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A heuristic approach to the
prediction of a periodic solution for
a damping nonlinear oscillator with
the non-perturbative technique

Yusry O. El-Dib1*, Nasser S. Elgazery1 and Haifa A. Alyousef2

1Department of Mathematics, Faculty of Education, Ain Shams University, Cairo, Egypt, 2Department of
Physics, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia

The present work attracts attention to obtaining a new result of the periodic solution
of a damped nonlinear Duffing oscillator and a damped Klein–Gordon equation. It is
known that the frequency response equation in the Duffing equation can be derived
from the homotopy analysis method only in the absence of the damping force. We
suggest a suitable new scheme successfully to produce a periodic solution without
losing the damping coefficient. The novel strategy is centered on establishing an
alternate equation apart from any difficulty in handling the influence of the linear
damped term. This alternative equation was obtained with the rank upgrading
technique. The periodic solution of the problem is presented using the non-
perturbative method and validated by the modified homotopy perturbation
technique. This technique is successful in obtaining new results toward a periodic
solution, frequency equation, and the corresponding stability conditions. This
methodology yields a more effective outcome of the damped nonlinear
oscillators. With the help of this procedure, one can analyze many problems in
the domain of physical engineering that involve oscillators and a linear damping
influence. Moreover, thismethod can help all interested plasma authors formodeling
different nonlinear acoustic oscillations in plasma.

KEYWORDS

damping nonlinear oscillator, non-perturbative technique, modified homotopy
perturbation method, stability analysis, rank upgrade technique

1 Introduction

In the range of differential equations, various physical manifestations, such as acoustic
waves in plasma physics, and many engineering problems are modeled. A lot of scientists have
made magnificent efforts to evaluate the solution of these differential equations. Different
techniques have been utilized to evaluate the corresponding solutions. Modeling different
biological, physical, and biochemical engineering problem occurrences, in general, yields
nonlinear partial differential equations (PDEs). Moreover, plasma physics is one of the
most fertile fields for many researchers interested in studying nonlinear phenomena. To
perform modeling, the nonlinear phenomena that propagate in different plasma systems and
many ordinary and partial differential equations must be solved. For this purpose, different
mathematical approaches have been introduced for modeling several physical problems.
Recently, a damped nonlinear oscillator model has been widely considered in practical
engineering, general physics, and in plasma physics. For mathematical scientists, an article
on nonlinear PDEs, which are addressed in most engineering and science domains, is extremely
important. Many authors have offered a survey of the literature with numerous references using
various analytical techniques for dealing with the damped nonlinear oscillation problems.
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Nonlinear systems remain a challenge, and its interest has
fundamentally concentrated on specific changes in system
instability and bifurcations.

Duffing oscillators are permanently connected with engineering
and physical situations, especially plasma physics. The damping force
is an impact on an oscillatory system that has the action of restricting,
reducing, or averting its oscillation. Damping is created by operations
of losing the energy stored in an oscillation. Examples include
resistance in electronic oscillators, viscous pull in mechanical
systems and plasma physics, osmosis, and expansion of light in
visual oscillators. Damping, which did not build from vanishing
energy, may be significant in other vibrating systems like those that
subsist in some biological systems. A system’s damping may be
categorized as one of the following:

• Overdamped: The system reaches equilibrium as an exponential
decay.

• Critically damped: The system reaches equilibrium as soon as
possible without vibrating.

• Underdamped: The system vibrates with amplitude slowly
lessening to zero (at low frequency compared to the
nondamped case).

• Undamped: The system resonantly oscillates at its native
frequency.

See [1] for additional instances for the aforementioned categories.
Over the current decades, a lot of physical phenomena have been

described utilizing nonlinear ordinary differential equations (ODEs).
One of the simplest of these oscillators called a Duffing equation has
received significant interest in light of its classical applications in
engineering, biology, plasma physics, and sciences. The history of
nonlinear proceedings in engineering sciences has been observed since
[2] employed the hardening spring model to investigate the vibration
of the electromagnetic vibrating beam in 1918. Therefore, the Duffing
equation has been extensively utilized in structural dynamics and in
mathematics to determine the existence of oscillatory motions of
second-order nonlinear PDEs. The oscillation/non-oscillation
theorems of Meissner’s equation were investigated by [3]. [4]
utilized the multiple-scale perturbation approach to develop and
calculate an analytic periodic solution of oscillating movements in
damping Duffing oscillators. [5] used perturbation techniques for
nonlinear structural vibrations using Duffing oscillators.
Consequently, perturbation analysis is still used to obtain an
analytic solution for oscillating movements. The HPM was first
introduced by the famous mathematician [6]. Recently, it has been
employed in numerous investigations in engineering and physics. In
contrast, this technique failed in analyzing damping nonlinear
oscillators [7]. There are many modifications made by many
researchers to improve HPM to be a more functioning method. [8]
employed the parameter-expanding technique as a modification to
HPM in solving strongly nonlinear oscillators. [9] and [10] developed
HPM by connecting it with Laplace transform for solving nonlinear
oscillators. [11] obtained a periodic solution for the Fangzhu oscillator
by HPM.

Next, several of the latest developments of this technique are
briefly mentioned; for instance, the combination of the multiple-scale
method and HPM [12–15], the parameterized HPM [16], and
nonlinearities distribution HPM was applied to solve Troesch’s
problem [17]. Numerical and approximate techniques can be

utilized for the treatment of nonlinear oscillators. Numerous
estimates were used in trying to solve linear and nonlinear
oscillators, for example, the reproducing kernel method [18].
Moreover, an iterative procedure is employed to evaluate a
numerical solution of the optimal control issues of the Duffing
oscillators [19]. Also, [20] applied the finite difference technique to
investigate an oscillatory model. Furthermore, by substituting a
suitable linear auxiliary operator for the linear operator in [21]
analysis of nonlinear equations with restoring force, among other
changes, they created a new version of HPM. By using the modified
homotopy perturbation procedure, [22] also introduced an analytic
solution for a nonconservative parametric quintic-cubic Duffing
oscillator. A damped Mathieu equation was solved using a
modulation for HPM by [23]. The Newell–Whitehead–Segel
(NWS) equation’s periodic solution was also estimated by [24]
using the HPM. [25] introduced a simple frequency formulation to
study a tangent oscillator. An analytic solution of Burgers’ equation
with time-fraction has been introduced by [26]. A variational principle
for a nonlinear equation that appears in several micro-electro-
mechanical systems was developed by [27]. Furthermore, a jerk
Duffing oscillator was solved using the lowering rank approach by
him and [28]. Luo and Jin have used the lower-order technique in
numerical approaches [29]. Recently, [30] applied the non-
perturbative technique to solve a damping
Helmholtz–Rayleigh–Duffing oscillator.

It is common knowledge that some nonlinear differential
equations do not have exact solutions. Then, the analysis of
approximate solutions for some kinds of these systems plays a
significant role in investigating nonlinear physical phenomena [31].
The damping Duffing oscillator refers to these kinds of equations, and
it is represented by the following equation:

€y + 2μ _y + ω2
0y + Qy3 � 0; y � y t( ) (1)

It is thought to observe that a Duffing oscillator is a simple model
which displays various kinds of vibrations, such as chaos and limit
cycles. The term _y(t) in Eq. 1 represents a damping oscillation, and μ

refers to viscous damping. The part (ω2
0y + Qy3) refers to a nonlinear

restoring force acting as a hard spring (with ω2
0 rules, the size of

stiffness, and Q dominants, the size of nonlinearity). This equation
illustrates a wonderful area of well-known nonlinear dynamical
system behavior. It was used by a lot of scientists to illustrate such
behaviors. Numerous problems in both engineering and physics drive
to nonlinear Duffing oscillators (Eq. 1) from oscillations of a simple
pendulum, including nonlinear electrical circuits. It has been approved
in various applications in image processing [4, 5]. The approximate
periodic response for the un-damped equation, obtained by various
analytical methods, has been discussed in almost all textbooks on
nonlinear vibration. Eq. 1, with a non-zero damping term, has received
attention in many domains of physical engineering problems. The
investigation of new techniques which drive the solution of the
damped Duffing equation was of vital significance since these
solutions can be used for a cubic Schrodinger/damping
Klein–Gorden equation that has numerous uses in nonlinear
optics, plasma physics, and fluid mechanics.

Other related works have been included in this study, yielding a
good understanding of the present analysis. A fractionally damped
beam has been analyzed by [32]. The influence of dispersion force and
squeezed film damping was incorporated in the dynamic instability of
the nanowire-fabricated sensor subjected to centrifugal and constant
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acceleration [33, 34]. Even though Eq. 1 appears straightforward at a
first glance, it contains several complex elements. The classical
perturbation approach has a lot of drawbacks. Moreover, the
following damping nonlinear Klein–Gorden equation has the same
shortcoming when using the classical HPM:

ytt + Pyxx + 2μyt + 2ηyx + σy � Qy3; y � y x, t( ) (2)
The real constant coefficients P, η, μ, σ, and Q can be defined as a
second-order spatial derivative coefficient, spatial damped coefficient,
temporal damped coefficient, natural frequency, and cubic stiffness
parameter, respectively. The classical nonlinear Klein–Gordon
equation, which appears in several scientific domains such as
nonlinear optics, solid physics, fluid mechanics, quantum
mechanics, and plasma physics, is derived from Eq. 2 when the
values of the coefficients μ and η vanish. In addition to its
applications in plasma physics, it can be used for modeling many
nonlinear structures in plasma. It transforms into the one-dimensional
time-nonlinear damped Klein–Gordon equation when μ> 0 and η � 0
[35–38]. The aforementioned damping Klein–Gordon equation can be
transformed into a damping Duffing oscillator by using the technique
of the traveling wave approaches. Traveling waves engender multiple
physical systems spontaneously, typically qualified by PDEs. Then, by
including the following traveling wave’s next variable ζ(x, t), one can
create an alternative oscillatory form of Eq. 2.

ζ x, t( ) � 2ηx + 2Pμt. (3)
Such transformation was applied to the nonlinear Klein–Gordon

Eq. 2 without damping by [39]. According to the stated novel
independent variable, one obtains

yt � 2Pμy′ ζ( ), yx � 2ηy′ ζ( ), ytt � 4P2μ2y″ ζ( ), and
yxx � 4η2y″ ζ( ), (4)

where the prime denotes the total derivative concerning the variable ζ .
By utilizing Eq. 4 with Eq. 2, it will be transformed into the following
damping Duffing equation:

Py″ ζ( ) + y′ ζ( ) + ω2
0y ζ( ) � Ry3 ζ( ), (5)

where ω2
0 and R are given through the subsequent notations:

ω2
0 �

σ

4 Pμ2 + η2( ), andR � Q

4 Pμ2 + η2( ). (6)

The solution of Eq. 5 gives the traveling wave solution of the
original nonlinear Klein–Gordon equation as given in Eq. 2. Suppose
that Eq. 5 has been subjected to these initial conditions y(0) �
A andy′(0) � 0.

A fresh perturbation strategy is required to address the drawbacks.
Unexpectedly, the flaw in Eq. 1 has been fixed by using the fractional
derivative in conjunction with HPM [40, 41].

In the present research, a new suitable idea is presented
successfully to produce a periodic solution for oscillators
containing the damping coefficient without losing this damping
force. The main idea is based on the rank upgrading technique by
upgrading the linear operator to a higher order and using the original
equation to replace what is equivalent to the linear damped term [42,
43]. The outcome is an alternative fourth-order differential equation
devoid of any damping difficulties. The comparison between this
alternative equation and the original equation showed that the
obtained equation is corrected and can be used to perform the

periodic solution. The periodic solution of the problem is
presented using the non-perturbative method and validated by the
modified homotopy perturbation technique.

2 Methodology

To overcome the difficulty in solving the damping nonlinear
oscillator, one can employ the rank upgrading mechanism to
annihilate the damping term “y′”. This method is used for
upgrading the order of the derivatives of Eq. 5 to become

Py‴ + y″ + ω2
0y′ � 3Ry2y′, (7)

Py 4( ) � −y‴ + 3Ry2 − ω2
0( )y″ + 6Ryy′2. (8)

By removing y′ from Eq. 7 with the help of Eq. 5 and replacing y‴
in Eq. 8 yields

P2y 4( ) − 1 + 2P 3Ry2 − ω2
0( )( )y″ − 6PRyy′2 + 3Ry2 − ω2

0( )
× Ry2 − ω2

0( )y � 0. (9)
This is a fourth-order equation with cubic-quintic nonlinearity

which represents an alternative form of the original damping Eq. 5.
This new form will be subject to the initial conditions listed as
follows:

y 0( ) � A, y′ 0( ) � 0, y″ 0( ) � A

P
RA2 − ω2

0( ), andy‴ 0( )

� −A

P2
RA2 − ω2

0( ). (10)

It can be ensured that Eq. 9 represents an alternative form of the
original Eq. 5 through the comparison of the numerical solutions.

3 Introducing the periodic solution

The periodic solution can be introduced from Eq. 9 analytically
which can be illustrated as follows, with the non-perturbative
approach and with the homotopy perturbation method:

It is noted that Eq. 9 can be rearranged in the following form:

y 4( ) − g y, y′, y″( ) + f y( ) � 0, (11)
where the two odd functions g(y, y′, y″) and f(y) are selected to
have y″ and y as a common factor, respectively. Here,

g y, y′, y″( ) � 1

P2 1 + 2P 3Ry2 − ω2
0( ) + 6PR

yy′2

y″( )y″,
f y( ) � 1

P2 3Ry2 − ω2
0( ) Ry2 − ω2

0( )y.
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭. (12)

Consequently, Eq. 11 in the non-perturbative approach can be
sought in the form

y 4( ) − β2y″ +ϖ 4y � 0. (13)
The efficient frequency formula given by El-Dib [44–46] can be

used to evaluate both β2 and ϖ4 as follows:
Introducing the trial solution to Eq. 13 in the form

ŷ ζ( ) � A cosωζ , (14)
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where A and ω represent the amplitude and the unknown frequency
of the oscillation, respectively. Accordingly, both ϖ4(A) and β2(A)
read

ϖ4 A( ) �
∫T
0

ŷ ζ( )f ŷ( )dζ
∫T
0

ŷ2 ζ( )dζ
� 1
8P2

15A4R2 − 24A2Rω2
0 + 8ω4

0( );T � π

2ω
,

(15)

β2 A( ) �
∫T
0

ŷ″ ζ( )g ŷ, ŷ′, ŷ″( )dζ
∫T
0

ŷ″2 ζ( )dζ
� 1
P2

1 + 3A2PR − 2Pω2
0( ). (16)

Employing Eq. 14 with the linear fourth-order Eq. 13 yields the
frequency equation in the form

ω4 + β2 A( )ω2 +ϖ4 A( ) � 0. (17)
At this stage, the solution of Eq. 13 has the form

y ζ( ) � A cosωζ , (18)
with

ω � 1�
2

√
��������������
−β2 +

��������
β4 − 4ϖ4

√√
. (19)

4 Validation with the homotopy
perturbation approach

By utilizing the technique of the auxiliary equivalent [21, 40, 47,
48] by introducing (P2ω4y) into Eq. 9 and then building the
corresponding homotopy equation, one obtains

y 4( ) − ω4y � ρ

P2
−P2ω4y + y″ − 3Ry2 − ω2

0( ) Ry3 − ω2
0y − Py″( )[

+P 3Ry2 − ω2
0( )y″ + 6PRyy′2]; ρ ∈ 0, 1[ ]. (20)

The new frequency parameter ω is unknown to determine the
latter.

By operating both sides of Eq. 20 with the inverse (D2
ζ − ω2), one

can reduce the artificial higher power and obtain

D2
ζ + ω2( )y � ρ

P2 D2
ζ − ω2( ) −P2ω4y + y″ − 3Ry2 − ω2

0( )[
× Ry3 − ω2

0y − Py″( ) + P 3Ry2 − ω2
0( )y″ + 6PRyy′2].

(21)
This equation is an alternative to Eq. 5; it is free of difficulty due to

the linear damping effects. At this stage, the application of HPM is easy
without any shortcomings. Typically, introducing the homotopy
expansion [6], one finds

y ζ; ρ( ) � y0 ζ( ) + ρy1 ζ( ) + ρ2y2 ζ( ) +..., (22)
where the unknowns y0(ζ) andy1(ζ) are given by substituting from
Eq. 22 into Eq. 21; following the same procedure as given in HPM, the
abovementioned unknowns may be determined by the simpler
differential equations as follows:

y0
″ + ω2y0 � 0, (23)

which is the linear harmonic equation having the general solution in
the form

y0 ζ( ) � A cos ωζ( ), (24)
where A is the amplitude of the oscillation. Furthermore, we have

D2
ζ + ω2( )y1 � 1

P2 D2
ζ − ω2( ) [ − P2ω4y0 + y0

″ − 3Ry2
0 − ω2

0( )
× Ry3

0 − ω2
0y0 − Py0

″( ) + P 3Ry2
0 − ω2

0( )y0
″

+6PRy0y′20]. (25)

The zero-order solution Eq. 24 is introduced into Eq. 25, and the
cancellation of the secular terms requires

P2ω4 − 2Pω2
0 − 3PRA2 − 1( )ω2 + ω4

0 − 3Rω2
0A

2 + 15
8
R2A4 � 0. (26)

Consequently, the frequency–amplitude equation is given by

ω2 � 1
2P2

2Pω2
0 − 3PRA2 − 1( ) ± ������������������������

3
2
P2R2A4 − 4Pω2

0 + 6PRA2 + 1

√[ ].
(27)

It is noted that the frequency equation derived by the homotopy
perturbation method is equivalent to that obtained before by the non-
perturbative approach in Eq. 17.

FIGURE 1
Comparison of the numerical solution between Eq. 5 and Eq. 9.
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Without secular terms, the solution of Eq. 25 arises in the form

y1 ζ( ) � RA3

80P2ω4
ω2
0 − 3Pω2 − 15

16
RA2( ) cos 3ωζ( )

− R2A5

3328P2Ω4 cos 5ωζ( ). (28)

Accordingly, the final first-order approximate solution gives

y ζ( ) � A cos ωζ( ) + RA3

80P2ω4
ω2
0 − 3Pω2 − 15

16
RA2( ) cos 3ωζ( )

− R2A5

3328P2ω4
cos 5ωζ( ). (29)

FIGURE 2
Comparison between the analytical periodic solutions by the non-perturbative and homotopy perturbation approaches (18) and (29), respectively, with
Galerkin’s solution (Eq. 32).

FIGURE 3
Influence of the parameter P on the periodic solution Eq. 32.

FIGURE 5
Influence of the parameter ω0 on the periodic solution Eq. 32.

FIGURE 4
Influence of the parameter R on the periodic solution Eq. 32.

FIGURE 6
Stability distribution of the conditions for a system of R � 2
and P � 0.1.
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It should be noted that solution Eq. 29 is superior to known
asymptotic periodic solutions of Eq. 5. See, for illustration, the recent
study demonstrated by [49]. In his work, he applied the Laplace
Adomian decomposition method to a damping Duffing equation and
obtained an asymptotic solution in terms of a power series. However,
the abovementioned solution cannot be obtained using HPM without
applying the rank upgrading technique.

The stability criteria of the frequency–amplitude Eq. 26 become

P 2ω2
0 − 3RA2( )> 1, ω4

0 − 3Rω2
0A

2 + 15
8
R2A4 > 0,

and
3
2
P2R2A4 − 4Pω2

0 + 6PRA2 + 1> 0.
(30)

These criteria ensure the positivity of ω2.
By employing the value of ζ as a function of x and y from Eq. 3 into

the asymptotic solution of Eq. 29, consequently, this asymptotic solution

is converted in terms of the original Klein–Gordon Eq. 2; therefore, one
obtains

y x, t( ) � A cos 2ηωx + 2Pμωt( ) + RA3

80P2ω4 ω2
0 − 3Pω2 − 15

16
RA2( )

× cos 3ηωx + 6Pμωt( ) − R2A5

3328P2ω4 cos 10ηωx + 10Pμωt( ). (31)

For more convenience, a numerical calculation will be represented
to confirm the previous approximate analytic solution of the damping
Duffing oscillator 5).

5 Numerical illustrations

In this section, the comparison between the numerical solutions for
both the original Eq. 5 and alternative Eq. 9is explained. The Runge–Kutta
approach built in Mathematica software will be used in this comparison.
The numerical values of the parameters are selected in the form P �
5, R � 0.1,ω0 � 2 and A � 1. In Figure 1, the numerical solution for the
original equation is represented by the solid red line, while the alternative
equation is plotted with a blue dashed line. In this calculation, the error
between these solutions is 8.671 × 10−8. This means that the two curves
are identical. This graph shows that Eq. 9 is another face of Eq. 5. This
means that any solution of Eq. 9 represents a solution of Eq. 5. Therefore,
the periodic solution obtained by the non-perturbative technique or that
obtained by the modified HPM represents a periodic solution of the
original Eq. 5.

It is worthwhile to observe that the periodic solution Eq. 18, that
obtained by the non-perturbative method, and the periodic solution
Eq. 29, performed by the modified homotopy perturbation approach,
are required for comparing the periodic solution that can be produced
from Eq. 5 directly. It is easy to employ the Galerkin’s method directly
to Eq. 5 to perform the following periodic solution:

y ζ( ) � A cosΩζ , (32)
where Ω is given by

FIGURE 7
Stability distribution of the same system, as given in Figure 6, except
that P � 0.2.

FIGURE 9
Stability distribution of the same system, as given in Figure 7,
of P � 0.2.

FIGURE 8
Stability distribution of the same system, as given in Figure 6, except
that P � 0.3.
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Ω � 1
2P

−1 +
���������������
1 − 3A2PR + 4Pω2

0

√( ). (33)

Figure 2 represents the periodic solution obtained by three different
methods. These are as follows: Galerkin’s solution (Eq. 32), which is
plotted by the solid red line; the non-perturbative solution (Eq. 18),which
is represented by the blue dashed line; and the HPM solution (Eq. 29),
which is represented by the dotted green curve. The calculations are made
for the system having P � 2.6, R � 1,ω0 � 1.5, and A � 1. The
investigation of this graph shows that there is an excellent agreement
between the three curves. The relative error between the Galerkin solution
(Eq. 32) and the non-perturbative solution (Eq. 18) is 0.0007843, while the
error between the Galerkin solution (Eq. 32) and the HPM solution (Eq.
29) is found to be 0.004467. This comparison also shows that the non-
perturbative solution (Eq. 18) is closer than the HPM solution (Eq. 29) to
Galerkin’s solution (Eq. 32).

The approximate solution, as given in Eq. 32, is sketched versus the
parameter ζ for the amplitude A � 1 and R � 0.1, P � 5ω0 � 2. This
calculation is displayed in Figures 3–5. These three graphs show a
periodic solution for the damping Duffing Eq. 5. Moreover, the
influence of the parameters P and R and the linear frequency ω0

on the periodic solution is shown in these graphs. The growth in these
coefficients reduces the time cycle of the wave solution.

The calculations are performed under the stability conditions that are
given in Eq. 30. The stable distribution is located in the plane (ω2

0 − A).
The numerical outcomes are illustrated in Figures 6–9, where the stable
region is colored in red. These stable regions have satisfied the three
inequalities in Eq. 30. In Figure 6, the natural frequency ω2

0 is plotted
versus the amplitudeA for theDuffing coefficientR � 2 atP � 0.1.When
the parameter P was increased to the value of P � 0.2 (i.e., the damping
coefficient is decreased), the stable region was decreased, as shown in
Figure 7. The continued raise in P results in reducing the stable region, as
shown in Figure 8, for P � 0.3. This shows the increase in the damping
coefficient plays a stabilizing influence. This agreement is with those
obtained in [11]. The examination of the increase in the Duffing
coefficient is the subject of Figure 9. It is observed that as R increased,
the width of the stable region decreased. This ensures that the nonlinear
coefficient plays a destabilizing influence.

6 Conclusion

Away from the regular investigation of the nonlinear oscillators,
the present article has been explained. This article deals with the
nonlinear Duffing equation and obtains a new result of the periodic
solution of a damped nonlinear Duffing oscillator and the damped
Klein–Gordon equation by using a new technique named the rank
upgrading technique. This technique first increases the order of the
partial differential equation by differentiating the original
differential equation. The alternative equation is obtained. The
comparison between this alternative equation and the original
equation shows that the obtained equation is corrected and can
be used to perform the periodic solution. Its solution has been
validated by applying the HPM to the alternative equation, in

which the oscillation frequency obtained by the non-perturbative
approach has been identical to that frequency obtained by the HPM.
This frequency has been used to discuss stability behavior. A
comparison of the periodic solutions’ curves was obtained using
three different methods. Non-perturbative, modified homotopy
perturbation, and Galerkin solutions showed an excellent
agreement. This comparison also shows that the non-perturbative
solution is closer to Galerkin’s solution than the HPM solution.
Furthermore, this scheme is a new technique. Therefore, the present
numerical method can be used for analyzing different acoustic waves
and oscillations in plasma and different physical systems.
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An investigation of a closed-form
solution for non-linear
variable-order fractional evolution
equations via the fractional Caputo
derivative
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Determining the non-linear traveling or soliton wave solutions for variable-order
fractional evolution equations (VO-FEEs) is very challenging and important tasks in
recent research fields. This study aims to discuss the non-linear space–time variable-
order fractional shallow water wave equation that represents non-linear dispersive
waves in the shallow water channel by using the Khater method in the Caputo
fractional derivative (CFD) sense. The transformation equation can be used to get the
non-linear integer-order ordinary differential equation (ODE) from the proposed
equation. Also, new exact solutions as kink- and periodic-type solutions for non-
linear space–time variable-order fractional shallow water wave equations were
constructed. This confirms that the non-linear fractional variable-order evolution
equations are natural and very attractive in mathematical physics.

KEYWORDS

space-time variable-order fractional shallow water wave equation, variable-order Caputo
fractional derivative, Khater method, closed-form solution, graphical representation

1 Introduction

Fractional calculus is a generalization of traditional integer-order integration and derivation
actions onto non-integer order. The idea of fractional calculus is as old as classical calculus; it
was discussed for the first time by Leibniz and L’Hospital in 1965. The fractional- and variable-
order VO fractional models gained more attention because these models describe the physical
phenomenon properly as compared to integer-order differential models. The non-linear FEEs
define different phenomena in various areas, such as signal preparation, medication, biology,
and organic framework [1, 2]. Many strategies have been produced to solve integer/fractional-
order problems. Various fractional-order literature works directed that the memory and/or
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non-locality of the system may change with time, space, or other
conditions. So, here our focus is on VO fractional differential models,
which describe the physical models that vary with time or space or
space–time. For example, Akgül et al. [3] solved the VO FPDE
numerically and presented numerical experiments to confirm the
efficiency and feasibility. Katsikadelis [4] developed a numerical
method for linear and non-linear VO FPDEs in the Caputo sense.
The resultant numerical values demonstrated the accuracy of the
proposed method. Sahoo et al. [5] reviewed the VO operator
definitions and properties. They discussed the new transfer
function and investigated the model of a dynamic viscoelastic
oscillator. Sing et al. [6] suggested an SEIR model that modeled the
2014–2015 outbreak of the Ebola virus in Africa. They discussed the
system of VO FDEs and estimated its parameters for one or more
variables. Semary et al. [7] approximated the solution of
Liouville–Caputo VO FPDEs with 0< α(t)≤ 1 based on the
Chebyshev function and discussed many linear and non-linear
non-integer-order PDEs. Taghipour and Aminikhah [8] proposed
the ADI numerical scheme for the fractional-order model and
discussed the theoretical analysis. Other related studies can be seen
in [9–16]. The effective analytical and closed-form solutions are
studied in the recent literature. For example, Uddin et al. [17]
considered the two important fractional-order models, namely,
equal width and generalized equal width that describe the
dispersive waves. They used the fractional derivative in the
Riemann–Liouville sense and the (G′G , 1G) expansion approach has
been used, and they confirmed that the proposed approach is
powerful, very convenient, and computationally efficient. Barman
et al. [18] worked on a generalized Kudryashov method to provide
a generic and inclusive closed-form solution. The proposed approach
confirmed various shapes of waveform solutions such as kink-shaped,
bell-shaped, singular, and flat in a 3D form. In another study, Barman
et al. [19] proposed the same technique for
Konopelchenko–Dubrovsky and Landau–Ginzburg–Higgs models.
They obtained various varieties of analytical solutions for different
parameters. The solutions are obtained in 2D and 3D forms, which
demonstrated the efficiency and reliability of the proposed method.
Roy et al. [20] solved the two significant types of models and
implemented the new generalized G′/G expansion method. They
constructed the solution in trigonometric, hyperbolic, and rational
forms with different parameters. Kumar et al. [21] found out the exact
solution for the higher-dimensional Fokas and breaking soliton
models by the generalized exponential function method. The
authors observed that the suggested method is effective and
powerful. Ali et al. [22] investigated the exact solution for the VO
fractional modified equal width equation based on the exp (−ϕ(ξ))
method. The fractional derivative is obtained in the Caputo sense, and
the obtained exact solution is new and somewhat natural in
mathematical physics. Akhtar et al. [23] constructed exact and
traveling wave solutions for the Konopelchenko–Dubrovsky model
and used two types of integration schemes. The resultant solutions are
dark, single, anti-kink forms having a wide range of applications in
applied sciences. Islam et al. [24] worked on analytical techniques and
found the solution for the fractional-order foam drainage equation
and SRLW equation. They used the G′/G expansion method and
investigated the traveling wave solution for the proposed models.
Mamun et al. [25] discussed the double (G′G, 1G) expansion approach for
the breaking soliton and the (1 + 1)-dimensional classical Boussinesq
equations and obtained different soliton solutions, such as kink,

multi-periodic, single soliton, and periodic wave solutions for
different values of parameters. The comprehensive study can be
found in [26–35].

The aforementioned cited literature reported that so far only
numerical studies have been discussed for VO models and no attempt
has been made to find the closed form for such types of VO-FEEs. The
objective of this paper is to discuss the closed-form solution of the non-
linear VO-FEEs. Here, we solve the non-linear VO fractional shallow
water wave equation with CFD using the Khater method. The VO
fractional problems are more complex computationally than a
constant fractional order, and the evolution of a system can be
furthermore clearly and accurately described. This contribution seems
natural and simple andmodelsmany systems withVO [36]. The traveling
wave solutions for the VO physical models are not known to the authors.

2 The outline of the Khater method

The non-linear variable-order α(x, y, . . . , t) FPDE is given as

H D
α x,y,..,t( )
x Y,D

α x,y,..,t( )
x D

α x,y,..,t( )
t Y,D

α x,y,..,t( )
x D

2α x,y,..,t( )
y Y, . . .( ) � 0.

(1)
where H is a polynomial for Y,Yt, Yx,D

α(x,y,..,t)
t , Dα(x,y,..,t)

x ,Dα(x,y,..,t)
y

and Dα(x,y,..,t) represents Caputo fractional derivatives of the variable-
order α(x,y, ..., t). The Caputo fractional derivative of the variable order
for a function Y(x, t) of order γ(x, t)ϵ(0, 1] is defined as follows [22]:

Dγ x,t( )
t Y x, t( ) �

1
Γ 1 + γ x, t( )( )∫t

0

Y′ x, t( )
Γ t − ξ( )γ x,t( ) dξ, 0< γ x, t( )< 1,

Y′ x, t( ), γ x, t( ) � 1.

⎧⎪⎪⎨⎪⎪⎩
(2)

Also, the important property is given as follows:

Dγ x,t( )
t tβ � Γ 1 − β( )

Γ 1 − β + γ x, t( )( )tβ−γ x,t( ), 0< γ x, t( )< 1. (3)

Eq. 1 involved the linear and non-linear highest-order derivatives.
A brief explanation of the proposed method is as follows [37]:

Convert the variable-order FPDE into an ordinary differential
equation (ODE) by taking the transformation as

Y x, y, t( ) � y ξ( ), ξ

� kxα x,y,..,t( )
Γ 1 + α x, y, .., t( )( ) + lyα x,y,..,t( )

Γ 1 + α x, y, .., t( )( ) +/

− ωtα x,y,..,t( )
Γ 1 + α x, y, .., t( )( ). (4)

The obtained ODE is as follows:

H y,ωy′, ky″, ly‴,ωly‴, kly‴, . . .( ) � 0, (5)
where k, l, m, and ω are constant parameters, if necessary, integrate
Eq. 5. Next, we constructed a trial solution which can be
expressed as

y ξ( ) � ∑M

n�0 ana
nf ξ( ), (6)

where an (n � 1, 2, . . . ,M − 1) can be zero and aM ≠ 0, and the
function f(ξ) satisfies the following second-order linear equation:
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f′ ξ( ) � 1
ln a( ) αa−f ξ( ) + β + σaf ξ( )( ). (7)

The aforementioned equation has 27 possible solutions [33], which
are derived by formulating various traveling wave solutions. Furthermore,
the balancing principle is used to findM. Substituting Eq. 6 in Eq. 5 and
Eq. 7, an equation involving the term (af(ξ)) is obtained. In the obtained
system of equations, the same power of (af(ξ)) is equated to zero. The
equations are solved simultaneously to find all unknown constants.

The solutions to Eq. 7:
When β2 − 4ασ < 0 and σ ≠ 0,

af ξ( ) �
−β +

�������
4ασ − β2

√
tan

�����
4ασ−β2

√
2 ξ( )

2σ
(8)

or

af ξ( ) �
−β −

�������
4ασ − β2

√
cot

�����
4ασ−β2

√
2 ξ( )

2σ
. (9)

When β2 − 4ασ > 0 and σ ≠ 0,

af ξ( ) �
−β −

�������
β2 − 4ασ

√
tanh

�����
β2−4ασ

√
2 ξ( )

2σ
(10)

or

af ξ( ) �
−β −

�������
β2 − 4ασ

√
coth

�����
β2−4ασ

√
2 ξ( )

2σ
. (11)

When β2 + 4α2 < 0, σ ≠ 0, and σ � −p,

af ξ( ) �
β −

����������
− β2 + 4α2( )√

tan

�������
− β2+4α2( )√

2 ξ( )
2α

(12)

or

af ξ( ) �
+β

����������
− β2 + 4α2( )√

cot

�������
− β2+4α2( )√

2 ξ( )
2α

. (13)

When β2 + 4α2 > 0, σ ≠ 0, and σ � −α,

af ξ( ) �
β +

���������
β2 + 4α2( )√

tanh

������
q2+4p2( )√
2 ξ( )

2α
(14)

or

af ξ( ) �
β +

���������
β2 + 4α2( )√

coth

������
β2+4α2( )√
2 ξ( )

2α
. (15)

When β2 − 4 α2 < 0 and σ � α,

af ξ( ) �
−β +

����������
− β2 − 4α2( )√

tanh

�������
− q2−4p2( )√

2 ξ( )
2α

(16)

or

af ξ( ) �
−β −

����������
− β2 − 4α2( )√

coth

�������
− β2−4α2( )√

2 ξ( )
2α

. (17)

When β2 − 4α2 > 0 and σ � α,

af ξ( ) �
−β −

���������
β2 − 4α2( )√

tanh

������
β2−4α2( )√
2 ξ( )

2α
(18)

or

af ξ( ) �
−β −

�������
β2 − 4α2

√
cot h

����
β2−4α2

√
2 ξ( )

2α
. (19)

When β2 � 4ασ,

af ξ( ) � −2 + βξ

2σξ
. (20)

When σα< 0, β � 0, and σ ≠ 0,

af ξ( ) � −
���−α
σ

√
tanh

����−σα√
ξ( ) (21)

or

af ξ( ) � −
���−α
σ

√
cot h

����−σα√
ξ( ). (22)

When β � 0 and α � −σ,

af ξ( ) � 1 + e −2σξ( )

−1 + e −2σξ( ). (23)

When α � σ � 0,

af ξ( ) � cosh βξ( ) + sinh βξ( ). (24)
When α � β � k and σ � 0,

af ξ( ) � ekξ − 1. (25)
When β � σ � k and α � 0,

af ξ( ) � ekξ

1 − ekξ
. (26)

When β � α + σ,

af ξ( ) � −1 − αe α−σ( )ξ

1 − σe α−σξ( ). (27)

When β � −(α + σ),

af ξ( ) � α − e α−σ( )ξ

σ − e α−σ( )ξ . (28)

When α � 0,

af ξ( ) � β eβξ

1 − σeβξ
. (29)

When σ � β � α ≠ 0,

af ξ( ) � 1
2

�
3

√
tan

�
3

√
2

αξ( ) − 1{ }. (30)

When σ � β � 0,

af ξ( ) � α ξ. (31)
When α � β � 0,
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af ξ( ) � −1
σξ

. (32)

When σ � α and β � 0,

af ξ( ) � tan αξ( ). (33)
When σ � 0,

af ξ( ) � eβξ − α

β
. (34)

The exact solutions for Eq. 1 are obtained by substituting
unknown constants and Eq. 7 in Eq. 6.

3 Formulation for the solutions of
shallow water wave equations

Shallow water waves arise in the ocean when the waves move from
the center of the ocean to the shore or beach known as shallow water
waves. Most of the ocean waves are produced by wind, tsunamis,
earthquakes, tides, etc. [38], which carry energy. Tsunamis and tides
are both shallow water waves. The shallow water wave equation has
been derived from the Navier–Stokes equations. Here, we apply the
proposed method to study the non-linear space–time fractional VO
shallow water wave equation and construct a traveling wave solution
based on the Khater method.

3.1 The non-linear space–time variable-order
fractional shallow water wave equation

We consider the space–time VO fractional shallow water wave
equation as follows [39]:

D2γ x,t( )
t Dδ x,t( )

x Y( ) + 3Dδ x,t( )
x YDδ x,t( )

t Y −Dδ x,t( )
x Y −Dγ x,t( )

t Y � 0. (35)

Using the wave variable ξ � kxδ(x,t)
Γ(1+δ(x,t)) − ωtγ(x,t)

Γ(1+γ(x,t)), Eq. 35
simplified to

kω2y‴ − 3kω y′( )2 − ky′ + ωy′ � 0. (36)
By balancing the highest-order non-linear term (y′)2 and the

highest-order linear term y‴, we obtain M � 1. Therefore, the
solution of Eq. 6 becomes

y � a0 + a1a
f ξ( ). (37)

Substituting Eq. 37 into Eq. 36 yields a polynomial equation for
(af(ξ)). Equating the like powers of (af(ξ))n, we attain a system of
algebraic equations given as

af ξ( )( )0: 2α2kω2σa21 − 3α2kωa41 + αβ2kω2a21 − αka21 + αωa21 � 0,

af ξ( )( )1: 8αβkω2a21 − 6αβkωa41 + β3kω2a21 − βka21 + βωa21 � 0,

af ξ( )( )2: 8αkω2σ2a21 − 6αkωa41 + 7β2kωa41 − kσa21 + ωσa21 � 0,

af ξ( )( )3: 12βkω2σ2a21 − 6αβkωa41 � 0,

af ξ( )( )4: 6kω2σ3a21 − 3kωσ2a41 � 0.

Solving the aforementioned system of algebraic equations by using
computer algebra, we obtain

Set 1: a0 � a0, a1 �

������������������������
1 +

����������������
1 − 16αk2σ + 4β2k2

√( )σ
4ασ − β2( )k

√√
,ω

� 1 +
����������������
1 − 16αk2σ + 4β2k2

√
2 4ασ − β2( )k , (38)

where ω, k, α, β, and σ are arbitrary constants.
Substituting Eq. 38 into Eq. 37, we obtain

y1 � a0 +

������������������������
1 +

����������������
1 − 16αk2σ + 4β2k2

√( )σ
4ασ − β2( )k

√√
af ξ( ). (39)

Now, substituting the solutions of Eq. 7, we obtain the following
27 distinct traveling wave solutions for space–time fractional variable-
order shallow water wave Eq. 35:

When β2 − 4 α σ < 0 and σ ≠ 0,

Y1 �

�������
4ασ − β2

√
tan 1

2

�������
4ασ − β2

√
kxδ x,t( )

Γ 1+δ x,t( )( ) − ωtγ x,t( )
Γ 1+γ x,t( )( )( )( ) − β( ) �����������������

− 1+
����������
1−16αk2σ+4β2k2

√( )σ
4ασ−β2( )k

√
+ 2a0σ

2σ
,

Y2 �
−

�������
4ασ − β2

√
cot 1

2

�������
4ασ − β2

√
kxδ x,t( )

Γ 1+δ x,t( )( ) − ωtγ x,t( )
Γ 1+γ x,t( )( )( )( ) − β( ) �����������������

− 1+
����������
1−16αk2σ+4β2k2

√( )σ
−4ασ+β2( )k

√
+ 2a0σ

2σ
.

When β2 − 4 α σ > 0 and σ ≠ 0,

Y3 �
−

���������
−4ασ + β2

√
tanh 1

2

���������
−4ασ + β2

√
kxδ x,t( )

Γ 1+δ x,t( )( ) − ωtγ x,t( )
Γ 1+γ x,t( )( )( )( ) − β( ) �����������������

− 1+
����������
1−16αk2σ+4β2k2

√( )σ
−4ασ+β2( )k

√
+ 2a0σ

2σ
,

Y4 �
−

���������
−4ασ + β2

√
coth 1

2

���������
−4ασ + β2

√
kxδ x,y,t( )

Γ 1+δ x,y,t( )( ) − ωtγ x,y,t( )
Γ 1+γ x,y,t( )( )( )( ) − β( ) �����������������

− 1+
����������
1−16αk2σ+4β2k2

√( )σ
−4ασ+β2( )k

√
+ 2a0σ

2σ
.

When β2 + 4 α2 < 0, σ ≠ 0, and σ � −p,

Y5 �
−

��������
−4α2 − β2

√
tan 1

2

��������
−4α2 − β2

√
kxδ x,t( )

Γ 1+δ x,t( )( ) − ωtγ x,t( )
Γ 1+γ x,t( )( )( )( ) + β( ) �����������������

− 1+
����������
1−16αk2σ+4β2k2

√( )σ
−4ασ+β2( )k

√
+ 2a0σ

2σ
,

Y6 �
−

��������
−4α2 − β2

√
cot 1

2

��������
−4α2 − β2

√
kxδ x,t( )

Γ 1+δ x,t( )( ) − ωtγ x,t( )
Γ 1+γ x,t( )( )( )( ) + β( ) �����������������

− 1+
����������
1−16αk2σ+4β2k2

√( )σ
−4ασ+β2( )k

√
+ 2a0σ

2σ
.

When β2 + 4 α2 > 0, σ ≠ 0, and σ � −p,

Y7 �

�������
4α2 + β2

√
tanh 1

2

�������
4α2 + β2

√
kxδ x,t( )

Γ 1+δ x,t( )( ) − ωtγ x,t( )
Γ 1+γ x,t( )( )( )( ) + β( ) �����������������

− 1+
����������
1−16αk2σ+4β2k2

√( )σ
−4ασ+β2( )k

√
+ 2a0σ

2σ
,

Y8 �

�������
4α2 + β2

√
coth 1

2

�������
4α2 + β2

√
kxδ x,t( )

Γ 1+δ x,t( )( ) − ωtγ x,t( )
Γ 1+γ x,t( )( )( )( ) + β( ) �����������������

− 1+
����������
1−16αk2σ+4β2k2

√( )σ
−4ασ+β2( )k

√
+ 2a0σ

2σ
.

When β2 − 4 α2 < 0 and σ � α,

Y9 �

�������
4α2 − β2

√
tan 1

2

�������
4α2 − β2

√
kxδ x,t( )

Γ 1+δ x,t( )( ) − ωtγ x,t( )
Γ 1+γ x,t( )( )( )( ) − β( ) �����������������

− 1+
����������
1−16αk2σ+4β2k2

√( )σ
−4ασ+β2( )k

√
+ 2a0σ

2σ
,

Y10 �
−

�������
4α2 − β2

√
cot 1

2

�������
4α2 − β2

√
kxδ x,y,t( )

Γ 1+δ x,y,t( )( ) − ωtγ x,y,t( )
Γ 1+γ x,y,t( )( )( )( ) − β( ) �����������������

− 1+
����������
1−16αk2σ+4β2k2

√( )σ
−4ασ+β2( )k

√
+ 2a0σ

2σ
.

When q2 − 4p2 > 0 and r � p,

Y11 �
−

��������
−4α2 + β2

√
tanh 1

2

��������
−4α2 + β2

√
kxδ x,t( )

Γ 1+δ x,t( )( ) − ωtγ x,t( )
Γ 1+γ x,t( )( )( )( ) − β( ) �����������������

− 1+
����������
1−16αk2σ+4β2k2

√( )σ
−4ασ+β2( )k

√
+ 2a0σ

2σ
,

Y12 �
−

��������
−4α2 + β2

√
coth 1

2

��������
−4α2 + β2

√
kxδ x,t( )

Γ 1+δ x,t( )( ) − ωtγ x,t( )
Γ 1+γ x,t( )( )( )( ) − β( ) �����������������

− 1+
����������
1−16αk2σ+4β2k2

√( )σ
−4ασ+β2( )k

√
+ 2a0σ

2σ
.

When q2 � 4p r,
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Y13 �

�����������������
− 1+

����������
1−16αk2σ+4β2k2

√( )σ
−4ασ+β2( )k

√
−β kxδ x,t( )

Γ 1+δ x,t( )( ) − ωtγ x,t( )
Γ 1+γ x,t( )( )( ) − 2( ) + 2a0σ kxδ x,t( )

Γ 1+δ x,t( )( ) − ωtγ x,t( )
Γ 1+γ x,t( )( )( )

2σ kxδ x,t( )
Γ 1+δ x,t( )( ) − ωtγ x,t( )

Γ 1+γ x,t( )( )( ) .

When σ α< 0, β � 0, and σ ≠ 0,

Y14 � −

�������������������������
−

1 +
����������������
1 − 16αk2σ + 4β2k2

√( )σ
−4ασ + β2( )k

√√ ���
−α
σ

√
tanh

����−ασ√ kxδ x,t( )

Γ 1 + δ x, t( )( ) −
ωtγ x,t( )

Γ 1 + γ x, t( )( )( )( )
+ a0 ,

Y15 � −

�������������������������
−

1 +
����������������
1 − 16αk2σ + 4β2k2

√( )σ
−4ασ + β2( )k

√√ ���
−α
σ

√
coth

����−ασ√ kxδ x,t( )

Γ 1 + δ x, t( )( ) −
ωtγ x,t( )

Γ 1 + γ x, t( )( )( )( )
+ a0.

When β � 0 and α � −σ,

Y16 �
−e2σ kxδ x,t( )

Γ 1+δ x,t( )( )− ωtγ x,t( )
Γ 1+γ x,t( )( )( ) − 1( ) �����������������

− 1+
����������
1−16αk2σ+4β2k2

√( )σ
−4ασ+β2( )k

√
e
2σ kxδ x,t( )

Γ 1+δ x,t( )( )− ωtγ x,t( )
Γ 1+γ x,t( )( )( ) − 1

+ a0.

When α � σ � 0,

Y17 � cos h
kxδ x,t( )

Γ 1 + δ x, t( )( ) −
ωtγ x,t( )

Γ 1 + γ x, t( )( )( ) + sin h
kxδ x,t( )

Γ 1 + δ x, t( )( ) −
ωtγ x,t( )

Γ 1 + γ x, t( )( )( )( )
�������������������������
−

1 +
����������������
1 − 16αk2σ + 4β2k2

√( )σ
−4ασ + β2( )k

√√

+ a0 .

When α � β � k and σ � 0,

FIGURE 1
Periodic solution for Eq. 35 for Y12 at ω � 1

2, k � 2, a0 � 1, a1 � −1
2, γ(x, t) � 2 cos(xt)+(xt)

56 , δ(x, t) � 2−sin(xt)
50 , α � 4, β � 5, σ � −3, x � 4.5.

FIGURE 2
Kink-shaped solution for Eq. 35 for Y5 at ω � 2, k � 3, a0 � 5, a1 � 5, γ(x, t) � 2cos(xt)+(xt)

56 , δ(x, t) � 2−sin(xt)
50 , α � 4, β � 5, σ � −30, x � 4.
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Y18 � −eσ kxδ x,t( )
Γ 1+δ x,t( )( )− ωtγ x,t( )

Γ 1+γ x,t( )( )( ) − 1( )
�������������������������
−

1 +
����������������
1 − 16αk2σ + 4β2k2

√( )σ
−4ασ + β2( )k

√√

+ a0.

When β � σ � z and α � 0,

Y19 �
−

�����������������
− 1+

����������
1−16αk2σ+4β2k2

√( )σ
−4ασ+β2( )k

√
e
σ kxδ x,t( )

Γ 1+δ x,t( )( )− ωtγ x,t( )
Γ 1+γ x,t( )( )( )

e
σ kxδ x,t( )

Γ 1+δ x,t( )( )− ωtγ x,t( )
Γ 1+γ x,t( )( )( ) − 1

+ a0.

When β � α + σ,

Y20 � a0 −

�������������������������
−

1 +
����������������
1 − 16αk2σ + 4β2k2

√( )σ
−4ασ + β2( )k

√√
.

When β � −(α + σ),

Y21 �

�����������������
− 1+

����������
1−16αk2σ+4β2k2

√( )σ
−4ασ+β2( )k

√
e
σ kxδ x,t( )

Γ 1+δ x,t( )( )− ωtγ x,t( )
Γ 1+γ x,t( )( )( ) − e

α kxδ x,t( )
Γ 1+δ x,t( )( )− ωtγ x,t( )

Γ 1+γ x,t( )( )( )( )
σe

σ kxδ x,t( )
Γ 1+δ x,t( )( )− ωtγ x,t( )

Γ 1+γ x,t( )( )( ) − e
α kxδ x,t( )

Γ 1+δ x,t( )( )− ωtγ x,t( )
Γ 1+γ x,t( )( )( )

+ a0.

When α � 0,

FIGURE 3
Kink-shaped solution for Eq. 35 for Y7 at ω � 1, k � 1, a0 � 1, a1 � −1

2, γ(x, t) � 20−(xt)4
50 , δ(x, t) � 15+sin 6(xt)

50 , α � 4, β � 5, σ � −3, t � 1.

FIGURE 4
Kink-shaped solution for Eq. 35 for Y23 at ω � 1, k � 1, a0 � 1, a1 � −1

2, γ(x, t) � 2 cos(xt)+(xt)
56 , δ(x, t) � 2−sin(xt)

50 , α � 4, β � 5, σ � −3, e � 2.7128, x � 3.5.

Frontiers in Physics frontiersin.org06

Ali et al. 10.3389/fphy.2023.1114319

18

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1114319


Y22 �
−

����������������
− 1+

����������
1−16αk2σ+4β2k2

√( )σ
−4ασ+β2( )k

√
βe

β kxδ x,t( )
Γ 1+δ x,t( )( )− ωtγ x,t( )

Γ 1+γ x,t( )( )( )
σe

σ kxδ x,t( )
Γ 1+δ x,t( )( )− ωtγ x,t( )

Γ 1+γ x,t( )( )( ) − 1

+ a0.

When σ � β � α ≠ 0,

Y23 � ao + 1
2

�������������������������
−

1 +
����������������
1 − 16αk2σ + 4β2k2

√( )σ
−4ασ + β2( )k

√√

tan

�
3

√
2

α
kxδ x,t( )

Γ 1 + δ x, t( )( ) −
ωtγ x,t( )

Γ 1 + γ x, t( )( )( )( ) − 1( ).
When σ � β � 0,

Y24 � ao +

�������������������������
−

1 +
����������������
1 − 16αk2σ + 4β2k2

√( )σ
−4ασ + β2( )k

√√

α
kxδ x,t( )

Γ 1 + δ x, t( )( ) −
ωtγ x,t( )

Γ 1 + γ x, t( )( )( ).
When p � q � 0,

Y25 �
aoσ kxδ x,t( )

Γ 1+δ x,t( )( ) − ωtγ x,t( )
Γ 1+γ x,t( )( )( ) +

����������������
− 1+

����������
1−16αk2σ+4β2k2

√( )σ
−4ασ+β2( )k

√
σ kxδ x,t( )

Γ 1+δ x,t( )( ) − ωtγ x,t( )
Γ 1+γ x,t( )( )( ) .

When σ � α and β � 0,

Y26 � ao +

�������������������������
−

1 +
����������������
1 − 16αk2σ + 4β2k2

√( )σ
−4ασ + β2( )k

√√

tan α
kxδ x,t( )

Γ 1 + δ x, t( )( ) −
ωtγ x,t( )

Γ 1 + γ x, t( )( )( )( ).
When r � 0,

Y27 � 1
β

e
β kxδ x,t( )

Γ 1+δ x,t( )( )− ωtγ x,t( )
Γ 1+γ x,t( )( )( ) − α( )

�������������������������
−

1 +
����������������
1 − 16αk2σ + 4β2k2

√( )σ
−4ασ + β2( )k

√√

+ a0.

4 Graphical representation

This section focuses on the graphical representation of some
specific findings. Marwan and Aminah [40] solved the
generalized shallow water equation by the (G′/G)-expansion
and constructed a new exact solution for the proposed
method. Bagchi et al. [41] extended the elliptic function
method and found the traveling wave solution for the
generalized shallow water wave equation. The obtained
solutions are in the form of singular and periodic soliton
solutions. Here, in this study, the graphical results obtained
for different values of VO γ(x, t) and δ(x, t) are shown in Figures
1–5 for Eq. 35 in the form of 3D and 2D plots. Figure 1 and
Figure 4 show the singleton soliton solution, and Figure 2,
Figure 3, and Figure 5 represent the kink-shaped solution
obtained using Maple 16 software.

5 Conclusion

In this paper, we solved the non-linear VO fractional
evolution equation successfully in the Caputo fractional
derivative sense and obtained new exact traveling wave
solutions. The VO fractional evolution equation is discussed
quite efficiently and accurately by using the Khater method.

FIGURE 5
Kink-shaped solution for Eq. 35 for Y24 at ω � 1, k � 1, a0 � 1, a1 � −1

2, γ(x, t) � 2 cos(xt)+(xt)
56 , δ(x, t) � 2−sin(xt)

50 , α � 4, β � 5, σ � −3, e � 2.7128, z � 1.
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Here, 27 exact solutions having Kink and singular soliton-type
solutions are obtained for different values of VO γ(x, t) and
δ(x, t) for the proposed Caputo fractional VO equation. The
different values of parameters examine different physical
phenomena. This contribution is effective, instrumental, and
evangelistic and seems more natural in the literature. This
study can be extended to other types of VO FPDEs and can be
solved by various analytical techniques.
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Lie symmetry analysis and exact
solutions of the (3+1)-dimensional
generalized Shallow Water-like
equation

Ben Yang, Yunjia Song and Zenggui Wang*

School of Mathematical Sciences, Liaocheng University, Liaocheng, China

In this article, (3+1)-dimensional generalized ShallowWater-like (gSWl) equation is
discussed. The infinitesimal generators of the equation are derived by using the Lie
symmetry analysis method. The optimal system is obtained based on the adjoint
table of the generators of the equation. Exact solutions of the equation are
constructed by applying symmetry reduction, Exp(−ϕ(ξ)) expansion method,
Exp-function expansion method, Riccati equation method, and (G′/G)
expansion method. For analyzing the dynamical behavior of the solutions, we
derive the physical structures of dark soliton, kink wave, and periodic solutions via
numerical simulations.

KEYWORDS

(3+1)-dimensional gSWl equation, Lie symmetry analysis, Riccati equation method, exact
solutions, (G’/G) expansion method

1 Introduction

Non-linear phenomena are widespread in the life of the world, such as marine
engineering, hydrodynamics, chemical physics, etc [1–3]. To investigate exact solutions
of any complex non-linear partial differential equations and examine the behavior of the
solutions is very interesting. Many effective methods for constructing the exact solutions are
proposed, including Bäcklund transformation method [4] (G′/G) expansion method [5, 6],
Hirota bilinear method [7], Homogeneous balance method [8, 9], Lie symmetry method
[10–12], Inverse scattering method [13], F-expansion method [14], Exp-function method
[15, 16], Darboux transformation method [17], Riemann-Hilbert method [18, 19] and so on.

The following (3 + 1)-dimensional generalized Shallow Water equation

uxxxy − 3uxxuy − 3uxuxy + uyt − uxz � 0, (1.1)
has been studied by many approaches. Huang and Gao [20] derived the one-, two- and three-
soliton solutions of the equation by the Hirota method, and deduced the propagation and
interaction of the soliton solutions. In [21], Huang studied the stability of solitons by
numerical methods and noticed that the soliton amplitude magnitude is affected by the
spectral parameters. In [22], the closed-form solutions of the equation were derived by Lie
symmetry, and the soliton solutions were found through the optimal system. Based on the auto-
Bäcklund transformation, Li and Liu [23] constructed themulti-periodic solitons of Eq. 1.1 through
the variable-coefficient homogeneous balance method and investigated the propagation and
interactions of the solutions. In [24], Liu deduced the new periodic solitary solutions of Eq. 1.1
by the direct test function method, and the validity of the direct test function method was shown.

OPEN ACCESS

EDITED BY

Gangwei Wang,
Hebei University of Economics and
Business, China

REVIEWED BY

Weipeng Hu,
Northwestern Polytechnical University,
China
Zhenli Wang,
Zaozhuang University, China
Cheng Chen,
Xi’an University of Posts and
Telecommunications, China

*CORRESPONDENCE

Zenggui Wang,
wangzenggui@lcu.edu.cn

SPECIALTY SECTION

This article was submitted to
Mathematical Physics,
a section of the journal
Frontiers in Physics

RECEIVED 24 December 2022
ACCEPTED 16 January 2023
PUBLISHED 16 February 2023

CITATION

Yang B, Song Y and Wang Z (2023), Lie
symmetry analysis and exact solutions of
the (3+1)-dimensional generalized
Shallow Water-like equation.
Front. Phys. 11:1131007.
doi: 10.3389/fphy.2023.1131007

COPYRIGHT

© 2023 Yang, Song and Wang. This is an
open-access article distributed under the
terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Physics frontiersin.org01

TYPE Original Research
PUBLISHED 16 February 2023
DOI 10.3389/fphy.2023.1131007

22

https://www.frontiersin.org/articles/10.3389/fphy.2023.1131007/full
https://www.frontiersin.org/articles/10.3389/fphy.2023.1131007/full
https://www.frontiersin.org/articles/10.3389/fphy.2023.1131007/full
https://www.frontiersin.org/articles/10.3389/fphy.2023.1131007/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fphy.2023.1131007&domain=pdf&date_stamp=2023-02-16
mailto:wangzenggui@lcu.edu.cn
mailto:wangzenggui@lcu.edu.cn
https://doi.org/10.3389/fphy.2023.1131007
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://doi.org/10.3389/fphy.2023.1131007


Liu and Zhu [25] investigated the variable coefficients of the gSW
equation by the Hirota bilinear method and constructed a large
number of breather wave solutions.

Tang, Ma and Xu [26] proposed the (3 + 1)-dimensional
generalized Shallow Water-like (gSWl) equation

uxxxy + 3uxxuy + 3uxuxy − uyt − uxz � 0, (1.2)
which can be derived by rewriting Eq. 1.1 on the scale x→ −x. In [26],
the Grammian and Pfaffian solutions of Eq. 1.2 were obtained and the
equations were extended with the Pfaffianization method. Kumar et al.
[27] derived the multi-stripe and breathing wave solutions of Eq. 1.2 by
the bilinear method, combining the quadratic function and hyperbolic
cosine method, the behavior between the one-block and multi-stripe
solutions were obtained. Sadat et al. [28] applied symbolic calculations
to yield lump-type and stripe solutions of Eq. 1.2. Zhang et al. [29]
applied the generalized bilinear operator method and obtained the
rational and lump solutions of Eq. 1.2.

The shallow water wave equation plays an essential role in
marine engineering, environmental problems, and ecology, so it
is valuable to derive the exact solutions of the shallow water
wave equation. Employing the Lie symmetry method to yield
exact solutions of the (3 + 1)-dimensional gSWl equation has
not been studied. In this paper, the Lie symmetry analysis
method is applied to investigate the solutions of Eq. 1.2. Lie
symmetry method [30–34] has an important significance for
solving partial differential equations (PDEs). Applying the Lie
symmetry method, the symmetry group of the equation can be
derived, furthermore, the equation can be similarly reduced and
the new solutions of the equation can be yielded by the
symmetry transformation. The Lie symmetry method can
reduce the order of the equation when solving with higher
order equations, which is difficult to accomplish by other
methods.

The structure of the rest of the paper is as follows: In Sect 2,
the infinitesimal generators are obtained by applying the Lie
group transformation to the (3 + 1)-dimensional gSWl equation.
In Sect 3, the optimal system for Eq. 1.2 is derived under the basis
of the adjoint table. The periodic wave, kink wave and soliton
solutions of the equation are derived by Exp(−ϕ(ξ)) expansion
method, Exp-function expansion method, Riccati equation
method, and (G′/G) expansion method in Sect 4. The
dynamical behavior of the soliton wave solutions of the gSWl
equation are analyzed in Sect 5. The conclusions are given in
Sect 6.

2 Lie symmetry analysis for the (3 + 1)
gSWl equation

The key step for solving non-linear PDEs by Lie symmetry group
method is to obtain Lie algebra of the equation. Consider the
following one-parameter Lie group transformation:

x̂ � x + εξ + O ε2( ),
ŷ � y + εη + O ε2( ),
ẑ � z + εφ + O ε2( ),
t̂ � t + ετ + O ε2( ),
û � u + εϕ + O ε2( ),

(2.1)

where ε is a parameter, and ε ≪ 1. ξ, η, φ, τ, and ϕ are infinitesimal
generators concerning x, y, z, t and u. The one-parameter vector field
V of gSWl equation can be written as

V � ξ
z

zx
+ η

z

zy
+ φ

z

zz
+ τ

z

zt
+ ϕ

z

zu
. (2.2)

The vector field V satisfies

pr 4( )V Δ( )∣∣∣∣Δ�0 � 0, (2.3)
in which Δ = uxxxy + 3uxxuy + 3uxuxy − uyt − uxz and pr(4) is the
fourth prolongation of V. The fourth prolongation of Eq. 1.2 can be
derived as

pr 4( )V � V + ϕx z

zux
+ ϕy z

zuy
+ ϕxx z

zuxx
+ ϕxz z

zuxz
+ ϕxy z

zuxy
+ ϕyt z

zuyt
+ ϕxxxy z

zuxxxy
.

(2.4)
The invariant condition can be given as

ϕxxxy + 3ϕxxuy + 3uxϕ
xy − ϕyt − ϕxz + 3uxxϕ

y + 3ϕxuxy � 0.

(2.5)
Based on Eq. 2.5, the system of determining equations can be
given by

ϕu � −1
3
τt, ϕx � −1

3
ηz −

1
3
ξt, ϕy � −1

3
ξz, ϕt � 0,

τx � 0, τy � 0, τz � 0, τtt � 0, ξu � 0, ξx � 1
3
τt, ξy � 0,

ηt � 0, ηu � 0, ηx � 0, ηy � φz −
2
3
τt, φt � 0,

φu � 0, φx � 0, φy � 0, φzz � 0, ξtz � −1
2
ηzz.

(2.6)

By solving the above equations we can derive

ϕ � −1
3
c3u − 1

6
F′1 z( ) + 2F′2 t( ){ }x + 1

6
F″1 z( )t − 2F′3 z( ){ }y + F4 z, t( ), τ � c3t + c4 ,

ξ � 1
3
c3x + F3 z( ) + F2 t( ) − 1

2
tF′1 z( ), η � F1 z( ) + 1

3
3c1 − 2c3( )y, φ � c1z + c2 ,

(2.7)

where ci and Fi (i = 1, 2, 3, 4) are arbitrary constants and functions,
respectively.

Assume that F1(z) � 0, F2(t) � c5, F3(z) � 0, F4(z, t) � c6. The
infinitesimal generators have new forms

ξ � c3x + c5, η � c1 − 2c3( )y, φ � c1z + c2, τ � 3tc3 + c4, ϕ � −uc3 + c6.

(2.8)

TABLE 1 Commutator table.

[vi, vj] v1 v2 v3 v4 v5 v6

v1 0 −v2 0 0 0 0

v2 v2 0 0 0 0 0

v3 0 0 0 −3v4 −v5 v6

v4 0 0 3v4 0 0 0

v5 0 0 v5 0 0 0

v6 0 0 −v6 0 0 0
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Thus, Lie algebras of infinitesimal symmetry of Eq. 1.2 can be
spanned by the following six vector fields

v1 � y
z

zy
+ z

z

zz
, v2 � z

zz
, v3 � x

z

zx
+ 3t

z

zt
− 2y

z

zy
− u

z

zu
,

v4 � z

zt
, v5 � z

zx
, v6 � z

zu
.

(2.9)
The commutator table derived for the gSWl equation by the

action of Lie brackets is shown in Table 1, where [vi, vj] � vivj − vjvi.

3 Optimal systems of one-dimensional
subalgebras

Based on the Lie brackets, the optimal system of one-
dimensional subalgebras of the equation can be deduced. By the
linear combination of subalgebras, a new form is given by

V � a1v1 + a2v2 + a3v3 + a4v4 + a5v5 + a6v6. (3.1)
By Olver theory [30], using symbolic calculations

Ad exp εVi( )( )Vj � Vj − ε Vi, Vj[ ] + 1
2
ε2 Vi, Vi, Vj[ ][ ] −/ .

The adjoint table is shown in Table 2.

3.1 Construction of group invariants

The exchange and adjoint relations of the six-dimensional Lie
algebras are given in Table 1 and Table 2, respectively. Assume that
the vectors V � ∑6

i�1
aivi and R � ∑6

i�1
sivi satisfy

Ad exp εR( )V( )
� V − ε R,V[ ] + 1

2
ε2 R, R, V[ ][ ] −/

� a1v1 +/ + a6v6( ) − ε s1v1 +/ + s6v6, a1v1 +/ + a6v6[ ] + O ε2( )
� a1v1 +/ + a6v6( ) − ε k1v1 +/ + k6v6[ ] + O ε2( ),

(3.2)

in which k � k(a1,/a6, s1, . . . , s6) can be derived from Table 1. The
values of k were calculated from Table 1 as follows

k1 � 0, k2 � −a2s1 + a1s2, k3 � 0,
k4 � −3a4s3 + 3a3s4, k5 � −a5s3 + a3s5, k6 � a6s3 − a3s6.

(3.3)
For any sj (j = 1, 2, 3, 4, 5, 6), it have required

k1
zχ

za1
+ k2

zχ

za2
+ k3

zχ

za3
+ k4

zχ

za4
+ k5

zχ

za5
+ k6

zχ

za6
� 0. (3.4)

Gather the coefficients containing sj in the above equation, the
following system of differential equations are deduced as

s1: − a2
zχ

za2
� 0,

s2: a1
zχ

za2
� 0,

s3: − 3a4
zχ

za4
− a5

zχ

za5
+ a6

zχ

za6
� 0,

s4: 3a3
zχ

za4
� 0,

s5: a3
zχ

za5
� 0,

s6: − a3
zχ

za6
� 0.

(3.5)

After analyzing the above system of PDEs (3.5), it is not difficult
to yield that the invariant function as χ(a1, a2, a3, a4, a5, a6) �
F(a1, a3).

3.2 One-dimensional optimal system

For Jεn: _j → _j defined by l → Ad(exp(εili)s) is a linear map
[35], in which n = 1, . . . , 6. The matrixMε

n of J
ε
n with respect to basis

to v1, . . . , v6{ } are deduced below

Mε
1 �

1 0 0 0 0 0
0 eε 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,M

ε
2 �

1 −ε2 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,M

ε
3 �

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 e3ε3 0 0
0 0 0 0 eε3 0
0 0 0 0 0 e−ε3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

Mε
4 �

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 −3ε4 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,M

ε
5 �

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 −ε5 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,M

ε
6 �

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 ε6
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.
(3.6)

Then, the matrix M can be yielded by

M � Mε
1pM

ε
2pM

ε
3pM

ε
4pM

ε
5pM

ε
6. (3.7)

The matrix M can be written as

M �

1 −ε2 0 0 0 0
0 eε1 0 0 0 0
0 0 1 −3ε4 −ε5 ε6
0 0 0 e3ε3 0 0
0 0 0 0 eε3 0
0 0 0 0 0 e−ε3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (3.8)

The adjoint transformation equation for Eq. 1.2 is

TABLE 2 Adjoint table.

Ad V1 V2 V3 V4 V5 V6

V1 V1 eεV2 V3 V4 V5 V6

V2 V1 − εV2 V2 V3 V4 V5 V6

V3 V1 V2 V3 e3εV4 eεV5 e−εV6

V4 V1 V2 V3 − 3εV4 V4 V5 V6

V5 V1 V2 V3 − εV5 V4 V5 V6

V6 V1 V2 V3 + εV6 V4 V5 V6
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ρ1, ρ2, / , ρ6( ) � a1, a2, . . . , a6( ) ·M
� a1v1 + −a1ε2 + a2e

ε1( )v2 + a3v3 + −3a3ε4 + a4e
3ε3( )v4

+ −a3ε5 + a5e
ε3( )v5 + a3ε6 + a6e

−ε3( )v6.
(3.9)

By applying the invariants a1 and a3, discuss the situations of the
following Lie algebras.

Case 1 Assume that a1 ≠ 0 and a3 = 0. Let a1 = 1. Making ρ2 = 0,
ρ3 = 0 through

ε1 � 0, ε2 � a2
a1
, ε3 � 0, (3.10)

and ε4, ε5, ε6 are constants. In other words, all v1 + a2v2 + a3v3 + a4v4
+ a5v5 + a6v6 can be replaced by v1 + ς4v4 + ς5v5 + ς6v6, where ς4, ς5
and ς6 are constants.

Case 2 Assume that a3 ≠ 0 and a1 = 0. Let a3 = 1. Making ρ1 = 0,
ρ4 = 0, ρ5 = 0, ρ6 = 0 through

ε1 � 0, ε3 � 0, ε4 � a4
3a3

, ε5 � a5
a3
, ε6 � −a6

a3
, (3.11)

and ε2 is an arbitrary constant. In other words, all a1v1 + a2v2 + v3 +
a4v4 + a5v5 + a6v6 can be replaced by ς2v2 + v3, where ς2 is a constant.

Case 3 Assume that a1 ≠ 0 and a3 ≠ 0. Let a1 = 1 and a3 = 1.
Making ρ2 = 0, ρ4 = 0, ρ5 = 0, ρ6 = 0 through

ε1 � 0, ε2 � a2
a1
, ε3 � 0, ε4 � a4

3a1
, ε5 � a5

a1
, ε6 � −a6

a1
.

