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Editorial on the Research Topic
Metabolomics and transcriptomics in biomarker discovery: mass
spectrometric techniques in volatilome research
s

The central dogma of molecular biology traces a path from genomic sequence
information represented in DNA to transcribed messenger RNA decoded at the ribosomal
level into proteins that perform a variety of catalytic and regulatory roles within cells
(Crick, 1970). The combined activity of these proteins gives rise to pools and fluxes of
metabolites within emergent metabolic networks (Durek andWalther, 2008).This genotype
to phenotype continuum remains both a fundamental organizing principle for the life
sciences and a compelling challenge for systems level thinking in the 21st century (Benfey
and Mitchell-Olds, 2008; Costanzo et al., 2019). While our capacity to predict and annotate
protein coding potential within genomes and transcriptomes has grown exponentially since
the initial introduction of the chain termination method by Sanger and colleagues more
than five decade ago (Sanger et al., 1977), it has proven more difficult to constrain the
diversity of metabolites over time and space or in relation to health and disease states
(Sharon et al., 2014; Sieber and Spradling, 2017).

Nevertheless, researchers have pressed on to profile metabolite pools
and fluxes not only within organismal systems, but also within natural and
engineered environments, integrating multi-omic (DNA, RNA, protein, and
metabolite) data sets to reconstruct emergent metabolic processes (Fondi and
Liò, 2015). This has led to the development of new analytical platforms and
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methods as well as advanced computational workflows enabling
more holistic understanding of metabolic expression at the
individual, population, and community levels of biological
organization. Nowhere is this more evident than in the rapid
development of volatilome research, an extension of analytical
chemistry and multi-omics integration focused on detection and
quantification of volatile organic compounds (VOCs) produced by
interacting cells (Mansurova et al., 2018). This current Research
Topic “Metabolomics and Transcriptomics in Biomarker Discovery:
Mass Spectrometric Techniques in Volatilome Research” presents the
readers with a compilation of 10 original research articles and two
contemporary reviews exploring advances in metabolomics and
VOC detection. The contributions range from human medical
applications related to biomarker discovery to biotechnology
applications in fungi, plants and microbial cell systems.

Alodiab et al. used a metabolomics approach on dried blood
samples to identify two potential biomarkers for galactosemia
(GAL), a human genetic disorder that can cause life-threatening
side effects related to defective glucose metabolism. Similarly,
Sakanaka et al. performed metabolic profiling of saliva and
plasma samples and identified a significant association between
salivary allantoin and 1,5-anhydroglucitol (1,5-AG) useful in the
development of a non-invasive protocol to diagnose atherosclerosis
in patients with type 2 diabetes (T2D). Zhou et al. used a higher
resolution method to investigate metabolite profiles associated
with the treatment of cerebral ischemic stroke with Danshen
Chuanxiongqin (DSCXQ) preparations, a traditional Chinese
medicine. They identified 55 distinct metabolites involved in
sphingolipid metabolism between treatment groups that were
differentially impacted by DSCXQ consistent with a dampening
mode of action on the neuroinflammatory response. Zhang et al.
used a similar high-resolution method to profile metabolites

associated with clonorchiasis (a parasitic infection caused by the
Chinese liver fluke Clonorchis sinensis) using a rodent model system
of infection. Phan and Blank investigated the fungus Ustilago
maydis using stable-isotope labeling methods to profile metabolites
produced in response to different carbon sources. They compared
a range of sample preparation and processing methods to define
a process for absolute quantitation in the context of bioprocess
development in Ustilago maydis.

From the vantage of VOC detection, Furuhashi et al. devised a
sampling procedure to extract VOCs from the headspace of lung
cell cultures to better understand the interplay between metabolite
production and cancer. They identified evidence for increased lipid
peroxidation as measured in the increase of trans-2-hexenol and
correlated this with changes in the levels of alcohol dehydrogenase
1C gene linking metabolite production to gene expression in cancer
cell lines. Fenn et al. used a similar approach to explore the interplay
between common respiratory pathogens Staphylococcus aureus
and Pseudomonas aeruginosa grown in isolation or in co-culture
with human lung cells. They detected compounds associated with
bacterial infection as well as changes in the levels of selected VOCs
based on culture conditions relevant to human in vivo environments.
Issitt et al. measured VOCs produced by breast cancer cell lines
exposed to low oxygen conditions representative of the tumor
microenvironment to identify potential biomarkers in cell hypoxia.
They measured increased uptake of methyl chloride, acetone and n-
Hexane from hypoxic cells and concomitant production of styrene,

describing volatilomic mechanisms behind this cellular condition
for the first time. Expanding on the biomarker theme, Weber et al.
used breath analysis combined with a machine learning approach to
differentiate between the VOC profiles of children with and without
asthma. They were able to discern a wide range of metabolites
in the exhaled breath of asthmatic children linked to metabolic
processes associated with chronic disease. Farneti et al. used a
high-throughput method for rapid phenotyping of raspberry fruit
maturation in relation to VOC production to assess fruit quality
and to identify cultivars with optimal aroma profiles for future
breeding programs.

Finally, two reviews explore methods and applications of
volatilome research through a contemporary exploration of the
relevant literature. Bajo-Fernández et al. consider the expanding
use of exhaled breath analysis as an exciting area of clinical
research with the potential to define a new era of non-invasive
diagnostic testing. They highlight the need for improved standards
of practice related to sample processing, VOC detection, and
analysis required to achieve this vision. Szeitz et al. take a more
historical approach to mass spectrometry platform innovation
in the context of VOC profiling, shining a spotlight on the
interrelationship between technological advances and the expansion
of volatilome research into increasingly complex matrices. The
resulting platform descriptions provide a useful guide intended
to assist practitioners and potential end-users performing VOC
analysis with advanced instrument performance. Collectively,
contributions to this Research Topic capture the current state of the
art in metabolite and VOC profiling, reinforcing the potential of
metabolomic methods and applications in biomarker discovery and
biotechnology innovation. Importantly, this is a rapidly advancing
area of research that brings together the peer efforts of scientists and
engineers to develop integrated platforms and workflows needed
to improve mass resolution and throughput. Effective uptake of
these advances will require coordinated and dedicated access to
infrastructure and education across multiple training levels and
disciplines.
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Takeshi Furuhashi 1*, Ryuga Ishii 1, Haruka Onishi 1 and Shigenori Ota 2

1 Anicom Specialty Medical Institute Inc., Tokyo, Japan, 2GL Sciences Inc., Saitama, Japan

Cellular volatile organic compounds (VOCs) are unique compounds whose metabolic

pathways remain enigmatic. To elucidate their metabolism, we investigated the VOCs of

lung cancer A549 and 2 non-cancer lung cells (HLB; HBEpC). Neutral sugars and lactate

in the medium were measured by colorimetric assay. VOCs were enriched by monotrap

and profiled by GC-MS. To investigate the enzymes that change VOC metabolism in

cells, we conducted ALDH activity assays and qPCR. ROS (reactive oxygen species)

assays were conducted to assess oxidation stress. The colorimetric assay showed

that especially A549 and HLB took up sugars from the medium and rapidly secreted

lactate into the medium. The VOC profile (GC-MS) revealed a trans-2-hexenol increase,

especially in A549 lung cancer cells. This is a novel lipid peroxidation product from animal

cells. Based on the absolute quantification data, trans-2-hexenol increased in parallel with

number of A549 cancer cells incubated. The qPCR data implies that ADH1c potentially

plays an important role in the conversion into trans-2-hexenol.

Keywords: cellular volatile, VOC (volatile organic compounds), lipid peroxidation, GC-MS, lung cell

INTRODUCTION

The potential relationship between VOCs (volatile organic compounds) emitted by the human
body and malignant diseases (e.g., cancer) has been investigated since Hippocrates’ time (Di
Francesco et al., 2005). Recent technological advances have provided new knowledge about the
metabolic changes related to VOC production in diseases, and VOC profiles enable comparison
between normal and disease conditions (Hakim et al., 2012).

Nonetheless, a gap remains between disease detection and volatile compound analysis. One
reason is that the relationship between pathology and the metabolic pathways producing VOC is
not fully understood. The mechanism of biological VOC synthesis in cells is enigmatic because
many studies on such metabolites are restricted to bacteria, algae, and fungi (Ruffing, 2013).
Moreover, the enzymes associated with profiled cell VOCs have not always been identified (e.g.,
hydrocarbons, alcohols, alkenes). The goal of our study is to elucidate the VOC pathway which
can potentially be marker for cancer. VOC analysis by GC-MS profiles (Buszewski et al., 2012) is
certainly useful for assessing VOCs as biomarkers, but there is some room for improvement in
VOC sampling.

In fact, direct gas injection or headspace analysis (Snow and Slack, 2002) normally show lower
VOC values than methods using fiber-based VOC sampling and enrichment. Two types of fiber-
based sampling are currently available. One is a fiber attached to a syringe which is exposed to gas
by incubation (typical for SPME; solid phase micro extraction). The other is a naked fiber shape
(typical for monotrap). In the case of SPME, only the fiber surface can retain VOCs, whereas
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in monotrap the VOCs are retained both by the surface and
the inner porous part. This opens the door for improving the
intensity of VOC detection as well as for introducing disposable
VOC-capturing materials.

Monotrap is a disposable sorptive media based on the large
surface area of silica monolith. It has been applied in biological
research and can be preserved in the sample bottle prior to
measurement (Jang et al., 2011; Ma et al., 2013). Nonetheless,
despite the large surface for capturing VOCs, monotrap has been
used solely for static sampling. This means that improving the
preconcentration technique (e.g., NTME; needle trap extraction
and ITEX; in tube extraction) requires shorter incubation time
but generates better intensity (Mochalski et al., 2018) and should
be applicable to single cell studies as well (Serasanambati et al.,
2019). For this reason, we developed an active sampling approach
for monotrap-based sample preparation which is suitable for
cellular VOC analysis.

Moreover, solely a VOC profile is insufficient to elucidate
a synthetic pathway. To date, a VOC profile has not been
combined with any enzyme assay. In this study, we conducted
enzymatic assays to find key enzymes related to marker
VOC production.

MATERIALS AND METHODS

In this study, we used A549 (human lung adenocarcinoma),
human lung fibroblasts (HLB) cells, and human bronchial
epithelial cells (HBEpC) as primary cells. This is because lung
cancer is one of the most lethal cancers and also because some
VOC analyses have already been reported (de Lacy Costello et al.,
2014; Lemjabbar-Alaoui et al., 2015). Cell cultures are normally
done in 2-dimensional (2D) form, but this sometimes does not
reflect actual physiology (Kapałczynska et al., 2018). Accordingly,
we compare flasks with non-adherent plates, which canmimic 3D
culture systems.

Based on the VOC profile results, we focus on trans-2-
hexenol metabolism. ALDH (aldehyde dehydrogenase) assays
were applied to assess the conversion of aldehyde groups
into carboxylic acid groups. To investigate the speed of
sugar uptake (as the main energy source) and to evaluate
the glycolysis pathway, we conducted phenol sulfuric acid
assays for the medium assay to determine sugar consumption
from the medium. Lactate secreted into the medium was

Abbreviations: A549, Human lung adenocarcinoma; AAR, Acyl ACP reductase;

ADC, Aldehyde decarbonylase; ADH, Alcohol dehydrogenase; ALA, Alpha

linoleic acid; ALDH, Aldehyde dehydrogenase; ALR, Aldehyde reductase; ATP,

Adenosine triphosphate; DMEM, Dulbecco’s modified eagle medium; ECM, Extra

cellular matrixes; EIC, Extracted ion counting; EI-MS, Electron ionization; FAR,

Fatty acyl-CoA reductase; FCS, Fetal bovine serum; GC, Gas chromatography;

GAPDH, Glyceraldehyde-3-phosphate dehydrogenase; HBEpC, Human bronchial

epithelial cells as primary cells; HLB, Human lung fibroblasts cells; HPL,

Hydroperoxide lyase; IR, Infrared spectroscopy; ITEX, In tube extraction; LOX,

Lipoxygenase; MS, Mass spectrometry; NAD, Nicotinamide adenine dinucleotide;

NTME, Needle trap extraction; PBS, Phosphate-buffered saline; PCA, Principle

components analysis; PTR, Proton transfer reaction; PUFA, Polyunsaturated fatty

acid; qPCR, Quantitative polymerase chain reaction; ROS, Reactive oxygen species;

SCFA, Short chain fatty acid; SIFT, Selected ion flow tube; SPME, Solid phasemicro

extraction; TD, Thermal desorption; VOC, Volatile organic compounds.

calculated using a lactate assay kit; this reflects the balance
of reduction and oxidation inside the cell. qPCR (quantitative
polymerase chain reaction) was applied to determine whether
certain enzymes (i.e., generation of trans-2-hexenol) are
related to the VOC profile or not. ROS (reactive oxygen
species) assays were done to assess whether cells are under
oxidation stress.

Cell Culture Condition
A549 cells and human lung fibroblasts (HLB) cells were
purchased from the American Type Culture Collection.
Immortalization was done to HLB. A549 cells were originally
isolated from a lung carcinoma of a 58-y-old man, showed
epithelial morphology and grew adherent. All cells were
grown in DMEM (Dulbecco’s modified eagle medium) high-
glucose culture medium containing sodium pyruvate (110
mg/L) supplemented with 10% FCS (fetal bovine serum),
penicillin (100,000 units/L), streptomycin (100 mg/L), and
L-glutamine (293 mg/L). Human bronchial epithelial cells
(HBEpC) are primary cells (PromoCell GmbH) isolated
from the mucosa of the main bronchi of a 42-y-old male
Caucasian. The cells were cultivated in Airway Epithelial
Cell Growth Medium (PromoCell GmbH) supplemented
with the Airway Epithelial Cell Growth Medium Supplement
Pack (PromoCell GmbH) according to the manufacturer’s
instructions. A T75 cell culture flask (250mL, 75 cm2) was used
for the culture. For 2-dimensional (2D) and 3-dimensional
(3D) cell culture, flasks with a red screw cap (CellStar
618175) and cell-repellent surface flasks with white screw
caps (CellStar 658985), respectively, were used. Cultured cells
were observed, and photographs were taken using an OLYMPUS
IX71 microscope (OLYMPUS) and software AdvanView 3.7
(AdvanVision Co, Ltd).

For all experiments, cells were cultivated under standard
conditions at 37◦C in a humidified atmosphere with 92.5%
air/7.5%CO2. All cells (1× 106) were inoculated in 20mL phenol
red-free DMEM high-glucose medium (supplements: 5% FCS,
100,000 units/L penicillin, 100 mg/L streptomycin, 293 mg/L L-
glutamine, and 110 mg/L sodium pyruvate). After Days 3 and
4, cells were collected by digestion with 0.25% Trypsin-EDTA
(Thermo Fisher) for 5min at 37◦C. After trypsinization, medium
(DMEM containing 10% FBS) was added and mixed by pipetting
cells. Cells were collected by centrifugation and resuspended in
fresh medium. Cell counts were performed on a Cell Counter
model R1 (OLYMPUS, USA).

The FCS concentration in DMEM during the experiment was
lowered to 5% to reduce the high background of VOCs in the
analyzed headspace. Cells were grown in these conditions for
96 h, up to a confluence of 50–60% (around 1.0× 106 cells/flask).
To quantify sugar and lactate in the medium, Days 1, 2, 3, and
4 were sampled. The same days were sampled for the cellular
ALDH activity assay and qPCR. Cells were transferred into a
new flask 4 days after inoculation. Physiologically, Day 0 cells
were the same as Day 4 cells. Considering the accumulation of
VOCs inside the cell culture flasks, Days 0, 3, and 4 samples were
collected for VOC analysis.
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Phenol-Sulfuric Acid Assay
Neutral sugars as cellular energy sources were quantified by
the phenol-sulfuric acid assay (modified from a previous study;
(DuBois et al., 1956)). At each time point, 5 µL culture medium
was taken from the flask and transferred into a 2mL Eppendorf
tube. We then added 195 µL deionized water and 80% 5 µL
phenol solution. Thereafter, 500 µL of concentrated sulfuric acid
was added by titration (on ice). The solution was mixed by
inverting the tube and incubated for 25min at room temperature.
We then transferred 150 µL into 96-well plates and measured
absorbency at 490 nm using Enspire (Perkin-Elmer, USA). Each
measurement was biologically replicated 4 times. Quantification
involved using a linear calibration curve with glucose standard
solution (0.5–100 µg).

Lactate Assay
A Lactic acid Assay Kit (10139084035, R-Biopharm AG,
Germany) was used to quantify lactate in the medium. At
each time point, 1 µL culture medium was taken from the
flask and 99 µL deionized water was added. The solution was
transferred to 96-well plates, and 100 µL glycylglycine buffer
(440 mg/30mL, pH 10) and 20 µL NAD (nicotinamide adenine
dinucleotide) solution (210 mg/6mL) were added. After that, 2
µL glutamate-pyruvate transaminase suspension (1,100U) was
added. The solution was incubated at room temperature for
5min. Absorbency at 340 nm was measured by Enspire (A1).
Then, 2 µL lactate dehydrogenase solution (3,800U) was added
and incubated at room temperature for 30min. Absorbency at
340 nm was measured by Enspire (A2). The lactate concentration
was calculated as A2-A1. Each measurement was biologically
replicated 4 times. A linear calibration curve with lactate standard
solution (10–2,000 ng) was used for quantification.

Monotrap VOC Enrichment-Thermal
Desorption (TD)
In monotrap, the mass transfer can be very slow due to a
thicker membrane than in SPME. This requires an alternative
agitation/convection strategy especially designed for monotrap.
In this study, we tested pumping with monotrap, which is
active sampling to enrich VOC by continuously pumping air.
This enables capturing large volumes of VOCs within 30min.
Graphite and C18 type monotrap were used for this study. At
each incubation period (Days 0, 3, and 4), VOCs were collected
with a special penetrating vent cap (modified after a previous
study; Schallschmidt et al., 2015). Each measurement was done
in triplicate. For VOC quantification with different numbers
of cells and to determine a limit of detection, a calibration
curve was prepared using reference compounds. Three VOCs
(i.e., trans-2-hexenol, tetradecane, isobutyrate) were chosen from
VOC GC-MS profile data. Reference compounds for absolute
quantification were purchased from SIGMA and TCI company
(trans-2-hexenol, SIGMA 132667; tetradecane, TCI T0079; and
isobutyrate, SIGMA l1754). For preparing the calibration curve,
reference compounds were added into 10mL deionized water.
The solution was put into the cell culture flask, and subsequently
the volatilized compounds were trapped by monotrap with
30min pumping and measured by GC-MS. For comparison, 1

× 106, 2 × 106 A549 cells and cell-less media as negative control
were compared. The incubation period was Days 0 and 3.

The experimental set-up used for the cell culture headspace
analysis is shown in Figure S1. The control mediumwas obtained
by incubating DMEM culture medium in the same conditions as
the cell samples, but without seeded cells.

A syringe was connected to the cell culture flask by a
penetrating screw cap hole. Two monotraps, graphite type
(MonoTrap GC TD, Cat.No. 1050, GL Sciences, Tokyo) and C18
type (MonoTrap RSC18 TD, Cat.No. 1050-73201, GL Sciences,
Tokyo) were put into the syringe (TERMO 2.5mL, SS-02SZ).
Pumping (∼1,500 times up and down in total) was repeated for
30min. After 30min pumping, monotraps (both graphite type
and C18 type) were removed and put tandemly into a Handy-TD
glass liner (MonoTrap TD Liner for Handy-TD Cat.No. 1003-
75005). As we used a T75 flask (270mL volume containing 10mL
aqueous solution) and pumped using a 2.5mL syringe, the total
head space volume was 270+ 2.5 – 10= 262.5 mL.

In preliminary experiments, we determined that 20–30min
was sufficient for the monotrap to capture gases. The liner was
inserted into the Handy-TD.

GC-MS Conditions
GC-MS measurements were carried out on a single quadrupole
mass spectrometer (5977B-MSD; Agilent Technologies, Santa
Clara, CA, USA) equipped with 7890BGC (Agilent Technologies,
Santa Clara, CA, USA) and Handy-TD265 (GL science, Iruma
city, Japan). The conditions were modified from a previous study
(Furuhashi et al., 2018). The initial Handy-TD condition was a
constant purging flow of 5 mL/min of helium gas at 40◦C for
0.1min. Predesorb was 70 kPa. For desorb, the ramp rate was
45◦C/s, with 1.5min holding at 250◦C. GC-MSmeasurement was
started directly after Handy-TD desorb.

The temperature of the liner was 230◦C. The GC column
helium gas flow was set at 1 mL/min constant rate. DB-Wax UI
30m, 0.25mm, 0.25µm (122-7032 UI, Agilent, USA) was used
as a GC column. The oven temperature gradient for the samples
was as follows. After a 5min, 50◦C isothermic period, the oven
was programmed to rise to 150◦C at a rate of 5◦C min−1, then
rise to 260◦C at a rate of 40◦C min−1, held at 260◦C for 1min.
The temperature of both the GC-MS ion source and transfer line
was set at 250◦C. The scan range was between m/z 30 and 600.
For quantification, we calculated the peak area of a conventional
70 eV EImode (Extractor ion source; Agilent Technologies, Santa
Clara, CA, USA) extracted ion chromatogram using software
(Mass Hunter; Agilent Technologies, Santa Clara, CA, USA).
The chosen m/z and retention time for quantification are
described inTable S1. The sample was measured with split mode.
Cellular VOCs were measured with a split ratio of 3. Between
batch measurements, C17:0 FAME was measured to check the
intensity between different batches as well as the retention
time shift.

qPCR Condition
At each time point, culture mediumwas removed by centrifuging
(3,000 g for 5min). Cells were washed with PBS (phosphate-
buffered saline). For 2D culture cells, cells were detached from
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FIGURE 1 | Photos of medium as negative control, HLB (Human lung fibroblasts cells), HBEpC (Human bronchial epithelial cells as primary cells), and A549 (Human

lung adenocarcinoma) from Days 0 to 4 in both 2D and 3D culture. All cell types in 2D culture spread across the bottom of the flask, whereas those in 3D culture

aggregated. Photos were taken at 0, 3, 4 days after inoculation. Scale bar: 500µm except for HBEpC at Day 0 (200µm).

the flask by scratching with a scraper. The cell suspension was
transferred into 1mL Eppendorf tubes and centrifuged at 200 g
for 5min. The supernatant was aspirated.

Total RNA was extracted from cells using TRIzol Reagent
(Cat: 15596026, Thermo Fisher Scientific, USA) according to the
manufacturer’s protocol. mRNA was reverse transcribed using
an oligo (dT) primer and SuperScript III Reverse Transcriptase
(Cat: 18080400, Invitrogen, USA) (Ishii et al., 2012). For the
thermal cycle reaction, the cDNA template was amplified by
the thermal cycler LightCycler 96 System (Roche Diagnostics,
USA) using the FastStart Universal SYBR Green Master (Rox)
(Cat: 04 913 914 001, Roche Diagnostics, USA) under the
following reaction conditions: 40 cycles of PCR (95◦C for 10 s,
and 60◦C for 1min) after an initial denaturation (95◦C for
10min). Fluorescence was monitored during every PCR cycle at

the annealing step. The authenticity and size of the PCR products
were confirmed using a melting curve analysis with the software
LightCycler 96 System version SW1.1 (Roche Diagnostics,
USA). mRNA levels were normalized using Glyceraldehyde-3-
phosphate dehydrogenase (GAPDH) as a housekeeping gene.
Primer sequences are provided in Table S2.

ALDH Assay
The ALDH Assay Kit (K731-100, BioVision, USA) was used
to quantify cellular ALDH activity. At each time point, culture
medium was removed by centrifuging (3000 g for 5min). Cells
were washed with PBS. For 2D culture cells, cells were detached
from the flask with a scraper. The cell suspension was transferred
into 1mL Eppendorf tubes and centrifuged at 200 g for 5min.
The supernatant was aspirated and 200 µL ALDH assay buffer
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was added. The cell suspension was homogenized by vortex and
incubated on ice for 10min. The suspension was centrifuged at
20,000 g for 3min and the supernatant transferred to a new tube.
The supernatant solution was incubated at room temperature
for 10min. Absorbency at 450 nm was measured by Enspire at
0, 20, 40, 60min. As enzymatic activity corresponded to NADH
generation during the reaction time, the slope of absorbency
at 450 nm and time (X axis) was calculated. The obtained
slope was normalized with cell number (1 × 105 cells) and
then multiplied times 104. Each measurement was biologically
replicated 4 times. The cell number for the normalization of
ALDH activity was determined with an OLYMPUS cell counter
model R1 (OLYMPUS).

ROS Assay
The Cellular ROS assay kit (Red) (ab186027; Abcam, Cambridge,
UK) was used. The protocol was modified from the ab186027
protocol. 2D or 3D cultured cells (HLB/HBEpC/A549) were
prepared (2D or 3D culture for 1–4 days incubation). After
trypsin treatment, cells were washed with PBS two times. The
cell suspension was prepared as 5 × 104 in 100 µL PBS. After
pipetting the cell suspension 3 times, 50 µL suspension was
transferred into a microplate (655077, 96 well, F-bottom, black,
Fluotrac; Greiner Bio-one, Germany). We added 50 µL ROS red
working solution (2µL ROS red stock solution in 1mLROS assay
buffer) into cell suspension. We then incubated the microplate at
37◦C with 5% CO2 for 1 h. After incubation, fluorescence was
measured as Ext 520 nm Ems 605 nm using Enspire (Perkin-
Elmer, USA). Each measurement was biologically replicated
4 times.

RESULTS AND DISCUSSION

All 2D-cultured cells proliferated and spread on the bottom of
the flask 3 days after inoculation, and they nearly overflowed
4 days after inoculation (Figure 1). The 3D-cultured cells
proliferated with aggregation (Figure 1). Data obtained by
the conventional phenol-sulfuric acid assay indicated that the
neutral sugar concentration of all cell culture media gradually
decreased over time in the 2D cell culture (Figure 2A).
The tendency was similar in 3D cell cultures (Figure 2B)
in HLB and A549. In the HBEpC cell culture medium, the
neutral sugar concentration did not decrease significantly (p-
value of 0–4 days after inoculation: 0.2). Both 2D and 3D
culture medium without cells showed no decrease in medium
sugar concentration.

Lactate secreted into the medium gradually increased with
time in all 2D-cultured cells, (Figure 2C) and 3D-cultured
cells, except that the lactate increase of HBEpC was moderate
(Figure 2D). No change was recorded in 2D and 3D culture
media without cells. Previous reports suggest that tumor cells
under heterogeneousmicroenvironments can enter into amutual
relationship via lactate transport (Sonveaux et al., 2008). Our
lactate assay data showed that both 2D- and 3D-cultured cancer
cells secreted lactate into the medium, although the secretion
speed in the latter was slower than in the former. Interestingly,
compared with other cancer cells, the sugar uptake speeds

from the media were slow only in 3D-cultured HBEpC, and
the secretion of lactate into the media remained at a lower
level. In general, rapid sugar uptake and lactate secretion were
conspicuous in cancer cells (A549) and in normal cells that were
immortalization treated (HLB), leading us to conclude that such
characteristics are common in immortalized cells and are not
cancer specific.

From the 81 VOC reference compounds list for this study
(Table S1) - including hydrocarbons, aldehydes, alcohols, fatty
acids, methyl esters, and aromatic groups −30 VOC peaks were
detected in the flask based on the data obtained (Figures S2–S4).
PCA (principle components analysis) based on these 30 VOCs
(Figures 2E,F) showed that the VOC profiles of themediumwere
separated from those of cells both in 2D and 3D culture. After 3
days incubation, the difference between solely medium and cells
began to increase. In 3D culture, the separation between cells was
clearer than in 2D culture after 3 days incubation.

To investigate the VOCs contributing to the group separation
in PCA, statistical analysis (t-test; p < 0.05) (Table S3) revealed
an increase of benzaldehyde in the medium and decrease in cells
(except A549 2D culture Day 4). This tendency is consistent with
a previous study on mesenchymal stromal/stem Cellular VOCs
(Klemenz et al., 2019). Tetradecane from all cellular samples
increased with time. trans-2-hexenol conspicuously increased
over time particularly in A549 cells in both 2D and 3D culture.
The increase of trans-2-hexenol between medium and A549 at
Day 4 was also significant (Tables S3, S4; Figure S4). Isobutyrate
increased in A549 and HLB showed statistical significance in
A549 3D culture and HLB 2D culture. A 3-methyl pentanoate
increase was observed as an HBEpC-specific VOC but did not
increase in other cells.

Based on the statistical analysis of VOC profile data, we
focus on 10 VOCs (e.g., undecanal, tetradecane, nonanal,
2-ethyl-1-hexanol, isobutyrate, trans-2-hexenol, tridecane,
toluene, acetate, undecane). These increased especially in 2D-
or 3D-cultured A549 cancer cells at Day 4. Among these,
undecanal, nonanal, 2-ethyl-1-hexanol, acetate, and tridecane
showed statistical significance in A549 2D culture. In contrast,
the increase was inconspicuous in the cell-less media. The
increase of toluene and undecane in A549 Day 4 was statistically
significant compared to cell-less media at Day 4, but these two
compounds then decreased over time in the A549 incubation.
Trans-2-hexenol, tetradecane, isobutyrate were positively
correlated in cellular samples, showing that these VOCs
increased together.

Accordingly, we selected trans-2-hexenol, tetradecane, and
isobutyrate for quantification. The limits of detection were
firstly determined as 5 nmole (trans-2-hexenol), 10 nmole
(tetradecane), and 50 nmole (isobutyrate) in cell culture flasks
with 10mL aqueous solution. Linearity as a standard curve was
valid between 5–500 nmole/10mL (trans-2-hexenol), 20–1,000
nmole/10mL (tetradecane), and 50–5,000 nmole/10mL
(isobutyrate) (Figure S5).

To confirm whether VOCs were derived from cancer cells
or not, we compared 1 × 106 and 2 × 106 A549 cells. Both
concentrations showed increased trans-2-hexenol. The difference
was significant between Days 0 and 3 both in 1 × 106 A549
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FIGURE 2 | Concentration of medium sugars (A,B), and lactate (C,D). Principle component analysis (PCA) based on 30 VOC GC-MS data of 2D and 3D cultures

(E,F), and absolute quantification of trans-2-hexenol and isobutyrate in 2D-cultured cell-less media and 1 × 106 and 2 × 106 A549 cells (human lung

adenocarcinoma) A549 cells (G,H). qPCR data (I,J), ALDH (aldehyde dehydrogenase) activity assay over time (K–M), and ROS data (N–P). HLB (Human lung

fibroblasts cells), HBEpC (Human bronchial epithelial cells as primary cells), and A549 (human lung adenocarcinoma) were compared. Note different scales on y-axis.

(A) Neutral sugar concentration in 2D-cultured medium. (B) Neutral sugar concentration in 3D-cultured medium; Y axis indicates µg Sugars/µL culture medium,

(Continued)
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FIGURE 2 | error bars indicate standard deviation. (C) Lactate concentration in 2D-cultured medium. (D) Lactate concentration in 3D-cultured medium. Y axis

indicates µg Lactate/µL culture medium, error bars indicate standard deviation. Medium without cells, HLB (Human lung fibroblasts cells), HBEpC (Human bronchial

epithelial cells as primary cells), and A549 (Human lung adenocarcinoma) were compared. For the sugar and lactate assays, sampling was done at 0, 1, 2, 3, 4 days

after inoculation. Experiments were biologically replicated four times. Asterisk indicates statistical significance (p < 0.05) between Day0 and Day4 of each cellular

sample. (A) The sugar concentration in 2D culture medium fell on day 4, from 4.3 (±0.2) µg/µL medium to 1.4 (±0.1), 3.0 (±0.1), and 1.8 (±0.1) µg/µL medium in

HLB, HBEpC, and A549, respectively. The corresponding p-values (0 day to 4 days after inoculation) were 0.0000008, 0.00005, and 0.002. (B) Sugar concentration

in 3D cell cultures in HLB and A549: values 4 days after inoculation were 2.8 (±0.3) and 2.4 (±0.3) µg/µL medium, and p-values compared with 0 day were 0.0002

and 0.00006, respectively. (C) Lactate secretion into the medium of 2D-cultured cells, 4 days after inoculation, reached 2.2 (±0.4), 1.7 (±0.3), and 2.0 (±0.9) µg

lactate/µL medium in HLB, HBEpC, and A549, respectively; corresponding p-values (0 day to 4 days after inoculation) 0.002, 0.002, and 0.01. (D) In 3D-cultured

cells, the lactate concentrations increased in the medium 4 days after inoculation in HLB, HBEpC, and A549: 1.9 (±0.2), 0.6 (±0.05), and 1.9 (±0.1) µg lactate/µL

medium, respectively; corresponding p-values (0day to 4days after inoculation) 0.0004, 0.000001, and 0.0001. In PCA, X and Y axis indicate PC1 and PC2,

respectively (E,F). Error bars: standard deviation of each group (n = 3). Each cell type after 3 days and 4 days incubation is circled. In absolute quantification graph

(G,H), Y axis indicates nmole VOC in flask. For quantification, extracted ion counting (EIC) of trans-2-hexenol fragment (m/z 82) and isobutyrate fragment (m/z 73) was

used. Sampling was done at 0 and 3 days after inoculation. Experiments were biologically triplicated. Error bars: standard deviation. p-value showing statistical

significance is listed. qPCR data (I,J) of ADH1c (alcohol dehydrogenase) in 2D- and 3D-cultured HLB, HBEpC and A549. Y axis indicates relative gene expression to

GAPDH. In qPCR, sampling was done at 1, 2, 3, 4 days after inoculation. Experiments were done in triplicate. Error bars: standard deviation. p-value between Day1

and Day4 showed statistical significance. In the ALDH assay (K–M) and ROS assay (N–P), experiments were biologically replicated four times. Error bars: standard

deviation. Sampling was done at 1, 2, 3, 4 days after inoculation. Y axis in ALDH assay indicates 104 times multiplied slope (absorbency at 450 nm over time) which is

normalized by cell number (105 cells). In the ROS analysis, Y axis indicates fluorescence at 605 nm/2.5 × 104 cells.

and 2 × 106 A549 cells (p-value 0.02 and 0.01, respectively) and
and 2 × 106 A549 cells (p-value 0.02 and 0.01, respectively) and
between Day3 cell-less media and A549 cells (p-value 0.04 and
0.02 against 1 × 106 A549 and 2 × 106 A549 cells, respectively)
(Figure 2G). The results show that the accumulation of trans-2-
hexenol increased in parallel with the number of cells incubated
(p-value between 1 × 106 and 2 × 106 A549 cells at Day 3
was 0.04). Our data show that about 20 nmole trans-2-hexenol/1
× 106 A549 cells was secreted and accumulated in 3 days.
In contrast, trans-2-hexenol was not accumulated in cell-less
media. Isobutyrate increased significantly from Day 0 to Day
3 in A549 cells (p-values between Day 0 and Day 3 were 0.02
and 0.01 for 1 × 106 and 2 × 106 A549 cells, respectively)
(Figure 2H). In cell-less media, isobutyrate also increased from
Day 0 to Day 3 (p-value 0.055). For tetradecane, the detected
EIC (extracted ion counting) peaks in the samples were below
the limit of quantification. Based on the quantification results,
trans-2-hexenol was chosen as the focus for further investigation.

We also observed a trans-2-hexenol increase in other cancer
cells (Pancreas cell, PaCa2; and Neural cancer cell, YKG1)
(unpublished data), indicating that trans-2-hexenol might be a
commonly secreted VOC in many cancer cells. HLB, i.e., normal
cells genetically modified as an immortalization treatment, took
up sugars and secreted lactate to the same degree as cancer cells
in both 2D and 3D cultures. At the same time, trans-2-hexenol
did not increase in HLB, indicating that glucose uptake and
proliferation alone do not lead to VOC production.

In considering the biosynthesis of trans-2-hexenol, lipid
peroxidation and ROS are two important issues to understand.
Cancer cells are typically heterogeneous and derived fromnormal
cells by accumulating mutations (Aktipis et al., 2015). Such
mutations lead to excess ROS inside the cells, and radical species
react with cellular metabolites and genes. For instance, an ROS
increase in cells leads to membrane degradation followed by lipid
peroxidation. Lipid peroxidation, for example, generates toxic
compounds such as aldehyde (Ayala et al., 2014). Aldehydes are
highly reactive chemical substances whose internal content cells
need to reduce.

There are several pathways to convert aldehyde into other
compounds (i.e., alcohol, carboxylic acid and hydrocarbon). In
the metabolic pathway of mammals, a conversion of aldehydes
into hydrocarbons is unlikely because there are no reports
that mammalian cells possess such an enzyme. Accordingly,
aldehyde conversion probably mainly involves conversion into
alcohol and/or carboxylic acid. Regarding genes related to trans-
2-hexenol production, no information is available about AAR
(Acyl ACP reductase) and ADC (Aldehyde decarbonylase) in
the human genome. We therefore focused on enzymes that can
generate alcohol, i.e., FAR (Fatty acyl-CoA reductase) and ADH
(Alcohol dehydrogenase) or ALR (Aldehyde reductase).

Aldehyde conversion into alcohol by ADH (alcohol
dehydrogenase = aldehyde reductase) is a reversible chemical
reaction, whereas aldehyde oxidation into carboxylic acid is
irreversible (Rizzo, 2014). A previous study on rat ADH reported
that class I (i.e., ADH1) actively reduces 2-hexenal in vitro
(Boleda et al., 1993). This suggests that mammalian cells can
reduce aldehyde into alcohol and implies that ADH1 is related
with the trans-2-hexenol increase.

As trans-2-hexenol has not been reported in previous lung
cell studies (Filipiak et al., 2010, 2016), we further investigated
enzymes to confirm this VOC production. From qPCR data,
ADH1c of all cells increased 4 days after inoculation in both
2D and 3D culture, and it increased conspicuously especially
in A549 (Figures 2I,J). The relative expression level to GAPDH
was also much lower than that of A549. The mean values of
relative expression to GAPDH 4 days after inoculation were
2.95 and 1.8 in 2D and 3D cultures, respectively. At the same
time, the respective values of A549 were 33 and 271. Other
ADHs (ADH1A, 1B, ADH3B1, ADH5, ADH9A1) showed no
clear upregulation over time in either 2D or 3D cultures
(unpublished data). We also examined other enzymes such as
ALR2 and FAR1, which are related to alcohol production in
cells (Figure S6), but there were no significant differences over
time or according to cell type (HBEpC and A549). Apparently,
ALR2 and FAR1 were not related to alcohol production, and
trans-2-hexenol is produced mainly by ADH class I; moreover,
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trans-2-hexenol does not appear to be derived from fatty acyl
CoA (Figure S7).

Other strategies are available to remove aldehydes, for
instance a conversion into carboxylic acid by ALDH. ALDH
(19 isoforms) plays a role in tissue repair and pluripotency
(Balber, 2011) and across taxa (from bacteria to humans)
(Yoshida et al., 1998). Various ALDH isoforms are expressed
in different tissues and can metabolize different substrates.
ALDH activity remained unchanged in 2D culture cells, whereas
it increased in 3D cultures from 2 to 3 days after initial
inoculation (Figures 2K–M). The activity of 3D-cultured cells
was higher in A549 cells than in the other two normal lung
cells. Activity started to increase 2 days after A549 inoculation.
This result agreed with a previous report stating aldehyde
degradation in A549 cells (Filipiak et al., 2010), as well as
a report that shows many aldehydes decreased but alcohols
increased in cancer cells (Filipiak et al., 2016). In contrast, in
the case of HLB and HBEpC, the activity increase occurred
4 days after inoculation. Based on our ALDH results, the
increase of the alcohol group was not related to downregulation
of ALDH.

Interestingly, our ROS assay data showed that the A549
cancer cells had the lowest values of all tested cell lines. There
was a decrease over time in 2D-cultured cells, whereas those
in 3D cultures showed no conspicuous increase or decrease
(Figures 2N–P). Although ROS must be important for VOC
production, actual ROS levels inside cultured cells were not
always consistent with trans-2-hexenol production levels in our
study, which partly reflects difficulties in mimicking the tissue
microenvironment (Lu et al., 2007).

In this study, we found trans-2-hexenol as a novel animal
cellular VOC that appears to be a product of the lipid
peroxidation pathway. Our study pointed to a relation solely with
ADH1c upregulation. Furthermore, simple rapid sugar uptake
and lactate production were not directly related to trans-2-
hexenol increase. As such, themetabolism of trans-2-hexenol and
its regulation still harbors some unclear points.

A trans-2-hexenol increase was detected in both 2D and
3D A549 cell cultures. Although the cell culture types differed
somewhat (e.g., ALDH), these differences did not appear to be
critical for VOC production. This study did not utilize ECM
(extra cellular matrixes) or scaffold structure for 3D culture,
implying that solely a 3-dimensional aggregation of cells did
not significantly influence VOC production. Improving the
culture techniques might uncover hidden differences between 2D
and 3D.

Another remaining important point is origin of the aldehyde
which would be converted into alcohol. Our data suggested the
presence of trans-2-hexenol and implied upregulation of ADH1c,
so that the trans-2-hexenol could be from aldehyde. Nonetheless,
the synthesis of aldehyde from PUFAs (polyunsaturated fatty
acids) remain unclear. There is a report that the radical
species react especially with membrane PUFAs and generate
lipid peroxidation products (Liou and Storz, 2010). In the
case of plants, some studies show a reaction catalyzed by
LOX (lipoxygenase) and HPL (Hydroperoxide lyase). This
can generate several aldehydes, e.g., trans-2-hexenol and

cis-3-hexenal, which are known green leaf volatiles (Hoa et al.,
2015; Kunishima et al., 2016). Animal cells, in turn, possess
LOX and ADH, but there is no evidence that animal cells
have HPL. A reaction from PUFA to aldehyde is therefore
uncertain. Two possible explanations can be forwarded. One is
that radicals (ROS) non-enzymatically produced aldehyde from
PUFA (Anderson and Taylor, 2012). Our ROS data, however,
did not show a correlation with trans-2-hexenol production.
Another possibility is that aldehyde, which is a precursor for
trans-2-hexenol, is produced enzymatically, but the enzyme
remains unknown. Some reports focus on enzyme promiscuity
(Piedrafita et al., 2015). There are three types of promiscuities,
namely substrate, catalytic, and conditional promiscuity. Enzyme
conditional promiscuity can act as a reservoir of new functions,
and sometimes non-canonical metabolites can be synthesized.
This makes it amenable to envisage that enzyme promiscuity
in cancer cells contributes to reducing the harmful effects of
aldehydes or of any substances produced due to an ROS increase
inside a cell.
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Figure S1 | Experimental scheme to capture VOC from cell culture flasks. For

cellular VOC sampling, monotrap was placed into a 2.5mL syringe connected to a

cell culture flask cap via a connector. Pumping was conducted at constant speed

for 30min, which corresponds to ∼750 pumping actions.

Figure S2 | 12 VOCs (acetate, benzaldehyde, benzyl alcohol, butyrate, caproate,

1-decanol, decanal, dodecanal, 2-ethyl-1-hexanol, formate, heptadecane,

heptanoate) profiles by GC-MS. Y axis indicates extracted ion counting (EIC) of

each VOC. sampling was done at 0, 3, and 4 days after inoculation (i.e., D0, D3,

and D4). Experiments were biologically triplicated. Error bars: standard deviation.

Medium (cell-less media), HLB (Human lung fibroblasts cells), HBEpC (Human

bronchial epithelial cells as primary cells), and A549 (human lung adenocarcinoma)

were compared in both 2D and 3D culture.

Figure S3 | 12 VOC (hexadecane, 4-hydroxy-nonenal, isobutyrate, 3-methyl

pentanoate, nonanal, 1- nonanol, octadecane, pentadecane, phenol, propionate,
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toluene, tetradecane) profiles by GC-MS. Y axis indicates extracted ion counting

(EIC) of each VOC. Sampling was done at 0, 3, and 4 days after inoculation (i.e.,

D0, D3, and D4). Experiments were biologically triplicated. Error bars: standard

deviation. Medium (cell-less media), HLB (Human lung fibroblasts cells), HBEpC

(Human bronchial epithelial cells as primary cells), and A549 (human lung

adenocarcinoma) were compared in both 2D and 3D culture.

Figure S4 | 6 VOC (trans-2-hexenol, tridecane, undecane, undecanal,

1-undecanol, valerate) profiles by GC-MS. Y axis indicates extracted ion counting

(EIC) of each VOC. Sampling was done at 0, 3, and 4 days after inoculation (i.e.,

D0, D3, and D4). Experiments were biologically triplicated. Error bars: standard

deviation. Medium (cell-less media), HLB (Human lung fibroblasts cells), HBEpC

(Human bronchial epithelial cells as primary cells), and A549 (human lung

adenocarcinoma) were compared both 2D and 3D culture.

Figure S5 | Calibration curve of VOCs. (A) tetradecane (20–1,000 nmole), (B)

trans-2-hexenol (5–500 nmole), and (C) isobutyrate (50–5,000 nmole). Reference

compounds was added into T75 culture flask (270mL capacity) with 10mL water,

and volatilized compounds in a flask were trapped by monotrap (RG and RSC18)

in a 2.5mL syringe, the same as used in the enrichment of cellular VOCs (30min

pumping) and measured by GC-MS. VOCs were enriched after sample

preparation. X axis indicates nmole reference compounds in 10mL. Y axis

indicates extracted ion counting (EIC) of each VOC. Experiments were triplicated.

Error bars: standard deviation.

Figure S6 | qPCR data of ALR2 (Aldehyde reductase) and FAR1 (Fatty acyl-CoA

reductase). A549 (human lung adenocarcinoma), and HBEpC (Human bronchial

epithelial cells as primary cells) were compared. Sampling was done at 1, 2, 3, 4

days after inoculation. Experiments were biologically triplicated. Y axis indicates

relative gene expression to GAPDH. Error bars: standard deviation.

Figure S7 | Metabolic pathway [modified from (Ruffing, 2013)]. Fatty alcohol can

be generated either from aldehyde or fatty acyl-CoA (R-SCoA). Fatty aldehyde can

be derived from lipid peroxidation or from alcohol (Alcohol dehydrogenase;

ADH/Aldehyde reductase; ALR). Compared with single-cell organisms, it is unclear

whether metazoans possess enzymes to convert R-SCoA into aldehyde (Acyl ACP

reductase; AAR), or aldehyde into hydrocarbon (Aldehyde decarbonylase; ADC).

Table S1 | Metabolite list. Total 30 VOC reference compounds for GC-MS profiling

with retention time, chosen fragment m/z as well as CAS number.

Table S2 | Primer sequences used in qPCR. F and R indicates forward and

reverse primers respectively.

Table S3 | VOC list of p-value between Days 0 and 4 (Cell less media, A549, HLB,

and HBEpC). VOC whose p-value was below 0.05 were listed here. Red and blue

letter indicate increase and decrease from Day 0, respectively. 2D and 3D

indicates 2 dimensional and 3 dimensional culture respectively.

Table S4 | VOC list of p-value between cell less media (Day 4) and cell culture

(A549, HLB, and HBEpC) (Day 4). VOC whose p-value was below 0.05 were listed

here. Red and blue letter indicate increase and decrease to cell-less media

respectively. In all cell samples, benzaldehyde decrease to media was common

characteristics.
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Ustilago maydis, a smut fungus, is an appealing model in fundamental research and
an upcoming cell factory for industrial biotechnology. The genome of U. maydis has
been sequenced and some synthesis pathways were biochemically described; however,
the operation of the cellular metabolic network is not well-characterized. Thus, we
conducted a comprehensive study to optimize the sample preparation procedure
for metabolomics of U. maydis using GC-MS/MS. Due to the unique characteristics
of U. maydis cell culture, two quenching solutions, different washing steps, eight
extraction methods, and three derivatization conditions have been examined. The
optimal method was then applied for stable isotope-assisted quantification of low
molecular weight hydrophilic metabolites while U. maydis utilized different carbon
sources including sucrose, glucose, and fructose. This study is the first report on a
methodology for absolute quantification of intracellular metabolites in U. maydis central
carbon metabolism such as sugars, sugar phosphates, organic acids, amino acids,
and nucleotides. For biotechnological use, this method is crucial to exploit the full
production potential of this fungus and can also be used to study other fungi of the
family Ustilaginaceae.

Keywords: metabolomics, GC-MS/MS, Ustilago maydis, sample preparation, Ustilaginaceae, metabolic
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INTRODUCTION

Ustilago maydis is a maize pathogen that causes corn smut (Brefort et al., 2009), a plant disease
reducing cereal production. U. maydis has a long history as a model organism for the study of
pathogen-host interactions, fungal mating, DNA recombination, and DNA repair (Bölker, 2001;
Martinez-Espinoza et al., 2002; Matei and Doehlemann, 2016). Genome sequencing (Kämper
et al., 2006) revealed that approximately 10% of U. maydis proteins were highly conserved in
humans, which had lower similarity or did not even exist in the yeast Saccharomyces cerevisiae
(Münsterkötter and Steinberg, 2007). This finding makes U. maydis a unique model organism
for many fundamental studies that yeast models do not offer such as endocytosis, long-distance
mRNA transport, cell signaling, microtubule organization, and polarized growth (Steinberg and
Perez-Martin, 2008; Etxebeste and Espeso, 2016; Haag et al., 2019).

In addition, U. maydis, which grows in its haploid form non-filamentous (Kubicek et al.,
2011), gains attention in biotechnology due to its capability of using sustainable substrates to
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produce valuable chemicals of industrial interest such as
mannitol, erythritol, mannosylerythritol lipids (MELs), ustilagic
acid, itaconic acid, malic acid, and hydroxyparaconic acid (Geiser
et al., 2014). A broad range of molecular, genetic, bioinformatic,
and cell biological techniques have been developed to take full
advantage of this model organism (Steinberg and Perez-Martin,
2008; Khrunyk et al., 2010; Schuster et al., 2016). “Omics”
studies including genomics, transcriptomics, proteomics, and
metabolomics together can elucidate cell physiology even further.
The methodologies for comparative genome analysis (Schirawski
et al., 2010; Laurie et al., 2012), transcriptomics (Doyle et al., 2011;
Islamovic et al., 2015; Donaldson et al., 2017), and proteomics
(Böhmer et al., 2007; Martínez-Salgado et al., 2013) have been
established. However, a well-characterized metabolomics method
is missing and, indeed, only a few biochemical synthesis pathways
with a very limited number of detected metabolites were reported
(Hewald et al., 2006; Teichmann et al., 2010; Winterberg et al.,
2010; Jonkers et al., 2012). Hence, to study the genotype-
phenotype relationship in U. maydis, it is crucial to develop a
robust protocol for metabolomics.

There is no universal sample preparation in metabolomics
that can be applied to all types of cells. The procedure may
vary depending on cell properties including cell size, morphology
in general, cell wall structure, but also growth conditions,
growth rate, and metabolome complexity (Gulik et al., 2013),
and not at least on the analytical method of choice. Moreover,
Ustilaginaceae are well known for the ability to tolerate high
substrate concentrations, grow in high cell density, and produce
high titer of extracellular products (Zambanini et al., 2016; Becker
et al., 2020). Therefore, it is very challenging to isolate the
cells from a viscous and complex medium to obtain reliable
information on the metabolome.

Here, we focused on metabolomics using gas chromatography
coupled with mass spectrometry (GC-MS/MS), one of the
analytical methods that covers a wide range of primary
metabolites in a single run (Schauer et al., 2005; Oldiges
et al., 2007; Fiehn, 2016). Rapid sampling is critical for
metabolomics, as especially metabolites from central carbon
metabolism have fast turnover rates (Buchholz et al., 2002). There
are several methods to stop microbial cell metabolism including
fast filtration, and quick quenching with organic solvents or
cryoprotectants (Pinu et al., 2017). Additional washing steps
using a cold biological buffer such as saline buffer or phosphate-
buffered saline can be added to remove analyte-rich culture
medium. Notably, glycerol, the most popular cryoprotectant,
is not applicable in this case because it intrudes on the
derivatization for GC-MS analysis. Next, a proper extraction
procedure is necessary to release the metabolites from the
cells. Extraction solvents with different polarities (i.e., water,
ethanol, methanol, or solvent mixtures) are usually employed in
combination with physical forces (i.e., temperature, sonication,
vortex or microwave) to enhance extraction efficiency (Pinu et al.,
2017). The metabolite compositions obtained after extraction
have an impact on sample derivatization (Kanani et al., 2008). For
the two-step method using methoximation followed by silylation,
there are various conditions with different temperatures and
incubation times ranging between 30–90◦C and from 0.5–6 h,

respectively (Moros et al., 2016). Effective sample preparation
methods have been developed for many fungi such as S. cerevisiae,
Aspergillus sp., Monascus ruber, and Penicillium sp. (Hajjaj et al.,
1998; Jernejc, 2004; Canelas et al., 2009; de Jonge et al., 2012;
Duportet et al., 2012; Kim et al., 2013; Zheng et al., 2019).
However, to our knowledge, no metabolomics studies have been
performed using U. maydis.

In this study, we aimed to optimize every step of sample
preparation including quenching, washing, extraction, and
derivatization for metabolomics of U. maydis. The method
was then applied for absolute quantification of intracellular
metabolites using an isotope-assisted approach, which supports
deciphering the metabolic network operation in U. maydis.
Hence, the results from the present study will contribute to the
ever-increasing toolbox that makes U. maydis a model organism.
In addition, the method presented can be used for metabolomics
studies of other fungi of the family Ustilaginaceae.

MATERIALS AND METHODS

Strain and Culture Conditions
Ustilago maydis strain MB215 (DSM17144) was used for
all experiments. MTM medium was used according to
Geiser et al. (2014) with 50 g L−1 glucose, 100 mM 2-(N-
morpholino)ethanesulfonic acid (MES), 0.2 g L−1 MgSO4·7H2O,
10 mg L−1 FeSO4·7H2O, 0.5 g L−1 KH2PO4, 0.8 g L−1 NH4Cl,
1 mL L−1 vitamin solution and 1 mL L−1 trace element solution.
For the experiment using different carbon sources, the same
concentration (g/L) of fructose or sucrose were utilized instead
of glucose. Experiments were performed in 24-deep well plates
(Enzyscreen, System Duetz R©) (Duetz et al., 2000) with 1.5 mL
MTM per well, incubated at 30◦C, relative air humidity of 80%
and shaking speed of 300 rpm (Infors HT Multitron Pro shaker).

Sample Collection
Main cultures were started at OD600 of 0.5 and OD600 was
checked over time to determine the collection time. At OD600 of
20, corresponding to the mid-exponential phase of cell growth, a
volume equal to 10 OD600 unit were collected for intracellular
metabolite measurement. The same volume of samples was
transferred to pre-weighed dry Eppendorf tubes to determine
cell dry weight (CDW). The samples were washed twice with
water and then dried in an oven at 70◦C until a constant
weight was achieved.

Quenching and Washing Conditions
Nylon filters with pore sizes of 0.2 and 0.45 µm (hydrophilic,
25 mm diameter, Millipore) were used for fast filtration. For quick
quenching, two solutions were examined including 4◦C Saline
Buffer 0.9% NaCl (SB) and −20◦C absolute methanol (MeOH).
The broth culture was cast into the precooled quenching solution
at a ratio of l: 6 and mixed well. The mixture was centrifuged
at 12,000 rpm for 30 s. The pellet was washed 1–3 times with
1.5 mL SB. Before determining the optimal extraction conditions,
a common extraction method using chloroform/MeOH/water
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(2:5:2) was applied (Dempo et al., 2014; Hashim et al., 2014; An
et al., 2017).

ATP Measurement and Leakage
Calculation
The level of ATP in quenching and washing solution were directly
measured using the Molecular Probes R© ATP Determination Kit
(Invitrogen, Thermo Fisher Scientific). The percentage of ATP
leakage was defined by the ratio of extracellular [ATP] to total
[ATP] (extracellular + intracellular). We could not determine
adenylate energy charge due to the limitation of analytical
methods. Instead, we combined the ATP-leakage with peak RSD-
values to evaluate intracellular metabolite leakages and method
reproducibility.

Extraction Methods
Three extraction solutions were tested including ethanol
(EtOH: H2O; 7:2), MeOH (MeOH: H2O; 7:2), and
chloroform/MeOH/water mixture (2:5:2). In total, 900 µL
of extract solution was used for each sample and ribitol was used
as an internal standard with the final concentration of 20 µM.
Hot extraction (95◦C for 5 min and 4◦C for 5 min) was applied
to EtOH (HE) and MeOH (HM). Cold extraction (vortexed
at 4◦C for 1 h) was applied to EtOH (CE), MeOH (CM), and
chloroform/MeOH/water mixture (CC). Sonication (sonicated
for 30 s and set on ice for 2 min, repeat 3 times) was applied to
EtOH (SE), MeOH (SM), and chloroform/MeOH/water mixture
(SC). Then, all samples were centrifuged (13,000 rpm for 5 min)
to collect the supernatant. When using chloroform/MeOH/water
mixture to extract metabolites, 900 µL supernatant was mixed
with 400 µL water and then centrifuged to separate the polar and
non-polar phases. 400 µL of the polar phase were transferred into
a fresh 1.5-mL tube. For other methods, 400 µL supernatant was
directly transferred to a 1.5-mL microtube. Finally, the solvent
was removed using a centrifugal concentrator. In our study, the
matrix effects from the various extraction protocols were not
examined as matrix effects are generally neglected in GC-MS and
we did not encounter problems with the background signal or
with peak separation.

Metabolite Derivatization
50 µL of methoxyamine hydrochloride (MeOX) (20 mg/mL
in pyridine, Sigma Aldrich) were added to each sample for
methoximation. Samples were incubated at 37◦C (for 90 min),
60◦C (for 30 min), or 80◦C (for 30 min). Then, silylation has
been performed by adding 50 µL of N-methyl-N-(trimethylsilyl)
trifluoroacetamide (MSTFA) (Sigma Aldrich) and incubated at
37, 60, or 80◦C for 30 min. Before examining the optimal
derivatization condition, all samples were derivatized at 37◦C.

GC-MS/MS Method
The analysis was performed on Trace GC Ultra coupled with
TSQ 8000 (Thermo Fisher Scientific). Tuning and calibration
were done before analysis. A 1 µL aliquot of the derivatives
was injected into a VF-5 ms capillary column (30 m × 250 µm
i.d., 0.25 µm film thickness) with 10 m EZ-Guard (Agilent).

FIGURE 1 | A comprehensive optimization of sample preparation for
GC-MS/MS-based metabolomics in U. maydis. Cell cultivations were
performed in System Duetz R© 24-deep well plates at 30◦C in minimal media.
To instantly stop cellular metabolism, both fast filtration and quick quenching
methods were tested. Then, cells were washed one (x1), two (x2), and three
(x3) times with cold saline buffer to remove the extracellular components from
culture medium. Eight different strategies combining chemical and mechanical
disruption methods were tested for extraction efficiency. Finally, metabolites
were derivatized at 37◦C, 60◦C, or 80◦C. All experiments were performed
with three biological replicates. Abbreviations: SB, Saline Buffer; CE, cold
EtOH; CM, cold MeOH; CC, cold chloroform/MeOH/water mixture; HE, hot
EtOH; HM, hot MeOH; SE, EtOH with sonication; SM, MeOH with sonication;
SC, chloroform/MeOH/water mixture with sonication.

Each sample was injected twice with two different split modes
including 20:1 (v/v) for low concentration metabolites and
100:1 (v/v) for high concentration metabolites. The injection
temperature was 250◦C and the helium carrier gas flow was
1 mL/min. The column temperature was held at 100◦C for 2 min,
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FIGURE 2 | Effect of quenching and washing on U. maydis intracellular metabolites. (A) Metabolite leakage while quenching with SB and MeOH. (B) Metabolite
leakage, (C) Relative standard deviations (RSD) of all detected peaks, and (D) phosphorylated metabolite levels when U. maydis cells were washed one (x1), two
(x2), and three (x3) times with SB. Each data point represents the average of three biological replication with the error bar indicating the standard deviation.
Abbreviations: 2-PG, 2-phosphoglycerate, 3-PG: 3-phosphoglycerate; 6PG, 6-phosphogluconate; DHAP, dihydroxyacetone phosphate; E4P,
erythrose-4-phosphate; F6P, fructose-6-phosphate; G3P, glycerol-3-phosphate; G6P, glucose-6-phosphate; PEP, phosphoenolpyruvate; Ri5P, ribose-5-phosphate;
Ru5P, ribulose-5-phosphate; and S7P, sedoheptulose-7-phosphate. Normalized peak intensities of some metabolites were multiplied for data visualization.

increased by 15◦C/min to 200◦C (held for 4 min) and then
increased by 20◦C/min to 325◦C (held for 5 min). The transfer
line 280◦C and ion source temperatures were 300◦C. Ions were
generated by electron ionization (EI) at 70 eV and analyzed in
positive mode. Argon was utilized as a collision gas.

Data Processing
A Selected Reaction Monitoring (SRM) transition library of
metabolites was constructed using authentic standards from
Sigma-Aldrich (Supplementary Table S1). Standard mixtures
were injected periodically throughout the analysis to evaluate
the stability of the analytical system as well as to support peak
identification. All data were processed by using Thermo Xcalibur
software version 3.1 (Thermo Scientific).

Relative quantification was used during method optimization
(Supplementary Tables S2–S4). All peak areas obtained from
GC-MS/MS analysis were normalized against the ribitol signal.

Absolute quantification was applied to measure intracellular
metabolite levels of U. maydis while using different carbon
sources (Supplementary Table S5). The extract from U. maydis
grown in fully U-13C-labeled glucose (Sigma-Aldrich) was used
as internal standard. The absolute concentrations of intracellular
metabolites in the samples were calculated by using 12C/13C
ratio-based calibration curves.

Statistical Analyses
Relative standard deviations (RSD) of all detected peaks were
calculated after normalization. Unit Variance (UV) scale was
applied for all datasets prior to statistical analyses. Principle
Component Analysis (PCA) was performed utilizing SIMCA-
P+ version 15.0.2 (Umetrics, Umea). Hierarchical Cluster
Analysis (HCA), t-test, one-way ANOVA test, and pathway
enrichment analysis were performed using MetaboAnalyst 4.0
(Chong et al., 2018).

All detected metabolites were used for PCAs. Only
metabolites that were significantly different in each condition
(p-values < 0.05) were employed for HCAs. HCAs were
calculated based on the Euclidean correlation with the Ward
clustering algorithm. In t-test and one-way ANOVA test, p-value
adjustments for multiple metabolites were carried out by using
false discovery rate (FDR) adjustments.

RESULTS AND DISCUSSION

Metabolite Leakage During Quenching
and Washing
While quenching is crucial to stop cell metabolism quicker
than the turnover of metabolites, washing is utilized to remove
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FIGURE 3 | Impacts of different extraction and derivatization conditions on U. maydis intracellular metabolites. RSD values and the levels of phosphorylated
metabolites extracted with (A) EtOH, (B) MeOH, and (C) chloroform/MeOH/water; as well as (D) derivatized under different temperatures. Each data point
represents the average of three biological replication with the error bar indicating the standard deviation. Normalized peak intensities of some metabolites were
multiplied for data visualization.

extracellular compounds from the culture medium. These steps
have to compromise to keep the metabolites lost at a minimum.
First, we tested fast filtration using filters with pore sizes of 0.2
and 0.45 µm. Because of sample viscosity, the cells were not able
to pass the membranes completely, despite vacuum was applied.
This problem is most likely due to the excessive abundance of
extracellular lipids, like MELs, which has been reported to cause
troubles in the centrifugation efficiency of the liquid medium
(Becker et al., 2020).

Quick quenching methods were subsequently examined using
SB and MeOH as quenching solutions. Interestingly, U. maydis
cells tended to accumulate when interacting with MeOH
(Supplementary Figure S1). Cell accumulation interfered with
further washing steps and led to the detection of mainly a
saturated glucose peak as well as other extracellular product
peaks. Since polysaccharides are essential components of the

fungal cell wall and U. maydis secretes β-D-glucan (Fonseca-
García et al., 2011), the observed phenomenon might be a result
of polysaccharide precipitation in organic solvents. Thus, SB
with better performance and less leakage was chosen as not
only quenching but also washing solution in further experiments
(Figure 2A).

We evaluated each optimization step based on two main
criteria. First, the reproducibility was assessed based on RSD
values. A common standard for a good method is an RSD
value of detected peak of lower than 30%. Among metabolites
in central metabolic pathways, it is always challenging to detect
phosphorylated compounds. Therefore, the second priority is for
the method that is able to measure this group of metabolites. As
predicted, the use of SB, a biological buffer, did not lead to severe
metabolite leakage. The leak percentage increased when more
washing steps with SB were added but none of them exceeded
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FIGURE 4 | Metabolic profile comparison during extraction optimization. Upper panels are PCA score plots and lower panels are the HCA heatmaps of metabolites
extracted with (A) EtOH, (B) MeOH, and (C) a chloroform/MeOH/water mixture. While the whole dataset was used for PCA, only metabolites with adjusted
p-value < 0.05 were used for HCA. Each experiment consisted of three biological replications and UV scale was applied prior to statistical analyses. The color scales
in HCA indicate relative intensity after normalization and scaling.

3% (Figure 2B). The least robust condition was washing only
one time with SB (Figures 2C,D). Approximately one-third of
detected peaks had RSD values higher than 30% and the levels of
many phosphorylated metabolites were significantly lower. The
lower sensitivity might occur due to the remaining extracellular
compounds, which affected the derivatization efficiency. Washing
two times with SB appealed to be the best condition because of the
high reproducibility of overall metabolite measurements and the
determination of phosphorylated compounds.

Extraction Methods for Low Molecular
Weight Hydrophilic Metabolites in
Central Metabolic Pathways
The choice of extraction method will define the number, type, and
abundance of detected metabolites from U. maydis cells. A proper
extraction method should be able to make the cell envelope
permeable to release metabolites completely and denature cellular
enzymes to prevent metabolite degradation during sample
preparation. Yet, the extraction condition itself should not cause
metabolite degradation or transformation. In order to figure out
a suitable extraction method, we combined both chemical and
mechanical disruption methods into eight different strategies
(Figure 1). Together with the RSD values and phosphorylated

compound levels as mentioned above, PCA was applied to have
an overview of the whole dataset among different extraction
conditions (Figure 4, upper panels). One-way ANOVA test or
t-test was performed to figure out the metabolites which had
significantly different levels in each condition. The metabolites
with adjusted p-values lower than 0.05 were submitted to HCA,
a method to cluster the metabolites according to their abundance
(Figure 4, lower panels).

One critical point during sample preparation was that
U. maydis cells should not interact directly to organic solvent
after centrifugation. The cell pellets had to be mixed with
the water portion of extraction solvents first. After the cells
were fully resuspended, the organic solvents were added, and
extraction started. When the pre-mixed extract solvent was used,
U. maydis cells accumulated (as in Supplementary Figure S1)
and were not able to be fully resuspended; thus, the results were
not reproducible. This was also the reason why neat organic
solvents were not suitable to extract intracellular metabolites
from U. maydis.

The use of MeOH and EtOH resulted in very comparable
results under all tested conditions, which was reasonable as these
organic solvents have very close polarity indices of 5.1 and 5.2,
respectively (Ramluckan et al., 2014). Cold extraction showed
the highest reproducibility. Almost every metabolite had RSD
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FIGURE 5 | Impacts of different derivatization conditions on U. maydis
intracellular metabolites. (A) PCA score plot acquired from the complete
dataset. (B) HCA heatmap of metabolites with adjusted p-value < 0.05 from
one-way ANOVA test. Each experiment had three biological replicates and UV
scale was applied before statistical analyses. The color scale in HCA indicates
relative intensity after normalization and scaling.

values lower than 30% (Figures 3A,B). Changing in extraction
conditions from hot to sonicate, and to cold methods showed
increased levels of phosphorylated metabolites, especially for low
abundant compounds such as 2-PG, 3-PG, 6PG, DHAP, E4P, PEP,
and Ru5P (Figures 3A,B). Moreover, the organic acids including
pyruvate, malate, succinate, α-ketoglutarate, and itaconate could
be extracted better with CE and CM (Figures 4A,B). Low
metabolite levels in hot extraction were most likely due to
their thermolability.

The method using chloroform/MeOH/water is very popular
for the extraction of both polar and non-polar metabolites. Here,
we found that this solvent mixture could extract U. maydis
metabolites better with sonication (SC) than vortex at low
temperature (CC). The overall reproducibility was drastically

FIGURE 6 | Metabolome analysis of U. maydis during growth with glucose,
fructose, and sucrose as sole carbon sources. (A) Growth curves were
determined by measuring OD600. (B) PCA was conducted with all detected
metabolites. (C) The HCA heatmap indicates significant different metabolites
among all conditions. The colors were consistent among each group of
samples: glucose (orange), fructose (black), and sucrose (gray). All
experiments were performed with three biological replicates.

improved in SC, even though the intensities for most of the
metabolites were not significantly different between CC and SC
(Figures 3C, 4C). Vice versa, the use of sonication for EtOH
and MeOH was not as good as cold extraction. While sonication
is more aggressive to cell membranes comparing to vortexing,
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alcohols cannot denature protein as good as chloroform (Asakura
et al., 1978). Some enzymes might still be partly active during SE
and SM; thus, affected metabolite stability.

Generally, the three extraction conditions CE, CM, and
SC were all suitable for GC-MS/MS-based metabolomics of
U. maydis, with an overall good reproducibility (Supplementary
Figure S2). In addition, the sensitivity was reasonable as all
metabolites were in the quantification range of GC-MS/MS,
especially for phosphorylated metabolites. For the next steps,
CE was chosen because EtOH is environmentally friendly, not
carcinogenic, and sample preparation for CE was simple.

Effects of Derivation Conditions on
GC-MS/MS Analysis
Almost every metabolite investigated requires derivatization
to increase volatility for GC-MS analysis. The two-step
derivatization method using methoximation and silylation is well
established in the field of metabolomics (Fiehn, 2016). First,
MeOX reacts to metabolites with ketone groups. This step is
important to open sugar rings, which results in fewer peaks
per sugar in GC-MS analysis (Yi et al., 2014). MSTFA is used
to derivatize chemical components with an active H, such as –
OH, –COOH, –NH2, and –SH. Previous studies have already
shown that the formation and stability of derivatives among
metabolites differ greatly.

