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Editorial on the Research Topic

Navigating the landscape of FAIR data sharing and reuse: repositories,

standards, and resources

In response to the expanding landscape of neuroscience data and the diverse array

of formats emerging from various research communities, the scientific community faces

a pressing challenge in traditional data management, sharing, and mining methods. The

push for data sharing mandates and the increasing demand for open data utilization

(e.g., National Institutes of Health, 2023) have prompted the evolution of sophisticated

methodologies and tools. These advancements aim to empower researchers in effectively

exploring, mining, and integrating datasets. However, the growing number of resources in

this rapidly evolving field poses a substantial hurdle for researchers attempting to navigate

this complex landscape.

As the scientific community strives to uphold data sharing mandates and embrace

open data principles, it becomes imperative to equip researchers with the awareness

and knowledge necessary to navigate this landscape successfully. This Frontiers in

Neuroinformatics Research Topic was designed to showcase exciting recent developments

in the field and offer a nuanced overview of available resources, with a focus on ensuring

that data are findable, accessible, interoperable, and reusable—adhering to the FAIR

principles (Wilkinson et al., 2016).

The Research Topic reflects the broad extent of the FAIR landscape. While the FAIR

principles apply directly to data, repositories, and standards such as ontologies, satisfying

the full intent of the FAIR principles often requires more diverse considerations, as

exemplified here: from atlases and software to workflows and even data governance.

A comprehensive overview of the components and practices required to achieve FAIR

in neuroscience along with the perspectives on the past, present and future of a FAIR

infrastructure for neuroscience, are provided in the review article by Martone. This article

also compares large next-generation neuroscience infrastructures, including EBRAINS,

CONP, SPARC, DANDI, Open Neuro, and BRAIN/Minds.

This Research Topic also features four articles about FAIR repositories, namely Brain-

CODE for general neuroscience data, COINSTAC Vaults and Image and Data Archive

(IDA) for neuroimaging data, and GAAIN, DPUK, ADDI for Alzheimer’s and dementia-

related data. Each article delves into the challenges and solutions related to making the
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repository FAIR, the governance and sovereignty concerns, and

the steps taken to enhance the user experience. These repositories

mainly vary in their technical implementations and mechanisms

for managing data governance requirements and sovereignty,

particularly for datasets containing sensitive or personal data,

which require specific permissions.

COINSTAC, for example, addresses challenges through

federated analysis, enabling researchers to analyze datasets

without public data sharing (Martin et al.). The introduction of

COINSTAC Vaults (CVs) enhances this capability by providing

standardized, persistent datasets that seamlessly integrate with

COINSTAC’s federated analysis. CVs offer a user-friendly interface,

promoting self-service analysis and filling a crucial gap in the data

sharing ecosystem.

Other platforms like DPUK, GAAIN, and ADDI rely on

two core design principles, such as “trust-by-design” and

“data federation”, actively developing a range of innovative

solutions to enhance large-scale data access (Toga et al.). This

includes simplifying stakeholder involvement through streamlined

data sharing agreements, introducing decentralized data sharing

solutions, and establishing universally accessible analysis through

workspaces and containerized software.

The IDA, run by the Laboratory of Neuro Imaging, presents

an alternative approach to managing and reusing multi-center data

(Neu et al.). Serving as a central hub for collaborative groups,

it facilitates data transfers and offers a suite of informatics tools.

These tools are designed to support in various tasks, including

de-identifying, integrating, searching, visualizing, and sharing a

diverse range of neuroscience data. Researchers maintain full

control over the data stored in the IDA, benefiting from a reliable

infrastructure that safeguards and preserves research data.

Brain-CODE, a large-scale neuroinformatics platform,

supports the collection, storage, federation, sharing and analysis

of different data types across different types of brain disorders.

Behan et al. discuss the data sharing processes on Brain-CODE,

aligning them with the FAIR principles. Brain-CODE not only

provides extensive metadata for interactive searches and the

ability to generate subsets of data, but also focuses on mechanisms

and services that facilitate interoperability and the combination

of data using advanced privacy preserving record linking and

homomorphic encryption. Sensitive data can be accessed within

a secure workspace on Brain-CODE, and public datasets can be

exported to a locally device.

Currently, repositories predominantly address data governance

concerning data derived from human subjects. However, there

is a noticeable absence of regulatory frameworks for non-human

data, despite divergent legal and ethical principles across countries

about the generation of animal data. Eke et al. advocate for the

establishment of animal data governance, proposing to delineate

and collect metadata related to ethical considerations. This

proposal aims to enhance data transparency and promote the FAIR

principles within the context of animal research.

Despite the growing number of datasets on repositories

mentioned above, a considerable amount of data remains

underutilized and inaccessible, especially smaller-sized datasets.

This is often attributed to the quality of the associatedmetadata and

the degree of annotations. The NeuroBridge platform (Wang et al.)

and the NeuroBridge Ontology (Sahoo et al.) offer innovative

approaches for extracting metadata related to study design and data

collection from full-text papers through ontology developments

and machine-learning-based natural-language processing. By

harnessing the search capabilities of the NeuroBridge platform,

researchers can pinpoint neuroimaging datasets tailored to their

specific research questions, thereby promoting data reuse.

Queder et al. propose an alternative method for standardizing

and annotating neuroimaging datasets. Neuroimaging datasets

are typically organized with the Brain Imaging Data Structure

(BIDS) (Gorgolewski et al., 2015), which, while useful for

file-naming and controlling directory structures, does not

support querying across datasets. To address this, Queder et al.

introduce NIDM-Terms, a formal set of user-friendly terminology

management tools, and associated software to annotate BIDS

datasets with a Neuroimaging Data Model (NIDM) semantic

web representation.

Standardization of metadata is not only crucial for

neuroimaging data, but also for anatomical studies that heavily rely

on brain atlases. Kleven et al. provide a guide on the interpretation,

navigation, spatial registration, data visualization, and transparent

reporting of findings using different types of murine brain

atlases. In addition, Blixhavn et al. provide a workflow defining

the anatomical location of data elements in rodent brains as

geometric objects based on atlas coordinates, which can be

stored in a standardized file format. Using this method, disparate

multimodal and multilevel neuroscience data can be co-visualized

in three-dimensional digital brain atlases, enabling spatial

data queries.

Even when data are shared, data accessibility, interoperability

and reusability can be hindered by the use of proprietary data

formats, especially when accompanying software becomes

unavailable or unsupported. For proprietary electrophysiological

data recorded with the DAPSYS software, Konradi et al.

designed PyDapsys to enable direct opening of recorded

files in Python and save them as NIX files, commonly

used for open research in electrophysiology. This software

promotes transparency and long-term accessibility in

neuroscience research.

In this Research Topic, researchers describe various challenges

and solutions surrounding FAIR data sharing and reuse in

neuroscience. Their insights cover best practices for achieving

data interoperability, the development of tools supporting

scientists in data management and annotation, and the

formulation of workflows to enhance the value of current

and future data. We anticipate that the repositories, standards,

and resources discussed in this Research Topic will not only

simplify data sharing but also elevate reproducibility and foster

widespread reuse of valuable neuroscience data. This collective

effort holds the potential to significantly advance collaborative

neuroscientific research.

Author contributions

MvS: Writing—original draft, Writing—review & editing. CH:

Writing—review & editing.

Frontiers inNeuroinformatics 02 frontiersin.org6

https://doi.org/10.3389/fninf.2024.1387758
https://doi.org/10.3389/fninf.2023.1207721
https://doi.org/10.3389/fninf.2023.1175689
https://doi.org/10.3389/fninf.2023.1173623
https://doi.org/10.3389/fninf.2023.1158378
https://doi.org/10.3389/fninf.2023.1233121
https://doi.org/10.3389/fninf.2023.1215261
https://doi.org/10.3389/fninf.2023.1216443
https://doi.org/10.3389/fninf.2023.1174156
https://doi.org/10.3389/fninf.2023.1174156
https://doi.org/10.3389/fninf.2023.1154080
https://doi.org/10.3389/fninf.2024.1284107
https://doi.org/10.3389/fninf.2023.1250260
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org


van Swieten and Haselgrove 10.3389/fninf.2024.1387758

Funding

The author(s) declare that no financial support was

received for the research, authorship, and/or publication of

this article.

Conflict of interest

The authors declare that the research was conducted

in the absence of any commercial or financial relationships

that could be construed as a potential conflict

of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

Gorgolewski, K., Tibor, A., Calhoun, V., Cameron Craddock, R., Samir, D., Duff, E.,
et al. (2015). The brain imaging data structure: a standard for organizing and describing
outputs of neuroimaging experiments. bioRxiv [Preprint]. doi: 10.1101/034561

National Institutes of Health (2023). NIH Data Management & Sharing Policy.
Available online at: https://sharing.nih.gov/data-management-and-sharing-policy/

about-data-management-and-sharing-policies/data-management-and-sharing-
policy-overview (accessed January 30, 2024).

Wilkinson, M., Dumontier, M., Aalbersberg, I., Appleton, G., Axton, M., Baak,
A., et al. (2016). The FAIR Guiding Principles for scientific data management and
stewardship. Sci. Data 3:160018. doi: 10.1038/sdata.2016.18

Frontiers inNeuroinformatics 03 frontiersin.org7

https://doi.org/10.3389/fninf.2024.1387758
https://doi.org/10.1101/034561
https://sharing.nih.gov/data-management-and-sharing-policy/about-data-management-and-sharing-policies/data-management-and-sharing-policy-overview
https://sharing.nih.gov/data-management-and-sharing-policy/about-data-management-and-sharing-policies/data-management-and-sharing-policy-overview
https://sharing.nih.gov/data-management-and-sharing-policy/about-data-management-and-sharing-policies/data-management-and-sharing-policy-overview
https://doi.org/10.1038/sdata.2016.18
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org


fninf-17-1154080 March 4, 2023 Time: 14:41 # 1

TYPE Perspective
PUBLISHED 09 March 2023
DOI 10.3389/fninf.2023.1154080

OPEN ACCESS

EDITED BY

Maaike M. H. Van Swieten,
Integral Cancer Center Netherlands (IKNL),
Netherlands

REVIEWED BY

Yongsoo Kim,
Penn State Health Milton S. Hershey Medical
Center, United States
Jonathan Robert Whitlock,
Kavli Institute for Systems Neuroscience,
Norway

*CORRESPONDENCE

Ingvild E. Bjerke
i.e.bjerke@medisin.uio.no

RECEIVED 30 January 2023
ACCEPTED 21 February 2023
PUBLISHED 09 March 2023

CITATION

Kleven H, Reiten I, Blixhavn CH, Schlegel U,
Øvsthus M, Papp EA, Puchades MA, Bjaalie JG,
Leergaard TB and Bjerke IE (2023) A
neuroscientist’s guide to using murine brain
atlases for efficient analysis and transparent
reporting.
Front. Neuroinform. 17:1154080.
doi: 10.3389/fninf.2023.1154080

COPYRIGHT

© 2023 Kleven, Reiten, Blixhavn, Schlegel,
Øvsthus, Papp, Puchades, Bjaalie, Leergaard
and Bjerke. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in this
journal is cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

A neuroscientist’s guide to using
murine brain atlases for efficient
analysis and transparent reporting
Heidi Kleven, Ingrid Reiten, Camilla H. Blixhavn, Ulrike Schlegel,
Martin Øvsthus, Eszter A. Papp, Maja A. Puchades,
Jan G. Bjaalie, Trygve B. Leergaard and Ingvild E. Bjerke*

Neural Systems Laboratory, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway

Brain atlases are widely used in neuroscience as resources for conducting

experimental studies, and for integrating, analyzing, and reporting data from

animal models. A variety of atlases are available, and it may be challenging to find

the optimal atlas for a given purpose and to perform efficient atlas-based data

analyses. Comparing findings reported using different atlases is also not trivial,

and represents a barrier to reproducible science. With this perspective article, we

provide a guide to how mouse and rat brain atlases can be used for analyzing and

reporting data in accordance with the FAIR principles that advocate for data to be

findable, accessible, interoperable, and re-usable. We first introduce how atlases

can be interpreted and used for navigating to brain locations, before discussing

how they can be used for different analytic purposes, including spatial registration

and data visualization. We provide guidance on how neuroscientists can compare

data mapped to different atlases and ensure transparent reporting of findings.

Finally, we summarize key considerations when choosing an atlas and give an

outlook on the relevance of increased uptake of atlas-based tools and workflows

for FAIR data sharing.

KEYWORDS

brain atlases, FAIR data, reporting practices, spatial registration, rat brain, mouse brain,
brain-wide analysis, neuroinformatics

Introduction

Converting the increasing amounts of multifaceted neuroscience data into knowledge
about the healthy and diseased brain requires that relevant data are accumulated and
combined in a common context. The FAIR principles set forward by Wilkinson et al. (2016),
stating that data should be findable, accessible, interoperable, and re-useable, facilitate
such data integration. Practical implementation of these principles in neuroscience can be
achieved by using brain atlases as a common framework, equipping the data with metadata
describing their location in the brain. Brain atlases contain standardized references to brain
locations, and their utility for integrating neuroscience data is already well-established (Toga
and Thompson, 2001; Zaslavsky et al., 2014; Bjerke et al., 2018b).

Neuroscientists use atlases at several stages of a research project, from planning
and conducting studies to analyzing data and publishing results. A variety of atlases
exist, revealing different features of rat and mouse (collectively referred to as murine)
neuroanatomy. However, different atlases use various traditions for defining and naming
brain regions, hampering interpretation, and comparison of data from locations specified
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using different atlases. Thus, while atlases provide common
frameworks for neuroscience data integration, researchers might
find it challenging to know which atlas to choose and how to use
it. This makes it difficult for researchers to efficiently interpret and
analyze their data using atlases, and for reporting and sharing data
in accordance with the FAIR principles. Here, we provide a guide
to using murine brain atlases for efficient analysis, reporting and
comparison of data, offering the perspective that open volumetric
brain atlases are essential for these purposes.

Finding brain locations by navigating
and interpreting atlases

There are two types of murine brain atlases: traditional two-
dimensional (2D) atlases with serial section images (e.g., Paxinos
and Watson, 2013; Swanson, 2018) and digital volumetric (3D)
atlases (e.g., Papp et al., 2014; Barrière et al., 2019; Wang
et al., 2020). The traditional atlases rank among the most
cited neuroscience publications. However, they are limited by
the distance between section images and the fixed plane(s) of
orientation. They are also poorly suited for automated whole-
brain analysis and digital workflows, and reuse of atlas images
in publications may require permission from the publisher. The
digital volumetric atlases are typically shared openly, and they allow
data analysis independent of the plane of sectioning. The most
detailed and commonly used volumetric atlas for the mouse is the
Allen Mouse Brain Common Coordinate Framework (Allen Mouse
Brain CCF; Wang et al., 2020), which has been instrumental for the
acquisition and sharing of the Allen Institute’s large data collections
(Lein et al., 2007; Oh et al., 2014; Tasic et al., 2016). For the rat, the
most detailed volumetric atlas is the Waxholm Space atlas of the
Sprague Dawley rat brain (WHS rat brain atlas; RRID:SCR_017124;
Papp et al., 2014; Kjonigsen et al., 2015; Osen et al., 2019; Kleven
et al., 2023a). Other murine brain atlases are also available [see
summary by Barrière et al. (2019)]. Regardless of the 2D or 3D
format, murine brain atlases can be navigated and interpreted using
the spatial, visual, and semantic reference space (Figure 1A; Kleven
et al., 2023a).

The spatial reference consists of a coordinate system and a
reference image. The reference image of an atlas may originate from
a single specimen (Papp et al., 2014) or represent a population
average (Wang et al., 2020) of multiple specimens, with different
brain region characteristics (e.g., cyto- or chemoarchitecture,
and gene expression) visible depending on the modality. The
reference image is made measurable through the coordinate system.
Most brain atlases use a 3D Cartesian coordinate system with
a defined origin and each of the x, y, z axes oriented in one
of the standard anatomical planes. Atlases typically follow the
neurological orientation of axes described by the right-anterior-
superior (RAS) scheme, where the x-axis is oriented toward the
right (R), the y toward anterior (A), and the z toward superior (S)1.
The origin may be defined by skull features (stereotaxic coordinate
system; Paxinos and Watson, 2013), internal landmarks (Waxholm
Space; Papp et al., 2014), or the physical limits of the reference
image such as the corner of a volume (Wang et al., 2020).

1 https://nipy.org/nibabel/neuro_radio_conventions.html

The visual reference consists of the reference image and a
set of boundaries of brain regions (annotations), defined using
criteria-based interpretations (e.g., differences in gene expression
patterns, and changes in cyto-, myelo-, or chemoarchitecture).
Easily recognizable features that are consistent across individuals
are often used as landmarks when positioning an experimental
image in an atlas (Sergejeva et al., 2015). For example, the
beginning and end of easily distinguished brain regions, such as
the caudoputamen or hippocampus (Figure 1D), are highly useful
for orientation. Such landmarks are particularly useful for guiding
and assessing the quality of the spatial registration of experimental
section images to an atlas (Puchades et al., 2019; see section
on analysis below), as well as for detecting abnormal anatomical
features in the images. A selection of useful murine brain landmarks
are given by Bjerke et al. (2023).

The semantic reference consists of the brain region annotations
and their names. Regions, areas, and nuclei of the brain may be
named after the person who first defined them, or after distinct
features, such as their architecture or relative position within
a broader region. While murine brain atlas terminologies often
combine terms from different conventions, most atlases present
white matter regions with a lower case first letter and gray matter
regions with a capital first letter. Digital atlases may also use
color coding schemes to indicate relationships between region
annotations, e.g., using the same color for all white matter regions
or for regions at the same level of the hierarchy of gray matter
regions (Wang et al., 2020).

Analyzing data using atlas-based
tools and workflows

Atlas coordinates provide spatial reference in machine-readable
units. When coupled to the atlas terminology, they enable
automated analysis of data registered to that atlas. A broad
range of software incorporating atlases, here called atlas-based
tools, are available to perform various digital analyses of brain
image data. Atlas-based analyses rely on spatial registration,
here defined as the process of assigning anatomical location to
each pixel or voxel of the data (Figure 2A). This is achieved
through aligning 2D and/or 3D data with the reference image of
the atlas.

Several computational methods for registration of 2D image
data to atlases have been developed. However, implementations
are typically tailored to specific data types (e.g., fluorescent images
or 3D data) and may require coding skills. Thus, tools with
a graphical user interface that are applicable to a broad range
of data types have also been developed, often incorporated as
part of analytic workflows (Tappan et al., 2019; Ueda et al.,
2020; BICCN Data Ecosystem Collaboration et al., 2022; Tyson
and Margrie, 2022). An example of a standalone tool for
spatial registration of histological sections to volumetric atlases is
QuickNII (RRID:SCR_017978; Puchades et al., 2019). QuickNII is
available with the WHS rat brain atlas (v2, v3, and v4) and the
Allen Mouse Brain CCF (v3-2015 and v3-2017). Manual alignment
of individual section images is relatively time-consuming, and
can greatly benefit from a machine learning-based approach
for section alignment, such as implemented in DeepSlice for
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FIGURE 1

Navigating brain atlases to find anatomical locations. (A) Simplified version of the brain atlas ontology model (AtOM, Kleven et al., 2023a). The main
elements of an atlas include the coordinate system, the reference image (here exemplified with a coronal platypus brain section; Mikula et al., 2007),
the annotated brain regions, and the brain region names. The elements provide different entry points for navigating the atlas, through a spatial,
semantic or visual reference. (B) Illustration of the three standard planes (horizontal, blue; sagittal, yellow; coronal, green) typically used to cut brain
sections. (C) Illustration of the essential terminology typically used for indicating positions in the brain (e.g., the terms “rostral” and “caudal” to refer
to positions towards the front and back of the brain, respectively). (D) Illustration of useful landmark regions in the murine brain [adapted from
Bjerke et al. (2023)], with examples from the horizontal (D1), coronal (D2; Leergaard et al., 2018), and sagittal (D3) planes.

coronal rat and mouse brain sections2 (Carey et al., 2022). While
these tools rely on linear registration methods, murine brains
show variability (Badea et al., 2007; Scholz et al., 2016) that
cannot always be compensated for by using linear transformations.
Histological brain sections are also prone to physical damage
and deformities caused by tissue processing (Simmons and
Swanson, 2009). To amend this, non-linear adaptations of linearly
registered murine images can be achieved using VisuAlign
(RRID:SCR_017978).

Murine brain research increasingly includes 3D imaging data
acquired by magnetic resonance or diffusion tensor imaging
(Gesnik et al., 2017), serial two-photon imaging (Oh et al., 2014)
or light sheet microscopy (Ueda et al., 2020). As these data are
spatially coherent and avoid the deformities and damage seen
in histological sections, they lend themselves well to volume-to-
volume registration with 3D reference atlases. Several groups have

2 www.deepslice.org

developed computational methods for this type of alignment [see
review by BICCN Data Ecosystem Collaboration et al. (2022)3

and Tyson and Margrie (2022)], most often toward the Allen
Mouse Brain CCF. The Elastix toolbox (Klein et al., 2010) also
offers a collection of algorithms that can be used for 3D image
registration.

Spatially registered image data can be used in analytic
workflows for region-based annotation, quantification, and
reconstruction of features in and across images. Such workflows
typically entail three steps: (1) registration of image data (2D
or 3D) to an atlas, (2) feature extraction, and (3) quantification
and/or visualization of extracted features (Figure 2B). Several
authors have demonstrated how such workflows can be used
to quantify features of the brain (Kim et al., 2017; Pallast et al.,
2019; Newmaster et al., 2020). Although many use custom code,
workflows based on both commercial and open source tools exist.

3 https://www.biorxiv.org/content/10.1101/2022.10.26.513573v1
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For example, NeuroInfo from MBF Bioscience (Tappan et al.,
2019) supports reconstruction of sections into a volume and
registration to an atlas with automatic image segmentation and
quantification. Alternatively, the free and open source QUINT
workflow (Yates et al., 2019) aligns histological section images
to atlas, and applies the same alignment to segmented images
where a given feature (e.g., labeled cell bodies) is represented
with a single color using the Nutil tool (Groeneboom et al., 2020,
RRID:SCR_017183). For registration of electrode positions or
viral expression, the HERBS software (Fuglstad et al., 2023) offers
integrated spatial registration and feature extraction, where results
can be directly visualized in 3D.

Visualization of atlases and image
data

Spatial metadata makes it possible to view and interact with
atlases and image data in several online atlas viewers. The Scalable
Brain Atlas Composer4 (SBA; Bakker et al., 2015) is capable of
viewing 2D or 3D images of a range of different formats. In
addition, the SBA can view spatial metadata (e.g., from QuickNII
or DeepSlice) together with .png images of histological sections.
Another online tool is the EBRAINS interactive atlas viewer5,
which is available for all versions of the WHS rat brain atlas
and the Allen Mouse Brain CCF. This viewer also allows upload
of user-defined data. For example, the user can drag-and-drop
a .nii volume to view it in the three standard planes and slice
it in arbitrary angles, with region annotations available as an
overlay. Additionally, 3D rendering of coordinate-based data such
as point clouds representing tracer distributions or cell bodies can
be achieved online via MeshView (RRID:SCR_017222). MeshView
allows slicing of volumes containing point clouds in user-defined
planes for inspection and analysis of topographical patterns (see
e.g., Tocco et al., 2022).

Customizing brain atlases for
analysis and visualization

Open access digital brain atlases allow researchers to customize
the anatomical annotations, reference images, or terminology
in the atlas for specific analyses. Several tools have taken
advantage of this, and enable the user to customize the atlas
in an interactive way through a user interface. For example,
QCAlign (RRID:SCR_023088; Gurdon et al., in preparation) allows
interactive exploration of the hierarchy and grouping of brain
region names that can subsequently be used in the QUINT
workflow to merge brain regions into broader, custom regions
for analysis. This may for example be used to merge and
rename regions to make them compatible with a different naming
convention, e.g., to enable cross-species comparison where atlases
for different species must be harmonized (Figure 2C; Bjerke
et al., 2021). Merging regions can also facilitate teaching by

4 https://scalablebrainatlas.incf.org/composer/

5 https://interactive-viewer.apps.hbp.eu

introducing students to macrostructure before revealing details.
A more advanced use case is to modify or create new brain
region annotations. For this purpose, the open access segmentation
software like e.g., ITK-SNAP (Yushkevich et al., 2006) is useful
for viewing and editing volumetric files across a range of different
formats.

Comparing atlases and data mapped
to different atlases

A major challenge across atlases is the variety of brain region
annotations and terminologies (Swanson, 2000; Bohland et al.,
2009). When different names are used to refer to the same brain
region, or when similar names are used for partly overlapping
ones, confusion is inevitable (Van De Werd and Uylings, 2014;
Bjerke et al., 2020). Unequivocal referencing (see “Citing atlases and
anatomical locations”) can mitigate some of this, but the challenge
remains that different terminologies often reflect differences in
criteria for annotating brain regions. Differences in the brain region
annotations across atlases and their versions make it difficult to
compare data where locations are reported using different atlases.
To amend this, Khan et al. (2018) performed a co-registration
between versions of the stereotaxic rat brain atlases. They migrated
data originally registered to one of Paxinos and Watson’s (1986)
earliest atlases to its corresponding plate in Swanson’s (2018)
most recent versions, making the data comparable. It is also
possible to migrate legacy data to a volumetric atlas, upon which
different datasets can be compared and co-visualized in 3D space
(Figure 2D). To support such efforts, we have spatially registered
several versions of the traditional stereotaxic atlases to the WHS
rat brain atlas and Allen Mouse Brain CCF (Bjerke et al., 2020).
The co-registration data are available for download through the
EBRAINS Knowledge Graph6 in QuickNII compatible format (see,
e.g., Bjerke et al., 2018b and the related EBRAINS project on the
web portal)7. The open access Swanson atlases are also available
in an interactive viewer. Thus, the variety of atlases available and
the fact that different data will be referenced using different atlases,
while a challenge, can be mitigated by mapping atlases to each
other.

Citing atlases and anatomical
locations

Brain locations may be specified by names or coordinates, but
to be reproducible a specific citation of the atlas used is required.
A challenge is that researchers often report the name of a brain
region that they are familiar with, and not the name recorded in
the brain atlas they have used (Bjerke et al., 2020). For example,
a researcher may use “striatum” to refer to the dorsal part of the
striatal complex called “caudoputamen” in most atlases. While the
researcher may see these names as interchangeable, a reader may

6 https://search.kg.ebrains.eu/

7 https://search.kg.ebrains.eu/?category=Dataset&q=swanson#
e2a1f65d-41fa-4bb1-ba48-93b36174a405
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FIGURE 2

Using brain atlases for spatial registration, analysis, visualization and comparison of data. (A) Example of spatial registration of a histological section
to the Waxholm Space (WHS) rat brain atlas. Landmark regions, such as the hippocampus (A1,A2), are used to find corresponding positions between
the image and the atlas. Features in the images (A3), with spatial metadata from the registration, can be extracted (A3’). The example in (A) shows a
histological image stained for parvalbumin neurons registered to the WHS atlas. (B) The principal workflow of combining atlas registration with
extracted features illustrated in (A) can be used for different types of atlas-based analyses. (B1) 3D dot map visualization of corticostriatal,
corticotectal, and corticopontine axonal projections originating from the primary somatosensory cortex (SS, red) and visual cortex (VIS, blue) cortical
areas, extracted from anterograde tract tracing data (Oh et al., 2014) registered to the Allen mouse brain CCFv3-2017 (Ovsthus et al., 2022). (B2)
Analysis of dopamine 1 receptor positive cell densities in olfactory regions of the mouse brain across five postnatal day (P) age groups [y axis values
not shown, preliminary data extracted from images provided by Bjerke et al. (2022)]. (C) Visualization of customized regions from the Allen mouse
brain CCFv3-2017. The left panel shows the entire atlas with the default color scheme. The middle panel shows a transparent view of the brain with
regions of the hippocampal formation color coded to their corresponding region in the WHS rat brain atlas, facilitating cross-species comparisons.
In the right panel, to better visualize the extent of individual regions, they are coded with contrasting colors, whereas the original atlas uses the same
or highly similar colors. (D) Example of how co-registration of brain atlases supports comparison of data referenced in different atlases. The
stereotaxic atlas by Swanson (1998) has been spatially registered to the WHS rat brain atlas (D1). Data that have been extracted and mapped to the
two atlases can therefore be co-visualized in the same 3D space (D2). In this example, the red points are extracted from a previous study where
retrograde projections from injections in the infralimbic cortex were represented with schematic drawing of terminal fields onto atlas plates from
the Swanson atlas (Figure 8, data mirrored for comparison; Hoover and Vertes, 2007). The blue points are extracted from a public dataset showing
the anterograde projections originating from the lateral orbitofrontal cortex (case F1 BDA; Kondo et al., 2022). AOB, accessory olfactory bulb; AON,
anterior olfactory nucleus; CP, caudoputamen; COAa, cortical amygdalar area, anterior part; COApl, cortical amygdalar area, posterior part, lateral
zone; COApm, cortical amygdalar area, posterior part, medial zone; DP, dorsal peduncular area; IL, infralimbic cortex; LO, lateral orbitofrontal
cortex; MOB, main olfactory bulb; NLOT, nucleus of the lateral olfactory tract; PAA, piriform-amygdalar area; PG, pontine gray; PIR, piriform area;
SC, superior colliculus; SS, somatosensory area; TH, thalamus; TR, postpiriform transition area; TTd, taenia tecta dorsal part; TTv, taenia tecta ventral
part; VIS, visual area.

consider “striatum” to include the nucleus accumbens, which is
also a common convention. This creates a source of confusion
even when citing an atlas. We have previously put forward a
set of recommendations to unambiguously refer to anatomical
locations in the murine brain (Bjerke et al., 2018a), e.g., highlighting

the importance of using terms as they appear in the atlas, or
otherwise specifying how the terms used relate to those in the
atlas.

Citation of an atlas should include the version. This is
easy with traditional atlases following a linear versioning track
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(Paxinos and Watson, 2007; Swanson, 2018). However, volumetric
digital atlases are often provided with several files that may be
versioned separately. To facilitate correct citation, Kleven et al.
(2023a) proposed an Atlas ontology model and an overview of
the versioning of the two most commonly used volumetric murine
brain atlases, the WHS rat brain atlas and the Allen Mouse
Brain CCF. Beyond consistent and correct citation of atlases, any
customizations (see “Customizing brain atlases for analysis and
visualization”) should be clearly documented (Rodarie et al., 2021).

When using atlas-based software, it is important to be
aware that software versioning is often independent of the atlas
versioning. Thus, the software and atlas versions will have separate
citation policies (usually along with separate RRIDs; Bandrowski
and Martone, 2016), and should be named and cited accordingly
when reporting data acquired using atlas-based software. Multiple
atlases may be available in the same tool, in which case it is critical
to record which atlas and version was used.

How to choose a brain atlas?

With several atlases available, it is challenging to know what
sets different atlases apart and choosing the most appropriate
brain atlas depends on its intended purpose. First, reproducibility
and availability should be considered. In most laboratories, there
are 2D book atlases on the shelf. While the mere physical
availability of book atlases makes them convenient to use during
experimental work, many of them are challenging to use for
transparent reporting due to restrictive licenses and high costs
for reproducing figures. Choosing an open access atlas makes it
easier to communicate findings transparently and ensure their
replicability. Second, reference images differ among atlases and
should ideally match the experimental data at hand. For example,
different strains are used across available rat brain atlases, with
Wistar used in the Paxinos atlases (Paxinos and Watson, 2013) and
Sprague Dawley used in Swanson’s atlases (Swanson, 2018) and
in the Waxholm Space rat brain atlas (Papp et al., 2014). Other
characteristics, such as age category, sex, wild type or transgenic
specimens, and data modality will also influence how well the
atlas can be applied to experimental data. In general, the more
characteristics match between the subjects used in an experiment
and the reference atlas, the better the atlas will represent the data,
an essential consideration for analyses. A third important feature of
an atlas is its interoperability with other atlases and related analysis
software. A researcher intending to analyze data based on an atlas
will benefit from a digital 3D atlas incorporated in digital tools and
workflows. Whether the atlas has been used in a similar study or
is part of a data integration effort may also be relevant (Oh et al.,
2014; Bjerke et al., 2018b; Erö et al., 2018), as this will facilitate
comparison of findings with published data and enable similar
comparisons in the future.

The evolution of brain atlases

Brain atlases are continuously created and refined to reflect
researchers’ needs for appropriate references for subjects of

different ages (developmental or aging) or strains, or for data
acquired with various imaging modalities, to mention some. In
particular, there has been an increasing focus on the need for
a common coordinate framework to map data across different
developmental stages. A challenge with these resources is that
they either do not cover early postnatal and embryonic stages
(Newmaster et al., 2020), or have delineations that are not readily
compatible with adult atlases (Young et al., 2021). Additionally,
there is need for brain atlases capturing the fine details of
brain regions distinguished by e.g., topographical organization
of connections (Zingg et al., 2014; Hintiryan et al., 2016). For
example, Chon et al. (2019) created an atlas with highly granular
annotations of the mouse caudoputamen by using cortico- and
thalamo-striatal connectivity data. By combining delineations from
Allen Mouse Brain CCF and the Franklin and Paxinos atlases,
this atlas also helps alleviating some of the inconsistencies in
nomenclature (Chon et al., 2019). As these examples show,
several atlases are required to cater to current needs, and future
methodologies and findings will add further possibilities and
needs for continued development and refinement of atlases. For
such new atlases to enable researchers to cite, (re-)analyze, and
compare data independently of the original atlas used, it is
essential that they are openly shared and properly documented
(Kleven et al., 2023a).

Conclusion and outlook: Open
atlases help make data FAIR

In this perspective, we have provided a guide to murine brain
atlases with a focus on how to use them for spatial registration,
efficient analysis, and transparent reporting of data. Powerful
analytic pipelines will hopefully incentivize more researchers to
spatially register their data to atlases. We anticipate that the
increasing availability and automation of atlas-based software
with graphical user interfaces will fundamentally change how
neuroscience will be performed in the future and lead to a major
increase in the amount of more easily interpretable neuroscience
data. For the field to benefit maximally from this shift, it is crucial
that datasets and spatial metadata are openly shared in a public
repository. This can be achieved with open access volumetric
atlases as essential resources for making the wealth of multifaceted
neuroscience data FAIR.
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laboratory of neuro imaging
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The Image and Data Archive (IDA) is a secure online resource for archiving,

exploring, and sharing neuroscience data run by the Laboratory of Neuro Imaging

(LONI). The laboratory first started managing neuroimaging data for multi-

centered research studies in the late 1990’s and since has become a nexus

for many multi-site collaborations. By providing management and informatics

tools and resources for de-identifying, integrating, searching, visualizing, and

sharing a diverse range of neuroscience data, study investigators maintain

complete control over data stored in the IDA while benefiting from a robust and

reliable infrastructure that protects and preserves research data to maximize data

collection investment.

KEYWORDS

IDA, data repository, data sharing, data archive, neuroimaging

1. Introduction

The IDA (Toga et al., 2010; Toga and Crawford, 2015; Crawford et al., 2016) is a global
resource for storing and disseminating neuroimaging, clinical, biospecimen, and genetic
data for national and international consortia efforts (Redolfi et al., 2022) as well as smaller,
single-center studies. Locally developed and managed at LONI, clinical data, imaging data,
and analysis results are uploaded to the IDA daily, allowing users to obtain data from
multiple studies within a single system. This manuscript summarizes recent improvements
and developments within the IDA since our last report (Crawford et al., 2016).

Widespread data sharing is supported by IDA web pages that allow study-designated
reviewers to receive, evaluate, and approve/disapprove online data use applications. Studies
may define preset collections of data that meet specified criteria so that multiple users can
access the same sets of data without first needing to conduct searches of the database. Since
the IDA keeps extensive records of download activity, users can avoid downloading the
same data twice and can easily locate new data after it arrives. There is no requirement to
acknowledge the IDA in publications that use data obtained through the IDA, however,
study-designated publication policies presented during data use application may specify
acknowledgment requirements.

Image and Data Archive data ownership and access policies are defined so that the
data belongs solely to its owners and that all data access decisions remain under their
direct control. This functionality is often needed by study managers to control access to
the data that is being pooled from multiple sites. Permissions to edit and delete data
may also be assigned as needed to support review, tracking, and other data management
operations. Quality assessments may be conducted by study owners, independent quality
control contractors, or by LONI personnel on newly uploaded neuroimaging files that are
hidden from users until quality ratings have been assigned.
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2. Research studies

The IDA currently manages data on over 85,000 subjects
from more than 140 research studies and 270 institutions and
receives new data daily (Figure 1). These studies focus primarily on
neurological diseases and conditions, and data has been collected
in many different research areas including Alzheimer’s disease,
Epilepsy, Parkinson’s disease, and traumatic brain injury (Table 1).
While many studies use the IDA exclusively to archive and share
data, there are a few studies that mirror data available in other
repositories. Each study may provide a logo, set of colors, and a
link to an external website that are used to alter the style of IDA
web pages. This allows study coordinators to effectively brand the
look and feel of the IDA to match each study’s identity.

Originally conceived and developed as an image archive
for magnetic resonance imaging (MRI) files, to date the IDA
continues to collect neuroimaging scans from multiple modalities
(Figure 2). Currently the IDA manages approximately 90%
MRI [73% structural, 10% functional, and 17% diffusion tensor
imaging (DTI)], 5% positron emission tomography (PET), and
5% other modalities such as computed tomography (CT),
single-photon emission computed tomography (SPECT), and
electroencephalogram (EEG). Additionally, the IDA stores files
from other types of data, including clinical, electronic patient-
reported outcomes (ePRO), proteomics, genetic (DNA/RNA),
biospecimen analysis [cerebrospinal fluid (CSF), Fibroblast,
peripheral blood mononuclear cells (PBMC), plasma, serum, urine,
whole blood, cell line/induced pluripotent stem cells (iPSCs)],
digital sensor (smart watch/smart phone), metabolomics, and
proteomics.

3. Uploading and de-identifying data

The IDA website invites investigators to contact us via email to
learn more about using the repository for their study. A welcome
package with information about the repository and a form for
gathering study details is provided to interested study contacts.
Study investigators are asked to complete the form and submit
study protocol and informed consent documents for USC IRB
review. The completed form is used to assess whether the IDA
is a good fit for the study’s data, to determine the scope of work
needed, and to estimate costs. A DTA/DUA template is available
but local DTAs/DUAs can be accepted with USC Compliance
Office approval.

Neuroimaging data files are de-identified and uploaded to the
IDA using an executable Java jar file that implements the Java FX
framework. This provides a graphical user interface (GUI) that
guides users through the de-identification and upload steps. For
easy installation, separate installers are available and have been
code-signed for the Windows, Mac, and Linux operating systems,
and each installer provides its own copy of the Java 15 runtime
environment. Many neuroimaging data file formats are supported,
including ANALYZE, DICOM, ECAT, EDF, FDF, FreeSurfer, GE,
INTERFILE, MINC, NIFTI, NRRD, multi-image TIFF files (in
regular and “big” TIFF format) and selected variants of MP4 video
files. Target files are read and de-identified at each local institution
before the de-identified files are sent to the IDA for archiving.

Unlike previous IDA uploaders, the current uploader does not
require a temporary working directory. The uploader is also self-
updating; after installation the latest updates are automatically
retrieved each time the uploader is started. After a user logs
in, selects an IDA study, and specifies the user’s site, the user
enters a replacement subject ID and the directory path of files
to upload. The file format of each file is automatically identified,
and the appropriate de-identification removes patient-identifying
information. De-identifications can be customized for the needs of
each study, but in general all de-identifications replace the patient’s
name and ID fields with the user-supplied research identifier,
remove all fields that are non-numeric unless otherwise specified,
and replace unique identifier fields with hashed values. If required,
obfuscation of binary content (e.g., images) is performed by image
experts before uploading. A progress bar displays the total number
of files that have been de-identified and uploaded to the IDA server
along with reports of any files that have been rejected using de-
identification criteria specific to each study. After all files have been
uploaded, the user is directed to an IDA web page where additional
study-specific information is entered, and the upload is finished.
Copies of all files archived in the IDA are backed up in the cloud
using the Amazon AWS S3 Glacier service.

More advanced users invoke a command line version of the Java
uploader to perform batch uploads. This batch process requires a
CSV file that must contain at least two columns; one column for
the replacement subject ID and one column for the path of the files
to upload. Each row of the CSV file identifies a separate upload.
The batch uploader processes each row of the CSV file and writes a
new CSV file as output. This new progress CSV file contains all the
information provided in the first CSV file with additional columns
describing the ID assigned to the upload, the LONI UID created
for the uploaded files, the numbers of uploaded files and their file
formats, and a column that provides the status of each upload. If
a study requires additional information for an upload, new empty
columns are also created. After users enter missing information
and correct any status errors reported in the progress CSV file,
they run the command line uploader again with the progress CSV
file as input. Additional progress files are created until all uploads
have completed. At the end of the batch upload process, the last
progress CSV file provides users with a receipt containing detailed
information about each upload.

For all neuroimaging data uploads, newly uploaded files are
checked against previously uploaded files for duplicates using
hashes and image header fields. When a duplicate is detected,
the newly uploaded file replaces the previously uploaded file. In
practice, many uploaders find duplicate detection and removal
essential since in general institutions tend to focus more on image
acquisition and less on local data management. As most uploads
are files copied directly from imaging scanners, we have not
encountered sufficient need to support multiple versions of the
same upload. Optionally, non-duplicate neuroimaging data may
be placed into one or more download queues for study personnel
who wish to receive all newly uploaded data. They typically invoke
an IDA download queue API on a nightly basis to get all data
uploaded to a study for each day. Users can locate newly uploaded
data by searching the IDA for all neuroimaging data they have
not yet downloaded. Often after a study begins and de-identified
neuroimaging data files have been archived in the IDA, study
coordinators make requests for additional image header metadata
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FIGURE 1

The IDA manages more than 85,000 subjects from over 140 research studies and 270 institutions and receives new data daily. Users search for and
apply to featured studies on the IDA home page by searching study criteria such as study design and research focus.

changes. For example, new subject ID substitutions or higher levels
of de-identification may be required. One common request is to
retroactively “shift” all dates so that the time difference between any
two dates in every neuroimaging data file is unchanged for the same
subject. This involves selecting a date difference for each subject and
replacing all neuroimaging image data files with the date-shifted
metadata. This post-processing of archived neuroimaging files can
be automatically applied to new image uploads or retroactively to
all archived files in an IDA study.

4. Data management

Since the IDA functions as a hub for data transfers between
collaborating groups (Figure 3), many studies require tabular
data uploaded to the IDA to be processed and/or combined
with other data before it becomes available for downloading.
Data harmonization, quality control processing, and/or further
de-identification is conducted in about one half of all studies
featured on the IDA home page. To support these data mapping
aims, we have developed an SQL-like language to create, edit, and
execute transformations on database tables. A Java client provides
a command line interface to add and remove “rules” that are
executed by the client on data stored in the IDA database. Built
on top of MySQL commands, IDA rule commands provide extra
functionality to create and execute loops as well as to define
variables. Statements in an IDA rule script are indented with
white space similar to the Python programming language and are

imported and exported from the IDA using the Java client. These
rules can be executed manually, as part of cron jobs, or can be
triggered after tabular data is uploaded to the IDA. Each line of
a rule script may be associated with a variable that represents all
output for that line, and output values are referenced by indented
lines using the variable. There are five basic rule statements:
loops (SQL SELECT statements), updates (SQL INSERT and
UPDATE statements), if/else branches, identities (SET @X = 1),
and IDA-specific functions (e.g., import REDCap instrument data).
Additionally, error catching clauses can be added to execute logic
if any rule statements fail. Unlike MySQL stored procedures, IDA
rules are executed in two steps. First, all database changes output
by the IDA rule are written to a separate working database. In the
second step, these changes are copied (i.e., committed) from the
working database to the target database. The primary advantage
of this two-step paradigm is that IDA rules can be developed
and tested without changing the target database data, which is
preferable to making a copy of the database each time an IDA
rule is tested. IDA rules also support temporary tables that provide
temporary storage caches while rules are executing and can be used
to import CSV content into a rule.

5. Data sharing and dissemination

Data sharing is primarily supported by study-designated
reviewers who approve or disapprove data access requests
submitted from IDA data use applications. Applicants
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TABLE 1 Representative research studies utilizing the IDA.

Research focus Study Study Institutions Subjects Deposit activity Archived
(GB)

Aging FCDNA Finance, cognition and default network in
aging

1 76 2021–present 325

Aging HABLE Health and aging brain among Latino
elders study

1 3147 2017–present 3,763

Aging SLS Seattle longitudinal study 1 5016 2019–present 113

Alzheimer’s disease/dementia ADSP_NACC ADSP Phenotype harmonization
consortium

1 3431 2022–present 148

Alzheimer’s disease/dementia ADPC Alzheimer’s Disease in primary care 1 483 2019–present 363

Alzheimer’s disease/dementia ADNI Alzheimer’s Disease neuroimaging
initiative

71 5123 2005–present 7,135

Alzheimer’s disease/dementia A4 Anti-amyloid treatment in asymptomatic
Alzheimer’s

68 4486 2019–2021 790

Alzheimer’s disease/dementia VCSGT Biomarkers of ABCA1 mediated functions
in Alzheimer’s

1 51 2017–present 259

Alzheimer’s disease/dementia DHA2BRP DHA delivery to brain pilot study 2 460 2016–present 916

Alzheimer’s disease/dementia DVCID Diverse VCID 9 239 2022–present 256

Alzheimer’s disease/dementia EEAJ Estudio de la enfermedad de Alzheimer en
Jalisciences

2 181 2016–present 638

Alzheimer’s disease/dementia GS1 Generation study 1 432 435 2022–present 501

Alzheimer’s disease/dementia GS2 Generation study 2 927 2446 2022–present 1,438

Alzheimer’s disease/dementia IDEASHOLD Imaging dementia–evidence for amyloid
scanning

343 10774 2021–present 97

Alzheimer’s disease/dementia LEADS Longitudinal early-onset Alzheimer’s
disease study

18 576 2018–present 1,440

Alzheimer’s disease/dementia DVR Model-based cerebrovascular markers for
diagnosing MCI or AD

3 168 2019–present 115

Alzheimer’s disease/dementia SCAN_AL SCAN legacy 4 420 2021–present 90

Alzheimer’s disease/dementia SCAN Standardized centralized Alzheimer’s
neuroimaging

29 2225 2021–present 916

Alzheimer’s disease/dementia VCID Vascular cognitive impairment and
dementia

1 205 2017–present 307

Alzheimer’s disease/dementia VCD Vascular cohort study 2 186 2015–present 699

Cerebrovascular disease CHBC Cardiovascular and HIV/AIDS effects on
brain and cognition

4 520 2009–present 835

Cerebrovascular disease PPG Vascular contributions to dementia and
genetic risk factors

3 452 2016–present 730

COVID-19 CVB COVID-BRAIN 5 53 2021–present 138

Down syndrome ABCDSU19 Alzheimer biomarker consortium–down
syndrome

8 139 2021–present 196

Down syndrome ADDS Biomarkers of AD in adults with down
syndrome

1 149 2019–present 436

Down syndrome NIAD Neurodegeneration in aging Down
syndrome

6 250 2016–present 237

Epilepsy EPIBIOS4 Epilepsy bioinformatics study for
antiepileptogenic therapy

17 307 2016–present 2,221

Frontotemporal lobar
degeneration

ALLFTD ARTFL LEFFTDS longitudinal
frontotemporal lobar degeneration

23 892 2020–present 1,258

Frontotemporal lobar
degeneration

4RTNI Four repeat Tauopathy neuroimaging
initiative

5 129 2011–2016 147

Frontotemporal lobar
degeneration

4RTNI2 Four repeat Tauopathy neuroimaging
initiative cycle 2

8 257 2017–present 210

(Continued)
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TABLE 1 (Continued)

Research focus Study Study Institutions Subjects Deposit activity Archived
(GB)

Frontotemporal lobar
degeneration

LEFFTDS Longitudinal evaluation of familial
frontotemporal dementia

18 909 2015–2020 588

Lifestyle intervention
(Alzheimer’s)

GEMS Gene, exercise, memory and
neurodegeneration in blacks study

2 143 2010–present 49

Lifestyle intervention
(Alzheimer’s)

LA_FINGERS LatAm-FINGERS 10 381 2022–present 178

Lifestyle intervention
(Alzheimer’s)

POINTER POINTER Imaging 6 809 2020–present 495

Parkinson’s disease BIOFIND BioFIND 8 232 2012–present 1

Parkinson’s disease DODPD DOD US army PD cognition longitudinal
study

2 38 2018–2021 137

Parkinson’s disease PPMI Parkinson’s progression markers initiative 50 4314 2010–present 2,936

Stroke SPAN Stroke preclinical assessment network 7 2981 2020–present 2,117

Traumatic brain injury ADNIDOD Effects of TBI and PTSD on Alzheimer’s
disease in Vietnam vets

19 463 2013–2020 744

Traumatic brain injury TRACKTBI Transforming research and clinical
knowledge in TBI

18 3569 2014–2022 3296

The total amount of neuroimaging files archived for each study is given in gigabytes (GB).

