62.05% (TOC2) with an average of
51.10%. The explained phenotypic variation were less than broad-
sense heritability (Tables 1, 2), suggesting that only part of QTLs
have been detected in these bi-parent populations.

In TOCI, three QTLs (qOC-I-1, qOC-1-2 and qOC-1-3)
distributed on chromosome 3, 5 and 9. The QTL, qOC-1-3, with
the largest effect (30.84% of the phenotypic variation) was located
on chromosome 9. The parental KB717001 allele at this locus had
an additive effect of 0.24% for increased oil content. The second
QTL qOC-1-2 was located on chromosome 5, and explained 11.64%
of phenotypic variance with an additive effect of 0.15%. gOC-1-1 on
chromosome 3 explained 7.50% of the phenotypic variance and
considered as a minor QTL. The parent KB717001 allele at all of
mapped loci had increasing effects for TOC.

In TOC2, four QTLs (qOC-2-1, gOC-2-2, gOC-2-3 and qOC-2-
4) were identified and accounted for 62.50% of the total phenotypic
variance. One major QTL gOC-2-3 located on chromosome 9 and
contributed to 21.74% of the explained phenotypic variance. The
second QTL gqOC-2-2 on chromosome 2 explained 13.53% of
phenotypic variance with an additive effect of 0.15%. The qOC-2-
1 and qOC-2-4 explained 5.72% and 7.26% of the phenotypic
variance, respectively The parent KB717001 allele increased the
TOC for qOC-2-1, gOC-2-2 and qOC-2-3, but decreased the TOC
for qOC-2-4.

In TOC3, a total of five QTLs (qOC-3-1, gOC-3-2, qOC-3-3,
qOC-3-4 and qOC-3-5) were detected and explained 40.99% of the
total phenotypic variance. gOC-3-3 on chromosome 4 was the
major QTL explaining phenotypic variation of 12.99% with an
additive effect of 0.15%. The parent AJ519002 allele at gOC-3-2

TOC1 TOC2 TOC3 TOC4
AP1
A P2
35 ' 45 55 30 40 50 60 30 40 50 35 ' 45 55 ' 65
TOC (%) TOC (%) TOC (%) TOC (%)

FIGURE 1

Phenotypic variation in TOC in the four DH populations. The x-axis showed the TOC and the triangle color indicated the TOC in parents.
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TABLE 2 Individual QTL for TOC in the four DH populations.
. G-Peak P-Peak (Mb P-Range (Mb PVE(%
Populations = QTL = Chr? b £ ) g e( ) ( i)
(cM) _V4 _V4 -ALL
OC- 41.05-
1 3 48.55 162.54 112.37-169.00 4.68 7.50 0.12 KB717001
1-1 52.23
OC- 50.84-
TOC1 ql 5 5 53.92 193.53 58.39 191.47-199.14 5.61 11.64 0.15 KB717001 55.82
OC- 31.10-
1 9 34.02 125.24 113.85-143.02 12.24 30.84 0.24 KB717001
1-3 41.66
OC- 8.15-
q 1 19.15 12.72 12.72-26.18 4.17 7.26 0.11 KB717001
2-1 29.13
oC- 13.01-
1 2 2042 30.39 11.17-30.39 867 | 1353 0.15  KB717001
22 2442
TOC2 62.05
OC- 25.45-
1 9 27.23 129.70 122.00-130.80 12.80 21.74 0.20 KB717001
2-3 28.83
qOC- 23.05-
10 23.05 55.99 55.99-79.47 4.03 5.72 -0.10 KB719010
2-4 24.63
q0C- 40.75-
2 42.18 58.26 46.13-58.26 3.49 3.49 -0.08 AJ519001
3-1 42.18
q0C- 29.65-
3 37.82 22.64 11.58-149.70 7.37 8.39 0.12 AJ519002
3-2 44.47
OC- 43.03-
TOC3 q3 3 4 47.22 23242 56.33 196.02-241.81 11.71 12.99 -0.15 AJ519001 40.99
OC- 23.31-
1 5 30.81 43.18 15.74-85.58 533 5.41 -0.10 AJ519001
3-4 38.99
40C- 58.23-
5 65.51 202.27 188.27-207.38 7.58 8.26 -0.12 AJ519001
3-5 79.97
q0C- 15.65-
5 24.43 11.96 6.09-20.79 5.12 8.84 -0.13 AJ519006
4-1 31.84
OC- 35.42-
1 6 36.45 131.71 129.11-140.52 6.83 13.05 -0.15 AJ519006
42 4525
TOC4 45.54
q0C- 54.69-
7 54.69 165.51 146.02-168.32 3.04 5.07 -0.10 AJ519006
4-3 54.69 J
OC- 19.12-
1 8 21.13 63.28 10.65-65.48 8.82 16.20 -0.18 AJ519006
4-4 22.76
“Chromosome;

"Genetic position in centimorgans (cM) of QTL with the highest LOD;

Physical position of QTL based on the B73 reference sequence (V4);

dGenetic position range in centimorgans (cM) of QTL with the highest LOD;
Physical position range of QTL based on the B73 reference sequence (V4);
fPercentage of the phenotypic variation explained by the additive effect of QTL;
#Additive effect of QTL;

bywhich parental allele increased the TOC;

"Percentage of the phenotypic variation explained by the additive effect of all QTL.

increased the TOC, whereas the parent AJ519001 allele at other
QTLs increased the TOC.

In TOC4, a total of four QTLs were identified (OC-4-1, qOC-4-
2, qOC-4-3 and qOC-4-4) and accounted for 45.54% of the total
phenotypic variance. gOC-4-2 on chromosome 6 and gOC-4-3 on
chromosome 8 were two major QTLs explaining the phenotypic
variation of 13.05% and 16.20%, respectively. gOC-4-1 and gOC-4-3
were two minor QTLs explaining 8.84% and 5.07% phenotypic
variation, respectively. The parent AJ519006 allele at all these QTLs
increased the TOC.
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3.4 Genetic overlap of QTLs in the four DH
populations with other populations

Several overlapped QTLs regions were detected across the four
populations, including a 37.32 Mb overlap between qOC-1-1 and
qOC-3-2, and a 5.05 Mb overlap between gOC-3-4 and qOC-4-1
(Figure 3). Moreover, gOC-1-2 and gOC-2-3 located within gOC-3-
5 and qOC-1-3, respectively (Figure 3).

To investigate whether these newly-identified QTLs shared
across different genetic background, we compared their genomic
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(A-D) designated TOC1, TOC2, TOC3 and TOC4, respectively.

locations with QTLs related to oil traits from the other eight
previous studies (Mangolin et al,, 2004; Wassom et al., 2008a;
Wassom et al., 2008b; Wang et al., 2010b; Cook et al., 2012; Yang
et al, 2012; Li et al., 2013; Yang et al,, 2016; Karn et al.,, 2017; Fang
et al,, 2020 and Fang et al,, 2021). A total of 56 genomic regions
related to oil synthesis and accumulations were identified to be
overlapped with QTLs in our four DH populations (Figure 3). These
results indicated that although unique and specific QTLs were
detected in each population, some genetic loci may have common
effects on TOC among different types of populations.

chr 1 2 3
TOC4 —

ToC3 |

Toc2 —| 1
TOC1 —

Mangolin et al. 2004 —{ | | 1

Wassom et al. 2008 —| 1
Yang et al. 2012 —
Cook et al. 2012_JLM —|
Cook et al. 2012 GWAS —

HmilE I
(A 1 1
[ Il

Karn et al. 2017 — | | |

|
|
Lietal 2013 |

Fang et al. 2019 —|

Fang et al. 2021 — | |
10

QTL No.

FIGURE 3

4 Discussion

4.1 QTL mapping precision

The genetic architecture of a quantitative trait consists of a set of
parameters that explain the genetic component of trait variation
within or among populations (Laurie et al., 2004). These parameters
include the number of QTL affecting the trait, their locations in the
genome, the frequencies of alternative genotypes segregating at the
QTL, the pattern of linkage disequilibria among QTL, and the

g T TN VPR NV N P

Co-localization of TOC QTLs in maize kernels identified in the present and previous studies. The QTLs identified in this study were represented on
top. QTLs detected in previous studies were displayed in the form of references. The lower layer showed the number of detected QTLs.
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magnitudes of additive, dominance, and epistatic effects (Laurie
et al., 2004). Different types of populations used in QTL mapping
tend to vary with two main characteristics: (1) their ability to
capture genetic diversity, and (2) their power to detect QTL of small
effect (Odell et al., 2022). The advantages of DH populations are the
capability of removing any residual heterozygosity to ensure
genetically identical replicates and increasing selection response
by stabilizing heritability of various traits during perse and test cross
evaluation (Bordes et al., 2006; Gallais and Bordes, 2007; Mayor and
Bernardo, 2009; Odell et al., 2022).

SNP markers are the most frequent variations in genomes and
the application of SNP markers in plant breeding has guaranteed
the precision of QTL mapping and genetic analysis (Bhattramalli
et al., 2002; Mammadov et al., 2012; Flutre et al., 2022; Kaur et al.,
2022). By conditioning linked markers in the test, the sensitivity of
the test statistic to the position of individual QTLs is increased, and
the precision of QTL mapping can be improved (Zeng, 1994).
Subsequently, with the development of sequencing technology, an
increasing number of molecular markers have been applied to QTL
mapping, which greatly improves the accuracy of QTL mapping
(Schnable et al., 2009; Chia et al., 2012; Bukowski et al., 2018; Fang
et al, 2021). In this study, a total of 16 QTLs were found and
distributed across all ten chromosomes. 13 QTLs spanned physical
intervals of less than 50 Mb, and two span less than 10 Mb. Thus,
the resolution in this study is considerably improved because of the
large number of markers and the appropriate population type. The
resolution is probably on the order of 2-3 cM, since pairs of markers
any farther apart rarely have substantial levels of linkage
disequilibrium (Laurie et al., 2004).

4.2 Genetic basis of TOC in our
DH populations

Within the four DH populations, a broad range of phenotypic
variation with normal distribution was observed for TOC with
transgressive segregation, indicating quantitative genetic control
(Figure 1). The identification of loci controlling oil-related traits
should contribute to a better understanding of oil synthesis and
storage in maize kernels. The genetic analysis indicated TOC is
highly heritable and the heritability (67.00-86.60%) is fairly high in
all populations, indicating of superior genetic effect on TOC in DH
populations. The high heritability estimates are very favorable for
detecting marker-trait associations (Laurie et al., 2004). Among the
16 detected QTLs controlling TOC, 11 QTLs were identified as the
major QTLs with the explaining phenotypic variation larger than
10%. Especially qOC-1-3 with the largest effect (30.84% of the
phenotypic variance) and qOC-2-3 with the second largest effect
(21.74% of the phenotypic variance) were located on chromosome 9.
These region have been chosen as our primary QTL for further study
because of the higher contribution. The parent allele at this locus had
an additive effect of 0.20-0.24% for increased TOC. An additional
seven QTLs were identified on chromosomes 2, 4, 5, 6 and 8,
explaining between 11.64 and 16.20% of the phenotypic variation.
The other minor QTLs each explained 3.49-8.39% of the phenotypic
variance with moderate additive effects on TOC. In addition, except
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for environment variation, none of QTLs were shared by all DH
populations, reflecting the complexity of TOC regulation in diverse
maize populations. These results indicated that oil content is
controlled by a few large-effect QTLs, together with a large
number of minor-effect QTLs (Dudley, 1977; Laurie et al., 2004).

Results of QTL detection derived from different studies may
exhibit consistency to a certain degree across different germplasms
or genetic backgrounds and environments. For instance, the largest
and second effective QTL qOC-1-3 and gOC-2-3 was located in the
QTL m240 with a 29.17 Mb and 8.81 Mb overlap interval length,
respectively, which was related to maize TOC in RIL population
(Cook et al,, 2012). gOC-3-4 co-localized with koc5b associated to
the kernel oil content in a F, 3 tropical maize population (Mangolin
etal, 2004). According to Li et al. (2013), the QTL gOC-2-1, qOC-3-
1, q0C-3-3, qOC-4-1 and gOC-4-1 more or less co-localized with the
QTLs controlling protein and TOC simultaneously and might affect
protein and TOC in opposite directions (Li et al., 2013). These
results suggested that increases in grain TOC might be associated
with increases in grain protein content, both traits could be
improved simultaneously. Congruence in QTLs detected in this
study with previous reports indicates the robustness of our results.
Moreover, these QTLs definitely worth conducting further research
on this QTL via NILs, fine mapping, molecular marker-assisted
selection (MAS) and ultimate cloning.

4.3 Importance of QTLs relevant to TOC in
maize genetic and breeding

Oil in maize kernels mainly exists in the form of triacylglycerol
(TAG), which composed of fatty acids and glycerol (Du et al., 20165
Zhang et al., 2019). Maize oil mainly accumulates in the embryo,
and the fatty acids are typically comprised of approximately 11%
palmitic acid (C16:0), 2% stearic acid (C18:0), 24% oleic acid
(C18:1), 62% linoleic acid (C18:2), and 1% linolenic acid (C18:3)
(Lambert, 2001). The quality and utilization of maize oil is
determined by their fatty acid composition (Du et al, 2016).
Saturated fatty acids, such as palmitic (C16:0) and stearic acids
(C18:0), are stable and tolerant to heat and oxidation (Hu et al.,
1997). Certain unsaturated fatty acids, such as oleic (C18:1), linoleic
(C18:2), and linolenic (C18:3) acids, are beneficial to human health
but susceptible to heat and oxidation (Hu et al., 1997). Biosynthesis
of storage oil in plant seeds is complex and involved in
multitudinous physiological and biochemical processes (Ohlrogge
and Browse, 1995; Liu et al., 2008; Zhang et al., 2009; Guo et al.,
2013; Dong et al., 2015; Glowinski and Flint-Garcia, 2018; Zhang
etal., 2018). The co-location analysis of candidate genes underlying
QTLs associated with related trait could provide information about
functional relationships between gene expression and some QTLs of
the complex biosynthesis pathway (Prioul et al., 1997; Thevenot
et al,, 2005). In our study, of 189 genes involved in the fatty acid
biochemical processes, including 17 well-known genes encoding
key enzymes in maize lipid synthesis and metabolism, were located
within QTL intervals (Figure 4 and Table S2).

The genes related to the TAG synthesis pathway are key
regulatory factors in the accumulation process of TOC in corn
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(Zhang et al., 2019). Comparison of the positions of candidate genes
and QTL was a suitable strategy to investigate the molecular basis of
quantitative traits. Additionally, the positioned candidate genes can
be used to develop functional markers for increasing selection
efficiency by marker-assisted selection in plant breeding
(Andersen and Liibberstedt, 2003). Five KCS genes encoding S-
ketoacyl CoA synthase isozymes in gOC-1-3, gqOC-2-1, qOC-3-4 and
qOC-4-4 are mainly involved in the process of elongation of the
C16:0- and C18:0-CoAs into very-long-chain fatty acids (VLCFAs)
(Gonzales-Vigil et al, 2017). The maize isozymes reflected
differences in the enzymatic capability to elongate fatty acids
(Stenback et al., 2022). The FAD genes in qOC-1-3 and qOC-2-2
were identified as fatty acid desaturase-coding and are responsible
for the production of trienoic fatty acids by unsaturation at the ®-3
position and the cDNAs corresponding to the loci have been
isolated (Ohlrogge and Browse, 1995; Gao et al., 2015; Zhao et al,,
2019). Stearoyl-acyl carrier protein desaturases (SACD) encoded by
the genes in gOC-1-1, qOC-2-4 and qOC-3-4 are the key enzymes
that converts stearic acid to oleic acid by introducing the first double
bond into stearoyl-ACP between carbons 9 and 10 (Asamizu et al,
1998; Liu et al, 2009). These enzymes are significantly more
abundant in expression in high-oil maize than in normal maize,
not only at the mRNA and protein levels, but also at the product
level (Liu et al., 2009). LACS2 in qOC-3-3 encoded the long-chain
acyl-CoA synthetase (LACS), which plays key roles in activating
fatty acids to fatty acyl-CoA thioesters and then further involved in
lipid synthesis and fatty acid catabolism (Li1 et al., 2009; Zhao et al,
2010; Jessen et al,, 2011 and Jessen et al., 2015). TAG biosynthesis
involves three consequential acylation steps of a glycerol backbone
via the Kennedy pathway (Ohlrogge and Browse, 1995; Iskandarov
etal., 2017; Miiller and Ischebeck, 2018). The process starts with the
acylation of glycerol-3-phosphate (G3P) by glycerol-3-phosphate
acyltransferase (GPAT) and lysophosphatidic acid acyltransferase
(LPAAT), and finalized by diacylglycerol acyltransferase (DGAT),
which catalyzes the last acylation step of the pathway (Ohlrogge and
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Browse, 1995). The high-oil QTL (gHO6) affecting maize seed oil
and oleic-acid contents encodes DGAT1-2 (Zheng et al., 2008; Yang
et al, 2010; Hao et al, 2014). The gene GPATI2 in our study was
also detected on chromosome 6 and showed 96% identities with
DGATI-2 (Zm00001d036982), which indicated that GPAT12 may
be one of DGAT isozymes. The seed oils are packaged in spherical
intracellular oil bodies, which have a TAG matrix surrounded by a
layer of phospholipids embedded with unique and abundant
proteins termed oleosins (Lee and Huang, 1994). Oleosins
interact with the surface phospholipids and matrix triacylglycerols
to form a stable amphipathic layer on the surface of the oil body and
possibly act as recognition signals for the binding of lipase during
germination (Lee and Huang, 1994; Lee et al,, 1995; Ting et al,
1996). It suggested that OLEI in gOC-2-2 was an important gene
that would facilitate lipase action during germination. The above
analysis suggested that the QTLs in this study were related to a
series of genes encoding key enzymes relevant to oil content and
lipid metabolism. Especially, gOC-4-2 contained a DGATI-2
homologous protein coding gene and had no common region
with gHO6 which was the major oil content QTL (Cook et al,
2012). Therefore, these QTLs will pave a path to explore molecular
markers and offer prospective routes to improve maize oil content
through molecular marker-assisted selection in maize
breeding program.

5 Conclusion

In this study, four DH populations were constructed for genetic
analysis of kernel TOC and the TOC exhibited continuously and
approximately normal distribution in all populations. Six major and
ten minor effect QTLs were identified based on the genetic linkage
map with LOD threshold of 3.00 and accounted for 3.49-30.84% of
oil variation. The result was consistent with Yang et al., 2010 that
OC in maize kernel is a complex quantitative trait and controlled by
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a few large-effect QTLs and numerous minor QTLs. Besides, 17
well-known genes involved in fatty acid synthesis and metabolic
pathway were located within QTL intervals. This information
provides insight that will help to further understanding of genetic
variation in TOC in maize kernels and will thus enhance the
feasibility of cloning QTL, lay the foundation to explore candidate
genes associated with maize kernel TOC.
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Dwarfed stature is a desired agronomic trait for pomegranate (Punica granatum
L.), with its advantages such as lower cost and increased yield. A comprehensive
understanding of regulatory mechanisms underlying the growth repression
would provide a genetic foundation to molecular-assisted dwarfing cultivation
of pomegranate. Our previous study induced dwarfed pomegranate seedlings via
exogenous application of plant growth retardants (PGRs) and highlighted the
important roles of differential expression of plant growth-related genes in
eliciting the dwarfed phenotype of pomegranate. Alternative polyadenylation
(APA) is an important post-transcriptional mechanism and has been
demonstrated to act as a key regulator in plant growth and development.
However, no attention has been paid to the role of APA in PGR-induced
dwarfing in pomegranate. In this study, we characterized and compared APA-
mediated regulation events underlying PGR-induced treatments and normal
growth condition. Genome-wide alterations in the usage of poly(A) sites were
elicited by PGR treatments, and these changes were involved in modulating the
growth and development of pomegranate seedlings. Importantly, ample
specificities were observed in APA dynamics among the different PGR
treatments, which mirrors their distinct nature. Despite the asynchrony
between APA events and differential gene expression, APA was found to
regulate transcriptome via influencing microRNA (miRNA)-mediated mRNA
cleavage or translation inhibition. A global preference for lengthening of 3’
untranslated regions (3" UTRs) was observed under PGR treatments, which was
likely to host more miRNA target sites in 3 UTRs and thus suppress the
expression of the corresponding genes, especially those associated with
developmental growth, lateral root branching, and maintenance of shoot
apical meristem. Together, these results highlighted the key role of APA-
mediated regulations in fine-tuning the PGR-induced dwarfed stature of
pomegranate, which provides new insights into the genetic basis underlying
the growth and development of pomegranate.

KEYWORDS

alternative polyadenylation, plant growth retardant, pomegranate, post-transcriptional
regulation, dwarfing
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Introduction

Pomegranate (Punica granatum L.) is one type of the economic
fruit trees that are widely cultivated across the globe. Because it is
rich in vitamins and has antioxidant and anti-inflammatory
properties in fruits, the health benefits of pomegranate are highly
regarded, such as preventing or alleviating diseases and lowering
high blood pressure or high cholesterol levels (National Center for
Complementary and Integrative Health, NCCIH; Bourekoua et al,
2018; Shahamirian et al., 2019; Asrey et al., 2020; Turrini et al., 2020).
With the fast-rising demand for pomegranate products, more and
more attention has been paid to screen and breed pomegranate
cultivars with the desired high fruit yield and quality. Dwarfing
cultivation is one of the major focuses because of its advantages in
plant photosynthetic efficiency, fruit production, and disease
resistance compared to normal growing mode (Seleznyova et al,
2008; Foster et al., 2017; Wang et al., 2018; Zhou and Underhill,
2021). Qian et al. (2022) demonstrated that exogenous application of
plant growth retardants (PGRs) can successfully elicit dwarfed
pomegranate seedlings. Comparative transcriptome analysis
further unraveled that PGR-mediated downregulation of plant
growth hormone synthesis played a central role in inducing the
dwarfed stature of pomegranate, providing new clues for molecular
breeding of favorable dwarfed pomegranate varieties. Besides gene
transcription, plant transcriptome is also under the regulation of
post-transcriptional mechanisms, which have been demonstrated as
a key contributor to the phenotypic plasticity of plants (Ye et al,
2019; Zhou et al,, 2019; Singh and Roychoudhury, 2021). However,
our current knowledge on the functional importance of post-
transcriptional processes in pomegranate is still limited.

Polyadenylation [poly(A)] is an important post-transcriptional
mechanism in eukaryotes that modulates mRNA maturation from
the precursor mRNA (pre-mRNA). It includes two coupled steps:
endonucleolytic cleavage at the 3’ end of pre-mRNA and the
addition of a poly(A) tail at the cleavage sites (Colgan and
Manley, 1997; Tian and Manley, 2017). More importantly, for
many genes, the cleavage and poly(A) signal recognition occur at
multiple positions, that is, giving rise to multiple mRNA isoforms
with different lengths, which is referred to as alternative
polyadenylation (APA). APA events have been demonstrated to
be widespread across genomes; for example, over 70% of the
Arabidopsis genes were found to possess more than one poly(A)
site (Wu et al,, 2011; Elkon et al., 2013). These APA events may alter
the stability and translation of mRNA or the length of the resulting
protein products; thus, APA serves as a key contributor to the
complexity of eukaryotic transcriptome (Shen et al, 2008; Di
Giammartino et al., 2011; Sun et al, 2012; Tian and Manley,
2017). Recent studies have highlighted the biological importance
of APA in regulating plant growth, development, and resistance to
environmental stresses (de Lorenzo et al., 2017; Zhou et al.,, 2019;
Yu et al., 2022; Wang et al., 2023). For instance, Yu et al. (2022)
performed a genome-wide investigation to APA dynamics
underlying Arabidopsis leaf ontogeny and showed that the largest
changes in poly(A) site usage occurred at the early stage of true leaf
development, while the APA levels experienced a reduction along
the developmental process. Furthermore, it was shown that these
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APA genes participated in modulating the biological processes
associated with leaf development, for example, response to
phytohormone. These findings highlighted the essential roles of
APA-mediated post-transcriptional regulations in plant growth and
development. However, the APA mechanisms underlying PGR-
induced dwarfing have not been investigated in pomegranate.

In this study, we reanalyzed the published RNA-seq datasets
(Qian et al, 2020) and characterized the genome-wide APA
dynamics in the pomegranate seedlings treated with three kinds
of PGRs, paclobutrazol, B9, and mannitol, to decipher the biological
significance of APA-mediated mechanisms underlying PGR-
induced dwarfing in pomegranate. Furthermore, we also
compared the APA regulation to the gene expression changes,
with the aim of dissecting the different contributions of
transcriptional and post-transcriptional mechanisms to growth
repression in pomegranate. Our findings will broaden our
understanding of the genetic basis behind the PGR-elicited
dwarfed stature of pomegranate and provide a foundation for
future molecular-assisted dwarfing cultivation of pomegranate.

Materials and methods

Plant materials and data preprocessing

In our previous study, gene expression was characterized for the
seedlings untreated (control group, CK) and treated with each of the
three PGRs at different concentrations (paclobutrazol: 6 and 8 mg/L;
B9: 6 and 8 mg/L; mannitol: 2.5 and 15 g/L) (Qian et al., 2022). Here,
we reanalyzed the 14 RNA-seq datasets (two biological replicates for
each scenario), which were deposited in the Gene Expression
Omnibus (GEO) database of the National Center for Biotechnology
Information (NCBI) under the accession number GSE195722, to
investigate genome-wide poly(A) usage dynamics under the PGR
treatments over CK. Data preprocessing was performed following the
pipelines described in Qian et al. (2022). Briefly, for each dataset, low-
quality bases, whose quality score < 20, and adapter contamination
were first trimmed from the end of reads using Trim Galore (https://
www.bioinformatics.babraham.ac.uk/projects/trim_galore/).
Simultaneously, the reads with either error rate > 0.1 or ambiguous/N
bases > 15 were discarded from the dataset. Finally, the sequences
with length after trimming < 50 bp were also excluded from the
downstream analysis. The clean reads were mapped to the
pomegranate reference genome (the soft-seeded pomegranate
cultivar “Tunisia”) via HISAT2 (Kim et al., 2019; Luo et al., 2020).
The reads uniquely aligned to the genome were extracted and
converted into bedgraph format using the sub-command
genomecov of the BEDTools suite for downstream analysis
(Quinlan and Hall, 2010).

Differentially expressed alternative
polyadenylation analysis

The gene model file for the reference genome in 12-column bed
format (bed12) was converted from the GTF-format genome

frontiersin.org


https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
https://doi.org/10.3389/fpls.2023.1189456
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Xia et al.

annotations file using the UCSC tools, gtfToGenePred and
genePredToBed (https://genome.ucsc.edu/). The alignment result
in bedgraph format and the gene model file were used as the
inputs for the APA dynamics analysis using the APAtrap toolkit (Ye
et al.,, 2018). Specifically, the annotated 3’ untranslated regions (3’
UTRs) were first refined and novel 3 UTRs or 3° UTR extensions
were detected based on the mapping results of all the samples by the
identifyDistal3UTR program. All the putative APA sites, as well as
the usage level of APA sites, were predicted using predictAPA with
default parameter settings. Differential usage analysis was
performed for APA sites between CK and each of the treatment
scenarios using the R package deAPA. The genes with an adjusted p-
value < 0.05 and percentage difference (PD) = 0.1 were considered
to be significantly different in APA site usage between two groups,
which were denoted as “differentially expressed APA genes
(DAGS)”. The functional importance of the DAGs was assessed
by Gene Ontology (GO) enrichment analysis using Fisher’s exact
test, where the GO terms with p-value < 0.05 were considered to be
significantly overrepresented compared to the genome background.

Prediction of putative microRNA
target sites

The majority of APA events occur in 3’ UTRs, that is, producing
mRNA isoforms with 3> UTRs of different lengths. Changes in the
length of 3> UTRs may cause the presence or loss of cis-regulatory
elements, and thus pose influences on the stability, nuclear export,
and translation efficiency of mRNA (Shen et al,, 2008; Di
Giammartino et al., 2011; Sun et al, 2012; Tian and Manley,
2017). Here, for each comparison, the DAGs were first grouped
into two categories based on the Pearson product moment
correlation coefficient 7: (1) DAGs with r < 0 were supposed to
contain more abundant proximal poly(A) site/shortened 3> UTR
under the treatment than CK, while (2) DAGs with r > 0 were
indicated to use more distal poly(A) site/lengthened 3’ UTR in the
treatment scenario. For each DAG of each category, the DNA
sequence of each APA isoform was extracted from the reference
genome using the sub-command fastaFromBed of BEDTools, and
the putative microRNA (miRNA) target sites were identified in the
3" UTR by screening against the collected miRNA sequences in
miRBase (Release 21) using the psRNATarget web server (http://
plantgrn.noble.org/psRNATarget/). The maximum cutoff of
complementary matching score was set to 4.0. The isoforms
undergoing 3> UTR lengthening were supposed to be under the
extra regulation of the miRNAs whose target sites were located in
the lengthened 3’ end, compared to those with shorter 3> UTRs.

Comparison between differentially
expressed alternative polyadenylation
and differentially expressed genes

To further investigate the different regulatory roles of gene

transcription and APA in PGR-induced dwarfing, we compared the
DAGs to the differentially expressed genes (DEGs) detected in our
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previous study (Qian et al., 2022). The overlapping between DAGs
and DEGs was visualized by a Venn diagram using the
draw.pairwise.venn function of the R package VennDiagram. GO
enrichment analysis was implemented with a cutoff p-value of 0.05
for the genes from each of the three categories: (1) the genes under
the regulation of both differential expression and APA; (2) the genes
specifically regulated by differentially expressed APA (DA-specific
genes); and (3) the genes specifically regulated by differential
expression (DE-specific genes).

Results

PGR-induced alternative polyadenylation
changes play a substantial role in
regulating pomegranate growth

Compared to CK, exogenous applications of PGRs elicited 289-
2,553 DAGs with significant differentiations in APA usage
(Figure 1A). Functional enrichment analysis showed that these
PGR-responsive APA events were associated with the biological
processes of plant growth and development (Figures 1B-D). For
instance, the DAGs induced by 8 mg/L B9 were enriched in auxin
transport, root development, and maintenance of shoot apical
meristem identity (Figure 1B), and mannitol-responsive DAGs
were predominantly involved in the GO terms of leaf
development and senescence, photomorphogenesis, stomatal
movement, and cellular response to osmotic stress (Figure 1C).
The application of 6 mg/L paclobutrazol was found to affect growth
regulation and cell wall biosynthesis, and DAGs under the 8 mg/L
treatment was overrepresented in leaf development (Figure 1D).

For all the PGRs, the treatment at high concentration could
provoke more alterations in APA profiles than that at low level
(Figure 1A), which was consistent with their larger effects on
suppressing the growth of pomegranate seedlings (Qian et al,
2022). With regard to paclobutrazol, 341 DAGs were shared
between the treatments at the two concentrations, which were
overrepresented in the regulations of growth rate and leaf
senescence (Figure 2A). Comparatively, 241 and 2,212 genes
displayed 3’ UTR alterations specifically under 6 and 8 mg/L
treatment, respectively (Figure 2A). In particular, the DAGs
specifically induced by 6 mg/L paclobutrazol were enriched in leaf
development and thylakoid, whereas those responsive to 8 mg/L
treatment were involved in cell tip growth and stomatal movement
regulation (Figure 2A). Similar concentration-level specificities
were also observed in the treatments of B9 and mannitol
(Supplementary Figure 1). For instance, the 6 mg/L B9 treatment
altered the poly(A) site usage of the genes related to seedling
development, shoot apical meristem development, and cell wall
thickening, and the DAGs identified under the 8 mg/L treatment
were overrepresented in auxin transport, developmental process,
and maintenance of shoot apical meristem identity (Supplementary
Figure 1B, left panel). Together, these functional specificities of
APA events unraveled the dose-response relationships of PGR
treatments, which may assist to determine the optimal
concentration for PGR application.
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FIGURE 1

Numbers of DAGs induced by three PGRs and the corresponding enriched GO terms. (A) Numbers of DAGS identified under the treatment of B9
(blue), mannitol (yellow), and paclobutrazol (red). (B—D) Featur GO terms significantly enriched for the DAGs responsive to B9 (B), mannitol (C), and

paclobutrazol (D).

Different alternative polyadenylation
regulations were elicited by different PGRs

The APA changes also showed substantial specificities among
different PGR treatments (Figure 2B). In total, 1,308, 693, and 109
APA events occurred exclusively when exogenously applied with 8 mg/
L paclobutrazol, 8 mg/L B9, and 15 g/L mannitol, respectively, while
only 147 events were observed in all these three treatments. Functional
enrichment analysis showed that, the commonly changed events were
supposed to mainly affect leaf development and senescence, stomatal
closure, hydrogen peroxide transmembrane transport, and cellular
response to redox state (Figure 2B). Comparatively, the DAGs
specifically elicited by 8 mg/L paclobutrazol were enriched in the GO
terms of mitochondrial respiratory chain complex I, thylakoid, cellulose
biosynthesis, and karrikin response, while those exclusively occurring
under the 8 mg/L B9 treatment were overrepresented in auxin
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transport, xanthophyll biosynthesis, and phototropism (Figure 2B).
The biological processes involved in leaf development, tricarboxylic
acid transmembrane transport, signal transduction, and hydrogen
peroxide biosynthesis were enriched for the specially induced DAGs
by 15 g/L mannitol (Figure 2B).

