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Editorial on the Research Topic

Science and Applications of Coastal Remote Sensing

The Earth has been aptly described as a coastal planet (Martínez et al., 2007). The coastal zone,
defined as land where proximity to the coast is <100 km and elevation is <10m above sea level, is
a linear interface sprawling the Earth’s surface between the planet’s water bodies and land masses,
with a length over 1.6 million kilometers. This significant feature of the Earth’s surface is so long
that it would wrap around the equator 402 times (Martínez et al., 2007) or stretch to the Moon and
back twice. Although the coastal ocean spans 8% of the global ocean surface area (Cracknell, 1999),
it accounts for 14–30% of the total marine organic matter (Gattuso et al., 1998). Coastal oceans,
defined as ocean areas between the shore and the continental shelf edge, and associated coastal
environments are on the front lines of a warming climate. A warming atmosphere driven by a
rising carbon dioxide concentration, the annual average of which is now approaching 420 ppm
(https://www.esrl.noaa.gov), is driving sea level rise and possibly changes in coastal hydrology,
currents and weather. Sea level rise due to melting glaciers and ice caps threaten inundation of
coastal communities (Vitousek et al., 2017) as well as increased coastal erosion (Zhang et al., 2004),
and warming ocean waters are expected to enhance the severity of tropical cyclones (Sobel et al.,
2016). Disruptions in marine ecosystem biodiversity have been documented as tropical species
shift poleward in response to warming trends (Pinsky et al., 2013) and coral reefs undergo mass
bleaching (Heron et al., 2017).

Added to climate factors are the stresses imposed by growing coastal human populations on the
marine services that they require to survive and thrive. Currently, 27% of the global population
lives within the coastal zone (Kummu et al., 2016). This population is expected to nearly double
by mid-century (Neumann et al., 2015), which will increase stressors on this changing coastal
environment. Human dependency and exploitation of coastal resources has produced increasingly
dramatic changes to coastal and inland aquatic habitats in the last 100 years (Turpie et al., 2017).
Presently, the global per capita consumption of seafood represents 6% of all animal protein and is
themost highly traded international food commodity (Smith et al., 2010). Aquaculture constitutes a
growing portion of the consumer seafood supply. This trend is expected to continue with projected
population growth and climate change (Wells et al., 2015).

In addition, stresses on coastal aquatic habitats have resulted in the emergence of many species
of phytoplankton that are pernicious to both humans and aquatic ecosystems (Anderson et al.,
2002). For example, aquaculture produces waste nutrients that fuel the formation of harmful
algal blooms (HAB). The introduction of toxic HAB and the overgrowth of non-toxic or invasive
phytoplankton species disrupt ecosystem functionality, and affect food and water resources. These
changes stem largely from anthropogenic eutrophication (Glibert et al., 2005; Anderson, 2009).
Excessive amounts of algae can decrease light penetration, negatively affecting water-column, and
benthic photosynthesis. Some algal blooms can grow faster than natural grazers can consume them.
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TABLE 1 | List of eBook chapters.

Authors Title DOI

S. Ackleson, J. P. Smith, L. M. Rodriguez,
W. J. Moses, and B. J. Russell

Autonomous Coral Reef Survey in Support of Remote Sensing https://doi.org/10.3389/fmars.2017.00325

D. Chapple and I. Dronova Vegetation Development in a Tidal Marsh Restoration Project during a
Historic Drought: A Remote Sensing Approach

https://doi.org/10.3389/fmars.2017.00243

J. Headley, B. J. Russell, K. Randolph,
M. Á. Pérez-Castro, R. M.
Vásquez-Elizondo, S. Enríquez, and
H. M. Dierssen

Remote Sensing of Seagrass Leaf Area Index and Species: The
Capability of a Model Inversion Method Assessed by Sensitivity Analysis
and Hyperspectral Data of Florida Bay

https://doi.org/10.3389/fmars.2017.00362

W. Jiang, B. R. Knight, C. Cornelisen,
P. Barter, and R. Kudela

Simplifying Regional Tuning of MODIS Algorithms for Monitoring
Chlorophyll-a in Coastal Waters

https://doi.org/10.3389/fmars.2017.00151

Z. Lee, S. Shang, and R. Stavn AOPs Are Not Additive: On the Biogeo-Optical Modeling of the Diffuse
Attenuation Coefficient

https://doi.org/10.3389/fmars.2018.00008

J. Lehrter and C. Le Satellite Derived Water Quality Observations Are Related to River
Discharge and Nitrogen Loads in Pensacola Bay, Florida

https://doi.org/10.3389/fmars.2017.00274

M. Marrari, A. R. Piola, and D. Valla Variability and 20-Year Trends in Satellite-Derived Surface Chlorophyll
Concentrations in Large Marine Ecosystems around South and Western
Central America

https://doi.org/10.3389/fmars.2017.00372

T. Moisan, K. M. Rufty, J. R. Moisan, and
M. A. Linkswiler

Satellite Observations of Phytoplankton Functional Type Spatial
Distributions, Phenology, Diversity, and Ecotones

https://doi.org/10.3389/fmars.2017.00189

T. Moisan and B. G. Mitchell Modeling Net Growth of Phaeocystis antarctica Based on Physiological
and Optical Responses to Light and Temperature Co-limitation

https://doi.org/10.3389/fmars.2017.00437

J. Ortiz, D. Avouris, S. Schiller, J. C. Luvall,
J. D. Lekki, R. P. Tokars, R. C. Anderson,
R. Shuchman, M. Sayers, and R. Becker

Intercomparison of Approaches to the Empirical Line Method for
Vicarious Hyperspectral Reflectance Calibration

https://doi.org/10.3389/fmars.2017.00296

A. Reisinger, J. C. Gibeaut, and P. E. Tissot Estuarine Suspended Sediment Dynamics: Observations Derived from
over a Decade of Satellite Data

https://doi.org/10.3389/fmars.2017.00233

J. Snyder, E. Boss, R. Weatherbee,
A. C. Thomas, D. Brady, and C. Newell

Oyster Aquaculture Site Selection Using Landsat 8-Derived Sea Surface
Temperature, Turbidity, and Chlorophyll a

https://doi.org/10.3389/fmars.2017.00190

A. Trembanis, A. L. Forrest, B. M. Keller,
and M. R. Patterson

Mesophotic Coral Ecosystems: A Geoacoustically Derived Proxy for
Habitat and Relative Diversity for the Leeward Shelf of Bonaire, Dutch
Caribbean

https://doi.org/10.3389/fmars.2017.00051

R. Trinh, C. G. Fichot, M. M. Gierach, B.
Holt, N. K. Malakar, G. Hulley, and J. Smith

Application of Landsat 8 for Monitoring Impacts of Wastewater Discharge
on Coastal Water Quality

https://doi.org/10.3389/fmars.2017.00329

When they die, the bloom sinks and decomposes, and the
resulting bacterial respiration takes up dissolved oxygen, causing
hypoxic, and anoxic “dead zones,” which can devastate fisheries
and benthic communities (Anderson et al., 2000; Rabalais et al.,
2002).

To better understand the mounting ecological pressures on
coastal environments, ecosystem scientists and natural resource
managers have increasingly turned to remote sensing for timely
and spatially coherent information. In response, Earth imaging
sensor technologies aboard satellites and aircraft have advanced
rapidly from multispectral systems offering a small number
of broad, discontiguous spectral bands in the visible and
infrared portions of the spectrum to imaging spectrometers
with continuous, high-resolution coverage throughout the visible
and near-infrared spectrum (VNIR), e.g., between 400 nm
and 1µm and spectral bandwidth <10 nm. Such sensors are
referred to as imaging spectrometers or hyperspectral imaging
systems. The next generation of space-based Earth imagers,
such as the U.S. National Aeronautics and Space Administration
(NASA) Ocean Color Imager (OCI), a component of the
Plankton, Aerosol, Cloud and ocean Ecosystem mission (PACE)
(Gorman et al., 2019), and the NASA Surface Biology and

Geology (SBG) designated observable (National Academies of
Sciences, 2018) and the Geosynchronous Littoral Imaging and
Monitoring Radiometer (GLIMR) (National Aeronautics Space
Administration, 2019), will serve to extend the heritage of global
ocean color imagery and will be designed for hyperspectral
coverage to address a wide range of societal problems. Coincident
with the large, national, multi-community efforts, miniaturized
systems are rapidly under development that may be deployed on
small unmanned aerial vehicles controlled by a single research
group or even an individual researcher. As such, they may more
accurately be described as embedded systems because they are
integral to specific, small-scale research and management efforts
and would not exist were it not for those activities.

With the availability of more spectrally complex imagery, new
algorithmic approaches have emerged to retrieve more useful
information from the data. Advances in coastal remote sensing
technology are well-documented in recent review articles (De
Moraes Rudorff and Kampel, 2012; Duffy et al., 2013; Blondeau-
Patissier et al., 2014;Mouw et al., 2015; Palmer et al., 2015; Hedley
et al., 2016; Werdell et al., 2018).

The lynchpin for any environmental remote sensing operation
is the coincidental collection of high quality, in situ observations
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of direct relevance to the calibration and validation of image-
based products. This requirement is particularly challenging
within coastal environments where the temporal and spatial
correlation scales can be quite short (Hedley et al., 2012;
Moses et al., 2016). Traditional methods of collecting in situ
observations from floating platforms can be compromised by
water depth, either by restricting access or causing re-suspension
of bottom sediments. In applications to benthic cover, such
as coral reef surveys, observations with SCUBA have proven
effective for collecting high quality data, but operations are slow,
laborious, expensive, and require a high level of specialized
training. To address these problems, researchers have developed
autonomous methods of collecting in situ observations (Moline
et al., 2005; Ryan et al., 2010). Autonomous in situ survey systems
offer key advantages over traditional methods including lower
survey costs (excluding the initial infrastructure investment) and
orders of magnitude more data with greater dimensionality and
aerial coverage, often representing environmental conditions that
would prohibit safe, human-based operations.

The purpose of this Frontiers inMarine Science eBook focuses
on remote sensing of the coastal ocean is to provide a condensed
forum to sample areas of notable technological advance. It
provides a sample of such innovations and considerations
contributed from the coastal remote sensing community. Given
the a priori emphasis placed on environmental problems, the
papers included in this eBook largely address processes, methods
and technology pertaining to biological resources. The eBook is
comprised of 14 chapters representing the work and thoughts
of 62 authors (Table 1). Remote sensing technology covers
multispectral to hyperspectral systems applied to environments
ranging from wetlands to the pelagic ocean. Many of the papers
include a large component of radiative transfer modeling and
algorithm development and several of the papers address new
autonomous methods to survey the coastal ocean in support of
algorithm development, validation, and verification. One paper

explores the use of acoustic remote sensing to improve studies
of coastal ecosystems. Papers address multiple coastal remote
sensing themes and applications, including remote sensing of
coastal ecosystems (coral reefs: Trembanis et al.; Ackleson et al.;
tidal marsh: Chapple and Dronova; seagrass: Hedley et al.), water
quality (Reisinger et al.; Jiang et al.; Snyder et al.; Lehrter and Le;
Trinh et al.), phytoplankton abundance and diversity (Moisan
et al.; Moisan and Mitchell; Marrari et al.), and improvements
to calibration and radiative transfer modeling (Ortiz et al.;
Lee et al.). Water quality papers address a range of topics
including suspended sediments in estuaries (Reisinger et al.),
eutrophication, as indicated by chlorophyll-a (Jiang et al.),
aquaculture site selection (Snyder et al.), and effects of river
discharge and nutrient loads (Lehrter and Le; Trinh et al.).

DEDICATION

This eBook is dedicated to our co-editor Dr. Tiffany Moisan,
a well-regarded ocean color remote sensing scientist, who
unexpectedly passed away during its preparation. Dr. Moisan
was a dear friend, and upbeat and enthusiastic colleague and
a scientist committed to the use of remote sensing to improve
our understanding of marine microbiology and phytoplankton
ecology. Tiffany was a strong supporter of coastal remote sensing
science and applications and wanted this publication to provide
her colleagues a forum to share and promote their most recent
accomplishments. Let the chorus of our shared song continue
with her memory. Dr. Moisan is survived by her loving family,
including her husband, Dr. John Moisan, and her two daughters.
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Current trends demonstrate coral reef health in serious decline worldwide. Some of

the most well-preserved coral reefs in the Caribbean basin are located in the waters

surrounding Bonaire, in the Dutch Caribbean. In many places on the leeward side

on islands dominated by trade winds, the shallow reef systems extend into deeper

water where they are known as Mesophotic Coral Ecosystems (MCE). Autonomous

Underwater Vehicles (AUVs) were used to collect geoacoustic data of these leeward

reefs at multiple sites as part of an ocean exploration project. AUV swath bathymetry and

side-scan sonar data were analyzed for depth, acoustic backscatter intensity, seafloor

slope, and rugosity. These geomorphic metrics were then used as inputs to generate

a composite synthetic index of bottom-type to delineate MCE features. A confusion

matrix statistical analysis of the acoustic class map showed an overall accuracy of the

acoustic classes at 66%, with accuracy of the hard coral class the highest at 83%, and

the sandy-bottom class the lowest at 55. The hard coral class was also the statistically

most reliable, at over 80%, with the noise class coming in as the least reliable. This

morphologic habitat index is a potentially useful new tool in quantifying the extent of

MCE located in proximity to Marine Protected Areas (MPAs).

Keywords: Mesophotic Coral Ecosystem (MCE), Autonomous Underwater Vehicle (AUV), Acoustic Ground

Discrimination System (AGDS), Caribbean, side-scan sonar, swath bathymetry, seafloor rugosity

INTRODUCTION

Coral reefs surrounding the island of Bonaire, Dutch Caribbean, are arguably some of the most
well-preserved in the Caribbean. Nevertheless, there has been recent evidence of coral mortality,
decline in live coral reef cover and changing ecosystem dynamics as compared to previous decades
(Steneck and McClanahan, 2004; Bak et al., 2005; Stokes et al., 2010). Most ecosystem research
in Bonaire has been focused primarily along the shallow (<12m water depth), near-shore reef
communities. For example, van Duyl (1985) mapped out bottom types and benthic community
structure around the leeward perimeter of the island from the shoreline to a depth of∼10 m. There
have been limited observations of reefs in Bonaire at greater depths and almost no work has been
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done to date at depths where Mesophotic Coral Ecosystems
(referred to in the research literature as MCEs) exist. A recent
study by De Bakker et al. (2016) reported pressures and declines
in coral assemblages even in depths of 30–40m off Bonaire and
Curaçao thus emphasizing the need to locate and characterize
coral reef assemblages in mesophotic depths. MCEs in Bonaire
have been shown to extend from 30 to 150m water (De Meyer
and MacRae, 2006; Keller, 2011).

MCEs are known to: (1) exist at multiple locations around the
world (e.g., Fricke and Meischner, 1985; Bridge et al., 2011a); (2)
extend deeper than the shallow reefs (beginning at 30m deep)
to the bottom of the photic zone (>75 m) depending on the
light penetration through the water column (Bridge et al., 2011b);
(3) provide potentially important refugia for deep- and shallow-
water fishes and coral species (Brockovich et al., 2008; Lesser
et al., 2009; Bridge et al., 2013; Harris et al., 2013); and, (4) act
as important sources and sinks of shallow coral larvae and thus
can affect the recovery time of damaged coral reefs (Bongaerts
et al., 2010). The systems are comprised mainly of zooxanthellate
scleractinian and octocorallian taxa, sponges, and rhodolith
assemblages and very greatly from region to region as noted in
the exhaustive review by Kahng et al. (2010). The presence and
structure of the MCE are influenced by additional factors such
as light availability (PAR), nutrient levels, and hydrodynamic
processes (e.g., waves and currents) that drive physical mixing
at depth in the water column. The physical process generated
turbulent energy has ramifications for the ecology associated with
MCEs (Leichter et al., 1998).

Recent advances in diving technologies (e.g., closed-circuit
rebreathers, application of mixed gases, etc.), field robotics (e.g.,
Autonomous Underwater Vehicles -AUVs, Remotely Operated
Vehicles, -ROVs), and survey techniques (e.g., sonar and benthic
optical imagery) from towed bodies allow MCEs to be explored
in an unprecedented way (Armstrong et al., 2006; Locker et al.,
2010; Williams et al., 2010; Relles and Patterson, 2011; Bridge
et al., 2011a; Smale et al., 2012). The use of AUVs as data
collection platforms decouples data collection from a surface
vessel allowing higher frequency and shorter pulse length sonars
to be brought closer to the seabed (lower altitude) in deeper
waters than would be possible from a surface vessel mounted
sonar system. This inherently improves the resolution of the
sonar based survey data to decimeter horizontal and vertical
scale resolution even at depths well-beyond 100m (Patterson and
Relles, 2008; Williams et al., 2010; Forrest et al., 2012; Trembanis
et al., 2012). This increased level of precision provided by subsea
robotic platforms allows for bottom features, such as coral reef
morphologic structures, to be resolved from small (0.1–0.5 m)
to large (>1 m) scale over broad areas of the seabed (1–10s of
km). Benthic imagery concurrently collected by AUVs allows
the measured acoustic backscatter to be ground-truthed in such
a way that was previously only possible through logistically
challenging field campaigns (Locker et al., 2010). Other aspects
of the marine environment can also be surveyed. For example,
nekton can be identified from acoustic returns (Fernandes et al.,
2003; Patterson et al., 2007) and water quality parameters can
also be simultaneously surveyed from AUVs (Moline et al.,
2005).

This study aims to identify and characterize through remote
sensing the mesophotic reef ecosystem at eight sites along the
insular, leeward side, of Bonaire. Dutch Caribbean. Bathymetric
sonar, side-scan sonar, and benthic imagery surveys collected
from an AUV at each site down to depths of >200m provide
the basis of the geoacoustic data used for the subsequent benthic
classification. Substrate classification was conducted using an
Acoustic Ground Discrimination System (AGDS) using a new
synthetic index for feature discrimination. This classification was
then ground-truthed against images concurrently collected from
above the seabed. The resulting geoacoustic classification is then
used to show the presence of and geomorphic distribution and
characteristics of MCEs at some of the test sites. Distribution
charts of theMCEs are developed in this work and then presented
along with a comparison of MCE presence in the Bonaire
Marine Park as compared to sites receiving regular tourist diving
in the shallower reef. Implications of these findings for MCE
distribution are discussed.

MATERIALS AND METHODS

Study Area
This study was part of a larger National Oceanic andAtmospheric

Association (NOAA) Signature Expedition in 2008 to Bonaire,
Dutch Caribbean (Patterson et al., 2008). Bonaire is located in
the Caribbean Sea immediately north of Venezuela (Figure 1—
Insert). The island municipality of Bonaire is comprised of the
main island of Bonaire and then the smaller uninhabited island
of Klein Bonaire, which is located on the leeward, western side
of the main island (Figure 1). While the eastern (windward)
side of Klein Bonaire is occasionally subject to large swell from
hurricanes passing through the Caribbean, the western (leeward)
side sees infrequent events (Bries et al., 2004). The western side
of the island is also exposed to smaller wave energy environments
(levels are numbered in Figure 1; adapted from van Duyl, 1985).
The study sites (Figure 1—filled squares) range from indexed
wave energy states of 4–6 (i.e., the lower end of the wave
spectrum) and correspond to wave heights up to 1 m. As wave
heights along the western side of the island are lower than
the eastern, the shallow reefs are better preserved (Steneck and
McClanahan, 2004) and more routinely explored.

Data Collection by AUV
At each of the sites, a phase-measuring bathymetric sonar
(PMBS) and a side-scan sonar (SSS) data were acquired using
a Teledyne Gavia AUV as the survey platform (Figure 2). The
depth rating (200 m) allowed missions over a large range of
the mesophotic zone. Note that while strictly speaking the
mesophotic zone operatively extends to the bottom of the photic
zone, here functionally we set our analysis to between the 30
and 150m isobath (Lesser et al., 2009). Powered with a 1 kW h
lithium-ion battery pack (Figure 2A2), the AUV has a mission
duration of c. 4 h at a swimming speed of ∼1.8m s−1, or greater
than 25 km of trackline in a given mission. This AUV utilized a
Kearfott T-24 INS Inertial Navigation System (INS) aided with
a 1,200 kHz RDI Doppler Velocity Log (DVL) for navigation
(Figure 2A4). The navigational solution has less than 0.05% error
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FIGURE 1 | Chart of Bonaire, Dutch Caribbean (global location marked in inset) with surrounding bathymetry and index of wave level environments

around the shoreline indicated (Level 1: Wave height 2–3.5 m; 2: 1.5–2 m; 3: 1–1.5 m; 4: 0.5–1 m; 5: 0.3–0.5; 6: 0.0–0.3 m, as adapted from van Duyl,

1985). Survey sites indicated around the island (filled squares). For reference Nukove is the northernmost site. Klein Bonaire is the smaller island to west of main island.

by distance traveled resulting in ∼3.0m positional uncertainty
after completing an hour of submerged trackline (Trembanis
et al., 2012).

The key scientific payloads on the AUV were the camera,
the phase-measuring bathymetric sonar (PMBS), and a side-scan
sonar (SSS). Fitted into the nose module (Figure 2A1) of the
AUV was a Point Gray Scorpion 20SO digital camera that has
an image capture rate of ∼ 4 Hz. At the survey speed of ∼1.8m
s−1, this frame rate results in one image every 0.45m and ∼40%
overlap between frames for typical flight altitudes of the AUV.
With geophysical surveys commanded at vehicle altitudes of 15
m, this fixed in-water field of view of the camera of 54◦, features
of 6–12 cm were resolvable in the resulting images. Camera
gain, aperture, and exposure were set to be fully automatic
rather than fixed contrary to recommendations for imagery
in low light environments (Pike, 2011). The phase measuring
bathymetric sonar was a GeoSwath module manufactured by
Kongsberg Maritime (Figure 2A3). The 500 kHz operating
frequency provides 20 cm horizontal resolution in the final
acoustic backscatter mosaic, with 1.0m horizontal resolution
in the associated gridded bathymetric surface. Side-scan sonar
data were also collected with a 900/1,800 kHz Marine Sonic
Technology Sea Scan module (Figure 2A5). Side-scan sonar data

were collected exclusively at 900 kHz, which provides 18 cm
horizontal resolution in the gridded backscatter mosaic.

Between January 13 and 25, 2008, nearly 200 h and over
160 km of trackline survey data were collected. The AUV was
programmed to follow a constant altitude of typically 15m
for bathymetric surveys, with survey lines run roughly parallel
to known bathymetric contours (using known bathymetry for
mission planning). Alternating line spacing of 30 and 60m
was used with sonar set to achieve swath widths of 70 m.
These acquisition settings resulted in data with ∼150% port and
starboard overlap on successive survey lines. Identical acquisition
settings with this same AUV have been used by the authors
successfully in several similar studies (Raineault et al., 2012; and
Trembanis et al., 2012, 2013).

Data Processing
Phase-measuring bathymetric data were processed with
commercial processing software including GS+ (GeoAcoustics
Ltd) and SonarWiz (Chesapeake Technology Inc.) with an
established workflow (Figure 3) for removing outliers caused
by noise within the water column and generating bathymetry
and backscatter representation of the seafloor. Geocoder
software, a component of the Fledermaus software suite was
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FIGURE 2 | The gavia autonomous underwater vehicle (A) as assembled

for these survey dives and (B) being launched from the surface vessel.

Numbers delineate each of the modules of the AUV. 1, Nose Cone where the

camera view port is located; 2, Battery Module; 3, Phase Measuring

Bathymetric Sonar Module; 4, Inertial Navigation System Module; 5, Control

Module with side-scan sonar transducers; 6, Propulsion Module.

used to generate backscatter mosaics including geometric and
radiometric corrections in addition to the motion compensation
provided by the INS data. These data were then imported to a
data visualization software package Fledermaus (QPS BV) and
gridded onto a user-specified grid, in this case a cell size of 1.0
m, using a moving average that included three nearest neighbors
(Keller, 2011). Acoustic backscatter data were processed and
quantitatively compared using an additional seabed Acoustic
Ground Discrimination System (AGDS) software package
called QTC SWATHVIEW (Quester Tangent, Saanichton
BC) following the methods and approach of other recent
investigators e.g., Brennan et al. (2012) and Raineault et al.
(2012). Class maps of similar acoustic image properties are
generated with SWATHVIEW and are then ground truthed
from seabed photos for each of the investigated sites (Figure 4).
Seabed characteristics for a defined class are assumed to be
reasonably constant (i.e., consistent between study sites based on
similar setting and the consistent sonar settings used for each
survey) and distinct from other class characteristics.

Classification in this manner reduces the amount of ground-
truthing data (Figure 5) that must be collected in order to
verify that a specific substrate segmentation coincides with a
specific sediment type (i.e., only a small nominal number of
ground-truthing samples from each class are adequate to define
the entire class). QTC SWATHVIEW has been widely used in
acoustic habitat studies and further theoretical information and
example studies (Preston et al., 2001; Quester Tangent, 2010;
Brennan et al., 2012; Raineault et al., 2012, 2013). As shown
in Figures 4, 5, for all of the datasets, the final output was
Keyhole Markup Language (.kml) files, which could be imported

directly into Google Earth. In addition to acoustic class maps and
sonar mosaics, gridded Digital Elevation Models (DEMs) were
generated from the bathymetric data.

Synthetic Bottom-Type Index
Biological diversity (e.g., Shannon’s diversity index, H

′

,) is
a measure of information entropy, however, there were no
direct estimations of taxa (genus or species) observed in the
benthic imagery as a result of the higher AUV flight altitudes
designed to maximize sonar coverage (cf. analyses done from
AUV sampling in Bridge et al., 2011a,b). Nevertheless, a new
quantitative synthetic index proxy of diversity potential was

created. This index H
′

SC, was related to the geomorphology and
the biological complexity, by combining the geoacoustic classes
from the QTC principal components analysis together with the
benthic photographic imagery and morphologic measurements
of slope, rugosity, and depth from the sonar mapping
measurements.

The synthetic bottom-type index, H
′

SC, is given by:

H
′

SC = (R ∗ (dmid/d) ∗ sin(slope)

+ Cweight ∗ (dmid/d) ∗ sin(slope)) (1)

where R is the estimated rugosity (based on Jenness, 2004), d
is the depth (m), dmid is the mid-point depth of the survey site
region (here 50 m), s is slope of the seafloor in the absolute
value (degrees) relative to a horizontal plane), and Cweight is
the weighted classification (Figure 6) of the different bottom-
type acoustic classes that were previously identified by QTC
SWATHVIEW, following a similar methodology as employed
in other geoacoustic studies (Brennan et al., 2012; Raineault
et al., 2013). Note that the dmid/d term places more emphasis
on shallow compared to deeper depths. Cweight allows different
acoustic cluster classes to have different weightings. For example,
coral bottom substrates will have a significantly higher index
value than sand or macroalgae. Diversity weightings, Cweight ,
(Figure 6) were assigned according to previously published
diversity indices for Caribbean reefs with values of 3.5, 3.2, 1.9,
and 0.1 assigned to the hard coral, coral rubble, macro algae,
and sandy bottom cluster classes, respectively (computed as
bits and reported by Porter, 1972). It should be noted that the
“unknown” noise class identified in the geoacoustic classification
was assigned a value of 0, as it was most similar to sand. Based
on the location of this class, with respect to vessel trackline, it is
suspected to be purely acoustic noise.

These map datasets were then input into Eq. 1 in order
to produce composite maps of H

′

SC on a 4m grid (Figure 11)
for Klein Bonaire from ∼ 0–135m depth (see Figure 10 for
depth profile). This larger grid resolution was required because
the acoustic classes are calculated over multiple pixels of the
underlying side-scan sonar mosaic.

The depth of many of the Bonaire site locations exceeds 200
m, well-beyond the nominal depth of scientific diving activity
(∼40 m). Many of the MCEs identified in this study were found
in depths greater than 70 m, the simultaneous collection of sonar
and benthic imagery provides additional information in assessing
MCE characteristics and distribution. Furthermore, the camera
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FIGURE 3 | Data processing workflow for the generation of (1) Backscatter mosaics (2) XYZ bathymetry ad (3) georeferenced camera images. All of the

resulting products are then integrated and visualized together for analysis in Matlab and Google Earth.

images are valuable for ground-truthing acoustic class maps.
The AUV camera records frames at approximately two frames
per second and, during the Bonaire surveys, collected nearly
73,000 images. Given the speed of the vehicle, the overlap in
consecutive images, and a nominal autocorrelation length scale
of 10m the image database reduces down to ∼5,800 images that
could be considered independent measurements of the seabed
habitat composition. Using the Gavia Control Center software,
and the metadata contained within each image, these camera
images were georeferenced and exported to .kml, which could be
imported directly into Google Earth for overlay onto the sonar

and class maps. An example of a set of georeferenced images
gathered with the downward facing AUV camera is provided in
Figures 4, 5. A subset of 1,500 images from the photo collection
were used to perform a statistical analysis of the accuracy and
reliability of the acoustic class map and are reported in the results
section. Operationally higher altitudes are preferred in order to
optimize the sonar swath width, however, we found that camera
image resolution degrades with increasing altitude above the bed
as the image footprint covers and increasingly wider area, which
allows to us distinguish habitat type but not to the level of species
and genus.
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FIGURE 4 | (A) AUV benthic images from the Nukove Bonaire (northern most survey site) displaying the photo size and spacing in Google Earth. Note: Display interval

above set to show only every tenth photo. Approximate Image Footprint = 18 × 13 m. (B) Example of acoustic class map highlighting class 1 hard coral (turquoise

color) along with representative side-scan sonar image of class 1 and AUV camera photos used to ground-truth and classify class 1 as indicative of hard coral cover.

FIGURE 5 | QTC SWATHVIEW acoustic classifications of the combined Bonaire MCE survey database. (A) Acoustic Class map of the southwest Klein

Bonaire site (cf Figure 6). (B) Q-Space vector plot of each point in the survey map in the three-dimensional principle component space with each class type colored

and outlined in the vector space. (C) Examples of AUV ground-truthing photos of each acoustic class type used to specify the class composition.
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FIGURE 6 | Representative photos of each bottom type class along with the diversity index values assigned for each class type computed as bits

using values reported by Porter (1972). Distribution of each class type as a percentage of the mapped seafloor.

AUV camera imagery was used to ground-truth different
sediment types associated with each particular SWATHVIEW
seafloor classification (Figure 5). The mission altitudes that
were selected to maximize for acoustic swath coverage produce
images that can be used to distinguish bulk habitat class types
(e.g., sandy bottom vs. hard coral vs. noise) but are not of
sufficient resolution from these survey altitudes to distinguish
genus or species. Ground-truthing was achieved by loading
a class map into Google Earth as a layer and then loading
overlay images of that particular type. For each class three
hundred images were examined to validate the acoustic class
type (Keller, 2011). This method was used to validate the
SWATHVIEW acoustic classifications collected from the surveys
(Figures 4B, 5C).

RESULTS

SWATHVIEW Classification
Based upon multiple runs of SWATHVIEW, it was determined
that five acoustic classifications best fit the available data, as they
included all of the known bottom types (Figure 5B). Based on the
available AUV ground-truthing image data, Class 1 is associated
with clearly defined hard coral structures, including both massive
head corals, and foliaceous corals (e.g., Agaricia agaricites). Class
2 is associated with soft coral (e.g., Pseudopterogorgia acerosa)
and macroalgae. No image data are available for Class 3 as it is
an acoustical noise class (accounting for only 5% of total class
coverage). Class 4 is associated with sandy bottom areas with few

distinct characteristics. Class 5 is associated with coral rubble and
sparse macroalgae (Figure 5). These conclusions about bottom
type were made by comparison of the AUV imagery data to
photos taken by van Duyl (1985) and also from diver photos
taken during the 2008 field campaign and represent bulk habitat
class determinations.

Using equation 1 and the aforementioned class weightings,

H
′

SC shows its highest value when coral substrate is found
with high rugosity and steep slope in shallower water.
This index proved useful in delineating features seen in
the acoustic imagery because features created by coral
produce complex topography with the highest values using
this new combinatorial formulation scheme. Operationally,

H
′

SC ranges from 0 to c. 2.5 for the weighting scheme we
used in this work. Note that this synthetic proxy index
has dimensions only of bits as the other units all cancel
out; thus the absolute magnitude of values computed at a
specific seafloor location cannot be directly transferred to
another location, but this proxy metric method does prove
operationally useful for landscape-level classifications to locate
MCE and prioritize within a given location. Other schemes for
weighting the bottom types could be used to achieve similar
results.

Two of the survey sites were selected as being representative
of the two dominant type of shelf profile observed: Klein Bonaire
was chosen to represent Type I (Figure 11), and Nukove was
chosen to represent Type II (Figure 12). At each of the sites,
estimates of slope, rugosity, and geoacoustic classification were
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generated for the surveyed region and combined into the H
′

SC
relative diversity proxy value.

Figure 12 shows similar composite index results for Nukove
(Type II) from∼ 0–225m depth (see Figure 10 for depth profile)
with a similar submerged structure running parallel to shore as
was observed at the Klein Bonaire (Type I) site. However, in
contrast to the previous site, this submerged reef occurred at

100m depth. These greater depths will decrease the value ofH
′

SC.
For example the average value for the deep submerged reef at the
Nukove (Type II) site is ∼ 1.75 in contrast to an computed value
of∼ 2.25 at the Klein Bonaire site (Type I).

Fully 55.6% of all data points collected in Bonaire fall within
the mesophotic zone; however, this includes both flat sandy
bottoms as well as coral substrate. To better understand the
distribution of coral structures in Bonaire, both the classification
data as well as the calculated rugosity values must be interpreted.
A high rugosity value is often indicative of the presence of coral
structures (Prada et al., 2008), in fact 11.8% of all data points
had a rugosity ratio of 1.3 or greater and were found within
the inferred hard coral acoustic class (Figure 6). In Figure 6, the
classifications assigned to each data point are shown along with
the percentage of the seabed coverage that each class accounted
for. Classes 1 (Hard Coral) and 2 (Soft Corals and Macroalgae)
are indicative of live coral substrate. These two geoacoustic
classes account for 37% of all data points.

Accuracy Metrics of Habitat Classification
In order to assess the accuracy and reliability of the acoustically
derived class maps, 1500 independent images were analyzed
using a confusion matrix approach (Table 1). These images
represent ∼25% of the total independent images in the
presented survey areas. For the accuracy and reliability
assessment images were selected from the areas presented
here in the results (Figures 11, 12) with 300 non-overlapping
images in each acoustic class domain randomly selected
and then the image based bottom type was recorded into
a confusion matrix for statistical analysis. The statistical
analysis showed an overall accuracy of the acoustic classes
at 66%, with accuracy of the hard coral class the highest
at 83%, and the sandy-bottom class the lowest at 55. The
hard coral class was also the statistically most reliable, at
over 80%, with the noise class coming in as the least
reliable.