FIGURE 2

IDA study management pages provide a history of uploads and downloads of each neuroimaging modality. Counts of image uploads are
categorized as original (images archived directly from scanner), processed (images corrected for artifacts, etc.) quarantined (removed from general
view), and failed (not passing quality control).

must agree to the terms of data use agreement for each
study and must provide information relevant to their
proposed use of the study data. Applicants may also be
required to submit any manuscripts they have written

using study data to the IDA manuscript submission and
review subsystem.

Access to data stored in the IDA for a study can be granted in
three ways: (1) access to data from one or more institutions in a

Frontiers in Neuroinformatics 05 frontiersin.org20

https://doi.org/10.3389/fninf.2023.1173623
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/


fninf-17-1173623 April 20, 2023 Time: 15:7 # 6

Neu et al. 10.3389/fninf.2023.1173623

FIGURE 3

Collaborating institutions transfer data to and from the IDA while study committees allow access to approved researchers. In the diagram, Institution
#1 uploads locally-acquired neuroimaging scans and clinical data. Download queues and the IDA Sync API make this data readily accessible to other
institutions (e.g., Institution #2) for processing and reuploading.

FIGURE 4

Over 145,000 users from 162 countries have downloaded more
than 272 million neuroimaging data scans from the IDA.

study can be set in a user management web page, (2) a reviewer
can grant guest-level (search and download) access to applicants
through semi-automated data application web pages, and (3) all
study data can be made publicly accessible to everyone having an
IDA user account. Other access levels enable users to upload and
download data files acquired at one or more institutions, and data
management operations to edit and delete data can be granted.

Downloaders create customized collections of data files from
the results of IDA searches and download each collection as a ZIP
64 file. As each archived neuroimaging scan is individually ZIP-
compressed and stored with other scans from the same upload
using a proprietary IDA “bundle” file format, for each download
the requested ZIP-compressed scans are located in their respective
bundle files and dynamically assembled into a ZIP 64 stream that
is sent to the downloader. This paradigm eliminates the need to

TABLE 2 Top 10 countries downloading neuroimaging files from the IDA
in gigabytes (GB).

Country Downloaded (GB)

United States of America 866,105

China 238,059

Canada 117,341

Korea 110,357

Germany 87,606

United Kingdom of Great Britain and
Northern Ireland

74,512

Japan 72,339

Hong Kong 69,609

India 69,257

Australia 54,252

create the ZIP 64 file on a local IDA file system before sending and
enables support for HTTP range and head requests. The HTTP
head request provides the total size of the ZIP 64 file and range
options specify a range of bytes to be downloaded from the file.
This functionality supports the use of 3rd party download software
to establish multiple connections to IDA servers to download
different parts of a ZIP 64 file simultaneously, which can decrease
the total amount of time needed to download the file. To prevent
server overloads, the maximum number of connections allowed
for a single user is capped at 10 per IDA server. We have also
extended this download paradigm to individual files archived in the
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IDA, including downloading tables from the IDA database in the
comma-separated values (CSV) file format.

In addition to HTTPS requests, which provide a secure
data transfer method used by all web browsers, the IDA also
supports SSH File Transfer Protocol (SFTP) data transfers.
This can be particularly useful for downloaders who are
receiving large data files over poor connections. SFTP runs
over SSH, has built-in integrity checks, and in our experience
guards against file corruption much better than HTTPS, which
(beyond TCP) does not incorporate check sum error checking.
The IDA SFTP service provides a “virtual” file system using
the open-source Apache MINA SSHD library into which
users can log in and retrieve files. For security purposes,
each download is assigned a random 36-character code that
is used as the SFTP login name and expires after 12 h.
Downloaders enter their IDA password as the SFTP password
and then execute SFTP commands to download files from the
virtual directory.

Tabular data is transferred to and from IDA servers with the
IDA Sync API, which is a Representational State Transfer (REST)
API that can be invoked by standard HTTPS utilities such as
CURL and WGET. Authorization keys with limited lifetimes are
obtained using IDA user credentials and are used in subsequent
REST API endpoints. Responses can be returned in either XML
or JSON, and tabular data is downloaded as CSV files. Flexible
permissions for users are defined with regular expressions that
identify accessible database tables by their names, and additionally
filters can be applied to limit data per table row. IDA Sync API
endpoints provide functionality for a user to (a) list all accessible
tables in a database, (b) list column properties (e.g., data type) of
all accessible tables, (c) download data from multiple tables in CSV
format, (d) specify search criteria to filter downloaded data, and (e)
upload data from a CSV file to an IDA database table. Data may
be uploaded as a “partial sync” that updates existing database tables
or as a “full sync” that deletes all data not referenced during the
update. Additionally, users may define their own NULL characters
and date/time formats.

Web applications integrated with the IDA Item API enable
files archived in the IDA to be downloaded from web sites
external to the IDA. This allows IDA collaborators to design
their own web pages with links that access IDA information.
The API provides a listing of the IDs, names, descriptions, and
versions of all files in study-specific groups defined internally
in the IDA. Download permissions for all IDA files accessed
by the API endpoints are the same as if the files were directly
downloaded from the IDA. External developers first obtain an
authorization key for each user by invoking the API with
the user’s IDA email address and password. The API provides
download links to the latest version of each file as well as
older versions. In addition to providing access to files archived
in the IDA, tabular data stored in the IDA database may be
downloaded as CSV files.

Neuroimaging files archived in the IDA may be downloaded
from the IDA using the IDA Java Broker, which can be integrated
into external programs written in Java 1.8 or higher. The
Broker requires each user’s IDA email address and password
and provides a list of all neuroimaging collections created by
the user in the IDA. Every neuroimaging scan downloaded
by the Broker is transferred as a ZIP 64 compressed stream

and is automatically decompressed before being written to the
target directory.

6. Discussion

To date, the IDA has enabled more than 145,000 users
from 162 countries (Figure 4 and Table 2) to download
over 272 million neuroimaging data scans. The IDA currently
manages 1.5 petabytes of storage, including 79 terabytes of 342
million neuroimaging files. Over 4,900 manuscripts (Weiner
et al., 2013, 2015, 2017) have been accepted from IDA studies
that require investigators to report their scientific findings. We
believe these statistics demonstrate that the IDA functions as
an effective repository for data sharing and promotes data
reuse.
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The effective sharing of health research data within the healthcare ecosystem

can have tremendous impact on the advancement of disease understanding,

prevention, treatment, and monitoring. By combining and reusing health research

data, increasingly rich insights can be made about patients and populations that

feed back into the health system resulting in more effective best practices and

better patient outcomes. To achieve the promise of a learning health system,

data needs to meet the FAIR principles of findability, accessibility, interoperability,

and reusability. Since the inception of the Brain-CODE platform and services in

2012, the Ontario Brain Institute (OBI) has pioneered data sharing activities aligned

with FAIR principles in neuroscience. Here, we describe how Brain-CODE has

operationalized data sharing according to the FAIR principles. Findable—Brain-

CODE offers an interactive and itemized approach for requesters to generate data

cuts of interest that align with their research questions. Accessible—Brain-CODE

offers multiple data access mechanisms. These mechanisms—that distinguish

between metadata access, data access within a secure computing environment

on Brain-CODE and data access via export will be discussed. Interoperable—

Standardization happens at the data capture level and the data release stage to

allow integration with similar data elements. Reusable - Brain-CODE implements

several quality assurances measures and controls to maximize data value for

reusability. We will highlight the successes and challenges of a FAIR-focused

neuroinformatics platform that facilitates the widespread collection and sharing

of neuroscience research data for learning health systems.
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Introduction

The sharing of data in the health biosciences domain
is a vital component of advancing scientific research and
accelerating discovery—with several funding agencies now
mandating the sharing of datasets for such purposes (National
Institutes of Health, 2023 NIH Data Management and Sharing
Policy, Wellcome Trust Data (2017), Software and Materials
Management and Sharing Policy, Government of Canada
(2021) Tri-Agency Research Data Management Policy). The
ability to harness knowledge from such datasets is dependent
on there being sufficient information available that document
their creation and curation. This is particularly important in a
learning health system where research findings can be used to
inform clinical care in the future. Four foundational principles
of data sharing—Findability, Accessibility, Interoperability,
Reusability (FAIR)—have emerged in the last decade as
guiding elements on how datasets should be structured,
annotated, and packaged to enable maximal reuse (Wilkinson
et al., 2016). Within the domain of neuroscience, there
has been movement toward greater efforts around data
standardization in alignment with the FAIR principles (Poline
et al., 2022).

The Ontario Brain Institute (OBI) is a provincially funded,
not-for-profit organization founded in 2010 that accelerates
discovery and innovation, benefiting both patients and the
economy (Stuss, 2014). OBI funds research activities across
several neuroscience domains through its Integrated Discovery
Program (IDP) model. These pan-Ontario programs take
an approach to research that spans several disciplines and
brings together a diverse group of stakeholders including
researchers, clinicians, industry partners, and patients and their
advocates. Programs collect multiple data types including,
but not limited to clinical, imaging, and molecular data.
Within their studies, the programs have also incorporated
standardized consent language to allow for re-use of de-
identified datasets by external researchers and organizations
(Lefaivre et al., 2019). This consent language was developed,
in consultation with provincial research ethics board chairs
and the Information and Privacy Commissioner of Ontario, in
2015 to support data sharing both within IDPs, as well as with
external researchers and organizations. The consent language
also speaks to linkage of data sets with independent databases,
how participant information is kept confidential, and how
participants can request withdrawal of data from respective
studies.

To support the activities of these IDPs, a large-scale
neuroinformatics platform—Brain-CODE—was developed
to support the collection, storage, federation, sharing and
analysis of different data types across several brain disorders.
The technical and governance features of Brain-CODE have
been previously described (Vaccarino et al., 2018; Lefaivre
et al., 2019). This article will focus on the data sharing
processes on Brain-CODE and their alignment with the FAIR
principles.

Alignment with FAIR principles—
Findability

All available datasets for re-use are highlighted on the Brain-
CODE portal.1 An important element of Findability relates to
describing datasets with rich and concise metadata. As such,
Brain-CODE presents each data release with an initial description
followed by standardized metadata including version #, data release
date, # of participants, # of files, and overall dataset size. Other
information presented about each data release include conditions
of interest standardized to the Medical Dictionary for Regulatory
Activities (MedDRA) ontology,2 imaging scan type including task
type described within The Cognitive Atlas knowledge base,3 as
well as data collection timepoints, modalities, and file formats.
Figure 1 highlights how a data release is typically presented to a
data requestor.

As part of their activities, IDPs also highlight the availability
of their datasets through their respective presentations and
publications. Relatedly, OBI has partnered with the Canadian Open
Neuroscience Platform (CONP) in the advertising of available
datasets on the Brain-CODE portal. The CONP is a national
network of Canadian neuroscience research centers committed
to collaborating on a series of new open neuroscience initiatives
(Harding et al., 2022).4 All Brain-CODE data releases are registered
on the searchable CONP data portal (Poline et al., 2023) and are
described according to a customized version of the Data Tags Suite
(DATS) metadata model (Alter et al., 2020). Another key feature
of the Findability Principle is the assignment of a globally unique
and persistent identifier to the respective dataset. Via involvement
in CONP, Brain-CODE datasets are assigned an Archival Resource
Key (ARK) ID5–a persistent identifier for information objects. In
the near future, Brain-CODE plans to incorporate Digital Object
Identifiers (DOIs) linked to their respective data releases.

Further advances are being planned to enhance Brain-CODE’s
Findability including expanding upon the current study-specific
data release configuration to allow for cross-study query and
cohort creation. This will enable data requestors to pool datasets
across respective studies for integrative analyses. Additionally,
OBI will continue to enhance the findability of datasets on the
Brain-CODE portal through the incorporation of standardized
metadata schemas (e.g., schema.org) to allow for querying by
certain data search engines (e.g., Google Dataset Search). Finally,
OBI is a member of the Global Alliance for Genomics and
Health (GA4GH)–a policy-framing and technical standards-setting
organization, seeking to enable responsible genomic data sharing
(Terry, 2014)—and OBI continues to examine the incorporation of
tools from various GA4GH driver projects [e.g., tagging of usage
restrictions linked to datasets via the GA4GH Data Use Ontology
(DUO)] (Lawson et al., 2021).

1 www.braincode.ca

2 https://www.meddra.org/

3 https://www.cognitiveatlas.org/

4 https://conp.ca/

5 https://arks.org/
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FIGURE 1

An example of how information about a data release is presented to a data requestor on the Brain-CODE platform—the Ontario neurodegenerative
disease research initiative (ONDRI): Foundational study baseline data—Release 1 (Farhan et al., 2017; Sunderland et al., 2023).

Alignment with FAIR
principles—Accessibility

There are different data access mechanisms based on the
type of data that are being requested. Before data can be
requested for access, there is a 12-month exclusivity period during
which IDPs maintain exclusive access to their data. Data is
then made accessible via either a Public or Controlled Access
Mechanism on Brain-CODE. Datasets that have not previously
contained Personal Health Information Protection Act [PHIPA]
(2004) are made available by the Public Access Mechanism and
can be accessed via the Brain-CODE portal without submitting
a data access request proposal. Once a Brain-CODE account
is created, data requestors utilize interactive dashboards to
explore the data and metadata, select packages of interest, and
download their respective data cuts. The most recent Public
Access data release on Brain-CODE involves a priority setting
partnership for epilepsy and seizures that was conducted by
OBI, its epilepsy research program, EpLink, and the James Lind
Alliance.6

Datasets that have previously contained PHI are made available
by the Controlled Access Mechanism. A recent Controlled Access
Mechanism data release is from the Canadian Biomarker
Integration Network in Depression (CAN-BIND) and its
foundational study (Lam et al., 2016; Figure 2). To prepare
datasets to be released through this mechanism, IDPs provide
data files, modality specific data dictionaries, and README files
which are used to create an interactive Data Release Dashboard
through which data requests can be submitted. Data files and

6 https://www.jla.nihr.ac.uk/news/epilepsy-canada-psp-open-dataset-
available/30802

supplementary documentation are manually reviewed by the IDP
and OBI for direct identifiers as defined in OBI’s Brain-CODE
Governance policy,7 such that the data are suitably de-identified
(Theyers et al., 2021) prior to being available for external requests.
The selection of these direct identifiers stems from legislation
governing Brain-CODE activities in Ontario, Canada, notably
the Personal Health Information Protection Act [PHIPA] (2004).
While PHIPA does provide a definition of de-identification,
there is limited guidance on its implementation. As such, OBI
looked to methods in other jurisdictions, namely the U.S. Safe
Harbor provision of the U.S. Health Information Portability
and Accountability Act [HIPAA] (1996), and incorporated
and customized such processes to both reduce risk of re-
identification while ensuring usability of data sets made available
via Brain-CODE.

Data requestors can review available data and metadata, select
data packages of interest, and then submit a Data Access Request
through the study Data Release Dashboard on the Brain-CODE
portal. The data requestor will also be expected to provide further
information about their planned analyses, provide documentation
that an ethics committee has reviewed the project, and sign a Data
Use Agreement. All requests are reviewed by the Brain-CODE
Data Access Committee (DAC), composed of representatives from
IDPs, experts in data privacy, and community representatives.
The DAC provides a recommendation to approve or reject a
data access request to the Brain-CODE Steering Committee,
which is composed of OBI executive members. Once approved,
access to data is granted either within a secure workspace
on Brain-CODE or via local download. For the latter option,
a data transfer agreement must be executed. These processes
ensure that there are sufficient administrative and technical

7 https://braininstitute.ca/research-data-sharing/brain-code
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FIGURE 2

An example of how a data release is presented to the data requestor in terms of (A) providing supporting documentation [top figure—i.e., study
protocol (Orange), data collection instruments (Pink), data quality standards (Red)] and (B) how interactive visualizations built using provided
metadata can be used to select data packages of interest—CAN-BIND integrated biological markers for the prediction of treatment response in
depression data release.

safeguards in making data sets available to data requestors in
a secure manner.

Alignment with FAIR
principles—Interoperability

Perhaps the greatest challenge in harnessing the full value
of data is interoperability. While a dataset alone can have
great utility in answering multiple questions, the prospect
of combining a single dataset with others can increase
its value by order of magnitude. Among the most critical
aspect of data interoperability is the adoption of common
data types, file formats, common data elements, semantic
annotations, as well as common data packaging, metadata
description, and indexing. Furthermore, platforms that aim

to facilitate interoperability should provide the mechanisms
and services that facilitate the combination and linking of
data in useful ways.

Brain-CODE was designed to capture clinical, imaging, and
molecular/genomics data with the help of three distinct but
consistently used electronic data capture (EDC) systems, namely
REDCap for demographics and clinical data, SPReD based on the
XNAT platform for brain imaging data, and LabKey for molecular
and genomics data (Vaccarino et al., 2018). The consistent use of
EDC systems facilitates the curation and export of data to standard
formats. These formats include comma separated value (CSV) files
for tabular data, Neuroimaging Informatics Technology Initiative
(NIfTI) files for binary imaging data,8 the European Data Format

8 https://nifti.nimh.nih.gov/
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(EDF +) files for times-series data,9 and text files for applicable
molecular and genomic data. Each of these are common non-
proprietary file formats that can be used by numerous software for
analysis or further processing.

With respect to common data elements (CDEs), OBI realized
the opportunity to identify and adopt a common set of measures
for demographic and clinical information collection across its
IDPs. Established in 2013, CDEs were developed via a Delphi
consensus process through the engagement of the clinical and
research neuroscientific community among the IDPs. Identified
CDEs span nine sub-domains of inquiry including demographics,
socioeconomic status, quality of life, activities of daily living,
medical comorbidity, psychiatric comorbidity, depression, anxiety,
and sleep, and have been utilized for cross-disorder analysis
(Vaccarino et al., 2022).

Datasets on Brain-CODE typically originate at the study
level and are organized into distinct packages that can be
based on modality type (e.g., clinical, imaging, molecular, etc.),
modality subtype (e.g., MRI, EEG), participant cohort, and/or study
timepoints. For imaging data, elements of the BIDS data structure
standard have been adopted to facilitate interoperability of the data
with various research software tools and other BIDS datasets as the
adoption of this standard becomes increasingly common amongst
the brain imaging research community (Gorgolewski et al., 2016).
OBI has worked with the IDPs to collect and document metadata,
including study protocol details, data collection processes,
preprocessing and data provenance information, and details
regarding study contributors, publications, etc. In addition, video
presentations regarding the respective study have been published
to accompany the most recent releases.10

To further support the combining of data, Brain-CODE
facilitates the linking of data using advanced privacy preserving
record linking (PPRL) via a deterministic El Gamal homomorphic
encryption and matching based protocol (Gee et al., 2018). By
collecting sensitive direct identifiers (such as provincial health
card numbers in Ontario, Canada) in an encrypted format, Brain-
CODE can match participant records with other data providers
to achieve linkages where new information can be added to data
available for the same participants while preserving privacy. With
this mechanism, OBI data partners such as the Institute for Clinical
Evaluative Sciences (ICES) can link health administrative data with
research data on Brain-CODE (Behan et al., 2020; Southwell et al.,
2022). As a result, rich participant profiles can be generated to
answer deeper research questions.

Alignment with FAIR
principles—Reusability

Reusability can only be achieved if the prior three principles
are well implemented. Without findability, accessibility, and
interoperability, the reuse of data will be challenging. In addition,
reusability requires that critical pieces of information accompany
datasets and that expert support is provided to data requestors in

9 https://www.edfplus.info/

10 https://www.braincode.ca/content/controlled-data-releases

a consistent and reliable manner with respect to the use of data.
While OBI seeks to define upfront standards for datasets, novel
data requests may necessitate data to be reformatted, described,
or computed in new ways. As a result, OBI seeks to follow key
steps for data reuse including simplicity, portability, annotation,
and quality reporting.

Simplicity in data formats and packaging help ensure that data
requestors will have the ability to interpret and ingest the data using
well established processing and analysis tools. As discussed above,
common data formats that are non-proprietary, capture essential
information, and have the flexibility to be extended are preferred on
Brain-CODE. Combining data files with metadata files in a simple
data package hierarchy that are consistently implemented across
Brain-CODE also plays a role in achieving this.

Portability of data and metadata is essential for nimble
reuse of data under various circumstances. For example, data
administrators may need to load the data in a secure computing
enclave that meets specific analysis protocols. Data may also
need to be transformed to match target analytics model needs.
If the data were scattered across multiple databases and file
systems, it would require significant resources to manage, as
well as being more susceptible to errors. By adopting a standard
packaging approach based on a hierarchical file system, datasets
are portable and can be processed as required to meet the
target use case.

Rich annotation is important to generate during data collection
and curation to better support data reuse. Fields including their
labels, values, and units should be semantically coded according
to standard control vocabularies and ontologies to maximize the
opportunities for remodeling of data and their structure. For
example, a data requestor may require data to match an observation
medical outcomes partnership (OMOP) common data model
(CDM) to combine with other OMOP CDM data. Without suitable
annotations, a mapping from a source structure and labels to
OMOP, or to another required data model, cannot be achieved
resulting in a failure of data reuse. While rich annotations are
important, the process can lead to over-engineered data that
negatively impacts simplicity. As a result, Brain-CODE selectively
adopts rich semantic vocabularies and data structures on an as-
needed basis or as clear standards emerge within a particular
domain of research. This is an active area of development for
data on Brain-CODE.

Data quality reports provide data requestors with key
information on the characteristics of data which helps with the
identification of data origin, data completeness, and data integrity.
This is a critical element to help create trust in the data and in
the veracity of results from their reuse. Brain-CODE generates
visual dashboards with rich data characteristics that data requestors
benefit from when interpreting the data as we continue to work on
improving this quality reporting.

Finally, ongoing support by the Brain-CODE informatics team
helps ensure that data requestors understand the steps required
for access, in what manner they can access the data (such as
download to their local machine or via the use of a computing
workspace), and to answer any further questions related to the
origin and characteristics of the data. Without a human-in-the-
loop, requests can stall and opportunities for discovery may
not be realized.

Frontiers in Neuroinformatics 05 frontiersin.org28

https://doi.org/10.3389/fninf.2023.1158378
https://www.edfplus.info/
https://www.braincode.ca/content/controlled-data-releases
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/


fninf-17-1158378 May 16, 2023 Time: 11:1 # 6

Behan et al. 10.3389/fninf.2023.1158378

Discussion

Altogether, Brain-CODE is a functioning example within
the neuroscience field as to how re-use of datasets can be
supported in alignment with the FAIR principles. To date, Brain-
CODE has handled hundreds of data access requests from both
academic and non-academic groups globally. This has allowed
for greater opportunities for data exploration as well as affording
data requestors the opportunity to address research questions
of interest without having to initiate large-scale data collection
efforts. The Brain-CODE platform continues to be developed to
enhance data sharing efforts to allow for greater data discovery and
understanding of various brain disorders.
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There is common consensus that data sharing accelerates science. Data sharing

enhances the utility of data and promotes the creation and competition of

scientific ideas. Within the Alzheimer’s disease and related dementias (ADRD)

community, data types and modalities are spread across many organizations,

geographies, and governance structures. The ADRD community is not alone in

facing these challenges, however, the problem is even more difficult because

of the need to share complex biomarker data from centers around the

world. Heavy-handed data sharing mandates have, to date, been met with

limited success and often outright resistance. Interest in making data Findable,

Accessible, Interoperable, and Reusable (FAIR) has often resulted in centralized

platforms. However, when data governance and sovereignty structures do not

allow the movement of data, other methods, such as federation, must be

pursued. Implementation of fully federated data approaches are not without

their challenges. The user experience may become more complicated, and

federated analysis of unstructured data types remains challenging. Advancement

in federated data sharing should be accompanied by improvement in federated

learning methodologies so that federated data sharing becomes functionally

equivalent to direct access to record level data. In this article, we discuss federated

data sharing approaches implemented by three data platforms in the ADRD

field: Dementia’s Platform UK (DPUK) in 2014, the Global Alzheimer’s Association

Interactive Network (GAAIN) in 2012, and the Alzheimer’s Disease Data Initiative

(ADDI) in 2020. We conclude by addressing open questions that the research

community needs to solve together.

KEYWORDS

federated data access, Alzheimer’s disease and neurodegeneration, data sharing,
dementia–Alzheimer’s disease, remote data
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Introduction

Science is a data-driven economy. Access to high-quality data is
the sine qua non of creating knowledge and deriving benefit. Data
sharing mandates from journals and funders are now requiring
studies to make data accessible (Nature Methods, 2023). However,
in the health sciences, data access is challenging. For example,
in a survey of 3,556 articles from 333 open access biomedical
journals, only 7% of corresponding authors responded positively to
a data access request, even when their intention to share data was
explicitly stated. In this experiment, the revealed preference of 93%
of authors was to not share (Gabelica et al., 2022).

For the Alzheimer’s disease and related dementias (ADRD)
community, these challenges have been recognized for some time,
resulting in the development of several data sharing platforms.
The first of these was the Laboratory of Neuro Imaging (LONI)
(Rex et al., 2003), which supported many data sharing projects
including Alzheimer’s Disease Neuroimaging Initiative (ADNI)
(Mueller et al., 2005) in the Image and Data Archive (IDA)
network (Crawford et al., 2015). However, data relevant to the
ADRD community goes beyond imaging to include a broad mix
of population and clinical cohort data, genetics, experimental
medicine data, and randomized trials data. These study designs
cover a range of data modalities varying in scale, complexity,
and sensitivity, including –omics, imaging, and electronic health
records. Platforms for different data modalities include CPAD
for trials data, NACC and ALZ-NET for clinical data, NIAGADS
for genetic data and FinGen for electronic health record data
(Table 1). These datasets also vary in governance requirements with
some being freely available (open access), others requiring specific
permissions (restricted access) and some only being available to the
data controller (closed access). More recently multi-modal, multi-
cohort repository and analysis platforms have developed to reflect
the complexity of Alzheimer’s disease. These include the Global
Alzheimer’s Association Interactive Network (GAAIN) (Neu et al.,
2016), the Dementias Platform UK (DPUK) (Bauermeister et al.,
2020), and the Alzheimer’s Disease Data Initiative (ADDI)
(Alzheimer’s disease Workbench, 2020). Collaboration between
these initiatives has made it apparent that a more general data
sharing infrastructure is required to simplify and streamline data
access across platforms.

Current solutions are constrained by (i) increasingly
complicated data sharing requirements with barriers stemming
from institutional, ethical, or legal obligations, (ii) a trend toward
bespoke institution-specific platforms that are not designed for
data sharing across institutions, and (iii) variability in workflows
for the same research question across platforms that can introduce
unwanted variation into the findings. These barriers pose
significant challenges for data sharing and collaboration. GAAIN,
DPUK and ADDI are actively developing a set of innovative
solutions that enable data access at scale and pace across platforms
to alleviate some of the barriers. Specifically, we offer solutions
that:

(1) Resolve the complex pattern of the stakeholder
involvement by providing streamlined data
sharing agreements designed for use with
multi-lateral collaborations.

(2) Provide decentralized data sharing solutions that can
operate globally across platforms whether they be institute-
specific or institute-agnostic.

(3) Establish universally accessible analysis using workspaces
and containerized software that allow the use of standard
workflows across platforms.

The two key design principles that underpin delivery of these
solutions by these platforms are trust-by-design and data federation
(Figure 1).

Trust-by-design

Trust-by-design involves a shift away from bespoke bilateral
agreements toward trust in a system. Trust is the implicit
operating principle underlying collaborative science, simplifying
otherwise complex and unpredictable environments, identifying
points of certainty around which to organize, and agreeing on
a culture where key uncertainties are removed on the basis of
mutual agreement, respect, and ethical codes. By facilitating better
prediction of the likely reciprocal behavior of others in sharing costs
and benefits, trust fosters collaboration. Trust is also foundational
to the provenance of data and technologies. As datasets grow
in size, complexity, and sensitivity, confidence in the provenance
chain becomes increasingly central to the viability of an analysis.
Although informal trust-based solutions work well for bilateral
collaboration, emerging research questions frequently require
multi-lateral collaboration involving large numbers of diverse
stakeholders. Multiple actors with multiple interests involving
multiple data-sources generate complexity leading to potentially
prohibitive transaction costs. Trust-by-design solutions provide
the information necessary for accurate and rapid judgments of
trustworthiness and scientific value. Here, legal, privacy, security
and scientific requirements are embedded within technical and
organizational workflows that are explicit, transparent, and fully
auditable. This enables systematic streamlining, standardization,
and automation. It is trust in systems that underpins federated
analysis at scale and pace.

Data federation

Data federation is a mechanism allowing researchers to
remotely query a dataset residing at source without ever seeing
record-level entries. Within the ADRD community, the data
assets that are available are a mix of open, restricted, and closed
repositories, with more sensitive data generally being held in
restricted or closed environments. Federation requires research
questions to be formed into a computation task to be submitted,
where the results returned from the submitted task(s), subject
to disclosure control where applicable. This pragmatic solution
allows data contributors to share datasets that would have otherwise
remained inaccessible due to data transfer being undesirable or
prohibited due to governance constraints, or unfeasible due to
scale. Limitations in federation include data discovery, the wide
range of variables, and the diversity of data models used across
datasets. Addressing these requires high levels of forward planning
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TABLE 1 Summary of dementia related data platforms.

Database URL Description Datasets Subjects Reach Access Functionality

Data
discovery

Data
analysis

Data
federation

Data
transfer

Data
model

The Global Alzheimer’s Association
Interactive Network

https://gaaindata.org/ AD-related data platform, federated
access to ∼n = 500,000 data

61 533,218 Global Platform
application

X X X X X

Alzheimer’s Disease Neuroimaging
Initiative

https://ida.loni.usc.edu/login.jsp Centralized clinical and imaging
data from 23 studies

3 3,208 Global Cohort
application

X X X X X

Alzheimer’s Disease Data Initiative https://www.alzheimersdata.org/ Centralized clinical and imaging
data from 48 studies, enables
workspace analysis

48 ongoing Global Platform
application

X X X X C-Surv

Dementias Platform UK https://www.dementiasplatform.uk/ Centralized clinical and imaging
data from 60 studies, enables
workspace analysis

60 3.6 m Global Platform
application

X X X X C-Surv

The National Institute on Aging
Genetics of Alzheimer’s Disease Data
Storage

https://www.niagads.org/ Genetic data 95 172,701 Global Cohort
application

X X X X RS number

National Alzheimer’s Coordinating
Center

https://naccdata.org/ Centralized ADRC data 1 45,923 United States Platform
application

X X X X X

Critical Path for Alzheimer’s Disease https://c-path.org/programs/cpad/ Clinical Trial data from industry 41 6,500 United States Platform
application

X X X X X

Alzheimer’s Network Alzheimer’s
Association

https://www.alz-net.org/ Real world clinical and imaging data ongoing ongoing Global Application X X X X X

Alzheimer’s Disease Knowledge
Portal

https://adknowledgeportal.synapse.org/ Centralized access to data, provides
workspace

12 n/a Global Application X X X X X

FinnGen https://www.finngen.fi/en Centralized data repository 1 589,000 Finland Application X X X X X

The EU Joint Programme
Neurodegenerative Disease Research

https://neurodegenerationresearch.eu/ AD-related worldwide data platform 175 120,000 Global Cohort
application

X X X X X

Integrative analysis of Longitudinal
Studies on Aging

https://www.maelstrom-research.org/
network/ialsa

Centralized dataset search platform 25 70,000 Global Cohort
application

X X X X X

European Progression of
Neurological Disease

http://europond.eu/ Models and tool platform n/a n/a Europe Tool
development

X X X X X

NeuGrid https://www.neugrid2.eu/ Models and tool platform n/a n/a Europe Tool
development

X X X X X

European Platform for
Neurodegenerative Diseases

https://epnd.org/ AD-related worldwide data
platform,

60 120,000 Europe Platform
application

X X X X X

Dementias Platform Australia https:
//www.dementiasplatform.com.au/

Centralized clinical and imaging
data

ongoing ongoing Global Platform
application

X X X X C-Surv

Dementias Platform Korea https://kdrc.re.kr/eng/about/vision.aspx Centralized clinical and imaging
data

ongoing ongoing Republic of
Korea

Platform
application

X X X X X

Alzheimer’s Disease Data Viewer https://adata.scai.fraunhofer.de/ Centralized dataset search platform 20 72,372 Global Platform
application

X X X X Multiple
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FIGURE 1

Trust by design and data federation.

and coordination. Although these limitations can be mitigated by
high quality metadata and the use of standard data models, they
remain a challenge for most federated analysis. Limitations apart,
by adopting pragmatic strategies and respecting local legal, consent,
privacy, and compute concerns, data federation is an increasingly
used analysis strategy.

This article describes trust-by-design and federation solutions
implemented by GAAIN, DPUK, and ADDI. We conclude by
addressing open questions that the research community needs
to solve together and by inviting others to join the data
sharing movement.

The Global Alzheimer’s Association
Interactive Network (GAAIN)

Background

Building on the pioneering work of LONI and learnings
from ADNI and over 100 other multi-site, multi-modality, cross-
sectional and longitudinal studies, GAAIN was the first platform
to facilitate data discovery, access, and analysis for ADRD research
data. Whilst LONI and ADNI offered centralized imaging data
storage, and access (upon approval) to researchers around the
world, GAAIN extended the notion of collaborative research
in ADRD to a federation model where data can be accessed
remotely while preserving data ownership and local, distributed
archives. GAAIN addressed concerns of the scientific community
regarding data ownership by allowing disease-related data stored in
independently operated repositories to be accessed remotely. This

enabled data partners to maintain data ownership while providing
federated access to users with minimal disruption to the data
owners’ systems. Since its inception in 2012, the breadth and depth
of data accessible through GAAIN has grown to host more than 60
data partners and 500,000 subjects’ data from around the world.

Data utilities

Global Alzheimer’s Association Interactive Network is
optimized for federated analysis and supports exploratory analysis
prior to the submission of a formal access request. By bringing
together data discovery tools and contact details, GAAIN simplifies
the selection of, and access to, datasets. Distinctive features include:

(1) Federated data access and processing wherein data and data
repositories of the different data partners stay within their
respective infrastructure.

(2) A secure platform of data sharing that is not disruptive to
the data partners’ systems.

(3) Protection of the policies and ownership of the data.
(4) Directly coupled data exploration and analytics within

GAAIN, enabling multi-subject, multi-project, and multi-
institutional data aggregation.

(5) Integration of brain imaging metrics via execution of
federated processing pipelines.

(6) Federated access to other data platforms that can be
connected to DPUK and ADDI.

(7) Harmonization between variables that allows pooling and
analysis of different data sets.
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Informatics architecture

The GAAIN system architecture comprises a central server
that communicates with multiple client applications (Data Partner
Clients or DPCs) that are installed in the data partner sites.
The DPC is a Java jar file that contains both a light-weight
webserver and database (H2 database) that does not disrupt
existing systems. This allows GAAIN to remotely connect to
data partners without ever having the data stored centrally
(federated) unless the data partner decides to do so. The DPC
allows remote access to tabular data and brain imaging data.
Upon connection to the different DPCs, the data partners
appear in the web interface and investigators can explore
the available data.

The GAAIN Interrogator (GAAIN, 2017) is the main
infrastructure by which investigators can inspect and interact
with data in GAAIN. It differs from other data browsing
interfaces by allowing dynamic data exploration and visualization
through the definition of cohorts. Charts and line graphs
make selections visually intuitive where the investigator
can choose characteristics from a search range and thus
dynamically adjust the cohort definitions. Users can also conduct
analysis on the browser using the available data and cohort
definitions.

The cohorts of interest can be further used to initiate brain
pipelines (for example, executing a brain volumetry analysis on
subjects with a certain MMSE range). These brain pipelines are
executed remotely on the data partner’s site via the DPC in the
form of a containerized software (Docker). The results of these
pipelines are returned to the interrogator as new variables and can
be further analyzed.

Each data partner has complete ownership and control of the
data, and data transfer is not required. The data partner signs a
non-legal binding Memorandum of Understanding (MOU) before
joining GAAIN that formalizes GAAIN’s data sharing policies and
other terms and conditions of GAAIN participation. Data partners
have complete control over data access and display and can disable
their DPC at any time thus removing connection to GAAIN.

Summary

Global Alzheimer’s Association Interactive Network’s data
sharing policies and systems are tailored to provide an intuitive
and voluntary integration of multiple Alzheimer’s disease data
repositories within a common sharing network. Combining data
from different data partners requires infrastructure like that
implemented in GAAIN but also appropriate ontologies to enable
cross-cohort search and data aggregation.

Dementias Platform UK (DPUK)

Background

At inception, the DPUK Data Portal was designed
to facilitate access to UK population and clinical cohort

data. It has since developed to provide an end-to-end
data management service for cohorts, clinical studies,
trials, and systematic reviews. Currently it facilitates access
to 60 cohorts representing individual-level data for 3.6
million participants.

Data utilities

The DPUK Data portal is optimized for multi-modal pooled
analysis enabling epidemiologic, imaging, genetic, proteomic, and
clinical data to be combined. However, it also has federated analysis
capability. Distinctive features include:

(1) Curation of data to research readiness using common
standards according to modality (Bauermeister et al.,
2023).

(2) A suite of data discovery tools.
(3) Centralized management of access requests.
(4) Personal analysis space with a wide range of standard and

specialist software packages.
(5) Data hubs for specialist research groups and consortia.
(6) Synthetic data for preliminary model testing.
(7) Federated access to other data platforms including GAAIN,

ADDI, DPAU (Dementias Platform Australia), and Korea
Dementia Research Center (Korea Dementia Research
Center [KDRC]).

Informatics architecture

The Data Portal operates within the UK Secure eResearch
Platform (SeRP, 2006) environment according to ISO 27001
(SeRP, 2006) as a data processor according to General Data
Protection Regulation [GDPR] (2016) and Legislation.gov.uk
(2018). Data may be accessed remotely for in situ analyses
but not downloaded to third-party sites. Data-use approval
remains with the cohort research teams who retain
control over data access. Preparing datasets for third-party
researchers and providing suitable documentation is resource
intensive.

Summary

The preparing of datasets by data contributors for third-
party researchers is resource intensive. The Data Portal reduces
this burden through the management of access requests on
behalf of cohort research teams, the use of a common data
model, and the development of standard documentation for
data stored within the Data Portal. This obviates the need
for repeated data transfer and pre-processing. The UKSeRP
environment has been designed for use with linked electronic
health records and is a suitable environment for the onward
sharing of linked data.
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Alzheimer’s Disease Data Initiative
(ADDI)

Background

Alzheimer’s Disease Data Initiative’s mission is to accelerate
AD research by enabling collaborative data sharing and analysis.
ADDI’s trust-by-design solution is the Alzheimer’s disease (AD)
Workbench (Alzheimer’s disease Workbench, 2020). The AD
Workbench delivers access to key datasets around the world
across public and private sectors using a secure cloud-based
data platform. The AD Workbench provides data contributors
with flexible data sharing options that preserve their branding
and maintains their control and autonomy over the data
through configurable data access requests and approval workflows.
Along with storing some datasets locally, ADDI has achieved
interoperability with DPUK, EPND (Bose et al., 2022), GAAIN and
Vivli (Vivli, 2013). To make federated solutions accessible, ADDI
has developed the Federated Data Sharing Appliance (FDSA),
an option that offers both data providers and researchers a
streamlined interface to access, maintain and query data where it
resides.

Data utilities

The AD Workbench is optimized for federated analysis.
Distinctive features include:

(1) The FDSA is agnostic to data type. Currently querying is
available on structural data.

(2) The FDSA is a stand-alone Linux application installable
on local data provider’s IT environment and deployable on
any infrastructure.

(3) Data contributors determine the level of permissioned
access to the record-level data that is granted to researchers.

(4) The administrative module gives data contributors a point-
and-click interface from which they can manage researcher
access, data contributors:

• Can review and approve Data Access
Requests from users.

• Have visibility of all research query tasks and task status.
• Can verify, after execution, that the results do not

include record-level data.

(5) Submission (upon approval) of container-based analyses
across multiple platforms.

Informatics architecture

The federated dataset must be stored as a PostgreSQL
database. FDSA seamlessly connects to the datasets. Docker
is used to execute user-submitted tasks. FDSA includes a
GUI Administrative module running on an onboard web
server and a back-end service that manages and executes

admin and end user tasks. A common set of research APIs
can be used to access the data. FDSA requires minimal
infrastructure for installation: 2 CPUs, 8GB of memory, and
100GB of storage.

Summary

With this solution, ADDI has enabled sharing for data
contributors who previously were unable to make their data
available to researchers. FDSA is installable on-premise and is
suited for a diverse range of datasets, data contributor, and data
consumer needs. Under active development, FDSA will continue to
add features, such as (1) trusted containers that do not necessitate
manual review from data contributors, (2) a secure way for FDSA
instances to communicate for combined analyses of federated
datasets, and (3) a way for users to share models and analyses
via containers with the community. ADDI’s federated solution
removes another barrier to permissioned data access and further
enables the research community to make novel discoveries by
unlocking access to previously unreachable datasets.

The wider environment

There are many variations on the theme of data sharing
and any attempt to compile a comprehensive list will certainly
be incomplete. Nonetheless, we endeavored to summarize
Alzheimer’s-related data initiatives and identify similarities and
differences to support analysts in considering which platforms
are most relevant to their research question (Table 1). Overall,
platforms follow a centralized model with various access tiers
(open, restricted, closed) and high-level data discovery tools. Few
platforms, however, provide data curation/metadata curation or
access to computing resources.

The way ahead

These platforms have several commonalities. They are working
together to support the FAIR principles of data management
(Findable, Accessible, Interoperable and Reusable) (Wilkinson
et al., 2016), and are working toward the Dublin Core metadata
specification (Dublin Core, 1994). For federated computation,
all platforms support the GA4GH Task Execution Standard
(GA4GH, 2013) as a suitable candidate for the containerization
of analyses. Their collaboration also allows for the automated
creation of containers to support standard analyses. Nevertheless,
each platform provides distinctive data access options, recognizing
that insisting on a single data platform for all use cases
would stifle innovation, whilst agreement on commonly used
standards facilitates collaboration. The use of federation alongside
standardized analysis can further render the data reusable with
researchers continuously accessing and processing the data from
multiple studies in a similar way. This can have tremendous
impact on ADRD scientific discovery where previously unseen
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relationships can now emerge via a unified access and analysis
model (Neu et al., 2017).

However, federated data sharing is not without challenges.
Further integration across platforms is focused on widening the
availability of data for federated approaches and work has begun
on a framework where datasets from each of the three platforms
can be discovered from within the others. GAAIN datasets can be
discovered from ADDI and, upon approval, data can be transferred
to the AD Workbench. Datasets from DPUK are requestable from
the AD Workbench for access at federated level. Handling of
multimodal data is a key challenge for a comprehensive federated
model. Integration of clinical, neuroimaging and genetics data is
essential. To give researchers access to multimodal data, GAAIN
has made efforts toward this direction by establishing external
connections to the IDA network (Crawford et al., 2015) that hosts
a variety of studies. This effort can be augmented by ADDI’s AD
Workbench tools that are agnostic to any data format. In addition,
DPUK has already established ontologies and multi-modal analysis
that can be further integrated with ADDI’s products. Key to
progress is increasing cross-platform interoperability through data
standards, efficient data access, and distribution of computational
workload.

Implementing data standards across platforms would be
transformative. A common ontology (data model) alleviates the
data preparation burden for researchers and developers. A recent
study comparing data preparation times for 25 variables in two
cohorts found that using the ‘bespoke’ cohort designed data model
required 5–6 h per cohort, whilst using a standard data model
reduced this time to 30 min per cohort (Bauermeister et al., 2023).
Standard ontologies also simplify the building of data discovery
tools for developers, as standard metadata models enable tools such
as data dictionaries to have broader application across datasets and
be harmonized across platforms. However, data standards require
consensus, and this will vary according to data modality. GAAIN,
DPUK, and ADDI are working together to identify, develop,
and test potential data models according to data modality. For
example, the ontology implemented by DPUK can be integrated
with GAAIN and ADDI.

Analyses conducted in federated settings pose unique
opportunities and challenges for data access. Federated approaches
increase the potential base of data enabling the design of purpose-
specific cohorts, i.e., using existing data to create cohorts designed
to address specific research questions. An example of this is the
GAAIN Interrogator tool (GAAIN, 2017), a web-based application
that allows users to query and explore distributed datasets related to
Alzheimer’s disease and other neurodegenerative disorders. These
cohorts can be characterized using persistent unique identifiers
enabling rapid replication and re-purposing. A challenge, however,
is the efficient running of models across diverse datasets and
informatics architectures. A solution under development within
the consortium is the creation of synthetic datasets (Muniz-terrera
et al., 2021) that model the characteristics of the original data.
These can be used to develop task-specific ‘boilerplate’ code that
is known to operate successfully across platforms and to test
the functionality of models across platforms prior to a formal
analysis. For higher-order data (imaging and genomics) this
approach is time and computationally efficient. By running and
verifying models on simulated data, researchers can spend less time

submitting federated queries and data providers may have fewer
queries to review.

The federated analysis framework has increasing potential for
federated learning applications. In federated learning, different data
partners/clients train their neural networks, and a central model
aggregates the parameters of that model (Rieke et al., 2020). This
approach allows the training of large-scale neural network models
without the need to access centralized data (Stripelis et al., 2022).

We hope in the future to release a skeleton of the underlying
federated analysis framework from these platforms. By doing
so, outside researchers can build their own federated methods
and models and those can potentially be integrated with the
proposed platforms.

Computational workload becomes an increasingly important
resource constraint as the scale of datasets grows with a
commensurate increase in the complexity of research questions.
For federated analyses there is a requirement to establish models
of ‘smart’ federation where requests and computational load can
be efficiently managed. Computational and labor-intensive burdens
on data providers lead to bottlenecks and longer turnaround
times to review and fulfill data access requests. Additionally,
extracting information from large cohorts of interest requires
increased computational resources. GAAIN, DPUK and ADDI
provide distinctive solutions to this challenge, each based around
the functionality of its trust-by-design architecture. ADDI’s AD
Workbench cohort information can be utilized within a user’s
workspace to create analysis only for this cohort. To increase
efficiency and transparency, requests and datasets need to be
in specific format before computational resources are allocated.
GAAIN is also working on identifying a specific format for
how these requests can be more efficient in terms of how
they allocate resources. In DPUK, the analysis plan determines
the computational resource that is allocated to the project. All
platforms are working toward modality specific formats that can
be integrated within docker containers.

A further challenge is the scrutiny of findings to ensure that
data or personally identifiable information is not observed or
downloaded. Safeguards that prevent this from happening can
include presentation of summary statistics rather than single data
points or preventing analysis of cohorts consisting of few subjects
(Neu et al., 2016). Currently this is an arduous task on all
platforms; a solution that does not scale and is vulnerable to error.
Machine learning provides a potential solution for automating the
management of data leakage risk (Shabtai et al., 2012).
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Collaborative neuroimaging research is often hindered by technological, policy,

administrative, and methodological barriers, despite the abundance of available

data. COINSTAC (The Collaborative Informatics and Neuroimaging Suite Toolkit

for Anonymous Computation) is a platform that successfully tackles these

challenges through federated analysis, allowing researchers to analyze datasets

without publicly sharing their data. This paper presents a significant enhancement

to the COINSTAC platform: COINSTAC Vaults (CVs). CVs are designed to further

reduce barriers by hosting standardized, persistent, and highly-available datasets,

while seamlessly integrating with COINSTAC’s federated analysis capabilities. CVs

o�er a user-friendly interface for self-service analysis, streamlining collaboration,

and eliminating the need for manual coordination with data owners. Importantly,

CVs can also be used in conjunction with open data as well, by simply creating a

CV hosting the open data one would like to include in the analysis, thus filling an

important gap in the data sharing ecosystem. We demonstrate the impact of CVs

through several functional and structural neuroimaging studies utilizing federated

analysis showcasing their potential to improve the reproducibility of research and

increase sample sizes in neuroimaging studies.

KEYWORDS

COINSTAC, neuroimaging, federated learning, reproducibility, open science, datasets,

privacy, collaborative analysis
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1. Introduction

In recent years, neuroimaging has seen a growing emphasis

on data sharing and collaborative research, as evidenced by

the development of new standards [e.g., Brain Imaging Data

Structure (BIDS), Gorgolewski et al., 2016], open-source software

tools, and data repositories. Neuroinformatics consortia such

as Enhancing NeuroImaging Genetics through Meta-Analysis

consortium (ENIGMA) (Thompson et al., 2014), and data

repositories such as OpenNeuro (Markiewicz et al., 2021) and

National Institutes of Health Data Archive,1 were created to

facilitate analysis of data and combining data from multiple sites.