Variations in the expression level of core polyadenylation
factors, including polyadenylation machinery components, RNA-
binding proteins, and transcription-related process, have been
found to regulate APA (Hunt et al, 2012; Tian and Manley,
2017). Here, we first identified the genes encoding the subunits of
four types of plant polyadenylation factors, cleavage stimulatory
factor (CstF), cleavage and polyadenylation specificity factor
(CPSE), poly(A) binding proteins (PABPs), and factor interacting
with poly(A) polymerase (FIP1), in the pomegranate genome and
compared their expression profiles under each treatment scenario
to CK. The results showed that there were several polyadenylation

frontiersin.org


https://doi.org/10.3389/fpls.2023.1189456
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

10.3389/fpls.2023.1189456

‘ xanthophyll biosynthetic process ‘
auxin transport ‘
oxidation-reduction process

‘ siroheme biosynthetic process

‘ phototropism

FIGURE 2

Xia et al.
A
§ S g
£ & - S @
I FE & o 57 &,
o S &5 8§ & § s 85 €
[ 58 © S8 &8 se §& 5 $85 5§
P & ) S§E §¢ S o ol @ & I
o] 2o % sy & =4 9 £ S 5
| S §5 § SF 8 35 & § £8& =
T G585 85 S5 &5 5 £ 53 5
. . & ¢ & fF &8 £§ & &5 89 3
2000 1000 0 p-value
- 0.01
8 mg/L paclobutrazol - specific . [ ) ® 0.02
@ 003
@ o004
6 mg/L and 8 mg/L paclobutrazol - shared [} () (] p-value
0.01
; 0.02
6 mg/L paclobutrazol - specific . . [ ] 0.05
0.04
B
[777777% 1500 +
mitochondrial respiratory chain complex | ‘ 1308
| plastid ° 1043
‘ % 1000 -
| thylakoid -
S
3 693
| cellulose biosynthetic process 2
£ 500
| monosaccharide transmembrane transport =
147
| response to karrikin 109 55 43
- - 7 - - - - 0 -
- 15 g/L mannitol
[ ol Bs °
T T T
2000 1000 0
Set Size

Overlap of the DAGs across treatments. (A) DAGs overlapped between 6 and 8 mg/L paclobutrazol treatments, and the representative GO terms
enriched for each category. Circle size and color represent the significance level (p-value) of enrichment. (B) DAGs overlapped among the
treatments of 8 mg/L paclobutrazol, 8 mg/L B9, and 15 g/L mannitol, and the representative GO terms enriched for the DAGs of different categories

(highlighted by different colors).

factors significantly differentially expressed in response to the
application of PGRs, which may play an important role in APA
regulations (Figure 3). It is noteworthy that the expression profiles
of polyadenylation apparatuses also displayed ample specificities
among different treatments. Only one factor, PABP 7B, was
commonly differentially expressed across all the three PGRs. In
contrast, the expression of PABP 5 and 6 was specifically altered
under the treatment of B9, and the gene that encodes PABP 9 and
CPSF subunit 6 had an exclusively differential expression when
treated with 8 mg/L paclobutrazol (Figure 3).
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Alternative polyadenylation and gene
transcription variations play a relatively
independent role in growth regulation

To explore the different roles of gene transcription and APA
dynamics in the regulation of PGR-induced dwarfing in
pomegranate, we compared DAGs identified in each treatment to
DEGs of the corresponding scenario. When treated with PGRs, most
genes were specifically under the regulation of either gene expression or
APA (Figure 4 and Supplementary Figures 2, 3). For instance, 24 and

frontiersin.org


https://doi.org/10.3389/fpls.2023.1189456
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Xia et al.

CstF subunit 77
CPSF 30

CPSF subunit 1
CPSF subunit 2
CPSF subunit 3-1

CPSF subunit 3-II -1
CPSF subunit 6 i
-2

CstF subunit 50 !
;

0

abueyo-pjo4¢ Boj

PABP 1

PABP 1-like

PABP 2

PABP 2-like

PABP 2B-like
PABP 2C-like
PABP 4-like

PABP 5-like

PABP 6-like

PABP 7

PABP 7B

PABP 8-like

PABP 9-like

PABP 10-like
PABP 11

PABP 11-like
PABP RBP45-like
PABP RBP45B
PABP RBP45B-like
PABP RBP45C-like
PABP RBP47
PABP RBP47-like
FIP1-pre-mRNA like
FIP1-protein like

FIGURE 3

Heatmap illustrating the log2fold-change in the expression level of
polyadenylation factor subunits under different treatments. *
indicates the subunits of significantly differential expression under
the treatment condition compared to CK.

572 out of the 582 and 2,553 DAGs, which accounted for 4.1% and
22.4%, were also differentially expressed under the treatment of 6 and 8
mg/L paclobutrazol, respectively (Figures 4A, D). The DE-specific
genes induced by 6 mg/L paclobutrazol were highly represented in
cell proliferation, auxin biosynthesis, and brassinosteroid (BR) response
(Figure 4B), while the DA-specific genes were predominantly involved
in growth regulation, pectinesterase activity, and responses to salicylic
acid and strigolactone (Figure 4C). When exposed to 8 mg/L
paclobutrazol, genes related to superoxide dismutase activity and
root hair elongation were likely to be exclusively differentially
expressed compared to CK (Figure 4E), whereas those participating
in cellulose biosynthesis, oxidative stress regulation, and responses to
salicylic acid and karrikin showed different APA usages (Figure 4F).
A similar pattern was also observed under the treatment of B9
and mannitol: only 4.2%-14.2% of DAGs were overlapped with
DEGs (Supplementary Figures 2A, E and 3A, E). When treated with
8 mg/L B9, for one example, the DA-specific genes were
significantly enriched in the processes of root development,
maintenance of shoot apical meristem identity, and auxin
transport (Supplementary Figure 2F), while the DE-specific genes
were overrepresented in cell wall catabolism and oxidative stress
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responses (Supplementary Figure 2G). With regard to the
application of 2.5 g/L mannitol, the DA-specific genes were
highly represented in cellular response to osmotic stress, callose
deposition in cell wall, and leaf senescence (Supplementary
Figure 3B), and the GO terms related to cell proliferation, growth,
and development were found to be enriched for the genes
specifically regulated by differential expression (Supplementary
Figure 3C). Comparatively, when treated with 15 g/L
mannitol, the light-mediated leaf development, leaf senescence,
and photoperiodism were mainly regulated by APA events
(Supplementary Figure 3F), whereas the genes involved in auxin
metabolism, cell development-related programmed cell death, cell
wall thickening, secondary shoot formation, superoxide radical
removal, and L-ascorbic acid transmembrane transport were
largely under the control of different expression (Supplementary
Figure 3G). Taken together, these results suggested that, in many
scenarios, APA and gene transcription regulate different aspects of
the growth and development of pomegranate seedlings and together
contribute to the PGR-induced dwarfed stature.

Changes in 3' UTR length affect microRNA
target sites

APA events were also found to substantially modulate gene
expression at post-transcriptional and translational levels.
Compared to CK, DAGs in the PGR-treated seedlings displayed a
global preference for using distal poly(A) sites (Figures 5A, B and
Supplementary Figures 4A, 5A). For example, under the treatment
of 8 mg/L paclobutrazol, 2,360 DAGs exhibited a higher abundance
of the isoforms with longer 3> UTRs, while only 305 genes used
more proximal poly(A) sites (Figure 5B). These lengthened 3> UTRs
were supposed to host more miRNA target sites, which can further
modulate mRNA abundance by influencing their stability.
Consistently, 65.99%-74.07% of the isoforms using longer 3’
UTRs were inferred to consist of extra miRNA target sites,
compared to those using shorter ones, under all the treatment
scenarios (Figures 5A, B and Supplementary Figures 4B, 5B). For up
to 61 isoforms, more than 10 putative miRNA targets were under
the impact of the changes in 3> UTR length (Figure 5C and
Supplementary Figures 4C, 5C). Most of these miRNAs, both
constitutive (existing in isoforms with both short and long 3
UTRs) and lengthened 3> UTR-specific miRNAs, were identified
to function in cleavage of the corresponding mRNA, while 9.00%-
12.73% of the miRNAs specific to the extended 3 UTRs were
supposed to inhibit mRNA translation (Figure 5D and
Supplementary Figures 4D, 5D). More important, up to 259
DAGs with lengthened 3’ UTRs targeted by miRNAs were
significantly downregulated under the treatment of PGRs
(Supplementary Figures 4E, 5E, 6). When treated with 8 mg/L
paclobutrazol, the miRNA-mediated downregulated genes were
overrepresented in the GO terms of developmental growth, lateral
root branching, maintenance of shoot apical meristem identity, and
cellular response to strigolactone, indicative of their important roles
in regulating the growth and development of pomegranate
seedlings (Figure 5E).
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FIGURE 4

Comparison between DAGs and DEGs under the treatments of paclobutrazol. (A) Venn diagram illustrating the overlap between DAGs and DEGs
when treated with 6 mg/L paclobutrazol. (B, C) GO terms enriched for the DA-specific (B) and DE-specific genes (C) under treatment of 6 mg/L
paclobutrazol. (D) Venn diagram illustrating the overlap between DAGs and DEGs when treated with 8 mg/L paclobutrazol. (E, F) GO terms enriched
for the DA-specific (E) and DE-specific genes (F) under the treatment of 8 mg/L paclobutrazol.

Discussion

In the current study, we explored the PGR-induced APA
dynamics using the RNA-seq data from our previous study and
showed that all the PGR treatments, even at low concentrations,

Frontiers in Plant Science

provoked genome-wide alterations in the usages of poly(A) sites
(Figure 1A). These changes were found to substantially influence
how pomegranate seedlings grew and developed. For example, the
poly(A) site usages of the genes involved in auxin transport and
growth regulation were significantly altered after the treatments
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paclobutrazol. (A, B) Left panels: 3D volcano plot illustrating the DAGs displaying 3" UTR lengthening (red) and shortening (blue) when treated with 6
(A) and 8 mg/L paclobutrazol (B). The bar above each volcano plot shows the number of DAGs using more longer (red) and shorter 3" UTRs (blue).
Right panels: Pie charts showing the proportion of isoforms with (blue) or without (gray) putative miRNAs targeting the lengthened area of 3" UTRs
under 6 mg/L (A) and 8 mg/L paclobutrazol treatment (B). (C) Frequency distribution illustrating the number of miRNA target sites identified
specifically in lengthened 3" UTRs across genes, when treated with 6 mg/L (green) and 8 mg/L paclobutrazol (orange), respectively. (D) Numbers of
constitutive (existing in isoforms with both short and long 3" UTRs) or lengthened 3" UTR-specific miRNAs that were predicted with putative mRNA
cleavage (green) and translation inhibition potentials (light green) under two paclobutrazol treatment scenarios, respectively. (E) Representative GO
terms enriched for the DAGs that were with miRNAs targeting the lengthened 3" UTR area and significantly downregulated in response to 8 mg/L
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(Figures 1B-D). In particular, one DAG encodes protein PIN-
LIKES, which functions as an efflux carrier that mediates the
unidirectional auxin flow (Polar auxin transport, PAT) among
plant tissues (Krecek et al, 2009). The gene encoding mitogen-
activated protein kinase kinase 2 (MKK2) also displayed
significantly different APA profiles under the treatment. MKK2,
together with mitogen-activated protein kinase 10 (MPK10), forms
a module of mitogen-activated protein kinase (MAPK) signaling
pathways that serves as a key regulator for PAT in plants (Jagodzik
et al, 2018). These alterations in auxin transport may make
contributions to the repressed growth and development in
pomegranate. Correspondingly, the APA usages of the genes
involved in shoot apical meristem identity maintenance and leaf
development were also changed in response to PGR treatments
(Figures 1, 2B). One of such genes is the calpain-type cysteine
protease encoding gene DEKI. Studies in Physcomitrella patens
highlighted the important function of DEKI in controlling the cell
fate transition from 2D to 3D growth, where DEK1 knockout in P.
patens led to aberrant cell divisions and developmental arrest in
buds (Demko et al., 2014; Johansen et al., 2016). Together, these
widespread alterations in APA profiles under PGR treatments
indicate the substantial significance of post-transcriptional
mechanisms in modulating the dwarfed stature of pomegranate.

The APA dynamics display ample specificities among the
treatments of different types/concentrations of PGRs (Figures 1, 2),
which correspond to their distinct nature. The DAGs induced by 8
mg/L paclobutrazol were particularly associated with the response for
karrikins, a type of plant growth regulator that controls plant
development (Wang et al., 2020), while the genes with significant
APA changes under 8 mg/L B9 treatment were overrepresented in
phototropism and xanthophyll biosynthesis (Figure 2B). It is
consistent with our previous observations from the transcriptome
data that genes responsive to strigolactones, a type of plant signaling
compound with similar biochemical properties and physiological
activities to karrikins, were specifically downregulated when
exposed to 8 mg/L paclobutrazol, whereas those involved in
photosynthesis and photosystem II assembly/repair were
suppressed by the application of B9 (Qian et al,, 2022). Compared
to B9 and paclobutrazol, mannitol treatments at both concentrations
were found to elicit cellular response to osmotic stress (Figure 1C),
corresponding to its specific mechanism that mannitol represses
plant growth and development by increasing ambient osmatic
pressure and causing drought stress to plants (Bhat and Chandel,
1993); thus, antioxidant reactions were activated to alleviate the
oxidative damage. These results indicated that different regulatory
mechanisms underlying the pomegranate dwarfing elicited by
different PGRs were employed.

In the current study, we found that, in most scenarios, APA and
transcriptional regulations are not synchronized and modulate PGR-
induced growth repression via different routes, as manifested by both
the little overlap between DAGs and DEGs and the differences in the
pathways modulated by DAGs and DEGs (Figures 4A, D and
Supplementary Figures 2A, E and 3A, E). The transcriptome data
revealed that paclobutrazol obviously downregulated the genes related
to the tryptophan-independent auxin biosynthetic process (Qian et al,,
2022). Comparatively, APA events predominantly affected the polar
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transport of auxin among tissues. Similarly, when treated with 2.5 g/L
mannitol, the cell wall modification process was modulated by the
changes in both gene transcription and APA, although in distinct ways
(Supplementary Figure 3). In particular, the gene encoding
endoglucanase 8 (CELL), which is a type of cellulose-hydrolyzing
enzyme that regulates the cell wall relaxation associated with cell
growth and expansion, was significantly downregulated (Tsabary
et al, 2003; Shani et al, 2006). Consequently, the suppression of
CELI would disrupt the differentiations of the plant vascular system
and lead to shorter roots and shoots (Tsabary et al., 2003). In contrast,
UTP-glucose-1-phosphate uridylyltransferase (also referred to as UDP-
glucose pyrophosphorylase, UGPase), which supplies UDP-glucose
substrate for the formation of secondary cell wall in plants, displayed
substantial poly(A) usage variations. Moreover, Payyavula et al. (2014)
showed that the maintenance of UGPase’s function was important for
the normal growth of Populus deltoides. These results suggested that
both APA and gene transcription make key contributions to the
intricate regulatory network underlying the dwarfing stature
of pomegranate.

Despite the independent function of APA in regulation, APA is
able to modulate transcriptome via influencing the presence or absence
of regulatory elements located in 3> UTRs. Here, the DAGs induced by
PGR treatments, especially at high concentrations, displayed a global
preference for 3> UTR lengthening (Figures 5A, B left panel and
Supplementary Figures 4A, 5A), which anchor more miRNA target
sites than the corresponding shorter 3° UTRs (Figures 5A, B right panel
and Supplementary Figures 4B, 5B). The majority of these extra
“burdens” were supposed to suppress gene expression by causing the
cleavage or destabilization of mRNA (Figure 5D and Supplementary
Figures 4D, 5D). In particular, 259 DAGs with miRNAs specifically
targeted in the lengthened 3’ UTRs were significantly downregulated in
response to the 8 mg/L paclobutrazol treatment (Supplementary
Figure 6). These genes were found to participate in developmental
growth, lateral root branching, and maintenance of shoot apical
meristem (Figure 5E). Of them, the gene encoding E3 ubiquitin-
protein ligase (KEG) is known by its negative regulatory activity of
abscisic acid (ABA) signaling, and the suppression of its expression has
been shown to retard the growth of A. thaliana (Stone et al., 2006). As
another example, the expression of the gene that encodes ammonium
transporter 1 member 1 (AMT1;1) was also supposed to be suppressed.
AMT1;1 plays an important role in ammonium uptake from soil
solution by roots and the subsequent root-to-shoot transport of
ammonium; thus, the inhibition of AMT1;1 would lead to nitrogen
deficiency and growth defect in pomegranate seedlings (Mayer and
Ludewig, 2006). Together, these results highlight the role of APA events
in fine-tuning gene expression in response to PGR treatments, which
makes a key contribution to the retarded growth and development in
the dwarfed pomegranate seedlings.

Conclusion

In this study, we, for the first time, identified and characterized
the APA dynamics underlying PGR-elicited dwarfing in
pomegranate. Our findings highlight the biological importance of
post-transcriptional mechanisms in modulating pomegranate
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growth and development, which adds a new dimension to the
genetic basis of the agronomic trait of pomegranate. However, since
our study is mainly based on the prediction from RNA-seq, we
might be lacking in power to capture all of the signals and miss
some of the true APA events. Thus, in the future, a more
comprehensive investigation on the poly(A) usage alterations in
pomegranate is essential using efficient technology to measure 3’
UTR dynamics, such as Poly(A) tag sequencing (PAT-seq).
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Soybean brown rust (SBR), caused by Phakopsora pachyrhizi, is a devastating
fungal disease that threatens global soybean production. This study conducted a
genome-wide association study (GWAS) with seven models on a panel of 3,082
soybean accessions to identify the markers associated with SBR resistance by
30,314 high quality single nucleotide polymorphism (SNPs). Then five genomic
selection (GS) models, including Ridge regression best linear unbiased predictor
(rrBLUP), Genomic best linear unbiased predictor (gBLUP), Bayesian least
absolute shrinkage and selection operator (Bayesian LASSO), Random Forest
(RF), and Support vector machines (SVM), were used to predict breeding values of
SBR resistance using whole genome SNP sets and GWAS-based marker sets.
Four SNPs, namely Gm18_57,223,391 (LOD = 2.69), Gm16_29,491,946 (LOD =
3.86), Gm06_45,035,185 (LOD = 4.74), and Gm18_51,994,200 (LOD = 3.60),
were located near the reported P. pachyrhizi R genes, Rppl, Rpp2, Rpp3, and
Rpp4, respectively. Other significant SNPs, including Gm02_7,235,181 (LOD =
7.91), Gm02_7234594 (LOD = 7.61), Gm03_38,913,029 (LOD = 6.85),
Gm04_46,003,059 (LOD 6.03), Gm09_1,951,644 (LOD = 10.07),
Gm10_39,142,024 (LOD 7.12), Gm12_28,136,735 (LOD = 7.03),
Gm13_16,350,701(LOD = 5.63), Gm14_6,185,611 (LOD = 5.51), and
Gm19_44,734,953 (LOD = 6.02), were associated with abundant disease
resistance genes, such as Glyma.02G084100, Glyma.03G175300,
Glyma.049g189500, Glyma.09G023800, Glyma.12G160400,
Glyma.13G064500, Glyma.14g073300, and Glyma.19G190200. The
annotations of these genes included but not limited to: LRR class gene,
cytochrome 450, cell wall structure, RCC1, NAC, ABC transporter, F-box
domain, etc. The GWAS based markers showed more accuracies in genomic
prediction than the whole genome SNPs, and Bayesian LASSO model was the
ideal model in SBR resistance prediction with 44.5% ~ 60.4% accuracies. This
study aids breeders in predicting selection accuracy of complex traits such as
disease resistance and can shorten the soybean breeding cycle by the
identified markers
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Introduction

Soybean brown rust (SBR) is one of the most devastating fungal
diseases of soybean (Glycine max) (Hartman et al., 2005). It first
emerged around 1900 as a threat to soybean production in China
and Japan and has since spread globally, in part due to human
activities and meteorological phenomena (Hartman et al., 1991).
The disease arrived in Africa and the Pacific Islands in the 1980s
and 1990s and later reached the American continents in the 2000s
(Miles et al., 2004). The risk of SBR attracted more attention with
the disease outbreak in China in 1975 and in Brazil in 2001, that
caused 10 billion US dollar losses in each country (Yorinori et al,
2005; Godoy et al., 2016). Comparing to the native American rust
pathogen (Phakopsora meibomiae), the exotic one (Phakopsora
pachyrhizi) was much more aggressive and caused an epidemic
on soybean in South America and spread to North America
(Pivonia and Yang, 2004).

Soybean plants are susceptible to SBR at any stage of growth
and development and Phakopsora pachyrhizi can quickly spread
over a long-range through wind-borne urediniospores (Isard et al.,
2005). Therefore, it is important to develop control strategies for
controlling SBR. Currently, the SBR can be managed by applying
fungicides and employing specific cultivation practices (Levy, 2005).
However, considering the high cost and the harm to non-target
beneficial fungi, a more economic, safer, and environmental
friendly solution is to raise varieties’ own resistance by developing
new resistance lines through breeding or engineering (Bromfield
and Hartwig, 1980). In the past 30 years, the well-known Rpp 1-7
genes were mapped to chromosome 3, 6, 16, 18, and 19 (Garcia
et al,, 2008; Pandey et al., 2011; Li et al., 2012; Kashiwa et al., 2020).
However, Rpp genes were race-specific and provided resistance
exclusively to specific P. pachyrhizi isolates. Currently, there is no
resistant soybean genotype that can ward off all known P. pachyrhizi
isolates (Childs et al, 2018a). In addition, Rpp gene-mediated
resistance can be overcome swiftly in the field due to pathogen’s
adaptation and evolution to resistant host (Godoy and Meyer,
2020). Pyramiding three or more Rpp genes into one genotype to
obtain broader and/or more durable resistance has been reported on
other crops like wheat or barley, but traditional breeding is still
time-consuming and may introduce unwanted traits (Childs et al.,
2018a). Another promising strategy for sustainable and effective
SBR resistance is to utilize alternative R gene combinations and
dynamic turnover in the field (Childs et al., 2018a). However, the
identity of these Rpp genes needs to be revealed (Gebremedhn et al.,
2020). Under the current conditions, it is also impractical to rely
only on several major genes or combinations of these genes to
control the SBR disease in field production.

In addition to major genes, many recent molecular studies have
revealed more disease-resistant pathways in soybeans (Childs et al.,
2018b). The resistance usually occurs in the form of signals,
transcription factors, NB-LRR, or secondary metabolites
(Gebremedhn et al., 2020; Waheed et al., 2021). They usually
improve not only the resistance to a particular pathogen but the
overall resistance of the plant as well. In addition, many minor
resistance/tolerance genes are widely distributed throughout the
whole soybean genome and exhibit partial defense response (PDR)
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to SBR (Langenbach et al., 2016). PDR is characterized by low
infection frequency, long-lasting latency, small lesions, and reduced
spore production per uredinium (Langenbach et al., 2016). At the
molecular level, their specific functions are sometimes very similar
or overlapping to the context components; however, they are more
complex and obscure (Langenbach et al., 2016). Screening for or
silencing susceptibility is another strategy that can provide durable
disease resistance in breeding, because of susceptible (S) gene
function either as susceptibility factors or suppressors of plant
defense, thus potential targets of fungal effectors (De Wit, 1992).
For example, absence of the S gene Mlo in barley results in an
incompatibility interaction with Blumeria graminis hordei that
resembles nuclear hormone receptors (Biischges et al., 1997;
Lucas, 2020). However, the identification and mapping of S gene
are more difficult than those of major R genes by linkage mapping,
and only one [Cys(2)His(2) zinc finger TF palmate-like
pentafoliatal, PALM1] would classify as a S gene so far
(Uppalapati et al., 2012).

Molecular marker-assisted selection (MAS) has been applied
in soybean breeding to accelerate the development of disease-
resistant varieties, and the GWAS is of vital help to MAS
(He et al., 2014). Comparing with linkage mapping, GWAS can
not only find the major genes, but also has the incomparable
ability to map and identify the minor and S genes. Moreover,
since the mapping populations such as natural population and
multi-parent advanced generation inter-cross, contain more
diversity, the markers developed have more universal
applicability (Visscher et al, 2012). So far, only one SBR-
related GWAS has been reported by Chang et al. (2016), who
used GWAS to discover five SBR-related loci from USDA
germplasm. Genomic selection (GS) has gained popularity in
recent years in modern and large-scale crop breeding programs.
GS can predict the breeding value of an individual plant based on
its genotype to estimate the field performance of the plant,
whereas MAS relies on the detection of a few QTLs using a
simple linear model. Therefore, molecular breeding would shift
from marker-assisted selection to genomic selection, as the
genetic architecture of resistance changes from a single major R
gene to multiple minor diffusion gene architectures (Poland and
Rutkoski, 2016). Additionally, GS has been reported to be a useful
tool in soybean breeding to predict a wide range of traits,
including both agronomic and quality traits (Lorenz et al,
2011). However, no research has been done with respect to
investigating GS accuracy for SBR resistance/tolerance.

The objectives of this study were to identify SBR resistance-
associated SNP markers and to characterize the ability of genomic
prediction in order to use SNP markers in selecting soybean
breeding lines highly resistant to SBR.

Materials and methods
Plant materials and phenotyping

SBR disease scores and phenotyping data of 3,082 soybean
accessions (Table S1) were downloaded from the USDA GRIN

frontiersin.org


https://doi.org/10.3389/fpls.2023.1179357
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Xiong et al.

website (https://npgsweb.ars-grin.gov/gringlobal/method?
1d=492634) (Miles et al., 2006). Based on the website, a
greenhouse study was initiated. Soybean plants of 3,082
accessions were spray-inoculated between the first and second
trifoliate stage with a mixture of urediniospores (60,000 spores
per ml) from four Phakopsora pachyrhizi isolates, incubated
overnight in a dew chamber at 22-25°C, and placed in a
greenhouse at 20-25°C for 14 days. Disease severity was evaluated
on the first trifoliate leaves for most accessions; however, the
unifoliate leaves were evaluated for a few accessions due to slow
germination (Miles et al., 2006). Based on the symptom and lesion
development, a disease severity scale of 1 to 5 was used, where 1 =
no visible symptom, 2 = light infection: only a few small (less than
1 cm) rust lesion present on the leaves, 3 = light to moderate
infection: moderately sized (1-2 cm) rust lesion present on a limited
number of leaves, 4 = moderate to severe infection: large (greater
than 2 cm) rust lesion present on a significant number of leaves, and
5 = severe infection: nearly all leaves are covered in large rust lesion,
and the disease is causing a significant damage to the plant growth
(Walker et al., 2011).

Genotyping

The Soy50K SNP Infinium Chips (Song et al.,, 2013) and a total
of 42,292 SNPs across 3,082 soybean accessions were downloaded
from the Soybase at https://www.soybase.org/snps/download.php.
SNPs with >10% missing data, >8% heterozygous genotypes,
and <10% minor allele frequencies (MAF) were removed, and
30,314 SNPs were included in the GWAS study.

Population structure and genetic diversity

LEA is an R package for population structure and genomic
signature analysis of local adaptation. The inference algorithms
used by R are based on a fast version of structure available from
the R package LEA (Frichot and Francois, 2015). The structure
analysis identifies K clusters by measuring an optimum AK based
on the SNP data provided. A preliminary analysis was performed
in multiple runs by inputting successive values of K from 2 to 20.
After an optimum K was determined, each soybean accession was
assigned to a cluster (Q) based on the probability that the
accession belonged to that cluster. The cut-off probability for
the assignment to a cluster was 0.5. Based on the optimum K, a bar
plot with “Sort by Q” was obtained to visualize the population
structure among the 3,082 accessions. Phylogenetic relationships
among the accessions was generated by TASSEL 5.2.13 and
phylogenetic tree was drawn using R package: Phytologist and
Phytools (Revell, 2012). During the drawing of the phylogeny
trees, the population structure and the cluster information were
imported for the combined analysis of genetic diversity. For sub-
tree of each Q (cluster), the shape of “Node/Subtree Marker” and
the “Branch Line” was drawn using the same color scheme of the
STRUCTURE analysis.

Frontiers in Plant Science

10.3389/fpls.2023.1179357

Linkage disequilibrium analysis and SNP
based haplotype blocks

TASSEL 5.0 (Bradbury et al, 2007) was used to calculate the
linkage disequilibrium (LD) for all pairwise loci. Only SNPs with a
minor allele frequency (MAF) greater than 0.10 and less than 10%
missing data were included in the LD estimation process. Haplotype
blocks (HAP) were estimated by Plink 2.0 (Purcell et al., 2007) within
200kb (1> = 0.4), and a minimum threshold value 0.05 for MAF.

Genome-wide association study

GWAS was performed using the Generalized Linear Model
(GLM), Mixed Linear Model (MLM) (Jiang and Nguyen, 2021),
Compressed Mixed Linear Model (CMLM), Multiple Loci Mixed
Model (MLMM) (Wen et al., 2018), Settlement of MLM Under
Progressively Exclusive Relationship (SUPER) (Wang et al., 2014),
Fixed and Random Model Circulating Probability Unification
(FarmCPU) (Liu et al, 2016), and Bayesian-information and
Linkage-disequilibrium Iteratively Nested Keyway (BLINK)
(Wang et al., 2014) in R software GAPIT 3 (Genomic Association
and Prediction Integrated Tool version 3) (Wang and Zhang, 2021;
Lipka et al., 2012; https://zzlab.net/GAPIT/index.html; https://
github.com/jiabowang/ GAPIT3) by setting PCA = 6, with the
Kinship for MLM, CMLM, MLMM, SUPER; and Pseudo QTNs
for FarmCPU and BLINK.

SNP selection accuracy and
selection efficiency

The accuracy and efficiency of SNP selection were computed to
evaluate the significant SNP by the allele proportion in
the population.

Selection accuracy (SA) = 100*[(Number of S or R genotypes
with the favorable SNP allele)/(Number of R genotypes with the
favorable SNP allele + Number of S genotypes with the favorable
SNP allele)]/AE, where AE = E,/E,, E; = Observed number of S or R
genotypes/(Number of R genotypes + Number of S genotypes); E,=
Expected number of S or R genotypes/(Number of R genotypes +
Number of S genotypes).

Selection efficiency (SE) =100*[(Number of S or R genotypes with
the favorable SNP allele)/(Total number of S or R genotypes)]/AF,
where AF = F,/F,, F; = Observed allele frequency of SNP, and F, =
Expected allele frequency of SNP. In this study we set the E, and F, as
an ideal equilibrium value (50%).

Candidate gene prediction

Candidate genes were selected based on the peak significant SNP
in each LD region located within 50 kb on either side of significant
SNPs (Zhang et al., 2016), and furtherly by 0 kb (on the gene), 1 kb, 5
kb, 10 kb, 20 kb, 30 kb, and 50 kb, respectively. Candidate genes were
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retrieved from the reference annotation of the soybean reference
genome Wm82.a2.v1 from the SoyBase (http://www.soybase.org) and
the Phytozome database (https://phytozome.jgi.doe.gov).

Genomic prediction

GP was conducted using seven SNP sets: All SNP set (30,314
SNPs) and six GWAS-derived SNP marker sets. The six GWAS-
derived SNP marker sets consisted of those significant SNPs from
highest LOD [-log(P-value)] to low LOD value (2.0) to make each
set as 28, 100, 500, 1,000, 2,000, and 5,000 SNPs, respectively.
Genomic estimated breeding value (GEBV) was computed using
five statistical models: Ridge regression best linear unbiased
predictor (rrBLUP) (Endelman, 2011), Genomic best linear
unbiased predictor (gBLUP) (Zhang et al., 2007), Bayesian least
absolute shrinkage and selection operator (Bayesian LASSO)
(Heslot et al., 2012), Random Forest (RF) (Poland et al., 2012),
and Support vector machines (SVM) (Ogutu et al., 2011) (Table S2).

A five-fold cross-validation was performed for each GP. The
association panel was randomly divided into 5 disjoint subsets, 4
subsets were used as training set, and the remaining set was
considered testing set. A total of 100 replications were conducted at
each fold. Mean and standard errors corresponding to each fold were
computed. Genomic prediction accuracy was obtained by computing
the Pearson’s correlation coefficient (r) between GEBV and the
observed phenotypic value for the testing set (Shikha et al., 2017).

Results

Germplasm evaluation of
Phakopsora pachyrhizi

Out of 3,082 soybean accessions evaluated for TAN lesion type,
71 (2.3%) were rated 1~2, 1,009 (32.7%) were rated 2.3~3, 1,746
(56.7%) were rated 3.1~4; and 256 (8.3%) were rated 4.2~5 in a
rating scale of 1 to 5. Accessions with a mean severity of 2.7 or less
(299, 9.5%) were considered resistant, while those with a mean
severity of 4.0 or more (791, 25.6%) were considered susceptible.
Accessions between the two categories were considered moderate.
There was a large range in the distribution of each category
(Figure 1). Majority of accessions displayed a disease severity
rating of 3 or 4 being susceptible to SBR.

SNP profile

A total of 30,314 high quality SNPs were used to perform
GWAS in the soybean accessions. Number of SNPs per
chromosome ranged from 1,027 on chr20 to 1,898 on Chrleé,
with an average of 1,515.7 SNPs (Figure 2). The average distance
between two SNPs per chromosome varied from 23.6 kb to 46.6 kb,
with an average of 33.1 kb. The shortest average distance between
SNPs was found on Chr18, whereas the longest one was on Chr20.
Average MAF per chromosome ranged between 25.8% and 30.1%,
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with an average of 28.7% (Table S3). Percentage of heterozygous
SNPs across all chromosomes were below 0.7%, and the percentage
of missing SNPs per chromosome varied from 0.3% to 0.7%.

Population structure and LD haplotype

The structure analysis helped identify the most promising
genetic variations to better understand the genetic basis of the
trait. The population structure of the soybean accessions was
analyzed using the R packages “LEA” and the peak of AK was
observed at K = 6, indicating of the presence of six subpopulations
or clusters (Figure 3A). A total of 337 (10.9%) accessions were
assigned to subpopulation Q1; 306 (9.9%) assigned to Q2; 543
(17.6%) assigned to Q3; 534 (17.3%) assigned to Q4; 358 assigned to
Q5; and 1,004 (32.5%) assigned to Q6 (Figure 3B). Phylogenetic
analysis and population admixture map using R packages “Phytool”
and “LEA” also revealed that the clustering of accessions was
consistent with that inferred by structure K = 6 (Figure 3C).
Additionally, there was a clear tendency of clustering by
geographical areas. The controlling for population structure by
taking geography into account is crucial for accurate GWAS
results and for identifying true genetic associations with the trait

SBR

Moderate Susceptible

FIGURE 1

Combined violin-boxplots based on SBR ranking of the 3,082
soybean accessions, including Susceptible (red), Moderate (yellow)
and Tolerant (green) groups.
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FIGURE 2
The distribution of 30,314 SNPs among the 20 chromosomes of
soybean within 1 Mb size.
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of interest. As Q6 was dominant in South and Central China and
Southeast Asia, Q3 and Q4 were main populations in Northeast and
Northwest Asia, and the population in Europe was dominated by
Q2 and Q5 (Figure 3D and Table S1). Kinship matrix, based on
30,314 polymorphic SNPs for the studied genotypes, indicated that
there was no clear clustering among the 3082 genotypes.