As each organism has unique metabolic profiles, derivatization
conditions should be studied prior to applications. Here,
three conditions commonly used to derivatize metabolites
from central carbon metabolism were examined (Figure 1).
Throughout derivatization, metabolites were exposed to high
temperature for at least 1 h. The observed RSD values
indicated that the higher the temperature, the more unstable
many metabolites were (Figure 3D). The signals of almost all
metabolites were highest when derivatized at 37◦C (Figure 5).
Moreover, the peaks of proline and phenylalanine could not
be detected after derivatization at 80◦C. This result was
consistent with previous results from the extraction step, showing
that primary metabolites were sensitive to high temperatures.
Hence, we recommend performing both methoximation and
silylation at 37◦C.

Absolute Quantification of Intracellular
Metabolites When U. maydis Is Grown on
Different Carbon Sources
The fungal family Ustilaginaceae is well-known for the capability
of using a board range of carbon sources to produce molecules
of industrial interest such as organic acids, glycolipids, and sugar
alcohols (Geiser et al., 2014). The optimized sample preparation
method was employed to measure intracellular metabolite levels
while U. maydis utilizing sucrose, glucose, and fructose as sole
carbon source. In order to apply the isotope-assisted approach
for absolute quantification, the extract from U. maydis grown in
fully U-13C-labeled glucose was used as an internal standard.

As a plant pathogen, U. maydis had no problem in using
fructose and sucrose. The growth of U. maydis on these carbon
sources was very similar when compared with growth on glucose

(Figure 6A). Though, cells grown on different carbon sources had
distinct metabolic profiles, indicated by three clearly separated
groups in the PCA score plot (Figure 6B). Samples in the
“glucose” group were most distinct from the other samples,
shown in the high separation on PC1 (46.6%) in the PCA and the
distance in HCA clusters (Figures 6B,C). The one-way ANOVA
test scored 39 out of 51 metabolite concentrations as significantly
different with an adjusted p-value < 0.05.

The concentrations of free amino acids were high when
U. maydis used glucose. Especially, the high abundances of
metabolites related to aromatic amino acid metabolism including
erythritol, E4P, phenylalanine, tyrosine, and tryptophan was
observed. On the other hand, a high level of mannitol was
found when U. maydis utilized fructose, most likely because
fructose can be converted directly to mannitol by the mannitol
dehydrogenase. The concentrations of many organic acids of the
TCA cycle were divided into two sets while comparing “glucose”
and “fructose” groups. Acotinate and itaconate levels were higher
in the “fructose” group; however, pyruvate, malate, fumarate,
succinate, and α-ketoglutarate concentrations were higher in the
“glucose” group.

From the annotated genome, U. maydis has a putative
invertase (UMAG_01945), which is potentially capable of
hydrolyzing sucrose into glucose and fructose molecules (Kämper
et al., 2006). Thus, the metabolite compositions of the “sucrose”
group shared the features of both “glucose” and “fructose” groups.
While the concentration of intracellular mannitol was higher
than cells grown on glucose, the level of erythritol was the highest
among all conditions.

Together, the choice of carbon source had substantial impact
on intracellular metabolite concentrations. Depending on the
target compound, metabolic engineering can be employed to
alter the metabolic flux distribution to maximize product
synthesis. Erythritol and mannitol are well-known as sweeteners
(Grembecka, 2015). The carboxylic acids in the TCA cycle
are listed among the value-added chemicals from biomass
(Werpy and Petersen, 2004). Amino acids are important dietary
supplements of mainly animals, the aromatic amino acids can be
used as precursors for industrial and pharmaceutical compounds
(i.e., aspartame, L-DOPA, melanin, or phenol) (Parthasarathy
et al., 2018; Wynands et al., 2018).

For the first time, the absolute quantification of intracellular
metabolites was conducted in U. maydis. The present study
provides a well-established sample preparation method for
GC-MS/MS-based metabolomics, which still can be further
adjusted according to research objectives or to a new analytical
device (i.e., nuclear magnetic resonance or other MS-based
equipment). This method will further support the development
of U. maydis from a basic science model organism, to a next-
generation model organism also fulfilling the requirements for
modern biotechnology.
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Clonorchiasis is an important zoonotic parasitic disease worldwide. In view of the fact
that parasite infection affects host metabolism, and there is an intricate relationship
between metabolism and immunity. Metabolic analysis of the spleen could be helpful
for understanding the pathophysiological mechanisms in clonorchiasis. A non-targeted
ultra high performance liquid tandem chromatography quadrupole time of flight mass
spectrometry (UHPLC-QTOF MS) approach was employed to investigate the metabolic
profiles of spleen in rats at 4 and 8 weeks post infection with Clonorchis sinensis
(C. sinensis). Then a targeted ultra-high performance liquid chromatography multiple
reaction monitoring mass spectrometry (UHPLC-MRM-MS/MS) approach was used
to further quantify amino acid metabolism. Multivariate data analysis methods, such
as principal components analysis and orthogonal partial least squares discriminant
analysis, were used to identify differential metabolites. Finally, a total of 396 and
242 significant differential metabolites were identified in ESI+ and ESI− modes,
respectively. These metabolites included amino acids, nucleotides, carboxylic acids,
lipids and carbohydrates. There were 38 significantly different metabolites shared in
the two infected groups compared with the control group through the Venn diagram.
The metabolic pathways analysis revealed that pyrimidine metabolism, aminoacyl-
tRNA biosynthesis, purine metabolism and phenylalanine, tyrosine and tryptophan
biosynthesis were significantly enriched in differential metabolites, which was speculated
to be related to the disease progression of clonorchiasis. Furthermore, 15 amino
acids screened using untargeted profiling can be accurately quantified and identifed
by targeted metabolomics during clonrochiasis. These results preliminarily revealed the
perturbations of spleen metabolism in clonorchiasis. Meanwhile, this present study
supplied new insights into the molecular mechanisms of host-parasite interactions.

Keywords: Clonorchis sinensis, infection, spleen, non-targeted metabolomics, metabolic pathway

Frontiers in Molecular Biosciences | www.frontiersin.org 1 October 2020 | Volume 7 | Article 56164128

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/journals/molecular-biosciences#editorial-board
https://www.frontiersin.org/journals/molecular-biosciences#editorial-board
https://doi.org/10.3389/fmolb.2020.561641
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fmolb.2020.561641
http://crossmark.crossref.org/dialog/?doi=10.3389/fmolb.2020.561641&domain=pdf&date_stamp=2020-10-06
https://www.frontiersin.org/articles/10.3389/fmolb.2020.561641/full
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/
https://www.frontiersin.org/journals/molecular-biosciences#articles


fmolb-07-561641 October 3, 2020 Time: 17:30 # 2

Zhang et al. Metabolomic Profiling of Spleen in Clonorchiasis

INTRODUCTION

Clonorchiasis caused by Clonorchis sinensis (C. sinensis) is
an important public health problem globally. C. sinensis
infected at least 15 million people in countries such as China,
Vietnam, South Korea, and the Russian Far East (Kim et al.,
2016). Eating uncooked freshwater fish containing C. sinensis
metacercariae is the cause of the infection. The adults of
C. sinensis parasitize in the intrahepatic bile duct. Infection
with C. sinensis often leads to chronic hepatobiliary diseases,
such as hepatic fibrosis and cholangiocarcinoma. Notably,
C. sinensis has been classified as a Class I carcinogen by the
International Agency for Research on Cancer (Grosse et al.,
2009). Our previous research had found that C. sinensis infection
induced the dysregulation of hepatic microRNA and hepatic
apoptosis in rat models (Zhang et al., 2008; Han et al., 2016).
However, the molecular pathogenesis of clonorchiasis is still not
completely understood.

Compared with transcriptome and proteome analyses,
metabolomics measures small molecules in biological
samples, which could describe the metabolic phenotype
in detail and the relevant metabolic disorders (Murphy,
2020). Metabolomics has been successfully applied to several
fields, such as disease diagnosis, biomarker screening, and
nutrition research (Kafsack and Llinás, 2010; Khamis et al.,
2017). Metabolomics provides globally dynamic changes and
contributes to reveal the underlying molecular mechanisms in
the diseases (Shinde et al., 2017).

Recently, more and more researchers have combined
metabolomics and immunology for scientific research. It is
reported that inflammation, disruption of the tricarboxylic acid
(TCA) cycle, amino acids metabolism, protein synthesis and
oxidative phosphorylation are all related to the immune response
during infection (Nguyen et al., 2018). While, immune cells
could use pentose phosphate shunt, glutamine breakdown and
fatty acid oxidation to meet their metabolic and functional needs
(Ganeshan and Chawla, 2014). Interestingly, interaction between
immunity and metabolism also plays an important role in the
pathogenesis of parasitic diseases. For example, Toxoplasma
gondii caused metabolic recombination of host cells (Zhou et al.,
2016), and the anti-inflammatory and immunoregulatory effects
of steroid hormones can affect the host immune responses to
infection (Chen X. Q. et al., 2017). The proliferation of B cells
in primary lymphoid follicles required amino acids and lipid
components to form new cell membranes and organelles in
Fasciola hepatica infection (Saric et al., 2010). These studies
show that metabolites can significantly affect the immune
system, and immune inflammatory responses are also related to
metabolic changes.

Given the complex relationship between immunity and
metabolism, and the importance of the spleen in the immune
response, the metabolic profiles of spleen in C. sinensis-
infected rats were investigated by non-targeted ultra high
performance liquid tandem chromatography quadrupole time
of flight mass spectrometry (UHPLC-QTOF MS) in this
study. Based on the results of untargeted profiling, amino
acid metabolism was chosen for further quantifying by

a targeted ultra high performance liquid chromatography
multiple reaction monitoring mass spectrometry (UHPLC-
MRM-MS/MS) approach. The exploration of metabolic disorders
and related biochemical pathways could be useful for enhancing
our understanding of the pathophysiological mechanisms
in clonorchiasis.

MATERIALS AND METHODS

Ethical Approval
This study was reviewed and ethically approved by the Medical
Ethics Review Committee of Harbin Medical University. All
animal experiments were performed on the basis of the Guide
for the Care and Use of Laboratory Animals published by the
Ministry of Science and Technology of the People’s Republic of
China. In the study, we made significant efforts to reduce animal
suffering and the number of animals.

Animal Infection
Metacercariae of C. sinensis were collected from Pseudorasbora
parva originating from the Songhuajiang River of Heilongjiang
Province. The collection and preparation of metacercariae are
described as following. First, we put the fish in an ice box
at 0◦C and shipped to the laboratory. Second, the fish were
washed with tap water, broken up in a Waring Blender,
and digested with a pepsin-HCl (0.6%) artificial gastric juice
at 37◦C for 12 h. Finally, the digested mixture was passed
through three sieves with mesh sizes of 1000, 300, and 106 µm
in sequence. A large number of pure metacercariae were
harvested by centrifugation and stored at 0.1 M phosphate-
buffered saline (PBS, pH = 7.4) at 4◦C until used. Male
wistar rats (5–6 weeks old) were purchased from the Harbin
Medical University Laboratory Animal Center. The rats were
fed standard laboratory food and drinking water. A total of
20 rats were individually infected orally with 50 metacercariae.
Control rats (n = 10) were fed with 50 µl of sterile
normal solution.

Tissue Collection and Detection of
Infection
Clonorchis sinensis undergoes rapid development and the adults
develop matured at 4 weeks post infection (wpi) after infected by
metacercariae (Lun et al., 2005). Our previous study also found
that the hepatocyte apoptosis index of C. sinensis-infected rats
with increased from 4 wpi, and reached a peak at 8 wpi (Zhang
et al., 2008). Additionally, liver iron deposits were also found
apparently at 8 wpi (Han et al., 2017). Furthermore, the same
time points were also selected in other C. sinensis infection study
for pathogenic mechanism (Lee et al., 1987; Uddin et al., 2012).
Hence, at 4 and 8 wpi, rats were sacrificed and spleens were
rinsed with saline solution (0.9% NaCl w/v), and stored at−80◦C
until analysis. In addition, control animals were sacrificed at both
time points. Feces were collected weekly and microscopically
examined by the Kato-Katz method to determine whether the rats
had successfully infected with C. sinensis (Hong et al., 2003).
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Chemicals
Acetonitrile was purchased from Merck. In addition, ammonium
acetate (NH4AC), ammonium hydroxide (NH4OH), formic
acid (FA), and ammonium fluoride (NH4F) were obtained
from Sigma Aldrich.

Metabolites Extraction
A total of 50 mg of spleen sample was taken and placed
in a EP tube, then added 1000 µL extraction solvent
containing an internal target (V methanol: V acetonitrile:
V water = 2:2:1, containing internal standard, 2-Chloro-L-
phenylalanine, 2 µg/mL). Samples were homogenized in ball
mill for 4 min at 45 Hz, then ultrasound treated for 5 min
(incubated in ice water). After homogenization for 3 times
and incubation for 1 h at −20◦C to precipitate proteins,
samples were centrifuged at 12,000 rpm for 15 min at 4◦C.
Supernatant (825 µL) was transferred into EP tubes. Extracts
were dried in a vacuum concentrator without heating, and
200 µL extraction solvent (V acetonitrile: V water = 1:1)
reconstitution was added into dried metabolites. Samples were
vortexed for 30 s, sonicated for 10 min (4◦C water bath) and
centrifuged for 15 min at 12,000 rpm, 4◦C. Subsequently, the clear
supernatant was transferred into a fresh 2 mL LC/MS glass vial
for analysis.

UHPLC-QTOF MS Analysis
LC-MS/MS analyses were performed using an UHPLC system
(1290, Agilent Technologies) with a UPLC BEH Amide column
(1.7 µm 2.1 × 100 mm, Waters) coupled to TripleTOF 6600
(Q-TOF, AB Sciex) in Shanghai Biotree biotech Co., Ltd.

The mobile phase consisted of 25 mM NH4AC and 25 mM
NH4OH in water (pH = 9.75) (A) and acetonitrile (B) was carried
with elution gradient as follows: 0 min, 95% B; 0.5 min, 95%
B; 7 min, 65% B; 8 min, 40% B; 9 min, 40% B; 9.1 min, 95%
B; 12 min, 95% B, delivered at 0.5 mL min−1. The injection
volume were 1 µL. The Triple TOF mass spectrometer was used
for its ability to acquire MS/MS spectra on an information-
dependent basis (IDA) during an LC/MS experiment. In this
mode, the acquisition software (Analyst TF 1.7, AB Sciex)
continuously evaluates the full scan survey MS data as it collects
and triggers the acquisition of MS/MS spectra depending on
preselected criteria. In each cycle, 12 precursor ions whose
intensity greater than 100 were chosen for fragmentation at
collision energy (CE) of 30 V (15 MS/MS events with product ion
accumulation time of 50 ms each). ESI source conditions were
set as following: Ion source gas 1 as 60 Psi, Ion source gas 2 as
60 Psi, Curtain gas as 35 Psi, source temperature 600◦C, Ion Spray
Voltage Floating (ISVF) 5000 or −4000 V in positive or negative
modes, respectively.

During mass spectra collection, samples were placed in
automatic sampler at 4◦C. To monitor the stability and
repeatability of the analytical system, quality control (QC)
samples were prepared by pooling 10 µL of each sample
and injected prior to analysis. And then blank and QC
samples were injected every five samples injections throughout
the analytical run.

UHPLC-MRM-MS/MS Analysis
The targeted UPHLC-MRM-MS/MS approach was applied to
verified amino acids involved in clonorchiasis. Among 4, 8 wpi
and control groups, eight randomly selected rats from each
group were used for investigation. An aliquot of each individual
spleen sample was precisely weighed and then transferred to an
Eppendorf tube. After the addition of two little steel balls and
1000 µL of extract solvent (precooled at −20◦C acetonitrile-
methanol-water, 2:2:1, containing isotopically labeled internal
standard mixture), the samples were vortexed for 30 s,
homogenized at 40 Hz for 4 min, and sonicated for 5 min in
ice-water bath, repeated for three times. Next, the samples were
incubated at−40◦C for 1 h, followed by centrifugation for 15 min
at 12,000 rpm, 4◦C. After that, 80 µL supernatant was transferred
to an auto-sampler vial for UHPLC-MS/MS analysis.

The LC-MS/MS analyses were also performed in Shanghai
Biotree biotech Co., Ltd. The mobile phase A was 1% formic
acid in water, and the mobile phase B was 1% formic acid
in acetonitrile. The column temperature was set at 35◦C. The
auto-sampler temperature was set at 4◦C and the injection
volume was 1 µL. An Agilent 6460 triple quadrupole mass
spectrometer (Agilent Technologies), equipped with an AJS
electrospray ionization (AJS-ESI) interface, was used for assay
development. Typical ion source parameters were: capillary
voltage = +4000/−3500 V, Nozzle Voltage = +500/−500 V, gas
(N2) temperature = 300◦C, gas (N2) flow = 5 L/min, sheath
gas (N2) temperature = 250◦C, sheath gas flow = 11 L/min,
nebulizer = 45 psi. Agilent MassHunter Work Station Software
(B.08.00, Agilent Technologies) was employed for MRM data
acquisition and processing.

Data Preprocessing and Annotation
MS raw data files (.wiff) were converted to the mzXML format
using ProteoWizard, and processed by R package XCMS (version
3.2). The preprocessing results generated a data matrix that
consisted of the retention time (RT), massto-charge ratio (m/z)
values, and peak intensity. R package CAMERA was used
for peak annotation after XCMS data processing. Compound
identification of metabolites was performed by comparing the
accuracy of m/z values (<25 ppm), and MS/MS spectra were
interpreted with an in house MS2 database (Shanghai Biotree
biotech Co., Ltd.) established with authentic standards.

Statistical Analysis
After preprocessing the raw data, multivariate statistical analysis
(principal component analysis, PCA; orthogonal partial least
squares discriminant analysis, OPLS-DA) was performed using
SIMCA software (V14.1, Sartorius Stedim Data Analytics AB,
Umea, Sweden). The parameters values of R2 and Q2 were
verified the fitness and predictive ability of the model. And
the OPLS-DA permutation test proves that the original model
has excellent stability and there is no over-fitting phenomenon.
The P-value of Student’s t-test was less than 0.05, and the
Variable Importance in the Projection (VIP) of OPLS-DA
model was greater than 1, so as to identify the metabolites
expressed differently. Log2-fold change (FC) based on metabolite
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abundance was used to assess the variation of the metabolites. The
box-plots (data range, quartile range, and median values) were
used to illustrate the spread and differences of samples from the
target analysis.

Heatmaps were applied to describe the unbalanced metabolic
profiles among C. sinensis-infected and control rats. Euclidean
distance algorithm for similarity measure and average linkage
clustering algorithm (clustering uses the centroids of the
observations) for clustering were selected when performing
hierarchical clustering. Based on deferentially expressed
metabolite data (log2-scaled), heatmaps were structured by the
MultiExperiment Viewer (MeV) v. 4.9 software1.

Metabolites were identified by comparing the molecular
mass data (m/z) of samples with the KEGG2 database.
According to online Kyoto Encyclopedia of Genes and Genomes
(KEGG) database3, we retrieved metabolites and extracted the
corresponding pathways in KEGG. Compared with controls,
further screening was performed on the pathway affected by
C. sinensis infection using MetaboAnalyst 3.04.

RESULTS

Metabolic Profiles of Spleen During
C. sinensis Infection
The spleen metabolites in C. sinensis-infected rats was analyzed
by the non-targeted UHPLC-QTOF MS system. There were 2270
and 2282 ions detected in ESI+ and ESI− mode, respectively.
A series of preparations and collation of the original data were
performed, in order to better analyze the data. After deleting low-
quality ions [relative standard deviation (RSD) >30%], a total of
2243 and 2274 ions in samples were recognized in ESI+ and ESI−
mode, respectively.

In the PCA model, QC samples were successfully separated
from the tested samples and clustered together. It was identified
that the UHPLC-QTOF MS analysis obtained better stability
and reproducibility. However, the PCA score plots could

1http://mev.tm4.org/
2www.genome.jp/kegg/
3http://geneontology.org/
4http://www.MetaboAnalyst.ca/

not clearly distinguish the infected group from the control
group (Supplementary Figure S1). The parameters R2 and Q2
confirmed the validity of the PCA model as follows: ESI+ mode,
R2X = 0.58; ESI− mode, R2X = 0.58 (Supplementary Table S1).
Therefore, the OPLS-DA was used to analyze the metabolites and
relationships among different infection groups. The OPLS-DA
score scatter plots showed that there were significant separation
between the different infection groups and the control group
in the ESI+ and ESI− modes, respectively (Figure 1 and
Supplementary Figure S2). According to the permutation test
results, the OPLS-DA model was proved to have good robustness
without over fitting (Figure 2 and Supplementary Figure S3).
In addition, the OPLS-DA model parameter are shown in
Supplementary Table S1.

Differential Metabolites During Different
Infection Periods
According to the P-value <0.05 and VIP >1, a total of 396
and 242 potential metabolites of spleen involved in clonorchiasis
were screened out in ESI+ and ESI− modes, respectively
(Supplementary Table S2). And the results showed a clear
difference between different groups in the volcano plots (Figure 3
and Supplementary Figure S4) and heatmaps (Figure 4
and Supplementary Figure S5). To obtain the significantly
differential metabolites, based on FC > 2 or <0.5, and VIP > 1.5,
we further identified 82 and 84 metabolites in ESI+ and ESI−
modes, respectively. Next, a Venn diagram was constructed to
show the metabolites in different infection stages (Figure 5).
There were 38 significantly different metabolites shared in the
two infected groups compared with the control group. These
metabolites included amino acids, nucleotides, carboxylic acids,
lipids and carbohydrates. Notably, significant differences were
observed in the amino acid profiles.

Based on untargeted profiling analysis, targeted UHPLC-
MRM-MS/MS quantitative analysis of 25 key amino acids
was established and further evaluated in the spleen. Among
them, 15 amino acids screened by untargeted profiling can
be accurately quantified and mostly identified increased
during clonrochiasis, including L-valine, L-asparagine, L-serine,
L-methionine, L-phenylalanine, L-histidine, L-threonine, L-
tryptophan, L-arginine, L-tyrosine, L-proline, L-alanine, and
L-glutamine, expect for L-citrulline decreased at 8 wpi. While

FIGURE 1 | Orthogonal partial least squares discriminant analysis (OPLS-DA) score scatter plots of splenic metabolites during C. sinensis infection in ESI+ mode.
(A) OPLS-DA score scatter plot of 4 wpi vs control in ESI+ mode; (B) OPLS-DA score scatter plot of 8 wpi vs control in ESI+ mode; (C) OPLS-DA score scatter plot
of 8 vs 4 wpi in ESI+ mode. Control, healthy control; 4 wpi, 4 weeks post infection; 8 wpi, 8 weeks post infection.
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FIGURE 2 | Permutation test of OPLS-DA model showing the stability of the model in ESI+ mode. (A) Permutation test of OPLS-DA model of 4 wpi vs control in
ESI+ mode; (B) Permutation test of OPLS-DA model of 8 wpi vs control in ESI+ mode; (C) Permutation test of OPLS-DA model of 8 vs 4 wpi in ESI+ mode. The
abscissa indicates the displacement retention of the permutation test, and the ordinate indicates the value of R2Y or Q2. The green dot indicates the R2Y value
obtained by the displacement test, the blue square indicates the Q2 value obtained by the permutation test, and the two dotted lines indicate the regression lines of
R2Y and Q2, respectively. The point where the displacement retention is 1 is R2Y and Q2 of the original model.

FIGURE 3 | Volcano plot representation of the differential metabolites identified in ESI+ mode. (A) 4 wpi vs control; (B) 8 wpi vs control; (C) 8 vs 4 wpi. Each point in
the map represents a metabolite. The size of the scatter represents the VIP value of the OPLS-DA model, and the larger the scatter, the larger the VIP value. Scatter
color represents the final screening result, red represents significant up-regulation, blue represents significant down-regulation, and gray represents non-significant
difference metabolites.

glycine was identified decreased during clonrochiasis. Several
amino acids are represented using boxplots in Figure 6 and
Supplementary Figure S6.

Metabolic Pathways Affected by
C. sinensis Infection
Based on the P-value (P-value < 0.05) and pathway impact
value, significant differential metabolic pathways involved
in clonorchiasis were estimated by KEGG annotation and
MetaboAnalyst. As showed in the bubble chart, the differential
metabolites were enriched in purine metabolism, aminoacyl-
tRNA biosynthesis, pyrimidine metabolism, phenylalanine,
tyrosine and tryptophan biosynthesis at 4 wpi; and aminoacyl-
tRNA biosynthesis, pyrimidine metabolism, purine metabolism,
phenylalanine, tyrosine and tryptophan biosynthesis at 8 wpi
(Figure 7 and Supplementary Figure S7). As shown in the
Figure 8 and Supplementary Tables S3, S4, purine metabolism,
pyrimidine metabolism, glycine, serine and threonine
metabolism, and phenylalanine, tyrosine and tryptophan
biosynthesis were integrated analyzed in the network.

DISSCUSION

Clonorchiasis is a public health problem worldwide with
epidemiological significance (Lun et al., 2005). However, the

underlying mechanism of clonorchiasis is not fully clearly.
Recently, some studies have evaluated endogenous metabolites
and identified perturbed metabolic pathways in parasitic diseases
(Besteiro et al., 2010; Notarangelo et al., 2014). However,
it is unknown whether C. sinensis infection could result in
the imbalance of spleen metabolism and related biochemical
pathways. In this study, the untargeted and targeted metabolomic
methods were carried out to analyze the spleen metabolic profiles
and related metabolic pathways in clonorchiasis. These results
may help to explore the pathophysiology mechanism, making
diagnosis and prevention strategies for clonorchiasis.

A number of animal models have been used to investigate the
interaction of host and C. sinensis, such as rabbits, mice, hamsters,
and rats. With low recovery rates and underdevelopment of
worms (the parameter for host susceptibility), mice are not
suitable hosts of C. sinensis regardless of its strain (Uddin et al.,
2012). Because of the limited commercially available antibodies
or probes, it is not appropriate for evaluating the pathogenesis
or immune responses in hamsters (Uddin et al., 2012). Although
the rats develop resistance to reinfection by C. sinensis (Quan
et al., 2005), with the advantages of small size, low cost, wide
source, easy feeding, and suitable for large-scale observation,
rats have been broadly used as animal models for exploring
pathogenesis of clonrochiasis (Choi et al., 2004; Quan et al., 2005;
Sohn et al., 2006; Han et al., 2016, 2017). In addition, we could
get better adults recovery rates and development of worms in rats
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FIGURE 4 | Heatmaps representation of the differential metabolites identified between different infection group vs control group in ESI+ mode. (A) 4 wpi vs control;
(B) 8 wpi vs control; (C) 8 vs 4 wpi. The color blocks at different positions represent the relative expression of metabolites at corresponding positions, red represents
up-regulated, and blue represents down-regulated.

models. Some studies also had used rats models to investigate the
immunity of clonorchiasis (Zhou et al., 2013; He et al., 2014).
Thus, the rat models are considered as useful models for analysis
the metabolomics of C. sinensis infection, and has more reference
value for human body. First, it is difficult to collect the samples
from clonorchiasis patients, including liver and spleen tissues.
Second, some functions of the spleen from animal models are
similar with human body. After preliminary studies in rat models,

FIGURE 5 | Venn diagram displaying the common and unique metabolites
among the two infection groups vs control group. There were 38 significantly
differential metabolites were shared in two infected groups. 4 wpi vs con,
4 wpi group vs control group; 8 wpi vs con, 8 wpi group vs control group.

some metabolites are obtained and then could be further verified
in clonrochiasis patients. Therefore, it is suited for making rat
models for metabolomics analysis of clonorchiasis.

As a major immune organ, the spleen plays a crucial role
in innate and adaptive immune responses (Zhao et al., 2015).
Innate immunity is important for the immune surveillance of
inner and outer threats as well as initial host defense responses
(Chen J. et al., 2017). Immune surveillance could protect the
host against parasites. Dendritic cells (DCs) have an essential
role in immune surveillance (Cabeza-Cabrerizo et al., 2019). In
addition, Toll-like receptors (TLRs) are important for against
microbial infection (Pulendran et al., 2010). During C. sinensis
infection, DCs played a key role in immune surveillance through
TLR-mediated pathway, with increased levels of IFN-γ, IL-6,
TNF-α, and IL-10 in the splenocytes (Hua et al., 2018). In view
of the importance of the spleen in immune surveillance during
C. sinensis infection, we chose the spleen as the research object.

In this study, a total of 396 and 242 significant differential
metabolites were identified in ESI+ and ESI− modes,
respectively. These metabolites covered amino acids, nucleotides,
carboxylic acids, lipids and carbohydrates. The results suggested
that C. sinensis infection could induce systemic metabolic
perturbations in the spleen. In addition, there were 38
significantly different metabolites shared in the two infected
groups compared with the control group, according to FC > 2
or <0.5, and VIP > 1.5. These metabolites might be a direct
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FIGURE 6 | The distribution of amino acids were present by boxplot between 4 wpi vs control group. (A) L-Valine; (B) L-Asparagine; (C) L-Serine; (D) L-Methionine;
(E) L-Phenylalanine; (F) L-Arginine; (G) L-Tryptophan; (H) L-Citrulline; (I) Glycine. Boxes represent the interquartile ranges (IQRs) between the first and third quartiles,
and the line inside the box represents the median. The amino acid content was compared with the median value between the two groups. Circles represent outliers.
*P < 0.05, ***P < 0.001.

FIGURE 7 | The pathway analysis during C. sinensis infection in ESI+ mode. Plots depict the pathway impacts of the key metabolites (x-axis) and the computed
metabolic pathway as a function of –log (P) (y-axis) that different between the 4 wpi vs control (A), 8 wpi vs control (B), 8 vs 4 wpi (C).
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FIGURE 8 | The integrated metabolic pathway shared in 4 and 8 wpi during C. sinensis infection. Beneath each metabolite, green and red represent 4 and 8 wpi
compared with the control, respectively. The arrows indicate up and down-regulation of metabolites, respectively. Horizontal lines indicate that the metabolites are
not significantly different in this infection stage.

signal of C. sinensis activity or the consequence of the host
response to the parasite. Generally, these dynamic metabolites
not only could suggest the interaction between the host and
C. sinensis, but also might perturb the biochemical profiles of
them (Abdelrazig et al., 2017).

Our results found that C. sinensis infection induced significant
changes in amino acids. In addition, 15 amino acids screened by
untargeted profiling can be accurately quantified using targeted
analysis during clonrochiasis. These results further corroborate
the difference in abundance of amino acids between infection
and control groups. Similarly, dysregulation in levels of amino
acids metabolism were found and involved in toxoplasmosis
and schistosomiasis (Wu et al., 2010; Chen et al., 2018). These
amino acids not only affect cell signaling, recruitment and
proliferation during infection, but reflect an immune response
to infection and/or tissue injury and repair (Chandler et al.,
2016). Besides, amino acids are also given the functions, such
as energy dissipation, synthesis of basic organic molecules of
proteins which could protect the host’s innate immune response
(Li P. et al., 2009; Lu et al., 2017). For example, L-leucine, L-
glutamine, and L-valine have the same trend (up-regulation) at
4 and 8 wpi groups compared with the control, respectively.
Moreover, compared with 4 wpi, these three animo acids were

also found increased in 8 wpi. Leucine could provide energy
when continuous energy consumption (Gironès et al., 2014).
Glutamine is an important energy source for mitochondria and
could be utilized by lymphocytes (Yaqoob and Calder, 1997).
L-valine could alter the function of immune cells (Kakazu
et al., 2007). Therefore, it indicates that the host is required to
consume more energy, which is consistent with the results from
Schistosoma mansoni infection (Li J. V. et al., 2009). Except that,
we also found L-tryptophan, L-tyrosine, and L-arginine increased
in C. sinensis-infected rats, compared with controls. These three
amino acids were considered as essential amino acids required
by the parasite to sustain its own growth (Silva et al., 2002;
Marino and Boothroyd, 2017). Energy metabolism plays a key
role in facilitating the adaptation of adult flukes to crowded
habitat and hostile environment (Li et al., 2020). While, some
metabolites were found fluctuated with disease progression. One
possible interpretation of this result is that the host makes the
regulation of the metabolism level. Therefore, the abnormality of
these amino acids suggested that the host needs to maintain the
energy requirements, sustain its own growth and regulates the
immune system to interact with C. sinensis infection.

In addition, inosine and adenine were found down-regulated
both in 4 and 8 wpi, compared with the control. Numerous
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reports have suggested that inosine could effectively inhibit pro-
inflammatory cytokines such as IFN-γ, TNF-α, and IL-12 in vitro
and in vivo (Haskó et al., 2000; Mabley et al., 2003). Moreover the
purines play a major role in regulating inflammatory and immune

responses during diseases and reducing inflammatory tissue
damage (Iregui et al., 2016). Therefore, these results indicate
that the host regulates inflammation and immune responses to
decrease infection in clonorchiasis.

FIGURE 9 | Flow chart of metabolomics in spleen of rats infected with Clonorchis sinensis.
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Besides, deoxyinosine is involved in the purine metabolism
pathway, which could be substituted for glucose as an energy
source (Chen et al., 2019). Meanwhile, deoxyinosine could be
catabolized into hypoxanthine, regulating energy metabolism
(Lee et al., 2018). Thus the decreased deoxyinosine and
hypoxanthine in this present study may provide less energy
and lead to compromised spleen cell development. Additionally,
deoxyadenosine could dampen the function of immune cells
by triggering the caspase-3-mediated death of macrophages
(Carrera et al., 1990; Thammavongsa et al., 2013), which
was down-regulated in this present study. As a precursor of
DNA, thymidine was down-regulated, which indicating the
degree of lymphocytes proliferation (Wang et al., 2015). Taken
together, the metabolites suppressed immunity was significantly
decreased, indicating that the host actively regulates the immune
response, despite the spleen cells were damaged and the
proliferation was inactive.

Generally, our research established the C. sinensis-infected
rats model to anlayze the spleen metabolomics for the first
time, revealing the biochemical characteristics and molecular
mechanisms of infection (Figure 9). However, the present
study also has several limitations. First, the numbers of the
samples were low. Thus, larger samples with time-matched
control groups should be assessed in future studies. Second,
owing to the complex and dynamic cellular heterogeneity
of the spleen, the altered metabolite may be the result of
differential expression of spleen cell. However, our research
serves to deepen the understanding of the molecular mechanisms
of clonorchiasis. In the future, an individual cell population
in the spleen will be selected for metabolomics or multi-
omics joint analysis, and these differential metabolites requires
further investigation.

CONCLUSION

The non-targeted UHPLC-QTOF MS method was used to
explore the metabolic profiles in the spleen of C. sinensis-infected
rats in this study. Differential metabolites included amino
acids (L-leucine, L-glutamine, and L-valine) and nucleotides
(inosine, deoxyadenosine, thymidine, and deoxyinosine). In
addition, a total of 15 amino acids screened by untargeted
profiling were accurately quantified and identifed by the
targeted UHPLC-MRM-MS/MS approach. Several metabolic
pathways were associated with the pathogenesis of clonorchiasis,
including aminoacyl-tRNA biosynthesis, pyrimidine metabolism,
and phenylalanine, tyrosine, and tryptophan biosynthesis.
These results could be contributed to understanding the
immunoregulatory process of C. sinensis infection and
providing new insights into the molecular mechanisms of
host-parasite interactions.
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Supplementary Figure S1 | Principal component analysis (PCA) score scatter
plots of splenic metabolites during C. sinensis infection. (A) PCA score scatter plot
of splenic metabolites in the positive ion mode (ESI+); (B) PCA score scatter plot
of splenic metabolites in the negative ion mode (ESI−); Control, healthy control;
4 wpi, 4 weeks post infection; 8 wpi, 8 weeks post infection; QC, quality control.

Supplementary Figure S2 | Orthogonal partial least squares discriminant
analysis (OPLS-DA) score scatter plots of splenic metabolites during C. sinensis
infection in ESI− mode. (A) OPLS-DA score scatter plot of 4 wpi vs control in
ESI− mode; (B) OPLS-DA score scatter plot of 8 wpi vs control in ESI− mode; (C)
OPLS-DA score scatter plot of 8 vs 4 wpi in ESI− mode. Control, healthy control;
4 wpi, 4 weeks post infection; 8 wpi, 8 weeks post infection.

Supplementary Figure S3 | Permutation test of OPLS-DA model showing the
stability of the model in ESI− mode. (A) Permutation test of OPLS-DA model of
4 wpi vs control in ESI− mode; (B) Permutation test of OPLS-DA model of 8 wpi
vs control in ESI− mode; (C) Permutation test of OPLS-DA model of 8 vs 4 wpi in
ESI− mode; The abscissa indicates the displacement retention of the permutation
test, and the ordinate indicates the value of R2Y or Q2. The green dot indicates
the R2Y value obtained by the displacement test, the blue square indicates the Q2
value obtained by the permutation test, and the two dotted lines indicate the
regression lines of R2Y and Q2, respectively. The point where the displacement
retention is 1 is R2Y and Q2 of the original model.

Supplementary Figure S4 | Volcano plot representation of the differential
metabolites identified in ESI− mode. (A) 4 wpi vs control; (B) 8 wpi vs control; (C)
8 vs 4 wpi; Each point in the map represents a metabolite. The size of the scatter
represents the VIP value of the OPLS-DA model, and the larger the scatter, the
larger the VIP value. Scatter color represents the final screening result, red
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represents significant up-regulation, blue represents significant down-regulation,
and gray represents non-significant difference metabolites.

Supplementary Figure S5 | Heatmaps representation of the differential
metabolites identified between different infection group vs control group in ESI−
mode. (A) 4 wpi vs control; (B) 8 wpi vs control; (C) 8 vs 4 wpi; The color blocks
at different positions represent the relative expression of metabolites at
corresponding positions, red represents up-regulated, and blue
represents down-regulated.

Supplementary Figure S6 | The distribution of amino acids were present by
boxplot between 8 wpi vs control group. (A) L-Valine; (B) L-Asparagine; (C)
L-Serine; (D) L-Methionine; (E) L-Phenylalanine; (F) L-Arginine; (G) L-Tryptophan;
(H) L-Citrulline; (I) Glycine. Boxes represent the interquartile ranges (IQRs)
between the first and third quartiles, and the line inside the box represents the
median. The amino acid content was compared with the median value between
the two groups. Circles represent outliers. ∗P < 0.05, ∗∗∗P < 0.001.

Supplementary Figure S7 | The pathway analysis during C. sinensis
infection in ESI− mode. Plots depict the pathway impacts of the key
metabolites (x-axis) and the computed metabolic pathway as a function
of −log (P) (y-axis) that different between the 4 wpi vs control (A), 8 wpi vs
control (B), 8 vs 4 wpi (C).

Supplementary Table S1 | Parameters of PCA and OPLS-DA models based on
the date from sub-comparisons in the positive ion mode (ESI+) and the negative
ion mode (ESI−).

Supplementary Table S2 | List of metabolites identified in the entire
infection process.

Supplementary Table S3 | Summary of the top 10 pathway analysis using
MetaboAnalyst during different infection groups in ESI+ mode.

Supplementary Table S4 | Summary of the top 10 pathway analysis using
MetaboAnalyst during different infection groups in ESI− mode.
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Xiaojian Zhang1,2*

1 Pharmaceutical Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China, 2 Precision Clinical
Pharmacy Laboratory of Henan Province, Zhengzhou, China

The incidence of cerebral ischemic stroke characterized by high mortality is increasing
every year. Danshen Chuanxiongqin Injection (DSCXQ), a traditional Chinese medicine
(TCM) preparation, is often applied to treat cerebral apoplexy and its related sequelae.
However, there is a lack of systematic research on how DSCXQ mediates its protective
effects against cerebral ischemia stroke. Metabolomic analysis based on UHPLC-Q-
Orbitrap HRMS was employed to explore the potential mechanisms of DSCXQ on
ischemic stroke induced by transient middle cerebral artery occlusion (MCAO). Pattern
analysis and metabolomic profiling, combined by multivariate analysis disclosed that
55 differential metabolites were identified between Sham group and Model group,
involving sphingolipid metabolism, glycerophospholipid metabolism, phenylalanine,
tyrosine and tryptophan biosynthesis, primary bile acid biosynthesis, pantothenate and
CoA synthesis and valine, leucine and isoleucine biosynthesis pathways. DSCXQ could
reverse brain metabolic deviations in stroke by significantly upregulating the levels of
L-tryptophan, Lyso (18:0/0:0), LPC (18:2), Indole-3-methyl acetate, and downregulating
the levels of sphinganine 1-phosphate, L-threonic acid, glutaconic acid and N6,N6,N6-
Trimethyl-L-lysine. In our study, we focused on the neuroprotective effects of DSCXQ
against neuroinflammatory responses and neuronal apoptosis on a stroke model
based on sphingolipid metabolism. The expressions of Sphk1, S1PR1, CD62P, Bcl-
2, Bax, and cleaved Caspase-3 in brain tissue were evaluated. The neurological deficit,
cerebral infarct size and behavioral abnormality were estimated. Results showed that
DSCXQ intervention significantly reduced cerebral infarct size, ameliorated behavioral
abnormality, inhibited the expression of Sphk1, S1PR1, CD62P, Bax, Cleaved Caspase-
3, while increased the level of Bcl-2, and prevented neuronal apoptosis. The limitations
are that our study mainly focused on the verification of sphingolipid metabolism pathway
in stroke, and while other metabolic pathways left unverified. Our study indicates
that SphK1-SIP axis may potentiate neuroinflammatory responses and mediate brain
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damage through neuronal apoptosis, and DSCXQ could suppress the activity of
SphK1-SIP axis to protect brain tissue in cerebral ischemia. In conclusion, this study
facilitates our understanding of metabolic changes in ischemia stroke and the underlying
mechanisms related to the clinical application of DSCXQ.

Keywords: ischemic stroke, DSCXQ, UHPLC-Q-Orbitrap HRMS, metabolomics, anti-apoptotic

INTRODUCTION

Stroke is a dominant cause of long-term disability worldwide and
the second most common cause of mortality after cardiovascular
disease, bringing a massive socio-economic burden to the
healthcare system and society (Feigin et al., 2016). At present
tissue plasminogen activator (t-PA) remains the first choice of
treatment in the clinic. However, a major limitation of r-tPA
therapy is its narrow therapeutic window, which restrict the
use of r-tPA as a long-term therapy (Fonarow et al., 2011).
Although great progress has been made in understanding of the
pathophysiology of stroke, a great portion of new drug trials have
showed disappointing results (Jin et al., 2015; Hu et al., 2018),
indicating that it is urgent to search for blood or brain biomarkers
for stroke prognosis and new therapeutics.

Danshen Chuanxiongqin injection (CFDA approval #
H52020959) is a TCM preparation composed of the extract
of Salvia miltiorrhiza Bunge and Conioselinum anthriscoides
’Chuanxiong’. The injection was listed in 2004 and is currently
included in « Guidelines on the Rational Use of Chinese Drugs
in Ischemic Stroke » as a recommended medication for the
treatment of cerebral infarction and coronary heart disease.
Mechanistic studies showed that DSCXQ could inhibit the
production of malondialdehyde (MDA), effectively eliminating
oxygen free radicals in rats and increasing the resistance of
vascular endothelium to thrombosis (Fei et al., 2017; Zhang
et al., 2020). However, previous studies did not fully explore the
relevant mechanism of DSCXQ therapy in stroke at the level
of metabolites. The mechanism of action of TCM drugs may
be revealed by traditional pharmacological experiments to a
certain extent, while combining metabolomic studies may help
uncovering the overall metabolic network, making it a useful
combination for discovering multiple interactions among the
TCM components (Lyu et al., 2018). Herein we tried to fill
such gap by scientifically studying the neuroprotective effects of
DSCXQ on cerebral ischemia at metabolomics level. In order to
systematically and scientifically study the neuroprotective effect
of DSCXQ on cerebral ischemia from the perspective of multi-
component, multi-target and multi-pathway, Metabolomics
combined with pharmacological approaches were adopted
to provide a novel way for the diagnosis and treatment of
ischemic stroke.

Abbreviations: DSCXQ, Danshen Chuanxinqin injection; MCAO, middle
cerebral artery occlusion; I/R, ischemia reperfusion; Bcl-2, B-cell lymphoma-2;
Bax, BCL2-associated X; MDA, malondialdehyde; t-PA, plasminogen activator;
S1PR1, sphingosine 1-phosphate receptor-1; SphK1, sphingosine kinase 1; QC,
quality control; TCM, traditional chinese medicine; CFDA, china food and drug
administration.

In our previous study, A qualitative analytical method of
ultraperformance liquid chromatography-quadrupole/orbitrap
high resolution mass spectrometry (UHPLC-Q-Orbitrap
HRMS) was established for identification and quantification
of the constituents of Danshen-Chuanxiong Injection (see
Supplementary Info 1) (Zhou et al., 2019b), which makes it
possible to lay a solid foundation for our follow-up research. In
the present study, ultra-high performance liquid chromatography
coupled with a Q Exactive hybrid quadrupole-orbitrap high
resolution mass spectrometry (UHPLC-Q-Orbitrap HRMS)
was employed to profile metabolome of brain tissue in middle
cerebral artery occlusion model rats and explore the intervention
mechanism of DSCXQ. Immunohistochemistry, western
blot, biochemical parameters, behavioral deficit and cognitive
impairment were combined by metabolomics analysis to
investigate the neuroprotective effects comprehensively, the
potential biomarkers connecting with perturbed metabolic
pathways were revealed. The limitations are that our study
mainly focused on the verification of sphingolipid metabolism
pathway in stroke, and while other metabolic pathways left
unverified. This study unveil new insights in the understanding
of pathological changes of stroke and the dynamic metabolomic
profile with pharmacodynamic evaluation of DSCXQ based
on metabolomics.

MATERIALS AND METHODS

Chemicals and Reagents
Danshen Chuanxiongqin Injection was provided by the First
Affiliated Hospital of Zhengzhou University. Chemical standards
for MS/MS analysis of predicted metabolites were obtained
from Sigma-Aldrich (St.Louis, MO, United States). HPLC grade
acetonitrile and methanol were obtained from Fisher Scientific
(Fair Lawn, NJ, United States). HPLC grade formic acid was
purchased from Aladdin Industrial Co., Ltd. (Shanghai, China).
Ultra-pure water (18.2 M) was prepared daily by a Milli-Q water
purification system (Millipore, Shanghai, China). All solutions
were filtrated by 0.22 µm pore size filters before use.

Cerebral Ischemia/Reperfusion Model
and Drug Administration
Adult male Sprague-Dawley rats (weighing 220-250 g) were
obtained from experimental animal center of Zhengzhou
university (Zhengzhou, China). Animals were fed with free water
and diet under the controlled temperature (25 ± 2◦C), humidity
(60 ± 5%) and 12 h light/12 h dark cycle for 7 days to adapt to
the environment. Rats were fasted overnight before the surgical
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operation, all experiments were carried out in adherence with the
standard guidelines for the Care and Use of laboratory animals
from the National Institute of Health (NIH) and handled strictly
according to obligations of the Animals Ethics Committee of
Zheng Zhou University.

The MCAO rat model was induced by the intraluminal
technique according to the method of originally described
by Longa et al. (1989), with little modification. Briefly, the
right common carotid artery (CCA), external carotid artery
(ECA), and internal carotid artery (ICA) were isolated clearly
and exposed with caution on rats which were anesthetized
with 3% chloral hydrate (1 ml/100 g) intraperitoneally, then
a poly nylon monofilament of 0.24 mm in diameter with tip
rounded was inserted through ECA into the ICA to block the
origin of MCA until the slightly resistance was felt, nearly
18-20 mm. rats were achieved 2 h cerebral ischemia and
then pulled out the filament to complete 24 h reperfusion.
Meanwhile, the temperature of rats were kept at 36.5–
37.5◦C with a thermostat-controlled heating pad. The sham
operation was performed the same surgical procedures except for
inserting a filament.

Rats were randomly divided into three groups with six in each:
sham-operated (sham), model (MCAO) and DSCXQ-treated
groups, During the whole experiments process, the research
group carried out three batches of animal experiments. Rats in
Model and DSCXQ group received ischemia-reperfusion (I/R)
surgery, while rats of the Sham group underwent artery exposure
and isolation without the insertion. DSCXQ was intravenously
administered to rats for 7 days and rats in the Sham and Model
groups were intravenously administered with the correspond
volume of 0.9% saline in the same way. DSCXQ injection
is a mixture of TCM compounds which contains extracts
from salvia miltiorrhiza (200 mg/ml) and ligustrazine (see
Supplementary Info 1). Rats were administered intravenously
with DSCXQ (0.16 ml/100 g of body weight) once a day starting
immediately post surgery.

Brain Sample Collection and Preparation
After 2 h of ischemia followed by 24 h reperfusion, rats
were sacrificed and brains were quickly removed. Samples
were collected with the method that 0.5 g brain tissue was
homogenized with triple volume saline (w/v), and centrifuged
at 3,000 rmp for 10 min, then the supernatant were separated
and stored at −80◦C for reserve. Sample of 100 ml was
transferred into 1.5 ml EP tube and added with 300 µl
methanol containing 500 ng/ml ketoprofen and 50 ng/ml 2-
chloro-Lphenylalanine as internal standard. After vortexing for
3 min, the mixture was centrifuged at 13,000 rpm for 10 min
at 4◦C. Lastly, 200 ml of the supernatant was transferred
to an autosampler vial to UHPLC-Q-Orbitrap HRMS for
metabolomics analysis. To evaluate stability and accuracy of
the UPLC-MS/MS analysis system, 20 µl of samples from each
group were mixed and generated the pooled quality control
(QC) samples which were used the same method to analyze
companying with measured samples. Six QC samples were
inserted every five injections during the whole measurement
process for quality control.

UHPLC-MS/MS System Conditions
Chromatography
Chromatographic experiments were performed on Dionex
Ultimate 3000 UHPLC system (Thermo Fisher Scientific, San
Jose, CA, United States). An aliquot of 5 µL samples was injected
into BEH C18 (2.1 × 100 mm, 1.7 µm) maintained at 4◦C
and the flow rate was 0.35 mL/min, the mobile phase was
formed of solvent A (0.1% formic acid-water, V/V) and solvent
B (acetonitrile), the gradient elution was as follows: 0-1 min, 95%
A; 1-12 min, 0% A; 12-15 min, 95% A.

Mass Spectrometry
The MS spectrometry was performed on a Q-Orbitrap mass
spectrometer with high resolution (Thermo Scientific, San Jose,
United States) using a heat electrospray ionization (HESI) ion
source, the main parameters were set as follows: capillary
temperature of 320◦C, Aux gas flow rate of 10 Arb, spray voltage
of 3.5 kV (ESI+)/2.8 kV (ESI−), sheath gas flow rate of 40 Arb
(+)/38 Arb (−), the full scan data acquired ranges from 80-
1200 m/z with a resolution of 70,000 and a resolution of 17,500
resolution in MS2 mode, samples were analyzed at 20, 30, 40 NCE
(normalized collisional energy).

Evaluation of Neurological Deficit
Neurobehavioral dysfunction of rats was scored and evaluated
by one investigator who was blinded to the experimental
design. Neurological deficits were estimated by Zea Longa five-
point scale as follows: 0 points indicated no neurobehavioral
dysfunction; 1 points showed the nerve function injuries as
left forepaw failed to extend fully which represented a mild
focal neurologic deficit; 2 points suggested a moderate focal
neurologic deficit accompanied by circling to the left; and a
score of 3 meant a severe focal deficit as rats were fallen
to the affected side and crawled slowly; 4 points represented
rats did not walk spontaneously and had a depressed level
of consciousness. The inclusion criterion of the model was a
neurological function score of 1–3, and excluded a neurological
function score of 0 or 4.

Measurement of Cerebral Infract Area
Cerebral infarct area was measured by 2,3,5-triphenyltetrazolium
chloride (TTC) staining. TTC staining is conventional used for
visualization of hypoxic brain tissue the fast and reliably and
for measuring the size of cerebral infarction. After evaluating
the neurological function score, rats were sacrificed using the
approved protocol. The brain tissues of rats were removed and
frozen at−20◦C for 20 min, then sectioned into five slices (2 mm
thick) along the coronal plane, after that the brain slices were
stained with 2% TTC dissolved with 0.9% saline for 20 min
at 37◦C in the dark, following fixed in 4% paraformaldehyde
overnight. Normal cerebral tissue was stained (red) whereas the
infarct tissue unstained (white). The infracted tissue areas were
analyzed by weighing the infarct area, and infarct area content
was calculated as infarct weight/(infarct area + normal area
weight) × 100%. The infarct areas were statistically analyzed as
percentages of the total slice areas.
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Immunohistochemical Determination of
CD62P
Paraffin-embedded sections were used to assess the expression of
CD62P according to standard histological procedures. The brain
tissues were conventionally fixed in 4% paraformaldehyde and
embedded in paraffin wax. The samples were serially sectioned
at 4 µm by a tissue-slicing machine. After dewaxing and
hydration. The blocking of endogenous peroxidases was achieved
by incubating the sections in 3% hydrogen peroxide. After that,
the tissue antigen was repaired by microwave, and the blocking
solution containing goat serum incubated on sections at 37◦C for
20 min. Then Rabbit Anti-CD62P antibody (Abcam, Cambridge,
United Kingdom) was added to the sections and incubated
overnight at 4◦C. Wash slides three times and remove excess
liquid from around the sections, goat antirabbit immunoglobulin
G (IgG) antibody (Proteintech Group Inc., Wuhan, China)
labeled with horseradish peroxidase was added to the sections
and incubated at 37◦C for 30 min. After reacted with DAB
solution, the stained tissue sections were observed under a
200 × light microscope in three visual fields of the ischemic
cortex region of the infarct.

TUNEL Staining
TUNEL staining was employed to estimate cell apoptosis
following standard’s instructions. Brain tissues were fixed in
10% formaldehyde in PBS for 24 h and embedded in paraffin
blocks. The blocks were cut into 4 µm thickness, by heating
the slides for 10 min at 70◦C and followed by two 5-min
incubations in a fresh xylene bath at room temperature in a
dyeing jars. Then the tissue samples were transferred through
a graded ethanol series to rehydrate. Nuclear proteins were
stripped from the DNA by incubation 20 mg/mL of proteinase K
solution for 30 min, and endogenous peroxidase was inactivated
with 2% H2O2 for 5 min at room temperature. Sections were
incubated in a buffer containing TdT in a humidified chamber
for 30 min at 37◦C. and digoxigenin labeled dUTP followed by
digoxigenin-conjugated peroxidase treatment. Stop the reaction
by incubating the slides in 2 × SSC for 15min. Washed the
slides and incubated in Streptavidin HRP diluted with PBS at
the ratio of 1:500 for 30 min at 37◦C, DAB (diaminobenzidine)
was used as the chromogen. The TUNEL-positive cells stained
brown granules were considered apoptotic due to the binding of
dUTP enzyme to 3′- OH terminal of broken DNA, which were
observed under a 200 × light microscope in three visual fields of
the ischemic cortex region.

Western Blotting Analysis
Western blotting analysis were performed according to our
previous study (Zhou et al., 2019a). In brief, the total proteins
of brains were extracted by ice cold cell lysis buffer and
determined the total content by Bio-Rad DC Protein Assay
Kit (BIO-RAD, China). Equal quantities of protein samples
(40 µg) were loaded into SDS-PAGE and transferred to PVDF
membranes. Membranes were probed with primary antibodies
against Sphk1 (1:1000), S1PR1 (1:1000) (Affinity Biosciences,
OH, United States), Bcl-2, Bax (1:1000), Cleaved Caspase-3

(1:500) (Cell Signaling Technology, Boston, MA, United States)
at 4◦C overnight. Subsequently, the membrane was washed with
Tris-buffer saline containing 0.05% Tween 20 (TBST) buffer
three times and probed with secondary antibody conjugated
horseradish peroxidase. Protein visualization was achieved by the
enhanced chemiluminescence reagents on a gel imaging system
(Tannon-5200, Shanghai, China).

Data Processing and Statistical Analysis
The data was acquired and processed by Thermo XcaliburTM
software (Version 3.0, Thermo Scientific), and Thermo
Scientific Compound Discoverer 3.0 software was employed
to pretreat LC-MS raw data. The spectra were chosen from
LC-MS data files and retention time alignment was achieved
according to mass tolerance and time shift criteria. Preliminary
identification of metabolites was fulfilled by searching databases
containing ChemSpider, Mass Lists, mzCloud, mzVault, and
local database. Then the result data matrix were input into
software SIMCA (version 14.0, Umetrics, Umea, Sweden)
for multivariate statistical analysis, including the subsequent
principal component analysis (PCA) and orthogonal partial least
square discrimination analysis (OPLS-DA), The metabolites
with variable importance in the projection (VIP) values >1.0
and p values <0.05 for Model versus Sham were screened as
potential biomarkers of MCAO. In addition, student’s t-test and
fold change value were also applied to further screen out the
significant variables between different groups.

Quantitative data were expressed as mean ± standard
deviation (S.D.) using statistical software SPSS19.0. Differences
were assessed by one-way analysis of variance (ANOVA) followed
by a least significant difference t-test (LSD). Differences were
considered significant at p < 0.05.

RESULTS

Assessment of QC Samples
QC samples are used to verify the stability of the experiment. In
the process of metabolomics, QC samples were inserted every
five injections during the whole measurement process. And
the relative standard deviation (RSD) of the peak area in the
chromatogram was used to calculate to evaluate the method
performance. In the negative and positive mode, more than 90%
of RSD is lower than 30%, which indicates that the analysis
system is stable and reliable (Figure 1). Therefore, the differences
of metabolic markers found in this study can truly reflect the
differences of biological status among sample groups.

Multivariate Data Analysis for Brain
Samples
Based on UPLC-MS/MS, the brain samples of rats were analyzed
in positive and negative ion mode. In order to investigate the
overall changes of metabolites in rats with cerebral ischemia-
reperfusion, PCA method was used to identify the metabolites
spectrum data of rats in Sham group and Model group, moreover
the sample distribution map which reflect the degree of similarity
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FIGURE 1 | The distributions of the coefficient of variation for each metabolite in QC samples, (A) percentage (%) of all detected peaks in positive mode; (B)
percentage (%) of all detected peaks in negative mode.

and difference between samples was obtained. In the map,
samples with small difference in atlas are close to each other,
on the contrary, samples with large difference are far apart. In
PCA model, Sham group, Model group and DSCXQ group are
apparent separated on the scatter plot after automatic fitting
(Figure 2), to further amplify the differences between groups,
the supervised multidimensional analysis method OPLS-DA
was adopted (see Figure 3). Sham group, Model group and
DSCXQ group were well distinguished in PCA, Figures 3A,B
shows that the Model group and Sham-operated group can
be distinguished obviously under the positive and negative ion
mode, which indicates the model was successful. Compared
with the Sham group, the metabolites in Model group change
obviously and abnormal. Significant distinctions were acquired
with R2Y at 0.988 and Q2 at 0.869for ESI+ mode (Figure 3A),
and R2Y at 0.985 and Q2 at 0.848 for ESI− mode (Figure 3B),
meanwhile, the OPLS-DA model is validated by a permutation
of 200 times and the results (R2 = 0.928, Q2 = −0.225
for ESI+ mode; R2 = 0.897, Q2 = −0.275 for ESI− mode).
The OPLS-DA model between DSCXQ and Model group
were performed to display the neuroprotection of DSCXQ vs.
Model group. Notable differentiation was obtained with R2Y
at 0.987and Q2 at 0.652 for ESI+ mode (Figure 3E), and
R2Y at 0.996 and Q2 at 0.709 for ESI− mode (Figure 3F).

To assess the validity of the OPLS-DA model, permutation
test with 200 measurements was performed and the result
(R2 = 0.969, Q2 = −0.111 for ESI+ mode; R2 = 0.96,
Q2 = −0.188 for ESI− mode) indicated that there was no
overfitting of the model.

Biomarkers Identification
In OPLS-DA analysis, each point in S-plot graph of Sham group,
Model group and DSCXQ group represents a variable, and
the importance of each point for classification is measured by
their values, screened according to VIP (variable importance
in the projection, VIP). VIP >1 is considered to be a
significant variable contributing to the model. The farther
away from the center, the greater the contribution of variables
to the difference and the more likely they are to become
potential characteristic metabolites. Metabolites distributed
far from the origin play an important role in the S-plot
graph (see Figures 4A,B). In addition, the t test and
folding changes of the students were calculated to ensure
that the metabolites detected were significantly changed in
concentration. p ≤ 0.05 and fold change ≥1.5 (or fold change
≤0.67) were retained in order to obtain more credible and
distinct markers. In volcanic maps, the red dots indicate
that the p values of metabolites are less than 0.05 and
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FIGURE 2 | (A) The PCA plot of samples and QC in positive ion mode, (B) The PCA plot of samples and QC in negative ion mode, (C) The scatter distribution plot in
the first principal components in positive ion mode, (D) The scatter distribution plot in the first principal components in negative ion mode. (Note: QC represents
quality control, S represents Sham group, M represents Model group, DS represents DSCXQ group), (E) 3-D PLS-DA score plot of the different groups in positive ion
mode, (F) 3-D PLS-DA score plot of the different groups in negative ion mode.

FIGURE 3 | (A) The OPLS-DA plot between Sham and Model group in positive ion mode, (B) The OPLS-DA plot between Sham and Model group in negative ion
mode, (C) The permutations test of Sham vs. Model groups in positive ion mode, (D) The permutations test of Sham vs. Model groups in negative ion mode; (E) The
OPLS-DA plot between Model and DSCXQ group in positive ion mode, (F) The OPLS-DA plot between Model and DSCXQ group in negative ion mode. (G) The
permutations test of Model vs. DSCXQ groups in positive ion mode, (H) The permutations test of Model vs. DSCXQ groups in negative ion mode, (Note: S
represents Sham group, M represents Model group, DS represents DSCXQ group).

fold change ≥1.5 or fold change ≤0.67 (log2FC ≥ 0.58 or
log2FC ≤ −0.58), which help to determine the potential
biomarkers of stroke.

The chemical structures of reserved metabolites were
identified by searching accurate molecular mass data and
MS/MS fragments in database such as HMDB, METLIN, M/Z
cloud, and the database established by ourselves. Finally, in
all 55 potential biomarkers that distinguish the difference
between the Sham group and Model group were identified
in positive and negative mode (Table 1). Of the potential
biomarkers, it can be revealed that lipids metabolic perturbations
play an important role in Model group, including the

increased sphingolipids, declined lysophosphatidyl cholines
(LysoPCs), lysophosphatidylethanolamines (LysoPEs) and bile
acids. Secondly, it is amino acid metabolism, containing the
decreased branched amino acids and the imbalance of arginine-
NO cycle observed in Model group (shown in Table 1).

Metabolic Pathway Analysis
In order to clarify the pathogenesis of stroke, the metabolites
were input into MetaboAnalyst 3.0 to construct metabolic
pathways discovering the important pathways (Figure 5). And
a metabolic correlation network (Figure 6) was established
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FIGURE 4 | (A) The S-plot of Sham vs. Model groups in positive ion mode, (B) The S-plot of Sham vs. Model groups in negative ion mode, (C) The VIP plot of Sham
versus Model groups in positive ion mode, (D) The VIP plot of Sham vs. Model groups in negative ion mode, (E) The volcano plot of Sham vs. Model groups in
positive ion mode, (F) The volcano plot of Sham vs. Model groups in negative ion mode.

by searching online database KEGG1 and HMDB2. Metabolic
dysregulations in rats with cerebral ischemia induced by MCAO
are mainly related to six metabolic pathways, which involved
in sphingolipid metabolism, glycerophospholipid metabolism,
phenylalanine, tyrosine and tryptophan biosynthesis, primary
bile acid biosynthesis, pantothenate and CoA synthesis and
valine, leucine and isoleucine biosynthesis.

In the pathway of phenylalanine, tyrosine and tryptophan
biosynthesis, the levels of tyrosine, the metabolite of
phenylalanine, decreased in Model compared to Sham group,
which suggested the emergence of excitotoxicity induced
by glutamate in cerebral ischemia (Kagiyama et al., 2004).
A high level of N6,N6,N6-Trimethyl-L-lysine and threonine
might correlate with disruption of the nervous system, for the
metabolism of glycine, serine and threonine play an essential
role in the function of the central nervous system (Tabatabaie
et al., 2010; Amelio et al., 2014). The down-regulated tryptophan
indicates that apoptosis mechanism was induced in Model
group, and studies have revealed that the active degradation
of kyn pathway in Trp were closely linked to the severity and
long-term prognosis of stroke (Wang et al., 2015). In the pathway
of valine, leucine and isoleucine biosynthesis, it was found that
neurological dysfunction went hand in hand with the down
regulation of catabolism in BCAAs(branched-chain amino acid,
BACC), and decreased valine with stroke might be attributed to
either an inverse feedback mechanism or the use as an energy
source (Kimberly et al., 2013). Lipid metabolites are crucial to
the progression of stroke and are likely to be a potential target of
interventions for stroke. The levels of lipid-related metabolites,
e.g., LysoPCs, LysoPEs, sphinganine, Sphinganine 1-phosphate
and fatty acids were significantly altered in Model group.

1https://www.kegg.jp/kegg/pathway.html
2http://www.hmdb.ca/

Decreased LysoPCs and LysoPEs levels maybe the inhibition of
phospholipase A2 activity by LPCs in vivo (Cunningham et al.,
2008). While elevated sphinganine and Sphinganine 1-phosphate
were closely related to dysregulation of inflammatory responses
and apoptosis (Maceyka et al., 2012). The altered levels of
3-hydroxybutyrylcarnitine, propionylcarnitine, Butyrylcarnitine
and 2-Methylbutyroylcarnitine, indicated the metabolic
dysregulations of fatty acid β oxidation and oxidative stress
(Virmani and Binienda, 2004). Other metabolites are mostly
basic organic acids from many basal metabolic pathways, such
as citric acid, malic acid, 3-hydroxybutyric acid, most of which
were TCA pathway intermediates (Gao et al., 2008). In addition,
the decreased of bile acids, e.g., glycocholic acid, deoxycholic
acid, glycoursodeoxycholic acid, and taurochenodesoxycholic
acid, were observed in stroke rats, which implicated the
gut microbiome was involved in the progression of stroke
(Kasahara and Rey, 2019).

After intervened by DSCXQ, the disorder of metabolites has
been improved. DSCXQ reversed brain metabolic deviations in
stroke by significantly upregulating the levels of L-tryptophan,
Lyso (18:0/0:0), LPC (18:2), Indole-3-methyl acetate, and
downregulating the levels of sphinganine 1-phosphate,
L-threonic acid, glutaconic acid and N6,N6,N6-Trimethyl-
L-lysine. In the research, sphinganine 1-phosphate decreased
remarkably after the DSCXQ treatment both in ESI+ and ESI−
modes. Accordingly, we mainly concentrated on the sphingolipid
metabolism pathway.

DSCXQ Injection Ameliorate
Neurological Scoring and Reduce Infarct
Area in Cerebral Ischemia
The neurological damage was evaluated by an observer who
was blinded to the experiments using a four-point scale, as
described above. Neurological scores were shown in Figure 7C,
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and it was found that the neurological scores in DSCXQ
group (score = 2) were lower compared with the Model
group (score = 2.83), meaning the neurological symptoms were
improved by the treated group. The results of TTC staining
showed that the relative infarct area in the model group was
increased significantly compared to sham group (Figure 7A),
indicating our Model group was established successfully. With
the treatment of DSCXQ, the area of cerebral infarction 10.86%
was notably reduced in contrast with Model group 22.70%
(Figure 7B, p < 0.01).

Effects of DSCXQ on the Expression of
SphK1, S1PR1 in Brain Tissues
SphK1 is the dominant kinase for S1P production in the
brain and exert a critical role in “sphingolipid rheostat.” S1P
receptors, S1PR1 is amongst the most abundant subtype of S1P
receptors in the brain, which plays a crucial role in sustaining
hallmark endothelial functions. To validate the key enzymes and
receptors in sphingomyelin metabolism, SphK1and S1PR1 were
estimated by western blot (Figure 8). The results shows that
expression levels of SphK1 and S1PR1 were increased notably
following MCAO (p < 0.05), and compared to Model group,
DSCXQ attenuated the upregulated SphK1 and increased levels
S1PR1 (p < 0.05). These results verify that SphK1-mediated
S1P production is increased in the injured brain after cerebral
ischemia, and DSCXQ reduces the SphK1-induced S1P levels
by suppressing S1PR1 receptors, which plays a crucial role in
endothelial functions and vascular development.

DSCXQ Reduced Immunoreactive Cells
of CD62P
Platelets store large amounts of S1P that is only released
upon activation (Nitzsche et al., 2021). CD62P, also known
as P-selectin, can directly reflect the activation of platelets
in vivo and interact with leukocytes to potentiate vascular injury.
Immunohistochemistry was used to detect the expression of
CD62P in cerebral cortex and hippocampus. In Figure 8C,
there was little expression of CD62P in the sham operation
group, however, the amount of CD62P in Model group was
heavily activated, with the treatment of DSCXQ, the positive
expression of CD62P decreased greatly compared with the Model
group. The results, upregulation of CD62P + cells in Model
group, further confirmed that the SphK1-S1P axis was activated,
worsening the inflammatory response. And its downregulation
by DSCXQ, indicating the neuroprotective effects of DSCXQ
against neuroinflammatory responses.

Effects of DSCXQ on the Expression of
Bcl-2, Bax, Cleaved Caspase-3 in Brain
Tissues
SphK1/S1P axis has been involved in various physiological
processes, including cell migration, survival, cell death, and it
is a critical regulator of the sphingolipid rheostat (Maceyka
et al., 2012). To further investigate the possible molecular
mechanism of DSCXQ in stroke rats, the expression of Bcl-2,
Bax, Cleaved Caspase-3 levels in brain tissue were determined
by Western blot (Figure 9). The results revealed that the level

of Bax and Cleaved Caspase-3 was up-regulated compared to
Sham group (p < 0.05), while the content of Bcl-2 content
in model group were down-regulated and the ratio of Bcl-
2/Bax decreased notably compared with Sham group; With
the treatment of DSCXQ, the result indicted that DSCXQ
decreased the level of Bax and Cleaved Caspase-3, enhanced
Bcl-2 greatly caused an increase in the ratio of Bcl-2/Bax
significantly. The results, the remarkable downregulation of
the ratio of Bcl-2/Bax in Model group, indicated that the
balance between apoptosis and survival was broken and
confirmed the SphK1-S1P axis was activated. With the treatment
of DSCXQ, the downregulation of Bax, Cleaved Caspase-
3, and up-regulated of Bcl-2, was achieved, implicating the
neuroprotective effects of DSCXQ against neuronal apoptosis
on a stroke model.