Pooling data from many studies allows for larger sample sizes that

produce more statistical power (Biswal et al., 2010; Andrade, 2020).

Though the quantity of neuroimaging data is increasing, there are

still barriers to collaboration in the form of technological, policy,

administrative, and methodological constraints that can negatively

affect data accessibility.

In this section, we discuss in detail some of the challenges

associated with collaborative analysis, particularly in centralized

approaches, where the data need to be pooled in one location to

perform an analysis. We also discuss COINSTAC, a tool built on

the principles of federated analysis to enable analysis without the

need to centralize data.

1.1. Technological challenges

Technological constraints, such as storage space, download

speed, and processing power, play a significant role in the feasibility

of performing collaborative analyses on large datasets (Homer et al.,

2008; McGuire et al., 2011) such as neuroimaging data. Existing

data repositories can contain high-resolution neuroimaging files

covering tens of thousands of subjects, with sizes ranging from

megabytes to multiple petabytes. Downloading the MPI-Leipzig

Mind-Brain-Body dataset (Babayan et al., 2022) (369.78 GB)

at the global median download speed of 76.32 Mbps2 onto a

modern MacBook Pro with 512 GB of storage3 would take

11 h and 33 min, consuming 72.2 percent of the machine’s

total storage space. The requirements for storage space and

download time can increase when an analysis involves aggregating

multiple large datasets. Additionally, processing power may

be a limiting factor for performing computations, particularly

when certain types of analyses are designed to run on specific

hardware like GPUs, which can demand resources beyond

the capacity of smaller research groups or institutions with

limited budgets.

1.2. Policy and privacy challenges

Due to the potentially sensitive nature of neuroimaging

datasets, their use in collaborative analysis is often restricted

1 https://nda.nih.gov/

2 https://www.speedtest.net/global-index

3 https://www.apple.com/macbook-pro-14-and-16/specs/

by policies intended to preserve privacy. Collaboration methods

include aggregating data in a centralized repository or using Data

Usage Agreements (DUAs) (Thompson et al., 2014, 2017). These

methods can be cumbersome and, in some cases, insufficient.

DUAs may take months or even years to approve without any

guarantee of the data’s utility. Data sharing might be limited

by law, policy, or proprietary restrictions, largely driven by re-

identification concerns. In situations where only summary data

can be shared, differences in analysis methodology may result

in inconsistent measures for meta-analysis (Rootes-Murdy et al.,

2022).

1.3. Administrative challenges

Administrative challenges can arise when collaborating on an

analysis, as various steps demand researchers’ time and attention.

These steps may include communicating between agencies,

formulating and signing data-sharing agreements, agreeing on

data preparation and analysis processes, procuring technical

resources, monitoring and auditing processes, performing data

transfer, initiating computations, disseminating results of analyses,

and so on.

The efficiency of collaborative analysis is influenced by

how quickly these manual steps are executed. Synchronized

availability of researchers can present a barrier to the collaboration

process. When researchers work asynchronously, each step

in a serial process requiring manual interaction introduces

potential delays. This can be particularly challenging when

researchers are distributed across multiple time zones or

have limited time to perform manual tasks. Furthermore,

researchers’ availability may be constrained by the need for

expertise and authority, such as having the authority to sign

a data-sharing agreement or the technical expertise to run

the appropriate Python script against a dataset. Often, these

manual steps must be executed for each new analysis, which

can slow down and even impede collaborative analysis. By

addressing these administrative barriers, research teams can

more effectively collaborate and streamline their analysis

processes, ultimately contributing to the advancement of

neuroimaging research.

1.4. Methodological di�erences

Variability in methodological approaches to data processing

and analysis can make reproducing studies challenging (Vogt,

2023). To validate results, researchers must adhere to the exact

methodology used in the original study, which necessitates clear

communication of the specific methods employed. However, as

methods are often chosen on a case-by-case basis, replicating

studies can be time-consuming and difficult (Esteban et al.,

2019), and sometimes even impossible. Moreover, when multiple

studies adopt different methodologies, combining their results

meaningfully becomes challenging, hindering the execution of

meta-analyses.
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To overcome these barriers, we introduce COINSTAC,4 a tool

that supports federated analysis for neuroimaging data.

1.5. Federated analysis using COINSTAC

Federated analysis (also federated learning, or decentralized

analysis) (Plis et al., 2016; Kairouz et al., 2021; Rootes-Murdy

et al., 2022) allows for multiple datasets to be used in analyses

without source data being directly shared. Instead, data holders run

computations on their local data and only share the outputs, which

are often group-level data derivatives or summary statistics. For

example, sites may compute an average or other summary on their

local data and send that information. Typically, these summaries

are much smaller, meaning that the source data are not shared,

thereby removing the technical challenges associated with dataset

transfer. A second potential benefit is additional privacy guarantees

for the data holders. From a purely policy perspective, datasets

are analyzed without being moved from their original location

and data holders can determine which computations are and are

not allowed on their data. From a technical perspective, strong

end-to-end encryption can prevent third parties from acquiring

the data derivatives. Depending on the trust model, additional

privacy protections are possible, including emerging technologies

like secure multiparty computation and differential privacy (Dwork

and Roth, 2013; Bonawitz et al., 2016, 2017; Heikkilä et al., 2020;

Imtiaz et al., 2021; Senanayake et al., 2022).

The Collaborative Informatics and Neuroimaging Suite Toolkit

for Anonymous Computation (COINSTAC) (see text footnote 4)

(Plis et al., 2016; Ming et al., 2017; Gazula et al., 2020, 2023;

Turner et al., 2022) is a tool developed to support federated

analysis specifically for neuroimaging data by overcoming the

aforementioned barriers to collaboration through the use of

federated analysis and standardization of collaboration methods.

COINSTAC enables researchers to run decentralized neuroimaging

analyses to perform larger collaborative studies (Rootes-Murdy

et al., 2022; Turner et al., 2022). As of now, COINSTAC

has attracted 115 users and has been downloaded 2,386 times,

showcasing its growing reach and impact within the research

community.

The COINSTAC desktop application provides an easy-to-use

graphical user interface (GUI) for coordinating and executing

federated analysis pipelines among multiple collaborators. Image

preprocessing and a variety of univariate and multivariate

approaches (e.g., VBM regression, group ICA) can be completed

within the app.

For a comprehensive understanding of COINSTAC, its

functionalities, and usage, readers are encouraged to refer to the

following papers (Plis et al., 2016; Ming et al., 2017; Gazula et al.,

2020, 2023; Turner et al., 2022).

One limitation of the original implementation of COINSTAC

is that it requires synchronized coordination (Jwa and Poldrack,

2022), users have to coordinate among data owners to confirm

their systems are online, that the data are organized within the

same structure and that the data are mapped properly within the

4 https://coinstac.org/

COINSTAC system. The need for a centralized coordinator can

delay contingent analyses.

In this paper, we address this limitation by showcasing a

method for hosting both private and public datasets where the

datasets are persistently accessible for analysis using COINSTAC

without the need for synchronized effort from data owners.

Analysis of public datasets is made more accessible by removing

the need to find, download, preprocess, and prepare datasets

for analysis. We provide curated data vaults for various openly

available neuroimaging data which COINSTAC users can simply

include in their analyses. Access to private datasets can be

restricted to a list of computations approved by the vault owner.

Standardizing access to data vaults in the COINSTAC system

simplifies analysis, optimizes computational performance, and

promotes the reusability of neuroimaging datasets.

2. Method

In this section, we discuss COINSTAC and the extension

of the COINSTAC framework with the addition of vaults,

their architecture, and various use-cases they enable. All code

for COINSTAC and COINSTAC Vaults can be found in the

COINSTAC Github repository.5

2.1. COINSTAC

To understand how Vaults improve the workflow of federated

analysis in COINSTAC, we will describe the COINSTAC system

and how it is used.

The main components of the COINSTAC system are:

the desktop application, the central server, and computation

containers. The desktop application provides a graphical user

interface (GUI) and manages local computation containers used to

participate in federated analyses. The central server manages the

central database and runs the containers that act as the inner node

in federated analyses.

In the COINSTAC desktop application, users join collections

of users called “consortia” to collaborate on an analysis pipeline. A

consortium is a group formed by individual COINSTAC users, each

with their machine that is capable of being a node in a federated

analysis pipeline. Each member within a consortium will act as a

node in the federated analysis group by running local computations

inside of a container on their system.

The following is how a researcher would use the COINSTAC

user interface to create a consortium and run a federated

analysis pipeline:

• Log in as a user

• Join (as a member) or create (as an owner) a consortium

• Configure a set of computations (a pipeline) to be performed

by a consortium

• Map their local data to the pipeline

• Initiate the pipeline (a run)

• View the results of the pipeline run.

5 https://github.com/trendscenter/coinstac
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FIGURE 1

Adding vault data to an analysis pipeline.

2.2. COINSTAC Vaults

2.2.1. Purpose and high level overview
The Vaults system is an extension of the COINSTAC platform

that allows datasets to be persistently available for participation

in federated analyses without requiring manual action from data

owners apart from the initial setup. COINSTAC consortium owners

can independently add Vaults members to their consortia, allowing

vault datasets to participate in federated analyses without the need

for coordination between consortia owners and Vault data owners.

The Vault client allows datasets to be made available to the larger

COINSTAC ecosystem, giving the ability for others to run pipelines

using the Vault’s data without it ever leaving its respective system.

2.2.2. Using the GUI to add a Vault to a
consortium and run an analysis

Vault clients can be added to a consortium by a consortium

owner without any action required from the owner of the Vault

data, as shown in Figure 1.

2.2.3. Hosting Vaults
Making datasets available for federated analysis through

COINSTAC is simple using Vaults. Vaults can be hosted in a

variety of compute environments such as: on personal machines,

on-premises servers, on a cluster of compute nodes, or in a virtual

cloud. Both publicly available datasets and private datasets can be

made available to the COINSTAC platform via Vaults. COINSTAC

consortia can include any combination of diverse types of data:

public and private datasets, data hosted on local machines, Vaults

hosted by the Tri-institutional Center for Translational Research in

Neuroimaging and Data Science (TReNDS), and third-party Vaults

connected to COINSTAC as shown in Figure 2.

In addition to TReNDS-hosted vaults, data owners are able to

host their own (public or private) data as Vaults (Figure 3) by using

the coinstac-vault-client software package at https://www.npmjs.

com/package/coinstac-vault-client.

The process for hosting a dataset in a Vault is described below:

• Install the Vault client: The user installs the Vault client on

their host machine.

• Request Vault integration: The user submits a request to

the COINSTAC team for integrating the Vault into the

COINSTAC ecosystem.

• Receive API keys: The COINSTAC team provides the user

with the necessary API keys for the user’s Vault client.

• Configure dataset directory: The user specifies the

local directory containing the dataset in the Vault

client configuration.

• Select approved computations: The user chooses a list of

computations, granting permission for these computations to

be executed on their vault data.

After this process, the Vault becomes available for use in the

COINSTAC system. Consortium owners can select to include the

Vault in their consortium and perform federated analysis using

Vault data. Whether the data was downloaded from a public

repository or collected privately, the process is the same for both

types of data since the source data stays on the user’s local machine.
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FIGURE 2

Di�erent types of participants interacting with COINSTAC.

FIGURE 3

Process of creating a vault in COINSTAC.

2.2.4. Vault architecture overview
The Vault client software package is built upon the same

core code as the COINSTAC desktop application to manage

containers and execute computation pipelines. However, it omits

the user interface (UI) component and includes additional

code that enables the client to be persistently online and

available. The desktop application has been modified to allow

consortium owners to add Vault clients to their consortium via

the GUI.

The Vault client is a NodeJS server running on the local

machine, responsible for maintaining a persistent connection with

the COINSTAC system using the coinstac-vault-client package.

The server communicates with the COINSTAC central server

using websockets and HTTP protocols. It manages the life-cycle

of containers (Docker, Singularity) through the coinstac-container-

manager package, which is responsible for isolating and executing

the computations within the federated analyses. The Vault client

also utilizes other core COINSTAC libraries such as coinstac-

client-core, coinstac-client-server, coinstac-pipeline, and coinstac-

common, all of which are npm packages, to ensure seamless

integration with the COINSTAC ecosystem. An overview is shown

in Figure 4.

Message passing, which is an integral part of federated analyses,

is handled by the Vault client using MQTT (MQ Telemetry

Transport) and HTTP protocols. MQTT is a lightweight messaging

protocol optimized for high-latency or unreliable networks.

For pipeline runs in consortia that only use Vaults, the result

data is uploaded to a secure Amazon S3 bucket, which can

then be downloaded by consortium members using the desktop

application. This ensures that the results are securely stored and

easily accessible by authorized users.

In summary, the Vault architecture in COINSTAC improves

the overall efficiency and user experience of performing federated

analyses. By maintaining a persistent connection, the Vault client
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FIGURE 4

Architecture of vaults in COINSTAC.

ensures that datasets are readily available for analysis without the

need for manual intervention by data owners. Additionally, the

integration of the Vault client within the COINSTAC ecosystem

allows for seamless interaction between the desktop application and

the Vaults, making it simple for consortium owners to include Vault

data in their federated analyses.

2.2.5. Vault use-cases
In this section, we present various use-cases that highlight the

benefits and versatility of Vaults in COINSTAC.

2.2.5.1. Curated Vaults

TReNDS actively curates and hosts public datasets, making

them readily available for the COINSTAC community through the

creation of Vaults. These curated Vaults ensure that the public

datasets are vetted, of high quality, and easily accessible. Users

can contribute to this initiative by hosting Vaults for other public

datasets, further expanding the range of data resources available

within COINSTAC.

2.2.5.2. User with local data

A researcher with a local dataset can benefit from incorporating

Vault datasets containing relevant variables into their analysis.

Integrating multiple datasets is especially advantageous when

the researcher’s local data is inadequate for conducting a

comprehensive analysis. Collaborating with other COINSTAC

consortium members and leveraging data from Vaults enables

researchers to enhance the sample size and statistical power of

their study efficiently while preserving privacy and streamlining the

process by eliminating manual collaboration steps.

2.2.5.3. User with no local data

For investigators who do not have their own data but want to

analyze existing datasets, Vaults provide a valuable solution. The

investigator can create a consortium, add selected Vaults using the

COINSTAC UI, and initiate the analysis. This approach enables the

investigator to obtain meaningful insights from existing datasets

without needing to coordinate with the Vault data owners.

2.2.5.4. User with limited storage/computing resources

Vaults are also advantageous for researchers with limited

storage or computing resources. For example, a researcher with

a low-powered laptop and minimal storage capacity can still

analyze large datasets by creating a consortium and running an

analysis using only Vault clients. The data processing occurs on

the respective Vault servers, and the results are sent back to the

investigator, eliminating the need for high-capacity local hardware.

By addressing these diverse use-cases, COINSTAC Vaults offer

a flexible and efficient solution for researchers to access, collaborate,

and analyze datasets in a federated environment.

3. Results

In this section, we conduct a series of analyses using

multiple Vaults hosted by TRENDS, emphasizing the practical
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application and utility of the Vaults feature. We specifically

focus on the TReNDS VBM COBRE, TReNDS FreeSurfer

COBRE, Child Mind Institute (CMI) VBM, and TReNDS

NeuroMark Group-ICA COBRE datasets. These datasets were

chosen to be hosted in Vaults based on their relevance to

the neuroimaging research community, and their potential to

demonstrate the diverse capabilities of COINSTAC Vaults. The

hosting decisions were made in coordination with the respective

data owners.

Our analyses highlight how the inclusion of Vault data can

significantly increase sample size, thereby enhancing the statistical

power of results. The diversity of datasets also underscores the

flexibility and adaptability of COINSTAC Vaults, demonstrating

how they can accommodate a wide range of research contexts and

data types.

3.1. TReNDS VBM COBRE

The TReNDS VBM COBRE Vault contains structural

MRI images from 152 participants, approximately half healthy

volunteers and half individuals diagnosed with schizophrenia,

collected as part of the Mind Research Network COBRE

study (Aine et al., 2017). The Vault includes gray matter MRI

images that have been run through a VBM preprocessing pipeline

in the SPM toolbox. In addition, we have demographic information,

symptom severity scales, and cognitive measures to select from

when building a desired model. Figure 5 shows the beta images

from running VBM regression on all the voxels from normalized

smoothed gray matter images from the TReNDS COBRE Vault.

Age, sex, and diagnosis information were used as covariates in

the regression model. Results show decreases in brain volume

with age, reduced volume in visual areas and along the gray/white

boundary in females, and reduced volume in insular-temporal and

medial frontal regions in schizophrenia patients, consistent with

previous results.

The following section describes this use-case with 55

participant’s structural MRI scans collected under MCIC

project (Gollub, 2013). The results from running regression on the

normalized smoothed gray matter images from this project are

shown in Figure 6.

Using the MCIC dataset, we similarly see widespread reduction

in brain volume for age, visual and gray/white boundary

reductions in volume in females, and insular-temporal and

medial frontal (as well as more wide spread) reductions in

schizophrenia patients.

The TReNDS VBM COBRE Vault was combined with the

MCIC dataset, allowing for an increased sample size, in the

same regression analysis to examine diagnostic effects while

accounting for age and sex. The combined dataset was largely

consistent with the individual site analysis, with the exception

of the male/female effect which shows a more complex pattern

of increases and decreases, though still largely conforming to

reductions in white/gray matter boundary and primary visual area

volumes (Gupta et al., 2015). Results of this study are shown in

Figure 7.

3.2. TReNDS FreeSurfer COBRE

This Vault contains data from 152 subjects, approximately half

controls and half individuals with chronic schizophrenia, collected

as part of the Mind Research Network COBRE study.6 The Vault

includes cortical and sub-cortical volumetric and surface-based

measurements from two FreeSurfer atlases, Desikan-Killiany and

Destrieux. In addition, we have a total of 11 variables across

demographic, cognitive, and substance use to select from when

building a desired model.

We ran Ridge regression on the above Vault data on Freesurfer

volumetric and surface based measurements on about 500 regions

of interest. We noticed the following differences between controls

and patients.

Controls have higher values in temporal lobe, as shown in the

thickness measurements of tables (Tables 1–5).

3.3. Child Mind Institute (CMI) VBM VAULT

This Vault contains data from 922 children and adolescents

(ages 6–22, 603 Male and 319 female), collected as part of the

Healthy Brain Network study (Alexander et al., 2017). The Vault

includes gray matter segmentation data from an SPM VBM

preprocessing pipeline. In addition, we have a total of 11 variables

across various demographic, cognitive and substance use domains

to select from when building a desired model.

Figure 8 shows the beta images from running regression on all

the voxels from normalized smoothed gray matter images from

the CMI VBM VAULT. Age and sex were used as covariates in

the regression model. Results were largely consistent with those

from the MCIC and COBRE analyses, showing widespread volume

reductions with age, and reductions along the gray/white matter

boundary in females.

3.4. TReNDS NeuroMark Group-ICA COBRE
VAULT

Group ICA (Calhoun et al., 2001) is one of the frequently

used preprocessing computations for neuroimaging data. Data

preprocessed with group ICA can be used to perform different types

of analyses. This GICA Vault comprises data from 189 subjects

from the COBRE project analyzed with Neuromark template which

uses 66 predefined ROIs. This Vault data includes independent

component analysis (ICA) maps, Functional network connectivity

maps (FNC) data etc. that have been generated using spatially

constrained ICA with the Neuromark_fMRI_1.0 template

(available in the GIFT software)7 ,8 including 53 intrinsic networks

(components). This Vault data can be readily used for secondary

analysis like mancova. In this case, we use the GICA pre-processed

data from the Vault to perform univariate regression analysis, the

results of which are shown in Figure 9.

6 http://fcon_1000.projects.nitrc.org/indi/retro/cobre.html

7 http://trendscenter.org/software/gift

8 http://trendscenter.org/data
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FIGURE 5

(A–C) Rendered images show voxel-wise β values corresponding to the age, sex, and diagnosis covariates using COBRE VBM data Vault in

COINSTAC. For age, negative values show that the gray matter volume decreases with age. For sex, positive values indicate male’s gray matter

volume is greater than female’s gray matter volume and vice versa. For diagnosis, positive values indicate control’s gray matter volume is greater than

patient’s gray matter volume and vice versa.

FIGURE 6

(A–C) Rendered images show voxel-wise β values corresponding to the age, sex, and diagnosis covariates using MCIC sMRI data in COINSTAC. For

age, negative values show that the gray matter volume decreases with age. For sex, positive values indicate male’s gray matter volume is greater than

female’s gray matter volume and vice versa. For diagnosis, positive values indicate control’s gray matter volume is greater than patient’s gray matter

volume and vice versa.

FIGURE 7

(A–C) MCIC+COBRE vault: rendered images show voxel-wise β values corresponding to the age, sex, and diagnosis covariates using MCIC sMRI data

along with the data in the COBRE Vault in COINSTAC. For age, negative values show that the gray matter volume decreases with age. For sex,

positive values indicate male’s gray matter volume is greater than female’s gray matter volume and vice versa. For diagnosis, positive values indicate

control’s gray matter volume is greater than patient’s gray matter volume and vice versa.

TABLE 1 Global freesurfer stats for lh_S_temporal_inf_thickness.

Global stats – lh_S_temporal_inf_thickness β0 (const) β1 (age) β2 (sex) β3 (isControl_True)

Coefficient 2.5552 -0.0052 0.0323 0.1071

t stat 44.8963 -5.014 1.0642 4.1085

P-value 0 0 0.289 1.00E-04

R squared 0.237444911

Degrees of freedom 145

The Neuromark fMRI domains identified in Du et al. Briefly,

these seven identified network templates were divided based on

anatomical and functional properties (Du et al., 2020). In each

subfigures, one color in the composite maps corresponds to an

intrinsic connectivity network (ICN). The Neuromark_fMRI_1.0

template is available in the GIFT software (Figure 10).

4. Discussion

In recent decades, data sharing has driven substantial

advancements in the field of neuroimaging and expanded

opportunities for open science collaboration. Although

data sharing has undeniable merits, it also faces inherent
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TABLE 2 Global freesurfer stats for rh_S_oc − temp_lat_thickness.

Global Stats – rh_S_oc-temp_lat_thickness β0 (const) β1 (age) β2 (sex) β3 (isControl_True)

Coefficient 2.5331 −0.0036 0.0127 0.1158

t stat 38.8572 −3.0471 0.3663 3.878

P-value 0 0.0027 0.7147 2.00E-04

R squared 0.149884354

Degrees of freedom 145

TABLE 3 Global freesurfer stats for lh_middletemporal_thickness.

Global Stats – lh_middletemporal_thickness β0 (const) β1 (age) β2 (sex) β3 (isControl_True)

Coefficient 3.0038 −0.0057 −0.0134 0.0829

t stat 60.2257 −6.3161 −0.5056 3.63

P-value 0 0 0.6139 4.00E-04

R squared 0.275552216

Degrees of freedom 145

TABLE 4 Global freesurfer stats for lh_superiortemporal_thickness.

Global Stats – lh_superiortemporal_thickness β0 (const) β1 (age) β2 (sex) β3 (isControl_True)

Coefficient 2.9341 −0.0067 0.0169 0.0682

t stat 52.568 −6.6199 0.5679 2.6659

P-value 0 0 0.571 0.0085

R squared 0.266849477

Degrees of freedom 145

TABLE 5 Global freesurfer stats for Left_Inf_Lat_Vent.

Global Stats – Left_Inf_Lat_Vent β0 (const) β1 (age) β2 (sex) β3 (isControl_True)

Coefficient 428.1455 4.8982 −144.8783 −164.4922

t stat 5.1293 3.2264 −3.2585 −4.3021

P-value 0 0.0015 0.0014 0

R squared 0.22384763

Degrees of freedom 145

FIGURE 8

(A, B) Rendered images show voxel-wise β values corresponding to the age and sex covariates using CMI VBM Vault data in COINSTAC. For age,

negative values show that the gray matter volume decreases with age. For sex, positive values indicate male’s gray matter volume is greater than

female’s gray matter volume and vice versa.
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FIGURE 9

(A–C) Rendered images show univariate regression results demonstrating the e�ects of age and sex on correlation between the 53 independent

components and FNC correlation map using vault data in COINSTAC.

FIGURE 10

The Neuromark fMRI 1.0 template with 53 intrinsic networks (components) from 7 major networks.
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limitations, including technological, policy, administrative, and

methodological barriers that can hinder progress. COINSTAC

Vaults and the federated computing framework within COINSTAC

uniquely address these challenges by enabling data analysis

while maintaining privacy protection, specifically in the context

of neuroimaging research. The “always-on” status of Vaults

streamlines collaboration between institutions by eliminating the

need for synchronized efforts across users. The accessibility and

user-friendly interface of COINSTAC Vaults serve as powerful

tools for reproducible research, an area that has faced significant

criticism in recent years. By bolstering the collaborative capabilities

of federated learning and addressing the limitations of traditional

data sharing, COINSTAC Vaults provide a cutting-edge solution

for the neuroimaging community, pushing the boundaries of data

analysis and open science.

COINSTAC offers a user-friendly GUI for the neuroimaging

field, enabling federated learning on neuroimaging data with ease.

Its extensive library includes numerous algorithms and pipelines,

facilitating efficient processing of large datasets. Currently, over

twenty computations are available in open-source repositories,

allowing users to create versatile analytic pipelines. The integration

of Vaults further enhances the user experience by providing access

to diverse datasets, enabling efficient analysis with robust data, and

fostering collaboration across institutions asynchronously.

Compared to OpenNeuro,9 and OpenfMRI (Poldrack and

Gorgolewski, 2017) like projects, where users can access data,

download them and perform analysis on their own, Vaults allow

users to perform neuroimaging analysis in federated learning

platform immediately, without the need to download data and

toolboxes onto a centralized computing environment. Vaults can

help researchers to run an initial test on a data or their algorithm

quickly to help setup their hypotheses or validate it to save time

before they commit to a big project.

In addition to being faster to execute by being immediately

available with no downloading or manual coordination, curated

Vaults that follow documented standards make studies easier

to design, execute, and reproduce. For example: Neuroimaging

datasets can contain a large number of variables that apply to

each subject: demographic information, cognitive measures, etc.

The number of these variables can range from tens to hundreds.

Using standard naming conventions makes it easier for researchers

to understand what each variable tracks so that they can select the

relevant variables for their study. Standard and predictable ways for

handling missing data in Vaults makes it easier for researchers to

design their analyses.

COINSTAC is unique in its commitment to open science,

with its open-source platform promoting seamless integration of

modular computations and streamlining federated analyses. The

addition of COINSTAC Vaults reinforces this commitment by

simplifying dataset inclusion in federated analyses, encouraging

community contributions, and preserving privacy for private

datasets. By offering easy access to public datasets and enabling

secure contributions from private dataset owners, COINSTAC

Vaults foster collaboration and dedication to open science.

9 https://openneuro.org/

4.1. Limitations and challenges

COINSTAC Vaults offer numerous benefits, but there are also

limitations and challenges to consider, particularly in the areas of

data privacy and security, and resource usage.

One concern is that allowing arbitrary summary queries on a

datasetmight enable an attacker to reconstruct the data. Tomitigate

such risks, the system must be privacy-preserving from “end-to-

end,” incorporating techniques like secure multiparty computation

or differential privacy. Implementing these methods can be difficult

due to floating point implementation issues (Mironov, 2012;

Ilvento, 2020a,b) and the introduction of noise, which may increase

error or variance in the analysis results.

While differentially private algorithms can provide stronger

privacy guarantees, sharing data derivatives without differential

privacy might be adequate in some situations, depending on the

trust model and privacy concerns of data holders. These issues

should be addressed on a case-by-case basis.

Vault owners can currently restrict computations on their data

to a pre-approved list. To enhance privacy protection, further

improvements are recommended. Potential solutions include

allowing Vault owners to:

• Approve or deny individual analysis runs.

• Specify users and consortia that are allowed to run analyses.

• Limit the overall number of computation runs for a vault.

• Set expiration dates for specific approval permissions.

Another challenge is handling slowdowns or crashes during

resource-intensive analyses due to high compute usage. To address

this issue, Vault owners can be given more control over resource

usage and compute capacity. They could limit the number of

concurrent computations and overall CPU usage. Improving

compute capacity could involve strategies like deploying multiple

instances behind a load balancer or dynamically scaling resources.

Additional challenges include data distribution, network

bandwidth, and communication speed. Federated learning and

open-source solutions can help address some of these problems,

but further research and development are needed to optimize

COINSTAC Vaults’ performance in various research settings.

Our “Decentralized Sparse Deep Artificial Neural Networks in

COINSTAC (CPU and GPU enabled)” algorithm allows users to

save network bandwidth when transferring thousands of derived

data/machine learning parameters across nodes.

In summary, COINSTAC Vaults mark a significant

advancement in federated neuroimaging research, data privacy

preservation, and open science promotion. By tackling the existing

limitations and challenges, COINSTAC Vaults can further improve

collaboration and innovation within the field.

5. Conclusion

The neuroimaging field is experiencing rapid growth,

generating substantial data volumes. However, access to this

data is challenged by technological, privacy, administrative, and

methodological constraints. In this study, we present COINSTAC

Vaults as a solution that streamlines data access and analysis,
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specifically in the context of neuroimaging research. COINSTAC

Vaults ensure continuous availability of high-quality data,

promoting the advancement of open science and fostering efficient

collaboration between researchers.

We invite researchers to use COINSTAC Vaults in their

studies and to host their own datasets using COINSTAC

Vaults. By adopting COINSTAC Vaults, the neuroimaging

community can overcome the barriers associated with traditional

data sharing and analysis methods, paving the way for

groundbreaking discoveries.

5.1. Future work

The long-term vision for COINSTAC and COINSTAC

Vaults includes:

• Introducing new user interface features, such as the ability

to search Vaults and filter by covariates, to improve user

experience and efficiency.

• Making new datasets available as Vaults, including those

from OpenNeuro, the Autism Brain Imaging Data Exchange

(ABIDE), the National Institute of Mental Health Data

Archive (NDA), the Open Access Series of Imaging Studies

(OASIS), and the Image and Data Archive (IDA), to enhance

the diversity of Vaults.

• Increase BIDS (Brain Imaging Data Structure) support to all

major neuroimaging modalities and Vault datasets, to ensure

interoperability and ease of use.

• Increase compliance to programs such as the FAIR

(Findability, Accessibility, Interoperability, and Reuse)

Guiding Principles for scientific data management and

stewardship, to enhance the overall data sharing ecosystem.

• Exploring the integration of differential privacy techniques to

further safeguard data privacy, while preserving the utility of

data analysis.
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The biomedical research community is motivated to share and reuse data from

studies and projects by funding agencies and publishers. Effectively combining

and reusing neuroimaging data from publicly available datasets, requires the

capability to query across datasets in order to identify cohorts that match

both neuroimaging and clinical/behavioral data criteria. Critical barriers to

operationalizing such queries include, in part, the broad use of undefined study

variables with limited or no annotations that make it difficult to understand

the data available without significant interaction with the original authors.

Using the Brain Imaging Data Structure (BIDS) to organize neuroimaging data

has made querying across studies for specific image types possible at scale.

However, in BIDS, beyond file naming and tightly controlled imaging directory

structures, there are very few constraints on ancillary variable naming/meaning

or experiment-specific metadata. In this work, we present NIDM-Terms, a set of

user-friendly terminology management tools and associated software to better

manage individual lab terminologies and help with annotating BIDS datasets.

Using these tools to annotate BIDS data with a Neuroimaging Data Model

(NIDM) semantic web representation, enables queries across datasets to identify

cohorts with specific neuroimaging and clinical/behavioral measurements. This

manuscript describes the overall informatics structures and demonstrates the use

of tools to annotate BIDS datasets to perform integrated cross-cohort queries.
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1. Introduction

There is a “crisis of replication” in neuroscience (Button et al.,
2013; Szucs and Ioannidis, 2017). Interpreting, reproducing, and
validating results of experiments depends critically on our ability to
understand the conditions under which the data were acquired and
processed. Efficient discovery and reuse of existing data relies on
the data and metadata adhering to the FAIR: Findable, Accessible,
Interoperable and Reusable principles (Wilkinson et al., 2016;
Schulz, 2018). The biomedical research community is motivated to
share and reuse data from studies and projects by an increasing
number of requirements from funding agencies (e.g., NIH-wide
Policy for Data Management and Sharing1) and publishers (PMID:
34914921). There are a growing number of data repositories (Das
et al., 2012; Book et al., 2013; Poldrack et al., 2013; Ambite et al.,
2015; Crawford et al., 2016; Kennedy et al., 2016), each with their
own data structures and data dictionaries (Eickhoff et al., 2016).
With dozens of neuroimaging data sharing sources now available,
we need better methods to annotate datasets and to search across
those datasets without a significant investment in time to develop
database mediation services (Keator et al., 2008; Turner et al.,
2015; Wang et al., 2016; Niso et al., 2022) or creating “crosswalks”
mapping variables across datasets.

Critical barriers to finding and reusing data include the
use of undefined variables and/or an insufficient degree of
variable annotations that make it difficult to understand the data
available without significant interaction with the original authors.
Further, determining whether cohorts from different studies can
be combined, based on phenotypes or acquisition parameters is
currently difficult, requiring a significant investment in effort from
the researcher. The ability to conduct searches across diverse
datasets is difficult and typically requires sufficient annotation of
the study variables to understand what was collected and how
to query each dataset to find meaningful results. For example,
a query such as: “identify datasets that contain a measure of
depression, age, IQ, and a T1-weighted MRI scan” is not easy to
implement. Historically, this type of query would have to be posed
to multiple data repositories separately, through each repository’s
interface, and the results manually combined by the investigator.
Often, the returned results would depend upon the annotations
used in each repository and the level of granularity to which each
data object was annotated which may require the investigator to
download complete datasets in order to manually extract the data
of interest. In some cases, this query can not be satisfied without
an expert user because often the same annotation term collection
is not used across repositories, as terms used to annotate collected
study variables are inconsistent. Each lab can freely name study
variables such that they are not guaranteed to be meaningful or
sufficient, either for understanding or for querying each interface
and each dataset.

Building off the example query above, it has proven difficult to
query arbitrary datasets to find out whether they contain images
with contrast types relevant to the research question. The Brain
Imaging Data Structure (BIDS) (Gorgolewski et al., 2015; incf-
nidash, 2016) was designed to provide software developers and
the neuroimaging community with file- and directory-naming

1 https://grants.nih.gov/grants/guide/notice-files/NOT-OD-21-013.html

conventions for organizing imaging data. Because of its simplicity,
BIDS has been quickly supported by a number of analysis tools and
database platforms (COINS,2 XNAT,3 Scientific Transparency,4

OpenfMRI,5 LORIS6). In BIDS, the organization of the data is
required to conform to strict naming and directory-structure
conventions. The adoption of BIDS has addressed the imaging-
related parts in our example query above because with BIDS
and the associated PyBIDS7 Python library, one can use the
location of data within the directory structure to determine the
type of images included in that dataset. Beyond file naming and
tightly controlled imaging directory structures, there are very few
constraints on ancillary variable naming/meaning or experiment-
specific metadata in BIDS. As such, we still have difficulty satisfying
the query above because: (1) we cannot guarantee that variable
names will be meaningful; (2) data dictionaries are optional in
BIDS and there is no validation that data dictionaries, if supplied,
contain important or sufficient information (e.g., units, frames of
reference, etc.). Therefore, searching and combining information
across independent BIDS datasets is often difficult for data beyond
image types and metrics describing those images. Finally, there is
no query engine that natively supports BIDS datasets.

To address these concerns regarding the ability to query across
BIDS datasets, as well as the desire to create a web of linked
human neuroimaging data, an international team of cognitive
scientists, computer scientists, and statisticians are developing a
(meta)data representation model and tools to support its use. The
goal is to provide the foundational infrastructure in a well-defined
and easily expandable model, to link datasets using unambiguous
annotations. This effort, built upon the resource description
framework (RDF) and the PROV standard8 (Moreau et al., 2008;
PROV-Overview, 2016), is called the Neuroimaging Data Model
(NIDM)9 (Keator et al., 2013; Maumet et al., 2016; NIDM, 2016). By
using RDF as the foundation for NIDM, it benefits from a variety
of sophisticated query languages (e.g., SPARQL, RQL, TRIPLE,
Xcerpt), an open world assumption allowing users to add as many
statements about the data as they like without constraints on header
sizes as is the case with typical image formats, and direct use of
web-accessible terminologies and ontologies to provide multiple
layers to link and infer relationships among data and metadata.
A full description of NIDM is beyond the scope of this manuscript,
but NIDM was designed to facilitate queries across neuroscientific
datasets. A Python library was built (PyNIDM10) to create NIDM
annotation documents and a tool was also created to represent
a BIDS dataset, along with all the associated behavioral and/or
clinical data, as a NIDM document. Using PyNIDM and NIDM
documents, one could use RDF query languages to satisfy the
example query above across BIDS or other datasets.

2 https://coins.trendscenter.org/

3 https://www.xnat.org/

4 https://scitran.github.io/

5 https://openfmri.org/

6 http://mcin-cnim.ca/neuroimagingtechnologies/loris/

7 https://github.com/bids-standard/pybids

8 https://www.w3.org/TR/prov-overview/

9 http://nidm.nidash.org/

10 https://github.com/incf-nidash/PyNIDM
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To annotate datasets for future discovery or integration,
researchers need to be able to rely on a set of common properties for
precisely defining study variables, beyond what is already offered
by BIDS for imaging data. In other domains beyond neuroimaging,
tools have been developed to aid in dataset annotation such as the
open source ISA framework (Sansone et al., 2012) for life sciences
research, the Clinical Data Interchange Standards Consortium
(CDISC) RDF framework (Facile et al., 2022) focused on the
medical and healthcare domains, and Frictionless Data11 developed
to support climate scientists, to humanities researchers, to
government data centers, and others. In this manuscript, we focus
on the research neuroimaging community yet many of the methods
presented are general and could be applied to other domains in
synergy with related efforts. Here we describe NIDM-Terms, a
toolkit that employs both the NIDM data model and associated
terminologies to aid in querying across datasets. We provide tools
to more fully annotate BIDS datasets and provide user-friendly
community-based annotation and terminology management tools
to assure proper definitions and metadata are provided with the
annotations. Further, we show how these annotations, along with
the NIDM data model, can be used to search across publicly
available neuroimaging datasets.

2. Materials and methods

In the following sections, we begin by formalizing our
definitions of different data element types. We then define a small
set of properties we consider critical to include when annotating
study-specific data elements to be able to both understand, at a
high level, what was collected and assure such annotations have the
necessary information for researchers to understand how to reuse
and/or combine these with other studies. Finally, we describe some
tools, both command-line and graphical, for creating these data
element annotations.

2.1. Data element types

Data elements can be simply defined as annotations on data,
where data can be variable names or content, file names or
content of files. In this work, we introduce two distinct types of
data elements and a conceptual element: (1) data elements that
are often locally defined and represent study variables (personal
data elements; PDEs), (2) data elements that are defined by a
community or a standards body (common data elements; CDEs),
and (3) terms that capture an abstract idea or a general notion
(concepts). Within the NIDM terminology work, each of these
distinct types of elements play an important role in the detailed
description of datasets.

Personal Data Elements (PDEs) refer to the typical study
variables and require strict definitions, ranges, value types, and,
if categorical, complete definitions of the categories and their
potential mapping from numerical categories to text-based strings
(e.g., 0 = right handed, 1 = left handed, 2 = ambidextrous) to

11 https://frictionlessdata.io

be easily reused across studies. PDEs may define common terms
in non-standard ways or use non-standard terms for commonly
acquired variables or processing steps. PDEs may also combine
separate annotation terms into a single term, e.g., “age_months”
that combines the duration “age” with the units of “months.” In
general, since PDEs are used locally, there is no requirement to
adhere to a standard convention and users are typically free to name
and annotate such elements as they wish.

Common data elements (CDEs) are those that have been
adopted for use by a group, often either a consortium operating
in a specific domain or standards body. Ideally, a rigorous
adoption process is implemented that entails the proposal of a
term, identification of whether similar terms already exist in other
terminologies, determination of how the term will fit into the
logical structure of the existing terminology and whether it adheres
to standards already established by the group. Often though, CDE
collections may be simply that, a collection of terms that a group
has decided to use, without the establishment of any standards or
logical framework.

Concepts are distinctly different from CDEs and PDEs.
Concepts (also known as “classes” in RDF) are those terms
that represent “higher order” ideas, e.g., the concept of “age”
is the notion of a duration of time from some predetermined
starting point to the current moment. Concepts are used to
aid in querying across datasets and provide a mechanism for
researchers to annotate their study-specific PDEs (or CDEs if
they are used within a study) with abstract ideas or general
notions about a PDE which helps us to query across datasets. For
example, two studies collect a data element meant to measure
the participant’s dominant hand. Dataset one names the variable
simply “handedness” and is stored as a categorical variable with
values indicating whether the participant is predominantly right-
handed, left-handed, or ambidextrous. Dataset two instead collects
the Edinburgh handedness inventory, names their study variable
“ehi” and whose values are integers ranging from −40 (left handed)
to 40 (right handed). Therefore, no query for a single variable
name would return data from both datasets. However, if each
dataset annotated their handedness assessment data with a concept
describing the general notion of “handedness assessment,” for
example term ILX:010488612 in the InterLex repository, querying
across datasets would then return handedness data from both
datasets. One could then investigate each returned dataset and
understand, through the data element properties (see section “2.2.
Properties”), the distinctions between how each was measured.

The use of properly defined CDEs, concepts, and properties
provides the foundation for NIDM documents to: (1) abstract the
concepts inherent in PDEs to allow for meaningful searches across
data collections, (2) provide an extensible collection of general and
domain-specific terms used to describe data, and (3) allow for an
inherently flexible annotation of data to an arbitrary level of detail.
As an example of the above points, reconceptualizing the PDEs
“age_months” and “YEARSOLD” from different datasets with the
properties “isAbout” the concept “age” and “hasUnits” of “months”
and “years,” respectively, allows an automated system to discover
both PDEs when “age” is searched for, as well as not having to define
a separate variable each time a different duration unit is required.

12 http://uri.interlex.org/ilx_0104886
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TABLE 1 Data element properties.

Property Definition

Description An explanation of the nature, scope, or meaning of the data element.

Label Short text string for referring to the data element.

ValueType A value representation such as integer, float, string, date/time (e.g., xsd: int, xsd: float, xsd: string).

UnitCode Unit of measurement (e.g., years, millimeters, etc.).

MaxValue The upper value of the data element (in case of ordered data).

MinValue The lower value of the data element (in case ordered data).

Choices Choices is a concept that corresponds to the BIDS (https://bids.neuroimaging.io/) “levels” standard for categorical variables where you’re
mapping the value (often an integer) to some text string. Using the handedness example from above, the choices would be {1 = Right,
5 = Left, 10 = Ambidextrous}.

IsAbout Used to record the relationship between a data element and a broader concept. Annotating using is About can be used to search across
datasets. The is About annotations consist of a url to identify the concept and an optional label for the concept.

Source_variable Variable name from dataset. This applies to personal data elements which are data elements defined within a specific study, typically
referred to as “study variables.”

MeasureOf Describes what the data element measures (e.g., volume, area, distance, intensity, health status, duration/period, intelligence).

datumType What type of datum it is (e.g., range, count, scalar etc.).

IsPartOf Used to link data elements to assessments (e.g., WAIS_Vocab_Raw linked to WAIS scale
(https://www.cognitiveatlas.org/task/id/tsk_4a57abb949f12/#). Typically this is not added by the user and is often done as an additional
annotation to link data elements with other classes of information.

SubtypeCDEs This property is typically added during curation. It links the term to lower-level (child) terms to provide some limited ontological
relationships.

SupertypeCDEs This property is typically added during term curation. It links the term to higher-level (parent) terms to provide some limited ontological
relationships.

AssociatedWith List of strings used to associate data elements with communities (e.g., BIDS, NIDM, etc.) for grouping data elements or searching within
communities for specific data elements.

2.2. Properties

Properties play an important role in disambiguating and
simplifying the annotation of data, as well as the mapping of data
elements between data sources, especially those that use PDEs.
In reviewing available terminologies and ontologies for use in
human neuroimaging studies, we found that data elements in these
terminologies often lacked important properties such as units, value
types, ranges, etc. When researchers try to reuse data collected
by other laboratories they often request data dictionaries which
describe the study variables collected (PDEs) and hopefully provide
precise definitions and properties for those variables. If important
properties are missing, such as “units,” the data is either not usable
or users must contact the dataset providers, if they are reachable,
to correctly and confidently reuse the data. The NIDM team found
this to be a significant problem when trying to reuse retrospective
data and query across studies to build cohorts matching various
search criteria. We therefore started out by defining a minimal
set of properties (Table 1) that we felt were important to properly
define data elements of various types (see section “2.1. Data element
types”). A larger set of properties are available in the terminology
used in the experimental description component of NIDM (i.e.,
NIDM-Experiment).

Many of the terms that are used for annotation are part
of NIDM-Experiment (NIDM-E), an ontology that can be used
to describe neuroscience experiments. NIDM-E was originally
constructed with an emphasis on terms describing imaging-
based studies, in particular those employing MRI, but has since
been expanded to encompass other modalities. NIDM-E was

built through the annotation of several real-world multi-modality
neuroscience-based data sets. The goal of NIDM-E is to provide
semantically-aware tools, a collection of defined terms organized
in a structure that can be used to annotate data to an arbitrary
level of detail. The structure of NIDM-E allows a user both to
annotate complicated data collections and accommodate terms for
new modalities and acquisition methods. NIDM-E also comprises
tools to discover terms, webpages for term URL resolution, and a
framework for community conversations regarding the terms.

As per good ontological practice (Arp et al., 2015), NIDM-
E reuses terms from other ontologies before creating new terms.
Terms are reused from such active ontologies such as the
Semanticscience Integrated Ontology (SIO) (Dumontier et al.,
2014), Information Artifact Ontology (IAO) (Ceusters, 2012), and
Prov-O.13 These general ontologies provide the framework to
which domain-specific terms were added to create NIDM-E. Terms
created for NIDM-E have formal Aristotelian definitions in the “X
is a Y that Z” format (Seppälä et al., 2017). NIDM-E also includes
many imported data type, object, and annotation properties.

Because NIDM-E began with neuroimaging data, it has
particularly strong coverage in that domain. It contains two unique
properties: “hadImageContrastType” and “hadImageUsageType”
that can be used to distinguish between the physics-based
mechanism for the contrast in an image (e.g., “T2-weighted”)
and the eventual use of that image (e.g., “Anatomical”). These
are important for the discovery of imaging data in and across

13 https://www.w3.org/TR/prov-o
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FIGURE 1

A schematic of a acquisition object “T2.nii” that was generated from the Session “Visit_3” of participant “1f3g2k6” annotated with the protocol used
and “hadImageUsageType” and “hadImageContrastType.”

repositories, where datasets with different image contrasts may be
annotated by the same term. For example, T2∗-weighted, and T2-
weighted images may both be stored as “Functional” data. NIDM-E
also includes terms from two widely used standards: DICOM14

and the BIDS standards, the former of which is ubiquitous in
the neuroimaging domain for the formatting of raw image data
and is used in multiple imaging modalities. We have created
a set of DICOM tag data type properties that can be used to
associate acquisition parameters with an acquisition object. We
have also included BIDS terms so that BIDS-organized datasets can
be annotated using terms directly from the official BIDS schema.

We show in Figure 1 a simple example of how NIDM-E can
annotate an acquisition object, “T2.nii,” with an image contrast
type of “T2-weighted” and an image usage type of “Anatomical,”
and showing the scan session activity it was acquired at
(“Session:Visit_3”), the protocol that was used (“Protocolv1.pdf”),
and the study participant (“ID:1f3g2k6”) from which it was
acquired and who had the role of “In Vivo Participant.”

The NIDM-E term-resolution and schema pages are available
in GitHub15 which includes a web-accessible infrastructure built so
that (1) the neuroscientific community can suggest or edit terms to
the NIDM-E vocabulary using GitHub issue templates, (2) terms

14 https://www.dicomstandard.org/

15 https://github.com/incf-nidash/nidm-experiment

have resolvable URI’s, and (3) the ontology can be browsed to
facilitate term discovery. GitHub issue templates allow us to have a
public record of the discussion surrounding each term. To discover
NIDM-E terms, we provide a “Schema Browser”16 webpage that
allows users to view the NIDM-E term graph, including all of the
imported terms. For semantic-web applications, we also provide a
“Terms Resolution”17 page in which each term has a unique URL so
that terms used by applications have a unique reference location.