We examined the linkage disequilibrium (LD) decay patterns by
30,314 genome-wide SNPs. To visualize the LD decay patterns across
distances, we plotted the LD decay curves by GAPIT 3 (Figure 4). The
LD decay curves showed a clear distance-dependent pattern, with steeper
decay curves at longer distances. Specifically, at a distance of 103 kb, the
LD decayed with an R? value of 0.6, indicating a relatively strong LD
correlation between nearby variants. At 216 kb, the LD decayed with an
R? value of 0.4, indicating a moderate level of LD correlation between
nearby variants. Finally, at 296 kb, the LD decayed with an R* value of
0.2, indicating a weak level of LD correlation between nearby variants
(Figure S1). A total of 4,940 haplotype blocks were identified based on
30,314 SNPs. Number of blocks per chromosome varied from 170 on
Chrl1 to 357 on Chr18. Number of SNPs within each block varied from
2 to 67. Many haplotype blocks contained more than two significant
SNP markers, for example, Gm01_47,462,126, Gm01_47,476,910,
GmO01_47,481,216, GmO01_47,495,955, Gm01_47,503,665,
Gm01_47,516,500, and GmO1_47,548,257 were in the same haplotype
block on Chrl (Table S4).

Genome-wide association study

The high convergence and consistency of the GWAS were
observed among seven models. For example, the top six

A

AK = m([L"K)/sIL(K)]

EEEREEEE

10.3389/fpls.2023.1179357

significant SNPs from the FarmCPU model including:
Gmo09_1,951,644 (10.06), Gm20_36,724,867 (6.54),
Gm03_38,913,029 (6.10), Gm19_44,734,953 (5.7),
Gmo02_7,235,181 (5.18), and Gm04_47,132,429 (5.06) also had
the high LOD values, which were at least 5.20, 2.67, 3.77, 3.59,
3.69, and 4.00 in other models. SNPs Gmo04_45,884,688,
Gm10_39,142,024, Gm14_2,492,139, Gm16_4,935,328, etc. were
significant among all seven models (Figures 4, 52). A total of 100
SNPs were collected in this study by considering both model
consistency and significance (Table S5). These SNPs were
positioned at 47 haplotype blocks (Table S4). Then the top 28
SNPs with LOD > 5.50 were listed in Table 1 for future discussion.
These 28 SNPs were located on 13 chromosomes (Chr. 2, 3, 4, 6, 8,
9, 10, 12, 13, 14, 16, 19, and 20), indicating their wide distribution
and presence of genes that confer SBR resistance across the genome.
Several SNPs were found in the same blocks, such as
Gmo02_7,235,181 and Gm02_7,234,594 in block 436;
Gm09_1,944,730, Gm09_1,943,831, and Gm09_1,951,644 in block
1902; Gm10_5,573,877, Gm10_5,573,007, Gm10_5,559,592,
Gm10_5,541,691, and Gm10_5,578,693 in block 2331; and
Gm10_39,142,024 and Gm10_3,9147,121 in block 2215, which
might be due to the gene clustering or pleiotropy.

Candidate genes of significant SNPs

Due to variations in LD decay across different regions, a
conservative distance of 50 kb was set to select candidate genes as
the region of the significant SNPs. There are four SNPs (loci) out of
the top 100 associated markers, including Gm18_57,223,391,

MMW‘

FIGURE 3

Structural and phylogenetic analysis of 3,082 soybean accessions based on 30,314 SNPs. (A) Delta K values for different numbers of populations
assumed (K=20) in the STRUCTURE analysis. (B) Classification of soybean accessions in six groups (K=6) using STRUCTURE. The distribution of
accessions to different populations is color coded, Q1 (green), Q2 (blue), Q3 (yellow), Q4 (pink), Q5 (red), Q6 (cyan). The x-axis shown the accessions of
each subgroup, and the number on the y-axis shows the Q likelihood of accessions. (C) Phylogenetic analysis of the 3,082 soybean accessions with the
corresponded labels used in (B). (D) Geographical distribution of the soybean accessions by colored pie chart corresponding with the group

proportion (B).
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FIGURE 4

10.3389/fpls.2023.1179357

The circular Manhattan plots of seven GWAS models: (A) Settlement of MLM Under Progressively Exclusive Relationship (SUPER), (B) Bayesian-
information and Linkage-disequilibrium Iteratively Nested Keyway (BLINK), (C) Fixed and Random Model Circulating Probability Unification
(FarmCPU), (D) Multiple Loci Mixed Model (MLMM), (E) Mixed Linear Model (MLM), (F) Generalized Linear Models (GLM) and (G) Compressed Mixed
Linear Model (CMLM) for SBR. The red asterisk points to the significant spots associated with SBR on 20 chromosomes. The outmost circle indicates

the hotspots associated with SBR response among seven models.

Gm16_29,491,946, Gm06_45,035,185, and Gm18_51,994,200, were
identified to locate in close proximity to four main P. pachyrhizi R
genes Rppl, 2, 3, and 4, respectively, which were verified and
reported in last decades.

Thirty-five candidate genes that might be associated with SBR
disease resistance were found in the regions of the top 28 significant
SNP markers (Table 1). Disease related annotations of these
candidate genes were included but not limited to: LRR (Leucine
Rich Repeat class protein), cytochrome 450, cell wall structure,
RCCI (regulator of chromosome condensation 1), AKR (ankyrin
repeat-containing protein), F-box domain, NAC (NAM, ATAF and
CUC family). Furthermore, most of the top 28 significant SNP
regions were harboring more than one candidate gene, for example,
the region of Gmo02_7,235,181 and Gm02_7,234,594 contained
three candidate genes, Glyma.02G083500, Glyma.02G083300, and
Glyma.02G084100, coding for cell wall constituent, LRR-RLK, and
RCCl, respectively.

Selection accuracy and selection efficiency

Selection accuracy (SA) and Selection efficiency (SE) reflect the
contributions of selected alleles from the top 100 significant SNP to
the resistance or susceptibility to Phakopsora. For the resistance
alleles, SE varied from 50.0% to 84.2%, with an average of 57.5%;
and the SA varied from 50.0% to 82.2%, with an average of 58.2%.
SNP Gmo09_1,951,644 had the highest values in both SA and SE in
resistance effect. For susceptible alleles, the SE varied from 50.0% to
69.8%, with an average of 55.1%; and the SA varied from 50.3% to
56.9%, with an average of 52.7%. SNP Gm04_46,295,839 (52.7%)
had the highest values in both SA and SE in susceptible effect
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(Table S6). This result identified the specific nucleotide of SBR-
related alleles.

Genomic prediction

The 100 significant SNPs not only had the highest LOD value
but were most repeatable across all GWAS methods as well.
Following the same approach, six additional GWAS-based SNP
sets were created, each consisting of 28, 100, 500, 1,000, 2,000, and
5,000 SNPs, respectively. In this study, we applied seven datasets,
namely, All_SNPs (30,314), GWAS_5000SNPs, GWAS_2000SNPs,
GWAS_1000SNPs, GWAS_500SNPs, GWAS_100SNPs and
GWAS_28SNPs for GP analysis by five different GS models
(Figure 5). The average GS accuracies of the All_SNPs set were at
a medium level that was similar to those, ranging from 28.0% (RF)
to 32.4% (gBLUP), among all the models.

Although the number of SNPs fluctuated by GWAS datasets, all
the accuracy curves showed a similar pattern among the five models.
The trend depicted by the left side of the curves indicated that as the
number of SNPs decreases from 5,000 to 1,000, the accuracy of the
prediction increases, too. The highest accuracies were observed when
using the 1,000 SNP set, which were varying from 35.7% (RF) to
60.4% (Bayesian LASSO). And, as the number of SNPs continued to
decrease from 1,000 to 100, the accuracy of GP also decreased. In all
six GWAS based SNP sets, the Bayesian LASSO achieved the highest
average GS accuracy of 53.0%, followed by rrBLUP with an average
accuracy of 51.9%. On the other hand, the lowest accuracy of 36.2%
was recorded when using the RF model. The GS accuracies of gBLUP
and SVM models were at almost the same level but were relatively
lower using the SVM model (Table S7).

frontiersin.org


https://doi.org/10.3389/fpls.2023.1179357
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Xiong et al.

10.3389/fpls.2023.1179357

TABLE 1 The genes within 50 kb genomic region of the top 28 significant SBR-associated SNPs with functional annotations.

GWAS model (Ranking)

Allele
Type

Gene name

Functional annotations

SUPER(1), FarmCPU, CMLM(5),

Gl .02G083500
Gm(2_7235181 MLMM(10) 791 T/c yma LRR; RCCI; response to bacterial origin; defense
Glyma.02G083300 .
Gl 02G084100 response; structural constituent of cell wall
Gmo02_7234594 SUPER(2), MLMM(11) 7.61 CIT yma.
GmO2_7315227 SUPER(3), GLM,MLM, Blink(5), 752 G/A Glyma.02G084100 RCCI repeat; Ankyrin re-peat family protein/
MLMM(6) Glyma.02G084900 domain
. Glyma.03G175800 . .
Gm03_38913029 GLM, MLM, Blink (2), FarmCPU, 6.85 T/ Glyma.03G177400 Response to aluminum ion; cell wall; ABC
CMLM(3), MLMM(7), GLM transporter
Glyma.03G175300
MLM, Blink(7), SUPER(15), MLMM
Gmo04_45884688 (16), FarmCPU, CMLM(26) 6.23 T/C Glyma.04g188000 LRR
Gl .04G189300,
GmO4_46003059 SUPER(20), MLMM(24) 603 | G/A yma Membrane; Cytochrome P450
Glyma.04g189500
GmO04_46295839 SUPER(16), MLMM(18) 6.08 C/T
Glyma.04G192300 Cell wall organization; cellular membrane fusion;
GmO04_46389651 SUPER(22), MLMM(27) 5.94 C/T
MLMM(4), FarmCPU, CMLM(6), Glyma.04G211100, .
GmO4A7132429 o\ MLM, Blink(13), SUPER23) S T/¢ Glyma.04G212000 NAC domain
SUPER(6), GLM, MLM, Blink(9), . L.
44 3 A i . 232 1 f 1
Gm06_36808946 FarmCPU, CMLM(34) 6.73 G/ Glyma.06G232500 Response to molecule of bacterial origin
FarmCPU, CMLM(19), SUPER(32), Glyma.08g319300, LRR; response to abscisic acid stimulus/cold/water
4 7 .61 A,
(Gm08_43955878 MLMM(33) >6 e Glyma.08G321700 deprivation
Gm09_1944730 MLMM(2), SUPER(27) 5.77 C/A
GmO09_1943831 MLMM(3), SUPER(28) 5.73 G/A
Glyma.09G024700 LRR-RLKs
FarmCPU, CMLM, MLMM (1),
Gm09_1951644 GLM, MLM, 10.07 T/G
Blink (4),SUPER(18)
Gm10_5573877 SUPER(S), MLMM(IZ)’ GLM, MLM, 6.73 C/T
Blink(14)
Gm10_5573007 SUPER(7), MLMM(15) 6.58 crr Glyma.10G060100
Gl 10 G060200, Respiratory burst involved in defense response,
ma. 5
Gm10_5559592 SUPER(9), MLMM(20) 6.48 C/A 4 response to bacterium/chitin; cell wall organization
Glyma.10G060600
Gm10_5541691 SUPER(33), MLMM(44) 5.60 C/T
Gm10_5578693 SUPER(23), MLMM(32) 593 G/A
Gm10_39142024 S?JLPIEJVI%M%BIIHE(;I)J’ I‘éﬁ\gﬁ(ﬁ 7.12 arr
(10), Farm ’ 19 Glyma.10g157500 LRR-RLKs, regulation of plant immunity
Gm10_39147121 MLMM(9), SUPER(21) 6.02 T/G
SUPER(4),GLM,MLM, Blink(8), Glyma.12G160100, . .
Gm12_28136735 7.03 G/A NAC d tein; C hi P450
R MLMM(39) / Glyma.12G160400 omain protein; Cytochrome
Gml3 16350701 FarmCPU, CMLM(16), GLM, MLM, s63 e Gl 13G064500 F-box and WD40 domain protein, disease resistance
m X a.
- Blink(23), SUPER(29) i protein
GLM, MLM, Blink(6), SUPER(13), Glyma.14G034200, . .
Gm14_2492139 FarmCPU, CMLM(25), MLMM(26) 6.26 A/C Glyma.14G040000 RCCI family protein; LRR-RLKs
SUPER(36), GLM, 1 .14g073300,
Gm14_6185611 MLMMI(;a’/L Blink ((46)) G 5.51 C/T 21;::.142073800 F-box domain; regulation of defense response
GLM, MLM, Blink(10), MLMM(22), Glyma.16G051800, X X
Gm16_4935328 5.61 T/IG NAC d tein; LRR-RLK:
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Discussion
Phenotype

Resistance to P. pachyrhizi is commonly evaluated based on three
types of SBR lesions: “TAN”, “RB”, and “Mixed”. The “TAN” lesion
type is characterized by heavy fungal sporulation typically develop on
susceptible soybean leaves, while the RB or “reddish-brown” lesion
type has been linked to resistance in known single gene resistance.
The “Mixed” reaction is recorded when both RB and TAN lesions
2006). The simple
classification of TAN and RB lesions had been widely used decades

were observed on the same leaf (Miles et al,

ago; however, it had been noted as oversimplified to the symptom
observation. Nowadays, the appropriate practice is to separately
divide TAN and RB into multiple classes to provide more accurate
descriptions of disease symptoms while taking into account variations
in fungal sporulation. Considering data consistency and method
popularity, we took the TAN lesion as the phenotype of the
association analysis for this study, which had sufficient observations
and good distribution of SBR resistance. In the present study, the
resistance resources were primarily sourced from China, Japan, and
Korea, comprising 40%, 16%, and 21% of the total resources,
respectively. These figures closely align with the respective
13%, and 18% observed in the overall

population. In addition, according to the ANOVA between groups,

proportions of 43%,

it is obvious that the variability (99%) within groups is greater than
the variability (1%) between groups (Table S8).

GWAS and candidate genes

Specific resistance to P. pachyrhizi is controlled by seven single
dominant genes, namely, RppI (Chr 18), Rpp2 (Chrl6), Rpp3 (Chr6),
Rpp4 (Chr7), Rpp5 (Chr3), Rpp6 (Chrl8), and Rpp7 (Chrl9) (Calvo
etal., 2008; Meyer et al., 2009; Lemos et al., 2011; Childs et al., 2018b).
The single genes played an important role in SBR resistance, but this
kind of resistance is not durable, and the usefulness of the sources
loses its effectiveness once it is identified and applied in breeding
(Chander et al., 2019). GWAS was performed in efforts to discover
loci contributing SBR resistance, thus helping find all genes for SBR

control (Chang et al, 2016). Multiple models were developed for
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0.6-

s
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GWAS based on linkage disequilibrium, including GLM, MLM,
CMLM, MLMM, SUPER, FarmCPU, and BLINK (Wang and
Zhang, 2021). Previous studies demonstrated that the differences of
the models were caused by the interactions between the methods and
other factors, including populations, sample size, mapping resolution,
trait complexity, and quality of the data. Typically, all GWAS
methods perform well when the aforementioned factors are
favorable; however, each model may have varying numbers of false
positives depends on the strengths and weaknesses of the model in
different circumstance. Therefore, it is important to carefully consider
the advantages and limitations of each GWAS method and choose
the most appropriate one for the specific study and data.
Additionally, multiple methods and independent replication studies
are often used to confirm the validity of the results and minimize the
risk of false positive findings. However, GWAS studies on SBR
resistance were scarce, with the exception of a few studies that used
a single model to discover loci contributing to general disease
resistance in soybean (Kang et al., 2012; Chang et al., 2016). In this
study, we applied all seven models and also considered both
significance and consistency of each model for candidate SNPs of
SBR resistance to hedge the false positives.

A total of four significant SNPs were located on or nearby the
reported R genes. SNP Gmo06_45,035,185 in chromosome 6 was
located at gene Rpp3; Gm18_51,994,200 and Gm18_57,223,391 in
chromosome 18 were nearby the genes Rpp4/Rpp4-b and Rppl/
RppI-b, respectively; and Gm16_29,491,946 in chromosome 16 was
located at Rpp2, which showed the promise of GWAS on SBR
resistance (Sharma and Gupta, 2006). However, we only observed
moderate significance for these four SNPs in GWAS analysis,
probably due to the following reasons: 1) different genetic
variants contributing to the trait, rather than a single major gene;
2) major genes are often rare, the signal from a major gene may be
diluted by underrepresented or even missing gene(s) in the samples.

Except for the major Rpps, some significant SNPs also associate
with LRR class genes that were considered to be the majority of
disease resistance genes in plants (Kang et al., 2012). Genes encoding
cytochrome P450 have been shown to contribute to both plant
development and defense under pathogen attack (Siminszky et al.,
1999). The F-box family proteins have been demonstrated to be
directly involved in plant defense against pathogens(Liu and Xue,
2011). The QSOX1 (quiescin sulfhydryl oxidase homolog) were

5.GWAS_500 SNPs. 6.GWAS_100SNPs. 7.GWAS_28SNPs

Models

B Bayesintasso
B9 oowe
s

- BLUP

Genomic prediction (GP) accuracy for rust using five GP models: Ridge regression best linear unbiased predictor (rrBLUP) = blue, Genomic best
linear unbiased predictor (gBLUP) = dark yellow, Bayesian least absolute shrinkage and selection operator(Bayesian LASSO) = red, Random Forest
(RF) = green, Support vector machines (SVM) = purple based on seven datasets: All_SNPs (30314), and six GWAS based SNP sets with top28, 100,

500, 1,000, 2,000 and 5,000 SNPs.
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reported to negatively regulate plant immunity against a pathogen
(Chae et al,, 2021); WD40 repeat-containing proteins which played
an important effect on plant defense (Miller et al,, 2016). The results
were indicative of the robustness of the significant SNPs identified in
this study. Other functional annotations pertaining to the candidate
genes of cell wall structure/organization/construction and membrane
fusion/proteins/structure/transporters have been demonstrated to
play some roles in plant passive defense to pathogens (Mellersh
and Heath, 2001; Hematy et al., 2009). The RCC1, NAC domain
protein, ABC (ATP-binding cassette) transporters, etc. involve in
many plant response-associated physiological activities to biotic or
abiotic stresses and are widely annotated to the candidate genes
(Table 1, S5) (Langenbach et al.,, 2016; Gautam et al., 2020; Oh et al.,
2022). Furthermore, previous studies have reported the involvement
of LRR (leucine-rich repeat), ABC transporters and F-box proteins in
conferring resistance to rust fungi in other crop species belonging to
the same order of Pucciniales, including wheat (Vikas et al,, 2022),
barley (Sallam et al., 2017), and maize (Juliana et al,, 2018).

Selection accuracy and selection efficiency

SE and SA were computed for the significant SNPs associated
SBR resistance or susceptibility (Ravelombola et al.,, 2017). The SA
and SE of the marker were measured by relative proportion of an
allele type (A/T/C/G) in resistant or/and susceptible accessions, as has
been highlighted in other GWAS-related reports (Shi et al., 2016;
Ravelombola et al., 2019). Specifically, the proportion of allele type for
a completely un-associated SNP should be close to 50% in either
resistant or susceptible group. Therefore, when the SA or SE value of
the allele type is more than 50%, it contributes positively to the
corresponding trait, or vice versa. In general, the two different
nucleotides of any significant SNP must have opposite effects on
disease resistance or susceptibility, which are defined as “R” or “S”
alleles. We observed significant difference between “R” and “S” alleles
in one SNP. For example, the “R” allele of SNP Gm04_46,295,839(C/
T) has a “C” nucleotide with low SE and SA values (52.6% and
53.9%), but its “S” allele has a “T” nucleotide with high SE and SA
values (67.8% and 57.%). This locus may relate to a S gene encoding a
cellular membrane fusion protein as annotated in this study. On the
contrary, the “A” allele of SNP GmO08_46,674,632(G/A) has high SE
(84.2%) and SA (82.2%) values with resistance effect, whereas its “G”
allele has low SE (51.5%) and SA (51.4%) values with susceptible
effect. This locus is more likely to associate with a R gene coding for a
LRR-containing protein in this study. In this study, all significant
SNPs have higher than expected SA and SE values (>50%), suggesting
that these SNPs can be used for further marker-assisted selection to
enhance SBR resistance breeding in soybean.

Genomic prediction

The study discovered 28 significant SNPs located in 20 loci with
genes that are associated with plant disease response or resistance.
However, before applying these findings in breeding, further
verification work is needed (Jannink et al., 2010; Crossa et al., 2017).
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GS has gained popularity in recent years in large-scale crop breeding
programs. Previous studies have shown that GS achieves a more
robust prediction of genotypic values compared to QTLs for traits
controlled by many genes with small effects. GS tends to have a better
and more reliable prediction than the traditional QTL approach,
because it uses more markers that are distributed throughout the
genome and captures more genetic variation of a trait (Bhat et al,
2016). GS can make predictions about an individual’s performance
even before it is phenotyped, which can save time and resources in the
breeding process (Zhang et al., 2016; Ravelombola et al,, 2019).
However, no research has investigated GS or GP for SBR
resistance/tolerance. In this study, we performed GP with seven
models on one All_SNP set and six GWAS-based SNP sets. The
accuracies of All_SNP set (28.0%~32.4%) were similar to former
studies on resistance/tolerance traits to abiotic and biotic stresses of
several plant species, including wheat (Poland and Rutkoski, 2016),
rice (Xu, 2013), maize (Technow et al,, 2013), canola (Jan et al,
2016), alfalfa (Hawkins and Yu, 2018), cassava (Ly et al., 2013), oats
(Asoro et al,, 2011), miscanthus (Olatoye et al., 2020), grapevine
(Brault et al, 2022), and intermediate wheatgrass (Crain et al,
2020). On the other hand, GWAS_SNPs-based GP accuracies were
higher than those of AIl_SNP set-based, demonstrating the
importance and contribution of significant SNPs in SBR
resistance/tolerance. The accuracy using linear model gBLUP
(45.5% in average) was close to those from machine learning
(SVM), 47.5% in average, but lower than rrBLUP (51.2% in
average) and Bayesian LASSO (52.0% in average) that had been
considered to be the optimal approaches (Ravelombola et al., 2019).
Consistently with former reports (Bao et al, 2014; Li et al,
2018), we observed in this study that the accuracy of GP varied by
the number of SNPs. For those GWAS-based SNP sets, a greater
proportion of SNPs with more significance were retained for GS
after further filtering of markers from 5,000 to 1,000, which led to
increased accuracy. The accuracies of all models were improved
until the number of SNPs reached 1,000, after which the accuracies
began to decline until the number of markers dropped to 28. The
apex of predictive accuracy was observed at a SNP count of 1,000,
likely due to its ability to robustly capture LD and account for
relatedness among soybean genotypes. An excess of SNPs beyond
this threshold would introduce extraneous information to the
models and elevate model complexity, while a SNP count lower
than 1,000 would result in the loss of relevant information regarding
LD and relatedness capture. Then again, the objective of this GWAS
study was primarily to identify the associated loci and candidate
genes related to SBR. The use of multiple SNP sets and GS models
was employed to ensure the consistency of the GWAS results, rather
than to quantitatively evaluate the superiority or variations between
the models and data sets. However, the above results can still serve
as a reference for future GS research in disease resistance.
Phenotypic selection has been successfully implemented for
disease resistance, but without controlled experiments, it is difficult
to determine whether the resistance is quantitative or qualitative.
Therefore, it is difficult to determine whether the resistance will be
durable in the long term. In this study, the SBR-related markers we
identified can be used to select for both quantitative and qualitative
disease resistance within the breeding lines to bypass the need for
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controlled experiments through the use of conventional MAS.
Additionally, by utilizing GP, the breeders can select for the
accumulation of QTL associated with resistance, thereby taking
advantage of both quantitative and qualitative resistance genes, even
those that have not yet been characterized. This allows them to
select the most promising lines for further development and testing
without multiple generations of phenotyping.
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Early blight (EB), caused by Alternaria linariae (Neerg.) (syn. A. tomatophila)
Simmons, is a disease that affects tomatoes (Solanum lycopersicum L.)
throughout the world, with tremendous economic implications. The objective
of the present study was to map the quantitative trait loci (QTL) associated with
EB resistance in tomatoes. The F, and F,.3 mapping populations consisting of 174
lines derived from NC 1CELBR (resistant) X Fla. 7775 (susceptible) were evaluated
under natural conditions in the field in 2011 and in the greenhouse in 2015 by
artificial inoculation. In all, 375 Kompetitive Allele Specific PCR (KASP) assays
were used for genotyping parents and the F, population. The broad-sense
heritability estimate for phenotypic data was 28.3%, and 25.3% for 2011, and
2015 disease evaluations, respectively. QTL analysis revealed six QTLs associated
with EB resistance on chromosomes 2, 8, and 11 (LOD 4.0 to 9.1), explaining
phenotypic variation ranging from 3.8 to 21.0%. These results demonstrate that
genetic control of EB resistance in NC 1CELBR is polygenic. This study may
facilitate further fine mapping of the EB-resistant QTL and marker-assisted
selection (MAS) to transfer EB resistance genes into elite tomato varieties,
including broadening the genetic diversity of EB resistance in tomatoes.

KEYWORDS

early blight, heritability estimates, QTL analysis, tomatoes, Solanum lycopersicum (L.)

Introduction

Early blight (EB), caused by Alternaria linariae (Neerg.) (syn. A. tomatophila)
Simmons, once classified within A. solani), is a serious threat to tomato-producing areas
across the globe and particularly in the Southeast USA (Nash and Gardner, 1988). EB
symptoms are typically characterized by the formation of dark necrotic lesions with
concentric rings on the leaves. Consequently, blighted leaves are defoliated, which can
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reduce fruit quality and yield (Basu, 1974; Jones, 1991; Rotem,
1994). Due to a lack of cultivars with efficacious resistance, tomato
growers have relied on other control measures, such as field
sanitation, crop rotation, cultural practices, and intensive
calendar-based fungicide application programs (Gleason et al,
1995; Keinath et al.,, 1996; Louws et al., 1996). One of the
strategies to manage EB in tomatoes is the frequent application of
quinone-oxidizing inhibitors (Q,I; strobilurins), such as
azoxystrobin and pyraclostrobin (a single site mode of action
fungicide), or protectant fungicides, such as mancozeb and
chlorothalonil (Ivors et al., 2007). In potato fields, a shift of A.
linariae isolates toward Q,I fungicide resistance has been reported
due to the F129L mutation (Pasche et al., 2005; Pasche and
Gudmestad, 2008), and resistant strains have been confirmed in
NC (Inga Meadow, personal communication). In the past decades,
three EB forecast systems have been developed and used to curtail
the costs of and to optimize disease management (Madden et al,
1978; Pennypacker et al., 1983; Pitblado, 1992; Gleason et al., 1995;
Keinath et al., 1996; Louws et al., 1996; Cowgill et al., 2005). Among
the disease forecasting systems, Tomato Disease Forecaster (TOM-
CAST) was deemed an effective strategy to determine the proper
timing of fungicide sprays (Pitblado, 1992).

While the use of fungicides can manage EB, it is preferred to
grow a resistant variety to manage the disease. So far, no single-gene
conferring resistance to EB has been identified in the cultivated
tomato or its wild relatives (Zhang et al., 2003). Although a great
deal of effort has been made toward developing tomato cultivars
resistant to EB at North Carolina State University (NCSU), only a
few moderately resistant lines and cultivars have been identified
(Gardner, 1984; Gardner, 1988; Nash and Gardner, 1988; Adhikari
et al, 2017). These tomato lines and cultivars exhibited partial
resistance to EB under severe epidemics but were either late
maturing or low-yielding (Foolad et al., 2002; Zhang et al., 2003).
In many cases, resistance to EB in tomatoes has been reported to be
a complex trait and controlled by quantitative and partially
dominant genes with epitasis (Gardner, 1988; Nash and Gardner,
1988; Gardner and Shoemaker, 1999; Gardner and Panthee, 2012).
To resolve these problems, quantitative trait loci (QTL) mapping
can serve as a suitable approach to unraveling the genetic control of
complex and polygenic traits in segregating populations and can
provide valuable information on phenotypic trait-molecular
marker associations (Wurschum, 2012).

In the past, different molecular markers have been used to
identify QTL for EB resistance and to develop consensus genetic
maps in tomatoes. Among these, restriction fragment length
polymorphisms (RFLPs), microsatellites or simple sequence
repeats (SSRs), and resistance gene analogs (RGAs) have been
widely used to identify specific genomic regions associated with
resistance to EB (Foolad et al., 2002; Zhang et al., 2003; Chaerani
et al., 2007; Adhikari et al, 2017). The development of single
nucleotide polymorphisms (SNP) molecular markers (Jimeénez-
Gomez and Maloof, 2009), which are the most abundant source
of variation in the genome for both intragenic and intergenic
regions, represents a valuable tool to identify polymorphisms
among closely related lines and to develop highly saturated
genetic maps (Sim et al., 2012b).
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In this study, the 174 F,-derived F; (F,3) population, from a
cross between the resistant tomato line NC ICELBR and the
susceptible tomato cultivar Fla. 7775, was phenotyped for EB
resistance in the field and under controlled conditions in the
greenhouse and genotyped with single nucleotide polymorphism
(SNP) molecular markers. QTL analysis was performed to identify
the putative genomic regions associated with resistance to EB in
the tomato.

Materials and methods
Plant materials

Tomato breeding line NC 1CELBR was developed at North
Carolina State University (NCSU). It is a large-fruited fresh-market
tomato line with determinate growth habits and is resistant to EB.
The line was developed by multiple crosses involving wild species S.
habrochaites and S. pimpinellifolium (Gardner and Panthee, 2010).
Dr. Jay Scott, University of Florida, kindly provided the seed of the
susceptible cultivar Fla. 7775. Despite other similar characteristics,
contrasting EB reactions in NC 1CELBR and Fla. 7775 provided
ideal materials to develop a population for genetic mapping studies.
Crosses were made in the fall of 2009 at the Mountain Horticultural
Crops Research and Extension Center (MHCREC), (NCSU), Mills
River, North Carolina (NC). The F, seeds were produced in the
spring of 2010 by selfing the F,. Subsequently, 174 F, 5 families were
developed and used for phenotypic evaluation in the field and
greenhouse, SNP marker analysis, and QTL mapping.

Phenotyping of the F, population in the
field in 2011 in Waynesville, NC

To evaluate plants for resistance to EB in the field, the
experiment was conducted in 2011. Seeds were planted in 72 cell
flats (56 x 28 cm?) in potting mix in the first week of May, and
transplants at about six weeks from seed were planted. In the first
week of June 2011, greenhouse-grown seedlings of the 174 F, and F,
hybrid (NC 10175), susceptible controls (Fletcher, NC123S and NC
30P), resistant controls (NC 2CELBR and Mountain Merit), and
resistant and susceptible parents (NC 1CELBR and Fla. 7775) were
planted at the Mountain Research Station, Waynesville, NC.
Spacing was 45 cm between plant-to-plant and 150 cm between
row-to-row. The soil was a clay-loam texture, and the natural
daylight photoperiod was about 14/10 hr, with temperatures
averaging 25-30°C at their high and 14-16°C at their low. This
field site was chosen because A. linariae inoculum naturally occurs
each year almost three weeks after transplanting. Parents and F,
were planted as a control to make sure that the disease developed
well in the susceptible parent and that the resistant parent was
healthy even under high inoculum pressure. No fungicide
application was made to control the EB whereas late blight and
Septoria leaf spot-specific fungicides were applied to control those
diseases by spraying Presidio every week in combination with
others as per the fungicide spray guide in NC (Ivors, 2011). Each
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plant was assessed for EB symptoms six weeks after planting to the
field using a Horsfall and Barratt (1945) rating scale of 1 to 11,
where 1 indicates no EB symptoms on the leaf surface, and 11
indicates complete defoliation. Humid and warm conditions favor
A. linariae development, which was conducive to EB development
in 2011.

Phenotyping of the F,.z population in the
greenhouse in 2015 in Mills River, NC

Seeds of the 174 F,; population and resistant and susceptible
parents (NC 1CELBR and Fla. 7775) were surface-sterilized and
sown in the greenhouse at Mills River. Seeds were sown in 4P soil
mixture (Fafard®, Florida, USA) in flatbed metal trays in a standard
seeding mix (2:2:1 v/v/v) peat moss: pine bark: vermiculite with
macro- and micro-nutrients (Van Wingerden International Inc.,
Mills River, NC) in March 2015. After ten days, seedlings were
transplanted to 24-cell flats (56 cm x 28cm). Three plants per
genotype were planted with two replications, and the experiment
was conducted in a completely randomized design. Plants in the
greenhouse study were fertilized using a 20:20:20 ratio of nitrogen,
phosphorus, and potassium, respectively. Standard greenhouse
pesticide application was used for possible insect and bacterial
disease control. A single-spore isolate of A. linariae Sorauer
collected from naturally infected tomato plants in Hendersonville,
NC was used in this study. The fungus was isolated from infected
leaf tissues and grown on potato dextrose agar (PDA, 39 g of Difco
PDA, Becton, Dickinson and Company, Sparks, MD) in 10-cm
Petri dishes and incubated at 23° C under white fluorescent lamps
with a 12-h photoperiod. This isolate collected from the field was
confirmed as A. solani using microscopic examination and PCR-
based assays (Gannibal et al., 2014). After 10-12 days, conidia were
harvested by flooding the plates with sterile distilled water. The
inoculum concentration was adjusted to 1 x 10” conidia mL™ using
a hemocytometer. Before inoculation, a drop (~10 uL) of Tween 20
(Polyoxyethylene-20-sorbitan monolaurate) was added to the
inoculum suspension to facilitate uniform spore deposition onto
leaves. Nine-week-old plants were artificially inoculated using a
hand sprayer (R & D Sprayers Inc., Opelousas, LA, USA). After
inoculation, plants were placed in the dark for 24 h and covered
entirely with white plastic to create a relative humidity of > 95%.
Each inoculated plant was scored for EB symptoms using a
Horsfall-Barratt rating scheme (Horsfall and Barratt, 1945) at 14
and 21 days after inoculation, as described above. Average disease
scores were used to measure resistance to EB and to identify QTL in
the greenhouse trials.