DSCXQ Prevented Neuronal Apoptosis in
Brain Tissues
As shown in Figure 9, in Model group, the positive cell
shrinkage were brown granules after staining, which was
remarkably increased compared with Sham group and was
significantly decreased after treatment with DSCXQ. The results
indicate that DSCXQ can effectively inhibit neuron apoptosis in
cerebral ischemia.

DISCUSSION

In our study, neuroprotective effects of DSCXQ on ischemic
stroke and the affected metabolic pathways were revealed
by UHPLC-Q-Orbitrap HRMS-based metabolomics approach
with multivariate statistical analysis methods. The results
demonstrated that DSCXQ mediates its neuroprotective effect
against stroke through modifying multiple metabolic pathways
involved in lipid metabolism, amino metabolism, oxidative
stress, and especially sphingolipid metabolism. our study clearly
indicate that SphK1-SIP axis may potentiate neuroinflammatory
responses and mediate brain damage in neuronal apoptosis, and
DSCXQ suppressed the activity of SphK1-SIP axis to protect
brain tissue in cerebral ischemia. Our work paved the way
to uncovering the disturbed metabolic pathways, facilitating
our understanding on neuroprotective mechanisms of DSCXQ
against stroke from metabolomic insights.

Sphingomyelin Metabolism and
Apoptosis in Stroke
The metabolites of sphingolipids, such as ceramide, sphingosine
and (dihydro)sphingosine-1-phosphate, are all signal lipid
molecules and participate in many cell processes (Jin et al., 2003).
A large number of documents show that Sph kinase (SphK),
which phosphorylates Sph to form S1P, is a key regulator of the
sphingolipid rheostat (Spiegel and Milstien, 2003), and SphK1
has been proved as the dominant kinase for S1P production in the
brain and exert a critical role in “sphingolipid rheostat” (Maceyka
et al., 2002; Blondeau et al., 2007). S1P receptors, S1PR1 is
amongst the most abundant subtype of S1P receptors in the brain,
which plays a crucial role in sustaining hallmark endothelial
functions and could be as a regulator for microglial activation
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TABLE 1 | Identified endogenous metabolites between Sham group vs. Model group and adjusted in DSCXQ group in rats brain.

No m/z Metabolites Formula RT (min) VIP Fold change
(M/S)

Fold change (DS/M) Pathway Involved ppm

1 118.086 L-Valine# C5H11NO2 0.84 1.699 0.567 1.067 ↑ Valine, leucine and
isoleucine biosynthesis

−3.431

2 147.125 Acetylcholine# C7H16NO2 0.828 1.374 1.930 0.747 ↓ Glycerophospholipid
metabolism

−2.705

3 153.066 N1-Methyl-2-
pyridone-5-
carboxamide

C7H8N2O2 1.179 1.579 0.308 0.473 Nicotinate and nicotinamide
metabolism

−3.489

4 175.118 D-Arginine# C6H14N4O2 0.756 1.361 1.504 0.822 ↓ D-Arginine and D-ornithine
metabolism

−2.868

5 176.103 Citrulline# C6H13N3O3 0.824 1.551 0.649 0.836 Arginine and proline
metabolism

−2.713

6 182.081 L-Tyrosine# C9H11NO3 1.104 1.559 0.481 1.058 ↑ Phenylalanine, tyrosine and
tryptophan biosynthesis

−0.438

7 188.071 Indoleacrylic
acid

C11H9NO2 5.113 1.407 0.248 4.073 ↑** tryptophan metabolism −1.144

8 189.160 N6,N6,N6-
Trimethyl-L-
lysine#

C9H20N2O2 0.76 1.597 2.473 0.586 ↓** Lysine degradation −1.609

9 204.123 L-Acetylcarnitine# C9H17NO4 1.076 1.581 0.487 1.010 ↑ Beta Oxidation of Very
Long Chain Fatty Acids

−1.737

10 205.097 L-Tryptophan# C11H12N2O2 3.042 1.680 0.541 1.256 ↑* Tryptophan metabolism −1.044

11 218.138 Propionylcarnitine C10H19NO4 1.328 1.102 1.600 0.767 ↓ Oxidation of Branched
Chain Fatty Acids

−1.305

12 220.118 Pantothenic
acid#

C9H17NO5 2.269 1.245 2.159 0.762 ↓ Pantothenate and CoA
biosynthesis

−1.041

13 232.154 Butyrylcarnitine C11H21NO4 2.742 1.058 1.638 0.723 ↓ Synthesis and degradation
of ketone bodies

−1.355

14 246.170 2-Methylbutyro
ylcarnitine

C12H23NO4 3.534 1.065 1.642 0.543 ↓* Synthesis and degradation
of ketone bodies

−1.725

15 248.149 (R)-3-
hydroxybutyryl
carnitine

C11H21NO5 1.075 1.225 0.491 0.530 Synthesis and degradation
of ketone bodies

−1.931

16 302.305 Sphinganine# C18H39NO2 7.434 1.141 2.404 0.764 ↓ Sphingolipid metabolism −2.402

17 450.321 Chenodeoxycholic
acid#

C26H43NO5 6.767 1.253 0.008 1.393 ↑ Primary bile acid
biosynthesis

−1.428

18 466.316 Glycocholic
acid

C26H43NO6 5.926 1.615 0.013 2.956 ↑ Primary bile acid
biosynthesis

−1.155

19 468.308 LysoPC(14:0/0:0) C22H46NO7P 7.515 1.361 0.591 1.244 ↑ Arachidonic Acid
Metabolism

−2.468

20 480.308 LysoPE(18:1/0:0) C23H46NO7P 8.593 1.498 0.602 0.972 Glycerophospholipids
Metabolism

−2.219

21 482.324 LysoPE(18:0/0:0) C23H48NO7P 7.942 1.782 0.332 1.343 ↑* Glycerophospholipids
Metabolism

−2.313

22 497.347 1-
palmitoylglycero
phosphocholine

C24H51NO7P 8.203 1.382 0.646 1.030 ↑ Phospholipid metabolism −1.865

23 508.376 LysoPC(P-18:0) C26H54NO6P 8.774 1.675 0.407 1.098 ↑ Glycerophospholipids
Metabolism

−0.829

24 510.355 LysoPC(17:0) C25H52NO7P 8.811 1.436 0.442 0.993 Glycerophospholipid
metabolism

−0.247

25 520.340 LPC(18:2) C26H50NO7P 8.004 1.717 0.538 1.378 ↑ Glycerophospholipid
metabolism

−1.952

26 522.355 LysoPC(18:1) C26H52NO7P 8.56 1.559 0.534 1.061 ↑ Glycerophospholipid
metabolism

−1.887

27 570.355 LysoPC(22:5) C30H52NO7P 8.372 1.062 0.350 1.075 ↑ Glycerophospholipid
metabolism

1.375

(Continued)
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TABLE 1 | Continued

No m/z Metabolites Formula RT (min) VIP Fold change
(M/S)

Fold change (DS/M) Pathway Involved ppm

28 572.371 LysoPC(22:4) C30H54NO7P 8.589 1.409 0.359 1.287 ↑ Glycerophospholipid
metabolism

−2.194

29 703.575 Palmitoyl
sphingomyelin

C39H79N2O6P 7.987 1.708 0.614 1.001↑ Sphingolipids metabolism −2.375

30 324.964 Trichloroethanol
glucuronide

C8H11Cl3O7 3.895 1.215 2.241 0.586 ↓ Glucuronic Acid Derivatives 4.173

31 105.055 3-
Hydroxybutyric
acid#

C4H8O3 1.236 1.439 0.340 0.541 Ketone metabolism 7.855

32 131.070 2-Methyl-3-
ketovaleric
acid

C6H10O3 3.714 1.556 0.469 1.157 ↑ leucine metabolism 6.659

33 393.300 Deoxycholic
acid#

C24H40O4 7.57 1.118 0.143 0.756 bile acid metabolism 3.000

34 407.279 3,7-Dihydroxy-
12-
oxocholanoic
acid

C24H38O5 6.437 1.073 0.139 0.408 bile acid metabolism 2.022

35 135.029 Malic acid# C4H6O5 0.843 1.169 0.443 0.884 TCA cycle 6.242

36 193.034 Citric acid# C6H8O7 0.837 1.080 0.500 0.665 Citrate cycle (TCA cycle) 5.659

37 117.054 Levulinic acid C5H8O3 1.849 1.532 0.507 1.070 ↑ Gamma-ketoacid and
derivatives

6.601

38 119.070 2-
Hydroxyvaleric
acid

C5H10O3 2.927 1.747 3.927 1.070 ↓ fatty acid metabolism 7.085

39 199.057 4-Methyldiben
zothiophene

C13H10S 3.484 1.704 0.450 1.292 ↑ Cell membrane 6.102

40 131.034 Glutaconic acid C5H6O4 0.836 1.197 1.843 0.520 ↓* glutamic acid metabolism 5.696

41 137.044 L-threonic Acid C4H8O5 0.83 1.364 1.688 0.617 ↓* amino acid metabolism 6.148

42 450.321 Glycoursode
oxycholic acid

C26H43NO5 5.921 1.271 0.008 1.236 ↑ Primary bile acid
biosynthesis

2.387

43 500.304 Taurochenodes
oxycholic acid

C26H45NO6S 5.768 1.423 0.349 1.119 ↑ Primary bile acid
biosynthesis

1.414

44 133.086 2-
Hydroxycaproic
acid

C6H12O3 3.941 1.589 2.760 1.420 Fatty acid metabolism 5.869

45 205.097 Tryptophan# C11H12N2O2 3.039 1.518 0.548 1.218 ↑ Aminoacyl-tRNA
biosynthesis

5.839

46 466.316 Glycocholic
acid

C26H43NO6 5.936 1.586 0.013 3.001 ↑ Primary bile acid
biosynthesis

1.821

47 220.118 Pantothenic
acid#

C9H17NO5 2.256 1.105 1.998 0.658 ↓ CoA synthesis 4.177

48 516.299 Taurocholic
acid

C26H45NO7S 5.881 1.638 0.322 1.610 ↑ Taurine and hypotaurine
metabolism

1.478

49 190.086 Indole-3-methyl
acetate

C11H11NO2 5.32 1.575 0.098 4.223 ↑** tryptophan catabolism −1.500

50 175.096 Suberic acid C8H14O4 4.265 1.164 0.261 1.009 ↑ Fatty acid metabolism 4.418

51 382.272 Sphinganine
1-phosphate

C18H40NO5P 7.636 1.657 2.561 0.532 ↓** Sphingolipid Metabolism 2.981

52 167.070 D-Phenyllactic
acid

C9H10O3 4.287 1.239 2.360 0.765 ↓ amino acid metabolism 4.661

53 160.097 Isovalerylglycine C7H13NO3 3.284 1.273 0.466 0.794 carboxylic acids and
derivatives

4.556

54 208.097 N-Acetyl-L-
phenylalanine

C11H13NO3 4.315 1.300 2.549 0.815 ↓ phenylalanine metabolism 5.436

55 305.247 Arachidonic
acid

C20H32O2 7.874 1.619 0.574 0.890 Arachidonic acid
metabolism

3.375

#metabolites were identified by reference standards; *p values < 0.05; **p values <0.01; RT, retention time; VIP, variable importance in the projection obtained from Model
group vs. Sham group.
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FIGURE 5 | The pathway analysis of the identified metabolites.

FIGURE 6 | Disordered metabolic pathway network in stroke and the interventional effects of DSCXQ. The names marked in red represent up-regulated metabolites
in model rats, and the names marked in green represent down-regulated metabolites in model rats. The names marked in black represent undetected metabolites.
The metabolites reversed by DSCXQ are marked with up and down arrows.

following cerebral ischemia (Moon et al., 2015; Nitzsche et al.,
2021). S1P can activate platelets, which in turn stimulates the
release of S1P into the bloodstream, S1P bind to receptors
on the platelet surface, altering cell membrane glycoproteins,
exposing fibrinogen receptors, increasing CD62P expression and
activation rates and elevating platelet reactivity (Huang et al.,
2006). CD62P, as an adhesion molecule on the surface of cell
membrane, can mediate the mutual adhesion and aggregation of
platelets, vascular endothelial cells, neutrophils and monocytes
which play an important role in initiating thrombosis and exert
a central role in inflammation and embolism. As platelets are
activated, the CD62P is exposed to the surface of the cytosolic
membrane and partially released into the blood. Hence, detecting
the CD62P of platelet surface can directly reflect the activation
degree of platelets in the body and understand the thrombosis
process (Danton and Dietrich, 2003). Studies have shown that

sphingosine is a lipid metabolite with multiple physiological
and immunoregulatory functions, and may regulate apoptosis
and necrosis (Radak et al., 2017). In our study, the significant
increase of sphingomyelin and sphingosine caused abnormal
sphingomyelin metabolism which up-regulated S1P expression,
increased CD62P expression, intensified platelet activation,
enhanced Bcl-2 level, inhibited cleaved Caspase-3 expression,
induced cell necrosis and apoptosis - mechanisms which underlie
the pathophysiology of stroke. CD62P immunohistochemistry
revealed that number of CD62P+ cells was significantly high
in Model group compared to that of Sham group, while the
rats treated with DSCXQ showed a dramatic reduction in the
expression of CD62P+ cells. To explore the possible molecular
mechanisms related to beneficial effects of DSCXQ against
apoptosis in I/R rats, the expression levels of Bax, Bcl-2 and
cleaved Caspsae-3 in the rat brain were detected by western blot.
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FIGURE 7 | (A) Representative images of TTC staining in different groups of DSCXQ at 24h after I/R. Red areas represent normal tissue, while the white is infarction.
(B) Quantitative analysis of infarct size in different groups of DSCXQ. (C) Effects of DSCXQ on neurologic deficits in different group, the evaluation of neurological
deficits was assessed by four-point scale (0–4). Data were expressed with mean values ± standard deviation (SD). ##p < 0.01 vs. Sham group, **p < 0.01
*p < 0.05 vs. Model group.

FIGURE 8 | (A,B) Western blot analysis of Sphk1 and S1PR1 in the cerebral cortex and hippocampus of rats at 24h after MCAO. (C,D) Representative photographs
represented the expression of CD62P in the cerebral cortex and hippocampus at 24h reperfusion after MCAO. The positive products were brown granules after
immunostaining, which was remarkably increased followed MCAO and was significantly decreased after treatment with DSCXQ. Representative images of Sphk1
and S1PR1 were presented, and the protein levels were expressed as a ratio of the β-tubulin levels (n = 3). Data were expressed with mean values ± standard
deviation (SD). ##p < 0.01 vs. Sham group, **p < 0.01 *p < 0.05 vs. Model group.

The results indicate that the expressions of both Bax and cleaved
Caspase-3 were markedly up-regulated and Bcl-2 markedly
down-regulated compared with that of Sham group. However,
DSCXQ administration, inhibited the expression of Bax and
cleaved Caspase-3 expressions, while significantly enhanced the
expression of Bcl-2 when compared with the non-treated Model
group (p < 0.05). These results suggest that DSCXQ injection has
significant anti-apoptotic effect against stroke.

Ischemic Stroke and Amino Acid
Metabolism
Compared with the Sham group, the amino acid metabolism in
the MCAO group was obviously disordered, in which tryptophan
and valine were negatively correlated with the occurrence of
cerebral ischemia. Valine is one of branched amino acids
(branched-chain amino acid, BACC) in vivo, which are closely
related to neurotransmitter synthesis and protein degradation
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FIGURE 9 | (A-C) Western blot analysis of Bcl-2, Bax, Cleaved Caspase-3 in the cerebral cortex and hippocampus of rats at 24h after MCAO. (D,E) Representative
TUNEL-staining brain sections in different groups (n = 3) in the cerebral cortex and hippocampus at 24 h reperfusion after MCAO. Representative images of Bcl-2,
Bax, Cleaved Caspase-3 protein were presented, and the protein levels were expressed as a ratio of the GAPDH levels (n = 3). Data were expressed with mean
values ± standard deviation (SD). ##p < 0.01 vs. Sham group, **p < 0.01 *p < 0.05 vs. Model group.

(Liu et al., 2016). Tryptophan, as one of the essential amino acids,
plays an important role in maintaining the activity and increment
of immune cells. On the other hand, studies have revealed that the
active degradation of kyn pathway in Trp were closely linked to
the severity and long-term prognosis of stroke (Cuartero et al.,
2016), confirming our study.

Abnormal pathway of arginine metabolism may indicate
the abnormal production of NO and the possible oxidative
stress injury. As the central nervous system transmitter, the
lack of NO may cause the brain information transmission
disorder. At the early stage of cerebral ischemia, NO has the
neuroprotective effect which can inhibit platelet and blood cell
adhesion, researches have showed that NO in patients with acute
cerebral infarction decreased significantly (Rashid et al., 2020),
consistent with our findings. With the treatment of DSCXQ,
the level of arginine was be on a downwards trend, indicating
that the production of NO was likely to increase to exert
neuroprotective effect.

Lipid Metabolism and Stroke
Lipid metabolism disorder is an important factor causing stroke.
Lipid compounds participate in cellular functions and energy
storage, as well as a variety of precursor compounds as second
messengers. Abnormal changes of lipid metabolism network in
brain tissue may be closely related to changes of oxidative stress
parameters reflecting apoptosis (Yang et al., 2017; Chen et al.,
2019).In our study, the level of LysoPCs and LysoPEs decreased
versus Sham group, among them, the level of LysoPE (18:0/0:0),

LPC (18:2) increased after DSCXQ treatment which restored
toward Sham groups.

Compared with the Sham group, the level of L-acetylcarnitine
decreased in the cerebral ischemia model which played
an important role in β-oxidation. Since brain is almost
completely dependent on the oxidative energy supply of
sugar. L-acetylcarnitine that is synthesized by acetyl CoA
and carnitine mainly affects the energy metabolism of the
brain (Zanelli et al., 2005). In the study, the decreased
of 3-hydroxybutyrylcarnitine, the rise of propionylcarnitine,
Butyrylcarnitine and 2-Methylbutyroylcarnitine were observed
in Model group vs. Sham group, with the treatment of DSCXQ,
the level of L-Acetylcarnitine, 2-Methylbutyroylcarnitine, 3-
hydroxybutyrylcarnitine showed a trend toward Sham group,
indicating that the neuroprotective effects of DSCXQ partially
interferences with lipid metabolism in disease.

Ischemic Stroke and Energy Metabolism
Energy metabolism disorder is the leading cause in the course
of cerebral ischemia (Kurup et al., 1990). Cerebral ischemia
restricts the delivery of oxygen and glucose in brain, and it has
been revealed that energy metabolism shifted from tricarboxylic
acid cycle to glycolysis. β-hydroxybutyrate, a small lipid-derived
molecules which is classified as a type of ketone bodies, can be
oxidized and provided energy when brain is in starvation, during
glucose is insufficient, fatty acids were transported to liver where
converted to ketone bodies, and transferred from blood serum
to brain tissue (Newman and Verdin, 2017). In our experiments,
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β-hydroxybutyrate significantly decreased in MCAO rats and was
raised by DSCXQ which may be alleviate energy supply obstacles
and improve fatty acids utilization.

Bile Acids –Gut Microbiome - Brain Axis
in Stroke
Bile acids are the metabolites of cholesterol formed by a series of
enzymatic reactions in hepatocytes. Meanwhile gut microbiome
play a vital role in lipid regulation via promoting the formation
of cholesterol oxidase. In our study, the primary bile acids in
brain tissue of rats in Model group were significantly lower than
those in Sham group. After the treatment of DSCXQ, the level
of bile acids was notably higher than that in Model group. The
lipids in the liver were cleared by bile acids, but it is interesting
that bile acids in hepato-enteric circulation were detected in
brain tissue, indicating that bile acid metabolism axis that runs
through the liver - gut microbiota - brain is bound up with
pathogenesis of stroke.

CONCLUSION

In general, the research provides comprehensive insight into the
mechanisms of DSCXQ against stroke by UHPLC-Q-Orbitrap
HRMS based on metabolomics, and the results revealed that a
series of complex and severe metabolic disorders were caused in
MCAO rats after ischemic stroke injury. A total of 55 metabolic
differences were detected as potential markers, and DSCXQ
ameliorate the perturbed metabolic process mainly involving
sphingolipid metabolism, amino acid metabolism, and cerebral
homeostasis. Sphingolipid metabolism is closely associated with
antiplatelet aggregation and cell survival. The results further
verified that DSCXQ improved the cell survival and inhibited
apoptosis in ischemia stroke rats. UHPLC-Q-Orbitrap HRMS-
based metabolomics approach was applied in this study firstly
to explore the neuroprotective effect of DSCXQ on ischemic
stroke. By identifying the metabolic pathway and network, we can
provide rich information to better understand and unravel the
causal mechanisms of ischemic stroke, which has great potential
in the future. According to the results of histopathology and
metabolomics, the present study renovated our understanding
of cerebral I/R injury pathogenesis and the neuroprotective
mechanism of DSCXQ, which provided essential basis for
clinical application.
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Atherosclerosis is a life-threatening disease associated with morbidity and

mortality in patients with type 2 diabetes (T2D). This study aimed to

characterize a salivary signature of atherosclerosis based on evaluation of

carotid intima-media thickness (IMT) to develop a non-invasive predictive

tool for diagnosis and disease follow-up. Metabolites in saliva and plasma

samples collected at admission and after treatment from 25 T2D patients

hospitalized for 2 weeks to undergo medical treatment for diabetes were

comprehensively profiled using metabolomic profiling with gas

chromatography-mass spectrometry. Orthogonal partial least squares

analysis, used to explore the relationships of IMT with clinical markers and

plasma and salivary metabolites, showed that the top predictors for IMT

included salivary allantoin and 1,5-anhydroglucitol (1,5-AG) at both the

baseline examination at admission and after treatment. Furthermore, though

treatment induced alterations in salivary levels of allantoin and 1,5-AG, it did not

modify the association between IMT and these metabolites (pinteraction > 0.05),

and models with these metabolites combined yielded satisfactory diagnostic

accuracy for the high IMT group even after treatment (area under curve =

0.819). Collectively, this salivary metabolite combinationmay be useful for non-
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invasive identification of T2D patients with a higher atherosclerotic burden in

clinical settings.

KEYWORDS

saliva, diabetes, atherosclerosis, carotid intima-media thickness (IMT), oxidative stress,
metabolomics

Introduction

Atherosclerosis refers to the formation of fibrofatty lesions in

artery walls, which can impede blood flow, leading to tissue

ischemia. Atherosclerotic cardiovascular disease (CVD) is the

leading cause of morbidity and mortality in patients with type

2 diabetes (T2D) (Mach et al., 2019). Furthermore, diabetes itself

is an independent risk factor for CVD, and recent findings

indicate that its presence increases that risk by approximately

two-fold on average, though there are wide variations depending

on the subject population and prophylactic treatment received

(Sattar, 2013; Olesen et al., 2017). Therefore, long-term

management of T2D patients requires early and accurate

identification, as well as monitoring of those at high risk for

CVD. Carotid ultrasonography is useful for evaluating

subclinical atherosclerosis and various measurement results

obtained with that method, including carotid intima-media

thickness (IMT), have been shown to be predictive of CVD

(Lorenz et al., 2007). However, it is not feasible to perform carotid

ultrasonography for universal screening in patients with T2D, as

specialized machines, skilled technicians, and patient restraint

are required. Novel biomarkers that can better predict

atherosclerosis burden and CVD risk are anticipated to

facilitate early treatment induction, and reduce CVD-related

morbidity and mortality associated with T2D.

Metabolites are small molecules known to reflect biological

processes and their measurements are often utilized in clinical

medicine as biomarkers for diagnosis, prognosis, and treatment

efficacy (Wishart, 2019). Recent advancements in high-

throughput technologies have allowed for systematic

evaluation of a metabolome, a collection of metabolites, with

regard to cardiometabolic changes, and several studies using

blood metabolome have characterized disease-related metabolic

pathways, including amino acid and fatty acid metabolism (Fan

and Pedersen, 2021). In addition, state-of-the-art metabolomics

data related to the risk of type 2 diabetes and its complications,

analyzed from a wide variety of biological samples (plasma,

serum, and urine), have been published (Sharma et al., 2013;

Morze et al., 2022). Previously, we investigated the association of

paired plasma and salivary metabolomic datasets from patients

with T2D, and demonstrated the potential utility of salivary

metabolites for evaluating systemic metabolic dysfunction

(Sakanaka et al., 2021). However, there remains a lack of

metabolomic studies that sought to address the complexity of

T2D-CVD crosstalk, such as how atherosclerotic burden can

alter metabolic profiles in plasma and saliva in T2D patients.

The aim of the present study was to identify multivariate

covariation patterns between carotid atherosclerosis, and saliva

and plasma metabolomes to develop non-invasive tools for

prediction of atherosclerotic burden in T2D patients. To

achieve this, comprehensive metabolomic profiling of plasma

and saliva obtained from T2D patients was performed, and

multivariate covariations with clinical markers of oral and

systemic health were investigated. For the analyses, we

employed a powerful multivariate method termed orthogonal

partial least square (OPLS) to go beyond simple correlations.

This method has been reported suitable for analysis of high-

dimensional datasets where numerous variables are expected to

be highly correlated (Wheelock and Wheelock, 2013). Using

results obtained by modeling the association between IMT and

clinical and metabolomic parameters with OPLS, this study

presents a catalog of plasma and salivary metabolites that

potentially reflect atherosclerotic burden. It is considered that

the findings presented suggest the potential of salivary

metabolites for evaluating cardiovascular risk in T2D patients.

Materials and methods

Study population

The present study was approved by the Osaka University

Research Ethics Committee, and performed according to the

principles of the Helsinki Declaration and STROBE guidelines

for human observational studies. All participants gave written

informed consent prior to enrollment and provided samples at

Osaka University Medical Hospital. Participants with T2D,

diagnosed using the criteria of the Japan Diabetes Society

(Haneda et al., 2018), were recruited from November

2017 through March 2019 from among patients who visited the

Department of Metabolic Medicine at Osaka University Medical

Hospital for intensive diabetes treatment in an inpatient setting.

Those with severe renal dysfunction or end-stage renal failure

(serum creatinine >2.0 mg/dL), or under 50 years of age were

excluded. All enrolled patients received comprehensive diabetes

care, including intensive glycemic control, as well as blood

pressure, dyslipidemia, and body weight control treatments while

under hospitalization. Saliva, fasting blood, and urine samples were

also obtained, and vital signs and weight were measured at

admission (baseline) and again 2 weeks after treatment. Of

33 patients examined from November 2017 to March 2019,

25 met the criteria and were included in the study.
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Blood and urine sample collection, and
laboratory measurements

Blood and urine samples were collected after an overnight

fast at admission and again 2 weeks after treatment during

hospitalization. Those were subjected to biochemical testing

such as HbA1c and urine albumin, which were performed

according to standard protocols. Furthermore, fasting plasma

was collected and kept at 4°C in a freezer (CubeCooler®; Forte
Grow Medical, Tochigi, Japan), and then frozen at −80°C, and

used for metabolomics. All patients underwent anthropometric

measurements and were asked to complete a variety of surveys

regarding demographics, current and past medical history,

medications, smoking history, and family history.

Determinations of hypertension (defined as systolic blood

pressure ≥130 mmHg, diastolic blood pressure ≥80 mmHg, or

anti-hypertensive medication use), dyslipidemia [defined as

serum low-density lipoprotein cholesterol (LDL-C) ≥120 mg/

dL, serum triglycerides (TG) ≥150 mg/dL, high-density

lipoprotein cholesterol (HDL-C) <40 mg/dL, or lipid-lowering

medication use], and obesity (BMI ≥ 25 kg/m2) were based on the

criteria of the Japan Diabetes Society.

Carotid IMT measurement

Details of the carotid ultrasonic examination methods used

have been presented (Omori et al., 2020). Briefly, a B-mode

ultrasonography examination of the carotid artery was

performed with a 7.5-MHz liner transducer. All scanning was

conducted by experienced laboratory physicians using the same

measuring method, in accordance with the guidelines of the

Japan Society of Ultrasonics in Medicine (Terminology and

Diagnostic Criteria Committee and Japan Society of

Ultrasonics in Medicine, 2009). The thickest point for IMT in

both common carotid arteries was separately determined, with

the highest value defined as IMT for each individual in this study.

This measurement was only performed at admission.

Oral examination and saliva sample
collection

All participants were asked to refrain from eating, drinking, or

brushing their teeth for at least 1 h before undergoing the following

procedures. Four calibrated licensed dentists performed oral

examinations using techniques previously described (Sakanaka

et al., 2021), and obtained saliva samples on the same day as

blood and urine samples. For saliva output, each participant was

asked to collect unstimulated whole saliva over a 10-min period in a

50-ml tube (Corning, NY, United States) kept on ice. Four diabetes

patients with saliva output of less than 3 ml/10 min were asked to

take 3 ml of distilled water (HPLC grade; Sigma-Aldrich, St. Louis,

MO, United States) into their mouth and spit it out into a tube. By

making the corrections described below regarding metabolomics

analysis, we confirmed that exclusion of these four samples did not

change the main results. After incubation on ice for 15 min, 1 and

0.1 ml of the aqueous layer were designated as the study sample and

the quality control (QC) sample, respectively, which were then

separately aliquoted into 2-ml tubes and maintained at 4°C in a

CubeCooler®. They were subsequently frozen with liquid nitrogen

and stored at −80°C until analysis.

Saliva and plasma metabolomics

Metabolomics analysis was performed as previously

described (Sakanaka et al., 2021). Briefly, saliva samples were

thawed to 4°C, then vortexed and centrifuged (18,000 × g) for

3 min. Next, 0.8 ml of the aqueous layer was aliquoted and

weighed, then 0.3 ml of that was transferred into a 2-ml glass

vial (Nichiden-Rika Glass, Kobe, Japan) and kept at 4°C in a

CubeCooler®. For extraction, 0.3 ml of a deaerated ribitol

aqueous solution (0.02 mg/ml) was added as the internal

standard. After incubation using an Eppendorf thermomixer

(25°C, 1,000 rpm, 10 min), 1.4 ml of deaerated acetonitrile was

added. After another incubation (25°C, 1,000 rpm, 10 min) and

then centrifugation (4°C, 1800 × g) for 3 min, 1.6 ml of the

supernatant was transferred to a 2-ml tube and dried in a vacuum

concentrator (VC-96R; TAITEC, Koshigaya, Japan) for 30 min,

then lyophilized overnight. For derivatization, a methoxyamine

hydrochloride solution with pyridine was used at a concentration

of 20 mg/ml, followed by silylation treatment with N-methyl-N-

(trimethylsilyl)-trifluoroacetamide (MSTFA). Analysis using gas

chromatography coupled with mass spectrometry (GC/MS) was

performed using a GCMS-TQ8040 (Shimadzu, Kyoto, Japan)

equipped with an AOC-20i autosampler (Shimadzu), a SKY™
liner (Restek, Bellefonte, PA, United States), and an InertCap

5MS/NP capillary column (0.25 mm × 30 m, 0.25 µm; GL

Sciences, Tokyo, Japan), operated in full MS scan mode. QC

samples consisting of an equimolar mixture of all saliva samples

were injected every five samples to monitor MS signal drift and

derivatization efficiency, followed by normalization with locally

weighted scatter plot smoothing (LOWESS) in the subsequent

data processing steps. GC-MS data were converted into ABF

format, then processed usingMS-DIAL (version 3.90) to perform

feature detection, spectra deconvolution, metabolite

identification, and peak alignment (Tsugawa et al., 2015). The

acquired peak list was further normalized based on internal

standard (ribitol) and sample weight (g/ml), as well as

LOWESS algorithm. Metabolites from blanks and those with a

coefficient of variation in QC samples above 30% were discarded.

A total of 976 salivary metabolites were detected using this

metabolomics platform, among which 142 were identified by

matching retention time and fragmentation spectra to authentic

standards. Plasma samples were prepared and analyzed with a
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GC-MS/MS-TQ8040 in multiple reaction monitoring mode, as

previously described (Katakami et al., 2020; Taya et al., 2021).

The obtained metabolomics data are available at Metabolomics

Workbench (Study ID: ST001905 and ST001906).

Statistical analysis

Using the SIMCA-P software package, v. 16 (Umetrics,

Umeå, Sweden), an OPLS model was constructed with IMT as

the Y response variable and all other parameters as X variables,

which were all block-scaled by unit variance prior to analysis so

that the influence of blocks of variables could be balanced in

relation to their size. A seven-fold cross-validation was

performed to avoid model over-fitting. Model quality and

performance were assessed using R2 (goodness of fit) and Q2

(goodness of prediction) values, cross-validation analysis of

variance (CV-ANOVA), and a permutation test (assessment

of risk of over-fitting). The OPLS method can distinguish data

variations correlated to the Y response variable from those

orthogonal to Y response. Results thus obtained can assist

with biological interpretation and enables establishment of a

link between variations of variables and outcomes while

removing information from other sources of variation.

Variables reflecting the IMT variation were selected based on

variable importance in projection of the predictive component

(VIP predictive) of the OPLS model as well as Spearman’s

correlation. The diagnostic ability of some parameters for

IMT >1.6 mm was evaluated according to receiver operating

characteristic (ROC) curve and area under the ROC curve (AUC)

results. Cardiometabolic disease risk score was calculated as

previously described (Wang et al., 2021a). Briefly, blood

biomarker levels were first categorized into quintiles without

distinction between pre- and post-treatment by ranking HbA1c,

total cholesterol, TG, and high-sensitivity C-reactive protein

(hsCRP) from lowest to highest with scores from 1 to 5. For

HDL-C, the scoring was reversed. The cardiometabolic disease

risk score was then calculated by summing those components,

with a higher score indicating a higher risk of cardiometabolic

disease. Differences as compared to the baseline regarding

cardiometabolic disease risk score and salivary metabolite

levels were analyzed with a paired t test. An interaction test

was performed to determine whether treatment had an effect

modification on the association between IMT and salivary

metabolites. Spearman’s correlation was performed using the

GraphPad Prism software package, v.8, and ROC curves and an

interaction test were performed with the R package (v. 4.0.3).

Results

After applying the aforementioned exclusion criteria,

25 patients with T2D were available for statistical analysis

(Figure 1) and their clinical characteristics are shown in

Table 1. Using untargeted GC/MS, 142 salivary and 78 plasma

metabolites were identified. Of those, when plasma

indoleacetaldehyde and salivary indoleacetic acid were treated

as the same due to structural similarity, 62 metabolites were

found to be shared between them, seven of which showed a

significant positive association at the baseline (Spearman’s

correlation value > 0.3, p < 0.05). Among them, 1,5-

anhydroglucitol (1,5-AG) demonstrated the strongest positive

association between plasma and saliva (r = 0.76, p = 9.0 × 10–5).

Overall, rich datasets comprised of three data blocks (44 clinical

markers, 142 salivary, and 78 plasma metabolites) obtained at

both the baseline and after treatment were generated.

For more accurate characterization of the associations

between IMT and clinical and metabolomic parameters at the

baseline, and to examine the relative importance of variables in

relation to IMT, OPLS was performed with IMT as a Y response

variable (Figure 2A). The model showed a moderate predictive

ability of 0.362 for Q2 and reliable performance during the

permutation test (n = 999 permutations; Figure 2B, inset).

Top predictors for IMT from each data block [VIP predictive

value > 1.5, p(corr) value <−0.3 or >0.3] included eight clinical

markers, and 17 plasma and six salivary metabolites (Figure 3A).

Notably, variables that best characterized IMT included the

clinical markers HDL-C (r = −0.578, p = 0.002), glycated

albumin (GA) (r = 0.472, p = 0.017), and TG (r = 0.581, p =

0.002), the plasma metabolites N-acetylglucosamine (GlcNAc)

(r = 0.516, p = 0.008), malate (r = 0.461, p = 0.020) and inositol

(r = 0.346, p = 0.091), and the salivary metabolites allantoin (r =

0.496, p = 0.012), 1,5-AG (r = −0.493, p = 0.012), and malate

(r = −0.437, p = 0.029). Notably, salivary levels of allantoin and

1,5-AG showed AUC values of 0.729 and 0.861, respectively, for

diagnosis in the high IMT group (>1.6 mm) (Figure 3B).

Two weeks of treatment during hospitalization resulted in

significant improvements in multiple clinical parameters,

FIGURE 1
Overview of the experimental procedures. This study yielded
clinical measures (IMT, anthropometrics, and blood and urine
biochemical tests), and metabolome data from plasma and saliva
at admission and after treatment for each of the
25 participants.
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TABLE 1 Main clinical characteristics of study participants.

Variables Diabetes (n = 25)

Baseline Week 2 p-value

Age, years 67.84 (3.75) — —

Females, n (%) 14 (56) — —

Diabetes duration, years 17.52 (11.76) — —

HbA1c, % 8.78 (1.84) 8.16 (1.44) <0.001

Fasting plasma glucose, mg/dL 135.92 (41.07) 110.32 (19.47) 0.0075

Glycated albumin, % 23.36 (5.82) 19.67 (3.53) <0.001

Obesity, n (%) 16 (64) — —

BMI, kg/m2 25.99 (3.12) 25.20 (3.01) <0.001

Waist circumference, cm 97.30 (9.17) — —

Hypertension, n (%) 17 (68) — —

Systolic BP, mmHg 131.04 (18.10) 124.36 (12.31) 0.10

Diastolic BP, mmHg 74.48 (14.33) 74.92 (11.74) 0.87

Mean BP, mmHg 93.35 (13.90) 91.4 (10.90) 0.46

Dyslipidemia, n (%) 21 (84) — —

AST, U/L 27.8 (17.45) 24.04 (14.35) 0.0075

ALT, U/L 26.96 (16.24) 25.12 (19.34) 0.33

γ-GTP, U/L 40.64 (32.52) 32.96 (29.27) <0.001

Triglycerides, mg/dL 137.76 (83.36) 96.56 (34.01) 0.0034

HDL cholesterol, mg/dL 54.28 (12.44) 52.24 (10.24) 0.11

LDL cholesterol, mg/dL 108.80 (30.02) 82.88 (23.45) <0.001

Total cholesterol, mg/dL 187.96 (34.86) 154.68 (25.38) <0.001

hs-CRP, mg/L 1676.32 (3109.72) 630.28 (575.99) 0.10

eGFR, ml/min/1.73 m2 67.87 (15.24) 63.72 (14.20) <0.001

Smoking history, n (%) 11 (44) — —

Medication use

Diabetes, n (%) 22 (88) — —

Hypertension, n (%) 14 (56) — —

Dyslipidemia, n (%) 19 (76) — —

Total teeth, n 20.84 (6.14) — —

Plaque index 1.02 (0.55) — —

Tongue coating index 2.08 (1.49) — —

PISA, mm2 380.41 (232.28) — —

IMT, mm 2.05 (0.74) — —

Values are presented as the mean (SD), unless otherwise indicated. Paired t tests were used to compare differences between week two and baseline. HbA1c, hemoglobin A1c; BMI, bodymass

index; BP, blood pressure; AST, aspartate aminotransferase; ALT, alanine aminotransferase; γ-GTP, γ-Glutamyl transpeptidase; HDL, high-density lipoprotein; LDL, low-density

lipoprotein; hs-CRP, high-sensitivity C-reactive protein; eGFR, estimated glomerular filtration rate; PISA, periodontal inflamed surface area; IMT, carotid intima-media thickness.
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FIGURE 2
Global analysis of correlation of IMT with clinical and metabolomic features at admission (Adm) and after treatment (Post). (A) OPLS score plot
showing distribution of study participants according to IMT. (B)OPLS loading plot showing color-coded distribution of predictors from different data
blocks (pear: serum biochemical parameters, olive: urine biochemical parameters, light yellow: other clinical indices, red: plasmametabolome,mint:
saliva metabolome), with the right side showing those associated with higher IMT. Inset shows statistical validation using permutation analysis
(n = 999 permutations). GA, glycated albumin; TG, triglycerides; γ-GTP, γ-Glutamyl transpeptidase; HDL-C, high-density lipoprotein cholesterol;
GlcNAc, N-acetylglucosamine; 1,5-AG, 1,5-anhydroglucitol.

FIGURE 3
Top predictors for IMT from each data block at admission (Adm) and after treatment (Post). (A) Bar plots showing the variables with importance
for projection of a predictive component (VIP predictive) higher than >1.5 (pear: serum biochemical parameters, olive: urine biochemical parameter,
light yellow: other clinical indices, red: plasma metabolome, mint: saliva metabolome). Associations were also assessed using Spearman’s
correlation. (B) Associations of IMT with salivary allantoin and 1,5-AG, and ROC curves for comparing discriminative performance for
IMT >1.6 mm using salivary levels of allantoin and 1,5-AG. GA, glycated albumin; TG, triglycerides; γ-GTP, γ-Glutamyl transpeptidase; HbA1c,
hemoglobin A1c; HDL-C, high-density lipoprotein cholesterol; Cre, creatinine; U-Cre, urine creatinine; SBP, systolic blood pressure; MBP, mean
blood pressure; GlcNAc, N-acetylglucosamine; 1,5-AG, 1,5-anhydroglucitol; GABA, γ-Aminobutyric acid.
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including HbA1c, fasting plasma glucose, GA, and TG (Table 1),

as demonstrated in our previous work (Taya et al., 2021). An

OPLS model was then constructed using clinical and

metabolomic parameters after 2 weeks of treatment for

explanation of IMT variations. The model showed a moderate

predictive ability of 0.398 for Q2 and reliable performance during

the permutation test (n = 999 permutations; Figure 2B, inset).

Specifically, an unfavorable lipid profile remained predominant

with the association between GA and IMT less pronounced,

while amino acids became the predominant plasma

metabolomic predictors for IMT. As for salivary metabolites,

only allantoin and 1,5-AG remained relevant for IMT with a

reduced predictive ability of 1,5-AG observed. Top

predictors for IMT from each data block included the clinical

markers γ-GTP (r = 0.503, p = 0.010), TG (r = 0.531, p = 0.0063),

and HDL-C (r = −0.424, p = 0.035), the plasma metabolites

glutamate (r = 0.571, p = 0.0029), glycerate (r = 0.425, p = 0.034),

and mannose (r = 0.530, p = 0.0064), and the salivary metabolites

allantoin (r = 0.464, p = 0.0194) and 1,5-AG (r = −0.244, p = 0.24)

(Figure 3A). Additionally, salivary levels of allantoin and 1,5-AG

showed AUC values of 0.764 and 0.729, respectively, for

diagnosis in the high IMT group (Figure 3B).

Based on the OPLS results, we focused on salivary allantoin

and 1,5-AG, and investigated the effects of hospitalized treatment

on these salivary metabolites. A significant reduction in

cardiometabolic disease risk score was noted following 2 weeks

of hospitalization based on a composite score that summarized

HbA1c, total cholesterol, TG, HDL-C, and hsCRP (p = 2.6 × 10–6)

(Figure 4A). The two-week treatment also caused a significant

decrease in the level of allantoin (p = 0.014) and an increase in

1,5-AG (p = 0.0055) in saliva (Figure 4A). However, that

treatment did not modify the association between IMT and

these metabolites (pinteraction > 0.05) (Figure 4B), while

diagnostic accuracy for the high IMT group was satisfactory

using models with combined salivary levels of these metabolites

at the baseline (AUC = 0.875) as well as after treatment (AUC =

FIGURE 4
Responses of cardiometabolic risk factors and salivary metabolites following 2 weeks of intensive diabetes treatment. (A) Effects of intensive
diabetes treatment on cardiometabolic disease risk score, and salivary levels of allantoin and 1,5-AG. The score for cardiometabolic disease risk was
derived based on a composite score comprised of hemoglobin A1c, total cholesterol, triglycerides, high-density lipoprotein cholesterol, and high-
sensitivity C-reactive protein values. p values shown are for within-group comparisons and were obtained with a paired t test for a comparison
of the baseline score (Adm) with response after 2 weeks of treatment (Post). (B) Scatterplots of salivary markers with IMT according to hospitalized
treatment. (C) ROC curves for comparing discriminative performance for IMT >1.6 mm using models combining salivary levels of allantoin and 1,5-
AG at admission (Adm) as well as after treatment (Post).
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0.819) (Figure 4C). Collectively, while diabetes treatment in a

hospitalization setting induced mitigation of cardiometabolic

risk with accompanying alterations in salivary levels of

allantoin and 1,5-AG, it did not have an effect modification

on the relationship between these salivary metabolites and

atherosclerotic burden in T2D patients, with the combination

of salivary allantoin and 1,5-AG remaining highly discriminative

for those at high risk for CVD regardless of glycemic control

status.

Discussion

The present findings demonstrated multivariate patterns of

association of carotid wall thickening with metabolomic and

clinical factors in patients with T2D. Additionally, they

distinguished clinical and metabolomic parameters that

change rapidly with improved glycemic control from those

affected by relatively prolonged hyperglycemia, helping to find

those more appropriate as markers of atherosclerosis, a

cumulative disease. In particular, salivary allantoin and 1,5-

AG remained the top metabolites reflecting IMT even after

2 weeks of inpatient glycemic control, revealing the potential

utility of saliva testing for non-invasive assessment of carotid

atherosclerosis severity, which might be useful for cardiovascular

risk screening and monitoring of such patients.

Results of OPLS analysis with IMT as the outcome revealed

clinical and metabolomic markers that exhibited a covariation

with atherosclerotic burden in T2D patients. At the time of

admission as well as after treatment, the severity of carotid

atherosclerosis was associated with clinical markers in relation

to an unfavorable lipid profile, such as lower HDL-C and

higher TG, which is in agreement with several previous reports

showing that increased TG/HDL-C ratio is an independent

predictor of carotid atherosclerosis (Pacifico et al., 2014), as

well as increased risk of CVD and all-cause mortality in

patients with T2D (Wang et al., 2021b), and also non-

diabetic subjects (Prasad et al., 2019; Sultani et al., 2020).

The hsCRP is a known risk factor of CVD as well, but our

analyses did not find it among its top predictors. The relatively

large variance of hsCRP in our dataset may affect the results,

however, we confirmed that exclusion of hsCRP did not

change the main results in our OPLS models. Therefore, it

is unlikely that the large variance of hsCRP undermines the

validity of our models. The findings obtained in the present

study also demonstrated GA to be more predictive of IMT

than HbA1c at baseline. However, 2 weeks of intensive

diabetes treatment attenuated the association of GA with

IMT, which likely reflected improved glycemic control over

a short term (Koga, 2014). It is considered that the associations

between IMT and clinical markers shown in the present study

corroborate the validity of the present measurements and

metabolome analysis findings, as discussed following.

Regarding the relationship of plasma metabolites with IMT,

GlcNAc was shown to have a stronger association with severity of

carotid atherosclerosis at the baseline as compared to after

treatment. Although there are no known clinical reports

implicating an effect of plasma GlcNAc in development of

atherosclerosis, a higher level of GlcNAc in plasma may well

lead to increased protein modification via O-linked β-N-

acetylglucosamine (O-GlcNAcylation), which has been

implicated to be involved in development of diabetic

cardiovascular complications (Chen et al., 2019; Chatham

et al., 2020). Further investigation of the intricate relationship

among plasma GlcNAc, O-GlcNAcylation, and atherosclerosis is

warranted. The present results also indicated a number of known

metabolites related to a higher atherosclerosis burden, such as

inositol (Tzoulaki et al., 2019; Omori et al., 2020), isoleucine (Li

et al., 2019), glutamate (Lehn-Stefan et al., 2021), urea (Omori

et al., 2020), urate (Ishizaka et al., 2007), and hydroxyproline

(Milanlouei et al., 2020). Additionally, data from OPLS analysis

also indicated that 2 weeks of hospitalized treatment altered the

profile of plasma metabolomic predictors for IMT, with amino

acids predominant, which is likely associated with improved

glycemic control status, though further validation is required.

A key finding in this study is that salivary allantoinwas shown to

be a potential indicator of IMT and cardiometabolic risk in patients

with type 2 diabetes. Allantoin, produced by oxidation of urate, has

been proposed as a biomarker for oxidative stress (Martinez-Moral

and Kannan, 2019), while other studies have shown that urinary

excretion of allantoin is correlated with atherosclerosis extension in

mice (Li et al., 2015) and plasma allantoin is correlated with carotid

atherosclerosis in humans (Santana et al., 2018). This is the first

investigation to find an association between carotid atherosclerosis

and salivary allantoin. However, allantoin was not annotated in the

present plasma metabolomics results and, as noted in several other

studies, no significant association was found between salivary

allantoin and plasma urate, precluding mechanistic

considerations. Nevertheless, it seems plausible that salivary

excretion of allantoin becomes enhanced as a protective response

to oxidative stress in association with diabetic angiopathy.

Furthermore, since amelioration of hyperglycemia has been

shown to reduce oxidative stress (Ohara et al., 2018), the lower

level of oxidative stress induced by 2 weeks of intensive diabetes

treatment is considered to have contributed to decreased salivary

allantoin level, albeit the association with IMT was preserved.

Although further research is needed, salivary allantoin might be a

useful marker for reflecting the severity of atherosclerosis as part of

monitoring CVD risk in patients with T2D.

Additionally, the present results demonstrated a correlation

between IMT and 1,5-AG in both plasma and saliva samples, as

well as a significant increase in salivary levels of 1,5-AG after 2 weeks

of diabetes treatment. Previous studies have demonstrated that 1,5-

AG can be used as a marker of short-term glycemic control and

established it as a reliable T2Dmarker in addition to glucose (McGill

et al., 2004). A positive association between plasma and salivary 1,5-
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AG has been reported by others (Mook-Kanamori et al., 2014; Jian

et al., 2020) and was shown in our previous study (Sakanaka et al.,

2021), which also presented findings demonstrating the diagnostic

utility of salivary 1,5-AG for hyperglycemiawhen salivary 1,5-AGwas

used alone as well as in combination with salivary mannose.

Furthermore, the results presented here showed that hospitalized

treatment attenuated the association between 1,5-AG and IMT. Prior

clinical studies did not find a significant association between plasma

1,5-AG and carotid atherosclerosis in examinations of subjects in the

general population (Mukai et al., 2015), or of patients with T2D or

hypertension (Karrei et al., 2004). Therefore, 1,5-AG is likely amarker

of glycemic status rather than atherosclerosis. Nonetheless, it is

important to note that the combination of salivary 1,5-AG with

salivary allantoin may provide better prediction of cardiovascular risk

in type 2 diabetes patients.

The current study has several limitations. Although the aim of

this investigation was to comprehensively characterize biochemical

and metabolic markers that exhibit covariation with the severity of

carotid atherosclerosis by integrating multiple parameters obtained

through detailedmeasurements, the small sample sizemay not allow

for extrapolation of the findings. Future studies that replicate and

further develop the present results using a larger sample are

required. Additionally, we performed IMT measurement at the

site of greatest thickness, including plaque lesions, according to

guidelines used in Japan (Terminology and Diagnostic Criteria

Committee and Japan Society of Ultrasonics in Medicine, 2009),

which are different from European guidelines recommending that

IMT measurement should be performed in a region free of plaque,

and the distinction between IMT and plaque clearly made (Touboul

et al., 2007). Nevertheless, several studies have shown that

assessment of carotid plaque is more useful than IMT measured

in plaque-free areas for predicting future CVD (Störk et al., 2004;

Inaba et al., 2012). Additionally, it has been demonstrated that

incorporation of carotid plaque in IMT measurements can better

predict cardiovascular events as compared with information derived

from plaque alone or IMT without inclusion of plaque (Baldassarre

et al., 2012). Hence, the IMT definition employed in the present

study seems suitable to achieve the goal of identifying metabolic

signatures of atherosclerotic burden in diabetes patients.

Conclusion

The present results show that a combination of salivary

metabolites has robust associations with atherosclerotic burden in

T2D patients and may be of high value for use in non-invasive

identification of those at high risk for CVD in clinical practice.

Additionally, they represent a new starting point for further

investigations into the role of metabolites for exacerbation of

diabetic macroangiopathy as well as their potential use for clinical

diagnosis. It is considered that saliva testing will become even more

widespread in the future, based on attention it has received due to the

coronavirus pandemic, thus analysis of panels of metabolites in saliva

may not only become an attractive alternative to blood tests for

screening and monitoring of individuals with high risk for CVD, but

might also help to reduce the daily burden faced by affected patients

who must manage their symptoms over a long period of time. In

addition, given the closer relationship developing between dentists

and diabetologists, saliva testing during a regular dental visit may

enable early warning of increased atherosclerotic burden in patients

without subjective symptoms, thus strengthening the cooperation

between medicine and dentistry for treatment of diabetes.
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Online breath analysis with SESI/
HRMS for metabolic signatures in
children with allergic asthma

Ronja Weber1†, Bettina Streckenbach2†, Lara Welti1, Demet Inci1,
Malcolm Kohler3, Nathan Perkins4, Renato Zenobi2, Srdjan Micic1‡

and Alexander Moeller1*‡

1Department of Respiratory Medicine, University Children’s Hospital Zurich, Zurich, Switzerland,
2Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland, 3Department of
Pulmonology, University Hospital Zurich, Zurich, Switzerland, 4Division of Clinical Chemistry and
Biochemistry, University Children’s Hospital Zurich, Zurich, Switzerland

Introduction: There is a need to improve the diagnosis and management of
pediatric asthma. Breath analysis aims to address this by non-invasively assessing
altered metabolism and disease-associated processes. Our goal was to identify
exhaled metabolic signatures that distinguish children with allergic asthma from
healthy controls using secondary electrospray ionization high-resolution mass
spectrometry (SESI/HRMS) in a cross-sectional observational study.

Methods: Breath analysis was performed with SESI/HRMS. Significant differentially
expressed mass-to-charge features in breath were extracted using the empirical
Bayes moderated t-statistics test. Corresponding molecules were putatively
annotated by tandem mass spectrometry database matching and pathway
analysis.

Results: 48 allergic asthmatics and 56 healthy controls were included in the study.
Among 375 significant mass-to-charge features, 134 were putatively identified.
Many of these could be grouped tometabolites of common pathways or chemical
families. We found several pathways that are well-represented by the significant
metabolites, for example, lysine degradation elevated and two arginine pathways
downregulated in the asthmatic group. Assessing the ability of breath profiles to
classify samples as asthmatic or healthy with supervised machine learning in a
10 times repeated 10-fold cross-validation revealed an area under the receiver
operating characteristic curve of 0.83.

Discussion: For the first time, a large number of breath-derived metabolites that
discriminate children with allergic asthma from healthy controls were identified by
online breath analysis. Many are linked to well-described metabolic pathways and
chemical families involved in pathophysiological processes of asthma.
Furthermore, a subset of these volatile organic compounds showed high
potential for clinical diagnostic applications.

KEYWORDS

volatile organic compounds (VOCs), metabolites, allergic asthma, children, breath
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1 Introduction

Asthma is the most frequent chronic condition in children in the
developed world. The disease is very heterogeneous in its
presentation and clinical course. Due to the lack of a well-
recognized and easy to apply diagnostic gold-standard (Gaillard
et al., 2021), misdiagnosis is relatively common. Reported numbers
range from 10% to 62% for underdiagnosis (Kaur et al., 1998;
Siersted et al., 1998; van Gent et al., 2007) from 48% to 53% for
overdiagnosis (Looijmans-van den Akker et al., 2016; Yang et al.,
2017). This has negative impacts on asthma related morbidity,
quality-of-life, medication side-effects, prognosis, and health
costs. Therefore, the investigation of pediatric asthma and its
associated molecular processes including airway inflammation is
of high importance for the development of novel, much-needed
diagnostic and monitoring applications.

Breath is known to contain several hundreds of metabolites that
reflect metabolism as well as disease-specific mechanisms such as
airway inflammation (Ferraro et al., 2018). Therefore, there is great
interest in discovering endogenous exhaled organic compounds that
are linked to diseases and their pathophysiological processes
(Neerincx et al., 2017). One of the few clinical tests taking
advantage of this is the quantification of exhaled fractional nitric
oxide (FeNO), which can be measured in all age groups. FeNO is a
biomarker for eosinophilic airway inflammation that is related to
allergic asthma (Ferraro et al., 2018). This exemplifies the potential
of applying breath analysis to further study allergic asthma and
improve the diagnostic power of exhaled biomarkers.

Several breath analysis studies attempted to distinguish children
with asthma from healthy controls by different techniques. Dallinga
and colleagues compared exhaled breath of children with asthma
and a healthy group by gas chromatography mass spectrometry and
identified a small set of discriminatory volatile organic compounds
(VOCs) that is potentially related to lipid peroxidation, including
various hydrocarbons, xylene, benzoic acid, and butanoic acid
(Dallinga et al., 2010). A pilot study from van Mastrigt et al.
identified VOCs discriminating children with asthma, cystic
fibrosis and healthy controls by using a broadband quantum
cascade laser spectroscopy technique (van Mastrigt et al., 2016).
The distinguishing compound classes included different carboxylic
acids, esters, and ethers. Altogether, there is only little overlap
between the detected metabolites of different studies and
sometimes even conflicting results are reported. Therefore,
standardization as well as external validation are challenges that
need further research as summarized in recent reviews (Neerincx
et al., 2017; Ferraro et al., 2018; Papamichael et al., 2021).

Secondary electrospray ionization high-resolution mass
spectrometry (SESI/HRMS) is a technology applied for online
breath analysis that links real-time measurements without sample
preparation to high mass resolution (Gaugg et al., 2019). The latter
strongly improves the confidence in compound identification of the
detected mass-to-charge features (m/z features). Previous studies
confirmed the potential of this technology to identify relevant
exhaled organic compounds, including biological metabolites, and
reveal altered molecular pathways for different respiratory diseases
(Schwarz et al., 2016; Gaugg et al., 2019; Weber et al., 2020). A
strength of SESI/HRMS lies in the detection of polar molecules with
high molecular masses and low volatility (Gaugg et al., 2016;

Bruderer et al., 2019; Chen et al., 2021). Furthermore, its
applicability in children was confirmed in our previous study on
cystic fibrosis (Weber et al., 2020).

The aim of this study was to identify metabolic signatures in
exhaled breath consisting of discriminating organic compounds
specific to allergic asthma in children by SESI/HRMS and to
assess their biological context.

2 Materials and methods

2.1 Study design, participants, and clinical
data

This observational cross-sectional study included children with
allergic asthma and healthy controls, aged 5–18 years. Asthmatic
patients from the outpatient clinic of the University Children’s
Hospital Zürich, Switzerland, were recruited for this study. Asthma
diagnosis was based on the recent ERS evidence-based practice
guidelines (Gaillard et al., 2021) and only children with confirmed
asthma were included. Allergic sensitization was defined by either a
positive skin prick test or an allergen-specific IgE of >0.35 kU·L–1 by
radioallergosorbent test or by ELISA for at least one common
aeroallergen. Further, eligible patients were clinically stable enough
to temporarily stop the inhalation of long-acting asthma medication at
least 1 week before the measurements. Exclusion criteria were the
inability to stop medication, and the presence of an acute
respiratory infection during the last 2 weeks before the
measurement. Clinical data was collected on the same day as breath
analysis and is summarized together with anthropometric data in
Table 1. Healthy controls without any chronic respiratory symptoms
or known lung diseases were recruited from the public. The presence of
an acute (respiratory) infection was an exclusion criterion for both
groups. The measurement and recruitment period were in parallel and
lasted for 15 months. Efforts were put into recruiting participants of
both cohorts at a randomized schedule across daytime and throughout
the study period. The sample size was based on our previous study with
a similar design (Weber et al., 2020). All participants, where appropriate
and parents gave their written informed consent in advance. The study
was approved by the local ethics committee (KEK-ZH ID 2018–00441)
and was conducted in accordance with the Declaration of Helsinki.

2.2 Breath analysis

Online breath analysis was performed using a SESI source
(SuperSESI, FIT FossilionTech, Madrid, Spain) connected to a
high-resolution time-of-flight mass spectrometer (TripleTOF
5600+, AB Sciex, Concord, ON, Canada). Methodological details
and instrumental settings were previously described by our group
(Weber et al., 2020). Minor adaptations are specified below.
Children were exhaling directly into the instrument in a sitting
position. The breathing maneuver consisted of at least three long
exhalations at a constant pressure of 5 mbar with short breaks in
between. A single-use mouthpiece (product No. 100078, ACE
Instruments, Germany) was connected to the ionization source,
which was heated to 130°C, by a sterilizable, custom-made
polytetrafluoroethylene adapter. Measurements were recorded in
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positive (4500 V) and negative (−4500 V) ionization mode between
the m/z range of 50–500 Da. The accumulation time was set to 0.5 s
per scan. The collisionally activated dissociation (CAD) gas was
adjusted to 0 to avoid fragmentation. Temperatures of the MS were
set to 0, gas 1 was used to pressurize the vial of the electrospray and
set to 24, gas 2 was not connected to the SESI source, and the curtain
gas was set to 10. The pulser frequency was adjusted to 23.983 kHz
and the pulse 1 duration was 2 µs. A net flow of 0.3 L/min was
defined by a mass flow controller (Alicat Scientific, Inc., Tucson, AZ,
United States) at the exhaust of the ionization source. The
nanoelectrospray was generated using silica emitters (50 cm
length, 20 µm diameter, New Objective Inc., Woburn, MA,
United States) and a 0.1% (v/v) aqueous formic acid solution
(Optima LC/MS Grade, Thermo Fisher Scientific, Waltham, MA,
United States). All participants were asked not to brush their teeth,
consume any food, drinks (except for water), or chewing gums 1 h
prior to the measurements (Weber et al., 2020).

2.3 Data preprocessing

All data were recalibrated in PeakView 2.2 (AB Sciex, Concord, ON,
Canada) and processed in R version 4.1.1 (R Foundation for Statistical
Computing, Vienna, Austria). The conversion and preprocessing of the
raw data were done in the same way as described in our previous work
(Weber et al., 2020). In brief, the raw mass spectra were resampled by
interpolation (Δm/z: 0.0005, m/z range: 50–500 Da), peak picking was
performed on the average mass spectra associated with exhalation and
signal intensities of the m/z features were determined by trapezoidal
integration. The intensities of the m/z features were normalized to the
total ion current, log2-transformed and arranged into a data matrix of
breath profiles for further analysis. More details on data preprocessing
are given in the Supplementary Material.

2.4 Statistical analysis

To account for confounding influences and reduce the
heterogeneity within the groups, batch adjustment was performed
by applying surrogate variable analysis (SVA) (Leek and Storey,
2007) on the data matrix of breath profiles. Identification of

differentially expressed m/z features when comparing cases and
controls was assessed by the empirical Bayes moderated t-statistics
test (Smyth, 2004). Correction for multiple hypothesis testing was
conducted using Benjamini-Hochberg procedure (Benjamini and
Hochberg, 1995) with significance threshold set to the adjusted
p-value of 0.05 to determine the statistically significant features.
Additionally, the ability of the breath profiles to classify samples as
allergic asthmatic or healthy was assessed with the support vector
machines algorithm [13] trained and tested in a 10 times repeated
stratified 10-fold cross-validation. To avoid using all features for
classifier development, Boruta feature selection (Kursa et al., 2010)
was applied in each cross-validation iteration to include only the
potentially discriminating features between the allergic asthmatic
and the healthy control group. In order to prevent bias during cross-
validation all preprocessing steps, feature selection and classifier
development were strictly conducted on the training data sets,
preventing any information leak from the left-out samples
(Varma and Simon, 2006). Details on statistical analysis are given
in the supplementary material.

2.5 Feature identification

For the 100 most significantly discriminativem/z features per study
group, compound identification was based on MS2 spectra that were
recorded directly from exhaled breath by SESI/HRMS with the same
instrument set up. The settings of the SESI source and TripleTOF MS
were identical to the ones described above for the MS1 full scan
acquisition, with the following exceptions: the accumulation time
was set to 1.0 s per scan and the CAD gas to 6. Precursors were
selected with an isolation window of 0.7 Da. Collision energy for
precursor fragmentation was set to 20 eV with a ramped energy
spread of ± 10 eV. The MS2 spectra were analyzed by a workflow
adapted from a published method (Kaeslin et al., 2021) to detect
isotopes, adducts, and losses, and with the SIRIUS software (v4.9.9)
(Dührkop et al., 2019) to assign putative molecular formulae and
chemical structures. The putatively identified compounds were
screened for their biological context and subgrouped into metabolic
pathways or chemical families. Additionally, pathway enrichment
analysis using the mummichog algorithm (MetaboAnalyst, v5.0)
(Pang et al., 2021) was performed for further identification on all

TABLE 1 Participant characteristics.

Allergic asthma (n = 48) Healthy controls (n = 56) p-value

Age [y] 12.1 ± 3.1 10.8 ± 4.0 0.07

Male sex [n] 33 (68.8%) 24 (42.9%) 0.01

BMI [kg/m2] 19.3 ± 4.2 18.3 ± 3.3 0.2

FEV1 [z-score] −0.6 ± 1.1 −0.1 ± 1.0 † 0.01

FVC [z-score] 0.1 ± 1.0 0.1 ± 0.9 † 0.86

FeNO [ppb] 28.6 IQR 34.4 6.2 IQR 9.6 <0.001

Allergic sensitization [n] 48 (100%) 12 (21.4%) <0.001

Data are presented as mean ± standard deviation (SD), n (%), or median and interquartile range (IQR). BMI, body mass index, pre-bronchodilator FEV1 = forced expiratory volume in 1 s, pre-

bronchodilator FVC, forced vital capacity, FeNO, fractional exhaled nitric oxide. p-values were determined by the two sample t-test, Fisher’s exact test for sex and allergic sensitization

distribution, and the Mann-Whitney U test for FeNO, values (no normal distribution). †: 16 spirometries were excluded because of poor quality.
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significant features including those without recorded MS2 spectra,
without compound suggestions or with excluded MS2 spectra
(exclusion criteria: see Supplementary Table S1). Lastly, the detected
m/z features were compared with previously identified compounds
from literature. The certainty of identification was indicated by an
identification (ID) confidence level ranging from ID 1 to 5, as described
by Schymanski and colleagues (Schymanski et al., 2014). More details
on the identification approach are included in the supplementary
material, including a schematic overview (Supplementary Figure S1).

3 Results

3.1 Participants and clinical data

Exhaled breath samples of 48 allergic asthma patients and
56 healthy control participants, in total 104 children, were included
in this study. The age and body mass index values of the two cohorts
were comparable, whereas the asthmatic group contained more males
than the healthy one. Detailed clinical characteristics of the two
individual study cohorts are shown in Table 1. The use of short-
acting beta-agonists was allowed until the day before measurements. All
children with asthma had a known allergic sensitization to at least one
aero-allergen and the asthma severity ranged from mild to moderate.
The FeNO values were significantly elevated in the allergic asthma
cohort. Additionally, the forced expiratory volume in 1 s (FEV1) of the
asthmatics was lower, while the forced vital capacity of the groups was
comparable. Twelve children of the healthy control group showed an
allergic sensitization according to the skin prick test, but only two
reported symptomatic allergies.

3.2 Discriminative breath patterns and their
metabolic associations

The pre-processing of the acquiredmass spectra of the study subjects
revealed 2,315m/z features associated with exhaled breath. 375m/z
features were found to be significantly different between the two

groups (Benjamini-Hochberg adjusted p < 0.05), of which 179 were
upregulated and 196 downregulated in the allergic asthma group (Figure
1A). Among those, 134 were assigned to compounds. Inspection of the
first two principal components (PCs) of the 134 putatively identified
features revealed amoderate separation between the groups along thefirst
PC (24% variance in the data, Figure 1B).

Compound identification revealed several specific metabolic
pathways and chemical families with many representatives for both
study cohorts (Tables 2, 3). For the allergic asthma group, the chemical
families of fatty acid metabolites and monosaccharides as well as the 2-
oxocarboxylic acid metabolism and two amino acid pathways, i.e., lysine
degradation and tyrosine metabolism, were elevated (Table 2). The
relations of metabolites involved in some of these elevated pathways are
visualized in Figure 2. For the diminished compounds, arginine
pathways were found to be well represented, including both arginine
and proline metabolism and arginine biosynthesis. Further, several
compounds of the linoleic acid metabolism and of the chemical
groups of aldehydes, amides, and fatty acids were identified (Table 3;
Figure 3). A full list includingmore details about the putatively identified
compounds can be found in Supplementary Table S2.

The assessment of the classification accuracy in discriminating
between the allergic asthmatic and the healthy samples resulted in an
area under the curve (AUC) of 0.83, 95% CI: 0.73–0.92, (Figure 4A;
Supplementary Table S3; Supplementary Figure S2). When
examining feature selection by the Boruta scheme (Kursa et al.,
2010) within cross-validation, 57 (±8) m/z features were selected on
average in each cross-validation iteration, many of which were
putatively identified with the compound identification workflow
above (Figure 4B). Compounds which were most frequently selected
in LOOCV are presented in Figure 4C (for box plots see
Supplementary Figure S2) and all the other selected metabolites
can be found in Supplementary Table S4.