(3.12)

In other words, all v1 + a2v2 + v3 + a4v4 + a5v5 + a6v6 can be replaced
with v1 + v3.

Case 4 Replacing a1 = a3 = 0 into (3.9). By solving (3.9) for εi, we
get ε1 = 0, ε3 = 0 and ε2, ε4, ε5, ε6 are arbitrary constants. In other
words, all v1 + a2v2 + v3 + a4v4 + a5v5 + a6v6 can be replaced by ς2v2 +
ς4v4 + ς5v5 + ς6v6, where ς2, ς4, ς5 and ς6 are constants.

Similarly, the other terms of the optimal system of Eq. 1.2 can be
obtained by the above method. All of them are listed below.Single
vector fields: v1, v2, v3, v4, v5, v6.Dual vector fields: v1 + v3, v1 + v4, v1 +
v5, v1 + v6, v2 + v3, v2 + v4, v2 + v5, v2 + v6, v4 + v5, v4 + v6, v5 +
v6.Triple vector fields: v1 + v4 + v5, v1 + v4 + v6, v1 + v5 + v6, v2 + v4 +
v5, v2 + v4 + v6, v4 + v5 + v6.Quadruple vector fields: v1 + v4 + v5 + v6,
v2 + v4 + v5 + v6.

4 Exact solutions of the gSWl equation

Next, the exact solutions of the gSWl equation are derived by
employing the optimal system. The similarity solutions for arbitrary
vector field v in the optimal system can be solved by the Lagrange’s
system.

dx

ξ
� dy

η
� dz

φ
� dt

τ
� du

ϕ
. (4.1)

4.1 Vector field v1

The characteristic equation can be composed as

dx

0
� dy

y
� dz

z
� dt

0
� du

0
. (4.2)

(Eq. 4.2) has the following form similarity solution.
U (x, y, z, t) = F (α, β, δ).in which α = x, β � y

z, δ = t.
Taking the above similarity solution into Eq. 1.2, the reduced

NLPDE is given as

3FααFβ + 3FαFαβ + Fαααβ + βFαβ − Fβδ � 0. (4.3)
Similarly, applying the Lie symmetry method, the infinitesimal
generators of Eq. 4.3 can be derived

ξα � 1
3
c1α + g1 δ( ), ξβ � −2

3
c1β + c3, ξδ � c1δ + c2,

ηF � −1
3
c1F − 1

3
c3 + g1 δ( )δ( )α + g2 δ( ). (4.4)

Let c1 = 0,1(δ) = d,2(δ) = d, c2 = d, c3 = 3d, and take these values into
(4.4), we get

dα

d
� dβ

3d
� dδ

d
� dF

−α + d
, (4.5)

which has the similarity solutions from

F α, β, δ( ) � α − 1
2
α2 + h P,Q( ), (4.6)

where P = α − δ and Q = 3α − β.
Putting it into Eq. 4.3, the following reduced equation can be

yield

−3hQhPP − 27hQhPQ − 3hPhPQ + QhPQ − 54hQhQQ − 9hPhQQ
+3QhQQ − 4hPQ − 9hQQ + 3hQ − hPPPQ − 9hPPQQ − 27hPQQQ − 27hQQQQ � 0.

(4.7)
Repeating the above steps, we get

ξP � c1, ξQ � c2, ηh �
1
3
c2P + c3. (4.8)

Substituting c1 = d, c2 = 3d, c3 = d into (4.8). The new characteristic
equation is given as

dP

d
� dQ

3d
� dh

dP + 1
. (4.9)

The new similarity solutions from

h P, Q( ) � 1
2
P2 + P + k ϖ( ), (4.10)

whereϖ = 3P −Q. Replacing (4.10) into Eq. 4.7, we get 3kϖϖ = 0. The
solution of Eq. 1.2 via the above method can be given as

u � 2x − t + 1
2
t2 − xt + c1y

z
− 3c1t + c2, (4.11)

in which c1 and c2 are constants.

4.2 Vector field v3

The characteristic equation can be composed as

dx

x
� dy

−2y � dz

0
� dt

3t
� du

−u. (4.12)

The derived similarity solution has the form as.
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u(x, y, z, t) � F(α, β, θ).where α � x

t
1
3
, β � yt

2
3, θ = z. Hence, the

following (2 + 1)-dimensional equation can be given as

2βFββ − 9FααFβ − 9FαFαβ − 3Fαααβ + Fβ + 3Fαθ − αFαβ � 0. (4.13)
Then, the new infinitesimal generators of Eq. 4.13 can be yielded

ξα � c3, ξβ � c1β, ξθ � c1θ + c2, ηF � −1
9
c3α + g1 θ( ). (4.14)

Let c1 = 0, c2 = 0, c3 = 0, g1(z) = θ, and take these values into (4.14),
the corresponding characteristic equation is reduced as

dα

0
� dβ

β
� dθ

θ
� dF

θ
, (4.15)

which has the similarity solutions from

F α, β, θ( ) � θ + h P, Q( ), (4.16)
in which P = α, Q � β

θ. Substituting F (α, β, θ) into Eq. 4.13 results

−9hPPhQ − 9hPhPQ − PhPQ + 2QhQQ + hQ − 3QhPQ − 3hPPPQ � 0.

(4.17)
Equations 4.17 satisfies infinitesimal as follows

ξP � c1, ξQ � 0, ηh � −P + c2, (4.18)
assume that c1 = 9, c2 = 1 and its characteristic equation is

dP

9
� dQ

0
� dh

−P + 1
. (4.19)

The similarity solution is

h P, Q( ) � − 1
18

P2 + P

8
+ k ϖ( ), (4.20)

where ϖ = Q. Then the ODE can be reduced as

2kϖ + 2ϖkϖϖ � 0. (4.21)
By solving the above equation, we get

u �
z + x

9t
1
3
− x2

18t
2
3
+ c2 ln

yt
2
3

z
( ) + c1

t
1
3

.
(4.22)

4.3 Vector field v2 + v5

The characteristic equation can be composed as

dx

1
� dy

0
� dz

1
� dt

0
� du

0
. (4.23)

(4.23) has the following form similarity solution

u x, y, z, t( ) � F α, β, δ( ), (4.24)
in which α = x − z, β = y, δ = z. Then Eq. 1.2 can be reduced to the
following (2 + 1)-dimensional equation

Fαααβ + 3FααFβ + 3FαFαβ − Fβδ + Fαα � 0. (4.25)
The solution of Eq. 4.25 is more difficult to be derived, hence we

use the Exp(−ϕ(ξ)) expansion method to find its solution.
Considering the following traveling wave transformation

F α, β, δ( ) � h υ( ), υ � kα + lβ +mδ, (4.26)
where k, l, m are constants. Replacing (4.26) into Eq.
4.25 and integrate the derived equation with respect to υ

once, we get

lk3hυυυ + 3lk2h2υ − lmhυ + k2hυ � 0. (4.27)

Suppose that Eq. 4.27 can be solved in the following form

h υ( ) � aj exp −ϑ υ( )( )( )j, (4.28)

in which j can be determined later and ϑ satisfies

ϑ′ υ( ) � exp −ϕ υ( )( ) + μ exp ϑ υ( )( ) + λ. (4.29)
When λ2 − 4μ > 0 and μ ≠ 0, (4.29) has a solution given by

ϑ υ( ) � ln

−
������
λ2 − 4μ

√
tanh

������
λ2 − 4μ

√
2

υ + ε0( )⎛⎜⎜⎝ ⎞⎟⎟⎠ − λ

2μ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (4.30)

When λ2 − 4μ < 0, (4.29) has a solution given by

ϑ υ( ) � ln

������
4μ − λ2

√
tan

������
4μ − λ2

√
2

υ + ε0( )⎛⎜⎜⎝ ⎞⎟⎟⎠ − λ

2μ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (4.31)

By balancing Eq. 4.27, j = 1. Hence (4.28) can be rewritten

h υ( ) � a0 + a1e
−ϑ υ( ). (4.32)

Taking (4.32) along with Eq. 4.29 into Eq. 4.27, a series of
algebraic equations about a0, a1, k, l and m can be deduced.
Select a set from these to discuss the solution of the equations,
we get

k � k, l � k2

k3λ2 − 4k3μ −m
, m � m, a0 � a0, a1 � 2k.

(4.33)
If λ2 − 4μ > 0 and μ ≠ 0, the kink wave solution of Eq. 1.2 is

u � a0 + 4kμ

−tanh 1
2
c1

������
λ2 − 4μ

√
+ 1
2

mt + k x − z( ) − k2y

k3λ2 − 4k3μ −m
( ) ������

λ2 − 4μ
√( ) ������

λ2 − 4μ
√

− λ

.

(4.34)

If λ2 − 4μ < 0, the periodic wave solution of Eq. 1.2 can be given by

u � a0 + 4kμ

tan
1
2
c1

�������
−λ2 + 4μ

√
+ 1
2

mt + k x − z( ) − k2y

k3λ2 − 4k3μ −m
( ) �������

−λ2 + 4μ
√( ) �������

−λ2 + 4μ
√

− λ

.

(4.35)

4.4 Vector field v4 + v6

The characteristic equation can be composed as

dx

0
� dy

0
� dz

0
� dt

1
� du

1
. (4.36)
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We derive u(x, y, z, t) � t + F(α, β, θ), where α = x, β = y and θ = z
as the similarity variables. Taking it into Eq. 1.2, the following
reduced equation can be obtained

Fαααβ + 3FααFβ + 3FαFαβ − Fαθ � 0. (4.37)
In the following (G′/G) method is applied to solve Eq. 4.37.

Considering the following traveling wave transform

F α, β, θ( ) � h υ( ), υ � kα + lβ +mθ, (4.38)
in which k, l, m are constants. Putting (4.38) into Eq. 4.37 yields

lk3hυυυυ + 6lk2hυυhυ −mkhυυ � 0, (4.39)
then integrate once, we yield

k3hυυυ + 3lk2hυυ −mkhυ � 0. (4.40)
Assume that Eq. 4.40 has solutions of the following form

h υ( ) � ∑p
j�0

αj
G′
G

( )j

, (4.41)

in which bj (j = 0, . . . , p) are constants which can be derived later and
h(υ) satisfies the equation

G″ + λG′ + μG � 0. (4.42)
Exploiting the principle of homogeneous balance, p = 1. Hence
(4.41) can be rewritten as

h υ( ) � α0 + α1
G′
G

( ). (4.43)

Substituting (4.42) and Eq. 4.43 into Eq. 4.40 and putting the same
power combination of (G′/G)j. Then make these coefficients be zero,
and a series of algebraic equations about k, l,m, α1, α2 can be yielded.
By solving the above equations, we obtain

k � k, l � m

k2 λ − 4μ( ), m � m, α0 � α0, α1 � α1, (4.44)

where k ≠ 0 and λ − 4μ ≠ 0. With these parameters, we can yield the
following forms of solutions:

For λ2 > 4μ,

u � k
������
λ2 − 4μ

√
c1 sinh κ( ) + c2 cosh κ

c1 cosh κ + c2 sinh κ
− kλ + α0, (4.45)

where κ � (12 (kx + my
k2(λ2−4μ) +mz)

������
λ2 − 4μ

√
) and c1, c2, α0, k, λ, μ are

constants.
For λ2 < 4μ,

u � k
�������
−λ2 + 4μ

√
c1 sin χ( ) + c2 cos χ

c1 cos χ + c2 sinφ
− kλ + α0, (4.46)

where χ � (12 (kx + my
k2(λ2−4μ) +mz)

�������
−λ2 + 4μ

√
) and c1, c2, α0, k, λ, μ

are constants.

4.5 Vector field v2 + v4 + v5 + v6

The characteristic equation can be composed as

dx

1
� dy

0
� dz

1
� dt

1
� du

1
. (4.47)

Solving (4.47), we derived the similarity solution

u x, y, z, t( ) � F α, β, θ( ), (4.48)
in which α = x − t, β = y and θ = z − t are similarity variables. Taking
(4.48) into Eq. 1.2, the (2 + 1)-dimensional equation can be yielded

Fαααβ + 3FααFβ + 3FαFαβ + Fαβ + Fβθ − Fαθ � 0. (4.49)
Next, applying the Riccati equation method, different forms of

solutions of Eq. 4.49 can be deduced. Taking the following traveling
wave transform

F α, β, θ( ) � h υ( ), υ � kα + lβ +mθ, (4.50)
where k, l, m are constants. Substituting (Eq. 4.50) into Eq. 4.49 and
integrating once yields

lk3hυυυ + 3lk2h2υ + lkhυ + lmhυ −mkhυ � 0. (4.51)

Suppose that Eq. 4.51 has solutions of the following form

h υ( ) � ∑p
j�0

ajϕ
j, (4.52)

where aj (j = 1 p) are constants which can be obtained later and h(υ)
satisfies the equation

ϕ′ � ϕ2 + ω, (4.53)
in whichω is an constant. The form of the solutions of Eq. 4.53 are as
follows

ϕ �

− ��
ω

√
tanh

���−ω√
υ( ), ω< 0,

−1
υ
, ω � 0,

��
ω

√
tan

��
ω

√
υ( ), ω> 0.

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
(4.54)

By balancing Eq. 4.51, we get p = 1. Hence, (Eq. 4.52) can be
rewritten as

h � a0 + a1ϕ. (4.55)
Replacing (Eq. 4.53) along with Eq. 4.55 into Eq. 4.51, letting

the same coefficients and a series of algebraic equations
about a0, a1 and l can be yielded. Solving the above equations,
we obtain

l � mk

−4k3ω +m + k
, k � k, m � m, a0 � a0, a1 � −2k.

(4.56)
On the basis of Eq. 4.56, we derive the solution of Eq. 1.2 as follows:

For ω < 0,

u � t + 2k
���−ω√

tanh
���−ω√

k x − t( ) + mky

−4k3ω + k +m
+m z − t( )( )( ) + a0,

(4.57)

where k, m, a0, ω, y, z are constants.
For ω > 0,
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FIGURE 1
Singularity profile of (4.11).

FIGURE 2
Annihilation of the kink wave solution of (4.34) at y =1.

FIGURE 3
Multi period solution of (4.35).
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FIGURE 4
The kink wave solution of (4.57) at z =0.

FIGURE 5
The periodic solution of (4.58) at z =0.

FIGURE 6
The symmetric two-periodic solution of (4.68).
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u � t − 2k
��
ω

√
tan k x − t( ) + mky

−4k3ω + k +m
+m z − t( )( ) ��

ω
√( ) + a0,

(4.58)
where k, m, a0, ω, y, z are constants.

4.6 Vector field v2 + v4

The characteristic equation can be composed as

dx

0
� dy

0
� dz

1
� dt

1
� du

0
. (4.59)

Solving (Eq. 4.59), we derived the similarity solution

u x, y, z, t( ) � F α, β, θ( ), (4.60)
where α = x, β = y and θ = z − t are similarity variables. Taking (Eq.
4.60) into Eq. 1.2, the (2 + 1)-dimensional equation can be
obtained by

Fαααβ + 3FααFβ + 3FαFαβ + Fβθ − Fαθ � 0. (4.61)
Taking the traveling wave transform

F α, β, θ( ) � h υ( ), υ � kα + lβ +mθ, (4.62)
where k, l and m are constants. Putting (Eq. 4.62) into Eq. 4.61 and
integrate once, we derive

lk3hυυυ + 3lk2hυ
2 + lmhυ −mkhυ � 0. (4.63)

Suppose the solution of Eq. 4.63 is given by

h υ( ) �
∑2p
j�0

sje
iυ

∑2p
j�0

rje
iυ

, (4.64)

where sj, rj are constants to be obtained. By balancing Eq. 4.63, p = 1.
Therefore, Eq. 4.64 is written as

h υ( ) � s0 + s1e
υ + s2e

2υ

r0 + r1e
υ + r2e

2υ. (4.65)

Replacing (Eq. 4.63) along with Eq. 4.65 and making the same
coefficient be zero, a family of algebraic equations about s0, s1, s2, r0,
r1, r2, k, l and m can be yielded. Solving the above equations, we
obtain:

k � 0, l � 0, m � m, s0 � s0, s1 � s1, s2 � s2, r0 � r0, r1 � r1, r2 � r2.

(4.66)

Then the solution of Eq. 1.2 is given by:

u � s0

r0 + r1e
z−t( )m + r2e

z−t( )m( )2 +
s1e

z−t( )m

r0 + r1e
z−t( )m + r2e

z−t( )m( )2 +
s2e

z−t( )m( )2

r0 + r1e
z−t( )m + r2e

z−t( )m( )2 ,

(4.67)

where m, s0, s1, s2, r0, r1 and r2 are constants. Based on Eq. 4.67,
replacing the parameter k = ik, l = il, m = im and picking the real
part, the following periodic wave solution can be given

u � s0
r0 + r1 cos z − t( )m( ) + r2 cos 2 z − t( )m( ) +

s1 cos z − t( )m( )
r0 + r1 cos z − t( )m( ) + r2 cos 2 z − t( )m( )

+ s2 cos 2 z − t( )m( )
r0 + r1 cos z − t( )m( ) + r2 cos 2 z − t( )m( ).

(4.68)

5 Analysis and discussion

In this part, the geometric representation of the solution of Eq.
1.2 is discussed by employing graphical description. The physical
phenomena of the solutions can be seen more obviously via
numerical simulation. The solutions of the gSWl equation yielded
from the above process include periodic, dark soliton, kink wave and
annihilation structures of solutions. The dynamic structure of the
solutions is investigated below.

Figure 1 depicts the physical structure of the singular solution
when the parameter c1 = 1, = 1, x = 1, y = 1. (B) Indicates the density
plot of the corresponding solution.

Figure 2 describes the physical structure of the kink solution
when t = 1, and the rest of the parameters take the value of y = 1, =
3, = 1, k = 1, l = 1, m = 1, = 1, = 1. When the time increases from t = 1

FIGURE 7
Dark soliton solution of (4.67).
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to t = 28, the energy of the wave is gradually depleted and eventually
becomes a plane wave.

The physical structure of the antisymmetric periodic solution
(4.35) is shown in Figure 3. The 3-D plot of the antisymmetric
periodic solution is described when the parameter is taken as z = 0,
y = 0, = 1, = 1, k = 1, l = 1, m = 1, = 1, = −1. (B) show the density plot
of the solution.

The dynamics structure of the kink wave solution at z = 0 is
plotted in Figure 4.When k = −10, c = 10, = 1, = −10, y = 1. (A) shows
the 3-D plot of the solution and (B) depicts the spread route of the
solution along the x-axis when t = 0, t = 1, t = 2 and t = 3,
respectively.

It is shown in Figure 5 and Figure 6 that the physical structure of
the periodic wave solutions (4.58) and (4.68). (A) Is the
corresponding 3D structure, (B) is the track of the solution along
the x-axis, which is given when the parameterk = 1, = −1, = 1, r = 1,
y = 0, z = 0 (4.68) shows the 3-D structure of the symmetric two-
period wave solution, with the corresponding parameter a0 = 1, =
1, = 1, = 5, = 1, = 1, m = 1. (B) Depicts the spread route of the
solution along the z-axis at t = 0.

A structure of the dynamics of the dark soliton (4.67) is depicted
in Figure 7. The 3-D plot of the dark soliton is obtained when the
parameter is selected as a0 = 1, = 1, = 1, = 1, = 2, = 1, m = 1. The
spread route behavior of the dark soliton along the z-axis can be
derived by choosing t = 0, t = 1, t = 2 and t = 3.

6 Conclusion

In summary, the (3 + 1)-dimensional generalized Shallow
Water-like wave equation is shown in this paper which is
studied based on the Lie symmetry method and the symbolic
calculation. By the adjoint table of the infinitesimal generators, a
one-dimensional optimal system is formulated. In terms of the
optimal system, some new solutions of the gSWl equation are
derived by Exp(−ϕ(ξ)) expansion method, Riccati equation
method, Exp-function expansion method, and (G′/G) expansion
method. In particular, the physical structures of the detected dark
soliton, kink wave, and periodic solutions are investigated to make
this study more credible.

In this work, a situation of the (3 + 1)-dimensional gSWl
equation has been investigated based on the Lie symmetry
method, and the rest of the latter cases are presented in other
subsequent papers. More work needs to be done in the future.
Firstly, in this paper, the exact solutions of the equation are derived
richly with the Lie symmetry method, and other methods can be

employed for the solutions of the equation, such as the numerical
analysis method [36–38]. Secondly, the natural properties of the
solutions to the equation can be investigated further in subsequent
studies through the generalized multi-symplectic method and the
structure-preserving method [39–42].
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The Lie symmetry method is applied, and exact homotopic solutions of a non-
linear double-diffusion problem are obtained. Additionally, we derived Lie
point symmetries and corresponding transformations for equations
representing heat and mass transfer in a thin liquid film over an unsteady
stretching surface, using MAPLE. We used these symmetries to construct new
(Lie) similarity transformations that are different from those that are
commonly used for flow and mass transfer problems. These new (Lie)
similarity transformations map the partial differential equations of a
mathematical model under consideration to ordinary differential equations
along with boundary conditions. Lie similarity transformations are shown to
lead to new solutions for the considered flow problem. These solutions are
obtained using the homotopy analysis method to analytically solve the
ordinary differential equations that resulted from the reduction of
considered flow equations through Lie similarity transformations. With the
aid of these solutions, effects of various parameters on the flow and heat
transfer are discussed and presented graphically in this study.

KEYWORDS

Lie similarity transformations, homotopy analysis method, symmetry, exact solutions,
thin-film flow

1 Introduction

Fluid flow and heat transfer phenomena have a wide range of applications in
engineering. By varying these transporters and enforcing various physical conditions, it
is possible to produce a variety of industrial products at their best. As a result, it has
drawn a significant amount of attention during the past several decades. The
Navier–Stokes equations are used to quantitatively represent these heat and flow
exchanges, with the appropriate circumstances. These are extremely non-linear
partial differential equations (PDEs) of order two or higher. Such non-linearities
lessen the likelihood of obtaining precise results. As a result, flow studies are
related to approximation techniques and analytical solution schemes, and heat
transfer techniques are frequently used.
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The Runge–Kutta and shot method are combined for the
derivation of the former type of solutions, whereas homotopy
analysis and perturbation techniques are frequently used for the
latter.

These problem-solving methods are not directly related to the
PDEs that describe the flow problems. The system of ordinary
differential equations (ODEs) relating to these flow issues is,
nevertheless, solved using these methods. The similarity
transformation is the technology that makes this kind of
reduction possible. The dependent and/or independent variables
of flow equations are reduced using these adjustments.

First, the fact that there are more established and diverse
solution methods for ODEs than PDEs accounts for this
reduction. Second, running ODEs through mathematical
symbolic and numeric software requires less time and equipment
compared to other approaches. Following the reduction of flow
equations to ODEs via similarity transformations, one finds several
applications of such solution algorithms in the literature.

With this procedure, the flow and heat transfers have been
studied under different sets of conditions, for example, in a liquid
film on an unsteady stretching surface [1, 2], under the effects of
variable fluid properties and thermo capillarity [3], with Soret and
Dufour effects on a viscoelastic fluid in three dimensions [4], in a
rotating channel three-dimensional squeezing flow [5], in a three-
dimensional flow of a nanofluid over a non-linearly stretching sheet
[6], and for an Oldroyd-B nanofluid thin film over an unsteady
stretching sheet [7]. Likewise, magnetohydrodynamic (MHD) flow
and heat transfer have been studied for the following: thermosolutal
Marangoni convection with heat generation [8], viscoelastic fluid
flow over a vertical stretching sheet under the effects of Soret and
Dufour [9], Jeffrey fluid over a stretching sheet considering the
chemical reaction and thermal radiation [10], three-dimensional
flow of an Oldroyd-B nanofluid on a radiative surface [11],
thermally radiative flow in three dimensions of a Jeffrey
nanofluid under internal heat generation [12], a shrinking sheet
with thermal slip [13], a vertical stretching sheet under the effects of
heat sink or source [14], mixed convection on the inclined stretching
plate in the Darcy porous medium with a Soret effect considering
variable surface conditions [15], and mixed convective flow of a
Maxwell nanofluid past a porous vertical stretching sheet with a
chemical reaction [16].

There are countless studies through an area of research known
as the Lie symmetry method, which helps to accurately derive the
analytical or approximate solutions for flow and heat transfer
equations. For instance, Lie group theory has been employed to
study the flow and heat transfer in a non-Newtonian fluid over a
stretching surface with thermal radiation [17], MHD boundary layer
flow over a stretching sheet with viscous dissipation and uniform
heat source/sink [18], MHDmixed flow of unsteady convection on a
vertical porous plate with radiation [19], MHD double-diffusion
convection of a Casson nanofluid on a vertical stretching/shrinking
surface under the effects of thermal radiation and chemical reaction
[20], heat flux effect on MHD second slip flow past a stretching
sheet along with heat generation [21], MHDCasson fluid flow near a
stagnation point on a linearly stretching sheet taking variable
viscosity and thermal conductivity into account [22],
thermophysical properties of a magnetized Williamson fluid
subject to porous/non-porous surfaces [23], two-parameter Lie

scaling approach on an unsteady MHD Casson fluid over a
porous rigid plate with a stagnation point flow [24], double-
diffusive MHD tangent hyperbolic fluid flow on a stretching
sheet [25], MHD thermally slip Carreau fluid subject to multiple
flow regimes [26], and for a liquid film on an unsteady stretching
sheet using Lie point symmetries [27].

The governing equations in the aforementioned flow models are
non-linear. Therefore, numerous approaches are adopted to deal
with the non-linearity of the governing equations. The Lie symmetry
method is one of those that provide a systematic procedure to
construct similarity transformation that is a pivotal component of
solution schemes employed on fluid flows mentioned previously.
Non-linear phenomena impose constraints on the studies conducted
to analyze physical models appearing in numerous applications due
to the availability of few techniques that are employed to deal with it.
As far as the Lie approach is concerned, one may linearize the
governing equations (28)–(31). There are many non-Lie procedures
that are also available in the literature, for example, effective
treatments of the non-linearity of differential equations have
been reported in [32–34].

A Lie point symmetry transformation can be associated with a
differential or an algebraic equation if it leaves it form invariant. It
implies that a heat equation remains a heat equation after mapping it
under its Lie point transformation. Every Lie point transformation
possesses a Lie symmetry generator. For basic theory and the
algebraic computations of the Lie symmetry generators and
transformation, readers are referred to [35, 36]. MAPLE contains
all these procedures to build symmetry transformations in the
“PDEtools” package, which, on applying “Infinitesimals” on
differential equations, reveals their symmetries. MAPLE is used
to find out symmetry generators and corresponding
transformations for flow problems that are being taken into
consideration in this study.

We deduce Lie point symmetries for the momentum, energy, and
concentration equations representing the flow problem under
consideration. There exist nine Lie symmetries, and by using them,

FIGURE 1
hf-curves (S � 2.10 − 2.30).
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Lie similarity transformations are obtained. However, we
employ only those symmetries which leave the associated
boundary conditions in a particular form. Based on these
constraints, we consider three linear combinations (that are
also Lie point symmetries) of the derived Lie symmetries. In
one of these, we combine two symmetries, while the remaining
two consist of three symmetries. These three combinations
provided a different type of similarity transformation which
transformed flow equations into three different types of ODE
systems. Arbitrary constants are used in the linear combinations
of the Lie point symmetries, and these constants also appear in

the resulting system of ODEs due to their presence in the Lie
similarity transformations we construct. We use them to control
the convergence of solutions of the flow model we are
considering.

The outline of the paper is as follows. The second section is about
flow equations and their Lie symmetries. The subsequent section is on
similarity transformations and mapping of flow PDEs to ODEs. In the
fourth section, analytical solutions are constructed and presented with
graphs and tables. The last section is the conclusion.

2 Flow equations

The flow of heat and mass in a thin liquid film has been studied
[37] on an unsteady stretching surface with thermosolutal capillarity
and variable magnetic field. Here, we are considering the flowmodel
without the magnetic field and thermosolutal capillarity. The
governing equations for the flow of heat and mass transfer in a
thin liquid film over an unsteady surface are given by the following
system of PDEs:

zu

zx
+ zv

zy
� 0,

zu

zt
+ u

zu

zx
+ v

zu

zy
− ]

z2u

zy2
� 0, (1)

zT

zt
+ u

zT

zx
+ v

zT

zy
− κ

z2T

zy2
� 0,

zC

zt
+ u

zC

zx
+ v

zC

zy
−D

z2C

zy2
� 0,

subject to boundary conditions as follows:

u t, x, y( ) � Us t, x( ), v t, x, y( ) � 0, T t, x, y( ) � Ts t, x( ), C t, x, y( )
� Cs t, x( ), aty � 0,

FIGURE 2
Velocity profiles (S � 2.10 − 2.30).

FIGURE 3
Different h-curves. (A) hθ-curve (S � 2.5,hf � −1.0, k1 � −1, k2 � 1) and a variation in Pr. (B) hθ-curve (S � 2.5,hf � −1.0, k1 � −5, k2 � 1) and a variation
in Pr. (C) hθ-curve (S � 2.5,hf � −1.0, k1 � −10, k2 � 1) and a variation in Pr.
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zu t, x, y( )
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� 0,
zT t, x, y( )

zy
� 0,

zC t, x, y( )
zy

� 0, v t, x, y( ) � dh

dt
,

aty � h t( ).
(2)

The Lie point symmetries of the flow mathematical model (Eq.
1) are derived by using the MAPLE “PDEtools” package and the
built-in command “Infinitesimals.”

X1 � z

zt
,X2 � z

zx
,X3 � z

zT
,X4 � z

zC
,X5 � t

z

zx
+ z

zu
,X6 � T

z

zT
,

X7 � C
z

zC
,X8 � x

z

zx
+ u

z

zu
,X9 � t

z

zt
+ y

2
z

zy
− u

z

zu
− v

2
z

zv
.

(3)
However, for a detailed algebraic procedure to obtain

symmetries of system (Eq. 1), the reader is referred to [27]. The
Lie symmetry transformations corresponding to symmetry
generators (Eq. 3) leave equations of system (Eq. 1) form
invariant. These Lie transformations are given in Table 1.
Furthermore, all the associated conditions (Eq. 2) should also
remain invariant. For this purpose, we employ each

X l[ ]
m ζn( )∣∣∣ζn�0 � 0, (4)

where l denotes the extension of the symmetry generator; here, we require
the first extension of Xm, for m � 1, 2, . . . , 9, and ζn denotes the
conditions (Eq. 2) for n � 1, 2, . . . , 8, e.g., ζ1 ≔ u(t,x, 0) � Us(t,x),
and vice versa.

3 Lie similarity transformations of flow
equations

We construct the Lie similarity transformations corresponding
to a few linear combinations for the derived Lie point symmetries
X1,X2, ...,X9. These combinations are based on the unknown

functions they determine for Us(t, x), Ts(t, x), Cs(t, x), and h(t).
In this work, only those cases are of interest in which all these
functions remain dependent on their arguments. Hence, we consider
the combination k1X8 + k2X9 of Lie symmetries in Case-I, k1X6 +
k2X7 + k3X8 in Case-II, and k1X6 + k2X7 + k3X9 in Case-III, where
k1, k2, and k3 are any non-zero real numbers. All other symmetries
from the list (Eq. 3) are not suitable in any form to construct the
similarity transformations due to stretching sheet velocity and
temperature obtained for these symmetries and their
combinations. Hence, we consider only those linear combinations
that are mentioned previously. These three linear combinations of
symmetries leave both x and t in the stretching sheet velocity Us �
Us(t, x) and temperature Ts � Ts(t, x); i.e., we want to keep them as
functions of time t and space variable x. Moreover, h(t) is also left as
a function of t.

FIGURE 4
Different temperature profiles. (A) Temperature profiles (S � 2.5,hf � −1.0,hθ� − 0.03, k1 � −1, k2 � 1) and a variation in Pr. (B) Temperature profiles
(S � 2.5,hf � −1.0,hθ� − 0.03, k1 � −5, k2 � 1) and a variation in Pr. (C) Temperature profiles (S � 2.5,hf � −1.0,hθ� − 0.03, k1 � −10, k2 � 1) and a variation
in Pr.

TABLE 1 Lie symmetry generators and transformations.

Generator Transformation

X1 t � �t + ϵ, x � �x, y � �y, u � �u, v � �v, T � �T, C � �C

X2 t � �t, x � �x + ϵ, y � �y, u � �u, v � �v, T � �T, C � �C

X3 t � �t, x � �x, y � �y, u � �u, v � �v, T � �T + ϵ, C � �C

X4 t � �t, x � �x, y � �y, u � �u, v � �v, T � �T, C � �C + ϵ

X5 t � �teϵ , x � �x, y � �y, u � �u + ϵ, v � �v, T � �T, C � �C

X6 t � �t, x � �x, y � �y, u � �u, v � �v, T � �Teϵ , C � �C

X7 t � �t, x � �x, y � �y, u � �u, v � �v, T � �T, C � �Ceϵ

X8 t � �t, x � �xeϵ , y � �y, u � �ueϵ , v � v, T � �T, C � �C

X9 t � �teϵ , x � �x, y � �y
��
eϵ

√
, u � �ue−ϵ , v � �v��

eϵ
√ , T � �T, C � �C

The symmetry generator from (3) is applied to each of these conditions through the

invariance criterion.
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In the study conducted earlier on this type of fluid and heat
transports [38], both the said quantities are set to be dependent on
both t and x.

3.1 Case-I: Similarity transformations
for k1X8 + k2X9

These symmetry generators provided the similarity
transformations

y � β

���
α]t
b

√
η, u � −bx

αt

df

dη
, v � β

��
b]
αt

√
f η( ), T � xt

−k1
k2 θ η( ) − 1,

C � xt
−k1
k2 ϕ η( ) − 1

(5)

which map the system of PDEs (Eq. 1) into the following system of
ODEs:

d3f

dη3
+ β2 S

df

dη
+ Sη

2
d2f

dη2
+ df

dη
( )2

− f η( ) d2f

dη2
( ) � 0,

1
Pr

d2θ

dη2
+ β2

df

dη
θ η( ) − f η( ) dθ

dη
+ Sη

2
dθ

dη
+ k1
k2

S θ η( )( ) � 0, (6)

1
Sc

d2ϕ

dη2
+ β2

df

dη
ϕ η( ) − f η( ) dϕ

dη
+ Sη

2
dϕ

dη
+ k1
k2

Sϕ η( )( ) � 0,

where η is the new independent variable. The associated boundary
conditions are

f 0( ) � 0, θ 0( ) � ϕ 0( ) � 1,
df 0( )
dη

� 1, f 1( ) � S

2
,

d2f 1( )
dη2

� dθ 1( )
dη

� 0,
dϕ 1( )
dη

� 0. (7)

3.2 Case-II: Similarity transformations
for k1X6 + k2X7 + k3X8

In this case, the following similarity transformations are
obtained:

y � β

��������
α] 1 + t( )

b

√
η, u � − bx

α 1 + t( )
df

dη
, v � β

�������
b]

α 1 + t( )

√
f η( ),

T � 1 + t( )x k1
k3θ η( ), C � 1 + t( )x k2

k3ϕ η( ). (8)

These similarity transformations map the system of PDEs (Eq.
1) into the following system of ODEs:

d3f

dη3
+ β2 S

df

dη
+ Sη

2
d2f

dη2
+ df

dη
( )2

− f η( ) d2f

dη2
( ) � 0,

1
Pr

d2θ

dη2
+ β2

k1
k3

df

dη
θ η( ) − f η( ) dθ

dη
+ Sη

2
dθ

dη
− Sθ η( )( ) � 0, (9)

1
Sc

d2ϕ

dη2
+ β2

k2
k3

df

dη
ϕ η( ) − f η( ) dϕ

dη
+ Sη

2
dϕ

dη
− S ϕ η( )( ) � 0,

and the associated boundary conditions are given as follows:

f 0( ) � 0,
df 0( )
dη

� θ 0( ) � ϕ 0( ) � 1,

f 1( ) � S

2
,
d2f 1( )
dη2

� dθ 1( )
dη

� dϕ 1( )
dη

� 0.
(10)

3.3 Case-III: Similarity transformations
for k1X6 + k2X7 + k3X9

Here, we obtain the following similarity transformations:

FIGURE 5
Different h-curves.
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y � β

���
α]t
b

√
η, u � −b 1 + x( )

αt

df

dη
, v � β

��
b]
αt

√
f η( ),

T � 1 + x( )t k1
k3 θ η( ), C � 1 + x( )t k2

k3ϕ η( ). (11)
These similarity transformations map the system of PDEs (Eq.

1) into the following system of ODEs:

d3f

dη3
+ β2 S

df

dη
+ Sη

2
d2f

dη2
+ df

dη
( )2

− f η( ) d2f

dη2
( ) � 0,

1
Pr

d2θ

dη2
+ β2

df

dη
θ η( ) − f η( ) dθ

dη
+ Sη

2
dθ

dη
− k1
k3

S θ η( )( ) � 0, (12)

1
Sc

d2ϕ

dη2
+ β2

df

dη
ϕ η( ) − f η( ) dϕ

dη
+ Sη

2
dϕ

dη
− k2
k3

Sϕ η( )( ) � 0.

The associated boundary conditions map to

f 0( ) � 0,
df 0( )
dη

� θ 0( ) � ϕ 0( ) � 1,

f 1( ) � S

2
,
d2f 1( )
dη2

� dθ 1( )
dη

� dϕ 1( )
dη

� 0.
(13)

4 Analytic solution by the homotopy
analysis method

In this section, the velocity and temperature profiles are constructed
with the aid of the analytical solution of order ten derived through the
HAM. It has been observed that the first equation in all three cases that
are under consideration here is the same. First, we draw hf-curves that
are presented graphically for 2.10< S< 2.30 in Figure 1. The reason to
consider this range is the dimensionless film thickness which remains

negative or zero for S≤ 2.0. Hence, all the velocity, temperature, and
concentration profiles are presented here for S> 2.0. The dimensionless
film thickness increases with an increase in S, under the conditions
provided by Lie similarity conditions. This situation changes and
opposite trends have been found in [39] using Lie similarity
transformations with an introduction of a magnetic term. Figure 2
shows the velocity profiles for the same range of an unsteadiness
parameter, which shows an increase in the velocity with this
parameter. The temperature and concentration profiles are expected
to be different in all three cases as, apparently, the second and third
equations in the systems of ODEs (Eq. 6), (Eq. 9), and (Eq. 12) are
different. Hence, they are written separately in the following cases to
present the trends that are followed by these quantities under the
influence of S, Pr, and Sc. Moreover, the constants k1, k2, and k3 that
are used in forming the linear combinations of the Lie symmetry
generators (Eq. 3) also affect the temperature and concentration
profiles. These are all present in the second and third equations of
the systems in Case (3.1)–(3.3).

4.1 Velocity and concentration profiles for
Case-I

For system (Eq. 6), we draw the hθ-curves in Figures 3A–C, for
S � 2.5, hf � −1.0, k2 � 1 and for three different values of
Pr � 0.25, 0.35, 0.45. The hθ-curves show a decline for k1 < 0.
From these curves, we select a value for hθ � −0.003 to construct
the temperature profiles in Figures 4A–C, which also exhibit a
decreasing trend with a decrease in the values of k1. Likewise, we
draw hϕ− curves in Figures 5A–C for S � 3.5, hf � −1.0, k2 � 1 and
for multiple values of k1. These figures show a decrease in the hϕ−
curves with a decrease in k1 and an increase in
Pr � 0.025, 0.035, 0.045. The concentration profiles behave in a
similar manner as hϕ− curves. Here, we present these profiles for

FIGURE 6
Different concentration profiles.
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S � 3.5, hf � −1.0, hϕ � −0.025, k2 � 1 and a variation in k1 and
Sc � 0.025, 0.035, 0.045. The temperature and concentration
profiles follow the same trends as system (Eq. 6) equations for
both are the same; however, we are presenting them here separately.
In both the mentioned set of figures, we considered different values
of the unsteadiness parameter S. It can be observed from these
figures that the unsteadiness parameter and concentration are
inversely proportional, i.e., S∝ 1

T.

4.2 Velocity and concentration profiles for
Case-II

System (Eq. 9) involves three arbitrary constants k1, k2, and
k3, which appear here due to the linear combination of Lie point
symmetries we used to construct the corresponding Lie similarity
transformation. We draw common curves for hθ and hϕ as
h-curves for this system in Figures 6A–C. These curves are

FIGURE 7
Different h-curves.

FIGURE 8
Different temperature and concentration profiles.
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drawn for hf � −1.0, k1 � 1, k2 � 1 and a variation in the
unsteadiness parameter S � 3.0 and 4.0, k3 � −0.2 and −0.1,
and a range of Pr � 0.35, 0.40, 0.45 and Sc � 0.35, 0.40, 0.45.
These curves and corresponding set of graphs for temperature
and concentration show an increase when the unsteadiness
parameter decreases from S � 4.0 to S � 3.0. Similar is the case
when k3 goes from −0.1 to −0.2, as shown in Figures 7A–C and
Figures 8A–8C.

4.3 Velocity and concentration profiles for
Case-III

System (Eq. 12) involves three arbitrary constants k1, k2, and
k3 that are also part of the associated Lie similarity
transformation. Figures 9A–C show the h-curves for both hθ
and hϕ. These curves are constructed with the same values of
hf, k1, k2 as in the previous case and for a different value of the

FIGURE 9
Different h-curves.

FIGURE 10
Different temperature and concentration profiles.
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unsteadiness parameter S. When the unsteadiness parameter
decreases from 4.5 to 3.5, the hθ- and hϕ-curves are
decreasing. Similar behavior is shown by temperature and
concentration profiles in Figures 10A–C; that is, for
1.0< k3 < 1.5, the temperature and concentration are
increasing. However, for Pr � 0.5, 0.7, 0.9, a decrease in the
temperature and concentration is evident from these figures.

5 Conclusion

Lie point symmetries for heat and mass transfer in a
thin liquid film on an unsteady stretching sheet are derived.
These symmetries are used to construct Lie similarity
transformations which map the PDEs representing the heat
and flow model to ODE systems. We showed that there exist
three different types of such reductions of the considered
flow equations. In the Lie similarity transformation
derivation, linear combinations of Lie symmetry generators
are utilized. These linear combinations are derived with the
help of arbitrary constants, which gives rise to multiple
solutions of the flow and heat equations. We use the HAM
to analytically solve the obtained non-linear ODEs with a
10th-order of approximation. Velocity, temperature, and
concentration profiles are drawn with the aid of these
10th-order HAM solutions. These profiles are presented
graphically with variations in the unsteadiness parameter S,
Prandtl number Pr, Schmidt number Sc, and the arbitrary
constants used in the linear combinations of the Lie point
symmetries.
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Oblique propagation of arbitrary
amplitude ion acoustic solitary
waves in anisotropic electron
positron ion plasma

Almas1,2, Ata-ur-Rahman1, Muhammad Khalid3* and
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1Department of Physics, Islamia College Peshawar, Peshawar, Pakistan, 2Department of Physics, Abdul
Wali Khan University Mardan, Mardan, Pakistan, 3Department of Physics, Government Post Graduate
CollegeMardan, Mardan, Pakistan, 4Center of Research, Faculty of Engineering, Future University in Egypt,
New Cairo, Egypt

The oblique propagation of arbitrary ion acoustic solitary waves (IASWs) in
magnetized electron-positron-ion plasmas is investigated by employing
Sagdeev pseudopotential approach. Ions are assumed to be adiabatic having
anisotropic thermal pressure. Electrons and positrons are considered to be
isothermal, following Maxwellian distribution. In terms of electrostatic potential,
Sagdeev potential function is obtained and analyzed numerically in the context of
relevant plasma configuration parameters. The existence region of solitary pulses
is defined accurately. It is investigated how several plasma configuration
parameters, such as the positron concentration, parallel, and perpendicular ion
pressure affect soliton characteristics.

KEYWORDS

solitary waves, positrons, Sagdeev approach, pressure anisotropy, magnetized plasma

1 Introduction

To understand the fundamental processes in the Universe, most of the researchers have
taken keen interest in the study of electron-positron-ion (e − p − i) plasma. Such plasmas are
thought to have most probable appearance in the early Universe [1]. Other regions of space
where such plasma is assumed to be found are atmospheres of Sun, neutron stars, active
galactic nuclei and pulsar magnetosphere [2–4]. The existence of ions in astrophysical
plasmas has some interior source, i.e., the processes of accretion, evaporation or seismic
processes on the surface of stars might be a source of ions [5]. Moreover in matter, intense
short laser pulse propagation can generate e − p − i plasma [6]. In laboratory experiments, the
production of such three component plasma is possible when positron were made to probe
particle transport in tokamaks, in which case the two-component electron-ion (e − i) plasma
becomes a three-component e − p − i plasma [7, 8]. Clearly the wave motion behavior should
be totally different in e − p − i plasma compared to the two component electron-positron (e −
p) and e − i plasmas. The existence of ions is necessary for various low-frequency wave
propagation which is other wise not possible in e − p plasma [9].

The ion-acoustic (IA) waves are the low frequency waves which have been investigated in
both linear and non-linear limits in e − i plasma [10–13]. Several researchers have
theoretically studied the linear as well as the non-linear wave phenomena in both
magnetized and unmagnetized e − p − i plasmas [14–18]. The IA solitary waves
(IASWs) were first investigated in unmagnetized e − p − i plasmas by Popel et al. [14]
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by considering one dimensional perturbations. The solution of non-
linear equations was obtained in the form of a solitary pulse or
soliton. It was shown that positron concentration reduces the
maximum amplitude of the solitons. The study of IASWs in
magnetized e − p − i plasmas was made by Mushtaq et al. [18].
In their research work, they found that the increase values of
positron concentration leads to an increase in the amplitude of
the solitary structure which is the opposite behavior to the previous
study of these waves in an unmagnetized plasma [14].

Various techniques, such as the reductive perturbation and the
Sagdeev pseudopotential are used to examine non-linear waves in
plasma. Reductive perturbation technique (RPT) is applied to study
small amplitude non-linear waves in unmagnetized/magnetized
plasmas in the form of Korteweg-de Vries (KdV) equation,
modified KdV equation and Zakharov-Kuznetsov (ZK) equation
etc. For the very first time SWs in plasmas were studied by Washimi
and Taniuti [19] through RPT and derived the KdV equation for
IASWs [20]. However with this technique large amplitude
excitations can not be studied. To overcome the limitation of
small amplitude approximations, Sagdeev pseudo-potential
method [21], usually called the mechanical-motion analog,
provides an exact approach to the problem of finding arbitrary
amplitude SWs. This method provides non-linear solutions for a
plasma model which can be considered as candidates for SWs. The
method basically modifies the Poisson’s equation which results into
general energy equation of the form

dϕ/dx( )2 + 2G ϕ( ) � 0

The first term of the energy equation corresponds to kinetic energy,
while the second term corresponds to potential energy. The equation
basically represents a moving classical particle of unit mass in one
dimensional potentialG(ϕ) at time x. This method has been adopted
for studying wave phenomena in various plasma environments like
dusty plasmas, e − p − i plasmas and magnetospheric plasmas
[22, 23].

The presence of an external magnetic field causes the
collisionless plasma to behave in an anisotropic manner. As a
result, according to the Chew-Goldberger-Low (CGL) theory,
pressure differs in directions that are parallel and perpendicular
to the magnetic field [24]. Therefore two equations of states are
necessary to evaluate ion pressure i.e., the parallel ion pressure p‖
and perpendicular ion pressure p⊥ relative to the external
magnetic field. Magnetic compression and expansion
generated by plasma convection in some space regions might
be one of the reason of this anisotropic behavior of plasma [25].
The CGL theory can be applied to such anisotropic plasma in the
case when, the coupling between degree of freedom is ignorable
[26]. While in the isotropic plasma the strong coupling between
the degree of freedom gives rise to a simplified description due to
wave-particle interaction, and hence ionic pressure can be
evaluated using single equation of state [25].

IASWs in magnetized e − i plasma using Sagdeev
pseudopotential method have been investigated by Chatterjee
et al. [27]. They used quasi neutrality condition to discuss the
existence conditions, shape and speed of SWs. The same
approach was used by Sultana et al. [28] to analyze the oblique
propagation of IASWs in a magnetized plasma in the presence of

excess superthermal electrons. Oblique IA excitations in a
magnetoplasma having κ-deformed Kaniadakis distributed
electrons have also been discussed using Sagdeev’s potential
approach [29]. The same technique has also been used by
various researchers to discuss the SWs in e − p − i
magnetoplasma [15, 30, 31].

The role of ion pressure anisotropy on the propagation
characteristics of IA solitary structures in magnetized plasmas can
not be ignored. Choi et al. used the Sagdeev potential approach and
investigated the effect of anisotropy of ions on dust ion acoustic
solitary waves (DIASWs) and double layer structures [32]. Adnan
et al. [33] have examined the influence of pressure anisotropy on
IASWs in superthermal magnetized e − p − i plasma by applying RPT.
It has been shown that the solitary structures are affected by
superthermality of electrons and positrons, pressure anisotropy of
ions as well as the positron concentration. Similarly pressure
anisotropy effect on DIASWs in a nonthermal plasma in Ref. [34]
have also been investigated. The oblique propagation of electrostatic
SWs in non-Maxwellian e − i plasma in the presences of ion pressure
anisotropy with Sagdeev approach are studied in Ref. [35]. Khalid
et al. [36] used Maxwellian electrons to investigate the modulation of
multidimensional waves in anisotropic e − i plasma. Similarly,
Alyousef et al. have also used Sagdeev approach to study the
IASWs in magnetoplasma [37]. In [38] Sagdeev approach is
utilized and IASWs in magnetized e-i plasma in the presences of
pressure anisotropy is discussed. The results have revealed that the
model supports only positive potential non-linear structures.
Furthermore, the effect of relevant plasma parameters on the
characteristics of IA solitary structures is evaluated. However, to
the best of authors knowledge, the non-linear IASWs in the
presence of pressure anisotropy in magnetized e − p − i plasma
has not been explored, so for. We aim to considered anisotropic e −
p − i plasma with Maxwellian electrons and positrons to study these
waves.

The following is a breakdown of how this paper is
structured. The model equations are presented in Section 2.
The linear wave analysis is covered in Section 3. The Sagdeev
pseudopotential technique is used to analyze large-amplitude
electrostatic excitations in Section 4. The soliton existence
domain for propagation of IASWs is discussed in Section 5.
In Section 6, a parametric investigation is carried out to examine
the effect of various relevant parameters on the solitary wave
characteristics. The summary of the present study is given in
Section 7.

2 Basic equations

The goal of the present study is to propose a model for the
propagation of IASWs in a magnetized plasma made up of
Maxwellian electrons (ne) and positrons (np) as well as
adiabatically heated ions (ni). The ions are considered to be
inertial exhibiting pressure anisotropy relative to the external
magnetic field. The external magnetic field is assumed to be
uniform and is taken along x-axis, i.e., B � B0x̂. In the presence
of ion pressure anisotropy, the ion fluid equations are,

ztni + ∇. niui( ) � 0, (1)
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ztui + ui.∇( )ui � −Ze
mi

∇ϕ + Ze

mic
ui × B0x̂( ) − 1

mini
∇.~Pi, (2)

where ui, ϕ, mi, e and Z stand for ion fluid velocity, electrostatic
potential, ion mass, magnitude of electron charge and ionic charge state
(for simplicity Z = 1 is chosen), respectively. Owing to the plasma
anisotropy because of a strong external magnetic field B0, the plasma
behaves differently in the parallel and perpendicular direction (s).
Thereby the pressure tensor ~(Pi) is divided into two components,
i.e., the parallel (p‖i) and perpendicular (p⊥i) pressure components
[24, 25], thus

~Pi � p⊥i Î + p‖i − p⊥i( )x̂ x̂, (3)
where Î represents unit tensor and x̂ shows the unit vector along B0.
The expressions for p‖i and p⊥i are

p‖i � p‖i0
ni
ni0

( )3

and p⊥i � p⊥i0
ni
ni0

( ). (4)

In Eq. 4 p‖i0 = ni0kBTi‖ and p⊥i0 = ni0kBTi⊥ which are, respectively,
the equilibrium values of parallel and perpendicular pressure
functions, where ni0 is the unperturbed ion density. In case of
ion pressure isotropy, we have p‖i = p⊥i and ∇.~Pi � ∇pi.

The electrons and positrons are assumed to follow the
Boltzmann distributions under the electrostatic potential
perturbation, and their number densities are given as

ne � ne0 exp
eϕ

Te
( ), (5)

and

np � np0 exp
−eϕ
Tp

( ). (6)

The system of evolution equations is closed via Poisson’s equation

∇2ϕ � 4πe ne − np − ni( ), (7)

where Te and Tp are, respectively, the electron and positron
temperatures, while ne0 (np0) is the unperturbed electron
(positron) number density. We consider ne0 = ni0 + np0 at
equilibrium i.e., the quasineutrality condition does hold.

2.1 Evolution equations

We have considered two dimensional perturbation in the xy-
plane, by setting zz � 0. Thus, the above system of equations can be
written as follows;

ztni + zx niuix( ) + zy niuiy( ) � 0, (8)
ztuix + uixzx + uiyzy( )uix � − e

mi
zxϕ − 3p‖i0

min3io
nizxni, (9)

ztuiy + uixz + uiyzy( )uiy � − e

mi
zyϕ +Ωiuiz − p⊥i0

min0ni
zyni, (10)

ztuiz + uixzx + uiyzy( )uiz � −Ωiuiy, (11)
z2xϕ + z2yϕ � 4πe ne − np − ni( ). (12)

HereΩi � eB0
mic

is ion gyro-frequency, while uix, uiy, and uiz denote the
fluid velocity components.

2.2 Scaled evolution equations

To normalize the above system of equations, we normalize the
number density variables ns (s = e, i, p) by the unperturbed ion
density ni0, the electrostatic potential ϕ by Teφ/e, the ion fluid
velocity components by the ion acoustic speed (Te/mi)12. The
time and space variables are scaled by the inverse ion plasma
frequency ω−1

pi � (4πni0e2/mi)12 and electron Debye radius
λDe � (Te/4πne0e2)12, respectively. The normalized equations
obtained by applying the mentioned normalization to Eqs 5, 6
and to Eqs 8–12 are:

ztni + zx niuix( ) + zy niuiy( ) � 0, (13)
ztuix + uixzx + uiyzy( )uix � −zxφ − p‖nizxni, (14)

ztuiy + uixzx + uiyzy( )uiy � −zyφ +Ωuiz − p⊥

ni
zyni, (15)

ztuiz + uixzx + uiyzy( )uiz � −Ωuiy, (16)
ne � exp φ( ), (17)

np � exp −σφ( ), (18)
z2xφ + z2yφ � ηne − γnp − ni. (19)

Here p‖ � 3p‖i0
nioTe

and p⊥ � p⊥i0
nioTe

represent the normalized parallel and
perpendicular pressures, respectively, and are normalized by the
thermal pressure in the relevant directions, with Ωi

ωpi
� Ω being the

dimensionless parameter. Furthermore, σ � Te
Tp
, η � ne0

ni0
, and γ � np0

ni0
signify the electron to positron temperature ratio, unperturbed
electron-to-ion density ratio and positron-to-ion density ratio,
respectively. The over all charge neutrality in normalized form is
η − γ = 1.

3 Linear wave analysis

To derive the dispersion relation (DR), we employ Poisson’s Eq.
19 instead of plasma approximation, although plasma
approximation will be used in Section 5 for non-linear analysis.
The DR while using Eqs 13–19 is obtained as

ω4 − k2

k2 + η + γσ( ) + k2xp‖ + k2yp⊥ +Ω2( )
ω2 + p‖ + 1

k2 + η + γσ( )( )Ω2k2x � 0, (20)

where kx = k cos θ and ky = k sin θ are the wave numbers in the
parallel and perpendicular directions to the magnetic field, re
spectively, and k2x + k2y � k2. It can be noticed from Eq. 20 that
DR depends on the ion pressure anisotropy. Also, the magnetic field
dependence is visible through the frequency ratio Ω. By solving Eq.
20, we get

ω2
± � 1

2
k2

k2 + η + γσ( ) + k2xp‖ + k2yp⊥ +Ω2( )[
±

























































k2

k2 + η + γσ( ) + k2xp‖ + k2yp⊥ +Ω2( )2

− 4 p‖ + 1

k2 + η + γσ( )( )Ω2k2x

√ ⎤⎥⎦.
(21)

Equation 21 gives two modes i.e., ω− and ω+, representing slow
and fast electrostatic modes, respectively. An acoustic mode is
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obtained by setting, ky → 0 and kx = k and considering k≪ 1. Thus,
the phase speed parallel to the magnetic field is calculated as

ω−
k

� cos θ













1

η + γσ( ) + p‖

√
. (22)

This is called phase speed of acoustic mode which is independent of the
magnetic field Ω and perpendicular pressure p⊥. By inserting γ = 0
(i.e., in the absence of positron) and taking p‖ = 0, Eq. 22 reduces to the
result of Ref. [29]. In Figure 1 Eq. 22 has been plotted for various values
of obliqueness of the propagation direction, manifested via α (= cos θ).
Increasing obliqueness (lowering α) results in a decrease in wave
frequency and, consequently, in the phase speed of themagnetized IAW.

4 Arbitrary amplitude solitary wave
analysis

We are now interested to investigate the existence of large
amplitude solitary waves in Maxwellian plasmas with the
inclusion of ion pressure anisotropy. The fluid variables in the
evolution equations are considered to be transformed into a
single variable via the transformation

ξ � αx + βy −Mt, (23)
to a moving frame (here M is the Mach number indicating the
normalized pulse propagation velocity) where the solitary pulses are
stationary. The parameters α � kx

k � cos θ and β � ky
k � sin θ,

respectively, imply the direction cosines along x − axis and y-axis
subject to the condition that α2 + β2 = 1. By utilizing Eq. 23 in Eqs
13–18 we obtain a set of dimensionless non-linear differential
equations in the co-moving co-ordinate (ξ). The transformed
equations can be expressed as,

−Mdξni + αdξ niuix( ) + βdξ niuiy( ) � 0, (24)
−M + αuix + βuiy( )dξuix + αdξφ + αp‖nidξni � 0, (25)

−M + αuix + βuiy( )dξuiy + βdξφ −Ωuiz + βp⊥
1
ni
dξni � 0, (26)

−M + αuix + βuiy( )dξuiz + Ωuiy � 0. (27)

By integrating Eqs 24–27 and implementing the appropriate
boundary conditions, i.e., ni → η − γ = 1, uix,iy → 0 and φ → 0
at ξ → ±∞, we obtain

αuix + βuiy � M ni − 1( )
ni

, (28)

uix � α

M
− η + γ

σ
( ) + ∫nidφ + 1

3
p‖ n3i − 1( ){ }, (29)

uiy � M

β

ni − 1( )
ni

− α2

Mβ
− η + γ

σ
( ) + ∫nidφ + 1

3
p‖ n3i − 1( ){ }. (30)

The combination of Eq. 28 with Eqs 26, 27 results in

−M
ni
dξuiy + βdξφ − Ωuiz + βp⊥

1
ni
dξni � 0, (31)

−M
ni
dξuiz + Ωuiy � 0. (32)

Substituting the value of uiy from Eq. 30 into Eq. 32 one obtains

dξuiz � niΩ
β

1 − 1
ni

( )
− α2Ω
M2β

−ni η + γ

σ
( ) + ni∫nidφ + 1

3
p‖ni n3i − 1( ){ }, (33)

Differentiating Eq. 31 with respect to ξ and using Eqs 30 and 33
and after simplification, we have

dξ dξ
M2

2
n−2i + α2p‖

2
n2i +β2p⊥ log ni[ ]+φ( )[ ]

�Ω2 ni 1+ α2

M2 η+ γ

σ
( )( )[ −1− α2

M2ni∫nidφ− α2

3M2p‖ni n3i −1( )]
(34)

Multiplying Eq. 34 by dξ(M2

2 n
−2
i + α2p‖

2 n2i + β2p⊥ log[ni] + φ) and
integrating once under the boundary conditions φ→ 0 and dξφ→ 0
at ξ → ±∞, we obtain the energy integral equation for the
electrostatic potential φ, in the form

1
2

dξφ( )2 + ψ φ( ) � 0, (35)

where ψ(φ) is the Sagdeev pseudopotential, which is written as

ψ φ( ) � Ω2 φ − 1 + α2

M2 η + γ

σ
( ) + α2p‖

3M2{ }δ1 φ( )[
+ α2

2M2δ2 φ( ) − α4p‖
3M2 −

α2p‖
3M2{ }δ3 φ( )

− M2 + α2 η + γ

σ
( ) + α2p‖

3
{ }δ4 φ( ) + M2

2
δ5 φ( ) − α2φ + α2δ6 φ( )

+α
2p‖
3

δ7 φ( ) − α2p‖
3

+ α4p‖
3M2 η + γ

σ
( ) + α4p2

‖
9M2{ }δ8 φ( ) + α4p‖

3M2δ9 φ( )
+ α4p2

‖
18M2δ10 φ( ) − β2p⊥ + α2β2p⊥

M2 η + γ

σ
( ) + α2β2p⊥p‖

3M2{ }δ11 φ( )
+β2p⊥δ12 φ( ) + α2β2p⊥

M2 δ13 φ( ) − α2β2p⊥

M2 δ14 φ( )+α2β2p⊥p‖
12M2 δ15 φ( )]

× 1 −M2δ16 φ( )[ + α2p‖δ17 φ( )+β2p⊥δ18 φ( )]−2.
(36)

FIGURE 1
Plot of ω vs. k defined in Eq. 22 for different values of α i.e., α =
0.70 (solid curve), 0.80 (dashed curve) and 0.90 (dot-dashed curve)
with p‖ = 0.2, γ = 0.2 and σ = 0.1.
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Equation 35 is a well known pseudoenergy conservation
equation of an oscillating particle of unit mass, with velocity dξφ
and position φ in a potential well ψ(φ). In Eq. 36 the potential
functions δ1(φ), δ2(φ) · · · δ18(φ) are given in the Appendix.

5 Soliton existence conditions

Solitary wave solutions are allowed by Eq. 35, if the following
constraints are fulfilled [21]:

1. ψ|φ�0 � dφψ|φ�0 � dφψ|φ�φm � 0,
2. ψ(φ) < 0 at 0 < φ < φm,
3. d2φψ|φ�0 < 0

where φm represents the maximum amplitude of SWs. The origin
at φ = 0 defines the equilibrium state, which should represent a local
maximum of the Sagdeev pseudopotential ψ(φ). From Eq. 36, it is
clear that both ψ|φ=0 = 0 and dφψ|φ=0 = 0 holds at equilibrium. We
have to investigate d2φψ|φ�0 < 0, from which one can specify a range of
velocity values in which SWs may occur. Using the procedure
explained in Refs. [28, 39], the third condition takes the form

d2
φψ|φ�0 � Ω2 M2 −M2

1

M2 M2 −M2
2( )< 0, (37)

with

M1 �| α |











1
η + γσ

+ p‖

√
≤ 1, (38)

and

M2 �
























1
η + γσ

+ α2p‖ + 1 − α2( )p⊥

√
, (39)

where M1 and M2 are the lower (threshold Mc) and the upper
(maximumMmax) limits of the Mach number. It is clear from Eq. 38
that the lower Mach number does not depends on p⊥, while upper
Mach number does depend on both p‖ and p⊥. While keeping α = 1,
both the equations reduce to the true acoustic phase speed of IAWs
given in Eq. 22. Eq. 37 is satisfied for Mach number values in the
range

M1 <M<M2, (40)
i.e.,

α< M

M2
< 1. (41)

In other words, the inequality in Eq. 37 is valid if α = cos θ ≤ 1.
Because we employed the neutrality hypothesis rather than Poisson’s
equation, our results are valid in the long wavelength limit. To
examine the polarity of the non-linear structures, we have to check
third derivative of Sagdeev potential ψ(φ) at φ = 0 and M = Mc. If
d3φψ > 0, then only positive structures (solitons or shocks) can exist
otherwise, the plasma system can then support negative structures as
well. It is found that,

d3
φψ | φ�0,M�Mc

� Ω2 2( + γ 1 + σ( ) 5 + σ + 3γ 1 + σ( )( ) + 4 η + γσ( )3p‖
1 − α2( ) 1 + η + γσ( )p‖( ) 1 + η + γσ( )p⊥( ) ,

(42)

which indicates that the current model can only support
compressive (positive potential) solitary pulses. By keeping γ = 0
and neglecting p‖ and p⊥ we can retrieve the result of Ref. [29].

In order to emphasize the soliton existence region, we have
plottedM1 andM2 in Figure 2 for different values of p‖ = 0.20 (solid
curve), 0.30 (dashed curve) and 0.40 (dot-dashed curve).
Considering, p⊥ = 0.1, α = 0.8 and σ = 0.1, it can be seen that M
decreases with the increasing values of γ while both limits of Mach
numbers increase with increasing values of p‖.

6 Parametric study

The Sagdeev potential ψ(φ) depends on a number of
important physical parameters in addition to the electric
potential φ, including the excitation speed M, positron
concentration γ, electron to positron temperature ratio σ, the
obliqueness of propagation (via α = cos θ), parallel ion pressure p‖
and perpendicular ion pressure p⊥. In this study, we specifically
focus to assess the effect of γ, p‖ and p⊥. Therefore, the effect of
these three parameters is studied on propagation characteristics
of solitary structures.

In Figure 3, the variation of Sagdeev potential ψ(φ), the
resulting electrostatic potential φ and the associated electric
field profile E have been shown for various values of positron
concentration γ, while considering other fixed values M = 0.9, σ =
0.1, Ω = 0.3, α = 0.8, p‖ = 0.2 and p⊥ = 0.1. We note that as γ

increases, the depth and root of the Sagdeev potential increases. It
is clear from Figure 3B that, the amplitude of the solitary pulse
increases while its width decreases with higher value of γ.
Therefore, solitary structure gets taller and narrower with the
increase of positron concentration in a magnetized anisotropic
e − p − i plasma. The same effect has been shown in Ref. [30] while
studying these waves in unmagnetized isotropic plasma. It is
clearly seen that in the absence of positron concentration γ = 0,
the amplitude of solitary structure reduced as shown in Figure 3 by
solid orange curve.

FIGURE 2
Variation of Mach number M vs. positron concentration γ for
different values of p‖= 0.20 (solid curve), 0.30 (dashed curve) and 0.40
(dot-dashed curve) with α = 0.80, p⊥ = 0.1 and σ = 0.1.
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To study the effect of pressure anisotropy on the solitary waves,
we have shown the variation of Sagdeev potential ψ(φ) along with
the corresponding electrostatic potential and electric field profiles
with p‖ = 0.20 (solid curve), 0.25 (dashed curve) and 0.30 (dot-
dashed curve) while considering M = 0.9, γ = 0.2, Ω = 0.3, α = 0.8,
σ = 0.1, and p⊥ = 0.1in Figure 4. It has been noted that the ion
parallel pressure p‖ variation is quite effective (i.e., a minor change
in p‖ causes a significant changes in the Sagdeev potential).
Thereby increasing values of p‖ result in the decrease of depth
and root of Sagdeev potential as well as in the amplitude of

associated soliton pulses. The changing values of perpendicular
ion pressure p⊥ have no discernible influence on the amplitude of
the solitary waves as shown in Figure 5. In Figure 6 we have
considered three different cases, mainly p‖ = p⊥ = 0, p‖ > p⊥ and
p⊥ > p‖ with fixed values of M = 0.85, γ = 0.1, Ω = 0.3, α = 0.8, σ =
0.1. For p‖ > p⊥ the amplitude of solitary pulse decreases while in
case of p⊥ > p‖ the amplitude of solitary pulses is not significantly
effected as compared to p‖. In the absence of pressure anisotropy
p‖ = p⊥ = 0, the amplitude of soliton increases as shown in Figure 6
by orange solid curve. We can infer from this Figure 6 that, in

FIGURE 3
Plot of (A) Sagdeev potential ψ(φ) vs. φ, (B) Electrostatic potential
φ and (C) Electric field E for different values of γ = 0.00 (solid curve),
0.05 (dashed curve) and 0.10 (dot-dashed curve) withM=0.9,Ω=0.3,
p‖ = 0.2, p⊥ = 0.1, α = 0.80, and σ = 0.1.

FIGURE 4
Plot of (A) Sagdeev potential ψ(φ) vs. φ, (B) Electrostatic potential
φ and (C) Electric field E for different values of p‖ = 0.20 (solid curve),
0.25 (dashed curve) and 0.30 (dot-dashed curve) withM=0.9,Ω=0.3,
γ = 0.2, p⊥ = 0.1, α = 0.80, and σ = 0.1.
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comparison to p⊥, the characteristics of IASWs are more sensitive
to variations in p‖ as compared to p⊥. Similar results have been
demonstrated in Ref. [35].

7 Conclusion

We have presented a study of the properties of arbitrary
amplitude non-linear IASWs, propagating in a magnetized plasma
characterized by anisotropic ions and Maxwellian distributed

electrons and positrons. The linear analysis gives two modes, the
IA and the ion-cyclotronmodes, whose characteristics depends on the
Maxwellian electron and positron and on the pressure anisotropy of
the ions. We have shown that the frequency of the acoustic mode
decreases with increasing obliqueness of propagation. In the non-
linear regime, Sagdeev approach is used for the investigation of the
properties of arbitrary amplitude IASWs. A parametric analysis was
carried out for studying the characteristics of these waves, which can
be summarize as follows.

FIGURE 5
Plot of (A) Sagdeev potential ψ(φ) vs. φ, (B) Electrostatic potential
φ and (C) Electric field E for different values of p⊥= 0.1 (solid curve), 0.5
(dashed curve) and 0.9 (dot-dashed curve) with M = 0.9, Ω = 0.3, γ =
0.2, p‖ = 0.2, α = 0.80, and σ = 0.1.

FIGURE 6
Plot of (A) Sagdeev potential ψ(φ) vs. φ, (B) Electrostatic potential
φ and (C) Electric field E for different pressure anisotropy cases p‖ =
p⊥ = 0 (solid curve), p‖ > p⊥ (dashed curve) and p⊥ > p‖ (dot-dashed
curve) with M = 0.85, Ω = 0.3, γ = 0.2, α = 0.80, and σ = 0.1.
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• The amplitude of solitary pulses increases with rising values of
positron concentration γ.