DNA isolation and SNP genotyping

Genomic DNA of young leaf tissues of each parent and
individual plant from F, generation was extracted using the
DNeasy Plant Mini Kit (Qiagen Inc., Valencia, CA). A NanoDrop
(Model ND-2000, Thermo Scientific Inc., Wilmington, DE) was
used to quantify each DNA sample. Approximately, 50 ng/ul of
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DNA was prepared from each sample for SNP genotyping. We used
an optimized subset of 384 SNPs markers that were derived from
the 7,725 SNP array developed by the Solanaceae Coordinated
Agricultural Project (SolCAP) (Sim et al., 2012a; Sim et al., 2012b).
The subset of markers was selected based on polymorphism rates
among six fresh market tomato accessions, including Fla.7776, Fla.
8383, NC33EB-1, 091120-7, Fla. 7775, and NC 1CELBR. Also, the
genetic position in the genome based on recombination (Sim et al.,
2012a) and the physical position was considered important
selection criteria to ensure genome coverage. These 384 SNPs
were analyzed using the Kompetitive Allele Specific PCR (KASP)
genotyping platform (LGC Genomics, Beverly, MA).

Data analysis

The visual illustration of the correlation matrix and principal
component analysis (PCA) was done by using the R language v3.2.3
coupled with the RStudio interface v1.0.143 and R packages
(“FactoMineR”, “factoextra”, “ggplot2”, “ggplots”, “corrplot”),
respectively (R Core Team, 2018; Amanullah et al, 2022). The
summary statistics and normal probability plots were calculated
using the UNIVARIATE procedure of SAS. The heritability was
estimated for each environment by calculating variance
components using the ‘ASYCOV’ function in PROC MIXED in
SAS (SAS Institute Inc., 2012).

Broad-sense heritability (H?) was estimated using the following
variance components from the F, population (Nyquist, 1991;
Falconer and Mackay, 1996):

0 - VG~ VA+VD

VP VA+VD+VE

Narrow-sense heritability (h°) was determined using a regression
analysis of offspring on parent approach, using data from the F, and
F; generations as has been used by Ohlson and Foolad (2015) and as

follows (Nyquist, 1991; Falconer and Mackay, 1996):

3 VA _ Cov(F3xF2)

h® = =
VA+ VD + VE (VF3xVF2)

Where, H= broad-sense heritability, K= narrow-sense heritability,

VG=genetic variance, VP=phenotypic variance, VA = additive
variance, VD= dominance variance, VE=error variance, VF, =
Variance at F, generation, VF; = Variance at F; generation, and
Cov (F;xF,) = Covariance of individuals at F, and F; generations.

Linkage map construction of F, and
QTL analysis

Of the 384 SNP markers tested, 375 were polymorphic between
the two parental lines, NC 1CELBR and Fla. 7775, that were used for
genetic map construction (Meng et al., 2015). The linkage map was
constructed using JoinMap 4.0 (van Ooijen, 2006). The grouping
mode was set as the autonomous limit of detection, the mapping
algorithm was used to perform regression mapping (limit of
detection > 2.5, recombination frequency< 0.4, and jump = 5)
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(Asekova et al,, 2021). The Kosambi mapping function was used to
convert recombination frequencies into map distance (Kosambi,
1943). Independent limit of detection and maximum likelihood
algorithms were used for grouping and ordering of markers,
respectively. The ordering of the markers within each
chromosome was based on the recombination events between the
markers. Linkage groups were compared with published tomato
linkage maps.

QTL analysis was conducted using windows QTL Cartographer
v 2.5 (Wang et al,, 2010) software. The Composite Interval Mapping
(CIM) method was used with the default parameters (model 6). A
backward regression was used to perform the CIM analysis to enter
or remove background markers from the model. The walking speed
was set at one cM for the detection of QTL. The additive effect and
the proportion of the phenotypic variation (R?) for each QTL were
also obtained using this software. A 1000 permutation option was
chosen to determine the likelihood of an odd (LOD) score threshold
to identify the presence of QTL in both environments (Li et al,
2007; Li et al., 2008; Meng et al., 2015). We used 5 cM scanning
steps for the detection of QTL. The coefficient of variance (R*-
value), the relative contribution of genetic components, was
calculated and described as the proportion of genetic variance
explained by the QTL out of the total phenotypic variation. QTLs
explaining more than 10% of the phenotypic variance were
considered major QTLs, and QTLs found in at least two
environments were considered to be consistent.

To designate each QTL, the letter ‘g, followed by an
abbreviation of EB resistance (EBR) was used as ‘qEBR.’
Additionally, each QTL was classified by the chromosome in
which a QTL was detected and then categorized by QTL number.
Any QTL within a 5 cM distance on the same chromosome was
regarded as a single QTL.

Results

Phenotypic data analysis

The disease symptoms of infected tomato plants in the
greenhouse experiment varied from chlorotic and necrotic areas
of leaves with concentric rings to defoliation and death. The two
parental lines exhibited distinguished responses to EB, with NC
1CELBR being consistently resistant (disease score 3.0), and Fla.
7775 being susceptible (disease score 9.0) (Figure 1). The inoculated
plants were scored for EB symptoms using a Horsfall-Barratt rating
scheme (Horsfall and Barratt, 1945) at 14 and 21 days after

10.3389/fpls.2023.1135884
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FIGURE 1

Frequency distribution for disease rating in a population of 174 F,
and F, 3 progenies. EB2011HB, the F, population was tested in a
naturally-infected field at the Mountain Research Station,
Waynesville, NC in 2011, and EB2015HB the F, 3 progenies were
evaluated in an artificial inoculation with a single A. linariae isolate in
the greenhouse at Mountain Horticultural Research and Extension
Center (MHCREC), Mills River, NC in 2015. Each inoculated plant
was scored for EB symptoms using a Horsfall-Barratt rating scheme
(Horsfall and Barratt, 1945). The values are the means of the parents
and progenies, and arrows indicate resistant and susceptible parents.
Bars denote the standard deviation.

inoculation. In field experiments, higher disease severities (6 to
11) were observed in 2011 (Figure 1A). There was a significant
variation among F,; lines for visual disease rating (Figure 1 and
Table 1). Distribution of both field and greenhouse phenotypic data
was continuous, indicating quantitative and polygenic control of EB
resistance in tomatoes (Figure 1).

The minimum and maximum EB development in 2011 in the
population was 6 and 11, respectively, with an average of 8.1. In
2015, the minimum and maximum disease developments in this
population were 1 and 11, with an average of 6.8 (Figure 1 and
Table 1). These basic statistics over the years indicated that there
was a good distribution of EB resistance in this population. The
broad-sense heritability estimate for phenotypic data was 28.3%,
and 25.3% for 2011, and 2015 disease evaluations, respectively. The
disease score values showed a negative correlation between the years
2011 and 2015 (Figure 2A). The PCA bi-plot showed the possible
association and high percentage of phenotypic variability was
observed between the data sets of EB resistance in both
environments (Figure 2B). The dimension of the first PC (Dim1)
broadly outlined and explained 51.8% of the phenotypic variability
for EB resistance in 2011 (Figure 1B). The dimension of the second
PC (Dim2) also distinguished the 48.4% of phenotypic variability
for EB resistance in 2015 at opposite angles of the PCA biplot
(Figure 2B). This data also showed that EB resistance is controlled
by multiple genes.

TABLE 1 Basic statistics of early blight development measured using a Horsfall and Barratt (1945) scale in the tomato population developed from NC
1CELBR x Fla. 7775.

(Mills River)

Year Environment Sample size | Mean @ Standard deviation =~ Minimum  Maximum  Variance = Heritability (%)

2011 | Field (Waynesville) 174 ‘ 8.1 ‘ 0.62 6 11 0.36 28.3
Greenhouse

2015 174 6.8 17 1 11 9.61 253
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FIGURE 2

Analysis of phenotypic variability and correlation for early blight resistance in the mapping population. (A) Pearson’s correlation between EB2011HB
and EB2015HB (B) Principal component analysis (PCA) explains the potential phenotypic variability.

Linkage map construction of F,

A total of 375 SNP markers were polymorphic between the
parents. Those markers were used to genotype the population. A
linkage map was constructed with these markers which covered
approximately 737.17 cM genetic distance. The map results yielded
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a total of 12 linkage groups which are comparable with other
tomato linkage maps and the number of tomato chromosomes.
The Individual chromosomes had 18 to 65 markers with lengths
ranging from 42.04 to 88.87 cM (Figure 3). Nearly 65 SNP markers
were mapped on chromosome 4, followed by 42 SNP markers on
chromosome 12 (Figure 3).
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The linkage genetic map of the population of 174 F, progenies. The genetic map was developed from a cross between the resistant tomato line NC
1CELBR and the susceptible tomato cultivar Fla. 7775 using Solanaceae Coordinated Agricultural Project (SolCAP) derived Kompetitive Allele Specific

PCR (KASP) markers.

Frontiers in Plant Science

78

frontiersin.org


https://doi.org/10.3389/fpls.2023.1135884
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Adhikari et al.

QTL analysis

We identified QTLs for EB resistance using 174 F,.; derived
lines and the SNP-based linkage map in two environments (Figure 4
and Table 2). In total, 6 QTLs, including major and minor effects,
common for both environments were identified across the genome,
explaining phenotypic variation (R?) ranging from 3.8 to 21.0%
(Figure 4 and Table 2). The QTLs on chromosomes 2, 8, and 11
(gEBR2011-2, qEBR2011-8, and gqEBR2011-11) were detected in
2011, respectively. The QTLs gEBR2011-2 (LOD: 4.2), gEBR2011-
8 (LOD: 4.2), and gEBR2011-11 (LOD: 4.0) explained 3.8%, 12.1%
and 11.7% of total phenotypic variations (Figure 4 and Table 2). The
QTLs on same chromosomes were detected in 2015 as well (Figure 4
and Table 2). The QTLs gEBR2015-2 (LOD: 5.0), gEBR2015-8
(LOD: 5.2), and gEBR2015-11 (LOD: 9.1) explained 21%, 11.4%
and 19.8% of total phenotypic variations (Figure 4 and Table 2). We
used the linked markers of the resistant QTLs to compare the
resistance levels and allelic effects in the mapping population
(Figure 5). As shown in the box plots, the homozygous resistant
genotypes BB were associated with enhanced resistance compared
to the homozygous susceptible genotype AA for all the QTLs in
both environments (Figure 5). It also confirmed that all the resistant
alleles in mapping population were inherited from NC 1CELBR.
These results indicated that multiple genes/QTLs are contributing
to EB resistance.

Discussion

We developed F, and F,-derived mapping populations from a
cross between the tomato breeding line NC 1CELBR (EB-resistant)
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and the susceptible tomato cultivar Fla. 7775 (EB-susceptible). The
population was assessed for resistance to EB in the field trial and
replicated greenhouse trials and genotyped with SNP molecular
markers. Both field and greenhouse phenotypic data exhibited
continuous distributions. The CIM analysis revealed 6 QTL
conferring resistance to A. linariae. These QTLs explained up to
21% of the phenotypic variation confirming that genetic control for
resistance to EB in NC 1CELBR is polygenic. The discovery of
multiple QTL suggested that EB resistance in NC 1CELBR
contributed different degrees of resistance to EB and behaved as a
quantitatively inherited trait.

The estimate of broad-sense heritability (H?) was 28.3% in the
field test; whereas, in the greenhouse experiments it was 25.3%,
suggesting a significant environmental effect on EB development in
this mapping population. It is not surprising to have low narrow-
sense heritability in this population since the heritability was
determined from early (F, and F;) generations. If the disease were
evaluated at later generations, the level of homozygosity would go
up, heterozygosity would go down, and resistance loci would have
been fixed. The environmental effect could be minimized, and the
genetic effect could be maximized, which is ultimately heritability.
Disease severity was high in the 2011 field test, and presumably, this
could be due to the dispersal of inoculum in the field, and within the
plant canopy and variations in micro-climatic conditions,
particularly dew and rain events, that would influence disease
development during the tomato growing period (Rotem and
Reichert, 1964). To avoid such confounding effects, phenotypic
data are likely more reliable when large population sizes or even
advanced populations such as recombinant-inbred lines (RILs) are
evaluated in different environments with multiple replicates
(Gardner, 1990). Nonetheless, we found the F, population had
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TABLE 2 Quantitative trait loci (QTL) for early blight (EB) resistance in tomato detected by composite interval mapping (CIM) in a population of 174
F..3 progenies.

Linkage group Position (cM) R? (%) Additive Dominant
EB2011HB qEBR2011-2 2 20.01 4.17 3.8 142 -2.53
EB2011HB qEBR2011-8 8 51.31 4.18 12.1 144 -2.64
EB2011HB qEBR2011-11 11 50.91 4.03 1.7 -1.44 -2.65
EB2015HB qEBR2015-2 2 16.61 5.02 21.0 071 -5.91
EB2015HB qEBR2015-8 8 3241 5.24 114 2.81 3.91
EB2015HB qEBR2015-11 11 44.12 9.11 19.8 2,19 -5.81

considerable resistance to EB and can be used to advance our effort
to develop EB-resistant tomatoes and to combine multiple disease
resistance with good fruit quality, which was started by releasing
improved breeding lines and hybrids from our program before
(Gardner and Panthee, 2010; Panthee and Gardner, 2010).
Furthermore, NC 1 CELBR is the first identified tomato line that
combines early blight resistance with the Ph-2 and Ph-3 genes for
late blight resistance. The line was developed by performing crosses
comprising wild species S. habrochaites and S. pimpinellifolium
(Gardner and Panthee, 2010; Panthee and Gardner, 2010). It is
worthwhile as parents in developing multiple disease resistant F;
hybrids as well as parental lines for future tomato breeding
programs with joint resistance to late blight and early blight
without a linkage drag.

The results suggested that a functionally related QTLs
conferring resistance to EB in the field and greenhouse had
identical genetic regions. Although the QTLs were identified in
the same genetic region, phenotypic variations in disease reaction
between the field and greenhouse tests differed. In general,
phenotypic variations in the 2011 field trial were lower compared

to 2015 greenhouse trial. These results further emphasize that
multiple replicated trials are necessary to conduct field EB
evaluation and QTL identification. Furthermore, QTL detection is
dependent on the level of precise phenotyping. We used foliar
disease rating in the present study. Stem lesion was found to
correlate better with the level of disease resistance, mainly when
experiments are conducted in the greenhouse (Gardner, 1990).
Anderson et al. (2021) have reported three QTLs from
chromosomes 1, 5 and 9 based on foliar and stem lesions scoring.
Therefore, it may be worth using stem lesions as well as foliar
symptoms for EB QTL analysis in future studies.

Molecular markers and genetic maps are powerful tools to
dissect complex traits and develop marker-assisted breeding
strategies in tomatoes (Panthee and Chen, 2010; Foolad and
Panthee, 2012). Foolad et al. (2002) developed BC;, and BC;S;
populations of the Solanum lycopersicum x S. habrachaites cross
and tested these in fields from 1998 - 2000. They identified ten
major QTLs for resistance to EB using interval mapping. In
another study, Zhang et al. (2003) identified six QTLs, four as
major QTLs on chromosomes 5, 8, 10, and 11, and two as minor
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QTLs on chromosomes 3 and 8. Both previous studies identified
QTLs for resistance to EB using RFLP, SSR, and RGA markers
(Foolad et al., 2002; Zhang et al., 2003), and they concluded that a
high level of similarity between the two field studies was indicative
of the stability of QTLs across populations and environments. In
the present study, the reported QTLs were found in at least two
experiments that were regarded as consistent QTLs as defined
above. Although a different mapping population and markers
were used, the QTLs detected on chromosomes 8 and 11 in this
study agreed with the results of the previous studies (Foolad et al.,
2002; Zhang et al., 2003). Ashrafi and Foolad (2015) identified
four QTLs that are associated with EB from chromosomes 2, 5, 6,
and 9. The positions of the QTLs found in the present study could
not be compared because of the different marker types and
genetic distance on the map. Furthermore, in the present
study, even QTLs were detected at similar locations but the
explained phenotypic variations were differ in different
environments attributing to the environmental effects. The
present study utilized SNP markers to identify QTLs resistance
to EB and appeared to be useful for mapping and marker-assisted
selection. Although we identified several SNP markers associated
with QTLs for resistance to EB, these QTLs are likely to play
distinct roles in plant defenses and plant innate immunity. The
biological functions of these QTLs or genes in this pathosystem
remain a critical unanswered question. Cloning, molecular
characterization, and functional analysis of these QTLs in the
tomato A. linariae interactions deserve further study.

Conclusion

The NC 1CELBR x Fla. 7775 derived mapping population was
used to construct a genetic linkage map and QTL analysis for EB
resistance. We detected a total of 6 QTLs, among them all QTLs
conferring resistance to EB were inherited from NC 1CELBR. The
SNP markers identified in this study are closely associated with
putative EB- resistant QTLs and may be involved in host defense
responses. To validate these results, additional mapping population
development and fine mapping are necessary to determine their
resistance spectrum to multiple isolates of A. linariae. Developing
multiple advanced crosses and pyramiding resistance genes with
superior quality is necessary to achieve enhanced resistance to early
blight in tomatoes through MAS.
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Construction of a high-density
genetic map for faba bean (Vicia
faba L.) and quantitative trait loci
mapping of seed-related traits

Na Zhao, Dong Xue, Yamei Miao, Yongqiang Wang,
Engiang Zhou, Yao Zhou, Mengnan Yao, Chunyan Gu,
Kaihua Wang, Bo Li, Libin Wei* and Xuejun Wang*

Department of Economic Crops, Jiangsu Yanjiang Institute of Agricultural Science, Nantong, China

Faba bean (Vicia faba L.) is a valuable legume crop and data on its seed-related
traits is required for yield and quality improvements. However, basic research on
faba bean is lagging compared to that of other major crops. In this study, an F,
faba bean population, including 121 plants derived from the cross WY7XTCX7,
was genotyped using the Faba_bean_130 K targeted next-generation
sequencing genotyping platform. The data were used to construct the first
ultra-dense faba bean genetic map consisting of 12,023 single nucleotide
polymorphisms markers covering 1,182.65 cM with an average distance of
0.098 cM. The map consisted of 6 linkage groups, which is consistent with the
6 faba bean chromosome pairs. A total of 65 quantitative trait loci (QTL) for seed-
related traits were identified (3 for 100-seed weight, 28 for seed shape, 12
for seed coat color, and 22 for nutritional quality). Furthermore, 333 candidate
genes that are likely to participate in the regulation of seed-related traits were
also identified. Our research findings can provide a basis for future faba bean
marker-assisted breeding and be helpful to further modify and improve the
reference genome.

KEYWORDS

vicia faba L., single nucleotide polymorphisms (SNP), high-density genetic map, seed
related traits, quantitative trait loci (QTL)

1 Introduction

Faba bean (Vicia faba L.), also called horse bean, is a member of the Fabaceae family
(grain legume) that originated in the Near East, and is an important cool-season food
legume (Cubero, 1974). It is currently widely cultivated in Africa, Asia, Europe, Australia,
and North America (Alghamdi et al., 2012). Faba bean can be used as a green manure as it
has nitrogen fixation capabilities and can thus improve soil quality (Jensen et al., 2010).

83 frontiersin.org


https://www.frontiersin.org/articles/10.3389/fpls.2023.1201103/full
https://www.frontiersin.org/articles/10.3389/fpls.2023.1201103/full
https://www.frontiersin.org/articles/10.3389/fpls.2023.1201103/full
https://www.frontiersin.org/articles/10.3389/fpls.2023.1201103/full
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2023.1201103&domain=pdf&date_stamp=2023-06-07
mailto:libinwei2013@aliyun.com
mailto:wangxj4002@sina.com
https://doi.org/10.3389/fpls.2023.1201103
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2023.1201103
https://www.frontiersin.org/journals/plant-science

Zhao et al.

Additionally, faba bean is used as a type of food for humans and as a
feed for animals (Martineau-Coté et al.,, 2022), and the fresh seeds
can be consumed as vegetables (Zong et al., 2009). Furthermore, due
to its rich nutritional value and high protein and lysine content, it
can be effectively utilized as a source of plant protein (Etemadia
et al,, 2019), and is also rich in phenols (Amarowicz and Shahidi,
2017). The edible part of the seed thus directly affects its yield and
quality. It is therefore important to clarify the genetic basis of the
related traits in faba bean breeding programs. The phenotypic and
quality traits of faba bean seeds are mostly complex and easily
affected by the environment, and consequently, the use of molecular
technologies is required to fully understand them. The genetic
linkage map is an effective tool that can help to improve our
understanding of the inheritance of traits at a genome-wide level
(Verma et al,, 2015). Furthermore, the fine mapping of quantitative
trait loci (QTL) and candidate genes related to specific traits has
traditionally been performed using high-resolution genetic linkage
maps (Zhang et al,, 2016).

Faba bean has one of the largest genomes among crop legumes,
and is diploid with 2n = 12 chromosomes and a large genome of
13,000 Mb (Johnston et al., 1999). As a result, basic research on faba
bean is lagging behind that of other major crops that have relatively
complete genetic maps, such as maize (Zea mays L.), rice (Oryza
sativa L.), and wheat (Triticum aestivum L.) (Wang H et al., 20122).
Initially, some traditional markers, including morphological
and isoenzyme, random amplified polymorphic DNA,
and microsatellite markers, were used to construct several faba
bean genetic maps (Torres et al., 1993; Satovic et al., 1996;
Patto et al.,, 1999; Roman et al., 2002; Avila et al., 2004; Roman
et al., 2004; Avila et al., 2005; Ellwood et al., 2008; Diaz-Ruiz et al.,
2009; Diaz-Ruiz et al., 2010; Cruz-Izquierdo et al., 2012; Gutierrez
et al,, 2013). With the development of high-throughput sequencing
technologies, simple sequence repeats (SSR) and single nucleotide
polymorphisms (SNP) have been extensively used to construct
genetic maps and identify QTLs in faba beans (Arbaoui et al,
2008; Ma et al., 2013; Satovic et al., 2013; Kaur et al., 2014; Sallam
et al., 2016; Webb et al., 2016; Catt et al., 2017; Ocana—Moral et al.,
2017; Yang et al, 2019). Sudheesh et al. (2019) constructed an
integrated genetic map for faba bean spanning 1,439 cM, with an
average distance of 0.80 cM per marker using a total of 1,850
markers. Carrillo-perdomo et al. (2020) constructed a high-
density genetic map containing gene-based SNP markers with a
length of 1,547.71 cM, and an average distance of 0.89 cM. Recently,
an integrated genetic linkage map containing 6,895 SNPs, with a
length of 3,324.48 cM was constructed from two F, populations by
Lietal. (2023).The construction of a fine linkage map for faba bean

Abbreviations: CV, Coefficient of variation; FC, Fiber content; HSW, 100-seed
weight; LG, Linkage group; LC, Lipid content; LOD, Logarithm of odds; MAS,
Marker-assisted selection; PC, Protein content; QTL, Quantitative trait loci; SA,
Seed area; SC-B, Seed coat color B value; SC-G, Seed coat color G value; SC-R,
Seed coat color R value; SD, Standard deviation; SL, Seed length; SLWR Seed
length and width ratio; SNP, Single-nucleotide polymorphism; SP, Seed
perimeter; SSR, Simple sequence repeats; ST, Seed thickness; StC, Starch
content; SW, Seed width; TC, Tannin content; TNGS, Targeted next-

generation sequencing.
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can greatly improve the efficiency of related genetic research and
crop breeding and enable the establishment of marker selection and
QTL mapping associated with economically important traits
(Khazaei et al., 2014; Aguilar—Benitez et al.,, 2021; Gutierrez and
Torres, 2021; Carrillo-Perdomo et al., 2022).

To date, although there have been some studies on QTL
mapping associated with seed-related traits in faba bean, few
related genes have been mapped. The QTL associated with 100-
seed weight was first identified on chromosome 6 and significantly
correlated with 20 markers (Patto et al., 1999). Furthermore, Avila
etal. (2017) identified five QTLs related to 100-seed weight. The F,
populations generated from Yunl22 and TF42 were used to
construct genetic maps, and four QTLs controlling seed length,
width, and 100-seed weight were identified (Tian et al, 2018).
Macas et al. 1993a mapped the chromosomal positions of genes
encoding seed storage proteins. Gutierrez et al. (2007) identified two
SCAR markers tightly linked to a gene controlling tannin deficiency
in faba beans and Hou et al. (2018) screened one SSR marker
(SSR84) closely linked to the tannin content (zt-1) gene using 596
SSR markers and 100 ISSR markers, which could aid in accurate
prediction of the zt-1 genotypes. Recently, 15 markers were
identified with seed size associations based on genome-wide
association study (Jayakodi et al., 2023). Li et al. (2023) identified
32 QTLs related to seed size and 6 QTLs related to seed coat color.

The efficiency and precision of QTL mapping are restricted by
the low density of molecular markers in the resulting genetic maps;
however, this can be addressed using high-throughput DNA
microarray (DNA chip) technologies. Wang et al. (2021) utilized
a large-scale transcriptome and a large number of SNP markers to
develop the Faba_bean_ 130 K SNP targeted next-generation
sequencing (TNGS) genotyping platform, which contains 130,514
SNPs and can be used for high-density genetic linkage map
development and QTL mapping.

In this study, an ultra-dense genetic map from an F, population
was constructed using the Faba_bean_ 130 K SNP TNGS
genotyping platform. QTLs for 15 seed-related traits, including
100-seed weight (HSW), seed area (SA), seed perimeter (SP), seed
length (SL), seed width (SW), seed length and width ratio (SLWR),
seed thickness (ST), seed coat color R value (SC-R), seed coat color
G value (SC-G), seed coat color B value (SC-B), protein content
(PC), starch content (StC), fiber content (FC), lipid content (LC),
and tannin content (TC), which were mapped based on the
phenotypic data from F, and F,; populations. The ultra-dense
genetic map and QTLs produced from this study can be used for
faba bean marker-assisted selection (MAS), gene mapping, and
reference genome improving. MAS is a method used in plant
breeding, once the linkage has been established between physical
markers and the target traits, individuals with desirable traits can be
selected by detecting the molecular markers.

2 Article types

This article was submitted to Plant Breeding, a section of the
journal Frontiers in Plant Science.
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3 Materials and methods

3.1 Plant materials and phenotypic
data evaluation

An interspecific F, population containing 121 individual plants
was generated from WY7 and TCX7 parent materials. The female
parent WY7 is a germplasm resource introduced from the UK with
a medium seed size and dark-purple seed coat color. The male
parent TCX7 has a large seed size, with a white seed coat, is of good
quality, and is cultivated by the Jiangsu Yanjiang Institute of
Agricultural Sciences, China. The F, individual plants and their
parents were planted in Xueyao, Jiangsu Province, China from
2020-2021, and the F,; plant lines and their parents were planted
in Xueyao and Jiuhua respectively, Jiangsu Province, China, from
2021-2022. Each faba bean line was planted in one row of 2.4 m in
length, with a row distance of 0.8 m, and plant spacing of 0.2 m.
Field management was consistent with local production practices
throughout the whole growth period. Ten seed phenotypic traits
and five nutritional quality traits of the parents, F, individual plants,
and F,; families in two environments (Xueyao and Jiuhua) were
investigated. Ten plants in each F,; line and their parents were
harvested. The seed shape traits assessed were SA, SP, SL, SW,
SLWR, and ST. The average indicators of HSW, SA, SP, SL, SW, and
SLWR used an automatic seed testing system (SC-Al, Hangzhou
Wanshen Detection Technology Co., Ltd., Hangzhou, China). The
average values of the 10 thickest parts of the seeds were regarded as
ST. The seed coat color traits including SC-R, SC-G, and SC-B were
measured by spectrophotometer (YS3020, 3NH, China).
Nutritional quality traits PC, StC, FC, LC, and TC were
determined using a DA7250 NIR analyzer (Perten Instruments,
Higersten, Sweden) with three replicates.

Statistical analysis of the data, such as frequency distribution,
coefficient of variation, standard deviation, skewness and kurtosis
analysis, was performed using the ANOVA function of IciMapping
4.2.53. The phenotypic correlation between these traits was
obtained by Pearon’s correlation analyses using SPSS software.
Ver. 26 (IBM SPSS Statistics, Chicago, IL, USA) and R software
(version 3.2.2, http://www.r-project.org).

3.2 Genotyping

The total genomic DNA of the F, individuals and their parental
lines was extracted from fresh leaves using the CTAB method
(Doyle and Doyle, 1987). A NanoDrop spectrophotometer
(Thermo Fisher Scientific, USA) was used to determine the
optical density ratios of OD260/280 (>1.8) and OD260/230 >1.5).
A Qubit was used for precise quantification, and gel electrophoresis
was used to monitor and assess the quality and contamination of all
DNA samples. The Illumina sequencing library was constructed by
binding biotin-labeled RNA probes to spliced DNA fragments using
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restriction enzymes and was sequenced using the China Golden
Maker (Beijing) Biotech Co. Clean data were derived from the raw
sequencing data after quality control (filter parameters:
trimmomatic-0.36.jar PE -phred33 ILLUMINACLIP: fa: 2:30:10:8:
true LEADING:3 TRAILING:3 SLIDINGWINDOW: 4:15
MINLEN:100) and then matched to the faba bean transcriptome
(Wang et al,, 2021) by using BWA software (version 0.7.17) with
parameters: MEM -T 4 -K 32 -M -R). Based on the results of the
sequence alignment, SNPs from the populations genomic data were
detected with GATK (version 4.1.2.0) and filtered with VCFtools
(version 0.1.13). The detailed criteria and analysis methods were in
accordance with Wang et al. (2021).

3.3 Construction of the genetic map

The harvested genotypes of the samples were firstly filtered
before genetic map construction. Based on the filtered genotypes,
for each loci, the individuals were coded as “A” (if same with parent
TCX7), “B” (same with the parent WY7), “H” (heterozygous
containing 2 alleles from each of the parents) or “missing” (all
other scenarios). The discarded loci include 1) the loci which were
heterozygous in either parent, and 2) the loci with the missing rate
above 80% in the population. This was done by using a python
script from Li et al. (2021). The genetic map construction used a
similar procedure as Li et al. (2021). Briefly, the coded “ABH”
genotype matrix was firstly filtered to discarding distortion loci with
the threshold P value = 0.01, and then was fed to Lep-Map3 (Rastas,
2017). The default parameters and a logarithm of odds (LOD) score
of 12 were used in Lep-Map3. Linkage groups (LGs) with markers
less than 100 were removed, and Kosambi function was applied to
covert the recombinant rate into LG length (cM, centi-Morgan).

3.4 QTL mapping

Based on the genetic map constructed above and the phenotypes
from multiple environments, we conducted QTL mapping in 2
programs, i.e. QTL Cartographer 2.5 (Wang S et al, 2012) and
IciMapping 4.2.53 (Meng et al, 2015). In QTL Cartographer, CIM
(Composite interval mapping) method was used, and the parameters
were set up as: control markers = 5, window size = 10.0 cM, walk speed
= 1.0 cM, and the LOD threshold was determined by 500 times
permutation tests. For the Icimapping program, ICIM (Inclusive
composite interval mapping) method was selected, and the flowing
parameters were used: “missing phenotype = Deletion”, “mapping step
=1 cM” and “LOD threshold = 1000 times permutation at type I error
0.05”. In the mapping result, VG/VP value reflects the explanation rate
of phenotypic variance, and the confidence interval of a QTL was
determined by the outermost 2 markers above threshold. The QTLs
were named as follows: q + trait abbreviation + chromosome number +
QTL number.
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3.5 Candidate gene identification and
annotation

The splice junction sequences in the Faba_bean_ 130 K SNP TNGS
genotyping platform were searched within the QTL intervals and then
mapped to 243,120 unigenes (Wang et al, 2021), which were referred
to in order to obtain the candidate genes and their gene annotations.

3.6 Reference genome mapping

Sequence of the genes in genetic map alignment with reference
genome (https://projects.au.dk/fabagenome/genomics-data) and
the candidate genes were visual mapped to the reference genome
using TB tools software.

4 Results
4.1 Phenotypic analyses

The two parent materials showed significant differences in
HSW, SA, SP, SL, SW, SC-R, SC-G, SC-B, FC, TC, StC and LC
(Table 1). The statistical results of the phenotypic variations in the
seed-related traits among the parents, F, populations, and F,;
individuals (Supplementary Table S1) suggested that HSW, SA,
SP, SL, SW, SLWR, PC, StC, FC, LC, and TC showed continuous

10.3389/fpls.2023.1201103

variation. The absolute values of skewness and kurtosis were almost
less than 1, approximately conforming to the normal distribution,
meeting the requirements of QTL analysis (Figure 1; Table 1).

4.2 Correlation analyses among
different traits

Significant Pearson’s correlations (p < 0.01) for the same trait
showed a significant positive relationship between the F, and F,;
populations in Xueyao and Jiuhua (Supplementary Table S2).
Phenotypic correlations (p < 0.01) among the different traits are
shown in Figure 2. Seed shape traits, including HSW, SA, SP, SL,
and SW, were positively correlated with PC, and negatively correlated
with StC. Seed coat color traits, including SC-R, SC-G, and SC-B, were
positively correlated with FC and StC and negatively correlated with
LC. There was no significant correlation between the seed shape traits
and seed coat color traits in this study.

4.3 Genetic map construction

A total of 121 F, plants and their parents were genotyped using
130,514 SNPs in the Faba_bean_ 130 K SNP TNGS genotyping
platform, showing excellent results, quality, and matching scores
(Supplementary Tables S3; 54). There were 12,023 SNP-tagged gene
microarrays with polymorphism between parents (Supplementary

TABLE 1 Details of average of F,, two environments of F,.3 individuals and their parents.