2.3. SHACL validation

Beyond just defining useful properties for annotating data
elements, it is critically important that researchers include such
properties in their data annotations (i.e., data dictionaries).
To ensure that data elements annotated by the community
and contributed to the NIDM-Terms ecosystem contain the
appropriate properties according to their type, we have built a
validation schema using the Shapes Constraint Language (SHACL)
(Pareti et al., 2019). SHACL is a W3C-supported language for
validating RDF graphs according to a schema (i.e., a SHACL
shape). Each data element type (e.g., PDE, CDE, and concept)

16 https://incf-nidash.github.io/nidm-experiment/schema_menu.html

17 https://incf-nidash.github.io/nidm-experiment/
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has a separate SHACL shape used for validation. These shapes
specify the required properties, the value type of each property’s
values, and the number of such properties in each data element
definition. Validation is done when new data elements are added to
the NIDM-Terms GitHub repository through pull requests, either
using the NIDM-Terms UI (see section “3.1. NIDM-Terms user
interface”) or through Github Actions and Github Pull Requests.
The git action uses the Python validation framework provided by
ReproSchema.18 In brief, Reproschema offers a way to standardize
the underlying representation of assessment tools. It comes with
an open and accessible library of questionnaires with appropriate
conversion [e.g., from/to RedCap (Patridge and Bardyn, 2018)] and
data collection tools [e.g., MindLogger (Klein et al., 2021), RedCap,
etc.] to enable a more consistent acquisition across projects, with
data being harmonized by design. The techniques described here
have been aligned with ReproSchemas to both support automated
annotation of data collected and shared using assessments from
ReproSchemas and to align our data element descriptions so there
is consistency across representations. Such consistency will help
the user who wants to share their study data when collected using
ReproSchemas.

2.4. Terminology management resources
used in NIDM terms

In order to provide users with the ability to easily annotate their
data and link selected PDEs to broader concepts, a simple means to
query across existing terminologies is needed. These query services
are provided by Interlex19 (Surles-Zeigler et al., 2021), a dynamic
lexicon, initially built on the foundation of NeuroLex (PMID:
24009581), of biomedical terms and common data elements
designed to help improve the way that biomedical scientists
communicate about their data, so that information systems can find
data more easily and provide more powerful means of integrating
data across distributed resources. One of the challenges for data
integration and FAIR data is the inconsistent use of terminology
and data elements. InterLex allows for the association of data
fields and data values to common data elements and terminologies,
enabling the crowdsourcing of data-terminology mappings within
and across communities. InterLex also provides a stable layer on
top of the many other existing terminologies, lexicons, ontologies
(i.e., provides a way to federate ontologies for data applications),
and common data element collections to enable more efficient
search for users. To support annotation using CDEs, InterLex has
been expanded to include the full NIMH Data Archive (NDA)
CDE library. Through available RESTful web-services, InterLex is
supporting alignment of data elements and terminologies through
PyNIDM developed to simplify creation, editing, and querying of
NIDM documents. To further expand our available terminologies,
PyNIDM supports querying the Cognitive Atlas20 as an additional
information source for dataset annotation. Similar to Interlex,
Cognitive Atlas provides a systematic approach to representing
cognitive neuroscience entities and biomedical terminologies.

18 https://github.com/ReproNim/reproschema-py

19 https://scicrunch.org/scicrunch/interlex/dashboard

20 http://www.cognitiveatlas.org

3. Results

In previous sections, we have described the foundational
principles used in this work to annotate study variables.
Research laboratories often reuse PDEs across research projects or,
alternatively, define new PDEs for studies that have previously been
used in other projects. In an effort to help labs maintain an internal
list of PDEs and share them with others in the community, we have
developed both terminology management and dataset annotation
tools. In the following sections, we describe three such annotation
tools and a terminology management interface. We then show how
proper dataset annotations can be useful in querying across publicly
available MRI-related neuroimaging data.

3.1. NIDM-Terms user interface

To facilitate the community’s interaction in managing the
neuroimaging terminology, we developed a JavaScript (using
Visual Code Studio: version 1.67.1) NIDM-Terms User Interface21

(UI), hosted on GitHub Pages, that allows community curators
to define and interact with their lab-specific terminologies as
well as reuse terms from other neuroimaging communities. The
UI is designed around the Git version control system and
uses the NIDM-Terms/terms22 GitHub repository as a backend,
providing JavaScript Object Notation - Linked Data (JSON-LD)23

formatted files for each PDE, CDE, and concept contributed
by the community.

The NIDM-Terms UI provides the following supportive
functions: browse, search, edit, and export available terms and
their properties. The “Browse Terms” function (Figure 2, Panel
A) fetches the NIDM-Terms GitHub repository and displays the
JSON-LD formatted files in a treeview format, including a tag for
the term’s data type (e.g., concepts and data elements). Users are
then able to filter through the available communities and terms
based on the label of the term they’re interested in. We have
developed additional functionality that allow users to suggest edits
to the available terms and their properties, across the neuroimaging
communities hosted on the UI. The UI will create a JSON-LD
formatted dictionary with the user’s suggested edits to a specific
term and using the edits as a query parameter string. Upon
submission, a new browser tab will open a new Github pull
request, with the edited term and its properties, to the NIDM-
Terms repository allowing the user to use their login information
to complete the pull request. The “Suggest new terms” function
(Figure 2, Panel B) works in a similar manner to edit terms.
Suggested terms will be formatted as a JSON-LD file. The JSON-
LD file is then stringified and sent as a query parameter to the pull
request to the NIDM-Terms repository; in case of any technical
difficulties, the UI will submit a github issue to the NIDM-Terms
repository with the suggested term describing the problem specifics
while submitting the pull request. Upon the term’s approval by
a community’s curator, a JSON-LD representation of the new

21 https://nidm-terms.github.io/

22 https://github.com/NIDM-Terms/terms

23 https://json-ld.org/
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FIGURE 2

This figure illustrates the various functionalities the NIDM-Terms User Interface (UI) supports including: browse terms (A), suggest terms (B), export
terms (C), and add new communities (D).

terms will be added to the repository and a tree-view display of
the new term will appear under the “Browse Terms” section of
the UI. Note, each community has its own curators responsible
for approving/interacting with users suggesting new terms and/or
editing terms. In this way, each community has responsibility for
their own terms. The “Export selected terms” function allows users
to export terms, across communities, along with their properties,
in several file formats: (1) A Markdown table for possible inclusion
in community’s documentation (e.g., BIDS reference manual); (2)
JSON; (3) JSON-LD; (4) CSV; (5) N-Quads (Figure 2, Panel C).
Finally, the “Add a new community” function which allows for the
addition of a new community to NIDM-Terms. Similar to “Suggest
Terms,” the “Add a new community” functionality submits a
pull request with the new community as a query parameter.

Upon submitting new terms and communities to the NIDM-
Terms GitHub repository, all new terms are validated using our
SHACL Schema Validator (see section “2.3. SHACL validation”),
consistent with the term properties described in (section “2.2.
Properties”).

To further enhance our list of neuroimaging communities
and support communities who may want complete control over
their repository, we have provided instructions for cloning the
NIDM-Terms UI and associated GitHub repository in order
to host their own community in their name-space prior to
merging them with the NIDM-Terms repository for broader
community use. Together, these tools form a user-friendly interface
allowing the neuroimaging community curators to interact
with and reuse terminologies across communities, backed by a
version control system.
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3.2. Dataset annotation tools

In this project, we have created several tools to assist
the neuroimaging community in annotating datasets using the
terminology management tools we developed (see section “3.1.
NIDM-Terms user interface”), consistent with our data element
types and properties. This includes defining study-specific variables
and their properties, as well as linking the variables to higher level
concepts using the properties in Table 1. A rich set of annotations
increases a dataset’s Findability and Reusability and can make
publicly available datasets more FAIR by enabling scientists to
efficiently discover datasets using concept-based queries.

To achieve this goal, we have built several annotation tools
that allow scientists to efficiently and effectively annotate their
study variables. We have built both command-line and graphical
annotation tools. First, the “bidsmri2nidm” tool enables scientists
to annotate BIDS structured datasets by iterating over the dataset
and its variables contained in the “participants.tsv” file or other
phenotypic files stored in the “phenotypes” directory through a
command-line interface. A series of questions about each study
variable will then be displayed on the screen allowing users to input
specific properties describing those variables such as description,
unit, minimum value, maximum value, etc. Additionally, the tool
queries concepts from information sources such as InterLex and
Cognitive Atlas for users to select the best matching concept to their
study variable. The tool suggests concepts that are fuzzy-matched
to the study variable name and provides a mechanism for users
to refine such queries. Often when searching large information
sources such as InterLex for concepts, users might find multiple
concepts that could be applicable to the variable to be annotated.
In our annotation tools, we initially present to the user the term
deemed closest to the study variable amongst the list of concepts
used for prior data annotations. For example, if annotating a
study variable that stores the age of the participant, each data
set provider should annotate this variable with the same “age”
concept to increase consistent term usage. Our tools attempt to
restrict the space of concepts by re-using concepts already used
in data annotations from other users. In this way, we reduce
the space to a single concept for “age.” The user can always
broaden their search for concepts but this initial reduction in the
search space helps to steer the user in selecting a concept that
increases the potential for finding these data across studies. This
reduction in search space is accomplished by the tool searching the
NIDM-Terms github repository which maintains a list of concepts
selected for annotations by users of the tool. To prevent duplicate
choices for common study variables often used in queries (e.g.,
age, sex, handedness) the list of prior concepts is currently being
manually curated. This is a place ripe for development using AI
natural language processing techniques to keep the list of concepts
relatively small and consistent.

After the annotation process is completed, the tool will export
a JSON dictionary with the variables and their properties in
addition to a NIDM-Experiment RDF document. This tool is a
great addition to the neuroimaging community because it allows
scientists to more easily add detailed and standard annotations to
their BIDS structured datasets. In addition to “bidsmri2nidm,” we
have also developed “csv2nidm,” which also allows for annotation of
study variables however it uses tabular data [e.g., comma-separated

values files (CSV) or tab–separated values files (TSV)] instead of
requiring a complete BIDS datasets. Both of our command line
interface tools, “bidsmri2nidm” and “csv2nidm” are open source
and available with the PyNIDM (see text footnote 10) tools. To
expand the use of our tools, we have additionally built a user-
friendly web-based Graphical user interface version of csv2nidm24.

A second web-based annotation tool that has been developed by
the ReproNim25 community is the Neurobagel26 annotation tool.
This graphical annotation tool loads a tabular phenotypic file -
for example a BIDS participants.tsv file–and then guides the user
through two annotation stages. In the first stage (Figure 3), the
user is presented with a number of pre-configured categories (i.e.,
CDEs), which have been previously agreed on across a number of
dataset providers, and is asked to identify the columns of the loaded
phenotypic file that contain information about each category (e.g.,
sex, or clinical diagnosis). To accomplish this step in the user
interface (UI), the user first selects a category by clicking on the
corresponding colored button, and then clicks on each column
from the phenotypic file that she wants to associate with the
category. An existing association between a column and a category
is represented in the UI by highlighting the column name with
the respective category color. In the second stage of the annotation
process (Figure 4), the user is asked to annotate the values in each
column that has been associated with a category (continuous values
can be transformed into a standardized format). Each category has a
predefined list of terms from a controlled vocabulary that a user has
to choose from to annotate the values in their phenotypic file (from
a list of common data elements). Constraining the annotation terms
is a design choice to make the annotation process easier and to
facilitate consistency across annotations at the expense of flexibility.
However, the predefined categories will be configurable in the
next version of the annotation tool to help communities choose
the most appropriate set of terminologies. After completing the
annotation, the neurobagel annotator creates a BIDS compatible
data dictionary (JSON) file, that contains the additional semantic
annotations as additional properties and can be converted to a
NIDM file.

These annotation tools are beneficial for the neuroimaging
community because they allow users to quickly and accurately
annotate their study variables in a standardized way. This helps
ensure that their data is consistently structured and more easily
understood by other researchers working on similar projects and
to facilitate cross-dataset queries. By integrating Interlex and
Cognitive Atlas, it also allows scientists to quickly and easily match
their variables to existing concepts, making it easier to formulate
sophisticated scientific queries and to interpret their results.

3.3. Use case

To evaluate the developed tools and overall terminology
management, annotation, and query workflows presented in this
manuscript section, we focus on a specific use-case, that of
querying across publicly available MRI-related neuroimaging data

24 https://incf-nidash.github.io/nidmterms-ui/?#/annotate

25 https://www.repronim.org/

26 https://annotate.neurobagel.org
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FIGURE 3

Stage 1 of the neurobagel annotator workflow. Left: a list of pre-defined categories (common data elements) is shown, each associated with a
specific color. Right: the column names of a loaded demographic.tsv file with optional descriptions are displayed. The user now selects each
category by clicking on it (e.g., “Diagnosis” in yellow), and then associates the category with each column that contains information about this
category by clicking on it (e.g., “group,” “group_dx,” and “number_comorbid_dx”). An existing association is reflected by the column being
highlighted in the color of the category.

to identify potential cohorts of interest. For these tests we use
publicly available projects contained in the OpenNeuro archive
at the time our work began, the ABIDE27 dataset, and the
ADHD20028 dataset, all of which are available from each dataset
provider and were accessed using DataLad29 (Halchenko et al.,
2021; Figure 5). Each of these datasets and the projects within the
OpenNeuro archive are available in the BIDS format and generally
contain MRI imaging data along with selected demographics and
additional cognitive and/or behavioral assessments at varying levels
of complexity. In addition, the selected datasets contain differing
amounts of annotations. For ABIDE and ADHD200 datasets, full
data dictionaries are available from the dataset providers; although,
not in a readily parsable format (e.g., PDF format). For OpenNeuro
projects, approximately 25% had annotations in the form of BIDS
“sidecar” JSON files and the rest did not.

To prepare these reference datasets for query, given their
varying levels of existing annotations and organizational form
(e.g., BIDS containing phenotype data, BIDS for imaging data
and phenotype data stored as separate tabular data files outside
of BIDS), we used various NIDM-related tools. For the ABIDE
study, each study site created their own BIDS dataset containing
the imaging data. When we started our work, the phenotype
data was stored separately for all sites as a CSV file. In later
versions of the BIDS datasets, phenotype data was stored in the
BIDS “participants.tsv” files. Although each study site collected
the same phenotypic variables, it was often the case that the
variable names were slightly different across sites in terms of the

27 http://fcon_1000.projects.nitrc.org/indi/abide/abide_I.html

28 http://fcon_1000.projects.nitrc.org/indi/adhd200/

29 https://www.datalad.org/

spelling, capitalization, and word-connection indicators such as
spaces, dashes, or underscores. This inconsistency, even within a
single study, demonstrates the difficulties users may have in trying
to query across datasets simply using variable names. Further,
there were no BIDS “sidecar” files included with any of the site’s
BIDS datasets. To convert the ABIDE BIDS datasets into a NIDM
document for query we used the following procedure:

• Download each ABIDE site’s BIDS dataset via Datalad.
• Manually convert the PDF-formatted data dictionary into a

NIDM JSON-formatted data dictionary.

◦ Add entries to JSON-formatted data dictionaries to
accommodate all heterogeneity in variable naming
across ABIDE sites.

◦ Add high-level concept associations to the JSON-
formatted data dictionary for selected variables using the
isAbout property.

• For each ABIDE site.

◦ Run PyNIDM tool “bidsmri2nidm” with a local path to
the BIDS dataset.

◦ Run PyNIDM tool “csv2nidm” with a local path to the
phenotype CSV file, the JSON-formatted data dictionary,
and the NIDM file created by the “bidsmri2nidm” step
above.

The procedure above results in one NIDM document per site,
containing both the imaging and phenotype metadata, along with
the data dictionaries and concept annotations. In this procedure
we created the JSON-formatted data dictionary and did concept

Frontiers in Neuroinformatics 09 frontiersin.org60

https://doi.org/10.3389/fninf.2023.1174156
http://fcon_1000.projects.nitrc.org/indi/abide/abide_I.html
http://fcon_1000.projects.nitrc.org/indi/adhd200/
https://www.datalad.org/
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/


fninf-17-1174156 July 14, 2023 Time: 10:36 # 10

Queder et al. 10.3389/fninf.2023.1174156

FIGURE 4

Stage 2 of the neurobagel annotator workflow. The user is now asked to annotate the values inside each column that has been linked to one of the
predefined categories. Left: each category associated with at least one column is represented with a colored button. By clicking on each button, the
user can annotate the values in the associated columns. Right: the annotation view for each category (here “Sex” in blue) contains specific elements
such as an explanation (collapsed here), an overview of the associated column names (here “sex”), and an overview of the unique values in the
associated column (bottom). The user can map each unique value to a pre-defined list of controlled terms (here with a drop-down menu) or
indicate that the value reflects a “missing value” (e.g., a data entry error or a truly missing response).

associations manually since we already had a reference PDF
document with variable definitions. Alternatively, one could use
any of the annotation tools discussed in (section “3.2. Dataset
annotation tools”).

To prepare the ADHD200 dataset for query we follow a similar
procedure as for the ABIDE dataset except that the BIDS formatted
dataset contained the imaging and phenotypic data. Similar to
ABIDE, each study site’s BIDS data was stored separately and
there was a variety of variable name heterogeneity. Here again, to
improve the efficiency and account for the heterogeneity of variable
names, we manually created the data dictionaries by transcribing
the information from PDF-formatted documents. Similar to the
ABIDE dataset, one could have used our annotation tools (from
section “3.2. Dataset annotation tools”) as an alternative approach,
which we think is far easier and less prone to transcription errors.
Yet to be able to capture the heterogeneity of variable names
across all the sites, we would have had to run ‘bidsmri2nidm‘
many times, once for each site, answering all the annotation
questions about variables that have already been annotated but
have slightly different names (e.g., one as a space whereas
another site used an underscore). To complete this task at the
scale we were working at, it was simpler for us to create a
single data dictionary with all the variable name variations and
provide this to the “bidsmri2nidm” tool. At the end of this
procedure, we have a NIDM document per site containing both the

imaging and phenotype data along with the data dictionaries and
concept annotations.

Finally, we created NIDM documents for each dataset available
in the OpenNeuro archive via DataLad at the time we performed
these experiments. For the datasets in the OpenNeuro archive we
used the following procedure:

• Download each OpenNeuro BIDS dataset via Datalad.
• Evaluate whether a data dictionary (JSON sidecar file)

is available and export all variable names and properties
to a Google spreadsheet along with project name
and contact emails.

◦ If data dictionary is present.
Add concept annotations to the spreadsheet manually.

◦ If data dictionary is not present.
Evaluate variables for consistency with BIDS schema
recommended data type, units, etc. (e.g., age variable
suggested to be years, etc.).
Ask dataset providers for clarity when needed.
Add concept annotations to spreadsheet manually.

• Convert Google spreadsheet entries to BIDS JSON sidecar files
for each project using our additions.

• Run PyNIDM tool ‘bidsmri2nidm‘ with a local path to the
BIDS dataset and using our BIDS JSON “sidecar” files.
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FIGURE 5

An illustration of the NIDM-Terms workflow.

The procedure above resulted in the creation of a NIDM
document for each OpenNeuro dataset available via Datalad at
the time of initial query. For these datasets we used a different
procedure from the ABIDE and ADHD200 NIDM conversions.
Here we had to do the annotations in bulk for approximately
300 datasets while we developed, in parallel, the robust concept
annotation capabilities of the ‘bidsmri2nidm‘ tool. To save time
we decided to crowd-source the annotation activities amongst our
NIDM-Terms team by using an export to a Google spreadsheet.
As described previously, in practice for a smaller number of
datasets, one could (and should) use any of the annotation tools
provided with our work.

3.3. Concept-based queries

Now that each of our example datasets (i.e., OpenNeuro,
ABIDE, and ADHD200) has been annotated using the
methodologies presented here and a NIDM file representation
created, we began testing concept-based integration queries. We
created two Jupyter notebook query demonstrations available
directly in the NIDM-Terms GitHub repository via Binder (see
README - Demos30): (1) Using the JSON-LD version of our

30 https://github.com/NIDM-Terms/terms/blob/master/README.md

BIDS-compliant JSON “sidecar” files to query across OpenNeuro
datasets; (2) Using the NIDM files across all three datasets to search
by concept and neuroimaging type. We feel these demonstrations
serve to show how a user can query across BIDS datasets using
concepts without any backend database (example 1) and using
NIDM files across three datasets facilitated through the ReproLake
metadata database (example 2) supported by ReproNim (see
text footnote 25). In example 2, we add the additional capability
of querying for image type alongside concepts. Note, there are
many additional pieces of metadata in the NIDM files that could
be included, along with the ones shown here, in a production
query interface.

With respect to example 1, the Jupyter notebook starts
by pulling all the JSON-LD “sidecar” files for the OpenNeuro
datasets from the NIDM-Terms GitHub repo. It then creates
a dictionary of the concepts used in annotating those data by
accessing the “isAbout” property in those JSON-LD files. Next, it
uses ipywidgets31 to create a simple drop-down interface within
the Jupyter notebook listing all the concepts available across all
annotated OpenNeuro datasets. The user can then add concepts to
a query list and perform AND-based or OR-based queries on the
list. The notebook then returns a list of datasets in OpenNeuro that

31 https://ipywidgets.readthedocs.io/en/stable/
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satisfy the query with links out to the OpenNeuro interface for the
datasets. These queries are fairly efficient and require no additional
database backend.

With respect to example 2, first the NIDM files, created
here, for all studies (i.e., ABIDE, ADHD200, and OpenNeuro)
were uploaded to ReproLake. ReproLake is a publicly available
metadata archive developed on the StarDog32 platform. Although
it is still in development, ReproLake will, in the near future,
provide a metadata archive containing NIDM files describing
many publicly available neuroimaging datasets. Because querying
large RDF graphs across thousands of datasets is quite resource
intensive, using a database to support these queries makes
them more efficient. One could instead use a local metadata
database to store and query these NIDM files by cloning the
“Simple2_NIDM_Examples”33 repository and looking in the folder.
Different from example 1, there are no JSON-LD or JSON files
used in this demonstration. Here we use the NIDM files directly,
served by ReproLake. The Jupyter notebook begins by performing
a SPARQL query, sent to the ReproLake server, on the NIDM
documents to retrieve the concepts via the “isAbout” predicate.
It then queries the neuroimaging scan types from the NIDM
documents by looking for data acquisition activities in the NIDM
graphs that contain the “nidm:hadImageContrastType” predicate,
a term that is part of the NIDM terminology (see section “2.2.
Properties”). Next, similar to example 1, these concepts and
contrast types get added to ipywidgets and the user can select
criteria to query on. The tool then formulates a SPARQL query,
presenting this query to the user for educational purposes, and
sends the query to the ReproLake StarDog instance. Depending
on the complexity of the query, the results can take a few seconds
to many minutes (or longer) to complete. Because the ReproLake
utility is still in development, no server-side optimizations have
been done and limited server resources are available. As ReproNim
continues to develop this resource, query response will improve.

4. Discussion

The dataset annotations and terminology management tools
presented here have shown to be a useful and pragmatic approach
to querying across datasets and linking datasets through mappings
from dataset-specific variables and terms to broader concepts. Most
of the tools and techniques presented here have been pragmatically-
focused and developed, in part, to support building the ReproLake
metadata database. We’ve tried to create models that are sufficiently
expressive to capture important information needed to enable
data reuse, while minimizing the burden on researchers. Thus far,
through efforts connected to ReproNim and the overall NIDM
work, we have found the minimal set of properties we’ve selected
to be sufficient to find and reuse data, amongst the datasets we
chose.

Through our query demonstrations and additional work with
the ReproLake, concept annotations have been successful in helping
us search across datasets. During our initial experiments, using

32 https://www.stardog.com/

33 https://github.com/dbkeator/simple2_NIDM_examples/tree/master/
datasets.datalad.org

the datasets described here and annotated by several individuals
in our research team, we found that there was some ambiguity
surrounding several similar concept choices. Even for simple
variables such as age, sex, and handedness, there were multiple
concepts that could be selected from the many available in large
terminology management resources such as InterLex. To address
this complexity, we’ve taken two main approaches, enabled by our
choice to use RDF and JSON-LD: (1) constrain the search space
for often-used concepts; (2) use RDF and linked-data capabilities to
start connecting similar/equivalent terms in InterLex. Constraining
the search space was accomplished using our NIDM-Terms GitHub
repository to maintain a list of concepts selected for annotating
previous datasets and to initially present those concepts to users
of our tools, effectively giving them a single choice for age,
sex, and handedness concepts. This procedure works well if the
annotations are performed using our tools and curated term
lists but does not address the problem when users are manually
annotating data using term resources without guidance. The second
approach, that of connecting similar/equivalent terms together
within InterLex, has been an on-going project for many years
and that project continues to make progress on that front. By
connecting terms within InterLex using the RDF framework, one
could perform equivalence mapping at query time via the SPARQL
query language. Then, one could theoretically select concepts
from InterLex without much concern for whether other dataset
providers selected the same concept because the similarity and/or
equivalency has already been modeled by the InterLex team and
is used directly within the ReproLake query engine. This approach
would satisfy those doing manual annotations but only when using
InterLex. To make this approach scale, the research community
should move toward using linked data methods across all metadata
included with publicly available datasets. By creating a rich web
of linked neuroimaging information, the overhead involved in
database-dependent mediation services could be reduced and this
linked terminology information would be available to any web
resource. This is the promise of linked-data and we are seeing
signs of this goal coming to fruition in the broader web, outside
of neuroimaging-based scientific data.

Data-sharing requirements from funding agencies and
journals, have done much to increase the amount of data available
for reuse in the neuroimaging and other related communities over
the last 10 years. The work presented here has been successful
at providing a framework for annotating study variables in
ways to make them more reusable by providing a formal (and
minimal) list of properties and tools to support them in the
context of the popular BIDS data structure. Further, the process of
linking concepts to selected study variables has been successful at
showing the promise of an integrated metadata search utility (i.e.,
ReproLake). Despite these advances, there is still much work to
be done to realize a web of linked neuroimaging (neuroscience)
data that is fully reusable and findable at scale and across
studies. Through continued support from funding bodies and
international informatics organizations such as the International
Neuroinformatics Coordinating Facility (INCF),34 we expect

34 https://www.incf.org/
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the remaining barriers to slowly crumble such that data
shared by any laboratory, globally, could be reused for the
advancement of science.
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Background: Despite the efforts of the neuroscience community, there are many

published neuroimaging studies with data that are still not findable or accessible.

Users face significant challenges in reusing neuroimaging data due to the lack

of provenance metadata, such as experimental protocols, study instruments, and

details about the study participants, which is also required for interoperability.

To implement the FAIR guidelines for neuroimaging data, we have developed

an iterative ontology engineering process and used it to create the NeuroBridge

ontology. The NeuroBridge ontology is a computable model of provenance terms

to implement FAIR principles and together with an international effort to annotate

full text articles with ontology terms, the ontology enables users to locate relevant

neuroimaging datasets.

Methods: Building on our previous work in metadata modeling, and in concert

with an initial annotation of a representative corpus, we modeled diagnosis

terms (e.g., schizophrenia, alcohol usage disorder), magnetic resonance imaging

(MRI) scan types (T1-weighted, task-based, etc.), clinical symptom assessments

(PANSS, AUDIT), and a variety of other assessments. We used the feedback of

the annotation team to identify missing metadata terms, which were added to

the NeuroBridge ontology, and we restructured the ontology to support both the

final annotation of the corpus of neuroimaging articles by a second, independent

set of annotators, as well as the functionalities of the NeuroBridge search portal

for neuroimaging datasets.

Results: The NeuroBridge ontology consists of 660 classes with 49 properties

with 3,200 axioms. The ontology includes mappings to existing ontologies,

enabling the NeuroBridge ontology to be interoperable with other domain

specific terminological systems. Using the ontology, we annotated 186

neuroimaging full-text articles describing the participant types, scanning, clinical

and cognitive assessments.

Conclusion: The NeuroBridge ontology is the first computable metadata

model that represents the types of data available in recent neuroimaging

Frontiers in Neuroinformatics 01 frontiersin.org66

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://doi.org/10.3389/fninf.2023.1216443
http://crossmark.crossref.org/dialog/?doi=10.3389/fninf.2023.1216443&domain=pdf&date_stamp=2023-07-24
https://doi.org/10.3389/fninf.2023.1216443
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fninf.2023.1216443/full
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/


fninf-17-1216443 July 21, 2023 Time: 10:39 # 2

Sahoo et al. 10.3389/fninf.2023.1216443

studies in schizophrenia and substance use disorders research; it can be

extended to include more granular terms as needed. This metadata ontology

is expected to form the computational foundation to help both investigators

to make their data FAIR compliant and support users to conduct reproducible

neuroimaging research.

KEYWORDS

FAIR neuroimaging data, computable provenance metadata, NeuroBridge ontology,
ontology text annotation, W3C PROV ontology

1. Introduction

Reproducible science involving replication and reproducibility
using meta-analysis as well as mega-analyses are critical to
the advancement of neuroimaging research (Dinov et al., 2010;
Poldrack et al., 2017; Kennedy et al., 2019). Reanalysis of a study,
either with alternate analyses of the original experiment or with
novel analyses that conform to the data is relatively easy if the
original data and the associated provenance metadata are available
to other researchers (Sahoo et al., 2019; Huber et al., 2020).
Well-designed mega- and meta-analyses require the identification
of studies that use experimental methods and subjects that are
similar or equivalent to the original study; therefore, provenance
metadata that describes this contextual information is critical for
the identification and harnessing of data from existing studies
for rigorous replication. The Findable, Accessible, Interoperable,
and Reusable (FAIR) guiding principles adopted in 2014 aim to
facilitate the discoverability and accessibility of the useful datasets
(Wilkinson et al., 2016). However, concrete implementation of the
FAIR guiding principles has been a key challenge (Musen et al.,
2022), especially for neuroimaging databases and repositories [The
National Institute of Mental Health Data Archive (NDA), 2023],
which are often stored in silos with limited support for FAIR
principles.

For example, the neuroimaging data repositories supported
by different divisions within the US National Institutes of
Health (NIH) lack common terminology and representation
format for metadata information describing the datasets [The
National Institute of Mental Health Data Archive (NDA), 2023].
Similarly, the large volume of neuroimaging datasets that are
collected in hundreds of laboratories around the world each year
are only described in journal publications without being made
accessible through organized data management systems (Sejnowski
et al., 2014). These underutilized data form the “long tail of
science” (Ferguson et al., 2014; Frégnac, 2017), and finding these
datasets requires tedious search of published literature for relevant
neuroimaging studies through manual review of papers to extract
the provenance metadata of the studies. The metadata terms
describe the structure and methods used in the study, such as the
profile of the participants recruited for the study (e.g., patients
with schizophrenia, cocaine users and their family members), the
type of neuroimaging data collected [e.g., T1-weighted imaging,
task-based functional magnetic resonance imaging (fMRI)], and
the clinical and cognitive assessment instruments used in the study
(e.g., SAPS/SANS, RAVLT, AUDIT).

PubMed and Google Scholar search features allow users
to find papers related to a neuroimaging question of interest;
however, the results do not analyze the study metadata such
as the experimental design, the modality of data collected, and
the status of data sharing. These existing search engines are
powerful tools for exhaustive search using sophisticated artificial
intelligence methods to find relevant results; however, the lack
of support for FAIR principles makes it difficult for users to
find relevant papers with accessible study data. To address this
limitation, we are developing the NeuroBridge data discovery
platform as part of the NIH-funded Collaborative Research in
Computational Neuroscience (CRCNS) program to be a bridge
between neuroimaging researchers and the relevant data published
in literature. The NeuroBridge platform aims to identify, index,
and analyze provenance metadata information from neuroimaging
articles available in the PubMed Central repository and map
specific studies to user queries related to research hypotheses. The
NeuroBridge platform with its multiple components and sources
is described in more detail in a companion paper in this Research
Topic (Wang et al., Under Review). To enable the modeling of
computable metadata that underpins the data search platform, we
developed the NeuroBridge ontology based on FAIR guidelines for
the neuroimaging domain.

1.1. Standardized provenance for
implementing FAIR principles

The FAIR principles have been widely endorsed by funding
agencies, including the NIH, individual researchers, and data
curators to facilitate open science and maximize the reusability
of existing resources. However, the lack of standardized metadata
models that can be used by users in a specific domain to implement
the FAIR principles and make their datasets FAIR compatible has
been noted by recent studies (Musen et al., 2022). It is difficult for
investigators to: (1) enumerate the relevant metadata terms that are
necessary for understanding the experiment details that generated
a dataset, which will ensure that the dataset can be reused either as
part of a meta-analysis or new study; and (2) encode the relevant
metadata terms in a machine interpretable standard format. In our
earlier work in the field of data sharing in neurological disorders
such as epilepsy and sleep disorder, we developed a metadata
framework that classified provenance metadata related to research
studies into the three categories of study instrument, study data,
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and study method (called the S3 model) as part of the Provenance
for Clinical and Health Research (ProvCaRe) project (Sahoo et al.,
2019). The S3 model is built on many existing reproducibility
focused metadata guidelines such as the Consolidated Standards of
Reporting Trials (CONSORT) guidelines (Schulz et al., 2010), the
Animals in Research: Reporting In Vivo Experiments (ARRIVE)
guidelines (Kilkenny et al., 2010), and the Problem/Population,
Intervention, Comparison, Outcome and Time (PICOT) model
(Richardson et al., 1995), among other guidelines.

The S3 model was formalized into a computable, machine
interpretable format called the ProvCaRe ontology, which extended
the World Wide Web Consortium (W3C) PROV specification to
represent provenance metadata for biomedical domain. The PROV
specification was developed as a standard provenance model for
cross-domain interoperability and has been widely used to support
FAIR guidelines in a variety of applications (Richardson et al., 1995;
Poldrack and Gorgolewski, 2014). The PROV ontology formalized
the PROV terms in an ontology using the description logic-
based Web Ontology Language (OWL) with built-in extensibility
features, which was used to create the ProvCaRe ontology for
the broad biomedical domain. The NeuroBridge ontology is built
on the same PROV specifications, and it is focused on the
neuroimaging domain to support sharing and secondary use of
experiment data.

1.2. Related work and the NeuroBridge
project

There has long been a recognition of the importance of data
sharing in neuroimaging studies and there has been multiple efforts
to standardize terminologies describing neuroimagin datasets
(Poldrack and Gorgolewski, 2014). We have contributed to
or developed multiple projects to formalize aspects of these
terminologies, for example neuroanatomical concepts in the
Neuroscience Information Framework (NIF) project (Imam et al.,
2012), the cognitive processes and measures (CogAtlas) project
(Turner et al., 2011), details of the behavioral experiments
used in functional neuroimaging (Cognitive Paradigm Ontology)
(Turner and Laird, 2012), and the neuroimaging data analysis
(NIDM ontology) (Maumet et al., 2016). Although these previous
projects include model terms related to various aspects involved
in neuroimaging studies, they lack provenance metadata terms
at the appropriate level of granularity to describe the clinical
or cognitive instruments used, the types of neuroimaging data
collected, and information about the groups of study participants.
The NeuroBridge ontology addresses this gap for neuroimaging
studies.

The NeuroBridge platform overall builds closely on our work
done in the SchizConnect project, which was developed to access
multiple institutional neuroimaging databases (Wang et al., 2016).
The SchizConnect project allowed a researcher to query for
datasets that were relevant to their study hypothesis regarding
schizophrenia, for example, a query for datasets including
individuals with a diagnosis of schizophrenia, male, over 35 years
old, and with a resting state fMRI scan on a 3T scanner. In
response to this user query, the SchizConnect platform returned
the data matching the query criteria from the different studies

indexed by the platform to the user for download and analysis. The
development of the SchizConnect platform involved the creation of
a terminology, a usable subset of terms to describe neuroimaging
datasets, which were informed in part by users and in part by
the Organization for Human Brain Mapping (OHBM) Committee
on Best Practice in Data Analysis and Sharing (COBIDAS) for
reporting fMRI studies databases (Turner et al., 2015). The
SchizConnect terminology consisted of terms to describe the
different types of schizophrenia groups included in the available
studies, the imaging types, the scanner information and the other
attendant clinical, cognitive, or behavioral data that were part of
the SchizConnect database.

The NeuroBridge project aims to generalize and expand the
SchizConnect platform to develop a data discovery system that can
be a bridge between the needs of neuroimaging researchers and the
relevant data from scientific literature. Published articles describing
neuroimaging studies and datasets generated in these studies
are an important resource for investigators. The NeuroBridge
platform aims to automatically extract provenance metadata terms
from these articles and use the terms to identify datasets that
are highly relevant to a user’s research question. In this paper,
we describe a novel iterative ontology engineering process that
was developed and implemented to create the NeuroBridge
ontology that supports: (1) Fine granularity annotation of full text
articles describing neuroimaging studies; (2) Automated parsing
and indexing of terms describing experimental design details of
neuroimaging studies; and (3) Interactive user queries to locate
experimental studies that match research terms (Figure 1). The
automated parsing and indexing of research papers as well as
the interactive user queries require the development of machine
learning algorithms and web application resources together with
the NeuroBridge ontology, therefore, they are outside the scope
of this paper and are described in the companion paper (Wang
et al., Under Review). The rest of the paper is structured as
follows: In the Section “2. Materials and methods,” we describe
the core components of the NeuroBridge ontology development
process for text annotation; In the Section “3. Results,” we describe
the resulting neuroimaging metadata ontology and its use in
annotation of published literature; and in Section “4. Discussion
and conclusion,” we discuss the broader impact of the NeuroBridge
ontology engineering process, the terms of the ontology, and its
application in making neuroimaging studies FAIR.

2. Materials and methods

The first phase of the ontology engineering process involved
defining the scope of the ontology to support FAIR guidelines
in the neuroimaging domain. Given the lack of existing
community standards for modeling neuroimaging metadata,
we built on our experience in dataset sharing efforts in
the SchizConnect project (e.g., subject groups, neuroimaging
modalities, cognitive and clinical assessments), and extended them
to current literature describing substance abuse disorders studies
using neuroimaging studies.

In the second phase, the metadata terms were classified into
the three ProvCaRe S3 model categories of study data, instruments,
and method. These metadata terms were collaboratively modeled
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FIGURE 1

An overview of the new ontology engineering workflow developed in the NeuroBridge project to create a FAIR provenance ontology for
neuroimaging experiments. The NeuroBridge ontology is based on the ProvCaRe S3 framework for metadata to support FAIR principles and it is
used in annotation of full text articles retrieved from PubMed Central repository.

in the NeuroBridge ontology and subsequently used to annotate
full text articles describing neuroimaging experiments as part
of the third phase of the ontology engineering process. In the
final phase, the feedback from the metadata annotation phase
was used to evaluate the NeuroBridge ontology followed by
extensive restructuring and expansion to meet FAIR guidelines for
neuroimaging datasets. Figure 1 is an overview of the new ontology
engineering process developed in this project to model computable
provenance metadata for neuroimaging experiments.

2.1. Document corpus describing
neuroimaging experiments

We created a document corpus consisting of articles describing
potential fMRI datasets generated from schizophrenia related
studies by querying the PubMed Central repository for papers
published between 2017 and 2020 using the following phrases:

Query 1: ("functional neuroimaging"[mh])

("schizophrenia"[mh]) NOT (meta-analysis[pt]

or review[pt]) NOT (meta-analysis[ti] or

review[ti])

Similarly, the following query expanded on the above query
with a focus on substance abuse aspect:

Query 2: ("functional neuroimaging"[mh])

("substance-related disorders"[mh]) NOT

(meta-analysis[pt] or review[pt]) NOT

(meta-analysis[ti] or review[ti])

The first query expression generated a corpus consisting of 255
articles, while the second query expression generated 200 articles.
We selected 100 articles from each query result to manually process
and annotate them using provenance metadata terms. During the
annotation phase, we removed articles that were reviews, or meta-
analyses, or position papers related to the neuroimaging domain,
which resulted in a final count of 186 articles in the document
corpus. This corpus included a few papers published on the
psychosis datasets available through SchizConnect, but the entirety
of the substance abuse papers, and majority of the schizophrenia
papers were not part of the SchizConnect project.

2.2. Modeling neuroimaging metadata
terms in the NeuroBridge ontology

The W3C PROV specifications support the modeling of
provenance metadata for multiple applications, including the
description of how datasets were generated to enable their
meaningful use (secondary use), reproducibility, and ensuring
data quality (Lebo et al., 2013). To achieve these objectives, the
PROV model consists of prov:Entity, which may be physical or
digital (e.g., fMRI images), prov:Activity to model the process of
creation or modification of entities (e.g., imaging protocol), and
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prov:Agent, which takes responsibility for an activity (e.g., study
participant). In addition to these terms, the PROV specifications
also includes relationships that can be used to represent detailed
provenance metadata, for example an experimental study prov:used
a neurocognitive test of language function [we refer to the PROV
specification for further details (Moreau and Missier, 2013)]. The
PROV ontology standardized these provenance metadata terms
and relationships using OWL expressions. The PROV ontology was
extended in the ProvCaRe ontology to standardize the S3 model
(Sahoo et al., 2019).

Although the ProvCaRe ontology models the core provenance
metadata terms associated with biomedical health domain, the
ontology does not model terms at the required level of granularity
for neuroimaging experiments. Therefore, the NeuroBridge
ontology restructured and expanded the ProvCaRe ontology with
a focus on neuroimaging experiments and broadly neuroscience
research studies. Our approach is based on ontology engineering
best practices to re-use and expand existing ontologies for specific
domain applications (Bodenreider and Stevens, 2006). In the
initial phase of the ontology engineering process, we reviewed
many existing neuroimaging terminologies to identify suitable
terms for inclusion in the NeuroBridge ontology. First, we
reviewed the SchizConnect terminology list that describes: (1)
demography (e.g., socioeconomic status, and handedness scales
questions in Edinburgh inventory rating scale among others); (2)
psychopathology symptoms (e.g., Calgary depression scale, and
Young mania rating scale); (3) extrapyramidal symptoms (e.g.,
Abnormal involuntary movement scale); (4) functional capacity
(e.g., history of motor skills); and (5) medical condition (e.g.,
Structured clinical interview for the diagnostic statistical manual
of mental disorder, SCID) (Spitzer et al., 1990). These five
categories of SchizConnect terms were modeled as subtypes of
different rating scales in the NeuroBridge ontology (Figure 2
shows a screenshot of the ontology class hierarchy representing
these terms).

In the next step, we reviewed the Neuroimaging Data Model-
Experiment (NIDM-E) ontology that was designed to describe
different modalities of neuroscience datasets, including terms
from the Digital Imaging and Communications in Medicine
(DICOM) and Brain Imaging Data Structure (BIDS) specifications
(Gorgolewski et al., 2016). We focused on mapping NIDM-
E ontology terms describing the method used to generate
neuroimaging data and its application in the NeuroBridge
ontology. This process was facilitated by collaborative meetings
with members of the NIDM-E team members to coordinate
the reuse and mapping of terms between the two ontologies.
In addition to NIDM-E ontology, we also used the National
Center for Biomedical Ontologies (NCBO) BioPortal resource
to create mappings between the NeuroBridge ontology and
existing ontologies, such as the Radiology Lexicon (RadLex),
the Systematized Nomenclature of Medicine Clinical Terms
(SNOMED CT), and the National Institute on Drug Abuse (NIDA)
common data elements (CDE). The NIDA Clinical Trials Network
(CTN) recommended CDEs are part of the National Cancer
Institute Data Standards Repository (caDSR), which were created
using the metadata registry standard (ISO/IEC 11179) (National
Institutes of Health, 2023).

At the end of this first phase of the ontology engineering
process, the NeuroBridge ontology had a broad representation of

provenance metadata terms describing neuroimaging studies. To
evaluate the coverage of the NeuroBridge ontology, we used it for
manual annotation of full text articles in our document corpus.

2.3. A two-pass process for text
annotation using provenance metadata
terms

In the next phase, we implemented a two-pass text annotation
process that was designed to be repeatable, which could be used to
annotate new metadata features in papers as they are identified,
and extensible, which could be customized for annotation of
experimental studies described in broader neuroscience articles.
The first “draft expansion” pass was marked by extensive
collaboration between the members of the text annotation and the
ontology engineering team. The goal of this pass was to identify
metadata terms that were needed for annotation of the papers, but
they were missing in the first version of the ontology.

This phase was implemented using a variety of online tools,
including spreadsheets and shared copies of published articles
from the document corpus that were distributed using Google
Drive. There were two main workspaces: the first workspace,
implemented as a spreadsheet, listed the assignment of annotation
team members to specific documents (two annotators per
document), which recorded the citation, links to the documents,
basic bibliographic data, and notations related to the annotation
process, such as the agreement between annotators regarding the
metadata annotations. The annotation team members were trained
remotely via teleconference due to the coronavirus pandemic. The
original team of annotators were trained by co-author JAT to find
the relevant parts of papers for annotation.

After this training phase was completed, the annotation
teams (with at least two members) were assigned the articles for
annotation. A second workspace contained the annotations made
by the annotation team members, with each row of this spreadsheet
corresponding to a reviewed article and the metadata annotations
listed in the columns. Both the workspaces were live documents
that were modified by all the members of the annotation team.

The annotation team members focused on the title, abstract,
and methods sections of the papers. Their goal was to identify the
available or needed labels for each article with four categories of
provenance metadata:

1. Subject groups: This included disorder types (e.g.,
schizophrenia, substance abuse) as well as control groups
(identified as “no known disorder”) if present in the article.

2. Imaging methods used in the study: For example,
resting state or task-based functional imaging, and T1
weighted imaging.

3. Behavioral data collected in the study. For example,
standardized scales for symptom severity, cognitive
batteries, personality assessments. In addition, unique
non-standardized scales, and measures such as medication
status or specific cognitive experiment data were also
identified and annotated.

4. Data and resource sharing. Mark the presence or absence of
a formal data sharing statement for the project.
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FIGURE 2

The NeuroBridge ontology models a variety of terminology collected as part of the previous SchizConnect project to describe schizophrenia related
studies.

The second workspace was used to record the above four
categories of provenance metadata annotations associated with
specific sections of text in the article. Additional columns in this
workspace were used to record the agreement between members
of the annotation team regarding the category of metadata terms.
The annotators also used this workspace to record metadata terms
that could not be mapped to an appropriate ontology term. These
missing terms in the ontology together with feedback related to
class structure of the ontology were used as feedback by the
ontology engineering team to revise the NeuroBridge ontology.

2.4. Revision of the NeuroBridge
ontology using text annotation feedback

As part of the tightly coupled cycle of ontology engineering
and text annotation, the ontology engineering team agreed that
no existing ontology terms were to be removed to preserve
backward compatibility with metadata terms already used to
annotate the articles. However, the annotations could be modified
after the expanded version of the ontology was finalized. The
feedback from the annotation phase identified missing terms across
all the four categories of provenance metadata, that is, subject
groups, imaging methods, behavioral assessments, and data sharing
policy description.

Within the subject groups category, the ontology engineering
team (co-authors, SSS, JAT, and LW), reviewed the modeling
approach for representing the distinction between samples of
unaffected family members of a study subject with a particular
disorder, and “healthy controls.” We had already identified that
“healthy controls” in any given study may or may not be defined

in a consistent manner across studies; therefore, these terms were
annotated as a group with “no known disorder” (the corresponding
ontology term NeuroBridge:NoKnownDisorder was modeled as
subclass of NeuroBridge:ClinicalFinding). This modeling approach
allowed us to represent the information that these participants did
not have the given disorder that characterized the other samples in
the same study, but there was no guarantee they did not have some
other disorder. It is important to note that in disorders with genetic
risk, the relatives of affected individuals are of special interest.
However, we deferred modeling this provenance information to the
next version of the ontology as it required the annotation of a new
set of articles describing whether family members of subjects are
included in the “no known disorder” group, and the complexity
of a family tree (sibling, parents, and multiple generations, among
other terms). If the family members were not reported to have been
diagnosed with any disorders, the annotation noted that the study
collected the “no known disorder” subject group.

A particular challenge in annotating the articles with subject
group metadata terms was the need to model modifying attributes
of the descriptors in the NeuroBridge ontology. For example, the
diagnosis label was not sufficient as a growing number of papers
explicitly included subjects with the first episode of psychosis
versus subjects with chronic schizophrenia, and unmedicated or
medicated status of the study subject. Further, an important
distinction in substance use research was not only the type of
substance being used but also the “current status of use”; for
example, it is important to distinguish between “currently abstinent
users,” “currently dependent users,” and “children of people with
addiction.” In the NeuroBridge ontology, we represented these
through conjunctions of labels, “unmedicated and schizophrenia,”
“currently abstinent,” and “currently using” (Figure 3).
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FIGURE 3

Additional neuroimaging metadata terms added to the expanded NeuroBridge ontology based on feedback from the annotation phase.