• The amplitude of solitary pulses reduced with higher values of
parallel ion pressure p‖.

• Finally, we found that the characteristics of IASWs are more
sensitive to the parallel ion pressure p‖ than perpendicular ion
pressure p⊥.

These results are general and might be applied to astrophysical
plasma environments like the polar cups region of pulsars and near
active galactic nuclei, where magnetized e − p − i plasma and ions
with aniotropic pressure can exist.
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Appendix: Potential functions used in
Eq. 36 are given as

δ1 φ( ) � ηeφ + γ

σ
e−σφ − η + γ

σ
( )

δ2 φ( ) � ηeφ + γ

σ
e−σφ( )2

− η + γ

σ
( )2

δ3 φ( ) �
η4

4
e4φ − 4η3γ

3 − σ
e 3−σ( )φ + 6η2γ2

2 − 2σ
e 2−2σ( )φ−

4ηγ3

1 − 3σ
e 1−3σ( )φ − γ4

4σ
e−4σφ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
− η4

4
− 4η3γ
3 − σ

+ 6η2γ2

2 − 2σ
− 4ηγ3

1 − 3σ
− γ4

4σ
( )

δ4 φ( ) � ηeφ − γe−σφ( )−1 − η − γ( )−1
δ5 φ( ) � ηeφ − γe−σφ( )−2 − η − γ( )−2

δ6 φ( ) � ηeφ + γ

σ
e−σφ( ) ηeϕ − γe−σφ( )−1 − η + γ

σ
( ) η − γ( )−1

δ7 φ( ) � ηeφ − γe−σφ( )2 − η − γ( )2
δ8 φ( ) � ηeφ − γe−σφ( )3 − η − γ( )3

δ9 φ( ) � ηeφ − γe−σφ( )3 ηeφ + γ

σ
e−σφ( ) − η − γ( )3 η + γ

σ
( )

δ10 φ( ) � ηeφ − γe−σφ( )6 − η − γ( )6
δ11 φ( ) � ηeφ − γe−σφ( ) − η − γ( )

δ12 φ( ) � log ηeφ − γe−σφ( ) − log η − γ( )
δ13 φ( ) � ηeφ − γe−σφ( ) ηeφ + γ

σ
e−σφ( ) − η − γ( ) η + γ

σ
( )

δ14 φ( ) � η2e2φ

2
− γ2e−2σφ

2σ
− 2ηγe 1−σ( )φ

1 − σ( )( ) − η2

2
− γ2

2σ
− 2ηγ

1 − σ( )( )
δ15 φ( ) � ηeφ − γe−σφ( )4 − η − γ( )4

δ16 φ( ) � ηeφ − γe−σφ( )−3 ηeφ + γσe−σφ( )
δ17 φ( ) � ηeφ − γe−σφ( ) ηeφ + γσe−σφ( )
δ18 φ( ) � ηeφ − γe−σφ( )−1 ηeφ + γσe−σφ( )
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The critical slowing down (CSD) phenomenon of the switching time in response to
perturbation β (0 < β < 1) of the control parameters at the critical points of the steady
state bistable curves, associated with two biological models (the spruce budworm
outbreak model and the Thomas reaction model for enzyme membrane) is
investigated within fractional derivative forms of order α (0 < α < 1) that allows for
memory mechanism. We use two definitions of fractional derivative, namely,
Caputo’s and Caputo-Fabrizio’s fractional derivatives. Both definitions of
fractional derivative yield the same qualitative results. The interplay of the two
parameters α (as memory index) and β shows that the time delay τD can be
reduced or increased, compared with the ordinary derivative case (α = 1). Further,
τD fits: (i) as function of β the scaling inverse square root formula 1/

��
β

√
at fixed

fractional derivative index (α < 1) and, (ii) as a function of α (0 < α < 1) an exponentially
increasing form at fixed perturbation parameter β.

KEYWORDS

critical slowing down, Caputo’s and Caputo-Fabrizio’s fractional derivatives, switching
timedelay, bistable behaviour, mathematical models in biology

1 Introduction

Bistable systems in many branches of sciences (physics, biology, . . . ) and engineering are
characterized by the co-existence of two stable states, where the system switches from one stable
state to other state by means of changing one or some of the system control parameters [1–4].
The associated transient phenomena of lengthening the switching time between these two stable
states, called critical slowing down (CSD), happens upon perturbing one of the parameters at
the critical (switching-on or -off) points of the charactertistic bistable curve [5–8]. It has been
suggested that, CSD may serve as a universal indicator of how a complex physical system (such
as brain, ecosystems, climate and financial markets) approaches a threshold [9–12], and as well
serving as an indicator of transitions in two-species biological models, which exhibit Hopf
bifurcation or hysteresis transition [13]. For our specific current concern, the CSD phenomenon
has recently been investigated by us in [14] for some biological bistable models, namely.

(a) The spruce budworm outbreak model [3, 4, 15];
(b) The Thomas-reaction (enzyme membrane) model [4, 16].

Specifically, our investigation in [14] was concerned with the nature of transition between
the two stable states, and the verification of the inverse square root scaling law, for the switching
time delay (τD) at the critical switching-on and -off points, independent of the type of non-
linearity in the model rate equations. The model rate equation in model a) is of first order
ordinary differential equation (ODE), while in model b) the model rate equations are coupled
first order ODEs.On the other hand, fractional calculus, a field of mathematics that deals with
the analysis of derivatives and integrals of fractional (or even complex) order, has its
applications in diverse areas of science and engineering. The associated fractional
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differential equations (FDEs) are widely and successfully used in
mathematical modelling in a variety of fields. We refer the reader
to the extensive list of major works and applications in the area of
fractional calculus cited in ([17–20] and refs. therein). In ordinary
calculus, the first order derivative of a function f(t), namely f′(t) � df

dt

is the instantaneous rate of change of f(t) over the infinitesimal time
period, t → 0, that is, local time effect. In fractional calculus, the
physical meaning is non-local, as the time domain is manifested as a
memory (or time delay) effect and the current state of the system
depends on its earlier history. Moreover, in fitting with test data of
various models of memory phenomena, the order of the fractional
derivative serves as an index of memory [21, 22]. FDEs of arbitrary real
order are not in general easy to solve analytically [23]. However, the
numerical method based on Laplace transform technique is a basic one
and applicable for a wide class of initial value problems for FDEs,
[23–26]. Recent fundamental computational methods are found in
[27, 28]; and refs, therein.

Experimentally speaking, fractional derivative models (FDMs) are
in excellent agreement with experimental data in many branches of
science and engineering. Two specific examples we quote.

1. A recent experimental study of viscoelastic properties of some soft
biological tissues under harmonic mechanical loading shows that
the FD Voigt model performed better, compared with integer order
derivative models [29].

2. FDM (Maxwell’s model) describing the viscoelastic Creep damage
of some fruits is more efficient and well fitted with experimental
data [30].

Further, CSD or more generally instability mechanism and chaos,
have been investigated at large in fractional order dynamical systems
in fields, like, fluid flow [31–35], neurology and biological phenomena
([36–38]; refs. therein) to account successfully for memory (time-
delay) and special non-local effects. For example.

1. The Landau model that describes the fluid flow from laminar to
turbulent has been examined within a fractional rate equation
model [35] in order to account for memory effect. This transition to
turbulence due to CSD shows that the turbulent fluctuations
depend on memory of inverse power law decay in agreement
with experiment [39]-slower than in the case of no memory
(ordinary derivative case) of turbulent fluctuations decaying
exponentially,

2. Capacitive memory due to fractional order cardiomyocyte
dynamical model [37] alters the electrical signaling in cardiac
cells in a manner that promote or suppress electrical instability
(known as alternans).

3. The use of a fractional order mathematical model to study the
signaling process in nerve cells (like, neuron) due to incorporated
strong memory effects [36] has been interpreted as a neuronal
disorder (Parkinson disease).

The concern of the present paper is to adopt the corresponding
FDEs in both models a) [3, 4, 15] and b) [4, 16], referred to above, in
order to incorporate for memory effects and examine effects of the
fractional derivative order parameter (α), (0 < α < 1) on the time delay
(τD) associated with the CSD phenomena examined in the no-memory
case [14]. We use and compare two definitions of fractional derivatives,
namely, Caputo’s [40] and Caputo-Fabrizio’s [21, 22] definitions. Both

definitions have the advantage of dealing with initial conditions of the
variables and their integer derivatives suitable in most physical
processes, like models a) [3, 4, 15] and b) [4, 16] referred to above.
As a main result, it is found that Caputo’s and Caputo-Fabrizio’s
definitions of fractional derivatives yield the same qualitative results
of reduced time delay τD at fixed perturbation of the concerned control
parameter, with smaller values of the fractional derivative order α. The
small quantitative difference in τD is due to the different convoluted
kernels (that model the memory or delay effect) in [21, 22, 40].This
paper is presented as follows. In section 2), we present the model
differential equations in both ordinary and Caputo’s fractional
derivative forms, for both models. In section 3), we present the
computational results for the transient switching. Section 4) presents
a summary of the results. In Supplementary Appendix A, a brief
background of the model ODEs (eqa (1) and. 2) below) representing
the two biological models referred to above is given, while
Supplementary Appendix B presents a guideline for Euler’s
numerical method to solve fractional FDE.

2 The model equations

Here, we first present the model DEs of the two biological models
(the Spruce-budworm and Thomas reaction models) in their ordinary
derivative forms. (A brief background of these model ODEs are given
in Supplementary Appendix A). Second, we present the corresponding
fractional derivative forms, according to the two formulations of
Caputo’s [40] and Caputo-Fabrizio’s definitions [21].

2.1 Ordinary derivative case

2.1.1 The spruce budworm Model
This model ([3, 4, 15]) provides a good example for understanding

the dynamics of the interaction between trees and insects. The model
rate equation for the insect (budworms) population has the form:

d

dτ
N τ( ) � N τ( ) 1 − N τ( )

K
( ) − FN2 τ( )/ N2 τ( ) + B2( )

≡ fo N τ( )( ),
(1)

where N(τ) is the budworm’s population, τ = rt is normalised time, r is
the linear birth rate and K is the constant carrying capacity which is
related to the foliage (food) available on the trees in the absence of
birds. The constant F = poA/r is the predation population with rate po
and A is the (positive) predator attack rate and B is the threshold
measure of the budworm population. The predation will approach an
upper level value, limN→∞FN2/(N2 + B2) � F as N increases.

2.1.2 The Thomas reaction model
The mechanism of this model is based on a basic reaction in an

enzyme membrane, between the substrate oxygen and uric acid. The
model equations of the system in a dimensionless form are [4, 16]:

du τ( )
dτ

� a − u τ( ) − ℓ
u τ( )v τ( )

1 + u τ( ) + ku2 τ( )
≡ f1 u τ( ), v τ( )( )

(2a)

dv τ( )
dτ

� γ b − v τ( )( ) − ℓ
u τ( )v τ( )

1 + u τ( ) + ku2 τ( )
≡ f2 u τ( ), v τ( )( ).

(2b)
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Here, u and v represent the uric acid and the oxygen being supplied at
constant rates a and γb, respectively, where, a, ℓ, k, γ and b are all
positive real constants. The factor u(τ)v(τ)/ (1 + u(τ) + ku2(τ))
exhibits substrate inhibition: it increases (decreases) when u is
small (large), with measure of inhibition’s severity equal to k.

In [14], the model Equations 1, 2 were analysed in detail
(theoretically and computationally) regarding regions of

bistability, the CSD phenomenon at the critical (switch-up and
-down) points of the bistable curves and the verification of the
inverse square root scaling law of the switching time delay [7, 41].

2.2 Fractional derivative cases

In this case, Equations 1, 2 take the following forms;

dα

dτα
N τ( ) � fo N τ( )( ), (3)

and,

dα

dτα
u τ( ) � f1 u τ( ), v τ( )( ), (4a)

dα

dτα
v τ( ) � f2 u τ( ), v τ( )( ), (4b)

respectively, where dα

dτα denotes the fractional derivative of order α
(0 < α < 1). There is no unique definition of fractional calculus
(FC), derivatives and integrals. Definitions of FC are too many and
still -up to date - increasing. Here, we use and compare two
definitions of fractional derivatives of a continuous function f(τ)
on (0, τ), namely, Caputo’s [40] and Caputo-Fabrizio’s [21]
derivatives.

2.2.1 Caputo’s fractional derivative [40]
Caputo’s fractional derivative of f(τ) is defined as the

convolution of the kernel power function τ−α, 0 < α < 1 with
the first order (ordinary derivative) f′τ) on the closed interval
[0, τ],

FIGURE 2
The transient population N(τ) versus the normalised time τ = γt (as
log scale), for control parameter with positive perturbation, K = Kc + β;
Kc =3.6631 at the switching-on point, Aon, of Figure 1 and fixed β =0.1,
and for α =1 (ordinary derivative) and 0.25 (Caputo’s and Caputo-
Fabrizio’s fractional derivatives).

FIGURE 1
The steady state bistable curve of N against K, at fixed values of the
parameters F =0.85, B =0.5. The switching-on and -off points:
Aon =(3.6631,0.61299) and Aoff =(3.0199,1.2793).

FIGURE 3
Time-delay, τD, versus the fractional derivative parameter α at fixed
β =0.1. Circles represent the numerical results and the solid lines C1, C2

represent the exponential fitting, 4.9e2.2α in the case of Caputo’s
derivative, and 3.8e2.3α in the case of Caputo-Fabrizio’s derivative,
respectively.
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dα

dτα
f τ( )( )

Cap

� 1
Γ 1 − α( )∫τ

0

1

τ − t′( )α d

dt′f t′( )dt′, (5)

with Γ(x) is the gamma function.

2.2.2 Caputo-Fabrizio’s derivative [21, 22]
This fractional derivative of f(τ) is defined as the convolution of

the kernel exponential function e−ατ/(1−α), 0 < α < 1, with f′(τ) on the
closed interval [0, τ],

dα

dτα
f τ( )( )

Cap−Fab( )
� 1

1 − α( )∫τ

0
e −α/ 1−α( )( ) τ−t′( ) d

dt′f t′( )dt′, (6)

3 Transient switching and time delay

The switching time at the critical (switch-on and -off) points of
the characteristic steady state bistable curves (N vs K) according to
the FDE 3), or (u and v vs a) according to the FDEs 4) with both

Caputo’s and Caputo-Fabrizio’s fractional derivatives, Eqs. 5 and 6,
respectively, are investigated by solving these FDEs numerically
using the fractional Euler’s method developed in [28, 48] (see
Supplementary Appendix B for guidelines). This is done by
replacing the control (input) parameter K in Equations 1–3) by
Kc ± β, or a in Equations 2, 4 by ac ± β, where β (0 < β < 1) is a small
real perturbation of the relevant control parameter, and Kc, ac are
the initial (switch-on or switch-off) points of the bistable curves.
Results are compared with the ordinary derivatives case
(α = 1) [14].

3.1 The spruce budworm model

The switching-on and off -points, Aon and Aoff, respectively, of
the steady state bistable curve (N vs. K) according to the ODE, Eq.
1, or the FDE; Eq. 3, i. e., dNdτ � dαN

dτα � 0, are shown in Figure 1, for
fixed values of the parameters F and B (c.f [14]). For fixed positive
perturbation parameter β = 0.1, the time delay τD to switch up to
the upper branch of the bistable curve, Figure 2, is reduced in both
cases of the fractional derivatives with smaller values of α, (0 < α <
1), compared with the ordinary derivative case (α = 1). This is
confirmed in Figure 3 where for fixed 0 < β < 1, τD vs. α best fits
exponentially increasing function for α ∈ (0, 1) in both cases of
fractional derivatives. Note in Figure 2, τD is slightly reduced in the
case of Caputo-Fabrizio’s fractional derivative, compared with
Caputo’s fractional derivative case. Further, for fixed fractional
parameter α = 0.25, for example, the lesser the perturbation
parameter β, the larger is τD (i.e. slowing down)- Figures 4– like
the case of α = 1 [14]. For fixed negative value of perturbation-
Figures 5– at the switching-off point Aoff (in Figure 1), we have the
same qualitative behaviour as in Figure 2, but with smooth delayed
switching to the lower branch.

In both cases of positive and negative perturbations β) at the
switching-on and -off points, Aon and Aoff, respectively, the time delay

FIGURE 4
As Figure 2, but at fixed value of α=0.25, and different β =0.01,0.3 in
the case of: (A) Caputo’s, and (B) Caputo-Fabrizio’s, fractional
derivatives.

FIGURE 5
Data as in Figure 2, but with negative perturbation, Kc − β at Aoff,
where Kc =3.0199.
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formula τD ~|β|−1/2 (inverse square root scaling law) essentially holds
in the both cases of Caputo’s and Caputo-Fabrizio’s fractional
derivatives (0 < α < 1), Figure 6, similar to the ordinary derivative
case (α = 1) [14], but with different proportionality factor.

3.2 The Thomas reaction model

The steady state bistable curves for the Oxygen and uric acid
concentrations u, v, respectively, against the supplied rate a, according
to Eq. 2 or 4) are shown in Figure 7, for fixed values of other system
parameters [14]. For positive perturbation β in the ordinary derivative
case (α = 1) at the switching-on point, Aon in Figure 7, the transient
oxygen concentration u(τ), Figure 8, shows similar qualitative
behaviour of reducing τD in both cases of Caputo’s and Caputo-
Fabrizio’s fractional derivatives, but with smaller quantitive difference.
The same behaviour occurs with negative perturbation at the
switching-off point Aoff in Figure 7. Similar qualitative behaviour is

also exhibited for the transient uric acid concentration v(t) for α = 1
[14] and α < 1. The time delay τD in both cases of u(τ) and v(τ) against
the fractional parameter α and the perturbation parameter β shows
similar qualitative behaviour as in Figures 3, 6, respectively.

FIGURE 6
Time-delay, τD, versus the perturbation parameter β at the
switching-on point Aon in Figure 1. Circles represent the numerical
results and the dashed lines represent the corresponding fittings, λ/

��
β

√
.

(A) The case of ordinary derivative (α =1). (B) The case of Caputo’s
fractional derivative (α =0.25). (C) As (B) but with Caputo-Fabrizio’s
fractional derivative.

FIGURE 7
The steady state bistable curves, u and 0.12v, versus the control
parameter, a, for fixed parameters K =20, B =100, γ = l =1.

FIGURE 8
The transient Oxygen concentration, u(τ), versus the normalised
time, τ with positive perturbation, κ = ac + β, ac =9.3643, at the
switching-on point Aon of Figure 7 with fixed β =0.1 for α =1 (ordinary
derivative) and 0.25 (Caputo’s and Caputo-Fabrizio’s fractional
derivatives).
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4 Summary

Fractional order mathematical models generalise the concept of
ordinary differentiation to incorporate memory (time delay) and spatial
non-local effects, and hence provide extra fractional parameters to
interpret/predict the dynamical behaviour of the concerned model
and capture more of its details.In this paper, we have investigated
the switching time response at the critical switching-on and -off points
of the bistable curves related to two biological models, namely, the
spruce budworm outbreak model [3, 4, 15] and the Thomas reaction
model for enzyme membrane [4, 16] within fractional order models.
Two definitions of fractional derivatives of order α, (0< α < 1) have been
used, namely, Caputo’s [40] and Caputo-Fabrizio’s [21, 22] fractional
derivatives. Our study shows the following.

(i) The two definitions use convolution kernels of different
variability that model the memory effect, namely, as power
function [40] and as exponential function [21]. Both
definitions yield the same qualitative results, (ii)-(iv) below,
for the two biological models referred to above. The small
quantitative variance in the results is due to the different
mathematical forms for the memory or delay effect.

(ii) The switching time τD due to the perturbation in the control
(input) parameter, at the critical points of the bistable curves, is
reduced further in the fractional derivative case (0 < α < 1),
compared with the ordinary derivative case (α = 1) [14],

(iii) For fixed perturbation β, τD as a function of the fractional
derivative parameter, α, (0 < α < 1) fits an exponential form,
i.e., τD is reduced with strong memory index (α ≪ 1) and,

(iv) The switching time τD as a function of the perturbation
parameter β fits the scaled inverse square root law 1�

β
√ at fixed

fractional derivative index (α < 1) as in the ordinary derivative
case (α = 1) [14]. This is a further indication of the universality of
this inverse square root law in both cases of ordinary and
fractional derivative formulations. Experimental affirmation of
this law in optical bistable models within ordinary derivative
formation was reported in [42].

In general, fractional order models provide deeper insight into the
system dynamics with memory taken, into effect and further motivate
for experimental observation.Finally, we refer to some very recent
works [43, 44] on biological models of COVID-19. In [43], the authors
investigated various parameter estimation methods of COVID-19
incubation period using lognormal and Gamma distribution
assumptions. The expressions for the maximum likelihood
estimation, expectation maximisation algorithm and newly
proposed algorithm [43] are termed as double or single (Riemann)
integrals: these integral expressions can be converted to fractional
integrals (i.e usual Riemann integral with memory or non-local,
convolution kernel of fractional index, e.g. [23]), and so to have
extra fractional order parameter. The other biological model of
COVID-19 [44] is concerned with the stability and sensitivity

analysis, and optimal control strategies of a suggested epidemic
control of COVID-19. The adopted model of ODEs can be
converted to FDEs and so to investigate the memory effect in this
epidemic model. The formulation of the models in [43, 44] within
fractional calculus will certainly add details concerning memory/non-
local effects.
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Time-fractional generalized
fifth-order KdV equation: Lie
symmetry analysis and
conservation laws

Zhenli Wang1, Liangji Sun1*, Rui Hua1, Lingde Su1 and
Lihua Zhang2*
1School of Mathematical and Statistics, Zaozhuang University, Zaozhuang, China, 2School of
Mathematical and Statistics, Hebei University of Economics and Business, Shijiazhuang, China

The purpose of this study is to apply the Lie group analysis method to the time-
fractional order generalized fifth-order KdV (TFF-KdV) equation. We examine
applying symmetry analysis to the TFF-KdV equation with the
Riemann–Liouville (R–L) derivative, employing the G′/G-expansion approach to
yield trigonometric, hyperbolic, and rational function solutions with arbitrary
constants. The discovered solutions are unique and have never been studied
previously. For solving non-linear fractional partial differential equations, we find
that theG′/G-expansion approach is highly effective. Finally, conservation laws for
the equation are well-built with a full derivation based on the Noether theorem.

KEYWORDS

Lie group analysis, Riemann–Liouville derivative, time-fractional generalized fifth-order
KdV (TFF-KdV) equation, G9/G-expansion method, conservation laws

1 Introduction

The soliton solutions of non-linear evolution equations have has a significant impact on
the flesh and have been widely used in wide ranges of physical and biological sciences, such as
non-linear optics, plasma physics, fluid dynamics, biochemistry, and mathematical
chemistry. In recent years, fractional partial differential equations (FPDEs) have
attracted great attention and have been extensively investigated. The non-linear FPDEs
can be found in different fields of science and engineering problems, such as signal
processing, mechanics, plasma physics, finance, electricity, stochastic dynamical system,
control theory, economics, and electrochemistry [1–6]. Several efficient methods have been
presented to solve FPDEs of interest. It is necessary to point out that some methods used for
solving non-linear FPDEs are actually to construct numerical and analytical methods, such
as the fractional sub-equation method [7–10], tanh-function method [11–13], Adomian
decomposition method [14–17], variational iteration method [18–20], trial equation method
[21, 22], homotopy perturbation method [23, 24], exponential rational function method
[25], Riccati sub-equation method [26], and rational G′/G-expansion method [27], which
have been applied to handle the non-linear evolution equations.

As far as we know, the fractional differentiation and integration operators have a variety
of definitions so that we can mention them, like the Riemann–Liouville definition [3, 28] and
the Caputo definition [29]. Recently, [30] proposed a new simple definition of the fractional
derivative named the conformable fractional derivative, which can redress shortcomings of
many definitions.
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In this paper, we consider the following time-fractional
generalized fifth-order KdV (TFF-KdV) equation:

uα
t + u2ux − uuxxx + uxxxxx � 0. 0< α< 1( ), (1.1)

where 0< α≤ 1, Dα
t � zαu/ztα.When α = 1, Eq. 1 can be reduced to a

generalized fifth-order KdV equation of general meaning.
Some of the researchers have investigated different kinds of

exact solutions for different orders of KdV equations. For example,
Wang [31] has found some new exact solutions of the fifth-order
KdV equation with the Lie point symmetry group method, while
Abdel-Salam A B and Al-Muhiameed Z I A [32] have provided the
exact solutions for the KdV–mKdV equation by applying the
analytic solution method. Recently, an efficient numerical scheme
has been developed to solve a linearized time-fractional KdV
equation by Zhang [33].

Our aim in the present work is to investigate many new
closed-form solutions of the TFF-KdV equation by using Lie
group analysis and the G′/G-expansion method with the
Riemann–Liouville (R–L) derivative. These algebraic methods
can be regarded as the most concise and the most efficient
methods for searching the closed-form solutions of the non-
linear FPDEs.

The rest of the article is organized as follows: the basic
definitions and properties of the fractional calculus are being
considered in terms of the Riemann–Liouville derivative in
Section 2. In Section 3, we briefly give an account of the Lie
symmetry analysis method for the TFF-KdV equation. We
perform the Lie group classification on the TFF-KdV equation
and investigate the symmetry reductions of the TFF-KdV
equation. The main steps of the improved G′/G-expansion
method are given, and the exact solutions of the TFF-KdV
equation are obtained in Section 4. In Section 5, conservation
laws of the TFF-KdV equation are constructed by using the
Noether theorem. Finally, in Section 6 of this paper, we will
discuss the results obtained.

2 Foreword

As to the fractional derivative operators, various definitions
which are not necessarily equivalent to each other exist. In this
paper, we would like to consider the most common definition that is
named after the Riemann and Liouville derivative, which is the
natural generalization of the Cauchy formula for the n-fold primitive
of a function f(x). The Riemann–Liouville (R–L) fractional
derivative is defined as follows [34]:

Dα
t f �

dnf

dtn
In−αf t( ), 0≤ n − 1< α< n,

dnf

dtn
, α � n,

⎧⎪⎪⎪⎨⎪⎪⎪⎩ , (2.1)

where n ∈ N and Iμf(t) is the R–L fractional integral of order μ, namely,

Iμf t( ) � 1
Γ μ( )∫ t

0
t − ξ( )μ−αf ξ( )dξ, μ> 0

I0f t( ) � f t( ),
and Γ(z) is the standard Gamma function.

Definition 1. The R–L fractional partial derivative is defined by

Dα
t f �

1
Γ n − α( )

z

ztn
∫t

0
t − ξ( )n−α−1u ξ, x( )dξ, 0≤ n − 1< α< n,

zf

ztn
, α � n.

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(2.2)

If it exists, znt is the usual partial derivative of the integer order n
[31, 35].

In [34], some useful formulas and properties are provided. Here,
we only mention the following:

Dα
t t

γ � Γ γ + 1( )
Γ γ + 1 − α( )tγ−α, γ> 0, (2.3)

Dα
t u t( )v t( )[ ] � u t( )Dα

t v t( ) + v t( )Dα
t u t( ), (2.4)

Dα
t f u t( )( )( )[ ] � fu′ u t( )[ ]Dα

t v t( ) � Dα
uf u t( )[ ] ut′( )α. (2.5)

Definition 2. The generalized Leibnitz rule [36, 37] is defined by

Dα
t u t( )v t( )[ ] �∑∞

n�0

α
n

( )Dα−n
t u t( )Dn

t v t( ), α> 0, (2.6)

where

α
n

( ) � −1( )n−1αΓ n − α( )
Γ 1 − α( )Γ n + 1( ) . (2.7)

Definition 3. Considering the generalization of the chain rule
[31]for composite functions, we have

dmf g t( )( )
dtm

�∑m
k�1
∑k
r�0

k
r

( ) 1
k!

−g t( )[ ]r dm

dtm
g t( )k−r[ ] dkf g( )

dtk
. (2.8)

3 Lie symmetry analysis for fractional
partial differential equations

In this section, we consider the time-fractional differential
equations as the form:

Dα
t u( ) � G x, t, u, ux, uxx, . . .( ), 0< α< 1( ), (3.1)

where u � u(x, t), ux � zu/zx, and Dα
t u is a fractional derivative of

u with respect to t. Subject to the Lie theory, if Eq. 3.1 is a invariant
under a one-parameter Lie group of point transformations, then

t* � t + ετ x, t, u( ) +O ε2( ), x* � x + ες x, t, u( ) + O ε2( ),
u* � u + εη x, t, u( ) +O ε2( ),

zu*
zt*

� zαu

ztα
+ εη0α x, t, u( ) +O ε2( ),

zu*
zx*

� zu

zx
+ εηx x, t, u( ) +O ε2( ),

..

.

z5u*

zx*5
� z5u

zx5 + εηxxxxx x, t, u( ) +O ε2( ), (3.2)

where ε ≪ 1 is a small parameter, and
ηx � Dx η( ) − uxDx ς( ) − utDx τ( ),
ηxx � Dx ηx( ) − uxtDx τ( ) − uxxDx ς( ),
ηxxx � Dx ηxx( ) − uxxtDx τ( ) − uxxxDx ς( ),
ηxxxx � Dx ηxxx( ) − uxxxtDx τ( ) − uxxxxDx ς( ),
ηxxxxx � Dx ηxxxx( ) − uxxxxtDx τ( ) − uxxxxxDx ς( ).

(3.3)

Here, Dx denotes the total derivative.
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Dx � z

zx
+ ux

z

zu
+ uxx

z

zux
+/ , (3.4)

and the vector field associated with the aforementioned group of
transformations can be written as

V � ς x, t, u( ) z

zx
+ τ x, t, u( ) z

zt
+ η x, t, u( ) z

zu
. (3.5)

If the vector field Eq. 3.5 generates a symmetry of Eq. 3.1, then V
must satisfy Lie’s symmetry condition.

Pr n( )VΔ
∣∣∣∣Δ�0 � 0, (3.6)

where Δ � Dα
t (u) − G(x, t, u, ux, uxx, . . .).

Conversely, the corresponding group transformations (Eq. 3.2)
to a known operator (Eq. 3.6) are found by solving the Lie equations.

d �x ε( )( )
dε

� ς �x ε( ),�t ε( ), �u ε( )( ), �x 0( ) � x,

d �u ε( )( )
dε

� η �x ε( ),�t ε( ), �u ε( )( ), �u 0( ) � u.
(3.7)

It is not different to observe that Eq. 3.2 conserves the structure of
the fractional derivative infinitesimal operator Eq. 2.1. As the lower
limit of the integral is constant, it should be in variant with respect to
Eq. 3.2. Therefore, we can arrive at

τ x, t, u( )|t�0 � 0. (3.8)
For the R–L fractional time derivative [31, 35, 38], Eq. 3.8 can be
changed into

η0α � Dα
t η( ) + ςDα

t ux( ) −Dα
t ςux( ) +Dα

t Dt τ( )u( ) −Dα+1
t τu( )

+ τDα+1
t u( ).

(3.9)
By means of the generalized Leibnitz rule (Eq.2.6), Eq.3.9 can be
read as

η0α � Dα
t η( ) − αDt τ( ) z

αu

ztα
−∑k

n�1

α
n

( )Dn
t ς( )Dα−n

t ux( )

−∑∞
n�1

α
n + 1

( )Dn+1
t τ( )Dα−n

t u( ). (3.10)

Furthermore, by applying the chain rule in Eq. 2.8 and the
generalized Leibnitz rule in Eq. 3.10 with f(t) = 1, we can
arrive at

ηαt � zαη

ztα
+ ηu

zαu

ztα
− u

zαηu
ztα

+∑∞
n�1

α
n

( ) znηu
ztn

Dα−n
t u( ) + μ, (3.11)

where

μ �∑∞
n�2
∑n
m�2
∑m
k�2
∑k−1
r�o

α
n

( ) n
m

( )
× k

r
( ) 1

k!

tn−α

Γ n + 1 − α( ) −u( )r z
m

ztm
uk−r( ) zn−m+kη

ztn−mzuk
. (3.12)

It should be noted that we have μ = 0 when the infinitesimal η is
linear of the variable u, considering the existence of the
derivatives zkη

zuk, k≥ 2 in the aforementioned expression. To sum

up the aforementioned reasonings, the explicit form of ηα,t is
obtained.

ηα,t � zαη

ztα
+ ηu − αDt τ( )( ) zαu

ztα
− u

zαηu
ztα

+μ +∑∞
n�1

α
n

( ) zαηu
ztα

− α
n + 1

( )Dn+1
t τ( )[ ] × Dα−n

t u( )

−∑∞
n�1

α
n

( )Dn
t ς( )Dα−n

t ux( ).
(3.13)

According to the Lie theory, we have the following theorems:
Theorem 1. The function u = ϕ(x, t) is an invariant solution of

Eq. 3.1 if and only if
(i)Vϕ � 05(ς(x, t, u) z

zx + τ(x, t, u) z
zt + η(x, t, u) z

zu)ϕ � 0, and
(ii)u = ϕ(x, t) is the solution of FDPEs, as in Eq. 3.1.

4 The time-fractional fifth-order KdV
equation

In the previous section, we have elaborated some definitions and
formulas of the Lie symmetry analysis method of FPDEs. Now in
this part, we are going to deal with the invariance properties of the
TFF-KdV equation. Next, we will give some exact and explicit
solutions to the TFF-KdV equation.

4.1 Lie symmetry of the TFF-KdV equation

By using the Lie group theory, we can derive the corresponding
system of the symmetry equations as

η0α + 2u2ηx + 4uηux − ηuxxx − uηxxx + ηxxxxx � 0. (4.1)
By solving Eq. 3.1 with the help of Eq. 3.3, we can obtain

ς � c1x + c2, τ � 5c1
α

t, η � −2c1u, (4.2)

where c1 and c2 are arbitrary constants. Furthermore, the
corresponding operator can be arrived at

V � c1x + c2( ) z

zx
+ 5c1t

α

z

zt
− 2c1u

z

zu
. (4.3)

Similarly, the Lie algebra of infinitesimal symmetries of Eq. 1.1 is
spanned by the two vector fields:

V1 � z

zx
,V2 � x

z

zx
+ 5t
α

z

zt
− 2u

z

zu
. (4.4)

It is easy to check that the vector fields are closed under the Lie
bracket, respectively,

V1,V2[ ] � 2V1, V2,V1[ ] � −2V1. (4.5)
In order to obtain the similarity variables forV2, we have to solve the
corresponding characteristic equations.

dx

x
� αdt

5t
� du

−2u. (4.6)
Thus, we derive the group-invariant solution and group-invariant as
follows:
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θ � xt−
α
5 , u � t−

2α
5 g θ( ). (4.7)

It is not difficult to observe that Eq. 1.1 is reduced to a non-linear
ordinary differential equation (NODE). We derived a theorem as
follows:

Theorem 2. The TFF-KdV equation Eq. 1.1 can be reduced
into a NODE of fractional order by transformation in Eq. 4.7 as
follows:

P
1−7α

5 ,α
5
α

g( ) θ( ) � g2gθ − ggθθθ + gθθθθθ, (4.8)

with the Erdelyi–Kober (EK) fractional differential operator Pτ,α
β of

order [34].

Pτ2 ,α
β g( ) :�∏n−1

j�0
τ2 + j − 1

β
θ
d

dθ
( ) Kτ2+α,n−α

β g( ) θ( ), (4.9)

n � α[ ] + 1, α ≠ N,
α α ∈ N,

{ (4.10)

where

Kτ2 ,α
β g( ) :� 1

Γ α( )∫ ∞

1
u − 1( )α−1u− τ2+α( )g θu

1
β( )du, α> 0,

g θ( ), α � 0,

⎧⎪⎪⎨⎪⎪⎩
(4.11)

is the EK fractional integral operator [39, 40].
Let n − 1 < α < n, n = 1, 2, 3, . . .. Based on the R–L fractional

derivative for the similarity transformation (Eq. 4.7), we have

zαu

ztα
� zn

ztn
1

Γ n − α( )∫ t

0
t − s( )n−α−1s−2α5 g xs

−α
5( )ds[ ]. (4.12)

Taking v = t/s, one can obtain ds � − t
v2 dv. Then Eq. 4.12, can be

written as

zαu

ztα
� zn

ztn
tn−

7α
5

1
Γ n − α( )∫ ∞

1
v − 1( )n−α−1v−n+7α

5 −1g θv
α
5( )dv[ ].

(4.13)
If we use the definition of the EK fractional integral operator (Eq.

4.11), then Eq. 4.13 will be

zαu

ztα
� zn

ztn
tn−

7α
5 K

1−2α
5 ,n−α

5
α

g( ) θ( )[ ]. (4.14)

Now, we attempt to simplify the right hand side of Eq. 4.14.
Taking into account θ � xt−α

5 , ρ ∈ C1(0,∞), we can obtain

t
z

zt
ρ θ( ) � tx −α

5
( )t−α

5−1ρ′ θ( ) � −α
5
θ
z

zθ
ρ θ( ). (4.15)

One can arrive at

zn

ztn
tn−

7α
5 K

1−2α
5 ,n−α

5
α

g( ) θ( )[ ]
� zn− 1

ztn− 1
z

zt
tn−

7α
5 K

1−2α
5 ,n−α

5
α

g( ) θ( )( )[ ]
� zn− 1

ztn− 1
tn−

7α
5 n − 7α

5
− α

5
θ
z

zθ
K

1−2α
5 ,n−α

5
α

g( ) θ( )( )[ ].
(4.16)

Through repeating the same procedure n − 1 times, we obtain
the following equation:

zn

ztn
tn−

7α
5 K

1−2α
5 ,n−α

5
α

g( ) θ( )[ ]
� zn− 1

ztn− 1
z

zt
tn−

7α
5 K

1−2α
5 ,n−α

5
α

g( ) θ( )( )[ ]
� zn− 1

ztn− 1
tn−

7α
5 n − 7α

5
− α

5
θ
z

zθ
K

1−2α
5 ,n−α

5
α

g( ) θ( )( )[ ]
..
.

� t−
7α
5 ∏n−1

j�0
1 − 7α

5
+ j − α

5
θ
z

zθ
( ) K

1−2α
5 ,n−α

5
α

g( ) θ( ).

(4.17)

Then, by using Eq. 4.9, we find that

zn

ztn
tn−

7α
5 K

1−2α
5 ,n−α

5
α

g( ) θ( )[ ] � t−
7α
5 P

1−7α
5 ,α

5
α

g( ) θ( ). (4.18)

Substituting Eq. 4.18 into Eq. 4.14, the following expression for
the time-fractional derivative is obtained:

zαu

ztα
� t−

7α
5 P

1−7α
5 ,α

5
α

g( ) θ( ). (4.19)

Thus, the TFF-KdV equation Eq. 1.1 can be reduced into a
fractional-order ODE as follows:

P
1−7α

5 ,α
5
α

g( ) θ( ) � g2gθ − ggθθθ + gθθθθθ . (4.20)

By this mean, the proof of theorem 2 is completed.

4.2 The G′/G-expansion method for the
non-linear FPDEs

A general non-linear conformable time FPDE can be written as
follows:

P u, uα
t , ux, u

2α
t , uxx, . . .( ) � 0, 0< α< 1( ), (4.21)

where u is an unknown function of independent variables x and t, and P
is a polynomial in u = u (x, t) and its partial fractional derivatives, where
the highest order derivatives and non-linear terms are involved.

Next, we will illustrate the major steps of the G′/G-expansion
method [41].

Step 1. Combining the independent variables x and t into one
variable ξ � kx + l t

α

α , it is supposed that

u x, t( ) � ϕ ξ( ), ξ � kx + l
tα

α
, (4.22)

where k, l are constants that will be determined later.
The traveling wave variable in Eq. 4.22 permits us to reduce Eq.

4.21 to an ODE for u(x, t) = ϕ(ξ),

P ϕ,−lϕ′, kϕ′, l2ϕ″, k2ϕ″, . . .( ) � 0. (4.23)
Step 2. Assuming that the exact solution of Eq. 4.23 can be

expressed by the polynomial in (ω/G) and ω,G satisfies the following
relation
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ω

G
( )′ � a + b

ω

G
( ) + c

ω

G
( )2, (4.24)

namely,

ω′G − ωG′ � aG2 + bωG + cω2, (4.25)
where a, b, c are arbitrary constants. Now, let us have a careful
examination on Eq. 4.24. If choosing ω = G′, a = −μ, = ̱ −λ, c = −1,
then u(ξ) can be expressed as

u ξ( ) �∑m
i�0

ai
G′
G

( )i

, (4.26)

where G satisfies the second-order LODE in the form

G″ + λG′ + μG � 0. (4.27)
In here, the general solutions of Eq. 4.27 are as follows:

G′ ξ( )
G ξ( ) �

−λ
2
+

������
λ2 − 4μ
√

2

C1 sinh

������
λ2 − 4μ
√

ξ

2
⎛⎜⎜⎝ ⎞⎟⎟⎠ + C2 cosh

������
λ2 − 4μ
√

ξ

2
⎛⎜⎜⎝ ⎞⎟⎟⎠

C1 cosh

������
λ2 − 4μ
√

ξ

2
⎛⎜⎜⎝ ⎞⎟⎟⎠ + C2 sinh

������
λ2 − 4μ
√

ξ

2
⎛⎜⎜⎝ ⎞⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ λ2 − 4μ> 0,

−λ
2
+ C2

C1 + C2ξ
λ2 − 4μ � 0,

−λ
2
+

������
λ2 − 4μ
√

2

−C1 sin

������
λ2 − 4μ
√

ξ

2
⎛⎜⎜⎝ ⎞⎟⎟⎠ + C2 cos

������
λ2 − 4μ
√

ξ

2
⎛⎜⎜⎝ ⎞⎟⎟⎠

C1 cos

������
λ2 − 4μ
√

ξ

2
⎛⎜⎜⎝ ⎞⎟⎟⎠ + C2 sin

������
λ2 − 4μ
√

ξ

2
⎛⎜⎜⎝ ⎞⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ λ2 − 4μ< 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(4.28)

This is just the G′/G-expansion method that Wang et al [42]
have proposed recently.

Furthermore, if we put ω = tanh ξ, g = 1, a = 1, b = 0, c = −1, then

u(ξ) turns to be u(ξ) �∑m
i�0

ai(tanh ξ)i, which is the tanh-function
expansion method.

Step 3. Substituting Eq. 4.24 into Eq. 4.23 and using second-
order LODE, collecting all terms with the same order of G′/G
together, we will obtain the system of algebraic equations for
am//, l, λ, and μ.

Step 4. Substituting the results obtained in the aforementioned
steps into Eq. 4.26.

4.3 The application to the TFF-KdV equation
using the G′/G-expansion method

Considering the TFF-KdV equation as follows:

uα
t + u2ux − uuxxx + uxxxxx � 0. 0< α< 1( ). (4.29)

Eq. 4.29 has been investigated in [31] by using the Lie symmetry
analysis. Now, we will use the G′/G-expansion method to find the
closed-form solutions to the TFF-KdV equation. For this purpose,
we will apply the traveling wave transformation as follows:

u x, t( ) � ϕ ξ( ), ξ � x + l
tα

α
, (4.30)

where l is the constant that will be determined later. The
transformation of Eq. 4.29 and Eq. 4.30 leads to the following
equation:

lϕ′ + ϕ2ϕ′ − ϕϕ‴ + ϕ′′′′′ � 0. (4.31)
Eq. 4.31 is integrable; thus, once integrating with respect to ξ, we

can obtain the following result:

lϕ + 1
3
ϕ3 + ϕϕ″ − 1

2
ϕ′( )2 + ϕ

′′′′ + C � 0, (4.32)

where C is the integral constant that will be determined later.
Considering the homogeneous balance between ϕ3 and ϕ′′′′ in

Eq. 4.32, 3m = m + 4 gives m = 2. Thus, we can write Eq. 4.32 as

ϕ � a0 + a1
g′
g

( ) + a2
g′
g

( )2

. (4.33)

By substituting Eqs 4.33 and 4.27 into Eq. 4.32 and collecting all
terms with the same power of (G′G) together, the left-hand side of Eq.
4.32 is converted into another polynomial in (G′G). Equating the
coefficients of this polynomial to zero yields a set of simultaneous
algebraic equations for a2, a1, a0, l, λ, μ and C. Solving the algebraic
equations, we obtain

a2 � −12, a1 � −12λ, a0 � −1 − 3λ2,

λ � λ, μ � λ2 + 1
4

, l � 1
2

48μ2 − 24μλ2 + 3λ2 − 5( ), (4.34)

where λ, μ and a0 are arbitrary constants.
We substitute Eq. 4.34 with Eq. 4.28 into Eq. 4.32 and obtain the

closed-form solutions of Eq. 4.32as three types, which are as follows:
When λ2 − 4μ > 0, we can obtain the hyperbolic function

solutions as follows:

ϕ ξ( ) � − 1 + 3λ2( ) + 12λ
g′
g

( ) + 12
g′
g

( )2[ ]
� − 1 + 3 λ2 − 4μ( ) C1 sinh

����
λ2−4μ

√
ξ

2( ) + C2 cosh
����
λ2−4μ

√
ξ

2( )
C1 cosh

����
λ2−4μ

√
ξ

2( ) + C2 sinh
����
λ2−4μ

√
ξ

2( )⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
2⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

(4.35)
where ξ � x + 1

2 (48μ2 − 24μλ2 + 3λ2 − 5)(tαα), and C1 and C2 are
arbitrary constants.

Taking C1 and C2 special values, then different known solutions
can be deduced from Eq. 4.35.

For example,
(i) If C1 = 0 and C2 ≠ 0, we have

ϕ ξ( ) � − 1 + 3 λ2 − 4μ( )coth2
������
λ2 − 4μ
√

ξ

2
⎛⎜⎜⎝ ⎞⎟⎟⎠⎡⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎦. (4.36)

(ii) If C1 ≠ 0 and C2 = 0, we have

ϕ ξ( ) � − 1 + 3 λ2 − 4μ( )tanh2
������
λ2 − 4μ
√

ξ

2
⎛⎜⎜⎝ ⎞⎟⎟⎠⎡⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎦. (4.37)

(iii) If C1 ≠ 0 and C2
2 <C1

2, we have

ϕ ξ( ) � − 1 + 3 λ2 − 4μ( )tanh2 ξ0 +
������
λ2 − 4μ
√

ξ

2
⎛⎜⎜⎝ ⎞⎟⎟⎠⎡⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎦. (4.38)

(iv) If C2 ≠ 0 and C1
2 <C2

2, we have

Frontiers in Physics frontiersin.org05

Wang et al. 10.3389/fphy.2023.1133754

64

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1133754


ϕ ξ( ) � − 1 + 3 λ2 − 4μ( )coth2 ξ0 +
������
λ2 − 4μ
√

ξ

2
⎛⎜⎜⎝ ⎞⎟⎟⎠⎡⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎦. (4.39)

Here, ξ0 � tanh−1(C1
C2
).

However, if λ2 − 4μ < 0, we obtain the trigonometric function
solutions:

ϕ ξ( ) � − 1 + 3 λ2 − 4μ( ) −C1 sin
����
λ2−4μ

√
ξ

2( ) + C2 cos
����
λ2−4μ

√
ξ

2( )
C1 cos

����
λ2−4μ

√
ξ

2( ) + C2 sin
����
λ2−4μ

√
ξ

2( )⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
2⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

(4.40)
where ξ � x + 1

2 (48μ2 − 24μλ2 + 3λ2 − 5)(tαα), and C1 and C2 are
arbitrary constants.

Remark 1. Taking C1 and C2 as special values, various known
solutions can be found from Eq. 4.40. Here, we do not list them for
simplicity.

However, if λ2 − 4μ = 0, the following rational function solutions
can be obtained:

ϕ ξ( ) � − 1 + 12
C1

C2 + C1ξ
( )2[ ], (4.41)

where ξ � x + 1
2 (48μ2 − 24μλ2 + 3λ2 − 5)(tαα), and C1 and C2 are

arbitrary constants.
Remark 2. When ω = tanh ξ, which is the tanh-function

expansion method. This is similar to the (G′G) method, which is
omitted here.

Remark 3. Inc, M and B Kilic [43] have investigated exact
solutions for the KdV-like equation using Kudryashov, Exp-
function, and Jacobi elliptic rational expansion methods. From
the aforementioned procedure, the G′/G-expansion method is
very powerful for FPDEs. As far as we know, the solutions
obtained therefrom under this study have never been reported
previously, and are newly generated.

Remark 4. Recently, many scholars put forward the
Riemann–Hilbert method [44, 45], and its application in FPDEs
is also worthy of further study.

5 Conservation laws of the TFF-KdV
equation

In this part, we have obtained the conservation laws for the TFF-
KdV equation by applying Eq. 4.4 of Lie point symmetry.

Based on the definition of the conserved vector for inter-order
PDEs, a conserved vector C(Ct, Cx) for Eq. 1.1 admits the following
conservation equation:

Dt Ct( ) +Dx Cx( )| TFF−KdV( ) � 0. (5.1)

It should be noted that the TFF-KdV equation might be written
in the form of the conservation law as Eq. 5.1.

Ct
0 � Dα−1

0 u, Cx
0 � u2ux − uuxxx + uxxxxx. (5.2)

We also study the conservation laws with the adjoint equation
[46] and symmetries of the TFF-KdV equation. As to Eq. 1.1, the
adjoint equation can be written in the following form:

ϖα
t + u2ϖx − uϖxxx + ϖxxxxx � 0, (5.3)

and the Lagrangian can be written in the symmetrized form as
follows:

L � ϖ uα
t + u2ux − uuxxx + uxxxxx( ), (5.4)

where ϖ(t, x) is a new dependent variable. The adjoint equation of
Eq. 1.1 is written as

W* � δL

δu
� 0, (5.5)

where δ
δu is the Euler–Lagrange operator we defined by

δ

δu
� z

zu
+ Dα

t( )* z

zDα
t u

−Dx
z

zux
+D2

x

z

zuxx
−D3

x

z

zuxxx
+D4

x

z

zuxxxx

−D5
x

z

zuxxxxx
,

(5.6)
where (Dα

t )* is the adjoint operator of Dα
t . As to the

Riemann–Liouville fractional differential operators, we have

Dα
t( )* � −1( )nKn−α

T Dn
t( ) � Dα

T( )Ct , (5.7)
where

Kn−α
T f t, x( ) � 1

Γ n − α( )∫ T

t

f τ, x( )
τ − t( )1+α−n dτ, n � α[ ] + 1 (5.8)

is the right-sided Caputo operator of the fractional differentiation of
order α.

Through the substitution of Eq. 5.4 into Eq. 5.5, it can lead to
the adjoint equation of Eq. 1.1 admitting the following
expression:

W* � Dα
t( )*ϖ + u2ϖx + uϖxxx + ϖxxxxx � 0. (5.9)

The TFF-KdV equation arrives at the following conservation law
in [44].

Dt Ct
i( ) +Dx Cx

i( ) � 0, (5.10)
where the conserved vector C(Ct, Cx) has a new form.

Cx
i � Xi

δL

δux
+Dx Xi( ) δL

δuxx
+D2

x Xi( ) δL

δuxxx
+D3

x Xi( ) δL

δuxxxx

+D4
x Xi( ) δL

δuxxxxx
, Ct

i �∑n−1
k�0

−1( )kDα−1−k
t Xi( )Dk

t

zL

z Dα
t u( )[ ]

− −1( )nS Xi, D
n
t

zL

z Dα
t u( )( )[ ], n � α[ ] + 1, (5.11)

where Xi = ηi − ςiux − τiut, and S is the integral.

S f, g( ) � 1
Γ n − α( )∫ t

0
∫ T

t

f p, x( )g q, x( )
q − p( )α+1−n dqdp. (5.12)

Using the symmetriesV1 � z
zx,V2 � x z

zx + 5t
α

z
zt − 2u z

zu, we have

X1 � −ux,X2 � − xux − 5t
α
ut − 2u. (5.13)

Substituting Eq.5.4 and Eq.5.13 into Eq. 5.11, we obtain the
following conserved vectors for the TFF-KdV equation.
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Case 1: By using the symmetry X1 = −ux, we find an additional
conserved vector as follows:

Cx
1 � X1

zL

zux
+ −1( )nDn−1

x

zL

zunx
[ ] +Dn−1

x X1( ) zL

zunx
,

Ct
1 � −K1−α

t −X1( )ψ − S −X1,ψt( ). (5.14)

Case 2: By using the symmetryX2 � − xux − 5t
α ut − 2u, we find

an additional conserved vector:

Cx
2 � X2

zL

zux
+ −1( )nDn−1

x

zL

zunx
[ ] +Dn−1

x X2( ) zL

zunx
,

Ct
2 � K1−α

t −X2( )ψ + S −X2,ψt( ). (5.15)

According to the aforementioned detailed analysis, we have
Theorem 3. The TFF-KdV equation has the following conservation

laws:

Dt Ct
i( ) +Dx Cx

i( ) � 0, i � 1, 2, (5.16)
where Ct

i is shown in Eq.5.2, Eq.5.14, and Eq. 5.15.

6 Conclusion

In this research, it was considered the symmetry analysis,
explicit solutions to the TFF-KdV equations with Riemann-
Liouville derivative. The TFF-KdV equation was reduced to a
non-linear ordinary differential equation (ODE) of fractional
order. The G′/G-expansion method was obtained to work out
the TFF-KdV equation in the sense of the Riemann–Liouville
derivative. There were three types of exact solutions that
originated in the aspect of hyperbolic, trigonometric, and
rational functions with some parameters, which have great
potential for further research. All solutions derived in this
study were checked utilizing Maple by incorporating them
into Eq. 1.1. At last, considering the advantages of the G′/G-
expansion method such as efficiency, conciseness, and briefness,
the method can be applied to several other higher-order non-
linear FPDEs arising in mathematical physics, plasma,
hydrodynamics, engineering, and other fields of applied
sciences. Finally, based on the Noether theorem, the
conservation laws of the equation are well-constructed with
detailed derivation. Additionally, it is clear from Lie symmetry
analysis that this approach is relatively well-organized and can
be used to solve many different non-linear FPDEs from natural
sciences.
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This developing study is focused on mass diffusion and thermal energy
enhancement in Reiner–Philippoff martial across a vertical-surface under an
exposed Lorentz force. Characterization of the thermal energy and mass
diffusion are modified utilizing non-Fourier’s theory in the presence of a heat
source. Three types of nanoparticles—Al2O3, titanium dioxide, and TiO2—in
engine oil are inserted for production of heat energy. Darcy’s Forchheimer
theory is used to analyze behavior flow and heat energy. Moreover, effects
related to Dufour and Soret are added. A transformed system of ODEs is
achieved regarding the developed model using similarity variables. Numerically
developing models in the form of ODEs are handled with the aid of the finite
elementmethod (FEM). Fluidic thermal energy is augmented against upshot values
of time relaxation number. Fluidic concentration declines against changes in
Schmidt number and chemical reaction number.

KEYWORDS

EMHD, three-phase simulations, buoyancy forces, thermal properties, two-dimensional
plate, Galerkin algorithm

1 Introduction

Non-Newtonian fluids have numerous applications and are used extensively in many
materials. This investigation deals with Sutterby nanofluid boundary-layer flow in a stretched
cylinder by including updated models for mass and heat transfers and applying the
Cattaneo–Christov theory. Boundary-layer analysis leads to the creation of a mathematical
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model. By utilizing conservation principles, the physical phenomena are
first generated in terms of PDEs. The penetrating medium is influenced
by the advanced Darcy’s law. The suggested model’s non-linear
equations are optimally and dynamically investigated. By establishing
the conservation rules formass,momentum, energy, and concentration,
non-linear partial differential equations (PDEs) are created. The
OHAM is adopted and aims to develop numerical solutions for
non-linear systems, as previously discussed [1]. Nanofluids are the
newest category of fluids, andChoi first described them at the beginning
of 1995. Akbar et al. [2] formulated a model of peristaltic transport in
the presence of thermal conductive using variable viscosity-based
temperature with carbon nanoparticles; the authors found the exact
solution of the developed model. Akram et al. [3] utilized curved
microchannels to investigate heat transfer and flow behavior in the
presence of titanium dioxide in Carneau fluid rheology; the authors
estimated the motion of nanoparticles using mechanisms of
thermophoretic and Brownian motion via an exact solution
technique. Maraj et al. [4] discovered the consequences of Lorentz
force, including CNTs and thermal deposition in the channel, utilizing
exact closed-form solutions involving radiation and magnetic field.
Akram et al. [5] studied thermal features of peristaltic transport
involving Lorentz force and electroosmosis with SWCNTs in
aqueous diagrams. Multiple industrial and technological
implications, including wire drawing, glass fiber production,
assembly of particularly elastic sheets, and cooling of concerning
metallic plates are among the pertinent themes investigated
previously [6] regarding the study of fluid attributes in multiple
mathematical models. When a fixed magnetic field was supplied,
Bhandari and Husain carefully examined the combined impacts
particularly of rotating viscosity and magnetized force subjected to a
2D Ferro hydrodynamic non-conductor nanoliquid flow across a
stretched surface. To explore the hybrid nanomaterials’ flow
demeanor when subjected to a stretched sheet, Gul et al. presented a
computer model. Fractional calculus ideas have been widely used in
different areas in recent years. This topic has recently expanded in
several different directions, including fractional-order multipoles
influenced by electromagnetism and in the field of electrochemistry.
Moreover, tracer is used within the fluid flow demeanor, the neuron
model in the field of biology, finance, and signal processing. The
Riemann–Liouville and Caputo fractional derivatives are the most
popular applications discussed by Shah and Khan [7]. Biomedical
engineering and medical care greatly benefit from the radiation and
magnetic field impacts appertaining to nanofluids. Khan et al. [8]
examined gold particle performance toward the blood flow demeanor
(Sisko fluid flow) through a penetrating, slick, curvy surface. Partial slip
impacts were considered in thoroughly analyzing the properties
referring to nanofluidic flow. After Choi’s original study, a
significant advancement in this field was made. In an experimental
study, Eastman et al. examined heat transfer in the presence of Al2O3

and CuO particles, synthesized using ethylene glycol and water,
respectively. Investigation based on blood flow demeanor in small
arteries involves many variable features. Understanding the
rheological behavior of blood and other biological fluids, namely
urine, spermatozoa, and eye drops, requires accounting for heat
conductivity and viscosity change. In the current work, which was
motivated by these applications, we describe the peristaltic flow
demeanor—particularly Ree–Eyring liquid via a uniform compliant
channel—while accounting for the influence of varying thermal

conductivity and viscosity, as described previously [9]. Recent
studies have shown a particular interest in dusty fluid model flows
due to their two-phase nature. This effect occurs when solid particles are
dispersed in fluid (gas or liquid) flows. As an example, consider the
chemical process that results in droplet formation when relatively small
dust particles agglomerate, leading to high dusty-air velocity. Cosmic
dust, a mixture of gas and dust particles, is the essential precursor for
planetary systems, as expressed previously [10]. In tabular and graphical
formats, Khan and Pop [11] examined fluctuation in declining Nusselt
and reduced Sherwood numbers. Falkner–Skan flow is one of the most
well-known motives for investigating magnetohydrodynamics, on
account of its applications in the field of fluid dynamics and heat
transfer. In the scientific community, conventional flow behavior,
specifically Newtonian and non-Newtonian fluids subjected to a
moving wedge, is very popular right now. Lin et al. investigated the
properties of heat transmission within the static wedge flow demeanor.
The authors examined the model particularly for every conceivable
finite Prandtl number value. Watanabe and Watanabe and Pop,
respectively, researched forced and free-convection Falkner–Skan
flow. Akbar et al. [12] discussed investigations into shape factors
associated with SiO2/MoS2 nanoparticles in a base fluid in a channel
including a temperature gradient (oscillatory). Convectionmay occur in
three different ways in heat transfer flows: naturally, forcibly, and
mixed. The last of these has uses in a variety of industrial and natural
phenomena, including nuclear reactor cooling, electronic systems, and
heat exchangers used to heat or cool fluids in the food industry and in
compact heat exchangers, as studied previously [13]. In numerous
systems pertaining to heating and cooling, fluids including water and
kerosene oil, ethylene, and glycol are frequently utilized. Most of these
fluids, which are sometimes referred to as the basic fluids, are poor heat
conductors. We must address the issues caused by these systems’ weak
conductivities in order to improve their performance. Nowadays, a
relatively novel approach is being used to increase thermal conductivity
and other thermal characteristics. Habib et al. [14] discussed a new
discovery regarding nanofluid behavior in clinical isolates of
Staphylococcus aureus using gold nanoparticles. Alghamdi et al. [15]
favored adopting non-linear stretching sheets. These crucial industrial
applications drove researchers to carefully examine boundary-layer
flow demeanor over linear and non-linear prolonged sheets of a range
of geometric thicknesses. Micropolar nanofluidic flow demeanor
embedded with buoyancy force, along with magnetic field subjected
to an enclosure, has been studied for its heat and mass transmission
mechanism. The proposed mathematical model needed to assess
effectiveness, particularly nanoparticle thermal efficiency, must be
built using mass and energy and must be within the momentum
equations. This study aims to increase the effectiveness of heat and
mass transmission within the heat transport machinery and heat-
ameliorated units used in engineering and industrial operations. The
proposed dimensionless 2D model given the significance of
dimensional analysis analyzed previously [16]. The substandard
thermal conductivity of operating liquids, which constrains high
solidity and performance appertaining to thermal production within
heat exchanges, is currently a serious worldwide problem. Most
frequently, ethanol and water, as well as an acetone and an
ethylene–glycol combination, are used as working fluids, as
discussed previously [17]. Additionally, in response to this issue,
numerous scientists and engineers have demonstrated the essential
principles of improving thermal properties, specifically for energy-

Frontiers in Physics frontiersin.org02

Sohail et al. 10.3389/fphy.2023.1133550

69

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1133550


transported liquids, and efficiency, particularly of heat transfer in
industrial appliances.

Examining entropy production in catalytic and non-linear thermal
radiative impacts involves assessing the hydromagnetic stagnation point
flowdemeanor of amicropolar nanofluid. Awater nanofluid is created by
mixing in themagnetite nanoparticles. The time-independent, significant
2D flow demeanor is supposed to start with a vertically stretchable sheet.
When creating the governing equations for the relevant issue, the Joule
heating and viscous dissipation impacts are considered, as
described previously [18]. Using updated heat and mass flux
models, the entropy production approach is subjected to
Maxwell nanofluid incorporated with gyrotactic microorganisms
influenced by homogeneous–heterogeneous processes. Amended
models are provided using the dual diffusive theory and the
generalized Fick’s equation. According to boundary-layer theory,
derived equations that depict the flow situation under consideration
are modeled as PDEs. An appropriate transformation is then applied
to alter the resulting PDEs toward the transformed ODEs and is
subsequently solved using a powerful technique called the optimal
homotopy analysis approach. Special instances of certain previously
published research are in close accordance with our findings. Graphs
are used to describe the effects, specifically of physical factors within
the velocity, as well as temperature, concentration, reaction rate, the
concentration of motile bacteria, and entropy production, as
examined in an earlier study [19]. Based on the three-dimensional
and steady power-law for nanofluidic flow demeanor close to the
stagnation point area, the MHD and non-linear thermal radiative
impacts included in penetrable material are applied to conduct an
entropy generation study. The heat transformation phenomena inside
the boundary layer configured by the stretchy moving disc are
investigated and accompanied by non-uniformly thermal radiative
heat source/sink exposed to convective boundary circumstances. The
basic fluid ethylene glycol (C2H6O2) is combined with multi-wall
carbon nanotubes (MWCNTs). The suggested fluid flow issue is
analytically modeled, as discussed previously [20]. Incompressible
viscous hybrid nanofluid flow is analyzed in three dimensions in a
rotating frame. The basic liquid is ethylene glycol, and the
nanoparticles are copper and silver. Fluid flows within the dual
parallel surfaces, with the bottom surface extending linearly. Since
fluid conducts, a consistent magnetic field is applied. We consider the
viscous dissipation impacts and Joule heating and non-linear thermal
radiations. The Nusselt number and surface drag force are addressed
as interesting quantities. Xia et al. [21] examined the rate of entropy
formation. Because of their significant industrial applications and
high heat transfer rates, nanofluids are of great importance to
scientists. Hybrid nanofluids, a brand-new form of nanofluid, have
lately been employed to accelerate heat transfer even further. The
current phenomena focus particularly on the investigation of
SWCNT–MWCNT/water hybrid nanofluidic flow demeanor
and on heat transmission subjected to a moving wedge. The
flow demeanor in the porosity media is described by the
Darcy–Forchheimer relationship. In addition, Ahmad et al. [22]
covered in depth the effect of varying viscosity and velocity, as
well as thermal slip, thermal radiation, and heat production.
By performing a theoretical study, peculiarly viscous three-
dimensional fluid flow demeanor incorporated with gyrotactic
microorganisms across a non-linear stretchy surface, heat
mechanisms, and mass transmission may be understood. To

regulate the flow of fluid, the fluctuating magnetic field is
thought to be normal toward the stretchy surface. The varying
thermal conductivity prompts a discussion of thermal transportation.
Mass transportation incorporates chemical processes and variable
mass diffusion properties. The porous medium is defined using the
Darcy–Forchheimer equation. To improve diffusion, Abdelsalam and
Sohail [23] included Brownian motion and thermophoresis. The
current study investigates viscous fluid flow in three dimensions
when specific heat (PHF) and concentration (PCF) fluxes are
present. Chemical reactions, viscosity dissipation, and Joule heating
impacts are all considered when the mathematical formulation is
being constructed. Fluid becomes electrically conductive when
influenced by the applied magnetic field, whereas the non-linear
system referring to ordinary differential equations is obtained by
appropriate transformations. The resultant non-linear system
determines the solution. To investigate the effects, particularly the
physical factors, of the temperature and concentration distributions,
graphs are plotted. Maraj et al. [24] estimated rotational flow and
motion of hybrid nanoparticles with Hall currents in a vertical
channel using conditions of thermal periodic and velocity slip via
closed-form solutions. Saleem et al. [25] adopted FEM for statistical
solutions, referring to a set of ODEs. Damaged arteries with stenosis
have reduced blood flow; the accumulation of plaque within the artery
walls, brought on by fats and oils, leads to the development of this
stenosis. Multiple stenoses may exist in an artery that has severe
stenosis. Multiple stenoses cause the artery to narrow, which restricts
blood flow across it. Many academics have recently been interested
in examining this particular kind of stenotic artery. Blood flows
through tiny channels, with non-Newtonian behavior in big vessels
and Newtonian behavior in smaller vessels. Owing to various
peculiarities, particularly blood circulation along with the
mechanical characteristics of the vessel walls, it is essential to
examine the blood flow through a stenotic channel. Shahzad et al.
[26] determined the location of stenosis on the vessel wall and
the flow behavior through sick blood arteries by observing blood
flow across a stenotic artery. In this investigation, the contributions
of viscous dissipation and thermophoresis, as well as Brownian
motion, gravitational effects, and stratification impacts, were
examined. Physical events are derived as linked systems of partial
differential equations. An appropriate transformation converts the
model’s equation system into straightforward ordinary differential
equations (ODEs). Naz et al. [27] used an ideal homotopy analysis
approach and an improvised system that relies on coupled non-
linear ODEs solved in Mathematica. Due to its use in several sectors,
heat transfer is crucial. Hybrid nanofluidic flow, a novel manner
of nanofluids with a greater heat exponent in comparison to the
nanofluids, is being utilized to improve the ability of regular fluids to
transport heat. In a base fluid, two-element nanoparticles are known
as hybrid nanofluids (HNFs). Jamshed et al. [28] demonstrated the
properties of steady hybrid nanofluidic flow and thermal transfer
over a slippery surface. Convection, whether forced or natural, is
more significant in the context of fluid dynamics than the other two
well-known heat transfer processes, conduction and radiation. It
happens because of differences in the thermal energy that is applied
differently to various parts of the fluid under examination. Akram
et al. [29] discussed theoretical investigations of thermal transfer
based on Au and Ag hybrid water-based nanoparticles induced by
electroosmotic pumping in a microchannel. Due to their poor heat
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conductivity, pure liquids like water and oil have proven to be
problematic in this respect. To improve heat transmission and
modify the carrier fluid’s thermal characteristics, nanoparticles
with an approximate diameter of less than 100 nm, materials
with intensified thermal conductivities, are mixed along with the
fluid, as discussed previously [30]. This analysis emphasizes the
importance of radiation and Joule heating effects, particularly for
Casson liquid-boundary layer flow (BLF) configured by a linearly
elongating surface, as well as the properties of momentum and
entropy production. Likewise, species and thermal dissemination are
also considered. Thermal conductivity andmass diffusion coefficient
models that vary with temperature are used to provide thermal and
species transportation. Emerging issues take the non-linear partial
differential equations form, in opposition to the principles governing
the movement of mass, momentum, heat, and species. The exhibited
issue may be transformed into ordinary differential equations with
the proper modification. Sohail et al. [31] used the optimal
homotopy analysis method (OHAM) as a competent and
dependable approach for obtaining numerical solutions,
specifically for upgraded boundary-layer ordinary differential
equations (ODEs). Due to its applicability, heat transfer analysis
in two-dimensional flows has drawn the interest of several
academics in recent years. Akram et al. [32] derived features of
electroosmotic flow by inserting silver nanoparticles and solving
using two various approaches. Applications like drawing wire,
making plastic and rubber sheets, cooling electric plates enclosed
by a bath, melt spinning, and hot rolling, among others, all benefit
from fluid passage over elongating sheets. Because a plate expands at
a specific rate, Sakiadis was the first to examine fluid flow. Crane
then concentrated on the laminar flow demeanor, specifically two-
dimensional, incompressible, and viscous fluid subjected to a
stretching plate. There is a precise closed-form solution to this
problem. Following the above-mentioned studies, many
researchers (see, for instance, [33]) concentrated on fluid flow
caused by stretched plates. These researchers investigated flow
demeanor across an exponentially stretching sheet with the
impacts of MHD and radiation, and discovered that the magnetic
and radiation parameters are what reduce the heat transmission rate.
The authors looked across the Eyring–Powell fluid boundary-layer
fluid flow configured by a linearly stretching sheet and computed the
findings for velocity profiles using the collocation method.