Parents Population
WY7 TCX7 SD Variance Skewness Kurtosis
HSW 133.05* 24554 113.62 23034 170.20 27.72 762.07 16.29 0.23 -0.69
SA 290.20 ** 526.83 ** 245.00 48425 360.25 59.28 3,485.39 16.46 0.24 -0.85
SPp 65.46* 89.15 ** 55.94 87.59 73.38 6.53 42.26 8.90 0.08 -0.59
SL 2256 ** 30.61 ** 19.18 29.60 2522 2.13 452 8.46 0.00 -0.46
SW 16.00* 21.62%* 13.56 20.88 17.63 1.55 2.37 8.77 0.09 -0.65
SLWR 1.43 1.42 1.30 1.53 1.44 0.05 0.00 346 033 -0.35
ST 9.03 9.97 6.67 10.92 8.93 0.71 0.49 791 -0.03 0.28
SC-R 6422 136.62 ** 5334 158.93 94.16 31.80 1,002.93 33.77 0.64 -1.12
SC-G 56.89* 119.36 * 46.84 137.25 80.35 25.73 656.80 32.03 0.70 -0.98
SC-B 61.94 * 91.37 * 5426 104.06 74.90 11.92 141.00 15.92 0.49 -0.70
FC 567 * 10.95% 3.02 12.83 7.98 2.06 419 25.78 -0.15 -0.35
TC 0.53 ** 0.65 ** 043 0.72 057 0.06 0.00 9.84 0.16 027
StC 32.66 * 3595 * 29.56 37.58 33.95 1.53 2.32 450 -0.23 042
PC 30.90 31.40 28.19 34.05 3112 1.22 1.48 3.93 -0.19 -0.29
LC 130 % 1.01* 0.83 1.48 112 0.13 0.02 11.53 0.07 -0.23

SD standard deviation, CV coefficient of variation, HSW 100-seed weight (g), SA seed surface area (mm?), SP seed perimeter (mm), SL seed length (mm), SW seed width (mm), SLWR seed length
and width ratio, ST seed thickness (mm), SC-R seed coat color R value, SC-G seed coat color G value, SC-B seed coat color B value, FC fiber content (%), TC tannin content (%), StC starch
content (%), PC protein content (%), LC lipid content (%). Significant differences between two parental lines WY7 and TCX7 are marked by * and **, which were determined by the Student’s t
test at P < 0.05 and P < 0.01, respectively.
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FIGURE 1

Frequency distributions of seed-related traits in 121 F, derived from a cross between WY7 andTCX7. HSW 100-seed weight (g), SA seed surface area
(mm?), SP seed perimeter (mm), SL seed length (mm), SW seed width (mm), SLWR seed length and width ratio, ST seed thickness (mm), SC-R seed
coat color R value, SC-G seed coat color G value, SC-B seed coat color B value, FC fiber content (%), TC tannin content (%), StC starch content (%),

PC protein content (%), LC lipid content (%).

Table S5), and they were successfully genotyped into “A,” “B,” and
“H” types in the population. All co-isolated markers were defined as
one bin, and 1106 bin markers were used to construct a genetic map
containing 6 LGs. The overall length of the genetic map was
1,182.65 cM with an average marker spacing of 0.098 cM. Each
LG range was from 157.08-296.82 cM, and the average distance
between markers was from 0.079-0.114 cM. LG1 had the largest
number of markers with 3,325 SNPs. The smallest gap identified in
the map was 0.826 cM, the total number of gaps > 5 cM was 9, and
the largest gap was 11.78 cM LG6. Additionally, the ratio of marker
intervals < 5 cM for all LGs was > 97% (Figure 3; Table 2).

4.4 QTL analysis

QTL mapping was performed using QTL IciMapping and QTL-
Cart CIM, and 65 (Supplementary Table S6) and 50
(Supplementary Table S7) QTLs were identified for all 15 seed-
related traits detected in the F, and F, 3 populations, respectively.
Together, these two mapping strategies identified 28 overlapping
QTLs (Supplementary Table S8). Of these, the QTL intervals
observed using the CIM method were usually wider, whereas the
intervals from the ICIM method were narrower. Consequently,
the results obtained using the ICIM method were used in this study.
The genetic effect (the explanation rate of phenotyte variance or
VG/VP) of the QTLs detected using ICIM for 15 seed-related traits
ranged from 4.90-73.99%, with peak LOD values ranging from

Frontiers in Plant Science

87

4.48-35.25 (Supplementary Table S6). Among the 65 loci, there
were 11 QTLs that were detected for more than two traits
(Supplementary Table S9). There were 39 QTLs identified that
individually accounted for > 10% of the phenotypic variation
(Table 3) and 1 QTL explained < 5% of the phenotypic variation
(Supplementary Table 56). A total of 41 and 21 QTLs were found to
have positive and negative additive effects, respectively.

4.4.1 Seed morphology traits

Three QTLs of HSW were detected and had peak LOD scores of
4.64-17.81, which explained 7.26%-38.88% of the HSW variation.
One was located on LG4, and two were mapped to LG5 (Table 3).
QTLs detected more than two times among F,, F5-XY and F;-JH
were considered environmentally stable. gHSW5.1 was detected in
F, and F3-JH (Table 3; Supplementary Table S10).

A total of 28 QTLs were found for several seed shape traits, and
6 were regarded as stable (Table 3; Supplementary Table S10). Five
QTLs were detected on LG5 with a peak LOD score of 4.69-24.81,
and they explained 4.90-51.51% of the SA variation. gSA5.1 was
detected in F, and F;-XY. Only one environmentally stable QTL
(qSP5.1) of SP was identified on LG5 with a peak LOD score ranging
from 14.82-23.55, and it explained 40.13-55.47% of the SP
variation. Four QTLs associated with SL had peak LOD scores
ranging 4.73-28.30, which explained 5.50-48.32% of the SL
variation and were located on LG1, LG3, LG5, and LG6.
According to the results, gSL5.1 was a stable QTL, which detected
in Fy, F5-XY and Fs-JH.
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Correlation analysis of different traits in 0.01 probability level. HSW
100-seed weight (g), SA seed surface area (mm?), SP seed perimeter
(mm), SL seed length (mm), SW seed width (mm), SLWR seed length
and width ratio, ST seed thickness (mm), SC-R seed coat color R
value, SC-G seed coat color G value, SC-B seed coat color B value,
FC fiber content (%), TC tannin content (%), StC starch content (%),
PC protein content (%), LC lipid content (%).

Five QTLs explained 6.64-42.93% of the SW variance, with
peak LOD scores ranging from 4.48-22.55, which were identified in
linkage groups LG2 (1), LG3 (1), LG5 (1), and LG6 (2). An
environmentally stable QTL (gSW5.1) was also identified. Five
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FIGURE 3

The ultra—high density genetic linkage map of faba bean based on bin
makers and QTLs of seed-related traits. Note: Only the QTLs with the
phenotypic variation > 10% were shown. Red words means QTLs
detected in the F,, blue words means QTLs detected in the F,.3 of
Jiuhua and green words means QTLs detected in the F,.3 of Xueyao.

Frontiers in Plant Science

10.3389/fpls.2023.1201103

QTLs explained 9.59-25.02% of the SLWR variance, and the peak
LOD scores varied from 5.33-11.11, and gSW6.1 was stable.

For ST, eight QTLs were detected in LG4 (3), LG5 (3), and LG6
(2), with LOD scores ranging from 4.48-12.25, and they explained
6.65-24.78% of the total phenotypic variation. gST5.1 was detected
in F,, F5-XY and F;-JH. Among these QTLs, four were overlapping
for seed shape traits.

For seed coat color traits, 12 QTLs were detected, including 3, 5,
and 4 QTLs for R, G, and B, respectively. The phenotypic variation
explained by each individual QTL ranged from 5.00-73.99%, with a
peak LOD of 4.53-35.25 (Table 3). Three were overlapping QTLs
and one was a stable QTL, both located in linkage group LGl
(Supplementary Table S10).

4.4.2 Nutritional quality traits

The results from the QTL analysis identified 22 QTLs associated
with nutritional quality traits (Table 3; Supplementary Table S10), 7
QTLs explained 9.25-21.35% of the FC variance, 2 QTLs explained
22.70-17.61% of the TC variance, 7 QTLs explained 7.09-18.44% of
the StC variance, 2 QTLs explained 13.65-17.32% of the PC
variance, and 4 QTLs explained 6.74-21.35% of LC variance.
qFC3. 3 was considered stable.

4.5 Analysis of candidate genes

The genes in the QTL intervals were screened using the
Faba_bean_ 130 K SNP TNGS genotyping platform (Table 4). The
results showed that 333 genes and 610 SNPs were detected at 65 QTL
intervals. Among the 333 genes, HSW, seed shape, seed coat color, and
nutritional quality traits contained 8, 117, 100, and 109 genes,
respectively, and 173 genes were functionally annotated by database
comparison. A total of 67 candidate genes within the environmentally
stable QTL intervals were detected, including 2, 20, 39, 3 genes related
to HSW, seed shape, seed coat color, and nutritional quality traits,
respectively. The results showed that 213 genes in 41 QTLs explained >
10% of the observed phenotypic variance, and they were further
assessed (Supplementary Table S11). There were 6 genes related to
HSW within these QTL intervals, and 5 were annotated, including the
CCCH-type zinc finger protein and calcium-binding protein. There
were 53 seed shape-related genes and 30 genes were annotated,
including serine/threonine phosphatase, bHLH transcription factor,
calcium-binding protein Ca**/H*-exchanging protein, and other
functional genes. Seed color-related genes included 39 and 19 genes
that were annotated, including ubiquitin-like protein, the WD40
family, and transcription factors. There were 79 genes associated
with nutritional quality traits, and 41 genes were annotated,
including numerous genes encoding enzymes, functional genes, and
some transcription factors.

4.6 Reference genome mapping

Sequences of gene in our genetic map were well alignment with
the recent published reference genome of faba bean (Supplementary
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TABLE 2 Summary of the consensus reference genetic map of faba bean in this study.

SNP count Bin

Linkage groups

Length (cM) Average interval (cM) Largest gap size (cM) Numbers of gaps > 5 cM

count
LG1 3,325 285 296.818 0.089 5.811 1
LG2 2,207 173 173.630 0.079 6.651 1
LG3 2,121 184 182.697 0.086 4.975 0
LG4 1,758 157 157.084 0.089 4.975 0
LG5 1,597 156 181.963 0.114 6.650 3
LG6 1,015 151 190.461 0.188 11.784 4
Total 12,023 1106 1182.653 0.098 11.784 9

TABLE 3 QTLs distribution of 15 seed-related traits with responsible for more than 10% of the explained phenotypic variation.

Left maker Right maker
environment VG/VP (%) PeakLOD Add
name name
HSW 5 | gHSW5.1 | F5(2020) yDN135233_c2_gl 2027 | 19.5 = yDN120969_c0_gl_320 225 35.84 17.81 345255
F,3-JH(2021) yDN135233_c2 gl 2027 = 195  yDNI20969_c0_gl_320 225 38.88 15.79 214.079
qHSW5.2 | Fps-XY(2021) yDN151173_cl_g2 816 185 | yDNI135233_c2 gl 2027 195 25.71 10.42 228.937
SA 5  gSA5.1 F,(2020) yDN151173_c1_g2 816 185 | yDNI135233_c2_gl 2027 195 51.51 18.41 81.633
F,5-XY(2021) yDN151173_cl_g2_816 185 | yDNI35233_c2_gl 2027 195 40.33 15.13 54.410
qSA5.2 Fa3-JH(2021) yDN135233_c2_gl_2027 = 185 | yDNI120969_c0_gl_320 225 39.64 24.81 49.392
qSA5.3 F,,5-JH(2021) hDN150254_c0_g5 96 265 | dDN52935 c3_g4 215 285 15.19 11.34 5.348
SP 5 | gSP5.1 F,(2020) yDN151173_cl_g2_816 185 | yDN135233_c2_gl 2027 = 19.5 46.06 15.55 8.962
F,3-JH(2021) yDN151173_cl_g2_816 185 | yDNI35233_c2_gl 2027 = 19.5 55.47 23.55 5.636
F,;5-XY(2021) yDN151173_cl_g2 816 185 | yDNI35233_c2 gl 2027 195 40.13 14.82 5.828
SL 5  gSL5.1 F,(2020) yDN151173_cl_g2_816 185 | yDNI35233_c2_gl 2027 195 42.65 14.06 2.724
Fa.3-JH(2021) yDN151173_c1_g2_816 185 | yDNI35233_c2_gl 2027 195 48.32 28.30 1.756
F,,3-XY(2021) yDN151173_c1_g2 816 185 | yDNI35233_c2_gl 2027 = 19.5 35.96 13.79 1.904
SW 5 | gSW5.1 F,(2020) yDN151173_c1_g2 816 185 | yDNI35233_c2_gl 2027 = 19.5 39.37 14.92 1.857
F,3-JH(2021) yDN151173_cl_g2_816 185 | yDNI35233_c2_gl 2027 = 19.5 4293 22.55 1.165
F,;5-XY(2021) yDN151173_cl_g2 816 185 | yDNI135233_c2_gl 2027 = 19.5 36.78 12.90 1.356
6 | qSW6.l F,(2020) yDN128644_c0_gl_417 715 | hDNI154119_c0_g2_776 755 10.69 5.07 0.866
gSLWR
SLWR = 3 | 31 F,;5-JH(2021) yDN154982_c0_gl_462 955 | yDN150491_cl_gl 2729 = 96.5 18.23 6.37 0.004
gSLWR
32 F,3-XY(2021) hDN149791_c1_gl 342 1295 | yDNI33005 c0_gl 512  130.5 17.24 1111 -0.036
gSLWR
33 Fa3-XY(2021) yDN155504 cl_g2 308 | 147.5 yDN155504 cl_g2 253 1495 16.78 9.38 -0.036
qSLWR
6 | 61 F,(2020) yDN145987_c0_gl_369 67.5 | yDN138086_c0_gl_82 715 25.02 7.34 -0.046
Fa5-XY(2021) yDN145987_c0_gl_369 67.5 | yDN138086_c0_gl_82 70.5 10.40 6.21 0.032
ST 4 | qST4.1 Fa5-XY(2021) hDN131761_c0_gl_1016 = 455 = hDN122802_c0_gl 447 465 16.90 12.25 0.127
(Continued)
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TABLE 3 Continued

Left maker Right maker
environment VG/VP (%) Peak LOD
name name

5 | ¢ST5.1 F,(2020) yDN131562_c0_g2 1383 = 23.5 = dDN54339_c2 g2 203 245 2478 7.29 0.646
F,3-JH(2021) yDN131562_c0_g2 1383 = 23.5 = dDN54339_c2 g2 203 245 19.19 9.38 0.452
qST5.2 F,3-JH(2021) hDN154491 cl_g8 222 = 98.5  hDN152331_c2_g3 311 99.5 10.07 478 0.123
qST5.3 Fa;3-XY(2021) hDN148575_cl_gl_723 75 | yDNI151173_cl_g2_935 9.5 10.66 8.58 0.475
SC-R 1 gSC-RLI F,(2020) hDN132853 cl_g2 224 | 715 = dDN45140_c0_gl 2482 725 68.60 35.13 24.007
gSC-RL2  F,(2020) hDN125239_cl_g4 1476 =~ 755  yDNI27251_c0_gl_756 76.5 12.90 11.02 11.943
F,3-JH(2021) hDN125239_cl_g4 1476 =~ 755 = yDNI27251_c0_gl_756 76.5 73.99 3476 35411
F,3-XY(2021) hDN125239_cl_g4 1476 755 = yDNI27251_c0_gl_756 76.5 6535 29.45 34151
SC-G 1 gSC-GLI  F,(2020) hDN125239_cl_g4 1476 755 = yDNI27251_c0_gl_756 76.5 51.48 3525 17.308
F,3-JH(2021) hDN125239_cl_g4 1476 = 755 = yDNI27251_c0_gl_756 76.5 66.97 28.88 25.116
Fa;3-XY(2021) hDN125239_cl_g4 1476 = 755  yDNI127251_c0_gl_756 76.5 68.34 33.01 36.541
gSC-GL.2  F,(2020) yDN157063_c3_g3_806 | 2955  yDNI157063_c3_g3_836 296 12.36 12.19 -11.891
SC-B 1 ¢SC-BLI F,(2020) yDN147029_c0_gl_601 565 | yDN142452_c3_g4 331 57.5 24.62 15.73 9.483
qSC-B1.2 F,(2020) hDN135643_c3_gl 514 | 63.5 = yDNI51467_c2_gl_440 645 2255 16.11 7.153
4SC-B1.3 F,(2020) hDN125239_cl_g4 1476 755 = yDNI27251_c0_gl_756 76.5 10.63 8.93 6273
F,3-JH(2021) hDN125239_cl_g4 1476 = 75.5 = yDNI27251_c0_gl_756 76.5 37.04 12.09 9.231
Fa;3-XY(2021) hDN125239_cl_g4 1476 =~ 755 = yDNI27251_c0_gl 756 76.5 5425 20.22 16.479
FC 1 gFCLI F,(2020) yDN145946_c2_g3_400 | 107.5 = yDNI125063_c0_gl_87 108.5 21.37 9.44 2,049
qFC1.2 F,3-JH(2021) dDN53089_c3_gl_46 109.5 | yDNI129665 c0_g3 238  110.5 14.85 6.26 1.379
3 gFC3.1 F,3-XY(2021) yDN148417_c0_gl_302 485  hDN142257_c0_gl 1594 = 49.5 15.43 597 1.057
qFC3.2 F,3-XY(2021) yDN119514_c0_gl_312 | 1665 hDNI145176_c0_gl 497  167.5 13.65 532 -0.962
4 | qFC4l Fa3-JH(2021) hDN122239_c0_g2 1049 = 98.5  hDN154311_cl_gl 631 = 99.5 10.16 497 1.008
6 | qFC6.1 Fa;3-XY(2021) yDN145987_c0_gl_369 675 | yDN138086_c0_gl_82 715 10.82 4.65 0.686
TC 1 gTCLI F,(2020) hDN124375 c0_gl 451 2555 | dDN47789 _c0_gl 281 256.5 22.70 6.46 -0.061
qTC1.2 F,3-JH(2021) hDN122621_c4_g3 51 2495 | yDN154539_c0_g2 558 2515 17.61 5.17 -0.034
StC 1 gStCLI F,(2020) dDN40232_c0_gl_396 162.5 | yDN134012_c0_gl 800  163.5 13.77 8.19 -1.306
gStC1.2 F,3-XY(2021) hDN148143_c3_g2 213 | 345  yDNI41447 c5_gl_240 355 18.44 553 1.041
5 gStC5.1 F,(2020) hDN148575_cl_gl_723 75 | yDNI151173_cl_g2 935 9.5 11.38 6.64 -1.192
PC 1 gPCLI F»(2020) dDN40232_c0_gl_396 162.5 | yDN134012_c0_gl_800  163.5 17.32 6.12 1.070
5 | gPC5.1 F,(2020) dDN41265_c0_gl_1106 0 dDN41265_c0_gl_1104 05 13.65 4.99 0.875
LC 1 gLCLI F,(2020) hDN155223 c0_gl 2012 =~ 86.5 = hDN146106_c2 gl 2134 = 885 20.78 591 -0.141
3 qLC3l F,3-XY(2021) yDN119514_c0_gl 312 166.5 hDN145176_c0_gl 497  167.5 21.35 12.72 -0.130

The QTL with underlines means stable QTL for each trait. HSW 100-seed weight (g), SA seed surface area (mm?), SP seed perimeter (mm), SL seed length (mm), SW seed width (mm), SLWR
seed length and width ratio, ST seed thickness (mm), SC-R seed coat color R value, SC-G seed coat color G value, SC-B seed coat color B value, FC fiber content (%), TC tannin content (%), StC
starch content (%), PC protein content (%), LC lipid content (%), JH Jiuhua, XY Xueyao.

Table S12). It was found that about 60% of the genes in each LG
were mapped to the corresponding chromosome. Specifically, LG1-

Candidate genes were mapped to the reference genome and most
annotated genes were located on other five chromosomes except the
LG6 were assigned to chromosome 1, chromosome 3, chromosome  chromosome 3 (Supplementary Figure SI; Supplementary Table 11).

2, chromosome 5, chromosome 4 and chromosome 6, respectively. ~ Twenty-five genes were located on chromosome 1L (the long arm of
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TABLE 4 Details of genes and SNPs of 15 seed-related traits in QTL interval based on 130K TNGS.

Total QTL

Trait number SNP number Gene number VG/VP >10 QTLs interval Gene number = Stable QTLs interval gene number
HSW 3 15 8 6 5
SA 5 23 13 9 2
SP 1 4 2 2 2
SL 4 37 20 2 2
SW 5 31 22 9 2
SLWR 5 38 20 15 2
ST 8 61 40 23 10
SC-R 3 74 30 25 13
SC-G 5 88 42 14 13
SC-B 4 63 28 21 13
FC 7 28 20 17 3
TC 2 91 49 49 0
StC 7 30 21 10 0
PC 2 5 4 4 0
LC 4 22 15 7 0
Total 65 610 333 213 67

HSW 100-seed weight (g), SA seed surface area (mm?), SP seed perimeter (mm), SL seed length (mm), SW seed width (mm), SLWR seed length and width ratio, ST seed thickness (mm), SC-R seed coat color
R value, SC-G seed coat color G value, SC-B seed coat color B value, FC fiber content (%), TC tannin content (%), StC starch content (%), PC protein content (%), LC lipid content (%).

chromosome 1) and 17 genes were located on chromosome 1S (the
short arm of chromosome 1). Seven, eleven, one and seven of these
annotated genes were located on chromosome 2, chromosome 4,
chromosome 5, chromosome 6, respectively. Furthermore, there were
also seven genes located on free chromosomes (the unassigned scaffolds
that cannot be placed on any known chromosome).

5 Discussion

5.1 The first ultra-dense genetic map for
faba bean

Owing to the rapid development of high-throughput
sequencing technologies, sufficient molecular markers can now be
obtained to facilitate the mapping of high-density genetic maps and
research on map-based gene cloning (Yang et al., 2012; Zhang et al.,
2016; Zhou et al., 2018; Gaur et al., 2020; Gu et al., 2020; Sa et al.,
2021). The molecular genetic analysis of faba bean is currently
lagging in comparison to that of many other crops due to its large
genome size (Adhikari et al., 2021). Establishing a reliable linkage
map between genetic markers and traits is one of the key
approaches to improve molecular breeding without a reference
genome (Chapman et al., 2022). In this study, a genetic map of
faba beans was constructed using high-throughput genotyping
platforms. To date, genetic map construction using microarray
chips has been successfully reported in several crops, such as pea
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(Tayeh et al., 2015), wheat (Liu et al., 2018; Ren et al., 2021), cotton
(Gu et al., 2020) and pepper (Cheng et al., 2016). In addition, the
130 K liquid-phase gene chip used in this study was developed using
transcriptome data, which contains large-scale information.
Furthermore, all marker sequences provided valuable gene
information, indicating that this liquid-phase gene chip is an
effective and feasible tool to utilize for genetic map construction.

There have been more than 20 genetic maps reported for faba
beans. Of these, the genetic map constructed by Carrillo-perdomo
et al. (2020) containing 1,728 markers, with a total length of
1,547.71 cM and an average genetic distance of 0.89 ¢cM. To date,
one of the two SNP genetic map constructed by Li et al. (2023) had
the highest density, containing 5,103 markers, with a total length of
1,333.31 ¢cM and an average genetic distance of 0.26 ¢cM. In the
present study, an ultra-dense genetic map was constructed,
encompassing 12,023 markers in 6 LGs, with an average distance
of 0.098 cM. The number, density, and distribution quality of the
new molecular markers was thus significantly higher when
compared with previous genetic maps. The presented genetic map
only has 9 gaps > 5 cM, and thus, it can be effectively utilized for
faba bean gene mapping and MAS breeding.

5.2 Comparison with previous QTL reports

QTL mapping and the analysis of candidate genes within QTL
intervals is an effective strategy to investigate numerous crop traits
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(Bornowski et al., 2020; Chen et al., 2021), and can contribute to the
development of molecular marker-assisted breeding (Torres et al,
2010). The 100-seed weight, seed shape, and nutritional quality of
faba beans are all quantitative traits susceptible to environmental
influence. To improve the accuracy of QTL mapping for seed traits,
QTL analysis was performed in the F, and F, 3 populations in two
locations. There was a total of 65 seed trait-related QTLs detected
(Supplementary Table S6), of which, 11 were repeatedly detected in
different environments (Supplementary Table S9).

Patto et al. (1999) used a genetic map constructed using the F,
population and found that most of the QTLs related to seed weight
were located on chromosome 6 for faba bean. Using the
recombinant in bred line (RIL6) population constructed using
V{6 and V27, Avila et al. (2017) identified 5 QTLs for HSW,
which were located on 4 different chromosomes. Tian et al. (2018)
identified two QTLs for seed weight using an F, population
derived from Yun122/TF42, which were located on two different
LGs. In this study, we identified three QTLs linked to HSW, one at
LG4, and two at LG5. These results indicate that faba bean seed
weight is controlled by multiple main-effect QTLs. gHSW5.1, one
of the three QTLs related to HSW, was also associated with SA,
and gHSW5.2 was associated with SA, SP, SL, and SW, which
indicated that these two QTLs are also involved in controlling seed
shape (Table 3).

Seed shape traits are among the most important factors used
to determine seed size. The localization and cloning of seed shape
genes are of great importance when aiming to increase crop yield
and improve appearance quality (Austin and Lee, 1996; Song et al.,
2007; Verma et al., 2015; Cheng et al., 2017; Murube et al., 2020).
According to the Gramene website (http://archive.gramene.org/
qtl/), more than 400 rice grain shape-related genes/QTLs have
been identified through genetic mapping and correlation analysis.
However, few studies have reported QTL mapping for the seed
shape traits of faba bean, a seed length-related QTL and a seed
width-related QTL were identified by Tian et al. (2018), 8 QTLs
related to seed length, 9 QTLs related to seed width and 8 QTLs
related to seed thickness were identified by Li et al. (2023). In this
investigation, 28 QTLs for 6 seed-shape traits were identified using
linkage analysis, and most were located on LG5(Table 3;
Supplementary Table S6). Compared to these QTLs reported,
those identified as controlling seed shape in this study were
new, and could thus be applied to the subsequent fine mapping
of seed shape traits and the investigation of related genes in faba
bean. gSA5.1, gSLWR6.1 and qST5.1 were stable QTLs explained >
10% of phenotypic variation, while gSA5.1 was also associated
with SP, SL, and SW. which indicated that these QTLs can be used
for further fine mapping and superior gene discovery of seed
shape traits.

Seed coat color is a key factor affecting seed quality
(Yoshimura et al., 2012; Garcia-Fernandez et al., 2021).
Different seed coat colors may have different functions
(Debeaujon et al.,, 2003), and the different seed coat colors of
faba beans may also be associated with different nutritional
qualities. The results of the correlation analysis among seed
traits showed that seed coat color was positively correlated with
FC and StC, and negatively correlated with LC. Mendel first
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proposed that the seed coat color of peas is controlled by a pair
of genes and considered a qualitative trait (Myers, 2004), while the
seed coat color of soybeans is controlled by multiple genetic loci
(Choung et al., 2001), and more than 30 molecular marker loci on
different chromosomes that control seed coat color in soybean
have been detected (Yuan et al., 2022). However, few studies on
the QTLs for seed coat color in faba bean have been reported.
WY7 and TCX7, the parents used in this study, have purple and
white coats, respectively. A total of 12 QTLs, mainly located on
LG1, were detected by quantitative measurement of the SC-R, SC-
G, and SC-B. gSC-R1.2 was also located with SC-G and SC-B
(Table 3), which could explain the > 50% phenotypic variation.
qSC-R1.1 is located with SC-G, and gSC-R1.3 is located with SC-B
(Supplementary Table S6). These three QTLs are key objects for
further study of grain coat color traits.

The main nutrients in faba bean seeds are protein and starch, with
low lipid and fiber content levels, as well as tannin (Zanotto et al.,
2020), pyrimidine glucoside, and other bioactive substances
(Bjornsdotter et al,, 2021). QTL mapping for quality traits can help
to improve the utilization and value of faba beans. At present, there are
relatively few studies on the QTL mapping of quality traits in broad
beans. Only five genes that control grain proteins have been identified
(Macas et al. 1993b). In this study, 22 QTLs linked to quality traits were
detected using SNP markers for the first time, including 7 QTLs for FC,
7 for StC, 4 for LC, 2 for PC, and 2 for TC (Supplementary Table S6). In
particular, gFCI.1, qTCI.1, gLCI.1, and gLC3.1 could explain > 20% of
the phenotypic variation, and gStCI1.1 was also associated with PC
(Table 3). These QTLs could thus be used to identify the candidate
genes for faba bean quality traits.

5.3 Candidate genes for the QTLs
controlling seed-related traits

To identify candidate genes for seed-related traits in faba bean, we
focused on 213 genes within 41 QTL intervals that explained > 10% of
the phenotypic variation. According to the results of the functional
annotation, 57.28% of these genes had been annotated. Signaling
pathways that regulate seed size in plants include the ubiquitin-
protease pathway, mitogen-activated protein kinase signaling
pathway, transcriptional regulation, G-protein signaling pathway,
IKU pathway, and plant hormones (Gnan et al, 2014; Li and Li,
2016; Li et al,, 2019). Jayakodi et al. (2023) identified 15 marker-seed
size associations, and most prominent signal was located on
chromosome 4 within the Vfaba.Hedin2.R1.4g051440 gene. In this
investigation, there were 30 genes annotations among the 59 genes
linked to HSW and seed shape (Supplementary Table S11). Thirteen of
these annotation genes located on chromosome 4 by whole genome
sequence alignment. dou_TRINITY_DN52935_c3_g4 and hua_TRINI
TY_DN119282_c0_gl encode serine/threonine phosphatase and the
transcription factor bHLH, respectively, which are reportedly involved
in regulating seed size (Savadi, 2018). dou_TRINITY_DN38848_c0_gl
encodes a CYP gene and CYP is involved in protein folding, signal
transduction, and RNA processing (Kriicken et al., 2009). There
are also two calcium signaling pathway genes, including a calcium-
binding protein gene ye TRINITY_DN120969_c0_gl and a Ca>*/H"-
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exchanging protein gene hua TRINITY_DN154119_c0_g2, which
may be involved in the Ca signaling pathway to regulate seed
development. Other unannotated candidate genes could also
potentially regulate seed size.

The seed coat color of plants is affected by numerous factors, but
flavonoids are the decisive pigments (Lepiniec et al, 2006). In this
study, there were 34 candidate genes for seed coat color, 19 of which
were annotated (Supplementary Table S11). Among these genes, the
translated product of ye TRINITY_DN150431_c0_gl is a ubiquitin-
like protein that plays an important role in pigment accumulation
(Tang et al.,, 2015). ye_TRINITY_DN150347_c0_gl and
ye_TRINITY_DN139828_c0_gl are WD40 family genes, which have
been suggested to regulate the formation of proanthocyanidins in seed
coats (Shirley et al., 1995; Walker et al.,, 1999). Furthermore, the other
16 annotated genes and 15 unannotated genes may also be required for
the pigment composition of different seed coat colors, but this requires
further verification.

In this study, 79 candidate genes were associated with five nutritional
quality traits, of which, 41 were annotated (Supplementary Table S11).
There were 7 genes for LC, 4 of which were annotated, but no functions
related to lipid synthesis and accumulation were reported.
hua_TRINITY_DN145176_c0_gl, a crude fiber candidate gene, is a
triose-phosphate transporter gene that reportedly affects starch and
glucose transport in transgenic tobacco (Hausler et al., 1998). dou_TR
INITY_DN53089_c3_gl and ye_ TRINITY_DN155843_c1_gl are GD
SL esterases that may also be involved in fiber metabolism. Condensed
tannins, also known as proanthocyanidins, exhibit antioxidant,
antibacterial, anticancer, and anti-mutation activities (Gutierrez et al.,
2020). The two genes zt-1 and zt-2 are the most studied for controlling
tannin content in faba bean (Gutierrez et al., 2006; Gutierrez et al., 2007;
Gutierrez et al,, 2008). Of the candidate genes related to tannins, dou_T
RINITY_DN58315_c1_gl encodes a bHLH transcription factor gene,
which is reportedly involved in the mechanisms of tannin biosynthesis in
faba bean (Gutierrez et al., 2020). Other tannin-annotated genes
obtained in the target intervals have not been reported in faba bean,
and thus may be candidate genes affecting tannin content. Further
studies are required to confirm the functions of these genes.

5.4 Reference genome mapping analysis

Compared to chromosomes and gene locations of the reference
genome, the number of linkage groups in our genetic map was
consistent with their respective chromosomes, but there were
variations in the order of genes on the chromosome, and about
25% of them were not found in the genome (Supplementary Table
S12). Eighty-five candidate genes within the QTL interval were
mapped to the reference genome, seven of which were located on
the contigs (Supplementary Figure S1). Therefore, a part of contigs
on the reference genome can be assembled to the genome of faba
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bean based on the map constructed in this study, which is
conducive to the further improvement of the physical map of
faba bean.

6 Conclusions

A high-density genetic map with 12,023 SNPs in 6 LGs was
constructed using the faba_bean_ 130 K SNP TNGS genotyping
platform. A total of 65 QTLs for seed-related traits were identified (3
for 100-seed weight, 28 for seed shape, 12 for seed coat color, and 22 for
nutritional quality). Furthermore, 333 candidate genes were identified
that are likely to participate in the regulation of seed-related traits. This
is the first ultra-dense genetic map of faba bean and it provides a
foundation for further genetic analyses, MAS breeding, and reference
genome assembly research. This study will also be useful for faba bean
gene isolation and functional genomics research.
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Institute, Huanggang Academy of Agricultural Sciences, Huanggang, Hubei, China, “State Key

Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, China,
*Research Center of Buckwheat Industry Technology, Guizhou Normal University, Guiyang, China

Seed vigor (SV) is a crucial trait determining the quality of crop seeds. Currently,
over 80% of China’s cotton-planting area is in Xinjiang Province, where a fully
mechanized planting model is adopted, accounting for more than 90% of the
total fiber production. Therefore, identifying SV-related loci and genes is crucial
for improving cotton yield in Xinjiang. In this study, three seed vigor-related traits,
including germination potential, germination rate, and germination index, were
investigated across three environments in a panel of 355 diverse accessions
based on 2,261,854 high-quality single-nucleotide polymorphisms (SNPs). A
total of 26 significant SNPs were detected and divided into six quantitative trait
locus regions, including 121 predicted candidate genes. By combining gene
expression, gene annotation, and haplotype analysis, two novel candidate genes
(Ghir_A09G002730 and Ghir_D03G009280) within gGR-A09-1 and qGIl/GP/
GR-DO03-3 were associated with vigor-related traits, and Ghir_A09G002730 was
found to be involved in artificial selection during cotton breeding by population
genetic analysis. Thus, understanding the genetic mechanisms underlying seed
vigor-related traits in cotton could help increase the efficiency of direct seeding
by molecular marker-assisted selection breeding.
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Introduction

Upland cotton (Gossypium hirsutum L.) is one of the world’s
most important cash crops and a major source of natural fibers,
accounting for more than 95% of global cotton production (Chen
et al,, 2007). Lint yield depends largely on the quality of cotton
seeds, while seed vigor (SV) is crucial for evaluating seed quality
(Sawan, 2016). SV also determines the growth of crops and food
safety; for example, rapidly and uniformly germinating seeds can
significantly increase the emergence rate in the field and suppress
weed growth (He et al., 2019a). In addition, with the widespread
application of mechanized direct seeding (DS) in cotton production,
cotton seeds with low vigor will make it difficult to sow all seedlings
at once, leading to many problems such as uneven seedling age and
weak seedling vigor (Qun et al., 2007; Liu et al., 2015). Therefore,
the identification of loci and genes related to SV is urgently needed
for DS of cotton.