It is of relevance to note that the adjustment with SVA captures the
components of variability within the data and reduces any effect on the
intensity levels of m/z features arising from other sources than the
primary variables of interest (i.e., allergic asthma vs. healthy controls).
Hence, any further subgroup analysis or correlation analysis to other
clinical parameters could not be performed (Leek and Storey, 2007)

FIGURE 1
Statistical analysis ofm/z features in breath profiles. (A) Volcano plot representing all detected 2,315 m/z features. Dashed line: Benjamini-Hochberg
adjusted p-value of 0.05. (B) First two principal components (PCs) score plot of the 134 putatively identified m/z features. Blue dots represent healthy
probands and red dots asthmatic patients. 95% data ellipses were added per group for visual depiction.
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TABLE 2 Pathway related metabolites elevated in the allergic asthma cohort.

m/z Charge Adj.
p-value

Log-fold-
change

Molecular
formula

Ionisation Δm
(ppm)

Compound Ann. ID
level

Lysine degradation

131.035 neg 0.0002 −0.39 C5H8O4 [M-H]- 0.1 Glutarate (pentanedioic acid)† MS2, Lit. ID1

117.019 neg 0.0004 −0.37 C4H6O4 [M-H]- −2.8 Succinate (butanedioic acid)† MS2, Lit. ID1

129.019 neg 0.0008 −0.25 C5H8O5 [M-H2O-H]- −2.6 2-Hydroxyglutarate (2-
hydroxypentanedioc acid)

MS2 ID3

131.033 pos 0.0031 −0.46 C5H6O4 [M + H]+ −6.8 Glutaconate (2-pentenedioic acid) MS2 ID3

161.0435 pos 0.0032 −0.28 C6H8O5 [M + H]+ −5.9 2-Oxoadipate (2-oxohexanedioic
acid)†

MS2 ID3

162.0755 pos 0.0070 −0.25 C6H11NO4 [M + H]+ −3.6 2-Aminoadipate (2-
aminohexanedioic acid)

MS2 ID3

97.029 neg 0.0137 −0.20 C5H8O3 [M-H2O-H]- −5.2 Glutarate semialdehyde (ω-
oxopentanoaic acid)

MS2 ID3

Tyrosine metabolism

192.0285 neg 0.0001 −0.28 C9H7NO4 [M-H]- −9.0 5,6-Dihydroxyindole-2-carboxylate MS2 ID3

177.075 pos 0.0017 −0.41 C7H10O4 [M + H2O + H]+ −4.2 Succinylacetone MS2 ID3

183.0295 neg 0.0038 −0.30 C8H10O6 [M-H2O-H]- −2.2 Succinylacetoacetate MS2 ID3

215.052 pos 0.0076 −0.41 C9H8O5 [M + H2O + H]+ −14.0 3,4-Dihydroxyphenylpyruvate MS2 ID3

181.0505 neg 0.0123 −0.23 C9H10O4 [M-H]- −0.7 4-Hydroxyphenyllactate MS2 ID3

163.039 neg 0.0134 −0.16 C9H8O3 [M-H]- −6.6 4-Coumarate MS2 ID3

149.0245 neg 0.0163 −0.21 C8H8O4 [M-H2O-H]- 0.6 3,4-Dihydroxymandelaldehyde MS2 ID3

179.036 neg 0.0214 −0.22 C9H8O4 [M-H]- 5.7 4-Hydroxyphenylpyruvate, 4-
Hydroxy-enol-phenylpyruvate

MS1 ID4

215.052 neg 0.0268 −0.23 C9H10O5 [M-H2O-H]- 5.7 3-Methoxy-4-hydroxymandelate MS1 ID4

199.025 neg 0.0225 −0.22 C8H8O6 [M-H]- 0.9 4-Maleylacetoacetate, 4-
Fumarylacetoacetate

MS1 ID4

197.046 neg 0.0268 −0.23 C9H10O5 [M-H]- 2.3 3-Methoxy-4-hydroxymandelate† MS1 ID4

167.0345 neg 0.0271 −0.19 C8H8O4 [M-H]- −2.9 Homogentisate, 3,4-
Dihydroxymandelaldehyde, 3,4-
Dihydroxyphenylacetate

MS1 ID4

2-Oxocarboxylic acid metabolism

169.05 neg 0.0006 −0.27 C8H12O5 [M-H2O-H]- −3.7 2-Oxosuberate (2-oxooctanedionic
acid)

MS2 ID3

199.058 pos 0.0010 −0.46 C9H12O6 [M-H2O + H]+ −10.5 cis-(Homo)3-aconitate MS2 ID3

159.0645 pos 0.0015 −0.40 C7H12O5 [M-H2O + H]+ −4.3 3-Isopropylmalate MS2 ID3

161.0435 pos 0.0032 −0.28 C6H8O5 [M + H]+ −5.9 2-Oxoadipate
(2-oxohexanedioic acid)†

MS2 ID3

162.0755 pos 0.0070 −0.25 C6H11NO4 [M + H]+ −3.6 2-Aminoadipate (2-
aminohexanedioic acid)

MS2 ID3

148.06 pos 0.0077 −0.26 C5H9NO4 [M + H]+ −2.9 Glutamate MS2 ID3

146.0545 neg 0.0404 −0.31 C5(13C)H10O4 [M(C13)-H]- 7.3 2-Aceto-2-hydroxybutanoate MS1 ID4

(Continued on following page)
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Nevertheless, we decided to assess whether atopy by itself has an impact
on the breath profiles by isolating the group of healthy samples and
repeating our analysis pipeline to find differences between the healthy

children with sensitization and the ones without. We found no
significantly different features between the two groups (see
Supplementary Figure S5).

TABLE 2 (Continued) Pathway related metabolites elevated in the allergic asthma cohort.

m/z Charge Adj.
p-value

Log-fold-
change

Molecular
formula

Ionisation Δm
(ppm)

Compound Ann. ID
level

Fatty acid metabolites

117.019 neg 0.0004 −0.37 C4H6O4 [M-H]- −2.8 Butanedioic acid (succinate)† MS2, Lit. ID1

131.035 neg 0.0002 −0.39 C5H8O4 [M-H]- 0.1 Pentanedioic acid (glutarate)† MS2, Lit. ID1

147.0645 pos 0.0070 −0.40 C6H10O4 [M + H]+ −4.7 Hexanedioic acid (adipic acid) MS2 ID3

131.033 pos 0.0031 −0.46 C5H6O4 [M + H]+ −6.8 Pentenedioic acid (glutaconate) MS2 ID3

143.0345 neg 0.0363 −0.23 C6H8O4 [M-H]- −3.7 Hexenedioic acid Lit. ID4

157.0505 neg 0.0230 −0.26 C7H10O4 [M-H]- −0.8 Heptenedioic acid† Lit. ID4

97.029 neg 0.0137 −0.20 C5H8O3 [M-H2O-H]- −5.2 ω-Oxopentanoaic acid (glutarate
semialdehyde)

MS2 ID3

125.06 neg 0.0195 −0.23 C7H12O3 [M-H2O-H]- −6.4 ω-Oxoheptanoic acid MS2 ID3

113.024 neg 0.0424 −0.15 C5H8O4 [M-H]- −3.7 ω-Oxopentenoic acid Lit. ID4

155.071 neg 0.0268 −0.20 C8H12O3 [M-H]- −2.1 ω-Oxooctenoic acid Lit. ID4

167.071 neg 0.0264 −0.18 C9H12O3 [M-H]- −1.9 ω-Oxononadienoic acid Lit. ID4

181.086 neg 4.83E-05 −0.48 C10H14O3 [M-H]- −5.6 ω-Oxodecadienoic acid Lit. ID4

87.0445 neg 0.0471 −0.58 C4H8O2 [M-H]- −7.5 Butanoic acid† Lit. ID2

101.0605 neg 0.0214 −0.59 C5H10O2 [M-H]- −0.2 Pentanoic acid† Lit. ID2

197.081 neg 0.0004 −0.46 C10H14O4 [M-H]- −4.6 2,7-Dimethyl-2,4-octadienedioic acid MS2 ID3

129.019 neg 0.0008 −0.25 C5H8O5 [M-H2O-H]- −2.6 2-Hydroxypentanedioc acid (2-
hydroxyglutarate)

MS2 ID3

178.0355 neg 0.0129 −0.18 C5H9NO6 [M-H]- −1.2 2-Amino-3,4-dihydroxypentanedioic
acid

MS2 ID3

161.0435 pos 0.0032 −0.28 C6H8O5 [M + H]+ −5.9 2-Oxohexanedioic acid (2-
oxoadipate) †

MS2 ID3

162.0755 pos 0.0070 −0.25 C6H11NO4 [M + H]+ −3.6 2-Aminohexanedioic acid (2-
aminoadipate)

MS2 ID3

133.05 neg 0.0104 −0.39 C5H10O4 [M-H]- −4.8 2,3-Dihydroxypentanoic acid MS2 ID3

Monosaccharides and metabolites

163.024 neg 0.0002 −0.20 C5H8O6 [M-H]- −5.0 2-Dehydro-xylonate MS2 ID3

151.0585 pos 0.0013 −0.51 C5H10O5 [M + H]+ −10.6 Arabinose MS2 ID3

163.0595 pos 0.0158 −0.33 C6H12O6 [M-H2O + H]+ −3.7 Galactose† MS2 ID3

193.035 neg 0.0196 −0.24 C6H10O7 [M-H]- −2.0 Glucuronate MS2 ID3

209.03 neg 0.0244 −0.20 C6H10O8 [M-H]- −1.4 Glucarate MS1 ID4

91.04 neg 0.0261 −0.79 C3H8O3 [M-H]- −0.7 Glycerol MS1 ID4

119.0345 neg 0.0319 −0.39 C4H8O4 [M-H]- −4.1 Erythrulose MS1 ID4

Putatively identified compounds elevated in the allergic asthma cohort, grouped by metabolic pathways or chemical families and ordered by their adjusted p-value. Exception: fatty acid

metabolites are sorted based on their chemical relation. Log-fold-change: negative values indicate higher average expression in the asthmatic group. Log-fold-change was calculated using

R-package “limma” (Ritchie et al., 2015); see Supplementary Section S3 for more details. The listedm/z values represent the measured values and the mass error (Δm) to the theoretical mass is

reported in ppm. Annotation (Ann.) e.g., based on literature (Lit.), references for literature-based identification are included in Supplementary Table S2. †: compounds that were detected several

times in different ionisation forms (listed in Supplementary Table S2). MS1: assignment based on full scan mode by literature match or pathway analysis, MS2: assignment based on real-time

tandem mass spectrometry spectra, ID: identification confidence level ranging from ID1 (high) to ID5 (low).
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TABLE 3 Pathway related metabolites downregulated in the allergic asthma cohort.

m/z Charge Adj.
p-value

Log-fold-
change

Molecular
formula

Ionisation Δm
(ppm)

Compound Ann. ID
level

Arginine and proline metabolism

104.07 pos 0.0002 0.41 C4H9NO2 [M + H]+ −5.8 4-Aminobutanoate† MS2, Lit. ID3

60.0805 pos 0.0083 0.80 C4H9NO [M-CO + H]+ −4.7 4-Aminobutanal MS1 ID4

C4H9NO2 [M-CO2+H]+ −4.7 4-Aminobutanoate MS1 ID4

116.07 pos 0.0122 0.42 C5H9NO2 [M + H]+ −5.2 Proline MS1, Lit. ID4

C5H12N2O2 [M-NH3+H]+ −5.2 Ornithine MS1 ID4

193.13 pos 0.0251 0.53 C6H14N4O2 [M + H2O + H]+ 2.5 Arginine MS1 ID4

118.086 pos 0.0252 0.39 C6H11NO3 [M-CO + H]+ −2.2 4-Acetamidobutanoate MS1 ID4

114.0545 pos 0.0264 0.38 C5H7NO2 [M + H]+ −4.0 1-Pyrroline-2-carboxylate† MS1 ID4

C5H9NO3 [M-H2O + H]+ −4.0 Hydroxyproline, Glutamate 5-
semialdehyde

MS1 ID4

112.075 pos 0.0313 0.31 C6H11NO2 [M-H2O + H]+ −6.2 N4-Acetylaminobutanal MS1 ID4

102.0545 pos 0.0381 0.31 C5H9NO4 [M-HCOOH + H]+ −4.5 4-Hydroxyglutamate semialdehyde MS1 ID4

C5H7NO3 [M-CO + H]+ −4.5 1-Pyrroline-3-hydroxy-5-carboxylate† MS1 ID4

Arginine biosynthesis

61.039 pos 0.0076 0.36 CH4N2O [M + H]+ −10.5 Urea MS2 ID3

96.9925 neg 0.0113 0.25 C4H4O4 [M-H2O-H]- −6.4 Fumarate MS2 ID3

C4H4O4 [M-H2O-H]- −6.4 Maleate MS2 ID3

116.07 pos 0.0122 0.42 C5H9NO2 [M + H]+ −5.2 Proline MS1, Lit. ID4

C5H12N2O2 [M-NH3+H]+ −5.2 Ornithine MS1 ID4

193.13 pos 0.0251 0.53 C6H14N4O2 [M + H2O + H]+ 2.5 Arginine MS1 ID4

102.0545 pos 0.0381 0.31 C5H9NO4 [M-HCOOH + H]+ −4.5 4-Hydroxyglutamate semialdehyde MS1 ID4

C5H7NO3 [M-CO + H]+ −4.5 1-Pyrroline-3-hydroxy-5-carboxylate MS1 ID4

Linoleic acid metabolism

281.2475 pos 7.12E-06 0.79 C18H32O2 [M + H]+ −0.04 Linoleate† MS2 ID3

295.225 pos 2.09E-04 0.62 C18H32O4 [M-H2O + H]+ −6.0 13(S)-HPODE† MS1 ID4

297.242 pos 4.73E-04 0.73 C18H32O3 [M + H]+ −1.4 13(S)-HODE†, 12 (13)-EpOME†, 9
(10)-EpOME†

MS1 ID4

Aldehydes

115.075 pos 0.0491 0.49 C6H10O2 [M + H]+ −3.1 4-Hydroxy-2-hexenal† Lit. ID2

146.117 pos 0.0210 0.30 C7H12O2 [M + NH4]+ −3.8 4-Hydroxy-2-heptenal Lit. ID4

143.106 pos 0.0179 0.41 C8H14O2 [M + H]+ −4.6 4-Hydroxy-2-octenal† Lit. ID4

258.243 pos 0.0225 0.34 C15H28O2 [M + NH4]+ 1.0 4-Hydroxy-2-pentadecenal Lit. ID4

158.1175 pos 0.0082 0.39 C8H12O2 [M + NH4]+ −0.4 4-Hydroxy-2,6-octadienal Lit. ID4

172.133 pos 0.0004 0.57 C9H14O2 [M + NH4]+ −1.2 4-Hydroxy-2,6-nonadienal Lit. ID2

228.196 pos 0.0238 0.44 C13H22O2 [M + NH4]+ 0.9 4-Hydroxy-2,6-tridecadienal Lit. ID2

283.191 neg 0.0292 0.46 C15H26O2 [M + HCOO]- −1.7 4-Hydroxy-2,6-pentadecadienal Lit. ID4

253.2155 pos 0.0008 0.49 C16H28O2 [M + H]+ −2.8 4-Hydroxy-2,6-hexadecadienal Lit. ID4

(Continued on following page)
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4 Discussion

Wepresent the first online breath analysis study performed by SESI/
HRMS on a pediatric population with allergic asthma. The study
revealed group-specific breath patterns with a large number of
discriminative m/z features, many of which were putatively identified
and could be grouped to metabolic pathways or chemical families.
Moreover, some of the relevant compounds and pathways were
previously published in metabolomic studies in pediatric asthma
(Neerincx et al., 2017; Ferraro et al., 2018; Papamichael et al., 2021)
or reported in SESI/HRMS studies (see Supplementary Table S2).

As described by Papamichael et al., an altered energy
metabolism is expected in children with asthma due to the
hypoxic environment, bronchoconstriction, and other associated
changes as well as increased efforts for breathing (Papamichael et al.,
2021). However, this explanation might not apply to the included
asthmatic group of our study, as they did not suffer from acute
exacerbations. The lung and gut microbiomes are also potential
contributors to the pathophysiology of asthma (Barcik et al., 2020).
Several previous breath analysis studies identified compounds and
molecular pathways associated with pediatric asthma. However,
some of the potential biomarkers were of exogenous origin and
only a handful of them were consistently detected in more than one
study (Neerincx et al., 2017; Ferraro et al., 2018; Papamichael et al.,
2021). The pathways and chemical families identified in our study
are biologically relevant and reflect both an altered state of energy
metabolism as well as changes in products from the microbiome.

The metabolism of lysine was the most significantly elevated
pathway in asthma and all associated compounds were identified
based on direct MS2 spectra. Two different degradation pathways of

lysine were found, one is taking place in humans and the other in the gut
microbiota (Figure 2). The associatedmetabolites succinate and glutarate
were unambiguously identified (ID1, see Table 2), and have been
reported as associated with pediatric asthma in previous metabolomic
studies in blood (Chang et al., 2015), urine (Saude et al., 2011), and
breath (Carraro et al., 2018). Carraro et al. also reported a decreased level
of oxoadipate in early asthma, which is not in line with our findings but
could be explained by the different study design focusing on wheezing in
preschool children (Carraro et al., 2018). However, a study linked an
enzymatic complex involved in the lysine degradation pathway to the
formation of reactive oxygen species from 2-oxoadipate (Jordan et al.,
2019), which could potentially be a link to asthma pathophysiology.

Tyrosine metabolism was also significantly upregulated in the
allergic asthmatic group. As illustrated in Figure 2, some of the
metabolites belong to the main human degradation pathway whereas
other tyrosine-derived metabolites are of human or microbiotic origin.
An increased level of tyrosine in asthmatic children was reported in
previous metabolomics studies (Saude et al., 2011; Papamichael et al.,
2019; Tao et al., 2019). Additionally, the bacterial tyrosine metabolite 4-
hydroxyphenylacetate was reported to be negatively correlated with the
FEV1 in urine (Papamichael et al., 2019). It is hypothesized that high
levels of tyrosine metabolism might be related to inflammation and
oxidative stress in asthma (Papamichael et al., 2021). Also, tyrosine-
derived catecholamines are important during conditions of stress and
play a role in the regulation of the immune system (Barnes et al., 2015).
In contrast to these findings, Carraro et al. reported a lower level of some
tyrosinemetabolites in children with early asthma compared to transient
wheezers (Carraro et al., 2018).

The largest elevated group consisted of 20 fatty acid metabolites,
including saturated and unsaturated dicarboxylic acids, ω-oxo-acids,

TABLE 3 (Continued) Pathway related metabolites downregulated in the allergic asthma cohort.

m/z Charge Adj.
p-value

Log-fold-
change

Molecular
formula

Ionisation Δm
(ppm)

Compound Ann. ID
level

Fatty amides

200.201 pos 0.0008 0.63 C12H25NO [M + H]+ 0.5 Dodecanamide MS2 ID3

256.263 pos 0.0008 0.80 C16H33NO [M + H]+ −1.9 Hexadecanamide MS2 ID3

302.305 pos 0.0093 0.90 C18H37NO [M + H2O + H]+ −1.2 Octadecanamide MS2 ID3

288.253 pos 0.0003 0.74 C16H33NO3 [M + H]+ −1.1 N,N-bis(2-hydroxyethyl)
dodecanamide

MS2 ID3

316.2845 pos 0.0001 1.04 C18H35NO2 [M + H2O + H]+ −0.4 Palmitoleoylethanolaimde MS2 ID3

318.3 pos 0.0001 1.13 C18H37NO2 [M + H2O + H]+ −0.8 Palmitoylethanolamide MS2 ID3

Fatty acids

271.2265 pos 0.0006 0.77 C16H32O4 [M-H2O + H]+ −1.0 10,16-Dihydroxyhexadecanoic acid MS2 ID3

220.1905 pos 0.0041 0.37 C11H23NO2 [M + H2O + H]+ −1.0 11-Aminoundecanoic acid MS2 ID3

151.096 pos 0.0159 0.29 C6H12O3 [M + H2O + H]+ −3.2 6-Hydroxyhexanoic acid MS1 ID4

Putatively identified compounds downregulated on the allergic asthma cohort grouped by metabolic pathways or chemical families and ordered by their adjusted p-value. Exception: aldehydes

and fatty amides are sorted based on their chemical relation. Log-fold-change: positive values indicate higher average expression in the healthy group. Log-fold-change was calculated using

R-packege “limma” (Ritchie et al., 2015); see supplementary material section S3 for more details. The listedm/z values represent the measured values and the mass error (Δm) to the theoretical

mass is reported in ppmAnnotation (Ann.) e.g., based on literature (Lit.), references for literature-based identification are included in Supplementary Table S2. †: compounds that were detected

several times in different ionisation forms (listed in Supplementary Table S2). MS1: assignment based on full scan mode by literature match or pathway analysis, MS2: assignment based on real-

time tandem mass spectrometry spectra, ID: identification confidence level ranging from ID1 (high) to ID5 (low). 12(13)-EpOME: 12,13-Epoxyoctadec-9(Z)-enoic acid; 9 (10)-EpOME: 9,10-

Epoxyoctadec-12(Z)-enoic acid; 13(S)-HPODE: 13(S)-Hydroperoxy-9Z, 11E-octadecadienoic acid; 13(S)-HODE: 13(S)-Hydroxy-9Z, 11E-octadeca-dienoic acid.
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hydroxy-acids, and alkanoic acids. All lysine metabolites are additionally
fitting into this chemical family. A large part of these identified fatty acids
were previously reported being decreased in chronic obstructive
pulmonary disease exacerbations by SESI/HRMS and described as
metabolites of the ω-oxidation, a minor pathway of the fatty acid
oxidation (Gaugg et al., 2017a; 2019). Interestingly, important
molecules in asthma pathophysiology including arachidonic acid,
leukotrienes, and prostaglandins, although not detected in this study,
are also common substrates of the cytochrome P450ω-hydroxylases (Ni
and Liu, 2021). Therefore, our findings support the hypothesis that ω-
oxidation might be upregulated in allergic asthma. Butanoic and
pentanoic acid are both identified (ID2, Supplementary Table S2)
and were both reported to distinguish asthmatic from healthy
children in previous studies (Dallinga et al., 2010; van Mastrigt et al.,
2016; van Vliet et al., 2016). Furthermore, the findings from previous
metabolomic studies of an altered fatty acid metabolism in asthma is
supported by our data (Neerincx et al., 2017; Ferraro et al., 2018;
Papamichael et al., 2021).

Further, the 2-oxocarboxylic acid metabolism was also elevated in
the allergic asthmatic (Figure 2). 2-Oxoadipate and 2-aminoadipate are
overlapping with the lysine degradation pathway and glutamate is a
common metabolite involved in multiple metabolic pathways. The
metabolism of 2-oxocarboxylic acids is solely happening in archaea,
which are also represented in the gut microbiota. A review linked
methanogenic archaea as potential important contributors to atopic
diseases (Sereme et al., 2019). Additionally, 2-oxoadipate was previously
detected as an exhaled metabolite from the gut microbiota in a mice
model study (Lan et al., 2022).

Lastly, monosaccharides and derived metabolites were increased in
allergic asthma. This difference in carbohydratemetabolism of asthmatic
children is expected due to an altered energy demand and metabolism
(Papamichael et al., 2021).

A recently published study comparing children with acute asthma
exacerbations and healthy controls reported similar results to ours.
Despite investigating urine by high-performance liquid
chromatography mass spectrometry, they also reported an elevated
level of tyrosine metabolism including gentisate and increased
glucuronate as well as a downregulated linoleic acid metabolite and
palmitic acid in children with acute asthma (Li et al., 2022).

The most prominent group of downregulated metabolites was
associated with arginine and proline metabolism as well as arginine
biosynthesis. Arginase, an enzyme that converts arginine into ornithine
and urea is an important contributor to asthma pathophysiology
(Maarsingh et al., 2011). According to Maarsingh et al., increased
expression and activity of arginase in asthma mouse models resulted
in the promotion of inflammatory processes, decreased arginine and
increased ornithine and proline levels (Maarsingh et al., 2011). This is
not completely in line with our findings where these downstream
pathways are decreased in allergic asthma. However, a study about
amino acids in blood serum of asthmatics reported decreased arginine,
proline and ornithine levels (Morris et al., 2004).

Further, the linoleic acid metabolism was well-represented
amongst the diminished compounds. While conjugated linoleic
acid was consistently reported as having anti-inflammatory
properties, the effect of linoleic acid especially on asthma is in
dispute due to controversial observations in clinical trials

FIGURE 2
Schemes of metabolic pathways well-represented by compounds that were elevated in the allergic asthma group and putatively identified. Tyrosine
derivedmetabolites besides themain degradation pathway in humans are summarised in the box. Two unrelated compounds of the 2-oxocarboxylic acid
metabolism are not shown (see Table 2). Solid lines: direct metabolic relations; dashed lines: indirect metabolic relations (metabolites in between were
not identified); colored: putatively identified compound; bold: identified byMS2, regular: identified based on exactmass and pathwaymapping, or on
literature; italic: metabolites from gut microbiota; *, °, +, #, ,̂ ‘: several possibilities for 1 m/z feature based on exact mass and pathway mapping.
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(Wendell et al., 2014). Interestingly, a more recent study found
genetically predicted linoleic acid to be associated with a lower risk
for asthma, which is in line with our results (Zhao and Schooling,
2019).

Within the group of amides, palmitoylethanolamide (PEA) was
found to be decreased in the allergic asthma group. This is in line with
the well-studied anti-inflammatory effect of PEA (Clayton et al., 2021).
More recently, also an inhibitory effect for the development of allergic
airway symptoms was reported for PEA in mice (Roviezzo et al., 2017).

Another group of downregulated compounds was assigned to
aldehydes. Aldehydes are indicative of oxidative stress and originate
from lipid peroxidation (Jesenak et al., 2017), which is involved in asthma
pathophysiology, and are thus expected to be increased in asthmatics.
However, the results in literature on breath analysis in asthma are not
consistent: Some studies observed an increased level of certain aldehydes
in the asthmatic group (Gahleitner et al., 2013; van de Kant et al., 2013;
Smolinska et al., 2014), whereas others reported unaltered or even
decreased levels (Ibrahim et al., 2011; Sagdic et al., 2011; Caldeira
et al., 2012; Riscassi et al., 2022). Beyond this, aldehydes are also used
as common additives in cosmetics or food and are known environmental
contaminants (Sinharoy et al., 2019), which could influence their exhaled
concentrations. Furthermore, the annotation of aldehydes in our study
was based solely on exact mass matches with previously published
compounds by SESI/HRMS (see Supplementary Table S2).

Altogether, many of the enriched pathways that we reported
either elevated or decreased in allergic asthma could be linked to
previous findings of metabolomic studies using various methods for

blood, urine, or breath analysis. This strengthens the putative
compound identification performed in this work and supports
the possible biological and diagnostic value of these metabolites.

Assessing the predictability of the disease with supervised
machine learning in a 10 times repeated 10-fold cross-validation
revealed an AUC of 0.83 (CI: 0.73–0.92), indicating that the
metabolic profiles could be applied for potential diagnostic
purposes. Some compounds that were allocated to subgroups of
metabolic pathways or chemical families were frequently selected
during cross-validation (Figure 4C; Supplementary Table S4)
suggesting that a smaller group of compounds might not only be
pathophysiologically relevant, but also has potential for diagnostic
models. The two dicarboxylic acids and lysine metabolites, succinate
and glutarate, are promising candidates and were unambiguously
identified. Nevertheless, while efforts have been taken to prevent bias
by preprocessing data in each cross-validation loop and reducing the
dimensionality of the feature set for training the classifier with
machine learning, the risk of overfitting cannot be completely ruled
out (Vabalas et al., 2019). An independent and increased study
cohort would be needed to help in validating the model performance
and the selected predictors (Fijten et al., 2017).

Due to a rather large number of significant m/z features, a main
focus was set on putative compound identification. We aimed at
establishing an objective workflow that is based on matching direct
MS2 spectra with database fragment spectra, adapted from previous
work (Kaeslin et al., 2021), refined for a more extensive screening of
suggested compounds, and expanded by pathway enrichment

FIGURE 3
Schemes ofmetabolic pathways well-represented by compounds that were decreased in the allergic asthma group and putatively identified. Proline
metabolism: One component is not directly connected to the displayed pathway and is shown in the box. Solid lines: direct metabolic relations; dashed
lines: indirect metabolic relations; colored: putatively identified compound; bold: identified by MS2; regular: identified based on exact mass and pathway
mapping, or on literature; *, °, +: several possibilities for 1 m/z feature based on exact mass and pathway mapping.
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analysis to strengthen the feature annotation. A limitation in our
identification approach is the lacking chromatographic separation in
SESI/HRMS, which hinders the distinction of isomeric compounds.
Further, with a minimum isolation window of 0.7 Da, co-
fragmentation of several compounds with similar masses can
occur, which complicates the annotation of fragment spectra. To
address this, we excluded several MS2 spectra with insufficient
quality from further analysis, as specified in Supplementary Table
S1. The confidence of identification is only moderate for most
compounds, as they are putatively annotated based on fragment
spectra analysis with the SIRIUS software that uses computational
power to determine chemical structures that potentially have a
matching fragmentation pattern (Dührkop et al., 2019) or the
exact mass comparison to the literature and/or known
metabolites. Therefore, there is a general risk for
misclassification, and the confirmation of the unambiguous
chemical structures requires further time-consuming experiments,
including the measurement of standards. Especially, the molecules
that were annotated based on their exact mass or solely detected as
adduct or loss species without their primary ion being amongst the
significant features need further investigation. However, our aim for
this study was to get a broad overview over the potentially involved

metabolic pathways rather than accurately identifying a small set of
single compounds.

A strength of this study design is that all enrolled patients were
taken off long-term therapy at least 1 week prior to the study visit
and did not take any short-acting relievers on the day of
measurement. While direct breath analysis by SESI bypasses any
contamination during sample preparation, this adds up to also
diminish confounders and signal interferences from medications
in exhaled breath. This is an important aspect, as it was previously
shown that the methodology can detect drugs, including the asthma
medication Salbutamol, in breath (Gaugg et al., 2017b; Chen et al.,
2021; Singh et al., 2021).

While asthma is a heterogeneous disease with different
phenotypes, this study focused only on allergic asthma, the most
frequent phenotype in children. Therefore, our findings cannot be
extrapolated to all forms of pediatric asthma. We included all
sensitized healthy controls and all asthmatics with allergic
comorbidities such as allergic eczema or hay fever in order to
represent the real population for future applications. 21.4% of the
healthy cohort had an allergic sensitization to at least one common
aeroallergen, which is in line with the estimated prevalence in children
(Kölli et al., 2022). However, performing subgroup analysis on the

FIGURE 4
Disease prediction based on breath profiles. (A) Average receiver operating characteristic curve (ROC) with an average AUC of 0.83 resulting from
the 10 times repeated 10-fold cross-validation. ROC curves resulting from predictions on each of the left-out data sets in the cross-validation were used
to calculate the average ROC curve (Fawcett, 2006) (vertical averaging). Vertical grey bars: pointwise confidence intervals computed using bootstrapping
(10.000 repetitions); red dashed line: line of no discrimination. (B) Stacked bar plots of the selected features in each cross-validation iteration. Red/
blue color scheme: upregulated features in the allergic asthmatic/healthy group. (C) Heat map of the most frequently chosen features (standardized
intensities) as predictors in the cross-validation. Columns: study participants; rows:m/z features with putatively identified compounds (right), a chemical
formula is provided if compound identification was not possible.
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entire data set was not feasible since surrogate variable analysis is
known to adjust for confounding influences and reduce heterogeneity
in the data (e.g., demographic variations like age and sex, or disease
heterogeneity) (Jaffe et al., 2015). We decided to apply SVA to adjust
for unmodeled factors, since the study was conducted over a period of
15 months on a highly sensitive instrument. Therefore, despite a strict
adherence to standard operating procedures, we had to assume that
apart from demographic variation also unknown environmental or
technical confounders might have impacted the m/z feature
intensities. In order to nevertheless assess the interesting question
whether the described markers and pathways might also be related to
atopy by itself, we chose to perform an independent subgroup analysis
in the healthy cohort. No significant features that could distinguish
healthy children with allergic sensitization from the ones without
could be found. Therefore, the identified metabolites and pathways
represent promising candidate biomarkers for allergic asthma that
need to be validated in a larger and independent study cohort.

This study confirms the applicability of SESI/HRMS to a
pediatric population and shows its potential to distinguish
children with allergic asthma from healthy controls based on
their breath signatures. Moreover, well-represented metabolic
pathways that are potentially linked to the pathophysiology of
allergic asthma in children could be identified. A smaller subset
of the differentiating compounds could possibly be used for
predictive modelling. These findings might set the path for
much-needed, non-invasive clinical applications to improve early
diagnosis of asthma.
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Introduction:Galactosemia (GAL) is a genetic disorder that results in disturbances
in galactosemetabolism and can lead to life-threatening complications. However,
the underlying pathophysiology of long-term complications in GAL remains
poorly understood.

Methods: In this study, a metabolomics approach using ultra-performance liquid
chromatography coupled with high-resolution mass spectrometry was used to
investigate metabolomic changes in dried blood spots of 15 patients with GAL and
39 healthy individuals.

Results: The study found that 2,819 metabolites underwent significant changes in
patients with GAL compared to the control group. 480 human endogenous
metabolites were identified, of which 209 and 271 were upregulated and
downregulated, respectively. PA (8:0/LTE4) and ganglioside GT1c (d18:0/20:0)
metabolites showed the most significant difference between GAL and the healthy
group, with an area under the curve of 1 and 0.995, respectively. Additionally, the
study identified potential biomarkers for GAL, such as 17-alpha-estradiol-3-
glucuronide and 16-alpha-hydroxy DHEA 3-sulfatediphosphate.

Conclusion: This metabolomics study deepened the understanding of the
pathophysiology of GAL and presented potential biomarkers that might serve
as prognostic biomarkers to monitor the progression or support the clinical
diagnosis of GAL.

KEYWORDS
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1 Introduction

Galactosemia is an autosomal recessive disorder caused by a defect in the enzyme
galactose-1-phosphate uridyltransferase (GALT) (Isselbacher et al., 1956; Berry, 2015). This
enzyme is needed to convert galactose (a sugar found in dairy, fruit, and some foods) into the
body’s primary energy source (Leloir, 1951). If this enzyme is deficient, galactose
accumulates to toxic levels in the body, leading to a severe neurological and metabolic
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disorder. Symptoms of galactosemia can include vomiting, lethargy,
seizures, enlarged liver, jaundice, kidney failure, and changes in
brain development.

A defective gene causes the classic form of GAL on chromosome 3.
It is characterized by severe deficiency of all three enzymes required for
the metabolism of galactose to glucose: galactose-galactokinase (GALK)
(GAL type II), galactose-1-phosphate uridylyltransferase (also known as
GALT), and UDP-galactose-4-epimerase (GALE) enzymes (GAL type
III) (Pasquali et al., 2018). Without these enzymes, galactose is not
converted to glucose, accumulates in the body, or is excreted in the
urine. The incomplete breakdown of galactose then affects numerous
metabolic pathways, which results in several serious symptoms and
potential long-term complications such as cataracts, liver damage, and
an increased risk of developing neurological disorders. The primary
treatment for galactosemia is a strict low-galactose diet. All sources of
galactose and lactose, such as cow’smilk, need to be eliminated from the
diet. An alternative lactose-free, low-galactose breast milk or formula
can be used for nutrition. Depending on the individual, the diet may
need to be modified periodically. Infants with galactosemia should have
regular check-ups with their doctor to ensure proper nutrition, growth,
and development.

The Leloir pathway is the metabolic pathway used to convert
galactose into glucose. It begins with the conversion of galactose to
glucose-1-phosphate, which is catalyzed by the enzyme galactokinase.
Glucose-1-phosphate is then converted to glucose-6-phosphate by
uridyl transferase and, finally, glucose by the enzyme glucokinase. At
the same time, galactose is rapidly metabolized via the Leloir pathway
once it enters the cell, where initially, GALK catalyzes the
phosphorylation of galactose (Walter and Fridovich-Keil, 2019).
Then GAL transforms UDP-glucose and galactose 1-phosphate into
glucose-1-phosphate and UDP-galactose. Finally, GALE catalyzes the
conversion of UDP-galactose to UDP-glucose (Timson, 2016).
Additionally, type IV galactosemia is a newly found hereditary
metabolic disorder. It is caused by mutations in the galactose
mutarotase gene, which results in the diminished activity of the
enzyme galactose mutarotase. This enzyme catalyzes the
interconversion of the α- and β-anomers of d-galactose and several
other monosaccharides (Banford and Timson, 2021). However, the
mechanisms of GAL disorder are still poorly understood (vanWeeghel
et al., 2018). The clinical complications associated with classical
galactosemia include cataracts, developmental delays, learning
disabilities, speech problems, failure to thrive, intestinal problems,
and liver damage. If left untreated, galactosemia can lead to life-
threatening conditions such as sepsis, multiple organ failure, and
death. It is also associated with an increased risk of ovarian failure
in females (Succoio et al., 2022).

The pathophysiology of the long-term complication in GAL
needs to be better understood, and predictive biomarkers need to be
included (Hermans et al., 2022). Prognostic uncertainty may lead to
unnecessary or harmful treatment for patients with GAL, which
burden patients and parents (Knerr et al., 2015). Even though
neonatal detection and dietary restriction of galactose may
change the clinical picture of a newborn, it does not stop long-
term problems from happening (Succoio et al., 2022).

Most of the world’s newborn screening (NBS) programs include
a screen for GAL; despite the level of its false discovery rate, even at
early diagnosis, there are often long-term complications (Ohlsson
et al., 2011). Fanconi-Bickel disease, liver illness, glycogen storage

disease type XI, and even certain drugs may all cause false-positive
screening findings in infants (Peduto et al., 2004; Kotb et al., 2019).
Most NBS programs depend on measuring GAL activity in DBS to
diagnose GAL.

Total galactose (galactose + galactose-1-phosphate) is measured
in around 30% of NBS programs as a main screening approach or in
conjunction with GAL testing in DBS. However, false negative
screening results for GAL may be seen in babies who are given
lactose-free formula or who are receiving complete parenteral
nutrition if the diagnosis is based only on total galactose
(Pasquali et al., 2018). A second analysis of dried blood from the
same newborn screening card is undertaken to monitor particular
metabolites or metabolic pathways to overcome the issue of non-
specific first-line parameters and the resultant high false positive rate
(Lehotay et al., 2011). Furthermore, positive results in screening
tests, clinical examination, and biochemical and molecular
diagnostics are required to confirm patients with GAL. However,
based on the biochemical, enzymatic, and genetic information, that
is, now available, it is not feasible to provide an accurate prediction
of the clinical prognosis at the time of diagnosis.

Because there are no validated biomarkers for the diagnosis
and prognosis of GAL, and no specific and reliable treatment
regimens, more studies on GAL should be conducted.
Metabolomics describes analyzing all metabolites (compounds
with low molecular weight, generally 1,500 Da) present in a
particular sample acquired from a biological system (Patti et al.,
2012; Dahabiyeh et al., 2020; Gu et al., 2020). Metabolomics has
emerged as a potentially useful diagnostic and prognostic tool that
might explain disease pathogenesis (Masood et al., 2021; Jacob
et al., 2022; Jans et al., 2022). There currently needs to be more
investigations on the pathophysiology of GAL that concentrate on
urine or blood metabolomics profiling (Taylor Fischer et al., 2019;
Hermans et al., 2022). Therefore, investigating the GAL
metabolomics profile may aid in finding potential biomarkers,
shed light on the mechanisms behind the disease’s progression, and
ultimately aid in its early detection.

In this study, metabolomics employing ultra-performance liquid
chromatography coupled with high-resolution mass spectrometry
(UPLC/HRMS) was used to detect and quantify differences in
metabolite levels between GAL and healthy groups that could
potentially serve as biomarkers for the diagnosis or monitoring
of GAL and could also provide insights into the underlying
biological mechanisms of the disorder.

2 Materials and methods

2.1 Characteristics of the study population

Fifty-four DBS samples were collected from genetically and
biochemically confirmed GAL (n = 15) patients at King Faisal
Specialist Hospital and Research center (KFSHRC) and healthy
controls (n = 39). These healthy controls were age-gender
matched with the patient group. 4 out of 19 GAL patients and
7 out of 46 healthy controls were excluded from this study due to 1)
inability or unwillingness to provide informed consent or 2)
diagnosis with conditions other than GAL. The Research Ethics
committee approved this study and Institutional Review Board at
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KFSHRC (RAC# 2160027). It was performed following the ethical
standards of the Declaration of Helsinki.

2.2 Metabolites extraction

The polar metabolites were extracted from DBS samples using
our developed standard protocol (Jacob et al., 2018). Five 3 mm size
DBS disks were used for metabolite extraction using methanol,
acetonitrile, and water (40:40:20%) for protein precipitation. The
mixture was mixed at 25°C and 600 rpm for 2 hours in a
thermomixer (Eppendorf, Germany). Pooled QC samples were
prepared using aliquots from the study samples. Afterward, the
supernatants were transferred to another set of tubes, evaporated in
SpeedVacc (Christ, City, Germany), and stored at −80°C until LC-
MS analysis.

2.3 UPLC/HRMS

The metabolomics profile for the study samples was collected
using our laboratory’s applicable standard protocol (Jaber et al.,
2022). In detail, the dry extracted samples were resuspended with
50% mobile phase A and B (A: 0.1% formic acid in dH2O, and B:
0.1% formic acid in 50% MeOH and ACN). The extracted
metabolites were chromatographed using an Acquity UPLC using
XSelect HSS C18 (100 × 2.1 mm, 2.5 μm) column (Waters Ltd.,
Elstree, United Kingdom). A gradient mobile phase elution was
scheduled in this method as follows: 0–16 min 95%–5% A,
16–19 min 5% A, 19–20 min 5%–95% A, and 20–22 min, 95%–
95% A, all at a flow rate of 300 μl/min. The eluted molecules were
detected using a Waters Acquity UPLC connected to a Waters Xevo
G2-S QTOF high-resolution mass spectrometry system. In separate
runs, the molecules were ionized using positive and negative
electrospray ionization modes (ESI+, ESI-). In ESI+, the capillary
voltage was set to 3.20 kV. The cone voltage was 40 V, the
desolvation temperature was 500°C, the nitrogen desolvation gas
flow to 800 L/h, and the cone gas flow was 50 L/h. In ESI−, a
capillary voltage of −3 kVwas used. The collision energies of low and
high functions were set at 0 V and 10–50 V, respectively, in MSE

mode. The mass spectrometer was calibrated, as recommended by
the vendor, with sodium formate in the range of 100–1,200 Da in
both ionization modes. Accurate mass measurements were
maintained by continuously infusing leucine-enkephaline lock
mass compound (ESI + m/z 556.2771, ESI- m/z 554.2615) and
alternating between the sample and the reference every 45 and 60 s
for ESI+ and ESI-, respectively. The lock spray was 10 μl/min, 0.5 s
scan time, cone voltage 30 V, collision energy 4 eV. The data-
independent acquisition was performed in continuum mode with
Masslynx™ V4.1 workstation (Waters Corporation, MA,
United States).

2.4 Data processing and statistical analysis

Peak picking and alignment of detected ion (m/z, Rt) were
processed using Progenesis QI v.3.0 software from Waters (Waters
Corporation, MA, United States).

The raw data were deposited inMetaboLight (accession Number
MTBLS6996).

Multivariate statistical analysis was performed using
MetaboAnalyst v5.0 (McGill University, Montreal, QC, Canada)
(Worley and Powers, 2013). Firstly, data were subjected to log
transformation, mean centering, and Pareto scaling and then
used to generate principal component analysis (PCA), partial
least squares-discriminant analysis (PLS-DA), and orthogonal
projections to latent structures discriminant analysis (OPLS-DA)
models. OPLS-DAmodels were evaluated using the fitness-of-model
(R2Y) and predictive ability (Q2) values.

Univariate analysis was performed using Mass Profiler
Professional (MPP) Software (Agilent Technologies, Inc., Santa
Clara, CA, United States). The total sample median was used to
normalize the signal and ensure normal distribution. Volcano Plot
analysis was performed to identify significantly alters between GAL
patients and healthy control using Moderated T. Test, false
discovery rate (FDR) corrected p-value ≤0.05 and fold change
(FC) cut-off of 2. Venn diagrams were developed using MPP
Software (Agilent Technologies, Inc., Santa Clara, CA,
United States).

Pathway analysis and biomarkers linked with GAL disorder
were performed using MetaboAnalyst v5.0 (McGill University,
Montreal, QC, Canada)—a pathway view of statistically
significant pathways flagged from the metabolome view based on
matched metabolites. The pathways are arranged based on the
p-value (y-axis), which indicates the pathway enrichment
analysis, and pathway impact values (x-axis) representing
pathway topology analysis. In addition, Receiver Operating
Characteristic (ROC) curves were created using the PLS-DA
approach in the MetaboAnalyst v 5.0 for global analysis to
identify possible biomarkers. Metabolites were putatively
identified based on the exact mass searched against different
databases, including Human Metabolome Database and METLIN.
The exogenous compounds, such as drugs, food additives, and
environmental compounds, were excluded from the final list.

3 Results

3.1 Feature detection and metabolites
identification

Using the UPLC/HRMS data, comprehensive untargeted
metabolomics analyses were performed on the DBS samples
obtained from 15 GAL patients and 39 healthy controls. In total,
25,607 m/z features were detected in positive (n = 12,541) and
negative (n = 13,066) ionization modes. After applying the filter
of 80% of all samples, 20,775 features remained to statistically
evaluate among the patients with GAL and healthy control, as
described in the method section.

3.2 Metabolomics profiling for GAL
compared to control

Multivariate and univariate analyses were used to determine
whether metabolites were significantly different in GAL compared
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to the control group. As a result of unsupervised, PCA revealed good
clustering between GAL patients (red) and the healthy group
(green). The total variance of the first two principal components
contributed 20.5% in the PCA model for the two study groups (PC
1 = 14.1% and PC 2 = 6.4%) (Figure 1A). Once separation had been
assessed, PLS-DA and OPLS-DA were applied to maximize the
separation of the groups observed by PCA. The scores plot from the
PLS-DA (Figure 1B) and the OPLS-DA (Figure 1C) showed clear
group separation, which validated the PCA results. The OPLS-DA
model yielded satisfactory fitness of the model (R2Y = 0.972) and
predictive ability (Q2 = 0.856) values (Figure 1C). The contributing
metabolites in these models’ separation between study groups were
explored using univariate analysis (Student T. Test and fold change
analyses).

Next, a binary comparison between the GAL group and healthy
control using volcano plot analysis revealed that 1,300 metabolites
were upregulated (red) whereas 1,519 metabolites were
downregulated (blue) in GAL patients compared to healthy

control (FDR p ≤ 0.05, FC cut-off of 2), respectively (Figure 2A).
Four hundred eighty metabolites were annotated as endogenous
human metabolites and are listed in Supplementary Table 1. Further
examination using hierarchical clustering analysis (HCA) in
Figure 2B depicts differences in the abundance of the top
25 perturbed metabolites between GAL and control groups.

The metabolic pathway analysis revealed that pyrimidine
metabolism is the most significantly altered pathway in GAL
compared to the control, as displayed in Figure 3.

The ROC analysis was used to identify metabolites that might
act as potential biomarkers and to assess their diagnostic accuracy
(Figure 4). Multivariate exploratory ROC analysis was created using
PLS-DA for classification and feature ranking. Figure 4A shows that
the top-ranked metabolites in ROC curves show the area under the
curves (AUCs) ranging from 0.992 to 1; confidence Interval (CI):
0.946–1 and 1-1. The selected frequency plots represent the
significant features of the expressed metabolites in the patients
with GAL and control groups (Figure 4B). The selected

FIGURE 1
(A) Principal component analysis (PCA) model for 54 samples obtained from 15 GAL patients and 39 control that showed a clear separation between
the two groups (GAL patients and healthy control). (B) PLS-DA Score Plots revealed a clear separation between the groups (GAL patients and healthy
control). (C) Orthogonal partial least squares-discriminant analysis (OPLS-DA) score plot showed evident separation between two groups (GAL patients
and healthy control). The robustness of the created models was evaluated by the fitness of the model (R2Y = 0.972) and predictive ability (Q2 =
0.856) values.
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frequency plot shows metabolites, such as 16-alpha-hydroxy DHEA
3-sulfatediphosphate (UDP) and 17-alpha-estradiol-3-glucuronide
to be downregulated in patients with GAL in comparison to the

control group with AUC 0.997 and 0.961, respectively (Figures 4C,
D). In comparison, metabolites such as phosphatidylcholine and
diacylglycerols (DG) (20:3n6/0:0/20:4n3) were upregulated.

FIGURE 2
(A) Volcano Plot demonstrates the statistically significant alteredmetabolites filtered between the two groups (GAL patients and healthy control) that
2,819 significantly were dysregulated metabolites (FDR p-value ≤0.05, FC 2), of which 1,300 (red) and 1,519 (blue) metabolites were up-and
downregulated in GAL patients compared to healthy control, respectively. Red and blue refer to up-and downregulatedmetabolites, respectively. Orange
and light blue squares refer to metabolites that failed to pass fold change cutoffs and were up- and downregulated, respectively. Gray square
metabolites failed to pass both cutoffs. (B) Heat map representing the top 25 significantly (p < 0.05) altered metabolites between the two study groups;
healthy control (red) and GAL patients (green). (C) Boxplots for a couple of metabolites [Ganglioside GT1c (d18:0/20:0) and PA (8:0/LTE4)] where green
represents GAL patients and red represents Control.
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Moreover, phosphatidic acid (PA (8:0/LTE4)) (Figure 4E) and
ganglioside GT1c (d18:0/20:0) (Figure 4F) were upregulated in
patients with GAL compared to the control group with an AUC
1 and 0.995, respectively shows highest discriminatory power.

4 Discussion

The urgent need for novel biomarkers for early diagnosis and
prognosis prediction of GAL disorder has prompted the
investigation of potential biomarkers using various experimental
approaches. This study conducted metabolomics analyses to identify
biomarkers with UPLC/HRMS by following changes in the
metabolic profiles of patients with GAL. As an autosomal
recessive hereditary genetic disorder, GAL can result in life-
threatening health complications unless lactose is eliminated
from the diet immediately after birth (Berry, 2021). The clinical
outcome of patients with GAL varies widely (Welsink-Karssies et al.,
2020). Additionally, pitfalls in diagnosing GAL are present due to
false negative and positive newborn screening results (Pasquali et al.,
2018). Thus, there is an urgent need to find novel biomarkers for
early diagnosis and prognosis prediction of GAL disorder.

Despite the emerging field of metabolomics as the newest Omics
platform that focuses on metabolites, small molecules (<1,500 Da)
hold promise to shine a light on the molecular mechanisms of
several diseases, which may help for diagnostic and therapeutic
purposes (Jacob et al., 2019), very few studies have focused on GAL
in humans biological fluids (Janeckova et al., 2015; Taylor Fischer
et al., 2019; Hermans et al., 2022).

A volcano plot analysis was utilized to identify potential
biomarkers of GAL. 2,819 metabolites showed significant
differences between the GAL group and the control group. In the
heatmap, the top 25metabolites with the most significant differences

in abundance between the groups were visualized and identified as
potential biomarkers for GAL. Among these metabolites,
phosphatidylethanolamine, which is a category of phospholipids
present in biological membranes, was found to be the most
significantly upregulated metabolite in the GAL group,
confirming the increase of phosphatidylethanolamine in
complications of GAL such as neurological impairments and
cataracts (Jernigan Jr et al., 2005; López de Frutos et al., 2022).

Pyrimidine metabolism was the most significant pathway that
significantly altered between GAL and healthy controls. The
pyrimidines are the building blocks of DNA and RNA. They also
form active intermediates in carbohydrate metabolism, such as
UDP-glucose (Dewulf et al., 2021). Furthermore, UDP-glucose is
an organic pyrimidine nucleotide sugar molecule (Ng et al., 2015). In
the physiological process, the UDP-glucose is transformed into
UDP-galactose in the presence of GAL (Veiga-da-Cunha et al.,
2020). While in patients with GAL, the activity of the GAL
enzyme is absent or barely detectable (Berry, 2021). Thus, a close
link between GAL and alteration in pyrimidine metabolism was
shown previously (Taylor Fischer et al., 2019), which matched our
result.

We found that ganglioside GT1c and PA (8:0/LTE4) showed the
highest discrimination ability between GAL and the control
group. Ganglioside GT1c is a glycosphingolipid (ceramide and
oligosaccharide) with one or more sialic acids widely distributed
throughout the body, especially abundant in the brain and other
parts of the central nervous system (Vukelic et al., 2001).
Galactosylation of complex molecules and the production of
various glycoproteins/glycolipids rely on GALE, which is also
responsible for the interconversion of UDP-N-acetylglucosamine
(UDP-GlcNAc) and UDP-N-acetylgalactosamine (UDP-GalNAc)
(Banford et al., 2021). Therefore, neurological complications in
patients with GAL may result from prenatal-neonatal toxicity or

FIGURE 3
Pathway Analysis for the significant metabolites dysregulated between GAL patients and healthy control. Four hundred eighty metabolites were
ultimately identified as human endogenousmetabolites, where 209 and 271were up and downregulated, respectively. Colors (varying from yellow to red)
mean the metabolites are in the data with different significance levels (p-value).
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persistent glycoprotein and glycolipid synthesis abnormalities
(Coman et al., 2010).

Moreover, oxidized phosphatidic acid is known as PA (8:0/
LTE4), which is upregulated in our present study. A phosphate
moiety occupies a glycerol substitution site in oxidized
phosphatidic acids, which are glycerophospholipids in which
at least one of the fatty acyl chains has undergone oxidation
(Wishart et al., 2022)—metabolic perturbations in
glycerophospholipids found in patients with GAL (Taylor
Fischer et al., 2019).

One of the complications of GAL is liver cirrhosis since GAL is a
common metabolic liver disorder of childhood (Sahoo et al., 2015).
In the liver, glucuronidation takes place, where it is used to assist in

the excretion of toxic substances, drugs, or other substances by
attaching glucuronic acid via a glycosidic bond to the substance. The
resulting glucuronide, which has a much higher water solubility than
the original substance, is eventually excreted by the kidneys
(Wishart et al., 2022). Thus, metabolic liver diseases will affect
glucuronidation (Sharma and Nagalli, 2021). Our findings of
downregulated 17-alpha-estradiol-3-glucuronide metabolite
produced in the liver after glucuronidation of 17-alpha-estradiol
by UDP glucosyl transferase are consistent with this hypothesis.
Moreover, to our knowledge, 17-alpha-estradiol-3-glucuronide has
been identified in the blood of patients with GAL for the first time,
which can serve as a potential prognostic biomarker for GAL
concerning liver complications.

FIGURE 4
(A) The Receiver Operating Characteristics (ROC) curve was generated by the OPLS-DA model, with Area Under the Curve (AUC) values calculated
from the combination of 5, 10, 15, 25, 50, and 100 metabolites. (B) The frequency plot shows the significantly dysregulated endogenous metabolites
between the study groups. Representatives downregulated metabolites with their ROC curves are demonstrated for 16-alpha-hydroxy DHEA 3-
sulfatediphosphate (AUC (0.997) (C) and 17-alpha-estradiol-3-glucuronide AUC (0.961) (D) in GAL patients. Furthermore, PA (8:0/LTE4) AUC (1) (E)
and ganglioside GT1c (d18:0/20:0) AUC (0.995) (F) as examples of upregulated metabolites in GAL patients.
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Furthermore, the metabolite 16 alpha-hydroxy DHEA 3-
sulfatediphosphate derived mainly from the fetus and served as a
precursor for placental estriol biosynthesis significantly decreased in
the GAL group (Schweigmann et al., 2014). 16 alpha-hydroxy
DHEA 3-sulfate is a natural human metabolite in pregnant
women’s placenta and breast milk (Wishart et al., 2022).
However, breastfeeding should be avoidable in babies with GAL
since breast milk contains lactose (Berry, 2021). Thus, it may explain
the decreased level of 16 alpha-hydroxy DHEA 3-sulfatediphosphate
in patients with GAL.

This study had some limitations, such as the few patients with
GAL and the need for the patient group to be used for external
validation. Nevertheless, using the metabolomics approach, our
study is one of the few to reveal specific metabolite changes
between GAL and healthy controls. Our findings serve as the
initial step for further investigations in greater detail.

5 Conclusion

There is currently no biomarker available to predict life-
threatening complications in patients with GAL, which are
associated with early death among these patients. This study used
the HRMS-based metabolomics approach for the first time to gain
new insights into the perturbed biochemical pathways in GAL
compared to healthy control and to identify potential predictive
biomarkers.

A total of 480 endogenous metabolites were identified, and they
showed significant dysregulation. These metabolites can provide
important insights into the pathophysiological state of GAL
disorder.

Two metabolites, ganglioside GT1c and PA (8:0/LTE4), had the
highest discrimination between GAL and the healthy
group. Moreover, our results showed novel potential biomarkers
for GAL, such as 17-alpha-estradiol-3-glucuronide and 16 alpha-
hydroxy DHEA 3-sulfatediphosphate.

However, the biomarkers obtained through untargeted
metabolomics require additional validation, which may involve
the targeted UPLC/HRMS-based method to ensure their accuracy
and reliability for clinical use. In addition, further studies are
necessary to evaluate these biomarkers’ reproducibility, stability,
and performance in large separate cohorts to determine their
potential clinical value.
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Volatilomics of raspberry fruit
germplasm by combining
chromatographic and
direct-injection mass
spectrometric techniques
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The application of direct-injection mass spectrometric (DI-MS) techniques, like
Proton Transfer Reaction Time of Flight Mass Spectrometry (PTR-ToF-MS) has
been suggested as a reliable phenotyping tool for fruit volatilome assessment in
both genetic and quality-related studies. In this study the complexity of raspberry
aroma was investigated by a comprehensive untargeted VOC analysis, done by
combining SPME-GC-MS and PTR-ToF-MS assessments with multi-block
discriminant analysis using the DIABLO mixOmics framework. The aim was to
acquire an exhaustive characterization of the raspberry volatilome according to
different fruit ripening stages (pink, ripe, and overripe) and genetic variances
(50 accessions), as well as to investigate the potential of PTR-ToF-MS as a
rapid and high throughput VOC phenotyping tool to address issues related to
raspberry fruit quality. Results of this study demonstrated the complementarity
between SPME-GC-MS and PTR-ToF-MS techniques to evaluate the raspberry
aroma composition. PTR-ToF-MS generates reliable raspberry VOC fingerprints
mainly due to a reduced compound fragmentation and precise content
estimation. In addition, the high collinearity between isomers of monoterpenes
and norisoprenoids, discovered by GC analysis, reduces the main analytic
limitation of PTR-ToF-MS of not being able to separate isomeric molecules.
The high similarity between the VOC matrices obtained by applying PTR-ToF-
MS and SPME-GC-MS confirmed the possibility of using PTR-ToF-MS as a reliable
high throughput phenotyping tool for raspberry volatiolome assessment. In
addition, results provided by the germplasm collection investigation enabled to
distinguish the best performing accessions, based on VOCs composition, to be
used as superior parental lines for future breeding programs.
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1 Introduction

Volatile organic compound (VOC) directly related to odour
composition is one of the main attributes that determines
consumers’ overall liking of foods compared to other sensory
attributes, such as appearance and texture (Klee and Tieman,
2018; Lytou et al., 2019). Therefore, several VOCs are considered
key target molecules to improve the flavour perception of fruit and
vegetables and, consequently, their marketability. In addition, the
end of the “flavour life”, mainly due to changes in VOC composition,
often precedes the end of shelf life as determined by external
modifications (Mazzucotelli et al., 2022). Thus, VOCs should be
considered a central trait to determine the optimal cultivation and
storage strategies, especially for products for which repeated
purchasing behavior and willingness to pay are associated with
positive eating experience.

High priority should be given to replace poor flavour cultivars
with favorable ones, exploiting the available natural variability.
However, the VOC assessment of a very high number of
samples, which is necessary to overcome the usually massive
biological and genetic variability among fruit samples, may be
laborious and time consuming. The so-called “phenotyping
bottleneck”, caused by the absence of high-throughput and non-
invasive methodologies, hampers an effective VOC assessment of
broad plant collections (Mazzucotelli et al., 2022)). In fact, the use of
conventional gas chromatographic (GC) techniques for VOC
analysis presents many analytical limitations. First of all, the
process of sample preparation and analysis is time consuming,
and second, there are limitations of running exhaustive, complex
experimental designs due to the length of analysis. The application
of direct-injection mass spectrometric (DI-MS) techniques, like
Proton Transfer Reaction Time of Flight Mass Spectrometry
(PTR-ToF-MS) or Selected Ion Flow Tube Mass Spectrometry
(SIFT-MS), has been demonstrated to be a powerful phenotyping
tool for destructive and non-destructive fruit volatilome assessment
in both genetic and quality-related studies (Farneti et al., 2017a;
Farneti et al., 2020; Di Guardo et al., 2021; Li et al., 2021). Depending
on the analytical technique, volatilome assessment can contribute to
the discrimination of samples in clusters (Farneti et al., 2017a;
Farneti et al., 2020; Di Guardo et al., 2021), the identification of
specific biomarkers that are crucial for quality, and the prediction of
aspects associated with food quality (Farneti et al., 2013; Bianchi
et al., 2020; Li et al., 2021).

VOCs play a key role in the formation of the well-recognized
and commonly appreciated aroma of soft fruits (Du and Qian,
2010). In particular, aroma is one of main factors impacting
raspberry (Rubus idaeus L.) fruit quality and consumer
appreciation (Valdés García et al., 2020; Zhang et al., 2021).
Raspberry VOC profile of distinct genotypes can be qualitatively
and quantitatively very different, and it can be influenced by both
agronomic practices and microorganism interactions (Durán-Soria
et al., 2021; Sangiorgio et al., 2021; Sangiorgio et al., 2022). Raspberry
aroma is a complex blend of almost 300 VOCs with major classes of
compounds being terpenes, C13-norisoprenoids, esters, alcohols,
aldehydes acids, and ketones (Aprea et al., 2015). However only few
of these VOCs have been recognized as major aroma-active
compounds in raspberry (Larsen et al., 1991; Aaby et al., 2019;
Zhang et al., 2021). Among them, Zhang et al. (2021) identified

14 major aroma-active compounds (volatiles with OAVs ≥1):
namely, hexanal, (Z)-3-hexenal, (E)-2-hexenal, eucalyptol, (Z)-3-
hexen-1-ol, 1-octen-3-ol, linalool, benzyl alcohol, theaspirane, ß-
damascenone, dihydro-β-ionone, a-ionone, ß-ionone, and
naphthalene. Additionally, several VOCs, such as benzaldehyde,
1-hexanol, 2-nonanone, (E)-2-hexenal, and (Z)-3-hexenol and
monoterpenes, are reported to have inhibitive effects against
fungi, especially against Botrytis cinerea (Vaughn et al., 1993;
Aprea et al., 2010).

Improving fruit flavour, selecting cultivars with premium
characters, provides unique challenges in raspberry breeding
(Paterson et al., 2013). Selection oriented mostly on productive
traits, such as yield, size and shelf-life, have had negative effects on
fruit flavour for several fruit species during domestication (Aharoni
et al., 2004; Goff and Klee, 2006; Farneti et al., 2017a). Therefore,
precise methodological strategies are necessary to support the
raspberry breeding activity. This needs a greater comprehension
of the genetic control of the pathways involved in VOCs synthesis,
environmental factors influencing VOCs production and
contributions of impact VOCs to sensory character in raspberry.

In this study the complexity of raspberry aroma was explored by
an exhaustive untargeted volatilomic analysis, done by combining
SPME/GC-MS and PTR-ToF-MS assessments with multivariate
statistic models. The aim of this study was to obtain a thorough
characterization of the raspberry volatilome according to different
fruit ripening stages and genetic differences, as well as to investigate
the potential of PTR-ToF-MS as a rapid and high throughput VOC
phenotyping tool to address issues related to raspberry fruit quality.

2 Material and methods

2.1 Plant material and fruit sampling

Raspberry (R. idaeus L.) accessions (Supplementary Table S1)
were chosen from the experimental field of Fondazione Edmund
Mach (FEM) Research and Innovation Center at Pergine (Trento),
located in the north of Italy (Trentino Alto Adige region- 46.0744°N,
11,2334°E, 525 m a.s.l.). Plants of raspberry were all grown in 7 L
pots, under a hail net and were maintained following standard
pruning and agronomical practices (Giongo et al., 2019). Berries
were harvested manually at the required stage for each experiment
early in the morning and brought to the laboratory within 30 min
after picking. Homogeneous fruit, free from external damages or
irregularities, were immediately frozen with liquid nitrogen.

For the first experiment, we aimed at acquiring a comprehensive
untargeted characterization of the raspberry volatilome according to
fruit ripening stages. We employed six raspberry cultivars, namely,
“Citria,” “Glen Ericht,” “Himbotop,” “Kweli”, “Paris”, and
“Tulameen”. Fruit was collected at three ripening stages based on
visual colour evaluation (Pink -P, Ripe-R, and Overripe -OR;
Monsalve et al., 2022. “OR” ripening stage corresponds,
approximately, to 24 h harvest delay from “R” ripening stage)
and analysed by SPME/GC-MS and PTR-ToF-MS.

For the second experiment, aimed at: i) testing the analytical
capacity of PTR-ToF-MS as a rapid and high throughput VOC
phenotyping tool, and ii) estimating the genetic variability among
raspberry cultivars, we employed 50 accessions of raspberry
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(34 cultivars and 16 advance selections from the FEM raspberry
breeding program; Supplementary Table S1). Fruit was harvested at
full ripe stage, which corresponds to the OR commercial maturity
stage described above.

2.2 Sample preparation for VOC analysis

Replicates of 0.5 g of raspberry frozen grinded samples,
stored at −80°C, were weighed into 20 mL glass vials with
screw cap with PTFE/silicone septum (Agilent, Cernusco sul
Naviglio, Italy). 0.5 mL of an antioxidant solution (0.5 mL of
deionized water, 200 mg of sodium chloride, 2.5 mg of ascorbic
acid, and 2.5 mg of citric acid) was added on top according to
Farneti et al., 2017b.

2.3 VOC analysis by SPME/GC-MS

Gas chromatographic analysis was performed according to
Farneti et al., 2017b. The vials were incubated at 40°C for 10 min
constantly stirring before being analysed. Solid-phase
microextraction fiber (DVB/CAR/PDMS, 2 cm coating Supelco,
Bellefonte, PA, United States) was exposed for 30 min in the vial
headspace. Compounds adsorbed by HS-SPMEwere analysed with a
GC interfaced with a mass detector operating in electron ionization
(EI) mode (internal ionization source; 70 eV) with a scan range of
m/z 33–350 (GC Clarus 500, PerkinElmer, Norwalk CT,
United States). HP-INNOWax fused silica capillary column
(30 m, 0.32-mm ID, 0.5-μm film thickness; Agilent Technologies,
Palo Alto, CA, United States) was used for separation. The initial GC
oven temperature was 40°C rising to 220°C at 4°C min−1, the
temperature of 220°C was maintained for 1 min, then increased
at 10°C min−1 until it reached 250°C, which was maintained for
1 min. Helium as a carrier gas was kept at a constant column flow
rate of 1.5 mL min−1. Samples were analysed in triplicates. The
content of each compound was expressed as μg L−1 equivalent of
2-octanol. Compound identification was based on mass spectra
matching with the standard NIST/EPA/NIH (NIST 14) and
Wiley 7th Mass Spectral Libraries, and linear retention indices
(LRI) compared with the literature. LRI were calculated under
the same chromatographic conditions after injection of a
C7–C30 n-alkane series (Supelco).

2.4 VOC analysis by PTR-ToF–MS

Measurements were performed with a commercial PTR-
ToF–MS 8000 apparatus (Ionicon Analytik GmbH, Innsbruck,
Austria; Farneti et al., 2017b). The drift tube conditions were as
follows: 110°C drift tube temperature, 2.3 mbar drift pressure,
550 V drift voltage with E/N ratio of about 140 Townsend (Td),
with E corresponding to the electric field strength and N to the
gas number density (1 Td = 10–17 Vcm2). The acquisition rate of
ToF mass spectrometer was 1 spectrum s-1 with a mass spectrum
ranging up to m/z = 400. The sample headspace was drawn into
PTR-MS inlet with 40 sccm flow for 1 min. Flushing of a vial with
pure nitrogen during sampling prevented pressure drop inside it.

20 min of sample incubation at 40°C, 1 min of measurement and
waiting for 2 min between each measurement were automated by
an adapted GC autosampler (MPS Multipurpose Sampler,
GERSTEL) coupled to PTR-ToF-MS. The analysis of PTR-
ToF-MS spectra proceeded as described in Farneti et al., 2017b.

2.5 Data and statistical analysis

The list of mass peaks detected with PTR-ToF-MS was reduced
by applying noise and correlation coefficient thresholds. The first
step removed peaks not significantly different from blank samples;
the second excluded peaks with over 99% correlation, corresponding
for the most part to isotopes of monoisotopic mass peaks (Farneti
et al., 2017b).

The internal statistical functions of R.3.4.1. (R Foundation for
Statistical Computing, Vienna, Austria) and the external packages
“mixOmics”, and “ggplot2” were used for the multivariate statistical
methods applied in this study.

3 Results and discussion

3.1 Raspberry VOC modification during fruit
ripening

3.1.1 SPME-GC-MS headspace analysis
The gas chromatographic analysis by SPME/GC-MS assessed

on the headspace of six raspberry cultivars (“Citria,” “Glen
Ericht,” “Himbotop,” “Kweli”, “Paris”, and “Tulameen”)
harvested at different ripening stages (pink, ripe, over ripe)
allowed the detection of 96 VOCs, among which seven were
not identified (reported as “Unknown”; Supplementary Table
S2). Aldehydes and monoterpenes were the most represented
chemical classes, with 16 identified compounds for each chemical
class. The other classes of compounds detected in raspberry fruit
are alcohols (11 compounds), ketones (11), norisoprenoids (9),
esters (8), acids (6), lactones (4), sesquiterpenes (3),
hydrocarbons (2), sulfur (1), and furans (1). Based on VOC
relative concentration, the ratio between VOC classes differed
both regarding fruit ripening and cultivars. Similar to most other
fruit species, the production of volatiles in raspberry is integrated
with the ripening process with volatile profiles changing
dramatically during ripening.

During the complete fruit ripening process, an important VOC
profile portion is covered by monoterpenes, norisoprenoids and
ketones, while for pink fruit around 70% of the VOC profile is
covered by aldehydes and alkenes (Figure 1A). These modifications
are strictly cultivar dependent. Indeed, the relative abundance of
ketones, monoterpenes, norisoprenoids and sesquiterpenes raised to
more than 70% of the overall VOC profile for the cultivars “Citria”,
“Himbotop”, “Kweli” and “Tulameen”, while fruit of “Gleen Ericht”
and “Paris” did not show a so drastic increment (Figure 1A;
Supplementary Figure S1).

Most of the identified VOCs significantly differed both between
cultivars and especially between ripening stages (Supplementary
Table S2; Supplementary Figure S2). Only few compounds
decreased during maturation, like 3-methyl-2-hexene and (E)-2-
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hexenal. Compounds that were unaffected by the ripening stage of
the fruit are (E)-2-hexenal, octanal, 2-heptanol, (Z)-3-hexen-1-ol, 2-
nonanal, 1-heptanol, 2-ethyl-1-hexanol, decanal, benzaldehyde,

undecanal, non-anoic acid. In contrast, the concentration of most
other compounds increased during ripening especially in fully ripe
fruit (OR).

FIGURE 1
Evolution of raspberry VOC profile during fruit ripening assessed by SPME/GC-MS analysis. The stacked area chart reported in the plot (A) illustrates
the total VOC concentration, expressed as μg/L of 2-octanol, for each raspberry cultivar (“Citria”, “Glen Ericht”, “Himbotop”, “Kweli”, “Paris”, and
“Tulameen”) at three ripening stages [pink (P), ripe (R), and overripe (Or)]. Each VOC classes [acids (Ac), aldehydes (Ad), alkenes (Ak), alcohols (Al), esters (E),
furans (F), hydrocarbons (H), ketones (K), lactones (L), monoterpenes (M), norisoprenoids (N), sesquiterpenes (St), sulfurs (Su), unknowns (U)] is
described with a different color. Plot (B) depicts the VOC profile of the raspberry cultivars during fruit ripening over the PCA score plot defined by the first
two principal components. Plot (C) shows the PCA loading plot of the VOCs identified by SPME/GC-MS analysis.