2 Mathematical analysis

Two-dimensional consequences of mass diffusion and thermal
fields of a complex fluid (Reiner–Philippoff) were investigated under
conditions of EMHD on a vertical plate. Three phases of hybrid
nanomaterial are implemented in the presence of engine oil. Fields
associated with mass diffusion and thermal conductivity are carried
out by heat sink and non-Fourier’s theory, as well as variable
properties pertaining to mass diffusion and thermal conductivity.
A flow diagram with boundary conditions and suspension of ternary
hybrid nanoparticles is shown in Figure 1. Conservation laws have
been implemented to obtain distributions for motion,
concentration, and thermal conductivity, as listed below. The
thermophysical properties of different used materials are depicted
in Table 1.

The reduced form of PDEs [34–36] is derived as
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and subjected to the desired boundary conditions

v1 � ax
1
3, C � Cw, v2 � 0, T � Tw:

y � 0, C → C∞, v1 → 0, T → T∞: y → ∞ . (5)
Similarity, the variables of temperature-dependent concentration

and temperature-dependent thermal conductivity are defined as

φ � C − Cw

Cw − C∞
, η � y

x1/3

a

]f
( )1/2

,ψ � x2/3 a]f( )1/2, τ � ρf a3]f( )1/2,
θ � T − Tw

Tw − T∞
, (6)

ktThnf � kThnf 1 + ϵ1
T − T∞
Tw − T∞
( )[ ], (7)

Dc
Thnf � DThnf 1 + ϵ2

T − T∞
Tw − T∞
( )[ ]. (8)

The system of ODEs [34] is formulated as

D1G − F″G
2 + λϒ2

G2 + ϒ2 � 0, (9)

G′ −D1
1
3
F′2 +D1

2
3
FF″ − σThnf

σf
MF′ +D1λ1θ − ϵF′ −D1FrF′2

+D1λ2φ + σThnf
σf

ME1 � 0, (10)

1 + ϵ1θ( )θ″ + ϵ1 θ′( )2 + Pr Γ
kf ρCp( )

Thnf

kThnf ρCp( )
f

FF′θ′ + ηF2θ″ −HtFθ′[ ]
+
kf ρCp( )

Thnf

kThnf ρCp( )
f

2
3
PrFθ′ + kf

kThnf
HtPr θ � 0, (11)

Frontiers in Physics frontiersin.org04

Sohail et al. 10.3389/fphy.2023.1133550

71

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1133550


1 + ϵ2φ( )φ″ + ϵ2φ′θ′ + 2
3D2

PrFφ′

+ScΓ1
D2

FF′φ′ + ηF2φ″ − KcFφ′[ ] − KcSc

D2
φ � 0. (12)

Equation 5 in dimensionless form [34] is defined as

F 0( ) � 0, F′ 0( ) � 1, θ 0( ) � 1,φ 0( )
� 1, F ∞( ) → 0, θ ∞( ) → 0,φ ∞( ) → 0. (13)

The defined correlations associated with tri-hybrid
nanoparticles [36] are

ρThnf � 1 −Φ1( ) 1 − Φ2( ) 1 − Φ3( )ρf +ΦΦ3ρ3[ ] + Φ2ρ2{ } +ΦΦ1ρ1,

(14)
Khnf

Knf
� K2 + 2Knf − 2Φ1 Knf − K2( )

K2 + 2Knf + Φ2 Knf − K2( ) ,
D2 � 1 −Φ3( )1.5 1 −Φ1( )1.5 1 − Φ2( )1.5, (15)

KThnf

Khnf
� K1 + 2Khnf − 2Φ1 Khnf − K1( )

K1 + 2Khnf +Φ1 Khnf −K1( ) ,
Knf

Kf
� K3 + 2Kf − 2Φ3 Kf − K3( )

K3 + 2Kf +Φ3 Kf − K3( ) , (16)

σTnf
σhnf

� σ1 1 + 2Φ1( ) − Φhnf 1 − 2Φ1( )
σ1 1 − Φ1( ) + σhnf 1 +Φ1( ) ,

σnf
σf

� σ3 1 + 2Φ3( ) +Φf 1 − 2Φ3( )
σ3 1 −Φ3( ) + σf 1 +Φ3( ) ,

μThnf � μf
1 − Φ3( )2.5 1 −Φ2( )2.5 1 −Φ1( )2.5, (17)

D1 �
1 −Φ2( ) 1 − Φ1( ) +Φ1

ρs1
ρf

{ }[ ] +Φ2
ρs2
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1 −Φ1( )−2.5 1 −Φ2( )−2.5 ,

σhnf
σnf

� σ2 1 + 2Φ2( ) +Φnf 1 − 2Φ2( )
σ2 1 −Φ2( ) + σnf 1 +Φ2( ) . (18)

The mathematical expressions of Sherwood number and
temperature gradient [34] are

Nu �
−xkThnfzTzy

∣∣∣∣y�0
Tw − T∞( )kf, Re( )−1/2N*u � −kThnf

kf
θ′ 0( ), (20)

Sh � −xQt

DThnf C − C∞( ), Re( )−1/2S*h � − 1
D2

φ′ 0( ), (21)

where (Reynolds number) Re(� Uwx
]f

).

3 Numerical procedure

The current model in terms of ODEs is numerically handled by a
finite element approach based on the following steps:

∫ηe+1

ηe

wet1 F′ − T( )dη � 0, (22)

∫ηe+1

ηe

wet2

G′ −D1
1
3
T2 +D1

2
3
FT′ − σhnf

σf
MT +D1λ1θ

−ϵT −D1FrT
2 +D1λ2φ + σhnf

σf
ME1
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⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦dη � 0,

(23)

FIGURE 1
Physical configuration of the model.
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⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦dη � 0. (25)

3.1 Discretization

The computational form domain has been discretized into
elements, and weighted residuals are derived as
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13
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12
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⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦dη,
(30)

K31
ij � 0, K41

ij � 0, K32
ij � 0, K42

ij � 0, K34
ij � 0, K43

ij � 0, B3
i � 0, B4

i � 0.

(31)

3.2 Assembly process

The assembly process is implemented to derive a global stiffness
matrix. In this step, the boundary vector, source vector, and stiffness
matrix are obtained as.

3.3 Investigations of error and convergence

Error analysis is estimated as

Er � Ωj − Ωj−1∣∣∣∣ ∣∣∣∣. (32)

Table 2 shows mesh-free simulations and convergence analysis,
while criteria regarding convergence are defined as

Max Ωj −Ωj−1∣∣∣∣ ∣∣∣∣< 10−8. (33)

3.4 Validation of works

The code for FEMwas designed inMAPLE 18. Table 3 illustrates
the present validation in view of temperature gradient, with an
already-published study [38] having different values of ϒ in the
absence of tri-hybrid nanoparticles, variable properties, heat sink,
and non-Fourier’s law. It was noticed that the present results were
obtained by the finite element method while the present simulations,
obtained by the finite element method, are compared with a
shooting approach termed the RK4-method (see Table 3).

4 Results and discussion

The development of a two-dimensional model is formulated
in view of Reiner–Philippoff toward a surface involving buoyancy
forces and electric field. Energy transfer and mass species are
carried out in the presence. Dispersions of tiny nanoparticles are
incorporated using generalized theory. Mass diffusion (variable)
and thermal conductivity (variable) are inserted into the
concentration and energy equations. A finite element scheme
has been utilized to simulate numerical study of the present
problem. Graphical explanations regarding flow, solute, and
thermal energy versus various parameters are displayed in the
following sections.

4.1 Study of fluidic motion

In this subsection, graphs related to velocity curves are
plotted versus electric magnetic (E1) number, Forchheimer
number (Fr), and fluid parameter (γ). Comparative study of
tri-hybrid nanofluid and hybrid nanoparticles on a velocity
field is conducted versus parameters, shown in Figures 2–4. It
is evident that solid curves are generated to represent the role of
nanoparticles (tri-hybrid), and dash–dot lines are plotted to
sketch the estimation of hybrid nanomaterials. Figure 2
predicts the behavior of E1 on the velocity field. Here, E1 is
electric field number, and velocity increases versus enhancement
in E1. Here, the parameter related to E1 is known as the electric
magnetic number; it is modeled using the electric magnetic
number in the momentum equation. Mathematically, a
parameter regarding E1 is based on (σThnfσf

ME1) and appears in

TABLE 1 Thermal properties of engine oil, silicon dioxide, and aluminum oxide
[36, 37].

Engine
oil

Aluminum
oxide

Silicon
dioxide

Fe3O4

k(0.144) k(32.9) k(1.4013) k(80)

σ(0.125 × 10−11) σ(5.96 × 107) σ(3.5 × 106) σ(0.112 × 10−6)

ρ (884) ρ (6310) ρ (2270) ρ (5180)

Frontiers in Physics frontiersin.org06

Sohail et al. 10.3389/fphy.2023.1133550

73

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1133550


the dimensionless momentum equation. Direct proportional
relations have been estimated among velocity and E1.
Therefore, velocity increases against E1 > 0. The physical

reason behind this increasing trend is the appearance of a
Lorentz force because forces (electromagnetic) behave in the
same direction during the flow of nanoparticles. Furthermore,

TABLE 2 Analysis of the grid-independent study carried out for 300 elements for concentration, velocity, and temperature profiles.

Number of elements F′(ηmax

2 ) θ(ηmax

2 ) φ(η max

2 )
30 0.03739643693 0.007435435051 0.009773428084

60 0.03652941667 0.003617569756 0.004548750392

90 0.03623026090 0.002433140864 0.002959697248

120 0.03607872439 0.001849791306 0.002192563678

150 0.03598713063 0.001500248584 0.001740935198

180 0.03592576537 0.001266406353 0.001443441685

210 0.03588178671 0.001098466029 0.001232702583

240 0.03584874587 0.0009717300891 0.001075606893

270 0.03582297916 0.0008725175218 0.0009539964889

300 0.03580234563 0.0007926265239 0.0008570696942

TABLE 3 Validation of present works for Nusselt number with different values of ϒ when ϵ1 � 0, Γ � 0,Φ1 � Φ3 � Φ2 � 0, Ht � 0.

ϒ Sajid et al. [38] (Shooting method) present works (Finite element approach)

0.1 0.130909 0.001232702583

0.2 0.109284 0.001232702583

0.3 0.085161 0.001232702583

FIGURE 2
Effect of E1 on velocity curves. FIGURE 3

Effect of Fr on velocity curves.
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drag force declines when E1 is enhanced. Thickness in view of
momentum layers is increased against magnified values of E1.
Figure 3 predicts the influence of Fr on fluidic motion.
Momentum layers are based on variation in Fr. It is
mentioned that a retardation motion is created in motion
regarding particles, which creates a resistance force in fluidic
particles. Momentum layers are also reduced using higher values

of Fr. Physical, numerous pores are placed at the surface.
Therefore, velocity field is reduced when Fr is increased.
Moreover, Fr is known as a Forchheimer porous medium,
which is related to resistive force on the flow. It is a non-
linear function versus velocity, while it experiences retardation
force. Mathematically, the direct proportional relation among
drag force and Fr is increased when Fr is enhanced. Thickness

FIGURE 5
Effect of Ht on thermal energy curves.

FIGURE 4
Effect of ϒ on velocity curves.

FIGURE 6
Effect of ϵ1 on thermal energy curves.

FIGURE 7
Effect of Γ on thermal energy curves.
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based on momentum layers declines versus enhancement of Fr.
This drag force reduces flow on the surface. Figure 4 shows the
behavior of ϒ on velocity curves. This is a dimensionless
parameter that is modeled due to the appearance of
Reiner–Philippoff liquid in the momentum. It is evident that
fluidic motion is decreased when ϒ increases. Moreover,
thickness based on momentum layers declines with higher

impacts of ϒ. Mathematically, an inverse proportional relation
has been observed among ϒ and velocity. Therefore, an increase
in ϒ results in flow decreases on the surface. γ is a dimensional
parameter also called the Bingham number; it is a ratio among
viscous stress and yield stress. Apparent viscosity has a direct
proportional relation with increasing shear rate. Consequently,
flow increases when shear rate is enhanced.

FIGURE 10
Effect of Kc on concentration curves.

TABLE 4 Change in Ht,M, Sc, and Kc on Sherwood and Nusselt numbers
with Al2O3-SiO2-Fe3O4/EO.

Al2O3-SiO2-Fe3O4/EO

(Re)−1/2Nu (Re)−1/2Sh
−1.5 1.4439048872 2.354043674

Ht 0.3 1.4341150491 2.216220131

1.5 1.4187348974 2.203340433

0.0 1.9949244290 2.1300114046

M 0.4 1.7986367522 2.3872299315

0.8 1.5886139807 2.3766813849

0.0 1.4825160433 2.8766813849

Sc 0.7 1.5201264396 2.8430450127

1.4 1.5621956263 2.8103801176

−1.8 1.5621956263 2.7661353542

Kc 0.2 1.5621956263 2.9319543998

1.8 1.5621956263 2.9872274152

FIGURE 8
Effect of Sc on concentration curves.

FIGURE 9
Effect of ϵ2 on concentration curves.
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4.2 Study of fluidic temperature

Figures 5–7 show the role of fluidic temperature against
changes in Ht, ϵ1, and λ1. The solid lines are plotted to sketch
the role of tri-hybrid nano-structures, while dash–dot lines are
plotted to measure the role of hybrid nanoparticles. Figure 5
represents behavior among fluidic temperature and Ht. Fluidic
temperature is increased by applying an external heat source at
the wall. Mathematically, heat sink (Ht) is directly proportional
to (T − T∞), whereas temperature difference increases when Ht

is increased. In Figure 5, two types of heat transfer are
experienced based on heat generation and heat absorption.
Furthermore, heat absorption is numerically predicted by
Ht < 0, and heat generation is predicted by Ht > 0. Physically,
the heat source (external) is implemented at the surface and is
utilized to control thermal thickness. Thermal layer thickness for
Ht < 0 is higher than for Ht > 0. The characteristic of ϵ1 on
thermal layers is shown in Figure 6. The appearance ϵ1 is
created due to the appearance of variable thermal
conductivity. In the current investigation, thermal
conductivity is considered as a function of thermal energy.
Mathematically, thermal conductivity is based on temperature,
whereas ϵ1 is based on (Tw − T∞). An increase in ϵ1 enhances the
temperature difference. Mathematically, ϵ1 is a function of
temperature difference. Consequently, temperature difference
is based on ϵ1. Hence, temperature increases against increases
in thermal conductivity. Moreover, the thickness of thermal
layers for ϵ1 � 0 is less than the thickness (of thermal layers)
for ϵ1 ≠ 0. Whether an involvement of the time relaxation
parameter is created due to the appearance of a generalized
mechanism of heat transmission is investigated. Γ denotes

relaxation time number, and Γ reveals production regarding
time related to migration of heat energy through a heated
surface. Physically, fluid particles need more time in the case
of transfer of thermal energy toward neighboring particles. This
reason declines in thermal energy, as depicted in Figure 7.

4.3 Investigation of fluidic concentration

Figures 8–10 determine the characterizations of fluidic
concentration versus impacts of Sc, Kc, and ϵ2 upon inserting
a tri-hybrid nanofluid. Solid lines are the sketched behavior of
tri-hybrid nanofluid, while dash–dot lines are sketched for
hybrid nanofluid. Figure 8 reveals the role of Sc on fluidic
concentration in the presence of hybrid and tri-hybrid
nanofluids. Physically, it is the division of momentum and
mass diffusion diffusivities. Hence, an inverse proportional
relation of mass diffusion is found versus Sc. Therefore, an
increase in Sc resulting form higher mass diffusivity is
observed. Moreover, mass diffusion for tri-hybrid nanofluids
is higher than the amount of mass diffusion for hybrid nano-
structures. This reduction of φ(η) occurs when mass diffusivity
decreases against higher values of Sc. Thickness related to
concentration can be managed through numerical values of
Sc. Furthermore, the amount of mass diffusion for Sc � 0 is
less than the amount of mass diffusion for Sc ≠ 0. Figure 9
demonstrates the relationship between mass diffusion and
variable mass diffusion number; it shows that the appearance
of ϵ2 on mass diffusion is created due to the implication of
variable mass diffusion. Furthermore, variable mass diffusion is
based on temperature difference. Therefore, mass diffusion
declines when ϵ2 is increased. From Eq. 8, it was shown that
ϵ2 is a function of temperature difference. Consequently, ϵ2 is
also based on concentration difference, while mass diffusion
increases when ϵ2 is increased. An illustration of the chemical
reaction parameter on mass diffusion is shown in Figure 10. Two
kinds of chemical reactions are generated for positive or negative
numerical values of the chemical reaction parameters. For both
cases, mass diffusion declines when Kc is increased. Here, three
cases of chemical reactions based on chemical parameters have
been observed. It is estimated that Kc < 0 when solute particles
have been generated, while Kc > 0 when solute particles are
utilized in the chemical reaction and Kc � 0 when no
chemical reaction has occurred. As Figure 10 shows,
increasing concentrations can be controlled by generative
chemical reactions, whereas destructive chemical reactions are
performed for increasing concentration tendency.

4.4 Study of Sherwood number and Nusselt
number

The impact of Al2O3-SiO2-Fe3O4/EO and SiO2-Fe3O4/EO on
the Sherwood number and temperature gradient versus magnetic
number, Schmidt number, Ht, and Kc are observed. Numerical
outcomes among Al2O3-SiO2-Fe3O4/EO and SiO2-Fe3O4/EO are

TABLE 5 Change in Ht,M, Sc, and Kc on Sherwood and Nusselt numbers
with SiO2-Fe3O4/EO.

SiO2-Fe3O4/EO

(Re)−1/2N*u (Re)−1/2S*h
−1.5 0.4808393951 0.9899124392

Ht 0.3 0.4781358091 0.9610303301

1.5 0.4466081794 0.9411023305

0.0 0.9175509096 0.1347447593

M 0.4 0.9476944663 0.2613222183

0.8 0.9666081791 0.2899124392

0.0 0.4547368979 0.9899124392

Sc 0.7 0.4603960486 1.4199335063

1.4 0.4718914433 1.4823116160

−1.8 0.2703851806 1.0261973903

Kc 0.2 0.2887116869 1.6702558152

1.8 0.2946886834 1.9525223760
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recorded in Tables 4, 5. It was observed that temperature gradient
and Sherwood number decline with various values of Ht and M.
However, the opposite trend was estimated for Sherwood number
and temperature gradient. Essentially, the thermal rate and
Sherwood number are greater for Al2O3-SiO2-Fe3O4/EO than
for SiO2-Fe3O4/EO (see Tables 4, 5).

5 Conclusion

Features of fluidic motion, fluidic thermal energy, and fluidic
concentration are determined in a two-dimensional model under
non-Fourier’s law with variable properties. A heat source and
chemical reactions are also taken out into a mixture of
nanoparticles. A strong scheme, termed a finite element method,
is utilized. The main findings of the problem are summarized as
follows:

➢ Velocity field has been enhanced against changes in Ht, but
the opposite behavior is observed versus M and Fr.

➢ Heat energy increases against changes in relaxation number,
heat source number, and variable thermal conductivity
parameter.

➢ Fluidic concentration declines against changes in Schmidt
number and chemical reaction parameter.

➢ The cooling process can be improved by adding ternary hybrid
nano-structures rather than other nanoparticles.

➢ The highest production of thermal energy can be achieved
utilizing tri-hybrid nanoparticles as compared with hybrid
nanofluids and nanofluids.

➢ Thermal gradient and mass diffusion gradient are higher for
Al2O3-SiO2-Fe3O4/EO than for SiO2-Fe3O4/EO.
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Nomenclature

v1 and v2 velocity components

] dynamic viscosity

τ vector tensor

G gravitational acceleration

T fluidic temperature

C concentration

Q0 heat source

Cp specific heat capacitance

k thermal conductivity

γ2 and γ1 time relaxation parameters

Cw wall concentration

ψ stream function

PDEs partial differential equations

σ electrical conductivity

Pr Prandtl fluid

Φ1,Φ2, andΦ3 volume fractions

Uw wall difference

EO engine oil

a stretching ratio number along the x-direction

E1 electric field parameter

ϵ porous number

θ dimensionless temperature

Γ and Γ1 time relaxation parameters

nf nanofluid

Nu Nusselt number

MHD magneto-hydrodynamics

FEM finite element method

Sc Schmidt number

wet4, wet3, wet1, andwet2 weight functions

x andy space coordinates

f permeability

B0 magnetic field

β2 and β1 buoyancy parameters

T∞ ambient temperature

C∞ ambient concentration

ρ density

D mass diffusion

KM chemical reaction number

Tw wall temperature

η independent variable

ϵ1 and ϵ2 very small numbers

λ fluid number

Fr Forchheimer number

φ concentration

Re Reynolds number

ODEs ordinary differential equations

Ht heat sink

ϒ fluid number

E electric field

F andG dimensionless velocity

EO engine oil

Thnf tri-hybrid nanofluid

s1, s3, and s2 solid nanoparticles

Sh Sherwood number

EMHD electric magneto-hydrodynamic

Kc chemical reaction number

Qt wall flux
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Around 1880, Lie introduced an idea of invariance of the partial differential
equation (PDE) under one-parameter Lie group of transformation to find the
invariant, similarity, or auto-model solutions. Lie symmetry analysis (LSA) provides
us an algorithm to search for point symmetries for solving related linear systems
for infinitesimal generators. Actually, point symmetries lead us to one-parameter
family of solutions from a known solution. LSA is a program that provides us the
exact solutions for the non-linear differential equations (DEs) in analogy of the
program designed by Galois for algebraic polynomial equations. In this paper, we
have carried out the LSA for computing the similarity solutions (symmetries) of the
non-linear short pulse equation (SPE) for the cases when h(u) = eu, k(u) = uxx,
h(u) � eu

n
, and k(u) = uxx. In addition, an optimal system of one-dimensional sub-

algebra has been set up. The reductions and invariant solutions for the generalized
SPE are calculated corresponding to this optimal system as well. Reductions
reduce the non-linear PDE or system of PDEs into non-linear reduced ordered
ODE or system of PDEs. This helps to solve these systems of PDEs to reduced
form. Graphical behavior of the transformed points of the 1-parameter solution
functions have drawn.

KEYWORDS

short pulse equation, Lie point symmetry analysis, optimal system for lie subalgebras,
reductions, invariant solutions

1 Introduction

Galois used the group theory to discuss the solvability of algebraic polynomial equations.
Sophus Lie used the same idea foe differential equations and devised a comprehensive
program now known as Lie symmetry analysis (LSA). In his attempt, he also developed the
theory of Lie groups with broad applications in many areas of mathematics, physics, and in
applied sciences [1, 2]. [3] have explained the procedure of symmetry reductions and exact
solutions for the non-linear PDEs using three different methods that are direct, classical, and
non-classical. [4] used LSA for systems of non-linear PDEs including the solutions, for
system of non-linear coupled PDEs in real physical application, for the unsteady liquid and
gas flow in long pipelines, for approximated long wave equations in shallow water and for the
general dispersive long-wave equation.

Non-linear short pulse equation (SPE) represents the propagation of ultra-short pulses
(light pulses) in optical fibers of silica [5]. Propagation of pulses in optical fibers was first
depicted by the cubic non-linear Schrodinger equation (NLSE) which are used to provide the
actual fiber connections and refer new systems of fiber communication to attain very high
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data transmission [6, 7]. Research studies on a large scale have been
performed for the propagation of ultra-short pulses (very narrow
pulses) that permit high quality fast data transmission [6, 8]. In case
of short pulses (or ultra-short pulses), the rationality of NLSE lacks
due to the breakdown, [9]. Also, the higher order terms that are
involved in cubic NLSE cause difficulties, see Figure 1, for the
behavior of NLSE as an output [10]. Therefore, determined the
SPE which provides more accurate approximation of the solution of
Maxwell’s equation in non-linear media rather than the NLSE [6].
The SPE has vast applications in many applied fields such as systems
of impulse, mechanics, neural networks, and in many other fields of
sciences. Determined the symmetries of SPE and travelling wave
solution by parametric representation and power series process,
respectively, [11]. Evaluated the symmetry reductions and
conservation laws by using the direct method for SPE, [12].
Authors also determined the Lie symmetries for SPE through the
non-local system. Established the results for well-posedness of
solutions which are bounded for homogenous IBVP and Cauchy
problem connected with SPE, [5]. Matsuno constructed multiple
exact solutions by using the direct method for three novel PDEs
related with generalizations of SPE that are integrable, [13]. He gave
the parametric representation of multi-soliton solutions of
generalized SPE. LSA has been used by many mathematicians to
explore the results related to the exact solutions of non-linear PDEs
which depict physical phenomena [14]. Discussed the class of non-
linear PDEs having an arbitrary order [15]. Authors estimated the
determining equations for non-classical symmetries by using
compatibility of original equations with invariant surface
conditions.

In this article, we have discussed the LSA for one of the modified
form of SPE and see graphical behavior of the functions depending
upon 1-parameter (ϵ) Lie groups. The non-linear SPE is as follows:

uxt � αu + 1
3
β u3( )xx, (1)

where u(x, t) is the magnitude of electric field. α and β are the real
parameters. Considering the SPE of the following form

uxt � αh u( ) + 1
3
βk3 u( ), (2)

where we let the general functions h(u) and k(u) as:

• h(u) = eu and k(u) = uxx,
• h(u) � eu

n
for n ∈ N, (n > 1) and k(u) = uxx.

It is worth mentioning that the case h(u) = un and k(u) = uxx for
Eq. 2 has been recently discussed in the article [16]. We will find Lie
point symmetries corresponding to the aforementioned cases and
the optimal system with reductions and see their graphical behavior
corresponding to the Lie symmetries.

2 Results

In the present section, we give our main results with
computations.

2.1 Lie symmetries of SPE for the case of
h(u) = eu and k(u) = uxx

Eq. 2 becomes

uxt � αeu + 1
3
βu3

xx, (3)

Consider the one parameter Lie group of point transformations for
Eq. 3.

x* � x + ϵλ x, t, u( ) + O ϵ2( ),
t* � t + ϵμ x, t, u( ) + O ϵ2( ),
u* � u + ϵ] x, t, u( ) + O ϵ2( ), (4)

where ϵ ∈ R is the group parameter.The group generator of (4) is
defined in the following vector form as:

W � λ x, t, u( ) z

zx
+ μ x, t, u( ) z

zt
+ ] x, t, u( ) z

zu
, (5)

where λ, μ and ] are infinitesimal functions of group variables. The
second prolongation of the infinitesimal generator along with
coefficients has the following form:

Pr 2( )W � W + ]x
z

zux
+ ]t

z

zut
+ ]xx

z

zuxx
+ ]xt

z

zuxt
+ ]tt

z

zutt
,

]xx � DxDx ] − λux − μut( ) + λuxxx + μuxxt,
]xt � DxDt ] − λux − μut( ) + λuxtx + μuxtt.

(6)

where Dx and Dt are the total derivatives.
Apply the second prolongation of the infinitesimal generator Eq.

5 onto Eq. 3. Then, in order to calculate symmetry of Eq. 3, we have
the equation of the following form:

Pr 2[ ]W uxt − αeu − 1
3
βu3

xx( )|uxt�αeu+1
3 βu

3
xx
� 0. (7)

Solving this equation

FIGURE 1
Pulse propagation in NL-dispersive optics.
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−α]eu − β]xx u2( )xx + ]xt[ ]|uxt�αeu+1
3 βu

3
xx
� 0. (8)

Substitute the values of ]xx, ]xt and Eq. 3 which leads to an under-
determined system of equations given as:

μxx � 0, μxu � 0, μuu � 0, λuu � 0, μu � 0, λu � 0,
λtu � 0, μx � 0, ]uu � 0, ]xu � 0, ]xx � 0, ]tu � 0,
λt � 0, λxx � 0,

−α]eu + ]xt + α ]u − λx − μt( )eu � 0,

−2
3
]u + 5

3
λx − 1

3
μt � 0.

(9)
The solution of the aforementioned determining equations gives

the coefficient functions in the form of

λ x( ) � 1
5
c1′x + c3′,

μ t( ) � c1′t + c2′,
] x, t, u( ) � −6

5
c1′.

(10)

c1′, c2′ and c3′ are arbitrary constants. Thus, the Lie algebra of the
infinitesimal symmetries for the case n = 1 is

W1 � 1
5
xzx + tzt − 6

5
zu,

W2 � zt,
W3 � zx.

(11)

Theorem 3.1 The set of these generators is closed under the one
parameter Lie groups Hϵ

i which are generated by infinitesimal
generators Wi for i = 1, 2, and 3 are given in the following table.
The entries give the transformed points exp(ϵWi)(x, t, u) = (x*,
t*, u*).

Hϵ
1 : x, t, u( ) → e

1
5 ϵx, eϵt, u − 6

5
ϵ( ),

Hϵ
2 : x, t, u( ) → x, t + ϵ, u( ),

Hϵ
3 : x, t, u( ) → x + ϵ, t, u( ).

(12)

where ϵ ∈ R is the group parameter.Theorem 3.2 If u � B(x, t)
satisfies Eq. 3, then, u(i)(i = 1, 2, and 3) are solutions of Eq. 3:

FIGURE 2
For u(1) � −6

5 ϵ[cos(e−
1
5 ϵx + e−ϵt)] and ϵ =0.000005.

FIGURE 3
For u(1*) � −6

5 ϵ[cos(ϵ−
1
5 ϵx) + sin(e−ϵt)] and ϵ = 0.000005.

FIGURE 4
For u(2) = x3+2(t − ϵ) and ϵ = 0.000005.
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u 1( ) � −6
5
ϵB e−

1
5 ϵx, e−ϵt( ),

u 2( ) � B x, t − ϵ( ),
u 3( ) � B x − ϵ, t( ).

(13)

where ui � Hϵ
i .B

i(x, t), (i = 1,2, and 3), ϵ≪ 1 is any positive number.
The Eq. 13 provides a class of solutions for Eq. 3 depending upon

the parameter ϵ and general function Bi where (i = 1, 2, 3). The
Figures 2–5 show the graphical view of the functions ui, (i = 1, 2, 3)
where ui attained from Lie symmetry groups Wi. These graphs are
formed by letting different general functions in place of Bi in Eq. 13.
The graphs are constructed from the maple.

For first equation in Eq. 13, letting the general trigonometric
function in place of B(x, t)

u 1( ) � −6
5
ϵ cos e−

1
5 ϵx + e−ϵt( )[ ], (14)

along-with ϵ = 0.000005 and abscissa x = −5 to 5, ordinate t = −5 to 5.

u 1( ) � −0.000006 cos e−0.000001x + e−0.000005t( )[ ]. (15)
Figure 2 shows the graphical behavior of Eq. 15.letting another

general value of function B(x, t) � cos(ϵ−1
5 ϵx) + sin(e−ϵt). The

function becomes

u 1*( ) � −0.000006 cos e−0.000001x( ) + sin e−0.000005t( )[ ]. (16)
Figure 3 shows the graphical view of Eq. 16.
For second equation of Eq. 13, considering a general function

B(x, t) � x3 + 2(t − ϵ) for the same values of ϵ = 0.000005 and
aforementioned coordinates for Eq. 14.

u 2( ) � x3 + 2 t − 0.000005( ), (17)

Figure 4 shows its graphical view.
For last equation of Eq. 13, we let a general logarithmic function

B � 2t ln(x − ϵ) and for similar values of ϵ, x, and t coordinates.

u 3( ) � 2t ln x − 0.000005( ). (18)
Its graph is in Figure 5.

2.2 Optimal system of subalgebras

In this part, we will find the optimal system of one dimensional
Lie subalgebras for Eq. 3 by using the adjoint representation. The
corresponding commutator table and the adjoint table are as follows:
Commutator Table: Adjoint Table:

Let us take a generator

W � β1W1 + β2W2 + β3W3, (19)
Case No.1 For β1 ≠ 0, the generator turns to

W � W1 + β2W2 + β3W3. (20)
Applying Adjeβ2W2 on Y gives

W′ � W1 + β3W3, (21)
furthermore, proceeding in the same way

W″ � Adje5β3W3 W3( ) � W1, (22)
which successively makes the coefficients β2 and β3 equal to 0and
implies that W ≃ W1.Case No.2 Without loss of generality, here we
take β1 = 0 and β2 = 1, the generator becomes

W � W2 + β3W3, (23)
Now, act Adjeβ3W3 on the aforementioned W,

W′ � W2 + β3W3, (24)
Subcase No.2.1 If β3 < 0, then

W′ � W2 −W3. (25)
Subcase No.2.2 If β3 > 0, then

W′ � W2 +W3. (26)

FIGURE 5
For u(3)=2t ln (x − ϵ).

[.,.] W1 W2 W3

W1 0 0 0

W2 W2 0 0

W3
1
5W3 0 0

Adj W1 W2 W3

W1 W1 W2 W3

W2 W1 − ϵW2 W2 W3

W3 W1 − 1
5 ϵW3 W2 W3
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Case No.3 For β1 = β2 = 0 and β3 = 1. Thus, in the meanwhile we
haveW ≃W3.Case No.4 Let consider β1 = 0 = β3 and β2 ≠ 0. In this
case, the generator is W ≃ W2.

The optimal system of one-dimensional subalgebras admitted by
Eq. 3) is as follows:

W �
W1,
W2,
W3,
W2 ± W3.

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (27)

2.3 Reductions and invariant solutions

2.3.1 Reduction by W2

The invariants for corresponding characteristic equation are as
follows:

x � a, u � b, (28)
where a and b are arbitrary constants.

The invariant solution can be written in the form of b = f(a),
implies that

u � f a( ), (29)
substituting this value in Eq. 3), we obtain

0β f″ a( )( )3 + 3αef a( ) � 0. (30)
The solution of this reduced equation for β = 1 is given in the

form of solution set as.

∫ f a( ) ∓ 1������������
6 −3αeb( ) − k1

√ db − x − k2 � 0,

∓ 6k1 arctan
����������������������
−3I35

6 − 33
1
3 −αef a( )( )13 + 1

k21

√
k1⎛⎝ ⎞⎠ − x − k2 � 0,

∓ 6k1 arctan
��������������������
3I3

5
6 − 33

1
3 −αef a( )( )13 − 1

k21

√
k1⎛⎝ ⎞⎠ − x − k2 � 0.

2.3.2 Reduction by W3

The corresponding characteristic equation to this generator is as
follows:

dx

1
� dt

0
� du

0
, (31)

this gives two invariants

t � a1, u � b1, (32)
where a1 and b1 are arbitrary constants. It implies

u � f t( ), (33)
putting this in Eq. 3, we obtain

αeu � 0, (34)
which gives a trivial solution for u = f(x).

2.3.3 Reduction by W1

The characteristic equation is

5
dx

x
� dt

t
� −5

6
du, (35)

solving this, we obtain corresponding invariants of the form

r � t

x5
, s � eux6, (36)

from this

u � ln x−6f tx−5( )[ ], (37)
where we obtain

ux � − 1
xf r( ) 5rf′ r( ) + 6f r( )[ ],

uxx � f r( ) 25r2f″ r( ) + 6f r( ) + 30rf′ r( )[ ] − 25r2f′2 r( )
x2f2 r( ) ,

uxt � f r( ) −5rf″ r( ) − 5f′ r( )[ ] + 5rf′2 r( )
x6f2 r( ) .

(38)

substituting these derivatives into Eq. 3, we obtain

3f5 r( ) −5rf″ r( ) − 5rf′ r( )[ ] + 15rf4 r( )f′2 r( ) − 3αf7 r( )
+β f r( ) 6f r( ) + 25r2f″ r( )[[ + 30rf′ r( )] − 25r2f′2 r( )]3
� 0.

(39)
Thus, non-linear PDE (3) reduces to a non-linear ODE.

2.3.4 Reduction by W2 + W3

The invariants that we gain by solving characteristic equation
are as follows:

a3 � x − t, u � b3, (40)
a3 and b3 are arbitrary constants. The invariant solution
corresponding to them is u = f (a3). Inserting this solution into
Eq. 3 will give us a non-linear ODE of the form

3f″ a3( ) + β f″ a3( )( )3 + 3αef a3( ) � 0. (41)

2.3.5 Reduction by W2 − W3

The invariants corresponding to characteristic equation for this
case are a4 = x + t and b4 = u. Furthermore, its invariant solution is
given as u = f (a4). Therefore, the Eq. 3 will be converted into an
ODE of the form

3f″ a4( ) − β f″ a4( )( )3 − 3αef a4( ) � 0. (42)

2.4 Determining lie symmetry of SPE for the
case h(u) � eu

n
and k(u) = uxx (n > 1)

The equation becomes

uxt � αeu
n + 1

3
βu3

xx. (43)

The one-parameter Lie group of transformations and the second
prolongation with coefficients are given in Eqs 4, 6, respectively for
Eq. 43. Let the generator be

Z � λ x, t, u( )zx + μ x, t, u( )zt + ] x, t, u( )zu, (44)
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Therefore, we have

Pr 2[ ]Z uxt − αeu
n − 1

3
βu3

xx( )|uxt�αeun+1
3 βu

3
xx
� 0, (45)

simplification gives the following equation:

−αn]eunun−1 − β]xxu2
xx + ]xt � 0, (46)

which is solved for the values of ]xx and ]xt, will give us the equation
involving derivatives of infinitesimals with respect to dependent and
independent variables and also the derivatives of dependent variablew.r.to
independent variables. Substituting Eq. 43 and comparing the values of
coefficients on both sides gives an under-determined system of equations

μxx � 0 μxu � 0, μuu � 0, λuu � 0, μu � 0, λu � 0,
λtu � 0, μx � 0, ]uu � 0, ]xu � 0, ]xx � 0, ]tu � 0,

λt � 0, λxx � 0, −2
3
]u + 5

3
λx − 1

3
μt � 0,

−αn]eunun−1 + ]xt + α ]u − λx − μt( )eun � 0.

(47)
To solve this system, we consider ] as:

] � L t( )x +Mu +N t( ), (48)
which satisfies the aforementioned equations and then by solving the
aforementioned system, we obtain

λ x( ) � c2,
μ t( ) � c1,

] x, t, u( ) � 0.
(49)

c1 and c2 are any arbitrary constants. The infinitesimal generators
for the one-parameter of Lie groups of transformations admitted in
Eq. 43) are given by

Z1 � zt,
Z2 � zx.

(50)

These symmetry generators give us the symmetry groupsQϵ
i for i =

1, 2:

Qϵ
1 � x, t + ϵ, u( ),

Qϵ
2 � x + ϵ, t, u( ). (51)

If u = R (x,t) is a solution of Eq. 43), then ui for i = 1, 2, and 3 and ϵ≪
1 also satisfies Eq. 43,

u 1( ) � R x, t − ϵ( ),
u 2( ) � R x − ϵ, t( ). (52)

Commutator Table:also,
Adjoint Table.

Proposition 5.1: The generators Z1 = zt and Z2 = zx form a two-
dimensional abelian Lie symmetry algebra.

2.5 Optimal system, reductions and invariant
solutions

Considering a generator Z = b1Z1 + b2Z2. This generator will
established a set of optimal system comprising of Lie algebra

Z � Z1, Z2, b1Z1 + b2Z2{ } (53)
where b1, and b2 are arbitrary constants. The reduction of PDE Eq.
39 by using the generator Z1 leads to an invariant solution u = f (c1).
The reduced non-linear ODE will be

3αeu
n + βu′′3 � 0 (54)

The reduction through Z2 generates a trivial case for Eq. 39.

3 Conclusion

In this paper, we have carried out the LSA for computing the
similarity solutions (symmetries) of the non-linear SPE for the cases
when h(u) = eu and k(u) = uxx and h(u) � eu

n
and k(u) = uxx in SPE

(2). In addition, an optimal system of one-dimensional subalgebra
has been set up. The reductions and invariant solutions for the
generalized SPE are calculated corresponding to this optimal system
as well. The graphs are formed by the maple for the functions
obtained from the transformed points of one-parameter Lie groups.
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Applications of the invariant
subspace method on searching
explicit solutions to certain
special-type non-linear evolution
equations

Gaizhu Qu1*, Mengmeng Wang2 and Shoufeng Shen3*
1School of Mathematics and Physics, Weinan Normal University, Weinan, China, 2Department of
Mathematics, Hangzhou Zhongce Vocational School Qiantang, Hangzhou, China, 3Department of
Applied Mathematics, Zhejiang University of Technology, Hangzhou, China

We extend the invariant subspace method (ISM) to a class of Hamilton–Jacobi
equations (HJEs) and a family of third-order time-fractional dispersive PDEs
with the Caputo fractional derivative in this letter. More precisely, the
complete classification is presented for such HJEs that admit invariant
subspaces governed by solutions of the second-order and third-order
linear ordinary differential equations (ODEs). Meanwhile, some concrete
equations are derived for the construction of new exact solutions
u(x, t) � ∑n

i�1Ci(t)fi(x). Then a set of invariant subspaces of the considered
third-order time-fractional non-linear dispersive equations are obtained.
Based on the Laplace transform method (LTM) and applying several
properties of the well known Mitta-Leffer (ML) function, the different types
of explicit solutions of a family of third-order time-fractional dispersive PDEs
are finally derived.

KEYWORDS

exact solution, Hamilton–Jacobi equation, complete classification, invariant subspace
method, Laplace transform

1 Introduction

One of the recently invented methods to derive the explicit solution of NPDE is
ISM, which was initiated by Galaktionov and Svirshchevskii in [1] and many
researchers have illustrated its applicability in Refs. [2–6]. Specifically, Refs. [2, 3, 5,
6] have addressed the basic question of the dimension of invariant subspaces, which in
addition to ISM is also relevant to Lie-B€acklund symmetry (LBS) and the conditional
Lie-B€acklund symmetry (CLBS) [7–14]. Very recently, Refs. [15–23] generalized this
method to resolve fractional non-linear partial differential equations (fNPDEs). It is
verified that by applying ISM, a fNPDE can be reduced to a system of fractional non-
linear ordinary differential equations (fNODEs), which can be solved by known
analytical approaches.

In this paper, we analyze the following two families of special-type non-linear evolution
equations.
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1.1 Hamilton–Jacobi equations

Hamilton–Jacobi equations (HJEs) can be regarded as models
for various processes in theoretical physics, quantummechanics and
contemporary problems of control, etc. In Refs. [24–28], the authors
analyzed HJEs in different directions. References [29–32] have also
indicated that these equations can be used to depict several
properties including blow up behavior and the long time action
of non-linear diffusion equations. We will consider the following
HJEs

ut � um+2
x + p x( )B u( )um+1

x + Q x, u( ), t ∈ R+, x ∈ R, (1.1)
where u = u(t, x) and p(x), B(u), Q(x, u) are sufficiently smooth
functions of indicated variables. Here we suppose that m ≠ − 1, −2.
This assumption means that Eq. 1.1 is a fully non-linear HJE. In Ref.
[7], Qu showed that Eq. 1.1 preserves the second-order CLBS with
η � uxx +H(u)u2x + G(u)ux + F(u) and classified the solutions for
Eq. 1.1.

1.2 Third-order time-fractional dispersive
PDEs

The concept of fractional order derivative was initiated with the
half-order derivative as considered by Leibniz and L’Hopital and
many authors have generalized it to an arbitrary order derivative.
Different concepts of fractional derivatives were proposed in
[33–36]. Now fNPDEs have gained much attention because they
can be utilized to represent a large number of physical processes.
Some techniques have been employed to solve fNPDEs, but the
study of fNPDEs has been still handicapped due to the limitations on
dealing with more complex fNODEs.

We will study a family of third-order time-fractional dispersive
PDEs

zα

ztα
u − δ2

z2u

zx2
[ ] + σ

zu

zx
+ γ

z3u

zx3
� F u[ ]

� z

zx
b1u

2 + b2
zu

zx
( )2

+ b3u
z2u

zx2
[ ],

(1.2)
where u = u(t, x), 0 < α ≤ 1, t > 0, and zαu

ztα is the Caputo fractional
derivative of u with respect to t. The ordinary case α = 1 of Eq. 1.2
was first introduced in [37] and has been discussed in depth bymany
researchers [38, 39]. In fact, when α = 1, δ = b2 = b3 = 0, Eq. 1.2
becomes the KdV equation. If we take
α � δ2 � b3 � 1, b1 � −3

2, b2 � 1
2, Eq. 1.2 becomes the

Camassa–Holm equation [40]:

ut + σux + γuxxx − uxxt + 3uux � 2uxuxx + uuxxx. (1.3)
If α � δ2 � b2 � b3 � −b1

2 � 1, σ � γ � 0, Eq. 1.2 is the
Degasperis–Procesi equation [41, 42]:

ut − uxxt + 4uux � 3uxuxx + uuxxx. (1.4)
If α = δ2 = 2b2 = b3 = 1, σ = γ = b1 = 0, Eq. 1.2 becomes the

Hunter-Saxton equation [1]:

ut − uxxt � 2uxuxx + uuxxx. (1.5)

These equations arise as asymptotic models in the theory of shallow
water waves. Many authors have concentrated on studying the above
special cases of Eq. 1.2.

The major contents of this paper are as follows. We recall the
method of the invariant subspace, and also introduce several
definitions and fundamental theorems on fractional derivatives
and integrals in Section 2. In Section 3 we obtain the complete
invariant subspace classification of Eq. 1.1 and derive the reductions
and explicit solutions of several examples by utilizing ISM. In
Section 4, combined with LTM and inspired by several properties
of the well known ML function, we investigate exact solutions of
different cases for Eq. 1.2. In the last section, we make some
concluding remarks.

2 Preliminaries

First, we introduce ISM. Then, we give several definitions and
properties.

2.1 Invariant subspace method

Now, we will present brief details of ISM for a kth-order NPDE

ut � F x, u, ux, . . . , ukx( ) ≡ F u[ ], (2.1)
where ujx � zju

zxj (j � 1, . . . , k).
In [15], Gazizov and Kasatkin demonstrated that ISM can be

used to reduce a fNPDE to a system of fNODEs.
We focus on the fNPDE of the form

zαu

ztα
� F x, u, ux, . . . , ukx( ) ≡ F u[ ], (2.2)

where zα

ztα is the time-fractional Caputo derivative. Let f1(x), f2(x), . . .,
fn(x) be linearly independent functions and their linear span over R
be Wn, namely,

Wn � L f1 x( ), f2 x( ), . . . , fn x( ){ } ≡ ∑n
i�1

Cifi x( ), Ci ∈ R
⎧⎨⎩ ⎫⎬⎭.

Definition 2.1. If differential operator F satisfies F[Wn] ⊆ Wn, the
subspace Wn is invariant under F.

Let us suppose Eq. 2.2 preserves the subspace Wn, then

F ∑n
i�1

Cifi x( )⎡⎣ ⎤⎦ � ∑n
i�1

Ψi C1, C2, . . . , Cn( )fi x( )

(C1, C2, . . . , Cn) ∈ Rn. Thus Eq. 2.2 has the solution

u x, t( ) � ∑n
i�1

Ci t( )fi x( ),

{Ci(t), (i = 1, 2, . . ., n)} satisfy the n-dimensional dynamical system

zαCi t( )
ztα

� Ψ C1 t( ), C2 t( ), . . . , Cn t( )( ), i � 1, 2, . . . , n.

Observing that the subspace Wn is determined by a basic
solution set of a linear nth-order ODE,
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L y[ ] ≡ y n( ) + an−1 x( )y n−1( ) +/ + a1 x( )y′ + a0 x( )y � 0. (2.3)
Therefore, the invariant condition F is

L F u[ ][ ] H[ ] � 0. (2.4)

2.2 Some results on fractional calculus

Definition 2.2. The Riemann–Liouville fractional integral operator
of order α > 0 is represented as the following expression:

Iαa+f t( ) � 1
Γ α( )∫t

a
t − τ( )α−1f τ( )dτ, t> a. (2.5)

Where Γ(p) � ∫∞
0
e−xxp−1dx is the Euler Gamma function. Note

that I0a+f(t) � f(t).

Definition 2.3. The Caputo fractional differential operator of order
α > 0 is represented as the following expression:

Dα
a+f t( ) � In−αa+ Dnf t( )

�
1

Γ n − α( )∫t

a
t − τ( )n−α−1f n( ) τ( )dτ, α ∈ n − 1, n( ), n ∈ N,

f n( ) t( ), α � n ∈ N.

⎧⎪⎨⎪⎩
(2.6)

When α � 0, Dα
a+f(t) � f(t).

We can replace operators Dα
0+f(t) and Iα0+f(t) by Dαf(t) and

Iαf(t) respectively. The following properties are true for fractional
integral and derivative:

Dα f t( ) + g t( )[ ] � Dαf t( ) +Dαg t( ),
DαIαf t( ) � f t( ),
IαDαf t( ) � f t( ) −∑n−1

k�0

f k( ) 0( )
k!

tk, α> 0, t> 0,

Iαtβ � Γ β + 1( )
Γ β + α + 1( )tβ+α, α> 0, t> 0, β> − 1,

Dαtβ � Γ β + 1( )
Γ β − α + 1( )tβ−α, β> 0.

When α ∈ (0, 1], the LT of Caputo fractional derivative has the
following expression

L
dαf t( )
dtα

{ } � sα �f s( ) − sα−1f 0( ),

where �f(s) � ∫∞
0
e−stf(t)dt.

Definition 2.4. A ML function is

Eα,β z( ) � ∑∞
k�0

zk

Γ αk + β( ), Re α( )> 0, Re β( )> 0.

Also, Eα,1(z) = Eα(z).
We can see the γth order Caputo derivatives of the ML

function are:

Dγ tβ−1Eα,β atα( )[ ] � tβ−γ−1Eα,β−γ atα( ),
Dγ Eα atα( )[ ] � aEα atα( ),

a ∈ R, γ> 0, α> 0, and the following presentation gives the LT of
function tαk+β−1E(k)

α,β(± atα), that is
L tαk+β−1E k( )

α,β ± atα( ){ } � ∫∞

0
tαk+β−1e−stE k( )

α,β ± atα( )dt

� k!sα−β

sα ∓ a( )k+1, Re s( )> |a|1α.

3 Exact solutions of HJEs

3.1 Invariant subspace classification of Eq. 1.1

For Eq. 1.1, we write it in the form
ut � F[u] � um+2

x + p(x)B(u)um+1
x + Q(x, u). By the maximal

dimension n ≤ 2k + 1, we consider the following cases for n = 2, 3.
We investigate n = 2 first. After a straightforward calculation, we

obtain that

J1u
m+3
x + J2u

m+2
x + J3u

m+1
x + J4u

m
x + J5u

m−1
x + J6u

2
x + J7ux + J8 � 0,

(3.1)
where Ji(i = 1, 2, . . ., 8) have the following expressions:

J1 � pB″,
J2 � m + 1( ) m + 2( )a21 − m + 1( )a0 − m + 2( )a1′

+2p′B′ − 2 m + 1( )pa1B′,
J3 � p″B − 2m + 3( )pa0B′u − 2m + 1( )a1p′B

+ m m + 1( )a21 − m + 1( )a1′ −ma0[ ]pB
+2 m + 1( ) m + 2( )a1a0u − m + 2( )a0′u,

J4 � m + 1( ) m + 2( )a20u + 2ma1a0 − a0′( )pB − 2a0p′B[ ]u,
J5 � m m + 1( )pa20u2B,
J6 � Quu,
J7 � 2Qxu,
J8 � a0Q + a1Qx − a0uQu + Qxx.

(3.2)

Observing the above expression Eq. 3.1, we shall discuss four
possibilities:m = −3, 1, 2 andm ≠ − 3, 1, 2. For the case ofm = −3, we
derive the following system

2a0 + 2a21 + a1′ + 2 p′ + 2a1p( )B′ � 0,
p″B + 5a1p′B + 3a0 + 6a21 + 2a1′( )pB
+ 3a0pB′ + 4a0a1 + a0′( )u � 0,

a20u + a0′ + 6a0a1( )pB + 2a0p′B � 0,
pa20B � 0,
Qxu � 0,
Quu � 0,
pB″ + a0Q + a1Qx − a0uQu + Qxx � 0.

(3.3)

From the first equation of Eq. 3.3, it is apparent that B(u) = b1u +
b2. By solving the fifth and sixth equations of Eq. 3.3, we obtain Q(x,
u) = q1u + Q1(x), where b1, b2 and q1 are arbitrary constants and
Q1(x) is a function of x. Inserting B(u) = b1u + b2 andQ(x, u) = q1u +
Q1(x) into system Eq. 3.3, we have

2a21 + 4b1a1p + a1′ + 2a0 + 2b1p′ � 0,
6b1a

2
1p + 4a0 + 5b1p′( )a1 + 2b1a1′p + 6b1a0p + a0′ + b1p″ � 0,

6b2a
2
1p + 5b2a1p′ + 2b2a1′p + 3b2a0p + b2p″ � 0,

6b1a0a1p + a20 + 2b1a0p′ + b1a0′p � 0,
6b2a0a1p + 2b2a0p′ + b2a0′p � 0,
b1a

2
0p � 0,

b2a
2
0p � 0.

a1Q1′ + a0Q1 + Q1″ � 0.

(3.4)
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TABLE 1 Classifications of W2 governed by linear ODEs (2.3) of Eq. 1.1.

No. Eq. 1.1 ODE (2.3) W2

1 ut � u−1x + p1(b1u + b2)u−2x + q1u + q2x + q3 y″ = 0 W{1, x}

2 ut � u−1x + p1

x (b1u + b2)u−2x + q1u + q2
!!
x

√ + q3 y″ + 1
2xy′ � 0 W 1,

!!
x

√{ }
3 ut � u−1x + 1

3x (−u + 3p1b2)u−2x + q1u + q2
!!
x3

√ + q3 y″ + 2
3xy′ � 0 W 1,

!!
x3

√{ }
4 ut � u3x + 1

p1
(b1u + b2)u2x + q1u + q2x + q3 y″ = 0 W 1, x{ }

5 ut � u3x + 2
p1(2x−a1 ) (b1u + b2)u2x + q1u + q2 y″ − 1

2x−a1y′ � 0 W 1,
!!!!!!!!!
(x − 1

2a1)23
√{ }

6 ut � u3x + 1
p1(x+a1) (b1u + b2)u2x + q1u ± 2

!
2

√
3 q2(x + a1)32 + q3 y″ − 1

2(x+a1 )y′ � 0 W 1, (x + a1)32{ }
7 ut � u3x + 1

p1(x+2a1 ) (−3p1u + b2)u2x + q1u + q2 y″ − 2
x+2a1y′ � 0 W 1, (x + 2a1)3{ }

8 ut � u3x + (p1x + p2)b2u2x + q1u + q2x + q3 y″ = 0 W 1, x{ }

9 ut � u3x − (x2 + p1x + p2)u2x + q1u2 + q2u + q3x + q4 y″ = 0 W 1, x{ }

10 ut � u3x + p1(b1u + b2)u2x + q1u + q2x + q3 y″ = 0 W 1, x{ }

11 ut � u3x + (p1
!!
x

√ + p2

x )b2u2x + q1u + q2x
3
2 + q3 y″ − 1

2xy′ � 0 W 1, x
3
2{ }

12 ut � u3x − 4
9 (q1x2 + p1

!!
x

√ + p2

x )u2x + q1u2 + q2u + q3x
3
2 + q4 y″ − 1

2xy′ � 0 W 1, x
3
2{ }

13 ut � u3x + p1

x (b1u + b2)u2x + q1u + q2x
3
2 + q3 y″ − 1

2xy′ � 0 W 1, x
3
2{ }

14 ut � u3x + (p1

x + p2

x4)(− 3
p1
u + b2)u2x + q1u + q2x3 + q3 y″ − 2

xy′ � 0 W 1, x3{ }
15 ut � u3x + 27

x3u
3 + q1u + x

3
2 [q2 sin(3

!
3

√
2 lnx) + q3 cos(3

!
3

√
2 ln x)] y″ − 2

xy′ + 9
x2 y � 0 W x

3
2 sin(3

!
3

√
2 lnx),{

x
3
2 cos(3

!
3

√
2 lnx)}

16 ut � u3x + 9
4 (p1x2 + 1

x)uu2x − 27
16 (3p1 + 1

x3)u3 + q1u + q2x
3
2 + q3x−

3
2 y″ + 1

xy′ − 9
4x2 y � 0 W x

3
2 , x−3

2{ }
17 ut � u3x − 27

8x uu
2
x + 729

128x3u
3 + q1u + q2x

3
2 + q3x

9
4 y″ − 11

4xy′ + 27
8x2 y � 0 W x

3
2 , x

9
4{ }

18 ut � u3x + 1
x (−9

2 u + b2)u2x + 27
2x3u

3 − 9
4x3 b2u

2 + q1u + q2x
3
2 + q3x3 y″ − 7

2xy′ + 9
2x2 y � 0 W x

3
2 , x3{ }

19 ut � u3x + 1
3x (a0 − 9)uu2x + 1

3x3a
2
0u

3 + q1u y″ − 2
xy′ + a0

x2 y � 0 W x
3+ !!!

9−4a0
√

2 , x 3− !!!!
9−4a0√
2{ }

20 ut � u3x + 3
4x (1 + 2a1)uu2x − 1

16x3(1 + 2a1)3u3 + q1u + q2x
3
2 + q3x−a1−

1
2 y″ + a1

x y′ − 3
4x2 (2a1 + 1)y � 0 W x

3
2 , x−a1−1

2{ }
21 ut � u4x + p1(b1u + b2)u3x + q1u + q2x + q3 y″ = 0 W 1, x{ }

22 ut � u4x + 3
p1(3x−a1 ) (b1u + b2)u3x + q1u + q2 y″ − 1

3x−a1y′ � 0 W 1, (x − 1
3a1)

4
3{ }

23 ut � u4x + 1
p1(x−a1) (−2p1u + b2)u3x + q1u + q2 y″ − 1

x−a1y′ � 0 W 1, (x − a1)2{ }
24 ut � u4x + (p1x + p2)u3x + q1u2 + q2xu + q3u + q4x + q5 y″ = 0 W 1, x{ }

25 ut � u4x + (b1u + b2)u3x + q1u2 + q2xu + q3u + q4x + q5 y″ = 0 W 1, x{ }

26 ut � u4x + x−4
3(b1u + b2)u3x + q1u2 + q2x

4
3u + q3u + q4x

4
3 + q5 y″ − 1

3xy′ � 0 W 1, x
4
3{ }

27 ut � u4x − (p1x4a1 + p2x3a1+1 + 1)u3x + q1u2 + q2x1−a1u + q3u y″ + a1
x y′ � 0 W 1, x1−a1{ }

+q4x1−a1 + q5

28
ut � u4x − u3x + q1x1−a1u + q2u + q3x

1−a1+
!!!!!!
(a1−1)2−4a0

√
2

y′′′ + a1
x y″ + a0

x y � 0
W x

1−a1+
!!!!!!
(a1−1)2−4a0

√
2 ,{

+q4x
1−a1−

!!!!!!
(a1−1)2−4a0

√
2 x

1−a1−
!!!!!!
(a1−1)2−4a0

√
2 }

29 ut � um+2
x + p1(b1u + b2)um+1

x + q1u + q2x + q3 y″ = 0 W 1, x{ }

30 ut � um+2
x + m+1

p1[(m+1)x−a1] (b1u + b2)um+1
x + q1u + q2 y″ − 1

(m+1)x−a1y′ � 0 W 1, (x − a1
m+1)

m+2
m+1{ }

31 ut � um+2
x + 1

p1(x+a1) (b1u + b2)um+1
x + q1u + q2

m+2[(m + 1)(x + a1)]m+2
m+1 + q3 y″ − 1

(m+1)(x+a1)y′ � 0 W 1, (x + a1)m+2
m+1{ }

(Continued on following page)
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Taking into account the assumption p(x) ≠ 0 and solving the
system (3.4), the corresponding classifying equations and two-
dimensional invariant subspaces are listed as the first three lines
in Table 1 with the casem = −3. The cases ofm = 1, 2 andm ≠ − 3, 1,
2 can be dealt in a similar way; therefore, we obtain the invariant
subspace classification results, which are presented in Table 1.

When n = 3, we find there is only one case: m = 0, and the
corresponding results are listed in Table 2.

3.2 Applications

In this section, we provide a further discussion for addressing
with the explicit solutions using the above classification results.

Example 1: The equation

ut � u3
x +

9
4x

uu2
x −

27
16x3

u3 + q1u (3.5)

admits the two-dimensional invariant subspace W x
3
2, x−3

2{ }
generated by ODE

y″ + 1
x
y′ − 9

4x2
y � 0.

As a result, we derive that

u x, t( ) � C1 t( )x3
2 + C2 t( )x−3

2,

Substituting the above solution into Eq. 3.5, we obtain

C1′ � q1C1 + 27
4
C3

1,

C2′ � −81
4
C2

1C2 + q1C2,

For q1 = 0, we can see that

C1 � 2!!!!!!!!
4c1 − 54t

√ ,

C2 � c2 27t − 2c1( )32.

For q1 ≠ 0, we have

C1 � 2!!!!!!!!!!!!!
4c1q1e

−2q1t − 27
√ ,

C2 � c2 4c1q1e
−2q1t − 27( )32 e4q1t.

The corresponding solution shown in Figure 1
Example 2: The equation

ut � u4
x + q1u (3.6)

admits the invariant subspace W 1, (x − 1
3a1)

4
3{ } governed

by ODE

y″ − 1
3x − a1

y′ � 0.

Then, we arrive at

u x, t( ) � C1 t( ) + C2 t( ) x − 1
3
a1( )4

3

,

Inserting the above solution into Eq. 3.6, we obtain

C1′ � q1C1,

C2′ � 256
81

C4
2 + q1C2,

For q1 = 0, we obtain

C1 � c1,

C2 � 3!!!!!!!!!!
27c2 − 256t3

√ .

For q1 ≠ 0, we have

C1 � c1e
q1t,

C2 � 3

!!!!!!!!!!!!!!!
3q1

81c2q1e
−3q1t − 256

3

√
.

The corresponding solution shown in Figure 2
Example 3: The equation

TABLE 1 (Continued) Classifications of W2 governed by linear ODEs (2.3) of Eq. 1.1.

No. Eq. 1.1 ODE (2.3) W2

32 ut � um+2
x + −(m+2)p1u+mb2

p1(mx−2a1) um+1
x + q1u + q2 y″ − 2

mx−2a1y′ � 0 W 1, (x − 2a1
m )m+2

m{ }
33 ut � um+2

x + −(m+2)p1u+mb2
mp1(x+a1) um+1

x + q1u + 2− 2
m q2

m+2 [m(x + a1)]m+2
m + q3

y″ − 2
m(x+a1 )y′ � 0 W 1, (x + a1)m+2

m{ }

TABLE 2 Classifications of W3 governed by linear ODEs (2.3) of Eq. 1.1.

No. Eq. 1.1 ODE (2.3) W2

1 ut � u2x + p1ux + q1u + q2x2 + q3x + q4 y′′′ = 0 W 1, x, x2{ }
2 ut � u2x + p1ux + a1u2 + q2u + q3 cos( !!!

a1x
√ ) + q4 sin( !!!

a1x
√ ) y′′′ + a1y′ = 0(a1 > 0) W 1, cos( !!!

a1x
√ ), sin( !!!

a1x
√ ){ }

3 ut � u2x + p1ux + a1u2 + q2u + q3e
!!!−a1x√ + q4e−

!!!−a1x√
y′′′ + a1y′ = 0(a1 < 0) W 1, e

!!!−a1x√
, e−

!!!−a1x√{ }
4 ut � u2x + 4

3a2uux + 4
9a

2
2u

2 + q2u + q3e−
1
3a2x + q4e−

2
3a2x y′′′ + a2y″ + 2

9a
2
2y′ � 0 W 1, e−1

3a2x, e−2
3a2x{ }
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ut � um+2
x − m + 2

mx
uum+1

x (3.7)

admits the two-dimensional invariant subspace W 1, x
m+2
m{ }

governed by ODE

y″ − 2
mx

y′ � 0.

Then we arrive at

u x, t( ) � C1 t( ) + C2 t( )xm+2
m ,

Inserting the above solution into Eq. 3.7, we obtain

C1′ � 0,

C2′ � − m + 2
m

( )m+2
C1C

m+1
2 ,

we can see that

FIGURE 1
Solution profile of Eq. 3.5.

FIGURE 2
Solution profile of Eq. 3.6.
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C1 � c1,

C2 � 1!!!!!!!!!!!!!!!!!
m

m + 2
m

( )m+2
c1t + c2

m

√ .

The corresponding solution shown in Figure 3
Example 4: The equation

ut � u2
x +

4
3
a2uux + 4

9
a22u

2 + q2u (3.8)

admits the three-dimensional trigonometric invariant subspace
W 1, e−1

3a2x, e−2
3a2x{ } governed by ODE

y′′′ + a2y″ + 2
9
a22y′ � 0.

Then we arrive at

u x, t( ) � C1 t( ) + C2 t( )e−1
3a2x + C3 t( )e−2

3a2x,

Inserting the above solution into Eq. 3.8, we obtain

C1′ � 4
9
a22C

2
1 + q2C1,

C2′ � 4
9
a22C1C2 + q2C2,

C3′ � 1
9
a22C

2
2 + q2C3,

For q2 = 0, we can see that

C1 � 9

9c1 − 4a22t
,

C2 � c2
9c1 − 4a22t

,

C3 � c22
36 9c1 − 4a22t( ) + c3.

For q2 ≠ 0, we have

C1 � 9q2
9c1q2e

−q2t − 4a22
,

C2 � c2
9c1q2e

−q2t − 4a22
,

C3 � a22c
2
2

81c1q
2
2 9c1q2e

−q2t − 4a22( ) + c3[ ]eq2t.

The corresponding solution shown in Figure 4

4 Exact solutions of a family of third-
order time-fractional dispersive PDEs

Now, we will investigate the different invariant subspaces of
non-linear differential operator F[u] and discuss explicit solutions of
Eq. 1.2, see the following discussions.

Case 1. Let us consider the following equation

zαu

ztα
+ γ

z3u

zx3
− δ2

z2

zx2

zαu

ztα
( ) � F u[ ]

� z

zx
b1u

2 + b2
zu

zx
( )2

+ b3u
z2u

zx2
[ ].

(4.1)
Here α ∈ (0, 1) − 1

2{ }, Eq. 4.1 admits the invariant subspace
W2 � L 1, x{ }, the reason is that

F C1 + C2x[ ] � 2b1C1C2 + 2b1C
2
2x ∈ W2.

This means that Eq. 4.1 has the following explicit solution:

u x, t( ) � C1 t( ) + C2 t( )x,
Substituting the solution into Eq. 4.1, we have

dαC1 t( )
dtα

� 2b1C1 t( )C2 t( ), (4.2)
dαC2 t( )
dtα

� 2b1C
2
2 t( ). (4.3)

Eqs 4.2, 4.3 provide

C2 t( ) � 1
2b1

Γ 1 − α( )
Γ 1 − 2α( )t

−α,

and

C1 t( ) � t−α.

Then

u x, t( ) � t−α + 1
2b1

Γ 1 − α( )
Γ 1 − 2α( )t

−αx.

The corresponding solution shown in Figure 5

Case 2. We consider the equation

zαu

ztα
+ σ

zu

zx
+ γ

z3u

zx3
− δ2

z2

zx2

zαu

ztα
( ) � F u[ ]

� z

zx
−a21 b2 + b3( )u2 + b2

zu

zx
( )2

+ b3u
z2u

zx2
[ ], (4.4)

α ∈ (0, 1], Eq. 4.4 preserves invariant subspace W2 � L 1, e−a1x{ },
since

F C1 + C2e
−a1x[ ] � a31 2b2 + b3( )C1C2e

−a1x ∈ W2,

which means that Eq. 4.4 has the solution

u x, t( ) � C1 t( ) + C2 t( )e−a1x.

FIGURE 3
Solution profile of Eq. 3.7 with m = 2, c1 = c2 = 1.
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Plugging the solution into Eq. 4.4, we find

dαC1 t( )
dtα

� 0, (4.5)

1 − a21δ
2( ) dαC2 t( )

dtα
� a1 σ + γa21( )C2 t( ) + a31 2b2 + b3( )C1 t( )C2 t( ).

(4.6)
Solving Eq. 4.5, C1(t) = c1, c1 is an arbitrary constant, and when

a21δ
2 ≠ 1, letting

μ � a1 σ + γa21 + a21 2b2 + b3( )c1[ ]
1 − a21δ

2 .

Therefore, Eq. 4.6 becomes

dαC2 t( )
dtα

� μC2 t( ). (4.7)

Applying the LT to Eq. 4.7, we have

sαL C2 t( ){ } − sα−1C2 0( ) � μL C2 t( ){ },
namely,

�C2 s( ) � L C2 t( ){ } � a
sα−1

sα − μ
.

Here C2(0) = a, its inverse LT is

C2 t( ) � aEα,1 μtα( ), α ∈ 0, 1( ].
where Eα,1(.) is the ML function

Eα,1 μtα( ) � ∑∞
k�0

μtα( )k
Γ αk + 1( ).

Hence, we derive that

u x, t( ) � c1 + aEα,1 μtα( )e−a1x.
In the case of α = 1, it is a traveling wave solution

u x, t( ) � c1 + aeμt−a1x.

The corresponding solution shown in Figure 6

Case 3. We consider the equation

zαu

ztα
+ σ

zu

zx
+ γ

z3u

zx3
− δ2

z2

zx2

zαu

ztα
( ) � F u[ ]

� z

zx
a0 b2 + b3( )u2 + b2

zu

zx
( )2

+ b3u
z2u

zx2
[ ], (4.8)

α ∈ (0, 1], Eq. 4.8 admits the two-dimensional invariant subspace
W2 � L cos( !!

a0
√

x), sin( !!
a0

√
x){ }, since

F C1 cos
!!
a0

√
x( ) + C2 sin

!!
a0

√
x( )[ ] � 0 ∈ W2.

FIGURE 4
Solution profile of Eq. 3.8.

FIGURE 5
Solution profile of Eq. 4.1 with α = 1/3, b1 = 2.
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This indicates that Eq. 4.8 has the solution

u x, t( ) � C1 cos
!!
a0

√
x( ) + C2 sin

!!
a0

√
x( ).

Substituting the solution into Eq. 4.8, we have

dαC1 t( )
dtα

� λC2 t( ), (4.9)
dαC2 t( )
dtα

� −λC1 t( ). (4.10)

Here, λ �
!!
a0

√ (σ−a0γ)
1+a0δ2 . By applying the time-fractional derivative

dα

dtα to Eq. 4.9, we derive that

dα

dtα
dαC1 t( )
dtα

� −λ2C1 t( ).
Now we discuss the following Cauchy problem:

dα

dtα
dαC1 t( )
dtα

� −λ2C1 t( ),
C1 0( ) � a,

dαC1 t( )
dtα

|t�0 � 0.