Seed germination is a key factor affecting SV traits in plants.
Phytohormones such as gibberellin (GA) and abscisic acid (ABA)
have been reported to be essential for the regulation of seed
germination (Yamaguchi, 2008; Ryu and Cho, 2015)—for
example, GA and ABA synthesis pathway-related genes
(GA200x3, GA3ox1, GA20x5, ABI3, and ABI5) have a strong
effect on seed germination (Yamauchi et al, 2004; Yamaguchi,
2008; Iglesias-Fernandez and Matilla, 2009). When plants are under
abiotic stress, ABA in the plant will increase rapidly, and high levels
of ABA will close the stomata and activate complex signaling
pathways mediated by kinase/phosphatase regulation (Kim et al.,
2010). Low levels of reactive oxygen species (ROS) act as signaling
particles to promote dormancy release and trigger seed germination
(Li et al., 2022)—for example, OsCDP3.10 promotes the
accumulation of H,O, during the early stage of seed germination
by increasing the amino acid content (Peng et al, 2022). The
relationship between seed germination and the ROS scavenging
system has been validated in many crops and other plants, such as
Arabidopsis (Leymarie et al., 2012), wheat (Ishibashi et al., 2008),
and rice (Ye et al., 2012). Furthermore, crosstalks between ABA and
ROS signaling pathways have also been reported in plants. In rice,
qSE3 significantly increased ABA biosynthesis and activated ABA
signaling responses, resulting in decreased H,O, levels in
germinating seeds under salinity stress (He et al., 2019b).

SV-related traits are quantitative traits controlled by both genetic
and environmental factors (Li W. et al,, 2021). These traits include
germination rate (GR), germination percentage (GP), germination
index (GI), vigor index (VI), seedling shoot length (SL), and shoot
fresh weight (FW) (Dai et al., 2022; Si et al,, 2022). In recent years,
linkage mapping has been widely used to identify SV-related
quantitative trait loci (QTLs) in crops, and multiple QTLs have
been cloned (Fujino et al., 2004; Fujino et al., 2008; He et al., 2019b;
Jiang et al., 2020; Veisi et al., 2022). By using BC;Fs populations
derived from a rice intraspecific cross (WTR-1" x Y134’), 28 SV-
related QTLs were identified by a SNP genotyping array, and one
major QTL (q1stGC;; ,) explaining 19.9% of the phenotypic variation
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(PV) was flanked by SNP_11_27994133 on chromosome 11
(Dimaano et al,, 2020). In wheat, a total of 49 QTLs were detected
on 12 chromosomes, including seven SV candidate genes involved in
the processes of cell division during germination of aged seeds,
carbohydrate and lipid metabolism, and transcription (Shi et al,
2020). Wang L. et al. (2022) constructed a linkage map based on
specific-locus-amplified fragment sequencing (SLAF-seq) SNP
markers in melon; 2020/2021-qsg5.1 was significant in both
environments, and MELO3C031219.2, in this region, exhibited a
significant expression difference between the parental lines during
multiple germination stages (Wang L. et al, 2022). Under low
temperature conditions, three QTLs (qLTG-3-1, qLTG3-2, and
qLTG-4) related to GR were identified by 122 backcross inbred
lines, and the phenotypic variation explained (PVE) by qLTG-3-1
was 35.0% (Fujino et al., 2004). Subsequently, gLTG-3-1 was cloned,
which was closely related to tissue vacuolation, by covering the
embryo (Fujino et al,, 2008). Furthermore, the genome-wide
association study (GWAS) approach is a method in which
germplasm resources are used to study the genetic structure of
target traits. Compared to traditional QTL mapping, GWAS can
provide higher resolution by using ancestral recombination events
and has been successfully applied to identify significant SNP loci and
potential candidate genes associated with important agronomic traits
in major crops (Zhu et al., 2008; Shikha et al., 2021)—for example,
SV-related QTLs were identified in 346 rice accessions using GWAS,
while 51 significant SNPs were detected for SL, GR, and FW (Dai
et al,, 2022). In addition, a previous study involving 187 rice
accessions identified the candidate gene OsSAPI6; the loss of
OsSAPI6 function reduced the rice seed germination rate (Wang
et al,, 2018). Recently, a candidate gene (Gh_A09G1509) responsible
for seed germination was detected through a GWAS panel in upland
cotton by using whole-genome resequencing (Si et al., 2022). These
results suggest that genome-wide association analysis is an effective
method for identifying genes associated with seed germination.

To date, many quantitative traits have been reported in cotton,
such as fiber quality traits (Su et al., 2016b; Zhang et al., 2019), early
maturity traits (Li et al, 2017; Li L. et al, 2021), and yield
component traits (Su et al., 2016a; Feng et al., 2022). However,
SV-related traits in cotton have received little attention, and most
research have focused on seed germination in relation to stress
tolerance (Yuan et al., 2019; Chen L. et al., 2020; Gu et al., 2021; Guo
et al,, 2022). Few candidate genes for cotton SV-related traits have
been identified (Si et al., 2022), and the mechanism of seed
germination needs further study. In this study, GR, GP, and GI
were determined in a natural population of upland cotton in three
environments, and whole-genome resequencing was used to achieve
deep coverage and obtain high-quality SNP markers. In addition,
six stable QTLs and two novel candidate genes (Ghir_A09G002730
and Ghir_D03G009280) for SV-related traits were further identified
by a GWAS panel, laying the foundation for understanding the
genetic mechanism underlying SV and providing potential
information for applying these potential elite loci for marker-
assisted selection (MAS) in cotton breeding.
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Materials and methods
GWAS population and field experiments

The 355 upland cotton germplasm resources collected by
laboratories worldwide represent a natural population. Previous
studies focused on early maturity (Li L. et al., 2021), fiber quality (Su
et al,, 2016b), fiber yield (Su et al., 2016a; Feng et al., 2022), and
plant architecture component traits based on abundant phenotypic
variations in this population (Su et al., 2018). These upland cotton
varieties are from different countries and represent accessions
resulting from more than 100 years of global upland cotton
breeding. Seeds of the GWAS population used for phenotyping
SV-related traits were collected from three environments, including
Huanggang in Hubei Province (30°57’ N, 114°92’ E) in 2021 (E1:
Huanggang-2021) and Sanya in Hainan Province (18°36’ N, 109°
17" E) in two consecutive years (2021 and 2022) (E2: Sanya-2021
and E3: Sanya-2022). The field experiments in Sanya and
Huanggang were conducted following a randomized complete
block design with two and three replications, respectively.

Phenotyping for SV-related traits
and statistical analysis

The phenotyping of SV-related traits was carried out by the
sandponic method based on previously described methods (Si et al.,
2022). Cotton seeds collected from the field were ginned, and cotton
fuzz was removed by concentrated sulfuric acid. Then, all seeds
were sun-dried for 2 days to break dormancy uniformly. A total of
150 plump seeds with uniform size and full grain were selected,
disinfected with 15% sodium hypochlorite for 10 min, and then
washed clean with distilled water. Then, each line was evenly
planted in a plastic sand box containing 800 g of dry quartz sand
with a size of 13 cm x 19 cm x 12 cm. Subsequently, the seeds were
covered with 250 g of dry quartz sand, and 200 mL of distilled water
was added. The number of germinated seeds was counted each day
until the seventh day. All experiments were conducted in a
phytotron with 16 h of light (25°C) and 8 h of darkness (18°C).
Three biological replicates were included for each accession, and 50
seeds were used for each replicate. Moreover, three SV-related traits
(GR, GP, and GI) were selected for measurement. The full name,
abbreviation, and measurement method of each trait are listed in
Table 1 as described by Yuan et al. (2019). The statistical analysis of

TABLE 1 Method of measurement for seed vigor-related traits.

Trait

= abbreviation

Germination
. GP
potential
Germination rate GR ‘
Germination index

o
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the maximum value, minimum value, average value, etc., was
performed using R software (version: 4.2.2).

Development of SNP markers

The resequencing data (PRJNA389777) of the 355 upland
cotton germplasms used in this study were reported in a previous
study (Li L. et al., 2021). The Illumina HiSeq4000 platform was used
for paired-end read sequencing, with an average sequencing depth
of more than 10x. Based on previously released data, the new
variation map of the natural population was employed in the
‘HaplotypeCaller’ module of GATK (version: 4.2.6.1) (Mckenna
et al,, 2010). Briefly, the variation detection process was as follows:
(1) The quality of paired-end reads from 355 accessions was
assessed using FastQC (version: 0.11.9) (Andrews, 2010); (2)
Sequencing quality control was carried out with fastp software
(version: 0.23.2) to obtain high-quality reads with the following
parameters: -w 16 -c -180-5-3 -W4-M20-f10-F13-t3-T 3 -q
20 -u 40’ (Chen et al,, 2018); (3) All high-quality reads were mapped
to the “TM-1" (version: HAU_v1.1) reference genome using BWA
(version: 0.7.17-r1188) (Li, 2013; Wang et al,, 2019); (4) Then,
Picard software (https://github.com/broadinstitute/picard) was
used to sort the BAM file and mark duplicate reads; (5) The
‘HaplotypeCaller’ module of GATK (version: 4.2.6.1) was used to
identify variant sites and perform SNP filtering with the following
conditions: ‘QUAL <30, DP <1,340, DP >10,050, QD <2.0, MQ <35,
FS >70, SOR >3, MQRankSum <-12.5, and ReadPosRankSum
<-4.0’ (6) The SNP clusters with at least three SNPs detected
within a 10-base window were removed; (7) SNPs within five
base pairs of an InDel were filtered out by BCFtools software
(version: 0.1.19-44428cd) (Danecek et al., 2021); and (8) SNPs
with a minor allele frequency (MAF) <5% and missing rate <20%
were discarded by VCFtools (version: 0.1.16) (Danecek et al., 2011).

GWAS and genetic diversity analysis

Genome-wide association analysis was performed by
combining 2,262,367 high-quality SNPs with the phenotype data
of 355 upland cotton accessions collected in three environments for
SV-related traits using linear mixed models in GEMMA (version:
0.98.3) and executed by vcf2gwas software (version: 0.8.7) (Zhou
and Stephens, 2012; Vogt et al., 2022). P <1 x 10°° was used as the
threshold to detect significant SNP loci. Additionally, the PVE by

Measurement methods for each trait

The number of germinated seeds in the early stage of germination (3 days)/the number of seeds tested

The number of germinated seeds on the 7th day after planting/the number of tested seeds

GI = ¥(Gt/Dt), where Gt represents the number of germinated seeds per day and Dt represents the number of days

corresponding to Gt
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each marker was calculated as previously reported (Feng et al,
2022). The nucleotide diversity (m)a value was calculated using
VCFtools based on the release years (before the 1950s, 1950s-1970s,
1980s-1990s, and 2000s-2020s) and geographical distribution
(early maturity region: NSER, Yellow River region: YRR, Yangtze
River region: YZRR, and Northwest Inland region: NIR) of the 355
accessions. The packages ‘CMplot’ (https://github.com/YinLiLin/
CMplot), ‘LDheatmap’ (Shin et al., 2006), and ‘ggplot2’ (Wickham,
2011) in R software were used to generate Manhattan plots and for
linkage disequilibrium (LD) block analysis and haplotype analysis.

Candidate gene identification and
expression analysis

Based on the ‘TM-1" reference genome (HAU_vl.1) (Wang
et al,, 2019), the genes in the interval located 200 kb upstream and
downstream of the significant SNPs were defined as candidate
genes. The protein sequences of the candidate genes were
obtained from Cottongene (https://www.cottongen.org/). Then,
local BLAST software was used to compare the protein sequence
of the candidate gene with the Arabidopsis protein database (https://
www.arabidopsis.org) to obtain the homologous sequence, and the
criterion was set to less than E® (Johnson et al, 2008). The
expression patterns of SV candidate genes in upland cotton were
determined by RNA-seq and quantitative reverse-transcription
PCR (qRT-PCR) analysis. RNA isolation method was performed
as described by Feng et al. (2022). GhUBQ7 was used as an internal
control. Quantitative analysis method was performed using a Roche
real-time qPCR system (Light Cycler 480 II) and SYBR with three
biological repeats. The public RNA-seq data (PRJNA248163)

10.3389/fpls.2023.1254365

including SRR1695160, SRR1695161, and SRR1695162 were
downloaded from NCBI (https://www.ncbi.nlm.nih.gov/
bioproject/). The Illumina Hiseq2000 platform was used to
perform RNA sequencing on “TM1’ seeds soaked in water for 0,
5, and 10 h, and the paired-end clean reads length was more than
100 bp. The gene expression values were normalized by the average
expression levels (log2) based on transcripts per million values. The
clustered heat map was drawn by the R package ‘pheatmap’
(Kolde, 2012).

Results

Characterization and distribution of SNPs
in the upland cotton genome

Resequencing of the natural population libraries by the Illumina
HiSeq 4000 platform with 150 bp paired-end reads, as described in
previous reports (Li L. et al., 2021), yielded approximately 65,013
million reads in total for the 355 cotton genotypes. Approximately
88.3% of the total bases were successfully mapped to the cotton
reference genome, and the statistical sequencing depth
corresponded to 11.7-fold in the 355 upland cotton accessions. A
total of 2,262,367 SNPs distributed across the cotton genome with a
MAF >0.05, and missing rate of resequencing data of less than 20%
was used for the GWAS of the 355 cotton germplasm accessions, of
which the At and Dt subgenomes contained 1,404,637 and 857,730
SNPs, resulting in an average SNP density of 993.44 and 1045.91
SNP/Mb, respectively (Table 2; Figure 1). The percentage of the
SNPs in each chromosome varied from 1.4% on chromosome D04
to 11.4% on chromosome A08 (Figure 1). Most of the SNPs were

TABLE 2 Distribution and frequency of single-nucleotide polymorphisms (SNPs) identified using the resequencing approach in upland cotton.

Chromosome Sl 2t D(SESFI’?/ Chromosome Sl 2t D(SESF;;Y
length (Mb) number Mb) length (Mb) number Mb)
A01 117.76 102,597 871.25 Dol 6321 97,337 1,539.92
A02 108.09 56,850 525.94 D02 69.84 86,010 1,231.56
A03 113.06 73,858 653.27 D03 52.70 37,138 704.70
A04 85.15 48,890 574.16 D04 56.43 33,068 586.00
A05 109.42 93,469 854.23 D05 62.93 49,985 794.25
A06 124.06 216,693 1,746.73 D06 66.87 95,435 1,427.18
A07 97.78 82,817 846.95 D07 59.26 85,111 1,436.29
A08 122.38 259,187 2,117.94 D08 69.04 93,091 1,348.38
A09 82.10 82,034 999.16 D09 52.82 74,192 1,404.64
A10 114.85 102,498 892.44 D10 68.01 59,948 881.51
All 12321 85,696 695.52 DIl 72.94 44,642 612.02
Al2 107.67 65,645 609.67 D12 62.69 55,606 886.94
Al3 108.38 134,403 1,240.15 D13 63.34 46,167 728.84
Total 1,41391 1,404,637 993.44 Total 820.08 857,730 1,045.91
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located in intergenic regions (84.38%), whereas the exonic and
intronic genome regions contained only 0.89% and 3.03% of SNPs,
respectively (Supplementary Table S1). In addition, SNPs in the
coding regions (coding sequences, CDSs) included 33.26%
synonymous mutations and 64.13% nonsynonymous mutations.

PV of SV-related traits

The three SV-related traits (GI, GP, and GR) of natural
population accessions were measured in three environments. The
values followed a normal distribution for the GI and GP but showed
a skewed distribution for GR based on Shapiro-Wilk tests
(Supplementary Table S2). The frequency histograms of SV-
related traits are shown in Figures 2A-I. The lowest average GI

10.3389/fpls.2023.1254365

was 55.23 in the E1 environment, and the highest average GI was
58.92 in the E2 environment, with a coefficient of variation (CV)
ranging from 6.52% to 12.02% (Supplementary Table S2). For GP,
the E1 environment had the lowest average value of 70.92%, while
the E2 environment had the highest average value of 79.61%; the
CV in the E1 environment (11.67%) was higher than that in the E2
environment (9.21%) and the E3 environment (9.37%)
(Supplementary Table S2). For GR, the lowest average value was
87.37% in the E1 environment, and the highest average value was
93.25% in the E2 environment, with a CV ranging from 3.71% to
10.48% (Supplementary Table S2). Two-way analysis of variance
(ANOVA) showed that genotype (G) and the genotype-by-
environment interaction (G x E) had significant effects on the GI,
GP, and GR (P < 0.001) (Supplementary Table S3). Furthermore,
the heritability of these three SV-related traits ranged from 74.23%
(GR) to 81.75% (GP), whereas that of GI was 76.03%
(Supplementary Table S3). These results suggested that SV-related
traits have extensive PV in the GWAS panel, which is suitable for
further GWAS.

GWAS of SV-related Traits in
Upland Cotton

A total of 292 significant SNPs for three SV-related traits were
identified on 11 chromosomes using the linear mixed model
(Figure 3; Supplementary Table S4; Supplementary Figures S1-
S3). Only 11 SNPs were identified in the At subgenome, whereas
281 SNPs were localized to the Dt subgenome. Among them,
chromosome D03 had the highest number of SNPs (281), with a
total of 254, and the range of -log;o(p) values was from 6.00 to 8.27.
Furthermore, 26 stable SNPs were identified in a minimum of two
environments (including for the best linear unbiased predictor,
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BLUP) or two traits, which were declared as six stable QTLs,
focusing on chromosomes A09, A10, and D03. Notably, a QTL
region (qGR-A09-1) located on chromosome A09 showed a strong
SNP cluster associated with GR, which had a PVE of 6.76-8.56%
and -log;¢(P) ranging from 6.19 to 7.74. qGP-AI10-1 on
chromosome A10 had only one SNP that explained 8.15% of the
observed PVE, with a LOD score of 7.39. Four QTLs on
chromosome D03 (qGR/GI-D03-1, qGI/GR-D03-2, qGI/GP/GR-
D03-3, and qGI/GP/GR-D03-4) were identified in two, three,
three, and four environments, explaining 6.61-7.39%, 6.72-7.79%,
6.65-8.43%, and 6.61-8.90% of the observed PVE, respectively.
Interestingly, a stable QTL (qGI/GP/GR-D03-3) region was revealed
on chromosome D03 from 31.68 to 32.61 Mb and was flanked by
regions associated with the GI, GP, and GR in the E1, E3, and BLUP
environments. Thus, the QTLs gGR-A09-1 and qGI/GP/GR-D03-3
could be treated as major QTLs for further dissection.

Identification of a candidate gene for GR
on chromosome A09

In this study, a novel QTL, gGR-A09-1, exhibited a significant

SNP cluster (rsA09_7745467, rsA09_7791621, rsA09_7878527,
rsA09_7908017, rsA09_7954329, rsA09_7954353, and

8

GI-BLUP

~logso(p)
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rsA09_7962794) occupying a physical region of 0.2 Mb on
chromosome A09 (Figure 4A). Meanwhile, 22 genes were
annotated in this QTL region based on the G. hirsutum reference
genome (Wang et al, 2019), except for Ghir_A09G002720 and
Ghir_A09G002760, which did not have annotation information
(Supplementary Table S5). We further conducted LD analysis on
the significant SNP rsA09_7962794, and LD blocks were found in
this region (Figure 4A). In this QTL interval, rsA09_7962794 on
chromosome A09 showed a strong association with GR, with 7.95%
of the PVE downstream of Ghir_A09G002730 (Table 3).
rsA09_7962794 had two haplotypes, GG and AA, which resulted
in the accessions carrying the AA genotype having a significantly
higher GR than those carrying the GG haplotype in three
environments (P < 0.01) (Figure 4B). In addition, to gain a
further understanding of the genetic characteristics of
rsA09_7962794 in relation to geographic distribution, the 355
upland cotton accessions were divided into four groups: NIR,
YZRR, YRR, and NSER. Interestingly, YRR and NSER showed an
extraordinarily low frequency of the nonfavorable haplotype (GG),
while the accessions obtained from YZRR and NIR had a relatively
high frequency of the favorable haplotype (AA) (>75%) (Figure 4C).
Furthermore, the genetic diversity of Ghir_A09G002730 decreased
following the breeding period. Cotton accessions released before the
1980s showed greater diversity than accessions bred from the 1980s

~logio(p)
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to the 2000s, while accessions bred after the 2000s showed the
lowest diversity (Figure 4D). Specifically, Ghir_A09G002730
belongs to the pentatricopeptide repeat (PPR) superfamily protein
family and has higher expression levels during the seed germination
stage from 0 to 10 h than other genes (Figure 4E). The qRT-PCR
analysis also showed that Ghir_A09G002730 had higher expression
levels in the accessions (‘Liaomian27’ and Xinluzhong35’) carrying
the AA allele than in accessions (‘PB12-1-8” and Xiazao2’) with GG
allele during the seed germination stage (Supplementary Figure S4).

Identification of a candidate gene for GR
on chromosome D03

As mentioned above, another distinct SNP enrichment QTL
region, gGI/GP/GR-D03-3, was detected for the GI, GP, and GR
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across multiple environments, which could explain the relatively
high PVE of 6.65-8.43%, indicating that a major gene in this
genomic interval may improve seed germination (Table 3).
Interestingly, 12 associated SNPs were located within the most
significant haplotype block, which was almost 920 kb long and
contained five haplotypes (Figures 5A, B). A haplotype analysis
revealed that gGI/GP/GR-D03-3 had two major haplotypes
according to SNP location. Comparatively, Hapl had a higher GP
than Hap1 (Figures 5C, D). In total, 46 candidate genes contained in
the gGI/GP/GR-D03-3 region on chromosome D03 were identified.
Among them, Ghir_D03G009280 was annotated as auxin response
factor 9 (ARF9) in Arabidopsis (Supplementary Table S6), and its
homologs played a crucial role in seed dormancy. The RNA-seq and
qRT-PCR assays also showed that Ghir_D03G009280 had higher
expression levels during the seed germination stage, suggesting a
positive regulatory effect (Figure 5E; Supplementary Figure S5).
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TABLE 3 Significant quantitative trait locus (QTLs) associated with seed vigor-related traits.

Position -logio Phenotypic variation
Chromosome . . Allele .
(bp) Trait Environment (P) explained (%)
1sA09_7745467 7,745,467 GR BLUP; E1 T/C 6.19 6.76
sA09_7791621 7,791,621 GR BLUP; E1 A/G 6.25 6.82
rsA09_7878527 7,878,527 GR BLUP; E1; E2 T/C 7.74 8.56
qGR-A09-1  rsA09_7908017 A09 7,908,017 GR BLUP; E1 AlG 6.20 6.76
1sA09_7954329 7,954,329 GR BLUP; El; E2 GIC 6.88 7.55
1sA09_7954353 7,954,353 GR BLUP; El; E2 AIG 6.88 7.55
1sA09_7962794 7,962,794 GR BLUP; E1; E2 GIA 7.22 7.95
qGP-A10-1 | rsA10_112752002 A10 112,752,002 | GP BLUP; E2; E3 CIT 7.39 8.15
Gl El CIT 6.74 7.39
rsD03_15149331 D03 15,149,331
(GRIGL- GR El; E2 C/IT 6.07 6.61
D03-1 Gl El T/C 6.08 6.62
sD03_15180622 D03 15,180,622
GR E2 T/C 624 6.81
rsD03_16442805 D03 16,442,805 GR BLUP; E2 T/A 6.25 681
Gl El AIG 6.16 6.72
D03_17044820 D03 17,044,820
UGR- rsD03_ ,044,
qGUGR GR E2 A/G 6.40 699
D03-2
Gl El AT 7.08 7.79
1sD03_17639861 D03 17,639,861
GR E2 AT 6.49 7.10
rsD03_31686969 D03 31,686,969 GP BLUP; E1 AIC 6.61 724
Gl BLUP; E1 CIT 7.64 8.43
rsD03_31912853 D03 31,912,853
GP BLUP; El cIT 7.40 8.16
1sD03_32121851 _D03 32,121,851 GP BLUP; El GIA 6.85 7.52
GP E1 A/G 7.12 7.84
sD03_32123311 D03 32,123,311
GR E3 AIG 6.39 698
rsD03_32217200 D03 32,217,200 GP BLUP; E1 AIG 7.03 7.72
GI/GP/GR-
E 1303/3 GP El TIC 6.83 7.49
- rsD03_32235852 D03 32,235,852
GR E3 TIC 6.10 665
sD03_32407516 D03 32,407,516 GP BLUP; El A/G 6.64 7.28
1sD03_32411896 D03 32,411,896 GP BLUP; E1 T/IC 7.04 7.74
rsD03_32414028 D03 32,414,028 GP BLUP; E1 G/A 6.67 7.31
rsD03_32429655 D03 32,429,655 GP BLUP; E1 G/A 7.31 8.05
rsD03_32518414 D03 32,518,414 GP BLUP; E1 AIG 7.12 7.83
sD03_32611645 D03 32,611,645 GP BLUP; El A/G 6.86 7.53
Gl El A/C 6.07 6.61
GI/GP/GR-
1 1;03 /4 1sD03_36696073 D03 36,696,073 GP El A/C 8.04 8.90
GR BLUP; E2; E3 AIC 6.53 7.15
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Discussion

The importance of seed vigor
for field production

SV is an indispensable indicator of seed quality, which directly
affects the rapid and uniform germination of seeds and the robust
growth of seedlings and affects the tolerance of plants to abiotic
stress in the early stage of seedling growth (Qun et al., 2007; Fujino
et al,, 2008). In recent years, mechanical DS of cotton has been
widely used due to its cost-saving and labor-saving advantages,
leading to rapid and uniform seed germination becoming necessary
conditions for high yield and mechanization in the cotton industry.
However, seeds with low SV make it difficult for mechanical DS to
achieve full seeding, which leads to problems such as subsequent
filling of the gaps with seedlings and final singling of seedlings (Xie
et al., 2014)—for example, Xinjiang Province is the major cotton-
growing area in China and experiences serious saline—alkali stress

10.3389/fpls.2023.1254365

(He et al,, 2023). A high SV of cotton varieties will improve seed
germination in the field and thus increase the yield. In addition,
cotton breeding without plastic film in Xinjiang Province to
eliminate “white pollution” has become popular. The germination
rate and seedling emergence rate of seeds have higher requirements
for cotton without plastic film (CWPF). CWPF needs to quickly
establish robust seedlings after seed germination to resist the
invasion of diseases, insect pests, adverse environments, and other
factors in the field. Importantly, SV is the result of genetic and
environmental factors and is thus often difficult to effectively select
in conventional breeding (Dai et al., 2022). This study utilized high-
throughput sequencing to generate widely distributed SNP markers
that cover the whole genome (Figure 1), and over 200,000,000 high-
quality SNPs were detected in a diverse set of 355 cotton accessions.
Combining phenotype data from multiple environments for GWAS
analysis can be used to effectively identify genetic loci and candidate
genes that improve SV in upland cotton, providing an effective way
to improve cotton yield in Xinjiang when using the MAS method.
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Hap?2. (E) Heat map of candidate gene expression patterns in the seed germination stage (0, 5, and 10 h) on chromosome D03

Frontiers in Plant Science

105

frontiersin.org


https://doi.org/10.3389/fpls.2023.1254365
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Li et al.

Comprehensive analysis of SV-related traits
at multiple environments

To ensure the accuracy of the GWAS results, phenotypic
identification in multiple environments was conducted with at
least three replicates per environment. The three SV-related traits
(GI, GP, and GR) were measured for seeds collected from three
locations: E1, E2, and E3. Among them, GR and GP did not show an
absolute normal distribution, which was also found in previous
studies (Dai et al., 2022; Si et al., 2022), indicating a complex genetic
basis for these SV-related traits. Through phenotypic correlation
analysis, it was found that there were significant positive
correlations between the three traits. The GI showed a strong
correlation with GR and GP (0.71 and 0.76, respectively)
(Figure 2J). The highest GI was accompanied by the highest GP
and GR, which is consistent with previous findings (Si et al., 2022).
Furthermore, according to the measurement results for each trait,
the CV of SV-related traits in upland cotton is affected by the
environment (Supplementary Table S2), resulting in different
variations in the seeds of each accession harvested in different
planting locations and years—for example, the CV of the GI and GR
in E1 showed a larger range of variation than that in E2 and E3.
Previous studies have shown that the environment in the planting
area has a great influence on the growth and development of seeds
(Fenner, 1992). It is speculated that the E2 and E3 (Sanya City,
Hainan Province) environments with tropical climates are more
suitable environments for seed growth, and the performance of the
seeds may be relatively stable. In contrast, the E1 environment
(Huanggang City, Hubei Province) has high precipitation and
temperature during the seed maturation period, which can affect
the success of pollination.

Candidate genes related to SV

In the past two decades, GWAS has become a powerful and
widely used tool for analyzing the genetic mechanisms underlying
complex quantitative traits in crops (Tibbs Cortes et al., 2021). At
present, most research on SV mainly focuses on the mechanism
under stress in upland cotton (Sun et al., 2018; Yuan et al, 2019
Zheng et al, 2021), while genetic analysis of SV-related traits
associated with normal seed germination is less common (Si et al,
2022). In this study, a GWAS panel was used to measure three SV-
related traits of seeds harvested in three environments. In total, six
significant QTLs were stably identified on three different cotton
chromosomes (Table 3), including 26 SNPs. Numerous studies
have reported that several pathways are involved in regulating SV
in plants, such as phytohormone signaling (GA, ABA, and auxin),
amino acid metabolism, and the reactive oxygen pathway, which play
a crucial role in the seed germination process and have a significant
effect on the molecular mechanisms related to SV (Reed et al., 2022).
It has been reported that high concentrations of ABA promote
dormancy and inhibit seed germination, while high concentrations
of GA promote seed germination by reversing dormancy, leading to
an endogenous balance of the ABA/GA ratio but not the absolute
hormone contents (Finch-Savage and Leubner-Metzger, 2006; Chen
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H. et al., 2020). Ghir_A09G002650 was annotated on chromosome
A09, belonging to the GA-regulated family of proteins and encoding
a protein containing the GASA domain, which is most closely related
to the known homolog GASA14 in Arabidopsis. GASA14 regulates the
increase in plant growth through GA induction and DELLA-
dependent signal transduction, which could increase resistance to
abiotic stress by reducing the accumulation of ROS (Sun et al., 2013).
Thus, it is speculated that Ghir_A09G002650 has the potential to
improve the SV of cotton under stress. MYB-type and bHLH-type
transcription factors have been reported to be involved in the
regulation of seed germination signaling in plants (Penfield et al,
2005; Reyes and Chua, 2007; Kim et al., 2015; Wang X. et al., 2022; Xu
et al.,, 2022). Specifically, Ghir_D03G006550 is in the gGI/GR-D03-2
region and is homologous to MYB52. It has been previously shown
that its shared common targets with ERF4 regulate the development
of the seed coat in Arabidopsis (Ding et al., 2021). Ghir_D03G010510
encoded bHLH-type family proteins in the QTL region of qGI/GP/
GR-D03-4, sharing 35.52% sequence identity with the PIF8 protein in
Arabidopsis, which binds to promoter regions of AtPIF6. The
expression level of AtPIF6 during seed development plays a crucial
role in establishing primary seed dormancy levels (Peters et al., 2010).

Notably, Ghir_A09G002730 and Ghir_D03G009280 were
detected in two distinct enriched regions located on chromosome
A09 (qGR-A09-1) and chromosome D03 (qGI/GP/GR-D03-3)
(Figure 3). Interestingly, Ghir_A09G002730, within the strong-LD
region at 21.9 kb upstream of rsA09_7962794 and highly expressed
during the development of seed germination (Figures 4A, E),
encodes a PPR superfamily protein in Arabidopsis. SOARI
belongs to the PPR protein family and acts as a core negative
regulator downstream of ABAR and upstream of ABI5,
participating in ABA signaling regulation of seed germination and
seedling growth processes (Ma et al., 2020). We also discovered that
cotton accessions carrying rsA09_7962794-A with a higher GR had
a much higher allele frequency for Ghir_A09G002730 in YZRR and
NIR than in YRR and NSER (Figures 4B, C). It is possible that the
planting mode of seedling raising and transplanting in YZRR and
mechanized planting in the NIR all employed single-seed sowing,
which increased the selection frequency of rsA09_7962794-A. In
addition, we compared the genetic diversity of the region on
chromosome A09 containing Ghir_A09G002730 in different
breeding periods, and it was found that cultivars bred after the
2000s had lower genetic diversity than cultivars from other stages,
implying that with the continuous increase in cotton SV during the
breeding process, this gene was associated with artificial selection
(Figure 4D). Therefore, it is reasonable to postulate that
Ghir_A09G002730 is a new candidate gene influencing SV in
cotton. Ghir_D03G009280 caught our attention based on the gene
annotation of cotton. This gene encodes an auxin response factor.
Recent studies have shown that ARFI6 interacts with ABI5 and
positively regulates the ABA response during seed germination
(Mei et al., 2023). Furthermore, Ghir D03G009280, tightly linked
with haplotype Hapl, showed a significant association with GP
(Figure 5C), and materials carrying the Hap1 haplotype had longer
roots (Figure 5D). The RNA-seq analysis showed a high expression
level of this gene during seed germination (Figure 5E). From the
above-mentioned results, we inferred that Ghir_A09G002730 and
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Ghir_D03G009280 were two major candidate genes that may play
an important role in cotton SV.