TABLE 1 | Confusion matrix.

Hard

coral

Soft coral

macroalgae

Sandy

bottom

Coral

rubble

Noise

Hard coral 247 33 15 5 0

Soft coral macroalgae 34 227 28 8 3

Sandy bottom 11 31 197 46 15

Coral rubble 4 26 37 203 30

Noise 0 21 83 72 124

Accuracy % 83.4 67.2 54.7 60.8 72.1

Reliability % 82.3 75.7 65.7 67.7 41.3

DISCUSSION

This work detailed the use of an AUV for a high-resolution
remote sensing survey of nearly two square kilometers of seafloor
around Bonaire in a short 7-day period. Many of the areas
mapped in this survey have never been explored in detail before
now owing to the depths being beyond traditional SCUBA
diver limits. In addition to the commonly visited shallow reef,
observations of a second reef which exists from 75 to 100m
on much of the leeward coast from a time that sea level was
lower than its current state. Significant deep-water features
were discovered at several locations. Their existence was likely
unknown, as these depths are greater than traditional scuba
diving is capable of achieving. Over half of all the observed
reef structures are found outside of the designated Marine
Protected Area, and do not benefit from the conservation
efforts that exist to protect the shallow reef. Figure 13 shows a
conceptual diagram profile of the leeward shoreline of Bonaire,
based on the bathymetry and classification data from all the
AUV survey locations. This figure summarizes where specific
features and bottom types were found by our AUV surveys and
estimated from the data fusion of geomorphologic and acoustic
class metrics using a new synthetic proxy index for inferred
diversity.

Classes 1 (Hard Coral) and 2 (Soft Corals and Macroalgae),
when found at depths beyond 40–50m (Figure 7) these two
classes represent inferred areas of MCE. These geoacoustically
inferred MCE substrates are fairly discontinuous, and change
in width and depth depending on location around the island.
Most sites have very low rugosity at depths greater than 100
m; however, Just a Nice Dive, Southwest Corner, and the
Marine Park each have significant roughness features indicative
of possible MCE sites. The two Klein Bonaire sites show evidence
of reef-like structures existing at depths greater than 175m with
no other structures nearby (Figure 8). By examining the slope
map, these features shows a trail directly behind them trending
up into shallower water. This suggests that at least some amount
of slumping of the reef structure downslope has likely occurred.
This escarpment is fairly continuous and is thus indicative of
a submerged reef rather than a collapsed fragment from the

modern reef. These calculations ofH
′

SC show that this submerged
reef is a potential viable MCE community at ∼60m depth,
although likely not as diverse as the shallow modern reef based
on the proxy diversity index calculation. There is also evidence of
a feature on the northern side of the plot that is not part of this
continuous feature. At 100 m, this feature is much deeper than
the submerged reef and is inferred to be a submerged collapsed
feature, which may also act as potential deepwater habitat.

A large pile of coral rubble was discovered at the marine
reserve site at a depth of 170 m. This pile was measured to be
10m in height, with a width of nearly 300 m, and surrounded
by sand (Class 4; Figure 9). It is unlikely that this coral was
originally found at this location, as it does not display a shape
congruent with a patch reef. Although no significant break in
the shallow reef can be distinguished from the available data, it
appears to have originated in shallow water. Morton et al. (2008)
found a significant onshore ridge deposit at this location, with
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FIGURE 7 | Histogram distribution of bathymetry from all Bonaire survey locations in this study. Portions of the survey within the mesophotic zone comprise

57% of the data and are found in the depth intervals between 50–150m.

FIGURE 8 | (A) Slope map of the southern section of the Southwest Corner site (cf Figure 1) showing trails behind two the deep water reef-like features.

(B) Close-up bathymetric profile over the deep mound structure. Profile ends refer to A and A′ in panel A.

a width of 60–70m and a thickness of 3 m, consisting of mostly
pebbles to cobbles, with some sand and fine boulders. Formations
such as these are often indicative of single or multiple significant
wave events (Morton et al., 2008). If a large wave event did
create this ridge formation onshore, it is likely that substantial
damage was also done to the underwater environment, which
may have generated this large pile of coral rubble from downslope
transport.

These potentially gravity-driven slump features, whether
storm or tsunamigenic in origin, provide a transport pathway
for the movement of shallow reef species to depth and
at the very least would provide new exploitable structural
substrate for deep tolerant species to take. These pathways
could potentially allow these deposits to serve as conduits
to deeper reef banks, or to serve as refugia themselves
for any shallow water corals transported with the slump
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FIGURE 9 | (A) Backscatter mosaic map of the Marine Reserve site. (B) Slope map of the Marine Reserve site. (C) Profile of bathymetry data overlaid with a

backscatter mosaic showing a large mound, ∼10m in height, with a rough acoustically bright surface, and a horizontal width of nearly 300m.

block that are capable of still thriving at the new depths
(Bongaerts et al., 2010). Harriott and Banks (2002) and
Harris et al. (2013) found that the presence of hard substrate
was essential for coral development. Therefore, we infer
that antecedent geology, or more recent event transport
mechanisms that can introduce hard substrate at depth, may
both provide potential value to MCE development that can
be characterized by careful high-resolution remote sensing
combining sonar and camera imagery from autonomous
underwater vehicles.

One of the original hypotheses associated with this work
was that differences in the extent of MCE would be related
to the index of wave environments zones proposed by van
Duyl (1985). The eight survey sites spanned index values 4–6
according to the van Duyl classification, which covers all of the
zones on the leeward side of the island (c.f. Figure 1). There
appears to be minimal correlation between wave environment
zone and the typical observed cross-shore profiles collected at
each site (Figure 10). Slopes at almost all the locations were
relatively shallow (<5◦) until the reef break 100–125m from
shore and then dropped quite steeply (>20◦). As shown, the
profiles at each of sites can be generalized into one of two
different morphologic types (Figure 10): Type I—steep initial
slope to 50m with a minor secondary shelf break; and, Type
II—steep initial slope to 125m depth followed by a lower slope
inflection. We hypothesized that MCE features associated with
the Type I shelf form would be submerged reefs with higher

index values whereas Type II shelf forms would more likely be
collapse features with lower index values. From this analysis,
it is possible to conclude that MCE occurring in regions that
have a depth profiles similar to a Type I profile are more
likely to have greater index values than on Type II slopes.
Utilizing this approach of fusing remote sensing information
on morphology and class type to produce composite indices
provides a quantitative way to determine areas of interest
for follow-up investigation by divers or remotely operated
vehicles.

Although these newly mapped MCE are nominally below the
depth of the Bonaire MPA (60m isobath) they may represent
significant and important contributors to the health of the reef
within the MPA jurisdiction. These deep reef formations have
little direct significance to the diving tourism industry, as they fall
well-beyond the range of recreational SCUBA diving; however,
they may play a vital role to the continued health of the shallower
reef. The mesophotic zone for this study is defined as the region
between 30 and 150m and has been shown to support growth of
some coral species. The entirety of the deeper coral reef found in
Bonaire lies within this zone and has been suggested by numerous
studies (Brockovich et al., 2008; Lesser et al., 2009; Bridge et al.,
2013; Harris et al., 2013) to serve as refugia and to play an
important role in the recovery of damaged shallow water coral
reefs.

A follow-up survey of Bonaire would be beneficial as a
measure of tracking how the reef has changed since the last
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FIGURE 10 | Depth profiles from each study site along the leeward side of Bonaire with the two observed generalized shelf types based on averages

of the other profiles.

FIGURE 11 | Synthetic bottom type-diversity index, H
′

SC
for the Klein Bonaire site based on composite summary of bathymetry, rugosity, slope, and

acoustic class type. Color scale indicates magnitude of synthetic bottom-type diversity index (cf. Equation 1).

survey, especially with the damage caused by Hurricane Omar
in October 2008. Several of the significant deep water features
were located on the edge of the maps, so these areas could also
be further explored in more detail to see how the features relate

to the areas around them. These data, along with additional
coordinated onshore surveys to determine the locations of wave
deposits, could be used to better determine and study possible
extreme events that may have generated many of the features
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FIGURE 12 | Synthetic bottom type-diversity index for the Nukove Bonaire site based on composite summary of bathymetry, rugosity, slope, and

acoustic class type. Color scale indicates magnitude of synthetic bottom-type diversity index (cf. Equation 1).

FIGURE 13 | Conceptual diagram of an idealized profile of the insular shelf of Bonaire based on the AUV acoustic data and synthetic diversity maps of

mesophotic bottom types.

shown in these surveys. Similar studies could also be conducted
on the neighboring islands of Curaçao and Aruba, due to their
close proximity.

Confusion matrix based statistical analysis of the remotely
sensed geoacoustic class types provided additional insights
into the strengths and challenges associated with any form

Frontiers in Marine Science | www.frontiersin.org 12 March 2017 | Volume 4 | Article 5120

http://www.frontiersin.org/Marine_Science
http://www.frontiersin.org
http://www.frontiersin.org/Marine_Science/archive


Trembanis et al. Remote Sensing—Bonaire Mesophotic Reef

of pixel based seabed classification from automated ground
discrimitation system (AGDS) approaches such as the QTC
SWATHVIEW system employed in this study. The AGDS system
was seen to have the highest accuracy (83.4%) and reliability
(82.3%) for the hard coral class, which is a beneficial finding
for studies focused on identifying and assessing hard coral
communities. It may be inferred that the generally higher
amplitude of acoustic return and shadow created from the relief
of hard coral heads compared to other benthic class types makes
it more readily distinguishable from the other classes. It was
the “Soft Coral and Macroalgae” which had the next highest
combination of reliability and accuracy, perhaps intuitively
congruent, as this habitat type presents a structural response to
ensonificationmaking it fairly easy to distinguish. Acoustic noise,
which can come from a variety of sources including inherent
design and geometries of the sonar system and environmental
variables, showed a farily high accuracy but the lowest reliability,
meaning that it could generally be found but that it was also
readily confused with either the “Sandy Bottom” or “Coral
Rubble” classes perhaps a result of the low amplitude reflection
of the former and the somewhat scattered and specular nature
of the latter. Of importance to this study, the ADGS was able to
clearly distinguish between noise and hard coral classes with no
occurrences of noise having been classed as hard coral according
to the statistical analysis.

Ground-truthing data, including georeferenced photographs
taken closer to the seabed, should be collected to better associate
the QTC SWATHVIEW classifications with sediment type and
to derive direct species-level measurement indices of diversity to
compare to the inferred composite index developed here in this
study.

MCEs at Bonaire provide a potential buffer against pressures
such as climate change and storms. MCEs throughout the ABC
islands (Aruba, Bonaire, and Curaçao) and many others in the
Caribbean still remain largely unexamined. Further research
is required to determine the full extent and condition of the
MCE grounds both on the leeward and particularly the largely

unexplored windward portion of the island. Our results suggest
that the potential reef habitat of Bonaire may be underestimated.
Our summary finding is that geoacoustic surveys from robotic
platforms can be used to accurately discriminate between
different habitat types/ecological communities in deep waters
that are otherwise difficult to survey, and that this type of remote
sensing habitat mapping tool provides valuable information
for the management of coral reef/MCE ecosystems here and
elsewhere.
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Monitoring of the phytoplankton pigment chlorophyll-a is often used as an indicator of

eutrophication in coastal waters. Improved water quality monitoring using data sourced

from MODIS (Moderate Resolution Imaging Spectroradiometer)-sourced data allows for

infrequently sampled sites to be interrogated for long-term trends. Despite the wide

availability and good spatial and temporal coverage of MODIS data, these data have had

little use in operational coastal monitoring of chlorophyll-a in New Zealand. This is in part

due to the poor performance of global oceanic algorithms applied in the coastal waters.

Accessible algorithm tuning methods that can be validated by in situmeasurements may

assist the uptake of satellite data for coastal monitoring. This study presents results from

regional tuning and validation of two empirical algorithm approaches, including a new

simple exponential model, to estimate chlorophyll-a for two coastal locations in New

Zealand. A novel method of training chlorophyll-a models using smoothed in situ data

to match spatial scales of satellite observations was applied, and shows promise for

improving tuned model performance. This approach shows potential for lowering barriers

for researchers and coastal managers wishing to make use of the growing satellite data

resource in their coastal environments.

Keywords: remote sensing, satellite, biological oceanography, New Zealand, water quality

INTRODUCTION

Chlorophyll-a (chl-a) concentrations provide a valuable measure of phytoplankton biomass in
the marine environment. Phytoplankton biomass can provide an indicator of trophic state in
marine systems due to an association with anthropogenic nutrient pressures (Smith et al., 1999).
Consequently chl-a is commonly monitored, particularly in coastal marine environments, as part
of a wider suite of indicators (Bricker et al., 2003; Giovanardi and Vollenweider, 2004). However,
field monitoring and analysis of chl-a is a resource-intensive process which may limit the temporal
and spatial coverage of monitoring by relevant authorities.

A traditional way of monitoring chl-a in aquatic systems involves field analysis of in situ chl-a
fluorescence. For logistical reasons, field sampling is often unable to match the spatial and temporal
scale of variability in phytoplankton biomass. Since the launch of ocean-color sensors such as
the Coastal Zone Color Scanner (CZCS) in the 1970s, multispectral and hyperspectral satellite
remote sensing data are routinely processed to estimate oceanic water chl-a concentrations. Many
satellite sensors are currently available to monitor chl-a, making them potentially useful tools for
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management, but the use of the data in coastal waters requires
local calibration and validation (IOCCG, 2000).

The rewards from successful satellite algorithm development
for coastal waters are high. For example the MODIS (Moderate
Resolution Imaging Spectroradiometer) Aqua and Terra satellite
datasets have been collected daily from 1999, with some of
these data easily viewable through webtools such as Worldview
(https://worldview.earthdata.nasa.gov/) and CawthronEye
(http://www.cawthron.org.nz/apps/cawthroneye). Consequently
there is the potential to access over a decade of twice daily surface
data at a spatial resolution of about 1 km2. As well as the MODIS
datasets, there are several other accessible satellite datasets. The
MERIS (MEdium Resolution Imaging Spectrometer) instrument
offered additional insights due to a greater number of spectral
bands, and provides a template for the Ocean Land Color Imager
(OLCI) launched on Sentinel-3. However, MERIS is not currently
operational and so it has limited opportunities for calibration
to contemporary datasets. Similarly the LandSat satellites also
offer high spatial resolution (30m), but have a limited number
of relevant spectral bands for aquatic research and only a 16-day
temporal resolution. Consequently we selected MODIS satellite
data for use in this study.

In order to quantify radiance across many spectral bands,
the receiving satellite sensor relies on sunlight penetrating the
atmosphere and the surface ocean water. The incident light
will be affected by various factors in the water that interfere
and change the intensity of light of different wavelengths that
arrive at the satellite sensor. These factors include absorbance
by waterborne constituents and atmospheric aerosols and can
include other factors such as ocean surface waves or bottom
reflectance. It is these spectral modifications that can affect the
estimation of properties, such as chl-a concentrations in surface
waters.

Accurate estimation of chl-a concentration, from satellite-
sensed data cannot be tested and validated without substantial
field datasets, which equates to a large effort for an unknown
result. This is particularly true for chl-a in optically complex
coastal waters. The common issue to overcome is the overlap
in the spectral response with other water constituents such
as colored dissolved organic matter (CDOM; IOCCG, 2000).
Internationally, freely accessible satellite-derived chl-a data in
coastal waters are increasingly being used with newly developed
algorithms. However, little application of satellite data to New
Zealand coastal waters has occurred, with only a limited number
of studies undertaken for coastal monitoring (Jones et al., 2013).
We suspect the limited uptake may be associated with the risk
of unsuccessful results and lack of access to tools and advice to
assist with calibration of satellite data algorithms for estimating
chl-a in coastal waters. Indeed a recent survey study by Schaeffer
et al. (2013) identified a number of factors that limit the use of
satellite data globally.

Many algorithms have been developed for estimating chl-a
from MODIS and SeaWiFS (Sea viewing Wide Field-of-view
Sensor) data, ranging from empirical to more physically realistic
“semi-empirical” algorithm approaches. Examples of commonly
used global empirical algorithms are: the OC3M algorithm
(Carder et al., 2004) for MODIS, the OC2 and OC4 algorithms

for SeaWiFS, and the OC4Me for MERIS (O’Reilly et al., 1998,
2000; Morel et al., 2007). These algorithms have been routinely
used to process satellite images for oceanic (referred to here
as Case 1) waters (IOCCG, 2000), where phytoplankton and
their derivatives predominantly determine the optical properties
(Morel, 1988). Formost coastal and inland (Case 2) waters, where
sediments or dissolved yellow substance make an important or
dominant contribution to the optical properties (Morel, 1988),
the algorithms may fail to produce accurate estimates (Ruddick
et al., 2000; Moses et al., 2009). For more reliable estimates of chl-
a concentrations, the application of algorithms to Case 2 waters
will need to be locally validated (Kahru et al., 2014).

The present study explores the potential usage of readily
accessible MODIS multispectral data for describing chl-a
variability in coastal waters of New Zealand at two locations
(Hawke Bay and Tasman Bay; Figure 1). The study relies on
long-term near surface data collected using morred sensors to
determine in situ conditions and to investigate the suitability
of these data for satellite algorithm development in New
Zealand.

FIGURE 1 | The two New Zealand coastal regions (Tasman and Hawke

bays) that are the focus of the study are shown in the two southern

boxes with an additional Firth of Thames region (northern-most box)

which is discussed, but which is not analyzed in detail here. Mean

annual global chlorophyll-a concentrations from the Case 1 OC3M algorithm

are shown for 2012. Chlorophyll-a data were sourced at a spatial resolution of

4 km (level 3 data) from the Ocean Color website (https://oceancolor.gsfc.

nasa.gov/).
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MATERIALS AND METHODS

Satellite Data
The present study uses MODIS Aqua Level 2 (L2) data, which
can be downloaded on request from the OceanColor website
(NASA, 2013). Although MODIS Terra data products were
also available for this study, these were excluded from our
analysis due to identified issues with the data collected by this
instrument (Franz et al., 2007). MODIS Level 2 data products
have a spatial resolution of about 1 km2 and are atmospherically
corrected using the standard Near-Infrared (NIR) algorithm
for oceanic (Case 1) waters (Gordon and Wang, 1994). For
turbid coastal waters, the water-leaving radiance in the near-
infrared bands is significantly greater than zero due to suspended
particles. Applying the default atmospheric correction algorithm
can therefore lead to over-correction of the reflectance and result
in negative values for some pixels. Alternative algorithms of
atmospheric correction of Case 2 waters can improve radiance
reflectance accuracy in turbid coastal waters. For example,
using the assumption of negligible water-leaving reflectance in
the near-infrared region of the spectrum (Bailey et al., 2010).
However, this procedure would require additional processing of
less refined Level 1 (L1) data (Aiken and Moore, 1997; Ruddick
et al., 2000; Wang and Shi, 2007). Because of aims of this study
to consider accessible methods that will improve accessibility of
data, additional atmospheric processing of L1 data has not been
undertaken for this study.

The L2 data quality was checked before use by inspection of
the provided quality flags for atmosphere, land, glint and cloud
(specific flags used were: ATMFAIL, LAND, HIGLINT, HILT,
CLDICE, CHLFAIL, and ATMWARN). Any flagged data were
excluded from future analysis and remaining remote sensing
reflectance data with negative values were excluded from the
subsequent analyses.

Level 2 processed data files were sourced from the OceanColor
website and also included chl-a estimates based on a global
OC3M algorithm (Carder et al., 2004; NASA, 2013). The global
OC3M chl-a algorithm (Default OC3M) was developed for
Case 1 waters and were used for comparison with locally
calibrated chl-a algorithms (Local OC3M) developed in this
study.

Field Data
Two locations around New Zealand, Tasman Bay and Hawke
Bay (Figure 1), were assessed using available water quality data.
Several sources of time-series data frommoored sensors, and data
from discrete water sampling were used to locally calibrate and
assess the performance of satellite data algorithms.

In Tasman Bay, a 2 year dataset (April 2011 to March 2013)
was available through sensors attached to a moored monitoring
buoy named TASCAM (41.058◦S 173.091◦E, Figure 2). The
TASCAM monitoring buoy contained a fluorescent chl-a sensor
(Weblabs Eco-FLNTUS), which uses a 470/695 nm excitation-
emission frequency to characterize the fluorescent signal with
a stated chl-a sensitivity of 0.025 mg/m3. Two chl-a sensors
were used over the 2 year deployment period. Both sensors were
initially calibrated at the factory (www.wetlabs.com) on the 2nd

FIGURE 2 | Map showing the location of the TASCAM (dot) monitoring

buoy in Tasman Bay and the Motueka River to the south-east of the

buoy. Bathymetric depth contours also shown (gray lines).

of August 2010 at an ambient temperature of 22.3◦C and were
deployed from new to the TASCAM site. The second sensor
replaced the initial sensor deployment and was deployed in April
2012. Both sensors were deployed at a depth of 8m and contained
an integrated copper anti-fouling Bio-wiperTM which was closed
when no measurements were being taken to prevent fouling.
Antifouling was used on the sensor housings, with in situ diver
cleaning occurring approximately every 3 months at the site. A
60min sampling interval was used over the deployment period,
with a single fluorescent measurement reported.

Hawke Bay chl-a data was accessed from another moored
bouy, HAWQi (Hawke Bay water quality information), (39.386◦S
176.949◦E, Figure 3). This bouy was identical to TASCAM and
used the same chl-a sensor (i.e., a WETLabs Eco-FLNTUS with
an integrated anti-fouling Bio-wiperTM). The chl-a sensor was
also deployed from new with factory calibration and cleaned
with approximately three-monthly visits to the site. A single
sensor at the HAWQi buoy was deployed at a depth of 5m.
Both 30 and 60 min sampling intervals were used over the
period December 2012–October 2013, with a single florescent
measurement reported. Field accuracy of the chl-a sensor was
checked by comparing in situ readings to Van Dorn collected
seawater samples from near to the sensor. Processing of in situ
samples for chl-a concentrations were obtained following the
procedures specified by Lorenzen (1967).

Chlorophyll-a sampling for the period 2002–2013 from a
number of other locations was also collated for Hawke Bay. These
data were collected by the Hawke’s Bay Regional Council using
individual laboratory-analyzed water samples (Figure 3). Due to
issues associated with a coarse temporal sampling scale of the
data and the proximity of the sampling sites to the coast, these
data were excluded from model training. The data were instead
used to assess the skill of the algorithm for different areas of the
bay to assess the applicability of the algorithm for wider use.
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FIGURE 3 | Moored data site of the Hawke Bay water quality

information monitoring buoy (HAWQi; +), and State of the Environment

(SOE; dots) water sampled sites (3–18) used in this study. Bathymetric

depth contours also shown (gray lines).

To ensure data from themoored sensors were compatible with
the 1 km2 resolution satellite data, temporal smoothing using
a centered 6 h window moving box mean was applied to both
the reported TASCAM and HAWQi buoy data. In the case of
the TASCAM data, this equated to a moving box window of
six data points. For the higher temporal resolution sampling in
the HAWQi time series (i.e., 30min sampling), 12 data points
were averaged. The smoothing over a 6 h time window was
undertaken to approximate the 1 km2 scale of satellite estimates
by accounting for water moving past the moored sensor. The
chosen temporal widths equate to movement of 1 km for an
average water movement speed of about 4.6 cm/s.

A 6 h time window for both the Tasman andHawke bays’ buoy
data balanced the need for spatial smoothing, whilst ensuring
that the time period was not too long (i.e., greater than a day). It
was recognized that growth or grazing factors could significantly
influence the measurements if longer averaging periods were
used. Comparison with a progressive vector showed the 6 h
window was appropriate for the Tasman Bay site (Figure 4).
Comparison to current data for the Hawke Bay site was not
possible due to a current meter failure at the site, but mean depth
averaged current speeds of 5.6 cm/s observed at a nearby site
(39.319◦S, 177.090◦E) over a 3 month period imply the selected
6 h window was appropriate (Cawthron unpublished data).

While it is more common to use stringent quasi-simultaneous
and spatially collocated match-ups (Gordon and Wang, 1994;
Moses et al., 2009; Kahru et al., 2014) to increase the availability of
data for comparison, those methods can end up excluding a large
fraction of the data for comparison. This can be due to issues such
as cloud cover and adjacency to land (Kahru et al., 2014). This
approach can also introduce some bias if large gradients exist
over small spatial scales (i.e., at or less than the satellite sensor
resolution) and there exists a risk that in situmeasurements may
be matched to optically different water than was sampled (Moses
et al., 2009). Because moored sensors allow continuous sampling,

FIGURE 4 | Progressive vectors (light gray) showing estimated surface

advection length-scales over a 6 h periods at the TASCAM mooring

site. Note the ellipse shows mean advection distances over 6 h and the thin

black square shows the 1 km2 resolution of satellite data used in the study.

our approach aimed to reduce the variability that exists between
in situ point-scale measurements and 1 km2 satellite retrievals.

In order to prepare in situ samples for the smoothed model
development, a nearest temporal match of the closest satellite
data product pixel was undertaken to the mean sample time.
Typically this time difference was<1 h between the observed chl-
a satellite remote sensing time and the smoothed sensor time. But
allowance was made for time differences of <3 h either side of a
satellite observation to increase the availability of data from the
model for construction and testing. This is consistent with time
differences from other studies (Gordon and Wang, 1994; Moses
et al., 2009; Kahru et al., 2014). As a check of the smoothed-
data approach, the single closest-time datum was also used to
train separate models for comparison. However, it is important
to note that each of the closest-time and smoothed models are
predicting different parameters, specifically point-in-time chl-a
and smoothed chl-a, respectively.

Models applied in the present study used two empirical
approaches for fitting satellite remote sensing reflectance
data to observed chl-a concentrations. These models were, a
linear model, based on the OC3M algorithm (hereafter: Local
OC3M), and a novel non-linear exponential model (hereafter:
Exponential) developed for this study.

The Local OC3M takes the form of:

log10(chl a) = a0 + a1.R+ a2.R
2
+ a3.R

3
+ a4.R

4

Where R = log10(max(Rrs443, Rrs488)/Rrs555), and Rrs443,
Rrs488 and Rrs555 refer to remote sensing reflectance at the
wavebands centered on 443, 488, and 555 nm, respectively.Model
coefficients are defined as a0 to a4 in the equation.
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The model coefficients were fitted to both closest-time chl-a
and 6 h mean (smoothed) chl-a data and the corresponding
satellite remote sensing reflectance ratios (R) using the
generalized least-squares linear model fitting routine (glm) from
the R software package (R Core Team, 2014).

The remote sensing reflectance ratio, R, of the max(Rrs443,
Rrs488) to Rrs555 provides a ratio of light at the peak blue
(i.e., 443 nm) chl-a absorbance to a minimum chl-a absorbance
(555 nm). Unabsorbed light can be reflected, contributing to
the remote reflectance signal, therefore chl-a concentrations
are expected to decrease under increasing R (i.e., less 443 nm
light is absorbed and more is reflected, relative to 555 nm
light). However, phytoplankton specific absorbance is also known
to decrease non-linearly (through a power relationship) with
increasing chl-a (Bricaud et al., 1995). In order to capture this
non-linearity, a simple exponential model was also tested against
the data. This exponential model takes the form:

chl a = ae−kS

where a and k are model coefficients and S = 10R. R is the
same as defined in the OC3M linear modeling approach, so S
= max(Rrs443, Rrs488)/Rrs555. In formulating S, we chose to
remove the logarithm from R, as it is redundant in an exponential
model. Furthermore, as S will always be positive (provided
negative Rrs values are removed) this insures that chl-a estimates
cannot be less than zero, which is a benefit over the OC 4th order
polynomial approach.

Coefficients for the Exponential model were fit to both the
closest-time chl-a and 6 hmean chl-a data and the corresponding
satellite remote sensing reflectance ratios (S). Model fitting was
undertaken using the non-linear least squares (nls) model fitting
routine from the R software package (R Core Team, 2014). In the
case of the Tasman Bay data, a limited range to the chl-a data
was observed over the sampling period (maximum chl-a = 2.76
mg/m3). This was a value that is lower than the observed range of
chl-a values in the region which have been noted to be up to about
10 mg/m3 (MacKenzie and Gillespie, 1986). As the coefficient, a,
in the model provides a constraint on the maximum predictable
order to allow for model fitting to higher values in the case of
Tasman Bay a fixed value of 10 was also selected for the coefficient
a to allow prediction of maximum observed values.

For all model constructions, each dataset was split into two
parts, where two-thirds of the data were randomly selected
for model training and the remaining one-third was used for
evaluation of model performance (i.e., “test” data). Although the
initial derivation of the data split was random, the same division
of the data were used for both the closest-time and smoothed data
models to allow comparative performance to be assessed.

The accuracy of different models was assessed using several
measures used in other remote sensing (IOCCG, 2006; Moore
et al., 2009) and modeling studies (Zhang et al., 2010).
Calculation of the regression parameters for the observed vs.
derived data (i.e., slope and intercept), the deviance explained
(r square), the root mean square error (RMSE) and the average
absolute percentage error (ε) were reported for the smoothed

data, with a subset, deviance explained and RMSE only calculated
for closest match data.

The relevant calculations for RMSE and average absolute
percentage error (ε) are specified here:

RMSE =

√

1

n

∑

[log10(chl aobserved)− log10(chl aderived)]
2

ε =

1

n

∑

|chl aderived − chl aobserved|

chl aobserved
× 100

where n is sample size.
Another measure, the relative central frequency (RCF), which

reports the proportion of percentage error that lies within± 50%
of observed values, is also calculated (Zhang et al., 2010). All
analyses were conducted using the R software package (R Core
Team, 2014).

RESULTS

Results of model training to 6 h averaged and closest-time
matchups are both presented here, along with their performance
information within their respective regions. Overview statistics
for the chl-a datasets from the two regions are presented in
Table 1.

Six-Hour Mean Models
Tasman Bay

After matching TASCAM chl-a data with the corresponding
satellite remote sensing reflectance data, a total of 394 data points
were available. The two models (Local OC3M and Exponential)
were then trained on the random two-thirds of the total dataset.
TASCAM chl-a data were used as the dependent variable and the
ratios of satellite remote sensing reflectance (R) as independent
variables. Table 2 provides the summary of the output of the two
models.

Validation using the remaining one-third of the data showed
that both locally fitted models performed better than the global
Case 1 OC3M (Default OC3M) model (Figure 5). The two
local models displayed significant improvement over the global
OC3M algorithm in all performance measures used (Table 3).
For example, deviance explained increased from 0.09 for the
global algorithm to 0.49 and 0.52 for the local models. The RMSE

decreased from 0.71 for the global algorithm to ∼0.22 and 0.24
for the local algorithms. The average percentage error decreased
significantly from 465% for the global algorithm, to 48 and∼56%
for the two local algorithms (Table 3).

Comparison of predicted chl-a with field data (Figure 6)
shows that, though the model can underestimate the peaks, it
generally follows time series and therefore may be useful in
monitoring trends in the coastal water environments of the bay.
Despite the long period of deployment for the sensors at the
TASCAM site, no clear drift in sensor response was apparent over
the deployment period (Figure 6).

Hawke Bay

A total of 174 data points were used for training and testing of the
satellite models. Two-thirds of the dataset (N = 114) was used for
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model construction, and the remaining one-third (N = 58) for
the evaluation model performance. The model summary is given
in Table 4.

Model validation using the remaining one third of the
HAWQi dataset shows that both local algorithms performed
better than the global OC3Mmodel (Figure 7). Typically, the two
models achieved significantly higher deviance explained, lower
percent error (ε) and RMSE (Table 5). For example, the average
percentage error for the local OC3M model reached 32%, which
is within an acceptable upper limit of 35% (IOCCG, 2006; Moore

TABLE 1 | Statistics for the two chlorophyll-a datasets (mg/m3) used for

algorithm development.

Location

(data source)

Mean Minimum 10th

percentile

90th

percentile

Max

Tasman Bay

(TASCAM)

0.47 0.04 0.11 0.92 2.76

Hawke Bay

(HAWQi)

1.32 0.05 0.12 3.70 9.10

TABLE 2 | Summary of results of the two locally-tuned models for Tasman

Bay trained on 6 h averaged data.

Deviance

explained

Model Train Test Coefficient Estimate SE p

Local OC3M 0.45 0.48 a0 −0.339 0.022 <0.001

a1 −1.604 0.122 <0.001

a2 −0.678 0.543 0.213

a3 3.599 0.636 <0.001

a4 2.911 1.166 0.013

Exponential 0.39 0.51 a 1.552 (10) 0.128 <0.001

(0.28) (0.19) k 1.02 (3.99) 0.087 (0.1249) <0.001

SE, standard error; p, probability. Values given in parentheses for the exponential model

are for the fixed coefficient model (a = 10).

et al., 2009). Although the exponential algorithm produced a
higher average percentage error (47%) than the local OC3M
model, the exponential model exhibited less bias when compared
to in situ data from the test dataset (Figure 7, Table 5).

Comparison of the predicted time series with HAWQi buoy
data also shows that both the local models performed reasonably
well (Figure 8). The modeled chl-a was able to track observed
trends in the buoy data for most of the time series, with
the exception of a short period in September 2013 (Figure 8).
Similarly in situ seawater sample results taken beside the
sensor were generally comparable to the mooring sensor result,
highlighting the accuracy of the sensor over the deployment
period (Figure 8).

When applied to other areas of the bay using additional water
sample data from the region, the algorithms did not compare well
with the collected data at most sites (Figure 9, Table 6). Although
the two local algorithms performed better than the global OC3M
algorithm, there was a high average percentage error (Figure 9,
Table 6).

Closest-Time Models
Tasman Bay

Using the closest match data to train the two local models
produced different coefficients to the models built using
smoothed data (Table 7). Themodel performance on the test data

TABLE 3 | Comparison of accuracy of the default (global Case 1) and local

model predictions using the TASCAM monitoring buoy test dataset; n =

sample size and significance test results are shown in brackets.

Model n Intercept Slope Deviance

explained

RMSE ε RCF

Default OC3M 131 0.34 (s) 0.04 (s) 0.22 0.71 465 6

Local OC3M 131 0.03 (ns) 1.04 (ns) 0.49 0.22 48 66

Exponential 131 −0.03 (ns) 1.05 (ns) 0.52 0.24 56 60

For intercept, (s) indicates significantly different from 0; for slope, (s) indicates significantly

different from 1; for both, (ns) indicates not significant; RMSE and ε are defined in

equations (3) and (4); RCF is the relative central frequency.

FIGURE 5 | Default (global Case 1) and local model predictions vs. 6-h averaged in situ TASCAM monitoring buoy chlorophyll-a test dataset for the

three different model approaches in Tasman Bay. Note that a different scale is used for the global Default OC3M model results.
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FIGURE 6 | Comparison of the 6h averaged TASCAM monitoring buoy data with model predicted chlorophyll-a (chla) using Local OC3M (upper) and

Exponential model (lower).