FIGURE 2
Evolution of raspberry VOC profile during fruit ripening assessed by PTR-ToF-MS analysis Plot (A) depicts the VOC profile of each raspberry cultivar
(“Citria”, “Glen Ericht”, “Himbotop”, “Kweli”, “Paris”, and “Tulameen”) at three ripening stages [pink (P), ripe (R), and overripe (Or)] over the PCA score
plotdefined by the first two principal components. Plot (B) shows the PCA loading plot of the VOCs identified by PTR-ToF-MS analysis.
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For a rapid and unsupervised data exploration, SPME/GC-MS
results were analysed with principal component analysis (PCA). The
biplot of the first two PC scores and the loading plot are presented in
Figures 1B, C. These VOC profile evolution during fruit ripening is
evident in the PCA reported in Figure 2B where nearly 60% of the
variability among the fruit VOC profiles (PC1) is strictly associated
with the stage of fruit ripening. The variability expressed by the
second component (PC2: 15%) is more inherent to differences
between accessions. According with these PCA results, the
greatest differences among cultivars are detectable among fruits
at the most advanced stage of ripening (OR). These differences are
mostly related to different concentrations of monoterpenes,
norisoprenoids, ketones, sesquiterpenes, and acetate esters
(Figure 2C).

The results obtained on these six cultivars support previously
published findings on ripening studies performed with different
analytical techniques on other raspberry cultivars (Guichard, 1984;
Larsen et al., 1991). Guichard (et al., 1984) followed the VOC
evolution during ripening in two raspberry cultivars (R. idaeus
cv. “Lloyd George” and “Rose de Côte d’Or”) by analysing the
fruit concentrated extracts by gas chromatography. In both cultivars
all the terpenes and sesquiterpenes significantly increased during
ripening. However, dissimilarly from our results, the ripe and
overripe stages were not significantly different. Several acetate
esters, like isopentyl-, pentenyl-, (Z)-3-hexenyl- and methyl-
acetate, also increased up to 100 fold during ripening.
Norisoprenoids had different trends according to the cultivar.
Dihydro-β-ionone was at its highest at the ripe stage then
decreased. a-Ionone moderately increased during fruit ripening
in both varieties, while ß-ionone reasonably increased only in
fruit of the cultivar “Lloyd George” and not at all in “Rose de
Côte d’Or”. Larsen and co-workers (1991) compared the VOC
evolution during the ripening of 10 cultivars (cv. “Camenzind”,
“Chilcotin”, “Glen Prosen”, “Glen Moy”, “Glen Clova”, “Meeker”,
“Rutrago”, “Skeena”, “Vaten” and “Zenith”). Concentrated extracts
have been analysed using GC with FID detector. They reported
relatively great differences in the concentrations of linalool, geraniol,
benzyl alcohol, acetoin, acetic acid, and hexanoic acid during
ripening. However, only very tiny differences in norisoprenoid
concentrations were observed between the cultivars.

Terpenes, terpenoids and norisoprenoid volatile compounds are
the major compounds that have been detected for the differentiation
of raspberry genotypes (Larsen et al., 1991; Malowicki et al., 2008) as
they are highly related to raspberry odour and flavour. The increase
of monoterpenes (i.e., a-pinene, a-phellanderene, ß-Phellandrene,
o-Cymene, 4-Terpineol) and sesquiterpenes (i.e., trans-
Caryophyllene and a-Humulene) highlighted by our results can
be associated with a different regulation of the isopentenyl
diphosphate (IDP) and its isomer dimethylallyl diphosphate
(DMADP) synthesis (Paterson et al., 2013; Pazouki and
Niinemets, 2016). The formation of both IDP and DMADP is led
by the mevalonate (MVA) and the methylerythritol 4-phosphate
(MEP) pathways that are active, respectively, in the cytosol and in
the plastid of fruit cells. It is widely acknowledged that
monoterpenes are synthesized in the plastids whereas
sesquiterpenes in the cytosol (Rohmer, 2003). The total content
of terpenes and sesquiterpenes among different cultivars, in fact, did

not show any significant correlation in our study (Supplementary
Figure S3).

Most of the norisoprenoids detected in this study increased
during fruit ripening, similarly to monoterpenes. Only
damascenone, detected at very low concentration, slightly
decreased during fruit ripening. Norisoprenoids, recognized to be
important contributors to raspberry fruit aroma, are generated by
oxidative cleavage of the carotenoids (Hampel et al., 2007). In
particular, the two ionone stereoisomers, a-Ionone and ß-ionone,
are responsible for raspberry-violet-rose fragrance notes
(Breitmaier, 2006). These compounds are respectively derived
from the degradation of a and ß-carotene (Paterson et al., 2013).
This could be the reason why their content is not correlated in our
study (Supplementary Figure S3). Unidentified compounds 4 and 5,
based on their fragmentation spectrum (Supplementary Figure S4)
and their high correlation with cycloionone (r2:0.98; Supplementary
Figure S2), can be classified as norisoprenoids with high probability.
Other norisoprenoids highly correlated with cycloionone are ß-
ionone (r2:0.89) and dihydro- ß-ionone (r2:0.85). The high
variability in norisoprenoid content between raspberry cultivars is
in agreement with Malowicki et al. (2008) and Paterson et al. (2013),
both of which reportedlarge variations in a-ionone, ß-ionone in
different raspberry genotypes.

Ketones are other important compounds for characterizing the
aromatic profile of raspberries, particularly 2-nonanone, 2-
heptanone, 2-undecanone, and 5-nonen-2-one are responsible for
a “fruity” and “cheesy” flavour of fruit (http://www.
thegoodscentscompany.com/). The concentration of these
molecules increased during ripening, depending on the
considered cultivar. The cultivars with higher concentrations of
ketones are “Citria”, “Himbotop” and “Kweli”. As also reported
previously by Aprea et al. (2009), it was not possible to quantify one
of the most characteristic raspberry ketone, raspberry ketone (4-(4-
hydroxyphenyl)butan-2-one), since it is not easily detectable
without a chemical extraction because of its low volatility.

3.1.2 Direct injection VOC profiling by PTR-ToF-MS
Fruit samples analysed by PTR-ToF-MS were prepared in the

same way to the ones used for SPME/GC-MS analysis in order to
compare the outcomes of these two methodologies. The whole VOC
spectra, assessed in triplicate for each cultivar, were reduced to
148 VOC mass peaks (Supplementary Table S3; Supplementary
Figure S5), applying noise and correlation coefficient thresholds.
Tentative identification (t.i.) of each mass peak detected by PTR-
ToF-MS relied on an in-house library of chemical standards, on the
list of compounds detected by SPME/GC-MS analysis, and on
compounds reported in the review paper of Aprea et al. (2015).
The content of 146 mass peaks was significant different between
cultivars, while 112 mass peaks significantly differed between
ripening stages (Supplementary Table S3). Among them, only
few mass peaks decrease during fruit ripening. These mass peaks,
likem/z 99.080,m/z 81.069,m/z 57.033, orm/z 43.054, are related to
the fragmentation of several c6 aldehydes. The headspace analyses
carried out with PTR-ToF-MS allow for the valuation of VOCs that
are often omitted from the ordinary gas chromatographic
assessments despite their importance for the characterization of
fruit quality and freshness, such as methanol (m/z 33.033), ethanol
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(m/z 47.049), acetaldehyde (m/z 45.033), or dimethyl sulfide (m/z
63.026).

PCA analysis (Figure 2) was carried out to describe differences
amongst the raspberry VOC profiles considering both cultivars and
ripening stages. 73% of the total variation accounted for the first two
principal components (Figure 2A). Likewise in the SPME/GC-MS
analysis, differences between fruit sampled at different ripening
stages were largely accountable to the first principal component
(PC1: 48.5%), while the second component (PC2: 24.7%)
predominantly defined differences between cultivars. Based on
the correlation circle plot obtained from the PCA analysis, only
few mass peaks have a weak association (lower than 0.6) with the
first two principal components (Figure 2B). These mass peaks are
either present at trace concentration levels or with a non-significant
(p > 0.05) ‘cultivar x stage’ interaction (Supplementary Tablee S3). In
accordance with SPME/GC-MS analysis, the greatest differences
among cultivars are detectable among fruit at the most advanced
stage of ripening (OR). These differences between VOC profiles are
mainly related to the different concentrations of mass peaks related
to monoterpenes (i.e., m/z 137.133), norisoprenoids (i.e., m/z
191.145, m/z 193.16, m/z 195.17), sesquiterpenes (i.e., m/z
205.196), ketones (i.e., m/z 115.112, m/z 141.128, m/z 143.143),
acetate esters (i.e., m/z 75.043, m/z 89.059), aldehydes (i.e., m/z

45.032, m/z 73.064, m/z 85.064, m/z 87.08, m/z 95.085, m/z 99.08),
and alcohols (i.e.,m/z 33.033,m/z 47.048,m/z 83.085). These results
agree with the studies of Aprea et al. (2009); Cappellin et al. (2013),
in which the VOC profile of some raspberry cultivars was evaluated
on intact berries with PTR-MS equipped with a quadrupole mass
detector. The main advantages of using PTR-MS equipped with a
ToF analyzer are the enhanced mass resolution, allowing the
separation of many isobaric compounds and the simultaneous
monitoring of multiple peaks at the same nominal mass, and the
enhanced speed of analysis since the whole VOC spectrum is
acquired in a fraction of a second (Mazzucotelli et al., 2022).

3.2 Complementarity between SPME/GC-
MS and PTR-ToF-MS headspace VOC
assessments

The results obtained with the two analytical techniques were
compared and combined in order to verify both the
complementarity of the two methodologies and the possibility of
using PTR-ToF-MS as a fast, comprehensive and reliable VOC
phenotyping tool for raspberry fruit, despite its known analytical
limitations in separating and identifying isomers. In order to identify

FIGURE 3
Complementarity between SPME/GC-MS and PTR-ToF-MS headspace VOC assessments defined by applying the DIABLOmulti-block discriminant
analysis. Plot (A) depicts a global overview of the correlation structure at the component level. This function allows for the plotting of the components
(component 1 and component 2) across the different data sets for a given dimension. Plot (B) reports the correlation circular plot between VOCs assessed
by SPME-GC-MS and PTR-ToF-MS built based on a similarity matrix. A cut-off level of 0.7 was arbitrarily included to visualize correlation coefficients
above this threshold. Plot (C) reports the “Clustered Image Map” representing the multi-omics molecular signature expression for each sample. Each
cell’s colour is based on the values of the similarity matrix performed on the two VOC datasets.
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a highly correlated VOC signature discriminating known groups of
samples (cultivar and/or ripening stages), we applied a multi-block
discriminant analysis using the DIABLO mixOmics framework
[Data Integration Analysis for Biomarker discovery using a
Latent cOmponents (Singh et al., 2019)]. The core DIABLO
method extends Generalised Canonical Correlation Analysis,
which generalises PLS for multiple matching datasets, and the
sparse sGCCA method (Singh et al., 2019). Like PLS, DIABLO
generates a pair of components, each associated to each VOC data
set. A global overview of the correlation structure at the component
level is represented in Figure 3A by using the plotDiablo function.
This function allows for the plotting of the components across the
different data sets for a given dimension. The results revealed a high
correlation between the data obtained by SPME/GC-MS and PTR-
ToF-MS, resulting in a correlation of 0.95 and 0.89 for the first and
second components, respectively. As reported by previous PCA
analyses (Figures 1, 2), values of the first component are more
associated with differences in VOC profile due to fruit maturity
stages, while in the second component there are more associations
with differences between cultivars.

The high similarity between the two matrices is explainable by
the great correlation between the content of individual molecules
acquired by the two analytical techniques. This result confirms the
possibility of using a direct injection mass spectrometry technique

(PTR-ToF-MS) for raspberry flavour profile analysis as an
alternative to gas chromatographic analysis performed after
headspace accumulation (SPME/GC-MS). All the correlations
between VOCs assessed by SPME-GC-MS and PTR-ToF-MS are
reported in the circos plot (Figure 3B), built based on a similarity
matrix. A cut-off level of 0.7 was arbitrarily included to visualize
correlation coefficients above this threshold in the multi-omics
signature. 60% of the compounds identified and quantified by
SPME/GC-MS (58 out of 96) are highly correlated (cut-off of
0.7) with the masses quantified by PTR-ToF-MS (Figure 3B). In
contrast, only 32% of the masses considered from the PTR-ToF-MS
analyses (48 out of 148) are correlated with the compounds
identified by the gas chromatographic analyses. Of these
100 masses without any significant correlation with the gas
chromatographic matrix, only a few are present at high
concentrations: e.g., m/z 33.033 (t.i. methanol), m/z 34.995 (t.i.
hydrogen sulfide), m/z 45.032 (t.i. acetaldehyde), m/z 47.048 (t.i.
ethanol), m/z 107.085 (t.i. ethylbenezene, xylene). These
compounds, in fact, cannot be properly identified with the setting
of the gas chromatographic methodology applied in this study. Most
of the other unrelated masses can be associated with molecules
present in raspberry fruit at low concentrations and thus below the
LOD of the SPME-GC-MS methodology that we applied. For this
reason, the tentative identification of many masses measured by

FIGURE 4
Correlation analysis ofmonoterpenes and norisoprenoids assessed by using SPME/GC-MS and PTR-ToF-MS. Plot (A) reports the correlation analysis
between the content of the main PTR-ToF-MS mass peak associated with monoterpenes (m/z 137.132), the total amount of monoterpenes (“M total”),
and the content of each monoterpene compounds (From M_1 to M_16) detected with SPME-GC-MS. Plot (B) reports the correlation analysis between
the content of the main PTR-ToF-MS mass peak associated with norisoprenoids (m/z 193.16), the total amount of norisoprenoids associated with
this mass (“N total”), and the content of each norisoprenoid compounds associated with the mass peak m/z 193.16 (N_2, N_7, and N_9) detected with
SPME-GC-MS.
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PTR-ToF-MS is based on information extrapolated from published
studies about raspberry volatilome assessed by applying different
analytical techniques (Aprea et al., 2015).

One of the analytical limitations of direct injection mass
spectrometry techniques, and thus also of PTR-ToF-MS, is the
difficulty in separating and identifying isomers. The VOC profile
of raspberry consists of several isomeric compounds important for
the aromatic characterization of the fruit, especially in the chemical
class of monoterpenes (e.g., a-pinene, a-phellanderene, ß-
phellanderene) or norisoprenoids (e.g., a-ionone, ß-ionone,
cycloionone; ß-damascenone). As for monoterpenes, the content
ofm/z 137.133 mass is highly correlated with the total monoterpene
content (R2 = 0.99; Figure 4A). However, unexpectedly, the
monoterpenes present in raspberry fruit are highly correlated
with each other, except for linalool and geraniol, suggesting a
very similar biosynthetic pathway regulation of monoterpenes
among the raspberry accessions considered in this study. This
high collinearity among monoterpenes reduces the limitation of
PTR-ToF-MS of not being able to separate isomeric molecules, at
least for the raspberry aroma profile. As for the three main
norisoprenoids of raspberry fruit, namely, cycloionone, a-ionone
and ß-ionone, their total content is positively correlated with the
massm/z 193.16 (R2 = 0.84, Figure 4B). Unlike what was found with
monoterpenes, the correlation is less robust mainly due to the lack of
collinearity between the concentrations of a-ionone compared to ß-
ionone and cycloionone. ß and a ionone are derived from the
degradation of a and ß-carotene (Paterson et al., 2013),

respectively. This lack of collinearity between the compounds
could result from different carotenoid composition and content
among raspberry cultivars.

The collinearity and complementarity of the two analytical
techniques used in this study is shown graphically in the
Clustered Image Map in Figure 3C. The Clustered Image Map
represent the multi-omics molecular signature expression for
each sample. Each cell’s colour is based on the values of the
similarity matrix performed on the two VOC datasets.
Dendrograms used along the axes depict how each row (VOCs)/
column (cultivars and ripening stages) clusters based on the
hierarchical clustering method. Blocks of homogeneous colour
depict subsets of features from each dataset which are correlated
and suggests a potential causative relationship.

3.3 Phenotyping of raspberry germplasm
volatilome

In this trial carried out to both test the applicability of PTR-ToF-
MS as a fast phenotyping tool for volatile profiling of raspberry fruit
and to verify the variability present within raspberry germplasm, we
analysed 50 raspberry accessions (Supplementary Table S1), some of
which were collected at different ripening epochs during the season.
Of these 50 accessions, 34 were cultivars and 16 were advanced
selections from the FEM’s breeding program. The whole VOC
spectra, assessed in triplicate for each sample, were reduced to

FIGURE 5
Raspberry germplasm volatilome assessed by PTR-ToF-MS. Hierarchical dendrogram (A) principal component analysis (PCA) (B) and loading plot (C)
of VOC profiles of 50 raspberry accessions measured by PTR-ToF-MS. Each VOC concentration is the average of three biological replicates. Each colour
of the PCA plot depicts one of the five clusters, determined by gap statistics.
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136 VOC mass peaks (Supplementary Table S4), applying noise and
correlation coefficient thresholds. The number of mass peaks
significantly different from the blank sample is higher than in the
previous experiment, most likely because the number of accessions
measured is higher and consequently so is the biological variability.

Considering the elevated genetic variability of the germplasm
collection employed in this study, we aimed to uncover most of
the raspberry natural VOC variability. To avoid any possible
statistical bias in the interpretation of results, all data were
analysed with unsupervised multivariate statistical
methodologies (PCA and hierarchical clustering). Based on the
VOCS profile, the 50 accessions were divided into five
significantly different clusters (gap statistic) Figure 5A. These
five clusters are also distinguishable in the PCA (Figures 5B, C)
performed on the raspberry VOC variability defined by the first
two PCs, and expressing together 55% of the total variability.
According to the correlation loading plot (Figure 5C), the first
principal component (PC1), describing 40.7% of the total
variability, mainly correlates with VOC concentration
magnitude. The second principal component (PC2), instead,
resulted mainly related with the VOC chemical composition,
describing 14.2% of total aromatic variability. Clusters I and II, in
fact, group the 8 accessions with the most intense VOC profile
(cluster I: “Fall Gold”, “Allgold”, “Cascade delight”, “FEM_10”,
“FEM_14”; cluster II: “Autumn Treasure”, “FEM_01”, “FEM_

03”). These two clusters are separated from the remaining
3 clusters (III, IV, V) more by PC1 values. Within cluster V
we detected a group of raspberry accessions (“Kwanza”,
“Valentina”, “FEM_13”, “Willamette”, “FEM_16”, “FEM_04”,
“FEM_05”) that differs from the others by a higher
concentration of masses connected with C6 aldehydes (m/z
81.069, m/z 99.08, m/z 101.095) and C6 alcohols (m/z 83.085).

Considering the whole VOC profile, although useful for getting a
general indication of the possible aromatic fingerprint of a genotype,
can still limit the information actually present in the dataset. In
particular, we can see that a high statistical weight in the analysis of
the PCA of the various accessions is given by molecules present at
very high concentrations, two or three orders of magnitude higher
than the other compounds, that are, however, not closely related to
the characteristic raspberry aromatic profile such as methanol,
ethanol or acetaldehyde. However, these molecules are an
indicator of the degree of anaerobic fermentation and are often
associated with off-flavours, and therefore can be considered as
possible biomarkers related to fruit ripeness and shelf life (Beaulieu
et al., 1997). Instead, to identify possible biomarkers closely related
to the raspberry flavour profile to be considered in qualitative “from
farm to fork” studies in our opinion, it is more explanatory to
consider the concentration of eachmass individually. Figure 6 shows
9 masses (over 136) that can be considered as key elements to
describe the raspberry aroma profile according to the loading plots

FIGURE 6
Bar chart plots of themain raspberry VOCs assessed by PTR-ToF-MS in the raspberry germplasm collection. Each bar illustrates the average value of
three biological replicates. In each graph, accessions were ordered based on the VOC mass peak concentration. The 75th percentile levels are
represented by the dashed line. Bar chart plots of all mass peaks with the corresponding complete names of the accessions are reported in the
Supplementary Figure S6.
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of the principal component analysis and to the results of previously
published articles on raspberry aroma (Aprea et al., 2015; Zhang
et al., 2021). High variability was found for each mass within the
genotype pool analysed in this study.

Non-etheless, considering each VOC independently
(i.e., Supplementary Figure S6) might be useful for the backcross
breeding approach, aimed to introduce, or improve, a distinct
quality trait to an elite breeding line (Hospital, 2005).

For a more practical application of these results, especially for
breeding purposes, the content of each VOC was grouped based on
the distribution quantile (low: 0%–25%; middle-low: 25%–50%;
middle-high: 50%–75%; high: 75%–100%), calculated for each
compound (Supplementary Figure S7). Therefore, all accessions
employed in the study can be sorted and clustered according to
each VOC mass peak content, which can be arbitrarily chosen, as
implemented in the dedicated webpage https://iuliiakhomenko-
fmach.shinyapps.io/QualySort_raspberry/.

Considering that no molecular markers are yet available to
predict the VOC content of raspberry fruit, the application of
reliable phenotyping techniques combined with an array of VOC
biomarkers is still essential to support breeding activity.

4 Conclusion

Results of this study confirmed the complementarity between
chromatographic and direct-injection spectrometric techniques to
study the raspberry aroma composition. The use of PTR-ToF-MS is
suitable to generate reliable raspberry VOC fingerprints mainly due
to a reduced compound fragmentation and accurate quantification.
The high similarity between the VOCmatrices obtained by applying
PTR-ToF-MS and SPME/GC-MS confirmed the possibility of using
a direct injection mass-spectrometry technique (PTR-ToF-MS) as a
reliable VOC phenotyping tool in those investigations that require a
detailed VOC profile characterization of a large number of raspberry
fruit.

A weak aspect of DI-MS methodologies is still represented by
compound identification. PTR-ToF-MS can separate many
raspberry isobaric compounds; however, many isomers are still
not distinguishable without a chromatographic separation.
Nevertheless, unexpectedly, most monoterpene and norisoprenoid
isomers, important for the raspberry aroma characterization, in this
study were highly correlated with each other, suggesting a very
similar and solid biosynthetic pathway regulation of both compound
classes among the raspberry accessions. This high collinearity, in our
opinion, overcomes the main analytic limitation of PTR-ToF-MS of
not being able to separate isomeric molecules.

Bearing in mind that the aim of VOC assessment in quality
related studies is to obtain an objective estimation of the aroma
perceived by the consumer during fruit consumption, we consider
unnecessary the application of overly aggressive chemical extraction
methodologies (commonly used in several published articles on
raspberry VOC profiling). These methodologies are necessary for
the quantification of compounds at extremely low concentrations
that, in case of raspberry fruit, might be under the perception
threshold of the consumer. In addition, results of our study
revealed a higher sensitivity of PTR-ToF-MS with respect to

SPME/GC-MS, allowing the detection of compounds present in
trace amounts.

Pulling together results of the investigations about the role of
ripening and of the genetic variability, the array of mass peaks
suitable to describe most of raspberry VOC variability can be
considerably reduced. This array of VOC biomarkers, in
combination with a reliable phenotyping methodology, can be
applied for a more targeted VOC assessment for both breeding
selection and quality control within the entire production chain. The
uncovering of the genetic variability existing within the investigated
raspberry germplasm collection allowed us to identify the best
performing cultivars, based on VOCs content, to be used as
superior parental lines for future breeding programs focused on
enhanced fruit quality. In our opinion, a better and more detailed
knowledge of the aromatic profile of the fruit is also essential to
define the optimal production and storage strategies specific for each
genotype. In the case of raspberry, it is evident how anticipated fruit
harvesting, which is the common practice to prolong fruit shelf life,
may drastically reduce the organoleptic quality of the fruit. These
findings should push the forthcoming research activity toward the
development of cultivation and storage techniques tailored for
enhanced organoleptic quality of the fruit and not just for the
external visual quality.
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SUPPLEMENTARY FIGURE S1
Stacked area chart of the relative VOC concentration, expressed as %, for
each raspberry cultivar (“Citria,” “Glen Ericht,” “Himbotop,” “Kweli,” “Paris,”
and “Tulameen”) at three ripening stages [pink (P), ripe (R), and overripe
(Or)]. Each VOC classes [acids (Ac), aldehydes (Ad), alkenes (Ak), alcohols (Al),
esters (E), furans (F), hydrocarbons (H), ketones (K), lactones (L),
monoterpenes (M), norisoprenoids (N), sesquiterpenes (St), sulfurs (Su),
unknowns (U)] is described with a different color.

SUPPLEMENTARY FIGURE S2
Bar graph of the content of each VOC classes, expressed as μg/Kg of 2-
octanol, assessed by SPME-GC-MS for each raspberry cultivar (“Citria,”
“Glen Ericht,” “Himbotop,” “Kweli,” “Paris,” and “Tulameen”) at three ripening
stages [pink (P), ripe (R), and overripe (Or)].

SUPPLEMENTARY FIGURE S3
Correlation plot of volatile organic compounds assessed by SPME/GC-MS.

SUPPLEMENTARY FIGURE S4
Mass spectra of unknown compounds detected by SPME/GC-MS.

SUPPLEMENTARY FIGURE S5
Bar graph of the content of each VOC, expressed as ppbv, assessed by PTR-
ToF-MS for each raspberry cultivar (“Citria,” “Glen Ericht,” “Himbotop,”
“Kweli,” “Paris,” and “Tulameen”) at three ripening stages [pink (P), ripe (R),
and overripe (Or)]. Each value is the average plus standard deviation of three
replicates. For each graph lines corresponding to the 25%, 50%, and 75%
percentile were added.

SUPPLEMENTARY FIGURE S6
Bar graph of the content of each VOC, expressed as ppbv, assessed by PTR-
ToF-MS for each raspberry accession of the raspberry germplasm
collection. Each value is the average plus standard deviation of three
replicates.

SUPPLEMENTARY FIGURE S7
Print screens of the Shiny web application (Qualysort 1.2; Farneti et al. 2020)
with an examples of selected VOC traits (same compounds reported in
Figure 6). This Shiny web application (https://iuliiakhomenko-fmach.
shinyapps.io/QualySort/) is interactive and gives the opportunity to choose
an xlsx file with the dataset of phenotypic traits. It is possible to select the
raspberry accessions and the VOCs. Each VOC is classified according to the
quartile it belongs to (0–25%, red colour; 25–50%, orange colour; 50–75%,
light green colour; 75–100% dark green colour) for each type separately.
Button “Calculate” plots the heatmap based on the selected classified data
with the hierarchical clustering (Gower’s distance and clustering
method—average) by samples (rows).
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Volatile organic compounds (VOCs) found in exhaled breath continue to garner interest
as an alternative diagnostic tool in pulmonary infections yet, their clinical integration
remains a challenge with difficulties in translating identified biomarkers. Alterations in
bacterial metabolism secondary to host nutritional availability may explain this but is
often inadequately modelled in vitro. The influence of more clinically relevant nutrients
on VOC production for two common respiratory pathogens was investigated. VOCs
from Staphylococcus aureus (S.aureus) and Pseudomonas aeruginosa (P.aeruginosa)
cultured with and without human alveolar A549 epithelial cells were analyzed using
headspace extraction coupled with gas chromatography-mass spectrometry.
Untargeted and targeted analyses were performed, volatile molecules identified
from published data, and the differences in VOC production evaluated. Principal
component analysis (PCA) could differentiate alveolar cells from either S. aureus or
P. aeruginosa when cultured in isolation based on PC1 (p = 0.0017 and 0.0498,
respectively). However, this separation was lost for S. aureus (p = 0.31) but not for
P. aeruginosa (p=0.028)when theywere culturedwith alveolar cells. S. aureus cultured
with alveolar cells led to higher concentrations of two candidate biomarkers, 3-methyl-
1-butanol (p = 0.001) and 3-methylbutanal (p = 0.002) when compared to S. aureus,
alone. P. aeruginosa metabolism resulted in less generation of pathogen-associated
VOCs when co-cultured with alveolar cells compared to culturing in isolation. VOC
biomarkers previously considered indicative of bacterial presence are influenced by the
local nutritional environment and this should be considered when evaluating their
biochemical origin.

KEYWORDS

VOC, HS-GC/MS, culture media composition, co-culture model, bacterial VOCs

Introduction

Pulmonary infections remain the leading cause of communicable deaths worldwide
(Hubbard, 2006). Continued efforts are being made to modernise clinical microbiology and
improve pathogen detection. However, whilst molecular diagnostics are readily becoming
recognised as the new gold standard in clinical virology replacing the need for viral cultures
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(Hodinka and Kaiser, 2013), the same is not true for clinical
microbiology that remains reliant on culture-based methodologies
(Didelot et al., 2012; Chanderraj and Dickson, 2018). Consequently,
clinical microbiology remains at the mercy of culture dependent
analysis and as such, is limited by a) sample availability and b)
whether the causative organism can be cultured. Furthermore,
conventional cultures are a laborious and inherently biased approach
associated with delays in targeted antibiotic therapy and broad-
spectrum antibiotic over use (Joo et al., 2014; Hilton et al., 2016).
An alternative approach is therefore long overdue.

Exhaled breath metabolomics with its ease of collection and
sputum independence represents a technique that could overcome
these limitations (Filipiak et al., 2015; Hilton et al., 2016; Kos et al.,
2021; Ahmed et al., 2022). In addition, the characterisation and
detection of changes in metabolic activity, that may precede disease
symptoms, could provide invaluable information regarding bacterial
presence, viability and activity (Tounta et al., 2021; Mohd Kamal
et al., 2022). However, as with all omics data, the challenge lies in
clinically integration (van Karnebeek et al., 2018). Presently, there is
a surfeit of discovery exhaled breath studies identifying various
volatile organic compounds (VOCs) as candidate biomarkers for
specific bacteria (Filipiak et al., 2012; 2015; Fenn et al., 2021). Yet,
translational difficulties between the pre-clinically and clinically
identified VOCs (Filipiak et al., 2015; Ahmed et al., 2022)
prevent their necessary validation and subsequent application.

Successful pathogenic bacterial colonisation is dependent on
respiratory tract surface adherence and the procurement of local
nutrients for growth (Siegel and Weiser, 2015). Consequently,
bacteria are capable of adapting their metabolism in response to
an altered nutritional availability at the infection site (Brown et al.,
2008; Siegel and Weiser, 2015). The impact of this metabolic
alteration is frequently over looked in vitro VOC studies and
may partly explain the observed translational difficulties. In the
present study, two common respiratory pathogens,
i.e., Staphylococcus aureus (S.aureus) and Pseudomonas
aeruginosa (P.aeruginosa) were co-cultured with alveolar
epithelial cells, and analyzed using headspace extraction coupled
with gas chromatography-mass spectrometry (HS-GC/MS) to
explore the impact of the nutritional environment on microbial
VOC production. It was hypothesised that bacteria cultured in a
growth substrate more representative of in vivo conditions would a)
yield separate VOCs, and b) the VOCs that have previously been
identified in vivo would yield higher concentrations in the co-
cultured headspace than in regular headspace analysis.

Materials and methods

Cell line and bacterial cultivation

For the cellular component, culture conditions and sample
preparation were as described previously (Fenn et al., 2022). In
brief, immortalised human alveolar basal epithelial (A549) cells
(CCL-185) were cultivated in 75 cm2 cell culture flasks and
incubated at 37 °C in 5% CO2 in Roswell Park Memorial
Institute (RPMI) 1,640 medium (Gibco) supplemented with 10%
foetal bovine serum (FBS), Penicillin-Streptomycin (5 mL
containing 10,000 units per mL Penicillin, 10,000 μg mL−1

Streptomycin, Gibco), L-Glutamine, gentamicin and amphotericin
B. Cells were passaged every three to 4 days once ≈90% confluent
with a similar passage used for each experimental replicate. Prior to
headspace collection and bacterial inoculation, they were detached
from the culture flask using 0.05% Trypsin-EDTA and resuspended
in RPMI-1640 before being seeded (≈1.5 × 105) in 1 mL of
supplemented RPMI-1640 in 20 mL glass headspace vials
(Markes International, Bridgend, Wales) and incubated at 37°C
in 5% CO2 for 22–24 h (Fenn et al., 2022).

The reference strains S. aureus (ATCC 29213), P. aeruginosa
(PAO1) were investigated. For each experimental replicate, strains
were sub-cultured from glycerol frozen stocks onto Columbia blood
agar plates with 5% sheep blood (43,049, bioMérieux, Marcy-l’Étoile,
France) and incubated over night at 37°C to ensure axenic colonies.
Isolated colonies were then inoculated and cultivated in 20 mL brain
heart infusion (BHI, nr: 116, Amsterdam UMC—location AMC,
Netherlands) and grown overnight at 37°C without agitation.

Co-culture infection and treatment
experiments

Overnight liquid cultures for both S. aureus and P. aeruginosa
were firstly standardised to a 0.35 OD620nm using RPMI-1640 media
without antibiotics. A stepwise dilution was then done to achieve a
target of 104 colony forming units per ml (CFU/mL), a frequently
used diagnostic threshold to define a positive culture in vivo
(Baselski and Klutts, 2013).

Once the A549 cells had formed a monolayer with a confluence
≈80–90% within the glass headspace vials, the medium was
removed. The vials were then washed with phosphate buffered
saline to remove any residual traces of RMPI media containing
antibiotics. The cells were then replenished with a) 200 ul antibiotic
free RPMI-1640 media (control), b) 200 ul standardised S. aureus
inoculate or c) 200 ul standardised P. aeruginosa inoculate prepared
in antibiotic free RPMI-1640 media. For the bacteria cultured
without cells, the headspace vials were treated in a similar
fashion prior to inoculation, using RPMI media alone instead of
A549 cells. 200 ul of the standardised inoculate was then added for
each bacterium to the glass headspace vials. All vials were sealed with
crimp-tops with polytetrafluoroethylene (PTFE)-lined septa
(Markes International, Cincinnati, Ohio, United States) and
incubated and agitated for 24 h (temperature 37°C, agitation
200 RPM, HiSorb agitator, Markes International, Cincinnati,
Ohio, United States). The experiment was conducted in triplicate
with three biological replicates per condition per experimental day.
Quantitative culturing was performed to determine the CFU/mL of
the standardised inoculates for each experiment. Replicates were
removed from analysis if target CFU count was not met. Similarly,
sterility assessments for the control group were also performed
following headspace capture to ensure no evidence of infection.

HS-GC/MS

Headspace sampling was performed using HiSorb high-capacity
extraction probes with polydimethylsiloxane sorbent phase (Markes
International, Cincinnati, Ohio, United States) as previous described
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(Fenn et al., 2022). In brief, following inoculation the 20 mL glass
headspace vials were sealed and incubated and agitated for 24 h.
Conditioned sorbent probes were then inserted into the headspace
for 2 h after 22 h of incubation. The probes were removed and stored
in empty stainless steel sorbent tubes (Markes International,
Cincinnati, Ohio, United States) ahead of thermal desorption.
HS-GC/MS analysis was performed on the same day as VOC
capture for all samples as previously described (Fenn et al.,
2022). Compounds of interest were identified using the GC/MS
Solutions (Shimadzu, Den Bosch, the Netherlands) platform
incorporating the National Institute and Technology library as
described previously (Bos et al., 2014) and compared to analytical
standard where possible. Any compounds that had match score <
80 or could not be accurately detected due to co-elution were
excluded from further analysis.

Statistical analysis and data processing

Statistical analysis was performed through the R studio interface
using R (version 3.6.1). Raw HS-GC/MS spectra were processed
using the R “xcms’ package (Scripps Center for Metabolomics, La
Jolla, CA, United States) as previously reported (Bos et al., 2014),
and underwent denoising, peak detection and alignment to create a
three-dimensional data matrix containing sample metadata,
retention time and mass-to-charge ratio (m/z), ahead of
downstream analysis. Failed analyses and technical errors were
excluded by visual inspection of chromatograms after processing
using the “xcms” pipeline. Known analytical artefacts, such as
siloxanes were also removed. The peak table was then normalised
using “limma” package and log scaled to adjust for experimental day
differences and to stabilise variance.

An untargeted and targeted approach were used to explore VOC
differences in bacteria cultured with and without A549 cells. In the
untargeted approach, variation of VOC profiles between bacteria
and A549 cells in isolation was assessed using principal component
analysis (PCA). Loadings from this PCA were projected on samples
from bacteria cultured with cells and differences between group
centroids were assessed using pairwise post hoc Dunn’s analysis
correcting for multiple testing. VOC concentrations were then
compared between bacteria and bacteria cultured with cells using
the Mann-Whitney U test, and evaluated alongside a log2 fold
change. This was visualised using a volcano plot. A log2 fold
change ≥2 and an p-value <0.05 was selected to limit false
discovery and ensure biologically meaningful differential VOC
expression. The analyses were split for each pathogen.

For the targeted approach, species-specific volatile metabolites
were identified from previously conducted systematic literature
reviews (Kos et al., 2021; Kos et al., unpublished data) and
further filtered to include only VOCs that have been reported in
one or more in vivo studies (Supplementary Table S1). Mann-
Whitney U analysis was used to compare VOC concentrations
for each pathogen, cultured with and without A549 cells. For
both the untargeted and targeted approach, a compound was
only considered to result from alterations in bacterial metabolism
due to the presence of alveolar cells when it was a) significantly
different from bacteria alone and b) significantly different from cells
alone.

Results

Following data processing and the removal of known analytical
artefacts, a total of 503 features were detected and used in the
analysis. The impact of alveolar cell presence on microbial derived
volatile metabolites was first evaluated using a PCA model based on
all 503 detected compounds comparing bacteria and cells cultured in
isolation.

Untargeted analysis

PCA demonstrated separation between A549 cells versus S.
aureus or P. aeruginosa in culture based on PC1, which
explained 34.4% of the total variation for S. aureus and 29.2% for
P. aeruginosa (adjusted p-value: 0.0017 and 0.0498, respectively,
Figure 1A, B). However, when S. aureus was cultured with alveolar
cells, the separation from cells in isolation became less clear
(adjusted p-value: 0.31, Figure 1A). This was not true for the P.
aeruginosa co-culture where differentiation was still possible from
cells in isolation (adjusted p-value: 0.028, Figure 1B). The separation
between S. aureus or P. aeruginosa cultured with and without cells
was not possible based on the PC1 (adjusted p-value: 0.2 and 1.0,
respectively).

Differences in individual VOCs identified in the headspace of
these cultures were further explored through the direct comparison
of bacteria cultured with and without alveolar cells, as shown in
Figures 2A, B. From the initial 503 detected metabolites, ten (1.9%)
compounds met the predefined criteria (log2 fold change ≥2 and p <
0.05). Of these, six compounds were found in greater concentration
in the S. aureus co-culture, three compounds were found in greater
concentration in the P. aeruginosa co-culture, and one compound
was found in lower concentrations in both co-cultures (Figures 2A,
B). However, of these nine, six metabolites (2-ethyl-1-hexanol,
dodecane, nonanal, 2,5-Octadiene,3,4,5,6-tetramethyl-, tridecane,
and acetaminde, 2,2-dichloro) showed no significant difference
from alveolar cells alone (Figure 3, B-G, p > 0.05). An increased
concertation was observed in the cellular headspace for one
compound (4-ethyl-octane) compared to the S. aureus co-culture
(Figure 3A, p = 0.01). The two remaining compounds (3-methyl-1-
butanol and 3-methylbutanal), found both in higher concentration
in S. aureus cultured with alveolar cells, were the only metabolites
that met the criteria to be considered a result of altered bacterial
metabolism due to presence of cells (Figures 3H, I). For both
bacteria, cyclohexanone, was found in lower concentration in the
co-culture headspace (Figures 4A, B).

Targeted analysis

Based on previous systematic reviews (Kos et al., 2021; Kos et al.,
unpublished data), 38 compounds reported in exhaled breath were
considered for targeted analysis, including five compounds shared by
both S. aureus and P. aeruginosa, 18 S. aureus specific compounds and
15 P aeruginosa specific compounds (Supplementary Table S2).

Three of the S. aureus related molecules were identified from
headspaces characterised in this work. One molecule, 3-
methylbutanal, was pathogen-specific and two were reported in
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association with both bacteria (3-methyl-1-butanol and dimethyl
disulfide) (Figures 5A–C). Two of three molecules (3-
methylbutanal and 3-methyl-1-butanol) showed statistically
significant increase in concentration when cultured with
alveolar cells compared to alveolar cells in isolation (p =
0.001 and p = 0.001) or bacteria in isolation (p = 0.01 and p <
0.001, respectively), see Figures 5A, B.

Ten of the P. aeruginosa related molecules were identified
from headspaces characterised in this work (Figure 6). However,
none of these metabolites showed a significant difference when
compared to bacteria in isolation and cells alone. In fact, for the

majority of the compounds, no differences in headspace
concentration were observed between the three experimental
groups (Figures 6A–J). One compound, 1-undecene was
detected in greater concentration in the bacterial headspace
compared to alveolar cells (p < 0.001) but its concentration
was not altered by co-culture. Two molecules, 3-methyl-1-
butanol and dimethyl disulfide, were both found in S. aureus
and P. aeruginosa. However, unlike for S. aureus, 3-methyl-1-
butanol was not significantly different between the groups
(Figures 6I, J). Dimethyl disulfide was found in higher
concentrations in the headspace of P. aeruginosa cultured in

FIGURE 1
A principal component analysis (PCA) plot for bacteria co-culturedwith alveolar cells based on the loadings from a PCA between bacteria and cells in
isolation, split per pathogen. Panel (A) - S. aureus and Panel (B) - P. aeruginosa.

FIGURE 2
Volcano plots of all VOCs significantly released by either S. aureus [Panel (A)] or P. aeruginosa [Panel (B)] when cultured with or without alveolar A549
cells. Blue dots represent down-regulated VOCs and red dots represent up-regulated VOCs with a log2 fold change ≥ 2 and p < 0.05 depicted by the
dashed line.
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isolation, compared to alveolar cells alone and to co-culture (p =
0.01 and p = 0.03, respectively, Figure 6J).

Discussion

HS-GC/MS has been used to provide preliminary data on the
influence of clinically relevant nutrients on the production of

specific volatile metabolites by S. aureus and P. aeruginosa, two
common respiratory pathogens. Growth of S. aureus on alveolar
cells rather than culture medium alone resulted in a higher
concentrations of 3-methyl-1-butanol and 3-methylbutanal,
two important candidate breath biomarkers for S. aureus
pneumonia.

Growth of P. aeruginosa on alveolar cells rather than culture
medium alone did not identify statistically significant changes in

FIGURE 3
All identified VOCs with a log2 foldchange ≥ 2 and p value < 0.05 that showed positive association with bacteria cultured with alveolar cells, split per
pathogen. Minimum of six repeats were used to generate the boxplots and p value calculated using Mann-Whitney U test. (Cells = A549 cells, Sa = S.
aureus, Pa = P. aeruginosa).

Frontiers in Molecular Biosciences frontiersin.org05

Fenn et al. 10.3389/fmolb.2023.1160106

105

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2023.1160106


previously identified VOCs that are associated with pathogens.
Together, our results suggest that production of VOCs
considered biomarkers of bacterial presence could be influenced
by the nutrient environment of the bacterium.

An untargeted approach identified differences in VOC production
between bacteria cultured with and without alveolar cells for S. aureus.
Most noticeably two metabolites, 3-methyl-1-butanol and 3-
methylbutanal. These two compounds were also identified as
pathogen associated VOC targets having previously been linked to S.
aureus in numerous studies, both in vitro (Filipiak et al., 2012; Boots
et al., 2014; Chen et al., 2017; Lawal and Muhamadali, 2018; Ahmed
et al., 2022) and in vivo (Filipiak et al., 2015; Ahmed et al., 2022).
However, the differences observed in the current study between S.
aureus co-culture and bacteria alone may provide further insight into
their metabolic origin. Bacterial membrane homeostasis is critical to the
survival of S. aureus in vivo, ensuring optimal compatibility between the
host and pathogen, through the upregulation of fatty acid synthesis
(Zhang and Rock, 2008; Parsons and Rock, 2013; Frank et al., 2021).
Leucine catabolism is a suggested pathway utilised by S. aureus to
achieve this (Frank et al., 2021) and leads to the formation of both 3-
methyl-1-butanol and 3-methylbutanal as found in the current study.
Whilst greater elucidation of the metabolic pathway is required, this
study presents additional evidence to support their potential use as
biomarkers, in particular, 3-methylbutanal that was recently
successfully translated for the identification of S. aureus in
ventilator-associated pneumonia in a large patient cohort (Ahmed
et al., 2022) and warrants further investigation.

Changes to P. aeruginosa metabolic activity secondary to host
interaction are well documented (Palmer et al., 2007; Jurado-Martín
et al., 2021). However, despite this, metabolic changes were not
observed in the current study for P. aeruginosa. One possible
explanation may have been the prolonged incubation period utilised
in the current study and the rapid metabolic rearrangement attributed
to P. aeruginosa virulence (Perinbam et al., 2020). As such, the
metabolites reflecting these dynamic changes may have been missed.

FIGURE 4
All identified VOCs with a log2 foldchange ≥ 2 and p value < 0.05
that showed negative association with bacteria cultured with alveolar
cells, split per pathogen. Minimum of six repeats were used to
generate the boxplots and p value calculated using Mann-
Whitney U test. (Cells = A549 cells, Sa = S. aureus, Pa = P. aeruginosa).

FIGURE 5
All previously identified target VOCs for S. aureus observed in in vitro bacterial co-culture headspace, split per treatment group with minimum of six
repeats used to create boxplots. Differences between experimental groups evaluated using Mann-Whitney U. (Cells = A549 cells, Sa = S. aureus.
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However, a previous study that similarly co-cultured P. aeruginosawith
alveolar cells also showed no differences between bacteria with and
without cells despite a shortened incubation window (Lawal and
Knobel, 2018). Alternatively, it has been postulated that
pseudomonal adaptation and successful colonisation are dependent
on the nutritional components found in sputum (Palmer et al., 2007).
As such, it is more likely that the co-culture model presented here may

have provided inadequate nutritional cues to stimulate meaningful
metabolic re-arrangement despite using nutrients more representative
of in vivo conditions, reinforcing the importance of carefully defining
infection site physiology for future studies and considering not only
anatomical location but also pathogen prerequisites.

In addition to the untargeted analysis, we also performed targeted
analysis in which previously identified microbial VOCS were sought to

FIGURE 6
All previously identified target VOCs for P. aeruginosaobserved in in vitro bacterial co-culture headspace, split per treatment groupwithminimumof
six repeats used to create boxplots. Differences between experimental groups evaluated using Mann-Whitney U test. (Cells = A549 cells, Pa = P.
aeruginosa).
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evaluate if the use of amore physiologically relevant growthmediamight
lead to an increased headspace concentration. Whilst this was true for S.
aureus co-cultures for both 3-methyl-1-butanol and 3-methylbutanal, the
same cannot be said for P. aeruginosa, where differences in VOC release
could not be attributed to changes in its metabolism resulting from co-
culture with alveolar cells. Furthermore, most of the previously identified
P. aeruginosa VOC biomarkers showed no significant difference in
headspace concentration of P. aeruginosa when compared to alveolar
cells alone. This differs from the results found in the systematic review
conducted by Kos et al., 2021, that identified a number of P. aeruginosa
specific VOCs. It is important to recognise however, that in the majority
of these studies bacteria were cultured in isolation and compared to other
bacterial species, not human cells lines. Subsequently, for these studies,
VOC release may have been attributed to the bacteria, whereas the
current study would suggest their origin is not necessarily only
microbially derived and instead could reflect metabolic changes
secondary to their pathogenicity. This is particularly evident in the
case of dimethyl disulfide, which returned to alveolar cell
concentrations when co-cultured with them. As such, the clinical
utility of these biomarkers is questionable and caution is warranted
for their use in vivo. This was not true for all targeted VOCs. 1-Undecene
did show a positive association with P. aeruginosa greater than alveolar
cells in isolation and is in agreement with numerous other studies as
evidenced by Kos et al., 2021. However despite this, its translation from
pre-clinical to clinical studies is yet to be proven (Kos et al., 2021; Ahmed
et al., 2022) and suggests that further work is needed to better determine
its in vivo biosynthesis before its use as VOC biomarker can be
recommended.

A strength of this study lies in the use of a previously developed
headspace model that incorporates both glass culture vessels and a
sealed system to minimize the impact of plastic contaminants and
improve reproducibility (Ahmed et al., 2022; Fenn et al., 2022).
Furthermore, the incorporation of bacterial co-culture demonstrated
the versatility of said model and could provide an easy and reliable
platform to further examine the nutritional effects of more in vivo
relevant growthmedia on VOC production. Additionally, the approach
taken represents the culmination of comprehensive systematic reviews
coupled with a validated in vitro model for a reliable VOC assessment
utilising both targeted and untargeted analyses.

The key limitation of this approach was the use of a two-
dimensional culture model over more physiological relevant three-
dimensional models, such as air liquid interface cultures. This model
was used however to maximise VOC capture and minimise the
influence of VOCs omitted by plastic equipment used in such
models. The low number of bacterial species and use of a single cell
line is another limitation that warrants caution when extrapolating the
current findings to other bacteria or infection sites. Further work
therefore should include additional bacterial species and strains co-
cultured with different cell types to validate the presented findings.
Finally, the respiratory tract is a complex and dynamic community of
microbiota (Dickson et al., 2015). As such, the use of bacterial
monocultures in the current work is another limitation that should
be considered when interpreting our results. The approach taken here
likely underestimates in vivo bacterial pathogenesis and fails to capture
all the interactions between pathogenic bacteria and other respiratory
tract flora that could influence VOC production. However, the
integration of multiple bacterial interactions represents a challenge
when attempting to trace the VOC origin. A challenge faced by in

vivo exhaled breath analyses and the models that investigate them, such
as presented in this study, may be in a better position to address these
challenges. Nevertheless, we recognise this as a limitation and advise
that caution is taken when interpreting the results in a clinical
environment.

Overall, the detection of pathogen associated compounds was poor
for both bacteria. Target compounds were either not detected, or
showed no significant difference between experimental groups.
Similar difficulties have also been observed in other studies
attempting to translate volatile metabolites (Filipiak et al., 2015; Kos
et al., 2021; Ahmed et al., 2022). However, more often than not, the
emphasis is primarily given to the compounds that are found, with the
translational discrepancies either not being discussed or attributed to
differences in sorbent materials, column affinities or analytical
methodologies. Whilst we recognise the validity of such arguments,
they represent an innate problem in exhaled breath research that
continues to complicate its clinical integration. This burgeoning
challenge is further exacerbated by the continued development of
new technologies, lack of consensus on which to use and penchants
for discovery studies. As such, a plethora of VOC biomarkers continue
to be identified that may in fact represent the techniques used rather
than their applicability in the pathologic condition studied. Therefore, if
exhaled breath is to become clinically applicable, the preference for
discovery studies must be disrupted and the emphasis given to a)
translational and development studies b) the development of better
in vitro models c) the use of multiple analytical techniques and d) the
cross validation with external research institutions.

Conclusion

HS-GC/MS analyses showed that nutrientsmore representative of
in vivo environment had an influence on the production of specific
volatile metabolites by S. aureus and P. aeruginosa. The observed
differences for S. aureus identified two important candidate
biomarkers, 3-methyl-1-butanol and 3-methylbutanal. The fewer
discernible differences for P. aeruginosa challenges the validity of
previously suggested breath biomarkers. Together, our results suggest
that VOC biomarkers may indicate the presence of bacterial species,
and are influenced by the local nutritional environment and should be
considered when evaluating their biochemical origin.

Data availability statement

The raw data supporting the conclusion of this article will be
made available by the authors, without undue reservation.

Author contributions

Substantial contributions to the conception or design of the
work: DF, WA, SF, RK, AHM, PB, and LB. The acquisition and
analysis: DF, WA, TL, RK, AT, PB, and LB interpretation of data for
the work: DF, WA, TL, MS, PB, and LB. Drafting the work or
revising it critically for important intellectual content: ALL. Final
approval of the version to be published: ALL. Agreement to be
accountable: ALL.

Frontiers in Molecular Biosciences frontiersin.org08

Fenn et al. 10.3389/fmolb.2023.1160106

108

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2023.1160106


Funding

LB was supported by the Young Investigator Award and
Dirkje Postma Award from the Dutch Lung Foundation
(Longfonds) for sample analysis performed in this study, and
by the Health Holland and the Amsterdam UMC fellowship,
outside of the submitted work. WA and SF are supported by the
NIHR-Manchester Biomedical Research Centre.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fmolb.2023.1160106/
full#supplementary-material

References

Ahmed, W. M., Dominic, F., and Iain, R. W. (2022). Microbial volatiles as diagnostic
biomarkers of bacterial lung infection in mechanically ventilated patients. Clin. Infect.
Dis. 76, 1059–1066. doi:10.1093/cid/ciac859

Baselski, V., Klutts, J. S., and Klutts, J. S. (2013). Quantitative cultures of
bronchoscopically obtained specimens should be performed for optimal
management of ventilator-associated pneumonia. J. Clin. Microbiol. 51 (3), 740–744.
doi:10.1128/JCM.03383-12

Boots, A. W., Smolinska, A., van Berkel, J. J. B. N., Fijten, R. R. R., Stobberingh, E. E.,
Boumans, M. L. L., et al. (2014). Identification of microorganisms based on headspace
analysis of volatile organic compounds by gas chromatography-mass spectrometry.
J. Breath Res. 8 (2), 027106. doi:10.1088/1752-7155/8/2/027106

Bos, L. D. J., Weda, H., Wang, Y., Knobel, H. H., Nijsen, T. M. E., Vink, T. J., et al.
(2014). Exhaled breath metabolomics as a noninvasive diagnostic tool for acute
respiratory distress syndrome. Eur. Respir. J. 44 (1), 188–197. doi:10.1183/09031936.
00005614

Brown, S. A., Palmer, K. L., and Whiteley, M. (2008). Revisiting the host as a growth
medium. Nat. Rev. Microbiol. 6 (9), 657–666. doi:10.1038/nrmicro1955

Chanderraj, R., and Dickson, R. P. (2018). Rethinking pneumonia: A paradigm shift
with practical utility. Proc. Natl. Acad. Sci. U. S. A. 115 (52), 13148–13150. doi:10.1073/
pnas.1819024116

Chen, J., Tang, J., Shi, H., Tang, C., and Zhang, R. (2017). Characteristics of volatile
organic compounds produced from five pathogenic bacteria by headspace-solid phase
micro-extraction/gas chromatography-mass spectrometry. J. Basic Microbiol. 57 (3),
228–237. doi:10.1002/jobm.201600505

Dickson, R. P., Erb-Downward, J. R., and Huffnagle, G. B. (2015). Homeostasis and its
disruption in the lung microbiome. Am. J. Physiology - Lung Cell. Mol. Physiology 309
(10), L1047–L1055. doi:10.1152/ajplung.00279.2015

Didelot, X., Bowden, R., Wilson, D. J., Peto, T. E. A., and Crook, D. W. (2012).
Transforming clinical microbiology with bacterial genome sequencing’, Nature Reviews
Genetics. Nat. Publ. Group 13 (9), 601–612. doi:10.1038/nrg3226

Fenn, D., Mahmoud, A. A., and Paul, B. (2021). Comparison of microbial
composition of cough swabs and sputum for pathogen detection in patients with
cystic fibrosis. J. Cyst. Fibros., 52–60. Elsevier B.V. doi:10.1016/j.jcf.2021.08.031

Fenn, D., Thijs, A., Laura, A., Marry, R., Nanon, F. L., Anita, M. T., et al. (2022).
Validation of volatile metabolites of pulmonary oxidative injury: A bench to bedside
study. ERJ Open Res. 9, 00427–02022. doi:10.1183/23120541.00427-2022

Filipiak, W., et al. (2015). Breath analysis for in vivo detection of pathogens related to
ventilator-associated pneumonia in intensive care patients: A prospective pilot study.
J. Breath Res. 9 (1), 16004. IOP Publishing. doi:10.1088/1752-7155/9/1/016004

Filipiak, W., Sponring, A., Baur, M. M., Filipiak, A., Ager, C., Wiesenhofer, H., et al.
(2012). Molecular analysis of volatile metabolites released specifically by staphylococcus
aureus and pseudomonas aeruginosa. BMC Microbiol. 12, 113. doi:10.1186/1471-2180-
12-113

Frank, M. W., Whaley, S. G., and Rock, C. O. (2021). Branched-chain amino acid
metabolism controls membrane phospholipid structure in Staphylococcus aureus.
J. Biol. Chem. 297 (5), 101255. Elsevier B.V. doi:10.1016/j.jbc.2021.101255

Hilton, S. K., Castro-Nallar, E., Perez-Losada, M., Toma, I., McCaffrey, T. A.,
Hoffman, E. P., et al. (2016). Metataxonomic and metagenomic approaches vs.

culture-based techniques for clinical pathology. Front. Microbiol. 7 (APR), 484–512.
doi:10.3389/fmicb.2016.00484

Hodinka, R. L., and Kaiser, L. (2013). Is the era of viral culture over in the clinical
microbiology laboratory? J. Clin. Microbiol. 51 (1), 2–4. doi:10.1128/JCM.02593-12

Hubbard, R. (2006). The burden of lung disease. Thorax 61 (7), 557–558. doi:10.1136/
thx.2006.066050

Joo, Y. M., Chae, M. K., Hwang, S. Y., Jin, S. C., Lee, T. R., Cha, W. C., et al. (2014).
Impact of timely antibiotic administration on outcomes in patients with severe sepsis
and septic shock in the emergency department. Clin. Exp. Emerg. Med. 1 (1), 35–40.
doi:10.15441/ceem.14.012

Jurado-Martín, I., Sainz-Mejías, M., and McClean, S. (2021). Pseudomonas
aeruginosa: An audacious pathogen with an adaptable arsenal of virulence factors.
Int. J. Mol. Sci. 22 (6), 3128–3137. doi:10.3390/ijms22063128

Kos, R., et al. (2021). Targeted exhaled breath analysis for detection of Pseudomonas
aeruginosa in cystic fibrosis patients. J. Cyst. Fibros. Elsevier B.V. doi:10.1016/j.jcf.2021.
04.015

Lawal, O., Knobel, H., Weda, H., Bos, L. D., Nijsen, T. M. E., Goodacre, R., et al.
(2018). Volatile organic compound signature from co-culture of lung epithelial cell
line with: Pseudomonas aeruginosa. Analyst 143 (13), 3148–3155. doi:10.1039/
c8an00759d

Lawal, O., Muhamadali, H., et al. (2018). Headspace volatile organic compounds from
bacteria implicated in ventilator-associated pneumonia analysed by TD-GC/MS.
J. Breath Res. 12 (2). IOP Publishing. doi:10.1088/1752-7163/aa8efc

Mohd Kamal, K., Mahamad Maifiah, M. H., Abdul Rahim, N., Hashim, Y. Z. H.
Y., Abdullah Sani, M. S., and Azizan, K. A. (2022) ‘Bacterial metabolomics: Sample
preparation methods’, Biochem. Res. Int. 2022, 9186536. doi:10.1155/2022/
9186536

Palmer, K. L., Aye, L. M., and Whiteley, M. (2007). Nutritional cues control
Pseudomonas aeruginosa multicellular behavior in cystic fibrosis sputum.
J. Bacteriol. 189 (22), 8079–8087. doi:10.1128/JB.01138-07

Parsons, J. B., and Rock, C. O. (2013). Bacterial lipids: Metabolism and membrane
homeostasis. Prog. Lipid Res. 52 (3), 249–276. Elsevier Ltd. doi:10.1016/j.plipres.2013.
02.002

Perinbam, K., et al. (2020). A shift in central metabolism accompanies virulence
activation in Pseudomonas aeruginosa’, mBio. J. Engel 11 (2), 1–16. doi:10.1128/mBio.
02730-18

Siegel, S. J., and Weiser, J. N. (2015). Mechanisms of bacterial colonization of the
respiratory tract. Annu. Rev. Microbiol. 69 (1), 425–444. doi:10.1146/annurev-micro-
091014-104209

Tounta, V., Liu, Y., Cheyne, A., and Larrouy-Maumus, G. (2021). Metabolomics in
infectious diseases and drug discovery’,Molecular Omics. R. Soc. Chem. 17 (3), 376–393.
doi:10.1039/d1mo00017a

van Karnebeek, C. D. M., Wortmann, S. B., Tarailo-Graovac, M., Langeveld, M.,
Ferreira, C. R., van de Kamp, J. M., et al. (2018). The role of the clinician in the multi-
omics era: Are you ready? J. Inherit. Metabolic Dis. 41 (3), 571–582. doi:10.1007/s10545-
017-0128-1

Zhang, Y. M., and Rock, C. O. (2008). Membrane lipid homeostasis in bacteria. Nat.
Rev. Microbiol. 6 (3), 222–233. doi:10.1038/nrmicro1839

Frontiers in Molecular Biosciences frontiersin.org09

Fenn et al. 10.3389/fmolb.2023.1160106

109

https://www.frontiersin.org/articles/10.3389/fmolb.2023.1160106/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fmolb.2023.1160106/full#supplementary-material
https://doi.org/10.1093/cid/ciac859
https://doi.org/10.1128/JCM.03383-12
https://doi.org/10.1088/1752-7155/8/2/027106
https://doi.org/10.1183/09031936.00005614
https://doi.org/10.1183/09031936.00005614
https://doi.org/10.1038/nrmicro1955
https://doi.org/10.1073/pnas.1819024116
https://doi.org/10.1073/pnas.1819024116
https://doi.org/10.1002/jobm.201600505
https://doi.org/10.1152/ajplung.00279.2015
https://doi.org/10.1038/nrg3226
https://doi.org/10.1016/j.jcf.2021.08.031
https://doi.org/10.1183/23120541.00427-2022
https://doi.org/10.1088/1752-7155/9/1/016004
https://doi.org/10.1186/1471-2180-12-113
https://doi.org/10.1186/1471-2180-12-113
https://doi.org/10.1016/j.jbc.2021.101255
https://doi.org/10.3389/fmicb.2016.00484
https://doi.org/10.1128/JCM.02593-12
https://doi.org/10.1136/thx.2006.066050
https://doi.org/10.1136/thx.2006.066050
https://doi.org/10.15441/ceem.14.012
https://doi.org/10.3390/ijms22063128
https://doi.org/10.1016/j.jcf.2021.04.015
https://doi.org/10.1016/j.jcf.2021.04.015
https://doi.org/10.1039/c8an00759d
https://doi.org/10.1039/c8an00759d
https://doi.org/10.1088/1752-7163/aa8efc
https://doi.org/10.1155/2022/9186536
https://doi.org/10.1155/2022/9186536
https://doi.org/10.1128/JB.01138-07
https://doi.org/10.1016/j.plipres.2013.02.002
https://doi.org/10.1016/j.plipres.2013.02.002
https://doi.org/10.1128/mBio.02730-18
https://doi.org/10.1128/mBio.02730-18
https://doi.org/10.1146/annurev-micro-091014-104209
https://doi.org/10.1146/annurev-micro-091014-104209
https://doi.org/10.1039/d1mo00017a
https://doi.org/10.1007/s10545-017-0128-1
https://doi.org/10.1007/s10545-017-0128-1
https://doi.org/10.1038/nrmicro1839
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2023.1160106


GC/MS analysis of hypoxic volatile
metabolic markers in the
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Hypoxia in disease describes persistent low oxygen conditions, observed in a
range of pathologies, including cancer. In the discovery of biomarkers in biological
models, pathophysiological traits present a source of translatable metabolic
products for the diagnosis of disease in humans. Part of the metabolome is
represented by its volatile, gaseous fraction; the volatilome. Human volatile
profiles, such as those found in breath, are able to diagnose disease, however
accurate volatile biomarker discovery is required to target reliable biomarkers to
develop new diagnostic tools. Using custom chambers to control oxygen levels
and facilitate headspace sampling, the MDA-MB-231 breast cancer cell line was
exposed to hypoxia (1% oxygen) for 24 h. The maintenance of hypoxic conditions
in the system was successfully validated over this time period. Targeted and
untargeted gas chromatography mass spectrometry approaches revealed four
significantly altered volatile organic compounds when compared to control cells.
Three compounds were actively consumed by cells: methyl chloride, acetone and
n-Hexane. Cells under hypoxia also produced significant amounts of styrene. This
work presents a novel methodology for identification of volatile metabolisms
under controlled gas conditions with novel observations of volatile metabolisms
by breast cancer cells.

KEYWORDS

hypoxia, VOC, cancer, breast cancer, volatile flux, hypoxic, GC/MS, metabolism

1 Introduction

The human “volatilome” describes the production and metabolism by the human body
of small, carbon-containing compounds called volatile organic compounds (VOCs) which
are gaseous at room temperature and pressure (Amann et al., 2014; Drabinska et al., 2021).
VOCs can be found in abundance in the breath and are reflective of processes within the
body (Drabinska et al., 2021; Issitt et al., 2022a). Although fluctuations of VOCs vary
between individuals and throughout the day, disease specific “volatile fluxes,” or biomarkers,
could provide opportunities to non-invasively diagnose disease, monitor treatment and
measure bodily functions (Issitt et al., 2022a; Issitt et al., 2022b).

The clinical potential of VOCs in diagnosis has been shown by a number of published
breath studies (Issitt et al., 2022a). Diagnostic accuracy using breath VOC biomarkers has
been achieved for a wide range of conditions, including various types of cancer (Issitt et al.,
2022a; Jia et al., 2019), liver disease (De Vincentis et al., 2019), diabetes (Das et al., 2016),
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transplant rejection (Phillips et al., 2004), infections of the lung
(Issitt et al., 2022a; Beccaria et al., 2018), liver function (using
labelled VOCs) (Sangnes et al., 2019) and other conditions (Issitt
et al., 2022a). Each study may independently achieve high sensitivity
of disease detection (i.e., >90%) but the reported compounds often
do not translate between studies, slowing clinical application
through conflicting and confounding results (Issitt et al., 2022a).
However, our recent meta-analysis has shown underlying trends in
chemical functional groups from published studies supporting
potential clinical application (Issitt et al., 2022a). It is clear that
in order to identify effective biomarkers more targeted
methodological approaches are required to overcome variability
(Issitt et al., 2022a; Hanna et al., 2019).

VOC profiles from cell types associated with pathological
conditions have been identified, for example, differences between
breast (Issitt et al., 2022b; Lavra et al., 2015), liver (Mochalski et al.,
2013) and mesothelioma (Little et al., 2020) cancer cell lines.
However, cellular VOC studies tend to be non-stressed cells in
high (21%, atmospheric) oxygen conditions, which is not consistent
with many disease or normal physiological states. To accelerate
biomarker discovery, we propose models of pathophysiological
stress. For example; stress from reactive oxygen species (ROS)
induces alkane release in breast cancer cells (Liu et al., 2019),
VOCs which have been observed in the breath of ROS associated
conditions (Issitt et al., 2022a).

Hypoxia is a persistent reduction in oxygen from normal
physiological conditions (normoxia). It is characteristic of a range of
diseases, including, pulmonary hypertension (Young et al., 2019) and
cancer (SamantaandSemenza, 2018). It induces a range of metabolic
alterations, including reduction in adenosine triphosphate generation
and inhibition of fatty-acid desaturation through hypoxia inducible
factor activity (WheatonandChandel, 2011; SamantaandSemenza, 2018;
Young et al., 2019), which can produce alterations in a range of
associated breath volatiles (Harshman et al., 2015; Mazzatenta et al.,
2021). Despite its relevance to pathophysiology, hypoxic volatiles have
yet to be investigated in vitro. This is partially due to the challenges
associated with development of a headspace sampling tool which can
maintain an hypoxic environment. While volatile compounds in the
available, limited, published studies associated with hypoxia show
variation in breath (Harshman et al., 2015; Mazzatenta et al., 2021),
translatable studies are required for target biomarker discovery.

Biomarker discovery in appropriate biological models can
accelerate clinical delivery by identifying and allowing targeted
analytical approaches, separating methodical challenges from
pathology, and improving sensitivity. Multi-timepoint sampling
and approaches considering local environment will also accelerate
clinical application of breath diagnostics and consideration of
methodological challenges around clinical application should
drive experimental design. We have previously demonstrated a
platform and method for both identification of VOC
metabolisms in cellular headspace over time and VOC changes
in response to cellular stress (Issitt et al., 2022b). However, models of
pathological conditions require further investigation to ensure
biomarker discovery is translatable from cell to human.

One of the primary sources of variance within the published
literature revolves around methodology. Methods of breath VOC
analysis can be split into 3 main sections where variability between
studies can arise: initial collection, sample transfer and analytical

approach. There are many effective breath collection methods for
analysis of VOCs, such as simply breathing into a specialised bag or
use of specialised technologies (Hanna et al., 2019; Di Gilio et al., 2020).
Many studies use single time point collection (Issitt et al., 2022a),
considering presence verses absence, which canmiss valuable metabolic
information, particularly volatile uptake, driven via chemical reactions
reflective of cellular state or through cellular metabolism. Furthermore,
variability in local environment influences and reduces reported
outcome precision (Issitt et al., 2022a; Di Gilio et al., 2020; Doran
et al., 2017) and approaches should consider sampling the environment
(i.e., ambient air) along with breath (Hanna et al., 2019). A sample, once
collected, is then transferred, either directly or indirectly (such as
through chemical traps) to an analytical instrument. There are two
main analytical approaches for discovery and accurate detection of
VOCs: targeted and untargeted. Utargeted approaches, investigating the
breath of patients, are capable of identifying relatively concentrated
material (ppbv) whereas targeted approaches generally are capable of
quantifying lower concentrations (pptv). Untargeted approaches
therefore may miss changes in important, low-concentration
compounds, while targeted approaches can only look only for a
limited number of known compounds of interest, reducing
discovery potential.

Here, hypoxic stress is applied to a well-studied breast cancer cell
line with the intent of identifying process and disease-linked
physiological volatile metabolisms specifically linked to low
oxygen conditions, so that more accurate diagnostic tools can be
developed and applied in the clinic. Both targeted and untargeted
analyses are applied after sampling with a static headspace method
that accounts for the ambient air background and allows
quantification of cellular uptake of VOCs. It was predicted that
upon successful maintenance of a hypoxic environment, cellular
VOC profiles from hypoxic versus hyperoxic cellular models would
alter significantly.

2 Methods

Methods for culture of MDA-MB-231 cells, headspace sampling
from custom chambers and GC/MS analysis have been previously
described in detail (Issitt et al., 2022b).