Conclusions

In the present study, there was a total of 121 predicted
candidate genes within six stable QTL regions. Furthermore,
Ghir_A09G002730 and Ghir_D03G009280 caught our attention
based on gene expression (RNA-seq and qRT-PCR), gene
annotation, and haplotype analysis, which may play a key role
in regulating the germination of cotton seeds. These results will
enhance our understanding of the molecular-genetic regulation of
SV in cotton.
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Biotic stress is one of the major threats to stable rice production. Climate change
affects the shifting of pest outbreaks in time and space. Genetic improvement of
biotic stress resistance in rice is a cost-effective and environment-friendly way to
control diseases and pests compared to other methods such as chemical
spraying. Fast deployment of the available and suitable genes/alleles in local
elite varieties through marker-assisted selection (MAS) is crucial for stable high-
yield rice production. In this review, we focused on consolidating all the available
cloned genes/alleles conferring resistance against rice pathogens (virus, bacteria,
and fungus) and insect pests, the corresponding donor materials, and the DNA
markers linked to the identified genes. To date, 48 genes (independent loci) have
been cloned for only major biotic stresses: seven genes for brown planthopper
(BPH), 23 for blast, 13 for bacterial blight, and five for viruses. Physical locations of
the 48 genes were graphically mapped on the 12 rice chromosomes so that
breeders can easily find the locations of the target genes and distances among all
the biotic stress resistance genes and any other target trait genes. For efficient
use of the cloned genes, we collected all the publically available DNA markers
(~500 markers) linked to the identified genes. In case of no available cloned
genes yet for the other biotic stresses, we provided brief information such as
donor germplasm, quantitative trait loci (QTLs), and the related papers. All the
information described in this review can contribute to the fast genetic
improvement of biotic stress resistance in rice for stable high-yield
rice production.

KEYWORDS

biotic stress, marker-assisted selection, brown planthopper, blast, bacterial blight,
marker, rice
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1 Introduction

Rice (Oryza sativa L.) is a staple food of more than 50% of the
world’s population; notably, it is the most important crop in Asian
countries. Recently, rice consumption has been rapidly increasing in
Africa as well (Seck et al., 2012). Stable high-yield production of rice
is highly associated with global food security (Bandumula, 2018).
However, rice plants are inevitably encountering pressing
challenges from different types of biotic/abiotic stresses that cause
significant rice grain yield reduction (Khush, 2005; Dixit et al,
2020). Biotic stresses caused by pests and diseases pose a significant
risk to global rice yield production by 52%, of which approximately
30% of these damages are due to pathogen infection (Savary et al,
2019; Jamaloddin et al., 2021). In addition, global climate change is
a major threat to global food security (Schneider and Asch, 2020). A
changing climate will influence the distribution and possibly the
impact of rice diseases (Bebber, 2015; Chaloner et al., 2021) as well
as host and disease interactions, mechanism, reproduction, and
survival of pathogens (Velasquez et al., 2018).

Rice plants are attacked by diverse biotic agents, including
insect pests, fungal and bacterial pathogens, and viruses. The
prevalence of species of pathogens and biotypes/pathotypes is
variable based on the environmental condition and geographical
locations. Over the past decades, outbreaks due to pests and diseases
have caused serious economic damage to rice-growing countries
from time to time, locally and globally. For instance, some
devastating damage from brown planthopper (BPH) infestation
has been reported in different years in many rice-growing countries,
including tropical and temperate Asia (Dyck and Thomas, 1979;
Jena and Kim, 2010). Rice blast disease causes a loss of rice yield
sufficient to feed 60 million people worldwide (Fahad et al., 2019;
Singh et al., 2020). As a viral disease, a series of large-scale outbreaks
of tungro were recorded in many tropical Asian countries, and it
causes yield losses of 5% to 10% annually (Dai and Beachy, 2009). In
Africa, rice yellow mottle virus (RYMV) is one of the most
problematic biotic stresses, it reduces grain yield by 10%-100%,
and severe attacks can lead to plant death (Kouassi et al., 2005). Still,
today, severe biotic stress damage is reported in local or national
media, implying that biotic stress damage affects local rice farmers,
particularly small and marginal farmers.

There are several practical methods used to control pathogens,
such as chemical spraying, crop rotation, field management, and
host resistance. Among these, genetic improvement of host
resistance by introgression of resistance genes through breeding
and cultivation of resistant varieties is the most cost-effective and
environmental-friendly strategy for controlling biotic agents. Thus,
much effort has been exerted by scientists and breeders in isolating
germplasms possessing resistance to a variety of biotic stresses from
cultivars, landraces, and wild rice species in the genus Oryza.
Through genetic analysis, they have also identified the genetic
factors (quantitative trait loci (QTLs)/genes) that provide
resistance from the isolated germplasm.

Once the genetic factors conferring biotic stress resistance are
identified, they can be easily and effectively transferred to the target
background varieties by marker-assisted selection (MAS) compared
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to the conventional phenotype-based selection. DNA markers that
can discriminate the alleles (sequences) between the donor and elite
susceptible variety play important roles in efficiently deploying the
identified genetic factors. Different types of molecular markers have
been developed based on the types of sequence variations (short or
long InDels and single-nucleotide polymorphisms (SNPs)) and
successfully applied in the genetics and breeding of rice. Among
them, the PCR-gel-based markers such as simple sequence repeat
(SSR) markers, also called rice microsatellite (RM) markers, InDel
markers, dominant PCR markers, tetra-primer method markers,
and cleaved amplified polymorphic sequence (CAPS: PCR-
restriction enzyme application-gel) markers are the most
common in rice MAS breeding due to simplicity, in-house
accessibility, and easiness to breeders (McCouch et al, 2002;
Chen H, et al., 2011; Wang et al.,, 2012; Kim et al., 2016; Nadeem
et al,, 2018).

To improve the genetic potential of biotic stress resistance
through MAS, two key factors are essential: genetic factors (QTLs
and genes) and molecular tools (DNA markers). Compared to the
QTL level of genetic factors, the cloned genes/alleles have some
advantages: i) the genetic effect will be quite reliable because it was
functionally validated by using transgenic approaches such as
complementation test, RNAi, and CRISPR tools; ii) the exact
physical location of the gene is identified, and thus, it enables a
precision marker-assisted introgression of the target gene without
linkage drag caused by the neighboring genes. Many biotic stress
resistance genes were cloned from cultivars, landraces, and wild rice
germplasm possessing “natural variations”, but some of the genes
were identified by transgenic approaches such as overexpression,
RNAi, and CRISPR and also by using rice T-DNA tagging lines.
Several review papers already covered recent advances in
understanding the molecular mechanism of biotic stress
resistances for BPH (Yan et al,, 2023), blast (Liu W, et al.,, 2013;
Lietal, 2019), and bacterial blight (Jiang et al., 2020; Pradhan et al.,
2020) and also broad-spectrum disease resistance in rice (Ke et al.,
2017; Liu et al., 2021). In this review, we focused on consolidating all
the available cloned genes/alleles with corresponding donors
possessing “natural variations” and all the related DNA markers
for the breeding aspects. In addition, we briefly described some
review papers and recent publications about the QTLs or
germplasm if the cloned genes are not available for specific
pathogens. We aimed to provide breeding-related information so
that breeders can easily select the available resistant genes/alleles
and the associated markers for the fast deployment of the proper
genes/alleles in their breeding programs to deal with stable high-
yield rice production and climate change.

2 Precision marker-assisted breeding
by using the cloned genes/alleles

Deployment of QTLs and genes through marker-assisted
breeding has been successfully improving the genetic potential of
target traits in many crops. However, occasional acquisition of
biotic stress resistance by the breeding process used to be associated
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with yield penalties in crops (Brown, 2002) and also grain quality in
rice (Fukuoka et al, 2009) probably due to the presence of
unfavorable genes located in the vicinity of the target biotic stress
resistance locus (also called linkage drag). Thus, precise
introgression of biotic stress resistance genes through marker-
assisted breeding of the cloned genes can reduce unexpected
penalties in yield, grain qualities, and also other agronomic traits
in the final breeding products. Recent advances in DNA sequencing,
genotyping technologies, genome-wide association study (GWAS),
functional genomics, and gene validation by using transgenic
approaches have been accelerating the identification of the causal
genes governing the target traits. Notably, many biotic stress
resistance genes from the previously identified major QTLs have
been gradually cloned. The cloned genes/alleles possessing natural
variations are valuable for the genetic improvement of biotic stress
resistance in rice. Furthermore, unlike QTL level genetic factors
(more than several hundred kb), breeders can precisely introgress
the gene (100 kb) using marker-based recombinant selection to
avoid unwanted phenotypes caused by linkage drag in the final
breeding lines because the exact physical location of the causal gene
is clearly known. To date, 48 genes have been cloned for the major
rice biotic stress, including bacterial blight (BB), blast, BPH, and rice
viruses. The cloned gene names, gene IDs of rice databases (RAP-
DB and MSU), encoding proteins, the physical location of the genes,
donor germplasm, and its original research papers are summarized
in this review. In some cases, the previously reported major QTLs
from different sources were identified as the same gene (same locus)
with different alleles (different sequences). For example,
BPHI1=BPH10=BPH18=BPH21/BPH2=BPH26/BHP7/BPHY on the
long arm of Chr 12 (“=“ and “/” means identical and different
alleles, respectively) and Pi9/Pi2/Piz-t/Pi50/PigmR on the short arm
of Chr 6 are the different resistant alleles but the same locus. Due to
the same physical locations, those alleles cannot be pyramided, and
thus, the potential best allele should be selected and used in the
breeding program. In this review, we focused on the cloned biotic
stress resistance genes with the gene-linked markers. Moreover, we
briefly mentioned some genetic resources such as QTLs or donor
materials if there are no cloned genes yet for some biotic stresses.

3 Insect pests and available
genetic resources

Globally, more than 100 species of insects attack rice plants, and
approximately 20 of them can cause economic damage (Pathak and
Khan, 1994). Major insect pests of rice are stem borers, leathoppers
and planthoppers, gall midges, and grain-sucking bugs. Efforts to
isolate the resistant germplasm and genetic factors against insect
pests identified a number of QTLs for the major insect pests. At the
gene level, a handful of genes were cloned for only BPH resistance,
but to date, no genes have been cloned yet for other insect pest
resistance. Here, we described BPH resistance genes cloned and
some genetic resources (QTLs and donor sources) for other
insect pests.
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3.1 Brown planthopper (Nilaparvata lugens)

Among the major insect pests, BPH is one of the most
destructive pests, especially in Asian countries including both
tropical and temperate zones, causing severe economic loss to the
rice crop through directly sucking phloem sap, often causing
“hopper burn”, and it serves as a vector for transmission of rice
ragged stunt virus (RRSV) and rice grassy stunt virus (RGSV)
(Cabauatan et al,, 2009). To date, more than 45 genetic loci
providing BPH resistance have been identified from diverse plant
materials, including cultivars, landraces, and wild rice species.
Among them, seven genes (seven independent loci) comprising
10 different alleles for BPH resistance were cloned, that is, BPHI4,
BPH30, BPH17, BPH6, BPH29, BPH32=BPH3, and
BPHI1=BPH10=BPH18=BPH21/BPH2=BPH26/BHP7/BPH9. The
cloned genes with physical locations, RAPDB/MSU gene ID,
protein encoded, donor sources, and corresponding references are
summarized in Table 1. BPHI4 gene encoding nucleotide-binding
site (NBS) and leucine-rich repeats (LRRs), “NBS-LRR” or “NLR” in
short, was first cloned from the previously mapped QbpI on Chr 3
of the Oryza officinalis introgression by genetic mapping and
following transgenic complementation test (Du et al., 2009). With
similar approaches, the BPH17 QTL on Chr 4S of the Sri Lankan
rice variety, Rathu Heenati (Sun et al., 2005), revealed that three
repeats of lectin receptor kinase gene (OsLecRKI-OsLecRK3) are
responsible for BPH resistance (Liu et al., 2015). However, Liu et al.
(2015) named the gene identified from the BPH17 QTL as BPH3
gene, and thus, it might cause confusion with the original BPH3
QTL mapped on Chr 6S of donors (PTB33 and Rathu Heenati
varieties) (Jairin et al., 2007). To avoid confusion, we followed the
original BPHI7 QTL name as BPHI7 gene name in this review.
Afterward, Ren et al. (2016) cloned the causal gene of BPH
resistance from the previously fine-mapped BPH3 locus of PTB33
(Jairin et al., 2007) using bioinformatics and transgenic validation
experiments. The cloned gene encodes an unknown short
consensus repeat (SCR) domain-containing protein and the BPH3
QTL was renamed as BPH32 (BPH32=BPH3) (Ren et al., 2016).
Some of the BPH-resistant loci from different sources overlapped at
the same locus, resulting in four clusters on chromosomes 4S, 4L,
6S, and 12L (Fujita et al., 2013; Du et al,, 2020). From the largest
BPH QTL cluster on Chr 12L containing BPHI, BPH2, BPH7,
BPHY, BPHI10, BPH18, BPH21, and BPH26 (Fujita et al., 2013),
BPH26 encoding NBS-LRR protein was first cloned from the BPH26
QTL derived from ADR52 (Tamura et al., 2014). Then, BPH18 from
the BPHI8 QTL originated from the Oryza australiensis
introgression line (IL) (IR65482-7-216-1-2) was cloned and
identified as the same gene with BPH26 because physically two
genes are located at the same locus on Chr 12L. However, the
sequences, including promoter and protein-coding sequences
(CDS) and also BPH reactions, were different between BPH26
and BPH18 (Ji et al., 2016). BPH9 derived from Pokkali was also
identified as the same gene as BPHI8/BPH26, but it showed
different gene sequences and also different BPH reactions (Zhao
et al,, 2016), suggesting that all three are the same gene (locus) but
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TABLE 1 The cloned BPH resistance genes.

10.3389/fpls.2023.1247014

Location Encodin Resistant/ Inheritance
Chr (bp)®@ RAPDB_ID roteing donor pattern of Reference
P P allele R- allele
Oryza .
BPH14 3 35,693,286 0s03g63150 0s03g0848700 NBS-LRR O Dominant Du et al., 2009
officinalis IL
Protein with
BPH30 4 929,966 0504202520 two leucine- AC-1613 Dominant Shi et al,, 2021
rich domains
(LRDs)
A cluster of
three genes
encoding
1
0s04g12540- | 050480201900~ mfn?::;;e Ratha
BPH17" 4 6,940,275 0s04g12560- | Os04g0202300~ i ) ) Dominant Liu et al, 2015
localized lectin Heenati
0Os04g12580 05040202500
receptor
kinases
(OsLecRK1-
OsLecRK3)
. . Guo et al,,
BPH6 4 21,396,879 0s04g35210 05040431700 Atypical LRR Swarnalata Dominant 2018
B3 domain- RBPH54
L . Wang Y, et al,,
BPH29 6 484,346 0s06g01860 0s06g0107800 containing (Oryza Recessive 2015
protein rufipogon IL)
Unknown
short
BPH32 consensus Ren et al
n .
. 6 1223069 | Os06g03240 = Os06g0123200 | repeat (SCR) Ptb33 Dominant e
=BPH3 . 2016
domain-
containing
protein
IR65482-7- Tamura et al.,
216-1-2 2014 (BPH26),
(BPH18), Ji et al,, 2016
BPHI=BPH10=BPH18=BPH21/ ADR52 (BPH18),
12 22,886,341 0Os12g37290 0s12g0559400 NBS-LRR Dominant .
BPH2=BPH26/BHP7/BPHO %8 i (BPH26), T12 ominan Zhao et al,
(BPH?), 2016 (BPH9
Pokkali and other
(BPHY9) alleles)

“=“ means the identical allele, and “/” means the different alleles at the same locus.

@Location of the translation start codon (ATG) of the cloned genes on the rice reference genome IRGSP1.0 (https://rapdb.dna.affrc.go.jp/).
®BPH17 was identified from the mapping populations derived from the cross Rathu Heenati (R) and 02428 variety (S) by Sun et al. (2005). In a subsequent study, Liu et al. (2015) cloned the BPH
resistance gene from the same materials, but the gene was probably mistakenly named BPH3 in the publication. Hence, to avoid confusion with previously reported BPH3 QTL (Jairin et al.,

2007), the original name QTL name (BPH17) was given in this review.

(9BPH32 was identified by using bioinformatics and transgenic gene validation experiments by Ren et al. (2016) from the previously fine-mapped BPH3 locus (Jairin et al., 2007).
(d)Eight BPH genes clustered on Chr 12L were identified as multi-alleles with four different sequences (four allele types) at the same locus (Zhao et al., 2016). However, the NILs with the same
allele types (BPH10, BPH18, and BPH21) showed a bit different BPH resistance among the same allele types (Jena et al., 2017).

functionally different alleles. Based on the sequence analysis of the
Chr 12L BPH cluster, Zhao et al. (2016) classified the eight genes
into four allelotypes, BPHI=BPHI0=BPHI18=BPH21/
BPH2=BPH26/BHP7/BPHY9. However, the BPH near-isogenic
lines (NILs) with the same allele types (BPHIO, BPHI18, and
BPH21) showed slightly different BPH resistance among the same
allele types (Jena et al,, 2017). Although four different functional
alleles were identified on Chr 12L, they cannot be pyramided by
MAS breeding due to their same locations. Guo et al. (2018) cloned
the BPH6 encoding NBS-LRR protein from the previously found
BPH6 QTL originating from the Swarnalata variety, which exhibits
resistance to biotype 4, the most devastating BPH biotype in South
Asia, of Bangladesh BPH populations (Kabish and Khush, 1988).
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The recessive gene BPH29 located at Chr 6 was found to encode a
B3-domain containing protein from the RBPH54 IL possessing
BPH resistance derived from the wild rice species Oryza rufipogon
(Wang Y, et al., 2015). BPH30 gene located on Chr 4 of the indica
variety AC-1613 was identified as a gene that encodes a novel
protein with two leucine-rich domains (Shi et al,, 2021). In addition
to the cloned BPH genes, a number of QTLs and fine-mapped QTLs
are also available (Fujita et al, 2013; Naik et al,, 2018; Du et al,
2020). Moreover, using 10 different BPH genes/QTLs, 25 NILs
possessing single or two to three genes were developed in an indica
variety background, IR24 (Jena et al., 2017). The set of BPH NILs
will be useful for screening suitable BPH genes/alleles against
regional BPH biotypes and for genetic improvement of BPH
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resistance in the local elite variety backgrounds. To achieve durable
and broad-spectrum resistance, QTL/gene pyramiding approaches
are widely used in breeding programs. Overall, the BPH-NILs with
two to three genes exhibited more strong and broad-spectrum
resistance than the NILs harboring a single BPH gene (Jena et al.,
2017). In addition, pyramiding effects of two to three BPH gene
combinations such as BPHI14 + BPH15, BPH6 + BPH12, and BPH13
+ BPHI4 + BPHI5 were observed in different backgrounds or
breeding programs (Hu et al., 2012; Qiu et al., 2012; Hu et al,, 2016).

3.2 Other planthoppers

A handful of genetic factors governing resistance against
planthoppers, including small brown planthopper (SBPH:
Laodelphax striatellus), white-backed planthopper (WBPH:
Sogatella furcifera), green leathopper (GLH: Nephotettix
virescens), and green rice leafhopper (GRH: Nephotettix
cincticeps), have been identified from diverse germplasms and are
well summarized in a few review papers (Fujita et al., 2013; Du et al,
2020). In this review, we only included recent progress on genetic
factors to other planthoppers. A stable locus showing WBPH
resistance in 2 years was found in the RM280-RM6909 region on
Chr 4L from the Cheongcheong variety (Kim et al., 2021). The high
resistance locus designated as Bph38 to both BPH and WBPH was
identified from O. rufipogon and was fine-mapped to a 79-kb region
on Chr 4 (Yang et al., 2020). Phi et al. (2019) identified a major QTL
(qGRH4.2=GRH6) conferring GRH resistance from a wild species
(Oryza nivara_IRGC105715) and fine-mapped the locus to ~31-kb
region on Chr 4. Recent studies showed a possibility that increasing
resistance to multiple insects could be achieved by the pyramiding
of insect resistance loci. For example, both GLH and GRH
resistance was obtained by pyramiding of two GRH resistance
genes, GRH2 and GRH4 (Horgan et al., 2018); enhanced
resistance against multiple herbivore species, including zig-zag
leathopper (Recilia dorsalis), BPH, and WBPH, was shown by
pyramiding of two to three GRH resistance loci (GRH2 and
GRH4-6) (Horgan et al., 2019).

3.3 Rice gall midge (Orseolia oryzae)

To date, 12 potential genetic factors (GmI-Gm12) conferring
resistance against Asian rice gall midges (O. oryzae) have been
reported. Among them, 10, except for Gm9 and Gm10, are mapped
on rice chromosomes (Bentur et al., 2016; Leelagud et al., 2020).
Although no Gm genes have been fully validated by using transgenic
approaches, four QTLs were fine-mapped with potential candidate
genes: gm3 (donor: RP2068-18-3-5 breeding line from
Velluthacheera) on 560-kb region of Chr4L (Sama et al., 2014),
Gm4 (donor: Abhaya) on 300-kb region of Chr 8 (Divya et al,
2015), Gm8 (donor: Aganni) on 430-kb region of Chr 8 (Divya et al,
2018), and gmI12 (donor: MN62M) on 345-kb region of Chr 2
(Leelagud et al., 2020). These four QTLs might be useful in a
breeding program. However, the donor sources showing resistance
against Indian gall midge biotypes, including Velluthacheera (gm3),
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Abhaya (Gm4), and Aganni (Gm8), were susceptible to all eight
Thailand gall midge populations (Leelagud et al., 2020), suggesting
that the suitable genetic factors should be selected based on the
potential biotypes of insects.

3.4 Other insect pests

Five QTLs associated with leaf-folder (Cnaphalocrocis
medinalis) resistance, with 8.0%-21.1% phenotypic variance
explained (PVE), were found from the double haploid population
(CJ06 x TN1), and pyramiding of QTLs affected resistance to leaf-
folder (Rao et al., 2010). However, reliable genetic factors
controlling other insect resistance, including stem borer and
grain-sucking bugs, have not been reported yet.

4 Fungal diseases and available
genetic resources

Several major fungal pathogens threaten stable high-yield rice
production. The major fungal diseases of rice are “bakanae disease”
(pathogen: Gibberella fujikuroi, syn. Fusarium fujikuroi), “brown
spot” (pathogen: Cochliobolus miyabeanus, syn. Bipolaris oryzae,
Helminthosporium oryzae), “narrow brown leaf spot” also called
“narrow brown spot” (pathogen: Sphaerulina oryzina, syn.
Cercospora janseana, Cercospora oryzae), “false smut” (pathogen:
Ustilaginoidea virens), “leaf scald” (pathogen: Microdochium
oryzae), “sheath blight” (pathogen: Rhizoctonia solani, syn.
Thanatephorus cucumeris), “aggregate sheath spot” (pathogen:
Rhizoctonia oryzae-sativae), “sheath rot” (pathogen: Sarocladium
oryzae), “stem rot” (pathogen: Sclerotium oryzae, syn. Nakataea
oryzae), and “blast” (pathogen: Magnaporthe oryzae, syn.
Pyricularia oryzae). Among fungal diseases, blast has been
intensively studied compared to other fungal diseases. As a result,
a handful of blast-resistance genes have been cloned, but no cloned
genes are available yet for other fungal diseases.

4.1 Blast (pathogen: M. oryzae,
syn. P. oryzae)

Among the fungal diseases, rice blast is the most devastating
fungal disease of rice worldwide, causing a serious threat to the
world’s food security. The blast pathogen can affect all above-
ground parts of a rice plant, including the leaf, collar, node, neck,
parts of the panicle, and sometimes the leaf sheath (IRRI Rice
Knowledge Bank). Blast disease occurs in 85 countries, and it causes
a 10%-35% loss of harvest (Fisher et al., 2012), and the amount of
rice damaged by blast annually is sufficient to feed 60 million people
worldwide (Pennisi, 2010; Fahad et al., 2019; Singh et al., 2020).
There are over 100 blast resistance QTLs/loci identified from
diverse germplasm including cultivars, landraces, and wild
relatives of rice (Ashkani et al., 2016; Li et al, 2019). The Pib
(donor: indica cultivar Engkatek) and Pita (donor: indica cultivar
Tadukan) were the first cloned blast resistance genes, and both
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encode NBS-LRR domains predicted to be cytoplasmic proteins
(Wang et al., 1999; Bryan et al, 2000). To date, 23 genes (23
independent loci) consisting of ~35 different alleles have been
cloned, including three panicle blast resistance genes Pbl-Pb3
(Table 2). The cloned genes were distributed across the rice
chromosomes except for chromosomes 5, 7, and 10.
Chromosomes 6 and 11 harbored four and six blast genes,
respectively (Pi9 alleles, Pid4, Pid3 alleles, and Pid2 on Chr 6; Pia
alleles, Pi54rh alleles, Pik alleles, Pbl, Pb2, and Pb3 on Chr 11).
Several blast-resistant QTLs were identified at the same location on
the short arm of Chr 6 (10.4-Mb region) from different germplasms.
Finally, the causal genes were located at the NLR gene-repeated
cluster (Pi9 locus), and they are regarded as the same genes with
different alleles (Pi9/Pi2=Piz-5/Piz-t/Pi50/Pigm/Pizh). At the Pi9
locus, two to 13 repeats of NLR gene were laid next to each other,

TABLE 2 The cloned blast resistance genes.

10.3389/fpls.2023.1247014

and the blast-resistant donors possessed nine repeats (Pi9 and Pi2)
or 13 repeats (Pigm) of NLR genes (Deng et al., 2017). There were
sequence variations among the alleles of the responsive NLR gene at
the Pi9 locus, and they showed different reactions to the blast
strains. In addition to the cloned genes/alleles, one major QTL
(Pi40) was identified at the Pi9 locus from the O. australiensis-
derived IL (IR65482-4-136-2-2) through fine mapping (Jeung et al.,
2007). The Pi40 introgression in Korean and Turkish varieties
showed resistance to a wide range of blast strains in Korea and
Turkey (Jeung et al., 2007; Beser et al., 2016). Another major cluster
was found on Chr 11 (25.2-Mb region) (Pik locus) from various
donor materials, and they (Pik/Pik-m/Pik-p/Pil/Pi7) were identified
as allelic (Table 2). Interestingly, most of the cloned blast genes
encode NBS-LRR (NLR) protein, except for four genes: bsr-dl
(C2H2-type zinc finger protein), pi21 (proline-rich protein), Pid2

. . . Inheritance
Location Encodin Resistant/donor
Gene  Chr RAPDB_ID ng pattern of Reference
(bp) protein allele
R-allele
Pit 1 2,681,220 0s01g05620 050180149500 NBS-LRR K59 Dominant Hayashi K, et al., 2010
Pi64 1 33,098,082 0s01g57280 0s01g0781200 NBS-LRR Yangmaogu Dominant Ma et al,, 2015
Pi37 1 33,120,499 0s01g57310 0s01g0781700 NBS-LRR St. No. 1 Dominant Lin et al.,, 2007
Ni bare (Pish) Takahashi et al., 2010
1pponbare sn),
Pish/Pi35 1 33,136,846 0s01g57340 05010782100 NBS-LRR pp . i Dominant (Pish), Fukuoka et al.,
Hokkai 188 (Pi35) i
2014 (Pi35)
Pib 2 35,118,769 0s02¢57310 0s02g0818500 NBS-LRR Engkatek Dominant Wang et al., 1999
C2H2-type
bsr-d1 3 18,435,990 0s03g32230 05030437200 zinc ﬁnger Digu Dominant Li et al., 2017
protein
) Proline-rich . . .
pi2l 4 19,835,206 0s04g32850 0s04g0401000 protein Owarihatamochi Recessive Fukuoka et al., 2009
1]
Pi63 4 31,554,480 0504852970 05040620950 NBS-LRR Kahei Dominant Xu et al., 2014
Pi9/ Oryza minuta IL (75-1- Qu et al., 2006 (Pi9),
Pi2=Piz- 127) (Pi9), C101A51 Zhou et al., 2006 (Pi2
5/Piz-t, Pi2), Toride 1 (Piz-t), d Piz-t), Su et al,, 2015
Piz-t] 10,387,509 Os06g17900 | Os06g0286700 NBS-LRR (Pi2), Toride 1 (Piz-f) Dominant and Piz-f), Su et a
Pi50/ Er-Ba-Zhan (Pi50), (Pi50), Deng et al., 2017
PigmR@/ Gumei 4 (PigmR), (PigmR), Xie et al., 2019
Pizh ZHI11 (Pizh) (Pizh)
Pid4 6 10,435,819 0506817950 050620287500 NBS-LRR Digu Dominant Chen et al., 2018
Pid3/ Digu (Pid3), Gumei2 Sha(lzllg . ;ll"tzﬂogzi)}:if &
id3), Gume hen J, .
Pi25/ 6 13,054,818 Os06g22460  Os06g0330100 NBS-LRR Jigu met Dominant enh e
. (Pi25), MC276 (Pid3-11) (Pi25), Inukai et al., 2019
Pid3-11 .
(Pid3-11)
B-lectin
Pid2 6 17,160,333 0s06g29810 050680494100 receptor Digu Dominant Chen et al,, 2006
kinase
Kasalath (fc 1
Pi36 8 2878884 | Os08g05440 | Os08g0150150 NBS-LRR asalath (formerly Dominant Liu et al., 2007
known as Q61)
Pi5 9 9,681,913 0s09g15840 050980327600 NBS-LRR RIL260-Moroberekan Dominant Lee et al., 2009
Sanhi han No 2
Pis6 9 9,777,527 | Os09g16000 | Os09g0328951 NBS-LRR an “‘Z;’Ig{z Z;)“ © Dominant Liu Y, et al,, 2013
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TABLE 2 Continued

10.3389/fpls.2023.1247014

Location Encodin Resistant/donor InleEnes
Chr MSU_ID RAPDB_ID ng pattern of Reference
(bp) protein allele
R-allele
T Okuyama et al., 2011
PialPi- Osl1gl1790-  Os11g0225100- Wo genes Sasanishiki (Pia), CO39 i Jxuyama et a
€039 11 6,541,924 Os11e11810 Os1120225300 encoding (Pi-CO39) Dominant (Pia), Cesari et al., 2013
& g NBS-LRR (Pi-C039)
Pi54rh/ Oryza rhizomatis Das et al., 2012 (Pi54rh)
as et al.
Pi54=Pik- 11 25,263,336 11g42010 11g0639100 NBS-LRR Dominant ! $
h' ! Osllg Osllg s (Pi5drh), Tetep (Pi5d) orminan Zhang et al., 2018 (Pi54)
Pik/Pik- Zhai et al., 2011 (Pik),
m/Pik-p/ Kusabue (Pik), Ashikawa et al., 2008
o Two genes X . ”
Pil/Pi7 Os11g46200- Os11g0688832- i Tsuyuake (Pik-m), K60 . (Pik-m), Yuan et al., 2011
11 27,983,597 encoding K X Dominant X
Osl1g46210  Os11g0689100 NES.LRR (Pik-p), C101LAC (Pil), (Pik-p), Hua et al., 2012
IRBL7-M (Pi7) (Pil), Gan et al., 2010
(Pi7)
Pita 12 10,606,359 Os12g18360 05120281300 NBS-LRR Tadukan Dominant Bryan et al., 2000
Armadill
Ptr = rmadifo Katy (Ptr), IRBLta2-Re A Zhao et al., 2018 (Ptr),
. 12 10,822,534 Os12g18729 05120285100 repeats . Dominant )
Pita2 R (Pita2) Meng et al., 2020 (Pita2)
protein
Pbi 11 22,862,447 Os11g38580 Os11g0598500 NBS-LRR Modan Dominant Hayashi N, et al., 2010
Pb2 11 27,608,621 Os11g45620 - NBS-LRR Jiangnanwan ND Yu et al., 2022
Pb3 11 27,282,232 Os11g45090 Os11g0675200 NBS-LRR Haplotype A, Bodao ND Ma et al,, 2022

ND, not determined.

(B-lectin receptor kinase), and Ptr=Pita2 (armadillo repeat protein).
The majority of blast-resistant donor alleles/genes are dominant
except for pi21, which is recessive (Liu W, et al,, 2013). Pi21 encodes
a proline-rich protein, and the loss-of-function allele from the
resistant donor (Owarihatamochi) confers non-race-specific
resistance. pi2l gene was closely linked to the gene providing
poor eating quality. However, the genes were successfully
separated by recombination between two genes in the breeding
lines, and blast resistance with good eating quality was achieved
(Fukuoka et al., 2009). Thus, precise introgression with the cloned
target genes is able to reduce the presence of unwanted phenotypes
in the final breeding products caused by “linkage drag”. Among the
cloned blast genes, Pi50, Pizh, Pi54rh, Pi56, Pi64, PigmR, and
Ptr=Pita2 alleles were known as broad-spectrum resistance (Liu
et al.,, 2021). A few sets of NILs with blast resistance sources were
developed in both japonica and indica backgrounds: 20 NILs with
11 blast QTLs/genes in japonica background Lijiangxintuanheigu
(LTH) (Telebanco-Yanoria et al., 2010) and 28 NILs with 14 QTLs/
genes in an indica background, CO39 (Telebanco-Yanoria et al,
2011). Moreover, both NIL sets were tested by 20 blast isolates
collected in the Philippines. Recently, 21 NILs with 18 QTLs/genes
in another indica background, US-2, were developed, and the NILs
were tested with 31 isolates from Asia (Japan, China, the
Philippines, Indonesia, Vietnam, Cambodia, Bangladesh, and
Laos) and Africa (Nigeria, Kenya, and Benin) (Fukuta et al,
2022). In blast bioassay with the NIL sets above, most of the
genes/QTLs showed differential reactions against different isolates,
even in the same country collections, suggesting that the selection of
suitable blast genes/alleles based on the local pathotypes/isolates is
important to develop blast resistant varieties. Among the blast genes

Frontiers in Plant Science

used in the NIL development above, NIL-Pi9 exhibited resistance or
moderate resistance to all 31 isolates from Asia and Africa (Fukuta
etal,, 2022), suggesting that Pi9 allele might be useful to breed blast-
resistant variety across the rice cultivation countries. The sets of
NILs and blast screening data against various isolates will be very
useful to pathology studies, the selection of suitable genes/alleles
against regional isolates, and breeding programs. To achieve
durable and broad-spectrum resistance, pyramiding of resistance
genes (two or more) in one background is usually used in the
breeding program. There are various gene combinations of blast
genes that prove the enhanced blast resistance in both indica and
japonica rice against several blast isolates. Two genes—pyramided
lines with Pi37 + Pid3, Pi5 + Pi54, Pi54 +Pid3, and Pigm + Pi37
exhibited significantly enhanced resistance and observable additive
effects (Jiang et al., 2019). The gene combinations Pigm + Pil, Pigm
+ Pi54, and Pigm + Pi33 displayed broad-spectrum resistance (Wu
et al., 2019). Broad-spectrum blast resistance was also achieved in
the temperate japonica varieties by pyramiding three to four genes
with Piz, Pib, Pik, Pita, and Pita2 (Zampieri et al., 2023). As proven
in many previous studies, stacking suitable blast genes/alleles has
strong potential to obtain durable and broad-spectrum resistance in
the breeding program.