Similarly, we added new classes to the NeuroBridge ontology to
distinguish between imaging protocol, and the imaging modality
of the data collected by the imaging protocol. Within both the
modality and the protocol branches of the ontology classes,
there are common terms describing the types of structural and
functional imaging, including task-based and resting state fMRI.
The annotation team identified 30 unique terms to describe fMRI
tasks in the article corpus. Nine of these terms had been modeled in
the CogPO, which had been included in the NeuroBridge ontology.
Figure 4A shows the ontology classes describing imaging protocols,
which were modeled separately from the imaging modalities. In
addition, the NeuroBridge ontology was expanded to model terms
describing clinical symptom assessments, diagnostic interviews,
and neuropsychological (cognitive) tests. Within the substance
use disorder literature, however, there is a research effort focused
on impulsivity’s relationships with addictive behavior, as well as
measures of emotion regulation or openness or other personality
traits. We created an initial branch in the ontology for personality
assessments as well, to capture those measures. A subset of the
Rating Scales is shown in Figure 4B showing (starting in the upper
left) the AUDIT scale as an example of the Alcohol Use Scale,
which is a type of Substance Use Scale; Substance Craving scales
are a separate branch. Neurocognitive scales are not expanded
in this view but include various cognitive batteries. The Barratt
Impulsivity Scale (not shown in Figure 4) would be an Impulsivity
scale class as a subclass of Personality Assessments (top). Clinical
ratings of Depression severity (far right) are examples of Mental

State Assessments, which are distinct from scales primarily used for
diagnosis (modeled as subclasses of the Mental Health Diagnosis
Scale class).

2.5. Final annotation phase of the
document corpus

Following the first annotation pass through the corpus, and the
extensions to the ontology that it entailed as discussed above, the
second pass of annotations had a twofold goal of: (a) generating
high quality, manually annotated text describing neuroimaging
experiments, which were subsequently used to train a Bidirectional
Encoder Representations from Transformers (BERT) deep learning
model (Devlin et al., 2019; Wang et al., 2022); and (b) validate the
metadata term coverage of the NeuroBridge ontology.

To achieve these two goals, an independent set of annotators
used the Inception text annotation tool to confirm that the
annotations originally marked in the spreadsheets could be used
in annotating the text (Klie et al., 2018). The Inception tool allows
users to select text spans (individual words or phrases) and then
connect these spans to terms in the ontology. We used the revised
version of the NeuroBridge ontology in this annotation pass (we
note that the structure of the ontology remained unchanged during
this pass). The annotation team members consisted of trained
annotators and a curator. The curator had a supervisory role during
the annotation process, specifically with the authority to make
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FIGURE 4

Expanded NeuroBridge ontology class structure for (A) imaging protocols, and (B) rating scales metadata terms used to describe neuroimaging
experimental studies.

unilateral decisions in the annotation process. Curators reviewed
the work of the annotators and resolved differences in their joint
annotations, as well as reviewed all the annotations, and played
an important role in ensuring consistency in term usage and
application across the corpus.

The roles of annotator and curator were separated, with one
of the annotators from the first annotation pass now serving as a
curator, and new annotation team members were recruited for this
annotation pass. The annotation process was implemented in the
following steps: during step 1, a pair of annotators were assigned
to an article. The annotators had access to the annotations in the
spreadsheets from the first pass, which alerted them to the presence
of expected metadata labels in each article. In step 2, each annotator
individually reviewed the assigned article and using the annotation
from first phase as a guide applied the final metadata annotations.
Any Issues identified during this phase were reviewed by the
supervisor. The annotators selected the spans of text representing
metadata terms describing neuroimaging experiments and marked
these with appropriate links to the ontology terms (Figure 5).

After each pair of annotators marked their work as complete,
the papers were reviewed by a curator. The Inception software has
a curator view of each document that allows direct comparison
of the work of each assigned annotator. When the annotators
agree completely, the curator can simply mark the annotations
as correct or incorrect. When annotators disagree, the curator
can decide how to resolve any differences in the final document.
Initially the curator was the annotation supervisor. However, at
this point some of the more senior annotators from the previous
pass had developed sufficient skill; therefore, they were designated
as curators for this phase. This allowed volunteer annotators, who
had gained significant experience and knowledge about provenance
metadata, to move onto a different category of annotation task.

The inter-annotator agreement was computed for the
annotations done in Inception; the initial work that used online
spreadsheets required the annotators to work in pairs to identify
the terms needed for the ontology expansion, so agreement

would not be meaningful. Inception calculated Cohen’s kappa
as measures of pair-wise agreement between annotators, which
ranged from 0.75 to 1.0 (mean 0.92). We exported the annotated
text corpus from the Inception tool as WebAnno TSV 3.x files (this
NeuroBridge resource1).

3. Results

The new iterative ontology engineering process implemented
in this paper resulted in the first release version of the
NeuroBridge ontology, consisting of more than 660 classes and
3,200 axioms representing a variety of neuroimaging experiment
related provenance metadata. The ontology class expressions
leverage more than 40 OWL object properties together with
class level restrictions to represent the four categories of
metadata information used during the annotation phase of this
study. The ontology was evaluated using the Protégé built-in
FaCT++ reasoner, which performed classification of concepts
using subsumption reasoning followed by satisfiability to identify
incorrect subsumptions (Tsarkov and Horrocks, 2006). The
standard inference results computed by the reasoner across class,
object property, and data property hierarchies as well as class,
and object property assertions did not identify any errors in the
ontology. The NeuroBridge ontology is made available at the
National Center for Biomedical Ontologies (NCBO) Bioportal, as
https://bioportal.bioontology.org/ontologies/NEUROBRG.

3.1. Provenance metadata terms used to
annotate the document corpus

The 186 articles in the document corpus included annotations
with 153 unique metadata terms. The annotation team used the

1 https://github.com/NeuroBridge/Annotation-Project/releases
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FIGURE 5

The annotation team members identified the text spans in articles during review and mapped the terms to NeuroBridge ontology classes.

metadata terms to label the study method text, the subject groups,
the imaging techniques, and additional data. The annotation
process ensured that there would be a minimum of one
provenance metadata term for each of the first three of those
categories, which resulted in a minimum number of concepts
per article to be three, with the assumption that there was
no other cognitive or behavioral data or information about the
recruitment, which may occur with the use of legacy data. Table 1
shows the metadata annotations per paper (including repeats
of the same annotation on different blocks of text) and the
number of distinct metadata terms per paper. Given multiple
imaging data types, multiple possible subject groups, and a wide
range of assessments, the number of concepts annotated within
the description of the study could range notably, as shown
in Table 1.

Conversely, the number of papers referencing each concept
ranged between 1 and the entire corpus; the median and average
number of papers per concept were 3 and 12.54, respectively,
representing a skewed distribution of papers referring to concepts.
The most common concepts in this corpus are shown in Table 2.
As expected, after Study Method and Recruitment Protocol, which
is included in almost every study except some papers which used
legacy data and gave no details, is the most common subject group
(NeuroBridge:NoKnownDisorder), and the most common imaging

techniques (NeuroBridge:FunctionalMagneticResonanceImaging
and NeuroBridge:T1WeightedImaging). Disorders represented in
these papers were chosen to include NeuroBridge:schizophrenia,
which account for its common use; but substance use
disorder was more diverse, with NeuroBridge:AlcoholAbuse
and NeuroBridge:CocaineAbuse being the most common
metadata terms.

Surprisingly, only 22% of the articles in our corpus of
186 recently published papers had an explicit data sharing and
access statement, despite the increasing focus on data sharing
within different domains of biomedical research. This statistic
clearly highlights the challenges in making neuroimaging data
findable and accessible.

TABLE 1 The descriptive statistics on the paper annotations.

Annotations per
paper

Concepts per
paper

Minimum 5 3

Median 33 10

Mean 35 10

Maximum 84 21
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TABLE 2 Concepts referred to in at least 10 papers, as well as their general superclass and the number of papers which referred to them.

Concept Relevant superclass Number of papers

StudyMethod Activity 184

RecruitmentProtocol StudyMethod 183

NoKnownDisorder ClinicalFinding 154

FunctionalMagneticResonanceImaging ImagingModality 128

T1WeightedImaging StructuralImaging 99

MagneticResonanceImaging ImagingModality 89

Schizophrenia MentalDisorder/DiseaseDiagnosis 85

RestingStateImaging FunctionalMagneticResonanceImaging 72

TaskParadigmImaging FunctionalMagneticResonanceImaging 69

StructuredClinicalInterviewforDSMDisorders RatingScale 61

MagneticResonanceImagingInstrument ImagingInstrument 44

PositiveandNegativeSyndromeScale RatingScale 44

StructuralImaging ImagingModality 41

AlcoholAbuse SubstanceDisorder 36

FunctionalImagingProtocol BrainImaging 32

T2WeightedImaging StructuralImaging 28

NeurocognitiveTest RatingScale 26

SubstanceDisorder DiseaseDiagnosis 21

AlcoholUseDisordersIdentificationTest RatingScale 18

SchizoaffectiveDisorder MentalDisorder/DiseaseDiagnosis 17

PsychoticDisorder MentalDisorder/DiseaseDiagnosis 16

Questionnaire DataCollectionInstrument 15

CocaineAbuse SubstanceDisorder 15

FagerstromTestforNicotineDependence RatingScale 14

ScaleforAssessmentofNegativeSymptoms RatingScale 12

Electroencephalogram DiagnosticProcedureOnBrain 12

MedicationStatus ObservableMeasurement 12

BeckDepressionInventory RatingScale 11

MentalHealthDiagnosisScale RatingScale 11

NicotineAbuse SubstanceDisorder 11

DrugDependence DrugRelatedDisorder (SNOMED) 10

SubstanceUseScale RatingScale 10

BipolarDisorder MentalDisorder/DiseaseDiagnosis 10

3.2. Use of the ontology in the
NeuroBridge user portal

In addition to its use in annotation of full-text articles, the
NeuroBridge ontology also is incorporated into the NeuroBridge
platform for use. The NeuroBridge platform allows users to
compose a search query using ontology terms together with
logical connectives such as AND, OR. The query expression is
automatically expanded using OWL reasoning to include relevant
subclasses of a selected ontology term, and this expanded query
expression is used to search for neuroimaging experimental studies

that match the query constraints (Hitzler et al., 2009). Please see
our companion NeuroBridge paper in this Research Topic issue for
more details of the platform (Wang et al., Under Review).

4. Discussion and conclusion

The NeuroBridge ontology combines the experience gained
from neuroimaging data sharing projects, such as SchizConnect,
NI-DM, CogPO and CogAtlas, with the S3 framework of the
ProvCaRe project. This combination expands both ProvCaRe
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and the previous terminologies to capture important features
of multiple domains of biomedical research. This positions
NeuroBridge as a backbone for interoperability in annotating the
neuroimaging literature. By incorporating substance use disorder
papers in the corpus of this study, we confirmed that the
S3 framework and the basic SchizConnect terminologies were
sufficient to capture metadata information about neuroimaging
studies in a different subfield of mental health. However, each of the
different categories of metadata terms modeled in the ontology can
be further extended to model additional study metadata describing
its subject recruitment and data collection methods.

The metadata terms describing MRI techniques are similar
across mental health studies and within our 186 functional imaging
papers, 84 used task-based imaging, and the remaining 102 (55%)
used resting state approaches. Within the task-based neuroimaging,
there were a surprisingly limited number of tasks in these papers.
The task name was not always specified in the text: For example,
the Balloon Analogue Risk Task (BART) or the Monetary Incentive
Delay Task were used in 15 of the papers, variations on a cue-
reactivity paradigm were used in another nine papers, and the
Stop Signal task in another seven papers for example. Naturalistic
viewing was used in two papers, and another two dozen tasks such
as reality monitoring, paced serial addition, or visual perspective
taking were used once each in the corpus. A dozen papers did not
include an explicitly named or recognizable imaging paradigm in
the text. Future extensions of this corpus are planned to extend
the representation of the task paradigms, and to annotate the
descriptions of the task in the text. This would allow automated
methods for text mining to group papers based on similar task
descriptions, and to identify potential task labels that will be added
to the ontology.

The rating scales and questionnaires used in the studies in
this corpus cover a wide range of topics. We did not create
labels for every scale identified in the annotation process. In the
ontology, we classified the scales based on higher-level use, such
as symptom severity ratings, personality scales, social function
scales, and craving scales among others. This is not a challenging
issue unique to neuroimaging study metadata, as every domain
has its own clinical and cognitive tools, and new assessments and
scales are developed continually. The NIH CDEs represent an
effort to make data more interoperable, by representing common
variables with standard terms. The NIMH National Data Archive
(NDA) contains data from highly varied NIMH-funded studies
across multiple experimental study designs and subject groups,
all tagged with CDE terms. We explored using the NDA’s CDEs
and matching those against the terms identified in the papers
and incorporating them into the ontology, as the data archive is
representative of recent research techniques. But there are several
notable challenges to that approach, for example the CDEs do not
have standardized structure which can be modeled as computable
metadata terms. The CDE terms describe specific questions based
on the studies that submit them. This can lead to idiosyncratic
effects, for example, the term for the Scale for the Assessment of
Positive Symptoms (SAPS) is defined as only the formal thought
disorder symptom severity part of the SAPS, linked to psychiatric
outcomes in Parkinson’s Disease, rather than being defined as the
Scale itself. These limitations in terms of standardization and lack
of structure excluded the NIH CDE for these scales from being
modeled in the ontology.

We note that this study successfully demonstrated the
implementation of an internationally coordinated metadata
annotation process, and online annotation efforts of neuroimaging
papers across multiple naive teams. Teams were recruited from
several undergraduate programs in the US and in India, and
students worked for research credit or in some cases for a summer
stipend. The use of current distributed-access tools allowed
interactions across teams, levels of expertise, and time zones.

4.1. Ontology-based data access and the
application of NeuroBridge ontology

Searching for relevant information over a large corpus is
challenging and this task is more difficult if the objective is to
query information described in the article’s text. In this scenario,
exact matches between query term and terms in text are difficult;
therefore, deeper domain knowledge in the form of an ontology
has been acknowledged to be an effective approach for processing
unstructured text in the knowledge representation and Semantic
Web communities. The main contribution in our approach is the
use of the NeuroBridge ontology in the NeuroBridge search over
published articles. The NeuroBridge search feature is designed
to use machine learning techniques together with ontologies to
support queries beyond simple syntactic and grammar-based term
matching; it is designed to use multi-faceted ontology structure
to perform domain-specific search. This captures the nuances
of data references without being tied down to any specific
syntactic structure.

The NeuroBridge ontology and the NeuroBridge platform are
distinct from traditional systems such as the Ontology Based
Data Access (OBDA) (also called Ontology Mediated or Ontology
Based Query Answering) (OMQA/OBQA) (Kock-Schoppenhauer
et al., 2017; Xiao et al., 2018; Corcho et al., 2020; Franco et al.,
2020; Pankowski, 2021), which are mostly based on relational
databases, either across a single database or federated databases
with related schemas. The NeuroBridge model can be viewed
as a reverse of the mapping advocated by OBDA systems. In
our approach we look at ontologies as providing the entities
in a database schema and map these ontological structures to
sentences or groups of sentences in published articles. This reverse
mapping allows us to find references to datasets of interest in
an article. This reverse mapping from articles to ontologies is
facilitated through the human-annotated stage where identification
of relevant sentence structure is performed. These manually
annotated examples are used to train machine learning (ML) model
to identify similar mappings [described in our companion paper
(Wang et al., Under Review)].

4.2. Limitations

A key limitation of this study is the use of a time-intensive
ontology engineering process, which makes it challenging to scale
the NeuroBridge ontology to include other domains such as cardiac
or spinal imaging studies, or even brain tumor scanning. This
would require novel expansion methods to be implemented to add
new terms in the ontology. As noted above, we do not explicitly
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model all published assessments, and the model of subject groups,
as currently implemented, does not capture all possibilities. We
also have not modeled all the possible details of a neuroimaging
study, for example, imaging protocol parameters, quality assurance
steps, data processing and analysis phases together with their
many parameters, and the statistical results or their interpretation.
This version of the ontology would not support, for example,
searching for datasets of a certain sample size, which used a
particular MRI platform machine, or user queries based on their
conclusions (e.g., searching for datasets which were used to support
a certain hypothesis).

The representation of neuroimaging behavioral tasks in the
ontology does not include the Cognitive Paradigm Ontology
(CogPO) approach, which focused on describing the choice of
stimuli, the instructions given to the subject, and the responses that
the subjects were expected to make till now (Turner and Laird,
2012). The CogPO approach would be more detailed, and would
allow disambiguation between, for example, studies which claimed
the same type of task but used different stimuli, or between studies
which used different names for the same task. This level of detail
was considered to be outside of the scope for the first version
of the ontology; therefore, it will be part of future expansion of
the ontology.

5. Conclusion

The goal of this project is to apply metadata annotations which
address FAIR guidelines to the literature of published human
neuroimaging studies, even though the studies themselves may
not be sharing their datasets through FAIR-compliant methods.
The objective of the study is to meet an important requirement
of making neuroimaging metadata computable through the
NeuroBridge ontology, which will enable neuroimaging data to be
compliant with the FAIR guidelines. The use of the ontology for text
annotation and supporting user queries in the NeuroBridge portal
will allow us to identify and present the relevant neuroimaging
papers to the user and to request access from the study authors
as necessary for re-use of experimental data. For the purposes of
finding neuroimaging datasets that use similar methods and that
could be aggregated for a novel analysis, the NeuroBridge ontology
is addressing what current ontologies in the fields today are lacking,
i.e., describing the methods that neuroimaging studies employed
to collect the data. The NeuroBridge ontology is available at https:
//neurobridges.org/, and in BioPortal (Musen et al., 2012). The
corpus will be available on the NeuroBridge website as well for
re-use by the community (see text footnote 1). The NeuroBridge
platform has been submitted to rrids.org for consideration for a
research resource identifier.
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Introduction: Scientific research relies mainly on multimodal, multidimensional

big data generated from both animal and human organisms as well as technical

data. However, unlike human data that is increasingly regulated at national,

regional and international levels, regulatory frameworks that can govern the

sharing and reuse of non-human animal data are yet to be established. Whereas

the legal and ethical principles that shape animal data generation in many

countries and regions differ, the generated data are shared beyond boundaries

without any governance mechanism. This paper, through perspectives from

neuroscience, shows conceptually and empirically that there is a need for animal

data governance that is informed by ethical concerns. There is a plurality of

ethical views on the use of animals in scientific research that data governance

mechanisms need to consider.

Methods: Semi-structured interviews were used for data collection. Overall, 13

interviews with 12 participants (10 males and 2 females) were conducted. The

interviews were transcribed and stored in NviVo 12 where they were thematically

analyzed.

Results: The participants shared the view that it is time to consider animal data

governance due to factors such as differences in regulations, differences in

ethical principles, values and beliefs and data quality concerns. They also provided

insights on possible approaches to governance.

Discussion: We therefore conclude that a procedural approach to data

governance is needed: an approach that does not prescribe a particular ethical

position but allows for a quick understanding of ethical concerns and debate

about how different positions differ to facilitate cross-cultural and international

collaboration.

KEYWORDS

animal research, animal data, neuroscience, data governance, ethics dumping,
regulations

1. Introduction

In the last decade, the need to ensure reproducibility of research results and to justify
public investment in research has led to increased sharing of research data and the imperative
for open sharing. Open data platforms supported by research projects have increasingly
become the center piece for facilitating open sharing of research data. In neuroscience, a
number of these open platforms exist and share big, multitype and multifunctional data
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from diverse species of organisms for both research and innovation.
As Poldrack and Gorgolewski (2014) pointed out, these platforms
not only encourage data re-use and increase statistical power to
stimulate translational knowledge but also expand the reach and
impact of neuroscience research. A critical implication of this data
re-use expansion is that data increasingly interacts with different
jurisdictions with different regulatory requirements. While most of
these datasets are from human participants, many are generated
from animals.

Unlike human data that is nationally or regionally regulated
(e.g., EU General Data Protection Regulation1), there are no
established legal frameworks that govern the sharing and re-use
of animal data nationally or internationally. One reason for this
is that the sharing or use of animal data does not raise the
traditional data use concerns associated with human data (Stahl
et al., 2019) such as; privacy, fairness, human rights and security.
The ethical and legal issues around animal data are usually raised
during data creation. The scientific, ethical and legal validity of
animal research data are mostly determined by the nature of the
research procedure/experiment. The moral and legal questions of
animal experiments do not always revolve around the implications
of animal data usage but on the ethical and legal permissibility
of its scientific generation. Crucially, the regulatory and ethical
principles that shape animal data generation in many countries and
regions are different while the generated data are shared beyond
boundaries without any governance mechanism. This means that
animal data generated in less restrictive places are openly shared in
countries with very restrictive requirements mostly through open
data platforms. Thus, this paper asks the question: is it time to
consider animal data governance?

The paper shows conceptually and empirically that there is
a need for animal data governance that is informed by ethical
concerns. Animal data raises different ethical concerns from human
data and thus needs to be treated differently. There is a plurality
of ethical perspectives on the use of animals in research which
any data governance regime will need to take into account.
This article therefore arrives at the conclusion that a procedural
approach to data governance is called for that does not prescribe
a particular ethical position but allows for a quick understanding of
ethical concerns and debate about how different positions differ to
facilitate cross-cultural and international collaboration.

We organize this paper as follows. We explore the current
international data governance ecosystem for responsible
biomedical research and innovation; the continued use of
animals for neuroscience research, especially non-human primates.
We then provide a thematic analysis of interviews conducted with
international neuroscientists who conduct animal experiments. On
this basis we arrive at the conclusion that a procedural approach to
international data governance is called for.

2. The continued use of animals in
neuroscience research

Despite the increasing requirements to implement the 3Rs
(replacement, refinement, and reduction) (Russell and Burch, 1960;

1 https://gdpr-info.eu/

Guhad, 2005), the use of animals in research continues in many
parts of the world, especially in neuroscience research (perhaps
more than in any other field of biomedical research) (Jones,
2021). Although public interest in the use of animals for research
has significantly reduced the number of animal experiments
in Europe and North America (Lankau et al., 2014; European
Commission, 2019), animals continue to be central to scientific
research in other parts of the world. The rationale for this is
varied. Neuroscience research often involves invasive and non-
invasive methods that cannot be conducted with humans because
of associated risks and ethical concerns. Thus, neuroscientists
turn to other animals such as; rodents, ferrets, dogs, pigs, zebra
fish and monkeys whose usage in scientific research comes with
considerably fewer ethical concerns. The argument for this, borders
on the lack of safe and non-invasive approaches to studying the
human brain (Preuss, 2010). Rodents are widely used because
of their short gestation periods, their cost-effective production
and have proved unquestionably effective (Neuhaus, 2018). Fruit
flies (Zweier et al., 2009) and zebrafish (Haesemeyer and Schier,
2015) have also proved to be important research resources for
neuroscience research.

The use of animals in invasive and intrusive neuroscience
research is generally informed by the legal and ethical
restrictions of such research with human brains. However,
many neuroscientists suggest that there are anatomical and genetic
limitations/differences that hamper the scope of their use (Garner,
2014; Windisch, 2014). These animal subjects or models present
challenges Kaiser and Feng (2015) referred to as the lack of face
validity and predictive validity. The delays in the development
of new interventions for brain diseases are associated with the
differences in pathophysiological mechanisms between rodents and
humans (Ting and Feng, 2013). Differences in brain functions and
cognitive behavior, difficulties in scalability of dosage regimens,
differences in recovery times and differences in the ratio of white
to gray matter in the brain are some of the issues that inform this
lack of transnationality (Varki, 2000; Weatheall, 2015). For better
predictive validity, some neuroscientists assert that non-human
primates (NHPs) are particularly better subjects.

2.1. NHPs in neuroscience

Available draft genome sequences of primates have shown
that there are important similarities between human and NHP
genomes. NHPs have, indeed, been revealed as our closest
relatives with regard to the DNA sequence of our genome (Li
and Saunders, 2005). While the Chimpanzee genome is 98.77%
similar to the human genome (Chimpanzee Sequencing and
Analysis Consortium, 2005), the rhesus macaque has a 93.5%
similarity (Disotell and Tosi, 2007). This phylogenetic proximity
to humans and related similarities in anatomy, physiology and
behavior form the basis for justification of the use of NHPs in
neuroscience experiments (Tardif et al., 2013; Friedman et al.,
2017). A further comparative study of primate genomics has also
shown that the most significant evolutionary change between
primates happened in the brain (Sikela, 2006). These similarities
form the basis of justification and a remarkable curiosity to unlock
the brain’s complex structure and functions through experiments
with NHPs. Today, NHPs are mainly used in basic/fundamental
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neurobiological research to explore how brain circuits contribute
to human brain activities such as; perception, attention, memory
and emotion (Bystron et al., 2006). In Europe, some neuroscientists
are engaged in this type of research even though the number of
invasive/intrusive experiments ongoing is not known (Scientific
Committee on Health, Environmental and Emerging Risks
[SCHEER], 2017). They are also used in translational and applied
neuroscience research (Capitanio and Emborg, 2008) aimed at
understanding the causes and development of potential treatments
of brain disorders. Even though the scientific and translational
validity of NHP experiments have been questioned (Knight, 2007;
Bailey and Taylor, 2016), NHP research in neuroscience continues
to develop new tools and approaches.

There is also a steady rise in neurological alterations of NHPs
to model human brain diseases/functions and to study the genetic
mechanisms that inform human specific neurological changes
(Shi et al., 2019). This can be in the form of neural grafting
(Bjugstad and Sladek, 2006), transgenesis (Chan, 2014) or other
forms of human-NHP chimerism. These experiments significantly
alter the neurobiological appearance, behavior or genetic makeup
of the NHP causing phenotypic changes. Transgenesis refers to
the artificial transfer of a foreign gene into the genome of another
organism in order to introduce or delete characteristics of the
phenotype (Mepham et al., 1998). In neuroscience, this can involve
the use of HLS (human lineage specific) genes to create transgenic
NHPs to demonstrate changes in brain structure (like brain size),
function (such as high cognition) or to model diseases (like
autism, Huntington diseases etc.). These genetic alterations of
NHPs are developed with customized mutations and have shown
to be able to model human brain disorders like Parkinson’s (Yun
et al., 2015), Schizophrenia (Qiu and Li, 2017), Alzheimer’s (Yeo
et al., 2015), autism (Cyranoski, 2016; Zhao et al., 2018) and
Huntington’s disease (Tomioka et al., 2017). Another invasive
NHP experiment in neuroscience involves the transplantation of
human-derived neural cells into an NHP to model “human-like
behavior”- neural grafting. These and similar neuroscience research
experiments with NHPs present unique concerns. The controversy
is not confined to the scientific community but extends to the wider
public. But the fact that significant neurological similarities between
humans and NHPs raise ethical concerns that needs attention
and some agreement by many stakeholders (Conlee and Rowan,
2012; Carvalho et al., 2018). In essence, the unique usefulness of
NHPs neuroscience research also shapes the unique ethical and
legal questions they raise. Overall, this increases the imperative for
animal data governance in neuroscience.

3. Current international data
governance ecosystem

Data governance is defined as “the principles, procedures,
frameworks, and policies that ensure acceptable and responsible
processing of data at each stage of the data life cycle, from
collection, storage, processing, curation, sharing, and use to
deletion” (Eke D. O. et al., 2022). The emphasis on the data life
cycle demonstrates that data governance is not only required for
a specific stage of the life-cycle. It is a robust framework that
starts before data collection and continues to the deletion stage.
Fothergill et al. (2019) described it as the overall management of

the availability, usability, integrity, quality, and security of data
in order to ensure that the potential of the data is maximized
while regulatory and ethical compliance is achieved within a
specific organizational context. This definition introduces ethical
compliance as an important aspect of data governance. Data
governance is therefore more than legal compliance (Eke D. et al.,
2022). It includes adherence to available ethical principles.

Furthermore, whereas the interpretations of data governance
in organizations, disciplines and projects are different (Stahl et al.,
2018), its goals and objectives are rooted in available laws and
ethics. The question of whose laws and ethical values is determined
by the context. Available regulations and ethical values are still
jurisdictionally constrained while data continues to cross borders
and socio-cultural contexts. For instance, data protection laws
are established for specific jurisdictions (e.g., EU GDPR, USA
HIPAA2, Canada’s PIPEDA3 etc.). Ethical values and principles that
shape data governance also emerge from specific socio-cultural
backgrounds. This means that the meaning or interpretations of
data ethics principles such as trust, autonomy, privacy and consent
are different in different cultures and societies. These inform
relative interpretations of data governance in different cultures.

It is also important to note that established data related
regulations and ethical narratives focus mainly on human data.
The literature and practice of data ethics and data protection
exists to address issues that affect humans in the data processing
pipelines. To the best of our knowledge, there is no existing
regulation established to address ethical, legal and societal issues
related to animal data. This is true for both research and non-
research settings. In their systematic literature review of ethical
principles that shape data governance discourse in neuroscience,
(Ochang et al., 2022) identified a number of ethical principles that
often shape data governance discourse in brain research. None of
the principles identified touched on animal data concerns. That
means that data governance mechanisms often exclude animal data
concerns as it relates to ethics and the law. Aspects of technical
elements of animal data governance are, however, often included in
discussions on findable, accessible, interoperable, reusable (FAIR)
data principles. These include aspects of data standardization,
integration and interoperability. This falls short of addressing
ethical and legal concerns related to the different stages of animal
data lifecycle while animal experiments continue to be critical parts
of biomedical research.

4. Emerging interests in animal data
governance in neuroscience

For a number of reasons, including socio-cultural, ethical and
legal differences that inform what is considered permissible use of
animals in research, there is a growing interest in the governance
of animal data (Eke D. O. et al., 2022). Perceptions on ethical
concerns about the use of animals, particularly NHPs, in biomedical
research are fundamentally shaped by diverse socio-cultural norms,
ethical principles and regulatory requirements. This is evident in
the fact that while the use of NHPs in research has decreased

2 https://www.hhs.gov/hipaa/index.html

3 https://www.priv.gc.ca/en/privacy-topics/privacy-laws-in-canada/the-
personal-information-protection-and-electronic-documents-act-pipeda/
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significantly in Europe and America due to increased social animal
welfare activism, NHPs are still the central focus of big neuroscience
projects in Asia (Okano et al., 2016; Poo et al., 2016).

Advancements in genome-editing technologies such as the
CRISPR/Cas system and artificial intelligence amplifies the huge
possibilities in generating genetically modified NHPs. Although
this emerging field (genetically modified NHP) has the “potential
to transform the study of higher brain function and dramatically
facilitate the development of effective treatment for human
brain disorders” (Feng et al., 2020), it raises significant ethical
concerns. Responding to the huge potential of genetically modified
NHPs, Rommelfanger et al. (2018) raise the concern that
researchers may be able to introduce cognitive capabilities that
can contribute to blurring the boundaries of personhood and
ultimately alter traditional perceptions of animal ethics. In 2019,
a group of researchers from the Kunming Institute of Zoology
in China claimed to have created transgenic monkeys with
improved cognitive capacity (Shi et al., 2019). These modified
monkeys were created with human MCPH1 genes and were not
modeling any human diseases. They were simply modified to be
phenotypically humanlike. During a series of cognitive tests, the
researchers reported that these animals displayed better short-
term memory than their counterparts in the wild. Basically, their
brain development mirrored human brain development in many
respects. The underlying logic behind this research, which is to
manipulate monkeys to model humanlike capacities, presents a
slippery slope concern. The question is where would the line be
drawn in the path to generate human-like animals? To say the
least, such research will not be permissible in many socio-cultural,
ethical and legal contexts where the moral status of NHPs are hotly
debated.

Given these differences in attitudes, values, principles, beliefs,
regulations on the use of animals in research, Rommelfanger
et al. (2018) further noted that, “sharing of brain data between
countries that hold different ethical stances on what is considered
appropriate animal experimentation raises additional questions.”
One of such questions is; “Should a country accept or use data
collected elsewhere in a fashion that is not considered locally
ethical?” (Ibid). This is a critical question at the heart of animal
data governance consideration. It presents an ethical dilemma
many scientists currently face in the neuroscience data sharing
ecosystem (Eke D. O. et al., 2022). One project that has stated
this as a concern is the PRIMatE Data Exchange (PRIME-DE)
Consortium that has highlighted the lack of international standards
and regulations as barriers to fostering international NHP data
sharing and collaborations (Milham et al., 2020). This increased
interest in neuroscience deserves more exploration and hence this
paper.

5. Methodology

The issue of responsible animal data governance requires
multi-stakeholder perspectives and insights (Rommelfanger et al.,
2018; Eke D. et al., 2022). It calls for the appreciation of diverse
cultural values and beliefs while respecting established ethical
frameworks. Thus, a semi-structured interview was selected as
the methodological choice. The underlying research philosophy,

therefore, is to use social actors to provide in-depth and rich
perspectives on the reality of animal data governance. The aim was
to provide detailed and reasoned insights rather than objectively
generalisable positions.

The target population included researchers around the globe
who have conducted or are conducting animal experiments to
answer diverse neuroscience questions. Participants were drawn
from active research projects under the International Brain
Initiative (IBI). The IBI is the umbrella body for all the large-
scale brain research initiatives including the EU Human Brain
Project, the US Brain Initiative, Japan Brain/MINDS, Australian
Brain Alliance, Korean Brain Initiative, Canadian Brain Research
Strategy, and China Brain Project. We also drew participants
from Africa and Latin America. Initial list of 37 researchers
was compiled and interview invitations extended to all of them.
A total of 15 people accepted the invitation and 3 later withdrew
citing busy schedules. A structured interview guide that aligns
well with the principles of qualitative research design (Ragin and
Amoroso, 2011) was developed and tested on two colleagues.
Following feedback from these initial tests, the interview protocol
was improved before the start of the interviews.

Ethics approval was obtained for this research from De
Montfort University ethics review committee. Information
sheet and an informed consent form were then emailed to
participants. The information sheet contained comprehensive
data on the research including but not limited to the research
objectives, expectations from the participants and responsibilities
of researchers, potential risks and benefits, the voluntariness of
participation and how research data will be used. All participants
returned the consent form before the interviews and further
verbal consent was sought at the start of the interview to record
the session. The interviews were conducted either in person or
virtually via Skype or zoom and took approximately 40 min each
to complete. These interviews occurred between January 2020
and November 2021. Overall, 13 interviews with 12 participants
(10 males and 2 females) were conducted. One participant was
interviewed twice because the first interview was cut short due
to technical difficulties. A total of 13 interviews were considered
sufficient to achieve saturation because according to Guest et al.
(2006), theoretical saturation can be achieved even in 12 interviews
and basic elements for metathemes can emerge as early as six
interviews.

The interviews were transcribed and stored in NviVo 12
where they were inductively coded for themes by the first author
(DE). The inductive coding process involved reading through
the transcript and identifying common patterns and themes.
Thematically, the coding tree included high level nodes that show
participants’ perspectives on why it is time to consider animal
data governance or otherwise (such as cultural differences, legal
differences etc.). Specific themes that align with high level themes
are coded as sub-nodes. For example, ethics dumping was identified
as a sub-node under the high-level node of ethical differences.

6. Key findings

One of the key results that emerged from the interviews
was that all the participants agreed that due to the increasing
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transfer of animal data across countries, it is time to consider
animal data governance for a number of reasons. The reasons
provided by the participants are diverse and include: differences in
regulations, socio-cultural and ethical values and beliefs, as well as
scientific quality (see Table 1).

6.1. Differences in regulations

A number of the participants pointed out legal differences as
one of the major reasons why it is time to consider the governance
of animal data. For instance, one participant stated that: “although
there is no regulation related to the use of animal data that I know of,
there should be one since there are differences in regulations for the
generation of animal data”- (P2).

Another participant also confirmed that: “Regulations inside
laboratories around the world are not the same, why should the data
we generate be treated the same way?” (P1).

Furthermore, another participant presented these regulatory
differences with an example of how it prevents collaborations: “I
have colleagues in the UK and we discussed collaborative projects but
it turned out to be impossible because the Ethical Research Council’s
standards do not match Japanese standards. On another occasion,
how to use data obtained from Japan, because it was monkey data,
was the major problem” (P5).

To reiterate this angle of NHPs, one participant stated that: “It
is not just that Africa has the animals or the research is cheaper here
but it is because that they are allowed to do in some African countries,
especially with NHPs, they are not legally allowed to do in their own
countries” (P11).

The mention of non-human primate (NHP) here is critical
because as pointed out above, differences in animal welfare are
more amplified when it involves NHPs. These legal differences lead
to an ethical question of how to share and use data generated from
experiments legally not permissible in certain regions of the world.

Some participants raised further issues and concerns related
to power imbalance that may emerge due to non-harmonized
regulations. One participant observed that: “If one country has a
very loose standard, this country is capable of doing many things that
could not be done in some other places. This group will dominate its
power in the science of new data maybe. I think this is happening
now. If there cannot be harmonized welfare regulations due to many
factors, then we should have some open-minded policy discussions on
responsible sharing of the datasets” (P1).

This observation shows that differences in regulation are
giving researchers in certain countries (with less strict provisions)
scientific advantage over others. In responding to this, another
participant stated that: “We ran into that with stem cells, in the
United States. And the argument was, ‘well, if you don’t fund it,
they’re going to fund it over there, and we’re going to fall behind.’
but you cannot build your industries on the back of something that is
ethically wrong” (P3).

This was an important point since regulations are
fundamentally shaped by societal values which are different
in different regions. These findings align with evidence that has
been demonstrated in literature. Vasbinder and Locke (2016)
provided an overview of regulatory frameworks across the globe
that demonstrated that whereas there are common standards
across different jurisdictions, there are clear differences in how
different countries regulate the use of animals in research. Most

TABLE 1 Summary of key findings.

Reasons why it is time to consider animal data governance

Differences in regulations • Animal welfare is regulated differently in different countries and regions.
• While NHPs remain the most suitable animal for research in Neuroscience, their use in research are

legally restricted in many countries.
• There are no identifiable existing laws in these countries (with restrictive laws) against the use of

animal data.
However, in countries where animal experiments are legally not allowed, it should not be legal to use data
that emerge from such experiments conducted in other countries.

Differences in socio-cultural values, beliefs, attitudes, and
ethics

• Socio-cultural values, belief systems, attitudes and ethics shape regulations on the use of animals in
research.

• Whereas some cultures allow and even encourage the use of animals in research, other cultures actively
work against the use of animals in research.

• Strict animal welfare regulations and social activism against the use of animals in research are pushing
researchers to outsource ethically questionable experiments to countries where there are little or no
laws–ethics dumping.

Animal data governance will help to prevent ethics dumping and ensure that socio-cultural values and ethics
are adhered to.

Data quality concerns • Good science requires good data from reliable experiments.
• The quality of animal data depends on good animal care (overly stressed animals are bad subjects).

Animal data governance will help to ensure good animal care.

Approaches to animal data governance

• Requires a multi-stakeholder dialog for the co-creation of actionable frameworks (involving people from different cultures
and animal).

• Comparative study of existing regulations and the socio-cultural values and beliefs underlying them.
• Can build on established minimum standards used for journal publications.
• Requires regulations similar to human data regulations.
• International research infrastructures where researchers meet data from different regions of the world will play in vital role

in achieving effective animal data governance for research and innovation.
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importantly, they identified that animal research is “performed
in African and Middle Eastern countries, but many of these
countries have not yet enacted legislation nor established
regulatory oversight, policies or guidelines” (Vasbinder and Locke,
2016 p. 263). Mitchell et al. (2021) have also provided detailed
insights on the differences in regulatory provisions guiding the
use of primates in neuroscience across countries which is the
focus of this research. Some of the differences they pointed out
include but are not limited to; how NHPs should be generated
for use in research (e.g., the use of wild NHPs for research
purposes are banned in the EU, in China prior to COVID-19
pandemic this was allowed). Another difference they pointed
out is the sizing and flooring of the home enclosures and caging.
The EU provides that NHPs should be housed in larger sized
enclosures and cages while in China and other Asian countries
the cages are smaller (Mitchell et al., 2021). These differences have
implications such as forming barriers to effective international
collaborations and global data sharing (Rommelfanger et al., 2018;
Milham et al., 2020).

6.2. Differences in ethical principles,
values and beliefs

It has been established in literature that the diverse socio-
cultural values, beliefs, attitudes and ethics found in many regions
of the world greatly influence the available diverse animal welfare
regulations (Masiga and Munyua, 2005; Szucs et al., 2012; Garcia
and McGlone, 2022). The participants highlighted the conflicting
cultural and religious beliefs that make animal data governance an
imperative. As one participant put it:

“I think policy of the animal ethics and welfare differ between
countries. . .there are conflicting concepts and beliefs. . . and
there should be respect for people’s cultures” (P6).

Another observation was;

“Our cultures are different. In our culture we believe that
using animals for a scientific purpose is exactly the same
as killing animals to eat to maintain our lives because the
scientific research leads to the development of human medicine.
That is culturally accepted. However, it is different in
Europe” (P5).

These opinions suggest that the acceptability of generation
of animal research data is different in different societal contexts.
There are differences in the understanding and conceptualization
of ethical concerns associated with animal experiment. One of
these concerns involves the idea of inflicting pain on animals.
One participant stated that when scientists are inducing psychiatric
disorders, they are creating suffering for the animals which
is something that should be deeply examined. Reacting to
pain associated with inducing psychiatric disorders in animals,
a participant observed that; “there are ethical concerns, and
I think there should be a very deep and profound discussion
about it” (P7).

However, there was an opinion to always focus on the balance
between costs and benefits of research experiments that cause
pain. For this participant, “cost and benefit balance is the most
critical issue. . . such a kind of disease model can cause some painful
situations in these animals and even this can also be an experiment
for the chronic pain you know” (P4).

Furthermore, the idea of pain and how it affects animals is
amplified when NHPs are involved.

The general belief that monkeys are better animals for
experiments because they are closer to humans in cognitive
abilities suggests that they will feel more pain than rats and
others. This is what we have come to know. . .I don’t believe
researchers in so many other places respect this. We know too
much about primates, we know too much about their sociality,
we know too much of this for us to use them as our own
personal lab rats (P8).

This is because NHPs are sophisticated, capable entities (P1).
Therefore, we should be thinking about minimizing suffering (P1)
rather than inflicting pain on them.

There are also heightened ethical concerns when transgenic
NHPs are involved. According to a participant; Technology has
advanced and many tools are now available. You don’t want to create
monster-killing animals that can be used for military purposes and
things like that (P9).

Similarly, one participant observed that advancement
in technologies are improving research but may be used
in unethical ways. We do have the tools in our hands to
start playing dangerous games. That is definitely the case,
not only in non-human primates; even in humans. There
are possibilities of creating subjects that we don’t want on
earth. These experiments may be culturally allowed in some
places and rejected in others. Governance of how the datasets
that emerge from such dangerous experiments can deter
such research (P3).

For another participant responding to whether it is ethical
to use data from transgenic NHPs, conditions under which such
data is generated should be carefully examined because; there
are real concerns, especially as you get into transgenic models, to
really consider whether or not you want to be seen endorsing a
particular approach or not. That depends on where the researcher
is working from (P4).

To support this line of thought, another participant stated that:
“...this is a serious ethical concern. The use of the data from research
that is not allowed in this country (the participant’s country) can
cause reputational damage. I have not thought about it this way but
it can” (P10).

Another argument presented by the participants was that
the differences in ethical principles, values and regulations
means that some researchers will move to other countries
with less restrictive values and regulations or in some cases
outsource the research. These are insights provided by the
participants:

We already know that happens. We knew it happened with stem
cells, we knew it happened with anything else, “...can’t do it here, I
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will go and do it in that country, where there are no regulations.”
Some researchers can do the research in other countries and then
bring back the data to be used here. This is data laundering and
it is fraud, right? You are just outsourcing it to somebody else and
taking advantage of the data (P3).

To be fairly honest, I think at some scale that’s already happening.
There are people from Europe doing some kind of research in
China for Example, which they would have a very difficult time
to get easily approved in their own country. The same is true for
the United States. So, in theory, yes, this opens the doors for that
kind of stuff, but that’s not where we want to go (P1).

Another participant observed that animal data governance can
Prevent unnecessary animal research happening in Africa by

researchers from Europe and America. So many of these do not follow
the same ethical principles they are made to follow in their own
countries (P11).

These perspectives hint at an ethical concern often referred
to as ethics dumping which will be explored further in sections
below. It also means that while researchers in different regions
of the world are required to comply with their regulations, some
of these regulations may fall short of acceptable ethical standards
in other regions.

6.3. Data quality concerns

Another reason the participants believe that it is time for animal
data governance is to ensure that the quality of animal data shared
is good for scientific purposes. The summary of the opinions here is
that data governance can improve the quality of data because good
scientific research relies upon high quality laboratory animal care
(Friese, 2013, 2019). A harmonized animal data governance can
help to improve animal welfare in a way that fewer confounding
variables are introduced into research. Some of these opinions are
as follows:

But we also know that overly-stressed animals are bad subjects,
you don’t get good data from them, you see mixed effects. So,
I think you could make both the ethical and the scientific case
that these animals need to be treated well. Governance can help
harmonize best practices for animal welfare (P4).

It will be a con-founding factor. If there are high stress levels
on the animals, it will simply provide you with completely
wrong measurements of whatever you are doing. Yes, that
is what I think. Having some sort of universal principle
for the derived data will improve the quality of data
shared (P12).

The quality of data is critical to this discussion. I think in
science you want a certain degree of consistency and quality

for effective research outcomes. Open data portals need to
put mechanisms to ensure that the data they make available
come from labs that comply with high standards of animal
welfare (P9).

These views suggest that animal data governance when
implemented, particularly by open data repositories/archives, can
help to improve the quality of animal data for research. However,
without adequate governance mechanisms, low quality animal data
may be allowed to permeate within research ecosystems.

6.4. Approaches to governance

Beyond providing insights into the reasons why it is time to
consider animal data governance, the participants also gave their
perspectives on how this can be done. One view that was shared
by all the participants is that a harmonized governance framework
for animal data requires inclusive discussions involving all relevant
stakeholders. In order to appreciate and respect differences in
regulations and social-cultural values, animal data governance is a
multi-stakeholder endeavor. For instance, one view was that:

Discussions on governance approaches should be thoughtful
and careful and involve researchers that are performing
these experiments. It should also involve people from
different cultures to understand what is an appropriate
framework (P12).

This is a very important view that can ensure that one region
does not dictate for other regions as regards best practices. As a
participant mentioned; responsible data governance is an interesting
concept but a complex one. Whose understanding of responsibility?
Whose values are going to shape this? These are things that need
further discussions and understanding (P5).

Another participant also observed that exclusion or disregard
of some cultural values and beliefs will make any developed
mechanism unacceptable for many scientists. However, this does
not mean that people working in regions with strict regulations
should accept anything and everything.

There was also the feeling that already established standards
used for publishing in journals can be a starting point–
something to build on.

Minimum standards of acceptance and rejection for papers in
neuroscience journals need to be studied and improved upon. For
instance, the implementation of the 3Rs. Maybe a comparative
literature about the different ethical standards used in different
countries (P2).

Another researcher further suggested that auditing all data
producing sites can be a pragmatic way of understanding the
status quo.

One critical view that was shared by many of the participants
is that research infrastructures or open data archives, repositories
or portals need to play important roles in providing efficient
governance mechanisms for animal data. The argument was that
animal data should be governed through international research
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infrastructures where researchers and research data from different
cultures meet (P10).

Some participants made a case for the establishment of
regulations for the use of animal data similar to data protection
laws. These can be new regulations or amendments to existing laws
to cover the use or application of animal data, particularly NHP
data. An EU participant puts it thus:

The rationale is, of course, that we wouldn’t include data that has
been acquired in a way that doesn’t conform to the rules within
the EU. That is important. Otherwise, it serves as an incentive,
almost, for people to do something elsewhere and then hopefully
get the data in (P7).

7. Discussion and conclusion

The findings from our empirical work are broadly consistent
with our insights from the existing literature. The international
neuroscientists we talked to agreed that animal neuroscience
research raises ethical concerns and that these concerns have
consequences for the way the resulting data can and should be used.
The very brief answer to the question in the title to this article
whether it is time to consider animal data in data governance is
thus a “yes.”

Our empirical work highlights that this is not a purely
theoretical problem but that questions of animal data governance
do arise in practical neuroscience work. The global discussion
of data governance in health-related research ostensibly has the
purpose of facilitating collaboration and exchange of data with a
view to support the creation of new knowledge and the resulting
consequences. This logic can be extended to animal data which calls
for animal data governance.

There remain, however, fundamental differences between
human data and animal data. The very use of human data can
raise ethical concerns, for example where patient record privacy is
concerned. Animal data does not raise such intrinsic concerns. For
animal data the core of most issues is the generation or collection of
data. Data use is nevertheless important because a lack of attention
to the use of data may facilitate the use of data which is deemed not
to be ethically permissible in a particular jurisdiction or cultural
context, thereby sidestepping agreed-upon ethical principles.

A key question is therefore which type of animal research is
deemed to be permissible and on what grounds can such value
judgments be made. Our interviews showed that neuroscientists are
aware of differences with regards to these questions. There seems to
be a continuum of ethical severity which starts with cell cultures,
moves up via invertebrates, vertebrates, rodents, NHPs and may
find its current summit in research on transgenic NHPs. The
problem is that the evaluation of these different types of research
differ between cultures and jurisdictions and there is no universally
agreed position on these questions.