TABLE 4 | Summary of the locally-tuned model outputs for the Hawke Bay

water quality information (HAWQi) monitoring buoy for the 6 h averaged

data.

Deviance explained

Model Train Test Coefficient Estimate SE p

Local OC3M 0.86 0.75 a0 0.091 0.041 0.028

a1 −2.651 0.192 <0.001

a2 −2.58 0.934 0.007

a3 2.8 0.722 <0.001

a4 5.287 2.311 0.025

Exponential 0.64 0.79 a 14.791 2.167 <0.001

k 2.217 0.227 <0.001

SE, Standard error; p, probability.

was also decreased when compared to the smoothed data models.
Specifically, deviance explained decreased from 0.48 to 0.26 for
the OC3M model and from 0.51 to 0.41 for the Exponential
model (Tables 2, 7). These results were mirrored in the RMSE
results, which also showed increases from 0.23 to 0.34 for the
OC3M model and from 0.24 to 0.28 for the Exponential model
(Table 3).

Hawke Bay

Using the closest match data also produced different coefficients
to the models built using smoothed data at the Hawke Bay site
(Table 8). However, at this site, the model performance decline
on the test data was generally less pronounced than the smoothed

data models. Specifically, deviance explained decreased from 0.75
to 0.28 for the OC3M model and from 0.51 to 0.41 for the
Exponential model (Tables 4, 8). The decrease in performance
was more pronounced in the RMSE results, which also showed
error increases from 0.17 to 0.58 for the OC3M model and 0.22
to 0.60 for the Exponential model (Table 5).

DISCUSSION

The present study compared estimates of chl-a concentrations
from freely available ocean color data (MODIS Aqua Level
2) with long-term field measurements. The study shows that
the standard global OC3M algorithm over-estimated chl-a
concentrations at all coastal study sites. The average percentage
error ranged between 150 and ∼500%. This is in agreement
with previous findings that showed that the chl-a retrievals from
standard Case 1 MODIS algorithms typically over-estimate chl-a
concentration for turbid coastal waters (Darecki and Stramski,
2004; Magnuson et al., 2004; Werdell et al., 2009). Although
the global Case 1 OC3M algorithm typically over-estimated chl-
a concentration for coastal waters in our study, it appears that
aspects of the model may still be useful in coastal environments
provided the model is locally tuned.

In the case of the two locations analyzed for this study, there
were potentially different optical regimes in place based on the
composition of the respective catchments that drain into these
locations. In the case of Tasman Bay, the site is located about 8
km from the mouth of the Motueka River (Figure 2). This river
drains a catchment with a large proportion of native vegetation
cover and subsequently high inputs of colored dissolved organic
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FIGURE 7 | Default (global Case 1) and local model predictions vs. 6 h averaged in situ HAWQi (Hawke Bay water quality information monitoring buoy)

chlorophyll-a concentrations using test dataset for the three different model approaches. Note that a different scale is used for the global Default OC3M

results.

TABLE 5 | Comparison of accuracy of the default (global Case 1) and local

model predictions using the Hawke Bay water quality information

monitoring buoy (HAWQi) test dataset; n = sample size and significance

test results are shown in brackets.

Model n Intercept Slope Deviance

explained

RMSE ε RCF

Default OC3M 58 0.28 (ns) 0.41 (s) 0.70 0.42 159 24

Local OC3M 58 0.09 (ns) 1.11 (ns) 0.77 0.17 32 80

Exponential 58 0.03 (ns) 0.95 (ns) 0.78 0.22 47 72

For intercept, (s) indicates significantly different from 0; for slope, (s) indicate significantly

different from 1; for both, (ns) indicates not significant; RMSE and ε are defined in equation

(3) and (4); RCF is the relative central frequency.

material which may affect the optical properties of the site. The
catchments around the Hawke Bay site are largely associated with
pastoral farming and the HAWQi buoy was located further away
from major rivers, consequently differing signal to noise ratios in
the chl-a response to incoming solar radiation were likely.

Modeling Approaches
Differing coefficients were observed in each model formulation,
which is due in part to both optical differences inherent at the
two sites, and the range of observed chl-a at each site. The
local OC3M model may provide a preferred approach based
on its historical use and because this model generally achieved
lower average percentage error (ε) than the exponential model
(Tables 2, 4, 5). However, the exponential model better captured
the deviance in the observations of chl-a based on a higher
deviance explained values (Tables 2, 4, 5). Such contradictions
based on different measures, shows the need for the use of several
measures to evaluate model performance and careful selection
based on relevant scientific, or management, objectives for the
data. For example, a bias error could have greater impacts on
long-term trend analysis.

While the simple exponential model applied in this study does
not have the historical use of the OC3M approach, it is clear

that it has a similar performance and there are fewer degrees of
freedom. The reduced flexibility for fitting the exponential model
implies that it would be less likely to result in statistical over-
fitting of the model. This is consistent with the results presented
here, which show that deviance explained for the exponential
model is higher in both test dataset results (i.e., Tables 2, 4) and

with the results of the comparison with independent datasets.
Given the similar performance of the empirical approaches across
the two case studies presented, we consider that local calibration
of the exponential model is potentially a more robust approach
to construction of empirical locally calibrated chl-a models. As
indicated by the results of a naïve fitting of the exponential model
to the Tasman Bay data, clearly any model needs to be checked
for its relevance to the region of interest. In the case of the
Tasman Bay, the Exponential model will only able to estimate chl-
a concentrations up to 1.55mg /m3 (i.e., the a coefficient value),
this is limited when compared to measured historical maxima of
10mg chl-a/m3 (MacKenzie and Gillespie, 1986).

Fitting using an informed coefficient may be one way to
avoid this issue; however comparison of the two exponential
models constructed for Tasman Bay shows a coincident reduction
in the deviance explained by a second model which used
a fixed coefficient (Table 2). Consequently, this method may
be appropriate for producing a useful model in the absence
of representative data, but should ideally be updated as
more representative data become available. Setting a bounded
maximum in the model also further reduces the degrees of
freedom for the fitting process, potentially further reducing over-
fitting. While a value of 10mg chl-a/m3 has been used in Tasman
Bay, it is possible that higher concentrations could also have
occurred but have not been recorded. Therefore, the use of
predetermined fixed coefficients appropriate to the environments
of the models (e.g., oligiotrophic coastal temperate, eutrophic
coastal tropical environments etc.) could be considered. For
example, the Hawkes Bay Exponential model also has an artificial
limit (14.79mg chl-a/m3; Table 4); while this is a reasonable
limit for this region, the model will not be able to resolve higher
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FIGURE 8 | Comparison of 6 h averaged HAWQi data with predicted chlorophyll-a (chla) concentrations using Local OC3M model (upper) and

Exponential model (lower). Also shown is the field sampled data (+) collected from beside the chlorophyll-a sensor at the site.

FIGURE 9 | Default (global Case 1) and local model predictions vs. 6 h averaged in situ State of the Environment (SOE) chlorophyll-a concentrations

for the three different model approaches. Note: the different scale for the global OC3M comparison.

concentrations. Therefore, pre-classification of the environment
and the use of an appropriate coefficient for the environment
under consideration may be a worthwhile undertaking. The
use of predetermined coefficients has the potential to introduce
some bias to the tuning process, but the incorporation of this
prior knowledge could also yield some benefits to the models.
Consequently, while it is worthy of future research, it is not
possible to recommend this approach at this time.

The Effect of Spatial Smoothing on Model
Training
Despite the issues noted in the modeling of the Tasman Bay site,
the results of the effects of smoothing were consistently better
across both models and sites. Improved model fit to test data was

seen at the TASCAM and HAWQi sites, with better performance
observed in both the RMSE and deviance explained performance
measures. However, the effect differed at the two sites, suggesting
that the benefits may vary. For this reason we would recommend
training both smoothed and closest-time models and selecting
the best performing model against independent data.

Accuracy of the Models
In considering the measured performance of the algorithms
against in situ sensor data, it is important to recognize that
the fluorescence data are themselves an estimate of the “true”
chl-a concentrations at the sites. The sensors in this study were
factory calibrated and new at the time of deployment and we
saw no evidence of issues that can affect the accuracy of in situ
fluorometric sensors (e.g., quenching, fouling etc.). However, the
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TABLE 6 | Model comparison with Hawke Bay water sample data; n = sample size and significance test results are shown in brackets.

Site n Model Intercept Slope Deviance explained RMSE (mg chl-a/m3) ε(%) RCF (%)

3 37 Default OC3M 0.63(s) 0.13(s) 0.19 0.53 246 14

Local OC3M 0.41(s) 0.43(s) 0.26 0.32 83 41

Exponential 0.34(ns) 0.38(s) 0.25 0.37 123 14

4 34 Default OC3M 0.40(s) 0.13(ns) 0.68 0.76 2,054 15

Local OC3M 0.14(ns) 0.54(ns) 0.51 0.54 1,045 35

Exponential 0.08(ns) 0.47(ns) 0.5 0.65 1,515 29

5 30 Default OC3M 0.96(s) 0.06(s) 0.12 0.61 346 7

Local OC3M 0.09(ns) 0.64(ns) 0.31 0.31 97 43

Exponential 0(ns) 0.56(s) 0.29 0.39 141 23

6 36 Default OC3M 0.95(s) 0.07(s) 0.12 0.75 3,784 14

Local OC3M 0.39(ns) 0.52(s) 0.23 0.57 2,203 36

Exponential 0.33(ns) 0.45(s) 0.21 0.62 2,925 33

7 33 Default OC3M 0.81(ns) 0.26(s) 0.35 0.52 240 21

Local OC3M −2.32(s) 2.16(s) 0.73 0.29 80 48

Exponential −2.52(s) 1.82(s) 0.8 0.34 109 45

8 36 Default OC3M 0.29(s) 0.16(s) 0.55 0.49 205 14

Local OC3M 0.29(s) 0.32(s) 0.54 0.27 69 44

Exponential 0.25(s) 0.28(s) 0.55 0.36 113 19

9 28 Default OC3M 0.93(s) 0.04(s) 0.01 0.84 767 4

Local OC3M 0.68(ns) 0.23(s) 0.02 0.58 288 25

Exponential 0.64(ns) 0.20(s) 0.02 0.65 381 11

Overall 234 Default OC3M 0.66(s) 0.13(ns) 0.2 0.65 1,121 13

Local OC3M −0.18(ns) 0.87(ns) 0.34 0.43 572 39

Exponential −0.35(ns) 0.78(ns) 0.37 0.5 768 25

For intercept, (s) indicates significantly different from 0; for slope, (s) indicates significantly different from 1; for both, (ns) indicates not significant. RMSE and ε are defined in equations

(3) and (4); RCF is the relative central frequency (only sample size <10 were included for the model validation).

TABLE 7 | Summary of results of the two locally-tuned models for Tasman

Bay trained on closest-time data.

Deviance explained

Model Train Test Coefficient Estimate SE p

Local OC3M 0.49 0.26 a0 −0.3313 0.025 <0.001

a1 −0.8497 0.064 <0.001

a2 −0.3866 0.130 0.003

a3 0.4779 0.075 <0.001

a4 0.2391 0.058 <0.001

Exponential 0.37 0.41 a 1.6287 0.240 <0.001

k 1.0347 0.157 <0.001

SE, Standard error; p, probability.

quality of these underlying data is critical and the differences in
the resulting parameterization of the models suggests that there
are optical differences between sites. This does not appear to have
affected our results (and we aim to study the underlying optical

TABLE 8 | Summary of locally-tuned model output for the HAWQi

monitoring buoy trained on closest-time data.

Deviance explained

Model Train Test Coefficient Estimate SE p

Local OC3M 0.87 0.28 a0 0.01274 0.0409 0.756

a1 −2.95666 0.1995 <0.001

a2 −1.9285 0.956 0.047

a3 3.38598 0.735 <0.001

a4 4.04635 2.363 0.091

Exponential 0.68 0.73 a 16.6099 2.280 <0.001

k 2.4437 0.224 <0.001

SE, Standard error; p, probability.

regimes in more detail in future), but we offer this modeling
approach as a first step to allow naïve tuning of readily available
satellite data to existing datasets.
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The accuracy of the local models in the present study
significantly improved on the results of the standard Case 1
OC3M algorithm, particularly in the case of Tasman and Hawke
bays. In Hawke Bay, the Local OC3M algorithm achieved an
average error of 32%. This is within the lower limit for the
margin of error set by NASA for retrieving chl-a of within 35%
accuracy for the global open oceans (Hooker et al., 1992; Le et al.,
2013). The Hawke Bay water sample dataset comparison showed
average errors in the range of 40–60%, but were of limited use
due to reasons stated previously (e.g., turbid near shore locations,
point-in-time samples). Despite the issues, it was interesting to
see that the model estimates for some of the Hawke Bay sites (e.g.,
sites 7 and 8;Table 6) still comparedwell to data. These results are
comparable to the accuracy achieved in other studies for turbid
waters (Le et al., 2013) and better than those reported by Shang
et al. (2014), where the average percent errors from locally-tuned
algorithms were typically in the range of 60–130%. Consequently,
the algorithms developed for the HAWQi site presented in this
study can be considered satisfactory for future use. Although the
Exponential model for the TASCAM site achieved a satisfactory
error metric, unfortunately a lack of representative data from a
wide range of conditions means that the model is likely only to be
accurate for low chl-a conditions. While we have only presented
results from two sites, the algorithm fitting approaches presented
here will be useful for other coastal water investigations.

The modeling approach presented here (i.e., Tasman Bay and
Hawke Bay) generally performed well at the locations and data
they were tuned to, but the application of the approach to another
region located in the North of New Zealand (the Firth of Thames;
Figure 1) was not successful. The Firth of Thames is a similar
environment to the Tasman and Hawke bays, but the main
difference was that Firth of Thames chl-a data was provided from
15m vertically-integrated seawater samples taken at fortnightly
and monthly frequencies (Jones et al., 2013). Despite a lack of
high temporal resolution fluorometric data, available data for
the Firth of Thames were plentiful and were comprised of lab
analyzed water samples for the period 2002 to 2013, which
equated to about 1,300 samples across five sites. The results of
Firth of Thames are not presented here, but we note that the
results of a similar study (Jones et al., 2013) yielded a model with
a low deviance explained (0.15).

We consider a likely explanation for the difficulty in training
accurate models at the Firth of Thames site was the lack of higher
frequency data available at that time. The field data for Tasman
and Hawke bays were collected continuously at least every hour
and could therefore either be smoothed to approximate the
spatial resolution of the satellite (i.e., 1 km2), or closely matched
in time. This was not possible with the data available in the
Firth of Thames. In this regard, it appears continuous buoy
data can facilitate local satellite algorithm development, ideally
with lab-processed data used to check sensor accuracy. The
difficulty of matching in-water data to satellite observations in
dynamic coastal regions has been extensively discussed (e.g.,
Gordon andWang, 1994), with issues arising from both temporal
matchups and spatial variability at a subpixel (<300 m) level.
While temporal smoothing, or closer time matching, of the buoy
data does not solve all of these issues, it may help to match

spatial and temporal variability in regions where more restrictive
criteria (Bailey andWerdell, 2006; Kahru et al., 2014) would limit
potential matchups.

Uptake of Satellite Data in the New
Zealand Context
Several factors may have prevented wider application of the
freely accessible satellite data for coastal waters around New
Zealand. While chl-a data for Case 1 coastal waters are
readily available, our research shows these are not applicable
to the Case 2 coastal waters around New Zealand without
additional tuning. Several specific Case 2 algorithms have been
developed for other studies that have successfully improved
chl-a data retrieval for coastal waters (Ahn and Shanmugam,
2006; Cannizzaro and Carder, 2006; Shanmugam, 2011; Simon
and Shanmugam, 2012; Le et al., 2013). While these models
were successful, they are regionally specific and may be
complex to calibrate locally without specialist equipment and
additional targeted studies. Consequently we propose alternate
methods that may allow use of existing long-term datasets to
begin to unlock previously under-utilized historical data from
satellites.

Development of generalized algorithms applicable for coastal
waters in different regions requires not only an understanding of
the optical properties of phytoplankton, but also other particles
and dissolvedmaterial. This can be problematic, as it may involve
greater resource requirements; e.g., collection of concurrent in
situ measurements of pigment concentration and radiometric
reflectance (IOCCG, 2000). As a result, the potentially invaluable
information provided by satellite reflectance has not been widely
utilized in New Zealand to date. It also seems that this is a
wider issue than just New Zealand, as recognized by Schaeffer
et al. (2013) who note that more effort is required to ensure that
managers are aware of the value in the data, and that real and
perceived hurdles need to be overcome to improve the uptake of
remotely sensed data.

Our study provides evidence of some successful outcomes
based on two case studies in New Zealand and that local
calibration of empirical chl-a algorithms from pre-processed
L2 data products is feasible in New Zealand coastal waters.
It also shows that these locally calibrated algorithms may be
validated in new regions with optically different properties.
Furthermore, the methods we have employed can be achieved
using readily accessible techniques and freely available software
reducing barriers to the use of the data.

Local calibration of chl-a model in coastal environments may
be more likely to succeed if the following recommendations are
considered:

• If possible, use high temporal resolution data (at least hourly)
to improve the availability of data for model training.

• In situ data should be collected across all seasons (i.e., a year)
to ensure a wide range of local optical conditions are observed
for model building.

• In situ collection depths are important, because satellite
sensors only provide optical information from surface waters.
Where coastal waters are turbid and stratified, measurements
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will need to be close to the surface, but if possible multiple
depths should be collected to assess vertical variability.

• Bottom reflections in shallow water have the potential to
complicate algorithm development. Similar issues may also
occur in turbid waters, with Raman scattering of about
8% previously reported (Gupta, 2015). For this reason data
collection for algorithm development should be carried out
in optically deep waters (i.e., low reflection and scattering) if
possible.

• Empirical fitting of the OC3M algorithm may be prone to
over-fitting when compared to a simpler exponential model
presented in this study. This could limit its use outside of the
training period and location; consequently testing on a leave-
out (or “test”) or completely independent dataset is highly
recommended.

• The use of the simple exponential model approach is
recommended given it generally performed better than a
locally calibrated OC3M algorithm with the same data.

• Even if a reasonable level of fit is achieved to reflectance ratio
data, assess the utility of themodel for estimating the full range
of conditions in the region should be assessed, not just the
period of data for which the model was trained.

• If high temporal resolution data are available, consider
averaging the data to match the spatial-scales for model
building and compare to a closest-time approach. While
our results differed between sites and the model applied,
smoothing generally improved our models when compared to
independent data.

Future Implications
Successful calibration of satellite data over ∼1 year potentially
offers access to over a decade of data at daily (or more frequent)
temporal resolution. Using the methods presented here, long-
term trends in chl-a concentrations can be interrogated at sites
that have perhaps been poorly sampled in the past. Because chl-
a is a common indicator of primary production and symptoms
of eutrophication, this information can then provide important
insights into coastal health.

In the case of New Zealand, expansion of land-based farming
is leading to large changes in the flow of nutrients to coastal
environments (e.g., Heggie and Savage, 2009). These new
pressures have the potential to affect the health of downstream
coastal waters, but historical environment monitoring records
are limited in their spatial and temporal extent. In order to
allow for improved planning decisions on land and in the sea,
long-term reliable datasets at many locations will be required
to ensure that trends can be detected early and managed
appropriately. Consequently remotely-sensed satellite data will
play an increasingly important role in providing ongoing
information on the state of surface waters for New Zealand. The
initial studies presented here highlight that existing field datasets
may be able to help assist in unlocking satellite data for such
purposes. However, ideally empirical modeling methods (such
those presented here) should be continued to be improved upon,
as resources and data become available. This will ensure that
modeled datasets are robust outside of both the times and areas
that they are tuned for.

CONCLUSIONS

Simplified methods for regional tuning of satellite algorithms
that can produce comparable water quality results to in situ
samples are required to improve the uptake of satellite data for
coastal monitoring. This study presents results from the local
calibration and validation of two empirical algorithm approaches
for chl-a, including a simple exponential model developed for
this study. There appear to be benefits from the novel method
of training the models to spatially-matched data scales, which
suggests this approach is worth considering if the available data
are appropriate for this purpose. Key to this approach is the use
of high-frequency data from moored sensors, which can help to
overcome issues with match-up limitations that have previously
documented in highly dynamic coastal regions (Gordon and
Wang, 1994; Kahru et al., 2014).

Good performance of a simple empirical model trained
from high frequency data from moored sensors and standard
satellite reflectance products illustrates that local calibration and
operational use of readily available satellite data products for
coastal waters is feasible. Further research and data collection
will be required to more fully validate the methods presented
in this study, but we note that pragmatic advice to assist in the
application and use of satellite data in coastal waters is currently
limited which could restrict the uptake of these valuable datasets.
While successful calibration cannot always be guaranteed for
satellite datasets, we have identified simple steps that appear to
improve model performance.

AUTHOR CONTRIBUTIONS

WJ undertook the majority of statistical analysis of this work,
the production of figures and initially suggested the use of
simpler models for development in this project consequently his
efforts have been recognized with primary authorship for this
paper. Recent health issues have limited WJ’s recent involvement
in this work, nevertheless he has read and accepted this
submission. BK has undertaken the majority of the writing
for this manuscript and has helped guide the development
of the work undertaken in the study. CC has contributed to
sections in this submission and acted in an oversight role. PB
was responsible for the data collection used in this study and
the methods associated with this submission. The efforts of
RK have mirrored that of CC and he has brought an large
amount background knowledge to this study. Early versions of
this manuscript also drew on RK’s extensive knowledge of US
datasets with which model were tested against truly independent
datasets. Although these data were ultimately removed, they
helped provide all authors with additional confidence to
progress with publishing this work and represent a significant
contribution.

FUNDING

Cawthron Institute Internal Investment Fund (Grant
Number 15954) provided the majority of funding for this
work.

Frontiers in Marine Science | www.frontiersin.org 12 May 2017 | Volume 4 | Article 15134

http://www.frontiersin.org/Marine_Science
http://www.frontiersin.org
http://www.frontiersin.org/Marine_Science/archive


Jiang et al. Simplified MODIS Tuning for Chlorophyll-a

ACKNOWLEDGMENTS

NASA and the team at the Ocean Biology Processing Group
(OBPG) are thanked for the provision of theMODIS satellite data
used in this study and the tools used to acquire these data. Kent
Headley, Paul Cohen, and the rest of the team at the Monterey
Bay Aquarium Research Institute are thanked for their time and
assistance in developing the technology used in the TASCAM and
HAWQi buoy platforms. Waikato Regional Council, particularly
Hilke Giles and the late Vernon Pickett are thanked for their
support of the initial research that was applied to the Firth
of Thames in which many of the methods developed in this
paper where initially established. The Hawke’s Bay Regional
Council, particularly Oliver Wade and Anna Madarasz-Smith
are thanked for the timely provision of data and support in the

initial HAWQi model development. The Ministry for Business
Innovation and Employment Envirolink programme provided
support for aspects of the Hawke Bay research (Grant number:
1436-HBRC199). We wish to thank the Wilsons Bay Area A
Consortium for their provision of data used in Jones et al.
(2013), while these data are not presented in this study it proved
helpful for identifying the shortcomings of coarse temporal
measurements in satellite model development. Preparation of
this paper was supported by the Cawthron Institute Internal
Investment Fund and the Ministry of Business Innovation
& Employment Catalyst Leaders Fund (Grant number: ILF-
CAW1601). Lastly we would like to thank Dr Paul Gillespie and
Gretchen Rasch for their valuable comments on the drafts of this
paper, and the efforts of peer reviewers and editorial staff that
have contributed to this publication.

REFERENCES

Ahn, Y. H., and Shanmugam, P. (2006). Detecting the red tide blooms from satellite

ocean color observations in optically complex Northeast—Asia Coastal waters.

Remote Sens. Environ. 103, 419–437. doi: 10.1016/j.rse.2006.04.007

Aiken, J., and Moore, G. (1997). MERIS algorithm Theoretical Basis Document:

Case 2 (S) Bright Pixel Atmospheric Correction, Rep. PO-TN-MEL-GS-0005,

Plymouth Marine Laboratory, Plymouth.

Bailey, S. W., Franz, B. A., and Werdell, P. J. (2010). Estimation of near-infrared

water-leaving reflectance for satellite ocean color data processing. Opt. Express

18, 7521–7527. doi: 10.1364/OE.18.007521

Bailey, S. W., and Werdell, P. J. (2006). A multi-sensor approach for the on-orbit

validation of ocean color satellite data products. Remote Sens. Environ. 102,

12–23. doi: 10.1016/j.rse.2006.01.015

Bricaud, A., Babin, M., Morel, A., and Claustre, H. (1995). Variability in the

chlorophyll-specific absorption coefficients of natural phytoplankton: analysis

and parameterization. J. Geophys. Res. 13, 321–13, 332. doi: 10.1029/95jc00463

Bricker, S., Ferreira, J., and Simas, T. (2003). An integrated methodology

for assessment of estuarine trophic status. Ecol. Model. 169, 39–60.

doi: 10.1016/S0304-3800(03)00199-6

Cannizzaro, J. P., and Carder, K. L. (2006). Estimating chlorophyll a concentrations

from remote-sensing reflectance in optically shallow waters. Remote Sens.

Environ. 101, 13–24. doi: 10.1016/j.rse.2005.12.002

Carder, K. L., Chen, F. R., Cannizzaro, J. P., Campbell, J. W., and

Michell, B. G. (2004). Performance of the MODIS semi-analytical

ocean color algorithm for chlorophyll-a. Adv. Space Res. 33, 1152–1159.

doi: 10.1016/S0273-1177(03)00365-X

Darecki, M., and Stramski, D. (2004). An evaluation of MODIS and SeaWiFS

bio-optical algorithms in the Baltic Sea. Remote Sens. Environ. 89, 326–350.

doi: 10.1016/j.rse.2003.10.012

Franz, B. A., Kwiatkowska, E. J., Meister, G., and McClain, C. R. (2007).

“Utility of MODIS-Terra for ocean color applications,” in Proc. SPIE

6677, Earth Observing Systems, XII, 66770Q (San Diego, CA). Available

online at: http://spie.org/Documents/ConferencesExhibitions/SPIE-Optics-

and-Photonics-2007-Final.pdf

Giovanardi, F., and Vollenweider, R. A. (2004). Trophic conditions of marine

coastal waters: experience in applying the trophic index TRIX to two

areas of the Adriatic and Tyrrhenian seas. J. Limnol. 63, 199–218.

doi: 10.4081/jlimnol.2004.199

Gordon, H. R., and Wang, M. (1994). Retrieval of water-leaving radiance

and aerosol optical thickness over the oceans with SeaWiFS: a preliminary

algorithm. Appl. Opt. 3, 443–452. doi: 10.1364/ao.33.000443

Gupta, M. (2015). Contribution of Raman scattering in remote sensing retrieval

of suspended sediment concentration by empirical modeling. IEEE J-STARS 8,

398–405. doi: 10.1109/jstars.2014.2361336

Heggie, K., and Savage, C. (2009). Nitrogen yields from New

Zealand coastal catchments to receiving estuaries. N. Z. J. Mar.

Freshwater Res. 43, 1039–1052. doi: 10.1080/00288330.2009.

9626527

Hooker, S. B., Esaias, W. E., Feldman, G. C., Gregg, W. W., and McClain, C. R.

(1992). An Overview of SeaWiFS and Ocean Color. NASA Tech. Memo., Vol.

104566. National Aeronautics and Space Administration, Goddard Space Flight

CenterGreenbelt, M. D.

IOCCG (2000). “Remote sensing of ocean colour in coastal, and other optically-

complex waters,” in Reports of the International Ocean Colour Coordinating

Group No. 3, ed S. Sathyendranath (Dartmouth, NS: IOCCG), 1–140.

IOCCG (2006). “Remote sensing of inherent optical properties: Fundamentals,

tests of algorithms, and applications,” in Reports of the International Ocean-

Colour Coordinating Group, No. 5, ed Z. P. Lee (Dartmouth, NS: IOCCG),

1–126.

Jones, K., Jiang, W. M., and Knight, B. R. (2013). A Review of Sources and

Applications of Satellite Data for Coastal Waters of the Waikato region. Prepared

for Waikato Regional Council. Cawthron Report No. 2334.

Kahru, M., Kudela, R. M., Anderson, C. R., Manzano-Sarabia, M., and Mitchell,

B. G. (2014). Evaluation of satellite retrievals of ocean chlorophyll-a in the

California Current. Remote Sens. 6, 8524–8540. doi: 10.3390/rs6098524

Le, C. F., Hu, C. M., English, D., Cannizzaro, J., Chen, Z. Q., Feng,

L., et al. (2013). Towards a long-term chlorophyll-a data record in a

turbid estuary using MODIS observations. Progr. Oceanogr. 109, 90–103.

doi: 10.1016/j.pocean.2012.10.002

Lorenzen, C. J. (1967). Vertical distribution of chlorophyll and phaeopigments:

Baja California. Deep-Sea Res. 14, 735–745.

MacKenzie, A., and Gillespie, P. (1986). Plankton ecology and productivity,

nutrient chemistry, and hydrography of Tasman Bay, New Zealand, 1982–1984.

N. Z. J. Mar. Freshwater Res. 20, 365–395. doi: 10.1080/00288330.1986.9516158

Magnuson, A., Harding, L. W., Mallonee, M. E., and Adolf, J. E. (2004). Bio-optical

model for Chesapeake Bay and the Middle Atlantic Bight. Estuar. Coast. Shelf.

S. 61, 403–424. doi: 10.1016/j.ecss.2004.06.020

Moore, T. S., Campbell, J. W., and Dowell, M. D. (2009). A class-based approach to

characterizing and mapping the uncertainty of the MODIS ocean chlorophyll

product. Remote Sens. Environ. 113, 2424–2430. doi: 10.1016/j.rse.2009.07.016

Morel, A. (1988). Optical modeling of the upper ocean in relation to its

biogenous matter content(case I waters). J. Geophys. Res. 93, 749–710.

doi: 10.1029/jc093ic09p10749

Morel, A., Huot, Y., Gentili, A., Werdell, P. J., Hooker, S. B., and Franz, B. A.

(2007). Examining the consistency of products derived from various ocean

color sensors in open ocean (Case 1) waters in the perspective of a multi-sensor

approach. Remote Sens. Environ. 111, 69–88. doi: 10.1016/j.rse.2007.03.012

Moses, W. J., Gitlson, A. A., Berdnikow, S., and Povazhnyy, V. (2009).

Estimation of chlorophyll-a concentration in case II waters using MODIS

and MERIS data – successes and challenges. Environ. Res. Lett. 4, 1–8.

doi: 10.1088/1748-9326/4/4/045005

NASA (2013). Goddard Space Flight Center Ocean Biology Distributed Active

Archive Center. MODIS-Aqua Level 2 Ocean Color Data, Reprocessing version

Frontiers in Marine Science | www.frontiersin.org 13 May 2017 | Volume 4 | Article 15135

https://doi.org/10.1016/j.rse.2006.04.007
https://doi.org/10.1364/OE.18.007521
https://doi.org/10.1016/j.rse.2006.01.015
https://doi.org/10.1029/95jc00463
https://doi.org/10.1016/S0304-3800(03)00199-6
https://doi.org/10.1016/j.rse.2005.12.002
https://doi.org/10.1016/S0273-1177(03)00365-X
https://doi.org/10.1016/j.rse.2003.10.012
http://spie.org/Documents/ConferencesExhibitions/SPIE-Optics-and-Photonics-2007-Final.pdf
http://spie.org/Documents/ConferencesExhibitions/SPIE-Optics-and-Photonics-2007-Final.pdf
https://doi.org/10.4081/jlimnol.2004.199
https://doi.org/10.1364/ao.33.000443
https://doi.org/10.1109/jstars.2014.2361336
https://doi.org/10.1080/00288330.2009.9626527
https://doi.org/10.3390/rs6098524
https://doi.org/10.1016/j.pocean.2012.10.002
https://doi.org/10.1080/00288330.1986.9516158
https://doi.org/10.1016/j.ecss.2004.06.020
https://doi.org/10.1016/j.rse.2009.07.016
https://doi.org/10.1029/jc093ic09p10749
https://doi.org/10.1016/j.rse.2007.03.012
https://doi.org/10.1088/1748-9326/4/4/045005
http://www.frontiersin.org/Marine_Science
http://www.frontiersin.org
http://www.frontiersin.org/Marine_Science/archive


Jiang et al. Simplified MODIS Tuning for Chlorophyll-a

2013.1, NASA OB.DAAC. Available online at: https://oceancolor.gsfc.nasa.gov/

(Accessed Nov 4, 2013).

O’Reilly, J. E., Maritorena, S., Siegel, D., and O’Brien, M. C. (2000). “Ocean

color chlorophyll a algorithms for SeaWiFS, OC2, and OC4: version

4,” in SeaWiFS Postlaunch Technical Report Series, Vol. 11, SeaWiFS

Postlaunch Calibration and Validation Analyses, Part 3, eds S. B. Hooker

and E. R. Firestone (Greenbelt, MA: NASA Goddard Space Flight Center),

9–23.

O’Reilly, J., Maritorena, S., Mitchell, B. G., Siegel, D., Carder, K. L., Garver, S., et al.

(1998). Ocean color chlorophyll algorithms for SeaWiFS. J. Geophys. Res. 103,

24937–24953.

R Core Team (2014). R: A Language and Environment of Statistical Computing.

Vienna: R Foundation for Statistical Computing. Available online at:

http://www.R-project.org/

Ruddick, K. G., Ovidio, F., and Rijkeboer, M. (2000). Atmospheric correction of

SeaWiFS imagery for turbid coastal and inland waters. Appl. Opt. 39, 897–912.

doi: 10.1364/AO.39.000897

Schaeffer, B. A., Schaeffer, K. G., Keith, D., Lunetta, R. S., Conmy, R.,

and Gould, R. W. (2013). Barriers to adopting satellite remote sensing

for water quality management. Inter. J. Remote Sens. 34, 7534–7544.

doi: 10.1080/01431161.2013.823524

Shang, S. L., Dong, Q., Hu, C. M., Lin, G., Li, Y. H., and Shang, S.

P. (2014). On the consistency of MODIS chlorophyll a products in the

northern South China Sea. Biogeosciences 11, 269–280. doi: 10.5194/bg-11-2

69-2014

Shanmugam, P. (2011). A new bio-optical algorithm for the remote sensing

of algal blooms in complex ocean waters. J. Geophys. Res. 116, 1–12.

doi: 10.1029/2010jc006796

Simon, A., and Shanmugam, P. (2012). An algorithm for classification of algal

bloom using MODIS Aqua data in oceanic waters around India. Adv. Remote

Sens. 1, 35–51. doi: 10.4236/ars.2012.12004

Smith, V., Tilman, G., and Nekola, J. (1999). Eutrophication: impacts of excess

nutrient inputs on freshwater, marine, and terrestrial ecosystems. Environ.