In contrast to leaf blast resistance, genetic resources for blast
disease on other organs/tissues are relatively poor. The first panicle
blast resistance gene, Pbl, encoding NBS-LRR was cloned from an
indica cultivar Modan (Hayashi N, et al., 2010). Afterward, it was
found that panicle blast resistance by Pbl is dependent on at least
four other loci (Inoue et al., 2017), suggesting that a level of panicle
blast resistance with PbI will be influenced by other genetic factors
or background materials. Recently, two additional panicle blast
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resistance genes, Pb2 and Pb3, were identified through GWAS and
validated by transgenic approaches (Ma et al., 2022; Yu et al., 2022).
Both genes encode NBS-LRR proteins and are physically close to
each other (~360-kb distance between Pb2 and Pb3). Some of the
cloned leaf blast genes, such as Pi25 (Chen J, et al,, 2011), PigmR
(Deng et al,, 2017), and Pid4 (Chen et al., 2018), also showed some
level of panicle blast resistance.

4.2 Bakanae disease (pathogen:
G. fujikuroi, syn. F. fujikuroi)

To identify the genetic factors governing bakanae disease
resistance, QTL mapping and GWAS have been conducted and
identified a handful of QTLs on chromosomes 1, 3, 4, 9, and 10
from several different donors, but no genes have been cloned yet.
Three major QTLs (gBK1, gBK1.1, and gFfR1I) were fine-mapped on
the Chr 1 region between 23.32 and 23.67 Mb (Lee et al., 2021).

4.3 False smut (pathogen: U. virens)

A number of QTLs for false smut resistance have been identified
by QTL mapping with bi-parental populations (Andargie et al.,
2018; Han et al., 2020; Neelam et al., 2022) and GWAS (Hiremath
et al,, 2021). The results suggested that false smut resistance seems
to quantitate traits governed by multiple genes. Among the QTLs,
qFsr8-1 originated from the Chinese rice landrace MR183-2 and
showed the highest PVE (26.0%).

4.4 Sheath blight (pathogen: R. solani,
syn. T. cucumeris)

More than 200 QTLs associated with sheath blight (ShB) resistance
have been identified from the diverse mapping populations (Zarbafi
and Ham, 2019; Goad et al,, 2020). Among all the identified ShB QTLs,
two loci on Chr 9 (gShB9-2) and Chr 11 (gSBR11-1) contribute 25%
and 14% of PVE, respectively, are the major effect QTLs (Molla et al,,
2020), and may be useful in a breeding program.

4.5 Brown spot (pathogen: C. miyabeanus,
syn. B. oryzae, H. oryzae)

For brown spot (BS) resistance, susceptible and resistant
germplasms were identified by several studies. Several cultivars
that have been categorized as resistant did not show complete
resistance (immunity), but they showed quantitative resistance to
BS. To date, more than 20 QTLs with low-mild phenotypic
variation (<20%) were identified from several mapping
populations, including recombinant inbred lines (RILs), doubled
haploid lines (DHLs), and chromosome segment substitution lines
(CSSLs) from several different donors (reviewed by Mizobuchi et al.,
2016). One major QTL, gBSR11-kc, showing 23.0%-25.9% of the
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total phenotypic variation was identified from indica variety CH45
(Matsumoto et al., 2017).

4.6 Narrow brown leaf spot also called
“narrow brown spot” (pathogen: S. oryzina,
syn. C. janseana, C. oryzae)

The genetic architecture of narrow brown spot (narrow brown
leaf spot) resistance was almost unknown. A recent genetic analysis
using the RIL population derived from the cross between two US
varieties (Cypress and LaGrue) identified a single large-effect QTL,
CRSP-2.1, explaining 81.4% of the phenotypic variation (Addison
et al, 2021). The causal gene is not confirmed yet, but the major
QTL might be useful in a breeding program.

4.7 Aggregate sheath spot (pathogen:
R. oryzae-sativae)

Aggregate sheath spot disease has been reported in many Asian
countries, as well as the USA, South America, and Australia, and it
can cause ~20% of yield loss (Lanoiselet et al., 2007). Good levels of
resistance to aggregate sheath spot were identified from O.
rufipogon and successfully transferred into cultivars (McKenzie
et al, 1994). Recent GWAS with tropical japonica and indica
populations identified a handful of QTLs (Rosas et al., 2018).

4.8 Sheath rot (pathogen: S. oryzae)

Rice sheath rot diseases are found in most rice-growing areas of
the world and cause 20%-85% ranges of yield losses, making it an
emerging ubiquitous destructive disease of rice (Bigirimana et al.,
2015). However, rice sheath rot is less studied, and no reliable
germplasm or genetic factors have been identified yet.

4.9 Stem rot (pathogen: S. oryzae,
syn. N. oryzae)

Stem rot disease resistance was found in wild rice species (O.
nivara and O. rufipogon) and weedy rice (O. sativa f. spontanea)
(Figoni et al,, 1983), and the stem rot resistance was successfully
transferred from O. rufipogon to California rice cultivars through
interspecific hybridization (Oster, 1992). Recently, several QTLs for
stem rot resistance were identified from indica germplasm through
a GWAS analysis (Rosas et al., 2018).

5 Bacterial diseases and available
genetic resources

Rice productions are significantly affected by several major
bacterial diseases: BB (pathogen: Xanthomonas oryzae pv. oryzae
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(Xo00)), “bacterial leaf streak” (BLS) (pathogen: X. oryzae pv.
oryzicola (Xoc)), “bacterial sheath brown rot” also called “rice
sheath rot” (pathogen: Pseudomonas fuscovaginae), and “bacterial
seedling rot” (BSR), and “bacterial grain rot” (BGR) caused by the
same pathogen (Burkholderia glumae). To date, a handful of genes
have been cloned for BB resistance, but none yet for other bacterial
diseases. Here, we described BB resistance genes cloned and some
genetic resources for other bacterial pathogens.

5.1 Bacterial blight (pathogen: X. oryzae pv.
oryzae (Xoo0))

Among the bacterial diseases, BB caused by Xoo is the most
destructive bacterial disease in rice. Thus, it has been intensively
studied for the isolation of BB-resistant germplasm, genetic
analysis, gene identification, and molecular mechanism of wars
between Xoo and rice. To date, at least 47 Xoo resistance QTLs and
genes (named Xa genes) have been identified from diverse
germplasms, including cultivated rice, rice mutant lines, and wild
rice species. Xa2l from Oryza longistaminata introgression line
(IRBB21) was first cloned in 1995 by Song et al. and followed by Xa1l
from the IRBB1 line (Yoshimura et al., 1998). Later, Xa2, Xa31(t),

TABLE 3 The cloned bacterial blight resistance genes.

Ch Location

MSU_ID RAPDB_ID
(bp)

Encoding
protein

10.3389/fpls.2023.1247014

CGS-Xol, Xal4, and Xa45(t) were identified as a group of Xal
allelic R genes (Ji et al., 2020). Currently, 13 different genes/loci
consisting of ~23 allelotypes have been cloned and characterized
(Table 3), that is, Xal/Xa2=Xa31(t)/Xal4/Xa45(t)/CGS-Xol,
Xa3=Xa26, Xa4, xa5, Xa7, Xal0, xal3/OsSWEET11/Os8N3, Xa2l,
Xa23, Xa47(t), xa25/0OsSWEET13/0sMtN3, Xa27, and xa41(t)/
OsSWEET14/Os1IN3. The 13 cloned BB resistance genes encode
several types of proteins: NBS-LRR (Xal/Xal alleles and Xa47(1)),
leucine-rich repeat receptor-like kinases (LRR-RLKs) (Xa3=Xa26
and Xa2l), a cell wall-associated kinase (WAK) (Xa4), executor R
proteins (Xa7, Xal0, Xa23, and Xa27), SWEET/sugar transporter
proteins (xal3/OsSWEETI1I, xa25/OsSWEET13, and xa41(t)/
OsSWEET14), and a transcription factor gamma subunit protein
(xa5). The genes encoding NBS-LRR, LRR-RLK, and WAK are
involved in pathogen recognition and activation of the innate
immune system, whereas the genes encoding executor R proteins
are transcriptionally activated by the Xoo transcription activator-
like (TAL) effector protein and trigger programmed cell death
(PCD)-based hypersensitive response (HR). Thus, for the genes
mentioned above, the functional alleles from the BB-resistant donor
sources are dominant. In contrast, BB resistance is caused by
sequence mutations at the TAL effector binding sites in the
promoter of the SWEET (Sugar Will Eventually be Exported

Inheritance
pattern of
R-allele

Resistant/donor allele Reference

Xall IRBBI1 (Xal), IRBB2 (Xa2),
Xa2=Xa31 IRBB14 (Xal4), Zhachanglong Yoshimura
(t)/Xal4/ 4 31,638,099 Os04g53120 | Os04g0622600 NBS-LRR (Xa31(t)), Carolina Gold Select Dominant et al., 1998; Ji
Xads(t)! (CGS-Xol), Oryza nivara et al., 2020
CGS-Xol IRGC102463 (Xa45(t))
Transcription Blair et al.,
factor ITA 2003; Iyer and
xas 5 437,043 050501710 | Os05g0107700 actor IRBB5 Recessive yeran
gamma McCouch,
subunit 2004
E tor R IRBB27/0: inut
Xa27 6 23,653,851 0s06g39810 | 0s06g0599600 xeeutor [Oryza minuta Dominant Gu et al,, 2005
protein IRGC101141
E for R Chen et al.,
xecutor
Xa7® 6 28,015,259 - - X IRBB7 Dominant 2021; Wang
protein
et al,, 2021
xal3/
SWEET- Chu et al,,
OsSWEETII/ | 8 26,725,952 | Os08g42350 = Os08g0535200 ype IRBBI3 Recessive vets
protein 2006
Os8N3
xadl(t)! SWEET-type Afrifzan wild and ctl}tivated rice ‘ Hutin et al,
OsSWEET14/ 11 18,171,707 Os11g31190 | Os11g0508600 rotein species Oryza barthii and Oryza Recessive 2015
Os1IN3 P glaberrima
LRR receptor
IRBB21 (O longistaminat S t al,
Xa2l 11 21277443 | Osllgd6180  Os11g0569733  kinase-like (Ory ZI“L)D”g'S amimnata Dominant °nlg9; !
D
protein
E; tor R Ti tal,
Xal0 11 22,181,556 Osl1g37570 = Os11g0586400 xecutor IRBB10, CAS209 Dominant aneta
protein 2014
E; tor R Wang C, et al,,
Xa23 11 22,204,131 - 0s11g0586701 xeeutor CBB23/Oryza rufipogon Dominant g L et a
protein 2015
(Continued)
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TABLE 3 Continued

10.3389/fpls.2023.1247014

Location Encodin inheritance
Chr RAPDB_ID N9 Resistant/donor allele pattern of  Reference
(bp) protein
R-allele
. Xing et al.,
Xa47(t) 11 27,983,597 Os11g46200 Os11g0688832 NBS-LRR O. rufipogon Dominant 2021
cell wall-
Xa4® 11 28,357,055  Osl1g47140 = Os11g0694100 associated IRBB4 Dominant Hu et al,, 2017
kinase (WAK)
LRR receptor S cal
un et al.,
Xa3=Xa26 11 28,399,360 Os11g47210 - kinase-like Minghui 63, IRBB3 Dominant 2004
protein
xa25/
EET-
OsSWEETI3/ 12 17,302,127 0512829220 051280476200 SV\; " .type Minghu.i 63 Recessive Liu et al., 2011
rotein
OsMtN3

®The sequence of Xa7 is completely absent in the Nipponbare reference genome (IRGSP1.0) and also most of japonica varieties. Thus, the location of the closest marker (M10) to Xa7 by Chen

etal. (2021) is given in the above table.

® The sequence of xa4 gene was not fully aligned in the Nipponbare reference genome (IRGSP1.0). Thus, the information of the highest homology sequence was described above.

Transporter) genes and thus a recessive allele. BB resistance of xa5
gene relies on one amino acid difference between resistance and
susceptible lines in Xa5 protein (a general eukaryotic transcription
factor), and the BB-resistant allele is recessive (Iyer and McCouch,
2004). The cloned 13 genes are distributed on six chromosomes
(one gene each on Chr 4, 5, 8, and 12; two genes on Chr 6; six genes
on Chr 11) (Table 3, Figure 1). Six cloned genes on Chr 11 are
closely located to each other in ~10.2-Mb size (18.2-28.4-Mb region
on Chr 11) (Figure 1). Thus, in the case of gene pyramiding using
the six genes on Chr 11, breeders need to consider producing
enough progenies for obtaining pyramided alleles that occur by
recombination between two closely located genes. Several cloned
genes, including Xa7, Xa23, xa4l, and Xa47, were reported as
broad-spectrum resistance genes/alleles (Liu et al., 2021). NILs
with single BB resistance genes were developed through IRRI-
Japan collaboration designated as “IRBB” lines (Ogawa et al,

1991), and additional NILs (IRBB) with single or multiple BB
resistance genes (two to five genes) were developed in the BB-
susceptible background IR24 at IRRI, Philippines. Differential
reactions of the NILs (IRBB lines) with single and pyramided Xa
genes to 11 races in the Philippines were observed, and the results
are available at the IRRI Rice knowledge bank (http://
www.knowledgebank.irri.org/ricebreedingcourse/
Breeding_for_disease_resistance_Blight.htm). The IRBB lines
possessing multiple Xa genes (two to five genes) exhibited broad-
spectrum resistance than the single gene introgression IRBB lines.
Similarly, pyramiding of Xa genes such as Xa2l + Xa33, Xa2l +
xal3 + xa5, and Xa4 + xa5 + Xa7 + xal3 + Xa2l offers greater and
broader resistance to Xoo than an individual resistance gene
(Pradhan et al, 2015; BalachIranjeevi et al., 2018; Hsu et al,
2020). The IRBB sets were also tested with 16 isolates in Korea,
and the results showed that xa5 was strong and broad-spectrum
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FIGURE 1

Physical locations of the 48 cloned genes conferring biotic stress resistance in rice. The cloned genes were mapped on the rice reference genome
(Os-Nipponbare-Reference-IRGSP-1.0). Blue, red, green, and black bars mean brown planthopper (BPH), blast, bacterial blight, and virus resistance
genes, respectively. Biotic stress resistance gene-rich region was highlighted by yellow background (out of 48 genes, 14 genes were on the 10.41-

Mb region of the long arm of Chr 11).
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resistant than any other Xa genes (Jeung et al, 2006). Rice
possessing Xa7 exhibited less disease than lines without Xa7 over
11 years in the Philippines, even though the virulence of Xoo field
populations increased. In addition, Xa7 restricted disease more
effectively at high temperatures, while other Xa genes were less
effective at high temperatures (Webb et al., 2010). The IRBB lines
and stacked information including gene reactions, spectrum,
durability, and influence of environments will be useful to select
suitable genes/alleles for regional/local breeding programs and also
for the development of durable and broad-spectrum resistant
rice varieties.

5.2 Bacterial leaf streak (pathogen:
X. oryzae pv. oryzicola (Xoc))

For BLS resistance, a handful of QTLs with low-to-moderate
PVEs (2.64%-15.93%) were identified (Tang et al, 2000). In
addition, a recent GWAS using 510 diverse rice accessions
identified 79 quantitative trait nucleotides (QTNs) reflecting 69
QTLs for BLS resistance (Xie et al, 2021). However, no BLS
resistance gene has been cloned yet. Among the BLS-resistant
QTLs, the highest effect QTL, gBIsr5a (12.84%-15.93% PVE), was
fine-mapped to 30.0-kb interval on Chr 5, and the resistant parent
allele of Os05¢01710 gene within the fine-mapped region was
identical to xa5, which is one of major BB resistance genes,
suggesting that Os05g01710 (xa5) is possibly the candidate gene
of gBIsr5a (Xie et al., 2014).

5.3 Bacterial sheath brown rot also called
rice sheath rot (pathogen: P. fuscovaginae)

“Rice sheath rot” disease symptoms can be caused by the
bacterial pathogen “P. fuscovaginae” and also by the fungal
pathogen “S. oryzae”. A recent pathobiomes study revealed that P.
fuscovaginae and S. oryzae were prevalent in symptomatic rice
samples in highland and lowland, respectively, in Burundi,
indicating that the pathogens exist independently and are not
part of a complex disease (Musonerimana et al., 2020). However,
no reliable resistant germplasm and genetic factors have been
identified yet.

5.4 Bacterial panicle blight, bacterial
seedling rot, and bacterial grain rot
(pathogen: B. glumae)

Bacterial panicle blight (BPB), BSR, and BGR are caused by the
same bacterial pathogen, B. glumae. It was first reported as BGR in
Japan in 1955. Since then, BPB has been found in more than 18
countries globally including Asia, Africa, and North and South
America (Zhou, 2019; Ortega and Rojas, 2021). Although it is an
emerging disease globally, only several cultivars with partial
resistance and 12 QTLs associated with partial resistance have
been reported (Zhou, 2019). Regarding BSR resistance, one QTL
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(RBGI/qRBSI) was identified from the CSSL population (Nona
Bokra introgressions in Koshihikari background) (Mizobuchi et al.,
2016). For BGR resistance, 13 QTLs have been found from the two
mapping populations: a BIL from Kele (R) x Hitomebore (S) and a
RIL from TeQing (R) x Lemont (S) (Mizobuchi et al., 2016).

6 Viral diseases and available
genetic resources

Seventeen rice viruses have been reported, including rice black-
streaked dwarf virus (RBSDV), rice bunchy stunt virus (RBSV), rice
dwarf virus (RDV), rice gall dwarf virus (RGDV), rice giallume
virus (RGV), RGSV, rice hoja blanca virus (RHBV), rice necrosis
mosaic virus (RNMYV), RRSV, rice stripe necrosis virus (RSNV),
rice stripe virus (RSV), rice transitory yellowing virus (RTYV) also
named as rice yellow stunt virus (RYSV), rice tungro bacilliform
virus (RTBV), rice tungro spherical virus (RTSV), RYMV, southern
rice black-streaked dwarf virus (SRBSDV), and rice stripe mosaic
virus (RSMV) (Hibino, 1996; Qin et al., 2019). Since most of the
above viruses are arthropod-borne, damages may become more
severe as the population of vector insects increases. Among the rice
virus diseases, rice tungro disease (RTSV and RTBV), RYMV, and
RSV have been causing serious yield loss in South/Southeast Asia,
Africa, and temperate Asia, respectively. Thus, a few genes
providing resistance to the major viruses above have been cloned.
The use of viral disease resistance may significantly reduce the
damage of viral diseases. In addition to this, the management of
corresponding vector insects may mitigate the damage of viral
diseases in the field.

6.1 Rice tungro disease caused by RTSV
and RTBV

Rice tungro disease is a serious threat to rice production in
South and Southeast Asia. Tungro disease viruses are transmitted
from tungro-infected plant to another by leathoppers. The most
efficient vector is the green leathopper (IRRI Rice Knowledge Bank).
Tungro was found to be associated with two distinct viruses: RTSV
and RTBV. A series of large-scale outbreaks of tungro were
recorded in India, Thailand, Indonesia, Malaysia, the Philippines,
Thailand, China, and Bangladesh. Tungro, as one of the destructive
diseases of rice, causes yield losses of 5% to 10% annually and is
estimated to cause an annual loss in rice production of
approximately 1.5 billion US dollars worldwide (Dai and Beachy,
2009). In the late 1990s, several tungro-resistant sources, including
landrace and wild species, were isolated and used in the breeding
program by IRRI, and the most promising breeding lines were
developed by crossing with Utri Merah donor (Azzam and
Chancellor, 2002). Afterward, Encabo et al. (2009) revealed that
RTBV and RTSV are inherited separately from rice accession Utri
Merah, conferring resistance to both RTBV and RTSV, and Lee
et al. (2010) cloned the causal recessive gene (named as tsvI)
involved in RTSV resistance in Utri Merah. TSVI encodes
eukaryotic translation initiation factor 4G (eIF4G), and mutation
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on the protein-coding sequence of TSVI in Utri Merah (¢sv1 allele)
may impair the RTSV RNA translation, resulting in tungro
resistance. The tsvI-Utri Merah allele is widely used for tungro
resistance improvement in many breeding programs.

6.2 Rice yellow mottle virus

Since RYMYV was first discovered in Kenya in 1970, it has been
reported from only the countries in the African continent. RYMV
causes the most serious damage in Africa among all the rice
diseases. Primary infection of RYMYV in rice fields is mediated by
beetle family chrysomelids, and secondary spread occurs mainly
through mechanical contact between infected and healthy leaves by
wind (Kouassi et al., 2005). In the past, farmers have been advised to
use chemicals to eliminate beetle vectors. The most effective and
sustainable way to manage RYMYV is to use tolerant and resistant
varieties (Abo et al., 1997).

High RYMYV resistance was found in one African rice cultivar
(Oryza glaberrima), Tog5681, and one O. sativa cultivar, Gigante.
Evaluation of the crosses of these two highly RYMV-resistant
cultivars suggests the presence of a single recessive gene
(Ndjiondjop et al., 1999). Later, it was discovered that the gene is
RYMYVI, and the gene encodes a eukaryotic translation initiation
factor, elF4(is0)4G (Albar et al., 2006). In sequence comparisons
with the dominant susceptible allele (Rymvi-1), four different
recessive resistant alleles from one O. sativa var. Gigante (rymvI-
2) and three O. glaberrima accessions (Tog5681 (rymv1-3), Tog5672
(rymvI-4), and Tog5674 (rymvl-5)) were characterized by the
presence of short amino acid substitutions or short deletions in
the MIF4G domain of the protein (Albar et al., 2006; Thiemele et al.,
2010). Allele-specific markers targeting mutations or deletions
characterizing different RYMV1 were developed for improving
MAS for the introduction of the resistance alleles into susceptible
cultivars of O. sativa or O. glaberrima (Thiemele et al., 2010). In the
second major recessive resistance gene, RYMV2, it was identified
that 1-bp deletion on the coding sequence of the rice homolog of the
Arabidopsis CPR5 gene, known to be a defense mechanism
regulator, from the resistant African rice (O. glaberrima) Tog7291
provided RYMYV resistance (Orjuela et al., 2013). A single dominant
resistant gene RYMV3 encoding NBS-LRR protein was identified
from the O. glaberrima Tog5307 (Pidon et al., 2017). Novel resistant
alleles and accessions for RYMV2 and RYMV3 were identified by
screening 268 O. glaberrima accessions and sequencing (Pidon
et al., 2020), and five new resistant germplasm were isolated from
Korean rice lines (Asante et al, 2020). The cloned genes with
different resistant alleles will be useful to improve RYMYV resistance,
especially for the breeding program for the African continent.

6.3 Rice stripe virus

RSV is an RNA-type virus belonging to the genus Tenuivirus,
and it is transmitted by SBPHs. RSV has been reported only in
China, Japan, Korea, and Taiwan, where japonica rice is cultivated,
and it caused severe damage to the rice fields in Eastern China,
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Japan, and Korea. While most indica varieties are resistant to RSV,
the majority of japonica varieties are highly susceptible. A number
of RSV-resistant QTLs have been reported from diverse indica-
resistant donors, and the major QTLs were repeatedly detected on
Chr 11 among several QTL mapping (Cho et al., 2013). Finally, the
major QTL, gSTV11, originated from an indica variety Kasalath and
was cloned (Wang et al,, 2014). STV11-Kasalath allele encodes a
sulfotransferase (OsSOT1) protein catalyzing the conversion of
salicylic acid (SA) into sulfonated SA (SSA), whereas the protein
encoded by the susceptible allele STVII loses this activity. STV11
gene will be useful in improving RSV resistance in the
japonica varieties.

7 Physical locations of the cloned
genes/alleles on rice chromosomes

Graphical mapping of the cloned genes on 12 rice chromosomes
will be useful information for MAS breeding, especially for gene
pyramiding, as well as mapping new biotic stress resistance genes.
We mapped the physical locations of all the cloned 48 biotic stress
resistance genes on the 12 rice chromosomes (Figure 1). The cloned
genes were not evenly distributed across the rice genome. No biotic
stress resistance gene was cloned yet on Chr 10. In contrast, Chr 11
possesses the highest number of genes (15 genes), following Chr 6
(eight genes), Chr 4 (seven genes), and Chr 12 (four genes), with
these four chromosomes harboring 34 genes out of 48 cloned genes
(70.83%). Interestingly, 14 cloned genes associated with blast,
bacterial blight, and virus resistance were on the 10.41-Mb region
of the long arm of Chr 11 (Chr 11: 17.98-28.39 Mb), and it took
29.16% of the cloned genes. Biotic stress resistance genes are ~10
times more enriched in this specific region than any other loci (the
expected distribution is ~1.2 cloned gene/10 Mb). Another
interesting point is that the bacterial blight resistance gene Xa47
(t) (Os11g46200) encoding NBS-LRR is overlapped with the blast
resistance gene Pik/Pik-m/Pik-p/Pil/Pi7 consisting of two NBS-LRR
genes (Os11g46200 and Os11g46210). In some loci, different
resistance alleles at the same locus, such as BPHI locus, Pi9 locus,
Pik locus, and Xal locus, were identified (Tables 1-3). Although
some of them among the alleles showed different reactions to
pathotypes, unfortunately, they cannot be pyramided by MAS due
to the same physical location among the alleles. Thus, breeders need
to choose one suitable allele among the alleles based on the regional
pathotypes/isolates. Similarly, in gene pyramiding/stacking,
breeders should also consider the physical distance between/
among the target genes. If the two target genes are closely located
with each other (<~1Mb) on the same chromosome (for example,
Xal0 and Pbl on Chr 11, Pik and Xa4 on Chr 11, and Pita and
Ptr=Pita2 on Chr 12; see Figure 1), breeders need to produce many
progenies to obtain the gene pyramided plants through the selection
of the recombinant plants between the two target loci. In rice, a
handful of recombination hot and cold regions are reported, and the
average recombination frequency is approximately 4.35 cM per Mb
(Si et al, 2015). In addition, breeders also need to check the target
loci whether the important genes governing other agronomic traits
are present near the target biotic stress resistance gene to avoid
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linkage drag. For instance, a key amylose synthesis gene Waxy/
GBSS1 (1.76-Mb location on Chr 6) is tightly linked with BPH32
(1.22 Mb on Chr 6), and a major heading date gene HdI (9.33 Mb
on Chr 6) is closely located with Pi2 gene (10.38 Mb on Chr 6).
Thus, breeders should consider the locations of the important
agronomic traits genes near the target genes, especially when the
breeders try to retain the original characteristics of the elite
background variety, except for the target biotic stress resistance.
A map of the physical locations of the cloned genes (Figure 1) will
be helpful for consideration of the above points in MAS
breeding programs.

8 Available DNA markers for
MAS breeding

DNA markers are essential tools for genetic analysis as well as
marker-assisted breeding. We tried to collect all the markers
published and used in the previous breeding programs, and we
collected ~500 markers in total for the cloned biotic stress resistance
genes (Table S1). We filed essential information on the markers for
the potential users, including marker types (InDel, CAPS/dCAPS,
dominant markers, and tetra-primer method markers) and primer
sequences. Also, we cited the original references of each marker so
that breeders can obtain detailed and additional information if
needed. Furthermore, we mapped the location of all the markers in
the rice reference genome sequence (Os-Nipponbare-Reference-
IRGSP-1.0: https://rapdb.dna.affrc.go.jp/). This information
provides physical distance between the target gene and the
markers, and it will be helpful to reduce the selection of false
positives during MAS. For examples, some markers for the BPHI,
BP17, xal3, Xa27, Pi9, Piz-t, Pizh, Pish, Pi5, Pita2, and RYMV1I
genes/alleles are a bit far (>1 Mb) from the gene locus (Table S1).
Selection of genic or gene-tightly linked markers would reduce
false-positive selection. In cases of multi-alleles for the same gene,
such as BPHI and Pi9, all the available markers for the same gene
can be tested to check the possibility of polymorphism between the

TABLE 4 The cloned virus resistance genes.

10.3389/fpls.2023.1247014

parents, and the selected polymorphic markers can be used in MAS
breeding (for example, BPHI8 markers for BPH26 MAS breeding).
All the information on the markers is described in Table S1.

9 Conclusions and perspective

In this review, we summarized all the cloned genes associated
with biotic stress resistance (Tables 1-4), mapped the physical
location of the genes on 12 rice chromosomes (Figure 1), and
consolidated the available markers associated with the cloned genes
(Table S1). Furthermore, we also briefly introduced genetic
resources such as QTLs and donor sources for some biotic stress
if the cloned genes are not available yet. The information presented
in this review will be helpful for checking the available genetic
resources for biotic stress resistance and also for MAS breeding for
the genetic improvement of biotic stress resistance in rice. As shown
in many previous reports, pyramiding of QTLs/genes might be a
practical solution to breed durable and broad-spectrum
resistant varieties.

Approximately 48 genes, which are natural alleles and provide
biotic stress resistance, have been cloned only for the major biotic
stresses, including BPH, blast, BB, and some viruses. However, no
genes have been cloned yet for other biotic stresses. Preparation of
the reliable genetic factors (genes/QTLs) associated with currently
problematic and emerging pathogens is very important for stable
high-yield rice production, and thus, scientists/geneticists need to
put much effort into this pending issue. Screening wild relatives of
rice in the genus Oryza will be one of the ideal approaches. Many
biotic stress resistance genes were already cloned from wild
germplasm (see Tables 1-3), such as BPHI4 (O. officinalis), Pi9
(Oryza minuta), and Xa21 (O. longistaminata). More than 4,500
accessions of wild rice species are stored in the IRRI Genebank
(Banaticla-Hilario and Sajise, 2022), and most of the germplasms
were not screened yet. Recently, a genome-wide InDel marker set
(475 polymorphic markers) discriminating the alleles between O.
sativa and the other seven AA-genome Oryza species was developed

Location Inheritance
Chr (bp) MSU_ID RAPDB_ID Encoding protein Resistant/donor allele pattern of Reference
2 R-allele
Eukaryotic Lee et al
tsvl 7 22,114,961 = 0s07g36940 = Os07g0555200 translation initiation Utri Merah (UM82) Recessive ’ 2010 v
factor 4G (elF4G)
Eukaryotic Oryza sativa Gigante (rymv1-2)/Oryza Albar et al.,
translation initiation | glaberrima accessions Tog5681, Tog5672, . 2006;
RYMV1I 4 24,946,171 4942144 14904 . L
946,17 Os04g 0 Os04g0499300 factor isoform 4G-1 and Tog5674 for rymvI-3, rymv-4, and Recessive Thiémele
(elF(is0)4G1) rymv-5, respectively et al,, 2010
Constitutive Orivela
RYMV2 1 40,073,727 0s01g68970 = Os01g0918500 expresser of PR O. glaberrima Tog7291 Recessive o alJ 2013
genes5 (CPR5) T
X X Pidon et al,,
RYMV3 11 26,380,866 = Os11g43700 ~ Os11g0657900 NBS-LRR O. glaberrima Tog5307 Dominant 2017
Sulfotransferase Wang et al,,
TVI11 11 17,985,011 11g30910 11g0505300 Kasalath ND
N 985 Os11g309 Osllg (0sSOT1) asalal 014

ND, not determined.
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to harness AA-genome wild species (Hechanova et al., 2021). The
genes identified from wild germplasm will be rare alleles due to
mostly untapped and unused materials in breeding, and thus, they
will be effective in most indica and japonica backgrounds.

The incidence of pathogens and insect pests will change in time
and space; notably, it will be also influenced by climate changes. As
examples, some BPH resistance genes were affected by artificial
climate change conditions (the atmospheric temperature with
corresponding carbon dioxide at the ambient, year 2050 and year
2100) (Kuang et al., 2021) and also by nitrogen fertilizer treatments
(Lin et al., 2022). Moreover, most of the genes/QTLs reported were
tested with limited numbers of isolates/biotypes, which were
collected in specific locations and years. Thus, the identified
genes/QTLs could not guarantee resistance across locations, time,
and environments. Testing donor germplasm, especially sets of
NILs possessing specific genes/QTLs such as NILs for BPH (Jena
et al., 2017), blast (Telebanco-Yanoria et al., 2010; Telebanco-
Yanoria et al., 2011; Fukuta et al,, 2022), and BB (Ogawa et al,,
1991; IRBB lines), with prevalence races/biotypes in the target
regions, would be a good strategy to select effective genes/alleles
in breeding program.

DNA markers are essential tools for genetic analysis and
breeding. DNA markers could reduce the time and effort in
developing and improving biotic-resistant cultivars through
marker-assisted breeding. Due to the accessibility and technical
simplicity for the rice breeders, most of the markers are PCR and
gel-based markers, including SSR (RM) markers, InDel markers,
CAPS markers, tetra-primer PCR markers, and dominant PCR
markers (Table S1). These markers have contributed much to MAS
breeding. However, the gene/allele-specific markers are limited to
some specific genes, and a high portion of the markers are the gene-
linked makers (sometimes more than a few Mb distance from the
gene), probably causing that false-positive selection in MAS
breeding. Thus, breeders should check the marker-gene linkage
(distance between the gene and markers) and also marker quality
(reproducibility and polymorphism between parents) before
starting MAS breeding. For efficient and precious introgression of
the target genes, currently, available markers might be insufficient.
Developments of breeder-friendly allele-specific markers and
enough number of polymorphic markers with high
reproducibility for many biotic stress resistance genes/alleles are
urgently needed. This will help the rapid deployment of target biotic
stress resistance genes in the elite local varieties.

In addition to MAS breeding, CRISPR-based genome editing
technologies might be an alternative solution for the fast
improvement of biotic stress resistance. The advantage of genome
editing is that the techniques can directly improve target traits in
elite backgrounds without crossing with the donor lines. Thus, some
unexpected phenotypes caused by linkage drag or other donor
introgressions happening during MAS breeding will not be
considered in genome editing-based trait improvement. Recently,
its potential was already shown in BB resistance improvement by
CRISPR-based promoter editing of three SWEET genes in rice
(Oliva et al, 2019) and in tungro virus resistance by editing of
TSVI1 gene (Macovei et al, 2018). Another advantage is that
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genome-edited products are regulated with lesser stringency in
many countries compared to conventional genetically modified
organisms (GMOs). Together with cross-based breeding, genome
editing technologies can contribute fast genetic improvement of
target traits in the elite variety backgrounds without linkage drag
and other donor introgressions.
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