This lack of agreement points to the lively exchange of ideas
between cultures which is probably a good thing. Ethics is a topic
that often finds its expressions in dilemmas and disagreements,
so the plurality of views is not surprising. It seems plausible that
an ethical free-for-all is not desirable, neither in animal research,

nor in research more generally. At the same time, a uniform
ethical position would suppress legitimate positions and thus be
likely unethical in itself. Ethical plurality is thus welcome and can
stimulate academic debate, for example in the field of neuroethics,
where questions are continually triggered by new technologies
and methods. While we thus welcome ethical plurality on animal
research, it raises practical questions with regards to what data can
and should be used for which purposes.

This leaves us with the question of how ethical pluralism can
be accommodated in data governance. One plausible response to
this question could come from procedural approaches to ethics.
What this means is that we should not expect to find agreement
on the substance of complex ethical questions, but it may be
possible to define procedures that support fruitful engagement
on these questions. One can argue that most modern western
approaches to philosophical ethics follow such a procedural
approach. Elsewhere we have suggested that Discourse Ethics may
provide a suitable avenue to pursue (Stahl et al., 2019). We believe,
without having the space to make this argument in detail, that such
a procedural approach could be applied to the problem of animal
data governance.

In practice this would mean that data governance should be
designed in a way to facilitate constructive debate about ethical
issues and be suitable for supporting ethical consensus, where it
exists. This implies that data governance should be used to highlight
ethically contentious aspects of animal data. This means that the
meta-data of neuroscientific animal research data should clearly
show those aspects that we know to be ethically contentious. This
would include the species, research question, type of intervention,
whether transgenic animals are involved etc.

The result of such an approach to animal data would be that it
would be easy to understand ethical agreements and disagreements.
If, for example, a culture has a consensus view that in vivo
experiments with NHPs or the use of transgenic animals is not
ethically acceptable, then filtering out such data would be easy.
Probably more importantly, a strong metadata schema would allow
highlighting which aspects of the research and the resulting data
may be contentious and thus foster communication around the
reasons for disagreements and possible ways to shape research and
data in ways that are more broadly deemed to be acceptable.

This proposal is of course not overwhelmingly novel. Data
governance structures already routinely capture some of these
items. As our interviews have shown, researchers see data quality
as an (ethical) issue and good metadata is recognized as a means to
increase transparency of data and to promote the FAIR principles.
The novelty of our proposal is that ethics-related aspects of the
metadata could be explicitly defined and collected. While many of
these will already form part of data governance, a next step would
be to more clearly define them in ways that support researchers who
generate the scientific data in the first place and ensure that they are
aware of relevant metadata requirements.

This proposal is of course no panacea. There are limitations of
our research such as the limited number of respondents and a lack
of statistical representativeness of our approach. While we believe
that our methodological choices have ensured that we received
relevant input, we cannot claim to have represented all possible
angles and identified all ethical issues. This article should thus
be read as an exploratory study that has confirmed that ethically
informed animal data governance is called for. The real work of
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shaping such a data governance approach will have to follow as
a large-scale consultative exercise leading to the co-creation of
animal data governance that truly captures ethical issues. This
future research can include how these findings individually can or
do shape animal data governance.

It is furthermore worth underlining that the existence of
ethically sensitive data governance will not make the underlying
ethical issues go away. Many of these issues touch on deep
convictions of who we are and what we as humans can or
should do. Such convictions do not change quickly and different
views will remain. But, as indicated earlier, ethical pluralism
does not need to be seen as a problem but can be celebrated
as an expression of human diversity. What counts is that we
find productive ways of dealing with issues. Ethically informed
animal data governance can be one mechanism that allows us as
researchers, as citizens of different countries, holders of different
convictions to come together and have productive conversations
about how to understand and deal with our different worldviews. If
it achieves this, then this will not only strengthen neuroscience with
all its concomitant benefits but also show how science can play an
important role in tackling the broader ethical and social questions
that our increasingly globalized world faces.
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Introduction: Open science initiatives have enabled sharing of large amounts of

already collected data. However, significant gaps remain regarding how to find

appropriate data, including underutilized data that exist in the long tail of science.

We demonstrate the NeuroBridge prototype and its ability to search PubMed

Central full-text papers for information relevant to neuroimaging data collected

from schizophrenia and addiction studies.

Methods: The NeuroBridge architecture contained the following components: (1)

Extensible ontology for modeling study metadata: subject population, imaging

techniques, and relevant behavioral, cognitive, or clinical data. Details are

described in the companion paper in this special issue; (2) A natural-language

based document processor that leveraged pre-trained deep-learning models

on a small-sample document corpus to establish efficient representations for

each article as a collection of machine-recognized ontological terms; (3)

Integrated search using ontology-driven similarity to query PubMed Central

and NeuroQuery, which provides fMRI activation maps along with PubMed

source articles.

Results: The NeuroBridge prototype contains a corpus of 356 papers from 2018

to 2021 describing schizophrenia and addiction neuroimaging studies, of which

186 were annotated with the NeuroBridge ontology. The search portal on the

NeuroBridge website https://neurobridges.org/ provides an interactive Query

Builder, where the user builds queries by selecting NeuroBridge ontology terms

to preserve the ontology tree structure. For each return entry, links to the PubMed

abstract as well as to the PMC full-text article, if available, are presented. For each

of the returned articles, we provide a list of clinical assessments described in the

Section “Methods” of the article. Articles returned from NeuroQuery based on the

same search are also presented.
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Conclusion: The NeuroBridge prototype combines ontology-based search with

natural-language text-mining approaches to demonstrate that papers relevant to

a user’s research question can be identified. The NeuroBridge prototype takes

a first step toward identifying potential neuroimaging data described in full-

text papers. Toward the overall goal of discovering “enough data of the right

kind,” ongoing work includes validating the document processor with a larger

corpus, extending the ontology to include detailed imaging data, and extracting

information regarding data availability from the returned publications and

incorporating XNAT-based neuroimaging databases to enhance data accessibility.

KEYWORDS

addiction, schizophrenia, experimental design, MRI, metadata, ontology, text-mining

Introduction

The unprecedented data revolution has generated an enormous
amount of data, including biomedical imaging datasets. In
2022, the NIH funded over 7,000 neuroimaging-related projects,
encompassing virtually every institute (National Institutes of
Health, National Institutes of Health). Over 6,000 currently open
clinical trials rely on imaging as a primary endpoint or other key
dependency1. Much of the present efforts on reproducibility science
are focused on annotation, processing, and to some extent analysis.
The new NIH Data Management and Sharing Policy (National
Institutes of Health, 2023) is encouraging the sharing of data and
has pointed to repositories for depositing data. However, how to
find data, and more importantly, how to find sufficient data that is
appropriate to answering a specific research question, is currently
left to the individual researcher to navigate. The facilitation of
finding sufficient data of the right kind is a critical gap.

Currently, much of the data is not yet “findable.” While
organized, big neuroimaging data is being shared through
mechanisms such as searchable archives (see an example list
of the many different neuroimaging databases that are sharing
data) (Eickhoff et al., 2016), and data are being reported
and deposited with recently established resources such as data
journals (Walters, 2020) and EuropePMC2, an even larger number
of smaller-sized datasets have been collected in day-to-day
research by individual laboratories and reported in peer-reviewed
publications: approximately 9,000 full text papers are available
at Frontiers in Psychology and Frontiers in Neuroscience alone,
and Neurosynth.org contains 10,000 fMRI papers. Many of these
datasets are utilized once and never shared. These underutilized
“gray data” along with the rest of the data that remain in the
unpublished “darkness” form the “long tail of data” (Wallis et al.,
2013; Ferguson et al., 2014). Finding, accessing, and reusing these
data could greatly enhance their value and lead to improved
reproducibility science.

Searching the scientific literature for data is a labor intensive
endeavor. While researchers can search for papers on platforms

1 ClinicalTrials.gov: https://www.clinicaltrials.gov/.

2 Europe PubMed Central: https://europepmc.org/.

such as PubMed Central (PMC) and Google Scholar, culling
through the returned articles to identify which ones may contain
relevant study populations and whether they include references to
datasets is time consuming. One coauthor’s Ph.D student wished
to assess the reliability of automated tracing of the amygdala,
and whether manual-vs-automated differences might account for
disagreements in the literature. Through obtaining data directly
from authors, she was able to definitively demonstrate that
amygdala volumes were not a sensitive measure in the population
she was researching, and that differences in tracing methodology
did not account for the literature disagreements (Jayakar, 2017;
Jayakar et al., 2018, 2020). However, this process took 18 months! A
more efficient process by which researchers can find relevant data
in the literature is needed.

To improve search efficiency, a large body of work has been
done to annotate the research literature (Fox et al., 2005; Turner
and Laird, 2012). PubMed, for example, tags papers with the
Medical Subject Headings (MeSH) terms. In the neuroimaging
community, the Neurosynth project has derived keywords and
result tables from full text of functional MRI papers. The
NeuroQuery platform developed a library of ∼7,500 keywords to
label fMRI activation coordinates in full text papers on psychiatric
studies (Dockes et al., 2020). Many scientific domains, including
neuroscience, extensively adopt ontologies to describe observations
and organize knowledge (Moreau et al., 2008; Widom, 2008;
Sahoo et al., 2019). Using these ontologies to annotate textual
descriptions of datasets is therefore a key step toward effective data
discovery and selection. Natural language processing (NLP) and
machine learning approaches have the potential to automate this
process. For example, the Brainmap Tracker used the Cognitive
Paradigm Ontology to guide text-mining for tagging papers
(Laird et al., 2005; Turner and Laird, 2012; Turner et al., 2013;
Chakrabarti et al., 2014). Traditional machine learning algorithms
often require training on a large number of annotated examples,
where unstructured texts are manually annotated using a complex
ontology. This is a labor-intensive process that requires highly
specialized domain expertise. We have previously developed a
deep-learning classification algorithm that obtained high accuracy
without assuming large-scale training data (Wang et al., 2022),
by exploiting pre-training deep neural language models on rich
semantic knowledge in the ontology.
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In this context, we launched the NeuroBridge project to
facilitate the discovery and reuse of neuroimaging data described
in peer-reviewed publications and searchable databases. It is
important to note that while there are efforts on modeling
provenance metadata during the design and implementation of
studies prior to publication (Keator et al., 2013; Gorgolewski
et al., 2016; Kennedy et al., 2019), the NeuroBridge is focused on
completed studies that are described in papers.

The NeuroBridge project supports the FAIR data principles
(Wilkinson et al., 2016) for improving findability, accessibility,
interoperability and reusability of scientific data in the following
ways. Findability: FAIR recommends that metadata and data should
be easy to find. NeuroBridge enhances the findability of data
through clinical ontology-based indexing for finding presence of
data usage in publications. Accessibility: FAIR recommends that
a user be given information on how data can be accessed once
found. In NeuroBridge we provide the data availability statement
and author contact information that we extract automatically
from publication metadata. Interoperability: FAIR recommends
common vocabulary and use of formal, accessible, shared, and
broadly applicable language for representation of data and
metadata. NeuroBridge provides mappings between metadata
terms used by data providers and published studies to metadata
schemas that conform to standard terms or ontology. Reusability:
FAIR recommends data be richly described with a plurality of
accurate and relevant metadata attributes. NeuroBridge provides
metadata schemas that are annotated with common vocabulary
and ontology. We have made all of our relevant data and tools
freely available3,4 to encourage the neuroscience community to
produce data that can be legally and efficiently utilized by third
party investigators.

Our long-term goal is to bridge the research question with
data and scientific workflow, thereby significantly speeding up the
cycle of hypothesis-based research. In the companion paper in this
special issue, we describe the NeuroBridge ontology (Sahoo et al.,
2023). In this paper, we report the NeuroBridge prototype platform
that focused on neuroimaging studies of schizophrenia and
addiction disorders as application domains. To extract metadata
about study design and data collection from full-text papers, we
leveraged a number of previous efforts on ontology development
and machine-learning based natural-language processing.

The NeuroBridge prototype
architecture

The design of the NeuroBridge architecture (Figure 1) was
guided by our overall goal to find enough data of relevance
to the user, and by the principle of identifying relevance by
metadata that is harmonized by a common ontology. Within this
principle, we first created an extensible NeuroBridge Ontology
that was interoperable with other domain-specific terminological
systems such as the Systematized Nomenclature of Medicine

3 NeuroBridge (Website): https://github.com/NeuroBridge/NeuroBrid
ge1.0.

4 NeuroBridge (Ontology): https://github.com/NeuroBridge/neuro-
ontologies/tree/main/neurobridge.

Clinical Terms (SNOMED CT), the Neuroimaging Data Model
(NIDM) ontology (Maumet et al., 2016), and the RadLex ontology
developed by the Radiological Society of North America. This
ontology was then used to annotate a set of full-text peer-reviewed
papers, which was then used to train a natural-language document
processor to develop a deep neural network model to represent
each paper with the ontological concepts. Finally, a user-friendly
interface that contained an interactive query builder and integrated
search across disparate data sources completed the prototype
architecture.

We first established a document corpus of PMC papers to
develop the NeuroBridge ontology and train our deep neural
network document processor. The corpus contained 356 full-text
articles from 2017 to 2020, available from the National Library of
Medicine (NLM) BioC collection, reporting empirical studies of
schizophrenia and substance-related disorders that have collected
neuroimaging data on human subjects, excluding meta-analysis
and review papers. The NLM BioC collection (Comeau et al., 2019)
is a simple format designed for straightforward text processing, text
mining and information retrieval research, e.g., using plain text or
JSON. Details of queries performed on PMC are shown in Table 1.
Of the 356 articles, 186 were used to annotate with the NeuroBridge
ontology and train our deep neural network document processor,
described below.

The NeuroBridge ontology

Full details of the ontology and its development process
are described in the companion paper in this special issue
(Sahoo et al., 2023). The NeuroBridge ontology was developed
in the metadata framework called the S3 model that classified
provenance metadata related to research studies into the categories
of study instrument, study data, and study method (Sahoo
et al., 2019), which extended the World Wide Web Consortium
(W3C) PROV specification to represent provenance metadata
for the biomedical domain. The NeuroBridge ontology was
developed to be interoperable in annotating the neuroimaging
literature and extensible to model additional study metadata
such as subject recruitment and data collection methods. It
incorporated our previous work on terminologies for data sharing
in schizophrenia (Wang et al., 2016), and extended it to include
metadata terms from the ENIGMA Addiction Project (Cao et al.,
2021). It systematically and comprehensively modeled metadata
information that described neuroscience experiments such as
the number of participants in a diagnostic group, the type of
experiment data collected (neuroimaging, neurophysiology etc.),
and the clinical and cognitive assessment instruments.

The NeuroBridge ontology model included terms for
neuroimaging data types for T1-weighted, task-based or resting-
state functional imaging, a variety of clinical diagnoses such as
neurodevelopmental disorder, mental disorders, and cognitive
disorder. It also included various clinical and cognitive assessment
instruments such as substance use scales, psychopathology scales,
neurocognitive scales and mental health diagnosis scales. The
ontology was integrated into the natural language processing
pipeline and the NeuroBridge query interface, both described
below, to allow use of metadata terms in composing user query
expressions and identify relevant study articles.
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FIGURE 1

The NeuroBridge prototype architecture includes an extensible NeuroBridge ontology along with a set of full-text peer-reviewed papers annotated
with the ontology, a natural-language processing document processor deep neural network model, and a user-friendly interface that contained an
interactive query builder and integrated search across disparate data sources completed the prototype architecture.

The NeuroBridge ontology currently consists of 640 classes
together with 49 properties that link the ontology classes. Using the
ontology, we annotated 186 papers from our document corpus on
the participant types, scanning, clinical and cognitive assessments.
See the companion paper in this special issue for a more thorough
presentation of the ontology and annotations (Sahoo et al., 2023),
including the class hierarchy representing various diagnoses and
assessment scales. The latest version of the NeuroBridge ontology
is available on GitHub (NeuroBridge) (see text footnote 4) and will
be made available on BioPortal soon.

Ontology-based natural language
document processor

The goal of the document processor was to extract from full-
text articles in our corpus any relevant metadata information
regarding study design and data collection as modeled by the
NeuroBridge ontology. A key element of the design was to represent
each full-text article in the corpus as a collection of the ontological
concepts, instead of the original representation as a sequence
of words in the full text. This eliminated the need to generate
synonyms, hypernyms and hyponyms that are common in text-
based search platforms. For the prototype reported here, the sample
size of our corpus of annotated full-text papers was small relative to
the number of ontological concepts (186 vs. 640, respectively, see
above). This small sample size did not lend itself to an end-to-end
deep-learning model that would simultaneously tag and classify text
spans into the ontology terms. Our prior research on low-resource
named entity recognition showed that when the training set was

TABLE 1 The prototype document corpus.

PMC
search

Schizophrenia Substance-
related
disorder

Search string [“functional neuroimaging”
(mh)] [“schizophrenia”
(mh)] NOT
[meta-analysis(pt) OR
review(pt)] NOT
[meta-analysis(ti) or
review(ti)]

[“functional
neuroimaging” (mh)]
[“substance-related
disorders” (mh)] NOT
[meta-analysis(pt)
or review(pt)] NOT
[meta-analysis(ti) or
review(ti)]

Additional PMC
filters applied to
both searches

Free full text; Time In the last 5 years; Subjects: Humans;
language: English

# of returns on
PMC

335 200

# of articles
retrieved from
BioC

196 162

# of articles used
in document
collection

196 + 162–2 = 356 (two articles are common between
the above two sets)

small and entity tokens were sparse, fine-tuning a pre-trained
large language model had a consistent performance advantage over
training simpler models such as conditional random fields or bi-
directional long short-term memory (Wang and Wang, 2022). This
led to the development of a two-stage machine-learning model,
described in detail in Wang et al. (2022) and briefly outlined here.
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Stage 1 of the model was concept recognition, where text spans
in the full text that may mention any ontological concept term were
tagged. This was formulated as a binary sequence tagging task to
determine whether a text span should be recognized as any concept
or not, regardless which concept it is linked to. We employed the
Bidirectional Encoder Representations from Transformers (BERT)
with a conditional random fields (CRF) output layer as the binary
sequence tagging model. BERT is a deep neural network model for
natural language (Devlin et al., 2019) that learns from a corpus of
documents to obtain the contextual representation of a word using
information from all other words in a sentence. This makes BERT
especially powerful in fine-grained natural language processing
tasks (both at a sentence and at the word level) where nuanced
syntactic and semantic understanding is critical.

Then in Stage 2, concept linking, the tagged texts were mapped
to the most relevant concept in the ontology. For each concept,
we constructed a “concept document” by concatenating its textual
labels in the NeuroBridge ontology, its synonyms in the UMLS, and
its associated text spans in the training data. We then calculated the
textual similarity between the text span and the concept document
by using Apache Solr to index all concept documents where a text
span was treated as a free-text query and the BM25 relevance model
(Amati, 2009) was used to rank concepts. The textual similarity
provided a measure of relevance of a text span with respect to a
concept, which was used to train and develop the model. In the case
where Solr returned no result for a given text span, we used fuzzy
string matching (i.e., Jaccard similarity of two sets of letter trigrams)
between the text span and a concept as a fallback strategy to rank
the relevance to the concepts.

For each of the articles in our corpus (except those used for
training), we applied the trained two-stage document processor on
the Sections “Abstract” and “Methods” to create a representation
as a collection of machine-recognized ontological concepts. During
queries performed in the NeuroBridge search portal (described
below), these representations would be used to match against
the query criteria.

Interactive search portal and
integrated query across disparate
sources

Overview

When the user comes to the NeuroBridge search portal website
(see text footnote 1), a typical workflow begins in the query builder
interface with the construction of a query by the user selecting
a series of NeuroBridge ontology terms as search keywords. The
query is then passed to the backend to search across the different
data sources. Returns from each data source are then listed for
further exploration by the user.

Query construction

In the Query Builder window, the user types in parts
of the keyword that they want to query on, and the Query

Builder will present a list of suggested ontology concept terms
based on the spelling of the partial keyword. By default, all
descendants of the selected ontology concept term will be
included and the user can include and exclude individual
descendants. The user can continue to add additional ontology
concept terms to the query. An example query is shown in
Figure 2A, constructed on the ontological concepts of “Schizo-
phrenia,” “FunctionalMagneticResonanceImaging,” “Negative-
SymptomScale,” with all the descendants of these terms
automatically included into the query.

The portal front-end will form the final query by joining
the terms together with Boolean logics of “AND” and “OR,” and
represents it in a JSON format to preserve the ontology tree
structure. A “View Query” option on the Query Builder portal
allows the user to inspect the query syntax before submitting for
execution. Upon user submission, the Boolean-represented query
is then sent to the backend to be matched against the ontology
representations of the full-text articles in the document corpus, as
described above.

Query across disparate sources

For the same query the user constructed, we have also
implemented mediation strategies to search additional data sources.
In the current NeuroBridge prototype, in addition to the PMC
articles corpus, we have incorporated NeuroQuery (Dockes et al.,
2020) as a second data source and are currently working
on incorporating XNAT (Marcus et al., 2007a) data sources.
NeuroQuery is a platform that provides fMRI activation maps
along with PubMed source articles (Dockes et al., 2020). It has a
native search interface for user-input free texts and returns which
terms, PMC publications, and brain regions are related to the query.
The matching within NeuroQuery is based on its library of ∼7,500
native terms and ∼13,000 PMC neuroimaging articles.

We directed the NeuroBridge search to NeuroQuery by
employing ElasticSearch and SapBERT (2023)5 to semantically
match terms in the NeuroBridge ontology to the native
NeuroQuery terms so that terms being queried at NeuroBridge
can be translated to NeuroQuery native terms. The translation
process started by using SapBERT to create a floating-point vector
of dimension 768 for each of NeuroQuery’s native terms. These
vectors represented the position in SapBERT’s feature space of each
of the terms. The vectors were then loaded into an ElasticSearch
index that could be accessed by a Flask based API. To translate a
NeuroBridge term to a NeuroQuery term, the API used SapBERT
to create a corresponding vector for the NeuroBridge term.
Then using the Cosine Similarity capability in ElasticSearch, the
vector representing the NeuroBridge term was compared to the
vector representing each of the NeuroQuery vectors to select the
closest match. As an example, suppose the user has selected the
NeuroBridge term “abstinent.” Searching NeuroQuery using its
native API did not return any data. Searching the ElasticSearch
index for the closest match to abstinent selected the NeuroQuery
term “abstinence.” Using the NeuroQuery native API with this term
returned several matches. The use of ElasticSearch and SapBERT

5 SapBERT, 2023: https://github.com/cambridgeltl/sapbert.
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FIGURE 2

The NeuroBridge portal of an example query of “Schizophrenia” AND “FunctionalMagneticResonanceImaging” AND “NegativeSymptomScale.”
(A) Query builder interface showing query construction on the ontology concepts that automatically included all descendants. (B) Returns from
PubMed Central with links to full-text articles. (C) Returns from NeuroQuery with links to PubMed abstracts. (D) User is directed to the NeuroQuery
portal for direct interaction.

enabled searching the NeuroQuery API using its native term
set while still enabling the user to search using the NeuroBridge
ontology.

Return exploration

In the Results panel, returns of the query from each data
source are presented to the user in its own tab. For returns
from the PMC article corpus, the returns are sorted by relevance
as computed above. Figure 2B shows that the query on the
terms “Schizophrenia,” “Functional Magnetic Resonance Imaging,”
“NegativeSymptomScale,” and all their descendants resulted in a
return of 23 PMC articles from the NeuroBridge corpus. For each
return entry, links to the PubMed abstract as well as to the PMC
full-text article, if available, are presented.

The same query resulted in a return of 100 articles from
NeuroQuery (Figure 2C) (note: NeuroQuery by default returns
100 articles ranked by relevance from their corpus of ∼13,000
articles). A link to the NeuroQuery portal is also provided for
users who are interested in interacting directly with NeuroQuery
(Figure 2D).

We experimented with additional capabilities on the returned
articles for providing useful information to the user. One kind of
useful information is the set of clinical, behavioral and cognitive
assessments that a study may have used. We first extracted a list
of >4,400 names of common assessment instruments from the
National Institute of Mental Health Data Archive (NDA). NDA is
an informatics platform that supports data sharing across all mental
health and other research communities. The list of assessment

FIGURE 3

One of the more than 4,400 common assessment instruments from
the National Institute of Mental Health Data Archive (NDA), the
assessment “Brief Psychiatric Rating Scale,” in JSON format.

instruments thus spans across all mental health conditions6. The
extracted list was in JSON format, where each assessment has a
unique “title” (e.g., “Brief Psychiatric Rating Scale”) and a unique
“shortName” (e.g., “bprs01”). See Figure 3 for an example entry.
We used the Apache Solr-based method we employed in the
Document Processor (see previous section) to compute textual
similarities between the assessment “title” and the texts in the
Section “Methods” of the paper. Matched items were collated for
each returned article and presented to the user. For example, for the
returned article (PMCID PMC6177285) (Viviano et al., 2018), the
assessments included “Brief Psychiatric Rating Scale,” “Cumulative

6 Nimh Data Archive [NDA]: https://nda.nih.gov/general-query.
html?q=query=data-structure%20%7Eand%7E%20dataTypes=Clinical%
20Assessments%20%7Eand%7E%20orderBy=shortName%20%7Eand%7E%
20orderDirection=Ascending%20%7Eand%7E%20resultsView=table-view.
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FIGURE 4

The NeuroBridge portal of returns on the example query in Figure 2, showing a list of clinical assessments described in the full-text article.

Illness Rating Scale,” “Penn Emotion Recognition Task,” and “Social
Functioning Scale” (Figure 4).

As another example, we built a query using concepts
“CannabisAbuse,” “StructuralImaging,” “NeurocognitiveTest” and
their descendants (Figure 5A). Figures 5B–D show the returned
PMC articles from the NeuroBridge corpus and results from
NeuroQuery.

Power of ontology-based search

To demonstrate the power of ontology-based search, we
compared query results of “Schizophrenia,” “Resting-State
Imaging,” and “Young Mania Rating Scale” between NeuroBridge
and a direct search on PMC. On the NeuroBridge search portal,
two articles were returned: Lewandowski et al. (2019) “Functional
Connectivity in Distinct Cognitive Subtypes in Psychosis”
(PMC6378132) and Karcher et al. (2019) “Functional Connectivity
of the Striatum in Schizophrenia and Psychotic Bipolar Disorder”
(PMC6842092) (Figure 6). In Lewandowski et al. (2019), the
Sections “Methods” included the terms “schizophrenia,” “Young
Mania Rating Scale (YMRS),” and “resting-state functional
scans” (Figure 7A). In Karcher et al. (2019), the Sections
“Methods” included the terms “schizophrenia,” “Young Mania
Rating Scale (YMRS),” and “resting-state fMRI” (Figure 7B).
In comparison, the direct search on the PMC portal failed to
return any entries. Additional synonyms such as “Resting-State
fMRI” or “Resting-State functional” resulted in returns from
the PMC. While the returns included the above articles, they
also included many false positives. For example, the article
by Gallucci et al. (2022) “Longer illness duration is associated

with greater individual variability in functional brain activity
in Schizophrenia, but not bipolar disorder” (PMC9723315)
included the terms “schizophrenia” and “Young Mania Rating
Scale (YMRS)” in the Section “Methods,” the study did not
utilize resting-state fMRI - subjects performed the N-back fMRI
only.

Discussion

In this paper we describe the NeuroBridge: a project that
takes a first step toward the discovery of gray neuroimaging
data for reuse. The term “gray data” refers to data that has
been gathered and used for analysis but is not publicly available.
Reuse of these data is economic (i.e., compared with the large
amount of funding required to collect new data) and can enhance
reproducibility research (e.g., by facilitation of replication as well
mega-analysis of aggregated data). Traditionally, finding data has
been done mainly through professional networking and manually
searching the literature7. However, much of the data mentioned
in publications has not been shared yet through data links (such
as DOI) or described in any searchable databases. Few resources
currently exist that can help researchers find the right kind of data
described in publications that are appropriate for their research
questions.

Recent efforts have begun to facilitate these searches. For
example, the field of life sciences requires papers to be deposited
in domain repositories and uses DOIs to help to make data

7 Wageningen University & Research: https://www.wur.nl/en/Library/
Researchers/Finding-sources/Finding-research-data.htm.
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FIGURE 5

An example query of “CannabisAbuse” AND “StructuralImaging” AND “NeurocognitiveTest.” (A) Query builder interface showing query construction
on the ontology concepts that automatically included all descendants. (B) Returns from PubMed Central with links to full-text articles. (C) Returns
from NeuroQuery with links to PubMed abstracts. (D) User is directed to the NeuroQuery portal for direct interaction.

search easier than before. Data journals publish peer-reviewed
documentation of data and provide repositories for the data
(Walters, 2020). The EuropePMC platform (see text footnote 2)
provides links to data related to publications, but only data that has
a citation or has been uploaded to one of the known 40 biological
databases. Despite progress on improving data sharing and data
curation, a wide gap exists in finding such data of interest for a user.
Many of the legacy articles do not have explicit data citations and
there is no standard in which articles detail the data gathering and
data analysis operations. Finding whether there are any references
to data of interest in these articles is a time-consuming manual
process. Currently, finding data described in publications involves
manually searching the literature, identifying the returned articles
that are closely related to a research topic, and checking if the
datasets described in the articles are appropriate and if the articles
include references to the datasets.

The NeuroBridge prototype platform described in this paper
aims to ease the burden for the user and takes a first step toward
the discovery of gray neuroimaging data for reuse. NeuroBridge is
powered by a machine learning system that is trained to identify
clinical neuroscience metadata terms, including diagnosis, MRI
scan types, and clinical assessments in a subset of articles that
are accessible through PubMed Central. The current prototype
is trained with an ontology in the domains of schizophrenia
and substance-use disorders along with the clinical terms to
facilitate discovery of relevant neuroimaging data described in
peer-reviewed full-text journal papers. In the prototype platform,
the user can perform a keyword-based search related to their
research question, examine the returned papers for types of
clinical assessment data, and pursue data access either via the
data availability information or author contacts, both of which are
provided in the NeuroBridge search returns.

Related work

The long-term goal of the NeuroBridge project is to provide
researchers who are searching for neuroimaging data for a specific
project (e.g., meta or mega analysis of a specific neuroimaging
type in a specific clinical domain) with sufficient data of the right
kind. Toward this goal, the NeuroBridge prototype reported here
builds upon a number of previous and ongoing efforts on building
ontologies of study design and text mining.

To discover studies that may contain relevant data for the
user, we rely on the provenance metadata that can model study
population, design and data collection. Extensive research on
provenance metadata collection, storage, and querying has led
to the emergence of relational databases, scientific workflow
systems, sensor networks, and Semantic Web applications (Moreau
et al., 2008; Widom, 2008; Sahoo et al., 2019). The biomedical
research community has developed ontologies to model metadata
information associated with clinical trials such as eligibility criteria
(Tu et al., 2011; Sim et al., 2014). In the neuroscience research
community, several recent initiatives have made significant
progress toward identifying metadata information that can
be used to describe the context of studies. These initiatives
include the Neuroimaging Data Model (NIDM) (Keator et al.,
2013), Reproducible Neuroimaging Computation (ReproNim)
(Kennedy et al., 2019), and Brain Imaging Data Structure (BIDS)
(Gorgolewski et al., 2016). These efforts, however, are focused on
prospective studies on modeling provenance metadata prior to
publication, while the goal of the NeuroBridge modeling approach
is to help locate completed studies that are described in papers.

Many semantic search systems index unstructured content
(usually text) using concepts or terms in a target ontology and allow
users to query the content using these terms. The most prominent
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FIGURE 6

The power of ontology-based search, as demonstrated by a query of “Schizophrenia” AND “Resting-State Imaging” AND “Young Mania Rating Scale”:
On NeuroBridge, two articles were returned.

FIGURE 7

The power of ontology-based search, continued, as demonstrated by the query shown in Figure 6: Relevant text snippets in panel
(A) Lewandowski et al. (2019) and (B) Karcher et al. (2019). In comparison, the direct search on the PMC portal failed to return any entries.
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system is PubMed, which indexes the biomedical literature using
terms in Medical Subject Headings (MeSH) and allows users to
use MeSH terms in their search queries. The MeSH terms are
currently automatically assigned to each PubMed paper using the
MTI system8,9, with a selected subset of papers reviewed by human
indexers for quality control. Another system is LitCovid, which
annotates and searches COVID-19-related research articles with
medical terms such as genes, diseases, and chemical names (Chen
et al., 2021). Other search engine prototypes such as SemEHR (Wu
et al., 2018) and Thalia (Soto et al., 2019) assign terms in the Unified
Medical Language System (UMLS) to documents and use these
terms as search facets. The radiology image search engine prototype
GoldMiner (Kahn and Thao, 2007) assigns terms in Systematized
Nomenclature of Medicine Clinical Terms (SNOMED CT) and
MeSH terms to image documents to facilitate image search. A key
advantage of these systems compared to keyword-based search
engines is that they allow users to directly use ontological concepts
to express specific information needs that are otherwise challenging
to precisely express through keywords.

A significant amount of research efforts has been dedicated
to extracting semantic concepts from unstructured text. The
problem is referred to as semantic indexing when the extracted
concepts are used to represent texts in an information retrieval
system (Reinanda et al., 2020). The problem is usually formulated
as a natural language processing task, such as named entity
recognition (Li et al., 2022), entity linking (Shen et al., 2015),
or multi-label text classification (Mao and Lu, 2017). To solve
these tasks, machine learning techniques are often employed.
A machine learning system learns from a set of articles with
human-assigned terms as training examples and generates a model
that generalizes the term assignment procedure from the training
articles to new unlabeled articles. Neural language models such
as BERT (Devlin et al., 2019) can often deliver state-of-the-
art performance on these tasks. These models learn rich prior
knowledge from large-scale unlabeled text in their pre-training
stage, which makes them easily adaptable to specific tasks by fine-
tuning on a relatively small training dataset. A recent platform
Elicit10 uses Generative Pre-trained Transformer (GPT) to find
papers related to a research question based on semantic similarity.
For NeuroBridge, the ability to quickly learn from a small training
dataset is important since it is expensive and time-consuming to
curate even a moderate amount of biomedical research articles
with concepts in a complex ontology. We have previously
developed a deep-learning classification algorithm without large-
scale training data (Wang et al., 2022). This was achieved by
exploiting BERT that had been pre-trained on large unannotated
text corpus and further fine-tuning it on annotated data that
encoded rich semantic knowledge in the ontology. The technique
could generalize to a wide range of biomedical text mining
scenarios where the target ontological structure is complex but
constructing large training data sets is too expensive and time-
consuming.

8 National Library of Medicine (NLM Medical Text Indexer): https://lhncbc.
nlm.nih.gov/ii/tools/MTI.html.

9 National Library of Medicine (Automated Indexing FAQs): https://
support.nlm.nih.gov/knowledgebase/article/KA-05326/en-us.

10 Elicit: https://elicit.org/.

Currently, a researcher can pursue the following ways to find
data for their research question: utilize their professional network
and institutional resources such as data search engines available
at institutional libraries (e.g., University of Bath, 2023), search
known data repositories such as ones listed in Eickhoff et al. (2016),
search indices of datasets such as DataCite’s Metadata Search11. The
researcher can also search the literature. A number of journals in
the field of biology, medicine and health sciences such as Scientific
Data, Journal of Open Psychology Data, and Open Health Data
are dedicated to the documentation and access of data created
through research (Walters, 2020). While an increasing number of
researchers are documenting their newly collected data in data
journals, valuable, legacy data remain hidden in the literature.
However, searches for data in the literature are performed by
the researcher searching on literature databases such as PubMed
Central, Open Science Framework then reading through each
paper. There appears to be no current effort of systematically aiding
this process. The abovementioned Elicit platform (see text footnote
10) offers advanced features such as extracting the number of
participants and detailed study designs (e.g., case-control design,
use of fMRI). To our knowledge, the NeuroBridge project is the
first of its kind that is aimed at searching for relevant neuroimaging
data described in peer-reviewed full-text papers.

Conclusion and future work

The NeuroBridge prototype we presented here uses an
ontology-based approach to facilitate the search for relevant
peer-reviewed journal papers. While limitations exist, such as
the small sample size of our training and testing corpus, it
nevertheless takes an important first step toward identifying
potential neuroimaging data described in full-text papers that are
relevant to a particular user’s research interests. Work is ongoing
to validate the document processor with a larger corpus, extend
the ontology to include detailed imaging data, extract information
regarding data availability from the returned publications to
enhance data accessibility (FAIR), and measure semantic distances
between studies based on assessment information to help identify
relevance of studies to the user (Lander et al., 2019). Future
work also involves extending the ontology and document corpus
to include additional clinical domains (e.g., psychosis spectrum,
dementia). These extensions will require similarly significant
human effort including manually labeling a training set of papers
with the ontology terms and careful review and curation of this
work. See the companion paper in this issue for more detail of
the labeling methods (Sahoo et al., 2023). As the system grows, the
current iteration of the system supports this human labeling process
by providing draft labels, and the entity-recognition, entity-linking,
2-stage natural language model will be retrained to complete the
extension.

There is an increasing availability of multi-modal datasets
in neuroscience research, especially as a result of the National
Institutes of Health (NIH) Brain Research Through Advancing
Innovative Neurotechnologies (BRAIN) initiative. NIH has
developed large-scale data repositories such as the National

11 DataCite: https://commons.datacite.org/.
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Institute of Mental Health (NIMH) Data Archive (NDA) that
contains datasets from structural and functional MRI, clinical
phenotypes, and genomics. Eickhoff et al. (2016) described
>40 neuroimaging data repositories across multiple clinical
domains. A need exists to develop a metadata-based search and
discovery platform on similar search criteria. Work is ongoing
at the NeuroBridge project to incorporate XNAT-based (Marcus
et al., 2007a) neuroimaging databases into our search. XNAT is
a web-based software platform designed to facilitate common
management and productivity tasks for imaging and associated
data. It has been broadly adopted across domains of neuroscience,
cardiology, cancer, and ophthalmology, supporting a wide range
of many high impact data sharing initiatives, including OASIS
(Marcus et al., 2007b, 2010), Dementia Platform UK, Human
Connectome Project (Hodge et al., 2016), UK Biobank (Miller
et al., 2016), NITRC Image Repository (Kennedy et al., 2015),
and SchizConnect (Wang et al., 2016). These resources offer
comprehensive data from deep phenotyping of subjects, including
multiple imaging modalities and clinical, cognitive, behavior, and
genomic data. As the number of datasets rapidly grows, often the
problem is not finding datasets, but selecting enough data of the
right kind from a large corpus of possible datasets.

Our long-term goal is to discover “enough data of the
right kind” by providing a user-friendly portal for automatically
searching multiple types of sources and identifying relevant
datasets. We envision a scenario where a graduate student or a
postdoctoral fellow from a small institution can use NeuroBridge to
discover data for testing specific hypotheses. For example, she may
have read an interesting paper on how changes in brain networks
are modulated by cognitive demand but the effects are different
by sex. She would like to design a study to test the hypothesis or
replicate the paper’s findings. However, her lab does not have the
resources or budget for MR scanning or subject recruitment, and
she can find only a very limited amount of data fitting her research
needs in public databases. The student would then need to search
through the literature to find data that are similar to the original
study. It would take her an inordinate amount of time to comb
through the details described in papers and decide whether they
have the required data.

Additional future work of the NeuroBridge project includes:
extracting detailed information on details of the study such as
study design, sample demographic information as well as author
contacts and data availability described in research papers, and
identifying the location and links to such data if shared (through
collaboration with platforms such as Brainlife (Avesani et al.,
2019)12 where shared data are associated with publications. In
the not too distant future, researchers like this student would
interact with the NeuroBridges.org and its APIs, describe a study,
craft their hypothesis, and in a few steps discover how many
studies and datasets contain subjects and data that can be used to
answer their research question. Our platform will become a key
component of the data sharing ecosystem that provides researchers
with sustainable means of aggregating data–from discovery, to
access and harmonization – that are directly relevant to their
hypothesis, and compute on the data to test their hypotheses. It
will enable more small-market scientists to do large-scale research

12 https://brainlife.io/

and thus increase the findability, accessibility, and reusability of
scientific data to a greater number of researchers. We believe
our approach can become the prototype in other domains for
bridging from the research question, to data, to scientific workflow,
thereby significantly speeding up the cycle of hypothesis-based
research.
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In the field of neuroscience, a considerable number of commercial data 
acquisition and processing solutions rely on proprietary formats for data storage. 
This often leads to data being locked up in formats that are only accessible by 
using the original software, which may lead to interoperability problems. In fact, 
even the loss of data access is possible if the software becomes unsupported, 
changed, or otherwise unavailable. To ensure FAIR data management, strategies 
should be established to enable long-term, independent, and unified access to 
data in proprietary formats. In this work, we demonstrate PyDapsys, a solution 
to gain open access to data that was acquired using the proprietary recording 
system DAPSYS. PyDapsys enables us to open the recorded files directly in 
Python and saves them as NIX files, commonly used for open research in the 
electrophysiology domain. Thus, PyDapsys secures efficient and open access 
to existing and prospective data. The manuscript demonstrates the complete 
process of reverse engineering a proprietary electrophysiological format on 
the example of microneurography data collected for studies on pain and itch 
signaling in peripheral neural fibers.

KEYWORDS

interoperability, open data, FAIR, data management tools, reverse-engineered, 
microneurography, electrophysiology, pain

1. Introduction

Many commercial software solutions use custom proprietary formats to store their data. 
Reasons vary from dealing with special use cases to trying to lock users into a vendor-
specific ecosystem. While there is a trend in the general IT space to open-source custom 
solutions and establish cross-vendor standards (Kilamo et al., 2012), in the scientific world, 
the focus is put on FAIR data principles (Wilkinson et al., 2016). FAIR principles consist of 
a number of requirements for data to be findable, accessible, interoperable, and reusable. 
Proprietary formats naturally obstruct the adoption of these principles. In some research 
domains, large efforts are put into building solutions to convert proprietary formats into 
open standards, while simultaneously lobbying companies to use open formats. Examples 
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of such formats are DICOM1 for storing, managing, and exchanging 
medical images and EDF (Kemp et  al., 1992) for biosignals, 
including EEG systems.

Progress has also been made in the field of neuroscience, where 
the Neuroscience Information Exchange format (NIX) (Stoewer et al., 
2014) and the Neurodata Without Borders (NWB) (Rübel et al., 2022) 
projects are aiming to establish community standards for sharing 
neuroscientific data. Both projects specify a storage layout, which is 
implemented on top of the Hierarchical Data Format (HDF5) but use 
different approaches to model data. NWB uses a stricter and more 
standardized data model, whereas NIX allows for a comparatively 
flexible structure and can describe the file contents using the open 
metadata Markup Language (odML) (Grewe et al., 2011).

However, smaller fields of neuroscience are facing challenges to 
fully adopt FAIR data principles, as vendors may not have the resources 
to address the specific wishes of such small user-bases. The “Data 
Acquisition Processor System” (DAPSYS)2 is a general-purpose 
neurophysiological data acquisition system (DAS) for recording and 
processing neural signals, which is, among other places, used in the 
microneurography (MNG) lab of the University Hospital RWTH 
Aachen. MNG is an electrophysiological technique to record activity 
from single nerve fibers of the peripheral nervous system using a single 
microelectrode (Vallbo and Hagbarth, 1968; Torebjork and Hallin, 1974; 
Ackerley and Watkins, 2018). Due to the small size of the electrode, the 
method causes only minimal discomfort and does not require 
anesthetics. This means that the volunteer stays awake and cooperates 
during the recording, making it possible to correlate nerve fiber signals 
with individual sensations. Thus, MNG is a unique translational method 
in sensory research in humans, especially in chronic pain and itch.

DAPSYS uses a proprietary format to store data and only offers 
manual (file-by-file) export of the recordings to CSV files. However, 
the CSV exports produce comparatively large files (see Table 1) and 
take a long time (see Table 2). In addition, some minor precision 
loss due to the fixed number of decimals in the exported CSV is 
observed. Our recent works on establishing data-sharing standards 
in the MNG community and developing a computational pipeline 
for spike analysis in MNG data (Schlebusch et al., 2021; Kutafina 
et  al., 2022; Troglio et  al., 2023) has raised the urgency for an 
efficient way to read DAPSYS recordings and store them in more 
suitable data formats, such as HDF5.

1 DICOM: Digital Imaging and Communications in Medicine, Medical Imaging 

Technology Association (MITA), https://www.dicomstandard.org.

2 Data Acquisition Processor System (DAPSYS), Brian Turnquist, http://

dapsys.net.

While there are many commercial applications for reverse 
engineering, most of them target computer science professionals and 
the primary use-case of reverse engineering software, not file formats. 
The MARBLE project3 is to our best knowledge the first research-
oriented solution to reverse engineer file formats with the aim of 
making the process as accessible as possible. However, at the time of 
the reported work, MARBLE was still in development and the usage 
required problem-specific adjustments.

Therefore, in this paper, we  show our approach to reverse 
engineering the DAPSYS file format and implement a Python 
library to gain open access to our own data recorded in the 
microneurography lab. By providing functionality to load data into 
the structure defined by the Neo library (Garcia et al., 2014), it can 
be  simply exported to multiple data formats used in 
electrophysiology, including NIX. This ensures full access to the 
data even if DAPSYS is unavailable.

The primary aim of our work is to ensure the accessibility and 
interoperability of DAPSYS-recorded data sets. The secondary aim is to 
share the steps of our reverse engineering solution with the neuroscience 
community to support building FAIR access to rare data formats.

2. Method

2.1. Data

We used four DAPSYS files, recorded at the microneurography labs 
of the University Hospital RWTH Aachen and Friedrich-Alexander-
University of Erlangen-Nürnberg. The studies involving human 
participants were reviewed and approved by the Ethics Boards of those 
two institutions with the corresponding numbers EK141-19 and 4361. 
The participants provided their written informed consent, and the 
studies were conducted according to the Declaration of Helsinki.

2.2. Reverse engineering method

For the reverse engineering process, we  used the hex editor 
“ImHex”4 to open and analyze the DAPSYS files. A hex editor shows 
the binary contents of a file in hexadecimal representation. A value of 
a single byte can be represented by only two characters, making it 

3 MARBLE software project, Steffen Brinckmann et al., https://gitlab-public.

fz-juelich.de/marble.

4 ImHex, Nikolaij “WerWolv” Sägesser, https://github.com/WerWolv/ImHex.

TABLE 1 The size difference between CSV files created by the DAPSYS export and the files created by using PyDapsys with the NIX-exporter of the Neo 
library.

Original file size [MiB] CSV file size 
[MiB]

NIX/H5 file size 
[MiB]

Size increase CSV [%] Size increase NIX/H5 [%]

44.5 229.5 45.1 415.73 1.35

109.0 576.2 109.7 428.62 0.64

124.9 664.5 126.1 432.83 0.96

165.8 889.2 167.4 436.31 0.97
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easier to recognize patterns (see Figure 1A for an example). Since 
we knew what values the file should contain, we were able to search 
for them and identify related fields. From there on, we  identified 
structures based on repeating patterns.

The functions of data fields in the structures were then identified 
by using the following workflow:

 1. Make changes to the file using the DAPSYS GUI (for example: 
changing the plot configuration, removing data points, etc.).

 2. Track these changes DAPSYS made to the binary file and 
identify changed fields in the hex editor.

 3. Open a different recording in the hex editor, identify the 
known fields, and change their values using the hex editor.

 4. Open the changed file from step 3 in DAPSYS and verify that 
the changes made to the recording fit with the assumed 
function of the field.

This process was substantially supported by built-in “ImHex” 
functions like the pattern language that can be used to specify the 
layout of structures in the binary file. These structures can be utilized 
to highlight and verify known structures and fields in the file.

2.3. Concept of the library implementation

Based on the results from the reverse-engineering process, 
we implemented a Python library capable of opening and processing 

recordings. The library also offers a method to export data from DAPSYS 
recordings into HDF5 files using the NIX structure (abbreviated as NIX/
H5) for easier data exchange between labs and software.

2.3.1. Verification
To verify the implementation of the file format in PyDapsys, 

we read each of the four DAPSYS files (see 2.1) with PyDapsys. The 
read values were then compared to the CSV files. As the values in 
the exported CSV files only have limited precision (6 or 4 decimal 
places, depending on the type of data exported), we first rounded 
the values read from the file to the same precision before comparing 
them. Comparison of floating-point values was done by comparing 
the absolute difference of two values to the system epsilon for 
64-bit floating point (f64) values. Numeric values from the CSV 
were converted to f64 values using built-in Python functions. 
When comparing f64 with 32-bit floating point (f32) values, the f32 
values were first converted to f64. Texts were compared with 
built-in Python functions.