2.1 Cell culture

MDA-MB-231 breast cancer cells (a gift from Professor Mustafa
Djamgoz, Imperial College London) were grown in Dulbecco’s
Modified Eagle Medium (DMEM, Thermo Scientific, Waltham,
MA, United States), 25 mM glucose, supplemented with
L-glutamine (4 mM) and 5% foetal bovine serum (Thermo
Scientific, Waltham, MA, United States). Cell culture medium
was supplemented with 0.1 mM NaI and 1 mM NaBr (to model
physiological availability of iodine and bromide). All cells were
grown at 37°C with 5% CO2.

Prior to volatile collection, cells were trypsinised, and
500,000 cells were seeded into 8 mL complete media in 10 cm
polystyrene cell culture dishes. Cells were then allowed to attach
for 3-4 h, washed with warm PBS and 6 mL treatment media was
applied. Volatile headspace sampling was performed 24 h later.
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2.2 Induction of the hypoxic environment
and VOC headspace sampling

Cells were placed in static headspace chambers as previously
described (Issitt et al., 2022b) with new, clean silicon gaskets. Low
oxygen, hypoxic gas (1% O2, 5% CO2, and 94% N2; purchased from
BOC Specialty Gases, Woking, United Kingdom) was flushed
through the chambers at a rate of 4 L/min for 10 min (chamber
volume = 25 L). Chambers were then closed and placed at 37°C for
2 h to allow residual oxygen in the media to equilibrate with
chamber headspace. Chambers were then flushed again at a rate
of 4 L/min for 10 min, sealed and returned to 37°C.

After a further 24 h, chambers were flushed again at a rate of 4 L/
min for 10 min 15 mL of gas standards (MeCl, 520 ppb (parts per
billion); MeBr, 22 ppb; MeI, 26 ppb; DMS, 110 ppb; CFC-11,
400 ppb and CHCl3, 110 ppb; BOC Specialty Gases, Woking,
UK) were then injected into the chambers through a butyl seal
and time zero sample taken. Injected compounds are either known
metabolites for cancer cells, or internal standards (CFC-11) for the
analysis and quantification of metabolism. Final chamber
concentrations were similar to environmental concentrations, e.g.,
MeCl, 1.2 ppb and MeBr 0.05 ppb, particularly more polluted urban
spaces (Redeker et al., 2007). Injected gases are the same as those
used for calibration. Compounds not injected but detected at first
time point, due to residual presence from laboratory air, (including
isoprene, acetone, 2-MP, 3-MP and n-hexane) were quantified. Two
time zero (T0) samples were taken using an evacuated 500 mL
electropolished stainless steel canister (LabCommerce, San Jose,
United States) through fine mesh Ascarite® traps (Archbold
et al., 2005), after which the chamber was resealed and left on a
platform rocker on its slowest setting for 120 min, at which point
two further air samples (T1) were collected. Duplicate samples were
analysed with targeted and untargeted MS approaches.

Cells were removed from the chamber, washed with PBS twice
and lysed in 500 µL RIPA buffer (NaCl, 5 M; 5 mL Tris-HCl, 1 M,
pH 8.0; 1 mL Nonidet P-40; 5 mL sodium deoxycholate, 10%; 1 mL
SDS, 10%) with protease inhibitor (Sigma-Aldrich, Roche;
Mannheim, Germany). Protein concentration of lysates were
determined using BCA assay (Thermo Scientific, Waltham, MA,
United States).

Media alone was taken through exactly the same process as cells.
This has been visualised in Supplementary Figure S1. Only acetone
was shown to have any significant variability between conditions.
These media blank outcome averages were subtracted from
respective cellular samples prior to protein normalisation.
Comparative controls include lab air blanks and those data
available from the dataset and collection method published
previously which created and quantified metabolic fluxes of
volatile compounds from MDA-MB-231 under hyperoxic (lab
air) conditions (Issitt et al., 2022b).

2.3 Sample collection and GC/HID analysis

Ten mL headspace samples were taken from chambers using an
airtight syringe (10 mL, SGE, Trajan, Milton Keynes, UK). 1% O2

(BOC Specialty Gases, Woking, UK) was flushed through sealed
chambers containing 6 mL DMEM as described for cell treatments.

Samples were taken at 5 and then 10 min post initial flush. In order
to replicate cell treatments, the chamber was then closed for 2 h,
then flushed for 10 min, after which an air sample was taken. A
further 20 min flush with 1% O2 air was employed and the chamber
was closed, placed at 37°C, and left to incubate for 24 h, at which
time the final sample was taken.

Air samples were immediately analyzed with a SRI 8610C Gas
Chromatograph connected to a SRI 8690-0030 Helium Ionisation
Detector (GC/HID (SRI Instruments Europe GmbH, Torrance, CA,
United States). Peak separation was achieved using a Restek©
PORAPAK Q porous polymer column (1.83 m × 2.1 mm ID ×
3.175 mm OD), a solenoid switching valve (for backflushing CO2)
and a Restek© MOLECULAR 5 A sieve column (0.91 m × 2.1 mm
ID × 3.175 OD) (Restek©, Bellefonte, PN, United States) connected
in series. Helium was used as a carrier gas at 18 psi, and the flow rate
and column temperatures (50°C) were maintained during
separation. The valve was switched at 1.5 min to backflush the
PORAPAK Q column. Measurement of compounds eluted from
the MOLECULAR 5 A sieve was achieved by using an SRI 8690-
0030 Helium Ionisation Detector. SRI PeakSimple (version 453)
software was used to generate a digital chromatograph for each
sample and O2 was quantified by comparing the peak area to known
standards.

The standard curve was developed by flushing 120 mL
Wheaton vials with butyl stoppers with pure nitrogen (BOC
Gases, Woking, UK) for 30 min. Ten mL of nitrogen only was
injected to establish a background control. Because atmospheric
air at sea level contains 21% O2, lab air was injected at 1%, 2%,
10%, 20%, and 30% within the N2-filled vial to generate a
standard curve consisting of 0%, 0.21%, 0.42%, 2.1%, 4.2%,
and 6.3% and 21% (lab air only). Peak areas were integrated
using Graphpad (Prism), and Padé (1, 1). Linear regression
demonstrated an R squared value of 0.96.

2.4 GC/MS analysis of VOCs

Collected canister samples were transferred to a liquid nitrogen
trap through pressure differential. Pressure change between
beginning and end of “injection” was measured, allowing
calculation of the moles of canister collected air injected Sample
in the trap was then transferred, via heated helium flow, to an
Aglient/HP 5972 MSD system (Santa Clara, CA, United States)
equipped with a PoraBond Q column (25 m × 0.32 mm × 0.5 μm
film thickness) (Restek©, Bellefonte, PN, United States). Targeted
samples were analyzed in selected ion monitoring (SIM) mode, and
untargeted samples in full scan (SCAN)mode with themass range of
45–200 amu. The mass spectrometer was operated in electron
impact ionization mode with 70 eV ionization energy, and
transfer line, ion source, and quadrupole temperatures of 250,
280, and 280, respectively. For details on SIM and significantly
altered, identified SCAN compounds, see Table 1. All samples were
analysed within 6 days of collection. The oven program for both SIM
and SCAN analyses were identical and are as follows: 35°C for 2 min,
10°C/min to 155°C, 1°C/min to 131°C, and 25°C/min to 250 with a
5 min 30 s hold.

Calibration was performed using standard gases (BOC
Specialty Gases, Woking, UK). Linear regression of calibration
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curves confirmed strong, positive linear relationships between
observed compound peak areas and moles of gas injected for each
VOC (r2 > 0.9 in all cases). For compounds not purchased in
gaseous state (BOC Specialty gases, as above), 1-2 mL of
compound in liquid phase was injected neat into butyl sealed
Wheaton-style glass vials (100 mL) and allowed to equilibrate for
1 h. One mL of headspace air was then removed from neat vial
headspace using a gas tight syringe (Trajan, SGE) and injected
into the headspace of a second 100 mL butyl sealed Wheaton-
style glass vial. This was then repeated, and 1 mL of the 2nd serial
dilution vial was injected into the GC/MS system with 29 mL of
lab air to give ppb concentrations. This was performed for
methanethiol (MeSH, SPEXorganics, St Neots, UK), isoprene
(Alfa Aesar, Ward Hill, MA, United States), acetone (Sigma-
Aldrich, Burlington, MA, United States), 2- & 3-methyl pentane
and n-hexane (Thermo Scientific, Waltham, MA, United States).
Reported compounds detected by the GC/MS were confirmed by
matching retention times and mass–charge (m/z) ratios with
known standards.

Equation 1:

VOC[ ] ppt( ) � CFx 1012 xPeak area xCalibration slope
n

(1)

Equation 1 outlines the approach to calculating VOC
concentrations in parts-per-trillion-by-volume, or pptv. Here
Peak area refers to the combined peak areas for the mass-charge
ratios identified in Table 1. Multiplying Peak areas by their
associated calibration curves (Calibration Slope) generate molar
amounts which, when divided by the number of moles of
headspace air injected (n), generate a unitless (moles
compound/moles of air) ratio. Pptv concentrations are then
obtained by multiplying this unitless ratio by 1 × 1012. For

clarity, part-per-billion-by-volume values would be obtained
by multiplying the unitless ratios by 1 × 109, or one billion.
Sample VOC concentrations were then normalised to CFC-11
concentrations [240 parts-per-trillion-by-volume (pptv)]
through multiplication by a “correction factor,” or CF, Eq. 1).
CFC-11 was used as an internal standard, since atmospheric
concentrations of CFC-11 are globally consistent and stable
(Redeker et al., 2007). Quantification of Styrene was done as
above but normalisation to CFC-11 was not possible under
flushed, hypoxic conditions.

To account for differences in rates of cellular proliferation over
24 h, cellular results from GC/MS analyses were normalised to
protein content at time of sampling using a BCA assay. When
comparing media blanks to cellular assays results are reported in
grams compound per Petri dish per hour.

Data has been made publicly available at the National Institute
of Health Metabolomics workbench (project PR001638, DOI: http://
dx.doi.org/10.21228/M8ZX4D) (Sud et al., 2016).

2.5 Hydrogen peroxide (amplex red) assay

Experiments were performed in phenol red free DMEM.
DMEM containing 50 μM Amplex Red reagent (Thermo
Scientific, Waltham, MA, United States) and 0.1 U/mL
horse radish peroxidase (HRP, Thermo Scientific, Waltham,
MA, United States) was added to cells in 12 well dishes
(500 μL per well) for 15 min following 24 h in hypoxic or
control conditions. Fluorescence at 590 nm was measured
with a plate reader (Clariostar, BMG, Ortenberg,
Germany) and compared against a H2O2 standard curve for
quantification.

TABLE 1 Retention times, mass charge ratios and GC/MS modes used to characterise individual VOCs. SIM and SCAN refer to selected ion monitoring and full mass
scanning (targeted and untargeted) GC/MS modes.

Compound Retention time (min) Mass charge ratio (m/z)

SIM

Methy l chloride (MeCI) 7.6–7.9 50,52

Methy l bromide (MeBr) 10.3–10.4 94,96

Trichloroflouromethane (CFC-11) 15.0–15.3 101,103

Methy l iodide (Me l) 15.4–15.7 127,142

Dimethyl Sulfide (DMS) 16.2–16.5 62

acetone 18.2–18.4 58

lsoprene 18.4–18.6 Total ion count

Trichloromethane (CHCl3) 25.4–25.7 83,85

2-Methyl pentane (2-MP) 27.6–27.8 43,57

3-Methy lpentane (3-MP) 28.0–28.2 43,57

n-Hexane (n-Hex) 28.5–28.7 43,57

SCAN

Styrene 33.3–33.5 45–200 amu
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2.6 Statistics

Figures were assembled and statically analysed in Graphpad
Prism version 9.3. VOCs were separated based on their flux amount
to allow visualisation on the y-axis and were analysed this way. Two-
way ANOVA with Bonferroni post-hoc analysis was performed for
graphs with multiple factors was performed (Figures 2A, B;
Supplementary Figures S1A, B). One-way ANOVA with Tukey
post-hoc analysis was performed for acetone analysis (Figure 2B;
Supplementary Figure S1B). Student’s t-test was performed for
Styrene analysis against media only as none was detected for
control cells, and these were presented on the graph for visual
information. Amplex red data was analysed using Student’s t-test.

3 Results

3.1 Chambers maintain low oxygen
conditions over 24h

To confirm chambers maintained hypoxic conditions over 24 h
we sampled gas from chambers throughout our method, measuring
O2. When flushed with reduced oxygen air (1%) for 5 min, oxygen
levels rapidly fell from atmospheric 21% to between 6% and 2%
(Figure 1). After 10 min of reduced oxygen flushing, each chamber
held less than 5%. Chambers left for 2 h (120 min) to allow media to
equilibrate and flushed for 10 min revealed average O2 levels of
1.15% ± 1.03 (Ch 1), 1.34% ± 0.93 (Ch 2) and 1.98% ± 4.07 (Ch 3)
respectively. Sealed chambers maintained low oxygen levels over
24 h with average O2 levels of 1.31% ± 1.31 (Ch 1), 1.76% ± 1.02 (Ch
2) and 1.96% ± 0.28 (Ch 3) respectively.

3.2 Hypoxia induces differing volatile fluxes
in breast cancer cell line MDA-MB-231

Persistent hypoxia over 24 h induced significant changes in flux
for 3 targeted compounds (SIM analysis); MeCl, acetone and

n-hexane (but not hexane isomers; 2-methyl pentane, or 3-
methyl pentane), when compared to control (Figures 2A–C).
MeCl was taken up by cells under hypoxia and released by cells
under hyperoxic cell culture conditions. n-Hexane was produced by
hyperoxic control cells while those under hypoxia consumed
hexane.

3.3 Production of styrene under hypoxic
conditions

Cells maintained under hypoxic conditions significantly
produced styrene as determined by untargeted GG/MS
approaches (Figure 3A). Styrene was not found in the headspace
of control cells (ND, or not detected) and styrene fluxes in media
blanks were not significantly different from zero, while fluxes from
hypoxic cells were significantly different from media blanks. Styrene
was identified through spectral matching, followed by known
standard injections. No other compounds were found to be
significantly altered using the untargeted SCAN method.

3.4 Reactive oxygen species are reduced
under hypoxia

Changes in volatiles, including alkanes, have been linked to
increases in ROS (Calenic et al., 2015). The observed uptake of
n-Hexane in hypoxic MDA-MB-231 cells could therefore be
correlated with alterations in ROS levels in these cells. Following
24 h exposure to hypoxic conditions, ROS, as determined by Amplex
Red assay, showed significant reduction compared to control
(Figure 3B).

4 Discussion

Static headspace sampling chamber was demonstrated to be
capable of maintaining a low oxygen environment for >24 h, as

FIGURE 1
Chambers maintain hypoxic conditions over 24 h (A) Oxygen (O2) content in 3 custom made chambers containing 6 mL media was measured
following a 10 min flush, 2 h dwell and another 10 min flush (20 mins) with 1% O2, 5% CO2 gas mix. O2

°/o was then measured following chambers being
sealed for 1440 min (24 h). Mean ± SEM; n = 3 (B) Image of collection chamber.
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evidenced by chamber concentrations and cellular ROS response.
Furthermore, VOCs from cells maintained under low oxygen
conditions can be sampled, and that these cells produce a
significantly different volatile profile than either media blanks
or identical cells exposed to hyperoxic conditions.

Two out of 10 compounds targeted by SIM revealed
quantifiable, differential metabolic responses in cells exposed
to hypoxic conditions (1% O2) relative to those maintained in
normal laboratory conditions (21% O2, physiological hyperoxia).
Our previous results quantified alterations in MDA-MD-
231 cells for these volatiles after treatment with the
chemotherapeutic agent Doxorubicin. When placed under

cellular stress through Doxorubicin treatment only MeCl
showed a similar stress response (enhanced uptake). In
contrast, hexane (or hexane isomers) were not consumed or
degraded significantly (Issitt et al., 2022b).

Over 24 h of doxorubicin treatment has been shown to increase
ROS (Pilco-FerretoandCalaf, 2016) whereas the opposite has been
shown in cells maintained in hypoxic conditions (Sgarbi et al.,
2018). A significant reduction was demonstrated in ROS in MDA-
MB-231 cells following 24 hs of hypoxia (Figure 3B). Cellular stress
response mechanics and differences in cellular state could therefore be
identified and quantified through volatile metabolic approaches.
Alkanes have been positively correlated with ROS previously
(Calenic et al., 2015), here a decrease was demonstrated in n-hexane
within hypoxic cells (Figure 2C) with diminished ROS content while in
cells treated with doxorubicin, non-significant increases were observed
(Issitt et al., 2022b). Metabolic consumption n-hexane is through
currently unidentified processes, however the demonstration of
variable consumption of a compound demonstrates a potential
biomarker dynamics missed by studies only focusing on production.
Acetone, hexanes and other compounds shown here are commonly
found in urban environments (Redeker et al., 2007) and so their
expression in the breath is driven through a combination of
equilibration in the bloodstream and chemical/biological uptake
processes within the body.

The production of styrene by cells under hypoxia could be a
defining VOC biomarker for cancer since hypoxia is
characteristic of the tumour microenvironment
(SamantaandSemenza, 2018). Our recent review showed that,
despite substantial variability in reported outcomes, aromatics
are powerful descriptors of cancer (Issitt et al., 2022a). Five
studies have previously reported styrene in the breath of lung
cancer patients using untargeted approaches (Phillips et al., 1999;
Chen et al., 2005a; Peng et al., 2009; Rudnicka et al., 2011; Corradi
et al., 2015; Koureas et al., 2020). Styrene has also been reported
as higher in the breath of lung cancer patients in studies using
other approaches (Chen et al., 2005b; Nardi-Agmon et al., 2016;

FIGURE 2
Cellular volatile response to hypoxia. Volatile flux (pg/hr/µg) for MDA-MB-231 cells in control conditions or hypoxia (24 h). Media subtracted and
protein normalised VOC flux for MDA-MB-231 control cells (n = 6) and cells in hypoxia (n = 6). CHCl3, chloroform; OMS, dimethyl sulfide; MeBr, methyl
bromide; MeCI, methyl chloride; Mel, methyl iodide; MeSH, methanoethiol; 2-MP, 2methyl pentane; 3-MP, 3methyl pentane; n-Hex, n-hexane. Boxplot
whiskers showmedian ± Tukey distribution, n = 6. Twoway ANOVA followed by Bonferroni post-hoc test was performed for (A,B). Oneway ANOVA
with Tukey post-hoc test performed for B; ***p < 0.001; ****p < 0.0001.

FIGURE 3
Cells under hypoxic conditions produce styrene and exhibit
reduced ROS. Volatile flux (g/hr−1) for styrene fromMDA-MB-231 cells
in control conditions or hypoxia and media only (24 h). Non Detected
(ND) for control cells. Amplex Red assay was performed
following 24 h incubation as a measure of reactive oxygen species
(ROS), H2O2. Shown as percentage change from relative control.
Boxplot whiskers show median ± Tukey distribution, A; n = 6.
Student’s T-test was performed for (A,B), ***p < 0.001.
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Wang et al., 2022). However, styrene has been shown to be higher
in the breath of smokers (Koureas et al., 2020) and so is often
considered, along with other aromatics compounds, to be a
confounding contaminant since high percentages of lung
cancer patients have a history of smoking. (Issitt et al., 2022a).
Styrene has also been reported in the breath of patients with
ovarian (Amal et al., 2015), gastric (Amal et al., 2013; Amal et al.,
2016) and liver (Qin et al., 2010) cancers.

Styrene utilisation as a breath-based diagnostic biomarker
may be challenging since environmental contamination would
need to be considered (Hanna et al., 2019). The presented method
accounts for environmental VOCs through a flux analysis that
incorporates two temporal sampling points, a starting sample
following equilibration with the local atmosphere and a second
sample at a later time point. This allows us to determine when
available environmental volatiles are being added to
(metabolically produced) or consumed/degraded by cells. This
is important where environmental VOCs may mask effects or
differences, such as high traffic, urban environments or perfumed
indoor spaces. It is worth stating however, that the observed
degradation may be purely non-targeted chemical reactivity with
available enzymes or active compounds. However, to some
degree whether the process is substrate-specific or nonspecific
is unimportant. A different cell response under stress was
observed, which points to different cellular states, inclusive of
differing enzyme compositions, and points to new and novel
potential biomarkers.

Environmental-correction sampling approaches such as this
chamber headspace method may present an opportunity to
overcome challenges to applications within the clinic,
particularly with breath samples taken from ambient air as
well as exhalate from the patient. The two time point
sampling approach is particularly important since production
of compounds with large initial concentrations, or consumption/
degradation of compounds are often challenging to detect using
single time point sampling methods.

It was observed that cellular consumption of VOCs (MeCl,
acetone and n-Hexane) is descriptive of hypoxic stress and that
chemotherapeutic stress also induces consumption of VOCs
(Issitt et al., 2022b); notably MeCl. To our knowledge this is
the first example of a controlled environment experiment
performed under low oxygen conditions that both a)
quantifies VOC fluxes from a cellular model and b) utilises a
VOC injection of gases to monitor ongoing anaerobic
metabolism of compounds. We have demonstrated a novel
method for induction and maintenance of low oxygen for the
study of volatile fluxes. This approach allows new dynamics to be
explored for the discovery of cell to patient translational
biomarkers. It is perhaps worthy of note that many of the
published methods for breath research would not have
identified or quantified the methyl chloride or hexane results,
due to the small changes (pptv) observed.

It was previously reported that cellular “volatile metabolic
flux” can separate cell type and response to chemotherapeutic
stress (Issitt et al., 2022b). This chamber-based method has also
been successfully used with mice models, quantifying both
mouse-breath and faecal volatiles (Issitt et al., 2022b). Here,
this chamber-based approach was demonstrated to identify

cells under hypoxic stress. A novel method is demonstrated to
identify hypoxia-induced VOCs, potential biomarkers of cancer.
Importantly these biomarkers are both produced and consumed
by cells under hypoxic stress. MeCl, n-hexane and styrene are
clinically interesting compounds requiring further investigation.
The compounds reported here have been reported as present in
human breath (Shahi et al., 2022) and we have shown that these
compounds vary in response to cellular stress, from previously
published doxorubicin (Issitt et al., 2022b) and here, hypoxic
stress. Together this suggests they are able to differentiate cellular
response due to pathophysiological differences. These
compounds are from diverse functional chemical groups and
we have previously demonstrated the ability of functional
chemical groups to separate disease groups with greater ability
than individually considered compounds (Issitt et al., 2022a). A
functionally diverse group of VOCs could give greater
power when building a “breath-print” for diagnosis (Issitt
et al., 2022a).

5 Conclusion

The work presented here demonstrates a novel methodology
investigating volatile metabolisms in a controlled environment
for volatile biomarker discovery. Using this method we have
shown distinct changes in VOCs, demonstrating the potential for
VOCs in defining metabolic alterations to environmental
changes.
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SUPPLEMENTARY FIGURE S1
Volatile flux of media controls. Volatile flux in grams per hour (g/hr) for
control media (n = 8) or media in hypoxia (n = 6) in 1Dem dishes.
CHCl3, chloroform; OMS, dimethyl sulfide; MeBr, methyl bromide;
MeCI, methyl chloride; Mel, methyl iodide; MeSH, methanoethiol; 2-MP,
2 methyl pentane; 3-MP, 3 methyl pentane; n-Hex, n-hexane.
Boxplot whiskers show median ± Tukey distribution, n = 6. Two way
ANOVA followed by Bonferroni post hoc test was performed for (A,B).
One way ANOVA with Tukey post-hoc test performed for B;
***p < 0.001.
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Exhaled breath analysis, with particular emphasis on volatile organic compounds,
represents a growing area of clinical research due to its obvious advantages over
other diagnostic tests. Numerous pathologies have been extensively investigated
for the identification of specific biomarkers in exhalates through metabolomics.
However, the transference of breath tests to clinics remains limited, mainly due to
deficiency in methodological standardization. Critical steps include the selection
of breath sample types, collection devices, and enrichment techniques. GC-MS is
the reference analytical technique for the analysis of volatile organic compounds
in exhalates, especially during the biomarker discovery phase in metabolomics.
This review comprehensively examines and compares metabolomic studies
focusing on cancer, lung diseases, and infectious diseases. In addition to
delving into the experimental designs reported, it also provides a critical
discussion of the methodological aspects, ranging from the experimental
design and sample collection to the identification of potential pathology-
specific biomarkers.

KEYWORDS

volatile organic compounds, exhaled breath, breath test, gas chromatography-mass
spectrometry, biomarkers

1 Introduction

1.1 Volatile organic compounds

Volatile organic compounds (VOCs) are small molecules (MW <500 Da) with low
boiling points and high vapor pressures at ambient temperature. The profile of VOCs
released by an organism is called the volatilome, reflecting the metabolic state and playing
essential ecological and regulatory roles (Mansurova et al., 2018; Netzker et al., 2020;
Sidorova et al., 2021). In humans, VOCs are released through breath, skin, feces, urine, sweat,
and saliva, among others (Drabińska et al., 2021), and their origin can be endogenous and
exogenous (Pleil et al., 2013). Microorganism-derived VOCs, which include symbionts,
commensals, and pathogens, should be considered endogenous since they play significant
roles in human health (De Vos et al., 2022).
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1.2 Breath test along the history

The origin of the breath test can be traced back to ancient
Greece. Hippocrates of Kos (460–370 BC) described specific types of
odors associated with physiological imbalance, such as fetor
hepaticus for liver dysfunction, fetor oris for halitosis, the fruity
and sweet odor of patients with uncontrolled diabetes, the urine-like
smell of kidney failure, and the putrid stench of lung abscess.
Paracelsus, in the 16th century, further emphasized the link
between “bad” breath and pathology (Fortes et al., 2017).

In the 18th century, Antoine Lavoisier discovered the role of
oxygen in combustion and understood the respiratory physiology in
animals (Karamanou and Androutsos, 2013). That was the origin of
capnography and modern biochemistry. The sensitive detection of
VOCs became possible with the introduction of colorimetry in the
mid-19th century. Ethanol was isolated from breath by Francis E.
Anstie, and acetone was found increased in the breath of diabetes
mellitus patients by A. Nebelthau (Phillips, 1992).

Discoveries made in the 20th century are (Amann et al., 2014):
mercaptans were detected in the breath of severe liver disease
patients by Davidson (1949), connecting them to the fetor
hepaticus described by Hippocrates of Kos; acetonitrile was
detected in the breath of smokers by McKee et al. (1962);
methanol was found in human breath (Eriksen and Kulkarni,
1963); volatile fatty acids were reported in patients with cirrhosis
(Chen et al., 1970); ammonia was measured spectrometrically by
Hunt and Williams (1977); and dimethyl- and trimethylamine were
detected in the breath of end-stage renal disease patients (Simenhoff
et al., 1977).

The turning point came when Pauling et al. (1971) published a
pioneering study using gas–liquid partition chromatography to
analyze body fluids and breath to investigate the influence of diet
on human microbiota and health. This study detected 250 VOCs in
human breath, offering promising prospects for further research in
the field.

1.3 Breath test and clinical applications

Breath samples are particularly valuable for VOCs analysis. The
gaseous fraction contains over 1,000 VOCs, with acetone and
isoprene being the most abundant (Kuo et al., 2020; Drabińska
et al., 2021).

Breath tests aim to distinguish between healthy and pathological
states by analyzing exhaled breath VOC profiles, identifying
pathology-specific compounds and elucidating their biochemical
origin. Compared to routine diagnostic methods, they offer several
advantages: they are non-invasive, cost-effective, and fast and easy to
perform, have an unlimited sample size, and can be safely and
repeatedly collected (Sharma et al., 2023). Despite their simplicity, to
date, just a few tests are used in clinical practice, such as the
fractional exhaled nitric oxide (FeNO) test for asthma diagnosis,
the 13C-urea breath test for Helicobacter pylori infection, the
hydrogen/methane test to detect lactose and/or fructose
intolerance, also to detect small intestine bacterial overgrowth,
standard capnography based on monitoring CO2 partial pressure
levels during anesthesia and intensive care, and the alcohol breath

test used by the police (Simrén and Stotzer, 2006; Buszewski et al.,
2007, 2013).

Although many studies propose potential biomarkers for
various pathologies, the expected clinical application of breath
tests has not progressed as expected (Buszewski et al., 2007;
Sharma et al., 2023). Additionally, the link between potential
biomarkers and specific pathologies is not clear (Haick et al.,
2014; Zou et al., 2022).

1.4 Major sources of endogenous VOCs

Oxidative stress (OS) and cytochrome P450 (CYP) enzymes are
the main sources of endogenous VOCs. OS damages cellular
components, such as phospholipids, proteins, and DNA, thus being
involved in the development of many pathological conditions such as
cancer, inflammation, and aging. Lipid peroxidation, especially of
polyunsaturated fatty acids (PUFAs), is a significant source of
VOCs. The breakdown of lipid peroxides produces a wide range of
compounds, such as alkanes, alkenes, alcohols, aldehydes, carboxylic
acids, esters, epoxides, and furans (Calenic et al., 2015; Ratcliffe
et al., 2020).

CYP enzymes participate in reactive oxygen species (ROS)
generation and lipid peroxidation, affecting the oxidation–reduction
balance and OS, therefore also contributing to VOC generation. CYP
enzymes are found in various tissues, with higher levels in the liver and
enterocytes (Murray et al., 2009; Veith and Moorthy, 2018;
Behrendorff, 2021).

1.5 VOCs and exhaled breath

As seen in Figure 1, almost 1,000 articles have been published
with the aim of finding potential biomarkers and/or therapeutic
targets for various pathologies. Lung cancer has been extensively
studied (Antoniou et al., 2019; Janssens et al., 2020), although other
cancers, pulmonary pathologies [e.g., asthma, chronic obstructive
pulmonary disease (COPD), and obstructive sleep apnea (OSA)],
gastrointestinal pathologies (e.g., Crohn’s and inflammatory bowel
pathologies), diabetes, and infectious diseases (e.g., viral infections,
tuberculosis, and invasive aspergillosis) have also been investigated
(Sethi et al., 2013; Markar et al., 2015; Van Der Schee et al., 2015;
Acharige et al., 2018; Saasa et al., 2018; Hanna et al., 2019; Ghosh
et al., 2020; Ratiu et al., 2020). The Human Breathomics Database
(HBDB) created by Kuo et al. (2020) is a consequence of the
relevance of the topic, gathering information on VOCs detected
in healthy and pathological subjects.

1.6 Exhaled breath sampling

The average human expiratory volume is 500 mL, comprising
three portions: dead space air, air from the airways and alveoli, and
alveolar breath. Capnography can monitor the respiratory cycle, as
the CO2 level shows different trends in each portion. Consequently,
breath samples can be classified into three types: mixed breath
(containing the three portions), late expiratory breath (excluding
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dead space air), and alveolar breath (containing only the last portion
of the expiration) (Beauchamp and Miekisch, 2020).

There are two types of breath analysis: online and offline. Online
provides fast results and allows the volatilome to be monitored with
minimal sample manipulation. Nevertheless, offline analysis
(storing the sample for subsequent analysis) is the most widely
used, as it enables sampling at different locations (Sola-Martínez
et al., 2022). Sampling, transport, and storage are critical in the
offline analysis of gas samples, since the samples may suffer from
possible losses, adsorption, and artifact formation (Alonso and
Sanchez, 2013). Therefore, the correct choice of sampling
methodology is crucial.

Breath sampling methods can be categorized according to the
type of sample collected. Devices employed for mixed breath include
containers and bags with a valve system to prevent re-breathing,
such as Tedlar® and Mylar bags, sorbent tubes, canisters, sampling
tubes/bulbs, and the Pneumopipe device (Pennazza et al., 2014;
White and Fowler, 2019). Although these devices are simpler to
use, they may lead to losses, diffusion, adsorption onto the sampling
device material, and potential contamination, especially with
reactive VOCs (Miekisch et al., 2012; Tang et al., 2015; Beale
et al., 2016). In particular, Tedlar® bags emit contaminants like
N,N-dimethylacetamide, phenol, carbonyl sulfide, and carbon
disulfide. To preserve sample integrity, storage time should be
minimized, and analysis is recommended within 10 h
(Beauchamp et al., 2008; Mochalski et al., 2009).

For collecting late expiratory or alveolar breaths, traditional
sampling devices present some adaptations, such as a T-shaped
mouthpiece, a spirometer system, and CO2 and pressure sensors
(Alonso and Sanchez, 2013; Tang et al., 2015). CO2 sensors are
commonly used for alveolar breath sampling because CO2

concentrations are highest and constant in the alveolar phase
(Lawal et al., 2017). Various devices are available for this
purpose, either collecting a final fixed volume, based on the
Haldane–Priestly approach, or using CO2 and pressure sensors:
BioVOC®, RTubeVOC, QuinTron AlveoSampler, ReCIVA, the

adaptive breath sampler (ABS), breath collection apparatus
(BCA), and SOFIA sampler (Phillips, 1997; Basanta et al., 2007;
Beale et al., 2016; White and Fowler, 2019).

1.7 Analytical platforms: GC-MS

The concentrations of VOCs in exhalates range from parts-
per-million (ppmv) to parts-per-trillion (pptv), requiring highly
sensitive analytical techniques to detect these compounds.
Analytical platforms used for online and offline analysis
include laser spectrometry, selected ion flow tube-mass
spectrometry (SIFT-MS), proton transfer reaction-mass
spectrometry (PTR-MS), secondary electrospray ionization-
mass spectrometry (SESI-MS), ion molecule reaction-mass
spectrometry (IMR-MS), and ion mobility spectrometry
(IMS). These techniques perform fast analysis and present
high sensitivity, although they involve high costs and/or
require skilled technicians. An alternative method, also
emerging as a point-of-care tool, electronic noses (E-nose)
combine selective electronic sensors, offering rapid analysis
and affordability. Basically, E-noses are used to detect
patterns between the samples, which are further resolved
through statistical methods and machine learning. Other
online approaches such as optical/laser absorption
spectroscopy-based methods detect small molecules with
narrow adsorption lines, commonly used for acetone analysis.
Additionally, compound identification is limited, and no
accepted standards ensure interoperability/normalization of
methodologies. A promising approach utilizes nanomaterial-
based VOC/gas sensors, which offers a wider dynamic
detection range and high selectivity; however, some
challenges include receptor immobilization compromising
functionality, potentially irreversible reactions between VOCs
and the receptor (due to high selectivity), and a reduced
likelihood of VOC–receptor interaction due to the small

FIGURE 1
Results searching in PubMed using the terms: (volatile organic compounds) AND (exhaled breath).
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surface area of nanoscale elements (Buszewski et al., 2013;
Bruderer et al., 2019; Wojnowski et al., 2019; Sharma
et al., 2023).

GC-MS is a mature technique that is considered the “gold
standard” for VOC analysis in exhaled breath (De Lacy Costello
et al., 2014; Drabińska et al., 2021). It offers high sensitivity and
reproducibility, and the ability to identify and elucidate unknown
compounds, especially with high-resolution instruments (Sola-
Martínez et al., 2022; Sharma et al., 2023). In addition to
requiring an offline approach such as a pre-concentration step,
GC-MS applicability may be hampered by its high costs, complex
and time-consuming sampling, requirement for standardization and
trained personnel, and inapplicability for online analysis (Xu et al.,
2016). Nonetheless, its application to the clinical setting is valuable
due to its capabilities in biomarker discovery.

1.8 Sample pre-concentration strategies

Exhaled breath samples, especially mixed breath, require
enrichment before offline analysis due to low VOC concentration
and high water vapor content. Pre-concentration methods usually
include two consecutive steps, consisting of trapping VOCs in
sorbents followed by their release via thermal desorption. Three
main techniques especially suited for GC are used (Figure 2): solid-
phase microextraction (SMPE), thermal desorption tubes (TD), and
needle-trap devices (NTDs) (Lawal et al., 2017; Sola-Martínez
et al., 2022).

SPME (Figure 2A) was first applied to human breath by Grote
and Pawliszyn (1997). Equilibrium is established during sampling
based on analyte and sorbent physicochemical properties within the
fiber (Beauchamp and Miekisch, 2020). The fiber, coated usually
with polydimethylsiloxane (PDMS), Carboxen (Car), or
divinylbenzene (DVB), can also have a combination of coatings

(Car and/or DVB embedded into PDMS) for a wider chemical
species extraction (Trujillo-Rodríguez et al., 2020). Moreover,
derivatization reactions can be performed by doping the fiber to
increase the affinity of the analyte to the coating (Vas and
Vékey, 2004).

TD (Figure 2B) allows longer periods of storage and ease of
transport without affecting the sample. The device, composed of a
stainless steel or a glass tube, contains sorbent materials like organic
polymers (e.g., Tenax TA), graphitized carbon (e.g., Carbopack X) or
carbon molecular sieves (e.g., Carboxen). TD can have single- or
multi-bed sorbents, with the latter covering a wider range of analytes,
but compromising reproducibility due to analyte–sorbent interactions
(Lawal et al., 2017; Beauchamp and Miekisch, 2020; Sola-Martínez
et al., 2022).

NTD (Figure 2C) is less common but shares similarities with
SPME and TD. It uses a needle-shaped device filled with sorbent
materials to capture compounds by drawing breath through the
needle. Similar to SPME, NTD requires a small sample volume,
although the sensitivity is volume dependent as in TD (Trefz et al.,
2012). Storage and transportation are also similar to that of TD
(Lawal et al., 2017).

1.9 Metabolomics

Metabolomics has gained significant attention in clinical
research, providing insights into the pathological pathways of
various pathologies. These studies can be broadly categorized
into two approaches: untargeted and targeted. Untargeted
metabolomics is the non-biased approach, which aims to
study as many metabolites as possible to discover changes
among the groups of samples, while targeted metabolomics
focuses on specific metabolites, offering better sensitivity and
specificity. Combining both approaches allows for hypothesis

FIGURE 2
Schematic representation of the three main pre-concentration techniques. (A) Solid-phase microextraction (SPME). (B) Thermal desorption tube
(TD). (C) Needle-trap device (NTD). Created with Biorender.com.
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generation (untargeted) and the validation of findings (targeted).
Workflows and methodologies for both approaches have subtle
differences (Patti et al., 2012).

2 Objectives and literature search

This review aims to identify potential VOC biomarkers that are
consistent across different pathologies and to consolidate and
discuss the methodologies employed for exhaled breath sampling
and analysis. To achieve this, a literature search was conducted,
focusing on studies that analyzed human exhaled breath by GC-MS
published since 2012. The search strategy utilized specific keywords,
such as “volatile organic compounds,” “exhaled breath” or “breath
test,” “gas chromatography,” and “mass spectrometry.” The
databases employed were Scopus and Web of Science. Initially,
377 articles were obtained, which were then narrowed down to
152 after title and abstract evaluation, and the articles were sorted
according to the pathology studied. Finally, 70 articles focusing on
10 pathologies of significant interest were included in this review,
and categorized in: cancer (such as lung, gastric, colorectal, and
breast cancers), other pulmonary pathologies (comprising asthma,
COPD, OSA, and cystic fibrosis), and infectious pathologies
(encompassing community-acquired pneumonia (CAP)/hospital-
acquired pneumonia (HAP)/ventilator-associated pneumonia
(VAP) and COVID-19).

3 VOCs in exhaled breath in health
and pathology

In the following sections, selected studies for each pathology are
discussed, along with the identified candidate VOCs reported as
pathology-specific biomarkers. Figure 3 illustrates the distribution of

studies, showing that lung cancer has been the most extensively
studied, followed by asthma, COPD, and CAP/HAP/VAP.

3.1 VOCs in cancer

3.1.1 Lung cancer
Lung cancer (LC) is the second most diagnosed cancer, and the

leading cause of cancer-related deaths (Ferlay et al., 2021). LC
comprises two major histological types: small-cell lung cancer
(SCLC) and non-small-cell lung cancer (NSCLC) (Rodak et al.,
2021). The 5-year relative survival rates for localized NSCLC and
SCLC are 65% and 30%, dropping to 9% and 3% when metastasized
(2012–2018), respectively (Lung Cancer Survival Rates, 2023).
Symptoms may be absent, non-specific, or easily confused with
other pulmonary pathologies (Balata et al., 2022).

Low-dose computed tomography (LDCT) is the main screening
tool, although it exhibits a high false-positive rate (Nooreldeen and
Bach, 2021). Lung tissue biopsy, the gold standard procedure for
diagnosis, determines malignancy, histological type, and TNM
(tumor, nodule, and metastases) stage. However, this procedure
is highly invasive and can lead to complications, such as
pneumothorax and pneumonia (Zhang et al., 2020b). Indeed, the
development of rapid and non-invasive early diagnostic tests is
urgently required, and breath tests offer promising alternatives.
Among the pathologies studied in exhaled breath, LC is the most
prevalent, as this pathology is directly related to the respiratory tract.

Twenty-three studies focusing on potential biomarkers for LC
are summarized in Supplementary Tables S1–S3, referring to
metabolomic methodology, group comparisons, and VOC
biomarkers, respectively. A Chinese group performed two
untargeted studies on the same data, comparing LC patients and
healthy controls (HCs). The first study (Zou et al., 2021) developed a
prediction model based on the whole breath profile (308 peaks),
achieving 85.0% accuracy, 83.0% sensitivity, and 85.0% specificity.
Twenty-two discriminative VOCs were annotated, styrene being
also found downregulated in LC patients who responded partially to
treatment or remained stable (Supplementary Table S3), along with
two other VOCs (dodecane, 4-methyl and α-phellandrene) (Nardi-
Agmon et al., 2016). The second study (Zou et al., 2022) selected
31 VOCs as biomarkers in the univariate analysis (UVA), which
showed 0.787 AUC in the multivariate analysis (MVA) after cross-
validation. Additionally, eight VOCs were found to be involved in a
total of 18 metabolic pathways, of which 11 were
significantly altered.

A Polish group compared LC patients with HCs. Buszewski et al.
(2012) divided both groups according to smoking habits, identifying
12 significant VOCs between non-smokers, 7 being upregulated
when compared to active smokers. Rudnicka et al. (2014) measured
43 VOCs and developed a model with 88 features, yielding
0.970 AUC, 74.0% sensitivity, and 73.0% specificity, with
dimethyl sulfide as the main discriminating VOC. Ligor et al.
(2015) applied machine learning algorithms, and the final model
formed by eight compounds showed an value (e.i. 0.650) AUC. In a
subsequent study (Rudnicka et al., 2019), the model containing
seven VOCs selected from the UVA presented an improved
performance, showing 86.4% sensitivity and specificity in the test

FIGURE 3
Pie plot depicting the proportion of studies for each pathology
included in this review. CAP, community-acquired pneumonia;
COPD, chronic obstructive pulmonary disease; HAP, hospital-
acquired pneumonia; OSA, obstructive sleep apnea; VAP,
ventilator-associated pneumonia.
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group. Twelve VOCs were found in common between these four
abovementioned studies (Supplementary Table S3).

Schallschmidt et al. (2016) focused on 24 VOCs previously
selected as potential LC biomarkers, 20 being also reported in
other studies (Supplementary Table S3). In the UVA, 11 and
7 VOCs were significantly altered between LC patients and HCs
(non-smokers and active smokers, respectively), 8 VOCs seemingly
unrelated to smoking. Moreover, four models were constructed with
different subsets of the targeted VOCs, achieving the highest
sensitivity (92.0%) with a subset of four VOCs, and the highest
specificity (96.0%) with seven VOCs. Ethanol and octane were two
target VOCs proposed as potential biomarkers in other studies
(Supplementary Table S3).

Sakumura et al. (2017) reported ethanol, along with other four
VOCs, in a study classifying LC and HCs using a support vector
machine (SVM) algorithm, achieving 89.0% accuracy, a 94.4% true-
positive ratio, and a 89.7% true-negative ratio when combining
different subsets of five VOCs. Furthermore, the distance to the
SVM classification boundary provided information on the cancer
stage, with early-stage LC located closer to the boundary than
advanced-stage LC.

Two research groups from China and Greece conducted several
studies comparing LC patients, pulmonary non-malignant disease
(PNMD) patients, and HCs. The Chinese group conducted 4 studies,
sharing 27 VOCs (Supplementary Table S3). Wang et al. (2012)
found 23 significant VOCs with AUCs >0.6, unrelated to smoking,
as potential biomarkers, of which five VOCs were significant
between squamous carcinoma and adenocarcinoma LC patients.
The discrimination model for LC, PNMD, and HCs could correctly
classify 96.5% of LCs. Zou et al. (2014) selected five VOCs as LC-
specific biomarkers, achieving AUCs ranging from 0.672 to 1 in a
validation cohort, with hexadecanal being the most discriminative.
Additionally, Chen et al. (2021) annotated 19 VOCs that could
discriminate LC from PNMD, as well as 20 VOCs that differentiated
LC fromHCs with AUCs of 0.809 and 0.987, respectively. Moreover,
LC patients could be distinguished by histology (NSCLC and SCLC)
using 20 VOCs value (e.i. 0.939) AUC and stage (early and
advanced) with 19 VOCs value (e.i. 0.827) AUC. The Greek
group used both targeted and untargeted approaches on the same
data set. The targeted study (Koureas et al., 2020) included 19 VOCs,
of which 17 VOCs were also found in other studies (Supplementary
Table S3). In the UVA, seven VOCs showed significance when
comparing LC, PNMD, and HCs, although no single VOC was
altered between LC and PNMD. However, LC and HCs were
correctly classified by either including 19 VOCs, nine VOCs
selected in the UVA (LC vs. HCs), or a subset of VOCs
identified by feature selection (FS) (AUCs 0.769–0.970). In the
untargeted study (Koureas et al., 2021), 29 features were
considered for the analysis, 18 features (12 VOCs annotated)
showing significance between LC and HCs, and only 2 (1 VOC
annotated) among LC and PNMD. Moreover, LC and HCs were
correctly classified using either 29 features or a subset of eight
features identified by FS (AUCs 0.940 and 0.960, respectively). In the
case of LC and PNMD, three VOCs achieved 75.0% discrimination
accuracy value (e.i. 0.820) AUC. Among the features/VOCs from
both approaches, three VOCs (one from the targeted and two from
the untargeted) achieved an accuracy of 72.0% in discriminating LC
and PNMD value (e.i. 0.780) AUC. However, the VOC from the

targeted study was detected in extremely low frequencies. Another
targeted study focusing on 21 VOCs identified four upregulated
VOCs in LC compared to PNMD (Corradi et al., 2015), of which two
(hexane and ethylbenzene) were also included in the targeted study
by Koureas et al. (2020) (Supplementary Table S3), showing elevated
increased levels in adenocarcinoma LC (hexane) and in advanced-
stage LC (ethylbenzene) patients.

Furthermore, both untargeted and targeted approaches were
performed in the same study comparing LC, COPD, asthmatic
patients, and HCs. Monedeiro et al. (2021) built an RF model
with the 12 most important VOCs from the untargeted analysis,
achieving an overall accuracy of 85.7%. In the following targeted
approach, 29 VOCs were preselected, of which 9 were used to build
the classification model that provided 91.0% overall accuracy.
Additionally, Callol-Sanchez et al. (2017) identified nonanoic acid
significantly altered in LC patients compared to both COPD patients
and HCs in a targeted study, and Muñoz-Lucas et al. (2020) found
elevated levels of propionic acid in LC patients with COPD, mainly
detected in advanced-stage LC.

3.1.2 Gastric cancer
Gastric cancer (GaC) is among the five deadliest cancers in 2020,

according to the World Health Organization (WHO) (Cancer,
2023). The 5-year relative survival rate is 72% when localized
and decreases to 6% when distant at the time of diagnosis
(2012–2018) (American Cancer Society, 2017). The main risk
factors for GaC, which is predominantly sporadic (90%), include
smoking, high meat intake, alcohol consumption, obesity, and
Helicobacter pylori infection (Conti et al., 2023). Persistent H.
pylori infection causes chronic inflammation, leading to precursor
lesions associated with GaC: atrophy, metaplasia, dysplasia, and
carcinoma (Conti et al., 2023).

The gold standard diagnostic technique is upper endoscopy,
followed by a biopsy, although it is invasive and requires specialists
(Hamashima, 2016). While high-incidence countries have
implemented screening programs, low-incidence countries require
cost-effective alternatives (Herrera-Pariente et al., 2021). Serum
biomarkers, which include carcinoembryonic antigen (CEA),
alpha-fetoprotein (AFP), and carbohydrate antigens (CA19-9 or
CA72-4), have been used for early diagnosis, but their lack of
specificity results in low positive rates and the inability to detect
precancerous lesions (Feng et al., 2017).

Five studies focusing on biomarkers for GaC, all employing an
untargeted metabolomics approach, are included in Supplementary
Tables S1–S3. Two studies, conducted in China and Latvia,
compared GaC patients, peptic ulcer disease (PUD) patients, and
controls. Xu et al. (2013) identified three upregulated VOCs in GaC
and four VOCs upregulated in PUD compared to HCs, with one
VOC (furfural) shared among comparisons. Likewise, Amal et al.
(2013) found four VOCs upregulated in GaC of which two were also
upregulated in PUD. However, no single discriminating VOC
between GaC and PUD was identified in any of the studies. Only
one VOC was found to be common to different geographical areas,
6-methyl-5-hepten-2-one (Supplementary Table S3).

Tong et al. (2017) reported 11 candidate GaC biomarkers
comparing GaC patients with PUD, gastritis patients, and HCs,
using UVA and MVA. One VOC, nonanal, was also found by Amal
et al. (2013) to be significantly altered between GaC, PUD, and an
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additional group stratified based on the operative link on gastric
intestinal metaplasia (OLGIM), which classifies patients according
to the presence/absence and stage of precancerous lesions. Among
the multiple comparisons, eight VOCs showed alterations among
groups, seven of which were upregulated in GaC compared to
OLGIM, only one VOC being altered between GaC and OLGIM
III-IV, and three VOCs in PUD compared to OLGIM.

Lastly, Bhandari et al. (2023) explored the correlation between
the fecal microbiome and exhaled breath VOCs. Two VOCs (1-
octanol and dioctyl ether) were significantly altered and exclusively
present in GaC. Moreover, 14 VOCs from GaC patients were
correlated with 33 fecal bacterial taxa, and 7 VOCs from HCs
were correlated with 17 bacterial taxa, with no common VOCs
between groups.

3.1.3 Colorectal cancer
Colorectal cancer (CRC) ranks among the most common

cancers worldwide (Ferlay et al., 2021). The 5-year relative
survival drops from 65% to 15.6% when diagnosed at later stages
(2013–2019), which represents 23% of cases, as early symptoms are
not pathology-specific (Colorectal Cancer—Cancer Stat Facts,
2023). The most applied screening tools are the fecal
immunochemical test (FIT) and colonoscopy (Helsingen and
Kalager, 2022). The FIT test is based on the measurement of the
amount of hemoglobin in feces, and one-third of stage I cancers are
missed (Niedermaier et al., 2020). Colonoscopy, while effective, is
invasive, time-consuming, and expensive and is performed with
conscious sedation, carrying the risk of colonic perforation and
major bleeding (Qaseem et al., 2019; Helsingen and Kalager, 2022).
Other CRC screening tests such as the guaiac-based fecal occult
blood test (gFOBT), sigmoidoscopy, fecal biomarker panel test, and
computed tomography (CT) colonography have several limitations,
such as false-positive results, invasiveness, and high cost (Qaseem
et al., 2019).

Five studies focusing on potential biomarkers for CRC are
summarized in Supplementary Tables S1–S3, all employing an
untargeted metabolomics approach. The studies that analyzed
mixed breath sampled the same cohort of CRC patients. The first
study (Altomare et al., 2013) compared CRC and HCs by selecting a
pattern of 15 VOCs by UVA to construct the probabilistic neural
network (PNN) model, which yielded 76.0% accuracy in the
validation cohort. In a subsequent study (Altomare et al., 2015),
the data were reprocessed, and 32 of 52 CRC patients were
resampled after cancer removal. The PNN model was constructed
with 31 VOCs selected by UVA, yielding 97.5% and 97.7% accuracies
discriminating pre- and post-surgery CRC patients, and post-surgery
CRC and HCs, respectively. Additionally, 11 VOCs shared with the
previous study could discriminate pre- and post-surgery CRC patients
with 98.8% accuracy. These results demonstrate the metabolic change
in exhaled VOC patterns due to cancer cell metabolism and suggest
that metabolism does not return to the pre-cancer state after
cancer removal.

Another study by the aforementioned research group
investigated potential biomarkers of cancer stages (early/I–II or
advanced/III–IV) (Altomare et al., 2020). Fifteen VOCs were
selected by UVA comparing CRC and HCs, to build a model
that included age class (>65 vs. ≤65 year olds). Fourteen
identified VOCs could discriminate CRC from HCs, with a

93.0% overall positive predictive value (PPV) after
cross-validation, whereas eight and five VOCs could discriminate
early-CRC from HCs with an 86.0% PPV and advanced-CRC from
HCs with a 91.0% PPV. Three common VOCs between UVA and
MVA, namely, ethylbenzene, methylbenzene, and tetradecane, were
quantified to establish the threshold concentration values. However,
none of these compounds were reported in other studies.
Nevertheless, five out of the 15 VOCs were common with
previous studies (Altomare et al., 2013, 2015), and three were
reported as significantly altered between CRC and HCs: 4-
methyloctane and ethanol (research group from Latvia) (Amal
et al., 2016) and dodecane (research group from China) (Wang
et al., 2014a) (Supplementary Table S3).

Likewise, Amal et al. (2016) found four significantly altered
VOCs between CRC and HCs, which were identified by UVA and
subsequently quantified: 4-methyloctane and ethanol were
downregulated, whereas acetone and ethyl acetate were
upregulated. Likewise, Wang et al. (2014a) found nine potential
biomarkers (eight upregulated and one downregulated) for CRC
patients with adenocarcinoma by MVA.

3.1.4 Breast cancer
Breast cancer (BC) is the most diagnosed type of cancer and the

fifth cause of cancer-related mortality (Cancer; Ferlay et al., 2021).
While the 5-year relative survival rate stands at 90.8%, it drops
dramatically to 31% when diagnosed at a distant stage (2012–2019)
(Female Breast Cancer, 2023). The current gold standard screening
methods include annual mammography and clinical breast
examination for women over the age of 40. Unfortunately,
physical breast examinations, even when performed by a
physician, fail to reduce mortality (Barba et al., 2021). Regarding
mammography, the sensitivity is compromised by breast density
(Boyd et al., 2007), and the procedure requires X-ray examination
and may lead to overdiagnosis, resulting in unnecessary procedures
and treatments (Løberg et al., 2015). Alternative screening
approaches, such as digital breast tomosynthesis (DBT),
ultrasonography, magnetic resonance imaging (MRI), and
positron emission tomography/computed tomography (PET/CT),
are hampered by high costs, discomfort, the requirement for trained
technicians, and radiation exposure (Barba et al., 2021). Therefore,
there is an urgent requirement for innovative screening tools that
can overcome these drawbacks, and breath tests show promise as a
potential approach.

Four studies focusing on potential BC biomarkers are
summarized in Supplementary Tables S1–S3. These studies were
conducted in the same geographical area (China). The targeted
study by Li et al. (2014) focused on four aldehydes and their
potential to discriminate between BC patients, breast non-
malignant disease (BNMD) patients, and HCs. All the targeted
aldehydes were significantly upregulated in BC, while hexanal
was upregulated in BNMD, both compared to HC. Furthermore,
nonanal was increased in BC when compared to BNMD. The
combination of these VOCs showed 91.7% sensitivity and 95.8%
specificity (0.934 AUC) in discriminating early-stage BC from
HCs, and the predictive model achieved 80.4% correct
classification after leave-one-out cross-validation (LOOCV).
Hexanal was also identified as a potential biomarker in a
different study (Supplementary Table S3).
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Two untargeted studies compared BC with HCs and BNMD.
Barash et al. (2015) identified 23 VOCs by UVA, 21 of which showed
significant differences between HCs and patients with breast lesions
[BC, BNMD, and an additional group of patients with ductal
carcinoma in situ (DCIS)], and four VOCs were significant
between BC and DCIS. The MVA revealed 14 VOCs that could
discriminate BC from HC and BNMD, and from DCIS, yielding
72.0% and 81.0% accuracies after LOOCV, respectively.
Additionally, two of these 14 VOCs were consistent with findings
from other studies (Supplementary Table S3). Wang et al. (2014b)
annotated 28 potential biomarkers, of which 21, 6, and 8 VOCs were
significantly altered in BC when compared separately to HCs,
BNMD (cyclomastopathy and mammary gland fibroma), and
DCIS, respectively. Among these, three VOCs, namely,
cyclohexanone, 1,4-dimethoxy-2,3-butanediol, and 2,5,6-
trimethyloctane, were upregulated in BC compared to both HCs
and BNMD. Only cyclohexanone was again reported by Zhang et al.
(2020a) (Supplementary Table S3).

Furthermore, Zhang et al. (2020a) subdivided the BC group into
DCIS, lymph node metastasis-negative (LNMN), and lymph node
metastasis-positive (LNMP), annotating 13, 12, and 17 significant
VOCs when compared to HC, respectively. An additional group of
GaC patients was included for comparison with BC, yielding
17 significant VOCs. The set of seven overlapping VOCs among
all comparisons could discriminate BC and the different subgroups
from HCs value (e.i. 0.864–0.943) AUC, sensitivity 80.8%–96.2%,
and specificity 71.6%–100%.

3.2 VOCs in other pulmonary pathologies

3.2.1 Asthma
Asthma is a chronic and heterogeneous lung pathology

characterized by inflammation and airway obstruction,
manifesting with variable symptoms that include cough,
wheezing, shortness of breath, and chest tightness (Asthma, 2023;
Asthma-Diagnosis, 2023). This pathology places a significant
economic burden on healthcare systems, affecting approximately
292 million people worldwide, typically being developed during
childhood. Asthma’s impact on patients’ quality of life and the risk
of premature death are major concerns (The Global Asthma
Report, 2022).

Diagnosis relies on spirometry, bronchoprovocation tests, peak
expiratory flow tests, allergy skin or blood tests, and FeNO tests
(Asthma-Diagnosis, 2023). Patients may experience a loss of
pathology control and acute exacerbations of symptoms, leading
to significant morbidity and a progressive loss of lung function
(Castillo et al., 2017). Moreover, the heterogeneity of asthma,
concerning severity and response to treatment, is a consequence
of the underlying pathophysiological mechanisms. Patients can be
classified into different phenotypes based on observable
characteristics (steroid response, obesity, allergies, etc.), or
endotypes based on the underlying cellular and molecular
mechanisms (Kuruvilla et al., 2019). In this context, breath tests
offer a non-invasive and easy-to-perform approach for early
diagnosis and exacerbation prediction, especially suitable for
children, and could be also used to define phenotypes and
endotypes by analyzing the profile of endogenous VOCs, which

reflects the inflammatory state of the bronchia and underlying
molecular mechanisms involved, allowing a significant
improvement in treatment effectiveness.

Eleven untargeted studies focused on asthma are included in
Tables 1, 2; Supplementary Table S4. Several studies were conducted
by the same research group focusing on asthmatic children. Van
Vliet et al. (2016, 2017) studied the loss of asthma control and
exacerbation episodes over a period of 1 year. In the first study (Van
Vliet et al., 2016), a combination of 15 VOCs (10 annotated) showed
86.0% accuracy in classifying persistently controlled and
uncontrolled asthma, although no association was found between
different exhaled inflammatory markers [FeNO, exhaled breath
condensate (EBC), and VOCs] and asthma control. Subsequently
(Van Vliet et al., 2017), in a larger cohort of asthmatic children, the
combination of seven VOCs used to construct the RF model could
predict 88.0% of asthma exacerbation episodes within 14 days. These
two studies shared only two VOCs: 1,2-dimethylcyclohexane and 2-
methylfuran (Table 2). Additionally, Robroeks et al. (2013)
annotated 30 VOCs related to asthma exacerbation, and the
models combining six and seven VOCs could correctly classify
96.0% of baseline and exacerbation samples taken from the same
patient (100% sensitivity and 93.0% specificity) and 91.0% of
patients who would have future exacerbations or not,
respectively. These results suggest that the profile of VOCs can
identify exacerbations and could be used to predict which patients
will suffer these episodes. Additionally, Smolinska et al. (2014)
studied a cohort of wheezing children with HCs between the ages
of 2 and 4 years until the age of 6 years, to find potential biomarkers
for preclinical asthma. A total of 17 VOCs (13 annotated) were
selected by comparing asthmatic children with HCs and with
transient wheezers, which could correctly classify 80.0% of the
wheezing children at inclusion, differentiating those who would
develop asthma from those who were transient wheezers. Notably,
three VOCs reported in these studies (2-methylfuran, 3-
methylfuran, and m-cymene) were also identified by Monedeiro
et al. (2021) when comparing LC, COPD asthmatic patients, and
HCs. In this study, the model built with 12 VOCs from the
untargeted data presented 85.7% overall accuracy, and another
with 9 of the 29 targeted VOCs provided 91.0% overall accuracy.

Likewise, two other studies included a cohort of asthmatic
children, in this case, compared to HC. Gahleitner et al. (2013)
identified a panel of eight candidate VOCs, all of which were
upregulated in asthmatic children. Moreover, Caldeira et al.
(2012) built a model with the full data set of metabolites (134),
yielding a classification rate of 98.0% (96.0% sensitivity and 95.0%
specificity). Among these metabolites, six alkanes were related to
allergic asthma and four aldehydes and one alkene to HC. The new
model that included nine alkanes and aldehydes showed a
classification rate of 96.0% (98.0% sensitivity and 93.0%
specificity). One VOC from the latter study, decane, was also
reported by Sola-Martínez et al. (2021). In this study, a
population of women 3 months postpartum was recruited and
divided into asthmatics with other coexisting atopic diseases
(A-AD) and non-asthmatics, and the latter were further divided
into those with and without other atopic diseases (NA-AD and NA-
NAD, respectively). Several models were built to compare the
different groups, selecting a total of nine VOCs, which could
discriminate between asthmatic and non-asthmatic patients, even
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TABLE 1 Summary of studies focused on asthma, chronic obstructive pulmonary disease, obstructive sleep apnea, and cystic fibrosis. AB, alveolar breath; ABS, adaptive breath sampler; CF, cystic fibrosis; COPD, chronic
obstructive pulmonary disease; GC, gas chromatography; GC×GC, two-dimensional gas chromatography; LC, lung cancer; MB, mixed breath; MS, mass spectrometry; na, not applicable; nd, not detailed; NIST, National Institute
of Standards and Technology; NTD, needle-trap device; OSA, obstructive sleep apnea; SPME, solid-phase microextraction; TD, thermal desorption tube; TOF, time-of-flight; UI, ultra-inert, VOCs, volatile organic compounds.

Reference Pathology Methodology Sample Sampling Analysis
technique Sorbent material Column IS

Identification

Library Authentic
STD

Gahleitner et al.
(2013)

Asthma Untargeted AB ABS TD-GC-MS Tenax/Carbotrap nd No NIST Yes

Sola-Martínez et al.
(2021)

Asthma Untargeted MB Tedlar® bag TD-GC-MS Tenax TA
HP-5MS UI (30 m ×
0.25 mm × 0.25 μm)

(Agilent)
No NIST No

Schleich et al.
(2019)

Asthma Untargeted MB Tedlar® bag
TD-GC-TOF-MS/

TD-GCxGC-
TOF-MS

Carbograph 1TD/
Carbopack X and Tenax

TA/Carbopack B

RTX-5MS (30 m ×
0.25 mm × 1 μm)

(Restek) and Rxi-624Sil
MS (30 m × 0.25 μm ×
1.4 μm) (Restek) 1D
and Stabilwax (2 m ×
0.25 μm × 0.5 μm)

(Restek) 2D

No NIST Yes

Brinkman et al.
(2017) Asthma Untargeted MB Tedlar® bag TD-GC-MS Tenax GR

VF1-MS column
(30 m × 0.25 mm ×
1 μm) (Varian)

No NIST No

Van Vliet et al.
(2017)

Asthma Untargeted MB Tedlar® bag TD-GC-TOF-MS
Carbograph 1TD/
Carbopack X

nd No NIST No

Van Vliet et al.
(2016)

Asthma Untargeted MB Tedlar® bag TD-GC-TOF-MS
Carbograph 1TD/
Carbopack X

nd No NIST No

Meyer et al. (2014) Asthma Untargeted MB Tedlar® bag TD-GC-TOF-MS
Carbograph 1TD/
Carbopack X

RTX-5MS (30 m ×
0.25 mm × 1 μm)

(Restek)
No

nd
No

Smolinska et al.
(2014)

Asthma Untargeted MB Tedlar® bag TD-GC-TOF-MS
Carbograph 1TD/
Carbopack X

RTX-5MS (30 m ×
0.25 mm × 1 μm)

(Restek)
No NIST No

Robroeks et al.
(2013)

Asthma Untargeted MB Tedlar® bag TD-GC-TOF-MS Active carbon
RTX-5MS (30 m ×
0.25 mm × 1 μm)

(Restek)
No NIST No

Caldeira et al.
(2012)

Asthma Untargeted MB Tedlar® bag
SPME-GC×GC-

TOF-MS
DVB/Car/PDMS

HP-5 (30 m × 0.32 mm
× 0.25 μm) (Agilent) 1D
and DB-FFAP (0.79 m
× 0.25 mm × 0.25 μm)

(Agilent) 2D

No
In-house library
and Wiley and

NIST
No
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TABLE 1 (Continued) Summary of studies focused on asthma, chronic obstructive pulmonary disease, obstructive sleep apnea, and cystic fibrosis. AB, alveolar breath; ABS, adaptive breath sampler; CF, cystic fibrosis; COPD,
chronic obstructive pulmonary disease; GC, gas chromatography; GC×GC, two-dimensional gas chromatography; LC, lung cancer; MB, mixed breath; MS, mass spectrometry; na, not applicable; nd, not detailed; NIST, National
Institute of Standards and Technology; NTD, needle-trap device; OSA, obstructive sleep apnea; SPME, solid-phase microextraction; TD, thermal desorption tube; TOF, time-of-flight; UI, ultra-inert, VOCs, volatile organic
compounds.

Reference Pathology Methodology Sample Sampling Analysis
technique Sorbent material Column IS

Identification

Library Authentic
STD

Monedeiro et al.
(2021)

LC/COPD/
Asthma

Untargeted/
targeted

MB Tedlar® bag NTD-GC-MS
PDMS/Carbopack/

Carboxen

DB-624 capillary
column (60 m ×

0.32 mm × 1.8 μm)
(Agilent)

No NIST Yes

Pizzini et al. (2018) COPD Untargeted AB Glass syringe TD-GC-TOF-MS
Carbotrap B 80 mg/
Carbopack X 260 mg

Restek-Q-Bond (30 m ×
0.25 mm × 8 μm)

(Restek)
No NIST Yes

Basanta et al.
(2012)

COPD Untargeted AB — TD-GC-TOF-MS Tenax TA/Carbotrap
DB5-MS column

(30 m × 0.25 mm x
0.25 μm) (Agilent)

D5-Bromobenzene NIST No

Phillips et al.
(2012)

COPD Untargeted AB Bio-VOC® TD-GC-MS
Carbograph 1TD/
Carbopack X

HP-5MS (30 m ×
0.25 mm × 0.25 μm)

(Agilent)
No NIST No

van Velzen et al.
(2019)

COPD Untargeted MB Tedlar® bag TD-GC-TOF-MS Tenax GR
VF1-MS column

(30 m × 0.25 mm ×
1 μm) (Varian)

No NIST No

Gaida et al. (2016) COPD Untargeted MB
Stainless steel

tube
TD-GC-MS Tenax TA nd No NIST Yes

Cazzola et al.
(2015)

COPD Untargeted MB Tedlar® bag SPME-GC-MS
DVB/Car/PDMS 50/

30 μg

Equity-5 capillary
column (30 m ×

0.25 mm × 0.25 μm)
(Supelco)

No NIST No

Jareño-Esteban
et al. (2017)

COPD Targeted AB Bio-VOC® TD-GC-MS
Tenax TA/graphitized
carbon black/carbonized

molecular sieve

DB-1 (30 m ×
0.25 mm × 1 μm)

(Agilent)
Hexamethylcyclotrisiloxane na Yes

Bayrakli et al.
(2016)

OSA Targeted AB Bio-VOC® TD-GC-MS Tenax TA 200 mg
DB-5 (30 m ×

0.25 mm) (Agilent)
No na Yes

Aoki et al. (2017) OSA Targeted MB
DuPont™
Tedlar® bag

TD/NTD-GC-MS nd nd No na Yes

Woollam et al.
(2022b) CF Untargeted MB Tedlar® bag SPME-GC-MS DVB/Car/PDMS

HP-5MS (30 m ×
0.25 mm × 0.25 μm)

(Agilent)
No nd No

van Horck et al.
(2021)

CF Untargeted MB Tedlar® bag TD-GC-TOF-MS
Carbograph 1TD/
Carbopack X

nd No NIST No
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TABLE 2 VOCs reported in asthma and chronic obstructive pulmonary disease (≥2 studies). EO, eosinophilic asthma; na, not applicable; NEO, neutrophilic asthma;
ppbv, parts per billion by volume; *LOD, Limit of detection.

Asthma

No Compound name CAS-N Formula Chemical
class

Sign of
alteration

Concentration
(patients)

Concentration
(controls)

Unit Reference

1 1-Propanol 71-23-8 C3H8O Alcohol

Upregulated 9.94 14.59 ppbv
Monedeiro
et al. (2021)

Downregulated
(EO)/

Upregulated
(NEU)

na na na

Schleich et al.
(2019)

2 Phenol 108-95-2 C6H6O Alcohol

Downregulated na na na
Meyer et al.

(2014)

Upregulated <1.43* <1.43* ppbv
Monedeiro
et al. (2021)

3 Nonanal 124-19-6 C9H18O Aldehyde

Altered na na na
Van Vliet
et al. (2017)

Altered na na na
Caldeira

et al. (2012)

Upregulated na na na
Schleich et al.

(2019)

4 Octanal 124-13-0 C8H16O Aldehyde

Downregulated na na na
Meyer et al.

(2014)

Altered na na na
Van Vliet
et al. (2017)

5 Benzene 71-43-2 C6H6
Aromatic

hydrocarbon

Upregulated na na na
Meyer et al.