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ (4.11)

Then, define g(t) � dαC1(t)
dtα , and utilizing the LT to this equation, we

can see

�g s( ) � sα �C1 s( ) − asα−1. (4.12)
At the same time, applying LT to the first equation of Eq. 4.11, we
obtain

L
dα

dtα
dαC1 t( )
dtα

{ } � L
dαg t( )
dtα

{ } � sα �g s( ) − sα−1g 0( ), (4.13)

Inserting Eq. 4.12 into Eq. 4.13, we find

�C1 s( ) � a
s2α−1

s2α + λ2
.

whose inverse LT is

C1 t( ) � aE2α,1 −λ2t2α( ), α ∈ 0, 1( ]. (4.14)
where E2α,1(.) is the ML function

E2α,1 −λ2t2α( ) � ∑∞
k�0

−1( )kλ2kt2αk
Γ 2αk + 1( ) .

Substituting Eq. 4.14 in Eq. 4.10, we get

dαC2 t( )
dtα

� −λaE2α,1 −λ2t2α( ). (4.15)

By applying Iα on both sides of Eq. 4.15, we obtain

C2 t( ) � −aλtαE2α,α+1 −λ2t2α( ).
For the sake of simplicity, we set the integration constant to zero.
Assuming a = 1, the solution of Eq. 4.8 is

u x, t( ) � E2α,1 −λ2t2α( )cos !!
a0

√
x( ) − λtαE2α,α+1 −λ2t2α( )sin !!

a0
√

x( ).
Note that for α = 1,

E2,1 −λ2t2( ) � ∑∞
k�0

−λ2t2( )k
Γ 2k + 1( ) � cos λt( ),

λtE2,2 −λ2t2( ) � λt∑∞
k�0

−λ2t2( )k
Γ 2k + 2( ) � sin λt( ),

and the solution becomes

FIGURE 6
Solution profile of Eq. 4.4.

FIGURE 7
Solution profile of Eq. 4.8 with a0 = 100, σ = γ = 1, δ = 2.

Frontiers in Physics frontiersin.org09

Qu et al. 10.3389/fphy.2023.1160391

96

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1160391


u x, t( ) � cos λt( )cos !!
a0

√
x( ) − sin λt( )sin !!

a0
√

x( )
� cos λt + !!

a0
√

x( ).
The corresponding solution shown in Figure 7

Case 4. We consider the equation

zαu

ztα
− 4
9
γa21

zu

zx
+ γ

z3u

zx3
− δ2

z2

zx2

zαu

ztα
( ) � F u[ ]

� z

zx
−1
9
a21u

2 − 3
4

zu

zx
( )2

+ u
z2u

zx2
[ ], (4.16)

α ∈ (0, 1], Eq. 4.16 admits the two-dimensional invariant subspace
W2 � L e−1

3a1x, e−2
3a1x{ }, since

F C1e
−1
3a1x + C2e

−2
3a1x[ ] � 1

18
a31C

2
1e

−2
3a1x ∈ W2.

This means that the explicit solution has the following form

u x, t( ) � C1 t( )e−1
3a1x + C2 t( )e−2

3a1x.

Substituting the solution into Eq. 4.16, we have

dαC1 t( )
dtα

� λ1C1 t( ), (4.17)
dαC2 t( )
dtα

� λ2 C1 t( )[ ]2, (4.18)

where λ1 � a31γ

a21δ
2−9, λ2 �

a31
18−8a21δ2

. Setting C1(0) = 1 and employing the

LT of both sides of Eq. 4.17, we have

�C1 s( ) � sα−1

sα − λ1
.

Its inverse LT is

C1 t( ) � Eα,1 λ1t
α( ), α ∈ 0, 1( ].

Utilizing C1(t) in Eq. 4.18, we obtain

dαC2 t( )
dtα

� λ2 Eα,1 λ1t
α( )( )2.

However, while the ML function does not fulfill the following
composition property

Eα x( )Eα y( ) ≠ Eα x + y( ),
it should be noted that

Eα xα( ) � ∑∞
k�0

xαk

Γ αk + 1( )
which satisfies the composition property, that is,

Eα xα( )Eα yα( ) � Eα x + y( )α( ), α> 0.

Thus, we find

dαC2 t( )
dtα

� λ2Eα,1 λ1 2t( )α( )). (4.19)

Taking Iα on Eq. 4.19 and applying the integration of the ML
function relation, we derive the following result:

C2 t( ) � λ2 2t( )αEα,α+1 λ1 2t( )α( )).
Here, we set C2(0) = 0. Hence, the exact solution of Eq. 4.16
associated with W2 � L e−1

3a1x, e−2
3a1x{ } reads

u x, t( ) � Eα,1 λ1t
α( )e−1

3a1x + λ2 2t( )αEα,α+1 λ1 2t( )α( ))e−2
3a1x.

Note that for α = 1,

E1,1 λ1t( ) � ∑∞
k�0

λ1t( )k
Γ k + 1( ) � eλ1t,

E1,2 λ1 2t( )( ) � ∑∞
k�0

2λ1t( )k
Γ k + 2( ) �

e2λ1t − 1
2λ1t

,

u x, t( ) � eλ1t−
1
3a1x + λ2

λ1
e2λ1t − 1( )e−2

3a1x.

The corresponding solution shown in Figure 8

Case 5. We consider the equation

zαu

ztα
+ σ

zu

zx
+ γ

z3u

zx3
− δ2

z2

zx2

zαu

ztα
( ) � F u[ ]

� z

zx
b2 + b3( )u2 + b2

zu

zx
( )2

+ b3u
z2u

zx2
[ ], (4.20)

α ∈ (0, 1], Eq. 4.20 admits the three-dimensional invariant subspace
W3 � L 1, cosx, sin x{ }, since
F C1 + C2 cosx + C3 sinx[ ] � 2b2 + b3( )C1C3 cosx
− 2b2 + b3( )C1C2 sin x ∈ W3.

This means that the exact solution has the following form:

u x, t( ) � C1 t( ) + C2 t( )cosx + C3 t( )sinx.
Substituting the solution into Eq. 4.20, we obtain

dαC1 t( )
dtα

� 0, (4.21)

1 + δ2( )dαC2 t( )
dtα

� γ − σ( )C3 t( ) + 2b2 + b3( )C1 t( )C3 t( ), (4.22)

1 + δ2( )dαC3 t( )
dtα

� σ − γ( )C2 t( ) − 2b2 + b3( )C1 t( )C2 t( ). (4.23)

Solving Eq. 4.21, we obtain C1(t) = c1, inserting it into Eq. 4.22
and Eq. 4.23, we find

dαC2 t( )
dtα

� λC3 t( ),
dαC3 t( )
dtα

� −λC2 t( ),

where λ � γ−δ+c1(2b2+b3)
1+δ2 , Following the procedure described in case 3,

we obtain the exact solution

u x, t( ) � c1 + E2α,1 −λ2t2α( )cosx − λtαE2α,α+1 −λ2t2α( )sinx.
Note that for α = 1,

FIGURE 8
Solution profile of Eq. 4.16 with a1 = 1, λ1 = 1, λ2 = 2, δ = 2.

Frontiers in Physics frontiersin.org10

Qu et al. 10.3389/fphy.2023.1160391

97

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1160391


E2,1 −λ2t2( ) � ∑∞
k�0

−1( )k λt( )2k
Γ 2k + 1( ) � cos λt( ),

λtE2,2 −λ2t2( ) � λt∑∞
k�0

−1( )k λt( )2k+1
Γ 2k + 1( ) � sin λt( ),

and the solution is

u x, t( ) � c1 + cos λt( )cosx − sin λt( )sin x � c1 + cos λt + x( ),
which is a compacton solution.

The corresponding solution shown in Figure 9

Case 6. We consider the equation

zαu

ztα
− δ2

z2

zx2

zαu

ztα
( ) � F u[ ] � z

zx
b2

zu

zx
( )2

+ b3u
z2u

zx2
[ ], (4.24)

α ∈ (0, 1) − 1
2{ }, Eq. 4.24 admits the four-dimensional invariant

subspace W4 � L 1, x, x2, x3{ }, since
F C1 + C2x + C3x

2 + C4x
3[ ] � 6b3C1C4 + 4b2 + 2b3( )C2C3

+ 8b2 + 4b3( )C2
3[ +12 b2 + b3( )C2C4]x

+12 3b2 + 2b3( )C3C4x
2

+12 3b2 + 2b3( )C2
4x

3 ∈ W4.

This means that the exact solution has the following form

u x, t( ) � C1 t( ) + C2 t( )x + C3 t( )x2 + C4 t( )x3.

Substituting the solution into (4.24), we have

dαC1 t( )
dtα

− 2δ2
dαC3 t( )
dtα

� 6b3C1 t( )C4 t( ) + 4b2 + 2b3( )C2 t( )C3 t( ),
dαC2 t( )
dtα

− 6δ2
dαC4 t( )
dtα

� 8b2 + 4b3( )C2
3 t( ) + 12 b2 + b3( )C2 t( )C4 t( ),

dαC3 t( )
dtα

� 12 3b2 + 2b3( )C3 t( )C4 t( ),
dαC4 t( )
dtα

� 12 3b2 + 2b3( )C2
4 t( ).

Solving this system, we derive that

C1 t( ) � 2 3b2 + 2b3( )
2b2 + b3

δ2t−α + 16
3

3b2 + 2b3( )2 Γ 1 − 2α( )
Γ 1 − α( )[ ]2

t−α,

C2 t( ) � δ2

2 2b2 + b3( )
Γ 1 − α( )
Γ 1 − 2α( ) + 4 3b2 + 2b3( ) Γ 1 − 2α( )

Γ 1 − α( )[ ]t−α,
C3 t( ) � t−α,

C4 t( ) � 1
12 3b2 + 2b3( )

Γ 1 − α( )
Γ 1 − 2α( )t

−α.

Thus, Eq. 4.24 has the solution

u x, t( ) � 3b2 + 2b3( ) 2
2b2 + b3

δ2 + 16
3

3b2 + 2b3( )η2[ ]t−α
+ 4 3b2 + 2b3( )η + 1

2 2b2 + b3( )ηδ
2[ ]t−αx + t−αx2

+ 1
12 3b2 + 2b3( )ηt

−αx3.

where η � Γ(1−2α)
γ(1−α) .

The corresponding solution shown in Figure 10

5 Conclusion

In this work, a class of HJEs (1.1) and a family of third-order
time-fractional dispersive PDEs (1.2) are investigated by utilizing
ISM. All invariant subspaces for the considered HJEs are derived and
displayed in Table 1 and Table 2.Meanwhile, some exact solutions to
the equations are obtained due to the corresponding symmetry
reductions. For the third-order time-fractional dispersive PDEs, the
right-hand side of Eq. 1.2 is the derivative of a quadratic differential
polynomial, therefore they preserve more than one invariant
subspace, each of which generates a solution. Then, by
employing the LT method and applying several properties of the

FIGURE 9
Solution profile of Eq. 4.20 with α = γ = b2 = b3 = c1 = 1, δ = 10. FIGURE 10

Solution profile of Eq. 4.24 with α = 1/3, b2 = b3 = 1, δ = 10.
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well known ML function, the different kinds of explicit solutions of
Eq. 1.2 are derived.

There are still some important problems to be considered. For
instance, how does one use ISM to resolve initial value problems? How
can we develop this method to investigate higher-dimensional non-
linear equations and their discrete versions? This will be considered in
the future. Moreover, in the extended version of this work, we will
discussmore complicated fractional differential equations by using ISM.
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Exact solutions and Darboux
transformation for the reverse
space–time non-local fifth-order
non-linear Schrödinger equation

Xinrui Shi1,2 and Yunqing Yang1,2*
1School of Information Engineering, Zhejiang Ocean University, Zhoushan, China, 2Key Laboratory of
Oceanographic Big Data Mining and Application of Zhejiang Province, Zhoushan, China

In this paper, the non-local reverse space−time fifth-order non-linear
Schrödinger(NLS) equation has been investigated, which is proposed by the
non-local reduction of Ablowitz–Kaup–Newell–Segur (AKNS) scattering
problems. The determinant representation of the Nth Darboux transformation
for the non-local reverse space−time fifth-order NLS equation is obtained. Some
interesting non-linear wave solutions, including soliton, complexiton, and rogue
wave solutions, are derived by the Darboux transformation. Moreover, the
dynamics of non-linear wave solutions are illustrated with the corresponding
evolution plots, and the results show that the non-local fifth-order NLS equation
has new different properties from the local case.

KEYWORDS

non-local fifth-order non-linear Schrödinger equation, Darboux transformation, soliton,
rogue wave, integrable system

1 Introduction

Integrable systems play an important role in non-linear science fields such as non-linear
optics [1, 2], ocean physics [3], Bose–Einstein condensates [4], and even financial markets
[5]. The investigation of various physically meaningful non-linear wave solutions is still one
of the active areas of research in the field of integrable systems. In the past decades, many
powerful methods and techniques have been proposed to construct various non-linear wave
solutions and to study their underlying dynamics, such as Darboux transformation [6, 7],
inverse scattering [8, 9], bilinear transformation [10], and Riemann–Hilbert approaches [11,
12]. Recently, Ablowitz and Musslimani proposed a new integrable non-local non-linear
Schrödinger (NLS) equation under a reduction of the Ablowitz–Kaup–Newell–Segur
(AKNS) system, and some non-linear wave solutions are constructed by the inverse
scattering method [13]. Subsequently, much more non-local integrable systems including
reverse space–time and reverse time cases are further investigated [14]. At the same time, the
physical background of non-local integrable equations is also investigated from various
related fields, such as multi-place systems [15], magnetic structures [16], nanomagnetic
artificial materials [17], and loop quantum cosmology [18] [19, 20].

The NLS equation [21] is a fundamental prototype and plays a pivotal role in many fields
of physics, such as fluid mechanics [22], plasmas [23], Bose–Einstein condensates [24], and
deep water waves [25]. However, the NLS equation only contains the lowest-order dispersion
term and the lowest-order non-linear effect. Under the necessary physical conditions,
various higher-order dispersions and non-linear effects must be taken into account, such
as ultrashort pulses in optical fibers [26], where the effects of higher-order dispersions should
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be considered. Therefore, some higher-order NLS equations,
including Hirota [27], Lakshmanan–Porsezian–Daniel (LPD) [21,
28], and quintic NLS equations [29], have been constructed, and
their corresponding integrable properties and dynamics have been
studied.

In this paper, we consider the scattering problem as follows:

Φx � UΦ,
Φt � VΦ � λU + V0 + αL + ωM + δN( )Φ,

(1)

where Φ � (ϕ1(x, t), ϕ2(x, t))T, λ is the spectral parameter, and U,
V0, L, M, and N are given by

U � iλ ir
iq −iλ[ ], V0 � 1

2
−iqr rx
−qx iqr

[ ]
L � −4 λ2U + λV0( ) + L0,M � 2λL +M0, N � −2λM +N0,

(2)

where

L0 � qrx − rqx i 2r2q + rxx( )
i 2q2r + qxx( ) rqx − qrx

[ ],
M0 � m1 m2

m3 −m1
[ ], N0 � n1 n2

n3 −n1[ ],
m1 � i −3q2r2 − qrxx + qxrx − rqxx( ),
m2 � 6qrrx + rxxx,

m3 � −6qrqx − qxxx,

n1 � qrxxx − rqxxx + qxxrx − qxrxx + 6qr qrx − rqx( ),
n2 � irxxxx + 2ir2qxx + 8iqrrxx + 4irrxqx + 6iqr2x + 6ir3q2,

n3 � iqxxxx + 2iq2rxx + 8iqrqxx + 4iqrxqx + 6irq2x + 6iq3r2.

(3)

Under the symmetry reduction q (x, t) = r*(x, t), the generalized
integrable fifth-order NLS equation [30],

iqt + S q, r( ) − iαH q, r( ) + ωP q, r( ) − iδQ q, r( ) � 0, (4)
where

S q, r( ) � 1
2
qxx + q2r,

H q, r( ) � qxxx + 6qqxr,

P q, r( ) � qxxxx + 8qrqxx + 6q3r2 + 4qqxrx + 6q2xr + 2q2rxx,

Q q, r( ) � qxxxxx + 10qrqxxx + 10 qqxrx( )x + 20rqxqxx + 30q2r2qx,

can be obtained from the compatibility condition of the linear
spectral problem (1), i.e., the zero-curvature equation,
Ut − Vx + [U,V] � 0. However, a new integrable reverse
space–time non-local fifth-order NLS equation,

ir −x,−t( )t + S −r −x,−t( ), r x, t( )( ) − iαH −r −x,−t( ), r x, t( )( )
+ωP −r −x,−t( ), r x, t( )( ) − iδQ −r −x,−t( ), r x, t( )( ) � 0,

(5)
can be obtained under the symmetry reduction,

q x, t( ) � −r −x,−t( ). (6)
Considering the importance of such non-local equations in

multi-place physical systems [15], it is significant and has far-
reaching importance in constructing exact solutions to the
equations and aids in studying the dynamical properties of
the solutions. To the best of our knowledge, such reverse
space–time non-local equations have not been investigated.
This paper is organized as follows: in Section 2, the one-fold
and N-fold Darboux transformation of Eq. 5 are presented; in
Section 3, soliton, complexiton, and rogue wave solutions are

derived through the Darboux transformation and their
corresponding dynamical properties and evolutions are
discussed; and in Section 4, some conclusions and
discussions are drawn.

2 Darboux transformation for the
reverse space–time non-local fifth-
order NLS equation

The Darboux transformation method is a very effective tool
for constructing exact solutions of integrable non-linear
equations in the soliton theory. In order to derive the
Darboux transformation of the reverse space–time non-local
fifth-order NLS in Eq. 5, we first introduce a gauge
transformation of the linear spectral problem (1),

Φ 1[ ] � T 1[ ]Φ, (7)
under which the linear spectral problem (1) can be deformed as
follows:

Φ 1[ ]
x � U 1[ ]Φ 1[ ] � T 1[ ]

x + T 1[ ]U( ) T 1[ ]( )−1Φ 1[ ],
Φ 1[ ]

t � V 1[ ]Φ 1[ ] � T 1[ ]
t + T 1[ ]V( ) T 1[ ]( )−1Φ 1[ ].

(8)

The next pivotal step is to construct the Darboux matrix T[1] in such
a form that U[1], V[1] in Equation 8 have the same form as U and V
in (1) and the old potentials r and q are replaced by the new
potentials r[1], q[1]. Suppose

T 1[ ] � λI + B 1[ ] � λ + b 1[ ]
11 b 1[ ]

12

b 1[ ]
21 λ + b 1[ ]

22

( ), (9)

where b[1]ij (i, j � 1, 2) are functions of x and t. Substituting Eq. 9 into
Eq. 8, it is evident that the relationships between two potentials in
the two linear spectral problems (1, 8) can be given as

r 1[ ] � r − 2b 1[ ]
12 ,

q 1[ ] � q + 2b 1[ ]
21 .

(10)

In addition, combined with symmetry reduction (6), there is

b 1[ ]
12 x, t( ) � b 1[ ]

21 −x,−t( ). (11)
We see that f(λj) � (f1(λj), f2(λj))T and g(λj) �
(g1(λj), g2(λj))T are two eigenfunctions corresponding to the
eigenvalue λ = λj (j = 1, 2). From the gauge transformation, there
exist constants γj, j � (1, 2) such that

λj + b 1[ ]
11 + σjb

1[ ]
12 � 0,

b 1[ ]
21 + σj λj + b 1[ ]

22( ) � 0,
(12)

where

σj �
f2 λj( ) + γjg2 λj( )
f1 λj( ) + γjg1 λj( ), j � 1, 2( ). (13)

Then, the gauge transformation T[1] can be given as follows:

T 1[ ] � λ 0
0 λ

( ) + 1
σ2 − σ1

λ2σ1 − λ1σ2 λ1 − λ2
σ1σ2 λ2 − λ1( ) λ1σ1 − λ2σ2

( ), (14)

where σj, (j � 1, 2) can satisfy
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σjx � −2iσjλj − irσ2
j + iq,

σjt � −2ir2qxx − 4irqxrx − 6iqr2x − irxxxx( )δ + 2χdrxxx −
χd
2
rxx(

+ 12qrχd + 2χc( )rx+4iχar)σ2j + 4rq2rx − 4r2qqx + 2rqxxx((
− 2qrxxx − 2qxxrx + 2qxrxxδ − 4irqxxχd−4iqrxxχd)
+ 4irxχd − irχb( )qx + iqrxχb − 12ir2q2χd + 8iλ2jχc − 4iqrχcσj

+ 2 2iq2rxx( +4iqrxqx + 6irq2x + iqxxxx)δ
+ 2χdqxxx +

χd
2
qxx + 12qrχd + 2χc( )qx − 4iqχa,

(15)
along with

χa � −3δq
2r2

2
− 4δλ4j + 2ωλ3j + αλ2j −

λj
4
− −4δλ2j + 2ωλj + α( )qr

2
,

χb � 4iλjω + 2iα + 16iqrδ − 8iδλ2j ,

χc � −4δλ3j + 2ωλ2j + αλj − 1
4
,

χd � δλj − ω

2
, j � 1, 2.

(16)
By tedious calculations and using the identities (15), it can

be verified that U[1], V[1] have the same forms as U and V under
the symmetry reduction (6). To construct the N-fold Darboux
transformation of Eq. 5, a more generalized higher-order gauge
transformation can be given as follows:

Φ N[ ] � TNΦ, (17)
where

TN � ∏N
k�1

T k[ ] � ∏N
k�1

λI + B k[ ]( ) � ∏N
k�1

λ + b k[ ]
11 b k[ ]

12

b k[ ]
21 λ + b k[ ]

22

( ), (18)

from which the following relationships can be obtained:

r N[ ] x, t( ) � r x, t( ) − 2∑N
k�1

b k[ ]
12 x, t( ),

q N[ ] x, t( ) � q x, t( ) + 2∑N
k�1

b k[ ]
21 x, t( ).

(19)

Combined with symmetry reduction (6), there is

b k[ ]
12 x, t( ) � b k[ ]

21 −x,−t( ). (20)
Similar to the case of one-fold Darboux transformation, we

construct the following equations:

TN( )11 + σj TN( )12( )∣∣∣∣∣λ�λj � 0,

TN( )21 + σj TN( )22( )∣∣∣∣∣λ�λj � 0,
(21)

with

σj �
f2 λj( ) + γjg2 λj( )
f1 λj( ) + γjg1 λj( ), j � 1, 2, . . . , 2N. (22)

From algebraic Eq. 21, the determinant representation of the N-
fold Darboux matrix TN can be derived by Cramer’s rule, from
which the determinant representations of r[N] and q[N] can be
given as follows:

r N[ ] � r − 2
W2N

Q2N
, q N[ ] � q + 2

Ŵ2N

Q2N
. (23)

Here,

Q2N �

1 σ1 λ1 λ1σ1 . . . λN−1
1 σ1λ

N−1
1

1 σ2 λ2 λ2σ2 . . . λN−1
2 σ2λ

N−1
2

1 σ3 λ3 λ3σ3 . . . λN−1
3 σ3λ

N−1
3

1 σ4 λ4 λ4σ4 . . . λN−1
4 σ4λ

N−1
4

..

. ..
. ..

. ..
.

1 ..
. ..

.

1 σ2N−1 λ2N−1 λ2N−1σ2N−1 . . . λN−1
2N−1 σ2N−1λ

N−1
2N

1 σ2N λ2N λ2Nσ2N . . . λN−1
2N σ2Nλ

N−1
2N

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (24)

W2N �

1 σ1 λ1 λ1σ1 . . . λN−1
1 −λN1

1 σ2 λ2 λ2σ2 . . . λN−1
2 −λN2

1 σ3 λ3 λ3σ3 . . . λN−1
3 −λN3

1 σ4 λ4 λ4σ4 . . . λN−1
4 −λN4

..

. ..
. ..

. ..
.

1 ..
. ..

.

1 σ2N−1 λ2N−1 λ2N−1σ2N−1 . . . λN−1
2N−1 −λN2N−1

1 σ2N λ2N λ2Nσ2N . . . λN−1
2N −λN2N

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (25)

Ŵ2N �

1 σ1 λ1 λ1σ1 . . . −λN1 σ1 σ1λ
N−1
1

1 σ2 λ2 λ2σ2 . . . −λN2 σ2 σ2λ
N−1
2

1 σ3 λ3 λ3σ3 . . . −λN3 σ3 σ3λ
N−1
3

1 σ4 λ4 λ4σ4 . . . −λN4 σ4 σ4λ
N−1
4

..

. ..
. ..

. ..
.

1 ..
. ..

.

1 σ2N−1 λ2N−1 λ2N−1σ2N−1 . . . −λN2N−1σN−1 σ2N−1λ
N−1
2N−1

1 σ2N λ2N λ2Nσ2N . . . −λN2NσN σ2Nλ
N−1
2N

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (26)

This is the N-fold Darboux transformation of Eq. 5. Moreover, the
existence of the symmetry reduction condition Eq. 6 implies that the
Darboux transformation of the non-local reverse space−time fifth-
order NLS Eq. 5 is very different from the Darboux transformation
of the classical fifth-order NLS Eq. 4, although both of them have the
same form.

3 Non-linear wave solutions of the
reverse space–time non-local fifth-
order NLS equation

3.1 One-soliton solutions from zero seed
solution

To construct a soliton solution of the non-local Eq. 5, we take a
zero seed solution, under which the corresponding eigenfunctions of
the linear spectral problem (1) can be given as follows:

f 1[ ] λ( ) � eiλx−iλ
2 −16δλ3+8ωλ2+4αλ−1( )t

0
⎛⎝ ⎞⎠,

g 1[ ] λ( ) � 0

e−iλx+iλ
2 −16δλ3+8ωλ2+4αλ−1( )t( ). (27)

Then, the following relationships can be obtained:

σj � γje
ξj j � 1, 2( ), (28)

b 1[ ]
12 x, t( ) � λ1 − λ2

γ2e
ξ2 − γ1e

ξ1
, b 1[ ]

21 x, t( ) � λ2 − λ1( )γ1γ2eξ1+ξ2
γ2e

ξ2 − γ1e
ξ1

, (29)

ξj � 8i −4δλ4jt + 2λ3jωt + αλ2jt −
1
4
λjt − 1

4
x( )λj, (30)

under which the conditions for symmetry reduction (6) can be
obtained as follows:

γ1 γ22 − 1( ) � 0, γ2 1 − γ21( ) � 0. (31)
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Without the loss of generality, we take γ1 = −1 and γ2 = 1 and
λj � kj + iwj, (j � 1, 2), and the solution can be simplified as follows:

r 1[ ] � − k1 − k2( ) + i w1 − w2( )( )sech 1
2

ξ1R − ξ2R( )((
+ i ξ1I − ξ2I( )))e−1

2 ξ1R+ξ2R( )+i ξ1I+ξ2I( )( ),
(32)

where

ξjR � R ξj( ) � 160wj( δk4j −
2k3jω

5
+ −2w2

jδ −
3α
20

( )k2j⎛⎝

+ 2w2
jω

5
+ 1
40

( )kj + w2
j w2

jδ +
α

4
( )

5
⎞⎠t + x

80
),

ξjI � I ξj( ) � 8 k3j − 3kjw
2
j( )α + 32 10k3j − k5j − 5kjw

4
j( )δ(

+16 k4j − 6k2jw
2
j + w4

j( )ω2w2
j − 2k2j)t − 2xkj.

(33)
The soliton solution can be obtained as follows:

r 1[ ] � −2iw1e
2i 16k51δ−160δk31w2

1+80δk1w4
1−8k41ω+48ωk21w2

1−8w4
1ω−4αk31+12αk1w2

1+k21−w2
1( )t+2ik1x

cosh 160w1 δk41 − 2k31ω
5 + −2w2

1δ − 3α
20( )k21 + 2w2

1ω

5 + 1
40( )k1 + w2

1 w2
1δ+α

4( )
5( )t + x

80( )( ).
(34)

This is under the condition that k1 = k2 and w1 = −w2. Evidently,
the propagation direction of a soliton (34) is determined by the value
of (δk41 − 2k31ω

5 + (−2w2
1δ − 3α

20)k21 + (2w2
1ω
5 + 1

40)k1 + w2
1(w2

1δ+α
4)

5 ). In
Figure 1A, the evolution of a soliton solution (34) is illustrated,
and the corresponding evolution profiles of the real and imaginary
parts are shown in Figures 1B, C, which exhibit the characteristics of
a breather. On the other hand, by taking k2 = −2k1 and w2 = 0, the
complexiton solution can be given as follows:

r 1[ ] � −3k1 − iw1( )sech 1
2

ξ1R + i ξ1I − ξ2I( )( )( )e−1
2 ξ1R+i ξ1I+ξ2I( )( ),

(35)

where

1
2
i ξ1I − ξ2I( ) � i − 12w2

1k1 − 36k31( )α − 528k51 − 160k31w
2
1((

+ 80k1w
4
1)δ − −3k21 − w2

1( )
− 120k41 + 48k21w

2
1 − 8w4

1( )ω)t − 3ixk1,

−1
2
i ξ1I + ξ2I( ) � −i −28k31 − 12k1w

2
1( )α + 496k51 + 160k31w

2
1((

− 80k1w
4
1)δ + w2

1 − 5k21( )+ 136k41 − 48k21w
2
1(

+ 8w4
1)ω)t − ik1x.

(36)
It can be seen from Figure 2A that the solution (35)

propagates to the left along the x-axis under the condition
that (δk41 − 2k31ω

5 + (−2w2
1δ − 3α

20)k21 + (2w2
1ω
5 + 1

40)k1 + w2
1(w2

1δ+α
4)

5 )> 0.
Figures 2B, C show the evolution characteristics of the real
and imaginary parts of the solution (35). The propagation
states of the solution (35) at three different times are shown in
Figure 2D.

3.2 Two-soliton solutions from zero seed
solution

Two-fold exact solutions of Eq. 5 can be derived from the
Darboux transformation (23) by taking N = 2. In order to satisfy
the constraint condition (20), we take γ1 = −1, γ2 = 1, γ3 = −1, and
γ4 = 1 and consider the case that the eigenvalues are two pairs of
conjugate complexes, i.e., λ1 � λ2* � k1 + iw1, λ3 � λ4* � k2 + iw2.
Then, the solution can be obtained as

r 2[ ] � G1 x, t( )
H1 x, t( ), (37)

where

FIGURE 1
(Color online). (A) Density evolution of the one-soliton solution; (B) evolution of the real part; (C) evolution of the imaginary part of the soliton

solution (34) under the parameters α � 1
2, δ � 1

5, ω � 1
3, k1 � −1

5, w1 � −3
4, (δk41 − 2k31ω

5 + (−2w2
1 δ − 3α

20)k21 + (2w2
1ω
5 + 1

40)k1 + w2
1 (w2

1 δ+α
4)

5 )<0.
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G1 x, t( ) � 4i( w2
1

2
− w2

2

2
+ k1 − k2( )2

2
( )cosh ξ2R( )

+ iw2 k1 − k2( )sinh ξ2R( ))w1e
−iξ1I

− 4i( w2
1

2
− w2

2

2
− k1 − k2( )2

2
( )cosh ξ1R( )

+ iw1 k1 − k2( )sinh ξ1R( ))w2e
−iξ2I ,

H1 x, t( ) � 2w1w2 cos ξ1I − ξ2I( ) − w2
1 + w2

2 + k1 − k2( )2( )
cosh ξ1R( )cosh ξ2R( ) + 2w1w2 sinh ξ1R( )sinh ξ2R( ),

(38)

and ξjR and ξjI are defined by (33) previously. In Figure 3A, the two-
soliton solution behaves as an interaction of two bright solitons; after
that, they stably propagate with original shapes and velocities. The
corresponding evolutions of real and imaginary parts of the solution
are shown in Figures 3B, C, which are all two-order breather
solutions.

3.3 One-soliton solutions from
non-zero seed solution

In order to construct the rogue wave solution of Eq. 5 by the
Darboux transformation (10), the seed solution is taken as the plane
wave solution,

r � −ice−i ax+ηt( ), q � icei ax+ηt( ), (39)
where a and c are an arbitrary constant and η� (−a3 +6ac2)α+
(a5 −20a3c2 +30ac4)δ+(−a4 +12a2c2 −6c4)ω+ a2

2 − c2, respectively.
Substituting the seed solution (39) into the linear spectral problem
(1) with λ� a

2− ic or λ� a
2+ ic, the eigenfunctions can be obtained as

follows:

Φ λ( ) � C1 cx − Δ1t + 1( ) + cC2( )ei
2 ax+ηt( )

C1 −cx + Δ1t( ) − cC2( )e− i
2 ax+ηt( )

⎛⎝ ⎞⎠, (40)

or

FIGURE 2
(Color online). (A)Density evolution of the complexiton solution; (B) evolution of the real part; (C) evolution of the imaginary part; (D) three evolution

states at t =−2,0,2 for the solution (35) under the parameters α � −1
5, δ � 1

4,ω � 1
2, k1 � 1

3,w1 � −3
4, (δk41 − 2k31ω

5 + (−2w2
1 δ − 3α

20)k21 + (2w2
1ω
5 + 1

40)k1 + w2
1 (w2

1 δ+α
4)

5 )>0.
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Φ λ( ) � C3 −cx + Δ2t + 1( ) − cC4( )ei
2 ax+ηt( )

C3 −cx + Δ2t( ) − cC4( )e− i
2 ax+ηt( )

⎛⎝ ⎞⎠, (41)

where

Δ1 � −c −3a2 + 6c2( )α − c 5a4 − 60a2c2 + 30c4( )δ − c −4a3 + 24ac2( )ω − ac
+ic2 20a3δ − 60ac2δ − 12ωa2 + 12c2ω − 6aα + 1( ),

Δ2 � −c −3a2 + 6c2( )α − c 5a4 − 60a2c2 + 30c4( )δ − c −4a3 + 24ac2( )ω − ac
−ic2 20a3δ − 60ac2δ − 12ωa2 + 12c2ω − 6aα + 1( ),

(42)

and C1, C2, C3, and C4 are arbitrary constants. For simplicity, taking
{C1 � 1, C2 � −1

c} and {C3 � −1, C4 � −1
c} and considering their

relationship (13), we have the following:

σ1 � −1 + 1 + γ1
1 + cx − Δ1t( ) γ1 + 1( )( )e−i ax+ηt( ),

σ2 � 1 + γ2 − 1
1 + cx − Δ2t( ) γ2 − 1( )( )e−i ax+ηt( ).

(43)

To satisfy the constraint condition (11), we take γ1 = 1 and
γ2 = −1. Then, the rogue wave solution can be given as follows:

r 1[ ] � icei ax+ηt( ) 1 + G2 x, t( )
H2 x, t( )( ), (44)

where

G2 x, t( ) � −4 + i 8c2 + 160a3c2δ − 480ac4δ − 96a2c2ω− 48aαc2(
+ 96c4ω)t,

H2 x, t( ) � 4c2 a4 + 4c4( )α2 + 30 a6 + 6a4c2(((
−6a2c4 + 12c6)δ + 24 a5 − 2a3c2 + 6ac4( )ω)α−6a3α
+25 a8 − 8a6c2 + 60a4c4 + 36c8( )δ2 + 40a3 −a4 + 6a2c2(
−30c4)ωδ+10a a4 − 8a2c2 − 6c4( )δ + 16 a6 − 3a4c2(
+18a2c4 + 9c6)ω2 + 8 −a4 + 3a2c2 + 3c4( )ω+a2 + c2)t2
+ 24c2 2c2 − a2( )α( + 40c2 6c2 − a2( )2 − 30c4( )δ
+32ac2 6c2 − a2( )ω+8ac2)xt + 4c2x2 + 1. (45)

FIGURE 4
(Color online). The rogue wave solution given by (45) with a � − 9

10,c � −5
6, α � − 1

4, δ � − 1
6,ω � 1

6: (A) density evolution; (B) 2D contour plot; (C)
amplitude |r[1]| profile with t = 0 of the rogue wave.

FIGURE 3
(Color online). (A) Density evolution of the two-soliton solution; (B) evolution of the real part; (C) evolution of the imaginary part of the solution (37)
under the parameters k1 � −1

2,w1 � −1
2.k2 � 11

20,w2 � 11
20, α � 1

2, δ � − 3
10,ω � 3

10.
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The density evolution and 2D contour plots for the rogue wave solution
(45) under appropriate parameters are shown in Figures 4A, B, and the
typical amplitude |r[1]| profile with t = 0 is illustrated in Figure 4C.

4 Conclusion

In this paper, the reverse space–time non-local fifth-order NLS
Eq. 5 is studied by Darboux transformations. Based on the scattering
problem, the N-fold Darboux transformation of the equation
is constructed. By selecting different seed solutions, we have
presented soliton, complexiton, and rogue wave solutions of Eq.
5, whose non-linear dynamics and evolutions are discussed.
However, the computational effort increases rapidly due to the
increase of the order of the Darboux transformation and the
presence of the symmetric reduction condition; so, more
interesting and physically meaningful non-linear wave solutions
are difficult to be derived, such as breather and higher-order rogue
wave solutions. At the same time, whether the equation has other
integrable properties, such as Bäcklund transformations, Hamilton
structures, and infinite conservation laws, will be studied in the near
future.
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Non-local residual symmetry and
soliton-cnoidal periodic wave
interaction solutions of the
KdV6 equation

Luwei Zhang1, Xueping Cheng1,2*, Wei Yang1 and
Zhangxuan Zhao1

1School of Information Engineering, Zhejiang Ocean University, Zhoushan, China, 2Key Laboratory of
Oceanographic Big Data Mining & Application of Zhejiang Province, Zhoushan, China

The residual symmetry of the KdV6 equation is obtained by the Painlevé truncate
expansion. Since the residual symmetry is non-local, five field quantities are
introduced to localize it into the local one. Besides, the interaction solutions
between solitons and cnoidal periodic waves of the KdV6 equation are
constructed by making use of the consistent tanh expansion method. As an
illustration, a specific interaction solution in the form of tanh function and
Jacobian elliptic function is discussed both analytically and graphically.

KEYWORDS

the KdV6 equation, non-local residual symmetry, consistent tanh expansion method,
soliton-cnoidal periodic wave interaction solution, localization

1 Introduction

Due to the wide applications in explaining physical phenomena, seeking exact solutions
of non-linear equations becomes one of the most important tasks in non-linear science. In
fact, finding solutions of non-linear evolution equations is not an easy thing, and only in few
special cases one may write down the explicit analytical solutions. Despite of this fact, kinds
of non-linear excitations such as the solitons, conoidal periodic waves, Painlevé waves have
been found. However, although the non-linear waves or even the interactions among solitons
have been well studied, the research on the interactions among different types of non-linear
waves is still a thorny issue. Recently, Lou discovered that, starting from the non-local
symmetries of non-linear equations, the interactions, such as the soliton-Painlevé wave,
soliton-cnoidal periodic wave, soliton-KdV wave, etc., can be established [1-6]. Moreover,
recent researches have also shown that the interaction solutions between solitons and other
non-linear excitations can also be obtained by the consistent tanh expansion (CTE) method,
which is evolved from the classical tanh function expansion method [7-9].

In Ref. [10], K2S2T [A. Karasu-Kalkanlı, A. Karasu, A. Sakovich, S. Sakovich, R. Turhan]
introduced the Painlevé test for integrability of partial differential equation to the sixth-order
non-linear wave equation

uxxxxxx + α1uxuxxxx + α2uxxuxxx + α3u
2
xuxx

+α4utt + α5uxxxt + α6uxuxt + α7utuxx � 0,
(1)

where αi (i = 1, 2, . . . , 7) are arbitrary parameters. They found that there were four cases of
relations between the parameters that pass the Painlevé test. Three of those cases correspond
to the known integrable equations, the bidirectional Sawada–Kotera equation (11)–(15), the
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bidirectional Kaup-Kupershmidt equation (11), (12) and (16) and
the Drinfeld-Sokolov-Satsuma-Hirota system [17-19], whereas the
fourth one

z2x + 8uxzx + 4uxx( ) ut + uxxx + 6u2
x( ) � 0 (2)

turns out to be new. This new integrable case is associated with the
same spectral problem as of the potential KdV equation, so Eq. 2 is
also called the KdV6 equation. In Ref. [10], K2S2T also showed the
Lax pair, auto-Bäcklund transformation, traveling wave solutions,
and third-order generalized symmetries of the KdV6 equation. In
fact, since K2S2T first derived the KdV6 equation, there has been a
growing interest in finding its exact solutions, conservation laws and
various integrable properties [20-24]. However, as far as we know,
the research on the interaction solution of this equation is still
lacking.

In present paper, we shall focus on investigating the non-local
residual symmetry and the interactions between solitons and cnoidal
periodic waves for the KdV6 equation. The paper is organized as
follows: In Section 2, the non-local residual symmetry of the
KdV6 equation is derived. To constitute a local symmetry, five
dependent variables are brought in, thus the non-local symmetry is
localized into the Lie point symmetry of the enlarged KdV6 system.
In Section 3, with the aid of the CTE method, the interaction
solutions between solitons and cnoidal periodic waves of the
KdV6 equation are acquired. According to these explicit
solutions, the dynamical properties of the interaction solutions
are investigated. Finally, the main results are summarized in
Section 4.

2 Non-local residual symmetry and its
localization

By the transformation v = ux, w � ut + uxxx + 6u2x, Eq. 2 is
equivalent to

vt + vxxx + 12vvx − wx � 0, wxxx + 8vwx + 4wvx � 0. (3)
Since the KdV6 Eq. 3 possesses Painlevé property, we formulate the
truncated Painlevé expansion as

v � p2

ϕ2 +
p1

ϕ
+ p0, w � q2

ϕ2 +
q1
ϕ
+ q0, (4)

where p2, p1, p0, q2, q1 and q0 are undetermined functions depending
on {x, t}. Substituting the expansion 4) into Eq. 3 and collecting the
terms with the same power of ϕ, we get the expressions

p2 � −ϕ2
x, p1 � ϕxx, p0 � −1

4
ϕxxx

ϕx

+ 1
8
ϕ2
xx

ϕ2
x

+ λ,

q2 � −12λϕ2
x − ϕxϕxxx +

3
2
ϕ2
xx − ϕxϕt,

q1 � 12λϕxx + ϕxxxx + ϕxt −
3ϕxxϕxxx

ϕx

+ 3
2
ϕ3
xx

ϕ2
x

,

q0 � 9λϕ2
xx

ϕ2
x

+ 1
2
ϕxxϕxt

ϕ2
x

− 2λϕt

ϕx

− 8λϕxxx

ϕx

− 1
2
ϕxxxxx

ϕx

+ 3
2
ϕ2
xxx

ϕ2
x

(5)

with λ being a free integral constant. In this case, Eq. 3 can be
represented as its Schwartzian form

8λ
ϕt

ϕx

( )
x

+ 3 ϕ;x{ } ϕ;x{ }x + 20λ ϕ;x{ }x + ϕ;x{ }t + ϕ;x{ }xxx � 0

(6)
with the Schwartzian derivative {ϕ;x} � ϕxxx

ϕx
− 3

2
ϕ2xx
ϕ2x
. The

Schwartzian form (6) is form invariant under the Möbious
transformation

ϕ → a + bϕ

c + dϕ
, ad ≠ bc( ) (7)

which implies that Eq. 6 possesses the symmetry

σϕ � d1 + d2ϕ + d3ϕ
2 (8)

with di (i = 1, 2, 3) being three random constants.
In view of the expansion 4), it is found that {p0, q0} is just the

solution of the KdV6 equation, so the following non-auto-Bäcklund
transformation theorem is true.

Non-auto-Bäcklund transformation theorem. If ϕ satisfies the
Schwartzian Equation 6, then

v � −1
4
ϕxxx

ϕx

+ 1
8
ϕ2
xx

ϕ2
x

+ λ,

w � 9λϕ2
xx

ϕ2
x

+ 1
2
ϕxxϕxt

ϕ2
x

− 2λϕt

ϕx

− 8λϕxxx

ϕx

− 1
2
ϕxxxxx

ϕx

+ 3
2
ϕ2
xxx

ϕ2
x

(9)

constitutes a solution of the KdV6 Eq. 3.
In addition, the substituting of the expansion 4) into Eq. 3 also

tells us that the residues p1 and q1, taking the form as Eq. 5, exactly
satisfy the symmetry equations of the KdV6 equation, i.e.,

σv
t + σv

xxx + 12σvvx + 12vσvx − σw
x � 0,

σw
xxx + 8σvwx + 8vσw + 4σwvx + 4wσv

x � 0.
(10)

Thus {p1, q1} is then named as the residual symmetry of the
KdV6 equation. Clearly, seen from Eq. 5, the residual symmetry
{p1, q1} contains the space and time derivatives of ϕ, which means
that this symmetry is non-local. We turn now to the task of
localizing it into a local one such that one can use Lie’s first
principle to recover the original Bäcklund transformation. To this
end, the following five field quantities have to be introduced

ϕ1 � ϕx, ϕ2 � ϕ1x, g � ϕt, g1 � ϕ1t, h � vx. (11)

As a result, the residual symmetry {p1, q1} of the KdV6 equation is
converted into the Lie point symmetry

σv, σw, σϕ, σϕ1 , σϕ2 , σg, σg1 , σh{ }T
� {ϕ2,−4ϕ1h + 4vϕ2 + 8λϕ2 + g1,−ϕ2,−2ϕϕ1,−2ϕ2

1 − 2ϕϕ2,

− 2ϕg,−2ϕ1g − 2ϕg1,−8vϕ
2
1 − 8λϕ2

1 − ϕ2
2

2ϕ1

}T

(12)

of the enlarged KdV6 system {3), 6), 9), (11)}.
As is known, symmetry reduction [25, 26] is one of the most

powerful methods to study exact explicit solutions for non-linear
equations. Based on the Lie point symmetry (12), one may continue
to explore more abundant symmetry reduction solutions for the
KdV6 equation. The details on this topic might be reported in our
future research work.
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3 CTE solvability of the KdV6 equation
and its soliton-cnoidal wave interaction
solutions

In this section, we would like to obtain the soliton-cnoidal wave
interaction solutions for the KdV6 Eq. 3. In the frame of the CTE
method, by balancing the highest order non-linearity and dispersive
term of the KdV6 equation, we take v and w in the following
generalized truncated tanh function expansion

v � v2 tanh
2 f + v1 tanhf + v0,

w � w2 tanh
2 f + w1 tanhf + w0,

(13)

where vi,wi (i = 0, 1, 2), being six real-valued functions of (x, t), are to
be determined from the requirement for solutions v and w to satisfy
Eq. 3. Inserting Eq. 13 into the KdV6 equation and requiring the
coefficients of all powers of tanh f to be zeros yield twelve
overdetermined partial differential equations. After a few detail
calculations, we can conclude that

v � −f2
x tanh

2 f + fxx tanhf − 1
4
fxxx

fx
+ 1
8
f2
xx

f2
x

+ 1
2
f2
x + λ,

w � 2f4
x − 12λf2

x − fxfxxx + 3
2
f2

xx − fxft( )tanh2 f

+ fxxxx − 3fxxfxxx

fx
+ fxt + 3f3

xx

2f2
x

− 6f2
x − 12λ( )fxx[ ]tanhf

−1
2
fxxxxx

fx
+ 2fxxfxxxx

f2
x

− 1
2
fxxt

fx
+ 3
2
f2
xxx

f2
x

+ 1
2
fxxfxt

f2
x

− 21
4

f2
xx

f3
x

− 4fx + 8λ
fx

( )fxxx + 9
4
f4
xx

f4
x

+ 3
2
+ 9λ

f2
x

( )f2
xx

+ fx − 2λ
fx

( )ft − 2f4
x + 16λf2

x − 24λ2,

(14)
and the expansion function f is determined by

1
4
fxxxxxx

fx
− 3
2
fxxfxxxxx

f2
x

+ 1
4
fxxxt

fx
− 5

2
fxxx

f2
x

− 45
8

f2
xx

f3
x

+ 5
2
fx − 5λ

fx
( )fxxxx

−3
4
fxxtfxx

f2
x

+ 15
2

f2
xxxfxx

f3
x

− 1
4
fxt

f2
x

+ 15f3
xx

f4
x

+ 20λfxx

f2
x

( )fxxx + 45
8

f5
xx

f5
x

+ 3
4
f2
xx

f3
x

− fx + 2λ
fx

( )fxt + 15λf3
xx

f3
x

− 2λft

f2
x

− 6f3
x + 20λfx( )fxx � 0

(15)

with λ being an arbitrary integral constant.
In order to obtain the interaction solutions between solitons and

other non-linear excitations for the KdV6 equation, the expansion
function in Eq. 15 may be assumed in the form

f � x − ω1t

b1
+W

x − ω0t

b0
( ) ≡

x − ω1t

b1
+W ξ( ), (16)

whereω1 andω0 describe the velocities of the soliton and its surrounding
W-wave, b1 and b0 are two quantities referring to the widths of the
soliton and W-wave, respectively. Specially, if W(ξ) = 0 is taken, the
solution (14) with Eq. 16 reduces to the trivial traveling wave solution.

Inserting the ansatz (16) into Eq. 15 and introducing the
abbreviation

Wξ ξ( ) � W1, (17)
it follows that Eq. 15 becomes the equation satisfied by the elliptic
function

W2
1ξ � a4W

4
1 + a3W

3
1 + a2W

2
1 + a1W1 + a0 (18)

with coefficients a1, a4 and ω1 taking the form

a1 � a0b1
b0

+ b0a2
b1

− a3b
2
0

b21
+ 4b30

b31
, a4 � 4,

ω1 � 2b20b
2
1ω0 + a2b

2
1 − 3a3b0b1 + 24b20( ) a0b

4
1 − a2b

2
0b

2
1 + 2a3b

3
0b1 − 12b40( )

16b60b
4
1λ

+ 2b40b
2
1ω0 − 5a0b

4
1 + 5a2b

2
0b

2
1 − 10a3b

3
0b1 + 60b40

2b40b
2
1

. (19)

Hence, the corresponding relation between the solution of the
KdV6 equation and that of Eq. 18 is established. Given any one
solution of Eq. 18, the associated interaction solution of the
KdV6 system can be realized. According to Ref. [27], Eq. 18 has
varieties of solutions in the form of Jacobian elliptic functions, which
gives us a chance to look for the physically relevant soliton-cnoidal
periodic wave interaction solutions for the KdV6 equation. As a
representative example, we suppose now that Eq. 18 owns the
solution

W1 � c0CD

1 − c1S2
, (20)

where c0 and c1 are two real constants, S ≡ sn (ξ,m),C ≡ cn (ξ,m) and
D ≡ dn (ξ, m) represent the Jacobian elliptic sine function, Jacobian
elliptic cosine function and Jacobian elliptic function of the third
kind, respectively, and m is known as the modulus of the Jacobian
elliptic functions. Substituting the solution (20) into Eq. 18 and
eliminating the coefficients of different powers of Jacobian elliptic
functions, we obtain after a brief calculation

a0 � m3 + 2m2 +m, a2 � −m2 − 6m − 1,

a3 � 0, b0 � 1
2
b1δ m + 1( ), c0 � δ

��
m

√
, c1 � m,

ω1 � 1 − m − 1( )2
b21λ m + 1( )2( )ω0 + 20 m − 1( )2

b21 m + 1( )2 −
2 5m2 + 6m + 5( ) m − 1( )2

b41λ m + 1( )4 .

(21)
Next integrating the notation (17), the expression for the cnoidal
periodic wave can be written as

W � −δarctanh m1/2S( ) + c2 (22)

with an integral constant c2. Substituting this into Eq. 16, we form
now the formula for the expansion function

f � −δarctanh m1/2S( ) − ω1t

b1
+ x

b1
+ c2. (23)

Therefore, after inserting Eq. 23 into the solution (14), the soliton-
cnoidal periodic wave interaction solution of the KdV6 equation is
constructed. Here we omit the lengthy formulas for the sake of
simplicity.

As pointed out in our pervious work [2, 7], soliton-cnoidal wave
interaction solutions can be regarded as dressed solitons, namely,
solitons dressed by cnoidal periodic waves. After taking the limit
tanh(f) = ±1 in the solution (14), i.e., removing the soliton cores of v
and w, only the cnoidal periodic wave parts remain. To illustrate the
soliton-cnoidal periodic wave structure in more detail, it is exhibited
in a graphical way with the parameters c2 = 0, δ = b1 = λ = 1, ω0 = 2
andm = 0.01; Figures 1A,B display the profiles of the soliton-cnoidal
wave structures at t = 0; Figures 1C,D depict the soliton cores of v
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and w, where the dashed lines show the left parts of the solitons,
i.e., taking tanh(f) = −1 in the solution (14), and the right parts are
displayed by the solid lines. Figures 1E,F show the corresponding
cnoidal periodic wave structures. As is expected, apart from the
soliton cores, the solutions v and w rapidly tend to the cnoidal
periodic waves propagating along the x direction.Furthermore, we
would like to illustrate how to control the profiles of the soliton-
cnoidal periodic waves and analyze their dynamical behaviors. First,
the designable of the velocity of the cnoidal periodic wave is to be
considered. Figure 2 exhibits the time-space evolutions of the
soliton-cnoidal periodic wave solution (14). The overtaking
collision processes between solitons and cnoidal waves are shown

in Figure 2A, B. Here both the solitons and the cnoidal waves are
right-moving, but the velocity of cnoidal waves, selected as ω0 = 2, is
slower than the velocity of solitons ω1 = 7.96, which is calculated
from Eq. 19. As time evolves, the soliton collide with every peak of
cnoidal wave, and both the amplitudes and the widths of solitons
and cnoidal periodic waves are unchanged except for a phase shift;
Figure 2C, D show the interactions between solitons and cnoidal
waves with zero velocity. In this situation, the cnoidal waves can be
viewed as the standing waves. The right-going solitons collide with
the standing periodic waves during their propagations. It is also
shown that the collisions between solitons and cnoidal waves are
elastic with a slight phase shift. The head-on collision between

FIGURE 1
(A) and (B): Profiles of the soliton-cnoidal periodic wave interaction solutions with parameters c2=0, λ = δ = b1=1, ω0=2 and m =0.01. (C) and (D):
Soliton cores of the interaction solutions. (E) and (F): Background periodic waves of the interaction solutions.
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solitons and cnoidal waves can be observed from Figure 2E, F, which
display the right-going solitons colliding with the left-going cnoidal
waves (ω0 = −2). In addition, the straight line that the soliton
propagates along is x = ω1t − b1c2, determined by Eq. 23, which is
drawn in Figure 2A, B by solid lines.

As shown in Eq. 21, the wave parameterm indicates not only the
modulus of the Jacobian elliptic function, but also the amplitude of
Jacobian elliptic function. With the increasing ofm, the amplitude of
the cnoidal periodic wave trends to decrease. In particular, under the
asymptotic condition m → 0, the soliton profiles go to be the
classical KdV6 solitons, and the surrounding cnoidal periodic

waves are non-zero and with a slight amplitude periodic wave,
which is displayed in Figure 3.

4 Summary and discussion

In this paper, by making use of the truncated Painlevé expansion,
the residual symmetry of the KdV6 equation was derived. To eliminate
the non-locality of the residual symmetry, we introduced five new field
quantities ϕ1, ϕ2, g, g1 and h to localize it into the local Lie point
symmetry of the enlarged KdV6 system {(3), (6), (9), (11)}. Besides, the

A B

C D

FIGURE 2
Density profiles of the soliton-cnoidal periodic wave with the parameters (A) and (B)ω0=2; (C) and (D): ω0=0; (E) and (F): ω0=−2. Other parameters
are the same as those in Figure 1.
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CTEmethodwas applied to the KdV6 equation to get its soliton-cnoidal
wave interaction solutions. In the process of solving the equation that
the expansion function f satisfies, an intimate connection between this
equation and the equation satisfied by the elliptic functions was
constructed. By choosing any one elliptic function solution, the
corresponding interaction solutions of the KdV6 equation can be
acquired. To show the interaction solution more concretely, the
Jacobian elliptic wave solution (20) of Eq. 18 was introduced. The
results show that the soliton-cnoidal wave interaction solutions of the
KdV6 equation can be viewed as the solitons dressed by the cnoidal
periodic waves. Once the cnoidal wave backgrounds are taken away,
only the soliton cores are left. The results also exhibit that the shapes of
the soliton-cnoidal wave interaction solutions of the KdV6 equation are
designable by selecting different values of wave parameters. In
particular, how to design the velocities and amplitudes of the
cnoidal periodic waves were demonstrated, and the dynamical
behaviors of the soliton-cnoidal periodic wave interaction solutions
were analyzed. In addition, we believe that the method used for getting
non-local residual symmetry in this paper can also be applied to
complex functional equations, such as the non-linear Schrödinger
type equations, and their abundant soliton-nonlinear wave
interaction solutions can also be obtained by symmetry reduction
method. More studies regarding the soliton-nonlinear wave
interaction solutions for other partial differential equations will be
reported in our future research work.
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Fuzzy response to SH
guided-wave scattering by
semicircular depressions on the
boundary of a ribbon-shaped
elastic plate

Enxiang Qu  1*, Hui Qi2, Jing Guo2, Shangqi Yuan2 and Chun Lv1

1School of Architecture and Civil Engineering, Qiqihar University, Qiqihar, China, 2School of Aerospace
and Civil Engineering, Harbin Engineering University, Harbin, China

In this paper, the fuzzy scattering problem with semicircular depressions on the
boundary of a band-shaped elastic plate with steady SH guided wave incident is
studied and an analytical solution is given. First, the SH guided wave is constructed
by the guided wave expansion method, and then the scattered wave satisfying the
free condition of the boundary stress of the strip domain is constructed by the
cumulative mirror method. Finally, a definite solution equation is obtained based
on the fact that the shear stress at the edge of the semi-circular recessed hole is
zero. In this paper, the ambiguity of the number of waves and the width of the
bands is taken into account. In order to avoid the irreversibility of interval algorithm
and the difficulty of solving non-linear equations, the membership function of
fuzzy quantity is segmented to make the membership degree and fuzzy quantity
correspond respectively. A deterministic problem that translates into piecewise
processing. Two numerical examples are given to examine the changes in fuzzy
response of different numbers of fuzzy waves and fuzzy thicknesses to the
dynamic stress concentration factor of the hoop at the collapse limit.

KEYWORDS

semicircular depressions, fuzzy scattering, SH guided wave, membership function, fuzzy
thicknesses

1 Introduction

The scattering theory of elastic waves is widely used in the fields of earthquake
engineering, ocean engineering and geological exploration. The research and application
of elastic wave scattering are very extensive, and rich results have been achieved. For the
study of elastic wave scattering problems, several parameters are uncertain. This is due to the
ambiguity of its own objective attributes, the approximate processing of mathematical
modeling, and the use of random parameters as deterministic parameters. Since the
American cybernetics expert Professor Zadeh proposed fuzzy sets in 1965, the research
direction of fuzzy mathematics has become more extensive, such as fuzzy reliability, fuzzy
control, fuzzy optimization, fuzzy calculus equations and so on. Tong et al. [1] investigated
the adaptive fuzzy output-feedback backstepping control design problem for uncertain
strict-feedback non-linear systems in the presence of unknown virtual and actual control
gain functions and immeasurable states. Shi et al. [2] proposed the issue of the reliable
asynchronous sampled-data filtering of Takagi-Sugeno (T-S) fuzzy delayed neural networks
with stochastic intermittent faults, randomly occurring time-varying parameter
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uncertainties and controller gain fluctuation. Zhao et al. [3] solved
the problem of asymptotic tracking control for a class of uncertain
switched non-linear systems under fuzzy approximation framework.
Shi et al. [4] dealt with the non-fragile memory filtering issue of T-S
fuzzy delayed neural networks with randomly occurring time-
varying parameter uncertainties and variable sampling rates. Liu
et al. [5] proposed the concept of q-rung orthopair fuzzy sets
(q-ROFSs) to be able to describe more complex fuzzy uncertainty
information effectively. Sun et al. [6] researched the issue of fuzzy
adaptive control for a class of strict-feedback non-linear systems
with non-affine nonlinear faults. Hu et al. [7] explored the
performance of fuzzy system-based medical image processing for
predicting the brain disease. Zhu et al. [8] investigated the event-
triggered control problem for stochastic non-linear systems with
unmeasured states and unknown backlash-like hysteresis. Lin et al.
[9] proposed a novel picture fuzzy multi-criteria decision making
(MCDM) model to solve the site selection problem for car sharing
stations. Zhang et al. [10] studied the fault detection problem for
continuous-time fuzzy semi-Markov jump systems (FSMJSs) by
employing an interval type-2 (IT2) fuzzy approach. Wang et al.
[11] presented a fault-tolerant tracking control strategy for Takagi-
Sugeno fuzzy model-based non-linear systems which combines
integral sliding mode control with adaptive control technique.
Garg H et al. [12] introduced a novel multi-attribute decision
making (MADM) method under interval-valued intuitionistic
fuzzy (IVIF) set environment by integrating a Technique for
Order Preference by Similarity to Ideal Solution (TOPSIS)
method. Pan et al. [13] developed a novel risk analysis
approach by merging interval-valued fuzzy sets (IVFSs),
improved Dempster-Shafer (D-S) evidence theory, and fuzzy
Bayesian networks (BNs), acting as a systematic decision
support approach for safety insurance for the entire life cycle of
a complex system under uncertainty. In other numerical
applications, spectral elemental methods are also effectively
applied by researchers [14-15]. Mahariq I et al. [16] explored
the on-resonance and off-resonance optical response of dielectric
cylinders excited by normal incident plane waves. Mahariq I et al.
[17] also studied photonic nanojets resulting from corrugated
cylinders (with irregular boundaries) under normally incident
plane-wave illumination.

SH waves are the most fundamental elastic waves, propagating
in a direction perpendicular to the direction of vibration. The SH
wave has only one inverse plane vibration displacement (out-of-
plane displacement). Compared to P and SV waves, SH waves have
the simplest elastodynamic behaviour. For elastic dynamics
problems with complex initial boundary conditions, P and SV
waves can be difficult to find solutions for. For SH waves,
however, such problems can be easily solved to obtain further
analytical solutions. There are a lot of ambiguity factors in the
elastic wave scattering problem, such as seismic intensity, wave
speed, medium shear modulus, medium density, amplitude and
frequency of incident waves, etc., all of which are typical ambiguities
with randomness and ambiguity. In this paper, the ambiguity of the
number of waves and plate thickness ambiguity of SH guided wave
scattering are studied for the semicircular depression on the
boundary of the band-shaped elastic plate, and the membership
function is segmented so that the ambiguity and the membership
function correspond respectively. This method can avoid the
appearance of interval numbers and combine the decomposition
theorem of fuzzy numbers well. In this paper, a new theoretical
method is given to deal with fuzzy dynamics knowledge, and the
curve of dynamic stress concentration factor of semicircular sag
boundary with membership degree of fuzzy quantity is discussed in
detail, and a valuable reference conclusion for practical engineering
is obtained.

2 Theoretical model and analysis

2.1 Theoretical model

In this paper, the classical model in the reference [18] is used as
an example to further illustrate the use of fuzzy mathematics in
solving the scattering problem for defects in thin plates. As shown in
Figure 1, the thickness of the infinitely long strip-shaped domain is
h, the upper boundary is BU, the lower boundary is BL, the center of
the depression is o, and the radius is r. The shear modulus and
density of the medium are μ and ρ, respectively. The right-hand
plane rectangular coordinate system (o, x, y) is established with the
center of a circle o as the origin, where the X-axis is parallel to the
length direction of the belt shape domain, and the Y-axis is parallel
to the thickness direction. At the same time, taking the center of the
circle as the pole, a plane polar coordinate system (O, r, θ) is
established. Introduce complex variables z � x + iy � reiθ ;
�z � x − iy � re−iθ , of which i � ���−1√

, and establish complex plane
(z, �z). When the SH wave propagates in the plate, the out-of-plane
direction is the vibration direction of the particle, and the amplitude
w is only a function of the coordinates (x, y, t) or (r, θ, t).

2.2 Control equation

According to the theoretical model shown in Figure 1, the
control equations satisfying the upper and lower boundary stress
freedom can be obtained. According to reference [19], the control
equation for the anti-plane dynamics problem can be obtained. The
governing equation of the elasto-dynamic inverse plane problem is
the scalar wave Eq. 1:

FIGURE 1
Theoretical model of steady-state scattering of SH waves by
semi-cylindrical depressions in elastic ribbon domains.
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μΔw � ρ
z2w

zt2
(1)

In the formula: Δ is the two-dimensional Laplace operator. In
this chapter, the steady-state SH wave is analyzed. According to the
separation variable method, after separating the space variable and
the time variable, the time harmonic factor e−iωt is omitted, and the
Helmholtz equation, which is the governing equation of Eq. 2 is
obtained:

Δw + k2w � 0 (2)
Where: k � ω/cs is the wave number of the anti-plane shear

wave, ω is the circular frequency, and cs �
���
μ/ρ

√
is the phase velocity.

In the complex plane, the Helmholtz equation and the stress-strain
relationship can be expressed as:

4
zw

zzz�z
+ k2w � 0 (3)

τxz � μ
zw z, �z( )

zz
+ zw z, �z( )

z�z
( )

τyz � μi
zw z, �z( )

zz
− zw z, �z( )

z�z
( )

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
(4)

τrz � μ
zw z, �z( )

zz
eiθ + zw z, �z( )

z�z
e−iθ[ ]

τθz � μi
zw z, �z( )

zz
eiθ − zw z, �z( )

z�z
e−iθ[ ]

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
(5)

2.3 Incident wave

Establish a global coordinate system at any point of the upper
boundary BU of the belt domain, and satisfy the stress freedom
condition (6) of the upper and lower boundaries of the belt
domain. The SH guided wave expression is Eq. 7, where
exp[i(kmx − ωt)] is the propagation term in the x-direction. m
is the guided wave order and its physical meaning is the number
of nodes of the interference term in the y-axis direction. w1

m and
w2

m are the amplitudes of the corresponding propagating guided
waves. When m is an even number w1

m � 0. When m is an odd
number w2

m � 0.
qm satisfies Eq. 8, km is the apparent wave-number in the

x-axis direction, and qm satisfies Eq. 9. Only when km is a real
number, exp[i(kmx − wt)] can represent a propagating traveling
wave in the direction of the x-axis. Considering the issues
discussed in this chapter, the study of non-propagating waves
has no meaning. Therefore, when the m-order SH guided wave is
incident, the wave number is required to satisfy k>mπ/h.

μ
zw

zy

∣∣∣∣∣∣∣∣y�−h,0 � 0 (6)

wm � w1
m sin qm y + h

2
( )[ ]

+ w2
m cos qm y + h

2
( )[ ] exp i kmx − ωt( )[ ] (7)

qm � mπ

h
(8)

q2m � k2 − k2m (9)
Using the superposition method to superimpose the guided

waves of each order, all the displacement waves in the strip-
shaped medium satisfying the stress freedom of the upper and
lower boundaries can be obtained:

wi � ∑+∞
m�0

wm � ∑+∞
m�0

fm y( ) exp i kmx − ωt( )[ ] (10)

In this chapter, the steady-state SH wave is discussed, and the
time harmonic factor e−iωt is omitted. When the incident guided
wave is of order m, the expressions of displacement and stress are
as follows:

w i( ) � w1
m · sin qm y + h

2
( )[ ] + w2

m · cos qm y + h

2
( )[ ]{ }

· exp ikmx( ) (11)
τ i( )
xz � iμkm · w1

m · sin qm y + h

2
( )[ ] + w2

m · cos qm y + h

2
( )[ ]{ } · exp ikmx( )

τ i( )
yz � qm w1

m · cos qm y + h

2
( )[ ] − w2

m · sin qm y + h

2
( )[ ]{ } · exp ikmx( )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
(12)

τ i( )
rz � τ i( )

xz cos θ( ) + τ i( )
yz sin θ( )

τ i( )
θz � −τ i( )

xz sin θ( ) + τ i( )
yz cos θ( )

⎧⎪⎪⎨⎪⎪⎩ (13)

2.4 Scattered waves

Under the action of incident SH waves, the concave will
produce scattered waves. By using the method of repeated mirror
image, the semi-cylindrical depression B1 is extended to the
medium into a whole circle, which is named as the circular
hole B1. According to the wave function expansion method,
the displacement and stress of all-space scattered waves
generated by the boundary of a circular hole satisfy:

w s( )0
0 z( ) � w0 ∑+∞

n�−∞
AnH

1( )
n k z| |( ) z

z| |( )n

(14)

τ s( )
rz

0

0 z( ) � kμ

2
∑+∞

n�−∞
An[H 1( )

n−1 k z| |( ) · z

z| |( ) n−1( )

eiθ −H 1( )
n+1 k z| |( ) · z

z| |( ) n+1( )
e−iθ] (15)

τ s( )
θz

0

0 z( ) � ikμ

2
∑+∞

n�−∞
An[H 1( )

n−1 k z| |( ) · z

z| |( ) n−1( )

eiθ +H 1( )
n+1 k z| |( ) · z

z| |( ) n+1( )
e−iθ] (16)

The scattered wave w(s)0
0 generated by the circular hole �B is

reflected for the first time at the boundaries BU and BL of the band
domain, respectively. This reflected wave can be represented by the
mirror images w(s)1

1 and w(s)1
2 of the scattered wave w(s)0

0 to the
boundaries BU and BL, which is called the first mirror scattered wave.
The first reflected wave will have a second reflection on the boundaries
BU and BL of the strip domain, respectively. The reflected wave can be
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represented by the mirror images w(s)2
1 and w(s)2

2 of the first mirror
scattered waves w(s)1

1 and w(s)1
2 on the boundaries BU and BL, known

as the secondary mirror scattering wave.
Repeating this, the displacements of the P-th mirror scattered

waves are w(s)P
1 and w(s)P

2 , and the corresponding stresses are τ(s)rz
p
1 ,

τ(s)θz

p

1 , τ
(s)
rz

p
2 and τ

(s)
θz

p

2 . Among them, P is the number of mirror images
and the subscripts 1 and 2 represent the mirror faces of BU and BL,
respectively.

w s( )p
1 z( ) � w0 ∑+∞

n�−∞
AnH

1( )
n k zp1

∣∣∣∣ ∣∣∣∣( ) zp1
zp1
∣∣∣∣ ∣∣∣∣( ) −1( )pn

(17)

τ s( )
rz

p

1 z( ) � kμ

2
∑+∞

n�−∞
An[H 1( )

n−1 k zp1
∣∣∣∣ ∣∣∣∣( ) · zp1

zp1
∣∣∣∣ ∣∣∣∣( ) −1( )p n−1( )

e −1( )piθ

−H 1( )
n+1 k zp1

∣∣∣∣ ∣∣∣∣( ) · zp1
zp1
∣∣∣∣ ∣∣∣∣( ) −1( )p n+1( )

e −1( ) p+1( ) iθ]
(18)

τ s( )
θz

p

1 z( ) � −1( )Pikμ
2

∑+∞
n�−∞

An[H 1( )
n−1 k zp1

∣∣∣∣ ∣∣∣∣( ) · zp1
zp1
∣∣∣∣ ∣∣∣∣( ) −1( )p n−1( )

e −1( )piθ

+H 1( )
n+1 k zp1

∣∣∣∣ ∣∣∣∣( ) · zp1
zp1
∣∣∣∣ ∣∣∣∣( ) −1( )p n+1( )

e −1( ) p+1( ) iθ⎤⎥⎦ (19)

w s( )p
2 z( ) � w0 ∑+∞

n�−∞
AnH

1( )
n k zp2

∣∣∣∣ ∣∣∣∣( ) zp2
zp2
∣∣∣∣ ∣∣∣∣( ) −1( )pn

(20)

τ s( )
rz

p

2 z( ) � kμ

2
∑+∞

n�−∞
An[H 1( )

n−1 k zp2
∣∣∣∣ ∣∣∣∣( ) · zp2

zp2
∣∣∣∣ ∣∣∣∣( ) −1( )p n−1( )

e −1( )piθ

− H 1( )
n+1 k zp2

∣∣∣∣ ∣∣∣∣( ) · zp2
zp2
∣∣∣∣ ∣∣∣∣( ) −1( )p n+1( )

e −1( ) p+1( ) iθ⎤⎥⎦
(21)

τ s( )
θz

p

2 z( ) � −1( )Pikμ
2

∑+∞
n�−∞

An[H 1( )
n−1 k zp2

∣∣∣∣ ∣∣∣∣( ) · zp2
zp2
∣∣∣∣ ∣∣∣∣( ) −1( )p n−1( )

e −1( )piθ

+H 1( )
n+1 k zp2

∣∣∣∣ ∣∣∣∣( ) · zp2
zp2
∣∣∣∣ ∣∣∣∣( ) −1( )p n+1( )

e −1( ) p+1( ) iθ⎤⎥⎦
(22)

In the above formula:

zp1 � z − i
−1( )ph + h

2
+ p − 1( )h[ ] (23)

zp2 � z + i h + −1( )p+1h + h

2
+ p − 1( )h[ ] (24)

Using the superposition method, the scattered waves
obtained by each mirror image are accumulated together, and
the displacement of the scattered waves generated by the circular
hole �B that can satisfy the stress freedom of the upper and lower
boundaries of the strip domain can be obtained as Eq. 25, and the
stress is expressed as Eq. 26 and 27.

w s( ) z( ) � w s( )0
0 z( ) + ∑+∞

P�1
w s( )P

1 z( ) + w s( )P
2 z( )( ) (25)

τ s( )
rz z( ) � τ s( )

rz

0

0 z( ) + ∑+∞
P�1

τ s( )
rz

P

1 z( ) + τ s( )
rz

P

2 z( )( ) (26)

τ s( )
θz z( ) � τ s( )

θz

0

0 z( ) + ∑+∞
P�1

τ s( )
θz

P

1 z( ) + τ s( )
θz

P

2 z( )( ) (27)

2.5 Definite solution conditions

The incident wave and scattered wave constructed according to
the above method have already satisfied the condition that the shear
stress at the boundary BU and BL is zero, so that the condition of
stress freedom at the concave boundary B1 becomes the definite
solution condition of the whole problem. The resulting coefficients
An on the scattered wave function level are the set of Eq. 28. Firstly,
the coordinate translation technique is used to translate the stress
expressions solved in other coordinate systems into the complex
plane (z, �z). Then, the Fourier expansion method is used, and both
ends of the formula are multiplied by e−imθj at the same time, and
then the infinite algebraic equations with coefficient An are
integrated on the interval (−π, 0). Finally, the truncated finite
terms are solved.