Pollut. 100, 179–196. doi: 10.1016/S0269-7491(99)00091-3

Wang, M., and Shi, W. (2007). The NIR-SWIR combined atmospheric

correction approach for MODIS ocean color data processing. Opt. Express 15,

15722–15733. doi: 10.1364/oe.15.015722

Werdell, P. J., Bailey, S. W., Franz, B. A., Harding, L. W. Jr., Feldman, G. C.,

and McClain, C. R. (2009). Regional and seasonal variability of chlorophyll-a

in Chesapeake Bay as observed by SeaWiFS and MODIS-Aqua. Remote Sens.

Environ. 113, 1319–1330. doi: 10.1016/j.rse.2009.02.012

Zhang, A., Hess, K. W., and Aikman, F. (2010). User-based skill assessment

techniques for operational hydrodynamic forecast systems. J. Oper. Oceanogr.

3, 11–24. doi: 10.1080/1755876x.2010.11020114

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2017 Jiang, Knight, Cornelisen, Barter and Kudela. This is an open-

access article distributed under the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or reproduction in other forums is permitted,

provided the original author(s) or licensor are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Marine Science | www.frontiersin.org 14 May 2017 | Volume 4 | Article 15136

https://oceancolor.gsfc.nasa.gov
http://www.R-project.org/
https://doi.org/10.1364/AO.39.000897
https://doi.org/10.1080/01431161.2013.823524
https://doi.org/10.5194/bg-11-269-2014
https://doi.org/10.1029/2010jc006796
https://doi.org/10.4236/ars.2012.12004
https://doi.org/10.1016/S0269-7491(99)00091-3
https://doi.org/10.1364/oe.15.015722
https://doi.org/10.1016/j.rse.2009.02.012
https://doi.org/10.1080/1755876x.2010.11020114
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Marine_Science
http://www.frontiersin.org
http://www.frontiersin.org/Marine_Science/archive


ORIGINAL RESEARCH
published: 19 June 2017

doi: 10.3389/fmars.2017.00189

Frontiers in Marine Science | www.frontiersin.org 1 June 2017 | Volume 4 | Article 189

Edited by:

Astrid Bracher,

Alfred-Wegener-Institute Helmholtz

Center for Polar and Marine Research,

Germany

Reviewed by:

Hongyan Xi,

Helmholtz-Zentrum Geesthacht

Centre for Materials and Coastal

Research (HZG), Germany

Guoqing Wang,

University of Massachusetts System,

United States

*Correspondence:

John R. Moisan

john.r.moisan@nasa.gov

†
Deceased 5 June, 2016.

Specialty section:

This article was submitted to

Ocean Observation,

a section of the journal

Frontiers in Marine Science

Received: 31 March 2017

Accepted: 31 May 2017

Published: 19 June 2017

Citation:

Moisan TA, Rufty KM, Moisan JR and

Linkswiler MA (2017) Satellite

Observations of Phytoplankton

Functional Type Spatial Distributions,

Phenology, Diversity, and Ecotones.

Front. Mar. Sci. 4:189.

doi: 10.3389/fmars.2017.00189

Satellite Observations of
Phytoplankton Functional Type
Spatial Distributions, Phenology,
Diversity, and Ecotones
Tiffany A. Moisan 1 †, Kay M. Rufty 2, John R. Moisan 1* and Matthew A. Linkswiler 3

1Wallops Flight Facility, NASA Goddard Space Flight Center, Wallops Island, VA, United States, 2Global Science and

Technology, Inc., Wallops Flight Facility, NASA Goddard Space Flight Center, Wallops Island, VA, United States, 3 AECOM,

Wallops Flight Facility, NASA Goddard Space Flight Center, Wallops Island, VA, United States

Phytoplankton functional diversity plays a key role in structuring the ocean carbon

cycle and can be estimated using measurements of phytoplankton functional type

(PFT) groupings. Concentrations of 18 phytoplankton pigments were calculated using

a linear matrix inversion algorithm, with an average r2 value of 0.70 for all pigments with

p-values below the statistical threshold of 0.05. The inversion algorithm was then used

with a chlorophyll-based absorption spectra model and Moderate Resolution Imaging

Spectroradiometer (MODIS-Aqua) chlorophyll observations to calculate phytoplankton

pigment concentrations in an area of the Atlantic Ocean off the United States east coast.

Pigment distributions were analyzed to assess the distribution of PFTs. Five unique PFTs

were found and delineated into three distinct offshore, transition, and open ocean groups.

Group 1 (Diatoms) had highest abundance along the coast. Group 2 (prymnesiophytes,

prokaryotes, and green algae) was a year-round stable offshore community that extended

at reduced levels into the coast. Group 3 (dinoflagellates) dominated offshore between

the Groups 1 and 2. Phytoplankton communities were delineated into coastal and

offshore populations, with Group 2 having a dampened seasonal cycle, relative to the

coastal populations. Shannon Diversity Indices (H) for the PFTs showed both spatial and

temporal variability and had a clear non-linear relationship with chlorophyll. Diversity levels

varied seasonally with changes in chlorophyll a levels. Peak PFT H was observed on

the shelf where frontal features dominate, with diversity levels declining nearshore and

offshore. This region marks an ecotone for phytoplankton in the study domain, and is

associated with the coastal-side boundary of dinoflagellate dominance. Highest levels of

diversity were observed in the tidally well-mixed regions of the Gulf of Maine and along a

band that ran along the shelf region of the study area that was narrowest in the summer

periods and broadened during the winter. These peak diversity zones were associated

with moderate levels (∼0.8mg m−3) of chlorophyll a. While the sign in the linear trends

in chlorophyll between 2002 and 2016 varied depending on the region, the trends in

the PFT H values were nearly all negative due to the non-linear relationship between

chlorophyll levels and H.

Keywords: phytoplankton, absorption, diversity, phytoplankton functional type, phytoplankton community,

pigments, biodiversity, climate change
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INTRODUCTION

Climate change will alter the timing and magnitude of oceanic
forcing conditions that affect phytoplankton biomass and
productivity, both critical elements of the ocean carbon cycle
(Levitus et al., 2000). Warmer ocean temperatures are expected
to alter primary production rates, vertical stratification, mixing,
and entrainment of nutrients from beneath deep mixed layers
(Sarmiento et al., 2004). There is now ample evidence on
the ecological impacts of recent climate change conditions
at all latitudes, but especially in polar environments. The
responses of both flora and fauna span an array of ecosystem
and organizational hierarchies in both terrestrial and marine
environments (Walther et al., 2002; Cermeño et al., 2008; Iglesias-
Rodriguez et al., 2008). These observed changes are strong
motivators for developing remote sensing approaches to observe
the base of the food chain in order to monitor alterations in
ecosystem function and to help improve biogeochemical and
primary productivity models (Edwards et al., 2006; Striebel et al.,
2009; Boyce et al., 2010).

Analysis of phytoplankton taxonomic composition in relation
to satellite-derived chlorophyll a (ChlSAT) provides an ecological
approach to understand the role of past and future climate
changes on ecosystem function (Boyce et al., 2010). Knowledge
of the spatial and temporal variability of various Phytoplankton
Functional Types (PFTs) is critical for improving primary
productivity models which estimate biologically mediated fluxes
of elements between the ocean’s mixed layer and its deep interior
(Falkowski and Raven, 1997), and for understanding potential
climate-linked feedbacks. Improved performance and accuracy
has already been observed in marine biogeochemical models that
have incorporated PFTs into their ecosystem dynamics (Gregg
et al., 2003).

Our current knowledge about the global distribution and
seasonality of PFTs originates from shipboard and satellite
observations (Alvain et al., 2008; Hirata et al., 2011; IOCCG,
2014; Bracher et al., 2015). Several new approaches for
detecting phytoplankton biomass and specific PFTs, including
coccolithophores (Balch et al., 1991, 1996; Bracher et al.,
2015), Trichodesmium (Subramaniam and Carpenter, 1994;
Subramaniam et al., 1999a,b, 2002; Hu et al., 2010), and diatoms
(Sathyendranath et al., 2004; Soppa et al., 2014) have been
developed. Other algorithms characterize size class distributions
(Ciotti et al., 2002; Mouw and Yoder, 2005, 2010; Kostadinov
et al., 2009; Brewin et al., 2010; Devred et al., 2011; Hirata et al.,
2011; Organelli et al., 2013; Roy et al., 2013), PFT groups (Alvain
et al., 2005; Hardman-Mountford et al., 2008; Bracher et al.,
2009; Hirata et al., 2011; Moisan et al., 2011; Sadeghi et al., 2012;
Campbell et al., 2013; IOCCG, 2014; Navarro et al., 2014) and
select pigment concentrations (Pan et al., 2010), while others have
utilized abundance based approaches (Uitz et al., 2006; Hirata
et al., 2011; Chase et al., 2013).

A fundamental goal of phytoplankton biogeography is to
describe the phenology of different PFTs and understand
their interannual variability, and how these patterns relate
to processes that control phytoplankton community structure
and primary production (Longhurst, 2010). Phytoplankton

biogeography influences how climate is regulated on a seasonal
basis and also controls carbon flux processes (Oliver and Irwin,
2008). The diversity of the PFTs modulates the biological
processes and controls ecosystem linkages within the carbon
cycle. Understanding how they are modulated requires a better
understanding of how the base of the food web is controlled by
environmental conditions, which are impacted by climate change
scenarios. Community developed algorithms for taxonomic
marker pigments and size distribution (Balch et al., 1996; Alvain
et al., 2005; Hu et al., 2010; Mouw and Yoder, 2010; Hirata et al.,
2011; Moisan et al., 2011) continue to increase in their number
and applications for the study of ocean ecosystem dynamics and
biogeochemistry processes.

Algorithm development for PFTs using remote sensing
observations has historically been based on bio-optical inherent
optical properties such as backscatter and absorption (Nair et al.,
2008). Absorption is often utilized in algorithm development
because of its dominant role in regulating spectral variability
of remote sensing reflectance due to changes in pigmentation
(Moisan et al., 2011; Chase et al., 2013; Wang et al., 2016). In
addition, sophisticated algorithms focus on ecological patterns of
the phytoplankton community in relation tomany factors such as
climate change and meteorological conditions (Sathyendranath
et al., 2004; Alvain et al., 2005; Hardman-Mountford et al., 2008;
Raitsos et al., 2008; D’Ortenzio and Ribera d’Alcalà, 2009).

Many theories have been developed regarding the processes
that govern marine biological diversity and stability and the
impact that these have in evolving ecosystem community
dynamics (Sommer et al., 1993). Recent advances in genomic
observations and evolutionary/dynamic models are causing a
surge in interest for this topic (Bruggeman and Kooijman,
2007; Terseleer et al., 2014). Indicators of phytoplankton
functional diversity can be used to observe the response of
marine ecosystems to climate change and its relationship to
human activities (Platt and Sathyendranath, 2008; Platt et al.,
2009). Past satellite studies, primarily focused on the North
Atlantic, have shown phenological characteristics of bloom
initiation and peak productivity (Siegel et al., 2002; Ueyama
and Monger, 2005; Henson et al., 2006; Pan et al., 2010,
2011). Documenting additional phenological markers may lead
to a better understanding of the processes that affect the
phytoplankton community and help in monitoring the response
of PFT processes to changes in the environment.

This paper presents results from a study that uses
in situ observations of phytoplankton absorption spectra
and High-Performance Liquid Chromatography (HPLC)
chlorophyll-a pigment measurements (ChlHPLC) to develop a
satellite-based model for PFTs. In previous work, an inverse
model technique was developed that used HPLC pigments and
phytoplankton absorption spectra to create a method to retrieve
18 phytoplankton pigment estimates using phytoplankton
absorption spectra (Moisan et al., 2011). An extension of this
work used a linear model for phytoplankton absorption spectra,
based on satellite observations of ChlSAT , photosynthetically
available radiation, and temperature to estimate pigments
within a region along the northeastern U.S. coastal ocean
(Moisan et al., 2013). Previous studies have utilized inversion
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methods and demonstrated their value in calculating a wide
variety of oceanographic information such as inherent optical
properties (Hoge and Lyon, 1996; Garver and Siegel, 1997),
pigment absorption spectra (Lee and Carder, 2004), and
chlorophyll retrievals (Hoogenboom et al., 1998). This present
study modified and expanded these techniques to generate
phytoplankton pigment maps across the larger ocean domain
of the Northeast Atlantic over the period from 2002 to 2016.
The resulting phytoplankton pigment maps were then used with
pigment-based PFT algorithms (Hirata et al., 2011) to calculate
maps of PFTs. These PFT estimates were then used to calculate
the PFT diversity using the Shannon Diversity Index (H).

MATERIALS AND METHODS

Ocean Color Data Retrieval
Satellite (MODIS Aqua) chlorophyll a OCI algorithm, ChlSAT ,
estimates were obtained for the period of 2002-2016 from the
NASA GSFC Ocean Color Processing Group. The validation
of satellite products using quasi-simultaneous and spatially
collocated measurements (match-ups) of satellite and in situ data
followed the general procedures of previous studies (Werdell and
Bailey, 2005; Bailey and Werdell, 2006). Observations for ChlSAT
were obtained using the 8-day averaged, 9 km spatial resolution,
mapped, level 3 products.

Laboratory Analysis
Data was collected from a variety of geographical areas,
which included both coastal eutrophic and oligotrophic waters
(Figures 1A,B). A total of 172 water samples for phytoplankton
absorption spectra, aph (λ), and HPLC were collected at depths
between 0 and 29 meters during different cruises from the open
ocean and two U.S. eastern coastal ocean regions: (1) Delaware,

Maryland and Virginia and (2) the coastal waters within the
Gulf of Maine and near Martha’s Vineyard (Figures 1A,B). The
data set includes all seasons for the Delaware/Maryland/Virginia
(USA) region during 2006 and 2007 and spring samples from the
Gulf of Maine during 2007.

Phytoplankton Absorption Spectra
Phytoplankton absorption samples were processed using
the filter pad technique that partitions absorption into the
particulate and detrital fraction (Kishino et al., 1985) to yield
a phytoplankton absorption coefficient (m−1; Mitchell, 1990).
Absorption spectra were acquired on a Perkin Elmer LS800
UV/VIS Spectrophotometer at 1 nm intervals from 300 to 800
nm using a 4 nm slit-width.

Fluorometric Chlorophyll a
Water samples were filtered with 0.7 µm Whatman GF/F filter
(USA), stored in Histoprep tissue capsules, and flash frozen
in liquid nitrogen until processing. Chlorophyll a fluorescence
was then measured using a Turner Model 10-AU fluorometer
(Sunnyvale, USA) according to the method of Welschmeyer
(1994). Phytoplankton absorption values were converted
to specific absorption (m2 mg chla−1) using fluorometric
chlorophyll a measurements. Fluorometric chlorophyll a
compared well to ChlHPLC values with an r2 of 0.94.

High-Performance Liquid Chromatography (HPLC)

Pigments
Samples were collected from the same Niskin bottles
as phytoplankton absorption samples and filtered onto
0.7 µm Whatman GF/F filters. Samples were placed in
Histoprep tissue capsules and stored in liquid nitrogen.
Phytoplankton pigment concentrations were measured by

FIGURE 1 | The oceanographic study region was located in: (A) the Delaware, Maryland and Virginia (Delmarva) coastal waters [BIOME and COBY (Bio-physical

Interactions in Ocean Margin Ecosystems and Coastal Ocean Buoy Transect), N = 82 samples] during all seasons in 2006 and 2007 and. The square is the area

averaged over to represent BIOME in Figure 10. (B) The coastal waters within the Gulf of Maine and near Martha’s Vineyard (MAA (Mycosporine-like amino acid), N =

90 samples) during spring of 2007. The data set includes all seasons for the Delmarva region in 2006 and 2007 and only spring samples from the Gulf of Maine in

2007. Both sample regions are along the eastern coast of the United States. The square is the area averaged over to represent MAA in Figure 10.
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HPLC on a C18 column using the procedure described
by Van Heukelem et al. (2002) at Hornpoint Laboratory.
A total of 25 pigment groupings were identified in each
of the samples, 18 are calculated in this model, and 8 are
used as marker pigments in this study (Table 1). The model
pigments are: chlorophyll c, chlorophyllide, phaeophorbide,
peridinin, 19′butanoyloxyfucoxanthin, fucoxanthin, neoxanthin,
violaxanthin, 19′hexanoyloxyfucoxanthin, diadinoxanthin,
alloxanthin, diatoxanthin, zeaxanthin, lutein, chlorophyll b,
chlorophyll a, phaeophytin a, and carotenoids (α-carotene,
B-carotene, diatoxanthin, diadinoxanthin, alloxanthin,
zeaxanthin, lutein, fucoxanthin, peridinin, violoxanthin,
19′butanoyloxyfucoxanthin, and 19′hexanoyloxyfucoxanthin)
(Barlow et al., 2007).

Methods for Modeling Phytoplankton
Absorption Spectra and Pigments
Modeled Total Phytoplankton Absorption by Multiple

Linear Regression
Total phytoplankton absorption spectra, aph (λ, m−1), was
modeled as a second order function of chlorophyll a such that

aph (λ) = C0 (λ) + CC (λ)Chl a+ CC2 (λ)Chl a2, (1)

where Chl a is the concentration of chlorophyll a [mg m−3] and
C0, CC, and CC2 are the wavelength-dependent coefficients in
the multiple linear regression. The Levenberg-Marquardt non-
linear least squares minimization routine (Marquardt, 1963)
was used to perform the linear fits using in situ ChlHPLC and
aph (λ).

In order to account for pigment packaging effects, the
phytoplankton absorption spectra were “normalized” to 675 nm
by a normalization term based on the expected unpackaged
absorption at 675 nm. The unpackaged or “normalized”

TABLE 1 | Diagnostic pigments used in the present study as biomarkers for

phytoplankton functional types (Barlow et al., 1999; Vidussi et al., 2001; Wright

and Jeffrey, 2006).

Diagnostic pigments Abbreviations Taxonomic

significance

Phytoplankton

size class

Fucoxanthin Fuco Diatoms Microplankton

Peridinin Perid Dinoflagellates Microplankton

19′-

hexanoyloxyfucoxanthin

Hexa Phaeocystis,

coccolithophorids

Nanoplankton

19′-

butanoyloxyfucoxanthin

Buta Chrysophyte,

Chromophytes,

Nanoplankton

Alloxanthin Allo Pelagophytes Nanoplankton

cryptophytes

Violaxanthin Viol Prasinophytes Picoplankton

Chlorophyll b Chl b chlorophytes,

prochlorophytes

prasinophytes

picoplankton

nanoplankton

Zeaxanthin Zea Cyanobacteria Picoplankton

prochlorophytes

absorption spectra is calculated with,

âph (λ) = aph (λ)

(

∑n
i=1 cia

∗

i (675nm)

aph (675nm)

)

, (2)

where ci is the concentration of the individual pigments derived
from the HPLC analysis and a∗i (λ = 675 nm) is the pigment-
specific (a.k.a. weight-specific) absorption coefficient at 675 nm
for the individual phytoplankton pigments, obtained courtesy of
Annick Bricaud (Bricaud et al., 2004).

Modeled Phytoplankton Pigment-Specific Spectra by

Matrix Inversion
A goal in modeling phytoplankton absorption spectra, aph(λ)

(m−1), is to make use of the reconstruction models to
estimate phytoplankton pigments directly from the observed
phytoplankton absorption spectra (Moisan et al., 2011). By
combining phytoplankton pigment concentrations and pigment-
specific absorption spectra, it is possible to reconstruct the total
phytoplankton absorption spectra aph (λ) for the sample, such
that

aph (λ) =

n
∑

i=1

cia
∗

i (λ), (3)

where ci (mg pigment m−3) is the concentration of the individual
pigments and ai∗(λ) (m2/mg) are phytoplankton pigment-
specific absorption coefficients. When a large number (n) of
phytoplankton absorption spectra and HPLC observations are
available it becomes possible to relate the pigment-specific
absorption coefficients and HPLC pigment concentrations to the
total phytoplankton absorptionmeasured at a specific wavelength
as,







ci= 1,j= 1 · · · ci=m,j=1

...
. . .

...
ci=1,j=n · · · ci=m,j=n













ã∗i=1 (λ)

...
ã∗i=m(λ)






=







aph,j=1 (λ)

...
aph,j=n(λ)






(4)

where ci,j is the observed pigment concentration of the ith

pigment and the jth sample, ã∗i (λ) is the derived pigment-specific

absorption for the ith pigment, and aph,j(λ) is the total absorption

due to phytoplankton for the jth sample and at a given wavelength
(λ). At this point the various concentrations and absorption
terms are members of a system of linear equations that can be
inverted successively using the Singular Value Decomposition
(SVD, Press et al., 1987) inversion technique on each wavelength
to solve for each of the modeled pigment-specific absorption
spectra, ã∗i (λ).

Pigment Concentrations from Observed and Modeled

aph(λ) Spectra
Once estimates for pigment-specific absorption coefficients are
available, either through laboratory measurements (Bidigare
et al., 1990; Bricaud et al., 2004) or through the numerical
inversions such as the SVD approach outlined above, they
can be used with phytoplankton total absorption spectra,
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aph(λ), to estimate the individual pigment concentrations
using a second matrix inversion application (Moisan et al.,
2011). In this study, we utilized SVD-derived pigment-specific
absorption and measured total absorption in the process of
estimating phytoplankton pigment concentrations. By expanding
the phytoplankton absorption spectra reconstruction technique
(Equation 3) of Bidigare et al. (1990) into matrix form, total
phytoplankton absorption for a suite of (n) samples can be
written as







ã∗i= 1 (λ = 1) · · · ã∗i=m(λ = 1)
...
. . .

...

ã*i=1 (λ = L) · · · ã*i=m(λ = L)













c̃i=1,j=1...n

...
c̃i=m,j=1...n







=







aph j=1...n (λ = 1)
...

aph j=1...n(λ = L)






(5)

where ã∗i (λ) is the estimated pigment-specific absorption of the

ith pigment for a given wavelength (λ) obtained from the SVD
inversion described in the preceding section, c ai is the estimated
concentration of ith pigment for the jth sample, and aph(λ) is
the measured total absorption due to phytoplankton at a given
wavelength for each j sample.

Phytoplankton pigments were estimated using the resulting
pigment-specific absorption spectra obtained from SVD
inversion with observed aph(λ). Because solutions to SVD
inversions are not guaranteed to produce positive concentrations
(negative pigment concentrations have yet to be measured in
the ocean), the Non-Negative Least Squares (NNLS, Lawson
and Hanson, 1974) inversion method was used to estimate
the pigment concentrations to guarantee positive solutions.
Moisan et al. (2011) demonstrated that out of all the inversion
models tested, SVD-NNLS gave the best results when comparing
modeled and measured pigment concentrations. Similarly, this
technique has previously been verified in Moisan et al. (2011)
through random division of the phytoplankton absorption
spectra and pigment measurement pairs. Two independent
pools of data were created by randomly separating the full
data set in order to carry out the inversions to calculate the
pigment-specific absorption spectra and the other to estimate
pigment concentrations using the second inversion procedure to
validate the model.

In order to apply this matrix inversion technique to satellite
data and generate pigment maps, the MODIS Aqua Ocean Color
chlorophyll a (ChlSAT) was used with the resulting coefficients
from the multiple linear absorption spectra model (Equation
1) to generate predictions of the mapped absorption spectra.
These modeled absorption spectra were then inverted, pixel-by-
pixel, using the SVD-derived pigment specific absorption spectra
from Equation 4 and the NNLS inversion model (Equation 5) to
yield maps of pigment concentration for the ocean region of the
northeastern United States. Both the linear regression coefficients
from Equation 1 and pigment-specific absorption spectra from
Equation 4 were obtained using the normalized in situ aph(λ)
(Equation 2) and HPLC pigment data. A flowchart of the method
summary is detailed in Figure 2.

The matrix inversion technique applied to satellite data uses
modeled instead of in situ absorption. In order to assess how the
pigment inversions are affected by the use of modeled absorption,
the results from the inversion model using modeled versus
measured absorption spectra is compared.

Phytoplankton Functional Type Maps and Diversity
Once maps of the various 18 phytoplankton pigments
were obtained, they were used to generate estimates of
the various PFTs for the region by using the estimation
formulas outlined in Table 1 of Hirata et al. (2011) for diatoms,
dinoflagellates, prymnesiophytes, prokaryotes, and green
algae (Table 2). The pigments necessary as inputs for these
algorithms included: fucoxanthin, peridinin, chlorophyll-b,
19-butanoyloxyfucoxanthin, 19-hexanoyloxyfucoxanthin,
alloxanthin, and zeaxanthin. Maps of these functional types were
calculated for all of the MODIS Aqua data used in this study
domain and period.

After calculation of the PFT fields, the PFTs Diversity was
calculated using the Shannon Diversity Index (H) equation,

H = −

N
∑

i=1

pi ln
(

pi
)

, (6)

where pi is the ith proportionality of the N phytoplankton
functional groups (Shannon, 1948). Proportionality values, pi,
were defined as the resulting PFT values, the ratio of chlorophyll
for that functional type versus the total chlorophyll within a
sample. While the Shannon Diversity equation was developed
to use specific cell or organism counts, a sensitivity study was
conducted that used randomly chosen cell to biomass ratios in
order to see what the impact of this had on the resulting H values,
assuming that the conversion factors were constant throughout
the study’s time and space domain. The results showed little
impact on the resulting H values meaning that the method used
in calculation of the proportionality values was justified.

TABLE 2 | Phytoplankton Functional Type (PFT) equations (Hirata et al., 2011)

used in this study.

PFT Pigments used Estimation formula

Diatoms Fucoxanthin (Fuco) 1.41Fuco/(
∑

DP*)2

Dinoflagellates Peridinin (Perid) 1.41Fuco/
∑

DP2

Green Algae Chlorophyll-b (Chl-b) 1.01Chl-b/
∑

DP2

Prymnesiophytes 19-Hexanoyloxyfucoxanthin

(Hex), Chl-b, Alloxanthin

(Allo)

19′-Butanoyloxyfucoxanthin

(But),

(δ⊕1.27Hex + 1.01Chl-b +

0.35But + 0.60Allo)/
∑

DP3

- 1.01Chl-b/
∑

DP2

Prokaryotes Zeaxanthin (Zea) 0.86Zea/
∑

DP2

*
∑

DP=1.41Fuco + 1.41Perid+ 1.27Hex+ 0.6Allo+ 0.35But+ 1.01Chl-b+ 0.86Zea.

⊕δ quantifies the proportion of nanoplankton contribution in Hex, (Brewin et al., 2010).
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FIGURE 2 | Flow chart of the method utilized in this study to calculate 18 different pigment concentrations along the eastern shore of the United States. The linear

absorption spectra model developed in Moisan et al. (2013) is modified and used with the matrix inversion techniques developed in Moisan et al. (2011) in order to

extend the matrix inversion technique for use with satellite data.

RESULTS

Observations of Absorption Spectra
Values of aph(λ) showed large variability in the ultraviolet
(UV) and visible region (Figure 3). UV absorption was high,
presumably due to mycosporine-like amino acids (MAAs,
Moisan and Mitchell, 2001) and was commensurate with a
Phaeocystis-dominated community in the Gulf of Maine. MAA
absorption peaked at the surface of the ocean and is most likely
controlled by irradiance and nutrient concentration (Whitehead

and Vernet, 2000). Phytoplankton maximum absorption in the
UV region ranged from 0.28 to 0.85 m−1. Maximum values of
aph(λ) in the visible ranged from 0.03 to 0.37m−1 (Figure 3).
Values of aph(436:676), the red and blue absorption peaks of
chlorophyll a, varied by an order of magnitude, with highest
levels associated with elevated levels of carotenoids, indicating
growth in a high-light environment. Minimum and maximum
values for aph(436:676) are 0.006 and 0.369 and 0.003 and 0.198,
respectively.

Modeling of the Total Absorption Spectra
In order to model the absorption spectra, the spectrally-
dependent, linear model coefficients from Equation 1 were used
with ChlHPLC values. The r2 values of in situ versus modeled
absorption, when normalized to 675 nm, are between 0.76 and
1.00 from 400 to 700 nm and drop by about 25%, as calculated

FIGURE 3 | In situ phytoplankton absorption (m−1) from samples collected

during the study.

by dividing the mean r2 of UV and visible groups, in the
ultraviolet region (Figure 4) where MAAs provide sun screening
to phytoplankton and increase the observed value of aph(λ).
Accuracies were substantially improved using the “normalized”
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FIGURE 4 | Measured total absorption (m−1) normalized to 675 nm (horizontal axis) versus the predicted total absorption (m−1) (vertical axis) using the multiple linear

regression of ChlHPLC and ChlHPLC
2.

absorption spectra in Equation 1, compared to original in vivo
absorption spectra (Moisan et al., 2011).

To assess how much of the variability in the absorption curve

is accounted for in the absorption model, the root mean square

error (RMSE) was calculated for the first, second, and third order
absorption models. The RMSE is the square root of the mean

of the square of all the error. The variance drops by half from
the observed spectra to the first order modeled spectra (RMSE=

0.113 and 0.063, respectively), and only slightly decreases with the

second and third orders (RMSE= 0.063 and 0.060, respectively).
Beyond the first order regression model there are only small

improvements in modeling the absorption spectra. However,
while the second order model is only slightly better than the

first order in representing the variability of the absorption

spectra, a larger improvement is observed in the pigment retrieval
solutions. This may be because small improvements in modeling
the absorption spectra can have a significant impact on the
solution of those pigments that have smaller contributions to the
total absorption spectra. The second order ChlHPLC model was
chosen because there are only marginal difference between first,
second, and third order inmodeling absorption and second order
produces the best pigments retrievals.

Observations of Pigments in Relation to
Absorption Spectra
The contribution of each of the 18 pigments estimated by
the inverse model to total absorption was determined by
reconstructing the absorption spectra following the technique
developed by Bidigare et al. (1990) and utilizing the pigment-
specific absorption coefficients from Bricaud et al. (2004) and
the in situ HPLC pigment measurements (Figure 5A). The
standard deviation of these individual absorption spectra (not
shown) scale directly with the standard deviation of the various
pigments observed, which is considerable. An analysis of the
individual pigment contributions to the total absorption spectra,
shown as a cumulative function, demonstrated that ChlHPLC,
fucoxanthin, chlorophyll c, diadinoxanthin and carotenoids
together account for more than 90% of the observed in vivo
absorption (Figure 5B). Coincidentally, these pigments were
shown to have the highest predictive capability for the SVD-
NNLS model that yields pigment-specific absorption spectra
and HPLC pigment estimates (Figure 5B). Those pigments that
contributed significantly to aph(λ) and account for the majority
the absorption were also those that were best predicted using the
SVD-NNLS inversion model.
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FIGURE 5 | (A) Reconstructed mean pigment-specific total absorption spectra (m−1) of the different pigment biomarkers resolved in this study. The black line is the

total absorption of all pigments. The lowest standard deviation values were insignificant, while higher standard deviation values for the pigments ranged from 0.0015

to 0.0686. (B) Cumulative fraction of the reconstructed pigment absorption to total absorption compared to the r2 from the inverse model versus predicted HPLC

pigments from SVD-NNLS.

Individual Photosynthetic and
Photo-Protective Pigment Retrievals
Pigments were estimated by the NNLS matrix inversion
(Equation 5) with the SVD-derived pigment-specific absorption
from Equation 4 and in situ absorption spectra. A comparison of
in situ measured to SVD-NNLS-derived HPLC pigments shows
varying results with coefficients of determination ranging from
very high (near 1.0) for chlorophyll a (ChlMOD

HPLC) to a low of
0.33 for zeaxanthin (Figure 6). While 18 different pigments were
estimated, only 10 had r2 values greater than 0.68. The p-values
of the algorithm were calculated with a threshold value of 0.05.
All pigments had p-values of less than 0.001, demonstrating

that the results are significant (Table 3). Similarly, the pigment
concentrations on a normal scale produced relatively small RMSE
for most pigments, with normalized RMSE less than 22% for all
pigments, except zeaxanthin and lutein. Normalized RMSE is the
RMSE divided by the pigment range and bias is the tendency
of a statistic to overestimate or underestimate a parameter.
Pigments that correlate best with ChlHPLC, such as chlorophyll
c, fucoxanthin, and carotenoids, along with ChlHPLC account for
the majority of the total absorption spectra (Figure 5B). These
pigments are also shown to have the best prediction results
whenmodeled pigment concentrations are compared with in situ
concentrations: they have the highest r2 values, their slopes are
very close to 1 with y-intercepts close to 0, normalized RMSE
below 5%, and all have p-values below the 0.05 threshold. While
the coefficients of determination for the predicted pigments vary,
all are within the acceptable range of algorithms that predict PFTs
(Hirata et al., 2008, 2011; Bracher et al., 2009; Mouw and Yoder,
2010; Mouw et al., 2012; Soppa et al., 2014). In addition, even
with the known uncertainties, the resulting maps of PFTs can be
useful for phenological functional diversity studies.

Applying Inversion Model to Satellite Data
Modeling phytoplankton absorption spectra at every 5 nm using
satellite chlorophyll a observations allows for extrapolation of
observed relationships and can account for changes due to
spectral shape, pigment composition, and pigment packaging
(Figure 4). To apply the inversion model to satellite data, we
calculated absorption (Equation 1) and inverted the modeled
absorption values to obtain estimates for 18 HPLC pigments over
a series of remote sensing images of the northeastern US coastal
ocean. To demonstrate that the modeled absorption (as opposed
to in situ absorption) would not have a significant effect on the
pigment retrievals, we ran the SVD-NNLS inversion model using
HPLC pigments and absorption modeled from Equation 1 and
compared the resulting modeled pigment concentrations with
in situ concentrations. While the r2 values in general decreased
and the normalized RMSEs increased, compared to the inversion
with in situ absorption, the r2 values of the predicted pigments
that are addressed in detail in the analysis were not significantly
less (Table 2). The statistical comparison of the two methods
demonstrated that using modeled absorption in the satellite
inversions does not significantly impact the pigment retrievals.

The results from the satellite-based inversion model show
that the resulting estimates of chlorophyll a (ChlMOD

SAT ) maps are
similar to those from the standard MODIS Aqua ChlSAT product
(data not shown). A linear comparison of ChlSAT and ChlSAT
results in an r2 of 1.00. While the OC-4 algorithm, applied to any
of the NASA ocean color satellites (SeaWiFS, MODIS Terra and
Aqua) has known issues with predicting chlorophyll a in coastal
regions, the results from this study demonstrate that on a larger
regional scale the features for both the OC-4 algorithm and the
SVD-NNLS model solutions have very similar spatial scales and
features.
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FIGURE 6 | HPLC measured pigments (horizontal axis) versus the predicted pigments (vertical axis) using SVD to obtain the pigment-specific absorption spectra and

NNLS to obtain pigment estimates.