(2014)

Altered na na na
Robroeks

et al. (2013)

6 m-Cymene 535-77-3 C10H14
Aromatic

hydrocarbon

Upregulated na na na
Gahleitner
et al. (2013)

Altered na na na
Van Vliet
et al. (2016)

Upregulated 0.32 0.61 ppbv
Monedeiro
et al. (2021)

7 2,4-Dimethylheptane 2213-23-2 C9H20
Branched

hydrocarbon

Downregulated na na na
Meyer et al.

(2014)

Upregulated na na na
Smolinska
et al. (2014)

8 2-Methylpentane 107-83-5 C6H14
Branched

hydrocarbon

Upregulated 4.59 1.24 ppbv
Monedeiro
et al. (2021)

Upregulated na na na
Smolinska
et al. (2014)

9 3-Methylpentane 96-14-0 C6H14
Branched

hydrocarbon

Upregulated 1.07 0.24 ppbv
Monedeiro
et al. (2021)

Altered na na na
Robroeks

et al. (2013)

10 1,2-Dimethylcyclohexane 583-57-3 C8H16
Cyclic

hydrocarbon

Altered na na na
Van Vliet
et al. (2016)

Altered na na na
Van Vliet
et al. (2017)

(Continued on following page)
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TABLE 2 (Continued) VOCs reported in asthma and chronic obstructive pulmonary disease (≥2 studies). EO, eosinophilic asthma; na, not applicable; NEO,
neutrophilic asthma; ppbv, parts per billion by volume; *LOD, Limit of detection.

Asthma

No Compound name CAS-N Formula Chemical
class

Sign of
alteration

Concentration
(patients)

Concentration
(controls)

Unit Reference

11 2-Methylfuran 534-22-5 C5H6O Ether

Altered na na na
Van Vliet
et al. (2016)

Altered na na na
Van Vliet
et al. (2017)

12 Decane 124-18-5 C10H22
Hydrocarbon
(saturated)

Altered na na na
Caldeira

et al. (2012)

Altered na na na
Sola-

Martínez
et al. (2021)

13 Dodecane 112-40-3 C12H26
Hydrocarbon
(saturated)

Downregulated na na na
Meyer et al.

(2014)

Upregulated 6.27 5.18 ppbv
Monedeiro
et al. (2021)

Altered na na na
Caldeira

et al. (2012)

14 Tetradecane 629-59-4 C14H30
Hydrocarbon
(saturated)

Altered na na na
Monedeiro
et al. (2021)

Altered na na na
Caldeira

et al. (2012)

15 Undecane 1120-21-4 C11H24
Hydrocarbon
(saturated)

Upregulated 1.78 0.80 ppbv
Monedeiro
et al. (2021)

Downregulated na na na
Schleich et al.

(2019)

16 Acetone 67-64-1 C3H6O Ketone

Altered na na na
Sola-

Martínez
et al. (2021)

Downregulated na na na
Smolinska
et al. (2014)

17 Acetonitrile 75-05-8 C2H3N
Nitrogen-
containing

Altered na na na
Brinkman
et al. (2017)

Altered na na na
Monedeiro
et al. (2021)

Chronic obstructive pulmonary disease

No Compound name CAS-N Formula Chemical
class

Sign of
alteration

Concentration
(patients)

Concentration
(controls) Unit Reference

1 Isopropanol 67-63-0 C3H8O Alcohol

Downregulated na na na
Cazzola et al.

(2015)

Upregulated 258.37 10.55 ppbv
Monedeiro
et al. (2021)

2 Phenol 108-95-2 C6H6O Alcohol

Altered na na na
Gaida et al.

(2016)

Altered na na na
Phillips et al.

(2012)

3 Decanal 112-31-2 C10H20O Aldehyde

Altered na na na
Basanta et al.

(2012)

Altered na na na
Phillips et al.

(2012)

(Continued on following page)
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in the validation cohort (AUCs 0.670–0.900, 71.0%–100%
sensitivity, and 60.0%–70.0% specificity), although the accuracy
decreased when asthmatic patients were compared to the non-
asthmatic groups separately (AUCs 0.680–0.810 for NA-AD and
0.603–0.750 for NA-NAD).

Furthermore, two articles studied asthma phenotypes and
endotypes. Schleich et al. (2019) conducted a study on a group of
asthmatic patients classified by inflammatory subtypes. From all
binary comparisons, 12 VOCs were selected, of which eight were
identified as candidate biomarkers. Among them, two VOCs

TABLE 2 (Continued) VOCs reported in asthma and chronic obstructive pulmonary disease (≥2 studies). EO, eosinophilic asthma; na, not applicable; NEO,
neutrophilic asthma; ppbv, parts per billion by volume; *LOD, Limit of detection.

Chronic obstructive pulmonary disease

No Compound name CAS-N Formula Chemical
class

Sign of
alteration

Concentration
(patients)

Concentration
(controls) Unit Reference

4 Hexanal 66-25-1 C6H12O Aldehyde

Upregulated na na na
Jareño-

Esteban et al.
(2017)

Altered na na na
Basanta et al.

(2012)

Altered na na na
Phillips et al.

(2012)

5 Nonanal 124-19-6 C9H18O Aldehyde

Upregulated na na na
Jareño-

Esteban et al.
(2017)

Altered na na na
Basanta et al.

(2012)

6 Benzene 71-43-2 C6H6
Aromatic

hydrocarbon

Upregulated na na na
Gaida et al.

(2016)

Altered na na na
Phillips et al.

(2012)

7 Toluene 108-88-3 C7H8
Aromatic

hydrocarbon

Upregulated na na na
Gaida et al.

(2016)

Altered na na na
Phillips et al.

(2012)

Altered na na na
van Velzen
et al. (2019)

8 Limonene 138-86-3 C10H16
Cyclic

hydrocarbon

Downregulated na na na
Cazzola et al.

(2015)

Altered na na na
van Velzen
et al. (2019)

Altered na na na
Phillips et al.

(2012)

Upregulated 1.71 1.57 ppbv
Monedeiro
et al. (2021)

9 Butane 106-97-8 C4H10
Hydrocarbon
(saturated)

Altered na na na
Phillips et al.

(2012)

Downregulated na na na
Pizzini et al.

(2018)

10 Tridecane 629-50-5 C13H28
Hydrocarbon
(saturated)

Altered ns ns ns
Gaida et al.

(2016)

Upregulated 28.36 3.43 ppbv
Monedeiro
et al. (2021)

11 Acetic acid 64-19-7 C2H4O2 Organic acid

Altered na na na
Gaida et al.

(2016)

Altered na na na
Phillips et al.

(2012)
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(hexane and 2-hexanone), along with 1-propanol, were selected from
the comparison between eosinophilic and paucigranulocytic value (e.i.
0.680) AUC. Meanwhile, the comparison between neutrophilic and
paucigranulocytic yielded two VOCs (3-tetradecene and pentadecene)
in the discovery phase and another two (undecane and nonanal) in the
replication value (e.i. 0.850 and 0.700, respectively) AUC.
Furthermore, when comparing neutrophilic to eosinophilic, three
VOCs (3,7-dimethylnonane, 1-propanol, and nonanal) were
identified in the discovery phase value (e.i. 0.920) AUC, although
only nonanal, along with hexane, showed the best classification
performance in the replication phase value (e.i. 0.710) AUC. As a
result, two (hexane and 2-hexanone) and three (nonanal, 1-propanol,
and hexane) VOCs could discriminate eosinophilic and neutrophilic
asthma from other phenotypes value (e.i. 0.720 and 0.730,
respectively) AUC. Moreover, Meyer et al. (2014), besides building
a model based on 16 VOCs that could discriminate asthmatic patients
fromHC (100% sensitivity and 91.1% specificity), performed a cluster
analysis that included clinical, medication features, and four VOCs
that were only present in asthmatic patients, to identify different
asthma endotypes. As a result, seven clusters were formed, two with
non-allergic asthma and five with allergic asthma. Some clusters
presented high clinical similarity but different profiles of VOCs, as
well as similar profiles and different clinical symptoms. Although no
common VOCs were found between these two studies, eight VOCs
were shared with others (Table 2).

3.2.2 COPD
COPD is characterized by chronic respiratory symptoms, such as

dyspnea, cough, production of sputum, and/or exacerbations, caused by
abnormalities in the airways (bronchitis and bronchiolitis) and/or the
alveoli (emphysema), resulting in persistent and progressive airflow
obstruction. The causes of the pathology are environmental exposures
(tobacco smoking, toxic particles, and gases) and/or genetic risk factors.
According to the WHO, 3.23 million people died from COPD in 2019,
with 90% of deaths (under the age of 70) occurring in low- andmiddle-
income countries. COPD often coexists with chronic pathologies, such
as lung infections and cancer, heart problems, depression, and anxiety
(GOLDCOPD, 2023).

COPD diagnosis relies on spirometry, with weak specificity.
Additional tests, lung imaging and arterial blood gas tests, can help
assess pathology severity. The symptoms develop slowly, and even
though COPD is not curable, different treatments can be applied.
However, under- or misdiagnosis can lead to lack/incorrect treatment
(GOLDCOPD, 2023), and most patients are diagnosed when the lung
damage is irreversible (Fazleen andWilkinson, 2020). Detecting early or
pre-COPD cases, where clinical signs are absent or airflow obstruction
is not evident in spirometry, can be challenging. Breath tests offer a
valuable tool for identifying these cases that diagnostic tests may miss.

Eight studies are indicated in Tables 1, 2; Supplementary Table S4.
Jareño-Esteban et al. (2017) targeted five VOCs (hexanal, heptanal,
nonanal, propanoic acid, and nonanoic acid) as potential biomarkers.
Although hexanal and nonanal were upregulated in COPD patients
compared to non-smokers (HC), no significant VOCs were found
between COPD patients and active smokers (HC). Both these VOCs
were reported in previous studies (Table 2).

Four studies compared COPD patients with HCs, two being
performed in the same geographical area (UK), in different research
groups. Phillips et al. (2012) applied different machine learning

methods, which included a step of FS, to compare the whole group of
COPD with HCs, active with former smokers within the COPD
group, and COPD with HCs (non-smokers). Of the automatically
generated VOCs in the three comparisons (12, 13, and 10,
respectively), six overlapped. Likewise, two of these six shared
VOCs were reported by Gaida et al. (2016), and another six
VOCs were reported in different studies (Table 2). Moreover,
Basanta et al. (2012) built a classification model containing
11 VOCs after data reduction (UVA and PCA), with an accuracy
of 70.0%. The groups were further divided and compared by
smoking status, improving the performance of the model,
especially when active smokers were compared (91.0% accuracy).
Furthermore, four VOCs were correlated with sputum
eosinophils ≥1%, one VOC with sputum eosinophils ≥2%, and
four VOCs with exacerbation episodes (≥2/year). The prediction
models showed an accuracy of 75.0% and 88.0% for sputum
eosinophils ≥1% and sputum eosinophils ≥2%, respectively, and
83.0% for exacerbations, after LOOCV. Of these 11 VOCs,
3 aldehydes (decanal, hexanal, and nonanal) were shared with
Jareño-Esteban et al. (2017) and Phillips et al. (2012) (Table 2).
Additionally, Gaida et al. (2016) studied two cohorts of COPD
patients and HCs from different locations, which were split by
smoking habits. Overall, 14 VOCs showed potential as COPD
biomarkers, with 4 being reported also by Phillips et al.
(2012) (Table 2).

The study byMonedeiro et al. (2021) was previouslymentioned in
the LC/asthma section, with untargeted and targeted analyses to build
classificationmodels that distinguish COPD, LC, asthma patients, and
HCs, yielding 85.7% and 91% overall accuracy (untargeted and
targeted, respectively). Two of these VOCs (isopropyl alcohol and
limonene) were shared with Cazzola et al. (2015), and two additional
VOCs were common with other studies (Table 2).

The remaining studies focused on COPD exacerbations. Pizzini
et al. (2018) applied UVA and post hoc analysis between pairwise
combinations, resulting in 12 significant VOCs. Additionally, four
VOCs were classified as discriminative for acute exacerbation (A)
COPD, two VOCs were classified as discriminative for stable (S)
COPD, and two VOCs as associated with COPD. The RF model
containing these 12 VOCs could classify COPD patients value (e.i.
0.970, 78.0% sensitivity, and 91.0% specificity) AUC. Meanwhile,
van Velzen et al. (2019) sampled the same cohort of COPD patients
before (baseline), during, and after (recovery) an exacerbation
episode. The UVA between the Clinical COPD Questionnaire
(CCQ) symptom scores and VOCs resulted in 10 discriminative
compounds. The subsequent MVA discriminated between baseline
and exacerbation and between exacerbation and recovery with
accuracies of 71.0% and 75.0% , respectively.

3.2.3 OSA
OSA is a respiratory disorder with an incidence of 24% in men

and 9% in women (30–60 years of age), affecting nearly 1 billion
people worldwide (Lv et al., 2023). OSA is characterized by the
repeated collapse of the pharynx, leading to episodes of apnea or
hypopnea accompanied by decreased oxygen levels and interruptions
in sleep. It is associated with poor sleep quality and daytime sleepiness,
as well as an increased risk for several metabolic and cardiovascular
pathologies (arterial hypertension, diabetes, etc.), and depression
(Lévy et al., 2015; Schwarz et al., 2017; Nowak et al., 2021).
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Current OSA diagnosis relies on sleep examination (monitoring
sleep stages and cycles), mainly through polysomnography, a costly,
time-consuming, and inconvenient test. Although home tests are
available, these devices are subject to more measurement errors
compared to polysomnography (Kapur et al., 2017). Moreover,
several nights should be monitored to obtain a more reliable
diagnosis (Stöberl et al., 2017). Therefore, breath tests are
presented as a potential tool for both the screening and
diagnosis of OSA.

Two independent targeted studies focusing on OSA are included
in Table 1 and Supplementary Table S4. Bayrakli et al. (2016) studied
the levels of acetone and butanol in patients before and after
sleep. Although butanol was upregulated in patients compared to
HC (after sleep), this VOC was not significantly increased between
patients (before vs. after sleep). Conversely, Aoki et al. (2017)
focused on 14 VOCs, which included aromatic, alicyclic, chain
hydrocarbons, isoprene, acetone, and ethanol, and classified OSA
patients into moderate, severe, and most severe in terms of the
apnea–hypopnea index (AHI). The UVA yielded four VOCs
upregulated in all OSA patients, four VOCs in severe and most
severe OSA patients, and three VOCs exclusively in the most severe
OSA patients compared to HCs. Furthermore, four of these VOCs
(ethylbenzene, p-xylene, phenylacetic acid, and nonane) showed
increased levels according to OSA severity, being correlated with the
AHI, arousal index, and duration of percutaneous oxygen saturation
(SpO2) ≤ 90%. Additionally, the levels of acetone and isoprene
decreased after continuous positive airway pressure treatment.
Nevertheless, no common VOCs were found between these
two studies.

3.2.4 Cystic fibrosis
Cystic fibrosis (CF) is an autosomal recessive genetic pathology

caused by a mutation in the cystic fibrosis transmembrane
conductance regulator (CFTR) gene. This mutation disrupts the
cells’ electrolyte transport system, affecting mainly organs with
secretory functions, such as as the lungs, pancreas, and
reproductive system (Cystic Fibrosis-Causes, 2023). In the lungs,
altered sodium absorption results in thick, hardened secretions,
increasing the risk of respiratory infections, inflammation, and
oxidative stress (Roesch et al., 2018). Pulmonary exacerbations
(PEx) are frequent events in the progression of the pathology,
potentially leading to permanent lung function loss, reduced
quality of life, and decreased survival. PEx treatment includes
antibiotics, but delayed symptom onset worsens outcomes (Goss,
2019). The identification of PEx relies on symptomatology, clinical
evaluation, and the measurement of changes in forced expiratory
volume in one second (FEV1pp) using spirometry devices (Goss,
2019). The use of breath tests to predict PEx in CF is a promising
approach. In two independent untargeted studies, CF PEx in
children was studied, as shown in Table 1; Supplementary Table
S4. van Horck et al. (2021) performed a 1-year observational pilot
study, recruiting patients from three different centers. The RFmodel
with the nine most discriminating VOCs could predict 79.0% of
patients with stable or upcoming PEx (within 7 days) (79.0%
sensitivity and 78.0% specificity). However, no single VOC was
found significantly altered when applying UVA between stable and
CF PEx patients. Meanwhile, Woollam et al. (2022b) divided the CF
patients into CF baseline (not suffering from PEx) and CF PEx. Four

VOCs were found to be correlated with FEV1pp at the time of breath
collection, of which two VOCs (4-methyl-octane and 3,7-
dimethyldecane) were further correlated with changes in
FEV1pp. Moreover, four VOCs were found to be significantly
different between CF baseline and CF PEx patients: 3,7-
dimethyldecane, durene, and 5-methyltridecane were downregulated,
and 2,4,4-trimethyl-1,3-pentanediol 1-isobutyrate was upregulated in
PEx patients. Although both studies aimed to identify differential VOCs
between CF stable and CF PEx patients, none of the reported
were shared.

3.3 VOCs in infectious pathologies

3.3.1 Pneumonia (CAP/HAP/VAP)
CAP, HAP, and VAP are lower respiratory tract infections

associated with high morbidity, mortality, and healthcare costs
(Ferreira-Coimbra et al., 2020; Munro et al., 2021; Alnimr, 2023).
HAP is developed after 48 h of hospitalization, while VAP is the
most frequent infection in the intensive care unit (ICU), developed
after endotracheal intubation (Modi and Kovacs, 2020). The pathogens
involved encompass Gram-positive bacteria (Staphylococcus aureus and
Streptococcus pneumoniae), Gram-negative bacteria (Pseudomonas
aeruginosa, Haemophilus influenzae, Klebsiella pneumoniae, and
Acinetobacter baumannii), and fungi (Aspergillus spp. and Candida
spp.) (Filipiak et al., 2013, 2015).

Current diagnostics rely on clinical, radiological, and
microbiological cultures of respiratory samples [endotracheal
aspirates, bronchoalveolar lavage (BAL), and protected specimen
brush], which present high inter-variability and moderate sensitivity
and specificity. The microbiological confirmation can take several
days, leading to overtreatment with antibiotics until the specific
pathogen is identified (Fernando et al., 2020; Modi and Kovacs,
2020). Therefore, there is an urgent requirement for less invasive and
faster diagnostic techniques.

In the case of VAP, van Oort et al. (2017a) presented a protocol
for a prospective multicenter study named BreathDx (Molecular
Analysis of Exhaled Breath as Diagnostic Test for Ventilator-
Associated Pneumonia), aiming to develop a breath test capable
of distinguishing suspected VAP patients, with a 99% sensitivity for
culture-positive cases. It also aimed to identify unique VOC patterns
that could predict specific pathogen infections, holding promise for
more efficient VAP diagnosis and treatment.

Seven studies focusing on VAP, and one on CAP/HAP, are
summarized in Tables 3–5. To date, two studies have been
conducted in relation to BreathDx. Van Oort et al. (2022)
performed an untargeted study within a group of intubated and
ventilated ICU patients with suspected VAP, further divided into
culture-positive (CP) and culture-negative (CN) BAL samples.
Moreover, two platforms were used to cover a wider range of
compounds: GC-MS-1 for more volatile compounds and GC-
MS-2 for heavier and cyclic volatile compounds. The
discriminative model that included 20 VOCs previously selected
by UVA andMVA showed 0.830–0.870 AUCs, even when applied to
a different set of samples. Furthermore, Ahmed et al. (2023)
performed a targeted study focusing on microbial VOCs
(mVOCs) previously selected from bacterial species associated
with VAP (S. aureus, P. aeruginosa, K. pneumoniae, and
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Escherichia coli). In the case of CP for S. aureus, two VOCs were
upregulated compared to the other patients value (e.i. 0.790–0.870)
AUC. In the case of CP for P. aeruginosa, two VOCs were
downregulated compared to CP for other pathogens, and one of
these VOCs (identified as 3-methylbutanal) was common with CP
for S. aureus. Moreover, those VAP patients with CP for bacteria
known to metabolize tryptophan (E. coli, Klebsiella oxytoca, and H.
influenzae) presented increased levels of indole. Despite the fact that
both studies followed the same BreathDx protocol, no shared VOCs
were identified. However, two VOCs (dimethyl sulfide and
tetrahydrofuran) reported by Van Oort et al. (2022) and another
two (3-methylbutanal and acetone) by Ahmed et al. (2023) were also
found in other studies (Table 5).

Additionally, several research groups participating in BreathDx
had previously conducted studies focusing on CAP/HAP/VAP, one
aiming at possible biomarkers for CAP/HAP (Van Oort et al.,
2017b). In this study, patients were categorized based on their
clinical suspicion, namely, probable CAP/HAP patients (high
clinical suspicion), possible CAP/HAP patients (low clinical
suspicion), colonized patients (without symptoms of pneumonia),
and controls. Additionally, the entire patient cohort was divided into
CP and CN. In the UVA, probable CAP/HAP patients and those
who were CP presented 11 and 52 downregulated VOCs,
respectively, and the classification models could discriminate
between groups based on their clinical suspicion, and among CP
and CN, even after LOOCV value (e.i. 0.730 and 0.690, respectively)
AUC. While this study differed from the others, since they focused
on CAP/HAP, several VOCs were shared, such as acetone, which
was described by Ahmed et al. (2023), and 2-methylcyclopentanone,
as reported by Fowler et al. (2015) (Table 5). The aforementioned
study (Fowler et al., 2015) was performed by another research group
involved in BreathDx, where ventilated ICU patients were sampled
over their stay at five different time points to identify the VOCs
that could be used to predict the risk of developing VAP. The
model could separate CP and CN patients (sensitivity 98.0% and
specificity 97.0%), and eight VOCs were selected as potential
predictors (four downregulated and four upregulated). Several
of these VOCs were common in different studies, such as
ethanol, which was reported in a total of four independent
studies (Table 5). In this regard, Schnabel et al. (2015)
constructed an RF model based on 12 VOCs, such as ethanol,
which correctly classified 74.2% of VAP and non-VAP patients
(75.8% sensitivity, 73.0% specificity, and 0.870 AUC).
Furthermore, when searching these VOCs in human and VAP-
causing bacteria pathways, ethanol was found to be involved in six
distinct pathways. Although ethanol seems to be a promising
biomarker, its involvement in VAP development should be
further studied, as this VOC participates in many physiological
and pathological processes, such as OS, and its origin can be
attributed to alcohol consumption.

Additionally, two studies focused on mVOCs previously
detected in vitro from different cultures of pathogens associated
with VAP. Filipiak et al. (2015) annotated 13 mVOCs in CP for S.
aureus and 11 mVOCs in CP for Candida albicans. Considering the
possible coexistence of VAP-causing pathogens, the study further
aimed to explore and assess differential mVOCs that could
potentially be associated with the progression of VAP caused by
each pathogen. In this regard, 4-heptanone was found to be possibly

related to C. albicans; propane and butane to S. aureus; acetanilide,
2-pentanone, and dimethyl sulfide to E. coli; 3-methyl-1-butene to
H. influenzae; 1-undecene to P. aeruginosa; and n-hexane, iso-
butane, and 2-methyl-1-butene to S. pneumoniae. Likewise, Gao
et al. (2016) studied the presence of mVOCs in VAP patients,
focusing on A. baumannii. For this purpose, A. baumannii VAP
patients, A. baumannii colonized patients, and controls were
compared, yielding 19 significant VOCs by UVA, 4 being also
detected in in vitro A. baumannii cultures. Moreover, 8 of
these VOCs were considered derived from A. baumannii, being
able to differentiate A. baumannii VAP patients from colonized
patients, as well as from controls (0.880 and 0.890 AUCs,
respectively). Both studies reported three VOCs in common.
Additionally, one VOC was reported by Filipiak et al. (2015). 3-
Methylbutanal was also found in the BreathDx study (Ahmed et al.,
2023) (Tables 5).

3.3.2 COVID-19
In the past 3 years, COVID-19 has led to approximately

750 million confirmed cases and nearly 7 million deaths
worldwide according to the WHO (WHO Coronavirus
Dashboard, 2023). Several diagnostic tests were developed to
contain the outbreak, such as reverse-transcription polymerase
chain reaction (RT-PCR) for SARS-CoV-2 RNA detection in
nasopharyngeal or oral swab samples, and antigen tests for spike
(S) protein and nucleocapsid (N) protein detection. However, these
tests have variable false-negative rates (Kucirka et al., 2020), with
antigen tests being less sensitive and specific than RT-PCR (Scohy
et al., 2020). Furthermore, these tests require multiple reagents, and
in the case of RT-PCR tests, specialized equipment and trained
technicians are required.

Despite the vaccination of over 13 million people worldwide
(WHO Coronavirus Dashboard, 2023), COVID-19 remains an
ongoing public health challenge. The potential emergence of
more transmissible variants, changes in clinical symptoms,
immune evasion (even in vaccinated individuals), and the
possibility of reinfection are significant concerns. Additionally,
distinguishing COVID-19 from other upper respiratory infections
is crucial for isolation and transmission prevention. Consequently,
breath tests, particularly in resource-limited settings, could offer a
rapid means of diagnosing COVID-19.

Five studies that focused on COVID-19 are included in Tables 3
and 4. Two studies were conducted within a cohort of hospitalized
patients. The targeted study by Berna et al. (2021) was performed in
a cohort of pediatric patients. Six of the 84 targeted VOCs were
upregulated in COVID-19 patients, which were further validated in
an independent cohort. Moreover, the cumulative abundance of
these six VOCs was evaluated as a diagnostic strategy (0.920 AUC,
91.0% sensitivity, and 75.0% specificity). Likewise, Ibrahim et al.
(2021) identified six VOCs (seven features) that could discriminate
COVID-19-positive test patients and COVID-19-negative test
patients (0.836 AUC, 68.0% sensitivity, and 85.0% specificity),
although the model based on 11 VOCs showed 0.659 AUC,
discriminating patients based on clinical suspicion. In both
comparisons, only two VOCs, 1-propanol and benzaldehyde,
were common, suggesting that the specific metabolic alterations
caused by COVID-19 are not necessarily related to symptomatology,
especially if the symptoms are shared with other upper respiratory
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TABLE 3 Summary of studies focused on pneumonia and COVID-19. AB, alveolar breath; BSG, breath-gas sampler; CAP, community-acquired pneumonia; GC×GC, two-dimensional gas chromatography; HAP, hospital-acquired
pneumonia; MB, mixed breath; MS, mass spectrometry; na, not applicable; nd, not detailed; NIST, National Institute of Standards and Technology; QTOF, quadrupole time-of-flight; SPME, solid-phase microextraction; TD,
thermal desorption tube; TOF, time-of-flight; VAP, ventilator-associated pneumonia.

Reference Pathology Methodology Sample Sampling Analysis
technique Sorbent material Column IS

Identification

Library Authentic
STD

Van Oort et al.
(2022)

VAP Untargeted MB BGS TD-GC-MS
Carbograph 5TD
300 mg/Tenax GR

90 mg

VF1-MS column (30 m ×
0.25 mm × 1 μm) (Varian)

Acetone-D8, hexane-D14,
toluene-D8, and xylene-D10

NIST No

Van Oort et al.
(2017a)

CAP/HAP Untargeted MB — TD-GC-MS Tenax GR 250 mg
VF1-MS column (30 m ×
0.25 mm × 1 μm) (Varian)

No NIST No

Gao et al. (2016) VAP Untargeted MB — TD-GC-MS Tenax TA
Rtx-5MS (30 m ×

0.25 mm × 0.25 μm)
No NIST No

Fowler et al.
(2015)

VAP Untargeted MB — TD-GC-TOF-MS Tenax TA/Carbotrap
RTX-5 amine column
(30 m × 0.25 mm ×
0.5 μm) (Restek)

4-Bromofluorobenzene NIST No

Schnabel et al.
(2015)

VAP Untargeted MB Tedlar® bag TD-GC-TOF-MS
Carbograph 1TD/
Carbopack X

RTX-5MS (30 m ×
0.25 mm × 1 μm)

No NIST No

Filipiak et al.
(2015)

VAP Targeted AB Glass syringe TD-GC-MS
Carbotrap B 80 mg/
Carbopack X 260 mg

PoraBOND Q (25 m ×
0.32 mm × 5 μm)

(Varian)
No NIST No

Ahmed et al.
(2023)

VAP Targeted MB BGS TD-GC-MS Tenax GR 200 mg
DB-5MS (30 m ×

0.25 mm × 0.25 μm)
(Agilent)

4-Bromofluorobenzene na Yes

Cen et al. (2023) COVID-19 Untargeted AB ReCIVA
TD-GC×GC-
TOF-MS

Tenax TA/
Carbograph 5TD

DB-624 (30 m ×
0.25 mm × 1.4 μm)
(Agilent) 1D and DB-
WAX column (5 m ×
0.25 mm × 0.25 μm)

(Agilent) 2D

Bromochloromethane,
chlorobenzene-d5, and 1,4-

dichlorobenzene-d4
NIST Yes

Myers et al. (2023) COVID-19 Untargeted MB Tedlar® bag TD-GC-TOF-MS
Tenax TA/

Carbograph 1TD
nd Toluene-D8 nd Yes

Woollam et al.
(2022a)

COVID-19 Untargeted MB Tedlar® bag
SPME-GC-
QTOF-MS

DVB/Car/PDMS
HP-5MS (30 m ×

0.25 mm × 0.25 µm)
(Agilent)

No nd Yes

Ibrahim et al.
(2021) COVID-19 Untargeted MB Tedlar® bag TD-GC-MS Carbograph 1TD

DB-5MS (60 m ×
0.25 mm × 0.25 μm)

(Agilent)

Toluene-d8, phenanthrene-d10,
and n-octane-d18

In-house
library Yes

Berna et al. (2021) COVID-19 Targeted MB
SamplePro
FlexFilm

Sample Bag

TD-GC×GC-
TOF-MS

Tenax/Carbograph/
Carboxen

Stabilwax (30 m ×
250 μm × 0.25 μm)
(Restek) 1D and Rtx-

200MS (5 m × 250 μm ×
0.1 μm) (Restek) 2D

Bromochloromethane, 1,4-
difluorobenzene, chlorobenzene-
D5, and 4-bromofluorobenzene

na Yes
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TABLE 4 Summary of group comparisons, statistical approaches, and identified VOCs in the studies focused on pneumonia and COVID-19. CAP, community-
acquired pneumonia; CLZ, airway colonized; CN, culture-negative; CP, culture-positive; CTR, controls; FU COVID-19, follow-up samples of COVID-19 patients; HAP,
hospital-acquired pneumonia; MVA, multivariate analysis; non-VAC, non-vaccinated; non-VAP, non-ventilator–associated pneumonia; PR CAP/HAP, probable
community-acquired pneumonia/hospital-acquired pneumonia; PS CAP/HAP, possible community-acquired pneumonia/hospital-acquired pneumonia; UVA,
univariate analysis; VAC, vaccinated; VAP, ventilator-associated pneumonia; VOCs, volatile organic compounds.

Reference Pathology Comparison Statistical
approach Significant VOC Detail

Van Oort et al.
(2022)

VAP CP (n = 52) vs. CN (n = 56) UVA/MVA

1-Propenylbenzene (down), 2-
bromophenol (down), 2-

propenylbenzene (down), 2-
methyldecane (up), 2,2-

dimethyldecane* (up), 2,2,4,4-
tetramethyloctane* (up), 2,6-

difluorobenzaldehyde (up), 2,6,7-
trimethyldecane (up), 3-

methylheptane** (down), 6-methyl-5-
hepten-2-one (up), cyclohexane (down),
cyclohexanol (up), dimethyl sulfide*
(up), enflurane (up), formaldehyde*
(up), isopropylbenzene (down), m-di-

tert-butylbenzene (down), and
tetrahydrofuran (up)

*Significant VOCs in the UVA;
**VOC reported in both

platforms

Van Oort et al.
(2017a)

CAP/HAP

PR CAP/HAP (n = 12) vs. PS CAP/
HAP (n = 21) vs. CLZ (n = 13) vs.
CTR (n = 47)/CP (n = 25) vs. CN

(n = 68)

UVA/MVA

1-Pentanol* (down), 1-propanol**
(down), 2-ethoxy-2-methyl-propane**
(down), 2-methylcyclopentanone*
(down), 5-methyl-2-heptanone*
(down), acetone (down), carbon

disulfide (down), cyclohexene (down),
cyclohexanone* (down),

hexafluoroisopropanol (down), methyl
isobutyl ketone (down), and sevoflurane

(down)

*VOCs colonized vs. non-
colonized; **common VOCs PR
CAP/HAP vs. CTR and colonized

vs. non-colonized

Gao et al. (2016) VAP
VAP (n = 20) vs. CLZ (n = 20) vs.

CTR (n = 20)
UVA/MVA

1,5-Dimethyl-naphthalene (a), 1-
undecene** (up), 2,6,10-trimethyl-
dodecane* (up), 2-butyl-1-octanol*

(up), 2-ethyl-1-hexanol (a), 5-methyl-5-
propyl-nonane* (up), benzaldehyde (a),

butylated hydroxytoluene (a),
cyclohexanone (a), decanal** (up),

ethanol (a), isoprene (a), longifolene**
(up), n-nonylcyclohexane (a), nonanal*
(up), tetradecane** (up), toluene (a), α-

cedrene (a), and α-funebrene (a)

*Significant VOCs derived from
Acinetobacter baumannii;

**common VOCs in vitro and in
vivo

Fowler et al.
(2015)

VAP CP (n = 15–26) vs. CN (n = 31–20) MVA

2,6,11,15-Tetramethyl-hexadecane (up),
2-methyl cyclopentanone (down), 3-
carene (up), ethanol (down), heptane
(down), n-butyric acid 2-ethylhexyl

ester (up), N-cyclohexyl-N′(2-
hydroxyethyl)thiourea (down), and

nonanal (up)

Schnabel et al.
(2015)

VAP VAP (n = 32) vs. non-VAP (n = 68) MVA

Acetone (down), acrolein (down),
butane, 2-methyl (up), carane (up),
dodecane (down), ethanol (up),

ethylbenzene (up), tetrahydrofuran
(down), heptane (up), isopropyl alcohol

(down), tetradecanal (up), and
tetradecane (up)

Filipiak et al.
(2015)

VAP VAP (n = 22) vs. non-VAP (n = 6) -

(E)-2-Butene (a), (Z)-2-butene (a), 1,3-
butadiene (a), 1-undecene***** (a), 2-

methyl-1-butene****** (a), 2-
methylpropene (a), 2-pentanone*** (a),

3-methylbutanal (a), 3-methyl-1-
butene**** (a), 4-heptanone** (a),
acetaldehyde (a), acetic acid (a),

acetonitrile*** (a), benzaldehyde (a),
butane* (a), dimethyl sulfide*** (a),

ethanol (a), ethyl acetate (a), hexanal (a),
hexane****** (a), iso-butane****** (a),
methacrolein (a), methanol (a), methyl
vinyl ketone (a), propanal (a), and

propane* (a)

*VOCs related to the course of
infection with Staphylococcus
aureus; **VOCs related to the

course of infection with Candida
albicans; ***VOCs related to the

course of infection with
Escherichia coli; ****VOCs

related to the course of infection
with Haemophilus influenzae;

*****VOCs related to the course
of infection with Pseudomonas
aeruginosa; *******VOCs related
to the course of infection with
Streptococcus pneumoniae

(Continued on following page)
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infections. These two studies presented one VOC in common,
octanal (Table 5).

Conversely, two other studies were conducted on non-hospitalized
COVID-19-positive patients. Woollam et al. (2022a) enrolled a cohort
undergoing COVID-19 testing due to symptom onset, contact with
symptomatic individuals, or mitigation testing. When COVID-19
patients were compared with HC, 41 VOCs were found to be
significantly altered, mostly upregulated. Curiously, COVID-19
patients were divided into two subclasses based on their VOC
profiles, one of which presented 4 of the 41 VOCs upregulated
compared to the other subclass and HCs. Furthermore, the set of

41 VOCs could distinguish among groups with 96.0% accuracy,
increasing to 100% when the 16 most significant VOCs were
selected. The predictive classification model based on three VOCs
(hexyl acetate, cedrene, and 3,5,5-trimethylhexanal) presented 100%
sensitivity and 92.0% specificity value (e.i. 0.990) AUC. Lastly,
11 COVID-19 patients were sampled after recovery, and 34 VOCs
recovered baseline levels, although five were still upregulated. When
including this group in the final model, recovered COVID-19 patients
clustered with controls and could be distinguished from COVID-19
patients with 90.0% accuracy. Myers et al. (2023) included patients
presenting upper respiratory infections from two different ambulatory

TABLE 4 (Continued) Summary of group comparisons, statistical approaches, and identified VOCs in the studies focused on pneumonia and COVID-19. CAP,
community-acquired pneumonia; CLZ, airway colonized; CN, culture-negative; CP, culture-positive; CTR, controls; FU COVID-19, follow-up samples of COVID-19
patients; HAP, hospital-acquired pneumonia; MVA, multivariate analysis; non-VAC, non-vaccinated; non-VAP, non-ventilator–associated pneumonia; PR CAP/
HAP, probable community-acquired pneumonia/hospital-acquired pneumonia; PS CAP/HAP, possible community-acquired pneumonia/hospital-acquired
pneumonia; UVA, univariate analysis; VAC, vaccinated; VAP, ventilator-associated pneumonia; VOCs, volatile organic compounds.

Reference Pathology Comparison Statistical
approach Significant VOC Detail

Ahmed et al.
(2023)

VAP CP (n = 45) vs. CN (n = 59) UVA
3-Methylbutanoic acid (up), 3-

methylbutanal* (down/up*), acetone*
(down), and indole** (up)

*Significant VOCs P. aeruginosa
vs. other pathogen-positive
culture; **significant VOC in

patients with positive culture for
bacteria that can metabolize

tryptophan; down/up* different
alterations between group

comparisons

Cen et al. (2023) COVID-19
VAC (n = 54) vs. non-VAC

(n = 50)
UVA/MVA

2-Methyloctane* (down), 6-methyl-5-
hepten-2-one (up), acetonitrile* (down),
benzene (down), benzothiazole (up),

cyclopentanone (up), hexanal* (down),
methanesulfonyl chloride (up), and

phenol* (down)

*VOCs in UVA

Myers et al.
(2023)

COVID-19
COVID-19 (n = 69) vs. FU

COVID-19 (n = 22) vs. CTR (n =
58) vs. HC (n = 21)

UVA/MVA

1-Propene, 1-(methylthio)-, (E)-
(down), 2,2,4,6,6-

pentamethylheptane**/*** (up), 2,2,4-
trimethylpentane*/*** (up), 2-
methyldecane*** (down/up*), 2-
methylpentane**/*** (up), 2-

pentanone*** (up), 3-methylheptane*/
*** (up), allyl methyl sulfide*/*** (down/
up*), cyclohexanone*** (up), dimethyl
disulfide (down), ethyl acetate**/***

(up), heptanal (up), hexane**/*** (up),
indole*** (up), methyl acetate**/***
(down), methyl butyrate**/*** (up),

sulcatone*/*** (down/up*), α-
phellandrene**/*** (down), and γ-

terpinene**/*** (down)

*Common VOCs between
comparisons: COVID-19 vs. FU
COVID-19 and COVID-19 vs.
CTR; **significant VOCs in

COVID-19 vs. FU COVID-19;
***significant VOCs in the UVA;
down/up* different alterations
between group comparisons

Woollam et al.
(2022a)

COVID-19
COVID-19 (n = 14) vs. HC

(n = 12)
UVA/MVA

3,5,5-Trimethylhexanal (up), cedrene
(up), and hexyl acetate (up)

Ibrahim et al.
(2021)

COVID-19
COVID-19 (n = 52) vs. CTR

(n = 29)
MVA

1-Propanol** (up), 2,2-dimethyl-1-
propanol* (a), 3-heptene* (a), 3,6-

dimethylundecane (up), 4-ethenyl-1,2-
dimethyl-benzene* (a), acetic acid
methyl ester* (a), acetoin* (a),

benzaldehyde** (a), camphene (up),
cyclohexene* (a), iodobenzene (up),

octanal* (a), pentadecane* (a),
tetrachloroethylene* (a), and β-

cubebene (up)

*VOCs identified in clinical
suspicion comparison; **VOC
identified in both comparisons
(COVID-19 test and clinical

suspicion)

Berna et al. (2021) COVID-19
COVID-19 (n = 22) vs. CTR

(n = 27)
UVA/MVA

2-Pentyl-furan (up), dodecane (up),
heptanal (up), nonanal (up), octanal

(up), and tridecane (up)
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TABLE 5 VOCs reported in pneumonia and COVID-19 (two or more studies). na, not applicable; ppbv, parts per billion by volume. *Downregulated in culture
positive for P. aeruginosa ventilator-associated pneumonia patients and upregulated in culture positive for S. aureus ventilator-associated pneumonia patients;
**downregulated in COVID-19 patients compared to follow-up COVID-19 patients and upregulated in COVID-19-positive patients compared to COVID-19-negative
patients and healthy controls.

Pneumonia (CAP/HAP/VAP)

No. Compound
name Cas-N Formula Chemical

class
Sign of

alteration
Concentration

(patients)
Concentration

(controls) Unit Reference

1 Ethanol 64-17-5 C2H6O Alcohol

Upregulated na na na
Schnabel

et al. (2015)

Altered na na na
Gao et al.
(2016)

Altered na na na
Filipiak et al.

(2015)

Downregulated na na na
Fowler et al.

(2015)

2 3-Methylbutanal 590-86-3 C5H10O Aldehyde

Altered na na na
Filipiak et al.

(2015)

Downregulated/
upregulated*

na na na
Ahmed et al.

(2023)

3 Benzaldehyde 100-52-7 C7H6O Aldehyde

Altered na na na
Gao et al.
(2016)

Altered na na na
Filipiak et al.

(2015)

4 Nonanal 124-19-6 C9H18O Aldehyde

Upregulated na na na
Fowler et al.

(2015)

Upregulated na na na
Gao et al.
(2016)

5 Tetrahydrofuran 109-99-9 C4H8O Ether

Downregulated na na na
Schnabel

et al. (2015)

Upregulated na na na
Van Oort
et al. (2022)

6 Heptane 142-82-5 C7H16
Hydrocarbon
(saturated)

Upregulated na na na
Schnabel

et al. (2015)

Downregulated na na na
Fowler et al.

(2015)

7 Tetradecane 629-59-4 C14H30
Hydrocarbon
(saturated)

Upregulated na na na
Schnabel

et al. (2015)

Upregulated na na na
Gao et al.
(2016)

8 1-Undecene 821-95-4 C11H22
Hydrocarbon
(unsaturated)

Upregulated na na na
Gao et al.
(2016)

Altered na na na
Filipiak et al.

(2015)

9
2-

Methylcyclopentanone
1120-72-5 C6H10O Ketone

Downregulated na na na
Fowler et al.

(2015)

Downregulated na na na
Van Oort

et al. (2017a)

10 Acetone 67-64-1 C3H6O Ketone

Downregulated na na na
Van Oort

et al. (2017a)

Downregulated na na na
Schnabel

et al. (2015)

Downregulated na na na
Ahmed et al.

(2023)

(Continued on following page)
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care settings. Moreover, some COVID-19 patients infected with Alpha,
Beta, or Delta variants were resampled after 8–12 weeks (FU COVID-
19). In theMVA, 12 VOCs could discriminate between COVID-19 and
FU COVID-19 patients value (e.i. 0.825–0.862) AUC. Furthermore,
COVID-19 patients and controls (COVID-19-negative test patients
presenting symptoms) could be distinguished by 11 VOCs, which were
further validated in an independent cohort value (e.i. 0.960, 80.0%
sensitivity, and 90.0% specificity) AUC. From both comparisons, four
common VOCs (2,2,4-trimethylpentane, sulcatone, allyl methyl sulfide,
and isobutyric acid) were identified.

Additionally, Cen et al. (2023) investigated the metabolic
reprogramming triggered by the inactivated COVID-19 vaccine,
comparing the VOC profiles of COVID-19 vaccinated and
unvaccinated subjects. The discriminative model based on nine
VOCs (from 21 identified in both UVA and MVA), which
included 6-methyl-5-hepten-2-one already found by Myers et al.
(2023) (Table 5), exhibited 94.4% overall accuracy, 91.3% sensitivity,

and 98.6% specificity value (e.i. 0.995) AUC. Furthermore, the
examination of the biomarkers’ metabolic pathways demonstrated
that the protective metabolic regulation induced by the vaccine
influences enzymatic activity and microbial metabolism within the
lungs, liver, and gastrointestinal tract.

3.4 Searching for pathology-specific VOCs
in human exhaled breath

The search for potential biomarkers in exhaled breath is
challenging due to the substantial variability in the
concentration of VOCs. This variability is due to metabolic
activity but also depends on lifestyle choices (smoking,
exercise, diet, etc.) and/or exposure to exogenous factors, such
as pollutants and other environmental compounds, among
others. Despite this challenge, numerous studies have focused

TABLE 5 (Continued) VOCs reported in pneumonia and COVID-19 (two or more studies). na, not applicable; ppbv, parts per billion by volume. *Downregulated in
culture positive for P. aeruginosa ventilator-associated pneumonia patients and upregulated in culture positive for S. aureus ventilator-associated pneumonia
patients; **downregulated in COVID-19 patients compared to follow-up COVID-19 patients and upregulated in COVID-19-positive patients compared to COVID-
19-negative patients and healthy controls.

Pneumonia (CAP/HAP/VAP)

No. Compound
name Cas-N Formula Chemical

class
Sign of

alteration
Concentration

(patients)
Concentration

(controls) Unit Reference

11 Cyclohexanone 108-94-1 C6H10O Ketone

Altered na na na
Gao et al.
(2016)

Downregulated na na na
Van Oort

et al. (2017a)

12 Dimethyl sulfide 75-18-3 C2H6S
Sulfur-

containing

Upregulated na na na
Van Oort
et al. (2022)

Altered 0–101.5 na ppbv
Filipiak et al.

(2015)

COVID-19

No Compound
name CAS-N Formula Chemical

class
Sign of

alteration
Concentration

(patients)
Concentration

(controls) Unit
First

author/
year

1 Heptanal 111-71-7 C7H14O Aldehyde

Upregulated na na na
Berna et al.

(2021)

Upregulated na na na
Myers et al.

(2023)

2 Octanal 124-13-0 C8H16O Aldehyde

Upregulated na na na
Berna et al.

(2021)

Altered na na na
Ibrahim et al.

(2021)

3 Methyl acetate 79-20-9 C3H6O2 Ester

Altered na na na
Ibrahim et al.

(2021)

Downregulated na na na
Myers et al.

(2023)

4
6-Methyl-5-hepten-

2-one
110-93-0 C8H14O Ketone

Upregulated na na na
Cen et al.
(2023)

Downregulated/
upregulated**

na na na
Myers et al.

(2023)
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on identifying specific VOCs associated with a wide range of
pathologies. Nevertheless, the results of these studies should be
interpreted with caution. In most instances, the origin of
these VOCs remains unidentified, which can lead to false
discoveries.

The VOCs included in Tables 2, 5; Supplementary Table S3, as
classified by Drabińska et al. (2021), are illustrated in Figure 4. As
noted, the analysis of exhaled breath covers a wide range of chemical
species, although the distribution of these is variable across
pathologies. Aldehydes are the most abundant, mainly derived
from alcohol metabolism in the liver or the reduction of
hydroperoxides during lipid peroxidation (Murray et al., 2009;
Hakim et al., 2012), although aldehydes can also come from
cigarette smoking or tobacco components’ detoxification by
cytochrome P450 (Furge and Guengerich, 2006; Papaefstathiou
et al., 2020). This chemical group is predominant in CAP/HAP/
VAP, COVID-19, and COPD.

Ketones are also strongly represented in CAP/HAP/VAP and
COVID-19, mainly resulting from the liver’s synthesis of ketone
bodies (acetoacetate, acetone, etc.) during conditions like diabetes,
fasting, or alcoholism, formed through the metabolism of proteins
and/or as secondary products of lipid peroxidation (Vaz and Coon,
1987; Murray et al., 2009). Remarkably, a significant proportion of
ethers is observed in COVID-19 and BC, although its origin is
commonly attributed to exogenous sources. Other abundant
compounds in BC are alcohols, which may come from the
gastrointestinal tract or are formed through the hydrocarbon’s
metabolism or lipid peroxidation (Ortiz De Montellano, 2010;
Ratcliffe et al., 2020).

Additionally, hydrocarbons are widely reported in exhalates,
primarily saturated, aromatic, branched and cyclic. These
compounds are highly represented in LC, asthma, and CRC.
Hydrocarbons are mainly produced by lipid peroxidation, in an
abnormal metabolic state. Branched-chain hydrocarbons may be of
an endogenous origin from bacterial metabolism (Ratcliffe
et al., 2020).

The concept of the exposome is gaining popularity, encompassing
not only external exposures (chemical agents, radiation, etc.) and
associated physiological responses but also internal sources, such as
microbiota, and “psychosocial components” (Vineis et al., 2020).
Several studies have focused on identifying metabolites related to
the exposome, such as the database developed by Neveu et al. (2023),
which includes microbial metabolites and is supported by evidence on
their origin, and the method developed by González-Domínguez et al.
(2020) for exposome research. Furthermore, the effect of the
exposome on human health has been widely studied (Morales
et al., 2022). Nevertheless, many metabolites associated with the
exposome overlap with those produced by human cells/tissues,
making it a difficult task to establish what can be considered truly
endogenous. This issue is especially challenging for VOCs detected in
exhaled breath, since the pulmonary tract is closely associated with
environmental exposure.

The full list of reported VOCs was used to identify pathology-
specific compounds (Figure 5). The overlapping VOCs may come
from exogenous sources (exposome), such as cigarette smoking,
environmental pollution, or diet, as well as shared endogenous
origins like the ones derived from OS or common VOCs found
in breath, such as isoprene and acetone.

Regarding pathology-specific possible biomarkers, several
unique VOCs were found (Figure 5), especially in LC, according
to the literature reviewed herein. Furthermore, the obtained list of
unique pathology-specific VOCs was submitted to searches on
KEGG and BioCyc databases with the aim of excluding the
VOCs mainly coming from exogenous sources. Upon exclusion
of such exogenous VOCs, the final list of pathology-specific possible
biomarkers is compiled in Table 6. It is worth mentioning that
although these candidate biomarkers might provide useful
information, further research is required to establish associations
with metabolic alterations in each pathology, as well as to discern
between the VOCs that may be related to the exposome and the ones
that are truly endogenous.

Furthermore, the correct metabolite identification is a highly
important aspect in metabolomics, and different levels can be
distinguished based on the reliability of the identification. In this
regard, the Metabolomics Standard Initiative (MSI) levels can
range from 1 to 4, level 1 being the most rigorous (Sumner
et al., 2007).

In the case of LC, four VOCs from Table 6 were reported as
potential biomarkers in at least two different studies
(Supplementary Table S3). In this regard, 2,3-butanedione and
butanal (both MSI level 1) were found to be upregulated. The
remaining candidate biomarkers were reported as altered; thus,
the trend of their levels should be assessed. Propionic acid (MSI
levels 1 and 2) was reported as upregulated and downregulated in
two different studies; therefore, it is not an adequate candidate
due to the contradictory findings. The remaining metabolites
included in Table 6 were reported only once, requiring further
study for their use as pathology-specific biomarkers. Additional
candidate biomarkers whose endogenous origin has not been
established include 2-nonenal (MSI levels 1 and 2), 3-
methylhexane (MSI levels 1 and 2), butanal (MSI level 1),
pentane (MSI level 1), and propylene (MSI levels 1 and 2) for
LC, all of which are reported several times and show a trend
toward increased levels; acrylonitrile (MSI level 1) for GaC is
reported as upregulated in two independent studies; methacrylic
acid (MSI level 2) for BC presents decreased levels; and 1,2-
dimethylcyclohexane (MSI level 2) for asthma and 2-
methylcyclopentanone (MSI level 2) for CAP/HAP/VAP are
reported as downregulated (Tables 2, 5; Supplementary
Table S3).

4 Methodologies

The methodologies used for breath sampling and VOCs’ pre-
concentration and separation in the reviewed studies are presented
in Tables 1, 3; Supplementary Table S1 and illustrated in Figure 6.

4.1 Exhaled breath sampling

Breath samples were categorized in mixed or alveolar breath, as
late expiratory breath sampling was not specified in any study, being
usually confused with alveolar breath. The lack of distinction may be
due to the absence of standardized protocols or guidelines for the
collection of late expiratory breath. Devices that discard dead space
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air may not ensure true alveolar breath sampling; therefore, only
those with CO2 or pressure sensors should be used for this type
of sample.

Exhaled breath sampling devices can collect from a few milliliters
to 10 L, which depends not only on the device’s capacity but also on
the fraction of breath sampled, since alveolar breath represents
approximately 350 mL of the total expiratory volume. Even though
breath samples can be taken from a single expiration or multiple
expirations, VOC profiles can vary from breath to breath
(Khoubnasabjafari et al., 2022), and the concentrations differ
significantly in hypoventilation, hyperventilation, and normal
ventilation (Cope et al., 2004).

The selection of sample type depends on the compounds of
interest. When studying endogenous VOCs, late expiratory or
alveolar breath are preferred, the latter being more convenient
due to the higher concentration of VOCs and reduced
contamination (Miekisch et al., 2008). However, as depicted in
Figure 6A, mixed breath was the most analyzed sample type,
probably because the devices used for this type of sample are
more affordable and easier to use. However, due to the
increasing interest in endogenous VOCs, alveolar breath was
analyzed in a significant number of studies, especially in those
focused on cancer.

The most common collection device was Tedlar® bags
(Figure 6B), consistent with previous reviews (Lawal et al., 2017;
Westphal et al., 2023).While these bags are subject to contamination
and have limited sample storage time, they are affordable and
reusable, with several cleaning protocols available (Westphal

et al., 2023). Additionally, devices such as Bio-VOC®, breath-gas
sampler, and ReCIVA are gaining popularity, although they are not
as widely used.

Sampling methodologies are organized per type of pathology in
this section as the severity of the pathology may justify specific
approaches.

4.1.1 Cancer
In LC, 14 studies analyzed alveolar breath, while the remaining

9 analyzed mixed breath. The alveolar breath samples were collected
using various techniques, such as Bio-VOC®, BCA, Tedlar®/Mylar
bags, or other devices (analytical barrier bag and breath reservoir). For
mixed breath samples, Tedlar®/Mylar bags were predominantly used,
and some studies employed self-developed devices and glass bulbs.

In GaC, alveolar breath was the main type, sampled either
with Mylar/Tedlar® bags, GaSampler collection bags (QuinTron),
or a custom-built in-house breath sampler. One study used gas-
tight syringes for mixed breath sampling. In CRC, two studies
sampled mixed breath using Tedlar® bags, and the remaining
alveolar breath employed ReCIVA® or other devices [GaSampler
Collection Bag (QuinTron) and gas-tight syringes]. In BC, all
studies collected alveolar breath, using various devices such as
gas-tight syringes, Tedlar® bags, and Bio-VOC®.

4.1.2 Other pulmonary pathologies
In asthma, all the studies collected mixed breath samples using

Tedlar® bags, except for one that analyzed alveolar breath and used
an ABS. In COPD, alveolar breath and mixed breath were selected

FIGURE 4
Bar chart of the chemical classes of VOCs (referred by two or more studies) reported in each pathology. CAP, community-acquired pneumonia;
COPD, chronic obstructive pulmonary disease; HAP, hospital-acquired pneumonia; VAP, ventilator-associated pneumonia.

Frontiers in Molecular Biosciences frontiersin.org23

Bajo-Fernández et al. 10.3389/fmolb.2023.1295955

141

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2023.1295955


with equal frequency. The samplers employed were either Tedlar®
bags or stainless steel tubes for mixed breath, and Bio-VOC® or glass
syringes for alveolar breath. Furthermore, in one study, alveolar

breath was also collected directly into the pre-concentration device.
In OSA, alveolar and mixed breath samples were sampled with Bio-
VOC® and Tedlar® bags, respectively, and in CF, mixed breath was
collected using Tedlar® bags.

4.1.3 Infectious pathologies
In CAP/HAP/VAP, one of the targeted studies sampled alveolar

breath employing glass syringes, while the remaining studies
analyzed mixed breath samples. Since the patients were intubated
and mechanically ventilated, most of the sampling was performed
directly in sorbent tubes, except for three studies that employed
either Tedlar® bags or a breath-gas sampler. In COVID-19, most of
the studies analyzed mixed breath, collecting the sample either using
Tedlar® bags or SamplePro FlexFilm Sample Bags. Only one study
sampled alveolar breath employing ReCIVA.

4.2 Pre-concentration techniques

TD were the most utilized pre-concentration technique,
followed by SPME (Figure 6C), consistent with previous reviews
(Lawal et al., 2017; Westphal et al., 2023). The widespread use of TD
can be attributed to their suitability for long-term sample storage,
ease of transport, and the stability of the entrapped compounds.
However, SPME requires smaller sample volumes and is less affected
by humidity, offering a similar extraction range to TD. Notably,
NTD was used in only a few studies, despite presenting aspects of
both SPME and TD.

FIGURE 5
Upset plot of the VOCs reported in the reviewed studies. BC, breast cancer; CAP, community-acquired pneumonia; COPD, chronic obstructive
pulmonary disease; CRC, colorectal cancer; GaC, gastric cancer; HAP, hospital-acquired pneumonia; LC, lung cancer; OSA, obstructive sleep apnea;
VAP, ventilator-associated pneumonia. Created with RStudio (Conway et al., 2017).

TABLE 6 Pathology-specific proposed biomarkers. BC, breast cancer; CAP,
community-acquired pneumonia; COPD, chronic obstructive pulmonary
disease; CRC, colorectal cancer; GaC, gastric cancer; HAP, hospital-acquired
pneumonia; LC, lung cancer; OSA, obstructive sleep apnea; VAP, ventilator-
associated pneumonia. *Possible exogenous origin.

Pathology PubChem ID Compound*

LC 650 2,3-Butanedione

LC 261 Butanal

LC 1032 Propionic acid

LC 984 Hexadecanal

GaC 225936 2,3-Butanediol

CRC 243 Benzoic acid

CRC 2969 Decanoic acid

BC 10413 4-Hydroxybutanoic acid

Asthma 11005 Myristic acid

Asthma 637540 2-Hydroxycinnamic acid

COPD 2879 p-Cresol

OSA 999 Phenylacetic acid

CAP/HAP/VAP 10430 Isovaleric acid
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The choice of the sorbent material depends on the chemical
nature of the analytes of interest, including polarity and molecular
weight (MW). The most used SPME fiber coating material was Car/
PDMS (mainly 75 µm thickness), followed by DVB/Car/PDMS, and
lastly, PDMS 100 µm and PDMS/DVB (Tables 1, 3; Supplementary
Table S1). These fibers are bipolar, except for PDMS (non-polar),
with the latter compromising the extraction of polar metabolites
(Vas and Vékey, 2004). The wider use of Car/PDMS fiber could be
due to the ability of this coating material to better extract low-
molecular-weight volatiles (MW 30–225 g/mol) compared to PDMS
100 µm (MW 60–275 g/mol) and DVB/PDMS (MW 80–300 g/mol)
(Lawal et al., 2017). However, in a recent study (Schulz et al., 2023),
DVB/Car/PDMS turned out to be the most adequate for untargeted
studies compared to Car/PDMS and PDMS fibers due to the higher
number of extracted VOCs and the stronger overall GC-MS signal.

Regarding TD, Tenax TA is the most used sorbent material
(Tables 1, 3; Supplementary Table S1). Although this material
captures heavy- and less-volatile compounds, its low affinity to
water and the broad sampling range (C6–C30) makes it adequate for
untargeted analysis (Wilkinson et al., 2020). Similarly, a few studies
have opted for Tenax GR. Other sorbent materials encompass
carbon black adsorbents, such as Carbograph 1TD, Carbograph
5TD, Carbopack X, Carbopack B, and Carbotrap. Additionally,
carbon-based materials like Carboxen were employed. These
alternatives offer a narrower range (C3–C20 and C2–C5),
although they facilitate the capture of low-molecular-weight and
more volatile compounds (Lawal et al., 2017; Westphal et al., 2023).
Many studies have employed multi-bed sorbents, with the most
prevalent being Carbograph 1TD/Carbopack X. Furthermore,
combinations of the aforementioned materials have been used,
such as Tenax TA/Carbograph 1TD and Tenax TA/Carbograph

5TD, both of which have been considered for exhaled breath analysis
in previous studies (Wilkinson et al., 2020). Additional
combinations, such as Tenax/Carbograph/Carboxen and
Carbotrap B/Carbopack X, were also employed.

4.3 GC-MS methods

Considering that the main objective of most studies discussed in
the present review was to obtain a snapshot of the VOC content in
the breath samples, and also the analysis conditions and the pre-
concentration techniques. Conditions of the GC-MSmethod such as
the injector mode, chromatographic column, and type of detector
employed for analysis are as important as the preceding pre-
concentration technique.

Regarding GC injector parameters, from the 70 works reviewed,
an astonishing 61% do not detail the type of injector or injection
employed. Such a number is alarming given the fundamental
difference between injecting gaseous and liquid samples. In fact,
for gaseous injections choosing an injector glass liner of smaller
inner diameter would provide a more efficient transfer of analytes
onto the GC column, thus yielding more peak capacity efficiency.
Nonetheless, of the 39% of works that mentioned the employment of
a splitless/split injector, none mentioned the dimensions of the
injector glass liner diameter employed. Out of these split/splitless
injections, 70% of the injected samples are in the splitless mode,
which would indeed be expected for pre-concentration techniques
such as direct TD and SPME.

When it comes to GC columns as presented in Figure 6D
(compiling the information from Tables 1, 3; Supplementary
Table S1), over 50% of the studies herein reviewed employed 5%

FIGURE 6
Bar charts of the exhaled breath sampling and pre-concentration methods from the reviewed studies. (A) Breath-type sample; (B) sampler device;
(C) pre-concentration technique; (D) GC-column. BGS, breath-gas sampler; GC, gas chromatography; NTD, needle-trap device; SPME, solid-phase
microextraction; TD, thermal desorption tube.
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diphenyl/95% polydimethylsiloxane phases, here named as X-5
columns (DB-5, RTX-5, SLB-5, HP-5, VF-5, etc.). This type of
stationary phase is considered the most versatile owing to the
slight polarity imparted by the substitution of 5% of dimethyl
groups by diphenyl. This addition also makes this stationary
phase suitable for the separation of unsaturated hydrocarbons
and aromatic compounds. Conversely, this stationary phase
should not be the first choice regarding the analysis of VOCs.
In fact, despite its slight polarity, it does not provide sufficient
retention and efficiency for the separation of low-molecular-
weight polar VOCs, such as alcohols, aldehydes, and
organic acids.

The secondmost used types of GC stationary phase are X-624 and
X-1, each being employed in 14% of the studies presented in Tables 1,
3; Supplementary Table S1. The X-624 stationary phase (DB-624, VP-
624, SLB-624, etc.) consists of polydimethylsiloxane with 6% of the
dimethyl substituted by cyanopropyl and phenyl groups. Therefore, as
expected, this is a low-polarity phase, though of higher polarity than
its X-5 counterparts. A key characteristic of these columns is the
thickness of the stationary phase. While most X-5 columns employ
stationary phases of 0.25 µm thickness, X-624 columns are coated
with, at least, 1.4 µm of the stationary phase. Therefore, in addition to
its chemistry allowing for better selectivity, there is also a considerable
gain in retention for low-molecular-weight polar VOCs and a wider
range of VOC classes could be successfully analyzed in breath samples.
In fact, X-624 stationary phases are the most suitable for VOC
analyses, as it is the official stationary phase for a variety of
Environmental Protection Agency (EPA) methods dealing with
VOCs. X-1 columns (DB-1, RTX-1, SLB-1, HP-1, VF-1, etc.)
contain 100% polydimethylsiloxane, the most non-polar stationary
phase. Similar to X-5 types of phases, this stationary phase does not
provide sufficient selectivity for the separation of small and polar
VOCs even when employing thicker phases.

Given the importance of aldehydes and alcohols in the studies
herein reviewed, as presented in Figure 4, it may be surprising that
only two studies employ polyethylene glycol (WAX) stationary
phases, as they are highly selective for polar compounds such as
alcohols. A plausible explanation in this type of application might be
related to the presence of water in the breath sample. WAX columns
are particularly sensitive to moisture in the sample, which may lead
to the degradation of this stationary phase.

While all other GC columns mentioned here encompass wall-
coated open tubular (WCOT) columns, porous layer open tube
(PLOT) columns are highly retentive and, therefore, are primarily
employed for the analysis of very low boiling point compounds that
are gaseous at room temperature, such as sulfides. Applied in 12% of
the studies herein reviewed, Q-PLOT columns are non-polar, as they
employ 100% divinylbenzene as adsorbent, therefore imparting great
selectivity and retention for low-molecular-weight hydrocarbons.

Most of the studies included in Tables 1, 3; Supplementary Table
S1 were performed by one-dimensional (1D) GC-MS. Additionally,
five studies applied comprehensive bidimensional gas
chromatography (GC×GC). The most common GC×GC setup
employs an orthogonal mechanism of separation, using two
sequential GC columns with stationary phases of different
polarities, with a modulator between them. In short, a narrow
band eluting from the first dimension (1D) column is collected
and focused on the modulator, and then sent to the second

dimension (2D) column (which is much shorter than the 1D). In
this way, for example, compounds of similar boiling points coeluting
on the 1D could be separated according to their polarity differences
on the 2D. This technique offers significant advantages: the extended
peak capacity improves peak space separation and allows the
detection of coeluting compounds that could be missed by
conventional 1D-GC. Moreover, given the acquisition speed
required by the narrow bands eluting from the 2D in GC×GC,
this technique is often hyphenated with MS detectors with rapid MS
analyzers such as TOF, providing also higher sensitivity than that
obtained by 1D-GC employing single quadruple MS. As an example
of the advanced capacities of GC×GC-TOF-MS, Caldeira et al.
(2012) could detect eight-fold more compounds, especially
alkanes, alkenes, aldehydes, and ketones, and the concentration
range achieved was lower than that of a previous study
performed with GC-qMS. Four out of the five studies presented
the traditional apolar × polar configuration, employing stationary
phases like X-624 and X-5 in the first dimension (1D) and a polar
polyethylene glycol-based (WAX) phase in the second dimension
(2D) (Caldeira et al., 2012; Pesesse et al., 2019; Schleich et al., 2019;
Cen et al., 2023). This combination reduces the interaction of water
with the polar stationary phase and provides information on both
the volatility (1D) and polarity (2D) of the compounds in the sample
(Wilde et al., 2019). Interestingly, Berna et al. (2021) employed a
polar × polar setup, using a WAX-based column in the 1D and a
trifluoropropylmethyl polysiloxane (RTX-200) column in the 2D.
The 2D stationary phase offers a unique selectivity for electron-rich
molecules and resolves compounds that could not be resolved by the
Wax 1D column. The limited use of this technology can be attributed
to the high costs of instrumentation, especially for cryo-based
modulators that are the most adequate for applications such as
breath analysis due to their ability to successfully trap very volatile
compounds. Moreover, method optimization in GC×GC is not as
straightforward as in 1D-GC, hence requiring specialized personnel
from method development to data process and interpret (Pesesse
et al., 2019).

Moreover, 20 studies have employed high-resolution mass
spectrometers (TOF-MS), of which more than half were included in
studies on other pulmonary diseases (Tables 1, 3; Supplementary Table
S1). The high-resolution approach offers notable advantages, especially
when performing an untargeted study. In this regard, sensitivity and
selectivity are improved compared to the low-resolution approach. The
spectral libraries used for compound identification include accurate
mass, which further allows for the enhanced structural elucidation of
unknown compounds. Nonetheless, the use of this equipment is more
complex; data processing requires more time and space and the price is
higher (Rey-Stolle et al., 2021).

4.4 Quality control

In breath analysis, as in any metabolomics study, evaluating the
quality of the obtained data is crucial. This is essential not only for
obtaining reproducible results but also to ensure that the differences
observed between groups are attributable to the composition of the
samples rather than analytical/instrumentation variations. Such
assurance involves the analysis of blanks and the use of internal
standards among other strategies detailed below (Dudzik et al., 2018).
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The analysis of blanks allows for the identification of
contaminants (e.g., Tedlar® bag contaminants) and artifacts (e.g.,
polydimethylsiloxanes), and its elimination from the data matrix,
avoiding false discoveries. The main blanks include collecting device
blank, air blank, and vial/tube blank (Westphal et al., 2023). In this
regard, several studies have reviewed and conducted analyses of
ambient air, yet a considerable number of studies do not include this
step, such as that of Gao et al. (2016), Aoki et al. (2017), Van Vliet
et al. (2017), and Saidi et al. (2020). Moreover, the inclusion of the
remaining blanks is not specified in most of the studies. The
injection of a standard mixture over the sequence is
recommended, although just a few studies include it in their
workflow (Schleich et al., 2019; Koureas et al., 2021).

Despite being of utmost importance to obtain precise results, the
addition of an internal standard (IS) to the samples was performed in
few studies (Basanta et al., 2012; Corradi et al., 2015; Fowler et al., 2015;
Berna et al., 2021; Ibrahim et al., 2021; Van Oort et al., 2022; Ahmed
et al., 2023; Cen et al., 2023; Myers et al., 2023) (Tables 1, 3;
Supplementary Table S1). Likewise, hexamethylcyclotrisiloxane, a
desorption tube bleeding compound, was used as an internal
reference compound (Callol-Sanchez et al., 2017; Jareño-Esteban
et al., 2017; Muñoz-Lucas et al., 2020). The ISs used include not
isotopically labeled compounds such as 1,4-difluorobenzene, 2-
methylpentanal, 4-bromofluorobenzene, bromochloromethane, and
stable isotopically labeled ones, such as acetone-d8, 1,4-
dichlorobenzene-d4, chlorobenzene-d5, bromobenzene-d5, hexane-
d14, n-heptane-d16, n-octane-d18, phenanthrene-d10, styrene-d8,
toluene-d8, and xylene-d10. Additionally, ISs can be used for data
normalization. However, most of the studies reviewed did not add an IS
nor did they specify how the data normalization is performed. It is
worth mentioning that for a pre-concentration technique based on
equilibrium, such as SPME, isotopically labeled ISs present by far the
best precision (and accuracy). In fact, inconsistencies during sampling
can be normalized as the IS extraction will be influenced to the same
extent as the analyte of interest.

Generally, to ensure quality in the analysis of exhaled breath
samples by GC-MS, and therefore reliable findings, several key
quality assurance and quality control measures are essential.
These measures aim to guarantee the accuracy, reproducibility,
and reliability of the entire analytical results and are as follows
(Li et al., 2019; Becker, 2020; Westphal et al., 2023):

• Calibrants and reference materials: Calibrants and reference
materials containing volatile marker compounds are used to
establish detector stability, known detection limits, and
instrument calibration. These materials should be available
consistently during clinical trials and routine applications.