τ i( )
rz z( ) + τ s( )

rz z( ) � 0, z ∈ B (28)

2.6 Dynamic stress concentration factor

Under the action of steady-state SH wave, the dynamic stress
concentration factor characterizes the degree of dynamic stress
concentration. Define Eq. 29 as the dynamic stress concentration
factor of the recessed edge.

γ � τθz| |
τ0| | (29)

Where: τθz is the angular stress on the edge of the depression
and τ0 � μkw0 is the maximum amplitude of the incident stress.

FIGURE 2
Trapezoidal distribution.
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FIGURE 3
Distribution of hoop dynamic stress concentration factor of semi-
circular depression when the thickness of the ribbon domain is h � 3.
(A–C) represent the results of these three subsets: Left transition area,
Nuclear region and Right transition area.

FIGURE 4
Distribution of hoop dynamic stress concentration factor of semi-
circular depression when the thickness of the ribbon domain is h � 6.
(A–C) represent the results of these three subsets: Left transition area,
Nuclear region and Right transition area.
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3 Examples and analysis

3.1 Analysis of fuzzy example 1

There are several fuzzy parameters in this problem including
wave amplitude, frequency, and wave speed in the plane of
perturbation which may all be fuzzy numbers. As can be seen
from reference [20], the different affiliation curves are treated
according to trapezoidal segments. It is assumed that the
ambiguity membership function of the wavenumber is μk(x) and
the trapezoidal distribution is shown in Figure 2. According to the
method of fuzzy cut set, the interval under a certain degree of
membership is obtained. The points in this interval actually have
different degrees of membership, so that the fuzzy cutest set is not
exactly the same as the general interval number. Since the
subtraction and division of the four arithmetic operations of
interval numbers are not reversible, it is difficult to deal with
fuzzy numbers, and at most an enlarged interval solution can be
obtained. According to the corresponding relationship between
points and membership degrees, different membership degree
curves are processed in segments.

The related membership relationship can be expressed as:

μk x( ) �

0 ; x≤ a − a2
a2 + x − a

a2 − a1
; a − a2 < x≤ a − a1

1 ; a − a1 < x< a + a1
a2 − x + a

a2 − a1
; a + a1 ≤x< a + a2

0 ; x≥ a + a2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
The analysis only needs to consider a range of a − a2 <x≤ a + a2

divided into three segments. Order μk(x) � λ.
When x � k ∈ (a − a2, a − a1), k � (a2 − a1)λ + a − a2 ;
When x � k ∈ (a − a1, a + a1), λ ≡ 1;
When x � k ∈ (a + a1, a + a2), k � a2 + a − λ(a2 − a1);
Let a = 2, a2 = 1.5, a1 = 1, r = 1. By considering the different

thicknesses h � 3, h � 6, h � 10 and h � 20 in the strip domain and
substituting different affiliation relations, the cyclic dynamic stress
concentration factor at the semi-circular depression are further
obtained at different levels of affiliation.

Figure 3 shows the distribution of the hoop dynamic stress
concentration factor of the semicircular depression in different
sections when the thickness of the belt domain is h � 3. The left
transition region of the membership function curve is the low
wave number region, and the dynamic stress concentration factor
is significantly higher than that of the core region and the right
transition region (high wave number region). The angle of the left
transition zone is 1800–2700 for the front wave and 2700-3600 for
the back wave. The front wave front in the left transition region
oscillates more obviously than the back wave front, because the
front wave first arrives when the incident wave hits the inside of
the band. The core area is a non-empty and non-single element
interval. Although the membership degree of points in the core
area is λ � 1, due to the difference in the numerical value of
specific points, the dynamic stress concentration factor of the
core area exhibits irregular oscillations, which is caused by fuzzy
uncertainty.

As can be seen from Figure 4, the left transition area of the
membership function curve is a low wave number area,
the maximum value of dynamic stress concentration factor

FIGURE 5
Distribution of hoop dynamic stress concentration factor of
semi-circular depression when the thickness of the ribbon domain is
h � 10. (A–C) represent the results of these three subsets: Left
transition area, Nuclear region and Right transition area.
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appears on the membership degree λ � 1 curve, and the peak
value of the core area appears on the membership degree k � 2.0
curve, while the peak value of the right transition area appears on

the membership degree λ � 0.5 curve. The peaks of
membership degrees appear on the curves of different
membership degrees, which is obviously caused by fuzzy
uncertainty. The change of the stress concentration factor
curve in the right transition region is more complicated than
that in the left transition region, which indicates that the high
wave number region has a more serious influence than the low
wave number region.

From Figure 5, the thickness h � 10 of the band-shaped
domain shows the distribution of the hoop dynamic stress
concentration factor of the semicircular depression. The left
transition area of the membership function curve is the low
wave number area, and the dynamic stress concentration
factor curve is not obviously oscillated, and the core area and
the right transition area are the medium wave number area and
the high wave number area, respectively. When the membership
degree of the left transition zone is λ � 0.25, the maximum value
of the peak appears. The membership degrees of the core area are
all λ � 1, but the maximum value of the wave peak appears at
k � 1.0, and the maximum value of the peak of the dynamic stress
concentration factor in the right transition area appears at
λ � 0.25. Due to the influence of fuzzy and uncertain factors,
the positions of the peaks in different sections of the membership
curve are different. It can be seen from the figure that the number
of wave peaks in the right transition area is significantly more
than that in the nuclear area and the left transition area, and the
right transition area oscillates more violently.

It can be seen from Figure 6 that the dynamic stress
concentration factor in the left transition area of the
membership function curve is significantly higher than that in
the core area and the right transition area, and the curve of the
stress concentration factor in the left transition area changes
gently. With the increase of wave number, the curve has obvious
oscillation, and the change is more obvious in the right transition
region (high wave number region). The maximum value of the
wave crest in the left transition area appears at the position of
membership degree λ � 0.25, and although the membership
degree of the core area is λ � 1, the maximum value of the
wave crest appears at k � 2.5. The peak value of the right
transition area appears at λ � 0.25. The transition regions of

FIGURE 6
Distribution of hoop dynamic stress concentration factor of
semi-circular depression when the thickness of the ribbon domain is
h � 20. (A–C) represent the results of these three subsets: Left
transition area, Nuclear region and Right transition area.

FIGURE 7
Triangular distribution.
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different segments show different correlations, which also lead to
the maximum value of the peaks appearing on the curves of
different membership degrees.

3.2 Analysis of fuzzy example 2

As can be seen from reference [21], the different affiliation
curves are treated according to triangular segments. Assuming
that the fuzzy membership function of the thickness h of the
elastic plate in the belt domain is μh(x), it is a triangular
distribution as shown in Figure 7. According to the method
of fuzzy cut set, the interval under a certain degree of
membership is obtained. The points in this interval actually
have different degrees of membership, so that the fuzzy cut set is
not exactly the same as the general interval number. Since the

subtraction and division of the four arithmetic operations of
interval numbers are not reversible, it is difficult to deal with
fuzzy numbers, and at most an enlarged interval solution can be
obtained. According to the corresponding relationship between
points and membership degrees, different membership degree
curves are processed in segments.

μh x( ) �

0 ;x< b1

1
b2 − b1

x − b1
b2 − b1

; b1 ≤ x< b2

− 1
b3 − b2

x + b3
b3 − b2

; b2 ≤x< b3

0 ; b3 ≤ x

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
In this analysis, only b1 < x≤ b3 is considered and divided into two

sections. Order μh(x) � λ1. When x � h ∈ (b1, b2),
h � (b2 − b1)λ1 + b1. When x � h ∈ (b2, b3), h � b3 − λ1(b3 − b2).

FIGURE 8
Distribution of hoop dynamic stress concentration factor with
k � 0.1 at semicircular depressions. (A,B) represent the results of these
two subsets: Left transition area and Right transition area.

FIGURE 9
Distribution of hoop dynamic stress concentration factor with
k � 1 at semicircular depressions. (A,B) represent the results of these
two subsets: Left transition area and Right transition area.
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Let b1 = 1, b2 = 2, b3 = 5, r = 0.8 and consider the hoop dynamic stress
concentration factor curve at the semicircular depression under
different membership levels under the condition of k � 0.1, k � 1
and k � 2.

It can be seen from Figure 8 that when m � 0, k � 0.1 is a
phenomenon of low-frequency quasi-static incidence of SH guided
waves. Whether it is the left transition region or the right transition
region, the dynamic stress concentration factor curve exhibits a
position symmetry about 2700. The variation law of the dynamic
stress concentration factor of the membership function is very
similar, and when the membership degree is λ � 0, the peak of
the dynamic stress concentration factor is the largest. The changing
law of the dynamic stress concentration factor in the right transition
zone is also very similar in the case of different membership
relationships, but the maximum value of the wave peak appears
at the position of λ � 1. Due to the uncertainty of the fuzzy wave

number, the positions of the peaks in the left and right transition
regions are different.

It can be seen from Figure 9 that when k � 1 corresponds to the
incident situation of the intermediate frequency SH guided wave. From
the curves of the left and right transition regions, it can be seen that the
dynamic stress concentration factor of the front wave surface is more
obvious than the fluctuation stress concentration factor of the back side.
The maximum value of the wave crest in the left transition area appears
at the position of membership degree λ � 0, while the maximum value
of the wave peak in the right transition area appears at the position of
membership degree λ � 0.75. The values of different membership
degrees are different, and the changes of the dynamic stress
concentration factor in the left and right transition regions are also
different.

It can be seen from Figure 10 that when k � 2 corresponds to the
incident case of high-frequency SH guided waves. The values of
different membership degrees in the left and right transition regions
are different, and the variant rules of the dynamic stress
concentration factor are also different. However, it can be clearly
seen that the variation law of the dynamic stress concentration factor
curve in the left and right transition zones basically appears in the
form of two peaks. The peak maximum value in the left transition
area appears on the λ � 0 curve, while the peak maximum value in
the right transition area appears on the λ � 0.75 curve. From this, it
can be concluded that the fuzzy relationship is uncertain, and
different fuzzy membership relationships lead to different
positions of wave crests.

4 Conclusion

The solution to the elastic wave scattering problem is often a
non-linear function of various parameters, and there is no mature
and unified method to obtain the explicit expression of the fuzzy
parameters. Even if the inverse function is reached, it is mostly a
multi-valued function. Various parameters are often ambiguous,
and the membership function of fuzzy response is not always solved
by using the membership function of known fuzzy parameters, and
the irreversibility of interval algorithm also brings many difficulties
in solving fuzzy response problem. In this paper, the correspondence
between the subordinate function and the fuzzy quantity pairs is
exploited to segment the subordinate function so that each segment
corresponds to the fuzzy quantity. This method can effectively avoid
the process of interval calculation and does not violate the
decomposition process of fuzzy numbers. Two different affiliation
curves are given for the trapezoidal and triangular distributions. We
solve the multi-source fuzzy scattering problem for wave number
and band shape domain thickness, respectively. The calculation
example results show the feasibility of the algorithm, and provide
theoretical basis and reference value for the application of fuzzy
mathematics to earthquake engineering.
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FIGURE 10
Distribution of hoop dynamic stress concentration factor with
k � 2 at semicircular depressions. (A,B) represent the results of these
two subsets: Left transition area and Right transition area.
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Physically significant solitary
wave solutions to the
space-time fractional
Landau–Ginsburg–Higgs
equation via three consistent
methods
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The Landau–Ginzburg–Higgs equation (LGHE) is a mathematical model used to
describe nonlinear waves that exhibit weak scattering and long-range connections
in the tropical and mid-latitude troposphere as interactions between equatorial
and mid-latitude Rossby waves. This study assessed the fractional
Landau–Ginzburg–Higgs model, previously introduced in truncated M-fractional
derivatives utilizing the (G′/G, 1/G), modified (G′/G2), and new auxiliary equation
methods. Using these techniques, different solutions, including unknown parameters,
were obtained in trigonometric, hyperbolic, and exponential functions. This study
investigated how varying values of the fractional parameter affected the deeds of the
solutions obtained for the given conditions. The predicted solutions, obtained under
restricted conditions, were visualized through 2D, 3D, and contour plots using
appropriate parameter values. The attained results were confirmed for the
aforementioned equations using symbolic soft computations. Moreover, the
outcomes confirmed that the methods used in this study were effective
mathematical tools for discovering exact solitary wave solutions to nonlinear
models encountered in various areas of science and engineering.

KEYWORDS

Ginzburg–Higgs equation, truncated M-fractional derivative, the (Gʹ/G,1/G)-expansion
method, modified (Gʹ/G2)-expansion method, new auxiliary equation method, exact
solitary wave solutions

1 Introduction

Non-linear partial differential equations (NLPDEs) play significant roles in physics,
mathematical engineering, and other phenomena such as heat flow, plasma physics, wave
propagation, shallow water waves, chemically dispersed electricity, quantum mechanics, fluid
dynamics, and reactive materials. NLPDEs also play substantial roles in nonlinear optical fibers
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and quantum fields, such as nonlinear wave equations, Monge–Ampere
equations, Burgers equations, Liouville equations, Fisher equations, and
Kolmogorov–Petrovskii–Piskunov equations [1–4]. These equations
assist in the implementation of essential parts of the soliton solution.
The soliton is stimulated during diffusion by eliminating the effects of
diffusion. Now, soliton assessment is very common [5]. Solitons are
solutions to large, weakly detached partial differential equations (PDEs)
for physical structures. Nowadays, many models are considered for
computing the soliton solutions (SS) [6–8]. Among these, the
Landau–Ginzburg–Higgs (LGH) model [9, 10] is one of the most
considered in recent years, as follows:

z2v

zt2
− z2v

zx2
− g2v + h2v3 � 0, (1)

where v � v(x, t) is the ion-cyclotronwave electrostatic potential g and h
are real parameters and x, t indicate the nonlinearized spatial and
temporal coordinates. Lev Davidovich Landau and Vitaly Lazarevich
Ginzburg designed the LGHE (1) to describe superconductivity and drift
cyclotron waves in radially inhomogeneous plasmas of integrated ion
cyclotrons [11]. Numerous methods have been used to determine the
distinctive SS of the integrable nonlinear evolution equation (NLEE) (1).
Bekir andUnsal [12] provided exponential function solutions by using the
first integral method for NLEE (1). Iftikhar et al. [13] utilized the
(G′/G, 1/G)-expansion method and inspected a variety of analytical
solutions for NLEE (1). They also determined general and kinked
shape soliton solutions for different parameter selections. Barman et al.
[14, 15] obtained various analytical solutions using the Kudryashov
technique comprising the undisclosed parameters of Eq. 1. In addition,
they employed the tanh function to create solutions with soliton-like
shapes, such as dark solitons, bright solitons, peakons, compactons, and
periodic solutions, among others. These solutions can be utilized to
investigate the propagation of various waves, such as tidal and
tsunami waves, ion-acoustic waves, and magneto-sound waves in
plasma. Islam and Akbar [16] used the IBSEF and presented
innumerable stable solutions. The results provided several soliton
shapes, which considered one-way wave propagation with diffuse
systems in nonlinear science.

For two centuries, fractional calculus has fascinated many
intellectuals’ curiosity. Use them to develop many nonlinear aspects,
inclosing bioprocesses, chemical processes, fluid mechanics, etc. In the
traditional integer order, the fractional-order PDEs are used to generalize
PDEs. Several definitions of the fractional derivative exist in the literature,
such as Riemann–Liouville [17], Caputo [18], Caputo–Fabrizio [19],
conformable fractional derivative (FD) [20], and beta-derivative [21] to
solve non-integer-order models. Studies have shown that these
definitions of FD do not meet some of the basic assets of derivatives,
such as product and chain rules. Sousa and Oliveira [22] developed a
novel truncated-M fractional derivative that meets numerous properties
considered to be the FD’ boundary. This derivative has interesting results
in different areas, such as chaos theory, biological modeling, circuit
analysis, optical physics, and disease analysis.

The core aim of this study was to explore the space-time
fractional LGH model [23], symbolized as

D2α,β
M,t v −D2α,β

M,xv − g2v + h2v3 � 0, 0< α< 1, β> 0, (2)

where α and β are the fractional parameters representing the
fractional time derivative’s order.

The fundamental consideration of this exploration was to
take advantage of the novel indication of fractional-order
derivatives, called truncated truncated-M fractional
derivatives [22, 24, 25], for space-time fractional LGHE [23],
and to use the (G′/G, 1/G), modified (G′/G2), and new auxiliary
equation methods (NAEMs) [23, 26, 27] to obtain new inclusive
solitary solutions in the form of solutions of bright, dark, single
solitons, and periodic isolated waves. Up to now, the results have
different corporate and diverse forms, which have not been
reported previously [23].

Moreover, the planned technique has been used to solve various
models. For instance, Hafiz [28] employed the (G′/G, 1/G)-expansion
method to determine the closed-form solutions of the generalized
fractional reactionDuffingmodel and the density-dependent fractional
diffusion-reaction equation. Li et al. [29] discovered the traveling wave
solutions of the Zakharov equation, and Zayed et al. [30] established
solutions to the nonlinear Kdv–mKdv equation. Uddin [31] and
Wazwaz [32] provided general solutions for the fifth-order NLEEs
and the Burger KP-equation, respectively. Sirisubtawee [33] found
exact traveling wave solutions for nonlinear fractional evolution
equations. Traveling wave solutions for the nonlinear Schrodinger
equation with third-order dispersion were obtained using the modified
(G′/G2)-expansion model [34]. The Fokas–Lenells equations were
solved using this technique to regulate different traveling wave
solutions [35]. Aljahdaly [36] extended the NLEEs and described
the general exact traveling wave solutions. Dragon and Donmez
[37] discovered solutions in the form of traveling waves for the
Gardner equation and then used these solutions to address different
plasma-related issues. The Sharma–Tasso–Olver (STO) equations
were also solved, and exact nonlinear and super nonlinear traveling
wave solutions were obtained [38]. Jhangeer et al. [39] used the new
auxiliary equations method to find innovative soliton solutions for the
fractional Caudrey–Dodd–Gibbon–Sawada–Kotera equation. Raza
et al. [40] obtained the new optical solitary wave solitons of the
three-dimensional Fractional Wazwaz–Benjamin–Bona–Mahony
(WBBM) equation. Furthermore, Riaz et al. [41] scrutinized the
various forms of solitary wave solutions for the modified equal-
width wave equation.

This work is structured into six sections. Section 2 presents
the truncated M-fractional derivative and its properties, which is
the foundation of the proposed methods. The methodologies of
the three proposed approaches are discussed in Section 3, where
we explain how to use the truncated M-fractional derivative to
solve mathematical models. Section 4 involves a mathematical
examination of the models we have presented and the solutions
we have obtained using the proposed methods. We compare
them with existing methods in the literature. Section 5 provides a
graphical representation of the obtained solutions for each
analyzed model. Finally, Section 6 provides the study
conclusion by summarizing the key findings and their
implications.

2 TruncatedM-fractional derivative and
its properties

The following section will discuss the truncated M-fractional
derivative (TMFD) of order α with its properties.
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Definition 2.1. Let f: (0,∞) → R, then, the TMFD of a function
f of order α is determined as

Dα,β
M f t( ) � lim

ε→0

f t∈β εt1−α( )( ) − f t( )
ε

, for all t> 0, 0< α< 1, β> 0,

where α∈β(·) is a truncated Mittag–Leffler function of one
parameter [22].

Properties 2.2. Let α ∈ (0, 1], β> 0 and f � f(t), g � g(t) be
α-differentiable at a point t> 0, then:

1. Dα,β
M (af + bg) � aDα,β

M f + bDα,β
M g, ∀ a, b ∈ R.

2. Dα,β
M (c) � 0,wheref(t) � c, is a constant.

3. Dα,β
M (f · g) � Dα,β

M f +Dα,β
M g.

4. Dα,β
M (fg) � gDα,β

M f−fDα,β
M g

g2 .
5. If f is differentiable, then

Dα,β
M f t( ) � t1−α

Γ β + 1( ) dfdt . (3)

6. Dα,β
M (f+g)(t) � f′(g(t))Dα,β

M g(t), for f dif ferentiable atg(t).

3 General form of the methods

3.1 (G′/G, 1/G)-expansion method

The core steps of the (G′/G, 1/G)-expansion model [24, 28] for
discovering traveling wave solutions to nonlinear evolution
equations are outlined in this section. We begin by examining
the second-order linear ordinary differential equation (ODE):

G″ η( ) + λG η( ) � μ, (4)
where ϕ � G′/G andψ � 1/G, then

ϕ´ � −ϕ2 + μψ − λ,ψ´ � −ϕψ. (5)

Case 1: When λ< 0, the general solutions of Eq. 4 is given as

G η( ) � A1 sinh
���−λ√

η( ) + A2 cosh
���−λ√

η( ) + μ

λ
, (6)

and we have

ψ2 � −λ
λ2σ + μ2

ϕ2 − 2μψ + λ( ), (7)

where A1 andA2 are arbitrary integration constants
and σ � A1

2 − A2
2.

Case 2: When λ> 0, the general solution of Eq. 4 is clearly

G η( ) � A1 sin
�
λ

√
η( ) + A2 cos

�
λ

√
η( ) + μ

λ
, (8)

and we have

ψ2 � λ

λ2σ − μ2
ϕ2 − 2μψ + λ( ), (9)

whereA1 andA2 are arbitrary integration constants and σ � A1
2 + A2

2.

Case 3: When λ � 0, the general solutions of Eq. 4 is

G η( ) � μ

2
η2 + A1η + A2, (10)

and we have

ψ2 � 1

A1
2 − 2μA2

ϕ2 − 2μψ( ), (11)

where A1 and A2 are arbitrary integration constants.
Consider the NLPDE, such as

Q u, ut, ux, utt, uxt, uxx, . . .( ) � 0. (12)
The unfamiliar function u � u(x, t) is represented by a Q

polynomial of the variable and its partial derivatives. The key
phases involved in the (G′/G, 1/G)-expansion model are as follows:

Step 1: By coordinate transformation

η � x − ct, u x, t( ) � v η( ). (13)
where c is the speed of the traveling wave.
The wave variable allows us to reduce Eq. 12 into a nonlinear

ODE for v � v(η):
R v, v′, v″, v‴, . . .( ) � 0, (14)

where R is a polynomial of v(η) and its total derivatives
concerning η.

Step 2: Assume that a polynomial can express the solutions of Eq.
14 in two variables ϕ and ψ as

v η( ) � ∑m
i�0
aiϕ

i +∑m
i�0
biϕ

i−1ψ. (15)

To determine the values of the constants ai(i �
0, 1, . . . , m) and bi(i � 1, . . . , m) and the positive integer m, a
homogenous imbalance is used among the highest-order
derivatives and the nonlinear terms in the given ODE Eq. 14.

Step 3: Substitute Eq. 15 into Eq. 14 along with Eqs 5 and 7, reducing
the left-hand side of the ODE into a polynomial in terms of ϕ and ψ,
with a maximum degree of 1 for ψ. A system of algebraic equations is
obtained by setting each coefficient of the polynomial to zero, which
can be solved with the aid ofMathematica software to obtain the values
for ai(i � 0, 1, . . . ,m), bi(i � 1, . . . ,m), c, μ, λ(λ< 0), A1andA2.

Step 4: Substitute the values obtained for ai (i = 0, 1, . . .,m), bi (i = 1,
. . .,m), c, μ, λ(λ<0),A1 andA2 in Eq. 15 to determine the traveling wave
solutions in terms of hyperbolic functions, as expressed in Eq. 14.

Step 5: Similarly, substitute Eq. 15 into Eq. 14 along with Eq. 5 and
either Eq. 9 or Eq. 11 to obtain exact traveling wave solutions
expressed in terms of trigonometric or rational functions, respectively.

3.2 Themodified (G′/G2)-expansionmethod

We outline the fundamental steps of the modified
(G′/G2)-expansion method [24, 29] as follows:
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Step 1: Start by considering Eqs 12–14.

Step 2: Extend the solutions to Eq. 14 as follows:

v η( ) � ∑m
i�0
ai

G′
G2

( )i

, (16)

where ai(i � 0, 1, 2, 3, . . . , m) are constants and found later. It is
important that ai ≠ 0.

The function G � G(η) satisfies the following Riccati equation:

G′
G2

( )′ � λ1
G′
G2

( )2

+ λ0, (17)

where λ0 and λ1 are constants.
We can obtain the following solutions to Eq. 17 under different

conditions λ0:
When λ0λ1 < 0,

G′
G2

( ) � −
�����
λ0λ1| |√
λ1

+
�����
λ0λ1| |√
2

C1 sinh
����
λ0λ1

√
η( ) + C2 cosh

����
λ0λ1

√
η( )

C1 cosh
����
λ0λ1

√
η( ) + C2 sinh

����
λ0λ1

√
η( )⎡⎢⎣ ⎤⎥⎦. (18)

When λ0λ1 > 0,

G′
G2

( ) �
���
λ0
λ1

√
C1 cos

����
λ0λ1

√
η( ) + C2 sin

����
λ0λ1

√
η( )

C1 sin
����
λ0λ1

√
η( ) − C2 sin

����
λ0λ1

√
η( )⎡⎢⎣ ⎤⎥⎦. (19)

When λ0 � 0 and λ1 ≠ 0,

G′
G2

( ) � − C1

λ1 C1η + C2( ), (20)

where C1 and C2 are arbitrary constants.

Step 3: If we substitute Eq. 16 and Eq. 17 into Eq. 14 and equate the
coefficients of each power of (G′G2)i to zero, a set of algebraic equations
can be obtained. These equations can then be solved to determine
the values of ai, λ0, λ1, c, and other parameters.

Step 4: Replacing Eq. 16 of which αi, c, and other parameters are
found in step 3 in Eq. 13, we obtain the solutions for Eq. 12.

3.3 The new auxiliary equation method

Now, we will designate the elementary steps of the new auxiliary
equation method [39, 40].

Step 1: Consider Eqs 12–14.

Step 2: Subsequently determine the solutions of Eq. 14:

v η( ) � ∑m
i�0
aiγ

if η( ), (21)

which satisfies the auxiliary equation:

f′ η( ) � 1
ln γ( ) μγ−f η( ) + λ + ζγf η( )( ), (22)

where a0, a1, a2, . . . , am are coefficients to be solved such that
am ≠ 0. We then utilized the balancing principle to obtain the
value of m, which states that we can find m by equating the
nonlinear term of Eq. 14 with the highest-order derivative.

For Eq. 22, the family of solutions can be attained as follows:
Family-1 When λ2 − 4μζ < 0 and ζ ≠ 0,

γf η( ) � −λ
2ζ

+
�������
4μζ − λ2

√
2ζ

tan

�������
4μζ − λ2

√
2

η⎛⎜⎜⎝ ⎞⎟⎟⎠,

γf η( ) � −λ
2ζ

−
�������
4μζ − λ2

√
2ζ

cot

�������
4μζ − λ2

√
2

η⎛⎜⎜⎝ ⎞⎟⎟⎠.

Family-2 When λ2 − 4μζ > 0 and ζ ≠ 0,

γf η( ) � −λ
2ζ

−
�������
λ2 − 4μζ

√
2ζ

tanh

�������
λ2 − 4μζ

√
2

η⎛⎜⎜⎝ ⎞⎟⎟⎠,

γf η( ) � −λ
2ζ

−
�������
λ2 − 4μζ

√
2ζ

coth

�������
λ2 − 4μζ

√
2

η⎛⎜⎜⎝ ⎞⎟⎟⎠.

Family-3 When λ2 + 4μ2 < 0, ζ ≠ 0 and ζ � −μ,

γf η( ) � λ

2μ
−

��������
−4μ2 − λ2

√
2μ

tan

��������
−4μ2 − λ2

√
2

η⎛⎜⎜⎝ ⎞⎟⎟⎠,

γf η( ) � λ

2μ
+

��������
−4μ2 − λ2

√
2μ

cot

��������
−4μ2 − λ2

√
2

η⎛⎜⎜⎝ ⎞⎟⎟⎠.

Family-4 When λ2 + 4μ2 > 0, ζ ≠ 0 and ζ � −μ,

γf η( ) � λ

2μ
+

�������
4μ2 + λ2

√
2μ

tanh

�������
4μ2 + λ2

√
2

η⎛⎜⎜⎝ ⎞⎟⎟⎠,

γf η( ) � λ

2μ
+

�������
4μ2 + λ2

√
2μ

coth

�������
4μ2 + λ2

√
2

η⎛⎜⎜⎝ ⎞⎟⎟⎠.

Family-5 When λ2 − 4μ2 < 0 and ζ � μ,

γf η( ) � −λ
2μ

+
�������
4μ2 − λ2

√
2μ

tan

�������
4μ2 − λ2

√
2

η⎛⎜⎜⎝ ⎞⎟⎟⎠,

γf η( ) � −λ
2μ

−
�������
4μ2 − λ2

√
2μ

cot

�������
4μ2 − λ2

√
2

η⎛⎜⎜⎝ ⎞⎟⎟⎠.

Family-6 When λ2 − 4μ2 > 0 and ζ � μ,

γf η( ) � −λ
2μ

−
��������
−4μ2 + λ2

√
2μ

tanh

��������
−4μ2 + λ2

√
2

η⎛⎜⎜⎝ ⎞⎟⎟⎠,

γf η( ) � −λ
2μ

−
��������
−4μ2 + λ2

√
2μ

coth

��������
−4μ2 + λ2

√
2

η⎛⎜⎜⎝ ⎞⎟⎟⎠.

Family-7 When λ2 � 4μζ ,

γf η( ) � −2 + λη

2ζη
.

Frontiers in Physics frontiersin.org04

Zulqarnain et al. 10.3389/fphy.2023.1205060

129

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1205060


Family-8 When μζ < 0, λ � 0 and ζ ≠ 0,

γf η( ) � −
���−μ
ζ

√
tanh

����
−μζ

√
η( ),

γf η( ) � −
���−μ
ζ

√
coth

����
−μζ

√
η( ).

Family-9 When λ � 0 and μ � −ζ ,

γf η( ) � 1 + e−2ζη

−1 + e−2ζη
.

Family-10 When μ � ζ � 0,

γf η( ) � cosh λη( ) + sinh λη( ).
Family-11 When μ � λ � K and ζ � 0,

γf η( ) � eKη − 1.

Family-12 When ζ � λ � K and μ � 0,

γf η( ) � eKη

1 − eKη
.

Family-13 When λ � μ + ζ ,

γf η( ) � −1 − μe μ−ζ( )η
1 − ζe μ−ζ( )η .

Family-14 When λ � −(μ + ζ),

γf η( ) � μ − e μ−ζ( )η
ζ − e μ−ζ( )η .

Family-15 When μ � 0,

γf η( ) � λeλη

1 − ζeλη
.

Family-16 When λ � μ � ζ ≠ 0,

γf η( ) � 1
2

�
3

√
tan

�
3

√
2

μη( ) − 1[ ].
Family-17 When λ � ζ � 0,

γf η( ) � μη.

Family-18 When λ � μ � 0,

γf η( ) � − 1
ζη
.

Family-19 When μ � ζ and λ � 0,

γf η( ) � tan μη( ).
Family-20 When ζ � 0,

γf η( ) � eλη − m

n
.

4 Mathematical analyses of the models
and their solutions

Assuming the transformations:

v x, t( ) � v η( ), η � Γ β + 1( )
α

kxα − ctα( ), (23)

where k and c are constants. Using Eq. 8 in Eq. 2, we acquire the
subsequent ODE

c2 − k2( )v″ − g2v + h2v3 � 0. (24)
The subsequent sections employ the planned techniques to

obtain the desired solutions.

4.1 Solutions with the (G′/G, 1/G)-expansion
method

Using the homogenous balance technique to the highest-order
derivative with the nonlinear term in Eq. 24, we get m � 1. For m �
1, Eq. 15 has the form:

v η( ) � a0 + a1ϕ η( ) + b1ψ η( ), (25)
where a0, a1 and b1 are unknown parameters.

Case 1: The obtained Eq. 25 is substituted into Eq. 24 with the use of
Eqs 5 and 7 to result in a polynomial equation. A system of algebraic
equations is obtained by setting each polynomial coefficient to zero
a0, a1, b1, μ, σ, λ, c, and k. This system of algebraic equations can be
solved using symbolic computation software such as
MATHEMATICA, which provides the following results:

a0 � 0, a1 �
������
k2 − c2

√ �
2

√
h

, b1 �
������
k2 − c2

√ �
λ

√ ��
σ

√�
2

√
h

, g �
������
c2 − k2

√ �
λ

√�
2

√ , μ � 0.

(26)
The hyperbolic traveling wave solutions of Eq. 24 can be

obtained by substituting Eq. 26 into Eq. 25:

v x, t( ) �
������
k2 − c2

√ �
2

√
h

A1

���−λ√
cosh

���−λ√
η( ) + A2

���−λ√
sinh

���−λ√
η( )

A1 sinh
���−λ√

η( ) + A2 cosh
���−λ√

η( ) + μ

λ

⎛⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎠,

+
������
k2 − c2

√ ���
λσ

√�
2

√
h

1

A1 sinh
���−λ√

η( ) + A2 cosh
���−λ√

η( ) + μ

λ

⎛⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎠,

(27)
where σ � A1

2 − A2
2.

Family 1.1: IfA1 � 0, A2 ≠ 0, and μ � 0 in Eq. 27, then we obtain
the subsequent hyperbolic traveling wave solution:

v x, t( ) � −
������
c2 − k2

√ �
λ

√�
2

√
h

tanh
���−λ√

η( ) − ��
σ

√ 1
A2

sech
���−λ√

η( )( ).
(28)
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Family 1.2: If A1 ≠ 0, A2 � 0and μ � 0 in Eq. 27, we obtain the
following hyperbolic traveling wave solution:

v x, t( ) � −
������
c2 − k2

√ �
λ

√�
2

√
h

coth
���−λ√

η( ) − ��
σ

√ 1
A1

cosech
���−λ√

η( )( ).
(29)

Case 2: By substituting Eq. 25 into Eq. 24 along with Eqs 5 and 9 for
λ> 0, we can obtain a polynomial equation. Setting each polynomial
coefficient to zero generates a system of algebraic equations for
a0, a1, b1, μ, σ, λ, c, and k. By solving this system of algebraic
equations using software such as Mathematica, we can obtain the
following outcomes:

a0 � 0, a1 �
������
k2 − c2

√ �
2

√
h

, b1 � −
������
k2 − c2

√ �
λ

√ ��
σ

√�
2

√
h

, g �
������
c2 − k2

√ �
λ

√�
2

√ ,

μ � 0. (30)
The periodic trigonometric traveling wave solution of Eq. 24 can

be obtained by substituting Eq. 30 into Eq. 25, as follows:

v x, t( ) �
������
k2 − c2

√ �
2

√
h

A1

�
λ

√
cos

�
λ

√
η( ) − A2

�
λ

√
sin

�
λ

√
η( )

A1 sin
�
λ

√
η( ) + A2 cos

�
λ

√
η( ) + μ

λ

⎛⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎠,

−
������
k2 − c2

√ ���
λσ

√�
2

√
h

1

A1 sin
�
λ

√
η( ) + A2 cos

�
λ

√
η( ) + μ

λ

⎛⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎠,

(31)
where σ � A1

2 + A2
2.

Family 2.1: If A1 � 0, A2 ≠ 0, and μ � 0 in Eq. 31, we obtain the
following trigonometric traveling wave solution:

v x, t( ) � −
������
k2 − c2

√ �
λ

√�
2

√
h

tan
�
λ

√
η( ) − ��

σ
√ 1

A2
sec

�
λ

√
η( )( ), (32)

v x, t( ) �
������
k2 − c2

√ �
λ

√�
2

√
h

cot
�
λ

√
η( ) − ��

σ
√ 1

A1
cos ec

�
λ

√
η( )( ). (33)

4.2 Solutions with the modified
(G′/G2)-expansion method

Using the homogenous balance technique to the highest order
derivatives with the nonlinear term in Eq. 24, we get m � 1. For
m � 1, Eq. 16 has the form:

v η( ) � a0 + a1
G′
G2

( ), (34)

where a0 and a1 are unknown parameters. We can then substitute
Eq. 34 and Eq. 17 into Eq. 24 and sum all coefficients of the same
order. (G′/G2) yields a set of algebraic equations involving a0, a1,
and other parameters. The set of algebraic equations is then solved
using the symbolic computation software Mathematica, resulting in
specific values for the unknown parameters:

a0 � 0, a1 � ±
ig

��
λ1

√
h

��
λ0

√ , k � ±

�����������−g2 + 2c2λ0λ1
√ �����

2λ0λ1
√ . (35)

By substituting Eqs 35, 18, and 19 into Eq. 34 and considering
the following cases, if λ1 < 0, then

v1 x, t( ) � −ig
�����
λ0λ1| |√

h
����
λ0λ1

√
1 − λ1

2

C1 sinh
����
λ0λ1

√
η( ) + C2 cosh

����
λ0λ1

√
η( )

C1 cosh
����
λ0λ1

√
η( ) + C2 sinh

����
λ0λ1

√
η( )⎡⎢⎣ ⎤⎥⎦⎛⎝ ⎞⎠, (36)

v2 x, t( ) � ig

h

C1 sinh
����
λ0λ1

√
η( ) + C2 cosh

����
λ0λ1

√
η( )

C1 cosh
����
λ0λ1

√
η( ) + C2 sinh

����
λ0λ1

√
η( )⎛⎝ ⎞⎠. (37)

4.3 Solutions with the new auxiliary equation
method

Using the homogenous balance technique to the highest order
derivative with the nonlinear term in Eq. 24, we obtain m � 1. For
m � 1, Eq. 24 has the form:

v η( ) � a0 + a1γ
f η( ), (38)

where a0 and a1 are unknown parameters.
Switching Eq. 10 into Eq. 24 with Eq. 22, we obtain the algebraic

equations involving a0, a1, and other parameters by equating all
coefficients of different powers γf(η) to zero:

f0 η( ): − a0g
2 + a0

3h2 − a1k
2λμ + a1c

2λμ � 0,
f1 η( ): − a1g

2 + 3a0
2a1h

2 − a1k
2λ2 + a1c

2λ2 − 2a1k
2ζμ + 2a1c

2ζμ � 0,
f2 η( ): 3a0a12h2 − 3a1k

2ζλ + 3a1c
2ζλ � 0,

f3 η( ): a13h2 − 2a1k
2ζ2 + 2a1c

2v2 � 0.

(39)
Using mathematical software (Mathematica) to solve the

aforementioned system of algebraic equations, we obtain the
subsequent solution:

a0 � λΛ, a1 � 2ζ Λ, g � −
������
k2 − c2

√ �������
λ2 − 4vμ

√
�
2

√ , (40)

where Λ �
����
k2−c2√ �
2

√
h
.

Substituting the attained solution Eq. 40 into Eq. 38, we obtain
the following:

v η( ) � Λ λ + 2ζγf η( ){ }. (41)

Substituting the solution stated by Eq. 22 into Eq. 41, the
solutions regained are:

For Family 1: When λ2 − 4μζ < 0 and ζ ≠ 0,

v1,1 x, t( ) � Λ
�������
4μζ − λ2

√
tan

�������
4μζ − λ2

√
2

η⎛⎜⎜⎝ ⎞⎟⎟⎠⎡⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎦, (42)

v1,2 x, t( ) � −Λ
�������
4μζ − λ2

√
cot

�������
4μζ − λ2

√
2

η⎛⎜⎜⎝ ⎞⎟⎟⎠⎡⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎦. (43)

For Family 2: When λ2 − 4μζ > 0 and ζ ≠ 0,
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FIGURE 1
Influence of fractional order by 2D, 3D, and corresponding contours of Eq. 32 for k � 2,h � 0.6, λ � 0.3, β � 0.5,A2 � 2, σ � 4, c � 0.05, t � 1. Family
2.2: If A1 ≠ 0,A2 � 0andμ � 0 in Eq. 31, we obtain the following trigonometric traveling wave solution.
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FIGURE 2
Influence of fractional order by 2D, 3D, and corresponding contours of Eq. 36 for k � 2,h � 0.6, λ0 � 0.4, λ1 � −0.2, β � 0.5, c � 0.05, t � 1. If λ0λ1 >0,
then
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FIGURE 3
Influence of fractional order by 2D, 3D, and corresponding contours of Eq. 42 for k � 2,h � 0.6, λ � 0.5, β � 0.5,μ � 0.8, ζ � 1, c � 0.05, t � 1.
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v2,1 x, t( ) � −Λ
�������
λ2 − 4μζ

√
tanh

�������
λ2 − 4μζ

√
2

η⎛⎜⎜⎝ ⎞⎟⎟⎠⎡⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎦, (44)

v2,2 x, t( ) � −Λ
�������
λ2 − 4μζ

√
coth

�������
λ2 − 4μζ

√
2

η⎛⎜⎜⎝ ⎞⎟⎟⎠⎡⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎦. (45)

For Family 3: When λ2 + 4μ2 < 0, ζ ≠ 0 and ζ � −μ,

v3,1 x, t( ) � Λ
��������
−4μ2 − λ2

√
tan

��������
−4μ2 − λ2

√
2

η⎛⎜⎜⎝ ⎞⎟⎟⎠⎡⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎦, (46)

v3,2 x, t( ) � −Λ
��������
−4μ2 − λ2

√
cot

��������
−4μ2 − λ2

√
2

η⎛⎜⎜⎝ ⎞⎟⎟⎠⎡⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎦. (47)

For Family 4: When λ2 + 4μ2 > 0, ζ ≠ 0 and ζ � −μ,

v4,1 x, t( ) � −Λ
�������
4μ2 + λ2

√
tanh

�������
4μ2 + λ2

√
2

η⎛⎜⎜⎝ ⎞⎟⎟⎠⎡⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎦, (48)

v4,2 x, t( ) � −Λ
�������
4μ2 + λ2

√
coth

�������
4μ2 + λ2

√
2

η⎛⎜⎜⎝ ⎞⎟⎟⎠⎡⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎦. (49)

For Family 5: When λ2 − 4μ2 < 0 and ζ � μ,

v5,1 x, t( ) � Λ
�������
4μ2 − λ2

√
tan

�������
4μ2 − λ2

√
2

η⎛⎜⎜⎝ ⎞⎟⎟⎠⎡⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎦, (50)

v5,2 x, t( ) � −Λ
�������
4μ2 − λ2

√
cot

�������
4μ2 − λ2

√
2

η⎛⎜⎜⎝ ⎞⎟⎟⎠⎡⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎦. (51)

For Family 6: When λ2 − 4μ2 > 0 and ζ � μ,

FIGURE 4
Influence of fractional order by 2D, 3D, and corresponding contours of Eq. 57 for k � 2,h � 0.6, λ � 0.5, β � 0.5,μ � 0.8, ζ � 1,c � 0.05, t � 1. For
Family 12: When ζ � λ � K and μ � 0,
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v6,1 x, t( ) � −Λ
�������
λ2 − 4μ2

√
tanh

�������
λ2 − 4μ2

√
2

η⎛⎜⎜⎝ ⎞⎟⎟⎠⎡⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎦, (52)

v6,2 x, t( ) � −Λ
�������
λ2 − 4μ2

√
coth

�������
λ2 − 4μ2

√
2

η⎛⎜⎜⎝ ⎞⎟⎟⎠⎡⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎦. (53)

For Family 7: When λ2 � 4μζ ,

v7 x, t( ) � −2Λ
η

. (54)

For Family 8: When μζ < 0, λ � 0 and ζ ≠ 0,

v8,1 x, t( ) � −Λ 2
����
−μζ

√
tanh

����
−μζ

√
η( )[ ], (55)

v8,2 x, t( ) � −Λ 2ζ
����
−μζ

√
coth

����
−μζ

√
η( )[ ]. (56)

For Family 9: When λ � 0 and μ � −ζ ,

v9 x, t( ) � Λ 2ζ
e−2ζη + 1
e−2ζη − 1

( )[ ], (57)

v12 x, t( ) � Λ K + 2K
eKη

1 − eKη
( )[ ]. (58)

For Family 13: When λ � μ + ζ ,

v13 x, t( ) � Λ μ + ζ − 2ζ
1 − μe μ−ζ( )η
1 − ζe μ−ζ( )η( )[ ]. (59)

For Family 14: When λ � −(μ + ζ),

v14 x, t( ) � −Λ μ + ζ − 2ζ
μ − e μ−ζ( )η
ζ − e μ−ζ( )η( )[ ]. (60)

For Family 15: When μ � 0,

v15 x, t( ) � Λ λ + 2ζ
λeλη

1 − ζeλη
( )[ ]. (61)

For Family 16: When λ � μ � ζ ≠ 0,

v16 x, t( ) � Λ λ + ζ
�
3

√
tan

�
3

√
2

μη( ) − 1( )[ ]. (62)

For Family 18: When λ � μ � 0,

v18 x, t( ) � −2Λ
η
. (63)

For Family 19: When μ � ζ and λ � 0,

v19 x, t( ) � 2ζΛ tan μη( ). (64)

5 Graphical demonstration and
explanation

To demonstrate the dynamics and behavior of our solutions, we used
Eqs 32, 36, 42, and 17 to graphically represent the solutions in 3D, 2D, and
contour graphs, which are shown in Figures 1–4. To illustrate the variation
over time or to compare multiple wave items, 3D plots are often used. In
this study, the wave points were arranged in a series with evenly spaced
breaks and connected by a line to emphasize their relationships. In
contrast, 2D line plots demonstrate very high and low frequency and

amplitude. The authors note that the plots show the different natures of the
solutions, such as periodic, singular-kink type, singular-bell shaped, and
bright singular wave solutions. Furthermore, the authors emphasize that
the correct physical description of the solutions can be generated by
choosing distinct values for the fractional parameter α.

6 Conclusion

In this work, we applied the (G′/G, 1/G)-expansion, modified the
(G′/G2)-expansion, and provided new auxiliary equations methods in a
satisfactory way to determine the novel soliton solutions of the space-time
fractional LGHE by considering the truncated M-fractional derivative.
These methods restored the periodic, singular-kink type, singular-bell
shaped, and bright singular wave solutions dark, bright-singular,
exponential, trigonometric, and rational solitons. Mathematica was
utilized to perform the algebraic computations and generate graphical
representations of the obtained solutions at different parameter values.
Comparedwith otherworks [10, 23], our solutions have not been reported
in the previous literature. These techniques are highly effective and robust
for discovering soliton solutions for nonlinear fractional differential
equations. Furthermore, the solutions obtained can provide deeper
insights into the nonlinear dynamics of optical soliton propagation.
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for (1+1)-dimensional
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We propose a new symmetry reduction method for (1+1)-dimensional
differential-difference equations (DDEs), namely, the λ-symmetry reduction
method of solving ordinary differential equations is generalized to DDEs.
Order-reduction processes are a consequence of the invariance of the given
DDE under vector fields of the new class. These vector fields satisfy a new
prolongation formula. A simple example of order-reduction is provided to
illustrate the application.
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1 Introduction

Symmetry is closely related to the integrability of the nonlinear evolution equations
(NLEEs) in various specific meanings. For example, the existence of infinite Lie-Bäcklund
symmetry is a criterion for the integrability of NLEEs, so the study of symmetry of NLEEs is
particularly important. The symmetry of the NLEEs is studied systematically by Lie point
symmetry theory [1–3]. Although the Lie point symmetry method has relatively mature
theories, it also has great limitations [1–10].When a given NLEE does not allow enough non-
trivial Lie point symmetries, this method cannot be applied. Therefore, it is necessary to
extend the classical Lie point symmetry concept from various angles [11–20]. For example, if
the infinitesimal also depends on the higher derivative, the corresponding Lie-Bäcklund
symmetry is obtained [21, 22].

The concept of λ-symmetry proposed by Muriel and Romero [23], aims to show that
many of the known order-reduction processes can be explained by the invariance of the
equation under some special vector fields that are neither Lie symmetries nor Lie-Bäcklund
symmetries. The λ-symmetry reduction method for ordinary differential equations (ODEs)
has attracted the attention of more andmore scientists [24]. For example, Levi and Rodriguez
successfully extended this method to the case of difference equations [25]. Again, the μ-
symmetry reduction method is used to deal with partial differential equations (PDEs)
[26–30].

For the sake of readability, we will briefly introduce the λ-symmetry reduction method
for ODEs in Section 2. Then we extend the λ-symmetry reduction method to the case of
(1+1)-dimensional differential-difference equations (DDEs) in Section 3. The last section is
devoted to conclusions and discussions.
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2 The λ-symmetry reduction method of
ODEs

In this section we briefly review the λ-symmetry reduction
method of ODEs. For a given mth-order ODE

Δ1 ≡ Δ x, u 0( ), u 1( ), . . . , u m( )( ) � 0, (1)
we can set a vector field

v � X x, u( ) ∂

∂x
+ U x, u( ) ∂

∂u
, (2)

where u(i) � diu(x)
dxi , (i � 0, 1, . . . , m) means the ith-order derivative

with respect to the independent variable x. Thus we can construct
high-order infinitesimal prolongation vector field

v m( )[ ] � v +∑m
i�1

U i( )[ ] ∂

∂u i( ), (3)

where

U 0( )[ ] � U,
U i+1( )[ ] � DxU

i( )[ ] − u i+1( )DxX, i � 0, 1, . . . , m.
(4)

Here Dx means the total derivative with respect to x. So the
invariance of Eq. 1 needs

v m( )[ ] Δ1( )∣∣∣∣Δ1�0 � 0. (5)

Solving this equation, the expressions for X and U can be
derived. For complex high-order ODEs or systems, we need to
use symbolic computing software to calculate X and U.
Theoretically, all of the similarity variables be derived by solving
the following characteristic equation

dx
X

� du
U
, (6)

and then we can reduce and solve Eq. 1.
The above method is the Lie point symmetry method, also

known as the classical symmetry reduction method. In Ref. [23],
authors have introduced a new class of symmetries, that strictly
includes Lie point symmetries, for which there exists an algorithm
that lets us reduce the order of a given ODE. This method is now
called the λ-symmetry reduction method. The key step of this
generalized method is that the infinitesimal prolongation is
modified to the following form

U λ, i( )[ ] x,u i( )( )�Dx U λ, i−1( )[ ] x,u i−1( )( )( )−Dx X x,u( )( )u i( )

+λ U λ, i−1( )[ ] x,u i−1( )( )−X x,u( )u i( )( ), (7)

where λ is a smooth function that is determined
simultaneously with the coefficients of the infinitesimal
generators X and U. Thus the infinitesimal prolongation vector
field is modified to

v λ, m( )[ ] � X x, u( ) ∂

∂x
+∑m

i�0
U λ, i( )[ ] x, u i( )( ) ∂

∂u i( ). (8)

The following theorem that is important for the λ-symmetry
reduction method, which is first obtained by Muriel and
Romero [23].

Theorem 1. (Muriel, Romero [23]). Let us suppose that, for some
smooth functions λ, the vector field v is a λ-symmetry of the
following ODE

u m( ) � F x, u 0( ), u 1( ), . . . , u m−1( )( ). (9)
Then

v λ, m−1( )[ ], A[ ] � λ · v λ, m−1( )[ ] + μ · A, (10)

for some smooth functions μ. Here A is the vector field of Eq. 9,

A � ∂

∂x
+ u 1( ) ∂

∂u
+/ + F x, u 0( ), u 1( ), . . . , u m−1( )( ) ∂

∂u m−1( ). (11)

Conversely, if

K � X x, u( ) ∂

∂x
+ U 0( ) x, u( ) ∂

∂u
+ ∑m−1

i�1
U i( ) x, u i( )( ) ∂

∂ui
, (12)

is a vector field such that

K,A[ ] � λ · K + μ · A, (13)
for some smooth functions λ, μ, then the vector field

v � X x, u( ) ∂

∂x
+ U 0( ) x, u( ) ∂

∂u
, (14)

is a λ-symmetry of Eq. 9 and K = v[λ,(m−1)].

3 The λ-symmetry reduction method of
DDEs

In this section, we extend the λ-symmetry reduction method to
the case of (1+1)-dimensional DDEs.

Definition 1. For the following (1+1)-dimensional DDE with a
discrete variable n and a continuous variable x,

Δ2 ≡ Δ x, u 0( )
n−1, u

0( )
n , u 0( )

n+1, . . . , u
m( )
n−1 , u

m( )
n , u m( )

n+1( ) � 0, (15)
where u(i)

n � diun(x)
dxi , the vector field

v � X x, un( ) ∂

∂x
+ Un−1 x, un−1( ) ∂

∂un−1
+ Un x, un( ) ∂

∂un

+ Un+1 x, un+1( ) ∂

∂un+1

is said to be λ-symmetry for this equation if there exists a differential
function λ such that the mth λ-prolongation of the vector field satisfies.

v λ, m( )[ ] Δ2( )∣∣∣∣Δ2�0 � 0. (16)

Particularly, for the following (1+1)-dimensional DDE

u m( )
n � Fn x, u m−1( )

n−1 , u m−1( )
n , u m−1( )

n+1( ), (17)
we can set a vector field

A � d

dx
+ ∑1

n�−1
u 1( )
n+k

d

dun+k
+/

+ ∑1
k�−1

Fn+k λ, u m−1( )
n+k−1 , u

m−1( )
n+k , u m−1( )

n+k+1( ) ∂

u m−1( )
n+k

. (18)
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Here Fn(x, u(m−1)
n−1 , u(m−1)

n , u(m−1)
n+1 ) �

Fn(x, u(0)n−1, u(0)n , u(0)n+1, . . . , u
(m−1)
n−1 , u(m−1)

n , u(m−1)
n+1 ) is for ease of

writing. So we have Theorem 2.

Theorem 2. Let us suppose that, for some differential functions λ,
the vector field v is a λ-symmetry of the following DDE

u m( )
n � Fn x, u m−1( )

n−1 , u m−1( )
n , u m−1( )

n+1( ), (19)
Then

v λ, m−1( )[ ], A[ ] � λ · v λ, m−1( )[ ] + μ · A. (20)

for some differential functions μ. Here A is the vector field of Eq. 19,

A � d

dx
+ ∑1

n�−1
u 1( )
n+k

d

dun+k
+/

+ ∑1
k�−1

Fn+k λ, u m−1( )
n+k−1 , u

m−1( )
n+k , u m−1( )

n+k+1( ) ∂

u m−1( )
n+k

. (21)

Conversely, if

K � X x, un( ) ∂

∂x
+ ∑1

k�−1
∑m−1

i�0
U i( )

n+k x, u i( )
n+k( ) ∂

∂u i( )
n+k

, (22)

is a vector field such that

K,A[ ] � λ · K + μ · A, (23)
for some differential functions λ and μ, then the vector field

v � X x, u( ) ∂

∂x
+ U 0( )

n−1 x, u( ) ∂

∂un−1
+ U 0( )

n x, u( ) ∂

∂un

+ U 0( )
n+1 x, u( ) ∂

∂un+1
, (24)

is a λ-symmetry of Eq. 19 and K = v[λ,(m−1)].

Proof. Compute [v[λ,(m−1)], A] as a function of
{x, un−1, un, un+1, . . . , u(m−1)

n−1 , u(m−1)
n , u(m−1)

n+1 } at each lattice point, with
v λ, m−1( )[ ], A[ ] x( ) � −A X x( )( ),

v λ, m−1( )[ ], A[ ] un+k( ) � U λ, 1( )[ ]
n+k x, u 1( )

n+k( ) − A U λ, 0( )[ ]
n+k x, un+k( )( )

� −A X x( )( )u 1( )
n+k + λ U λ, 0( )[ ]

n+k x, un+k( ) −X x( )u 1( )
n+k( ),

v λ, m−1( )[ ], A[ ] u 1( )
n+k( ) � U λ, 2( )[ ]

n+k x, u 2( )
n+k( ) − A U λ, 1( )[ ]

n+k x, u 1( )
n+k( )( )

� −A X x( )( )u 2( )
n+k + λ U λ, 1( )[ ]

n+k x, u 1( )
n+k( ) −X x( )u 2( )

n+k( ),
..
.

v λ, m−1( )[ ], A[ ] u i( )
n+k( ) � U λ, i+1( )[ ]

n+k x, u i+1( )
n+k( ) − A U λ, i( )[ ]

n+k x, u i( )
n+k( )( )

� −A X x( )( )u i+1( )
n+k + λ U λ, i( )[ ]

n+k x, u i( )
n+k( ) −X x( )u i+1( )

n+k( ),
..
.

v λ, m−1( )[ ], A[ ] u m−1( )
n+k( ) � v λ, m−1( )[ ] Fn+k λ, u m−1( )

n+k−1 , u
m−1( )
n+k , u m−1( )

n+k+1( )( )
−A U λ, n−1( )[ ]

n+k x, u m−1( )
n+k( )( ),

(25)
and

v λ, m( )[ ] u m( )
n+k( ) � Dx U λ, m−1( )[ ]

n+k x, u m−1( )
n+k( )( ) −Dx X x( )( )u m( )

n+k
+ λ U λ, m−1( )[ ]

n+k x, u m−1( )
n+k( )( ) − λ X x( )( )u m( )

n+k .
(26)

Since v is a λ-symmetry,

v λ, m−1( )[ ] Fn+k λ, u m−1( )
n+k−1 , u

m−1( )
n+k , u m−1( )

n+k+1( )( ) � A U λ, m−1( )[ ]
n+k x, u m−1( )

n+k( )( )
−A X x( )( )u m( )

n+k + λ U λ, m−1( )[ ]
n+k x, u m−1( )

n+k( )( ) − λ X x( )( )u m( )
n+k .

(27)

Hence, if u(m)
n � Fn(x, u(m−1)

n−1 , u(m−1)
n , u(m−1)

n+1 ), Eq. 26 says that

λ, m − 1( )[ ] Fn+k λ, u m−1( )
n+k−1 , u

m−1( )
n+k , u m−1( )

n+k+1( )( ) � A U λ, m−1( )[ ]
n+k x, u m−1( )

n+k( )( )
−A X x( )( )u m( )

n+k + λ U λ, m−1( )[ ]
n+k x, u m−1( )

n+k( )( ) − λ X x( )( )u m( )
n+k .

(28)
If we set μ = −A(X(x)) − λX(x), then we can write

v λ, m−1( )[ ], A[ ] x( ) � λX x( ) + μ,

v λ, m−1( )[ ], A[ ] un+k( ) � λU λ, 0( )[ ]
n+k x, un+k( ) + μu 1( )

n+k,
v λ, m−1( )[ ], A[ ] u 1( )

n+k( ) � λU λ, 1( )[ ]
n+k x, u 1( )

n+k( ) + μu 2( )
n+k,

..

.

v λ, m−1( )[ ], A[ ] u i( )
n+k( ) � λU λ, i( )[ ]

n+k x, u i( )
n+k( ) + μu i+1( )

n+k ,

..

.

v λ, m−1( )[ ], A[ ] u m−1( )
n+k( ) � λU λ, m−1( )[ ]

n+k x, u m−1( )
n+k( ) + μu m( )

n+k

(29)

Therefore, we conclude that [v[λ,(m−1)], A] = λ · v[λ,(m−1)] + μ · A.
The vector field

K � X x, un( ) ∂

∂x
+ ∑1

k�−1
∑m−1

i�0
U i( )

n+k x, u i( )
n+k( ) ∂

∂u i( )
n+k

, (30)

depends on three lattice points with n − 1, n and n + 1. If we apply
both elements of this equation to each coordinate function, we
obtain

μ � −A X x, u( )( ) − λX x, u( ), (31)
and, for 0 ≤ i ≤m − 2, the coordinateU(i)

n+k(x, u(i)n+k) of K must satisfy

U λ, i+1( )[ ]
n+k x, u i+1( )

n+k( ) � Dx U λ, i( )[ ]
n+k x, u i( )

n+k( )( ) −Dx X x( )( )u i+1( )
n+k

+λ U λ, i( )[ ]
n+k x, u i( )

n+k( )( ) − λ X x( )( )u i+1( )
n+k .

(32)

Hence

K � v λ, m−1( )[ ]. (33)
Then we apply both elements of [K, A] = λK + μA, to the

coordinate function u(m−1)
n−1 , u(m−1)

n and u(m−1)
n+1 , we obtain

K,A[ ] u m−1( )
n+k( ) � K Fn+k λ, u m−1( )

n+k−1 , u
m−1( )
n+k , u m−1( )

n+k+1( )( ) − A U λ, m−1( )[ ]
n x, u m−1( )

n+k( )( )
� λU λ, m−1( )[ ]

n+k x, u m−1( )
n+k( )

− A X x( )( ) + λX x( )( ) · Fn+k λ, u m−1( )
n+k−1 , u

m−1( )
n+k , u m−1( )

n+k+1( )( ),
(34)

where k = −1, 0, 1. The above equation yields

K Fn+k λ, u m−1( )
n+k−1 , u

m−1( )
n+k , u m−1( )

n+k+1( )( )
� A U λ, m−1( )[ ]

n+k x, u m−1( )
n+k( )( ) + λU λ, m−1( )[ ]

n+k x, u m−1( )
n+k( )

− A X x( )( ) + λX x( )( ) · Fn+k λ, u m−1( )
n+k−1 , u

m−1( )
n+k , u m−1( )

n+k+1( )( ). (35)

Calculate

v λ, m( )[ ] u m( )
n+k − Fn+k x, u m−1( )

n+k−1 , u
m−1( )
n+k , u m−1( )

n+k+1( )( )
� Dx U λ, m−1( )[ ]

n+k x, u m−1( )
n+k( )( ) −Dx X x( )( )u m( )

n+k
+ λ U λ, m−1( )[ ]

n+k x, u m−1( )
n+k( ) −X x( )u m( )

n+k( )
−K Fn+k x, u m−1( )

n+k−1 , u
m−1( )

n+k , u m−1( )
n+k+1( )( ) (36)

when u(m)
n � Fn(x, u(m−1)

n−1 , u(m−1)
n , u(m−1)

n+1 ), we obtain, by Eq. 35, that

v λ, m( )[ ] Δ x, u 0( )
n−1, u

0( )
n , u 0( )

n+1, . . . , u
m( )
n−1 , u

m( )
n , u m( )

n+1( )( ) � 0,
when u m( )

n+k � Fn+k λ, u m−1( )
n+k−1 , u

m−1( )
n+k , u m−1( )

n+k+1( ). (37)
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Therefore v is a λ-symmetry of Eq. 19.
In order to reduce the mth-order DDEs to (m − 1)th-order

DDEs and first-order DDEs, we can determine invariants for the
λ-prolongation of v by deriving invariants of lower order. This
can be achieved through the application of the main tools,
Theorem 2.

Theorem 3. Let v be a vector field defined on M and let λ is a
differential function, If

α � α x, u k( )
n−1, u

k( )
n , u k( )

n+1( ), β � β x, u k( )
n−1, u

k( )
n , u k( )

n+1( ), (38)
are such that

v λ, k( )[ ] α x, u k( )
n−1, u

k( )
n , u k( )

n+1( )( ) � v λ, k( )[ ] β x, u k( )
n−1, u

k( )
n , u k( )

n+1( )( ) � 0,

(39)
then

v λ, k+1( )[ ] Dxα x, u k( )
n−1, u k( )

n , u k( )
n+1( )

Dxβ x, u k( )
n−1, u

k( )
n , u k( )

n+1( )⎛⎝ ⎞⎠ � 0. (40)

Proof 3. By Theorem 2, we have

v λ, k+1( )[ ], Dx[ ] � λv λ, k+1( )[ ] + μDx, (41)

where μ = −Dx(v(x)) − λv(x). Therefore,

v λ, k+1( )[ ] Dxα

Dxβ
( ) � 1

Dxβ( )2 Dxβ · v λ, k+1( )[ ] Dxα( ) −Dxα · v λ, k+1( )[ ] Dxβ( )( )
� 1

Dxβ( )2 Dxβ · v λ, k+1( )[ ] , Dx[ ] α( ) −Dxα · v λ, k+1( )[ ] , Dx[ ] β( )( )
� 1

Dxβ( )2 Dxβ · μ ·Dxα( ) −Dxα · μ ·Dxβ( )( ) � 0.

(42)

Proposition 1. Let v be a λ-symmetry. Let

y � y x, un−1, un, un+1( ) and w

� w x, un−1, un, un+1, u 1( )
n−1, u

1( )
n , u 1( )

n+1( )
be two functionally independent first-order invariants of v[λ,(m)]. By
solving an equation of Δr(y, w(m−1)) � 0 and an auxiliary equation
w � w(x, un−1, un, un+1, u

(1)
n−1, u(1)

n , u(1)
n+1), the general solution of the

equation can be obtained.

With the help of independent first-order invariant, we
demonstrate a simple application of λ-symmetry. Considering a
(1+1)-dimensional DDE

u 2( )
n � x + x2( )eun+1[ ]x, (43)

Eq. 43 has the from

u 2( )
n � Dx Fn x, un+1( )( ), (44)

which admits the obvious order reduction

u 1( )
n � Fn x, un+1( ) + C, C ∈ R. (45)

Letting X(x) = 0, Un−1(x, un−1) = 1, Un(x, un) = 1,Un+1(x, un+1) =
1 and λ � Fn,un+1(x, un+1), we have the following λ-prolongation
vector field

v λ, 2( )[ ] � ∂

∂un−1
+ ∂

∂un
+ ∂

∂un+1
+ Fn,un+1

∂

∂u 1( )
n−1

+ ∂

∂u 1( )
n

+ ∂

∂u 1( )
n+1

( )
+ F2

n,un+1 + u 1( )
n+1Fn,un+1un+1 + Fn,xun+1( ) ∂

∂u 2( )
n−1

+ ∂

∂u 2( )
n

+ ∂

∂u 2( )
n+1

( ),
(46)

We can easily prove that the vector field v is the λ-symmetry of
Eq. 43. The λ-symmetry generator has two obvious invariants z = x,
w � u(1)n − Fn(x, un+1). Furthermore, the differential invariant
wz � Dxw

DxZ
� u(2)n −Dx(Fn(x, un+1)). Therefore, Eq. 43 can be

reduced to Eq. 45.

4 Conclusion

λ-symmetry reduction method is useful in establishing effective
alternative methods analyze ODEs without using Lie point
symmetries. At present, there is no programmatic algorithm
package to solve λ-symmetry directly. Therefore, it is difficult to
determine the general form of λ.