To quantify the inherent error of using ChlSAT in the inversion
model, we gradually introduced normal random error ranging
from zero to a level comparable to the MODIS Aqua ChlSAT
(r2 ∼0.75) into the ChlHPLC and ran it through the SVD-NNLS
inversionmodel. After hundreds of iterations, our mean r2 values
for pigment retrieval dropped by 15–30 percent when errors
were compatible to the satellite error which implied that the
introduction of the satellite error does not greatly diminish the
results of the inversion analysis (Figure 7).

In addition to ChlMOD
SAT , inversion of absorption spectra over

a larger regional domain yielded estimates of 18 photosynthetic
and photo-protective pigments for the year 2007 (Table 2). A

number of these are useful as biomarkers for certain PFTs and can
aid in resolving phytoplankton community structure (Table 1).
Maps of pigments normalized to biomass (using ChlMOD

SAT ) are
markers for the distribution of PFTs within a region (Figure 8).

Chlorophyll a Distribution
Modeled ChlMOD

SAT distribution from the SVD-NNLS inversion
process compares well with MODIS Aqua ChlSAT distribution
with r2 value of 1.00, and they both were inversely correlated

to observed MODIS Aqua SST (data not shown), with highest
(coldest) levels of ChlSAT (SST) located along the coast and
over the well tidally-mixed region of the Grand Banks, with
lowest (warmest) levels offshore to the southeast near the
Gulf Stream Province, as noted by Longhurst (2010). However,
while the inverse model solutions compare well with the
satellite observations, the technique does not eliminate the
inaccuracies inherent in using satellite observations. A recent
study comparing in situ chlorophyll a measurements and
MODIS-Aqua chlorophyll a OC3 retrievals (Kahru et al., 2014)
shows that the coefficient of determination (R2) values were
0.86 for all measurements but that R2 dropped to 0.35 for

comparisons matchups with chlorophyll levels > 1.0mg Chla
m−3. In addition, an earlier work by Thomas et al. (2003)
focusing on the region of the Gulf of Maine (a subdomain of our
study) notes that summertime matchups of log-transformed in
situ chlorophyll to SeaWiFS chlorophyll have an r2 of 0.55. Most
of the errors in these estimates seem to be limited to the higher
chlorophyll regions (>1.0mgm-3) regions along the coast, which
were only a small part of the overall study domain. For the
most part, MODIS-Aqua underestimates the higher chlorophyll
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TABLE 3 | Statistical values derived from comparison of measured pigment concentrations with those estimated from the SVD-NNLS inversions using the measured

(modeled) absorption spectra.

Diagnostic Pigments r2-Values Slope Intercept RMSE Normalized RMSE Bias p-Values

Chlorophyll a 1.00 (0.99) 0.99 (1.01) −0.00 (−0.01) 0.14 (0.15) 0.01 (0.01) 0.03 (−0.01) <0.001

Chlorophyll b 0.41 (0.43) 0.79 (0.83) 0.03 (0.07) 0.12 (0.12) 0.22 (0.23) 0.00 (−0.04) <0.001

Chlorophyll c 0.88 (0.86) 0.98 (0.96) 0.03 (−0.02) 0.14 (0.16) 0.05 (0.06) −0.02 (0.04) <0.001

Chlorophyllide 0.73 (0.40) 1.01 (0.82) 0.02 (0.01) 0.11 (0.15) 0.10 (0.14) −0.02 (0.01) <0.001

Phaeophorbide 0.49 (0.68) 0.89 (0.79) 0.03 (0.01) 0.17 (0.14) 0.13 (0.12) −0.02 (0.01) <0.001

Peridinin 0.43 (0.34) 0.88 (0.94) 0.03 (0.04) 0.12 (0.15) 0.17 (0.21) −0.02 (−0.03) <0.001

19′-butanoyloxy-fucoxanthin 0.54 (0.55) 0.95 (0.86) 0.02 (0.02) 0.04 (0.05) 0.11 (.012) −0.02 (−0.02) <0.001

Fucoxanthin 0.95 (0.92) 0.96 (0.96) −0.06 (−0.06) 0.21 (0.32) 0.05 (0.07) 0.09 (0.10) <0.001

Neoxanthin 0.47 (0.38) 0.77 (0.68) 0.01 (0.01) 0.01 (0.01) 0.14 (0.17) −0.00 (−0.01) <0.001

Violaxanthin 0.71 (0.60) 0.94 (0.91) −0.00 (0.01) 0.01 (0.01) 0.12 (0.14) 0.00 (−0.00) <0.001

19′-hexanoyloxy-fucoxanthin 0.77 (0.64) 0.99 (0.86) 0.00 (0.03) 0.05 (0.07) 0.07 (0.08) −0.00 (−0.02) <0.001

Diadinoxanthin 0.82 (0.66) 1.02 (1.01) −0.01 (0.01) 0.10 (0.14) 0.07 (0.09) 0.00 (−0.01) <0.001

Alloxanthin 0.53 (0.41) 0.85 (0.83) 0.02 (0.04) 0.08 (0.10) 0.16 (0.20) −0.01 (−0.03) <0.001

Diatoxanthin 0.68 (0.63) 1.06 (0.89) 0.01 (0.02) 0.04 (0.04) 0.10 (0.10) −0.01 (−0.01) <0.001

Zeaxanthin 0.3 (0.02) 1.03 (0.22) 0.01 (0.05) 0.05 (0.06) 0.26 (0.31) −0.01 (−0.02) <0.001

Lutein 0.35 (0.27) 0.95 (0.80) 0.00 (0.01) 0.01 (0.01) 0.24 (0.26) −0.00 (−0.00) <0.001

Phaeophytin a 0.69 (0.70) 0.99 (1.04) −0.00 (−0.00) 0.02 (0.02) 0.12 (0.11) 0.00 (0.00) <0.001

Carotenoids 0.97 (0.94) 1.00 (0.94) −0.03 (0.17) 0.21 (0.30) 0.02 (0.03) 0.03 (−0.08) <0.001

FIGURE 7 | The x-axes are the r2 of the ChlHPLC versus the ChlHPLC with normal random error added, where 1 is ChlHPLC with no error and 0.75 is equivalent to the

error of ChlSAT . The y-axes depict the mean (left) and standard deviation (right) of the r2 values of the measured versus predicted pigment concentrations after the

inversions are run with errored ChlHPLC for hundred of iterations.

a levels observed in the coastal region and underestimates the
lower chlorophyll a values found in the offshore region, thereby
reducing the overall gradients in the true chlorophyll a fields.
Such a cross-domain bias serves only to distort the resulting
pigment retrievals by diminishing the gradients, while keeping
distinguishable the larger scale pigment patterns and time series
variability.

Phytoplankton Functional Type Marker
Pigment Distributions
Identification of the presence of specific PFTs using marker
pigments has been shown to be possible for a number of
functional types (Wright, 2005). Although most pigments are
not unique to specific phytoplankton taxa, and only a limited
number are unambiguous pigments for specific phytoplankton
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FIGURE 8 | Maps of the satellite-based inversion model estimates of chlorophyll a, ChlMOD
SAT

and the ratios of chlorophyll c, fucoxanthin, 19′hexanoyloxyfucoxanthin,

carotenoids (α-carotene, B-carotene, diatoxanthin, diadinoxanthin, alloxanthin, zeaxanthin, lutein, fucoxanthin, peridinin, violoxanthin, 19′butanoyloxyfucoxanthin, and

19′hexanoyloxyfucoxanthin) to ChlMOD
SAT

(upper panel) using MODIS Aqua 2007 chlorophyll a observations. Similar ratios of peridinin, alloxanthin, chlorophyll b,

violaxanthin, and 19′butanoyloxyfucoxanthin to ChlMOD
SAT

are shown in the lower panel. Note that the nonlinear colored scale bars differ for each pigment, and the

scales from left to right are associated with the pigments from top to bottom. Regions where the inverse model yielded zero concentrations are shown in black.

Frontiers in Marine Science | www.frontiersin.org 11 June 2017 | Volume 4 | Article 18947

http://www.frontiersin.org/Marine_Science
http://www.frontiersin.org
http://www.frontiersin.org/Marine_Science/archive


Moisan et al. Space-Based Phytoplankton Functional Diversity

taxa (Nair et al., 2008), it is possible to make valid inferences
using in situ field measurements for verification of functional
type distributions.

Maps of several key PFT marker pigments, normalized to
chlorophyll a, obtained from the inverse model (Figure 8)
solutions for 2007 show a range of different spatial distributions
over the study region. A small group of pigments (notably
chlorophyll a, and fucoxanthin) show a strong spatial correlation
with chlorophyll levels, and are highest in the coastal regions and
lowest offshore. Fucoxanthin is primarily a marker pigment for
diatoms, though it is also associated with other phytoplankton
types and therefore has been argued to be ambiguous as a
marker pigment (Nair et al., 2008). A second group of marker
pigments (peridinin and alloxanthin) shows highest pigment
to chlorophyll a ratios in the mid-shelf region of the study
area. Peridinin is a marker pigment for Type-I dinoflagellates
(Ornótfsdóttir et al., 2003) and alloxanthin is a marker pigment
for Cryptophytes (Wright, 2005). A third larger grouping of
marker pigments (19′hexanoyloxyfucoxanthin, chlorophyll-b,
violaxanthan, and 19′butanoyloxyfucoxanthin) and carotenoids
show highest pigment to chlorophyll levels in the offshore
region of the study area. All of these pigments are ambiguous
marker pigments, but have been used in prior studies to infer
distributions of haptophytes (Mackey et al., 1996).

Spatial Distribution and Phenology of
Phytoplankton Marker Pigments
The seasonality of the functional type marker pigments
(Figure 8) co-varied strongly with phytoplankton biomass levels,
estimated by chlorophyll a concentrations, even though the ratios
of the marker pigment concentrations to biomass levels varied
spatially over the study region. Three specific regions related
to the MAA sample area (coastal Gulf of Maine), the BIOME
sample area (coastal region of the mid-Atlantic Bight), and for
an open ocean region near the southeast associated with the
Gulf Stream Extension domain were chosen as representative
study regions (not shown). MODIST Aqua ChlSAT from 2002
to 2016 was taken for these three square areas and run through
the inversion method to calculate 18 pigment concentrations
that were averaged over each region. The spatially-averaged time
series of the phenologically related marker pigments within each
of the three regions from 2002 to 2016 (not shown) demonstrates
that these key pigments vary differently from region to
region.

ChlMOD
SAT levels for all regions showed seasonal variability, but

no similarities (Figure 8). A review of the ChlMOD
SAT variability in

this region is given by O’Reilly and Zetlin (1998). The BIOME
region showed peaks in ChlMOD

SAT during its noted wintertime-
spring bloom that is associated with the well-mixed water
column. The open ocean region shows bloom levels of ChlMOD

SAT
rising more than two fold, with a larger peak bloom occurring
in the spring followed by a less dramatic bloom in the fall. The
coastal Gulf of Maine (MAA) region shows late spring blooms
marked by lowest ChlMOD

SAT levels in mid-winter.

Fucoxanthin to ChlMOD
SAT ratios, a marker pigment for diatoms,

showed high variance and an inverse correlated with SST over the

time series (2002–2016) analyzed. The open ocean region showed
the highest variance and a bi-annual peak in ratios in the spring
and fall, possibly due to spring and fall diatom blooms. The
BIOME region (northern coastal) showed high, low variance and
nearly constant ratios during the fall through winter period, with
a decrease during the summer seasons only. Finally, the MAA
(southern coastal) had the highest observed variability, which,
like the BIOME region, showed large decreases, but timed to
occur primarily during the winter periods.

The 19′hexanoyloxyfucoxanthin to ChlMOD
SAT ratios

(prymnesiophytes, Phaeocystis pouchetii and coccolithophorids)
covaried with SST, with peak levels observed in the open ocean
during the summer months, followed by the BIOME, with lowest
peaks at the MAA site.

Peridinin: ChlMOD
SAT ratios (dinoflagellates) on the other

hand showed an inverse correlation with SST except in
the Biome region, peaking in concentration in the winter
months when temperatures were at their lowest and mixed
layer depths were at their greatest. Like the phenology of
the 19′hexanoyloxyfucoxanthin-related PFTs, peridinin showed
highest ratios in the open ocean site. However, higher peaks in
the ratios were observed for the MAA region with lower levels in
the BIOME region, noting that the dinoflagellates preferred more
northerly coastal regions.

Phytoplankton Functional Type
Distributions, Phenology, and Diversity
Maps of five PFTs (diatoms, dinoflagellates, prymnesiophytes,
prokaryotes, and green algae) calculated using the equations
developed by Hirata et al. (2011; Table 1) were generated using
the resulting pigment maps obtained from the inverse model
using the MODIS-Aqua chlorophyll observations from the study
region.

Diatom Distributions
Diatom distribution was assessed by utilizing fucoxanthin as
its biomarker pigment. Fucoxanthin is a useful marker for the
bacillariophyceae or diatoms (Table 1) and also occurs in the
raphidophytes and some prymnesiophytes (Jeffrey and Vest,
1997). Quantile regression analysis of HPLC fucoxanthin relative
to 19′hexanoloxyfucoxanthin observations, as carried out in
Devred et al. (2011), revealed slightly elevated concentrations
of fucoxanthin relative to 19′hexanoloxyfucoxanthin, indicating
a negligible contribution of fucoxanthin to prymnesiophytes.
After the calculation of microplankton and nanoplankton
percentages from pigment concentrations, fucoxanthin on
average accounts for about 20% of nanophytoplankton and 80%
ofmicrophytoplankton (data not shown, Devred et al., 2011). The
diatom’s marker pigment, fucoxanthin, had a high correlation
coefficient (r2 = 0.95) between in situ and modeled values
(Table 2). Other accessory pigments found in diatoms, such
as chlorophyll c and photo-protective pigments, had average
r2 values of ∼0.97. The observations show that diatoms were
taxonomically dominant throughout the year (Figure 9), with fall
and spring peaks in their biomass as shown in the chlorophyll a
observations (Figure 8). This has been shown previously in this
region using radiance measurements to estimate PFTs (Pan et al.,
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FIGURE 9 | Modeled weekly-mean phytoplankton functional types and calculated Shannon Diversity Index during 2007. Starting from the upper row of images are

distribution maps of Diatoms, Dinoflagellates, Prymnesiophytes, Prokaryotes, and Green Algae (% chlorophyll a). Weekly maps of the Shannon Index (H; n.d.) for the

PFT diversity are shown along the lower row of panels. Regions where the inverse model yielded zero concentrations are shown in black.

2010). Diatoms were the dominant coastal region functional
type, accounting for well over half of the phytoplankton
biomass, relative to chlorophyll a levels. The time series of
the diatom populations averaged over three separate regional
areas in the study site (Figure 10) and the climatology between
2006 and 2011, shows that the diatom population has highest
concentrations in the coastal Gulf of Maine (Figure 1B, MAA)
region, with a slight decrease during the summer stratified
season. High levels are also observed in the coastal Delmarva
region (Figure 1A, BIOME), but with two nearly similar peaks,
one in the spring and the other in the fall. The open ocean
region (not shown, site domain is 69◦–68◦ west longitude and
38◦–39◦ north latitude) diatom levels are lowest of the entire
domain but exhibit relatively strong spring and modest late fall
blooms. For much of the summer periods in the open ocean
region, chlorophyll levels are below the∼0.45mg chla m−3 cutoff
levels, below which fucoxanthin pigments are not retrieved in the
inverse model solutions. For those periods of time the diatom
levels are estimated to be minimal or irrelevant relative to the rest
of the PFT population.

Within the study region, diatoms played a dominant role in
shaping the diversity in areas with chlorophyll levels greater than

0.45mg chla m−3 (Figure 11). A peak of ∼1.5 in diversity levels
is observed at chlorophyll levels of ∼0.82mg chla m−3 which is
driven entirely by the rise in contribution in total biomass from
the diatom fraction of the PFTs. Below the 0.45mg chla m−3,
diatoms play little to no role in determining the functional type
diversity levels.

Dinoflagellate Distributions
Peridinin was the biomarker pigment used to calculate the
distribution of dinoflagellates (Table 1) according to Hirata
et al. (2011; Table 1). Concentrations of both measured and
modeled peridinin were generally less than 0.8mg peridinin
m−3, with a modest 0.49 r2 (Figure 6) in the one-to-one
comparisons. In terms of its importance to total absorption
reconstruction, it ranks sixth. Maps of the modeled pigment
to chlorophyll a ratios of peridinin were low and ranged
from 0.00 to 0.12 (mg peridinin/mg chla, (Figure 8). Maps
of the dinoflagellate populations show that they were present
in highest concentrations in the mid-shelf regions of the
study site (Figure 9), being at their highest concentrations in
the winter months for the MAA and open ocean regions
but at lower and less variable levels in the BIOME domain
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FIGURE 10 | The temporal distribution for sea surface temperature (◦C), ChlSAT , Shannon Diversity Index (H; n.d.), and phytoplankton functional types

(% chlorophyll a) for Diatoms, Dinoflagellates, Prymnesiophytes, Prokaryotes, and Green Algae from 2006 to 2011 for three stations including the Mid Atlantic Bight,

Gulf of Maine, and open ocean.

where no seasonal variability was observable. Lowest levels
of dinoflagellates were estimated to be present in the late
spring for the MAA region and in the mid-summer for
the BIOME region. Late summer maximum levels retreated
to a region running along the shelf front along the outer
region of the Gulf of Maine and south along the coast
(Figure 9).

Unlike the diatom populations, dinoflagellates influence
diversity across all levels of biomass. Their peak influence in
diversity occurs at chlorophyll levels of 0.45mg chla m−3,
which is where the diatom populations, or more correctly
where fucoxanthin estimates go to zero. At lower phytoplankton
biomass, or chlorophyll levels below the peak, the contribution
of dinoflagellates to phytoplankton functional diversity levels
decreases to zero at chlorophyll a concentrations of 0.1mg
chla m−3. At higher phytoplankton biomass or chlorophyll
levels above the peak, the contribution of dinoflagellates to
PFT diversity also decreases but at a much slower rate,
reaching a near constant level at the higher chlorophyll
levels.

Green Algae
Green algae is a large, diverse and informal group, in the
planktonic ocean realm this group is composed primarily of
chlorophytes (Prasinophyceae (i.e. Ostreococcus), micromonas).
The distribution of this PFT’s taxonomic importance closely
resembles that of the Prokaryotes and Prymnesiophytes.
Concentrations of green algae were estimated according to
Hirata et al. (2011; Table 1) using estimates of chlorophyll-b
concentrations. Maps of the green algae distribution (Figure 9)
show that the green algae were the dominant PFT in the open
ocean, where they accounted for nearly 40% of the phytoplankton
biomass (Figures 10, 12). In this offshore domain, large spring
and smaller fall diatom blooms correlated with a decrease in the
green algae levels during those periods. Green algae contributions
to the PFT diversity was highest (∼38%) in the open ocean,
low chlorophyll a domain and remained relatively constant with
increasing chlorophyll a levels until it encountered the transition
region where the diatom population begins to appear in the
solutions. For chlorophyll levels above 0.45mg chla m−3, the
green algae biomass (Figure 11) and their contributions to the
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FIGURE 11 | Phytoplankton functional types (fraction of chlorophyll a) for

Diatoms, Dinoflagellates, Prymnesiophytes, Prokaryotes, and Green Algae,

and Shannon Diversity Index (H; n.d.) plotted against the log of ChlSAT over

the whole study region.

PFT diversity continued to decline with increasing levels of
chlorophyll a.

Prymnesiophyte (Haptophyte) Distributions
Concentrations of haptophytes were estimated according
to Hirata et al. (2011; Table 1) using estimates of
19′hexanoyloxyfucoxanthin and 19′butanoyloxyfucoxanthin
concentrations to estimate total nanoplankton from
which the estimates of green algae are subtracted. While
19′hexanoyloxyfucoxanthin is an ambiguous marker pigment
for functional types, it is associated with prymnesiophytes,
i.e., Phaeocystis pouchetii, and coccolithophorids (Table 1).
Both Phaeocystis sp. and the diatom Skeletonema costatum
dominated the bloom in the Gulf of Maine during April, 2007,
where a mesoscale bloom was persistent during the spring
(Figure 8). The results show that when diatom blooms occur
the importance of Prymnesiophytes within the phytoplankton
population declines relative to the diatom levels both in terms
of concentrations (Figure 10) and their contribution to the
diversity levels (Figure 11). Prymnesiophytes generally were
found to be higher in the offshore ocean regions and diminished
onshore relative to the per unit chlorophyll levels in each region.
Seasonally, Prymnesiophytes showed broadly varying seasonal
cycles in the BIOME and MAA regions, with peaks in percent
chlorophyll levels occurring in late summer. The open ocean
levels were predominantly flat except when the spring diatom
bloom appeared.

Prymnesiophytes influence the PFT diversity levels
(Figure 11) only at chlorophyll levels greater than 0.45mg
chla m−3, with highest influence at this transition chlorophyll
concentration and a minimal impact at chlorophyll levels of
∼3.2mg chla m−3. Below 0.45mg chla m−3, its contribution to
the PFT diversity is equal to that of the green algae and constant
at around 35%. Prymnesiophytes and the green algae showed

strong correlations in terms of their spatial distribution and
their contribution to PFT diversity as a function of chlorophyll a
levels.

Prokaryotes
Maps of the prokaryotes (cyanobacteria) show distributional
patterns that correlate strongly with the patterns observed in
the green algae and Prymnesiophyte distributions. Estimates
of the distribution of this group shows that they are more
taxonomically important in the warmer, more stratified region of
the study domain, and highest concentrations in the southeastern
region where low nutrient gulf stream waters are found. In
terms of percent chlorophyll, the Prokaryotes accounted for the
lowest percentage of total biomass, with the highest percentages
found in the offshore southeastern domain with values near 5%,
and diminishing to near 2% for both the MAA and BIOME
regions. During the warmer season, when nutrients are lower
and stratification is high they have been observed to thrive in
the coastal regions that have highly stratified water, such as the
coastal areas off the Delmarva Peninsula region (Moisan et al.,
2010). The seasonal cycles of both the MAA and BIOME regions
showed modest peaks in the winter and summer time periods.
Overall, prokaryote distributions over time were similar to that
of the prymnesiophytes and green algae, and they varied inversely
with the concentrations in diatom populations.

Phytoplankton Functional Type Diversity
Maps of the PFT diversity (Figure 9), calculated using
the Shannon Diversity Index (H, Equation 6) and PTF
proportionality values of the various five (diatoms,
dinoflagellates, prymnesiophytes, prokaryotes, and green
algae), show that a dynamic field of PFT diversity exists in the
study domain. Highest levels of diversity are seen between the
nearshore high chlorophyll regions and the offshore oligatrophic
regions, with the most extensive areas showing up during the
winter and spring time and having lowest extent in the summer
when the region is isolated to the Gulf of Maine and along the
coastal shelf region along the entire study domain.

Because of the methods used to generate PFT estimates,
the suites of phytoplankton pigment estimates, the PFT
concentrations, and the Shannon Diversity Index (H) are all
non-linear functions of chlorophyll a concentrations (Figure 11).
The results show that the majority of the PFT concentrations
or relative abundances vary smoothly across chlorophyll levels
ranging from 0.01 to 10.0mg chla m−3. A peak in the
diversity is seen at chlorophyll levels of 0.63mg chla m−3, with
diversity levels decreasing at lower and higher concentrations of
chlorophyll a. The peak itself is part of a localized higher (>0.8)
diversity estimate for chlorophyll levels ranging between ∼0.45
and ∼1.0mg chla m−3. This high PFT diversity region is located
along the shelf at all times of the year and within the majority of
the Gulf of Maine except along the near coastal areas. The overall
area of high diversity expands to larger open ocean areas in the
winter (Figure 9), when diatom levels are lower and become
closer to the concentrations of the green algae, dinoflagellates and
prymnesiophytes.
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FIGURE 12 | The trend line slopes of (A) seatellite chlorophyll a [mg chla m−3 year−1] and (B) shannon Diversity Index [H; year−1] at each point over a 15-year period

(2002–2016) in the study region. Regions where the slopes were insignificant are shown in black.

The local time series dynamics of both the PFTs and the
resulting H show a wide range of variability (Figure 10). Overall,
along the southern coastal BIOME region, the climatology in H
shows a smooth seasonally varying relationship with a maximum
level of diversity in the summer season. In the coastal Gulf of
Maine MAA domain, the seasonal cycle in the H values shows
high levels in the winter and summer season, with lows in the
spring and fall due to the diatom bloom. In both the MAA
and BIOME regions, increases in H are directly correlated with
decreases in chlorophyll a or phytoplankton biomass. In the open
ocean, chlorophyll a levels fluctuate around the peak in the H
versus chlorophyll a relationship (Figure 11), leading to a much
more variable climatology in H for this region. For instance,
during the start of the spring bloom period in the open ocean
domain, when the diatom population begin blooms and the
winter population of prymnesiophytes, prokaryotes, and green
algae are in decline, H increases until the chlorophyll a levels pass
beyond the 0.63mg chla m−3 level, above which H levels drop
as the diatom population continues to bloom. This peak in the
H versus phytoplankton biomass or chlorophyll a levels creates a
muchmore complexH climatology for areas of the domain where
the mean chlorophyll a levels are at this peak in H. Surprisingly
enough, this chlorophyll a level is very near the peak in the
histogram (not shown) of the chlorophyll a values for the domain.
The belief is that this is merely serendipity from the choice in the
domain under study, and not an ecological observation.

In addition to the complexities arising from the non-linear
relationship between chlorophyll a levels and PFT diversity, the
impact of climate-scale changes in the chlorophyll a field can also
result in changes in PFT H values. For instance, for the 3 × 3
pixel region of the MODIS Aqua data centered on the location of
the Woods Hole Oceanographic Institution’s Air-Sea Interaction
Tower (ASIT; 41◦ 19.5′ N, 70◦ 34.0′ W), the PFT diversity time
series (not shown) has a seasonal cycle and a significant (p-value
was 0.028) negative trend in the overall PFT diversity for that

location. This trend is due to changes in the chlorophyll a levels
during that period of time.

Maps of chlorophyll a linear trends for the study domain (not
shown) reveal that the coastal ocean areas have positive trends in
chlorophyll levels but negative trends are seen in the open ocean
regions. Themajority of the domain (∼70%) shows no significant
trends in the chlorophyll a levels. So for the study domain,
some areas have observed rising chlorophyll a levels (along the
coast) and in other regions chlorophyll a levels fall (open ocean).
However, because the relationship between chlorophyll a levels
and PFT diversity is non-linear, the long-term trends in PFTs can
also vary. So, while the resulting trends in the chlorophyll maps
for the region showed some areas of positive and negative trends,
the trends for the PFT H values were nearly all negative.

DISCUSSION

The aim of this study is to demonstrate how a technique
that uses both an inverse model (Moisan et al., 2011) and a
pigment-dependent algorithm (Hirata et al., 2011) to predict
phytoplankton biodiversity can be used to estimate PFT diversity
over a much larger area than was sampled, while maintaining
robust results that retain the unique spatial and temporal
features of the MODIS-Aqua ChlSAT data. The key to retaining
original features of the chlorophyll a data is the second order
chlorophyll a model and matrix inversion model that convert
ChlSAT into phytoplankton absorption from 300 to 700 nm at
a high resolution of 5 nm which is then converted into 18
different marker pigments (Moisan et al., 2011, 2013). Using
total absorption spectra derived for a variety of coastal and
open ocean environments, the algorithm was able to predict
phytoplankton absorption and pigments in Longhurst (2010)
provinces including the Gulf Stream Province, N. Atlantic
Subtropical Gyral Province, and the NW Atlantic Shelves
Province. Interestingly, the phytoplankton community did not
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necessarily follow Longhurst’s provinces, but is divided into a
delineated coastal community, offshore community, and one that
moves offshore and onshore with the seasons. The results have
implications for understanding how different phytoplankton
groups compete with each other in different biological provinces
within the ocean.

The accuracy in terms of r2 of the pigments predictions
from inverting absorption spectra are highest when in situ data
are used (Table 2). The accuracies increase when regressing
absorption spectra with an additional pigment packaging
parameter (O’Reilly and Zetlin, 1998; Alvain et al., 2005).
An increase in the accuracy of the predicted phytoplankton
absorption and pigments was retrieved when pigment package
effects were parameterized (Johnsen et al., 1994; Bricaud et al.,
1995; Ciotti et al., 2002) by “normalization” of the measured
absorption spectra to the expected absorption at 675 nm. The
spectral shape of the pigment package effect shows modest
variability across the spectrum (Morel and Bricaud, 1981).
Inaccuracies are factored into the equation when pigment
package effects are taken into account. Also, Bricaud et al.
(2004) claims that a term is missing when reconstructing
the in vivo absorption spectrum of natural populations from
pigment concentrations. Another factor that introduces error
into the pigment estimates are the linear regression technique
that has a fair r2 value of 0.76 to 1.0 of modeled to in situ
absorption from 400 to 700 nm. The matrix inversion method
produced estimates of marker pigments that compared well
against the measured HPLC pigment observations, with r2

values averaging 0.70. The technique was robust for all pigments
except zeaxanthin and lutein (Figure 6). The resulting range
of r2 values obtained in this study (r2 0.33–1.0) are similar to
those obtained by Pan et al. (2010) from a related study that
estimated pigment concentrations (r2 0.4–0.8) using in-water
radiometry measurements off the northeast U.S. continental
shelf. The satellite data driven aph(λ) model accurately captured
the variability with respect to its shape and magnitude caused
by pigment concentrations, variable pigment ratios, and pigment
packaging (Moisan and Mitchell, 1999).

The techniques’s use of pigments estimates with algorithms
for PFTs should be used with caution because pigment ratios can
vary with phytoplankton species composition, light history, and
acclimation to temperature and nutrients (Moisan and Mitchell,
1999; Louanchi and Najjar, 2001; Woodward and Rees, 2001;
McGillicuddy et al., 2003; Geider et al., 2014). In this paper, PFTs
are reported in terms of pigments to ChlMOD

SAT ratios in order to
be comparable with past HPLC studies and to reduce possible
pigment estimate bias errors (Roy et al., 2011).

Distribution, Seasonality, and Biodiversity
in the Phytoplankton Community
The PFTs can be roughly divided into three groups, based on their
contribution to PFT diversity as a function of total chlorophyll
a (Figure 11). On a large scale, the phytoplankton community
was delineated into coastal, mixed and open ocean populations,
with open ocean populations having reduced seasonal cycles
in terms of biomass but not in terms of PFT diversity. Group

1 consisted of the diatoms. This group dominates the high
chlorophyll regions along the coast. This group’s distribution
becomes insignificant at chlorophyll a levels below 0.45mg chla
m−3. Group 2 is made up of the dinoflagellates, who are found
across the coastal and out into the open ocean, but flourish best in
the mid ocean shelf region, at the region where diatom disappear.
Group 3 is composed of the green algae and the prymnesiophytes
and prokaryotes. This group dominates the open ocean region
and transitions in the mid-shelf regions to a less dominant
group in the coastal region. Although Pan et al. (2010) did not
divide their region into sub-groups, they generally found high
concentrations along the coast that decreased toward the open
ocean. There were significant differences in the phenology of
individual PFTs over the nearly fifteen-year period of time that
this study focused on, 2002–2016. This is also the case for the
distributions of all of the groups, however, normalization of
the groups by ChlMOD

SAT , reduces the large cross-shelf trend in
biomass and allows the regions for the various groups to be easier
resolved (Figures 10–12). Overall, the results showed seasonality
in PFTs and their geographic boundaries were either nearly
static or expanded and contracted depending on the season. The
modeled PFTs were discriminated geographically based on their
association with coastal versus offshore distribution and their
association with Gulf Stream and North Atlantic Gyre waters.

Diatoms (Group 1) play a major quantitative role in the
coastal zone and had a high relative contribution to total aph(λ)
(Figure 5B). Seasonal variability of diatoms was observed in all of
the study domain, with much larger variability in the open ocean
region associated with the shelf zone, where they dominated in
the spring bloom and nearly again in the late fall blooms when
they co-existed with the dinoflagellates and prymnesiophytes.
In both coastal regions, the diatoms dominated throughout the
year and showed much milder seasonal cycles in terms of their
relative importance to the chlorophyll levels. In terms of overall
biomass, the dominance of diatoms in this highly productive
coastal region was high during winter and was lower in the
summer (Marshall and Cohn, 1983; O’Reilly and Zetlin, 1998;
Filippino et al., 2011;Makinen andMoisan, 2012). Dominance by
diatoms extended into the Grand Banks and well into the Gulf of
Maine and along the entire coastal region. We observed a narrow
feature of nanoplankton and net diatoms along the coast and its
extent is likely limited due to the availability of nitrogen/nutrients
(Filippino et al., 2011) that controls the likelihood of success
for these r-selected diatoms (Margalef, 1978). All other PFT
groups (in relation to ChlMOD

SAT show minimal concentrations and
time variability along the coast because they are outcompeted
by diatoms. Although microscopy was not available for the
entire region, the coastal time series in eutrophic waters showed
that the diatom community was dominated by Skeletonema,
Rhizosolenia, and Pseudonitzschia pungens throughout the year
(Makinen and Moisan, 2012). The study suggests that the diatom
community is fast growing and able to respond to events such
as upwelling/downwelling, estuarine outflows, and processes that
encourage eutrophication (O’Reilly and Zetlin, 1998).

The seasonal and spatial variability in the relative dominance
(% chlorophyll a) of Group 2 (dinoflagellates) is limited primarily
to the shelf regions of the domain, where they are present
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throughout the year and with a spatial expansion of the
population in the fall and winter. They have been found atmodest
levels in the open ocean ranging from ∼200 to 800 cells mL-1
(Makinen and Moisan, 2012). Group 2 algae were found to be
most dominant (∼35% of chlorophyll a) at chlorophyll levels of
0.45mg chla m−3, which was the transition region from coastal
diatom dominance to the open ocean populations. Diversity
levels peaked at chlorophyll levels on the higher side of this
transition region, marking this region as an ocean ecotone within
this study region. The specific location of this ecotone is best
shown in the narrow maximum of the August 29—September
5 color map of the dinoflagellate distribution (Figure 9). The
location of the ecotone is just inshore of the peak in the narrow
maximum band that runs along the shelf and offshore along the
mouth of the Gulf of Maine.