2.3.2. Performance testing
We also compared the performance (duration and file sizes) of 

the CSV export of DAPSYS and the export to NIX/H5 using 
PyDapsys. To achieve comparable measurements, we only looked 
at the time each system required to write the continuous recording 
to their respective target format, without the time required for user 
interactions or loading the data. We had to focus on a single data 
stream, as DAPSYS would require user interactions in between 

FIGURE 1

(A) “ImHex” showing the start of a DAPSYS files’ table of contents section. Shown are the hexadecimal byte-values of the respective address and the 
interpretation of that byte as characters. Data fields of structures are shown in different colors. The address shown is in relation to the start of the table 
of contents. (B) Structure of the same file from panel (A) shown by the GUI of DAPSYS.

TABLE 2 The time comparison for exporting the continuous recording.

Original file size 
[MiB]

CSV export 
time* [s]

PyDapsys export to 
NIX/H5 time* [s]

Speedup PyDapsys vs. 
CSV export*

PyDapsys total time [s]

44.5 35 0.36 97.2 0.77

109.0 91 0.46 197.8 0.84

124.9 102 0.68 150.0 1.03

165.8 133 0.98 135.7 1.49

*Time required for processing and writing, excluding user interaction.
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exporting multiple streams. We chose to focus on the continuous 
recording, as it makes up the largest part of a file’s size. We also 
excluded loading times, as there was no reliable way to measure 
them for DAPSYS. Times for PyDapsys were measured using the 
wall-clock time directly in the Python program, whereas DAPSYS 
times were taken by a stopwatch. All measurements were 
performed on the same system.

3. Results

3.1. Analysis of the DAPSYS file structure

The DAPSYS user interface displays the contents of a file in a 
hierarchical structure, composed of folders, text streams, and data 
streams (see Figure  1B). DAPSYS binary files store data in a flat 
structure that can be split into 4 parts:

 1. Header. Files begin with a header with a fixed length. 
Information in the header is not required to read the 
file contents.

 2. Data Pages. DAPSYS stores data in discontinuous chunks, 
which we call “pages.” All pages have a unique ID in the context 
of the file and can hold either data of a waveform or textual data.

 3. Table of Contents (ToC). After the last data page, the ToC 
begins. It defines the hierarchical structure shown in the GUI 
and comprises of folders, which can have additional child 
elements and streams. Streams contain an array of data 
page IDs.

 4. Footer. After the ToC, there comes a small footer consisting of 
a string holding the version and the serial number of the 
DAPSYS program used to create the file.

3.1.1. Data pages
As seen in Figure 2, DAPSYS uses two types of pages: one for 

waveform data and one for textual data. Both types start with the same 
fields that store metadata, such as their ID, which is unique among all 
pages in a file, an identifier for their type (text or waveform), and an 
optional reference to another page. Waveform pages store the 
amplitude of the waveform as an array of 32-bit floating point (f32) 
values, and corresponding timestamps as an array of 64-bit floating 
point (f64) values. For regularly sampled waveforms, only the first 
timestamp is saved in the array, while an additional f64 value is used 
for the regular sampling interval. Text pages are used to store 
comments as well as sorted spikes. They consist of a string containing 
the text, and two f64 values. The first f64 value is used to store the 
timestamp. The second one is used for sorted spikes to indicate the 
timestamp of the automatically recognized spike. For normal 
comments, it is set to the same value as the first timestamp. From our 
observations, DAPSYS writes pages in the order they occur during the 
recording. If, for example, a comment is entered during a recording, 
DAPSYS will save the recorded data up to that point in a waveform 
page, append it to the list of pages followed by the text page containing 
the comment, and then begin a new waveform page with the new data.

3.1.2. Table of contents
The ToC defines the logical structure of a DAPSYS file. As seen in 

Figure 2, its elements consist of folders and streams, all of which have 
an ID unrelated to the IDs used for pages and a string containing their 
display name. Folders can have several other elements as children. 
Streams contain multiple fields for storing the configuration of the plot 
used to visualize their data and most importantly, contain an array of 
the page IDs belonging to that stream. A stream may either reference 
text pages or waveform pages, making it a text or data stream, 
respectively.

FIGURE 2

Simplified logical model of a DAPSYS file. Black arrows show to which other fields the value refers. Large unfilled arrows indicate that an entry extends 
another one. Gray types define shared header fields for a group of types, with extending arrows indicating the field and the value to identify the group 
of fields that follow the header (e.g., a “Folder” and a “Stream” both start with the fields of an generic “Entry.” Depending on the value of the field 
“entry_type,” the fields following the “Entry” will be either those of a “Stream” or a “Folder”).
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3.2. Development of the Python library 
“PyDapsys”

The functionality of PyDapsys [see (Konradi et al., 2023) for the 
repository containing the source code. The package is also available 
on PyPI as “pydapsys”] focuses on accessing data stored in a DAPSYS 
file. Pages are read into a dictionary that maps the page IDs to an 
object storing the metadata (type of the page, ID, optional ID of the 
referenced page) and data, i.e., text and timestamps for text pages of 
the corresponding page. The ToC is represented by folder and stream 
objects. The folder objects offer dictionary-like access to their children, 
while stream objects store the IDs of the pages belonging to them. The 
library uses NumPy (Harris et al., 2020) to improve the reading speed 
and memory efficiency of the arrays storing page IDs, amplitudes, and 
timestamps. To keep the library portable, NumPy is the only required 
dependency. The functionality to convert a recording to the Neo 
structure is implemented as an optional dependency. As different 
experiment set-ups may produce different structures in the DAPSYS 
file, there is no “universal” converter. Instead, the library provides an 
abstract base class for Neo converters, which offers functions for 
common conversions (i.e., text stream to event). Based on this class, 
additional converters may be  implemented for different 
ToC structures.

3.2.1. Verification
As described in section 2.3.1, we compared the CSV data exported 

by DAPSYS with the data read by PyDapsys. Depending on the type 
of stream being exported to CSV, the resulting file contains 
different values:

 • Waveform streams: Contain both the timestamps for each data 
point and its signal value. Both timestamp and signal values have 
a precision of 6 decimals.

 • Text streams: Contain the timestamps for each text with a 
precision of 4 decimals and the text itself.

Across all files used for testing, 284,453,786 individual floating-
point values were compared, of which 3,009,074 values differed. The 
maximum difference was 0.00001. As this is exactly the precision 
offered by waveform CSV-exports, it is most likely a result from 
rounding errors and not a systemic error in the PyDapsys 
implementation. There were no differences in the text data.

3.2.2. Performance testing
As seen in Table 1, storing data in NIX/H5 with Neo had no 

significant impact on file sizes compared to the original file, whereas 
the CSV increased the file size by factor 4. PyDapsys reliably 
outperformed DAPSYS in the time required for exporting a file by 
more than factor 97 (see Table 2).

4. Discussion

In order to make electrophysiological recordings obtained with 
the DAPSYS DAS available to other systems in our lab, 
we  implemented the open-source Python library “PyDapsys.” The 
library has functionality for reading data from DAPSYS files and offers 

built-in functions to automatically load read data into the structure 
defined by the Neo library, from where it can be exported to NIX and 
other data formats, which are used by the neuroscience community 
and can be read by various other software solutions. By offering direct 
access to the data stored in DAPSYS files, rounding errors that may 
occur when exporting the data to CSV are avoided, thus improving 
the accuracy and quality of subsequent analyses. The library 
outperforms the DAPSYS CSV export, both in export duration and 
size of the exported files, while additionally not being dependent on 
DAPSYS itself. Currently, the usage of the PyDapsys library requires 
a certain level of programming experience. To make the library 
available for a more general audience, we are working on implementing 
a GUI (graphical user interface).

While DAPSYS is not used very commonly, it should be seen as a 
representative of many domain-specific proprietary formats, which 
are used in neuroscientific research. FAIR data handling principles 
require the accessibility and interoperability of data, and the opening 
of proprietary formats is a necessary step to ensure those qualities 
(Berens and Ayhan, 2019). We  expect the presented process of 
analyzing the files with the “ImHex” software and modifying the 
parameters to understand their internal structure to be useful for 
other research groups, who are facing similar challenges. It is 
important to note that the DAPSYS file format does not utilize any 
compression or encryption. Reverse engineering compressed or 
encrypted data would have made the process significantly 
more difficult.

In general, our case highlights the importance of proper 
procedures to ensure long-term access to experimental data. In the 
microneurography community, the experiments are complex, and 
many data sets are unique due to rare genetic mutations of the 
patients. Moreover, guaranteeing reliable access and unification of 
data also simplifies collaboration between research groups. Therefore, 
ensuring FAIR principles allows us to optimize the research benefit 
derived from the data.

The appropriate processes should ideally be put in place early on 
to ensure that data is available in open formats. For example, if the 
formats cannot be  read using open software, this could include 
manual exporting new data to open formats once a week to avoid 
forming a backlog and potentially losing access to large quantities of 
non-exported data if the original software is not available anymore.

Open science and FAIR principles are becoming more and more 
widely accepted in academia and in neuroscience in particular. 
However, at the current stage of ongoing works, it is important to 
include smaller communities in the discussion, as the popularity of 
the specific software and hardware solution influences the motivation 
of the vendors to provide open off-the-shelf solutions. PyDapsys 
alongside more general emerging approaches, such as MARBLE, 
serves as an example of a possible solution for these 
research communities.
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Neuroscience has made significant strides over the past decade in moving from 
a largely closed science characterized by anemic data sharing, to a largely open 
science where the amount of publicly available neuroscience data has increased 
dramatically. While this increase is driven in significant part by large prospective 
data sharing studies, we are starting to see increased sharing in the long tail of 
neuroscience data, driven no doubt by journal requirements and funder mandates. 
Concomitant with this shift to open is the increasing support of the FAIR data 
principles by neuroscience practices and infrastructure. FAIR is particularly critical 
for neuroscience with its multiplicity of data types, scales and model systems 
and the infrastructure that serves them. As envisioned from the early days of 
neuroinformatics, neuroscience is currently served by a globally distributed 
ecosystem of neuroscience-centric data repositories, largely specialized around 
data types. To make neuroscience data findable, accessible, interoperable, and 
reusable requires the coordination across different stakeholders, including the 
researchers who produce the data, data repositories who make it available, 
the aggregators and indexers who field search engines across the data, and 
community organizations who help to coordinate efforts and develop the 
community standards critical to FAIR. The International Neuroinformatics 
Coordinating Facility has led efforts to move neuroscience toward FAIR, fielding 
several resources to help researchers and repositories achieve FAIR. In this 
perspective, I  provide an overview of the components and practices required 
to achieve FAIR in neuroscience and provide thoughts on the past, present and 
future of FAIR infrastructure for neuroscience, from the laboratory to the search 
engine.

KEYWORDS

data sharing, neuroinformatics, data bases, FAIR (findable accessible interoperable and 
reusable) principles, data management, INCF

Introduction

The transformation of neuroscience from a closed to an open science, where the entirety of 
research products like data and code produced during a study are routinely made available, has 
accelerated in recent years. Data sharing requires that the necessary human and technical 
infrastructure be in place to make these data broadly available. The first Human Brain Project, 
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funded by the US National Institute of Mental Health in the 1990s, 
launched some of the first efforts to “database the brain,” envisioning 
a “paradigm shift in which primary data are openly shared with the 
worldwide neuroscience community” (Koslow, 2000). Despite this 
early optimism, neuroscience had a rocky history with open data 
sharing. Unlike the genomics and structural biology communities 
where the mechanisms and value of sharing primary sequence and 
structural data were agreed upon fairly early, the how and why of 
sharing the more diverse and complex data types of neuroscience was 
met with early resistance (Whose Scans Are They, Anyway?, 2000). In 
these early days, before the spotlight was shown on reproducibility 
problems facing neuroscience (Ioannidis, 2007; Button et al., 2013) 
and before “big data” became a buzzword in neuroscience and across 
biomedicine, there were few motivations or incentives for researchers 
to share their data openly. Like other areas of biomedicine (Nelson, 
2009), neuroscience archives were largely underpopulated relative to 
the amount of data generated in Table 1 (Ferguson et al., 2014).

Neuroscience started to put its first big stake in the ground for open 
data sharing with the commissioning of large prospective data sharing 
efforts where large, comprehensive data sets were collected by large 
teams of scientists with the goal of making them openly available. Some 
of early efforts include the Alzheimer’s Disease Neuroimaging Initiative 
(ADNI; Weiner et al., 2010) launched in 2004 and Allen Brain Atlas 
launched in 2005, followed by large consortia such as the Human 
Connectome Project (2011) and the Big Brain (2013; Amunts et al., 
2013) among many others. The large national and international brain 
projects launched in the second decade of the 21st century articulated a 
strong commitment to the open sharing of data and tools. The European 
Human Brain Project (HBP) was launched in 2013, followed by the US 
Brain Research through Advancing Innovative Neurotechnologies 
(BRAIN) Initiative (2014), the Korean Brain Initiative (2016), Canadian 
Brain Research Strategy (2017), Japan BRAIN/Minds (2018), and the 
China (2021) and Australian Brain Projects (International Brain 
Initiative, 2020; Quaglio et al., 2021). These projects have provided a 
significant infusion of resources to develop the next generation 
infrastructures necessary to house the sizes and complexity of data 
developed through new imaging, genomic, and physiological techniques.

An updated analysis of the repositories listed in Ferguson et al. 
(2014) provides some data on the current state of data sharing. Table 1 
shows that data sharing has increased overall, but it is uneven, with 
explosive growth in some repositories, e.g., NeuroMorpho.org and 
FigShare, and more modest growth in others. But with the release of 
the data sharing mandates by funding agencies around the globe 
(Funders’ Policies, 2015; Eke et  al., 2022), neuroscience-whether 
practiced by large consortia or individual labs-is now expected to 
be  “open by default and open by design” (National Academies of 
Sciences, Engineering, and Medicine, 2018). So the question is no 
longer whether neuroscience as a whole will share data, it is how 
effectively? We  are seeing some real success stories emerging in 
neuroscience from the reuse of data, e.g., (Torres-Espín et al., 2021; 
Almeida et al., 2022) and the ability for multiple groups to analyze the 
same datasets are providing new insights into notions of reproducibility 
and robustness (Botvinik-Nezer et al., 2020), but public data are still 
often difficult to find and use. Effective data sharing, that is, data 
sharing that views data as a public product of research meant to 
be reused, referenced, and respected requires the infrastructure, skills, 
tools, and willingness on the part of the neuroscience community to 
value data as a research product (Martone and Nakamura, 2022).

Effective data sharing starts with the FAIR data principles 
(Wilkinson et al., 2016) which grew out of frustrations experienced 
when trying to use open data on the web in the early days of sharing 
data. Through the Neuroscience Information Framework (NIF), 
started in 2008 (Gardner et al., 2008), we were tasked with cataloging 
all the neuroscience-relevant digital products that were being created 
(Cachat et al., 2012). NIF was also tasked with developing a strategy 
to query across the dozens of neuroscience data-and knowledge bases 
and the 100’s of biomedical databases with neuroscience-relevant 
information that were coming on-line. In these early days of on-line 
databases, the problems with accessing the data were legion: broken 
links, insufficient metadata, non-standardized vocabularies and 
nomenclature, non-actionable data formats, cryptic variables, and 
proprietary formats to name a few.

FAIR states the minimum set of requirements for digital data for 
it to be useful: data should be findable, accessible, interoperable, and 
reusable. FAIR then lays out a set of practices that would make it 
more likely that data will meet these requirements. The FAIR data 
principles were formulated in a workshop in Leiden in 2014 
(Wilkinson et al., 2016), and were first released through FORCE11, 
the Future of Research Communications and e-Scholarship. The 
paper came out 2 years later in 2016. When our group participated in 
the 2017 kick off meeting for the BRAIN Initiative Cell Census 
Network (BICCN), a large consortium designed to use multimodal 
data techniques to determine the major cell types in the brain, few 
hands were raised when we asked how many people had heard of 
FAIR. Fortunately, FAIR eventually made its way to neuroscience and 
found a natural home in the International Neuroinformatics 
Coordinating Facility (INCF.org), an international organization 
devoted to developing standards and coordinating infrastructures for 
neuroscience. INCF incorporated FAIR into its mission statement 
and has served as a coordinating center for introducing neuroscience 
to FAIR through its role as a standards organization for neuroscience, 
its training programs, and other resources (Abrams et al., 2021).

The FAIR partnership

The FAIR acronym itself is now likely better known among 
practicing neuroscientists, as funders and journals have started to 
support FAIR in their data sharing policies; but the details of FAIR as 
elaborated in the detailed recommendations are fairly arcane. Anyone 
outside the field of informatics is likely to look at these and scratch 
their head. Persistent identifiers? Knowledge representation 
languages? A plurality of relevant attributes? Thus, while the 
practicing neuroscientist may understand what FAIR stands for, they 
are often at a loss to explain exactly how to achieve it. In reality, no 
one can create fully FAIR data alone; it requires the interplay of data 
acquisition and documentation practices, infrastructure, informatics, 
and community consensus. FAIR is therefore best thought of as a 
partnership between investigators, data repositories, data aggregators 
and community organizations (Figure 1). Navigating the landscape 
of FAIR data sharing and neuroscience infrastructure requires 
understanding the roles, responsibilities, and interfaces between each 
of these stakeholder groups. In the following I discuss the different 
components and some of the tasks required for FAIR and provide 
information and resources to help navigate the different components 
required for fully FAIR neuroscience.
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TABLE 1 State of population of selected data repositories 2014 vs. 2023.

Resource 
name

Country 
/ region

Type of 
data

Date 
started

Data 
elements 
2014

Update to 
resource (Feb 
2023)

Data 
elements 
2023

Datasets 
added 
since 
2014

Provenance

NDAR USA

Demographics, 

imaging, genetic, 

phenotypic

2009 (oldest 

news archives)

>108,000 

subjects (from 

157 labs)

Now NDA; no 

longer restricted to 

autism

– –

Not comparable as 

new data types were 

added

NeuroMor 

pho.Org
USA

digitally 

reconstructed 

neurons

2006

11,335 

(reconstructio 

ns from 1,339 

publications)

Still in existence 

under same 

stewardship

298,387 

reconstructions

2,103 

publications

287,052 

reconstructions

764 

publications

https://neuromorpho.

org/LS_availability.jsp

Feb 25 2023

Cell Centered 

Database/ 

CIL-Cell Image 

Library

USA

images, videos, 

and animations of 

cell

2002

CCDB/2010 

CIL

10,360 image 

datasets

Still in existence 

under same 

stewardship

13,990 3,630

http://www.

cellimagelibrary.org/

images?k=&simple_

search=Search

copied number of 

results Feb 25, 2023

FigShare International Various –

> 8,000

datasets 

(query: 

neuroscience)

Still in existence 

under same 

stewardship

182,542 174,542

query: neuroscience 

with dataset filter

Feb 252,023

ModelDB USA

computational 

neuroscience 

models

1996
875 available 

datasets

Same stewardship; 

transition of 

leadership

1787 912

https://tinyurl.

com/37z5p88f

Feb 252,023

Open Source 

Brain

United 

Kingdom
Models 2014

47 available 

datasets

Still in existence 

under same 

stewardship

99 52

https://www.

opensourcebrain.org/

projects

CRCNS USA
computational 

neuroscience
2008

38 available 

datasets

Under same 

stewardship; not 

clear if still active

140 102
documented through 

NIF; Feb 2023

XNAT Central USA Neuroimaging 2010
34 available 

datasets

Will 

be decommissioned 

in Oct 2023

510 300

https://central.xnat.

org/

project number on 

home page; accessed 

Feb 252,023

1,000 

Functional 

Connecto mes 

Project/IN DI

International 

(USA, 

China, 

Germany, 

Spain)

fMRI, DTI, 

MPRAGE, 

psychological 

assessements, 

behavioral 

phenotype, 

demographic

2009 28 datasets

Under same 

stewardship; also 

1,000 Functional 

Connectomes INDI

33 5

OpenfMRI USA fMRI 2012 24 datasets

Under same 

stewardship; 

changed name to 

Open Neuro

805 781

https://openneuro.

org/

Feb 26 2023

BIRN USA
Imaging, 

histology
– 21 datasets No longer in service –

LONI Image 

Data Archive
USA Imaging –

18 (atlas), 9 

databases

Under same 

stewardship; changed 

location; hard to 

compare as atlases 

and databases are not 

provided

144 135
https://ida.loni.usc.

edu/login.jsp

(Continued)
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FIGURE 1

Major stakeholders involved in defining and implementing FAIR. Some of the major requirements for achieving FAIR are listed under each stakeholder 
group. The INCF is given as an example of a community organization supporting FAIR for neuroscience.

Resource 
name

Country 
/ region

Type of 
data

Date 
started

Data 
elements 
2014

Update to 
resource (Feb 
2023)

Data 
elements 
2023

Datasets 
added 
since 
2014

Provenance

BrainLiner Japan

ECoG, EEG, 

fMRI, MEG, 

Microelect rode, 

NIRS, Optical 

Imaging, PET, 

Other

2011
10 available 

datasets

Platform there but 

does not look like it 

has been updated 

recently

23 13
http://brainliner.jp/

search/showall/1

Open 

Connecto me 

Project

USA
Serial electron 

Microscopy
2011

9 available 

datasets
Now NeuroData 24 15

https://neurodata.io/

project/ocp/

Manually counted 

Feb 252,023

CARMEN
United 

Kingdom
neurophysiology 2006 –

No longer in service 

according to NIF
– –

FITBIR USA
Common data 

elements
2011 – Same stewardship – –

INCF 

Dataspace
International Various 2012 – No longer in service – –

UCSF 

DataShare
USA

biomedical 

including 

neuroimaging, 

MRI, cognitive 

impairment, 

dementia, aging

2011 18 datasets No longer in service – –

Update of Supplementary Table 1 from Ferguson et al. (2014): A sample of Neuroscience centered data repositories available to the community. Only data repositories that accept outside data 
are included in the update. This table provided the number of data elements (usually equivalent to datasets) in each repository in 2014 (Data elements 2014). We include an update on the 
status of the resource (Update to Resource Feb 2023 column), the number of data elements found in Feb 2023 (Data elements 2023), the total number added since 2014 (Datasets added since 
2014), and how these numbers were derived if the repository did not provide the number of datasets directly. Data repositories that are no longer in service are colored in light orange.

TABLE 1 (Continued)
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Laboratories

FAIR data management
In the US National Academies of Science, Engineering and 

Medicine workshop on “Changing the Culture on Data Management 
and Sharing (Martone and Nakamura, 2022), one of the main takeaways 
was that the focus of data sharing efforts should not be targeted toward 
the individual investigator, but the laboratory. As one participant noted: 
“If you can share data with people in your lab, you are much more likely 
to have something worthwhile to share outside the lab.” FAIR data 
management is therefore an intentional lab-wide strategy that ensures 
that data can be shared with lab mates, the PIs, and other colleagues, 

your future self and eventually with the broader scientific community. 
Across all stages of the data lifecycle, the management strategy puts in 
place processes so that data can be found, accessed, combined when 
necessary, and reused. By paying attention to FAIR in the laboratory 
throughout the life cycle, benefits start to accrue to the data creator, the 
laboratory, PI, and collaborators well before data flows out to the wider 
scientific community (Bush et al., 2022; Dempsey et al., 2022).

Examples of lab management practices built on the FAIR 
principles are given in Table 2.

We are starting to see neuroscience researchers sharing their 
experiences with developing and utilizing lab-centric data 
management systems. They range from tightly integrated digital 
infrastructures (Bush et al., 2022; Dempsey et al., 2022) to a set of 

TABLE 2 Some FAIR laboratory data management practices.

FAIR goal Principle FAIR practices Reference

Findable Unique identifiers 1. Create identifiers that are globally unique within the lab for all key entities in the lab, e.g., subjects, 

experiments, reagents, via the creation of a central registry or use of an existing system, e.g., RRIDs for 

reagents and tools. Globally unique = no two objects have the same ID, no ID may be reused.

Fouad et al. (2023)

Rich metadata Each identifier in the registry is accompanied by rich metadata that provides key details, e.g., for 

experiments: dates, experimenter, description, collaborators, techniques etc.; for subjects: species/strain, 

age, weight, etc.

Fouad et al. (2023)

Use unique identifier for file names, folder names, to label physical objects like slides or slide boxes, so that 

all entities associated with the lab can be tied unambiguously to metadata

Accessible Authentication 

and authorization

Create a centralized, accessible store for data and code under a lab-wide account for lab data to ensure that 

files are not scattered around multiple systems or accessible only via personal accounts that may not 

be available after someone has left the lab.

Interoperable FAIR 

vocabularies

Move away from idiosyncratic naming of variables and annotations towards standards like Common Data 

Elements and the use of community-based ontologies, atlases, and controlled vocabularies. Consistent lab, 

wide terminology ensures that lab members can understand what the data are about, and aids in search 

across and combining files.

Bush et al. (2022)

Consider creating a lab-wide data dictionary where all variables used across experiments are clearly 

defined

Bush et al. (2022); 

Fouad et al. (2023)

Reusable Documentation Create a “Read me” file for each dataset where notes can be captured and helpful information provided for 

reuse of the data

Community 

Standards

All files should be collected and stored in well supported open formats ideally to ensure long term 

availability.

Adopt community standards within the lab where possible; a good place to identify relevant standards is to 

look at repositories where the data may end up. Specialized repositories usually have a list of required or 

recommended standards. Some repositories are providing help with developing a data management and 

sharing plan for grant proposals, e.g., INCF, SPARC and ODC-SCI/TBI.

Bush et al. (2022); 

FAIRsharing.org, 

INCF Standards 

Portfolio

Provenance Datasets should be clearly versioned and differences between them documented. Depending on the system 

used for storing data, formal support for versioning may be available, e.g., Google Docs, but if not, 

implement a file naming convention so that versions can be tracked

Always keep a version of record that can be reverted to if necessary. Often when one is working with data, 

different versions are created rapidly and it is easy to lose track of which version is which. It is good 

practice to have stable versions that are easily retrievable so that there are stable points to which to return 

if provenance is lost.

Datasets should also be accompanied by detailed experimental protocols that describe how the data were 

acquired and computational workflows that detail the processing steps. Use of tools designed for this 

purpose, e.g., protocols.io, NeuroShapes (Neuroshapes, n.d.) and ReproNIM (Kennedy et al., 2019).

Licenses Prepare to share: Make sure that how and when the data are to be shared is agreed upon with all 

collaborators early on. For clinical datasets, make sure that the consents are in place for open sharing of 

de-identified data.

Examples of laboratory data management practices based on the FAIR principles.
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practices that can be implemented using “off the shelf ” components 
for an average neuroscience wet lab (Fouad et al., 2023).

Choosing a repository
One of the most important steps for a researcher in ensuring that 

their data is FAIR for the long term is to submit their data to a 
trustworthy repository that supports FAIR. The new NIH data sharing 
policy requires researchers to indicate where they will be sharing their 
data as part of the data management and sharing plan. As 
recommended in Table 2, knowing in what repository the data will 
be published allows the researcher to understand what standards are 
required so they can be  built into the laboratory management 
workflow. With its growing ecosystem of specialized databases, 
researchers have a choice about where to publish their data.

Understanding how the neuroscience repository landscape is 
organized may help in finding the right repository. Repositories are 
generally specialized by data type (Figure 2). However, repositories also 
exist that are specialized for a domain, e.g., the SPARC database accepts 
all data associated with the peripheral nervous system, or serve 
researchers within a particular region, e.g., CONP, or institution, e.g., 
BrainCode and the Donders Repository. Often, multiple repositories 
may be appropriate, in which case there are additional features that 
may make a given repository more or less attractive. These include tool 
support, curation services, support for data citation, choice of license, 
size of data allowed, help with data management plans (see Table 2) 
and possible costs (Murphy et al., 2021). A functioning neuroscience 
ecosystem also requires open neuroscience repositories that have few 

restrictions on data types, regions, or subdisciplines to ensure that all 
data has a home. The EU EBRAIN infrastructure is an example of such 
a repository, as it takes multiple types of data regardless of discipline or 
geographical location, although there may be issues with transferring 
certain types of data across international borders (Eke et al., 2022).

Supplementing the specialist repository landscape are the 
generalist repositories, data repositories that span scientific 
disciplines and data types (Assante et al., 2016). These repositories 
are often useful for publishing smaller supplemental datasets that are 
required for a publication (Stall et al., 2023). Specialist repositories 
generally provide more standards, tools and services for harmonizing 
and using data, and make it easier for researchers to find data of a 
particular type. To aid researchers in choosing an appropriate 
neuroscience data repository, the INCF has a searchable 
infrastructure catalog, where each repository is described according 
to the checklist developed by Sandström et  al. (2022). Other 
repository finder tools include NITRC for neuroimaging related 
repositories, re3data, the catalog of open data repositories 
maintained by the National Library of Medicine, and the NIF listing 
of BRAIN Initiative Repositories.

Repositories

The central role of community repositories
While the investigator takes the central role in acquiring data in 

a manner that supports FAIR, the community repository is arguably 

FIGURE 2

The number of neuroscience specialist repositories supporting different data types. The repository list and associated data types was assembled using 
information available through the INCF Infrastructure Portfolio and the SciCrunch Registry. The data underlying the figure is available at Zenodo, DOI: 
10.5281/zenodo.8239845.
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the central player in implementing the basic requirements for 
achieving FAIR for the long term (Figure 1). We are using the term 
“community repository” here to designate infrastructures that are 
designed to accept primary data contributed by outside researchers, 
rather than a single data set produced by a given project (e.g., the 
Allen Brain Atlas) or a knowledge base that aggregates information 
about a particular entity (e.g., CoCoMac).1 As shown in Figure 1, the 
repositories have critical responsibilities for ensuring that submitted 
data are made available according to the FAIR principles (Lin et al., 
2020). These practices include issuing and maintaining persistent 
identifiers, tying those identifiers to rich metadata, providing access 
and any necessary access controls, enforcing or supporting annotation 
with FAIR vocabularies, enforcing or supporting community 
standards, supporting data versioning, providing links to other 
critical products like experimental protocols and code, and 
provisioning a clear data license for each data set. Repositories also 
have the critical role of ensuring that data is available for the 
long term.

From the earliest days of neuroinformatics, it was envisioned that 
neuroscience would likely best be served by a decentralized system of 
federated databases (Koslow, 2000). Due to the variety and complexity 
of neuroscience data, a single large repository like Genbank or the 
Protein Data Bank was likely not going to be  feasible. The early 
investments in neuroinformatics by the US Human Brain Project and 
the success of the International Neuroinformatics Coordinating 
Facility in growing the field of neuroinformatics globally, led to the 
first generation of neuroscience databases. These databases were 
largely organized around data type, e.g., structural neuroimaging 
(XNAT), functional neuroimaging (fMRI Data Center; Open fMRI), 
neurophysiology (CARMEN; Neurodatabase.org,” GNode), EEG 
(open EEG, iEEG), neuronal morphology (NeuroMorpho), 
microscopic images (Cell Centered Database), neuromodeling 
(ModelDB). Some examples are shown in Table 1.

When the first generation of neuroscience databases were started, 
there were few standard practices for designing web-accessible 
databases. As documented by NIF, each database had a different mode 
of access, different data structure, and the use of standards was very 
limited. It was a time of tremendous technological fluidity, with 
standard features we take for granted today (e.g., RESTful web APIs) 
still being invented. The cloud did not exist, and attempts to build 
resources on the early version of a cloud-like system (“the grid”) met 
with considerable challenges (Grethe et  al., 2005). With today’s 
emphasis on data sharing, increased attention is starting to be paid to 
these critical infrastructures and how they are constructed, operated, 
and evaluated (Nelson, 2022). Various recommendations on desired 
characteristics for data repositories have been issued by different 
groups (Sansone et al., 2020; Shearer, n.d.), including NIH (Selecting 
a Data Repository) and additional sets of principles, e.g., the TRUST 
principles (Lin et al., 2020) and principles for open infrastructures 
(Bilder et al., 2015) have been formulated to help further guide how 
these critical infrastructures should operate. The Elixir project, a large 
scale bioinformatics consortium in the EU, has developed a maturity 
model for evaluating the success of repositories which is designed to 
be  used by funders to determine the criticality of various 

1 http://cocomac.g-node.org/

infrastructures (Bahim et al., 2020). The INCF Infrastructure working 
group recently issued a set of guidelines from a neuroscience 
perspective, that provide a mix of technical and “customer service” 
recommendations for operating repositories (Sandström et al., 2022). 
Although these various lists of desiderata do not overlap completely 
(Murphy et al., 2021), over time we will likely converge on a core set 
of functions and expectations for these critical infrastructures, 
balancing the often dual requirement for these infrastructures to serve 
as both publishing platforms and dynamic scientific gateways 
(Sandström et al., 2022).

INCF has served as an important conduit by which the FAIR 
principles have permeated the construction of neuroscience data 
repositories and gateways. Investigators who have been active in INCF 
through governance, committees and working groups are involved 
with several of the next generation neuroscience infrastructures 
including EBrains, CONP, SPARC, DANDI, Open Neuro, and 
BRAIN/Minds. Table 3 lists and compares some of the key ways that 
these infrastructures implement FAIR and “FAIR-adjacent” practices. 
Following consistent design principles that support FAIR provides a 
level of common functionality and services that make it easier to work 
across these databases for an individual user or an automated agent. 
The more similar FAIR practices are across repositories, the more 
likely it is that the repositories themselves are interoperable.

Standards: role of repositories
A significant and positive change that is accelerating progress 

toward FAIR is the emergence of a set of robust standards for 
neuroscience data types that are starting to gain adoption. The INCF 
was created to help with this process of standardization and produced 
some early successes, e.g., the Waxholm space for registration of 
mouse and rat brain data (Hawrylycz et al., 2011; Papp et al., 2014), 
the Neuroimaging Data Model (Keator et al., 2013) the Brain Imaging 
Data Structure (Gorgolewski et al., 2016) were produced with support 
from INCF. Over the last few years, a set of standards has emerged for 
major neuroscience data types that can accommodate the increased 
size and complexity of neuroscience data through additional 
investments by funders and the efforts of the large brain projects, e.g., 
NWB, 3D-MMS (Ropelewski et  al., 2022). Repositories serve as 
important stakeholders in ensuring that standards are followed by 
supporting or requiring them for data submission (Figure 2). Data 
uploaded to OpenNeuro, for example, must be validated against BIDS 
before it is accepted. The INCF has implemented an open community 
review and endorsement process to help improve the quality, usability, 
interoperability and awareness of these standards (Abrams et  al., 
2021). They have made available a searchable Standards and Best 
Practices Portfolio2 where researchers can learn about each standard 
and how it can be used. FAIRsharing.org more broadly aggregates 
standards from across biomedicine and makes them available through 
a searchable catalog.

As neuroscience standards become more mature, better 
supported, and more widely used, they provide the seeds for knitting 
the landscape of neuroscience data repositories into a true data 
ecosystem, where (meta)data can flow from the laboratory to 
repositories and from repositories to computational tools and back 

2 https://www.incf.org/resources/sbps
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again. Figure 3 shows a graph illustrating the connections between 
standards (light gray) and infrastructures that support them (dark 
gray). The data was assembled from the INCF Infrastructure Catalog, 
FAIRsharing, the SciCrunch Registry (Subash et  al., 2023) and 
examination of repository websites. As shown in Figure 3, multiple 
repositories and infrastructures are connected via these standards. For 

example, the Brain Imaging Data Structure (BIDS; Gorgolewski et al., 
2016) links 10 different repositories and computational platforms. The 
success of BIDS has led to extensions of BIDS for other modalities 
through a formal governance process (Governance, n.d.). The 
adoption of these BIDS-based standards starts to create a degree of 
interoperability across data types.

TABLE 3 FAIR practices across data repositories.

Principle Function EBRAINS SPARC DANDI CONP 
Portal

OpenNeuro

F1. Globally 

unique identifier Basic core DOI DOI DOI ARK, DOI DOI

F2. Rich metadata Y DataCite Y DATS Y

A1. Retrievable by 

identifier Y Y Y Y Y

A1.1 Free, open, 

universal retrieval 

protocol Enhanced access Y Y Y Y Y

F4. Registered in a 

searchable 

resource KS, GDS KS, GDS KS, GDS KS KS, GDS

A1.2: 

Authentication 

and authorization Y Y Y Y Y

R1.1: Clear data 

usage license Y CC-BY CC-BY, CC0 Y CC0

R1.3: Community 

standards Use of standards Multiple SDS, MIS NWB, BIDS Y* BIDS

F3: Metadata 

contains identifier Y Y Y Y Y

I1: Formal 

knowledge 

representation 

language Y Y N Y

R1: Plurality of 

relevant attributes Rich(er) metadata OpenMinds OpenMinds, MIS NWB DATS Y

I2: FAIR 

vocabularies Y Y Y Y N

I3: Qualified 

references to other 

metadata Y Y Y Y Y

R1.2: Provenance

Provenance and 

context Exp Protocol Y N

A2: Metadata 

persistence Y Y

Landing page

Additional 

features Y Y Y Y Y

CCFs Y Y* N N N

Data citation Y Y Y Y Y

Curation Y Y N Y N

Comparison of FAIR features across five large brain repositories where the principal investigators have been active through the INCF. The principles are organized according to the functions 
they support based on an organization proposed by Hodson et al. (2018). Highlighted in purple are additional features that are relevant for FAIR although they are not mentioned explicitly in 
the FAIR principles, e.g., the use of landing pages and support for data citation. KS, INCF Knowledge Space; GDS, Google Dataset Search; DOI, Digital object identifier; NWB, NeuroData 
Without Borders; BIDS, Brain Imaging Data Structure; DATS, Data tag suite.
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FIGURE 3

Ecosystem of neuroscience resources emerging around standards. Network graph of neuroscience data repositories and gateways (purple) and some 
of the standards they support (yellow). The graph shows repositories/gateways connected via the use of a common standard. A description of how 
standards were determined is given in the text.

As tool support grows, standards are also making their way into 
the laboratory. BIDS, for example, has been estimated to have been 
used to organize over 100,000 datasets containing millions of images, 
indicating significant uptake by the research community (Poldrack 
et al., 2023). In a recent paper that outlined a neuroimaging center’s 
implementation of BIDS, Bush et al. (2022) stated: “Learning the BIDS 
specification, implementing software pipelines to map the data, and 
validating that the resultant mappings met the BIDS standard consumed 
many months of effort across multiple imaging center team members… 
The benefits of mapping our data to BIDS, however, far exceed the costs.” 
(Bush et al., 2022). These benefits included access to BID-APPS, a set 
of containerized analysis tools and pipelines that run on validated 
BIDS data, as well as improved code sharing within the lab and with 
colleagues, as well as a reduced barrier to publishing the data in 
OpenNeuro. Similarly, the electrophysiology standard, NWB, has 
made inroads in tackling one of the most challenging data types in 
neuroscience, evidenced by uptake in laboratories (Rübel et al., 2022) 
and support by platforms such as DANDI and EBRAINs.

Standards: use of FAIR vocabularies and common 
coordinate frameworks

Interoperability across neuroscience data has always been 
hampered by the multiplicity of nomenclatures and parcellation 
schemes from brain regions and nerve cells (Martone et al., 2004). 
Although slow, progress has been made. Some repositories are starting 

to map generic neuroanatomical structures to community ontologies 
like UBERON (Mungall et al., 2012). Mapping data to a common 
coordinate framework (CCF) allows more precise localization 
independent of labels applied to them (Hawrylycz et  al., 2023). 
Encouraging signs are emerging, as CCFs for multiple species are in 
use or in development for the major species across the international 
brain projects. For example, both the BICCN/BICAN and EBrains are 
utilizing the Allen Institute Common Coordinate Framework v3 for 
mouse (Hawrylycz et al., 2009, 2023). To help manage the different 
versions and components that go into these atlas-based environments, 
a new standard for describing and versioning brain atlases was 
recently proposed (Kleven et al., 2023).

Standardized nomenclature for cellular taxonomies and 
transcriptionally defined cell types are also emerging from projects 
like the BICCN/BICAN to help deal with the plethora of new cell 
types that are emerging from new transcriptomics-based approaches 
(Miller et al., 2020; Tan et al., 2023). Over the years, there have been 
proposals for naming neurons that can bridge the multiplicity of 
phenotypes generated by multiple experimental techniques (Hamilton 
et al., 2012; Shepherd et al., 2019; Gillespie et al., 2022). However, these 
approaches have had difficulty in handling the complex expression 
patterns coming out of transcriptomics. The BICCN/BICAN recently 
developed the Brain Standards Data Ontology, providing a model for 
providing data-driven definitions of taxonomic classes (Hawrylycz 
et al., 2023; Tan et al., 2023). BICCN has recently introduced Cell 
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Cards to provide a tool for exploring the BICCN taxonomic cell types 
for human, marmoset, and mouse primary motor cortex, including 
linking them to primary data sets (Hawrylycz et al., 2023). As new 
technologies are allowing us to derive wider scale, more complete 
representations of the molecular, morphological, physiological, and 
connectional phenotypes of neurons than was possible in the past, it 
is time for the global neuroscience community to come together 
around a common nomenclature for naming populations of cells that 
will aid in comparison across studies.

Services for accessing ontologies and building them into 
annotation and metadata pipelines have improved significantly over 
the past decade, with tools such as BioPortal3 and the Ontology Look 
Up Service4 providing programmatic access to community ontologies. 
Nevertheless, neuroscience is still a cutting edge science where many 
new terms are needed, particularly for annotating experimental data. 
For this reason, NIF and INCF had developed the NeuroLex Wiki 
(Larson and Martone, 2013) that lowered the barrier for creating new 
ontology terms. When the semantic wiki technology underlying 
NeuroLex was no longer available, the approach and content were 
ported to the Interlex on-line vocabulary management system by NIF 
(Surles-Zeigler et al., 2021). Interlex mints a unique identifier for each 
term (URI) when it is entered and allows the addition of basic 
metadata for each term, e.g., definition, synonyms. It also provides 
basic knowledge engineering functions, e.g., parent–child and other 
relationships, annotations. Interlex also provides various review and 
curation functions. These specialized terms can be used as controlled 
vocabularies or further engineered into ontologies as needed. Surles-
Zeigler et al. (2021) provide a description of how Interlex is being used 
to enhance anatomical annotation of SPARC data, models and 
knowledge base, allowing new anatomical terms to be minted, curated, 
linked to existing ontologies and contributed as necessary to augment 
community ontologies.

On the sustainability of neuroscience data 
repositories

As most neuroscience infrastructure is researcher-led and grant-
supported, questions often arise about long-term sustainability when 
choosing a repository, or indeed, any infrastructure. Sustainability of 
individual resources remains a challenge, not just for neuroscience but 
for all research-led infrastructures that rely on grant funding for their 
operation. Of the data repositories listed in Table  1 taken from 
Ferguson et al. (2014), 4/18 are no longer in service and 3/18 are 
moribund (i.e., not taking data). Three were rebranded and expanded 
their scope, and one merged with another database. The good news is 
that the majority of this first generation of neuroscience databases are 
still in existence, indicating a degree of stability. We  can also see 
movement in the ecosystem, with databases merging with others, or 
moving across institutions indicating a degree of dynamism that keeps 
the ecosystem healthy. Looking at a larger sample using the SciCrunch 
Registry (formerly the NIF Registry; Ozyurt et al., 2016) out of a total 
of 563 neuroscience data resources (including data repositories, 

3 https://bioportal.bioontology.org/

4 https://www.ebi.ac.uk/ols/index

databases, data sets, atlases and knowledge bases), 71 appear to be out 
of service (~13%). These numbers compare favorably to a study done 
on the longevity of bioinformatics biological databases founded in the 
late 20th century, 63% of which were defunct by 2015 (Attwood et al., 
2015). In 2016 NIF began to track the usage of these neuroscience 
resources within the scientific literature (Ozyurt et al., 2016), revealing 
interesting patterns including the creation of thousands of data 
repositories across biomedicine. A recent analysis showed that only a 
handful of these repositories are actively used, with many of the 
neuroscience repositories referenced here among them, suggesting 
that neuroscience is coalescing around a set of core resources 
(Piekniewska et  al., 2023). Thus, while sustainability is always a 
concern, neuroscience repositories have generally been good stewards 
of their data, utilizing a variety of strategies to keep data safe 
and accessible.

As neuroscience data and repositories start to align around the 
FAIR principles, the ecosystem should become more robust as it 
will make it easier for other repositories to absorb data if a 
repository loses its funding. Merging of similar resources also 
makes the ecosystem more efficient. The ‘professionalization” of 
scientific data repositories also means that researchers are taking 
their role as an archive more seriously. The INCF recommendations 
for neuroscience infrastructure include that repositories should 
have an exit plan and they should clearly state their persistence 
policy (Sandström et al., 2022). For example, some repositories are 
partnering with institutional libraries or other resources to ensure 
that data remain available, even if funding is lost (e.g., EBRAINS). 
Another promising development is the repurposing of infrastructure 
components. Rather than building a separate data repository, two 
computational and analytic platforms, Brainlife and NEMAR, 
utilize Open Neuro as their data platform, even as they field their 
own portals with their own branding. The ODC-SCI and ODC-TBI 
share the same infrastructure (SciCrunch; Surles-Zeigler et  al., 
2021), but each have their own separate community portal where 
they can access data and establish their own governance rules. The 
more that neuroscience infrastructure can be repurposed for new 
projects, the less funding needs to go to building and maintaining 
new infrastructures.

Search engines

In tandem with the vision of a distributed system of databases 
laid out by the NIH HBP was the creation of a neuroscience portal 
where data could be accessed via a “a smart ‘neuroscience browser’ 
instructed to look for a particular variable or set of variables and 
import the data back to the user’s computer” (Koslow, 2000). For the 
distributed ecosystem to work effectively, users would have to 
be able to issue dynamic queries across these databases and be able 
to retrieve the necessary subsets of data. And, in fact, FAIR states 
that data should be registered with an appropriate index (F4). NIF 
set up one of the first searches across neuroscience databases by 
creating an index over the contents of distributed databases. At its 
height, NIF queried over 200 data sources across biomedicine 
comprising over 8 million data records (Cachat et al., 2012). NIF 
used the NIFSTD to help mediate across the different vocabularies 
and relationships that were needed to link across databases. NIF 
was able to align different databases covering the same content 
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across a core set of variables, but did not have the resources to 
harmonize the content, especially given the lack of standards at that 
time. NIF was designed to allow researchers to understand what 
was in a given database by providing limited views of the data, but 
not to perform deep structured queries of the content. So you could 
use NIF to identify a database that had relevant data, but for more 
structured queries and to retrieve the complete data, users needed 
to visit the source database. The INCF Knowledge Space and 
currently performs a similar type of search over 16 major 
neuroscience databases (KnowledgeSpace, n.d.).

The more that repositories enforce consistent standards for 
metadata and data formats, the closer neuroscience gets toward 
achieving true federated search and retrieval across the entirety of the 
neuroscience repository ecosystem (Koslow, 2000). The Canadian 
Open Neuroscience Portal was recently launched that allows users to 
search across data hosted in multiple data repositories. It is currently 
deployed across 17 Canadian institutions and also integrates select 
specialist and generalist repositories. All the high level metadata is 
aligned to the DATS standard, developed by the NIH-funded 
BioCADDIE Big Data to Knowledge project (Alter et  al., 2020), 
allowing for a unified dataset search. The portal implements some 
uniform functions that can be executed directly from the portal. Some 
data are available for download via DataLad and containerized 
workflows that work across these distributed data are available via 
Boutiques (Poline et al., 2023).

New tools are also becoming available that lower the barrier to 
making content available to search engines. For example, multiple 
neuroscience databases have marked up their content with schema.
org so that their datasets are searchable through Google Dataset 
Search (Table  3). Neuroscience, like other domains, is building 
knowledge graphs that link neuroscience concepts to each other and 
to datasets to aid in search.EBrains, CONP and the SPARC projects 
are making their data available via a knowledge graph. CONP uses the 
Nexus knowledge graph developed by the Blue Brain Projects which 
provides a set of tools and resources for searching, linking and 
viewing data.5

Community organizations

The FAIR data principles delegate a good amount of 
responsibility to individual communities to define what is FAIR for 
their domain. Community organizations play an important role as 
coordinators by serving as conveners to allow researchers to come 
to consensus about best practices and recommendations for their 
community. International neuroscience is currently supported by 
two community organizations, the INCF and the IBI. IBI is 
principally focused on coordination of the large international brain 
projects, focusing on data sharing among these projects, as well as 
issues such as data governance and ethics. INCF works across all 
neuroscience efforts, whether individual or team based, and focuses 
on standards, infrastructure coordination and training. Both 
organizations provide support for working groups that come 
together to tackle issues such as the development of international 

5 https://bluebrainnexus.io/

data governance (IBI), standards and best practices (INCF, IBI), 
training (INCF), and coordination of infrastructures (INCF, IBI). 
Any member of INCF can propose a working group and membership 
is open to the community, while IBI working groups are set by the 
Strategy Committee. The two organizations work together and with 
other organizations such as the IEEE Neuro Standards working 
group and the Global Brain Consortium.6 In this way, there is a level 
of coordination across these international organizations. Eke et al. 
(2022) raised the issue of whether neuroscience needs an umbrella 
organization modeled after the Global Alliance for Genomic Health, 
to more effectively address data reuse at the technical, ethical, 
sociological and political level.