There are many examples of DDEs, without Lie point symmetries,
that can be completely integrated. So we have to study the reduction of
these DDEs. In this paper, we have extended the λ-symmetry
reduction method to the case of (1+1)-dimensional DDEs. We
have obtained some theorems Theorem 2, 3 and Proposition
1 which can be used to reduce and solve DDEs in Section 3. By
comparison, DDEs can be more complex. Here we have just listed a
simple example to illustrate the method. How to combine the
integrating factor method and the λ-symmetry reduction method
of DDEs to construct more effective examples will be the next work.
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An innovative approach based on
meta-learning for real-timemodal
fault diagnosis with small sample
learning

Tongfei Lei1, Jiabei Hu2 and Saleem Riaz3*
1School of Mechanical Engineering, Xijing University, Xi’an, China, 2Xi’an Aeronautical Computing
Technique Research Institute, Xi’an, China, 3School of Automation, Northwestern Polytechnical
University, Xi’an, China

The actualmultimodal process data usually exhibit non-linear time correlation and
non-Gaussian distribution accompanied by new modes. Existing fault diagnosis
methods have difficulty adapting to the complex nature of newmodalities and are
unable to train models based on small samples. Therefore, this paper proposes a
new modal fault diagnosis method based on meta-learning (ML) and neural
architecture search (NAS), MetaNAS. Specifically, the best performing network
model of the existingmodal is first automatically obtained usingNAS, and then, the
fault diagnosis model design is learned from the NAS of the existing model using
ML. Finally, when generating newmodalities, the gradient is updated based on the
learned design experience, i.e., new modal fault diagnosis models are quickly
generated under small sample conditions. The effectiveness and feasibility of the
proposed method are fully verified by the numerical system and simulation
experiments of the Tennessee Eastman (TE) chemical process.

KEYWORDS

new modal fault diagnosis, meta-learning, neural architecture search, small samples,
artificial intelligence

1 Introduction

With the development of many sensors and industrial networks, modern chemical
industry is moving toward large-scale, hierarchical, information integration and strong
interaction, leading to frequent failures and unstable product quality in chemical production
processes, and chemical process troubleshooting is one of the effective techniques to ensure
product quality and efficient production operation [1, 2]. In the actual chemical production
process, the adjustment of the product grade or index, the fluctuation of material quality, and
the imbalance of feed ratio all lead to the multimodal characteristics of the chemical process
[3]. Therefore, multimodal characteristics are widely present in modern manufacturing
industries [4, 5]. Compared with unimodal processes, the multimodal process data are more
complex, usually manifested as non-linear time correlation and non-Gaussian distribution
accompanied by new modes [6]. If deep learning is directly applied to multimodal chemical
processes, it will be difficult to adapt to complex characteristics such as new modes and to
construct accurate fault diagnosis models under small samples [7, 8]. Therefore, the deep
learning-based fault diagnosis method for new modes in small samples is of research value.

Existing multimodal chemical process fault diagnosis methods can be classified into
statistical learning, machine learning, and deep learning methods, among which statistical
learning and machine learning methods have been studied previously. For example, Zhao
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et al. studied a local modal fault diagnosis method using multiple
local PCA statistical models [9], but the method requires the use of
accurate modal information in the offline modeling stage. To
address the problem of incomplete modal prior knowledge, Tan
et al. applied the clustering method to the multimodal chemical
process and effectively improved the accuracy of fault diagnosis [10].
Wang et al. proposed a stable and transitional modal fault diagnosis
method based on the transition probabilities between different
modes [11]. Natarajan et al. gave the minimum distance from
the test data to the training data center by calculating the
selection of the locally optimal PCA model criterion [12]. Deep
learning has made important progress in many fields in recent years,
but there are relatively few studies on deep learning for multimodal
chemical process fault diagnosis. In addition, the training of deep
learning fault diagnosis models usually requires a large amount of
labeled data, but new modes often have only a small amount of data
[13–16]. How to make full use of multimodal process characteristics
and model design experience of the existing modes under small-
sample conditions to rapidly construct new modal fault diagnosis
models based on deep learning is of great importance to ensure the
safety and product quality of the actual chemical processes.

Existing small-sample data learning methods can be divided into
three categories: data augmentation-based methods, model
improvement-based methods, and algorithm optimization-based
methods [17, 18]. Data augmentation-based methods achieve the
purpose of expanding the dataset by generating new data [19], but the
manipulation of data is not universal and requires the designer to have
sufficient knowledge of the relevant domain. Model improvement-
based approaches model small data by limiting the model complexity,
reducing the hypothesis space, and reducing VC dimension [20] but
require a priori knowledge and extensive experience of the designer,
and the aforementioned two approaches cannot effectively utilize the
design experience of existing modes. Algorithm-based optimization
methods search for suitable solutions faster by improving the
optimization algorithm [21, 22], and meta-learning is an improved
optimization algorithm. The proposed meta-learning method
provides research ideas to solve the problems such as inadequate
utilization of model design experience of the existing modes and small
samples [23]. For example, Finn et al. proposed the model-agnostic
meta-learning (MAML) method, which first trains a set of
initialization parameters and then performs one or more steps of
gradient adjustment to achieve rapid adaptation to new tasks with
only a small amount of data [24, 25]. However, MAML is very
sensitive to the neural network structure and requires time-
consuming hyperparameter search to stabilize the training and
improve the model generalization power [26]. To address these
problems, Antoniou et al. optimized MAML in terms of
robustness, training stability, automatic learning of inner-loop
hyperparameters, and computational efficiency during inference
and training, which significantly improved the generalization
performance of MAML [27] but at the expense of computation
and memory. Nichol et al. replaced the process of computing
second-order differentiation in MAML with the one in which each
task is performed using the stochastic gradient descent (SGD) in a
standard form without expanding the computational graph or
computing arbitrary second-order derivatives, reducing the amount
of computation and memory required by MAML [28]. However, the
aforementioned methods have a single network structure and cannot

transform the network structure as the task changes, and meta-
learning faces problems such as cumbersome network structure
design and time-consuming parameter search.

In the field of machine learning and artificial intelligence, several
state-of-the-art (SOTA) algorithms have been developed to tackle
various tasks. Although these algorithms have their own advantages,
they also come with certain limitations. Here is a summary of the
advantages and limitations to the existing SOTA algorithms in this
area. The advantages are as follows: high accuracy: SOTA algorithms
often achieve remarkable accuracy in solving complex problems;
robustness: many SOTA algorithms exhibit robustness in handling
noisy or incomplete data; generalization: SOTA algorithms often
possess excellent generalization capabilities; and scalability: several
SOTA algorithms are designed to handle large-scale datasets
efficiently. The limitations are as follows: computational complexity:
many SOTA algorithms, particularly those based on deep learning
architecture, require significant computational resources to train and
deploy; interpretability: while SOTA algorithms often achieve
impressive performance, they can be black-box models, meaning
they lack interpretability; data dependency: SOTA algorithms
heavily rely on large and diverse datasets for training; and
overfitting: some SOTA algorithms are susceptible to overfitting,
especially when dealing with small datasets.

To solve the aforementioned problems, this paper proposes a
new modal fault diagnosis method, MetaNAS, which uses meta-
learning to find the optimal initial parameters, and the new modal
can find the network structure with optimal performance by only a
few steps of gradient update based on the optimal initial parameters.
The optimal initial parameters are to be learned so that the fault
diagnosis model is obtained by performing a few steps of updates
based on the optimal initial parameters under a small sample of the
new mode. MetaNAS solves the limitations to fault diagnosis by
NAS, such as underutilization of the existing modal design
experience and difficulty in training models under small samples.

The main contributions of this paper are as follows [1]: the
proposed MetaNAS method can automatically design fault
diagnosis network models and realize automatic fault diagnosis
under small samples of new modes [2]. To address the problems of
underutilization of the existing modal design experience and difficulty
in training models under small samples, meta-learning is used to learn
the model design experience of existing models and obtain the optimal
initial parameters so that the new modal can obtain the fault diagnosis
model with only a few steps of gradient update under small samples
[3]. Continuous relaxation optimization converts the discrete channel
selection process into a continuous optimization process, making NAS
more efficient and convenient.

2 Manuscript formatting

2.1 Model-agnostic meta-learning

The entire dataset, training set, and test set are denoted by D,
Dmeta−train, and Dmeta−test, respectively, and in meta-learning, a series
of tasks T is sampled according to the distribution p(T) ofDmeta−train,
where there are N categories in the ith task, and each category has K
samples, calling the problem an N-class K-sample problem [19]. The
data in each N-class K-sample problem are further divided into a
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training set and a test set, and in order not to be confused, the training
set in Ti is called the support set and the test set is called the query set,
denoted as Ts

i and T
q
i , respectively. The core idea of MAML is to learn

an optimal initial parameter ~ω in all tasks T such that Dmeta−test to
perform one or more steps of gradient adjustment based on ~ω to
achieve the goal of fast adaptation to new tasks and good performance
with only a small amount of data. The optimal initial parameters are
learned according to the following rules:

ωm+1
i � ωm

i − χinner
∂L Ts

i ;ω
m
i( )

∂ωm+1
i

, (1)

where χinner is the internal learning rate of parameter ω, m is the
update step in each task T, f is the parameterization function of the
network weight ω, and L is the loss function. During the internal
learning process, Ts

i is used to calculate the loss of task Ti and let the
parameter ω be updated from ωm

i to ωm+1
i , where ω0

i � ω. After M
steps, L(f(Tq

i ;ω
M
i ) in Tq

i is used to update the optimal initial
parameters, which can be expressed as follows:

~ω � ~ω − χouter
∂∑Tq

i ~p T( )L f Tq
i ;ω

M
i( )( )

∂~ω
, (2)

where χouter is the external learning rate of parameter ~ω, and
eventually, when the model converges, the optimal initial
parameter ~ω is obtained. This makes the initial parameters so
sensitive that a better model can be obtained in only a few steps
of updating on Dmeta−test.

2.2 Automatic fault diagnosis

The core idea of the automatic fault diagnosis (AutoFD) method
is to continue the discrete network search process by continuous
relaxation optimization, assigning weights to all candidate
operations separately, then optimizing the operation weights and
network parameters by gradient descent, and then using the
operation weight parameters to select the corresponding
operations to form the final network model [29, 30].

LetO be the candidate operation set, each candidate operation is
denoted as o; given the input x, the operation output �o(x) after
continuous relaxation optimization is as follows:

�o x( ) � ∑
o∈O

exp αo( )∑o′∈O exp αo′( )o x( ), (3)

where α represents the operation weight vector, which represents the
importance of different candidate operations in the corresponding
edge. After the training is completed, the operation corresponding to
the largest weight is selected according to the operation weight
parameter as the final result.

Through continuous relaxation optimization, the NAS problem
is transformed into a double optimization problem, which can be
solved by using the two-step update algorithm.

α � α − δ
∂L ω − ξ ∂L ω,α( )

∂ω( )
∂α

, (4)

ω � ω − χ
∂L ω, α( )

∂ω
, (5)

where L denotes the loss function and ξ means the internal
learning rate.

3 The proposed method

The MetaNAS method is proposed to address the problems of
existing methods that do not fully utilize the model design
experience of the previous modes and require a large amount
of feature data, and the overall flow chart of the method is shown
in Figure 1. MetaNAS first assigns weights to the candidate
channels and transforms the discrete channel selection process
into a continuous optimization process by optimizing the
continuous weights instead of the channel selection process.
Then, MAML is used to learn the optimal initial parameters of
the required learning parameters in NAS, and when a new mode
appears, a better fault diagnosis model for the new mode is
obtained with only a few steps of updates based on the optimal
initial parameters when only a small amount of data is available
for the new mode.

3.1 Channel weight parameters

AutoFD uses multi-channel convolution to enhance the
performance of the network, but the selection of convolutional
channels is very time-consuming. In order to make NAS more
efficient, this paper uses continuous relaxation optimization to
make the discrete convolutional channel selection process
continuous. The candidate channels are denoted by C �
C1, C2,/, Cn{ } to denote the set of candidate channels, which
are used as the candidate input channels of the network,
i.e., I � I1, I2,/, In{ }, the selection process of these candidate
input channels is discrete, the channels are assigned weights
β � β1, β2,/, βn{ }, and these weights are transformed by the
Softmax function to mix all the channels in the candidate
channel set to obtain a mixed input.

Input � ∑ exp β( )∑i′∈Iexp
β′i( ) i. (6)

Thus, each channel C is associated with a weight coefficient β
corresponding to it, and continuous relaxation optimization uses
a continuous weight coefficient to represent the discrete candidate
channels. This continuous weight coefficient indicates the
importance of the corresponding channel in the network input,
so the performance of the network on the validation set can be
updated quickly by using gradient descent for each operation,
effectively avoiding the time-consuming process of training all
network inputs and selecting the well-performing inputs. After
the search is completed, the channel corresponding to the top
three values of the weight coefficient is selected as the final
operation convolution channel. By the aforementioned method,
the NAS problem is transformed into a two-layer optimization
problem of learning the smallest values of operation weight α*,
network weight ω*, and channel weight β* with the loss function.

Lval ω*, α*, β*( ), (7)
min

α
Lval ω*|(α, β), α, β( ), (8)

s.t.ω* α( ) � argmin
ω

Ltrain ω, α( ), (9)
ω* β( ) � argmin

ω
Ltrain ω, β( ). (10)
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3.2 The proposed method

In order to make the NAS process of the new modal fault
diagnosis more efficient, this paper uses MAML to learn the
design experience of previous modes and NAS, the new modal
chemical process based on the learned design experience. In
Subsection 3.1, MAML is trained on the training set to obtain
the optimal initial parameters ~ω for fast adaptation in the new
task. Similarly, the optimal network initial parameter ~ω,
operation weight initial parameter ~α, and channel weight
initial parameter ~β are learned using the training set data in
MetaNAS, which enables MetaNAS to quickly obtain a better
model with a few steps of the gradient update on the new task,
where the parameters ~ω, ~α, and ~β are the NAS parameters defined
in Subsection 2.1 and Subsection 3.1.

In order to learn the previous modal NAS design experience, this
paper is based on the MAML strategy to learn the optimal NAS
initial parameters ~ω, ~α, and ~β. Similar to AutoFD, the operation
weight parameter α, network parameter ω, and channel weight
parameter β cannot be trained independently, so the initial
parameters ~ω, ~α, and ~β also need to be jointly optimized. In
MetaNAS, the initial parameters ~ω, ~α, and ~β are also solved by
joint optimization. Eqs 1, 2 are used in subsection 2.1 to update the
optimal initial parameters ~ω, where Eq. 1 is used to update the
internal parameters and Eq. 2 is used to update the external initial
parameters, and similarly, MetaNAS contains two parts: internal
parameter update and external initial parameter update. In the
internal parameter update part, the NAS parameters ω, α, and β

are jointly optimized in a specific task Ts
i according to the following

equations:

ωm+1
i � ωm

i − χinner
∂L g Ts

i ; α
m
i , β

m
i ,ω

m
i( )( )

∂ωm
i

, (11)

αm+1
i � αmi − δinner

∂L g Ts
i ; α

m
i , β

m
i ,ω

m
i( )( )

∂αm
i

, (12)

βm+1
i � βmi − εinner

∂L g Ts
i ; α

m
i , β

m
i ,ω

m
i( )( )

∂βmi
, (13)

where χinner is the internal learning rate of the network parameter ω,
δinner is the internal learning rate of the operational weight
parameter α, εinner is the internal learning rate of the channel
weight parameter β, and g is the parameterization function of ω,
α, and β; initially, (ω0

i � ~ω, α0i � ~α, β0i � ~β). In the external
parameter update, in order to obtain an optimal initial point,
after M steps, the loss function L(g(Ts

i ; α
m
i , β

m
i ,ω

m
i )) in task Tq

i

is calculated to jointly optimize the parameters ~ω, ~α, and ~β according
to the following equation:

~ω � ~ω − χouter
∂∑Tq

i ~p T( )L g Tq
i ; α

M
i , β

M
i ,ω

M
i( )( )

∂~ω
, (14)

~α � ~α − δouter
∂∑T

q
i ~p T( )L g Tq

i ; α
M
i , β

M
i ,ω

M
i( )( )

∂~α
, (15)

~β � ~β − εouter
∂∑Tq

i ~p T( )L g Tq
i ; α

M
i , β

M
i ,ω

M
i( )( )

∂~β
, (16)

where χouter is the external learning rate of the network parameter ~ω,
δouter is the external learning rate of the operational weight
parameter ~α, and εouter is the external learning rate of the
channel weight parameter ~β. When the results converge, the
optimal initial parameters ~ω, ~α, and ~β are obtained, and the new

FIGURE 1
Flowchart of the proposed MetaNAS method.
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task is updated on the basis of the parameters ~ω, ~α, and ~β to obtain
better results quickly.

3.3 New modal fault online diagnosis steps

The new modal chemical process fault diagnosis algorithm
proposed in this paper can be divided into four steps, namely,
model construction, search phase, training and optimization phase,
and real-time diagnosis, which are as follows:

Step 1: Model construction. The network model is a two-way
branch linked by several convolutional neural network units, the
network units within the branch and between the branches are
linked by edge operations, the data to be processed are input at the
beginning of the two branches, the fully connected layer for
outputting fault diagnosis results is also connected at the end of
the two branches, the said network units also include edge
operations and nodes, the input within the unit is also divided
into two ways, and the output is one way, the same as the network
model in the AutoFD method.

Step 2: Search phase.

Step 2.1: The raw chemical production process data on multiple
modes are normalized and dimensionally preprocessed to make data
dimensions that satisfy the structural search of the meta-learning
network.

Step 2.2: The pre-processed data are manipulated to form
candidate channels for multi-channel convolution and are
stitched with the preprocessed data to generate inputs for the
network search phase.

Step 2.3: The candidate input channels are individually assigned
weights to further obtain the mixed inputs.

Step 2.4: The set of candidate operations are defined, and a weight
is assigned to each operation.

Step 2.5: Iterating steps 2.3 and 2.4 repeatedly, the Adam/SGD
optimizer is chosen to adjust the network parameters, channel
weight parameters, and operation weight parameters by using the
cross-entropy loss function and backpropagation so as to obtain the
optimal network initial parameters, channel optimal initial
parameters, and operation optimal initial parameters as the initial
parameters of the new mode.

Step 3: Training and optimization phase.

Step 3.1: Normalization and dimensional preprocessing are
performed for the new modal chemical production process data
so that the input data dimensions satisfy the meta-learning network
structure search.

Step 3.2: The optimal network initial parameter ~ω, optimal channel
weight initial parameter ~β, and optimal operation weight initial
parameter ~α are used as initial parameters to train the new modal

chemical production process data into the network, and the
optimized network parameter ω*, channel weight parameter β*,
and operation weight parameter α* are obtained after training.

Step 3.3: The channel weight parameter β* and operation weight
parameter α* obtained by the aforementioned optimization are used
to filter the selected convolutional channels and convolutional
operations in the network, and obtain the fault diagnosis network
model corresponding to the new mode.

Step 4: Real-time diagnosis. The data obtained in real time are
normalized and preprocessed so that the input data dimensions of
the network are satisfied. Then, the data are input into the obtained
diagnosis network for real-time diagnosis.

4 Experimental verifications

For all datasets, in the network search phase, the same candidate
operations, candidate convolution channels, and the structure of the
network are used as in AutoFD, with candidate convolution
channels. The network in the empirical phase of the learning
design is determined by the operation weight parameter ~α and
the channel weight parameter ~β. The candidate operations are as
follows: 3 × 3 separable convolution, 5 × 5 separable convolution, 3 ×
3 null convolution, 5 × 5 null convolution, 3 × 3 maximum pooling,
3 × 3 average pooling, keep the original input, and clear the original
input. When there is a new task, the optimal network structures α*i
and β*i can be obtained by updating on the basis of the original
network structure parameters.

The dataset is first divided into validation and test sets, and then,
the training set is subdivided into training and validation sets, and
the test set is subdivided into training and test sets, and the
aforementioned four sets are noted as the training set in the
training phase, validation set in the training phase, training set in
the test phase, and test set in the test phase for easy distinction
[31, 32].

First, in the training set of the training phase, K data are
randomly selected from the selected N class samples as a task T.
Then, in the validation set of the training phase, 10 data are
randomly selected from each category sample as the test data in
the training phase, so there should be N*(K+10) data in task T. In
the NAS process, let the network training epoch be E1, and each
time, first, S1 independent tasks are randomly selected, and then,
the search training of the network is performed with these S1 tasks.
In the internal search phase, the ordinary SGD is chosen to
optimize the parameters of the network, the operation weight
parameters, and the channel weight parameters, and the internal
learning rates are set to χinner, δinner, and εinner in the internal
sojourn phase, and the accuracy and efficiency of the network are
weighed by adjusting the internal step size M. In the external
search phase, the Adam optimizer is chosen to optimize the initial
parameters of the network, the initial parameters of the operation
weights, and the initial parameters of the channel weights, and the
external learning rates are set to χouter, δouter, and εouter. In the
validation phase, first, K data are randomly selected from the
samples of N classes as task T in the training set of the testing
phase, so there should be N*(K + Q) data in task T. Let the network

Frontiers in Physics frontiersin.org05

Lei et al. 10.3389/fphy.2023.1207381

147

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1207381


training epoch be E2 times, and each time, S2 independent tasks
are randomly selected first, and the final accuracy is the average
diagnostic accuracy of S2 independent tasks.

All training and verification experiments are completed on a PC
equipped with Inteli7-10875H 2.30 GHz, 16 GB DDR4, WDC
PCSN730, and NVIDIA GeForce RTX 2060. All Python codes
are completed under the PyTorch framework, using the parallel
acceleration capabilities provided by CUDA and cuDNN to achieve
fast training and diagnostic tasks.

4.1 New modal fault online diagnosis steps

In this paper, a typical multimodal numerical simulation model
proposed by Ge et al. [25] is taken for testing, which has been
adopted by many scholars to verify the effectiveness of multimodal
algorithms, and the specific structure of the model is denoted as
follows:

x1 � 0.5678s1 + 0.3766s2 + e1,
x2 � 0.7382s1 + 0.0566s2 + e2,
x3 � 0.8291s1 + 0.4009s2 + e3,
x4 � 0.6519s1 + 0.2070s2 + e4,
x5 � 0.3792s1 + 0.8045s2 + e5,

(17)

where five variables x1, x2, x3, x4, and x5 have different
distributions of s1 and s2. e1, e2, e3, e4, and e5 are five mutually
independent noises that obey the Gaussian distribution with mean
0 and standard deviation 0.01. According to the two different
distributions of s1 and s2, the model has two different modes, mode
1 (mode1) and mode 2 (mode2), which are represented as
follows [26]:

model1 s1: U −10, 7( ), s2: N −15, 1( ),
model1 s1: U 2, 5( ), s2: N 7, 1( ), (18)

where U denotes uniform distribution and N denotes Gaussian
distribution; each measured data contain five moments of data
[d1, d2, d3, d4, d5], and di is [x1, x2, x3, x4, x5] for each moment;
each data have 25 features; for eachmode, first 1,000 normal samples
are generated, followed by the next 1,000 samples generated as fault
data, and the fault data are generated according to the following
rules.

Fault 1: Addition of a step signal of amplitude 4 at the beginning
of the 1001st sample.

Fault 2: Adding a ramp signal of 0.02 (i-400) at the beginning of
the 1001st sample.

Fault 3: A sinusoidal signal with amplitude, offset, and frequency
of 1 is added at the beginning of the 1001st sample.

Here, 1,000 data were generated for each mode of normal and
fault 1, 2, and 3, respectively, where 4,000 data of mode1 were used
as the training set and the data were divided into training and
validation sets in the ratio of 7:3 to learn the optimal initial
parameters. mode2 also contained 4,000 data, and the data were
divided into training and test sets in the ratio of 7:3.

The dataset is divided according to the category N � 4; the
number of data itemsK � 10, 50, 100, and 150; the network training
epoch is E1 � 10; the number of randomly selected independent
tasks S1 � 100; the internal learning rate χinnner � 0.05, δinnner � 15,
and εinnner � 15; the internal step size M � 4; the external learning
rate χouter � 10−3, δouter � 10−3, and εouter � 10−3; test data size Q �

150 for the validation phase; E2 � 5 for the network training epoch;
and the number of randomly selected independent tasks S2 � 80.
The results of the numerical system multi-fault experiments are
shown in Table 1 and Figure 2.

It can be seen that as the training set size increases on
mode2 data, the amount of knowledge learned by each method
from the data increases accordingly and the diagnostic accuracy of
MetaNAS, MAML++ [21], Reptile [22], and MAML [19] also
increases. The diagnostic accuracy of MetaNAS with a training
set size of 3 × 10 was as high as 74%, while the highest of the
compared methods was 68.17% for MAML++. The diagnostic
accuracy of MetaNAS with a training set size of 3 × 50 was
85.27%, and none of the compared methods exceeded 76%. The
diagnostic accuracy of MetaNAS with a training set size of 3 ×
100 was 86.35%, and all the compared methods exceeded 80%. At a
training set size of 3 × 150, the diagnostic accuracy of MetaNAS was
88.34%, and all the compared methods exceeded 84%. MetaNAS
achieved the highest diagnostic accuracy in each category of the
training set size.

4.2 TE multi-modal simulation

The TE chemical process is a standard experimental simulation
platform. This paper adopts the TE simulation platform provided by
http://depts.washington.edu/control/LARRY/TE/download.html.
The TE process is presented in Figure 3. In the multimodal process
fault diagnosis experimental study, the TE process simulation
platform is set up with six G/H product ratios to obtain the
process data under normal and fault conditions in six modes as
mentioned in Table 2 and verify the performance of MetaNAS
through multimodal TE process fault diagnosis experiments. In each
mode normal operating condition, simulation for 72 h with a
sampling interval of 3 min, 1,440 normal samples were obtained.
In total, 15 kinds of faults were set when collecting fault samples,
including seven step change faults (faults 1–7), five random change
faults (faults 8–12), one slow drift fault (fault 13), and two blockage
faults (faults 14 and 15); faults were introduced after 10 h of
simulation in the normal operating condition, and the simulation
was continued for 62 h with a sampling interval of 3 min,
i.e., 200 normal samples and 1,220 fault samples were collected
each time during the simulation of collecting fault samples.

In the multimodal process fault diagnosis experiment, for the six
modal process data obtained, 1,000 normal samples (6,000 normal
samples) and 1,000 samples for each fault (i.e., 6,000 samples for
each fault) are selected to form the dataset to be used; each data
contains 12 operational variables and 41 process variables, and the
variable dimension of each data is 53, which is filled with 0 at the end
of the data and then converted into an 8 × 8 two-dimensional matrix
as the candidate input of the network.

The data onmodes 1, 2, 3, 4, and 5were used as the training set, and
the data on mode 6 were used as the test set. First, single-fault diagnosis
experiments are performed on the multimodal dataset with the division
N = 2; the number of data entries K = 10, 50, 100, and 150; E1 � 12 for
the network training epoch; the number of randomly selected
independent tasks S1 � 200; the internal learning rate χinner � 0.05,
δinner � 15, and εinner � 15; the internal step size M = 4; the external
learning rate χouter � 10−3, δouter � 10−3, and εouter � 10−3; the test data
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TABLE 1 Multi-fault diagnosis accuracy of numerical simulation with different training set sizes.

Training set Test set MetaNAS (%) MAML++ Reptile MAML

4*10 4*150 74.00 68.17% 64.54% 62.75%

4*50 4*150 85.27 75.53% 73.25% 71.95%

4*100 4*150 86.35 79.16% 77.39% 74.98%

4*150 4*150 88.34 81.69% 83.96% 84.93%

That the bold values indicates the results of our proposed MetaNAS method.

FIGURE 2
Multi-fault diagnosis accuracy of numerical simulation with different training set sizes.

TABLE 2 TE operation mode single-fault description.

Fault condition Serial number Process variation Interference type

Fault 1 1 A/C material feeding ratio perturbed and B unchanged Step interference

Fault 2 2 B changes, and the A/C feed ratio remains the same Step interference

Fault 3 3 Feed temperature variation of D (stream 2) Step interference

Fault 4 4 Condenser cooling water inlet temperature Step interference

Fault 5 5 Reactor cooling water inlet temperature Step interference

Fault 6 6 A feed loss (stream 1) Step interference

Fault 7 7 Component C pressure drop disturbance Step interference

Fault 8 8 A, B, and C feed ingredients (stream 4) Random interference

Fault 9 9 Feed temperature of D (stream 2) Random interference

Fault 10 10 Feed temperature of C (stream 4) Random interference

Fault 11 11 Condenser cooling water inlet temperature Random interference

Fault 12 12 Reactor cooling water inlet temperature Random interference

Fault 13 13 Reaction dynamics Drift interference

Fault 14 14 Reactor cooling water valve Blocking interference

Fault 15 15 Condenser cooling water valve Blocking interference
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FIGURE 3
Tennessee Eastman process.

TABLE 3 TE single-fault diagnosis accuracy with different training set sizes.

Fault Training set 2 × 10 test set 2*150 Training set 2 × 100 test set 2 × 150

MetaNAS MAML++ Reptile MAML MetaNAS MAML++ Reptile MAML

1 96.70% 94.30% 88.33% 85.45% 100.00% 96.70% 100.00% 93.00%

2 93.30% 83.35% 80.00% 63.33% 100.00% 96.70% 88.67% 88.33%

3 73.34% 76.66% 66.55% 67.00% 79.00% 86.67% 73.34% 74.66%

4 96.70% 97.30% 96.00% 93.30% 100.00% 98.34% 100.00% 94.00%

5 93.30% 75.70% 88.67% 90.00% 96.70% 90.67% 90.67% 93.30%

6 100.00% 100.00% 99.00% 97.66% 100.00% 100.00% 100.00% 100.00%

7 100.00% 96.00% 100.00% 98.00% 100.00% 99.30% 100.00% 98.34%

8 100.00% 100.00% 96.34% 93.00% 100.00% 100.00% 97.66% 97.30%

9 76.66% 73.34% 69.34% 73.34% 80.00% 76.66% 80.00% 75.00%

10 83.35% 63.00% 80.00% 73.00% 93.60% 82.00% 93.30% 78.30%

11 73.34% 64.65% 76.66% 69.70% 85.35% 81.70% 78.65% 83.35%

12 100.00% 73.00% 100.00% 89.00% 100.00% 90.33% 100.00% 92.70%

13 96.70% 100.00% 90.67% 81.00% 100.00% 100.00% 91.00% 95.00%

14 76.66% 60.35% 80.00% 72.30% 84.67% 82.67% 82.00% 81.23%

15 76.66% 80.00% 69.70% 61.00% 84.35% 83.35% 73.34% 75.34%

Top 9 6 4 0 14 4 6 1

It can be seen that MetaNAS achieves the highest diagnostic accuracy for nine faults when the training size is 2 × 10, which is better than six faults for MAML++, four faults for Reptile, and zero

faults for MAML. As the training size increases, MetaNAS achieves the highest diagnostic accuracy for 14 out of 15 faults when the training size is 2 × 100, compared to four faults for MAML++,

six faults for Reptile, and one fault for MAML. Moreover, MetaNAS achieves 100% diagnostic accuracy on faults 1, 2, 4, 6, 7, 8, 12, and 13 when the training set size is 2 × 100.

That the bold values indicates the results of our proposed MetaNAS method.
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size Q = 150 in the validation phase; E2 � 6 in the network training
epoch, and the number of randomly selected independent tasks
S2 � 90; the results of the single-fault diagnosis are shown in Table 3.

Then, the multimodal dataset is subjected to multiple fault
diagnosis experiments, and a total of five operating conditions,
normal 0, fault 1, fault 8, fault 13, and fault 15, are selected as
the study objects, covering common step disturbances, random
disturbances, drift disturbances, blocking disturbances, and other
faults. The division of the dataset N = 5; the number of data entries
K = 10, 50, 100, and 150; the training epoch E1 � 10; the number of
randomly selected independent tasks S1 � 500; the internal learning
rate χinner � 0.1, δinner � 30, and εinner � 30; the internal step sizeM =
5; the external learning rate χouter � 10−3, δouter � 10−3, and
εouter � 10−3; the test data size Q = 150 in the validation phase;
the training epoch E2 � 10; and the number of randomly selected
independent tasks S2 � 100; the multi-fault diagnosis results are
shown in Table 4 and Figure 4.

It can be seen that the diagnostic accuracy of MetaNAS, MAML++,
Reptile, and MAML increases as the size of the mode6 training set
increases. The diagnostic accuracy ofMetaNASwith a training set size of
5 × 10 is 72.35%, while the highest diagnostic accuracy of the comparison
method is 57.07% for MAML++. The diagnostic accuracy of MetaNAS
with a training set size of 5 × 50 is 80.47%, while the comparisonmethod
does not exceed 66%. The diagnostic accuracy of MetaNAS with a
training set size of 5 × 100 is 84.29%, and the comparisonmethods are all

over 76%. The diagnostic accuracy ofMetaNASwith a training set size of
5 × 150 is 85.34%, and all the comparison methods exceed 77%.
MetaNAS achieves the highest diagnostic accuracy in each category
of the training set size.

Because MetaNAS has the advantage of using design experience
to design a unique network structure for new modes, unlike
MAML++, Reptile, and MAML, which use fixed network models,
it usually requires additional time overhead for network model
generation. During TE multi-fault experiments, the number of
model parameters of MetaNAS, MAML, MAML++, and Reptile
are 2.4 megabytes, 3.2 megabytes, 3.2 megabytes, 3.2 megabytes, and
3.2 megabytes, respectively, and MetaNAS takes about 1.5 s more
than MAML for network model generation in each batch during the
validation phase, where the number of model parameters is
calculated by the thop.profile () function and the model runtime
is calculated by the time.time () function.

Summarizing the aforementioned three experiments, it can be
concluded that the diagnostic accuracy of MetaNAS is higher than
that of the compared MAML++, Reptile, and MAML methods in
most faults. MetaNAS uses AutoFD for NAS based on MAML,
which provides a rich candidate network structure for MAML and
solves the problem of a single meta-learning network structure, and
MetaNAS’s network model does not require a complex and time-
consuming design process. Comparing the results of MetaNAS and
MAML in the three experimental results, we can see that the

TABLE 4 TE multi-fault diagnosis accuracy with different training set sizes.

Training set Test set MetaNAS MAML++ Reptile MAML

5 × 10 5 × 150 72.35% 57.07% 53.14% 51.25%

5 × 50 5 × 150 80.47% 65.50% 64.36% 62.65%

5 × 100 5 × 150 84.29% 74.10% 75.29% 72.18%

5 × 150 5 × 150 85.34% 73.60% 76.64% 74.63%

FIGURE 4
TE multi-fault diagnosis accuracy with different training set sizes.
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diagnostic results of MetaNAS are higher than those of the base
method MAML in the case of different training set sizes of the same
dataset, which indicates that MetaNAS can obtain better fault
diagnosis capability after adding AutoFD because the network
model structure can be learned, and the fault diagnosis results of
MetaNAS in many faults are better than those of MAML++ and the
Reptile algorithm, which are improved on the basis of MAML,
proving the effectiveness of the MetaNAS method.

5 Conclusion

The MetaNAS method is proposed to find the optimal initial
parameters to be learned in NAS by meta-learning, and the new
mode can find the best performing network structure with only a few
gradient updates based on the optimal initial parameters. MetaNAS
uses NAS to provide a rich learnable network architecture for meta-
learning method so that the network structure of meta-learning is no
single. It also automates the network design, making it possible to
quickly obtain fault diagnosis models with better performance even
for new modes with small samples. MetaNAS solves the limitations
to fault diagnosis through NAS, such as underutilization of the
existing modal design experience and difficulty in training models
with small samples. The effectiveness and superiority of the
proposed method in fault diagnosis under the small samples of
new models are demonstrated by numerical system and TE process
simulations. However, the existing model design experiences are
obtained from different modes of the same chemical process, and the
learning of different industrial process model design experiences is
lacking. The next work will focus on the study of learning algorithms
about different industrial process model design experiences and
NAS algorithms on unbalanced datasets.

Moving forward, there are several potential avenues for future
research and improvement. First, expanding the application of
MetaNAS to different fault diagnosis domains and datasets would
provide a broader evaluation of its effectiveness and generalizability.
Second, investigating the integration of additional data sources or
modalities could enhance the diagnostic capabilities of MetaNAS.
Furthermore, exploring the interpretability of the MetaNAS
approach is an important direction for future research. Last,
considering the scalability of the MetaNAS approach to handle
larger and more complex fault diagnosis tasks would be valuable. By

pursuing these future research directions, we can further advance
the field of real-time fault diagnosis with small sample learning and
continue to improve the performance, applicability, and
interpretability of the MetaNAS approach.
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This article focuses on the investigation and computation of solutions to fuzzy
fractional-order Cahn–Hilliard and Gardner equations. The study hybridizes
the fuzzy Gardner and Cahn–Hilliard equation into two equations using hybrid
techniques and the concept of a parametric fuzzy number. To explore these
equations, a combination of a novel iterative approach and the Shehu
transformation is employed. The article presents detailed procedures for
computing a series of solutions to the fractional-order Cahn–Hilliard and
Gardner problem. The applied techniques not only offer precision,
simplicity, and efficacy but also outperform other existing technologies.
Additionally, several examples are solved to validate the proposed
theoretical solution.

KEYWORDS

iterative transform method, fractional fuzzy Gardner and Cahn–Hilliard equations,
analytical solution, Atangana–Baleanu operator, fractional calculus

Introduction

In mathematics, fractional calculus is a useful tool for dealing with ambiguity,
recognizing emotional or confusing circumstances, and providing more general answers.
Physical models of real-world occurrences may contain significant uncertainty due to a
variety of variables. It appears that fuzzy sets can be used to replicate the uncertainty
caused by imprecision and ambiguity. If data involve uncertainty, we use it in the
medical, environmental, economic, physical, and social sciences. Zadeh investigated
these concerns when he contributed fuzziness to set theory in 1965. Fractional calculus
has risen in popularity over the last 20 years as a result of its numerous applications in
practical research [1–4]. In the behavior of the aforementioned system processes, there
are numerous examples of fuzzy uncertainty as opposed to stochastic uncertainty. Many
authors have focused on the theoretical foundations of fuzzy problems in recent years.
Fractional fuzzy differential equations can be used in civil engineering, population
models, electro-hydraulics models, and weapon systems, among others. Fractional fuzzy
differential equations are also studied in real-world contexts such as medicine [6],
practical systems [7], the golden mean [5], gravity, quantum optics [8], and engineering
phenomena. Zadeh [9] became familiar with fuzzy set theory for the first time. The idea
of a fuzzy number and its use in fuzzy controls [10] and approximation reasoning
problems [11] then became the subjects of research. It is challenging to effectively
represent a variety of circumstances using real numbers in data analysis. Later,
the fundamentals of fuzzy number arithmetic were specified by Mizumoto and
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Tanaka [12, 13], Dubois and Prade [14, 15], Nahmias [17], and
Ralescu [16]. They used a variety of intervals, such as ϱ-levels, 0 <
ϱ ≤ 1, [18], to compute the fuzzy number. It contains information
on fuzzy differential equations as well as the fundamental
concepts of non-crisp sets. Equations of differential
generalization are the recommended notions. Numerous
academics have shown interest in this novel idea. Applications
of fractional-order differential equations in real-world scenarios
are significant; they may be found in fields like engineering,
chemistry, and physics. The fractional differential equation is a
helpful tool for representing non-linear events in scientific and
engineering models. In applied mathematics and engineering,
partial differential equations (PDEs), particularly non-linear
PDEs, have been utilized to simulate a wide range of scientific
phenomena.

Fractional differential equations have received an immense
attention in the last two decades because of their ability to mimic
a wide range of occurrences in a variety of academic domains and
practical applications. Many physical applications in engineering
and science can be described using fractional differential equations,
which are particularly useful for a wide range of physical challenges.
Because these equations are represented by fractional linear and
non-linear PDEs, fractional differential equations must be solved
[19–21]. The most significant processes occurring in the world are
described by non-linear equations. Non-linear partial differential
equations remain a challenging topic in both applied mathematics
and physics, requiring the employment of a variety of methods to
arrive at creative approximations or precise solutions [22–25].
Fractional differential equations have been solved using a variety
of numerical and approximation methods. There have been several

FIGURE 1
The first graph demonstrates the two-dimensional fuzzy lower and upper branch graphs for the analytical series solution, while the second graph
illustrates the fractional-order differences between the two different series.

FIGURE 2
The first graph demonstrates the two-dimensional fuzzy lower and upper branch graphs for the analytical series solution, while the second graph
illustrates the fractional-order differences between the two different series.
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innovative ways for solving fractional differential equations recently,
some of which include the following: the iterative Laplace transform
method (ILTM) [27], differential transform method (FDTM) [26],
Adomain decomposition technique [29], variational iteration
transform technique [30], fractional Adomian decomposition
method (FADM) [28], natural decomposition technique [32], and
fractional homotopy perturbation technique [31]. The primary goal
of this article is to use the natural decomposition technique, one of
the most efficient approaches, to solve non-linear fractional
Cahn–Hilliard and Gardner equations. Natural decomposition
methods do not need discretization, linearization, perturbation,
or prescriptive assumptions to prevent round-off errors. The
KdV and modified KdV equations were combined to create the
Gardner equation [33], which is used to explain internal solitary
waves in shallow water. In physics, Gardner’s equation is often
applied in fields including quantum field theory, fluid physics, and
plasma physics [34, 35]. It also covers a variety of wave events in
solid and plasma states [36]. We quickly review the fractional
Gardner (FG) equation of the form

Dß
ε ] ℘, ε( ) + 6 ] − ϒ2]2( ) ∂]

∂℘ + ∂]3

∂℘3
� 0, 0< ß ≤ 1, (1)

where ϒ is a real constant. The wave function ](℘, ε) has the scaling
variables space (℘) and time (ε), the terms ] ∂]

∂℘ and ]2 ∂]∂℘ represent
non-linear wave steepen, and ∂]3

∂℘3 represents the wave dispersive
effect.

In 1958, Cahn and Hilliard [37] developed the Cahn–Hilliard
equation to represent the phase separation of a binary alloy at the
critical temperature. This equation is essential to several
outstanding scientific phenomena, such as phase separation,
phase-ordering dynamics, and spinodal decomposition. In this
context, the fractional Cahn–Hilliard (FCH) equation is
expressed as follows:

Dß
ε ] ψ, ε( ) − ∂]

∂ψ
− 6]

∂]2

∂ψ
− 3]2 − 1( ) ∂2]

∂ψ2
+ ∂4]
∂ψ4

� 0, 0< ß ≤ 1.

(2)
Several techniques are applied to analyze the Cahn–Hilliard and

Gardner equations, such as the Adomian decomposition method
[38], modified Kudryashov method [39], reduced differential
transform technique [40], residual power series technique [41],
and homotopy perturbation method [42].

The article is organized as follows: theBasic definitionsection
provides the basic definition of a fractional fuzzy set.
Methodology of the iterative transform method is described in
the Roadmap of the suggested techniquesection. The
Implementation section describes the application of numerical
fuzzy problems, which is followed by the conclusion.

Basic definitions

Definition 2.1. If ϖ: R ↦ [0, 1] denotes a fuzzy set, it is
understood to be a fuzzy set if the following main requirements
hold true [43–46]:

1. ϖ is normal (for some η0 ∈ R;ϖ(ϑ0) � 1);
2. ϖ is upper semi-continuous;
3. ϖ(ϑ1ω + (1 − ω)ϑ2)≥ (ϖ(ϑ1) ∧ ϖ(ϑ2))∀ω ∈ [0, 1], ϑ1, ϑ2 ∈ R,,

i.e., ϖ is convex;
4. cl{ϑ ∈ R,ϖ(ϑ)> 0} is compact.

Definition 2.2. The fuzzy number ϖ is a r-level set expressed as
[43–46]

ϖ[ ]r � ] ∈ R: ϖ ]( )≥ 1{ },
where r ∈ [0, 1] and ] ∈ R.

Definition 2.3. A fuzzy number’s parameterized variant is
represented as [ϖ (r), �ϖ(r)] such that r ∈ [0, 1] fulfills the
following assumptions [43–46]:

1. ϖ(r) is left continuous, left continuous at zero, non-decreasing,
and over bounded (0,1];

2. ϖ(r) is right continuous, right continuous at zero, non-increasing,
and over bounded (0,1];

3. ϖ(r)≤ �ϖ(r).

Definition 2.4. Suppose that there are fuzzy set numbers r ∈ [0, 1]
and Y [43–46] ρ̃1 � (ρ

1
, ρ1), ρ̃2 � (ρ2 , ρ2), then the additions,

subtractions, and multiplications, consequently, are defined as
follows:

1. ρ̃1 ⊕ ρ̃2 � (ρ1 (r) + ρ2 (r), ρ1(r) + ρ2(r));
2. ρ̃1 ⊖ ρ̃2 � (ρ1(r) − ρ2 (r), ρ1(r) − ρ2(r));
3. Y ⊙ ρ̃1 � (Y ρ1 ,Yρ1)Y≥ 0, (Yρ1,Y ρ1 )Y< 0{ .

Definition 2.5. the fuzzy mappings Θ: ~E × ~E ↦ R have fuzzy two
sets [43–46] ρ̃1 � (ρ1 , ρ1), ρ̃2 � (ρ2 , ρ2), then Θ-distances between
ρ̃1 and ρ̃2 is defined as

Θ ρ̃1, ρ̃2( ) � sup
r∈ 0,1[ ]

max | ρ1 r( ) − ρ2 r( )|, |ρ1 r( ) − ρ2 r( ) |{ }[ ].
Theorem 2.1. Consider a fuzzy valued function E: R ↦ ~E such that
E(γ0; r) � [E (γ0; r), �E(γ0; r)] and r ∈ [0, 1]. Then [43–46],

1. (γ0; r) and E(γ0; r) are differentiable functions, if E is a (1)-
differentiable function and

E′ γ0( )[ ]r � E ′ γ0; r( ), �E′ γ0; r( )[ ].
11. E (γ0; r) and �E(γ0; r) are differentiable functions, if E is a (2)-

differentiable function and

E′ γ0( )[ ]r � �E′ γ0; r( ),E ′ γ0; r( )[ ].
Definition 2.6. Assume that a fuzzy mapping
](r)gH � ](r) ∈ CF[0, s] ∩ LF[0, s]. The fuzzy gH-fractional
differentiability Caputo of the fuzzy value mappings nu is thus
written as [43–46]
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gHDß]( ) ε( ) � J r−ß
a1

⊙ ] r( )( ) γ( )
� 1
Γ r − ß( ) ⊙ ∫ε

a1

ε1 − ϑ( )r−ß−1 ⊙ ] r( ) ϑ( )dϑ,
ß ∈ r − 1, r( ], r ∈ N, ε> a1.

The parametric values of ] � [] r(ε), �]r(ε)], r ∈ [0, 1] and ε10 ∈
(0, s), and Caputo fractional differential in the presence of fuzzy are
expressed as

Dß
i( )−gH] ε10( )[ ]

r
� Dß

i( )−gH ] ε10( ),Dθ
i( )−gH�] ε10( )[ ], r ∈ 0, 1[ ],

where r = [r]

Dß
i( )−gH ] ε10( )[ ] � 1

Γ r − ß( ) ∫ε

0
ε − x( )r−ß−1 d

r

dxr
] i( )−gH x( )dx[ ]

ε�ε10
,

Dθ
i( )−gH�] ε10( )[ ] � 1

Γ r − ß( ) ∫t1

0
ε − x( )r−ß−1 d

r

dxr
�] i( )−gH x( )dx[ ]

ε�ε10
.

Definition 2.7. Suppose that fuzzy mappings ~](ε) ∈ ~H
1(0, T) and

ß ∈ [0, 1], then the fuzzy gH-fractional differentiability
Atangana–Baleanu of fuzzy value mappings is expressed as

gHDß]( ) ε( ) � B ß( )
1 − ß

⊙ ∫t1

0
] ′ x( ) ⊙ Eß

−ß ε − x( )ß
1 − ß

[ ]dx[ ].
Thus, the parameterized formulation of ] �

[] r(ε), �]r(ε)], r ∈ [0, 1] and ε0 ∈ (0, s), and the fuzzy
Atangana–Baleanu operator is defined by

ABCDß
i( )−gH~] ε0; r( )[ ] � ABCDß

i( )−gH ] ε0; r( ), ABCDθ
i( )−gH] ε0; r( )[ ],

r ∈ 0, 1[ ],
where

ABCDθ
i( )−gH ] ε0; r( ) � B ß( )

1 − ß
∫t1

0
] i( )−gH′ x( )Eθ

−ß ε − x( )θ
1 − ß

[ ]dx[ ]
ε�ε0

,

ABCDθ
i( )−gH�] ε0; r( ) � B ß( )

1 − ß
∫t1

0
�] i( )−gH′ x( )Eθ

−ß ε − x( )θ
1 − ß

[ ]dx[ ]
ε�ε0

,

where B(ß) represents the function of normalization which is equal
to 1 when ß is supposed to be 0 and 1. Moreover, we assume that
form (i) −gH exists. Now, there is no requirement to consider the
differentiability of (ii) −gH.

Definition 2.8. Suggest a continuous real-value mapping Ψ, and
there is an inappropriate Riemann fuzzy integrable mappings
exp(−ωσ ) ⊙ ~](ε) on [0, + ∞). Then, the integral∫ 0+∞ exp(−ω

σ) ⊙ ~](ε)dε is recognized to be the Shehu fuzzy
transformation, and it is noted over the set of mapping [43–46]as
follows:

S � ~] g( ): ∃A, p1, p2 > 0, ~] ε( )| |<A exp
ε| |
ψj

⎛⎝ ⎞⎠, if ε ∈ −1( )J × 0,+∞[ )⎧⎨⎩ ⎫⎬⎭,

as

S ~] ε( )[ ] � S ω, σ( ) � ∫+∞

0
exp

−ω
σ

ε( ) ⊙ ~] ε( )dε, ω, σ > 0.

Remark 1

In Equation 14, ~] satisfies the expectation of the reducing
diameter ] , diameter �] of a mapping of fuzzy ]. If σ = 1, then
fuzzy Shehu transform is reduced to * Laplace transform [43–46].

∫+∞

0
exp

−ω
σ

ε( ) ⊙ ~] ε( )dε � ∫+∞

0
exp

−ω
σ

ε( ) ] ε; r( )dε,(
∫+∞

0
exp

−ω
σ

ε( )�] ε; r( )dε).
Moreover, by analyzing the traditional Shehu transformation

[43–46], we achieve

S ] ε; r( )[ ] � ∫+∞

0
exp

−ω
σ

ε( ) ] ε; r( )dε,

and

S �] ε; r( )[ ] � ∫+∞

0
exp

−ω
σ

ε( )�] ε; r( )dε.

The aforementioned expression can then be expressed as

S ~] ε( )[ ] � S ] ε; r( )[ ], S �] ε; r( )[ ]( )
� S ω, σ( ), �S ω, σ( )( ).

Then, we shall define the Caputo generalized Hukuhara
derivative’s fuzzy Shehu transformation as c

gH D⊖
ε ](ε).

Definition 2.9. Suppose there is a fuzzy integrable value mapping
c
gH Dß

ε ~](ε), and ](ε) is the primitive of cgH Dß
ε ~](ε) on [0, +∞), then

the CFD of order ß is expressed as [43–46]

S c
gH Dß

ε ~] ε( )[ ] � ω

σ
( )ß ⊙ S ~] ε( )[ ] ⊖ ∑r−1

J�0

ω

σ
( )ß−J−1 ⊙ ~] J( ) 0( ), ß ∈ r − 1, r( ],

ω

σ
( )ß ⊙ S ~] ε( )[ ] ⊖ ∑r−1

J�0

ω

σ
( )ß−J−1 ⊙ ~f

J( )
0( )

� ω

σ
( )ßS ] ε; r( )[ ] −∑r−1

J�0

ω

σ
( )ß−J−1 ⊙ ] J( ) 0; r( ),⎛⎝

ω

σ
( )ßS �] ε; r( )[ ] −∑r−1

J�0

ω

σ
( )ß−J−1�] J( ) 0; r( )⎞⎠.

Bokhari et al. defined the ABC operator’s fractional derivative in
terms of the Shehu transform. Additionally, we extend the concept
of fuzzy ABC fractional derivative in the context of a fuzzy Shehu
transform as follows:

Definition 2.10. Consider ] ∈ CF[0, s] ∩ LF[0, s] such that
~](ε) � [] (ε, r), �](ε, r)], r ∈ [0, 1]; then, the Shehu transformation
of the fuzzy ABC of order ß ∈ [0, 1] is defined as follows:

S gHDß
ε ~] ε( )[ ] � B ß( )

1 − ß + ß σ
ω( )ß ⊙ ~V σ,ω( ) ⊖ σ

ω
~] 0( )( ).

Moreover, by applying the fact of Salahshour et al. [45], we
obtain

Frontiers in Physics frontiersin.org04

Shah et al. 10.3389/fphy.2023.1169548

157

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1169548


B ß( )
1 − ß + ß

σ

~ω
( )ß ⊙ ~V σ,ω( ) ⊖ ω

σ
~] 0( )( )

� ⎛⎝ B ß( )
1 − ß + ß

σ

~ω
( )ß V σ,ω; r( ) − σ

ω
] 0; r( )( ),

B ß( )
1 − ß + ß

σ

ψ
( )θ

�V σ,ω; r( ) − σ

~ω
�] 0; r( )( )⎞⎠.

Road map of the suggested technique

Consider the fractional fuzzy partial differential equation

S ABCDß
ε ~] ψ, ε( )[ ] � S D2

ψ~] ψ, ε( ) +D3
ψ~] ψ, ε( ) + ~k r( )F ψ, ε( )[ ], (3)

where ß ∈ (0, 1]; therefore, the Shehu transform of Equation 3 is

B ß( )
1 − ß + ß

σ

ω
( )ß S ~] ψ, ε( )[ ] − B ß( )

1 − ß + ß
σ

ω
( )ß

v

ω
( )~] ψ, ξ, 0( )

� S D2
ψ~] ψ, ε( ) +D3

ψ~] ψ, ε( ) + ~k r( )F ψ, ε( )[ ].
On using the initial condition, we obtain

S ~] ψ, ε( )[ ] � g ψ, ξ( )
ω

+ 1 − ß + ß σ
ω( )ß

B ß( ) S D2
ψ~] ψ, ε( ) +D3

ψ~] ψ, ε( ) + ~k r( )F ψ, ε( )[ ].
(4)

Decomposing the solution as ~](ψ, ε) � ∑∞
n�0~]n(ψ, ε), then (4)

implies

S∑∞
n�0

~]n ψ, ε( ) � g ψ, ξ( )
ω

+
1 − ß + ß

σ

ω
( )ß

B ß( ) S D2
ψ∑∞
n�0

~]n ψ, ε( )⎡⎣
+D3

ψ∑∞
n�0

~]n ψ, ε( ) + ~k r( )F ψ, ε( )⎤⎦. (5)

Taking parts of the solution by the choice of comparison, we obtain

S ~]0 ψ, ε( )[ ] � g ψ, ξ( )
ω

+
1 − ß + ß

σ

ω
( )ß

B ß( ) S ~k r( )F ψ, ε( )[ ].
S ~]1 ψ, ε( )[ ] � 1 − ß + ß

σ

ω
( )ß

B ß( ) S D2
ψ~]0 ψ, ε( ) +D3

ψ~]0 ψ, ε( )[ ].
S ~]2 ψ, ε( )[ ] � 1 − ß + ß

σ

ω
( )ß

B ß( ) S D2
ψ~]1 ψ, ε( ) +D3

ψ~]1 ψ, ε( )[ ].
..
.

S ~]n+1 ψ, ε( )[ ] � 1 − ß + ß
σ

ω
( )ß

B ß( ) S D2
ψ~]n ψ, ε( ) +D3

ψ~]n ψ, ε( )[ ].

(6)

Taking the inverse Shehu transform, we obtain

] 0 ψ, ε( ) � g ψ, ξ( ) + S−1
1 − ß + ß

σ

ω
( )ß

B ß( ) S k r( )F ψ, ε( )[ ]⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,
�]0 ψ, ε( ) � g ψ, ξ( ) + S−1

1 − ß + ß
σ

ω
( )ß

B ß( ) S �k r( )F ψ, ε( )[ ]⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,
] 1 ψ, ε( ) � S−1

1 − ß + ß
σ

ω
( )ß

B ß( ) S D2
ψ] 0 ψ, ε( ) +D3

ψ] 0 ψ, ε( )[ ]⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,
�]1 ψ, ε( ) � S−1

1 − ß + ß
σ

ω
( )ß

B ß( ) S D2
ψ�]0 ψ, ε( ) +D3

ψ�]0 ψ, ε( )[ ]⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,
] 2 ψ, ε( ) � S−1

1 − ß + ß
σ

ω
( )ß

B ß( ) S D2
ψ] 1 ψ, ε( ) +D3

ψ] 1 ψ, ε( )[ ]⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,
�]2 ψ, ε( ) � S−1

1 − ß + ß
σ

ω
( )ß

B ß( ) S D2
ψ�]1 ψ, ε( ) +D3

ψ�]1 ψ, ε( )[ ]⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,
..
.

] n+1 ψ, ε( ) � S−1
1 − ß + ß

σ

ω
( )ß

B ß( ) S D2
ψ] n ψ, ε( ) +D3

ψ] n ψ, ε( )[ ]⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,
�]n+1 ψ, ε( ) � S−1

1 − ß + ß
σ

ω
( )ß

B ß( ) S D2
ψ�]n ψ, ε( ) +D3

ψ�]n ψ, ε( )[ ]⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.
(7)

Thus, the solution becomes

] ψ, ε( ) � ] 0 ψ, ε( ) + ] 1 ψ, ε( ) + ] 2 ψ, ε( ) +/ ,
�] ψ, ε( ) � �]0 ψ, ε( ) + �]1 ψ, ε( ) + �]2 ψ, ε( ) +/ .

(8)

Equation 8 is the solution in series form.

Implementation

Example 4.1. Consider the fractional fuzzy Gardner equation as
follows:

ABCDß
ε ~] ψ, ε( ) + 6 ~] ψ, ε( ) − ϒ2~]2 ψ, ε( )( ) ∂~] ψ, ε( )

∂ψ
+ ∂~]3 ψ, ε( )

∂ψ3
� 0,

0< ß ≤ 1, (9)
with the fuzzy initial condition

~] ψ, 0( ) � ~k
1
2
+ 1
2
tanh

ψ

2
( )( ). (10)

Applying the proposed Equation 7, we achieve
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] 0 ψ, ε( ) � k r( ) 1
2
+ 1
2
tanh

ψ

2
( )( ),

�]0 ψ, ε( ) � �k r( ) 1
2
+ 1
2
tanh

ψ

2
( )( ),

] 1 ψ, ε( ) � k r( )
sech2

ψ

2
( ) −1 + −4 + 3ϒ2( )cosh ψ( ) + 3 −1 + ϒ2( )sinh ψ( )( )

8

×
1

B ß( ) ßεß

Γ ß + 1( ) + 1 − ß( ){ },
�]1 ψ, ε( ) � �k r( )

sech2
ψ

2
( ) −1 + −4 + 3ϒ2( )cosh ψ( ) + 3 −1 + ϒ2( )sinh ψ( )( )

8

×
1

B ß( ) ßεß

Γ ß + 1( ) + 1 − ß( ){ },
(11)

] 2 ψ, ε( ) � k r( )
−sech7 ψ

2
( )

64
−24 −1 + ϒ2( )cosh ψ

2
( ) − 6 22 − 37ϒ2 + 15ϒ4( )(

× cosh
3ψ
2

( ) + 6 4 − 7ϒ2 + 3ϒ4( )cosh 5ψ
2

( ) + 2 103 − 102ϒ2( )sinh ψ

2
( )

−3 43 − 74ϒ2 + 30ϒ4( )sinh 3ψ
2

( ) + 25 − 42ϒ2 + 18ϒ4( )sinh 5ψ
2

( ))
×

1

B2 ß( ) ß2ε2ß

Γ 2ß + 1( ) + 2ß 1 − ß( ) εß

Γ ß + 1( ) + 1 − ß( )2{ },
�]2 ψ, ε( ) � �k r( )

−sech7 ψ

2
( )

64
−24 −1 + ϒ2( )cosh ψ

2
( ) − 6 22 − 37ϒ2 + 15ϒ4( )(

× cosh
3ψ
2

( ) + 6 4 − 7ϒ2 + 3ϒ4( )cosh 5ψ
2

( ) + 2 103 − 102ϒ2( )sinh ψ

2
( )

−3 43 − 74ϒ2 + 30ϒ4( )sinh 3ψ
2

( ) + 25 − 42ϒ2 + 18ϒ4( )sinh 5ψ
2

( ))
×

1

B2 ß( ) ß2ε2ß

Γ 2ß + 1( ) + 2ß 1 − ß( ) εß

Γ ß + 1( ) + 1 − ß( )2{ }.
(12)

The higher terms can also be obtained in a similar manner.
Equation 8 provides solution in series form; consequently, we
write

~] ψ, ε( ) � ~]0 ψ, ε( ) + ~]1 ψ, ε( ) + ~]2 ψ, ε( ) + ~]3 ψ, ε( ) + ~]4 ψ, ε( ) +/ ,

(13)
while, in lower and upper portion types, it is, respectively,
written as

] ψ, ε( ) � ] 0 ψ, ε( ) + ] 1 ψ, ε( ) + ] 2 ψ, ε( ) + ] 3 ψ, ε( ) + ] 4 ψ, ε( ) +/ ,
�] ψ, ε( ) � �]0 ψ, ε( ) + �]1 ψ, ε( ) + �]2 ψ, ε( ) + �]3 ψ, ε( ) + �]4 ψ, ε( ) +/ .

(14)

] ψ, ε( ) � k r( ) 1
2
+ 1
2
tanh

ψ

2
( )( )

+ k r( )
sech2 ψ

2
( ) −1 + −4 + 3ϒ2( )cosh ψ( ) + 3 −1 + ϒ2( )sinh ψ( )( )

8
1

B ß( ) ßεß

Γ ß + 1( ) + 1 − ß( ){ }
+ k r( )

−sech7 ψ

2
( )

64
−24 −1 + ϒ2( )cosh ψ

2
( ) − 6 22 − 37ϒ2 + 15ϒ4( )(

cosh
3ψ
2

( )+ 6 4 − 7ϒ2 + 3ϒ4( )cosh 5ψ
2

( ) + 2 103 − 102ϒ2( )sinh ψ

2
( )

− 3 43 − 74ϒ2 + 30ϒ4( )sinh 3ψ
2

( ) + 25 − 42ϒ2 + 18ϒ4( )sinh 5ψ
2

( ))
1

B2 ß( ) ß2ε2ß

Γ 2ß + 1( ) + 2ß 1 − ß( ) εß

Γ ß + 1( ) + 1 − ß( )2{ } +/ ,�] ψ, ε( )
� �k r( ) 1

2
+ 1
2
tanh

ψ

2
( )( )

+ �k r( )
sech2 ψ

2
( ) −1 + −4 + 3ϒ2( )cosh ψ( ) + 3 −1 + ϒ2( )sinh ψ( )( )

8

1
B ß( ) ßεß

Γ ß + 1( ) + 1 − ß( ){ } + �k r( )
−sech7 ψ

2
( )

64
−24 −1 + ϒ2( )cosh ψ

2
( )(

−6 22 − 37ϒ2 + 15ϒ4( )cosh 3ψ
2

( )+ 6 4 − 7ϒ2 + 3ϒ4( )cosh 5ψ
2

( )
+ 2 103 − 102ϒ2( )sinh ψ

2
( )

− 3 43 − 74ϒ2 + 30ϒ4( )sinh 3ψ
2

( ) + 25 − 42ϒ2 + 18ϒ4( )sinh 5ψ
2

( ))
1

B2 ß( ) ß2ε2ß

Γ 2ß + 1( ) + 2ß 1 − ß( ) εß

Γ ß + 1( ) + 1 − ß( )2{ } +/ . (15)

The exact result is given as

~] ψ, ε( ) � ~k
1
2
+ 1
2
tanh

ψ − ε

2
( )( ). (16)

Example 4.2. Consider the fractional fuzzy Cahn–Hilliard
equation as follows:

Dß
ε ~] ψ, ε( ) − ∂~] ψ, ε( )

∂ψ
− 6~] ψ, ε( ) ∂~]2 ψ, ε( )

∂ψ

− 3~]2 ψ, ε( ) − 1( ) ∂2~] ψ, ε( )
∂ψ2 + ∂4~] ψ, ε( )

∂ψ4 � 0, 0< ß ≤ 1, (17)

with the fuzzy initial condition

~] ψ, 0( ) � ~ktanh
ψ+
2

√( ). (18)

Applying the system of Equation 7, we achieve

] 0 ψ, ε( ) � k r( )tanh ψ+
2

√( ),
�]0 ψ, ε( ) � �k r( )tanh ψ+

2
√( ),

] 1 ψ, ε( ) � k r( )sech2

ψ+
2

√( )+
2

√ 1
B ß( ) ßεß

Γ ß + 1( ) + 1 − ß( ){ },
�]1 ψ, ε( ) � �k r( )sech2

ψ+
2

√( )+
2

√ 1
B ß( ) ßεß

Γ ß + 1( ) + 1 − ß( ){ },

(19)

] 2 ψ, ε( ) � − k r( )sech2 ψ+
2

√( )tanh ψ+
2

√( ) 1

B2 ß( )
×

ß2ε2ß

Γ 2ß + 1( ) + 2ß 1 − ß( ) εß

Γ ß + 1( ) + 1 − ß( )2{ },
�]2 ψ, ε( ) � −�k r( )sech2 ψ+

2
√( )tanh ψ+

2
√( ) 1

B2 ß( )
×

ß2ε2ß

Γ 2ß + 1( ) + 2ß 1 − ß( ) εß

Γ ß + 1( ) + 1 − ß( )2{ }.
(20)

The higher terms can also be obtained in a similar manner.
Equation 8 provides solution in series form; consequently, we
write

~] ψ, ε( ) � ~]0 ψ, ε( ) + ~]1 ψ, ε( ) + ~]2 ψ, ε( ) + ~]3 ψ, ε( ) + ~]4 ψ, ε( ) +/ .

(21)
In the lower and upper portion types, it is, respectively,

written as
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] ψ, ε( ) � ] 0 ψ, ε( ) + ] 1 ψ, ε( ) + ] 2 ψ, ε( ) + ] 3 ψ, ε( ) + ] 4 ψ, ε( ) +/ ,
�] ψ, ε( ) � �]0 ψ, ε( ) + �]1 ψ, ε( ) + �]2 ψ, ε( ) + �]3 ψ, ε( ) + �]4 ψ, ε( ) +/ .

(22)

] ψ, ε( ) � k r( )tanh ψ+
2

√( ) + k r( )sech2

ψ+
2

√( )+
2

√ 1
B ß( ) ßεß

Γ ß + 1( ) + 1 − ß( ){ }
− k r( )sech2 ψ+

2
√( )tanh ψ+

2
√( ) 1

B2 ß( )
×

ß2ε2ß

Γ 2ß + 1( ) + 2ß 1 − ß( ) εß

Γ ß + 1( ) + 1 − ß( )2{ } +/ ,

�] ψ, ε( ) � �k r( )tanh ψ+
2

√( ) + �k r( )sech2

ψ+
2

√( )+
2

√ 1
B ß( ) ßεß

Γ ß + 1( ) + 1 − ß( ){ }
− �k r( )sech2 ψ+

2
√( )tanh ψ+

2
√( ) 1

B2 ß( )
×

ß2ε2ß

Γ 2ß + 1( ) + 2ß 1 − ß( ) εß

Γ ß + 1( ) + 1 − ß( )2{ } +/ .

(23)

The exact result is

~] ψ, ε( ) � ~ktanh
ψ + ε+

2
√( ). (24)

Discussion of results

In Figure 1, the first graph presents the two-dimensional fuzzy
lower and upper branch graphs showcasing the analytical series
solution. This graph visually represents the behavior and
characteristics of the solution in a two-dimensional space. The
second graph in Figure 1 illustrates the fractional-order
differences between the two different series of Example 1. This
graph highlights the variations and disparities between the
fractional-order components of the series, providing insights into
the impact of fractional-order differences on the overall solution.

Moving on to Figure 2, similar to Figure 1, the first graph displays the
two-dimensional fuzzy lower and upper branch graphs representing the
analytical series solution. This visualization offers a comprehensive view of
the solution's behavior and properties. The second graph in Figure 2
focuses on the fractional-order differences between the two different series
of Example 2. By examining this graph, one can observe and analyze the
variations and discrepancies in the fractional-order components, gaining a
deeper understanding of their influence on the overall solution.

Overall, the graphical discussion presented in Figure 1 and
Figure 2 provides a visual representation of the analytical series
solutions, allowing for a better comprehension of the fuzzy lower
and upper branch graphs as well as the fractional-order differences
in the respective examples. These graphical analyses enhance the
interpretation and interpretation of the results obtained in the study,
contributing to a more comprehensive understanding of the
investigated phenomena.

Conclusion

The Atangana–Baleanu operator is used in this work to attempt
a semi-analytic solution to the fuzzy fractional Gardner and
Cahn–Hilliard equations. As a result, in this case, fuzzy operators
are better suited to describe the physical phenomena. Using a fuzzy
method that takes into account the starting condition’s uncertainty,
we computed the solutions to the Gardner and Cahn–Hilliard
equations. This study generalized the fuzzy fractional of the
Gardner and Cahn–Hilliard equations. Next, we created the
approximate parametric formulation of the suggested problem
using a novel iterative transform technique. We demonstrated
many examples that supported the methodology’s intended use
and created a parametric solution for each case. Last but not
least, solving a wide variety of fuzzy fractional partial differential
equations analytically is not an easy task.
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In this work, a novel technique is considered for analyzing the fractional-order
Jaulent-Miodek system. The suggested approach is based on the use of the
residual power series technique in conjunction with the Laplace transform and
Caputo operator to solve the system of equations. The Caputo derivative is applied
to express the fractional operator, which is more suitable for modeling real-world
phenomena with memory effects. As a real example, the proposed technique is
implemented for analyzing the Jaulent-Miodek equation under suitable initial
conditions. Additionally, the proposed technique’s validity (accuracy and
effectiveness) is examined by studying some numerical examples. The obtained
solutions show that the suggested technique can provide a reliable solution for the
fractional-order Jaulent-Miodek system, making it a helpful tool for researchers in
different areas, including engineering, physics, and mathematics. We also analyze
the absolute error between the derived approximations and the analytical
solutions to check the validation and accuracy of the obtained approximations.
Many researchers can benefit from both the obtained approximations and the
suggested method in analyzing many complicated nonlinear systems in plasma
physics and nonlinear optics, and many others.