Group 3 algae (prymnesiophytes [coccolithophorids and
Phaeocystis], prokatyotes [cyanobacteria] and green algae) are
dominant algae in the open ocean regions of the study domain.
Of the three PFTs, the prymnesiphytes and green algae are nearly
equally important, each accounting for ∼40% of the chlorophyll
a field. Prokaryotes contributed to only about 10% of chlorophyll
a levels and was observed in offshore shore waters and was near
absent in onshore coastal waters.

In terms of the biomass (chlorophyll a) levels, the spatial
and temporal variance appears to be lower in offshore waters,
implying a year-round, stable community (Stramma and Siedler,
1988; Holligan et al., 1993). But relative to their contributions to
the total phytoplankton pool, the summer and late fall blooms
of diatoms reduced their levels of importance significantly,
especially for the green algae and the prokaryote. These particular
taxa are well adapted for this balanced, quasi steady-state
region (Stramma and Siedler, 1988). The low nutrient and high
light affinities of coccolithophorids gives them a competitive
advantage over larger phytoplankton such as diatoms, showing
a shift in size distribution from large/onshore to small/offshore
(Marañón et al., 2001; Litchman et al., 2007). The distributional
pattern of this group covaries with the distribution of photo-
protective pigments (α-carotene, B-carotene, diatoxanthin,
diadinoxanthin, neoxanthin, alloxanthin, zeaxanthin, and lutein)
and degradation products (phaeophytin and chlorophyllide).
Coccolithophorids also increased in abundance during summer
months in the Gulf Stream region and were near absent in this
region during December and February (Schoemann et al., 2005;
Verity et al., 2007). Phaeocystis was present in the Gulf of Maine
and blooms of this organism spanned the area down to Cape
Cod from February to April (Moisan et al., 2013). Cyanobacteria
showed the same distributional pattern throughout the study
region except for the enhanced concentrations in the Mid
Atlantic Bight (Moisan et al., 2010; Makinen and Moisan, 2012).

Phenology of Diatoms, Prymnesiophytes,
Green Algae, and Dinoflagellates
Climate change will alter environmental conditions within the
ocean and invoke a response in the timing and magnitude of
phytoplankton diversity, biomass and primary production. The
seasonal cycles of the PFTs shows that diatoms had a broad

summer minima while prymnesiophytes had a summer peaking
maxima and dinoflagellates had a very weak seasonal cycle. PFTs
were distributed into unique biomes in the Atlantic Ocean, with
one PFT marking the location of the PFT ecotone that has a
strong correlation to SST. The seasonality of the pigments that
are markers for PFTs was linked to temperature in different
ways, with some peaking at a maximal temperature while others
responded to a decrease in temperature with increases in biomass
(Table 4). Predicted phytoplankton marker pigments revealed
seasonal changes in individual PFTs with respect to timing of
initiation, peak duration, and demise (Figure 8, Table 4). To
understand the phenology of the phytoplankton community over
time, three sites of interest were chosen including the Mid-
Atlantic Bight, the Gulf of Maine and open ocean, to observe
seasonal shifts in phytoplankton community by running the PFT
calculations with inputs of MODIS Aqua ChlSAT for nearly fifteen
years (2002-2016). Three regions were chosen that represented
two coastal and an open ocean regimes. In studying the trends
of the time series, we found that the timing of the PFT maxima
was different for the three groupings of PFTs and some peaks
were sharp while others were broad. The phenology of the
phytoplankton communities was related to the oceanographic
conditions within each region.

Diatoms were present in highest concentrations along the
coasts and dominated the phytoplankton community and
were at a minimum during summer in all zones. During
spring and summer, values of 19′hexanoyloxyfucoxanthin
(prymnesiophytes) peaked, suggesting that they competed better
against the diatoms (Figure 8). Diatoms appeared to tolerate
deep mixed layers and cool temperatures during their winter
maxima in both coastal and open ocean regions (Longhurst,
2010). It appears that their phenology is dependent on both
light intensity and photoperiod (Edwards and Richardson,
2004). Diatom spring blooms occur once warming temperatures
and weakening winter winds induce upper ocean stratification
(Townsend et al., 1994). In late spring (May), diatoms reached
their maximal abundance. Edwards and Richardson (2004)
reported that this sudden increase is predominantly controlled by
light availability in the euphotic zone because the day length and
light intensity increase as the degree of mixing gradually declines.
The diatoms are the first PFT to be seeded into the phytoplankton
community due to their high chlorophyll a per cell with high
pigment packaging (Figure 9).

Dinoflagellates showed a similar seasonal trend as the diatoms,
but with more variability, especially in the open ocean where
their fall bloom was relatively stronger than the higher biomass
diatoms. Dinoflagellates were closely linked to temperature
with higher concentrations at the coast from December to
February, with concentrations decreasing in this region during
warm summer months. Dinoflagellate concentrations to ChlMOD

SAT
ratios peaked in the Gulf of Maine and open ocean around
January and decreased in summer. Surprisingly, dinoflagellates
appear low in concentration in the Mid Atlantic Bight and
showed a dampened seasonality. Dinoflagellates may not only
be responding physiologically to temperature, but may also
respond to temperature indirectly if stratified conditions appear
early in the season (Edwards and Richardson, 2004). The
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TABLE 4 | Phenology of certain PFT markers in the study region for 2006 as defined by the dates of the initiation, peak and termination of the seasonal maximum/bloom

period.

Marker pigment Location Duration of initiation Duration of peak Duration of termination

Chlorophyll a BIOME July 28–August 4 January 17–24 July 20–27

MAA January 24–February 1 April 15–22 January 17–24

Open Ocean June 26−July 3 March 30−April 6 June 18−25

Fucoxanthin BIOME July 11−18 January 17–24 July 3−10

MAA March 6−13 April 23−30 February 26−March 5

Open Ocean September 14−21 March 22−29 September 6−13

Peridinin BIOME July 28−August 4 May 17−24 July 20−27

MAA August 13−20 January 17−24 August 5−12

Open Ocean August 13−20 February 2−9 August 5−12

19′-Hexa-fuco BIOME February 18−25 August 5−12 February 2−9

MAA January 17−24 August 21−28 January 9−16

Open Ocean March 22−29 August 5−12 March 14−21

geographic extent of the modeled dinoflagellates in coastal and
near coastal cooler waters appeared to contract and expand
within a geographic region bounded by sea surface temperatures.
A boundary appeared to clearly delineate their distribution
between cooler waters that marks the edge of the shelf front to
the northwest and the Gulf Stream. This region near the shelf
front boundary was the location of the ecotone for the coastal
(diatoms) and open ocean phytoplankton populations and also
the location for the maximum concentrations of dinoflagellates.
It marks the ecotone for the PFTs in the study domain.

Prymnesiophytes (19′hexanoyloxyfucoxanthin), a major
feature in the North Atlantic, showed distinct peaks in
biomass during the summer (July) with an initiation of their
bloom in February at all sites (Holligan et al., 1993). The
prymnesiophytes represented in the coastal Mid-Atlantic and
open ocean are probably the coccolithophorids, Emiliania
huxleyi. Whereas, the Gulf of Maine probably is represented
by both coccolithophorids and Phaeocystis. Unfortunately,
the marker pigment, 19′hexanoyloxyfucoxanthin, does not
differentiate between coccolithophorids and Phaeocystis.
However, we hypothesize that Phaeocystis probably blooms in
early spring (February) in the Gulf of Maine (Moisan et al., 2013)
and reaches its maximal in August. Whereas, coccolithophorids
were found in high concentration at the coast and in the open
ocean south of the Gulf Stream and peaked in late summer
and are dominant feature in remote sensing of Ocean Color
(Holligan et al., 1993).

General mechanistic explanations for the phenology of
certain PFTs are still controversial, as most phenology has
focused on chlorophyll a biomass (Siegel et al., 2002; Ji et al.,
2010). Ecological explanations for the presence of individual
PFTs include the following: (1) coastal upwelling events, (2)
seasonal freshwater fluxes from major estuaries or rivers, (3)
variability in the intensity of fall and winter storms which
reduce/enhance mixing-induced vertical nutrient fluxes resulting
in decreased/increased chlorophyll a levels in fall/winter, and, (4)
stronger than usual wind stress curl in the summer, which can
shoal the thermocline offshore and deliver nutrients to the upper

photic zone, producing local phytoplankton blooms (Foukal and
Thomas, 2014). One-dimensional models have proven helpful in
revealing the underlying mechanisms driving the phenological
shifts in the phytoplankton community when local forcing
controls the mixing/stratification dynamics (Olivieri and Chavez,
2000).

Phytoplankton Functional Type Diversity
and Climate
A review of the various methods presently in use to estimate
PFTs using remote sensing observation (IOCCG, 2014) notes
that while it is possible to quantify phytoplankton pigments
by differentiation of phytoplankton absorption spectra (Bricaud
et al., 2007; Moisan et al., 2011), the requirement for high
spectral resolution remote sensing data sets limits its application.
A method to estimate various PFTs using hyperspectral
observations has been developed (PhytoDOAS, Bracher et al.,
2009) that has been able to retrieve global-scale observations
of two important PFTs. But, these sophisticated satellite-based
applications require hyperspectral data sets. In this study,
hyperspectral absorption spectra were modeled as a function of
chlorophyll a, using in situ observations of absorption spectra
and HPLC pigments. By using an inverse modeling technique
to yield pigment estimates from hyperspecral absorption
spectra (Moisan et al., 2011, 2013), the method allows us to
estimate phytoplankton pigment suites from satellite chlorophyll
a measurements. The use of pigment-dependent algorithms
to estimate the PFT concentrations (Hirata et al., 2011)
demonstrates the potential for developing these types of
relationships for various ocean areas. The need to develop such
regional relationships was one of the gaps identified by Bracher
et al. (2017) in a recent review on obtaining phytoplankton
diversity from ocean color data.

The assessment of the PTF diversity patterns in the study
domain is the first study that has been done which utilizes a
number of techniques to yield PFT estimates from phytoplankton
absorption spectra modeled using satellite observations. There
are a number of recent studies that have created PFT diversity
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maps using other techniques, including models. Phytoplankton
diversity was compared to primary productivity estimates in
the California Current region (Goebel et al., 2013) using an
NPZ-type model with 78 phytoplankton types (Goebel et al.,
2010). The results from this study calculated the Shannon
Diversity Index (H) and species richness and showed that there
was very high diversity offshore of the California upwelling
regions where production was very high. In addition, north
of the west wind drift region H showed very low values in
this High Nutrient, Low Chlorophyll region. No clear patterns
where observed when comparing H to primary production
levels. However the study did note that a number of commonly
observed relationships between diversity and productivity did
exist, including: monotonic increase; monotonic decrease; a
unimodal or hump-backed relationship or a hump-backed
envelope that denotes the maximum in the data sets. The
results from this study show that non-monotonic diversity versus
biomass relationships may exist along the coastal regions of
the U.S. east coast, including the Gulf of Maine and extending
beyond the shelf front regions where the diversity was estimated
to be highest in the areas of the eddy-rich shelf frontal regions.
Higher phytoplankton diversity within frontal regions was also
calculated in the eddy rich regions of the Gulf Stream Extension
(Lévy et al., 2015), which is located due east of this paper’s study
region. The patterns and locations of the higher H values were
similar to those encountered in this study. In this present study
highest H values were observed in the frontal regions of the shelf
frontal zone and in the central region of the Gulf of Maine, while
moderate levels of H offshore can be seen extending eastward
with the Gulf Stream extension and contain variability associated
with the mesoscale features of the warm core Gulf Stream rings.

Are these satellite-derived estimates of H more informative
than the traditional species-resolved H estimates, which the
Goebel et al. (2013) and Lévy et al. (2015) studies simulated using
a complex species-based model? Does the number of species
versus the range of species function determine the functioning
capability of the ocean ecosystem? Do we need to know the
complexity of species numbers or can we just resolve the
functionality of the ecosystem in order to understand it? Some
ecologists will argue that both the diversity of the species and
the functional types are equally important (Tilman et al., 2001).
But a study by Diaz and Cabido (2001) argues that because of
the functional nature of the processes that each functional type
contributes to ecosystem the functional diversity of the ecosystem
is more important to its overall function. Therefore, generating
satellite maps of phytoplankton functional diversity even at the
course 5-component functional type scale developed in this effort
can be useful for monitoring marine ecosystem function over
time.

In addition to assessments of the ecosystem function for
various ocean regions, maps of PFT diversity can be used to
monitor any changes to the ocean’s ecosystem over longer time.
An analysis of satellite chlorophyll a observations demonstrated
that while there is no significant trend in the global scale
chlorophyll a levels, there are regions in the ocean where
chlorophyll levels have increased and decreased over the SeaWiFS
satellite lifetime, 1998-2012 (Gregg et al., 2005; Vantrepotte and

Melin, 2009; Henson et al., 2010; Siegel et al., 2013; Gregg and
Rousseaux, 2014). Additionally, Boyce et al. (2010) have argued
that the ocean’s chlorophyll a levels observed have been in decline
over the past century. Although this observed decline has been
thought to possibly arise from data bias from blending data sets
or other errors in the analysis (Mackas, 2011; McQuatters-Gollop
et al., 2011; Rykaczewski and Dunne, 2011), any systematic
long-term changes in ocean phytoplankton biomass should be
reflected in changes to the PFTs and the resulting PFT diversity.
An analysis of the local linear trends in the MODIS-Aqua
chlorophyll a product from 2002-2016 showed that for the
majority of the region used in this study significant trends were
observed in about 25% of the domain, with increasing trends
in areas along the coast and decreasing chlorophyll levels in the
open ocean (Figure 12A). A similar linear trend analysis of the
PFT H time series showed that for both those regions the H
values had a negative trend (Figure 12B), meaning that diversity
decreased in both areas regardless of the fact that the chlorophyll
trends were opposite signs in two areas. The reason for this is
that the PFT diversity function (Figure 11) shows hump-backed
relationship, so that at low chlorophyll values, as observed in the
open ocean regions, any decrease in chlorophyll levels leads to
a decrease in H, and in the coastal region, where chlorophyll
levels are highest an increase in chlorophyll levels also leads to
a decrease in H. Such non-linear relationships in the biomass to
H relationships can have an interesting impact in the predicted
climate scale changes in H.

CONCLUSION

In summary, the process of inverting modeled phytoplankton
absorption spectra generated using satellite chlorophyll
observations into biomarker pigments and then utilizing the
Hirata et al. (2011) PFT algorithms to estimate PFT diversity
demonstrates unique patterns of individual PFTs in the
Northwest Atlantic region in addition to large scale and dynamic
patterns in PFT diversity. The distribution of the phytoplankton
community can be divided into a number of groupings that are
all related cross-shelf variability, ranging from coastal ocean
to shelf-front/mesoscale-feature dominated, to oligatrophic
open ocean regions. The temporal distribution of these PFTs
shows phenological variability in these ocean regions, which
vary with timing of their seasonal maxima and minima. These
regional analyses demonstrate the importance of developing
methods to remotely observe PFTs and their H in order to
improve knowledge on the temporal and spatial distribution of
the major phytoplankton groups and perhaps ecosystem stability
at the regional scale, and to potentially quantify the impacts of
climate variability on ecosystems. In the future, once greater
numbers of global in situ measurements are available, such
methods may be expanded to encompass larger areas to serve
as a model for analyzing PFTs and diversity trends across the
world’s oceans. The algorithm’s versatility in utilizing available
satellite data enables potential applications for providing larger
scale estimates to support ecosystem models that attempt to
model PFTs explicitly.
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Remote sensing data is useful for selection of aquaculture sites because it can provide

water-quality products mapped over large regions at low cost to users. However, the

spatial resolution of most ocean color satellites is too coarse to provide usable data

within many estuaries. The Landsat 8 satellite, launched February 11, 2013, has both

the spatial resolution and the necessary signal to noise ratio to provide temperature, as

well as ocean color derived products along complex coastlines. The state of Maine (USA)

has an abundance of estuarine indentations (∼3,500 miles of tidal shoreline within 220

miles of coast), and an expanding aquaculture industry, which makes it a prime case-

study for using Landsat 8 data to provide products suitable for aquaculture site selection.

We collected the Landsat 8 scenes over coastal Maine, flagged clouds, atmospherically

corrected the top-of-the-atmosphere radiances, and derived time varying fields (repeat

time of Landsat 8 is 16 days) of temperature (100m resolution), turbidity (30m resolution),

and chlorophyll a (30m resolution). We validated the remote-sensing-based products at

several in situ locations along the Maine coast where monitoring buoys and programs

are in place. Initial analysis of the validated fields revealed promising new areas for oyster

aquaculture. The approach used is applicable to other coastal regions and the data

collected to date show potential for other applications in marine coastal environments,

including water quality monitoring and ecosystem management.

Keywords: remote sensing, Landsat 8, oyster aquaculture, atmospheric correction, habitat suitability index, sea

surface temperature, turbidity, chlorophyll

INTRODUCTION

Oyster aquaculture of the American oyster, Crassostrea virginica, is an expanding industry in
coastal Maine, USA, with landings worth $4.8 million dollars in 2015, up from $0.6 million in
2003 and increasing by 250% between 2011 and 2015 (Maine DMR commercial landings 2016,
www.maine.gov/dmr/). To meet the growing demand for high quality oysters, identification of
new sites with the most optimal biophysical conditions for oyster growth is needed. To decrease
the risk of choosing an unproductive site, it is crucial that growers have the right tools for site
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selection. Currently, the method for selecting a suitable site for
bivalve aquaculture is largely based on proximity to existing sites
or trial and error. These methods are inefficient because they may
not consider the specific temperature and nutritional conditions
needed for the species to grow, each of which affect how fast it
takes to reachmarket size (Rheault and Rice, 1996; Hawkins et al.,
2013b). Recent advances in remote sensing techniques enable
satellite imagery to help in site selection (e.g., Thomas et al.,
2011). By visually inspecting information products calculated
from processed Landsat 8 satellite images, estuaries that reach
relatively warm temperatures (above 20◦C), support high levels of
chlorophyll in the summer (above 1 µg Chl l−1), and exhibit low
turbidity (below 8 NTU) can be efficiently identified as potential
oyster growing areas.

The spatial resolution of standard global ocean color satellites
(typically 1 × 1 km) is too coarse to provide usable data within
the many estuaries and embayments along coastal Maine where
much of the suitable habitat for oyster aquaculture is located.
The Thermal Infrared Sensor (TIRS) and the Operational Land
Imager (OLI) are sensors on the Landsat 8 satellite, launched
February 11, 2013. These sensors have both the spatial resolution
(100m for infrared data and 30m for multi spectral visible
data) and the necessary signal to noise ratio to provide useful
temperature as well as ocean color derived products along
the Maine coastline (Vanhellemont and Ruddick, 2014). In
this paper, we used a combination of empirical and analytical
approaches to derive temperature, turbidity and chlorophyll
products from Landsat 8 data for the coast of Maine.

Although, it was designed for terrestrial monitoring, Landsat
8 data was shown to be useful for marine applications, provided
that a reliable atmospheric correction is applied (Pahlevan et al.,
2014; Franz et al., 2015). An atmospheric correction is necessary
for satellite remote sensing because in the visible wavelengths,
the majority of the signal observed by the satellite is from gas
and aerosol particles in the atmosphere (e.g., Mobley et al., 2016).
We used the NASA1 software platform SeaDAS, and algorithms
implemented within it, together with an empirical approach to
derive chlorophyll a and turbidity.

As with any instrument, there are limitations to using Landsat
8 imagery for coastal monitoring. Compared to other space-
borne instruments such as AVHRR and MODIS, that have
daily coverage, the temporal resolution of Landsat 8 is low.
The 16 day repeat coverage makes it insufficient to observe
short-term changes (due to weather, storm events, etc.), but
it is useful for describing patterns such as seasonal changes,
which is informative for monitoring long-term conditions and
relative spatial differences between sites. Additionally, cloud
cover decreases the probability of clear overpasses; most of the
clear images we retrieved come from summer and fall months
(June through November), the seasons with the least amount of
cloud cover. Fortunately, this is also the critical time of year for
oyster aquaculture as it overlaps the growing season.

Ocean color measurements can be used to describe
components of water quality, such as turbidity and chlorophyll-a
(Chl a) concentration (O’Reilly et al., 1998). Algorithms

1NASA (2016). Available online at: https://oceancolor.gsfc.nasa.gov/atbd/chlor_a/

have been developed that can estimate concentrations of these
components by (1) retrieving radiant flux from the satellite which
includes both target surface and atmosphere components, (2)
correcting for the signal from the atmosphere, (3) transforming
radiant energy collected by the satellite sensor into remote
sensing reflectance (Rrs), and (4) converting Rrs values into
products. Reflectance in the red wavelengths of light is used
to estimate suspended particulate matter (Vanhellemont and
Ruddick, 2014; Dogliotti et al., 2015), while reflectance in the
blue and green wavelengths is used to estimate Chl a biomass
(a proxy of phytoplankton biomass) (Franz et al., 2015; Mobley
et al., 2016). Remote sensing products have been used for
monitoring in several sites around the world (Radiarta et al.,
2008; Wang et al., 2010; Thomas et al., 2011; Aguilar Manjarrez
and Crespi, 2013; Gernez et al., 2014) to assess the impacts of
turbidity and Chl a on aquaculture.

Optimal conditions for oyster growth have been determined
primarily through the use of various types of ecophysical models.
Habitat suitability models were first applied to the restoration
of the American oyster, Crassostrea virginica, on the warm
southeast Atlantic coast of the U.S. (Cake, 1983; Soniat and
Brody, 1988; Barnes et al., 2007). These models considered
bottom substrate and suitable salinities to maximize oyster
survival in relation to siltation and protozoan parasites. More
recently, Carrasco and Barón (2010) used satellite imagery
to map temperatures which defined the potential range for
Pacific oyster populations in South America. Statistical models
relating organism growth, biomass and economic yield illustrate
the importance of site specific environmental variables (water
velocity, food concentration) on farm yields (Pérez-Camacho
et al., 2014). Powell et al. (1992) and Hoffmann et al. (1992)
modeled American oyster filtration rate and growth as a function
of animal size, water temperature and total particulate matter,
with a negative effect at high suspended loads, although selection
for organic matter by the oyster when producing pseudofeces
(Newell and Jordan, 1983) was not considered. Gernez et al.
(2014) used 300m pixel-size suspended particulate distributions
derived from MODIS to assess the impact of suspended
particulate matter concentration on oyster farming sites, and
Gernez et al. (2017) improved on this study by using Sentinel 2
with a 10m resolution.

Crassostrea virginica is somewhat unusual in that its filtration
rate is a strong function of temperature (from 8◦C to a maximum
at 30◦C; Loosanoff, 1958) compared to other bivalves where the
filtration rate is relatively independent of water temperature.
Therefore, temperature is of primary importance in site selection
for oyster aquaculture in the relatively heterogeneous and
strongly seasonal sea surface temperature regime of the colder
Maine waters. Bivalve feeding and growth is also a positive
function of phytoplankton concentration (Hawkins et al., 2013b),
so chlorophyll a is considered the next most important factor
for site selection. In general, total suspended particulate matter
has a negative effect on bivalve growth by diluting the organic
matter at high levels (Widdows et al., 1979; Barillé et al.,
1997). For bivalves, the proportion of phytoplankton in the
suspended particles is a key aspect of site suitability (Newell et al.,
1989).
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Another important factor in oyster site selection is water
velocity, which delivers food to populations of oysters and
other bivalves at commercial-scale densities. Congleton et al.
(1999) developed a GIS system that included water velocity and
intertidal elevation to predict optimal locations for clam (Mya
arenaria) mariculture. Within a coastal bay, ShellGIS (Newell
et al., 2013) used the growth model Shellsim (Hawkins et al.,
2013a) to predict oyster growth and yield as a function of
water quality (temperature, salinity, and food concentration),
husbandry and seeding density, and water velocity on a 50m
farm scale. Water velocity is not a limiting factor in the coast of
Maine where tidal amplitudes and currents are large. Hence, the
primary screening variables of temperature, chlorophyll a, and
turbidity are effective tools to identify suitable locations on the
scale of bays and estuaries, and provide novel opportunities for
mapping potential zones for aquaculture development over large
and complex coastal regions such as Maine.

In this paper, we demonstrate a methodology to obtain
SST and calibrated water quality products from the TIRS
and OLI sensors on board Landsat 8, and validate them
with measurements in coastal Maine waters. We compute
uncertainties based on match-ups between local data and that
derived from satellites and discuss how temporal and spatial
sampling and adjacency effects affect the accuracy of remote
sensing products. These processed satellite products are then
used to establish an oyster suitability index and its distribution
in mid-coast Maine. The consistency between high values of the
index and sites of existing oyster farms provides validation for the
oyster suitability index derived here.

METHODS

Study Area
The coast of Maine includes a series of fjards (shallow and
broad fjords) and jagged embayments carved by receding glaciers
during the Pleistocene epoch. In situ samples were collected
and monitoring buoy systems were maintained in two of these
estuaries, the Damariscotta River and Harpswell Sound, over the
course of several years and we used them here to validate Landsat
8-derived products on the Maine coast (triangles on Figure 1).
We chose to focus on the Damariscotta River because it has
existing aquaculture operations (currently 75% of the oysters
produced in Maine, Maine DMR, 2015) and suitable sampling
access. The Damariscotta River Estuary is 29 km long, has a mean
summer flushing time of 4–5 weeks, and is dominated by strong
tides with amplitudes of up to 3.35m (McAlice, 1977). Sediment
resuspension in this estuary is highest at low tide, and lowest at
high tide. The estuary is highly saline, ranging from 25 to 32.5
psu, with a small amount of fresh water input from Damariscotta
Lake into Salt Bay at its northern reach. The bottom substrate is
a soft mud, composed of clay to sandy silts with an average water
depth of 15.25 m. These attributes, combined with suitable water
temperatures, turbidity, and Chl a concentrations, make the
Damariscotta River an ideal place for growingmarket-size oysters
and other bivalve species, andmake it an excellent reference point
for expanding the aquaculture industry along the coast of Maine.

FIGURE 1 | Sea surface temperature on the coast of Maine, USA, on July 14,

2013 from Landsat 8 infrared data. Triangles indicate locations of validation

buoys. Freshwater lakes used for the atmospheric correction are circled at

∼44′N, −69.5′E.

Processing of Sea Surface Temperature
All applicable raw data from Landsat 8 were downloaded from
the USGS Earth Explorer website from the period 2013 to 2016
(USGS, 2016). To calculate SST, we used brightness temperature
values from Landsat 8’s Thermal Infrared Sensor (TIRS) Band
10. There are stray light issues associated with the two TIRS
bands (Band 10 and Band 11) due to the curvature of the
optical lens (Montanaro et al., 2014). Of these two bands, we
chose to use thermal Band 10 because it has lesser issues of
the two (see Discussion Section). Each image was processed in
the NASA SeaDAS platform up to level 2 to retrieve latitude
and longitude arrays, a geo-registered image, and the associated
land/cloud mask (georeferencing is maintained, as it is provided
from USGS).

Regressions between coincident, atmospherically corrected
NOAA AVHRR satellite derived SST and that derived from
Landsat 8’s brightness temperature were used to create an SST
product from each Landsat 8 image (similar to Thomas et al.,
2002). This regression process, de-facto, acts as the atmospheric
correction for the Landsat SST product assuming that (1)
the atmosphere does not change in the time interval between
AVHRR and Landsat data acquisition and (2) the atmosphere
is homogenous across the Landsat scene. Example results from
this procedure are displayed on Figure 1 above. Of the four to
eight AVHRR images captured on the same day as each Landsat
8 overpass, we subjectively chose the image with the least amount
of cloud cover, best geolocation, and most realistic SST patterns,
for the regression (see Section A in Supplementary Material for
detailed description). The data for the regression were selected
from cloud free and offshore areas to accommodate the lower
AVHRR resolution (1 km vs. Landsat 8 100m resolution). The
best results were achieved using cloud free areas with a high
dynamic range in SST. The resulting regression equation between
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the signal of Landsat’s Band 10 and the AVHRR-based SST was
then applied to the full resolution Landsat 8 image.

On average, there are approximately four AVHRR images
per day. Due to changing cloud cover and orbit configuration
between available AVHRR images, it was sometimes necessary
to use an image more distant in time (but less cloudy) from the
Landsat 8 overpass, despite a temporally more proximate one
being available. However, because Gulf of Maine SST patterns
change relatively slowly (<0.4◦C over 12 h at buoy 44005,
www.neracoos.org), we consider this an acceptable tradeoff to
maximize the number of quality AVHRR pixels that were used
in the regression. The mean offset time between the Landsat 8
and AVHRR overpasses was 6.8 h, with a minimum of 2.3 h,
a maximum of 30.2 h, and a standard deviation of 5.8 h. The
entire area of spatial overlap between AVHRR ocean pixels and
Landsat 8 ocean pixels is used for most scenes. Landsat 8 images
were subsampled to every 10th pixel in both x and y dimensions
to reduce the data volume for the regressions. Depending on
the distribution of clouds, the regression area was restricted to
areas without cloud contamination (or poorly masked clouds) in
some instances. Cloud and land were dilated by two pixels in the
AVHRR image to reduce occurrences of cloud ringing artifacts
and nearshore land contamination. The regression process was
iterative. After each iteration, all Landsat 8 and coincident
AVHRR pixels that were >1 standard deviation from the linear
best fit line of the relationship were removed and the regression
was re-calculated with the remaining data. The iteration process
was repeated until the Pearson correlation coefficient for the
two datasets stabilized or started to worsen (which is due to
uncertainties in the approach). The final regression equation was
then applied to each Landsat 8 B10 pixel to obtain a Landsat SST
image.

Ocean Color
Ocean color multispectral data, which responds to the effects
of oceanic particles and dissolved matter, are measured from
space by theOperational Land Imager (OLI) radiometer on board
Landsat 8. The radiance measured includes contributions from
the target (the surface water column), the air-water interface,
and the background (particles and gases from nearby pixels
and particles in the atmosphere) (Mobley et al., 2016). To
obtain information on the oceanic constituents, the atmospheric
contribution to the signal needs to be removed (a process known
as “atmospheric correction,” see below). From the corrected
water-leaving radiance, we computed the reflectance (denoted as
Rrs) from which the products of turbidity and Chl a are derived.

Atmospheric Correction for Rrs
Given the low turbidity in our area of investigation (see Section
Retrieval of Turbidity below), we chose to use a combination
of the Near Infrared (NIR) and Short Wave Infrared (SWIR)
channels for atmospheric correction in SeaDAS. The NIR was
important to use because of its higher signal/noise ratio (NIR
band had a ratio of 67 in low turbidity waters, while SWIR bands
had ratios of 9 and 10), and the SWIR was important because it
has the strongest absorption for water which helps differentiate
in-water sediments from atmospheric aerosol particles (Franz

et al., 2015; Pahlevan et al., 2017). Applying this atmospheric
correction over a scene resulted in a per-pixel correction, each
with its own angstrom coefficient. The angstrom coefficient is
the exponent of a power-law fit to the spectral aerosol optical
thickness. We adjusted this coefficient because the automatic
per-pixel retrievals provided by SeaDAS resulted in negative
reflectance values at several freshwater bodies that were used
as black body targets for our atmospheric correction scheme.
These lakes should have near-zero or positive retrievals at the
443 nm band. The primary reason for adjusting the angstrom
coefficient is that the aerosol models used for processing data
from satellites such as SeaWiFs andMODIS (Ahmad et al., 2010),
do not represent the aerosol conditions for our study area, the
coast of Maine (Pahlevan et al., 2017). We then chose a single
angstrom coefficient per scene (from within the distribution of
inverted angstrom values), by requiring that the minimal value
of Rrs(443) in a scene, measured in a very humic lake, be zero.
Most freshwater lakes on the coast of Maine are humic and have
high levels of chromophoric dissolved organic matter, CDOM,
which gives them a brown hue and attenuates light quickly
(Rasmussen et al., 1989; Roesler and Culbertson, 2016) and are
not turbid. Several freshwater lakes with high CDOM within our
study region (Muddy Pond, Biscay Pond, andDamariscotta Pond
circled in Figure 1) were selected as suitable reference targets to
correct the entire Landsat 8 scene. In each individual satellite
image, the darkest lake (where Rrs(443) is near zero) was used
to determine the angstrom coefficient. Analysis of a sample of
water from one of these lakes verified that the expected Rrs(443)
is zero within the uncertainty of the satellite retrieval (Table B1 in
Supplementary Material). We subsequently applied the retrieved
angstrom in SeaDAS to the entire scene to recalculate Rrs at every
wavelength. Resulting Rrs values were then used to compute
turbidity and Chl a.

Retrieval of Turbidity
Turbidity, T, [note that 1mg l−1 of suspended particulate
matter, SPM, is similar, within the range of values found in
our study area, to a turbidity of 1 NTU (Pfannkuche and
Schmidt, 2003)], was calculated over the entire satellite scene
using atmospherically corrected Rrs(655) following Nechad et al.
(2010):

T = Aρ
ρw

1− ρw/Cρ
[gm−3] (1)

where ρw = Rrs(655)*π is the atmospherically corrected and
derived water leaving reflectance, Aρ

= 289.1 and Cρ
= 16.86

(Nechad et al., 2010).

Retrieval of Chlorophyll- a
Chl a was calculated using the OC3 algorithm (O’Reilly et al.,
1998) from the NASA Ocean Biology Processing Group, using
the above-calculated Rrs:

log10
(

Chl a
)

= a0 +

4
∑

i=1

ailog10

(

Rrs (λblue)

Rrs
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λgreen

)

)i
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where a0 and ai are sensor specific coefficients, and Rrs (λblue) and
Rrs
(

λgreen

)

are the greatest of values from 443> 483 and 555 nm,
respectively, on the OLI sensor aboard Landsat 8 (NASA, 2016)1.
(Note: SeaDAS applies coefficients to convert broad band Landsat
8-based Rrs to 11 nm narrow bands for which this equation was
developed).

Validation with In situ Data
Validation was carried out for SST, turbidity, and Chl a,
using data from water samples and three oceanographic buoy
observing systems. Historical data was downloaded from the
NERACOOS (Northeastern Regional Association of Coastal
Ocean Observing Systems) buoys E01 and I01 operated by
the University of Maine in the Gulf of Maine, a Land/Ocean
Biogeochemical Observatory (LOBO) buoy operated by Bowdoin
College in Harpswell Sound, and two LOBO buoys at the
University of Maine’s Darling Marine Center in the Damariscotta
River (Figure 1. Note: NERACOOS Buoy I01 is outside the map).
The LOBO buoys were equipped with sensors that remain at a
depth of 1.5m and maintained and cleaned to prevent biofouling
approximately every 2 weeks. Temperature data were collected
from all three observing systems and compared to Landsat 8 SST.
A total of 52 matchups were identified originating from 31 clear
overpasses from 2013 to 2016.