• Training and test samples: For the reproducible identification
of specific odor patterns, the availability of appropriate sets of
training and test samples is essential. These samples aid in
electronic nose-based or canine-based identification methods.

• Standardization and harmonization: Standardization of
breath sampling procedures is crucial to minimize inter-
observer and intra-observer errors. Researchers involved in
breath sampling should undergo certification to ensure
uniform and accurate collection processes. Standardization
also involves monitoring room air for potential VOC
contamination.

• Instrument calibration: Regular instrument calibration using
internal standards, such as stable isotope-labeled compounds,
enhances QC/QA efforts. It helps in tracking instrument
performance and ensuring the accuracy of results.

• Blank analysis: To identify and remove contaminants, blank
analyses are essential. These blanks include air blanks, system
blanks to identify instrument artifacts, and blanks to account for
chemical backgrounds originating from sampling materials like
Tedlar® bags.

• Spiking samples with internal standards of known
concentrations and different retention times aids in data
normalization and enhances data quality.

• Inter-laboratory comparisons: For diagnostic purposes, it is
important to compare data obtained from different
laboratories and methods. It helps assess the reproducibility
and relevance of potential biomarkers.

In summary, ensuring quality in exhalation analysis by GC-MS
involves a comprehensive approach that encompasses quality
control, standardization, instrument calibration, and data
management. All these measures must be implemented without
any exception in clinical applications where breath analysis holds
potential for disease diagnosis and monitoring.

5 Conclusion

This comprehensive review aims to investigate the potential of
GC-MS analysis of VOCs in breath as biomarkers for severe
pathologies, such as cancer, pulmonary diseases, and infectious
diseases. Critical aspects of the workflow are thoroughly
considered and discussed, encompassing the type of exhaled
breath, collection devices, pre-concentration techniques, and
analysis, as well as the experimental designs, statistical analysis,
identification strategies, and proposed potential VOCs biomarkers.

Tedlar® bags and TD are by far the most extended for collection
and pre-concentration, respectively. However, the choice of the type of
breath sample was more diverse, spanning betweenmixed and alveolar
breath, a critical consideration when aiming to accurately compare and
establish levels of endogenous VOCs. Despite the wealth of studies, the
conspicuous lack of standardization in the methodological approach
and the scarce absolute quantitation of potential biomarkers delay their
transference to clinics. Additionally, relatively small cohorts with only a
limited model validation in an independent cohort, along with the lack
of consensus in altered findings among different studies hindered the
identification of a single pathology-specific VOC. A deeper
understanding of the endogenous origin of VOCs is imperative to
fully grasp the significance of each VOC in discriminating between
healthy and pathological states.

Overall, this review underscores the substantial potential of
VOCs as biomarkers in health and pathology. Nonetheless, to
fully harness this potential, it is crucial to address the lack of
standardization in methodological approaches, include larger and
well-defined cohorts, and validate models in independent cohorts.
As we delve deeper into the complexities of VOCs in exhaled breath,
we are poised to advance personalized and non-invasive diagnostic
strategies that can revolutionize the detection and management of
the pathology, ultimately benefiting public health.
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Volatile organic compounds (VOCs) are carbon-containing molecules with
high vapor pressure and low water solubility that are released from biotic and
abiotic matrices. Because they are in the gaseous phase, these compounds
tend to remain undetected when using conventional metabolomic profiling
methods. Despite this omission, efforts to profile VOCs can provide useful
information related tometabolic status and identify potential signaling pathways
or toxicological impacts in natural or engineered environments. Over the past
several decades mass spectrometry (MS) platform innovation has instigated
new opportunities for VOC detection from previously intractable matrices. In
parallel, volatilome research linking VOC profiles to other forms of multi-omic
information (DNA, RNA, protein, and other metabolites) has gained prominence
in resolving genotype/phenotype relationships at different levels of biological
organization.This reviewexploresbothon-lineandoff-linemethodsused inVOC
profilingwithMS from differentmatrices. On-linemethods involve direct sample
injection into theMSplatformwithout any prior compound separation,while off-
line methods involve chromatographic separation prior to sample injection and
analytedetection.Attentionisgiventothetechnicalevolutionofplatformsneeded
for increasingly resolved VOC profiles, tracing technical progress over time with
particular emphasis on emerging microbiome and diagnostic applications.

KEYWORDS

volatile organic compounds, selected ion flow tube-mass spectrometry, ion mobility
spectrometry-mass spectrometry, proton transfer reaction-mass spectrometry,
secondary electrospray ionization-mass spectrometry, time-of-flight mass
spectrometry, comprehensive two-dimensional gas chromatography, high resolution
multi-reflecting time-of-flight mass spectrometry

1 Introduction

Volatile organic compounds (VOCs) are gaseous carbon-containing compounds
released from biotic and abiotic matrices, manifesting both high vapor pressure and low
water solubility (US EPA, 2022). High vapor pressure is correlated with low boiling point
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and serves as a measure of compound volatility. In some cases,
VOCs are associated with adverse health effects depending on
concentration and exposure time. The United States Environmental
Protection Agency (US EPA) has established a classification
system for VOCs that recognizes three primary categories
including very volatile organic compounds (VVOCs) < 0°C
to 50–100°C, volatile organic compounds (VOCs) 50–100°C
to 240–260°C, and semi-volatile organic compounds (SVOCs)
240–260°C to 380–400°C (US EPA, 2022). Volatilome research
arises in part from an awareness that both biotic and abiotic
matrices emit VOCs, and that VOC profiles obtained using mass
spectrometry (MS) platforms can provide useful information about
the metabolic status of biological systems as well as potential
signaling pathways or toxicological impacts in natural or engineered
environments. For example, researchers have identified VOCs
in plant (D'Alessandro and Turlings, 2006; Majchrzak et al.,
2020), human (Amann et al., 2014; Drabińska et al., 2021;
Bauermeister et al., 2022; Ferrandino et al., 2023; Fu et al., 2023),
microbial (Boots et al., 2014; Drabińska et al., 2022), food
(Cao et al., 2016; Carraturo et al., 2020; Tiwari et al., 2020), and
environmental (Liu and Phillips, 1991; Higashikawa et al., 2013;
Ullah et al., 2014)matrices.Moreover, several studies have evaluated
the role of VOCs inmediating regulatory andmetabolic interactions
at the population and community levels of biological organization
(Audrain et al., 2015; Weisskopf et al., 2021).

In plants, VOCs including terpenoids, fatty acids, and
benzenoids are released under normal growth conditions
(Dudareva et al., 2004), or in response to environmental stressors
such as increased temperature and salinity or herbivory (Sharkey
and Yeh, 2001; Mumm et al., 2003; Schröder et al., 2005). Plant-
derived VOCs have gained increasing attention in relation to
food security and climate change due to potential applications in
promoting crop stress responses, pathogen defense, and enhanced
biomass production connected to carbon capture and conversion
processes (Materić et al., 2015). For example, gas chromatography-
mass spectrometry (GC-MS) investigation of Xanthomonas
c. pv. vesicatoria 85–10 resolved over 50 VOC compounds
including several plant growth promoting ketone and methylketone
compounds, and one compound linked to growth inhibition of
the necrotrophic fungus Rhizoctonia solani (Weise et al., 2012).
From an environmental perspective, VOCs associated with 48
Actinobacteria species isolated from soil and airborne-dust were
profiled using GC-MS, resolving 126 predominantly C1 to C5
compounds, including alcohols, ketones, esters with the potential to
mediate metabolic interactions among and between microbes and
plants (Choudoir et al., 2019). In humans, VOCs have emerged
as biomarkers for diagnostic screening and monitoring disease
progression (Janssens et al., 2020; Berenguer et al., 2022), as well
as detection of pathogens and antimicrobial resistance (AMR)
phenotypes (Dixon et al., 2022). For example, VOC detection has
been used for biomarker discovery in pulmonary tuberculosis
(Fu et al., 2023), cystic fibrosis (Kaeslin et al., 2021), asthma, chronic
obstructive pulmonary disease (Ratiu et al., 2020), lung (Ratiu et al.,
2020; Temerdashev et al., 2023), prostate (Berenguer et al., 2022)
and other type of cancers (Le and Priefer, 2023), urinary tract
(Drabińska et al., 2022) and intestinal infections (John et al.,
2021), irritable bowel syndrome (Zhang et al., 2023), as well as
neurological disorders (Khan et al., 2021). In addition, several

studies using isolated Escherichia coli have detected VOCs
using solid-phase microextraction-gas chromatography coupled
with mass spectrometry (SPME-GC-MS) on liquid cultures
(Drabińska et al., 2022), or in strains cultivated on blood agar
plates using thermal desorption gas chromatography coupled
with time-of-flight MS (TD-GC-TOF-MS) (Boots et al., 2014).
Similarly, from an industrial perspective, GC-MS analysis of
Chinese milk fan (cheese) containing bacteria affiliated with
Lactococcus, Lactobacillus, Raoultella and fungi affiliated with
Rhodotorula, Torulaspora, and Candida fungi species identified 60
VOCs, including alcohols, aldehydes, ketones, esters, and aromatic
compounds contributing to milk fan aroma (Chen et al., 2021).

The emergence of volatilome research is closely coupled with
MS platform innovation instigating new opportunities for VOC
detection from previously intractable matrices. MS platforms can
use either on-line or off-line VOC detection methods that are
closely coupled with increasing throughput and resolving power,
respectively. On-line methods utilize direct sample introduction
to the MS without upstream sample cleanup and compound
separation protocols, while off-line techniques employ various
analyte separation methodologies prior to MS detection. Previous
reviews have discussed the on-line versus off-line methods for VOC
detection within specific biological systems (Lindinger et al., 1998;
Smith and Španěl, 2005; Materić et al., 2015; Ahmed et al., 2017;
Lawal et al., 2017; Gould et al., 2021; Westphal et al., 2023). Here we
expand on these accounts by presenting a matrix-centered review
of volatilome research in relation to platform innovation over time,
providing a practical guide for both practitioners and potential
end-users with particular emphasis on emerging microbiome and
diagnostic applications.

2 VOC detection platforms

Numerous contemporary reviews on analytical methods for
detecting VOCs from different matrices are available (Materić et al.,
2015; Ahmed et al., 2017; Lough et al., 2017; Lubes and Goodarzi,
2017; Majchrzak et al., 2018; Gould et al., 2021). Figure 1 provides a
graphical overview of MS platforms used for VOC detection over
time and Table 1 summarizes key scientific literature in relation
to different matrix categories and cognate detection platforms.
Emphasis is placed on differentiating between on-line methods in
which sample preparation is directly coupled to sample injection
and analysis, and off-line methods in which the process of
sample preparation and analysis are uncoupled. Table 1 includes
an overarching selection of MS platform innovation from the early
stage of introducing ion molecule reaction MS in 1993 to the
latest technological advancements in GCxGC-TOF-MS, in 2023.
Review articles are also included in the table to complement research
articles with the aim to offer a comprehensive view on VOC analysis
combined with MS techniques, in a wide range of matrices.

2.1 On-line methods

On-line methods associated with real-time detection of
analytes require minimal preparation, are compatible with both
portable and high-throughput platform integration and provide
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FIGURE 1
Summary of mass spectrometry platform innovation over the past 60 years in relation to volatile organic compound detection (TOF, time-of-flight;
SIFT, selected ion flow tube; IMS-MS, ion mobility spectrometry mass spectrometry; PTR-MS, proton transfer reaction mass spectrometry; SESI-MS,
secondary electrospray ionization mass spectrometry; MALDI, matrix-assisted laser desorption ionization; GC, gas chromatography; GCxGC,
comprehensive two-dimensional gas chromatography; GC-MS, gas chromatography mass spectrometry; GC-MS/MS, gas chromatography triple
quadrupole mass spectrometry; HR-TOF-MS, high resolution time-of-flight mass spectrometry).

relatively rapid results with reduced price point per sample.
However, complex samples containing multiple structurally
related analytes present a particular challenge for on-line
detection.

2.1.1 Flowing afterglow and SIFT-MS
The flowing afterglow method was developed over 60 years

ago to quantitatively measure ion-molecule reaction rate constants.
This method utilized a microwave discharge to ionize a primary
gas, with the resulting luminous glow migrating to the reaction
area, where an ion-molecule reaction transfers charge to neutral
species introduced into the buffer gas (Ferguson et al., 1969). In the
1970s flowing afterglow was implemented in a selected ion flow
tube (SIFT) where a positively charged single species low energy
primary beam was used to ionize neutral components present in
a carrier gas, and the reaction was detected using quadrupole MS
(Adams and Smith, 1976). The low energy ionization associated
with SIFT-MS resolves fewer analyte fragments with less complex
mass spectra formation in gas mixtures and alternative precursor
ions can be matched with different matrices to obtain representative
product ions. For example, SIFT-MS platforms have been used
to quantify trace amounts of gas, even in the parts per billion
(ppb) range (Smith and Spanel, 1996) down to parts per trillion
volume (pptv) (Bierbaum, 2015; Smith et al., 2022) in both air and
human breath using primary ion beams composed of dioxygenyl
(O2
+), hydronium (H3O

+), or nitrosonium (NO+) (Španěl et al.,
1999; Smith and Španěl, 2005) ions. SIFT-MS has also been used
to monitor bacterial growth (Allardyce et al., 2006a; Allardyce et al.,
2006b; Scotter et al., 2006) and to explore ion-molecule reaction
kinetics in breath collection bags compared to other methods
(Malásková et al., 2019).

2.1.2 IMS-MS
First developed in the 1970s, ion mobility spectrometry (IMS)

initially known as plasma chromatography (Cohen and Karasek,
1970), typically uses a radioactive source to ionize analyte gasses
that are then separated in a drift tube at atmospheric pressure
under an electric field and the counterflow of an inert drift gas
(Karasek et al., 1976; Karpas et al., 1988). Due to collisions with the
drift gas molecules and electric field acceleration, charged species
attain an ion mobility proportional to their shape, charge, size,
etc., and their different arrival times at the Faraday plate detector
enables selective and sensitive measurements (Hill et al., 1990;
Fernández Maestre, 2012). IMS has branched into different forms
including drift-tube ion mobility spectrometry, traveling-wave ion
mobility spectrometry, trapped ionmobility spectrometry, and field-
asymmetric waveform ion mobility spectrometry (Dodds et al.,
2020). IMS has been used to measure VOCs in environmental
samples (Takaya et al., 2022), and for more complex matrices, IMS
can be interfaced with an upstream multicapillary column (MCC)
containing up to 1,000 parallel capillaries to separate VOCs prior
to ionization (Vautz et al., 2006; Handa et al., 2014). More recent
integration of IMS with MS detection (Mukhopadhyay, 2008)
enables compound detection based on drift time and mass-to-
charge (m/z) ratio (Collins and Lee, 2002). Collision cross-section
calculations using IMS-MS spectra can also be used to estimate the
gas-phase size of ions useful for untargeted analysis (Collins and Lee,
2002; Lapthorn et al., 2013; Dodds and Baker, 2019).

2.1.3 IMR-MS and PTR-MS
In the 1980s ion-molecule reaction mass spectrometry (IMR-

MS) emerged as an alternative to SIFT-MS. In contrast to
SIFT-MS, IMR-MS employs a two-stage ionization process with
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TABLE 1 Summary of analytical techniques and applications used in the analysis of volatile organic compounds with mass spectrometry∗.

Matrix Analytical platform Objectives Findings References

Microbes

HS-GC-TOF-MS Analysis of VOCs in 200 bacterial
headspace samples from various
species for bacterial identification
is reported

Bacterial identification was
possible from VOCs including
differentiation between a
methicillin-resistant and -sensitive
Staphylococcus aureus

Boots et al. (2014)

SPME-GC-MS Monitoring the VOC profiles after
adding cephalosporin antibiotics
to Escherichia coli strains is
discussed

Antibiotic susceptibility was
detected in urinary tract infection
caused by Escherichia coli after 2 h

Drabińska et al. (2022)

SHS-MCC-GC-IMS An automated approach to
differentiate between Listeria spp.
from VOCs is presented

SHS-MCC-GC-IMS could
differentiate between Listeria
species using their VOC response

Taylor et al. (2017)

PTR-TOF-MS, SPME-GC-MS VOC production by
Porphyromonas gingivalis after
treatment with amoxicillin is
investigated

Metabolic effects of amoxicillin
were reflected in VOCs produced
by Porphyromonas. gingivalis

Roslund et al. (2022)

Review Recent advancements in microbial
VOCs and their roles in microbial
ecosystems is reviewed in the
context of analytical chemistry
techniques

Linking the characteristics of
microbial VOCs to analytical
chemistry techniques could
advance the knowledge on
volatile-mediated chemical
interactions

Weisskopf et al. (2021)

Review An overview on the evolution of
VOCs and VOC-labeled enzyme
substrates to detect pathogenic
bacteria is presented

Colorimetric sensor arrays and MS
techniques were useful in
diagnostics and decision-making,
in healthcare and food industries

Lough et al. (2017)

Plants

DI-MS A review of the applications of
DI-MS in real-time plant
volatilomics is presented

DI-MS advancements coupled
with omics platforms allowed
real-time investigation of plant
biogenic VOCs

Majchrzak et al. (2020)

SESI-HRMS A platform with a broad
metabolome coverage for plant
VOCs in real-time is described

SESI-MS detected an excess of
stress and light induced VOCs
emitted by Begonia semperflorens

Barrios-Collado et al. (2016)

GC-MS Volatiles released by Scots pine
twigs after oviposition is analyzed
for compounds attracting egg
parasitoids

GC-MS analysis showed increased
amounts of (E)-β-farnesene that
attract egg parasitoids

Mumm et al. (2003)

MR-GC-DMS A novel MR-GC-DMS platform
using microcontroller boards is
reported

MR-GC-DMS could detect VOCs
to distinguish between healthy and
infected Rhododendron plants

Anishchenko et al. (2018)

HS-SPME-GCxGC-TOF-MS An aroma comparison in five pear
cultivars is investigated

241 volatiles were identified
advancing analytical techniques in
aroma evaluation

Wang et al. (2019)

Review An overview on the role of
herbivore-induced plant volatiles
(HIPVs) on analytical chemistry
methods is discussed

The importance of selecting the
appropriate analytical methods
could mitigate the challenges in
sampling and analyzing HIPVs

D'Alessandro and Turlings (2006)

Review A comprehensive guide of
analytical methods for plant foliar
VOCs, and sampling approaches
for plant sciences is presented

The importance of selecting the
appropriate sampling methods and
analytical techniques for accurate
results was emphasized

Materić et al. (2015)

(Continued on the following page)
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TABLE 1 (Continued) Summary of analytical techniques and applications used in the analysis of volatile organic compounds with mass spectrometry∗.

Matrix Analytical platform Objectives Findings References

Human Volatilome

Review An overview of the human
volatilome encompassing VOCs
in numerous matrices is
reported

Comprehensive investigations of
VOCs across human matrices
contributed to innovative
scientific advancements

Amann et al. (2014)

Review A review reporting 2,746 VOCs
in healthy humans detected
mainly with MS techniques is
presented

Classified VOCs helped disease
diagnosis using the appropriate
body matrix for specific
research areas

Drabińska et al. (2021)

Review An introduction of using
untargeted MS techniques to
explore human microbiota and
its impact on bodily
environments

The pivotal role of MS was
underlined in mapping
microbial functions and
physiological impacts

Bauermeister et al. (2022)

Blood

SIFT-MS SIFT-MS can measure metabolic
gases in the headspace of blood
culture bottles achieving fast
diagnosis in bacteremia or
sepsis

Trace gases produced by
bacterial cultures were detected
after 6 h that was consistent with
the gases produced at 24 h

Allardyce et al. (2006b)

GC-IMS mVOCs can be analyzed in the
headspace of blood culture
bottles infected with
sepsis-specific pathogens

Using an autosampler with
GC-IMS to measure mVOCs
could enable point-of-care
applications for early detection
of sepsis

Drees et al. (2019)

HS-SPME-GC-MS/MS A method is developed and
validated to quantitate mVOCs
as biomarkers in human blood
after indoor mold exposure

The method had good linearity,
accuracy, precision, limit of
detection, and was used to
quantify 21 mVOCs in blood

Tabbal et al. (2022b)

SPME-GC-MS/MS A method is used to measure
BTEX VOCs in human blood at
ppt level to conduct PBPK
modelling after outdoor and
indoor VOC exposure

The method was validated to
detect 12 VOCs and applied to
analyze samples for a
nation-wide biomonitoring
study in Canada

Aranda-Rodriguez et al. (2015)

Urine

HS-SPME-GC-MS/MS A method is developed and
validated to quantitate mVOCs
as biomarkers in urine after
indoor mold exposure

The method had good linearity,
accuracy, precision, limit of
detection, and was used to
quantify 21 mVOCs in urine

Tabbal et al. (2022b)

Q-MRT-MS A novel Q-MRT-MS system is
introduced featuring an inclined
double-orthogonal accelerator
and planar gridless ion mirrors
with fourth-order energy
focusing

Diminishing duty cycles in long
flight time instruments could be
improved by multiplexing using
Encoded Frequent Pushing
technology

Cooper-Shepherd et al. (2023)

PTR-TOF-MS, SIFT-MS Basic principles and differences
between SIFT-MS and PTR-MS
are discussed, and real-time
breath analysis with the
techniques are compared

Real-time analysis of VOCs
offered quick results but suffered
from interferences. GC
separation mitigated
interference, but with longer
analysis time

Smith et al. (2014)

PTR-MS PTR-QqQ-MS PTR-MS can find a marker
VOC in the breath of kidney
transplant patients that
correlates with blood serum
creatinine and daily urine
production

PTR-TOF-MS and
PTR-QqQ-MS confirmed the
marker VOC potentially making
it possible to monitor kidney
functions

Kohl et al. (2013)

(Continued on the following page)
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TABLE 1 (Continued) Summary of analytical techniques and applications used in the analysis of volatile organic compounds with mass spectrometry∗.

Matrix Analytical platform Objectives Findings References

Breath

SESI-MS, SESI-HRMS A review of SESI-MS with an emphasis
on quality assurance in data analysis of
breath samples in the clinic is reported

SESI-MS was suitable to complement
molecular diagnostic methods in
early-stage biomarker discovery

Blanco and Vidal-de-Miguel (2021)

SESI-HRMS First-time use of SESI-HRMS to find
metabolic VOCs in children’s breath
with allergic asthma is reported

The technique was useful to identify
children with allergic asthma from
breath VOCs

Weber et al. (2023b)

SESI_TOF, PTR-HRMS First-time systematic evaluation of
SESI-HRMS and PTR-HRMS focusing
on their suitability to analyze VOCs in
adult breath is presented

The sensitive SESI-HRMS found more
features but detected less ions in the
low mass region than PTR-HRMS.

Bruderer et al. (2020)

GC-MS The breath sample analysis of liver
cirrhosis patients with Breath Biopsy
OMNI Global VOC service and
GC-MS to identify candidate
biomarkers is reported

VOCs were found as potential
biomarkers for progressive liver disease
detection that showed good correlation
with biomarkers obtained from serum

Ferrandino et al. (2023)

GC-MS/MS A needle trap micro-extraction
technique with GC-MS/MS is used to
analyze VOCs in the breath of patients
with heart failure

The optimized method included
hydrocarbons, carbonyls, aromatics,
sulfur compounds pptv level

Biagini et al. (2017)

TD-GC-MS The Peppermint Initiative: A
benchmark to establish standardization
protocols for VOC analysis in breath is
proposed

The Peppermint Consortium
encouraged international,
cross-platform and interdisciplinary
collaboration

Henderson et al. (2020)

TD-GC-MS/MS An optimized method is used to
analyze carbonyl compounds in the
breath of patients with heart failure

The validated method measured
aldehydes and ketones at pptv levels to
monitor clinical improvement of the
patients

Lomonaco et al. (2018)

TD-GCxGC-TOF-MS A method is used to investigate
whether malarial infection results in
characteristic changes of breath profiles
in febrile children

A shift was identified in breath
composition of Malawian children with
six VOCs enabling classification of
infection status

Schaber et al. (2018)

Review A review of breath biopsy for the
measurement of VOCs to monitor
respiratory tract, gastrointestinal
disorders and sepsis is presented

Online databases for VOCs were built
to support breathomics research in
patient cohorts with diverse pathologic
states

Belizário et al. (2021)

Review An overview of sampling and analytical
techniques of breath VOCs to diagnose
microbial infections and diseases is
presented

Microbial infection could produce
distinguishable VOCs whose detection
could help understand the complex
host-pathogen crosstalk

Ahmed et al. (2017)

Food

GC-MS Development and validation of a
GC-MS technique for the analysis of
VOCs in individual food and diet
samples are reported

The method showed varying
concentrations of VOCs in food
composites underlining the importance
of diet when assessing VOC exposure

Cao et al. (2016)

HS-SPME-GC-MS Use of HS-SPME with GC-MS for
real-time detection of bacterial
contamination of meat is reported

The technique identified unique VOCs
supporting an early-warning system for
meat contamination

Carraturo et al. (2020)

Review Classification of VOCs from
horticultural products and linking
them with stress factors for quality
management are outlined

VOCs as biomarkers could be used to
monitor the quality of horticulture
goods during storage

Tiwari et al. (2020)

(Continued on the following page)
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TABLE 1 (Continued) Summary f analytical techniques and applications used in the analysis of volatile organic compounds with mass spectrometry∗.

Matrix Analytical platform Objectives Findings References

Environment

IMR-MS An IMR-MS method is used to
analyze complex gas mixtures with the
advantage of less fragmentation
compared to electron-impact
ionization

IMR-MS was useful for on-line
analysis of car engine exhausts,
investigation of catalytic processes and
other industrial applications

Lindinger et al. (1993)

GC-MS/MS A HS-SPME-GC-MS/MS method is
used to measure mVOC biomarkers as
occupational health risk agents after
indoor mold exposure

The procedure was applied to propose
a physiologically based
pharmacokinetic model to assess
human exposure to indoor mold

Berkane et al. (2023)

GCxGC-HR-TOF-MS In diesel fuel samples, advanced data
reduction of large datasets obtained
with GCxGC-HR-TOF-MS is
important for efficient data handling
and analysis

Combining Kendrick mass defect and
knowledge-based rules, the group type
classification reduced complex
datasets to a few numerical values

Weggler et al. (2019)

Diagnostics

IMR-MS The VOC analysis in the headspace of
Gram-negative bacterial cultures with
IMR-MS as an in vivo diagnostic tool
is discussed

IMR-MS yielded fast bacterial growth
detection and identification offering
the possibility of automation

Dolch et al. (2012a)

SESI-HRMS Identification of VOC biomarkers in
selecting bacterial cultures in cystic
fibrosis and assigning molecular
structures to features are reported

Several pathogens were distinguished
in vitro using their VOC profiles and
proposed as biomarkers in disease
detection in the clinical context

Kaeslin et al. (2021)

HPPI-TOF-MS A non-invasive method is
implemented to measure VOCs in
exhaled breath of TB patients to
improve the efficiency of disease
diagnosis

The breathomics-based method was
accurate, sensitive and specific,
offering a simple clinical diagnostic
tool for TB screening

Fu et al. (2023)

Review MALDI-TOF-MS is described as a
method for microbial identification to
displace conventional diagnostic
techniques

MALDI-TOF-MS would shape and
define the clinical microbiology
laboratory landscape to accelerate
diagnostics and improve patient care

Clark et al. (2013)

Review A review of MS techniques with a
multiomic approach and integrated
science to investigate
Enterobacteriaceae phenotypes with
carbapenem resistance is reported

Targeted analyses with
chromatographic separation and
HRMS had potentials to detect
molecular signatures and
antimicrobial resistance

Dixon et al. (2022)

Review VOCs analyzed in headspace of
human body fluids with various MS
techniques during diagnostic
screening and monitoring disease
progression in lung cancer are
reported

Potential biomarker VOCs in lung
cancer showed overlap in human
matrices, therefore, standardized trials
are needed to validate clinically
relevant biosignatures

Janssens et al. (2020)

Multi-omics

GC-MS Comparative transcriptomics and
metabolite profiling are used in tea
plants to assess volatile heterosis

Genes and transcription factors with
over-dominating expression could
serve as candidate genes for breeding
high-volatile tea varieties

Zheng et al. (2019)

GC-MS Metabolite screening and RNA
sequencing ofMagnolia champacaare
employed to discover VOC
biosynthesis pathways and floral
scent-related genes

GC-MS found 43 VOCs in flowers
during sequencing and de
novoassembly of the transcriptome
yielded 47,688 non-redundant
unigenes

Dhandapani et al. (2017)

(Continued on the following page)
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TABLE 1 (Continued) Summary f analytical techniques and applications used in the analysis of volatile organic compounds with mass spectrometry∗.

Matrix Analytical platform Objectives Findings References

Other analyses

Flowing afterglow Marking the 50th anniversary
of the invention of flowing
afterglow with a brief overview
of its advancements

Contribution of invertors Eldon
Ferguson, Fred Fehsenfeld, Art
Schmeltekopf was recognized

Bierbaum (2015)

SIFT-MS SIFT-MS is introduced to
real-time quantification of trace
gases in air and breath.
Applications in research areas is
reviewed

The technique could detect
gases at ppb levels in various
matrices. Commercial SIFT-MS
instruments were reviewed

Smith and Španěl (2005)

IMS, IMS-MS IMS platforms are reviewed
with their advantages and
disadvantages

IMS interfaced with HRMS
could separate and identify
unique chemical isomers and
isobars

Dodds and Baker (2019)

IMS-MS A review of IMS-MS
applications to small molecules
in drug discovery with
limitations and potential
applications is presented

IMS-MS, in combination with
several analytical techniques,
offered structural elucidation in
milliseconds

Lapthorn et al. (2013)

SESI-MS A SESI model with the effects of
several technical parameters on
ionization is presented

The ionization mechanism was
based on gas phase species
rather than charged droplets

Vidal-de-Miguel and Herrero
(2012)

PTR-TOF-MS A workflow is proposed for the
measurement of numerous
target compounds in humid air
and the results are compared to
SIFT-MS data

Using PTR-TOF-MS, less
fragmentation and similar
information-rich data could be
obtained as seen with SIFT-MS.

Romano and Hanna (2018)

GCxGC-HRMR-TOF-MS FFP
EFP

The importance of improving
the duty cycle to increase
sensitivity of HR MR-TOF-MS
FFP systems is discussed

Using Encoded Frequent
Pushing spectral multiplexing
technique improved the duty
cycle in HR MR-TOF-MS FFP
systems

Willis et al. (2021)

PTR-TOF-MS,
SPME-GC-TOF-MS

Two MS techniques are
employed to monitor the VOC
production during 3D printing

Quantitative VOC emissions
obtained with PTR-TOF-MS
were confirmed with qualitative
analysis with
SPME-GC-TOF-MS.

Wojnowski et al. (2022)

TD-GCxGC-TOF-MS,
PTR-TOF-MS

VOC emission and uptake of
components from the breath
sampling device ReCIVA are
assessed

Thermal pretreatment of
ReCIVA components reduced
VOC emissions, and uptake
differed for various parts of the
device

Pham et al. (2023)

Review A review on the analyses of
aroma VOCs with advanced MS
techniques in food products
and chemometrics is presented

In volatile metabolomics, lack
of metabolite-specific libraries
limited the identification and
structural elucidation of VOCs

Lubes and Goodarzi (2017)

Review An overview of hyphenated,
real-time MS techniques with
advantages, limitations and
examples is presented

Hyphenated techniques had
good qualitative data with long
run time. Real-time techniques
offered good quantitative data
in short analysis time, but only
tentative qualitative results

Gould et al. (2021)

For abbreviations, please, refer to Supplementary Material.
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Krypton (Kr+) or Xeon (Xe+) primary beams (Lindinger et al.,
1993). During the first stage, primary reagent gas is generated
through electron impact ionization, and in the second stage,
reagent gas enters a reaction chamber through a lens system where
charge is then transferred (Lindinger et al., 1993). Initially, IMR-
MS systems were employed to analyze industrial gas mixtures, such
as emission from furnaces and motors that required the use of
Kr+ or Xe+ for efficient ionization (Lindinger et al., 1993). In later
manifestations, IMR-MS systems capable of alternating between
different primary ion beams, including Kr+, Xe+ or Mercury (Hg+)
were developed and used to differentiate VOCs produced by
Gram-negative and Gram-positive bacteria in headspace analysis of
anaerobic blood samples (Dolch et al., 2012a; Dolch et al., 2012b).
IMR-MS was also used to analyze VOCs in exhaled breath
(Dolch et al., 2015; Meidert et al., 2021).

Proton transfer reaction MS (PTR-MS) introduced in the 1990s
is similar to IMR-MS, but uses an ion beam composed of H3O

+

with high proton affinity (Lindinger et al., 1993; Hansel et al., 1995).
Use of H3O

+ results in low energy ionization resolving fewer
analyte fragments with less complex mass spectra formation in gas
mixtures. From a VOC detection standpoint, H3O

+ is effective in
detecting trace gas components in exhaled breath (Lindinger et al.,
1993; Hansel et al., 1995; Smith and Spanel, 1996). Additionally,
the high proton affinity of H3O

+ reduces ion-molecule reactions
with major air components including nitrogen (N2), oxygen (O2),
carbon dioxide (CO2), andwater (H2O) (Lagg et al., 1994), reducing
potential matrix effects (Bruderer et al., 2020). The singular use
of a H3O

+ makes PTR-MS less versatile than SIFT-MS with
respect to matching precursor ions with different matrices to obtain
representative product ions (Smith and Španěl, 2005). Despite this
limitation, PTR-MS has diversified into several forms including
PTR-single quadrupole MS (PTR-QMS) (Smith et al., 2014), PTR-
triple-quadrupoleMS (PTR-QqQ-MS) (Kohl et al., 2013), and PTR-
TOF-MS (Smith et al., 2014).

PTR-QMS is a scanning MS platform with a relatively slow
data acquisition rate and nominal mass resolution. However, it
is effective for targeted analyses to quantitate known VOCs with
accuracy and precision (Smith et al., 2014). Combined use of PTR-
MS and solid phase microextraction gas chromatography time-of-
flight mass spectrometry (SPME-GC-TOF-MS) has been used for
monitoring applications (King et al., 2010; Majchrzak et al., 2018)
including real-time detection of VOCs released from thermoplastics
during 3D printing (Wojnowski et al., 2022). In addition, direct
infusion (DI) PTR-MS has been used for real-time detection
of VOCs released from plants in combination with multi-omic
sequencing to establish a monitoring network to refine global
emission budgets and observe plant metabolism at different levels
of biological organization (Majchrzak et al., 2020). PTR-QqQ-MS
is an extension of PTR-QMS providing higher specificity and
sensitivity (Kohl et al., 2013). PTR-TOF-MS platforms collect full
mass spectra with high mass resolution (Dodonov et al., 2000;
Cooper-Shepherd et al., 2023) making them effective in separating
isobaric compounds with high sensitivity and potentially accurate
mass for untargeted analyses of complexmatrices withmany analyte
fragments (Smith et al., 2014). Biomarkers from exhaled breath
of patients with kidney dysfunction have been identified using a
combination of PTR-MS, PTR-TOF-MS with structural elucidation
using PTR-QqQ-MS (Kohl et al., 2013).

2.1.4 SESI-MS and Orbitrap-MS
First introduced in the late 1980s, electrospray ionization

(ESI) made it efficient to ionize liquid phase polar molecules
using a sensitive and low energy process (Whitehouse et al., 1986;
Fenn et al., 1989; Fenn, 2002). In a variation of ESI called secondary
electrospray ionization (SESI) developed in the 2000s, neutral
compounds in gas phase were introduced into the nebulized spray
of an ESI stream, where ionized droplets transfer charge to the
gaseous species followed by MS detection (Wu et al., 2000; Vidal-
de-Miguel and Herrero, 2012). SESI-MS has been used to analyze
volatile fatty acids (VFAs) in exhaled breath (Martínez-Lozano et al.,
2011) and has been used in combination with high-resolution MS
(HRMS) time-of-flight (TOF) and Orbitrap instruments. The first
commercial Orbitrap platform was introduced in 2005 for high-
resolution mass spectrometry. Produced ions enter a curved trap,
where they are collisionally cooled and enriched. The concentrated
ion packets are injected orthogonally into the orbitrap where they go
into an axial oscillation along a central electrode with a frequency
that is proportional to their m/z ratio. The central electrode has
an opposing electrical charge, and ion stability is achieved by high
velocity oscillation that prevents the ions from crashing into the
electrode. The resulting resonance signal undergoes a mathematical
treatment with Fourier transform, where the oscillation signal
is converted to a mass spectrum (Makarov, 2000; Zubarev and
Makarov, 2013).

Both SESI and Orbitrap are typically combined with
off-line chromatography methods to improve compound
identification and mass resolution. SESI-HRMS with TOF has been
employed to identify biomarkers for cystic fibrosis in bacterial
cultures (Kaeslin et al., 2021), to benchmark PTR-HRMS results
(Bruderer et al., 2020), and to monitor VOC production in plants
over light-dark cycles (Barrios-Collado et al., 2016). More recently
SESI has developed into so-called super SESI, an advanced,
electrode-free design with less background noise and memory
effects (Blanco and Vidal-de-Miguel, 2021). Super SESI-HRMS
with TOF and Orbitrap has been used to profile VOCs in exhaled
breath (Blanco and Vidal-de-Miguel, 2021; Weber et al., 2023a;
Weber et al., 2023b). Orbitrap-HRMS has also been used to detect
VOCs associated with cometary ice analogs (Javelle et al., 2021),
as well as SVOCs emanating from environmental dust samples
(Pourasil et al., 2022), and plant volatilome (Majchrzak et al., 2020).

2.1.5 TOF-MS
Time-of-flight MS (TOF-MS) introduced in the mid-1950s

accelerates ions in an electric field within a flight tube. Ions
with a smaller m/z ratio travel faster, while those with a
higher m/z travel slower. Ions are simultaneously detected at
a microchannel plate detector, where cascades of electrons are
converted into photons amplified by a photomultiplier to generate
signals for measurement (Cotter, 1989). The difference between
the arrival time of ions at the detector decreases as their m/z
values increase, and ions with the same m/z ratio arrive with a
time distribution that can overlap with adjacent ions, reducing
mass resolution. Linear TOF-MS instruments, particularly matrix-
assisted laser desorption ionization TOF MS (MALDI-TOF-MS)
systems are now routinely used in analytical labs with applications
as varied as proteomics, biomarker discovery, imaging, materials
and environmental monitoring (Clark et al., 2013). A more intricate
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TOF-MS design is the orthogonal acceleration TOF-MS (oaTOF-
MS), where ions are accelerated in the drift region perpendicular
to their original direction. Except for the MALDI-TOF-MS, most
contemporary TOF-MS platforms use orthogonal acceleration and
are commonly referred to as TOF-MS.

High resolution TOF-MS instruments emerged in the 1990s
with improved mass resolution using collisional focusing (Douglas
and French, 1992) and orthogonal acceleration (Guilhaus et al.,
2000), or reflectrons (Mamyrin et al., 1973; Wang et al., 1994;
Weggler et al., 2019; Cooper-Shepherd et al., 2023) to increase
resolution and the flight path of the ions. A typical drift length
in earlier linear oaTOF systems was around 1.5 m (Guilhaus et al.,
2000), and this length could be significantly extended by employing
different geometric designs. However, increasing the number of
passes across mirror grids in reflectrons reduces sensitivity and duty
cycle (Cooper-Shepherd et al., 2023). Duty cycle (DuC) describes
the proportion of time that ions can enter the TOF for analysis.
As mass resolution increases, the duty cycle decreases, with the
highest duty cycle attained for the highestm/z ion and diminishing
for smaller ions (Chernushevich et al., 2017; Willis et al., 2021). The
introduction of a linear ion trap/release setup also referred to as
“Zeno pulsing” has enabled nearly 100% DuC over a wide m/z
range using V- (Loboda andChernushevich, 2009) andW-geometry
systems (Chernushevich et al., 2017) in TOF-MS configurations
with 20,000 and 90,000 resolving power, respectively. More recently,
high resolution, accurate mass, quadrupole-multi-reflecting time-
of-flight (Q-MRT) MS instruments featuring open-loop, planar,
gridless ion mirrors with fourth-order energy focusing and a 48 m
flight path have reached over 200,000 resolving power with sub-ppm
mass accuracy (Cooper-Shepherd et al., 2023).

In conventional TOF-MS systems, the push cycle in the
accelerator region is followed by a pause period until the largest
m/z ion arrives at the detector. With longer flight paths, the
waiting period may become excessively long, rendering the DuC
impractical. Diminishing DuC in instruments with extended flight
times can be mitigated by multiplexing using Encoded Frequent
Pushing (EFP) technology, where the flight tube is continually filled
with ions from subsequent pulses, and the time offset of the pulse
frequency is encoded in a sequence that can be accurately decoded
to represent individual signals in Q-MRT systems (Willis et al.,
2021; Cooper-Shepherd et al., 2023). For example, high resolution
multi-reflecting time-of-flight mass spectrometry with folded 20 m
flight path (HR-MR-TOF-MS FFP) combined with EFP technology
reaches a 50,000 resolving power. Analysis of Egyptian mummy
bandage extracts using a GCxGC-HR-MR-TOF-MS FFP with EFP
system indicated improvements in signal intensity, dynamic mass
range, accurate mass data, and limit of detection confirming
the reliable operation of decoding algorithms and hardware with
increased transient length inHR-TOF-MS instruments (Willis et al.,
2021; LECO Corporation White paper, 2021).

TOF-MS can be combined with numerous off-line methods
for VOC detection. For instance, a PTR-TOF-MS method was
developed for improved detection of aldehydes, fatty acids, and
phenols in humid air (Romano andHanna, 2018).The samemethod
was used to profile VOCs produced by Porphyromonas gingivalis,
a common constituent of the human oral microbiome identifying
biomarkers in exhaled breath and saliva samples (Roslund et al.,
2022). Advances in high-speed electronics, collisional cooling and

orthogonal acceleration have increased the resolution of TOF
instruments (Douglas and French, 1992; Guilhaus et al., 2000;
Chernushevich and Thomson, 2004). In such instruments, ions
pass through a multi-pole lens system filled with a low-pressure
inert gas and applied radio frequency (RF) resulting in collisional
cooling that forms a narrow and dense ion beam. The beam enters
an acceleration region, where it is further enriched and the ions
are pushed as concentrated packets into the flight tube in an
orthogonal direction (Dodonov et al., 1987; Dodonov et al., 1993;
Dodonov et al., 2000). High resolution TOF-MS (HR-TOF-MS) has
been used to profile VOCs in exhaled breath (Weber et al., 2023a;
Weber et al., 2023b), to identify biomarkers for cystic fibrosis in
bacterial cultures (Kaeslin et al., 2021), and to benchmark SESI and
PTR-HRMS results (Bruderer et al., 2020).

2.2 Off-line methods

Off-line or hyphenated methods integrate chromatographic
separation processes upstream of analyte detection. For example,
gas chromatography to separate sample components prior to MS
can improve resolution, allowing for more precise identification
and quantification of the analytes. Gas chromatography (GC),
formerly known as gas-liquid chromatography, evolved from liquid
chromatography (LC) in 1941, when Martin and Synge proposed
during their research on liquid-liquid partition chromatography
that the mobile liquid phase could be replaced with a gas phase
(Martin and Synge, 1941). The first application with GC was
published in 1952 reporting the separation of VFAs from other
acidic components and it can be considered the first publication
on VOC analysis using GC (James and Martin, 1952). Nowadays,
VOC profiling involves various types of GC utilizing open tubular
capillary columnswith diverse stationary phases connected to awide
range of detectors. These methods require more intensive sample
preparation and more time to implement with respect to method
development and sample analysis. Although the process of sample
preparation can be semi-automated, the throughput of off-line
methods tends to bemuch lower than on-linemethods.The primary
advantage of using off-line methods is the increased resolution of
analytes with less deconvolution needed to interpret mass spectra
resulting in improved identification within more complex matrices.

2.2.1 GC-MS
First introduced in the 1950s, GC-MS instruments employed

packed columns connected to a magnetic sector mass spectrometer
(Grayson, 2016). The first GC with a single quadrupole MS
(QMS) became commercially available in 1961 (Finnigan, 2016)
and has become one of the most widely used platforms for small
molecule detection in liquid or gaseous phase samples across diverse
matrices. Currently, most contemporary GC-MS platforms use GCs
with capillary columns coupled with a QMS and are commonly
referred to as GC-MS. GC-MS instruments are recognized for
their robustness, user-friendly configurations, affordability, and high
chromatographic resolution with low mass resolution, enabling
detection and quantitation of analytes with nominal mass (Rey-
Stolle et al., 2022).

Liquid samples can be introduced directly into the injection
port, where they are vaporized, focused, and carried to the
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column by the carrier gas in either a split or splitless injection
mode. Gas-phase samples are injected in a similar way except
the analytes are captured from the headspace (HS) of the sample
container using static HS (SHS), dynamic HS (DHS), SPME,
thermal desorption (TD), purge-trap, needle trap, etc., methods
(Sugita and Sato, 2021) followed by sample introduction to the
injection port. Thermally labile compounds, instead of being
vaporized, are injected via cool on-column injection. Analytes are
separated based on their physico-chemical properties in relation
to the column’s stationary phase, carrier gas, oven temperature
programming, and other experimental parameters. Analytes eluted
from the column are ionized, typically using electron impact (EI)
ionization, where an electron beam emitted by a tungsten filament
bombards the molecules, fragmenting them into smaller pieces.
This process produces radical cations where the molecular ion
is typically not observed. While hard ionization EI is useful for
quantitation in targeted analysis, it is less optimal when conducting
compound characterization, structural elucidation, or untargeted
analysis. Alternatively, analytes can be ionized with chemical
ionization, where the electron beam ionizes a reagent gas (e.g.,
methane, ammonia, etc.) first, then the ionized reagent gas transfers
charge to the analyte in a soft ionization process that produces
negatively or positively charged ions with the molecular ion and less
fragmentation (González et al., 1995; Lubes and Goodarzi, 2017).
The ionized species enter a single quadrupole MS, where a constant
ratio of direct current (DC)/RF is applied and ramped on the rods
of the quadrupole, resulting in ions following either an unstable or
stable trajectory. The trajectory of an ion is determined by its m/z
ratio with unstable ions hitting the rods, discharging, and venting
from the system, while stable ions travel through the quadrupole,
generating a signal at the detector (Pedder, 2001).

From a VOC detection standpoint, TD-GC-MS has been used
to develop standards for exhaled breath (Henderson et al., 2020),
and HS-SPME-GC-MS has been used to identify biomarkers
of meat spoilage associated with Salmonella Typhimurium and
Campylobacter jejuni reducing the time required for regulatory
compliance (Carraturo et al., 2020). Similarly, HS-SPME-GC-MS
has been used to profile metabolites associated with the Candida
spp. volatilome identifying sesquiterpene indicators for Candida
albicans infection (Fitzgerald et al., 2022). In special cases, GC
ionization has been achieved using ESI where the column
effluent was introduced into an electrospray plume using a
multiple channel ESI MS technique. This method was applied
to study the chemical reactions of VOCs with solid catalysts,
such as the dehydration of dimethylhydrazine in the presence
of mercury oxide (Lee and Shiea, 1998). More recently, GC-
IMS has been developed to analyze VOCs in the headspace
of both aerobic and anaerobic human blood culture samples,
identifying species-specific volatiles that enabled the identification
of bacterial strains in bloodstream infections after a 6-h incubations
(Drees et al., 2019). Similar to TD-GC-MS, HS-GC-IMS has
been used to benchmark VOC detection standards for exhaled
breath (Ruszkiewicz et al., 2022) and to profile clinical samples
includingHS-MCC-GC-IMS systemused to detectVOCs associated
with Listeria spp. infections (Taylor et al., 2017). Anishchenko
and colleagues developed a modular and reconfigurable system
combined with differential mobility spectrometry, a variant form
of IMS, to detect VOCs associated with Phytophthora ramorum,

a protistan plant pathogen (Anishchenko et al., 2018). Combining
GC-MS methods with various collection and detection modules
provides a versatile and customizable framework for detectingVOCs
from diverse matrices.

2.2.2 GC-MS/MS
The first commercially available tandem GC-MS/MS platform

appeared on themarket in 2008 incorporating a primary quadrupole
(MS1), collision cell, and secondary quadrupole (MS2) with ion
optics and focusing lenses. Precursor ions exiting MS1 undergo
fragmentation in the collision cell by colliding with an inert,
pressurized collision gas (such as helium or nitrogen), and the
resulting product ions enterMS2, where they are filtered by applying
and ramping a constant DC/RF ratio on the quadrupole rods, as
previously explained. The primary advantage of GC-MS/MS lies
in its selective and sensitive quantification of targeted analytes in
complex matrices, achieved through a multiple reaction monitoring
(MRM) mode of operation. In MRM mode, the most abundant
precursor and product ions obtained fromMS1 and MS2 are paired
into a joint MRM signal enabling the targeted detection of the
compound with high selectivity and sensitivity. In MRM, unlike
ramping voltages, specific DC/RF ratios are applied to MS1 and
MS2, ensuring stable trajectories for the precursor and product
ions of selected analytes while reducing matrix effects. High-speed
electronics enable the rapid interchange of many DC/RF ratios on
the quadrupoles in microseconds, allowing simultaneous detection
and quantification of numerous analytes in complexmatrices (Lubes
and Goodarzi, 2017). For example, HS-SPME-GC-MS/MS was used
to profile microbial VOCs in human urine and blood as potential
biomarkers for indoor mold exposure, resolving 21 analytes as
potential occupational health risks (Tabbal et al., 2022b). Amodified
version of this method was employed to determine urine/air,
blood/air, and plasma/air partition coefficients of microbial VOCs
in relation to indoor mold exposure (Berkane et al., 2023). In a
related study conducted by the Canadian Government, SPME-
GC-MS/MS was used to monitor volatile halogenated and BTEX
compounds in human blood to determine differences between
indoor and outdoor exposure risks (Aranda-Rodriguez et al., 2015).
A similar method using HS-GC-MS/MS profiled BTEX and other
VOCs in sewage sludge samples from various wastewater treatment
plants to better constrain odor control management practices
(Byliński et al., 2019). From a biomarker discovery perspective,
triple-bed needle trap micro-extraction with GC-MS/MS was used
to profile VOCs in exhaled breath of patients with congestive heart
failure to identify indicators of disease progression (Biagini et al.,
2017; Bellagambi et al., 2021), while the use of a derivatizing agent
such as pentafluorobenzyl hydroxylamine pre-loaded on Tenax GR
sorbent tubes has been used in conjunction with TD-GC-MS/MS
analysis to profile VOCs in exhaled breath from similar patients to
monitor clinical improvement over time (Lomonaco et al., 2018).

2.2.3 Multi-dimensional GC (2DGC, GCxGC)
In complexmatrices, analytesmay persistently coelute even after

chromatographic separation using long columns with advanced
column chemistry. Efficiently separating multiple coeluting
peaks and achieving positive compound identification using
deconvolution algorithms can be difficult, especially when working
with poorly characterized sample types. Multi-dimensional GC
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attempts to address these challenges by separating analytes across
different phases (Seeley and Seeley, 2013). For example, in two-
dimensional GC (2DGC) effluent from the first-dimension column
is diverted onto a second-dimension column with a different
stationary phase for added separation. The two columns have
separate detectors, generating distinct data files. Another option
is comprehensive two-dimensional GC (GCxGC) that employs two
ovens and columns featuring different stationary phases, along with
a modulator for peak manipulation and a single detector (Giddings,
1984; Liu and Phillips, 1991). Modulation is achieved using rapid
flow or thermal separation methods to improve analyte detection
(Amaral et al., 2020), e.g., thermal modulation using GCxGC with
dual-stage quad-jet thermal modulation and cryogenic cooling.
During thermal modulation, coeluting peaks arriving from the
first-dimension column undergo added separation by entering the
modulator, where the peaks are segmented into slices, focused,
injected, and subsequently separated in the second-dimension
column, where the sliced sections of the peaks represent analytes
resolved from previously coeluting peaks in the first dimension
(Sarbach et al., 2013). TD-GCxGC-TOF-MS and PTR-TOF-MS
have been used to establish standards for profiling VOCs in exhaled
breath using the ReCIVA breath biopsy device including assessment
of analyte loss resulting and false positive detection (Pham et al.,
2023). Similarly, TD-GCxGC-TOF-MS was used to profile VOCs
from the exhaled breath of febrile children infected with the
malaria causing parasite Plasmodium falciparum resulting in the
identification of six potential biomarkers associated with infection
status (Schaber et al., 2018). Interestingly, these VOCS were related
to terpenes known to attract mosquito vectors involved in malaria
transmission. From an industrial perspective, tri-bed SPME-
GCxGC-TOF-MS has been used to identify 241 VOCs including
esters, alcohols, aldehydes, and alkenes involved in determining
pear aroma that could be correlatedwith genetic differences between
cultivars (Wang et al., 2019).

3 Conclusion

This review explores both on-line and off-line methods used in
VOC profiling with MS from different matrices. Attention is given
to the technical evolution of on-line and off-line methods needed
for increasingly resolved VOC profiles, tracing technical progress
over time with particular emphasis on emerging microbiome and
diagnostic applications (summarized in Table 2). VOC profiling
has grown expansively over the past 2 decades across multiple
different platforms. It is expected that this trend will continue as
more scientists and clinicians turn to increasingly sensitive MS
detection platforms including different forms of GCxGC-TOF-MS
and PTR-TOF-MS for development of diagnostic and monitoring
solutions. At the same time emerging bioinformatics workflows
enabling integration of multi-omic data sets (DNA, RNA, proteins,
metabolites) promise to invigorate and inform volatilome research
across increasingly diverse matrices (Figure 2). For example,
Guo and colleagues developed an automated cuvette system in
conjunction with on-line PTR-ToF-MS and off-line GC-MS to
evaluate fungal VOCs from 43 individual fungal isolates and used
the resulting spectra to identify patterns of covariation that informed

a machine learning model for biomarker detection within higher
level taxonomic groups or functional guilds (Guo et al., 2021).

On-line platforms offer benefits in clinical laboratories
due to their quick analysis times, lack of sample preparation,
user-friendly software interfaces, and portability to point-of-
care (Majchrzak et al., 2018; Gould et al., 2021). Quantitation
is possible for targeted analytes with prior calibration of the
machine using standards (Španěl et al., 1999; Smith and Španěl,
2005; Fernández Maestre, 2012), while non-target analytes are
eliminated from the measurement. SIFT-MS instruments provide
the flexibility to choose from various precursor ions, including
O2
+, H3O

+, and NO+, which allows users to select the primary
ionization agents most suitable for the analyzed matrix. In contrast,
PTR-MS employs H3O

+ as its sole ionizing agent, limiting its
versatility but yielding less fragmentation (Smith and Španěl, 2005).
On-line techniques are less ideal when conducting untargeted
analysis of complex samples where overlapping m/z values can
limit analyte identification (Kohl et al., 2013; Smith et al., 2014;
Lubes and Goodarzi, 2017). Mass resolution can be improved
using HRMS systems that reduce the error between accurate
mass spectra and predicted mass listed in regulatory-compliant
repositories, such as the National Institute of Standards and
Technology (NIST) (Ausloos, et al., 1999), Wiley (McLafferty and
Sttauffer, 1989), Fiehn (Kind et al., 2009), Golm (Kopka et al.,
2004), or other reference libraries. Such repositories utilize
information-rich databases and powerful search functions, such as
vocBinBase (Skogerson et al., 2011), BinVestigate (Lai et al., 2018)
with deconvolution and annotation tools, including MS-DIAL and
MS-FINDER (Tsugawa et al., 2015; Tsugawa et al., 2016; Lai et al.,
2018), as well as advanced database queries (Kind and Fiehn, 2006).
For example, the Wiley Registry/NIST Mass Spectral Library was
used to identify various metabolites including terpenoids, saponins,
flavonoids, and alkaloids produced by six Nigella sativa (black
cumin) species (Farag et al., 2014). In a separate integrative study,
changes in gene expression and terpenoid production were used
to annotate genes and pathways responsible for berry maturation
processes (Wang et al., 2017). Despite this potential for multi-omics
integration, in the absence of analyte separation even the most
accurate mass spectral libraries are confounded by overlapping m/z
values (Bruderer et al., 2020; Kaeslin et al., 2021).

Off-line platforms, although more labor intensive to operate,
offer more detailed chromatographic separations supporting
analyte identification, quantification, and structural elucidation
(Ahmed et al., 2017; Gould et al., 2021). While development and
validation of GC-MS/MS methods requires investment of time and
expertise, they remain optimal for profiling VOCs across diverse
matrices (Tabbal et al., 2022a; Tabbal et al., 2022b; Berkane et al.,
2023). In the analysis of complex samples containing potentially
hundreds of analytes, GCxGC-HRMS technology presents several
advantages in resolution and analyte identification. The GCxGC
module enhances chromatographic peak separation, potentially
achieving baseline resolution, and the in-line HRMS system
further improves selective spectral identification through high
resolution mass measurement of the separated analytes. While low-
resolution MS (LRMS) instruments typically measure m/z ratios
to one decimal place, which suffices for targeted quantification,
untargeted analyses require HRMS (Rey-Stolle et al., 2022). HRMS
ensures measurement of unknowns with accurate mass where,
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TABLE 2 Summary of advantages and disadvantages of on-line and off-line mass spectrometry techniques∗.

MS platform Analytical technique Advantages Disadvantages References

On-line

Flowing afterglow Pioneering technology for the
quantitative measurement of ion
reaction constants between
charged and neutral species,
leading to the development of
SIFT-MS.

Charge transfer reactions of
positive ions to neutrals can be
measured more efficiently in
certain cases with more direct
methodologies

Ferguson et al. (1969)

SIFT-MS Easy to operate and maintain. No
sample preparation. Results in
minutes. Thermal ionization
yields less fragmentation and
simple mass spectra. Switching
between reagent ions (i.e., O2

+,
H3O+, NO+) can be optimized for
best analyte detection. Sensitive
and more selective than PRT-MS.

Cannot distinguish between
isobars. Quantitation is possible
only after calibration with known
analytes. Bulky pumping systems
are required to maintain separate
vacuum regions of the instrument.
Requires high purity helium or
hydrogen as carrier gas

Prince et al. (2010)

IMS-MS Fast, portable, can detect trace
amounts of analytes. Separation is
based on collisional cross section
and separates isomers. High
throughput. Suitable for field
applications, such as
environmental, food, or homeland
security samples. Result available
in minutes

Sensitive to temperature and
humidity changes. Compound
resolution efficiency decreases
with temperature and humidity
that degrade samples. Not suitable
for non-volatile analytes. Complex
mass spectra, therefore, off-line
techniques may be needed to
confirm results

Lapthorn et al. (2013)

IMR-MS Low-energy chemical ionization.
Binary collision process. Yields
simple mass spectra with minimal
fragmentation and molecular ions
observed. Highly sensitive;
capable of detecting gaseous
compounds at the pptv level, in a
few minutes

Selection of primary ion is
important to minimize
fragmentation when analyzing
neutral gases. Complex gas
mixtures (e.g., emission from
furnaces, motors) require
switching between several
primary ions, adding analysis
time. Differential pumping
requires bulky pumping systems

Dolch et al. (2012a), Dolch et al.
(2012b)

PTR-MS Portable, high throughput with no
previous sample preparation or
compound separation. User
friendly, less expensive than
SIFT-MS. Analyte quantitation is
possible at pptv levels. Can
complement GC-MS methods

Higher collision energies result in
fragmentation and inconsistent
product ion formation. The
availability of H3O+ reagent ions
only, limits the detection of light
hydrocarbons and certain
halogenated species

Hansel et al. (1995)

SESI-MS Very efficient ionization at
atmospheric pressure yields high
sensitivity at pptv level. Minimal
fragmentation with the molecular
ion observed. Easy to interface
with commercial ESI MS systems.
Suitable for complex biological
samples

Vulnerable to matrix-effects
causing ion suppression. Not
suitable for quantitation.
Expensive instrumentation. A
nanoflow technique that may
result in long sample analysis
times

Wüthrich and Giannoukos (2024)

TOF-MS A HRMS technique with up to
48 m flight path and 200,000
FWHMmass resolution, at ppb
level, across all acquisition speeds.
No mass discrimination. Full mass
spectra acquired in milliseconds.
Can be interfaced with LC, GC.

Duty cycle limited between 1%
and 30%. Sensitivity drops with
increasing mass resolution. Flight
tube sensitive to temperature
fluctuation that affects mass
accuracy. Not ideal for
quantitation

Cooper-Shepherd et al. (2023)

(Continued on the following page)
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TABLE 2 (Continued) Summary of advantages and disadvantages of on-line and off-line mass spectrometry techniques∗.

MS platform Analytical technique Advantages Disadvantages References

Orbitrap-MS Most current HRMS technique
with up to 240,000 FWHM
mass resolution atm/z 400
with sub-ppm accuracy.
Internal lock mass calibration
with <1 ppm drift over 24 h.
High sensitivity. Can be
interfaced with off-line
techniques

Space charging may limit the
dynamic range and sensitivity
of low abundance ions. Slow
polarity switching in certain
models. Increasing scan rates
reduce resolution

Zubarev and Makarov (2013)

Off-line

GC-MS Robust, user-friendly,
affordable. High
chromatographic resolution
with unit mass resolution.
Wide linear range. Suitable for
quantitation of small
molecules in liquid or gaseous
samples in diverse matrices. EI
detects analytes that are
difficult to ionize

Analytes must be easily
volatilized. Molecular ion not
observed. In convoluted mass
spectra, analyte identification
may be compromised. Not
ideal for isobars and
untargeted analysis. Ion source
may require frequent cleaning

Lubes and Goodarzi (2017)

GC-MS/MS Most sensitive and selective
technique for quantification of
targeted analytes in complex
matrices. Wide linear
analytical range; suitable for
analytical measurements at sub
ppb levels

Upstream sample preparation
necessary. Low mass
resolution. More expensive
than GC-MS. Larger space
requirements. Room
ventilation may be necessary
due to increased heat
generation

Tabbal et al. (2022a), Tabbal
et al. (2022b)

GC-TOF-MS High chromatographic
resolution combined with high
mass resolution. Simultaneous
detection of all ions with
accurate mass.
Information-rich data
acquisition, suitable for
complex samples with no loss
of data

Mass resolution range is
between 30,0000 and 50,000
FWHM with 1–2 ppm mass
accuracy. Frequent calibration
is necessary. Highly
concentrated samples affect
accurate mass determinations

Chernushevich et al. (2017)

GC-Orbitrap MS Unparalleled mass resolution.
Targeted (quantitative) and
untargeted (qualitative)
analysis, simultaneously.
Excellent sensitivity. Compact
design. Applications in
proteomics, metabolomics,
diagnostics, environmental,
food, etc., analyses

Limited charge capacity can
overfill Orbitrap, reducing
mass accuracy. Detection may
be affected by ion stability due
to conditions in ion injection
slit, electrodynamic squeezing,
rotational amplitudes, axial
oscillation, etc. Expensive
instrumentation

Hu et al. (2005), Belarbi et al.
(2021)

GCxGC-HR TOF-MS Very high peak capacity.
Unmatched chromatographic
resolution coupled with high
mass resolution. FFP design
combined with EFP
technology improves mass
resolution and duty cycle,
significantly. Represent the
most current GC/MS
technology for VOC analysis

Upstream sample preparation
is necessary. Very long sample
analysis times. Multiple
decoding algorithms needed
for complex mixtures. Large
footprint. Expensive
technology

Willis et al. (2021)

∗For abbreviations, refer to Supplementary Material.
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FIGURE 2
Increasing number of publications related to volatile organic compound detection over the past 20 years for different matrices, methods, and
platforms based on PubMed searches. (A) various matrices, (B) extraction methods (SPME, solid phase microextraction; TD, thermal desorption; LE,
liquid extraction; HS, headspace; SHS, static headspace; DHS, dynamic headspace), (C) GC-MS (gas chromatography mass spectrometry), (D) other
mass spectrometry (MS) platforms (TOF, time-of-flight; PTR-MS, proton transfer reaction MS; IMR-MS, ion molecule reaction MS; IMS-MS, ion mobility
spectrometry MS; SIFT-MS, selected ion flow tube MS; GCxGC-MS, comprehensive two-dimensional gas chromatography MS; GC-MS/MS, gas
chromatography triple quadrupole MS; SESI-MS, secondary electrospray ionization MS).

TABLE 3 Determination of compounds,m/z 28.0 with accurate mass and the possible chemical formulas.

Element Atomic mass
unit

Chemical
formula

Nominal mass Theoretical
exact mass

Measured
accurate mass

Mass error

m/z m/z m/z m/z ppm

H 1.00783 N2 28.0 28.00559 28.00562 1.07

C 12.00000 CO 28.0 27.99436 27.99429 −2.54

N 14.00307 CH2N 28.0 28.01818 28.01827 3.03

O 15.99491 C2H4 28.0 28.03077 28.03089 4.28

electron 0.00055

∗Masserror = massmeasured−masstheoretical
massmeasured

∗ 106 [ppm].

for example, compounds with nominal mass m/z 28.0 have four
possible chemical formulas, as shown in Table 3. LRMS is incapable
of distinguishing between these possibilities. HRMS compares
the measured accurate mass spectra with predicted mass listed in
regulatory-compliant repositories and the analyte with the lowest
mass error is selected as themost likely hit; in this casem/z 28.00562
(Table 3). The chromatographic separation power and accurate

mass measurement of GCxGC-HRMS places these platforms at
the forefront of VOC detection with the best analyte separation
and accurate mass identification (Weggler et al., 2019; Willis et al.,
2021; Cooper-Shepherd et al., 2023; LECO Corporation White
paper, 2021).

Living cells and cell systems produce diverse VOC profiles
that can be differentially detected using on-line and off-line
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FIGURE 3
An emerging paradigm for volatilome research integrating multi-omic data (DNA, RNA, protein, and metabolites) spanning different levels of biological
organization to resolve volatile organic compound (VOC) profiles emerging from biological matrices sourced from natural or engineered environments
including our own bodies. This paradigm includes enrichment and isolation methods to more closely link specific VOCs with specific individuals or
populations of microorganisms as well as community-level analysis that define emergent patterns of VOC production and signaling among and
between different taxonomic lineages. The development of more extensive regulatory-compliant repositories, e.g., Wiley Registry/National Institute of
Standards and Technology (NIST) Mass Spectral Library compound reference libraries and integrative methods linking identified VOCs onto the
background metabolic network at scale remain ongoing challenges (Created with BioRender.com).

methods. For example, VOCs produced by plants include
terpenoids, phenylpropanoids, benzenoids, and fatty acid
derivatives (Picazo-Aragonés et al., 2020; Liu et al., 2023); VOCs
detected in blood include alcohols, aldehydes, acids, acetone,
hydrogen sulfide, methanethiol, dimethyl sulfide, dimethyldisulfide,
trimethylamine, indole, aminoacetophenone (Allardyce et al.,
2006a; Allardyce et al., 2006b); VOCs detected in breath include
hydrocarbons, alcohols, ketones, aldehydes, carboxylic acids, esters,
isoprenoids, furan, nitrogen- and sulfur-containing compounds,
aromatics, cyclic hydrocarbons (Issitt et al., 2022; Moura et al.,
2023) (https://neomeditec.com/VOCdatabase/); VOCs produced
by microorganisms include hydrocarbons, alcohols, aldehydes,
acids, ketones, esters, aromatics, phenols, nitrogen- and sulfur-
containing compounds (Ratiu et al., 2017); VOCs detected
in food include alcohols, aldehydes, acids, esters, terpenes,
furans, and pyrazines (Starowicz, 2021); and VOCs detected
in environmental samples include alkanes, alkenes, alkynes,
alcohols, aldehydes, aromatic compounds, ketones, esters, ethers,
haloalkanes, nitriles, organic acids, and acrylamide (Lü et al.,

2022). While many of these compound classes are shared between
sources, more granular analysis reveals a complex array of
molecular forms with potential to serve specific signaling or
regulatory roles.

In this regard there is increasing interest in VOC profiling
to develop new metrics that improve understanding of microbial
interactions and trait-based contributions to functions and services
in natural and engineered environments including our own bodies
(Figure 3). For example, microbial VOCs are increasingly being
linked back to antimicrobial properties and plant host interactions
including defense mechanisms and root growth (Weisskopf et al.,
2021; Razo-Belmán et al., 2023; Schmidt et al., 2023). From a
diagnostic or biotechnology innovation perspective this not only
applies to the detection of VOCs involved in community-level
interactions and host associations, but to development of non-
invasive point of care diagnostics in health and disease. For
example, lung cancer breath analysis has become a promising
method of screening, with ∼500 exhaled compounds currently
associated with lung cancer status (Schmidt et al., 2023). Identifying
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correlations between lungmicrobiome and VOCs in relation to lung
cancer status is an active area of research that requires increased
throughput, mass resolution and methods standardization. These
requirements also represent common challenges to scaling VOC
detection in relation to community level interactions as well as
in development of screening paradigms to recover genes or gene
cassettes producing VOCs from environmental genomes. Despite
these challenges, the trajectory of MS platform innovation and
continuous improvement in integrativemethods of data analysis and
statistical modeling provides an exciting opportunity for researchers
to ask fundamental questions with real world implications.

4 Scope statement

Volatile organic compounds (VOCs) are gas-phase small
molecules released from biotic and abiotic matrices into the
environment. Because they are volatile, VOCs are typically not
detected during conventional metabolite analysis and require
specific profiling methods and platforms to measure. One of the
most popular platforms is gas chromatography-mass spectrometry
that is commonly used for detecting VOCs and can be automated
with headspace solid-phase microextraction, etc., methods. The
study of VOCs in relation to other forms of biological information,
e.g., DNA, RNA, protein, and other metabolites encompasses
volatilome research. Emerging lines of evidence suggest that the
volatilome plays an integral role in signaling and metabolite
exchange within natural and engineered environments including
our own bodies where the interplay between microorganisms and
host cells defines a complex adaptive network. In this review we
trace the evolution of mass spectrometry platforms used in the
detection of VOCs in relation to different biological matrices and
provide contemporary insight into how VOC profiling is becoming
increasingly used to develop non-invasive diagnostic tests across a
range of application areas in health, industry, and the environment.
Since this review examines VOC analysis using various mass
spectrometry platforms with a multi-omics approach, it will fit well
in this Research Topic.
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