KEYWORDS

Fractional-order Jaulent-Miodek system, Residual power series, Laplace transform,
Caputo operator, Fractional calculus

1 Introduction

Fractional differential equations (DEs) are types of DEs that involve fractional
derivatives (FDs). Unlike ordinary DEs, where the order of the derivative is a positive
integer, fractional DEs (FDEs) involve operators of non-integer orders. These equations are
applied to model various physical and biological phenomena, such as anomalous diffusion,
viscoelasticity, and fractal growth [1–3]. FDEs have several unique properties that
differentiate them from ordinary DEs, such as non-locality and memory effects. Solving
the FDEs requires specialized techniques, such as fractional calculus and numerical methods
[4–8]. These equations have become an active area of research in recent decades due to their
potential application in various fields of science [9–12].
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Fractional nonlinear systems of partial DEs (PDEs) are
mathematics model that describes the behavior of complex
models in different areas, such as chemistry, biology, physics,
engineering, and finance [13–15]. These systems are
characterized by the presence of FDs, which are generalizations
of the classical integer-order derivatives. FDs describe the system’s
memory and long-range interactions and allow for modeling
anomalous diffusion, power-law behavior, and other non-local
effects that classical models cannot capture. Nonlinearities are
another essential feature of fractional systems, as they can lead to
the emergence of rich and diverse phenomena, such as chaos,
bifurcations, solitons, and patterns. Nonlinear systems are
ubiquitous in nature and technology, and understanding their
dynamics is crucial for predicting and controlling their behavior
[16–23].

Fractional nonlinear systems of PDEs are challenging to study
due to their non-locality, nonlinearity, and complexity. They require
developing new analytical and numerical tools, such as fractional
calculus (FC), dynamical systems theory, and computer simulations
[24–26]. Despite the difficulties, fractional nonlinear systems of
PDEs have attracted increasing attention in recent years due to
their relevance in many applications. They provide a powerful
framework for modeling and understanding complex phenomena
and offer new opportunities for scientific and technological
advances [27, 28].

It has been found that FDEs describe real-world problems more
precisely than integral order DEs. The study of coupled systems of
FDEs is also quite interesting. Because mathematical models of
many phenomena in bio-mathematics, physics, psychology, and
other fields are coupled systems of DEs [29, 30]. Among such
coupled systems of fractional PDEs (FPDEs), we have the
coupled Jaulent-Miodek models with Schrodinger energy-
dependent potential. This type of equation system is widely
applied as a model for the solution of several real worlds
problems in the areas of applied sciences [31, 32]. Extensive
analysis of nonlinear coupled fractional-order Jaulent-Miodek
models a key role in many areas fields of science, such as plasma
physics [33], condensed matter physics [34, 35]. There are a variety
of techniques applied in achieving analytic and numeric results to
linear and nonlinear FPDE, such as the homotopy perturbation
technique (HPT) [36–39], the variational iteration technique [40],
the q-homotopy analysis transformation technique [41], the
fractional natural decomposition technique [42], the fractional
multi-step differential transform technique [43], the new iterative
technique [44, 45] and the homotopy analysis technique [46, 47],
Residual power series technique [48].

The suggested method is called Laplace residual power series
method (LRPSM) which was introduced recently to address
nonlinear DEs (NLDEs) with fractional orders [49, 50]. This
method is a combination between Laplace transform (LT) and
RPSM which provides a more accurate solution, requiring less
time and simpler calculations than other analytical methods.
Unlike other methods, LRPSM does not involve differentiation or
linearization and only utilizes the LT, followed by taking the limit at
infinity. Thus, the current work aims to apply an innovative
analytical technique (LRPSM) to obtain highly accurate estimated
fractional solutions to the Jaulent-Miodek equation in the Caputo
sense subject to suitable initial conditions. Also, the outcomes of the

LRPSM will be compared with the precise answer by creating graphs
and tables for the numerical problem. The suggested technique has
been used to make exact results for emerging realistic models of
physical phenomena by using fast convergent power series. This
method succeeded because it is straightforward and handles
different kinds of initial conditions directly. Also, it doesn’t need
linearization or restrictive assumptions, doesn’t need a lot of
computing power, takes less time, and is more accurate.

The framework of this study is detailed as follows: Section 2 reviews
certain essential concepts, properties, and theorems related to FC, LT,
and Laplace fractional expansion. The general methodology of LRPSM
for the proposed model is presented in Section 3. Fractional solution
Jaulent-Miodek equations are provided applying the LRPSM in Section
4. Section 5 contains the result and discussion. Finally, the conclusion is
given in Section 6.

2 Basic definitions

Definition 1. For at least n time differentiable function, the
fractional Caputo derivative of order ρ reads [51]

CDρ
τψ γ, τ( ) � ∫τ

0

τ − w( )n−ρ−1ψ η, w( )
Γ n − ρ( ) dw, n − 1< ρ≤ n,

∂nψ η, τ( )
∂τn

, n � ρ,

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ (1)

where n ∈ N and the fractional Riemann–Liouville (RL) of Ω(γ, τ) of
order κ becomes

Jρτψ η, τ( ) � 1
Γ ρ( )∫τ

0
τ − w( )ρ−1ψ η, w( )dw, (2)

assuming that the given integral exists.

Lemma 1. For n − 1 < ρ ≤ n, q > − 1, τ ≥ 0 and λ ∈ R, we have [52]:

1. Dρ
ττq � Γ(q+1)

Γ(q−ρ+1)τ
q−ρ,

2. Dρ
τλ � 0,

3. Dρ
τI

ρ
τψ(η, τ) � ψ(η, τ),

4. IρτD
ρ
τψ(η, t) � ψ(η, τ) − ∑n−1

j�0∂
jψ(η, 0) τjj!.

Definition 2. The function of LT ψ(η, τ) is given as [52]

ψ η, s( ) � Lτ ψ η, τ( )[ ] � ∫∞

0
e−sτψ η, τ( )dτ, s> μ. (3)

The expression for the inverse of LT reads

ψ η, τ( ) � L−1
τ ψ η, s( )[ ] � ∫l+i∞

l−i∞
esτψ η, s( )ds, l � Re s( )> l0, (4)

where l0 is in the right half-plane of absolute convergence the Laplace
integral’s.

Lemma 2. Assuming that ψ(η, τ) is a piecewise continuous function
with exponential-order δ, we can obtain ψ(η, s) � Lτ[ψ(η, τ)] by
taking the LT of ψ(η, τ).

1. Lτ[Jρτψ(η, τ)] � ψ(η,s)
sρ , κ> 0.
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2. Lτ[Dρ
τψ(η, τ)] � sρψ(η, s) −∑m−1

k�0 s
ρ−k−1ψk(η, 0), m − 1< ρ≤m.

3. Lτ[Dnρ
τ ψ(η, τ)] � snρψ(η, s) − ∑n−1

k�0s(n−k)ρ−1D
kρ
τ ψ(η, 0),

0< ρ≤ 1.

Theorem 1. Consider a function Ω(γ, τ) that is continuous and
piecewise-defined over the interval I × [0,∞) and has an exponential
order of ζ. Let us define the term Ω(γ, s) as the Laplace transform of
Ω(γ, τ) with respect to τ. It is worth noting that Ω(γ, s) has a
fractional expansion.

Ω γ, s( ) � ∑∞
n�0

fn γ( )
s1+nμ

, 0< μ≤ 1, γ ∈ I, s> ζ . (5)

Then, fn(γ) � Dnμ
τ Ω(γ, 0).

3 General implementation laplace
residual power series method

Consider the general FPDE

Dρ
τψ η, τ( ) +N ψ η, τ( )[ ] + A ψ η, τ( )[ ] � 0, where 0< ρ≤ 1,

(6)
subject to initial condition:

ψ η, τ( ) � f0 η( ). (7)
The function dψ(η, τ) is unknown and depends on the
independent variables η and τ, where the operator A is linear
and N is nonlinear.Applying LT to Eq. 6 and making use of Eq. 7
we get

ψ η, s( ) − f0 η, s( )
s

+ 1
sρ
Lτ N L−1

τ ψ η, s( )[ ][ ] + A ψ η, τ( )[ ][ ] � 0.

(8)
The result of Eq. 8 is given as

ψ ξ, s( ) � ∑∞
n�0

fn ξ, s( )
snρ+1

, (9)

the kth-truncate terms series are

FIGURE 1
The profile of the approximation ϕ(η, τ) (24) is plotted at different values of ρ andwith λ = 1: (A) ρ = 0.4, (B) ρ = 0.6, (C) ρ= 0.8., and (D) the comparison
between different values of ρ at x = 0.
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ψ η, s( ) � f0 x, s( )
s

+∑k
n�1

fn η, s( )
snρ+1

,

n � 1, 2, 3, 4/

(10)

The residual Laplace function reads [53].

LτRes η, s( ) � ψ η, s( ) − f0 η, s( )
s

+ 1
sρ
Lτ[N L−1

τ ψ η, s( )[ ][ ]
+A ψ η, τ( )[ ]]. (11)

And the kth-LRFs as:

LτResk η, s( ) � ψk η, s( ) − f0 η, s( )
s

+ 1
sρ
Lτ[N L−1

τ ψk η, s( )[ ][ ]
+A ψk η, τ( )[ ]]. (12)

The few properties of the LRPSM [53], is expressed as.

• LτRes(η, s) � 0 and limj→∞LτResk(η, s) � LτResψ(η, s) for
each s > 0,

• lims→∞sLτResψ(η, s) � 00lims→∞sLτResψ,k(η, s) � 0,
• lims→∞skρ+1LτResψ,k(η, s) � lims→∞skρ+1LτResψ,k(η, s) �
0, 0< ρ≤ 1, k � 1, 2, 3,/ .

To investigate the coefficient fn(η, s) and gn(η, s), we find the
solution of the following system

lim
s→∞

skρ+1LτResψ,k η, s( ) � 0, lim
s→∞

skρ+1LτResϕ,k η, s( ) � 0, k � 1, 2,/ .

(13)
Finally, we apply the inverse of the LT to Eq. 9, to get the kth

analytical solution of ψk(η, τ) and ϕk(η, τ).

4 Numerical problem

Consider the coupled fractional-order Jaulent-Miodek
equations:

FIGURE 2
The profile of the approximation ψ(η, τ) (25) is plotted at different values of ρ and with λ = 1: (A) ρ = 0.4, (B) ρ= 0.5, (C) ρ = 0.6., and (D) the comparison
between different values of ρ at x = 0.
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Dρ
τϕ η, τ( ) + ∂3ϕ η, τ( )

∂η3
+ 3
2
ψ η, τ( ) ∂3ψ η, τ( )

∂η3
+ 9
2
∂ψ η, τ( )

∂η

∂2ψ η, τ( )
∂η2

− 6ϕ η, τ( ) ∂ϕ η, τ( )
∂η

− 6ϕ η, τ( )ψ η, τ( ) ∂ψ η, τ( )
∂η

− 3
2
ψ2 η, τ( ) ∂ϕ η, τ( )

∂η
� 0,

Dρ
τψ η, τ( ) + ∂3ψ η, τ( )

∂η3
− 6

∂ϕ η, τ( )
∂η

ψ η, τ( ) − 6ϕ η, τ( ) ∂ψ η, τ( )
∂η

− 15
2

∂ψ η, τ( )
∂η

ψ2 η, τ( ) � 0,

where 0< ρ≤ 1, (14)

with the initial conditions (ICs)

ϕ η, 0( ) � λ2

8
1 − Sech2

λη

2
( )( ),

ψ η, 0( ) � λSech2
λη

2
( ).

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩ (15)

By utilizing Eq. 14 and taking advantage of Eq. 15, we get

ϕ η, s( ) − ϕ η, 0( )
s

+ 1
sρ

∂3ϕ η, s( )
∂η3

+ 3
2sρ

Lτ L−1
τ ψ η, s( )L−1

τ

∂3ψ η, s( )
∂η3

[ ]
+ 9
2sρ

Lτ L−1
τ

∂ψ η, s( )
∂η

L−1
τ

∂2ψ η, s( )
∂η2

[ ]
− 6
sρ
Lτ L−1

τ ϕ η, s( )L−1
τ

∂ϕ η, s( )
∂η

[ ]
− 6
sρ
Lτ L−1

τ ϕ η, s( )L−1
τ ψ η, s( )L−1

τ

∂ψ η, s( )
∂η

[ ]
− 3
2sρ

Lτ L−1
τ ψ η, s( )( )2L−1

τ

∂ϕ η, s( )
∂η

[ ] � 0,

ψ η, s( ) − ϕ η, 0( )
s

+ 1
sρ

∂3ψ η, s( )
∂η3

− 6
sρ
Lτ L−1

τ

∂ϕ η, s( )
∂η

L−1
τ ψ η, s( )[ ]

− 6
sρ
Lτ L−1

τ ϕ η, s( )L−1
τ

∂ψ η, s( )
∂η

[ ]
− 15
2sρ

Lτ L−1
τ

∂ψ η, s( )
∂η

L−1
τ ψ η, s( )( )2[ ] � 0.

(16)
By applying the ICs, we get

TABLE 1 The approximate solution ϕ(η, τ) (24) is considered at different values ρ and with (τ = 0.0099, λ = 0.2). Also, the absolute error of ϕ(η, τ) (24) at ρ = 1 as
compared to the exact solution (26) is estimated.

η ρ = 0.5 ρ = 0.7 ρ = 0.8 LRPSM (ρ = 1) exact Abs.error

0.1 −0.01 −0.0150 −0.0150 −0.0150 −0.0150 8.67132 × 10−8

0.2 −0.01 −0.01499 −0.01499 −0.01499 −0.01499 1.69551 × 10−7

0.3 −0.01 −0.01498 −0.01498 −0.01498 −0.01498 2.51868 × 10−7

0.4 −0.01 −0.01497 −0.01497 −0.01497 −0.01497 3.33415 × 10−7

0.5 −0.01 −0.01495 −0.01495 −0.01495 −0.01495 4.1395 × 10−7

0.6 −0.01 −0.01493 −0.01493 −0.01493 −0.01493 4.93232 × 10−7

0.7 −0.01 −0.0149 −0.0149 −0.0149 −0.0149 5.71027 × 10−7

0.8 −0.01 −0.01488 −0.01487 −0.01487 −0.01487 6.47109 × 10−7

0.9 −0.01 −0.01484 −0.01484 −0.01484 −0.01484 7.21256 × 10−7

1 −0.01 −0.0148 −0.0148 −0.0148 −0.0148 7.93258 × 10−7

1.1 −0.01 −0.01476 −0.01476 −0.01476 −0.01476 8.62914 × 10−7

1.2 −0.01 −0.01472 −0.01472 −0.01472 −0.01471 9.30033 × 10−7

1.3 −0.01 −0.01467 −0.01467 −0.01467 −0.01467 9.94433 × 10−7

1.4 −0.01 −0.01462 −0.01462 −0.01461 −0.01461 1.05595 × 10−6

1.5 −0.01 −0.01456 −0.01456 −0.01456 −0.01456 1.11442 × 10−6

1.6 −0.01 −0.0145 −0.0145 −0.0145 −0.0145 1.16971 × 10−6

1.7 −0.01 −0.01444 −0.01444 −0.01443 −0.01443 1.22168 × 10−6

1.8 −0.01 −0.01437 −0.01437 −0.01437 −0.01437 1.27022 × 10−6

1.9 −0.01 −0.0143 −0.0143 −0.0143 −0.01429 1.31522 × 10−6

2 −0.01 −0.01423 −0.01422 −0.01422 −0.01422 1.35661 × 10−6
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ϕ η, s( ) −
λ2

8
1 − Sech2

λη

2
( )( )

s
+ 1
sρ

∂3ϕ η, s( )
∂η3

+ 3
2sρ

Lτ L−1
τ ψ η, s( )L−1

τ

∂3ψ η, s( )
∂η3

[ ]
+ 9
2sρ

Lτ L−1
τ

∂ψ η, s( )
∂η

L−1
τ

∂2ψ η, s( )
∂η2

[ ]
− 6
sρ
Lτ L−1

τ ϕ η, s( )L−1
τ

∂ϕ η, s( )
∂η

[ ]
− 6
sρ
Lτ L−1

τ ϕ η, s( )L−1
τ ψ η, s( )L−1

τ

∂ψ η, s( )
∂η

[ ]
− 3
2sρ

Lτ L−1
τ ψ η, s( )( )2L−1

τ

∂ϕ η, s( )
∂η

[ ] � 0,

ψ η, s( ) − λSech2
λη

2
( ))
s

+ 1
sρ

∂3ψ η, s( )
∂η3

− 6
sρ
Lτ L−1

τ

∂ϕ η, s( )
∂η

L−1
τ ψ η, s( )[ ]

− 6
sρ
Lτ L−1

τ ϕ η, s( )L−1
τ

∂ψ η, s( )
∂η

[ ]
− 15
2sρ

Lτ L−1
τ

∂ψ η, s( )
∂η

L−1
τ ψ η, s( )( )2[ ] � 0.

(17)

The kth-truncated term series reads

ϕ η, s( ) �
λ2

8
1 − Sech2

λη

2
( )( )

s
+∑k

n�1

fn η, s( )
snρ+1

,

ψ η, s( ) � λSech2
λη

2
( ))
s

+∑k
n�1

fn η, s( )
snρ+1

,

n � 1, 2, 3, 4/ .

(18)

The Laplace residual functions (LRFs) reads

LτRes η, s( ) � ϕ η, s( ) −
λ2

8
1 − Sech2

λη

2
( )( )

s
+ 1
sρ

∂3ϕ η, s( )
∂η3

+ 3
2sρ

Lτ L−1
τ ψ η, s( )L−1

τ

∂3ψ η, s( )
∂η3

[ ]
+ 9
2sρ

Lτ L−1
τ

∂ψ η, s( )
∂η

L−1
τ

∂2ψ η, s( )
∂η2

[ ]
− 6
sρ
Lτ L−1

τ ϕ η, s( )L−1
τ

∂ϕ η, s( )
∂η

[ ]
− 6
sρ
Lτ L−1

τ ϕ η, s( )L−1
τ ψ η, s( )L−1

τ

∂ψ η, s( )
∂η

[ ]
− 3
2sρ

Lτ L−1
τ ψ η, s( )( )2L−1

τ

∂ϕ η, s( )
∂η

[ ],
LτRes η, s( ) � ψ η, s( ) − λSech2

λη

2
( ))
s

+ 1
sρ

∂3ψ η, s( )
∂η3

− 6
sρ
Lτ L−1

τ

∂ϕ η, s( )
∂η

L−1
τ ψ η, s( )[ ]

− 6
sρ
Lτ L−1

τ ϕ η, s( )L−1
τ

∂ψ η, s( )
∂η

[ ]
− 15
2sρ

Lℓ L−1
τ

∂ψ η, s( )
∂η

L−1
τ ψ η, s( )( )2[ ]. (19)

The kth-LRFs are given by

LτResk η, s( ) � ϕk η, s( ) −
λ2

8
1 − Sech2

λη

2
( )( )

s
+ 1
sρ

∂3ϕk η, s( )
∂η3

+ 3
2sρ

Lτ L−1
τ ψk η, s( )L−1

τ

∂3ψk η, s( )
∂η3

[ ]
+ 9
2sρ

Lτ L−1
τ

∂ψk η, s( )
∂η

L−1
τ

∂2ψk η, s( )
∂η2

[ ]
− 6
sρ
Lτ L−1

τ ϕk η, s( )L−1
τ

∂ϕk η, s( )
∂η

[ ]
− 6
sρ
Lτ L−1

τ ϕk η, s( )L−1
τ ψk η, s( )L−1

τ

∂ψk η, s( )
∂η

[ ]
− 3
2sρ

Lτ L−1
τ ψk η, s( )( )2L−1

τ

∂ϕk η, s( )
∂η

[ ],
LτResk η, s( ) � ψk η, s( ) − λSech2

λη

2
( ))
s

+ 1
sρ

∂3ψk η, s( )
∂η3

− 6
sρ
Lτ L−1

τ

∂ϕk η, s( )
∂η

L−1
τ ψk η, s( )[ ]

− 6
sρ
Lτ L−1

τ ϕk η, s( )L−1
τ

∂ψk η, s( )
∂η

[ ]
− 15
2sρ

Lτ L−1
τ

∂ψk η, s( )
∂η

L−1
τ ψk η, s( )( )2[ ]. (20)

To compute fk (η, s) and gk (η, s) for k = 1, 2, 3, . . . , we can use
Eq. 18 which gives the nth-truncated series, and substitute it into
Eq. 20, which gives the nth-Laplace residual term. Then, we can
multiply the solution of the equation by snρ+1 and solve the
relation recursively for lims→∞(snρ+1LτResϕ, n(η, s)) � 0 and
lims→∞(snρ+1LτResψ, n(η, s)) � 0 for n = 1, 2, 3, /. The
following are the first few terms:

f0 � λ2

8
1 − Sech2

λη

2
( )( ), g0 � λSech2

λη

2
( ),

f1 � − 1
128

λ5Sech7
λη

2
( ) 794Sinh

λη

2
( ) − 165Sinh

3λη
2

( ) + sinh
5λη
2

( )( )
g1 � − 1

32
λ4 −189 + 52Cosh λη( ) + Cosh 2λη( )( )Sech6 λη

2
( )Tanh λη

2
( ),

f2 � λ8

16384
10003020 − 11000862Cosh λη( )(

+ 1410960Cosh 2ηλ( ))Sech12 λη

2
( )

+ λ8

16384
61341Cosh 3λη( )(

− 4700Cosh 4λη( ) + Cosh 5λη( ))Sech12 λη

2
( ),

g2 � λ7

8192
−1713684 + 1217538Cosh λη( )315984Cosh 2λη( )( )Sech12 λη

2
( )

+ λ7

8192
−79491Cosh 3λη( ) + 1348Cosh 4λη( )(

+ Cosh 5λη( ))Sech12 λη

2
( ),

(21)

Now, by using the values of fk(η), k = 1, 2, 3, . . . , we get
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ϕ η, s( )�
λ2

8
1−Sech2 λη

2
( )( )

s

−
1
128

λ5Sech7
λη

2
( ) 794Sinh

λη

2
( )−165Sinh 3λη

2
( )+ sinh 5λη

2
( )(

sκ+1

+
λ8

16384
10003020−11000862Cosh λη( )+1410960Cosh 2ηλ( )( )Sech12 λη

2
( )

s2κ+1

+
λ8

16384
61341Cosh 3λη( )−4700Cosh 4λη( )+Cosh 5λη( )( )Sech12 λη

2
( )

s2κ+1
+/ ,

(22)

ψ η, s( )� λSech2
λη

2
( ))
s

−
1
32
λ4 −189+52Cosh λη( )+Cosh 2λη( )( )Sech6 λη

2
( )Tanh λη

2
( )

sκ+1

+
λ7

8192
−1713684+1217538Cosh λη( )315984Cosh 2λη( )( )Sech12 λη

2
( )

s2κ+1

+
λ7

8192
−79491Cosh 3λη( )+1348Cosh 4λη( )+Cosh 5λη( )( )Sech12 λη

2
( )

s2κ+1
+/ .

(23)

Applying the inverse of LT, we get

ϕ η,ρ( )� λ2

8
1−Sech2 λη

2
( )( )

−
1
128

λ5Sech7
λη

2
( ) 794Sinh

λη

2
( )−165Sinh 3λη

2
( )+sinh 5λη

2
( )(

Γ ρ+1( ) τρ

+
λ8

16384
10003020−11000862Cosh λη( )+1410960Cosh 2ηλ( )( )Sech12 λη

2
( )

Γ 2ρ+1( ) τ2ρ

+
λ8

16384
61341Cosh 3λη( )−4700Cosh 4λη( )+Cosh 5λη( )( )Sech12 λη

2
( )

Γ 2ρ+1( ) τ2ρ +/ ,

(24)

ψ η,ρ( )�λSech2 λη

2
( ))

−
1
32
λ4 −189+52Cosh λη( )+Cosh 2λη( )( )Sech6 λη

2
( )Tanh λη

2
( )

Γ ρ+1( ) τρ

+
λ7

8192
−1713684+1217538Cosh λη( )315984Cosh 2λη( )( )Sech12 λη

2
( )

Γ 2ρ+1( ) τ2ρ

+
λ7

8192
−79491Cosh 3λη( )+1348Cosh 4λη( )+Cosh 5λη( )( )Sech12 λη

2
( )

Γ 2ρ+1( ) τ2ρ+/.

(25)

The exact solutions of ϕ(η, τ) and ψ(η, τ) are, respectively,
given by

TABLE 2 The approximate solution ψ(η, τ) (25) is considered at different values ρ and with (τ = 0.0095, λ = 0.02). Also, the absolute error of ψ(η, τ) (25) at ρ = 1 as
compared to the exact solution (276) is estimated.

η ρ = 0.56 ρ = 0.78 ρ = 0.85 LRPSM (ρ = 1) exact Abs.error

0.1 0.0200 0.0200 0.0200 0.0200 0.0200 1.00061 × 10−8

0.2 0.0200 0.0200 0.0200 0.0200 0.0200 4.0012 × 10−8

0.3 0.0200 0.0200 0.0200 0.0200 0.0200 9.00175 × 10−8

0.4 0.0200 0.0200 0.0200 0.0200 0.0200 1.60022 × 10−7

0.5 0.020 0.0200 0.0200 0.0200 0.0200 2.50025 × 10−7

0.6 0.019999 0.019999 0.019999 0.019999 0.02000 3.60025 × 10−7

0.7 0.019999 0.019999 0.019999 0.019999 0.02000 4.9002110 × 10−7

0.8 0.019999 0.019999 0.019999 0.019999 0.019999 6.40011 × 10−7

0.9 0.019998 0.019998 0.019998 0.019998 0.019999 8.09995 × 10−7

1 0.019998 0.019998 0.019998 0.019998 0.019999 9.99969 × 10−7

1.1 0.019998 0.019998 0.019998 0.019998 0.019999 1.20993 × 10−6

1.2 0.019997 0.019997 0.019997 0.019997 0.019999 1.43988 × 10−6

1.3 0.019997 0.019997 0.019997 0.019997 0.019998 1.68982 × 10−6

1.4 0.019996 0.019996 0.019996 0.019996 0.019998 1.95973 × 10−6

1.5 0.019996 0.019996 0.019996 0.019996 0.019998 2.24963 × 10−6

1.6 0.019995 0.019995 0.019995 0.019995 0.019997 2.5595 × 10−6

1.7 0.019994 0.019994 0.019994 0.019994 0.019997 2.88934 × 10−6

1.8 0.019994 0.019994 0.019994 0.019994 0.019997 3.23915 × 10−6

1.9 0.019993 0.019993 0.019993 0.019993 0.019996 3.60892 × 10−6

2 0.019992 0.019992 0.019992 0.019992 0.019996 3.99866 × 10−6
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ϕ η, τ( ) � λ2

8
1 − Sech2

λ

2
η + λ2τ

2
( )( )( ), (26)

ψ η, τ( ) � λSech
λ

2
η + λ2τ

2
( )( ). (27)

In the results section, we will discuss the profile of the obtained
solutions as well as will make a comparison with the exact solutions
and the other literature approximations.

5 Results and discussion

Figures 1, 2 represent both two- and three-dimensional graphs
for the approximations (24) and (25), respectively, using the
LRPSM at different values of fractional order derivative ρ. It is
clear that the absolute amplitude of the approximation ϕ(η, τ)
decreases with the enhancement of ρ while the amplitude of the
approximation ψ(η, τ) has an opposite behavior, i.e., its amplitude
increases with increasing ρ. Moreover, the two approximations are
presented in Tables 1, 2 at different values of ρ and discrete values
forη and τ. Furthermore, the absolute error for the approximations
ϕ(η, τ) and ϕ(η, τ) at ρ = 1 as compared to the exact solutions is
estimated in Tables 1, 2, respectively. After analyzing the obtained
results, we can conclude that the obtained approximations using
theproposed technique are closely alignedwith the exact solutions,
indicating a strong level of agreement. We have applied the
proposed method to the fractional-order Jaulent-Miodek system
to analyze it, and this is not the only example, and it can be applied
to a wide range of complicated systems related to nonlinear
mediums such as plasma physics and optical fibers.

6 Conclusion

In conclusion, the fractional-order Jaulent-Miodek system has
been solved using a novel technique, called the residual power
series method with the help of the Laplace transform (LT) in the
sense of the Caputo operator. The LT, in conjunction with the
Caputo operator, has been used to transform the fractional
differential equation into an algebraic equation, which can then
be solved using the residual power series method. The suggested
method (Laplace residual power series method (LRPSM)) involves
using a truncated power series to approximate the solution, and the
residual error is minimized by adjusting the power series
coefficients. The study of fractional-order systems has gained
significant attention in recent years due to their ability to model
complex phenomena in various fields of science and engineering.
For instance, the Jaulent-Miodek system is a well-known example
of such a fractional system, and its solution has been a topic of
interest for many researchers. Accordingly, the LRPSM has been
applied for derived high accurate approximations for the
fractional-order Jaulent-Miodek system. The derived
approximations have been compared with the analytical
solutions. It was found great harmony and agreement with a
very small absolute error between both the approximate

solutions and the analytical solutions. This method has proven
to be an effective tool for solving fractional-order systems, as it can
provide accurate and efficient solutions. The findings of this study
may be helpful in different areas of applied sciences where
fractional-order systems are commonly encountered.
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Continuum modeling for lithium
storage inside nanotubes

Huda Alsaud* and Mansoor H. Alshehri*

Department of Mathematics, College of Science, King Saud University, Riyadh, Saudi Arabia

Lithium storage and capture are of particular importance for the development of
new technology in electric vehicles and portable electronics. Nanotubes (NTs) are
among many porous nanomaterials offered as potential candidates for lithium
storage. In this paper, we adopt a continuum approach together with the
Lennard–Jones function to determine the minimum interaction energies for
lithium atoms in boron nitride nanotubes (BNNTs) and carbon nanotubes
(CNTs). By minimizing the interaction energies, we may obtain the preferred
type and size of the nanotubes to encapsulate the lithium atoms. The results
showed that BNNTs and CNTs are attractive candidates for lithium atom
encapsulation, and the optimal nanotube to enclose lithium is the BNNT with a
radius equal to 3.4 Å, and corresponding (5, 5) armchair nanotubes and (9, 0)
zigzag nanotubes, where the minimum energy is obtained. The present
computations observed that both nanotubes are promising candidates for
lithium intercalation materials suitable for battery applications.

KEYWORDS

lithium, nanotube, continuumapproach, Lennard–Jones potential,mathematical physics
equations

1 Introduction

Recently, with the rapid development of nanotechnology, nanomaterials represent a high
level of importance in many applications, such as pharmaceuticals, electronic technology,
energy applications, the biomedical sector, and environmental applications. They are used,
for example, but not limited to the new generation of computer chips, harder and more
durable cutting tools, removal of pollutants, very efficient batteries, magnets with high
power, sensors with high sensitivity, automobiles, aerospace components, weapon platforms,
long-lasting medical implants, and electrochromic display devices [1–3]. One of the most
well-known and widely studied nanostructures in science is nanotubes (NTs), including
boron nitride nanotubes (BNNTs) and carbon nanotubes (CNTs). Due to the distinctive
structures and exceptional properties of nanotubes, they have attracted more interest in
research and developing nanotechnology, and they are expected to be used in many new
applications. CNTs have gained a wide range of theoretical and experimental research since
their discovery in the 1990s [4]. They show a variety of captivating qualities, including
exceptional electronic sensitivity, good mechanical strength, high surface area to volume
ratios, high levels of flexibility, and exceptionally strong electro-catalytic activities, which
enable them to find practical use in sensors, actuators, energy storage devices, etc. [5]. Until
now, this field is still active and attractive to the interest of many researchers, and many
distinguished and important applications of CNTs have emerged since their discovery. There
are numerous studies on CNTs, and some authors highlight their applications in the field of
electronics, sensing, and composite [6, 7].

Studies and research paid significant attention to the new material, BNNTs. Numerous
accomplishments have allowed access to this material, and several applications have been
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implemented in this field since Chopra et al.’s invention of BNNTs
in 1995. Both BNNTs and CNTs share some basic properties like
outstanding mechanical properties and high heat conductivity. This
is because of the similarity between the structures of BNNTs and
CNTs, where boron and nitrogen atoms in BNNTs are replaced by
carbon atoms in CNTs [8]. One exceptional physical feature of
BNNTs is that they are an excellent insulator with a wide bandgap
(5–6 eV), while CNTs are semiconducting materials. Moreover, they
are not sensitive to the chirality and morphology of the tubes.
BNNTs also have distinct characteristics such as high-
temperature stability and neutron radiation shielding capability,
which make them essential for use in sensors and devices in extreme
environments [8]. The chiral vector C = ia1 + ja2 is used to classify
the structure of the nanotubes, where a1 and a2 are the basis vectors
of a hexagonal unit cell on layered inorganic sheets [such as
hexagonal boron nitride (h-BN) and graphene (GRA)], and i and
j are integers. Alternatively, the chiral vector may be indicated by (i,
j), and the radii of the corresponding nanotubes are then given by
r � ℓ

������������
3(i2 + j2 + ij)√

/2π, where ℓ denotes the bond length [3].
Although BNNTs and CNTs have structural similarities, the two
nanotubes differ in some properties, which cause different behaviors
for each. For example, the bond lengths of C–C bonds and B–N
bonds are approximately 1.42 and 1.45 Å, respectively [9, 10].

The energy demand is increasing dramatically recently, and
energy storage has become one of the major interests in technology
and science. Due to climate change caused by global warming,
researchers focus on developing systems of generating renewable
energy and using electric motors in vehicles instead of the known
engines [11, 12]. Sources of renewable energy like solar power
generators also need batteries to store energy for later use [11,
12]. Therefore, improving battery technology requires materials
with the ability to charge and recharge with high efficiency in
order to be able to use energy resources successfully [11]. Owing
to their advantages of excellent cyclic stability, lightweight, high
capacity density, and high efficiency, lithium (Li) batteries have
received considerable attention in many applications, such as
electric vehicles, electric power grids, and portable electronics
[12, 13].

One of the scientific challenges facing lithium batteries is their
safety, which needs to be ensured before they can be widely used in
everyday portable devices, and the most important factor that
threatens the safety of the battery is the overheating of the cell,
which results from a short circuit under a high temperature and high
current environment. Since the separator plays an important role in
avoiding short circuits, it is important that the separator be
thermally stable [14]. Nanotubes can play an important role in
energy storage systems, including the lithium battery, and they may
protect against thermal shrinkage at high temperatures and high
current operation, which improves the stability of the temperature in
the polyolefin separator and then prevents battery short-circuits [12,
14]. Lithium batteries have offered great success for mobile
electronics because of the progress in cell design and the
manufacturing of lithium batteries with more efficient
electrochemical performances regarding power densities and
energy [15]. Further studies are required to improve the progress
of these materials with the lithium battery technology. Moreover,
nanomaterials, including nanotubes, might provide long-lasting
separation of electron charges, and supramolecular nanoclusters

can be supported, increasing the photoelectrochemical performance
of photovoltaic cells [16]. Many experimental studies have worked
on determining the lithium adsorption energetics in NTs.
Theoretical studies have concentrated on the intercalation of Li
atoms in nanotubes and the calculation of energy barriers for the
entry and diffusion of Li inside the tubes.

Song et al. examined the intercalation and diffusion of Li ions in
CNTs and found that lithium intercalation may cause deformation
of CNTs [17]. Khantha et al. used density functional theory (DFT) to
study the interaction of a single Li atom inside a (5, 5) CNT and
reported that the lithium insertion capacities are dependent on the
chirality and the equilibrium position of the Li atom on the tube axis,
which provides strong binding energy, and is about 1.46 Å [18].
Zhong-Heng et al. used ab initio molecular dynamics (AIMD)
simulations and first-principle calculations to probe the Li
transport mechanism in armchair and zigzag CNTs, and their
results showed a fast Li transport with an ultralow activation
energy in the CNTs with a diameter of 5.5 Å, corresponding to
(4, 4) and (7, 0) CNTs [19]. Meunier et al. found an equilibrium
distance of 1.29 Å using ab initio simulations for Li inside the (5, 5)
and (8, 0) CNTs [20]. Yanhong and Junwei have applied the DFT to
investigate the adsorption of Li atoms in different CNTs [21]. Their
results showed that a Li atom is steadily adsorbed inside the CNTs,
and the strongest adsorption energy of the Li atom is obtained in the
(6, 0) CNTs.

In addition, Rahman et al. presented a new separator coated by
BNNTs with a thermal stability of up to 150°C for the safer operation
of lithium batteries. Kim et al. investigated BNNT-based separators
in lithium–sulfur batteries and showed the comparison of the
electrochemical behavior of lithium–sulfur batteries with BNNTs
and those without BNNTs [11]. They found that the BNNT-loaded
polypropylene separator prevents the formation of dendrite on the
Li metal anode, helps the ions move easily through the separator,
and reduces the shuttle effect at the cathode compared to the
ordinary polypropylene separator. Zhong et al. used the DFT
method to investigate the interaction between (5, 0) BNNTs and
lithium atoms, which is located near the open end of the tube [22].
Their results showed that the interaction between the lithium atom
and the edge of BNNTs is around −30.05 (kcal/mol). Seif et al.
performed the DFTmethod to study the effects of lithium doping on
the properties of the electronic structure of (4, 4) BNNTs, and their
results showed a heterogeneous electrostatic environment along the
tube [23].

The investigation of the adsorption and encapsulation of lithium
in different nanotubes is still active to improve the performance of
lithium batteries. Experiments can be performed directly, but they
are time-consuming and expensive. Mathematical modeling and
simulation may be used as an alternative, complementary, and
guiding method. Calculating the interaction energy between non-
bonded atoms and molecules is usually performed by either the
discrete method, which calculates the force for every non-bonded
atom as a pair using molecular dynamics, or the continuummethod,
which approximates these atoms using geometric representation.
Here, we apply the continuum approach with the Lennard–Jones
(LJ) potential to calculate the van der Waals energies and the
interaction between atoms and molecules. In this method, some
simple geometric shapes with rotational symmetry are used to
represent the molecular structures and the distance between
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them. These geometric shapes, like points and cylinders, with this
geometric property are useful to simplify interaction expressions. In
particular, we use this approach to determine the minimum
interaction energies for lithium in two different nanotubes,
namely, BNNTs and CNTs, as shown in Figure 1. By minimizing
the interaction energies, we may obtain the preferred type and size of
the nanotubes to encapsulate the lithium atoms.

2 Modeling approach

In this section, the interactions between Li atoms inside BNNTs
and CNNTs are modeled. Predominantly, van der Waals forces are
the forces present in physisorption, so we may use the
Lennard–Jones potential to determine the interaction between
lithium atoms and nanotubes, and it is given as

P ϱ( ) � −Tϱ−6 + Rϱ−12,

which evaluates the potential energy between two atoms at distance ϱ
apart. The coefficients T and R are the attractive and repulsive
parameters of the interaction, respectively, and their values might be
obtained by applying the Lorentz–Berthelotmixing rule [24], where T =
4εσ6 and R = 4εσ12. Furthermore, σ is the van der Waals diameter and ε
is the well depth for Li, B, N, and C atoms, and their values are taken
fromRappi et al. [25], as shown inTable 1. For two different atoms, they

might be computed using σ12 = (σ1 + σ2)/2 and ε12 � ����
ε1ε2

√
. As the

nanotubes have cylindrical structures, we approximate them as
continuum surfaces, where their atoms are uniformly distributed
over their entire surfaces, and they are modeled continuously over
their atoms by employing a typical surface element, dA. For such a
problem, the hybrid discrete–continuum approach is used to obtain the
interaction of an atom (i.e., a point) with the surface A (the cylinder),
and it is given as

E � ∑
i

ϖj ∫P ϱi( ) dA, (1)

where P(ϱi) is the potential function, ϱ is the distance between an
atom (point i) and the surface of nanotubes (BNNT and CNT), and
ϖj (j ∈ {B, C}) is the atomic surface density of NTs, and their values
are given by ϖB = 0.3661 and ϖC = 0.3812 Å−2 [26, 27]. In the
following subsections, we considered two factors affecting the
interaction energies of lithium atoms and nanotubes.

FIGURE 1
Geometrical diagram of (A) Li in CNTs and (B) BNNTs.

TABLE 1 Values of the well depth and van der Waals diameter used in this
study.

Atom type C B N Li

ε (kcal/mol) 0.105 0.180 0.069 0.025

σ Å 3.851 4.083 3.660 2.451

FIGURE 2
Li atom entering the nanotube.
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2.1 Li atom entering nanotubes

Here, we considered the entry of a Li atom in the nanotube, and
the atom is assumed to be outside the tube. Figure 2 shows the Li
atom as it enters an open-ended semi-infinite tube with the radius r.
Thus, the NTs can be modeled as a cylinder, and their coordinates
are (r cos u, r sin u, z), where −π ≤ u ≤ π and 0 < z < ∞, and the
parametric equation of the atom is denoted by (0, 0, w), where w is
the distance between the atom and the open end of the tube on the
z-axis of the tube. The distance ϱ between the surface of the
nanotube and the entering atom is given by

ϱ2 � r2 cos2 u + r2 sin2 u + z − w( )2 � r2 + z − w( )2,
and the total interaction between the nanotube and the atom is

given by

Etot � rϖj∫π

−π
∫∞

0
−Tϱ−6 + Rϱ−12( ) dz du. (2)

This integral may be rewritten as follows:

Etot � rϖj −TQ3 + RQ6( ). (3)
The integral Qn (n = 3, 6) can be evaluated as follows:

Qn � r∫π

−π∫∞
0

1

r2 + z − w( )2[ ]n dzdu

� 2πr∫∞
0

1

r2 + z − w( )2[ ]n dz.

By using the change of variables t = z − w and the substitution t =
r tan ϕ, we have

Qn � 2πr2−2n∫π/2

arctan −w/r( )
sec2−2n ϕ dϕ

� 2πr2−2n∫π/2

arctan −w/c( )
cos2n−2 ϕ dϕ.

Now, using the formula, we obtain [∮2.512(2)] [28]. For n = 3 and 6,
the integral, Qn, is given by

Q3 � πr−5
3π
8
+ 3
4
arctan

w

r
( ) + 3wr

4 r2 + w2( ) +
wr3

2 r2 + w2( )2[ ], (4)

and

Q6 � πr−11
9π
3840

+ 3
640

arctan
w

r
( ) + wr9

5 r2 + w2( )5 + 9wr7

40 r2 + w2( )4⎡⎣
+ 7wr5

60 r2 + w2( )3 + wr3

16 r2 + w2( )2 + 3wr

80 r2 + w2( )⎤⎦,
(5)

and these expressions are completed (Eq. 3).

2.2 Preferred position of a Li atom inside
nanotubes

For a specific size nanotube, the preferred position of the Li atom
inside the nanotube is determined with respect to the cross section of
the tube, as shown in Figure 3. The atom is located at (α, 0, 0), where
α is the distance of the offset atom (on the x-axis of the tube) from

the central axis of the nanotube (z-axis), and the nanotubes are
assumed to be of infinite length with a parametric equation, (r cos u,
r sin u, z), where −π ≤ u ≤ π and −∞ < z < ∞. In this case, the
distance ϱ is given by

ϱ2 � r cos u − α( )2 + r2 sin2 u + z2

� α2 + r2 − 2αr cos u + z2

� r − α( )2 + 4rα sin2 u/2( ) + z2,

and the total interaction of the Li atom in the nanotube is given by

Etot � rϖj∫π

−π
∫∞

−∞
−Tϱ−6 + Rϱ−12( ) dzdu. (6)

Again, these integrals can be written as

E � rϖj −TW3 + RW6( ), (7)
where Wn is given by

Wn � r∫π

−π
∫∞

−∞
1

r − α( )2 + 4rα sin2 u/2( ) + z2[ ]n dzdu. (8)

Here, these integrals can be solved by letting γ2 = (r − α)2 +
4rα sin2(u/2), and using the substitution z = γ tan θ, we obtain

Wn � r∫π/2

−π/2 cos
2n−2 θ dθ∫π

−π
1

γ2n−1
du.

� rB n − 1/2, 1/2( )∫π

−π
1

γ2n−1
du,

where B(i*, j*) is the beta function. By following the steps
performed by Cox et al. in this work [29], the integral Wn became

Wn � 2πr

r − α( )2n−1 B n − 1/2, 1/2( )
×F n − 1/2, 1/2; 1/2; 1; 4rα/ r − α( )2( ),

FIGURE 3
Offset distance of the Li atom in the nanotube.

TABLE 2 Constants utilized in this study.

Mean surface density of BNNT ϖB (Å−2) 0.3682

Mean surface density of CNT ϖC (Å−2) 0.3412

Attractive constant of TB−Li (kcal mol−1 Å6) 210.402

Attractive constant of TC−Li (kcal mol−1 Å6) 200.592

Repulsive constant of RB−Li (kcal mol−1 Å12) 210092.098

Repulsive constant of RC−Li (kcal mol−1 Å12) 196338.506
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where F(a*, b*; c*, z*) indicates the usual hypergeometric function. Then,
this expression is substituted in Eq. 7) in the cases of n = 3 and n = 6.

3 Numerical results

In this section, the interactions between the lithium atom and
the nanotubes are presented numerically for various types of
nanotubes by using the numerical values for the parameters
associated with Li and nanotubes, which are given in Table 2.
First, we determine the numerical solutions of the interactions of
the Li atom entering various types of NTs. Figures 4, 5 show the
results of the entry of the Li atom in CNTs and BNNTs. Moreover,
by using the algebraic computer package Maple, in particular with

optimization and then minimization, the minimal interaction
energy values are obtained, as shown in Table 3. We comment
that when the energies are lower in the +w tube side (i.e., inside the
nanotube) than those in the −w tube side (i.e., outside the nanotube),
Li is inserted in the tube. The results indicate that for both BNNTs
and CNTs, the Li atom is accepted in all tubes except (3, 3) armchair
and (5, 0) zigzag nanotubes. The results show that the interaction
energies of the Li atom at the open end of the CNTs and BNNTs with
a radius less than ≈ 2.2 Å are highly positive, indicating that Li
insertion is not feasible energetically due to the energy barrier.
Moreover, Figures 4 and 5show that both tubes would not accept the
Li atom from the rest because the suction energy is not sufficient to
outdo the barrier energy at the opening of these tubes. Therefore, the
interactions can exhibit two peaks [positive in the range (P1, P2) and

FIGURE 4
Interactions of Li and BNNTs with respect to w. (A) (3, 3) armchair, (B) armchair, (C) (5, 0) zigzag, and (D) zigzag.
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negative in the range (P2,∞)], where it is possible for the Li atom to
be inside these tubes when the curve of the energy crosses the
horizontal axis at P2 as some additional energies are required. Our
results for the interactions of Li with CNTs and BNNTs are in
excellent agreement with the results given in [18–20] for the
interactions of Li with CNTs and with those given in [22] for the
interactions of Li with BNNTs. In addition, Table 4 summarizes the
results for the relationship between the interaction energies and the
offset position for Li inside (5, 5), (6, 6), (7, 7), (8, 8), and (9, 9)
nanotubes. Our results show that the lowest energies for all CNTs
and BNNTs considered in this study are obtained for the (5, 5) NTs
with an equilibrium distance of 0 Å from the tube axis, assuming
that the Li atom remains on the tube axis. These results differ from
[18, 20], who used the ab initio simulations and the DFT method,

and they showed that the equilibrium distance was between 1.29 and
1.46 Å inside the (5, 5) CNT. It is observed that the discrepancy
between our results and these results may be attributed to the
parameters which we have adopted here. In addition, our results
are in excellent agreement with those performed by Yanhong and
Junwei [21] using the DFT method, where their results showed that
the strongest adsorption energy of the Li atom is obtained in the (6,
0) CNT. Finally, Figure 6 shows the preferred radii of both BNNTs
and CNTs to encapsulate a Li atom, and the results show that the
optimal radii are about 3.433 and 3.422 Å, corresponding to
energies −2.476 and −2.217 kcal/mol, respectively. Our methods
and results that are presented in this work yield the theoretical
design of the interaction of a lithium atom stored in various types of
nanotubes; moreover, further research should study the interaction

FIGURE 5
Interactions of Li and CNNTs with respect to w. (A) (3, 3) armchair, (B) armchair, (C) (5, 0) zigzag, and (D) zigzag.
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energies and the changes in the electronic structure of the
interaction configurations for lithium atoms interacting with
nanotubes. In conclusion, the results are obvious that the
BNNT and CNT are attractive candidates for Li atom
encapsulation, and the best nanotubes are the BNNTs as the
interaction between the Li atom and BNNT is slightly stronger
than that between the Li atom and CNTs as the former gives the
lowest minimum energy. We note that our approach can be used to
investigate the interactions between the metal atoms with different
types of nanotubes and nanomaterials such as fullerenes (see, for
example, [30]).

4 Summary

In this study, the Lennard–Jones potential, in conjunction with
continuum modeling, has been used to investigate the interactions
between a lithium atom and BNNTs and CNTs. First, calculations of
the insertion of a Li atom at an open edge of nanotubes show that a
lithium atom is attracted to the entrance open end of the tubes that
have a radius larger than 2.2 Å. In addition, our results for (3, 3) and
(5, 0) nanotubes showed that the lithium atom confronted a large
energy barrier at the open end of these tubes, consequently, for the

TABLE 3 Main results of the interactions of Li atoms with NTs.

Tube type Tube radius (Å) Interaction (kcal mol−1) Position of Li

BNNT CNT Li-BNNT Li-CNT Li-BNNT Li-CNT

(3, 3) 2.072 2.034 −30.814 −31.382 Outside Outside

(4, 4) 2.761 2.713 −9.720 −9.199 Inside Inside

(5, 5) 3.451 3.391 −4.027 −3.816 Inside Inside

(6, 6) 4.142 4.069 −1.946 −1.845 Inside Inside

(7, 7) 4.832 4.747 −1.0514 −0.997 Inside Inside

(5, 0) 1.993 1.968 −43.193 −41.989 Outside Outside

(6, 0) 2.391 2.349 −16.928 −16.002 Inside Inside

(7, 0) 2.790 2.741 −9.331 −8.838 Inside Inside

(8, 0) 3.188 3.132 −5.516 −5.228 Inside Inside

(9, 0) 3.587 3.524 −3.453 −2.1523 Inside Inside

TABLE 4 Interaction energies of an offset Li atom inside NTs.

Tube type (5, 5) (6, 6) (7, 7) (8, 8) (9, 9)

BNNTs Etot (kcal mol−1) −2.4 −1.8 −1.4 −1.2 −1.1

α (Å) 0 0.7 1.6 2.3 3

CNTs Etot (kcal mol−1) −2.2 −1.6 −1.3 −1.1 −1.0

α (Å) 0 0.7 1.5 2.2 2.9

FIGURE 6
Interactions between the Li atom and nanotube as the function
of tube radius r.
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lithium atom to be enclosed into the nanotube with a radius less than
2.2 Å; some additional energy is also needed. Moreover, when the
lithium atom is assumed to be inside the tube, our results indicate
that the equilibrium distance from the tube axis depends on the size
of the tube; as the radius gets larger, the position of the Li atom tends
to be closer to the wall of the tube. By minimizing the interaction
energy, we predicted that the preferred radii of both BNNTs and
CNTs to encapsulate the Li atom are about 3.433 and 3.422 Å,
respectively, with corresponding (5, 5) armchair nanotubes and (9,
0) zigzag nanotubes. Our results observed that both tubes are
attractive candidates for Li atom encapsulation, and by
minimizing the interaction energies, we obtained that the
interaction between the Li atom and BNNTs is slightly stronger
than that between the Li atom and CNTs. Overall, nanostructures,
including CNTs and BNNTs, might offer a well-suited playground
for optimizing rate performance nanomaterials and capacity for Li
storage as an anode material in lithium batteries. Future work could
involve a calculation on other nanotubes to enclose the lithium
atoms as the particular architecture of nanotubes can offer a useful
design idea for the electrode of next-generation lithium batteries.
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Nonlinear stretched flow of a
radiative MHD Prandtl fluid with
entropy generation and mixed
convection

Sadia Asad*

Department of Architecture and Interior Design, College of Engineering, Majmaah University,
Al-Majmaah, Saudi Arabia

This paper examines the analysis of entropy generation in the flow of an MHD
Prandtl fluid over a nonlinear stretching sheet. Heat transfer is developed
through a convectively heated sheet. The impacts of nonlinear radiation and
nonlinear mixed convection are considered. The resulting nonlinear systems are
computed for the unique solutions of velocity and temperature profiles. Effects
of thermal radiation, the Prandtl number, Prandtl fluid parameters, and the Biot
number are discussed. Results for the Nusselt number and skin friction
coefficient are analyzed. The impact of the radiation parameter is to improve
the rate of heat transport to the flow region. It is stated that temperature
distribution increases for greater values of θf. We state that the fluid
temperature decreases with the increasing importance of the Prandtl number
Pr. Growth in the Prandtl number decreases the rate of thermal diffusion. It
shows that the magnitude of drag forces decreases for larger values of Prandtl
fluid parameters. Furthermore, curvature and mixed convection parameters
boost the flow and heat transfer rate near the cylinder wall. The entropy
generation grew up rapidly with larger values of magnetic and Brinkman
numbers. The temperature ratio parameter and Prandtl fluid parameters
reduce the entropy generation rate. These parameters are also used to
control the entropy generation process.

KEYWORDS

Prandtl fluid, entropy generation, MHD, nonlinear thermal radiation, nonlinear mixed
convection, convective condition

1 Introduction

In recent years, non-Newtonian fluid with boundary layer approximation over the
moving surface has gained considerable attention due to its extensive applications. In [1], the
Couette flow of a viscoelastic fluid with thermal convection was studied. In [2], the
micropolar fluid flow in a channel was analytically investigated. In [3], the flow and heat
transfer of a viscoelastic electrically conducting fluid over a stretching/shrinking sheet was
reported. In [4], the exact solution of a rate-type fluid in a circular duct was developed.
Coupled flow and heat transfer of a Maxwell fluid over a stretching sheet was discussed in [5,
6], where the mixed convection flow of power-law fluids past an inclined sheet was explored.
The effects of shear flow and power-law viscosity on the temperature field were also
considered. MHD boundary layer stagnation point flow of a Jeffrey fluid over a moving
sheet was analyzed in [7].
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Convective heat transfer has great interest among researchers,
both theoretical and practical, and also has many applications in
engineering and geophysical fields. Initially, in [8], the convective
heat transfer flow over a moving sheet was reported. In [9], the
convective heat transfer over a stretching/shrinking surface was
numerically examined. In [10], the steady flow of double-diffusive
mixed convection boundary layer flow through convective boundary
conditions was numerically reported. The flow of a Maxwell fluid
due to constantly moving radiative surfaces with the convective
condition was reported in [11, 12],where numerical analysis over a
continuous stretching sheet with nonlinear thermal radiation was
performed. In [13], the flow of a nanofluid in the existence of
nonlinear thermal radiation was numerically analyzed. In [14], the
three-dimensional flow of a Jeffrey nanofluid subject to thermal
radiation effects was explored. In [15], the analysis of MHD flow and
heat transfer with nonlinear radiation in a viscoelastic fluid was
performed. The study of three-dimensional magnetohydrodynamics
with thermophoresis and Brownian motion aspects was extended
in [16].

In the present study, we explore the entropy generation in the
flow of an MHD Prandtl fluid with nonlinear thermal radiation.
Although the stretching problems are explored extensively for
linear thermal radiation, much less emphasis has been given to
the flow problems with nonlinear thermal radiation. Such
information is further scarce when heat transfer through
convective conditions is considered. The radiation effect in
the flow of a pseudo-plastic nanofluid was examined in [17].
The MHD stretched flow of a nanofluid in the presence of
buoyancy and thermal radiation was analyzed in [18]. A
salient feature of radiation in nanofluid flow over an unsteady
stretching sheet was reported in [19, 20],where the thermal
radiation effect in time-dependent MHD flow with variable
viscosity was analyzed. The hydromagnetic flow of a second-
grade fluid in the presence of thermal radiation was examined in
[21]. The effect of thermal radiation in the flow of a micropolar
fluid was considered in [22, 23],where entropy generation in
nonlinear radiative flow in the direction of a variable thick
surface was reported. A mathematical model for entropy
generation with variable fluid properties was examined in
[24]. The impact of mixed convection and nonlinear radiation
was further considered. The results of surface drag forces,
entropy generation rate, heat/mass transfer, and the Bejan

number were presented numerically in [25], where the
entropy generation in an MHD micropolar nanofluid was
analyzed using a nonlinear stretching sheet.

We explore the nonlinear effects of radiation, mixed convection,
and stretching sheet with an MHD [26–31] Prandtl fluid and heat
transfer on entropy generation. The first objective of the current
article is to venture further into the regime of the nonlinear stretched
flow of the Prandtl fluid with convective heat transfer [32–41]
effects. Thus, the Prandtl fluid dealt with the nonlinear flow of
thermal radiation. Our second objective is to consider the nonlinear
mixed convection in the entropy generation by nonlinear stretching.
Having such an incentive in mind, the reason here is to model first
the appropriate problem and then compute it. Nonlinear radiation
properties are also incorporated. Governing differential systems are
solved for the unique solution of velocity and temperature fields.
Velocity, temperature, and entropy generation are sketched and
examined for different emerging parameters. The local Nusselt
number and skin friction coefficient are studied by graphical
illustrations and tabular values.

2 Mathematical construction

We consider the 2D flow of an MHD Prandtl fluid over a
stretching sheet. The flow is induced by using a nonlinear stretching
sheet. The x- and y-axis are taken along and perpendicular
correspondingly. Furthermore, the effects of nonlinear radiation,
mixed convection, and convective condition are considered. The
Cauchy stress tensor for the Prandtl fluid is given by

S �
A sin−1 1

C
∂ui
∂xj

( )2

+ ∂uj
∂xi
( )2[ ]1

2⎧⎨⎩ ⎫⎬⎭
∂ui
∂xj

( )2

+ ∂uj
∂xi
( )2[ ]1

2
A1, (1)

where A and C are the material parameters and A1 is the first
Rivlin–Erickson tensor. The boundary layer equations containing
the stability of mass, linear momentum, and energy can be written as
follows:

∂u

∂x
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� 0, (2)
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with the subjected boundary conditions

Uw x( ) � ]
L

4
3
x

1
3, v � 0, − k

∂T

∂y
� h Tf − T( ) aty � 0,

u → 0, T → T∞ as y → ∞ . (5)
In the aforementioned expressions, ] = (μ/ρ) is the kinematic

viscosity, μ is the dynamic viscosity, k is the thermal conductivity of

TABLE 1 Homotopic convergence for various orders of approximations when
a =0.4, θf =1.03, R =0.2, Pr=1.0, Bi =0.3, hf =−0.9, and hθ =−1.7.

Order of approximation −f′′0) −θ′0)

1 1.1525 0.1889

5 1.2043 0.1683

10 1.2046 0.1620

15 1.2047 0.1596

20 1.2047 0.1587

25 1.2047 0.1583

30 1.2047 0.1581

35 1.2047 0.1581
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the fluid, ρ is the fluid density, T is the fluid temperature, cp is the
specific heat, qr � −16σ*T3

3k*
∂T
∂y is the radiative heat flux, k* is the mean

absorption coefficient, σ* is the Stefan–Boltzmann constant, and Bi
is the Biot number.

Setting

u � υ

L
4
3
x

1
3f′ η( ), v � − υ

L
2
3
x−1

3
2f − ηf( )

3
,

θ � T − T∞
Tf − T∞

, η � y
x

−1
3

L
2
3
, θf � Tf

T∞
,

(6)

equation 2 is identically satisfied, and Eqs.3−5) give

αf′′′ − f′2 + 2
3
ff′′ − βf′′2f′′′ −Mf′ + λ 1 + βtθ( )θ � 0, (7)

1 + R( )θ′′ + R θf − 1( ) θ′′θ3 θf − 1( )2 + 3θ′′θ2 θf − 1( ) + 3θθ′′{ },
+ 3R θf − 1( ) θ′

2 + θ2θ′
2

θf − 1( )2 + 2θ′
2

θ θf − 1( ){ } + 2
3
Prfθ′

+ PrEc αf′′ + β

3
f′′4( ) + PrEcMf′2 � 0, (8)

f � 0, f′ � 1, θ′ � −Bi 1 − θ( ) at η � 0,
f′ → 0, θ → 0 as η → ∞,

(9)

where prime denotes the differentiation with respect to η, f is the
dimensionless stream function, θ is the dimensionless temperature,
and θf is the temperature ratio parameter; the dimensionless
numbers are

α � A

μC
, R � 16σ*T3

∞
3kk*

, β � A]
2ρL4C3

, Bi � h

k
,Pr � μcp

k
,

Ek � Uw x( )
cp Tf − T∞( ). (10)

Here, α and β are the dimensionless Prandtl parameters, R is the
radiation parameter, Bi is the Biot number, and Pr is the Prandtl
number.

The local Nusselt numberNux and skin friction coefficient Cf are
defined as follows:

Nux � xqw

k Tf − T∞( ), Cf � τw
ρU2

w

, (11)

FIGURE 1
f′(η) versus α.

FIGURE 2
f′(η) versus β.

FIGURE 3
f′(η) versus R.

FIGURE 4
f′(η) versus θf.
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where ρ is the fluid density, τw is the surface shear stress, and qw is
the surface heat flux. These quantities are defined by

qw � −k ∂T

∂y
( )

y�0
+ qr( )w, τw � A

C

∂u

∂y
+ A

6C3

∂u

∂y
( )3

. (12)

The dimensionless Nusselt number and skin friction
coefficient are

Re1/2x Nux � − 1 + Rθ3f( )θ′ 0( ), (13)

RexCf � αf′′ 0( ) + β

3
f′′ 0( )( )3, (14)

where Rex � Uw(x)L
υ is the local Reynolds number.

3 Entropy generation

This sector is associated with the influence of the MHD Prandtl
fluid with heat transfer on entropy generation. The local volumetric
rate of entropy generation is defined as

S′′′gen �
k

T2
∞

∂T

∂y
( )2

+ 16σ*T3
∞

3k*
∂T

∂y
( )2[ ] + σB2

0u
2

T∞

+ μ

T∞

A

C

∂u

∂y
( )2

+ A

6C3

∂u

∂y
( )4[ ]. (15)

The aforementioned equation is the combination of three
different phenomena. The first is heat transfer, the second is
due to the magnetic field, and the third one is due to viscous
dissipation of Walter’s B fluid. The characteristic entropy
generation rate is defined as

_S
′′′
0 � k ΔT( )2

l2T2
∞

. (16)

Thus, the dimensionless form of entropy generation is obtained
by taking a ratio of Eqs 21 and 22.

NG � S′′′gen

_S
′′′
0

� Re[ 1 + R( )θ′′ + R θf − 1( ){θ′′θ3 θf − 1( )2 + 3θ′′θ2 θf − 1( )
+ 3θθ′′}] + 1

θ2f
ReBrMf′2 − 1

θ2f
ReBr αf′′2 + βf′′4[ ], (17)

FIGURE 5
θ(η) versus Bi.

FIGURE 6
θ(η) versus Pr.

FIGURE 7
Nusselt number versus Pr.

FIGURE 8
Nusselt number versus R.
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where Re � Uw(x)x
υ , Br � μ(Uw(x))2

kΔT , and θf � ΔT
T∞.

4 Convergent series solutions

Convergent series solutions depend on the non-zero auxiliary
parameters. The convergence of solution is checked by drawing the
h-curves for the velocity and temperature distributions. Figures (a and
b) show the h-curves of velocity and temperature profiles for fixed

values of other physical parameters. The admissible ranges are hf and hθ,
respectively. It is observed that the solutions converge for the complete
region. Table 1 illustrates the convergence of solutions for various
orders of approximations. Tabular values elucidate that 15th and 30th
order of approximations are enough for the convergence of series
solutions of momentum and energy equations, respectively.

Figures a and b show the --curves for velocity and temperature
profiles.

5 Results and discussion

To analyze the physical aspects of the considered problem, we
discuss the effects of dimensionless parameters α, β, R,θf, Bi, and Pr on
the velocity f′η) and temperature θ(η) distributions. The influence of
Prandtl fluid parameters α and β on the velocity profile is presented in
Figures 1, 2. It is inspected that the velocity profile increases for greater
α and β. The increment in velocity for larger values of β is smaller
when compared with α. The effect of thermal radiation parameter R
on the temperature profile is displayed in Figure 3. It represents the
increasing behavior of thermal radiation parameters when α = 0.4, β =
0.3, Bi = 0.3, Pr = 1.0, and θf = 1.03. There is heat transfer from the flow
region to the wall, indicating that the boundary layer thickness
increases throughout the region. Physically, the effect of the

FIGURE 9
Nusselt number versus θf.

FIGURE 10
Nusselt number versus Bi.

TABLE 2 Values of drag forces for various fluid parameters.

α β −f ′′(0)
0.4 0.3 1.3133

0.5 1.4265

0.6 1.5341

0.4 0.3 1.3133

0.2 1.2789

0.1 1.2381

TABLE 3 Comparison of the Nusselt number at the wall for the present results
and those of Ishak [42] and Aziz [43] for Pr and Biot number Bi.

Pr Bi Present [42] [43]

0.1 0.05 0.03731 0.036844 0.0373

0.10 0.05951 0.058338 0.0594

0.20 0.0823 0.082363 0.0848

0.72 0.05 0.04110 0.042767 0.0428

0.10 0.07053 0.074724 0.0747

0.20 0.1125 0.119,295 0.1193

0.40 0.1638 0.169,994 0.1700

FIGURE 11
Entropy generation versus Ec.
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radiation parameter is to increase the rate of heat transport to the flow
region. Figure 4 illustrates the behavior of ratio parameter θf on the
thermal profile. It is observed that temperature distribution increases
for greater values of θf. Figure 5 shows the effect of the Biot number on
the temperature field. A larger Biot number Bi boosts the temperature
profile. Here, a gradual increase inBi results in the larger convection at
the stretching sheet which increases the temperature. This outcome
leads to the conclusion that the heat transfer rate at the sheet is
enhanced by increasing the velocity of the stretching sheet. Figure 6
depicts the temperature distribution for different values of the Prandtl
number. We observe that the fluid temperature decreases with the
increase in the value of the Prandtl number Pr. Growth in the Prandtl
number decreases the rate of thermal diffusion. Consequently, the
boundary layer thickness becomes thinner due to the reduction in
thermal conductivity. The Nusselt number characterizes the heat flux
from a solid surface to a fluid. Here, we see graphical effects of
radiation parameter R, Prandtl number Pr, and Prandtl fluid
parameters on the Nusselt number. Figures 7–10 reveal the
influences of emerging parameters on the Nusselt number.
Figure 7 describes the variation of the Nusselt number. Physically,
a larger-Prandtl number fluid has a relatively lower thermal
conductivity; thus, an increase in Pr decreases conduction and,

thereby, increases the variations of thermal characteristics. This
results in the reduction of the thermal boundary layer thickness
and an increase in the heat transfer rate at the bounding surface.
We can see that the heat transfer rate increases for greater values of α
and Pr. Figure 8 depicts that the Nusselt number increases for

FIGURE 12
Entropy generation versus R.

FIGURE 13
Entropy generation versus β.

FIGURE 14
Entropy generation versus α.

FIGURE 15
Entropy generation versus M.

FIGURE 16
Entropy generation versus θf.
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radiation parameter R. An increase in R enhances the heat flux from
the sheet which increases the fluid’s velocity and temperature. Figure 9
depicts that the Nusselt number increases for a larger temperature
ratio parameter. Figure 10 shows that the Nusselt number increases
with an increase in the Biot number. The values of drag forces are
given in Table 2. It shows that the magnitude of drag forces decreases
for larger values of Prandtl fluid parameters. Table 3 shows the
validation of the method, and we found good agreement with the
published work.

Deviation of entropy generation with η is represented in
Figure 11 for different values of Eckert’s number. Growth in
Eckert’s number leads to a decrease in entropy generation. It is
also observed that near-the-surface variation is almost negligible.
Figure 12 shows the dual behavior of the radiation parameter: a
small increase is displayed near the wall, but far away from the
wall, entropy generation increases rapidly. Figures 13,14 exhibit
the influence of fluid parameters α and β which boost the entropy
generation. The distribution of the magnetic framework on
entropy generation is displayed in Figure 15. The magnetic
parameter persuades Lorentz force which boosts the entropy
generation. The effect of the temperature ratio framework on
entropy generation is shown in Figure 16. From this figure, it can

be seen that entropy generation decreases when the temperature
ratio parameter increases. The effect of the Brickman number is
discussed in Figure 17. The Brickman number produces heat
transport by viscous heating, which leads to the development in
entropy generation. The variation of entropy generation with the
Reynolds number is discussed in Figure 18. It is distinguished
that entropy generation increases with a larger Reynolds number
because a larger Reynolds number corresponds to a larger inertia
and smaller viscous force.

6 Conclusion

Important features of the heat transfer flow of an MHD Prandtl
fluid past a stretching are investigated. Important points are
mentioned as follows.

■ By increasing α and β, the velocity field increases.
■ Larger values of radiation parameter enhance the temperature
distribution.

■ The temperature field decreases by increasing the Prandtl
number.

■ Larger Biot number enhances the temperature and thermal
boundary thickness.

■ The effect of fluid parameters α and β on the magnitude of the
skin friction coefficient is quite the opposite.

■ Entropy generation develops with the magnetic parameter,
Reynolds number, curvature parameter, and Brinkman
number, while contrary behavior is detected for larger
values of the temperature ratio parameter.

■ Nusselt number enhances when R and Bi are enhanced.
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Nomenclature

u, v Velocity components h Heat transfer coefficient

x, y Space coordinates A and C Material parameters

T Fluid temperature σ* Stefan–Boltzmann constant

T∞ Ambient temperature k* Mean absorption coefficient

L Length η Dimensionless space variable

∧1 Linear thermal expansion coefficient f Dimensionless velocity

∧2 Nonlinear thermal expansion coefficient θ Dimensionless temperature

Uw Stretching velocity ϕ Dimensionless concentration

B0 Free stream velocity ψ Stream function

ρ Fluid density α&β Fluid parameters

ν Kinematic viscosity M Magnetic parameter

μ Dynamic viscosity Br Brinkman number

cp Specific heat g Mixed convection

σ Electrical conductivity Bi Biot number

ρf Fluid density R Radiation parameter

(cp)f Fluid heat capacity Pr Prandtl number
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