In situ turbidity measurements were used to validate satellite-
derived turbidity during eight overpasses in 2015 and 2016. Data
were collected from the LOBO buoys in the Damariscotta River,
and were measured by a WETLabs WQM sensor capable of
measuring turbidity from 0 to 25 NTU (using a backscattering
sensor measuring light scattered in the back direction at a 20
nm bandwidth around 700 nm). This sensor was vicariously
calibrated against a Hach turbidity sensor (which conform to the
ISO 7027:1999 turbidity standard). The buoy data were calibrated
using a regression betweenHach turbidity samples and the LOBO
turbidity using a factor of 1.58 (Table B2 in Supplementary
Material).

In situ Chl a was used to validate satellite-derived Chl
a during the same eight overpasses in 2015 and 2016. In
situ Chl a data were measured by the Damariscotta River
LOBO buoys’ WETLabs fluorescent sensor capable of measuring
Chl a concentrations from 0 to 50µgl−1. The buoy data
were calibrated using a regression between extracted Chl a
samples and the LOBO Chl a using a factor of 1.71. Water
samples were collected in triplicate, at the surface, and in
opaque bottles within 30 min of each overpass and filtered
for extraction on a Turner 10 AU fluorometer per standard
protocol (Holm-Hansen and Riemann, 1978). Statistics were
calculated for regressions between the in situ and satellite-derived
data: Root mean square difference, RMSD, root mean square
relative difference, RRMSD, and coefficient of determination, r2

(see Figures 2–4 below).

Satellite Imagery for Oyster Suitability
Index
An Oyster Growth Suitability Index (OSI) was designed using
the satellite-derived SST, turbidity, and Chl a. A weighting
and indexing procedure of these three physical parameters
described ideal, moderate, and poor conditions for growing

FIGURE 2 | Type II linear regression (black line) between Landsat 8-derived

SST and SST measured by sensors on oceanographic buoys. Different

symbols represent measurements by the three different observing systems.

Vertical error bars are the standard deviation of a 5 × 5 pixel box. Horizontal

error bars are the standard deviation of daily temperature at each buoy.

Dashed gray line is 1:1.

market sized oysters in surface culture. The criteria for the index
were chosen based on published studies of environmental effects
on oyster growth, recognizing that the concentration of organic
detritus, known to be an important component of oyster diet,
was not available. Temperature is the most important variable
for oyster growth, especially in the cold waters of coastal Maine
as it controls the filtration rate of oysters [and therefore given
an importance weight factor of 80% in our OSI; (Loosanoff,
1958; Hoffmann et al., 1992; Ehrich and Harris, 2015)]. Oyster
clearance of algae is a positive function of algae concentration,
as large amounts of pseudofeces are produced at high algal
concentrations. Because of this, we weighted Chl a at 15%, with
poor conditions as <1 or >10 µg Chl l−1, moderate conditions
as 1 to 3 µg Chl l−1, and ideal conditions as 3 to 10 µg Chl l−1

(Epifanio and Ewart, 1977; Hawkins et al., 2013b). Turbidity, an
index of suspended particulate matter, has a negative effect on
oyster feeding when at high concentrations, by diluting algal cells
with largely inorganic matter. Haven and Morales-Alamo (1966)
observed large amounts of pseudofeces production by Eastern
oysters at concentrations of suspended particulate matter above
10mg l−1. Thus, we gave turbidity a weight of 5% and designated
poor conditions as >10mg l−1, moderate conditions between 8
and 10mg l−1 and ideal conditions <8mg l−1. Hoffmann et al.
(1992) also modeled oyster filtration as a positive function of
water temperature and a negative function of high suspended
loads.

These weights are subjective and were chosen as a starting
point for an OSI. They could be refined in the future (Gong
et al., 2012), based on sensitivity analysis of the relative
importance of these factors measured simultaneously with
growth measurements in situ. The resulting OSI is the sum of
the weighted conditions on a scale from 0 to 1, where pixels with
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FIGURE 3 | (A) Landsat 8-derived turbidity along mid-coast Maine on July 14, 2013. (B) Type II linear regression (black line) between Landsat 8-derived turbidity and

turbidity measured by LOBO buoys. Vertical error bars are the standard deviation of a 5 × 5 pixel box centered at the in situ measurement. Horizontal error bars are

the standard deviation of turbidity for 4 h at each buoy. Dashed gray line is 1:1.

FIGURE 4 | (A) Landsat 8-derived chlorophyll-a along mid-coast Maine on July 14, 2013. (B) Type II linear regression (black line) between Landsat 8 derived

chlorophyll-a and chlorophyll-a measured by LOBO buoys. Vertical error bars are the standard deviation of a 5 × 5 pixel box centered at the in situ measurement.

Horizontal error bars are the standard deviation of chlorophyll-a for 4 h at each buoy. Buoy chlorophyll-a was calibrated with chlorophyll extraction samples. Dashed

gray line is 1:1.

a value of 1 represent waters where an oyster is likely to grow to
market size within 2 years:

OSI =

n
∑

i=1

SIi × wi (3)

where SIi is the value of the environmental variable i, wi is the
weight of the variable i, and n is the number of environmental
variables (three in our case). At any location where one of the

three indices reported poor conditions, the OSI was set to zero.
We combined images from each year during the same month to
create a monthly averaged index.

RESULTS

Validation with In situ Data
The Landsat 8 SST retrievals correlated well with in situ
temperatures (RMSD is 0.82◦C, RRMSD is 4%, r2 = 0.94)
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with, on average, 1◦C higher SST values than those measured
by the buoy sensors, especially in warmer waters (Figure 2).
However, variability of the buoy measurements is larger at higher
temperatures when horizontal gradients in temperature were also
larger.

The Landsat 8 turbidity estimates correlated well with in
situ turbidities (RMSD 0.49 NTU, RRMSD 3%, max absolute
deviation is 0.96 and maximal relative deviation is 15%,
r2 = 0.88), with an uncertainty of 0.5 NTU, on average
(Figures 3A,B). Uncertainties are larger at higher turbidities for
both the buoy and the satellite algorithm.

Landsat 8 based Chl a did not correlate well with in situ Chl
a (RMSD is 1.75 µg Chl l−1, RRMSD is 110%, max absolute
deviation is 3.14 µg Chl l−1, max relative deviation is 156%,
r2 = 0.31). Below 5 µg Chl l−1, the OC3 algorithm produced
higher Chl a values than those measured by the buoy sensors
(Figures 4A,B). Above 5 µg Chl l−1, the buoy measurements
were higher than the satellite-derived Chl a. Uncertainties are
larger at higher Chl a for the buoys and the satellite algorithm.
Out of the three parameters derived from Landsat 8, this
algorithm has the highest relative deviation of 156%, with an
average relative difference of 110%, which is significantly worse
than the average relative difference of 30% for chlorophyll
algorithms in the open ocean (but see Discussion).

Satellite Imagery for Oyster Growth
Conditions
Monthly maps of Oyster Suitability Index (Figure 5) were
created using averaged monthly satellite images (Section B
in Supplementary Material). Most existing oyster aquaculture
areas (indicated by red stars on Figure 5) fall within the
highest suitability index during the month of July. Suitability
maps for August and September exhibit a similar pattern of
ideal, moderate, and poor growing areas as the map for July
(Figure 5), but, in general, with slightly lower values due to
colder temperatures (average monthly temperatures were highest
during July). The Oyster Suitability Index map provides two
important findings: (1) it is consistent in its finding that the
Damariscotta River as a suitable place to grow oysters in
aquaculture and therefore an important test and verification
site for using remote sensing tools, and (2) it maps many new
locations along the coast that host similar conditions (Table B2 in
Supplementary Material).

DISCUSSION

Satellite Imagery
The correspondence between the Landsat 8 satellite-derived
products and in situ measurements demonstrates the capability
of generating SST, turbidity, and Chl a maps along the jagged
coast of Maine. While these data show encouraging results, there
are several factors from our study that could improve the present
algorithms. Stray light issues arise if the temperature from an
object outside of the field of view of the imager affects the pixel
within the field of view. Fortunately, most water along the coast
of Maine is vigorously tidally mixed (∼3m tidal range), and
thus data from the center of channels can be used to infer SST

FIGURE 5 | Oyster suitability map based on Landsat 8-derived SST, turbidity,

and chlorophyll-a. Map is an average of all images in the month of July. Yellow

areas indicate ideal conditions, green areas indicate moderate conditions, and

blue areas indicate poor conditions. Red stars indicate existing oyster farms.

Index criteria is given in Section B in Supplementary Material.

throughout those channels (Thornton and Mayer, 2015). Within
the estuaries, however, a TIRS pixel (which is three times as
wide as an OLI pixel) next to land may be incorrectly colder (if
the land is colder) or warmer (if the land is warmer). However,
our match-ups with temperature and turbidity products suggest
adjacency and stray light have not degraded the data significantly,
and differences are likely due to noise as opposed to systematic
bias.

Limitations in Validation Process
Validation of Landsat 8 products with in situ measurements is
necessary to assess the accuracy of the algorithms for retrieving
bio-physical products. Some of the discrepancy in matchups
between in situ data and satellite-derived products can be
explained, while others require further investigation. One reason
that Landsat 8 SST values may be higher than most buoy
measurements (Figure 2) is because the SST estimates come
from radiation emitted from the top few micrometers of the sea
surface, while the buoy sensors are located about 1.5m below
the surface. In the daytime images, the subsurface water is likely
cooler than the surface skin due to physical and environmental
factors (Donlon et al., 2002; Ward, 2006; Padula et al., 2010).
Despite this bias, the Landsat 8 SST (derived by regressing with
atmospherically-corrected AVHRR SST) performed well along
the coast of Maine and our results suggest that our approach
could be used as a tool for measuring SST where high spatial
resolution is desired.

A vigorous semi-diurnal tide characterizes the Damariscotta
River and delivers shelf water into the upper reaches of the
estuary. The tidal cycle was evident in the daily turbidity signal
(not shown) from the LOBO buoys: at low tide, there are elevated
levels of turbidity whereas at high tide there is less turbidity
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(due to the increase in turbidity from the mouth to the end of
the estuary). The horizontal error bars in Figure 3 represent the
variability during a 4-h period around each satellite overpass
time, and highlight the importance of simultaneous sampling
for in situ—satellite matchups. The turbidity algorithm performs
well within our uncertainties in this context.

Landsat 8-derived Chl a often differs significantly from the
LOBO buoy measurements. We note that there are significant
uncertainties associated with both measurement techniques
(Cullen, 2008). Landsat 8-derived Chl a is retrieved from Rrs
using an algorithm calibrated in the open ocean, whereas the
LOBO buoys measure Chl a fluorescence which is regressed
against chlorophyll measured on water samples. Estimating Chl
a from fluorescence is the most common way to measure Chl a
but is affected by several processes that contribute to uncertainty.
These include changes in fluorescence yield due to variability
in the algal taxonomy, nutrient stress, and photo-acclimation,
to name a few (Cullen, 1982). In addition, concentrations of
phytoplankton have been observed in the Damariscotta River
to vary on time scales of hours (Thompson and Perry, 2006)
potentially making mismatches in time problematic.

Non-photochemical quenching (NPQ; when phytoplankton
decrease their fluorescence at a maximum light harvesting
level, e.g., Cullen, 1982) contributes to variability. However,
we find nighttime measurements to be comparable to daytime
measurements (Figure B1 Supplementary Material) for the
Damariscotta River. Therefore, the offset in Chl a is likely
not due to errors induced by NPQ. Another potential error is
associated with the OC3 algorithm, which estimates Chl a as a
ratio of Rrs in the blue and green channels. The blue channel
is especially influenced by colored dissolved organic material
(CDOM). Independent changes of CDOM will affect the OC3
chlorophyll estimate (Siegel et al., 2005). Along the coast of
Maine, where there are coastal forests and marshes, CDOM
is in high concentration and variable (Roesler and Culbertson,
2016). In coastal areas and estuaries rich in CDOM it is likely
that absorption by dissolved organic matter would bias the
OC3 algorithm. It is likely that a local algorithm that takes
local CDOM concentration into account, could improve Chl a
retrievals from Landsat 8.

Oyster Suitability Index
The OSI provided in this paper is intended to supplement
other tools that determine optimal oyster growing areas. The
satellite images, due to their low temporal resolution, provide
a climatological monthly average of coastal temperature, which
does not resolve the day degree input necessary in models
for temperature-dependent shellfish growth. In addition, other
important environmental factors such as salinity, water depth,
bottom type, and water velocity (necessary for oyster growing),
are not considered (Theuerkauf and Lipcius, 2016). Organic
detritus is known to be an important component of bivalve
diets (Dame and Patten, 1981; Bayne et al., 1993; Barillé et al.,
1997), but currently cannot be measured using satellite imagery.
It is conceivable that detritus could be related to the ratio of
turbidity and Chl a, after light acclimation has been accounted
for. Our index therefore provides guidance on suitable water

quality conducive to rapid growth, but not sufficient information
to model site specific production capacity for suspended or
bottom culture.

Although, satellite thermal data is only sensitive to the
temperature of the top fewmicrometers of water, and ocean color
is sensitive only to one optical depth (which varies, but on the
Maine coast is usually the top 1 or 2 m), these data are relevant
to the whole water column if the water column is often vertically
well-mixed. Indeed, many estuaries on the Maine coast are well-
mixed (e.g., the Sheepscot and Medomak Rivers, Mayer, 1996;
Thornton and Mayer, 2015), which makes it relevant for our OSI
(Table B2 in Supplementary Material). Finally, local knowledge is
invaluable for the expansion of an existing industry on the coast
of Maine, and stakeholder input is essential for improving such
an index with local information such as site accessibility, town
ordinances, etc.

Future Work
Continued sampling during the spring and summer of 2017 will
provide a more complete dataset for optimizing Landsat-derived
products in Maine. A local algorithm for Landsat 8-derived Chl
a along the coast of Maine could be constructed with additional
in situ samples collected during satellite overpasses. There are
several approaches to tune a local algorithm. An empirical
approach, such as the OC3 algorithm, uses a relationship between
in situ measurements and ratios of the satellite sensor bands.
A second method involves using a generalized inherent optical
properties inversion (GIOP, Werdell et al., 2013). This method
solves for Chl a, SPM, and CDOMusing known spectral shapes of
optical properties (for phytoplankton and non-algal absorption
and backscattering by particles) and known values of absorbance
and backscattering of water (which are weak functions of salinity
and temperature). Databases of collection sites located in the
Damariscotta River and Harpswell Sound could tune the shapes
of IOPs for the GIOP algorithm and provide an estimate of Chl a
in these two estuaries. Furthermore, in situ samples from various
locations along the coast will validate the local algorithm so that
its use can be expanded from the Damariscotta River to other
places along the coast.

Obtaining more parameters from Landsat 8, such as colored
dissolved organic matter (CDOM), would provide additional
information to growers and ecosystem managers. Franz et al.
(2015) and Slonecker et al. (2015) describe the potential of
using Landsat 8 for remote sensing of CDOM in conjunction
with in situ measurements. A reliable CDOM product would
also improve the algorithm for Chl a, as the presence of
CDOM often contributes to an overestimation of Chl a.
Furthermore, high levels of CDOM are correlated with low
salinity in estuaries (Carder et al., 1989; D’Sa et al., 2002; Mayer,
pers. commun.). CDOM would therefore be helpful to identify
areas with significant freshwater influx because these often bring
concentrations of bacteria that negatively affect clamming and
other fisheries (Shumway et al., 1988; Kleindinst et al., 2014).

Validation of our OSI is provided by the fact that current
farms are all located where the OSI is high. Further validation
and refinement with direct measurements of oyster growth,
will likely improve on this OSI. Note: OSI does not include
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information about site closures, bottom depth, or residential
restrictions. Future work should include this information for a
more comprehensive index.

CONCLUSION

A satellite-derived Oyster Suitability Index can act as a powerful
tool for oyster aquaculture site selection and the expansion of
the shellfish farming industry. It shows that suitable biophysical
conditions for oyster growth exist in many areas of the Maine
coast. Suitability indices for other bivalve species, such asmussels,
scallops, and finfish along the coast, or other applications
requiring high spatial resolution, can be developed based on the
algorithms presented here.

Our results show that Landsat 8-derived data are useful
for retrieving SST, turbidity, and Chl a in coastal waters of
Maine, USA, and can be applied to other narrow estuaries
around the world. The novelty of using Landsat 8 in this
context offers a unique opportunity to map and monitor coastal
waters at an unprecedented spatial resolution. Inclusion of
data from other satellites with complimentary sensor suites
such as Sentinel 2A, and the recently launched Sentinel
2B, could improve both the spatial and temporal coverage
of coastal waters, as they will provide five-day or better
coverage and more visible bands to derive products with
(unfortunately, Sentinel 2A and B do not have thermal bands),
and be used to study oyster growing facilities (Gernez et al.,
2017). SST data from Landsat 8 is especially useful for
aquaculture site prospecting. We recommend adding thermal
bands to high resolution instruments on future missions. Future
work improving biogeochemical local algorithms, refining the
atmospheric correction, and adding other parameters such as
CDOM, will further advance the use of high resolution remote-
sensing for coastal applications.
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Tidal wetland restoration efforts can be challenging to monitor in the field due to unstable

local conditions and poor site access. However, understanding how restored systems

evolve over time is essential for future management of their ecological benefits, many

of which are related to vegetation dynamics. Physical attributes, such as elevation and

distance to channel play important roles in governing vegetation expansion in developing

tidal wetlands. However, in Mediterranean ecosystems, drought years, wet years, and

their resulting influence on salinity levels may also play a crucial role in determining the

trajectory of restoration projects, but the influence of weather variability on restoration

outcomes is not well-understood. Here, we use object-based image analysis (OBIA)

and change analysis of high-resolution IKONOS and WorldView-2 satellite imagery to

explore whether mean annual rates of change from mudflat to vegetation are lower

during drought years with higher salinity (2011–2015) compared to years with lower

salinity (2009–2011) at a developing restoration site in California’s San Francisco Bay.

We found that vegetation increased at a mean rate of 1,979 m2/year during California’s

historic drought, 10.4 times slower than the rate of 20,580 m2/year between 2009 and

2011 when the state was not in drought. Vegetation was significantly concentrated in

areas closer to channel edges, where salinity stress is ameliorated, and the magnitude of

the effect increased in the 2015 image. In our image analysis, we found that different

distributions of water, mud, and algae between years led to different segmentation

settings for each set of images, highlighting the need for more robust and reproducible

OBIA strategies in complex wetlands. Our results demonstrate that adaptive monitoring

efforts in variable climates should take into account the influence of weather on tidal

wetland ecosystems, and that high-resolution remote sensing can be an effective means

of assessing these dynamics.

Keywords: tidal wetland, restoration ecology, drought, remote sensing, satellite imagery, object-based image

analysis, climate variability
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INTRODUCTION

Tidal wetland ecosystems worldwide are threatened by a range of
human activities (Zedler and Kercher, 2005; Erwin, 2009; Klemas,
2013) and have been in steady decline for the last 150 years
in California (Goals Project, 2015). In recent years, significant
efforts have been undertaken to reverse this widespread loss and
alteration. To effectively implement and plan restoration efforts,
detailed understandings of system dynamics are necessary for
driving adaptive management approaches (Spencer et al., 2016).
To date, studies of restoration projects have focused more on
the physical aspects of vegetation development and how they
relate to sediment supply, initial elevation, and landscape context
(Williams and Orr, 2002; Kelly et al., 2011; Brand et al., 2012).
However, due to a variety of interacting factors, restoration
projects may not proceed in a simple linear manner over time
(Holmgren and Scheffer, 2001; Peters et al., 2004; Holmgren et al.,
2006; Scheffer et al., 2009; Sitters et al., 2012; Chapple et al.,
2017). Rates of restoration change over time and the factors that
influence these transitions are critical yet understudied aspects
of the restoration process. Since restoration projects increasingly
use iterative, data-driven adaptive management strategies to plan
projects, an improved understanding of how systems change over
longer time periods is necessary.

Due to its Mediterranean-type climate and variable weather
between years, California’s San Francisco Bay (SF Bay) is an
interesting location to study how climate variability influences
restoration projects (Chapple et al., 2017). Between 2011
and 2015, California experienced an extreme drought event
with an essentially incalculable return period (Robeson, 2015).
This extended dry period has led to changes in other plant
communities across the state (Asner et al., 2016; Copeland et al.,
2016), and has likely influenced restoration project trajectories
(Holmgren and Scheffer, 2001; Chapple et al., 2017). At the broad
scale, plant communities in SF Bay tidal wetlands are primarily
influenced by the salinity of tide waters (Malamud-Roam and
Ingram, 2004; Callaway et al., 2007), which are influenced by
snowpack levels and a complex series of upstream interactions
across the state (Dettinger and Cayan, 2003). Anthropogenic
sources of atmospheric carbon appear to be contributing to

reduced snow pack in the state, which is expected to continue
declining (Berg and Hall, 2017). These shifts will likely have
major impacts on salinity and plant community dynamics
throughout the estuary (Malamud-Roam and Ingram, 2004;
Callaway et al., 2007) and will play a role in determining
how restoration trajectories progress (Chapple et al., 2017). An
improved understanding of how extreme events like California’s
historic drought impact restoration efforts is essential for future
management (Holmgren and Scheffer, 2001; Holmgren et al.,
2006; Callaway et al., 2007; Sitters et al., 2012; Zedler et al.,
2012), given that increased climate variability is a major projected
outcome of climate change (Pachauri et al., 2014).

In the SF Bay, the restoration of tens of thousands of acres
of tidal wetland are planned or in process (Goals Project, 2015).
Tidal wetlands in the area are inundated twice daily by tidal
water, and the ambient salinity of Bay water is the primary
determinant of tidal wetland plant community structure at the

broad scale (Callaway et al., 2007; Chapple et al., 2017). At
the site-level scale, salinity interacts with tidal channel structure
and elevation to determine vegetation patterns (Sanderson et al.,
2000; Schile et al., 2011; Chapple et al., 2017). Previous studies
on the role of freshwater dynamics in California’s tidal wetlands
have focused on field-collected data, finding that salinity can
play a pronounced role in plant productivity and community
dynamics (Zedler, 1983; Callaway and Sabraw, 1994; Chapple
et al., 2017). To improve management outcomes, understanding
vegetation trends at larger scales is critical, and remote sensing
of aerial imagery provides a cost-effective means of monitoring
tidal wetland sites where access may be challenging. In particular,
object-based image analysis (OBIA) is a promising technique for
monitoring tidal salt marshes (Dronova, 2015), and has been
applied to looking at vegetation across spatial scales in these
ecosystems (Tuxen and Kelly, 2008; Moffett and Gorelick, 2013,
2016), but has only recently been used to explore change over
time (Campbell et al., 2017). Previous geospatial work using
aerial imagery has largely taken place in the North SF Bay, where
freshwater river runoff buffers Bay salinity (Tuxen and Kelly,
2008; Tuxen et al., 2008). While large-scale manipulation of
freshwater in restoring tidal wetlands is not feasible, remotely
sensed data allows for retrospective consideration of how
drought has influenced restoration trajectories.

Ecological trends are often hard to predict in heavily modified
restoration sites (Suding et al., 2004; Zedler, 2007), which
makes monitoring a crucial aspect of iterative restoration design
(Bernhardt et al., 2007; Kondolf et al., 2007; Zedler et al., 2012;
Chapple et al., 2017). These uncertainties are compounded by

climate variability, but the influence of year-effects on restoration
outcomes is under-represented in the literature (Vaughn and
Young, 2010). Site conditions in developing tidal wetlands can
be particularly challenging for ground surveys owing to tides,
mud, and limited access options (Watson, 2008; Diggory and
Parker, 2011). Remote sensing of satellite imagery allows for the
monitoring of large wetland areas at a fraction of the cost and
time associated with field monitoring, but it is still under-utilized
as a restoration tool (Klemas, 2013). To effectively track the fine
scale trends required by most tidal wetland restoration projects,
high resolution (<4 m) imagery is needed to analyze surface
trends (Dronova, 2015).

High-resolution satellite imagery also presents certain
challenges for accurately characterizing restoration targets, such
as vegetation cover. Due to high spatial complexity caused by
fine-scale patterning of water, algae, topography, and other
features, high-resolution imagery can be challenging to interpret.
Often, pixel-based approaches are hampered by their inability
to consider both the pixel identity and spatial context in
classifying landscapes (Tuxen and Kelly, 2008). To account for
these issues, object-based approaches are increasingly used to
categorize heterogeneous landscapes like tidal wetlands (Wang
et al., 2004; Tuxen and Kelly, 2008; Moffett and Gorelick, 2013,
2016; Dronova, 2015; Campbell et al., 2017). In tidal wetland
restoration projects, sediment is highly dynamic over time,
imagery must be gathered at low tide for optimal visualization
while surface water and debris can vary greatly between images
(Tuxen and Kelly, 2008; Fulfrost et al., 2012). Further, vegetation
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patches may be heterogeneous, leading to salt-and-pepper
speckle artifacts that confuse delineation and interpretation of
cover types (Moffett and Gorelick, 2013). By smoothing local
noise and allowing for supervised classification for each year,
OBIA can help address some of these issues (Dronova, 2015), but
it has rarely been used for monitoring restoration outcomes (but
see Campbell et al., 2017).

OBIA methods are effective because they rely on multi-
scale interpretations of images instead of simple pixel measures
(Schiewe et al., 2001). By nature, pixels represent a fixed area
of the ground surface, defined by the pixel size, or resolution.
Object-based approaches integrate pixel information with spatial
information, as pixels closer together in space are more likely
to be related (Blaschke and Hay, 2001). Further, the shape of
objects can be incorporated and controlled in the OBIA process
flow, allowing for more detailed pattern analysis (Blaschke et al.,
2000; Schiewe et al., 2001). A comparison of pixel-based and
object based analyses of IKONOS imagery in a tidal system found
that object-based methods repeatedly outperformed pixel-based
methods (Wang et al., 2004).

Object-based methods rely on a mix of the parameter classes
listed above to segment images for analysis. Scale and shape
parameters capture the spatial attributes of the study system,
while spectral bands from the imagery capture variation in
visual and often infrared sensor bands (Dronova, 2015). The
process of segmentation incorporates user-specified weights for
each of these parameters and divides the images into discrete
objects. Based on how well these objects capture variation
across the landscape, the user varies parameters to arrive at an
appropriate set of objects (Moffett and Gorelick, 2013). Once
the appropriate objects are defined, the user classifies a subset of
objects into classes. This subset of points is then used to classify
the entire image. Despite its strong potential, change analysis is
less frequently implemented in tidal wetland ecosystems using
OBIA. The most frequent use of this has been in mapping
mangrove ecosystems (Conchedda et al., 2008; Gaertner et al.,
2014; Son et al., 2015), where Conchedda et al. found that
increases in mangrove ecosystems in Senegal may be attributable
to increased precipitation in the region over the study period
(Conchedda et al., 2008). Campbell et al. were able to track the
influence of Hurricane Sandy on vegetation dynamics across a
range of wetlands in New York (Campbell et al., 2017). These
studies highlight the potential to use these methods to discern
the influence of weather variability on vegetation change.

Tidal wetland restoration has been underway in the SF Bay
since the mid-1970s (Williams and Faber, 2001). Early projects
showed that the proper elevation range was crucial for plant
establishment, but that pre-filling sites to their target elevations
prevented the development of tidal channels, leading to inferior
quality habitat (Williams and Faber, 2001; Philip Williams &
Associates, Ltd., and Faber, 2004). As such, tidal wetlands in
the SF Bay are typically restored through a hybrid process,
whereby the topography in a target area is altered to insure
proper drainage before returning tidal influence, but themudflats
accrete sediment passively from the tide over time to reach
target elevations for vegetation development (Williams and Orr,
2002; Kelly et al., 2011; Brand et al., 2012). This allows for
the development of tidal channel networks that convey tidal

waters in and out of these sites. Both channel structure and
elevation play key roles in determining vegetation patterning,
largely due to the reduction of salinity in higher elevation
areas and areas closer to channel edges (Sanderson et al., 2000;
Tuxen et al., 2011; Brand et al., 2012). Channel proximity also
influences salinity levels: poorly drained areas in the interior
of the marsh exhibit lower biomass production when ambient
salinity levels are higher, while channel edges appear to buffer the
negative influences of ambient salinity, allowing for similar levels
of biomass production across different salinity levels in areas
adjacent to channels (Schile et al., 2011). Biomass production
influences the speed of restoration, which in turn influences
the resilience of developing restoration projects to sea level
rise (Goals Project, 2015); it is thus critical to understand how
restoration sites change over time.

Despite a developed conceptual framework on the spatial
development of marshes from mudflats based on sediment and
elevation, the influence of weather variability and extreme events
like drought over time is less well-understood. In California tidal
salt marshes, freshwater added by El Nino events (Zedler, 1983;
Chapple et al., 2017) and experimental manipulations (Callaway
and Sabraw, 1994; Schile et al., 2011; Woo and Takekawa, 2012)
has been shown to influence biomass production and species
identity. Freshwater impacts can also influence plant dynamics
at restoration sites (Chapple et al., 2017), but these impacts have
not been explored at larger spatial scales. To better understand
the influence of drought on vegetation development over time,
we performed change analysis at a developing restoration site
in the South Bay Salt Pond Restoration Project (SBSPRP) in
Hayward, CA during California’s historic drought (2011–2015)
and a period of average precipitation (2009–2011). In the SF
Bay, earlier change detection efforts have largely relied on
using spectral indicators, such as NDVI to track restoration
site changes over time (Tuxen et al., 2008; Kelly et al., 2011;
Fulfrost et al., 2012). The goals of our study are three-fold: (1)
compare rates of annual vegetation change during the drought
period to a period with greater freshwater influence (2009–
2011), (2) assess how channel structure influences vegetation
patterning across different years, and (3) discern the utility of
OBIA classification and change analysis to detect changes in a
tidal wetland restoration project.

METHODS

Study Area
Our study focused on a single marsh (North Creek Marsh,
37◦36′40.20′′N, 122◦6′43.94′W) at Eden Landing Ecological
Reserve in Hayward, CA, part of the South Bay Salt Pond
Restoration Project (Figure 1). The SBSPRP is an adaptively-
managed effort to restore over 15,000 acres of former salt-
evaporation ponds to a mosaic of tidal wetlands and managed
ponds (Trulio et al., 2007). North Creek Marsh is a 37.32 Ha
restoration site initiated in 2006. The site was historically tidal
wetland and was converted to industrial salt-evaporation in the
late nineteenth century (Stanford et al., 2013). Tidal influence
was returned to the area by breaching a levee at the southern
end of the site. The restoration process is driven by tidal
transport of sediment building the marsh plain to the appropriate
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FIGURE 1 | (A) Eden Landing Ecological Reserve (CA Dept. Fish and Wildlife), Hayward, California, USA. (B) South San Francisco Bay, Eden Landing Ecological

Reserve outlined (C) California state outline. Aerial images reproduced with permission from ©Google, 2017.

level (Brew and Williams, 2010), then seed dispersal via tidal
hydrochory driving the development of vegetation (Diggory and
Parker, 2011). In addition to the passive restoration process
via seed dispersal, the Invasive Spartina Project actively planted
selected portions of the site with the native cordgrass Spartina
foliosa, Distichlis spicata (saltgrass), and Grindelia stricta (marsh
gumplant) (Hammond, 2016).

Salinity Data Analysis
We determined mean annual salinity for each rain year
(October–September) between 2009 and 2015 using Station 30

from the USGS SF Bay water quality archive (Cloern and Schraga,
2016). To explore potential differences between tidal heights,
we determined mean higher high water (MHHW) and monthly
maximum tide from the NOAA Redwood City Tide Gauge, the
closest tide station with continuous data over the study period
(https://tidesandcurrents.noaa.gov/). For salinity and MHHW,
we subset the data for rain years 2009–2011 and 2012–2015 to
correspond to the dates of our imagery and California’s historic
drought. To determine differences between the two periods, we
performed a non-parametric Kruskal–Wallis test for salinity,
MHHW and monthly maximum tide. To determine directional
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trends in salinity during the two periods, we used non-parametric
generalized additive models to analyze salinity levels over time
using the gam package in R (Hastie, 2013). Non-parametric tests
were used due to non-normality of salinity data.

Remote Sensing Data and Image
Pre-processing
For 2009 and 2011, we obtained 0.8m pan sharpened IKONOS
imagery of the South Bay Salt Pond Restoration Project from the

San Francisco Estuary Institute (©Digital Globe Inc., 2011). For

2015, we obtained 0.5m WorldView-2 imagery (©Digital Globe
Inc., 2015). Each set of imagery contained four spectral bands:
red, green, blue, and near-infrared (NIR). To ensure phenological
continuity between collection dates, all images were collected
near peak biomass (June 23 2009, July 7 2011, and June 21
2015) at low tide to ensure maximum visibility of vegetation. The
timing of collection is essential because tidal water frequently
covers landscape features, such as vegetation patches, essential
to change detection. To double check that intermediate years at
our site did not exhibit anomalous vegetation growth that is not
accounted for in our analysis, we reviewed Google Earth imagery

(©Google, 2017) for all available dates between June 2009 and
June 2015. We did not find evidence of anomalous change or loss
in the periods between our high resolution images.

To prepare the images for analysis, we re-projected the 2009
image from the GCS 1984 datum to the NAD 1983 datum to
match the 2011 and 2015 images.We down-sampled all images to
0.8m pixel resolution to match the lowest resolution images. We
then geocorrected all images, resulting in an offset of 0.5 pixel

maximum. Images were imported into eCognition (©Trimble
Inc.) software to perform OBIA. To allow for the most effective
interpretation of vegetation patches, bands 4, 3, and 2 were
visualized as RGB, respectively, and the Histogram Equalization
stretch was applied across the image.

Object-Based Image Classification
Object-based analyses were performed in eCognition Developer

software version 8.8 (©Trimble Inc.). As a first step, we generated
primitive image objects as spatial units for wetland classification
using the Multiscale Resolution Segmentation (MRS) tool which
requires the parameters of scale, shape and compactness to
control object size and heterogeneity. For all images, we used
the red, green, blue, and infrared bands to classify imagery. To
determine their values for our objectives, we worked through
a series of scale parameter values in increments of 5, and both
shape and compactness parameters in increments of 0.1. We
assessed each combination of settings by trial and error to
determine which combination of parameters best matched the
visual distribution of vegetation at the site. Notably, due to the
differences in the original resolution of image datasets, we had
to individually adjust their MRS parameters to obtain primitive
objects of comparable size. For the 2011 image, using a scale of
10 resulted in unrealistically small objects. Using scales of 40 and
above did not capture enough of the surface variation, and after
comparison of incremental steps, we determined that a scale of 30
most effectively captured the vegetation patterning on the marsh

surface.We selected a scale of 25 for the 2015 image and a scale of
6 for the 2009 image. For all images, shape was given low weight
(0.1) in the final classification, as shapes in wetland vegetation are
highly dependent on patch size and do not conform to regular
patterns across the marsh surface (Moffett and Gorelick, 2013).
Compactness was given a medium weight (0.5). For all images,
the four bands were given equal weight.