Is neuroscience FAIR yet?

Neuroscience has made tremendous progress over the first two 
decades of the 21st century in establishing the infrastructure, 
standards, expertise and tools for moving neuroscience significantly 
toward FAIR. It is now served by a set of robust international data 
repositories and scientific gateways specialized for neuroscience 
data, implementing the vision laid out in the dawn of 
neuroinformatics for a distributed ecosystem of repositories. The 
first inroads have been made in establishing FAIR practices and 
supporting infrastructure in the lab to manage data in a way that 
smooths the transition between private, semi-private, and public 
sharing. As best practices for FAIR are articulated, tested, and 
shared, we can expect that the quality of both the databases and the 
data will continue to improve.

A federated system allows neuroscience infrastructure to respond 
more rapidly to new data types and technologies as they are developed. 
While there are more resources to be sustained, there are also more 
resources from which to draw should a repository need to 
be  decommissioned. We  see from the last 20 years that there is 
movement in the repository landscape, with some resources ceasing 
operations, but others merging or changing ownership. As repositories 
start to align around sets of core features, both interoperability and 
flexibility will be increased, providing some measure of stability in an 
otherwise dynamic ecosystem.

While the distributed nature of neuroscience infrastructure brings 
many benefits, there are concomitant challenges it imposes on both 
those who submit their data and those that wish to use it. As the 
motivations and incentives for these two user groups can differ 
(Subash et al., 2023), balancing the efforts required to submit vs. reuse 
data will need to be a priority. Until these are addressed, neuroscience 
will not be considered a fully FAIR discipline:

 • Findable: We still do not have an effective query system over the 
ecosystem of neuroscience data, that allows for aggregation 
relevant data distributed across multiple repositories. Important 
steps have been taken by IBI, INCF and CONP, but these efforts 
will need support if they are to be fully realized.

 • Accessible: Users are increasingly acquiring multimodal 
datasets that may require deposition in multiple repositories. 

6 https://globalbrainconsortium.org/
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Currently, that requires a user to navigate multiple repositories, 
set up multiple accounts, entering the same metadata repeatedly 
and creating the necessary linkages across the different parts of 
the dataset (Subash et al., 2023). Some work is underway in the 
US BRAIN Initiative BICCN and BICAN projects to create a 
more unified workflow including a centralized registry, but such 
a service would be  useful across all neuroscience. Many 
repositories are starting to implement login and authorization 
via ORCID, making it easier for users to work across 
multiple repositories.

 • Interoperable: In a distributed system, interoperability is not 
just about the data but also about the infrastructures. Working 
across multiple repositories means working across multiple 
front ends, back ends and data access policies. As core sets of 
features are described for data repositories, neuroscience 
infrastructure may also start to converge on certain design 
patterns that make it easier for users to work across them. A 
term was introduced in an NIH Workshop on a FAIR Data 
Ecosystem for Generalist Repositories: coopetition (NIH 
workshop on the role of generalist repositories to enhance data 
discoverability and reuse: Workshop summary, 2012). 
Repositories can compete on certain features to encourage 
innovation, but there should be a set of features that are shared 
across repositories and work similarly.

 • At the same time, competition among different data providers 
also can lead to a decrease in data interoperability, as repositories 
must compete for users. Thus, many repositories lower their 
requirements for standards compliance (Subash et  al., 2023) 
recommending rather than requiring standards so as to lower the 
barrier of data submission. Instead of making compliance 
optional, neuroscience repositories should work on improving 
their customer service, providing both human and tool support 
to make it easier for researchers to comply with standards. 
SPARC has taken this approach, employing customer-oriented 
curators who assist researchers to comply with SPARC standards. 
SPARC also developed the SODA tool directed toward 
researchers with few computational skills to guide and support 
them in organizing and uploading their files according to the 
SPARC SDS (Bandrowski et al., 2021). In this way, the burden on 
the submitter is lessened, while data quality and standards 
compliance are not sacrificed.

 • Reusable: Despite FAIR, most neuroscience data is still very 
difficult to use. Different projects have devoted different amounts 
of resources to curation of data and quality control. Generally 
curated data is of higher quality because it is more completely 
documented and some QC is performed (Gonçalves and Musen, 
2019). Particularly with the push to make data AI/ML ready, 
funders should be prepared to support curation services for the 
near future, to ensure that high quality data are available. Such 
investments will likely not be needed forever; indeed, labs are at 
this moment experimenting with tools such as ChatGPT to help 
with query and harmonization. However, investments now in 
well curated data can help to accelerate training of these types of 
algorithms, while at the same time, making high quality data 
immediately available for discovery science.

Finally, usability is not simply a matter of technology or 
documentation. As Eke et al. (2022) and (Fothergill et al., 2019) have 

noted, the international nature of neuroscience infrastructure also 
means that issues of transferring data across national borders, i.e., 
international data governance, also must be addressed. Federation 
across distributed databases provides a model that can minimize data 
governance issues, as the data can remain in place, while compute is 
brought to the data (Poline et al., 2023).

The good news is that routine data sharing, if not exactly easy, is 
now at least possible across the sizes and complexities of 
neuroscience data. Islands of interoperation are starting to emerge 
among these different resources promoting federated search and 
shared computational platforms and services. Those of us who were 
involved from the beginning in attempts to “database the brain” 
cannot help but be impressed with how far neuroscience sharing and 
infrastructure has come, even as there is still quite a way to go. As 
the paradigm continues to shift toward open and effective data 
sharing in neuroscience, we  will fulfill the early vision of 
neuroinformatics as a driver for “..a new depth of understanding of 
how the nervous system works in both health and disease.” 
(Koslow, 2000).
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Glossary

3D-MMS Metadata for 3D microscopy standard

ADNI Alzheimer’s Disease Neuroimaging Initiative

BICAN BRAIN Initiative Cell Atlas Network

BICCN BRAIN Initiative Cell Census Network

BIDS Brain Imaging Data Structure

BIL Brain Image Library

BRAIN Initiative Brain Research through Advancing Innovative Neurotechnologies

CDE Common data element

CONP Canadian Open Neuroscience Platform

CT Computed tomography

DANDI Distributed Archives for Neurophysiology Data Integration

DATs Data tag suite

DBS Deep brain stimulation

DOI Digital Object Identifier

ECOG Electrocorticography

EEG Electron encephalography

EMG Electromyography

ERP Event-related potential

fMRI Functional magnetic resonance imaging

FORCE11 Future of Research Communications and e-Scholarship

HBP Human Brain Project

HED Hierarchical event descriptor

IBI International Brain Initiative

iEEG Intracranial electroencephalography

INCF International Neuroinformatics Coordinating Facility

MEG Magnetoencephalography

MIS SPARC minimal information standard

MRI Magnetic resonance imaging

NEMAR NeuroElectroMagnetic data Archive

NIF Neuroscience Information Framework

NIH National Institutes of Health

NWB Neurodata Without Borders

ODC-SCI Open Data Commons for Spinal Cord Injury

ODC-TBI Open Data Commons for Traumatic Brain Injury

PET Positron emission tomography

SDS SPARC dataset structure

SPARC Stimulating Peripheral Activity to Relieve Conditions

SPECT Single-photon emission computed tomography

URI Uniform Resource Identifier
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The Locare workflow: 
representing neuroscience 
data locations as geometric 
objects in 3D brain atlases
Camilla H. Blixhavn 1, Ingrid Reiten 1, Heidi Kleven 1, 
Martin Øvsthus 1, Sharon C. Yates 1, Ulrike Schlegel 1, 
Maja A. Puchades 1, Oliver Schmid 2, Jan G. Bjaalie 1, 
Ingvild E. Bjerke 1 and Trygve B. Leergaard 1*
1 Neural Systems Laboratory, Department of Molecular Medicine, Institute of Basic Medical Sciences, 
University of Oslo, Oslo, Norway, 2 EBRAINS AISBL, Brussels, Belgium

Neuroscientists employ a range of methods and generate increasing amounts 
of data describing brain structure and function. The anatomical locations from 
which observations or measurements originate represent a common context 
for data interpretation, and a starting point for identifying data of interest. 
However, the multimodality and abundance of brain data pose a challenge for 
efforts to organize, integrate, and analyze data based on anatomical locations. 
While structured metadata allow faceted data queries, different types of data 
are not easily represented in a standardized and machine-readable way that 
allow comparison, analysis, and queries related to anatomical relevance. To 
this end, three-dimensional (3D) digital brain atlases provide frameworks in 
which disparate multimodal and multilevel neuroscience data can be spatially 
represented. We propose to represent the locations of different neuroscience 
data as geometric objects in 3D brain atlases. Such geometric objects can 
be specified in a standardized file format and stored as location metadata for 
use with different computational tools. We here present the Locare workflow 
developed for defining the anatomical location of data elements from rodent 
brains as geometric objects. We demonstrate how the workflow can be used to 
define geometric objects representing multimodal and multilevel experimental 
neuroscience in rat or mouse brain atlases. We  further propose a collection 
of JSON schemas (LocareJSON) for specifying geometric objects by atlas 
coordinates, suitable as a starting point for co-visualization of different data in 
an anatomical context and for enabling spatial data queries.

KEYWORDS

3D brain atlas, FAIR data, interoperability, rat brain, mouse brain, standardization, data 
integration

1 Introduction

Experimental brain research in animal models generates large amounts of disparate data 
of different modality, format, and spatial scale (Sejnowski et al., 2014). To manage and exploit 
the growing resource of neuroscience data it is now widely recognized that the data must 
be shared in accordance with the FAIR principles (Wilkinson et al., 2016), ensuring that data 
are findable, accessible, interoperable and reusable for future analyses (see e.g., Abrams et al., 
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2022). This trend has resulted in a growing volume of neuroscience 
data being made accessible through various data repositories and 
infrastructures (Ferguson et al., 2014; Jorgenson et al., 2015; Ascoli 
et al., 2017; Amunts et al., 2019). While free-text searches based on 
structured metadata are typically implemented in such databases 
(Clarkson, 2016), possibilities for more sophisticated queries, 
visualizations, and analysis depend on a harmonization across data 
files with different formats, scales, and organization (Zaslavsky et al., 
2014; Abrams et al., 2022).

Anatomical information is widely used to provide a common 
context for harmonizing and comparing neuroscience data (Martone 
et al., 2004; Bassett and Sporns, 2017). The availability of open-access 
3D rodent brain reference atlases (Oh et al., 2014; Papp et al., 2014; 
Wang et  al., 2020; Kleven et  al., 2023a) has opened up new 
opportunities for combining and analyzing data that have been 
aligned to a common spatial framework (Leergaard and Bjaalie, 2022). 
This allows researchers to integrate and analyze data from different 
sources within a common anatomical context more easily. For 
example, spatial registration procedures allow image data to be directly 
compared and analyzed based on atlas coordinates or annotated brain 
structures (Puchades et  al., 2019; Tappan et  al., 2019; Tyson and 
Margrie, 2022; Kleven et al., 2023b), e.g., through use of computational 
analyses of features of interest in atlas-defined regions of interest (Kim 
et al., 2017; Bjerke et al., 2018b, 2023; Yates et al., 2019; Kleven et al., 
2023a,b). For other data types, such as locations of electrode tracts, 3D 
reconstructed neurons, or other features of interest, procedures and 
tools have been developed to represent the data as coordinate-based 
points of interest allowing validation or visualization of locations 
(Bjerke et al., 2018b; Fiorilli et al., 2023).

Atlases, tools, and resources for building, viewing, and using 
collections of spatially registered data have also proven to 
be fundamental for digital research infrastructures, such as the Allen 
Brain Map data portal1 and to some extent also the EBRAINS Research 
Infrastructure.2 But while the Allen institute provides collections of 
systematically generated homogenous and standardized image data 
spatially integrated in a 3D atlas, EBRAINS allows the research 
community to share a wide variety of data. These data may be related 
to anatomical locations using anatomical terms, reference to 
stereotaxic coordinates, or spatial registration to atlases. Thus, the 
location documentation provided with published data is as disparate 
as the data themselves—ranging from coordinate-based 
documentation defining the position of data in an atlas, to anatomical 
terms, illustrations, and unstructured descriptions (Bjerke et  al., 
2018a). The specification of such location metadata varies 
considerably, and a common standard for storing them is lacking in 
neuroscience. This poses a challenge to effectively utilize the metadata 
for spatial queries, co-visualization, and other analytic purposes. To 
achieve the ambitions of the community to accumulate and re-use 
neuroscience research data in agreement with the FAIR principles, it 
is necessary to represent metadata describing anatomical locations 
(spatial metadata) in a standardized and machine-readable format.

To address this challenge, we developed the Locare workflow 
(from locãre, latin: to place) for representing disparate 

1 https://portal.brain-map.org/

2 https://www.ebrains.eu/

neuroscience data in a simplified and standardized manner. The 
workflow was developed based on a large collection of diverse 
experimental data from mouse and rat brains shared via the 
EBRAINS Knowledge Graph.3 The available location 
documentation, specifying data location through points of 
interest, images, or semantic descriptions determines the starting 
point of the workflow, which through different workflow routes 
outputs geometric objects. We here present Locare as a generic 
workflow for specifying interoperable spatial metadata for 
neuroscience data, and exemplify how it can be used to specify 
anatomical locations for different data types as geometric objects 
in atlas space using a JSON format. The LocareJSON schemas 
allow representation of data in a simplified and standardized 
format that can enable spatial search, co-visualization, and 
analyses of otherwise disparate neuroscience data. The Locare 
workflow provides a solution for defining heterogeneous 
neuroscience data as atlas-defined geometric objects in a 
machine-readable format, which in turn can be  utilized to 
represent data as interoperable objects in a 3D anatomical atlas 
and develop spatial query functionalities. The workflow is here 
presented in context of the EBRAINS Research Infrastructure but 
is generally applicable to any infrastructure of databases holding 
neuroscience data. 

2 Materials and methods

The Locare workflow builds on several years of experience 
with assisting researchers to share and present their experimental 
research data through the EBRAINS Research Infrastructure. As 
part of this effort, we investigated how to integrate and represent 
rat and mouse data sets in three-dimensional (3D) brain atlases. 
The workflow was established using 186 mouse brain data sets 
and 94 rat brain data sets available from the EBRAINS Knowledge 
Graph by 11 May 2023. An overview of all data set titles and type 
of location documentation is provided in Supplementary Table 1. 
The data sets included data files in various formats, structured 
metadata, and a data descriptor including summary, materials 
and methods, usage notes and explanation of data records. 
Several data sets were also associated with journal publications 
containing additional images and/or textual information about 
the anatomical location of the data. In some cases, we were in 
contact with data providers (custodians of the data shared 
through EBRAINS) directly and received additional information. 
These 280 data sets were contributed by 480 different researchers 
and acquired using 25 different experimental methods. The 
anatomical locations of observations or measurements in these 
data sets were documented using images (n = 116), semantic 
descriptions only (n = 123), or by specification of coordinates for 
points of interest (POIs; n = 41).

3 https://search.kg.ebrains.eu/
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2.1 Establishing the Locare workflow

The Locare workflow takes any information that can be used to 
define the anatomical location of a sample (e.g., a section or a tissue 
block) or objects within a sample (e.g., a labeled cell or an electrode) of 
data as input, independent of methods, data formats, software used for 
visualization and analysis, and solutions used for sharing the data. This 
is below referred to as location documentation. Three main categories 
of location documentation input are distinguished: images, information 
about POIs, and semantic descriptions. The workflow includes four 
steps: (1) choosing a target atlas (a 3D brain atlas) and collecting 
relevant location documentation (Figure 1A); (2) assessing the location 
documentation (Figure 1B); (3) translating location documentation to 
spatial metadata in target atlas (Figure  1C); and (4) defining the 
geometric object representing the location of the data (Figure 1D). A 
geometric object is a simplified representation of the  anatomical 
location from which the data were derived. If the exact location that 
the data were derived from cannot be  defined, the location can 
be represented by a geometric object (a mesh) corresponding to an 
atlas region. The target atlas constitutes the common framework for 
spatial alignment of data from different sources, enabling meaningful 
comparisons and integrations.

To exemplify how the output of the workflow can be formatted 
in a standardized, machine-readable way, we created a collection of 
JavaScript Object Notation (JSON)4 schemas to store the Locare 
workflow output. The JSON format is widely used due to its suitability 
for storing semi-structured information, language independence and 
human readability. Since there are several open standards related to 
neuroscientific data and geometric representations (such as 
GeoJSON, NeuroJSON, and openMINDS), we  assessed these for 
inspiration. GeoJSON5,6 is a format for encoding a variety of 
geographical data structures but is lacking fields to specify the 
anatomical context for neuroscience data. NeuroJSON7 is a JSON-
based neuroimaging exchange format. The NeuroJSON JMesh 
specification can efficiently represent 3D graphical objects, such as 
shape primitives (spheres, boxes, cylinders, etc.), triangular surfaces 
or tetrahedral meshes. However, like GeoJSON, the Jmesh 
specification misses the option to identify the anatomical context. 
openMINDS (RRID:SCR_ 023173)8 is a metadata framework with 
metadata models composed of schemas that structure information 
on data within a graph database. Although the schemas of the 
openMINDS SANDS (RRID:SCR_023498)9 metadata model allow 
for the identification of the anatomical context (semantic and 
coordinate-based location and relation of data), it is not meant to 
hold actual (more complex) geometrical data. We chose to base 
our collection of schemas (LocareJSON) on the GeoJSON 
standard but extended it to include 3D objects and anatomical 
context. We  defined LocareJSON schemas to the following 
geometrical objects: point, sphere, line string, cylinder, polygon, 
polyhedron, and atlas mesh. All LocareJSON schemas define 

4 https://www.json.org/json-en.html

5 https://geojson.org/

6 https://doi.org/10.17487/RFC7946

7 https://neurojson.org/

8 https://github.com/HumanBrainProject/openMINDS

9 https://github.com/HumanBrainProject/openMINDS_SANDS

target atlas space through a reference to relevant openMINDS 
schemas. The Locare atlas mesh schema also defines the 
relevant atlas mesh through use of openMINDS. For a detailed 
description of the LocareJSON schemas, see the LocareJSON 
Github repository (v1.1.1).10

2.2 Demonstrating the workflow through 
use-cases

We demonstrate the Locare workflow in a selection of use-cases 
including heterogeneous data from rat and mouse brains representing 
each input (location documentation) and output type (geometric 
objects; Figure 2; Supplementary Table 2). The output resulting from 
these use-cases were shared in the LocareJSON repository, and as data 
sets on EBRAINS (Blixhavn et  al., 2023a,b,c,d,e,f; Reiten et  al., 
2023a,b,c). Below, we describe the key tools and processes used to 
create the use-cases.

We used the Waxholm Space atlas of the Sprague Dawley rat 
brain (WHS rat brain atlas; RRID: SCR_017124; Papp et al., 2014; 
Kjonigsen et al., 2015; Osen et al., 2019; Kleven et al., 2023a)11 and the 
Allen mouse brain atlas Common Coordinate Framework (AMBA 
CCF) version 3 (RRID: SCR_020999; Wang et al., 2020) as our target 
atlases. For spatial registration, we  used the QuickNII (RRID: 
SCR_016854; Puchades et  al., 2019)12 and VisuAlign (RRID: 
SCR_017978)13 tools, which come in versions bundled with each of 
the target atlases.

For extraction of coordinates for a single or a few points of 
interest, we  used the QuickNII mouse-hover function. For more 
extensive efforts involving numerous points of interest, we used the 
manual annotation function in the LocaliZoom tool 
(RRID:SCR_023481),14 or the QUINT workflow (Yates et al., 2019; 
Gurdon et al., 2023)15 utilizing QuickNII for registering histological 
brain section images to the reference atlas followed by tools for 
extracting (ilastik, RRID:SCR_015246), quantifying, and sorting 
features according to atlas regions (Groeneboom et al., 2020; RRID: 
SCR_017183).16

To facilitate translation across different atlas terminologies 
and coordinate systems, we  used a set of published data sets 
containing metadata defining the spatial registration of the rat 
brain atlas plates of Paxinos and Watson (2018) to the WHS rat 
brain atlas and the mouse brain atlas plates of Franklin and 
Paxinos (2007) to the AMBA CCF v3 (Bjerke et  al., 2019a,b). 
These data sets were used to relate stereotaxic landmarks to 3D 
atlas coordinates, as well as for comparing atlas regions between 
atlases, as shown in Bjerke et  al. (2020a). Since the atlases by 
Franklin and Paxinos (2007) and Paxinos and Watson (2018) are 
copyrighted, the data sets do not contain images from these 
atlases. However, the registration metadata for these data sets can 

10 https://github.com/Neural-Systems-at-UIO/LocareJSON/tree/v1.1.1

11 http://www.nitrc.org/projects/whs-sd-atlas/

12 https://quicknii.readthedocs.io

13 https://visualign.readthedocs.io

14 https://localizoom.readthedocs.io/en/latest/

15 https://quint-workflow.readthedocs.io

16 https://nutil.readthedocs.io
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FIGURE 1

Overview of the Locare workflow. Location documentation is collected (A), assessed (B), and registered to a target atlas (C) followed by the creation of 
geometric objects representing the data of which the location documentation was derived (D). (A) Preparatory steps involve choosing a target atlas in 
which the geometric objects should be represented and collecting of relevant location documentation. (B) The location documentation available, 
defined as points of interest (POI; B′), images (B″) or semantic descriptions (B‴), determines which route of the workflow is used. (B′,C′) Point route: 
POIs may be defined in the target atlas, in another atlas, or not in an atlas. POIs defined in target atlas are directly used to create geometric objects. 
POIs not defined in the target atlas must be translated to coordinates of the target atlas (C′) (see text for details). If no information is available for 
translation of POIs to target atlas, the inputs are directed to semantic translation (C‴, blue arrow). (B″,C″) Image route: Images may document the 

(Continued)
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be opened and inspected with locally stored .png images using 
QuickNII, either to inspect the correspondence of delineations 
across atlases or to extract WHS rat brain atlas or AMBA CCF 
v3 coordinates.

To translate spatial metadata from established tools to our 
example schemas, we created Python scripts for extraction and 

formatting of (1) QuickNII .json files and (2) Nutil .json 
coordinate files. The output from QuickNII consists of vectors 
indicating the position of the 2D image in a 3D atlas (the vector 
components o, u, v represent the top left corner, and the 
horizontal and vertical edges of the image, respectively). 
Coordinates for all four corners can therefore be calculated by 

location of specific data or can also be atlas plate images used to translate points of interest or semantic descriptions to a geometric object or mesh in 
the target atlas. Image registration is performed if possible (C″), or alternatively the workflow can be directed to the semantic route (B‴, pink arrow). 
Images registered to the target atlas containing POIs may be used for coordinate extraction (C′, pink arrow). Atlas plate images from other atlas 
registered to the target atlas is used for extraction of coordinates for POIs (C′, pink arrow) or for translation of semantic term (C‴, pink arrow). (B″,C″) 
Semantic route: Semantic descriptions may be defined in the target atlas, another atlas, or not defined in an atlas. Terms defined in target atlas are 
directly used as the final term. Terms defined in other atlas are translated based on the spatial registration of atlas plates from the other atlas to the 
target atlas (B″, yellow arrow). Terms not defined in any atlas are translated to the most closely corresponding term in the target atlas (C‴). (D) The 
output of the workflow routes is one or several geometric objects or atlas meshes.

FIGURE 1 (Continued)

FIGURE 2

Visualization of the selected use-cases demonstrating the use of the Locare workflow. Use-cases (A–I) represented by an input (location documentation) 
and output (geometric object representation), where the outputs are co-visualized in the respective target atlases (J) [Waxholm Space atlas of the Sprague 
Dawley rat brain or (K); Allen mouse brain atlas Common Coordinate Framework version 3]. (A) Image from an anterograde tract tracing experiment 
showing the injection site placed in the medial orbital area (Kondo et al., 2022). Two spheres represent the position and size of the injection site core and 
shell, respectively. (B) Image from a histochemistry experiment (Blixhavn et al., 2022). A polygon represents the location of the section image. (C) Text 
description from a neuronal reconstruction study (Feldmeyer et al., 2020). An atlas mesh represents the location of the reconstructions. (D) Stereotaxic 
coordinates and radius measurement from electrocorticography experiments (Arena and Storm, 2018; Arena et al., 2019a,b, 2020) using 17 epidural 
electrodes. A sphere represents the position and extent of each electrode. (E) Image from an electrophysiology experiment (Fiorilli et al., 2022) where the 
electrode track is annotated. A cylinder represents the location of the electrode. (F) Image from an immunohistochemistry experiment (Bjerke et al., 
2020b) with extracted parvalbumin positive cells annotated. Points represent the extracted cells. (G) 2D atlas illustration showing the location of a 
neuronal reconstruction (García-Amado et al., 2020). A point represents the neuronal soma. (H) Descriptions of the field of view used in a calcium imaging 
experiment (Conti et al., 2019; Resta et al., 2021). A polyhedron represents the field of view. (I) A text description of the POI used in an electrophysiology 
experiment (Schnabel et al., 2020). A line string represents the location of the electrode. (J) All use-cases containing data from the rat brain co-visualized 
in the Waxholm Space atlas of the Sprague Dawley rat brain version 4 (RRID: SCR_017124; Papp et al., 2014; Kleven et al., 2023a; http://www.nitrc.org/
projects/whs-sd-atlas/). The coordinates of the objects are opened using MeshView (RRID: SCR_017222) the atlas mesh is opened using Scalable Brain 
Atlas Composer (Bakker et al., 2015), and objects are overlaid. (K) All use-cases containing data from the mouse brain co-visualized in the Allen mouse 
brain atlas Common Coordinate Framework version 3 (RRID: SCR_020999; Wang et al., 2020). The coordinates of the objects are opened using 
MeshView and objects are overlaid. S1-bf; primary somatosensory cortex, barrel field.

127

https://doi.org/10.3389/fninf.2024.1284107
https://www.frontiersin.org/journals/neuroinformatics
http://www.nitrc.org/projects/whs-sd-atlas/
http://www.nitrc.org/projects/whs-sd-atlas/


Blixhavn et al. 10.3389/fninf.2024.1284107

Frontiers in Neuroinformatics 06 frontiersin.org

addition of vectors. We  created scripts17 to transform the 
coordinate output from QuickNII .json files into the LocareJSON 
schema for polygons. In the Nutil tool, utilized in the QUINT 
workflow, users can choose whether output coordinates should 
be given per pixel of an image segmentation, or per centroid of 
each segmented object. We created scripts18 to transform centroid 
coordinate output from the Nutil tool into the LocareJSON 
schema for points.

3 Results

We here present the Locare workflow and a collection of JSON 
schemas (LocareJSON) for representing the location of data as 
geometric objects in 3D atlases. First, we outline the generic steps of 
the workflow, followed by a description of three different routes for 
use of the workflow based on the type of location documentation 
available. Second, we describe the LocareJSON schemas for storing 
the geometric objects. Lastly, we demonstrate the workflow through 
nine use-cases representing five different experimental approaches 
and all the geometrical object types defined by the LocareJSON 
schemas. Figure  2 gives an overview of the input (location 
documentation) and output (geometric object representation) for each 
use-case and visualizes their outputs in their respective 3D target 
atlases. A summary of details for each use-case is found in 
Supplementary Table 2.

3.1 The Locare workflow

The Locare workflow consists of four steps (Figure 1). The first 
step (Figure 1A) is to select a target atlas and collect available location 
documentation, serving as the workflow input. The second step is to 
assess the available documentation (Figure 1B). The Locare workflow 
separates location documentation into three main categories: images 
showing anatomical features, specification of points of interest (POIs), 
and semantic descriptions. The third step of the workflow (Figure 1C) 
involves a registration and/or translation process to define coordinates 
or terms in the target atlas representing the anatomical location of the 
data set of interest. The fourth and last step (Figure 1D) is to define a 
geometric object using the appropriate LocareJSON schema. The 
image and point routes through the workflow yield representations of 
data location in form of geometric objects, such as points, spheres, line 
strings, cylinders, polygons, or polyhedrons. The semantic route 
results in atlas mesh polyhedrons representing an atlas term, which 
can be  used to indicate that data resided somewhere within, or 
intersecting a given region. The link between the geometric object(s) 
defined in the Locare workflow and the data set containing the data 
described in the location documentation is defined in the LocareJSON 
schema (see section 3.2). Below, we describe the different routes of the 
workflow in more detail.

17 https://github.com/Neural-Systems-at-UIO/LocareJSON/tree/v1.1.1/

scripts/quicknii_to_locarePolygons

18 https://github.com/Neural-Systems-at-UIO/LocareJSON/tree/v1.1.1/

scripts/centroids_to_locarePoints

3.1.1 The workflow route for points of interest
POIs in a data set can be specified with a broad range of location 

documentation but are often specified as 2D or 3D points in a 
coordinate space or image. The POI route through the workflow 
translates POIs to coordinates in the target atlas and allows users to 
define geometric objects based on combinations of atlas coordinates. 
Of the 280 data sets evaluated (Supplementary Table 1), 41 provided 
documentation of their study target location as POIs.

The Locare workflow distinguishes between three different types 
of POI documentation (Figure 1B′). First, points may be given as 
coordinates defined in the target atlas, e.g., coordinates representing 
features extracted from images, as given for parvalbumin neurons in 
the data provided by Bjerke et  al. (2020b). These coordinates can 
be  used directly to create geometric objects in the target atlas 
(Figure 1D). Second, points may be specified as coordinates defined 
in other atlases than the target atlas, for example using coordinates 
from stereotaxic book atlases (e.g., for the position of implanted 
electrodes, as provided in use-cases shown in Figures 2D,I). If images 
from the atlas used to define the POIs are available (Figure 1B′, blue 
arrow), these can be spatially registered as described in the image 
route (Figure 1C″, see also section 3.1.2) to enable the translation of 
the POIs to coordinates in the target atlas. Thirdly, POIs may also 
represent information about the location of recording sites, images, or 
other spatial information that can be translated to the target atlas via 
anatomical landmarks (Figures 2G–I).

When coordinates are defined in the target atlas, they can be used 
to create all types of geometric objects supported by the LocareJSON 
schemas. For example, points can be  used to represent cell soma 
positions (Figures 2F,G), a line string could represent the location of 
an electrode track (Figure  2I), or a polygon could represent the 
location of a camera field-of-view (the latter may also be extended to 
a polyhedron to represent the imaging depth captured by the camera; 
Figure 2H). If the radius for the POI is known, the point object could 
be replaced by a sphere, or a line string by a cylinder. For example, the 
location of an electrode track may be  represented by a cylinder 
(Figure 2E), and the location of an injection site core and shell can 
be  represented by a set of spheres with the same centroid point 
(Figure 2A).

3.1.2 The workflow route for image location 
documentation

Location documentation in the form of images varies greatly. 
Images may be magnified microscopy images focusing on specific 
structures or cover entire brain sections. Image series may contain 
only a few sections or cover the whole brain (see use-cases shown in 
Figures 2A,B,F). Image documentation may also be illustrations based 
on microscopy images, visualizations of reconstructions, or 
annotations made on atlas plates, as exemplified in Figure 2G. The 
main process of the image route is to register the images to the target 
atlas so that coordinate information can be extracted and used to 
create geometric objects. Of the 280 data sets evaluated in the work 
with defining this workflow (Supplementary Table 1), 116 provided 
documentation of their study target location through images.

Images are suitable for spatial registration if they contain specific 
anatomical features that allow identification of positions in the brain. 
Thus, in the second step of the workflow route for images (Figure 1C″), 
the images are examined to see if they meet this criterium. 2D images 
to be registered should ideally cover whole brain sections, or at least 
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include unique landmarks (Bjerke et al., 2018a) that can be used to 
determine the angle of sectioning. 3D volumes may cover the whole 
brain or be partial volumes. Partial 3D volumes to be registered should 
preferably contain a combination of external and internal anatomical 
landmarks to allow identification of corresponding locations in an 
atlas. A range of image registration software are available (Klein et al., 
2010; Niedworok et al., 2016; Fürth et al., 2018; Puchades et al., 2019; 
Tappan et al., 2019), suitable for different types of data and purposes. 
Further discussions about the choice and application of such tools are 
provided in reviews by Tyson and Margrie (2022) and Kleven et al. 
(2023b). Whether or not suitable anatomical landmarks are available 
for determining the specific anatomical location of a sample should 
be considered case by case. If the images lack anatomical landmarks, 
the available information is considered using the semantic route of 
the workflow.

When registration is performed, the spatial registration output 
can be used to define geometric objects in the appropriate LocareJSON 
schema. For 2D images, polygons are used, representing the full plane 
of the image through defining its four corners (Figure 1D, see also 
Figures 2A,B). For 3D images, polyhedrons are used, representing the 
volume through defining the object’s eight corners. For images 
containing POIs (e.g., annotations of electrode tracks, see Figure 2E), 
the image route would be  used primarily as a mean to define 
coordinates corresponding to these points. In these cases, it might not 
be relevant to define geometric objects for the images themselves; 
instead, the extracted points are taken through the last two steps of the 
points route (Figures 1C′,D).

3.1.3 The workflow route for semantic location 
documentation

Semantic location documentation can be any term or description 
of an anatomical location. This includes a range of documentation 
types that do not meet the criteria for use in the other routes but still 
are useful to determine the data location. For example, images that do 
not contain sufficient anatomical landmarks for spatial registration 
may be useful for morphological observations of cells of tissue that can 
be  used to determine the anatomical location of data. Semantic 
location documentation may also include functional characteristics of 
cells or tissue recorded which could help confirm the location of 
electrode tracks. The most common form of semantic location 
documentation, however, is one or more anatomical terms, with or 
without reference to a brain atlas. Of the 280 data sets evaluated in the 
work with defining this workflow (Supplementary Table  1), 123 
provided documentation of their study target location through 
semantic descriptions only.

With the semantic route, a brain region term in the target atlas is 
chosen to represent the location of the data. In the second step of the 
semantic route (Figure 1B‴), we distinguish between terms defined in 
the target atlas, terms defined in another atlas, and terms not defined 
in an atlas. In the third step (Figure  1C‴), data are semantically 
registered to the target atlas by choosing a final term from the target 
atlas terminology to represent the data. The approach depends on 
which type of term was provided. For terms that are already associated 
to the target atlas, we generally use the term directly as the final term. 
For terms from other atlases, the registration to the target atlas 
involves a translation between terminologies, a process depending on 
defining the correspondence of the region in the other atlas with 
region(s) in the target atlas. If images of atlas plates from the other 

atlas are available (Figure 1B‴, yellow arrows), they can be spatially 
registered as described in the image route (Figure 1C″) and atlas plates 
can be overlayed with custom atlas overlays from the target atlas. This 
facilitates translation of terms from the other atlas to the target as 
described in our previous papers (Bjerke et al., 2020a; Kleven et al., 
2023b). If alternative spelling or terms differing from the atlas 
nomenclature are used, further consideration about underlying 
definitions and correspondence to the atlas nomenclature is needed. 
For example, the term “striatum” can be ambiguous, since it may refer 
to the caudate-putamen (or caudoputamen) alone or the caudate-
putamen combined with the nucleus accumbens. Use of parent terms, 
such as the “substantia nigra” to describe smaller subsets of a region 
can also introduce ambiguity. In all such cases it is necessary to 
evaluate available documentation and seek the most precise 
definition possible.

There are several considerations underpinning the choice of a 
final term when the initial term comes from another atlas or is not 
defined in an atlas. This process relies primarily on interpretation of 
the initial term and documentation by a researcher employing 
knowledge of neuroanatomy and neuroanatomical atlases, 
nomenclatures, and conventions. The documentation is evaluated in 
the choice of final terms, with essential considerations being the 
specificity, granularity, coverage, and confidence (defined in Figure 3). 
For example, if a term from another atlas is used, but there is no 
closely corresponding term in the target atlas, a fine-grained term 
might be substituted with a coarser term. This would decrease the 
granularity, but increase the confidence, in the final term. The final 
term will be  chosen from the target atlas terminology, with a 
corresponding atlas mesh associated to the data set (Figure 1D).

3.2 The Locare workflow output: 
LocareJSON

To exemplify how the geometric object representing the 
anatomical location of a data element can be formalized in a machine-
readable format, we created a collection of JavaScript Object Notation 
(JSON) schemas, collectively referred to as LocareJSON schemas. 
These schemas are based on GeoJSON elements and are hosted in the 
LocareJSON GitHub repository. These LocareJSON schemas provide 
suitable starting points for researchers who wish to create JSON files 
storing information about spatial location in the brain. Below 
we describe the structure and content of the LocareJSON schemas. 
Each schema consists of a general part (the locareCollection schema) 
and a part specific to the object it describes (individual object schemas).

The locareCollection schema include the following required 
properties: versioning of the schema (version), reference to the 3D 
target atlas (targetAtlas) and one or several persistent links to the 
original sources for the data (sourcePublication). The targetAtlas is 
referenced through a link to an openMINDS_SANDS (see text 
footnote 10) instance (commonCoordinateSpaceVersion). Details 
about the dimension, resolution, orientation, and origin of target atlas 
is essential to enable representation of geometric objects in any atlas 
space, e.g., in an online tool or viewer. The locareCollection schema 
has two optional properties: related publications (relatedPublications), 
and online resources (linkedURI, Uniform Resource Identifier). The 
linkedURI should be used to state an online resource primarily if it 
links to relevant data already embedded in a tool or viewer (e.g., as for 
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brain section images embedded in the LocaliZoom viewer on 
EBRAINS, Figure 2A).

The objects supported by LocareJSON (point, sphere, line string, 
cylinder, polygon, polyhedron, and atlas mesh) are defined in 
individual schemas. Point representations consist of coordinate 
triplets, with each triplet defining a specific point in a 3D atlas. Sphere 
representations build upon point representations and consists of 
coordinate triplets defining the sphere centroid, with information 
about radius to create a sphere measured from the centroid. Line 
string representations consist of two or more coordinate triplets, as a 
minimum defining the start and end point of a segment. Cylinder 
representations build upon line string representations with additional 
information about radius to create a cylinder around the length of the 

line string. Polygon representations consist of coordinate triplets 
defining corners of a delimited 2D plane. Polyhedron representations 
consist of coordinate triplets defining corners of a 3D object (vertices), 
including information about how vertices create polygons (faces) that 
can be used to represent 3D objects. Atlas meshes, a unique form of 
polyhedron, contain the name of a specific term from a 3D atlas, 
provided by a link to openMINDS_SANDS.

One or several objects can be defined within a locareCollection 
schema. The schemas for geometric objects include the following 
required properties: “type,” stating the geometric object type, and 
“coordinates,” a coordinate list formatted based on the type. The 
schema for atlas mesh includes the “parcellationEntityVersion,” stating 
the brain region’s URI. Each object also includes a set of properties 

FIGURE 3

Key aspects of semantic registrations. The Figure [modified from Bjerke (2021)] gives the definition of key considerations when using the semantic 
route to represent data described using terms from other atlases than the target atlas, or using terms not defined in an atlas. In the atlas plates, black 
text and lines illustrate a term and an area, respectively, corresponding to a target atlas region. Orange text and lines illustrate a term and an area, 
respectively, corresponding to a sampled region reported for a data set. Thus, the orange text and lines illustrate the region term and area that should 
be registered to a target atlas term. The Figure defines and illustrates concepts of granularity, coverage, specificity, accuracy, and confidence.
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pointing to the original data the schema represents. These properties 
include: the name of the data (“name,” required), clearly directing to 
a subject, file, or group of files; a description of the data (“description,” 
required), e.g., “position of cell body”; and a direct link to the data 
source for the geometric object (“linkedURI”; optional), e.g., the 
LocaliZoom viewer link for the individual brain section image used 
to create spheres shown in Figure 2A.

3.3 The Locare workflow use-cases

To demonstrate the workflow we  applied it to represent the 
location of data from rats and mice acquired by different methods, 
including electrophysiology (2 data sets), electrocorticography (1 data 
set), (immuno-)histochemistry (2 data sets), axonal tract tracing (1 
data set), neuronal morphology (2 data sets) and calcium imaging (1 
data set), all shown in Figure  2. Technical information about the 
use-cases is provided in Supplementary Table 2. The rat- and mouse 
brain data sets were co-visualized in the Waxholm Space atlas of the 
Sprague Dawley rat brain (Papp et al., 2014; Kjonigsen et al., 2015; 
Osen et al., 2019; Kleven et al., 2023a) or the Allen mouse brain atlas 
Common Coordinate Framework (Wang et al., 2020), respectively. For 
each use-case, we utilized a separate route in the Locare workflow, 
based on the type of location documentation available, resulting in a 
LocareJSON schema of which the type depended on the object chosen 
to represent the data (point, line string, sphere, cylinder, polygon, 
polyhedron, or atlas mesh). Each use-case is available as a LocareJSON 
file in the LocareJSON repository and as data sets on EBRAINS, where 
links to their source data sets and detailed methodological descriptions 
are also provided.

Figure 2 illustrates how different types of neuroscience data can 
be  represented as geometric objects (Figures  2A–I) that can 
be co-visualized in an atlas space (Figures 2J,K). The geometric data 
created as examples are available as derived data sets via EBRAINS 
(Blixhavn et al., 2023a,b,c,d,e; Reiten et al., 2023a,b,c). The derived 
data sets are listed in Supplementary Table  2, providing links to 
LocareJSON files for each use case, as well as to the landing page for 
each derived data set shown in Figure 2. From the landing page, a data 
descriptor document is provided, explaining how the geometric data 
were specified following the Locare workflow, and how the 
LocareJSON file is organized. These resources provide detailed 
descriptions of the geometric location data, with suggestions of how 
they can be  visualized. The data coordinates provided can, e.g., 
be  co-visualized in an atlas viewer, such as the MeshView tool, 
available from EBRAINS.19,20 This tool visualizes brain structures from 
WHS rat brain atlas and the AMBA CCF mouse brain atlas as 
geometric meshes and includes a feature for importing point 
coordinates, such as those provided with our data sets, as shown in 
Figure 2.

The use-cases demonstrate that the object representation that best 
represent the data is highly dependent on how the data are made 
available, and the nature and extent of associated documentation 
provided with it.

19 https://www.ebrains.eu/tools/meshview

20 https://meshview-for-brain-atlases.readthedocs.io/en/latest/index_.html

4 Discussion

The Locare workflow specifies different ways in which highly 
variable documentation describing the anatomical location of 
neuroscience data can be used to create representations of the data as 
geometric objects in a reference atlas space. The collection of 
LocareJSON schemas exemplify how such objects can be structured 
in a machine-readable way. The workflow was established and 
validated using 280 rat and mouse brain data sets generated using 
highly different methodologies (Supplementary Table 1). These data 
sets, shared on the EBRAINS Knowledge Graph between 2018 and 
2023, allowed us to categorize the location documentation into three 
main categories. The geometric object data created for the nine 
examples used to demonstrate the Locare workflow (Figure 2) are 
shared as derived data sets on EBRAINS with links to their source data 
sets (Supplementary Table  2). In our use-cases, coordinates were 
specified using tools provided via the EBRAINS Research 
Infrastructure, but numerous other tools for generating 3-D geometric 
objects and coordinates (see Tyson et al., 2022; Fuglstad et al., 2023) 
may also be suitable as a starting point to create Locare JSON files. 
Below, we consider the potential impact, advantages, and limitations 
of the Locare workflow, including the geometric representations it 
delivers, and discuss possibilities for utilizing such geometric 
representations for visualization and spatial queries.

The FAIR guiding principle for data management and stewardship 
emphasize machine-readability and use of persistent identifiers to 
optimize reuse of scientific data (Wilkinson et al., 2016). Web-based 
open data infrastructures, structured metadata, and copyright licenses 
make data findable, accessible, and re-usable, while use of standardized 
file formats ensure interoperability of data files with different tools and 
among similar types of data (Pagano et al., 2013). In the context of the 
FAIR principles, the Locare workflow allows creation of machine-
readable files representing the anatomical location and relevance of 
different data that otherwise would be difficult to find, access, and 
compare. By defining geometric objects using atlas-based coordinates, 
the data representations are spatially integrated and interoperable, in 
the sense that they can be co-visualized using viewer tools and utilized 
in various computational processes, including spatial search.

Our use-cases (Figure 2; Supplementary Table 2) show that the 
usefulness of location documentation depends more on the amount and 
level of detail of the documentation provided, than the method used to 
obtain the data. This highlights the need for good reporting practices. It 
is well established that the amount and consistency of metadata provided 
with research data varies considerably (see Bjerke et al., 2018a, 2020a), 
which in turn also contributes to the known problems with low 
replicability and reproducibility of studies (Goodman et al., 2016; Stupple 
et  al., 2019). The different routes through the Locare workflow 
accommodates the variability of location documentation typically 
provided with experimental data sets, thus guiding researchers to define 
the most specific geometric representations possible with the 
documentation available for their data sets. In this way, data generated 
using the same methodology may be represented by different geometric 
objects when the available metadata differ. The location of a neuronal 
reconstruction can be defined as a singular point in an atlas (Figure 2G), 
or only as a mesh representing an entire anatomical subregion when less 
specific location documentation was provided (Figure 2C). Similarly, a 
series of histological images registered to an atlas may also be represented 
in different ways; as polygons representing the locations of sections in 
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atlas space (use-case B), or as a population of points representing specific 
cellular features extracted from section images (Figure 2F). Improved 
routines for recording and sharing location documentation for 
neuroscience data will enable more precise spatial representation of data 
(Bjerke et al., 2018a; Tyson and Margrie, 2022; Kleven et al., 2023a).

The most detailed and accurate spatial representations of data are 
achieved by spatial registration of images showing anatomical features. 
A range of image registration tools are available (Puchades et al., 2019; 
Tappan et  al., 2019; Carey et  al., 2023; for review, see Tyson and 
Margrie, 2022), tailored for different types of 2D or 3D image data, 
and compatible with different brain atlases. Both manual and 
automated methods exist for different applications. Scripts are 
available for converting the output from the spatial registration tool 
QuickNII to LocareJSON polygon schema (see Figures 2A,B). Similar 
scripts can readily be  adapted to different tools. Once images are 
spatially registered to an atlas, they can be used to specify points or 
volumes of interest, such as labeled objects (Figures 2F,G), electrode 
recording sites (Figure 2C), or tracer injection sites (Figure 2A).

The location of POIs, derived from text descriptions or extracted 
from atlas-registered images, can result in any geometric object 
representation. When coordinates for POIs have been extracted, an 
important consideration is therefore which geometric object would 
best represent it. There might be several alternatives, as, e.g., in the case 
of electrode tracks. A point can be used to represent the end or the 
entry point of the electrode (although the end point is usually most 
relevant as this is where recordings are made), and a line string may 
represent both the end and entry point, which would be appropriate 
when there are recording sites along the track (see Figure 2I, where a 
linear electrode array with 16 recording sites along the electrode was 
used). If the radius of the object (e.g., the electrode) is known, points 
and line strings may alternatively be replaced by spheres and cylinders, 
by introducing the radius of the object. Determining a radius should 
be the preferred practice as it benefits both visualization and spatial 
query purposes. In many cases, however, information about the radius 
is missing. Whether a best approximation is the better choice must 
be evaluated on a case-by-case basis.

The Locare workflow defines how the location of disparate 
neuroscience data can be represented as geometric objects in an atlas 
space. The workflow was developed using rat and mouse data sets with 
associated atlases, tools, and resources shared via the EBRAINS 
Research Infrastructure. The concept of data integration through 
geometric representations is generic and system independent, and the 
Locare workflow is therefore in principle applicable for other species 
for which an open access 3D brain atlas is available, such as, e.g., the 
zebrafish larvae (Kunst et al., 2019), macaque (Balan et al., 2024), or 
human brain (Amunts et al., 2020).

With the Locare workflow, we propose a streamlined approach to 
specify, organize, and store information about anatomical positions in the 
brain, yielding machine-readable files suitable for search engines, viewers, 
and other tools. The focus is to represent the location of data in a simplified 
and standardized format, rather than aiming to integrate the actual data 
files. We believe this will ensure the relevance of the workflow even when 
facing new methods, tools, and file formats. Standardized representation 
of data as geometric objects in 3D coordinate space can be utilized in 
spatial queries of neuroscience databases. Spatial queries will likely make 
it easier for researchers to find and reuse relevant data compared to free-
text searches, and possibly open for more analytic approaches for re-use of 
shared data (Cao et al., 2023).

We envision that the Locare workflow can guide researchers 
describing anatomical locations in their data, and provide a starting 
point for defining new standards for current and future platforms, 
thus making neuroscience data more findable, accessible, interoperable 
and reusable, in accordance with the principles set forward by 
Wilkinson et al. (2016). Future work will include extension of the 
concept and workflow to human and non-human primate data and 
implementation into software for querying and accessing the location 
and distribution of neuroscience data through atlases.
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