Following the segmentation process, we manually identified
at least 50 training samples for each of the three main categories:
Water/Channels, Mudflat, and Vegetation. Vegetation is
included as a simple category since the majority of vegetation at
the site consists of Salicornia pacifica, an early-colonizing marsh
dominant (Krause, 2016). Jaumea carnosa (Fleshy Jaumea),
Frankenia salina (Alkali Heath), the annual Salicornia europaea
(common glasswort), G. stricta (marsh gumplant), and S. foliosa
(California cordgrass) are present in lower densities due to
natural recruitment (Krause, 2016) and planting (Hammond,
2016), but our imagery did not allow for differentiation between
species. Samples were selected by examining the imagery and
cross-referencing these observations with checks of Google

Earth (©2015 Google) imagery to verify vegetation patterns.
This information was combined with expert knowledge on
vegetation patterns from field visits conducted between 2013
and 2015. Once samples were selected, images were classified by
including a supervised nearest neighbor process algorithm with
the mean brightness, mean NIR and standard deviation of the
red band selected as class-discriminating features. We initially
included the Normalized Difference Vegetation Index (NDVI),
which uses the red and infrared bands to detect green vegetation,
as a classification parameter. However, this led to spurious
identification of algae as vegetation, and misclassified vegetated
areas with apparent mudfilms as mudflat, so we elected not to
include it in the final process decision tree. Following sample
selection and implementation of the nearest neighbor algorithm,
images from all years were separately classified into the three
categories using the classification algorithm in eCognition.
Once images from each year had been classified, the resulting
classifications were imported into ENVI to perform change
detection analysis via simple spatial overlay. Images were masked
to include only the marsh-plain area.

To perform accuracy assessment, we used the Random
Points tool (Standard C Rand function) in ArcGIS v. 10.3
(Esri Inc.) to select between 54 and 87 points per category per
year, excluding training samples, and visually identified cover
categories. Samples that fell along object edges were excluded

from the random point selection. Google Earth images (©2015
Google) from each year were used to manually verify sample
collection points. These points were imported as Regions of
Interest (ROI) into ENVI v.5.2 (Harris Geospatial Inc.) software
to perform accuracy analysis. The ROIs were used to populate
the Confusion Matrix tool, which calculates standard accuracy
metrics (overall accuracy, kappa, user’s, and producer’s accuracies
for different classes) of a classified image based on verified
samples.

Following classification, we analyzed vegetation patch
dynamics. To determine the relationship between vegetation
presence and channel structure, we digitized a vector of the
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major channels at the site, then created a distance raster using
the Euclidean Distance tool in ArcGIS v. 10.3 (Esri Inc.). This
tool calculates the distance from a specified feature and outputs
a continuous raster with corresponding values. We generated
1,000 random points using the Random Points tool in ArcGis
and extracted the vegetation layer from our classification for
each year. Based on this data we used vegetation presence (1) and
absence (0) to run a generalized linear model with a binomial
distribution using the lme4 package in R (Bates et al., 2017).
To determine changes in patch configuration across the three
images, we ran patch statistics using FragStats v. 4 (McGarigal
et al., 2015).

RESULTS

Salinity and Tides
Our results show that salinity was significantly higher during
California’s historic drought, and the magnitude of mean
annual vegetation change was 10.4 times slower during this
period compared to the lower salinity period that preceded
it (Figures 2, 3). Mean salinity was 25.64 ppt for 2009–2010,
and 23.99 ppt for 2010–2011, with an overall mean of 24.82
ppt (CV = 0.198) between 2009 and 2011. Mean salinity was
26.08 ppt for 2011–2012, 28.18 ppt for 2012–2013, 30.12 ppt
for 2013–2014, and 29.50 ppt for 2014–2015, with a mean
salinity of 28.47 ppt (CV = 0.10) between 2011 and 2015
(Figure 5). Salinity was significantly different between these two
periods (p < 0.001, χ2

= 18.40). Salinity significantly decreased
between 2009 and 2011 (p < 0.001, F = 18.69) and significantly
increased between 2011 and 2015 (p < 0.001, F = 16.50). Neither
MHHW (p = 0.354, χ

2
= 0.86) nor monthly maximum tide

was significantly different between the two periods (p = 0.354,
χ
2
= 43.87) (Figure 2).

Remote Sensing Classification Accuracy
We obtained high classification accuracy for each of our cover
categories in each year. For 2009, we obtained an overall accuracy

of 92.42% and a Kappa Coefficient of 0.88. For 2011, we obtained
an overall accuracy of 95.02% and a Kappa Coefficient of 0.92.
For 2015, we obtained an overall accuracy of 96.83% and a
Kappa Coefficient of 0.95. The lower overall accuracy in the
2009 image was due to over-classification of water on the marsh
surface (Table 1). Vegetation, the focal target of post-restoration
monitoring, was consistently classified with high user’s and
producer’s accuracy exceeding 92% at all times (Table 1). It was
most commonly misclassified with water in 2009 and 2015 and
mudflat in 2011. Some of the overall classification error also
occurred due to misclassification of water and mudflats that did
not correspond to vegetation per se and thus was of lower concern
for our objectives.

Changes in Vegetation Cover and
Distribution
Total vegetation cover increased from 58,154 m2 of the study
area to 99,315 m2 from 2009 to 2011, an increase of 70.77%
at a mean rate of 20,580 m2/year. In contrast, vegetation cover
increased from 99,315 m2 in 2011 to 107,232 m2 in 2015, a 7.97%
change from the 2011 cover at a mean rate of 1,979 m2/year
(Figures 3, 4). For all years, vegetation presence was significantly
related to distance from channel, with areas closer to channel
more likely to support vegetation, but the magnitude of the effect

TABLE 1 | Accuracy assessment for each cover category for 2009, 2011, and

2015.

2009 2011 2015

Overall accuracy:

92.42%

Overall accuracy:

95.02%

Overall accuracy:

96.83%

Class Producer’s User’s Producer’s User’s Producer’s User’s

Channels/

Water

96 82.76 94.12 96 91.8 98.25

Vegetation 98.08 94.44 95.89 92.11 98.67 96.1

Mudflat 87.5 97.67 94.81 98.65 98.82 96.55

FIGURE 2 | SF Bay Salinity, rain years 2009–2015. Data were taken from Station 30 of the bi-monthly USGS Water Quality Cruise (Cloern and Schraga, 2016).
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FIGURE 3 | Cover type change. Mudflat was the dominant cover type across

all 3 years. Vegetation increased at a rate of 20,580 m2/year between 2009

and 2011, and 1,979 m2/year between 2011 and 2015.

was notably larger in the 2015 image (2009: p< 0.001, z=−3.49;
2011: p = 0.002, z = −2.98; 2015: p < 0.001, z = −6.33). In the
2011 image, we observed some vegetation colonization of interior
mudflat areas that did not persist in the 2015 image (Figures 4, 5).
The overall number of patches decreased from 2009 (394 patches)
to 2011 (282 patches) and increased in 2015 (473 patches). Mean
patch area was the largest in 2011 (352 m2), intermediate in 2015
(226 m2), and smallest in 2009 (147 m2; Table 2).

Among non-vegetated surfaces, mudflats were the most
prevalent cover class across all years, declining slightly in 2015,
with total cover of 245,413 m2 in 2009, 247,685 m2 in 2011,
and 230,752 m2 in 2015. Since the amount of water in aerial
images is highly dependent on the timing of image, tidal phase,
and other stochastic factors, changes in water coverage should
be interpreted with caution. In our images, water accounted for
69,764 m2 in 2009, 26,188 m2 in 2011, and 34,787 m2 in 2015
(Figures 3, 4).

DISCUSSION

Post-restoration Vegetation Dynamics in
Tidal Wetlands
Our results demonstrate that drought may impact vegetation
change rates in Mediterranean-type tidal wetland restoration
projects, leading to non-linear recovery patterns. At North
Creek Marsh, vegetation cover increased from 2009 to 2011
and from 2011 to 2015, but the mean annual rate of change
during the first period, when Bay salinity was lower, was more
than 10 times as rapid as change during the second period,
when historic drought conditions elevated salinity levels in
the Bay. By employing remotely sensed imagery to study this
progression, we were able to scale up from previous field
efforts that demonstrated the effect of lowered salinity on
plant productivity (Zedler, 1983; Schile et al., 2011; Woo and
Takekawa, 2012), and restoration trajectories (Chapple et al.,
2017). Previous work from Southern California documented
increased rates of S. foliosa establishment in response to increased

sedimentation rates brought on by El Nino events (Ward
et al., 2003) and increased Spartina biomass and structure in
response to lowered salinity brought on by El Nino events
(Zedler, 1983; Zedler et al., 1986). Our results show that
freshwater availability may also influence the rate of vegetation
expansion in recently restored wetlands dominated by S. pacifica.
These larger-scale observations are supported by experimental
results that demonstrate that increased salinity levels reduced
S. pacifica biomass production (Schile et al., 2011; Woo and
Takekawa, 2012). In contrast to our site, a similar restoration
project in a more freshwater marsh without a notable drought
period reached 90% vegetated over a 10 year period, with
no evidence of slowing pace after initial gains (Tuxen et al.,
2008). This indicates that restoration projects in higher salinity
regions may exhibit more variable, less linear trajectories
due to interannual variability in salinity. While increased
inundation during periods of higher rainfall could be another
factor influencing vegetation change, we found no significant
difference inMHHWormonthlymaximum tide between the two
periods.

Our results also demonstrate that channel structure is a
key determinant of where vegetation establishes, and may
be even more important during periods of elevated salinity.
Vegetation was significantly associated with channel proximity
for all years, but between 2011 and 2015, the strength of the
interaction between vegetation presence and channel proximity
more than doubled. We also visually observed establishment of
new vegetation patches in interiormarsh areas in 2011 (Figure 4),
but these patches did not persist in 2015. Channels drive the
restoration process by improving drainage across the marsh
surface and lowering salinity (Sanderson et al., 2000; Williams
and Orr, 2002; Wallace et al., 2005; O’Brien and Zedler, 2006).
Biomass production of S. pacifica is significantly influenced by
elevated salinity in in poorly drained areas, but has no effect in
well-drained areas adjacent to channels (Schile et al., 2011). Our
results indicate that salinity levels likely interact with the channel
structure at the site, allowing vegetation to persist and expand in
areas adjacent to channels but precluding development in poorly
drained interior areas. Under projected climate change scenarios,
increased prevalence of drought is likely to reduce snowpack and
increase salinity (Callaway et al., 2007). This may slow the overall
rate of vegetation change and increase the importance of channel
structure in the restoration process.

The Potential of OBIA for Wetland
Monitoring and Future Research Needs
Our results also show how OBIA can be used to overcome
some of the challenges with high resolution data to map
vegetation change over time in developing tidal wetlands. The
dynamic nature of tidal processes mean that images are often
different from each other based on how mud and water appear
in the image, which can present problems for comparing
images from different years (Dronova, 2015; Campbell et al.,
2017). Furthermore, local noise and spectral variation, especially
pronounced at higher spatial resolution, pose considerable
challenges for delineating wetland cover type patches as semantic

Frontiers in Marine Science | www.frontiersin.org 7 August 2017 | Volume 4 | Article 24378

http://www.frontiersin.org/Marine_Science
http://www.frontiersin.org
http://www.frontiersin.org/Marine_Science/archive


Chapple and Dronova Vegetation Change in Drought

FIGURE 4 | Change over time at North Creek Marsh. (A–C) False color imagery for 2009, 2011, and 2015. (D–F) Classifications of cover types for 2009, 2011, and

2015. Aerial images reproduced with permission from ©DigitalGlobe, 2017.

entities (Moffett and Gorelick, 2013), particularly at early post-
restoration stages with higher spatial heterogeneity (Tuxen and
Kelly, 2008; Tuxen et al., 2008; Kelly et al., 2011). By using
object-based methods, we were able to create realistic objects
for our cover types that produced high levels of accuracy,
allowing for comparison between years at high spatial resolution.
While NDVI has historically been employed as a means of
detecting vegetation, we found that classification parameters
that relied too heavily on NDVI led to classification of areas
with green algae on the mudflat surface as vegetation. By
also taking into account spatial parameters, our object-based
approach minimized spurious mapping of vegetation that may
occur when using pixel-based change methods. Our results
highlight the distinct benefit of using OBIA in assessing
early stages of restoration project development to capture
fine scale change and to streamline semi-automated vegetation
detection despite some degree of required specificity of methods
and parameters at individual dates. Although OBIA benefits
in wetland analyses have long been recognized (Tuxen and
Kelly, 2008; Dronova, 2015), this methodology is still under-
utilized in the context of restoration monitoring (Klemas 2013)
and offers powerful opportunities for cost-effective, spatially
comprehensive, and repeated characterizations of vegetation
development and landscape structure.

Notably, different algorithm parameters were needed for
each image to produce images with the highest accuracy.
We were able to attain a high level of accuracy across all

three images, but accuracy was slightly lower in the in the
2009 imagery, when algae and surface water led to more
confusion between classes, highlighting the importance of date-
specific conditions on wetland surface analysis in tidal systems.
Distributions of water and mud across the landscape were
mapped differently in different years, due to different tidal
heights at the time of collection and evolving morphology
of landscape topography that likely led to retention of water
in different areas across the years. We suggest that changes
between mudflat and water should be interpreted with caution,
since they are highly temporally variable and sensitive to when
imagery was collected. While vegetation increased overall, there
were also notable areas of localized vegetation loss (particularly
in areas farther from channels), which indicates that the site
is still evolving. We expect that efforts to monitor multiple
restoration sites will likely need to create separate classifications
for each site to minimize the impact of unique surface conditions
at a given tidal stage and surface variability on classification
effectiveness.

Limitations and Future Directions
In addition to the effects of wet years and drought, the trends we
observed are likely influenced by a combination of other factors.
In the commonly accepted models of tidal wetland development,
sedimentation rates are expected to slow as the marsh plain
reaches equilibrium with tidal inundation (Morris et al., 2002;
Williams and Orr, 2002; D’Alpaos et al., 2012; Schile et al.,
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FIGURE 5 | Change detection image at North Creek Marsh, 2009–2011. Vegetation is largely concentrated along channel edges. Interior areas are largely persistent

mudflat over the entire study period. Some interior areas away from channels contain vegetation in the 2011 classification only that is subsequently lost in 2015.

TABLE 2 | Patch statistics for 2009, 2011, and 2015.

Year Number of patches Mean patch area, m2 Maximum patch area, m2 Standard deviation patch area, m2 Coefficient of variation

2009 394 147.6 4,682.24 385.79 2.61

2011 282 352.18 25,623.7 1,641.05 4.66

2015 473 226.71 21,194.9 1,351.44 5.96

2014), which could explain the observed decrease in the rate
of vegetation expansion we observed. However, sedimentation
data collected at the site shows that annual sedimentation rates
between the breach date in 2006 and 2013 were marginally slower
(1.21 cm/year) than between 2013 and 2016 (1.33 cm/year),
when drought conditions persisted (Krause, 2016). This indicates
that the decreased rate of vegetation expansion is not due to
decreased rates of sedimentation. Further, between 2012 and
2015, S. foliosa was planted across the study site (Hammond,
2016). Since these plantings were largely adjacent to areas of
existing vegetation, they may have contributed to the expansion
we observed, which means that rates of natural expansion during
the drought years may have been even lower than our results
indicate. Lastly, our analysis of tidal height data shows that
differences in tidal inundation did not differ between the wet and
dry periods.

The inability to detect species-level trends is an important
limitation of our study. In addition to the S. foliosa plantings, the

tidal wetland sub-dominant species F. salina (Alkali Heath) and
J. carnosa (Fleshy Jaumea) were also present at the site in very
low densities (Krause, 2016). Work from older restoration and
reference sites in the north SF Bay indicates that Bay salinity can
also influence the dynamics of sub-dominant species (Chapple
et al., 2017), which may be a promising direction for future
studies in these areas. However, S. pacifica is the dominant
species in the early stages of restoration in the area, and is
responsible for the majority of vegetation cover. One of the
major implications of rates of vegetation change is the ability
of developing restoration projects to keep pace with sea level
rise (Goals Project, 2015), so for the purposes of our study
understanding overall rates of vegetation change is appropriate.
Advancing this OBIA-based monitoring framework to develop
a capacity to detect species-level transitions in the future is an
important research need that could benefit from the advances
in high-resolution hyperspectral platforms (Santos et al., 2011;
Lucieer et al., 2014).
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Implications for Restoration and Adaptive
Management
Our results demonstrate that considering non-linear post-
restoration site development trajectories that are dependent on
weather may be crucial for structuring adaptive management
decisions in variable climates. A detailed understanding of how
weather interacts with site geomorphology to influence outcomes
is important for planning effective restoration efforts (Holmgren
and Scheffer, 2001; Vaughn and Young, 2010; Sitters et al.,
2012; Chapple et al., 2017). Importantly, slower progress of
vegetation is not entirely negative, as the intermediate habitat
mosaic of vegetation, mudflat, and water provides habitat for
a number of avian species (Moss, 2015). However, given that
the rapid re-vegetation of tidal wetland restoration projects is
considered to be one of the best means of allowing developing
sites to keep pace with sea-level rise (Goals Project, 2015),
understanding the role of weather in determining these rates will
be essential for managing projects that are resilient to climate
change.

Developing reproducible remote sensing techniques is a
promising, potentially cost effective means of monitoring change
in these projects over time. Future efforts should explore
change over multiple sites to discern how generalized these
weather-dependent trends are and how transferable image
classification settings are between sites. Sampling restoration
sites across a range of salinity levels in the SF Bay would
allow for an exploration of how the spatial context of sites
might influence their temporal development. Since field sampling
is limited by time, scale, funding, and spatial resolution,
remotely sensed products hold high promise for addressing these
issues.

From a restoration management perspective, our findings
supported other work demonstrating that channel edges are
hotspots of vegetation development (Sanderson et al., 2000;
Wallace et al., 2005; O’Brien and Zedler, 2006). Attempts to
add diversity into developing marshes should focus on these

areas, a practice which is already in place in the SF Bay
(Hammond, 2016). Since we show that interior mudflat areas
away from channels may be slow to develop vegetation, proactive
manipulation of elevation in these areas prior to restoring
tidal access may be one way to speed vegetation development.
Further, efforts to actively manipulate channel structure may also
help speed the development of vegetation establishment. These
actions are likely to be more necessary in areas where salinity
levels are currently higher, but may become necessary across a
range of sites as climate change shifts salinity distributions in the
SF Bay (Callaway et al., 2007). Proactive geomorphic intervention
is likely to make these projects more resilient to the impacts of sea
level rise.
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Analysis of visible remote sensing data research requires removing atmospheric

effects by conversion from radiance to at-surface reflectance. This conversion can be

achieved through theoretical radiative transfer models, which yield good results when

well-constrained by field observations, although these measurements are often lacking.

Additionally, radiative transfer models often perform poorly in marine or lacustrine settings

or when complex air masses with variable aerosols are present. The empirical line method

(ELM) measures reference targets of known reflectance in the scene. ELM methods

require minimal environmental observations and are conceptually simple. However,

calibration coefficients are unique to the image containing the reflectance reference.

Here we compare the conversion of hyperspectral radiance observations obtained with

the NASA Glenn Research Center Hyperspectral Imager to at-surface reflectance factor

using two reflectance reference targets. The first target employs spherical convexmirrors,

deployed on the water surface to reflect ambient direct solar and hemispherical sky

irradiance to the sensor. We calculate the mirror gain using near concurrent at-sensor

reflectance, integrated mirror radiance, and in situ water reflectance. The second target

is the Lambertian-like blacktop surface at Maumee Bay State Park, Oregon, OH, where

reflectance was measured concurrently by a downward looking, spectroradiometer on

the ground, the aerial hyperspectral imager and an upward looking spectroradiometer

on the aircraft. These methods allows us to produce an independently calibrated

at-surface water reflectance spectrum, when atmospheric conditions are consistent.

We compare the mirror and blacktop-corrected spectra to the in situ water reflectance,

and find good agreement between methods. The blacktop method can be applied to

all scenes, while the mirror calibration method, based on direct observation of the light

illuminating the scene validates the results. The two methods are complementary and

a powerful evaluation of the quality of atmospheric correction over extended areas. We

decompose the resulting spectra using varimax-rotated, principal component analysis,

yielding information about the underlying color producing agents that contribute to the
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observed reflectance factor scene, identifying several spectrally and spatially distinct

mixtures of algae, cyanobacteria, illite, haematite, and goethite. These results have

implications for future hyperspectral remote sensing missions, such as PACE, HyspIRI,

and GeoCAPE.

Keywords: hyperspectral remote sensing, PACE, HyspIRI, GeoCAPE, empirical line method, cyanobacterial

harmful algal blooms, VPCA, atmospheric correction

INTRODUCTION

The empirical line method (ELM) is well-recognized as an

accurate, operational approach for the calibration of aerial

and satellite imaging systems to correct multispectral and
hyperspectral data from raw digital numbers (DNs) or radiance
to at-surface reflectance factors (e.g., Ferrier and Trahair, 1995;

Smith and Milton, 1999). If two or more ground targets with a
known reflectance factor are placed within a scene, calibration
for each spectral band reduces to an uncomplicated process of
regressing the observed radiance against the known reflectance
factor values. Linearity has been empirically demonstrated to be
valid over the full range of low to high reflectance factor targets
(Baugh and Groeneveld, 2008). The result is the calculation of
gain and offset coefficients that can be applied to all surfaces
in the scene, assuming uniform atmospheric conditions. The
gain characterizes the sensor response of reflectance factor per
unit radiance and the offset characterizes the sky path radiance
between the sensor and the surface for a sensor system calibrated
to radiance.

As part of a collaborative Cyanobacterial Harmful Algal

Bloom (CyanoHAB) monitoring program in the Western Basin

of Lake Erie (Figure 1) and Sandusky Bay, OH conducted

from 2014 to present, we have developed and implemented

an approach to apply an empirical atmospheric correction

and vicarious reflectance factor calibration to the second

generation, National Aeronautics and Space Administration
(NASA) John Glenn Research Center’s Hyperspectral Imager
(HSI2). This manuscript focuses on methods developed at
Kent State University (KSU) compared with those employed
at Michigan Technological Research Institute (MTRI) and the
University of Toledo (UT). Research conducted by MTRI, UT
and other collaborators will be presented in greater detail
separately. The HSI2 is an aerial imaging spectroradiometer that
generates a hyperspectral datacube over the VNIR from 400 to
900 nm. Atmospheric correction is a necessary pre-processing
step required prior to further processing to extract information
about algal composition from the HSI2 image swaths (Gordon
et al., 1988; Gao et al., 2009; Goetz, 2009). For the application
presented in this study, the ELM is applied in four ways as
described below. Three versions are simplified further to a single-
point calibration by assuming that since the NASA Glenn S3
Viking aircraft carrying the spectroradiometer is flying at a low
altitude that the path radiance between the surface and aircraft
can be assumed to be negligible. The result may introduce an
offset in the retrieved spectra compared to the actual surface
spectrum, however the general spectral shape of the upwelling
surface reflectance factor spectrum is still revealed (Farrand et al.,

1994). This allows spectral shape based methods, which are
not strongly dependent on absolute reflectance factor values to
be effectively employed. The approach that we use here is the
KSU visible derivative, Varimax-rotated, Principle Component
Analysis (VPCA) spectral decomposition method, (Ali et al.,
2013; Ortiz et al., 2013). Our conceptual approach also capitalizes
on an innovative reflectance factor reference target, allowing
the ELM to be applied directly to observations collected on
the lake surface, which is the surface of particular interest for
this and other aquatic studies. Application of these methods to
the optically complex waters of Lake Erie is a stringent test of
the approach because we document its applicability in highly
turbid waters. The methods developed here will be applicable
in coastal and inland water as well as marine environments
imaged by proposed orbital hyperspectral missions such as the:
Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) mission,
the Hyperspectral Infrared Imager (HyspIRI) mission, and the
Geostationary Coastal and Air Pollution Events (GeoCAPE)
mission. Deploying these orbital tools will create the opportunity
for enhanced estimation of pigment-related biomass and new
capabilities to identify algal and cyanobacterial composition
based on extraction of pigment spectra by visible derivative
spectroscopy.

METHODS

The innovative calibration approach is to employ a floating panel
(1.07 m by 1.17 m; 1.25 m2) composed of 16 convex mirrors
(0.26 m diameter with radius of curvature 0.18 m) deployed on
the water surface, providing an in-scene lake surface reference
for image reflectance factor calibration. The convex mirrors
reflect the direct sunlight and hemispherical sky illumination
downwelling to the surface of the Earth back up to the HSI2
sensor while it is flying over the target. We can then use the
HSI2 response of the mirror targets to normalize the upwelling
radiance to percent reflectance factor, if we know the correct
calibration gain function for the mirror target that transforms
the HSI2 measured at-sensor radiance to a Lambertian surface
reflectance factor. This effectively converts the spectroradiometer
to a spectrophotometer merely by sacrificing a few scene pixels.
An advantage of using convex mirrors deployed on the lake
(Figure 1) is that their spherical surface produces a constant
reflectance factor even when bobbing around on the unstable
water surface. We have constructed a series of mirror panels for
in scene reflectance factor calibration (Figure 1B). These were
deployed as floating platforms in the western basin, Sandusky
Bay, and a coastal transect along the southern shore of the central
basin of Lake Erie using Ohio Division of Natural Resources
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FIGURE 1 | (A) Maumee Bay State Park is the location where the NASA Glenn, second generation Hyperspectral imager (HSI2) swath 15_MBSP was collected on

June 21, 2016. Sampling station Western Erie 6 (WE6) is indicated, where measurements were taken from the boat, and the mirror array was deployed. (B) Inset:

mirror calibration panel being cleaned on deck and deployed behind the vessel in Sandusky Bay (After Figure 4.3 with modification, Lekki et al., 2017).

(ODNR), United States Geological Survey (USGS), or Ohio Sea
Grant vessels used as part of regular sampling trips conducted
during NASA coincident over flights.

Ground-Based Measurements and
Sampling
The image swath analyzed here was collected in the western
basin of Lake Erie perpendicular to the coast over Maumee Bay
State Park (MBSP), Oregon, OH, one of the surface calibration
sites employed in the Lake Erie CyanoHAB monitoring program
and includes the offshore sampling station designated WE6 (or
sometimes WLE06) shown in Figure 1.

Each field site was revisited bi-weekly from early June
through mid-October, 2016, via boat, provided that weather
conditions were suitable for data collection. An Analytical
Spectral DevicesTM (ASD) FieldSpec R© Handheld 2 (HH2)
spectroradiometer was used to measure downwelling irradiance
with a cosine-theta receptor. Irradiance data was collected with
the cosine-theta receptor shaded and unshaded to obtain diffuse
and global irradiance data. Surface water reflectance factor was
collected with a 10-degree field of view (10◦ FOV) receptor
calibrated to a 100% SpectralonTM plate that is factory calibrated
with the ASD FieldSpec R© HH2 spectroradiometer. At specific
stations chosen in coordination with the NASA aircraft pilot to
ensure coincident operations, the mirror calibration panel was
deployed from the research vessel during the overflight.

Image Acquisition
The initial version of the hyperspectral imaging system was
developed at NASA Glenn Research Center in fiscal year
2006 and has been flown in three separate aircraft campaigns
to study CyanoHABs in collaboration with the National

Oceanic and Atmospheric Administration (NOAA) Great Lakes
Environmental Research Laboratory (GLERL) (Lekki et al.,
2009).

As of 2015, the second generation, NASA Glenn hyperspectral
imaging system (HSI2) (Lekki et al., 2017 NASA TM 2017-
219071) includes the imager, an Inertial Navigation System (INS),
and an upward-looking spectroradiometer. Because reflectance
factor measurements are desired for CyanoHAB assessment,
starting with the 2015 HSI2 imaging campaign, an ASD
FieldSpec R© HH2 spectroradiometer was mounted in the aircraft
and used to collect downwelling irradiance measurements in
order to compute simple, at-sensor reflectance factor values in
conjunction with imager radiance. The HH2 spectroradiometer
was mounted in the aircraft under a Plexiglas window because it
was logistically impractical to modify the fuselage of the aircraft.
A cosine receptor foreoptic was attached to the upward-looking
HH2 spectroradiometer by a fiber optic cable to directly measure
the total hemispherical solar irradiance.

Data recorded during each flight is produced by two
systems: the HSI2 control and acquisition computer and the
spectroradiometer system. The HSI2 imager and the INS acquire
data at 25 Hz while the ASD FieldSpec R© HH2 spectroradiometer
acquires at 0.033 Hz. Because the HSI2 imager and upward-
looking HH2 spectroradiometer are not synchronized, the
imager frame times are used as the basis for the INS and
spectroradiometer data are interpolated to estimate data values
corresponding to the imager frame times. From 2015 and on,
for each imaging flight over a point of interest, the output
of the hyperspectral data acquisition computer is a binary file
containing a number of hyperspectral image frames (also referred
to as tracks). Each frame includes an image with data in raw
counts. The data files also contain a set of parameter values for
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each frame related to GPS time, latitude, longitude, altitude, roll
(side to side motion), pitch (nose up to nose down motion)
and yaw (motion around a vertical axis). The raw HSI2 image
contains 658 spectral bands (arrayed in the along-track direction
from the UV to the NIR) and 496 spatial pixels (arrayed in
the cross-track ground direction). From the 658 spectral bands,
the 510 central bands with the highest signal to noise ratio
(SNR) are retained for analysis. The full spectral resolution of
the HSI2 sensor is thus ∼0.98 nm per band, with continuous
bands through the visible-near infrared (VIS-NIR) range of
400–900 nm.

The calibration of the HSI2 imager takes place at the NASA
Glenn Optical Laboratory. Using a LabsphereTM incandescent
light source with a radiance profile traceable to the National
Institute of Standards and Technology (NIST), a set of calibration
frames is acquired with the HSI2 system. The LabsphereTM

radiance profile image is then divided by the average of this set
of frames to yield a radiance-per-count image. Radiance units
are: Watts per square meter per steradian per nanometer. The
radiance-per-count image can then be multiplied by each HSI2
image acquired in flight to convert it to radiance.

When applying the radiance-per-count calibration image,
a perfect pixel-to-pixel match must be assumed between the
radiance-per-count image generated in the laboratory and the
in-flight data image. This is frequently not the case with data
acquired while airborne. The HSI images have two axes: the
wavelength axis and the distance axis. There is evidence that a
shift occurs in the airborne data along both axes and that the
shift may be different for each axis. To correct this shift, the
calibration image may also be shifted to improve the registration
before it is applied to the data. The solar “G” line and the O2

absorption line have been used to determine the wavelength shift.
The wavelength axis is stretched and/or translated so that these
two spectral features occur at their proper wavelengths in the data
image.

Incorrect registration along the distance axis manifests as
striping that appears in the along-track direction of the images.
The radiance-per-count image may be shifted slightly along the
distance axis to minimize the striping effect. When a segment of
a track is over water across the whole track, a correlation process
can determine the optimum shift based on the maximum from
a cross-correlation between the data image and the radiance-
per-count image. For the KSU VPCA spectral decomposition
method, the data was destriped using the ENVI/IDL SPEAR
Vertical Stripe Removal tool.

To reduce the size of the processed files and to satisfy
requirements imposed by some CyanoHAB detection algorithms,
the HSI images are rebinned along the wavelength axis,
decreasing the wavelength resolution from 0.98 to 2.97 nm per
pixel. This results in an increase in the SNR of the resulting
binned image. The rebinning process is performed both on the
raw data and on the calibration images before the radiance
calibration is applied. For the KSUVPCA spectral decomposition
method, the data is further rebinned to 10 nm resolution.

The georeferencing process requires knowledge of the
effective viewing angle for the imager. The total viewing angle
is defined as twice the angle from nadir to the angle beyond

which the image cuts off. For the imager described here, the total
angular width of the image swath was determined to be 12.4◦.
The accuracy of georeferencing has been used as a validation of
this view angle determination. Once the data has been converted
to units of radiance with the optimum shifts applied, a set of
GPS coordinates is computed for each pixel in the image track.
For each frame in the track, the spatial pixels mark a cross track
line that is imaged on the surface of the Earth with the GPS
coordinates computed for each pixel in the line. Think of the
pixels as 496 point sources whose beams are projected across the
swath from the Earth surface to the aircraft as the plane overflies
an area. The problem is to compute the GPS coordinates of the
projected spots for each of the 496 spatial pixels. This would be
a relatively simple geometry problem if the imager was always
pointing directly down. But, the HSI2 unit is fixed to the airplane
structure, so as the plane rolls, pitches and yaws, the HSI2 unit
must follow. Finding the GPS coordinates is thus essentially a ray-
tracing process. The method used here attempts to trace a ray out
from each pixel on the imager through the optical system and
down to the surface.

In order to do this ray-tracing computation, some
assumptions are made: (1) Traveling out from the image
sensor chip, the ray path to the front of the lens includes mirrors,
a holographic grating, and then the lens. The rays are not
followed through this maze, but are assumed to begin at the lens.
(2) A constant angle of view is assumed for the optical system.
The 496 imaging pixels are assumed to be spread linearly over
the 12.4◦ viewing angle. This amounts to an angular spacing
between pixels of 0.025◦. (3) The above-ground-level elevation is
also assumed to be constant. This is important because the GPS
device provides altitude above sea level. To compute the actual
distance to the surface from the aircraft, the ground elevation
above sea level is subtracted from the GPS altitude. The constant
elevation assumption is reasonable when flying over one of the
Laurentian Great Lakes because the elevation is known and
is essentially constant. The constant elevation assumption is
frequently violated when flying over land. There is currently no
way of knowing the elevation before knowing the coordinates;
the elevation information must be determined post flight. Thus,
there is presently more uncertainty in the geolocation for inland
tracks. With these assumptions and measurements of the image
platform orientation, the coordinates of the imaged line on
the surface can be computed. This georeferencing process was
validated using known ground control points.

Because the plane may be pitch, roll or yaw during the
data acquisition, it is very likely that the coordinates of some
adjacent pixels will overlap. Thus, the process of georeferencing
of these images can be very complex. Fortunately, the software
package used (Excelis Visual Information Solutions) provides this
functionality. The georeferencing routine available computes a
footprint using the envelope of all the GPS coordinates in the
track. Then the software attempts to fill in the gaps with data
pixels. To compute a radiance value for a pixel in a gap, the
software looks for data pixels within a 7-pixel neighborhood
around the gap pixel and sets the value of the gap pixel to the
average of these neighborhood data pixels. For hyperspectral
image pixels located on the same geographical location, the
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software uses a similar operation to determine the proper data
level for that pixel. The roll, pitch, and yaw angles are assumed
to apply to the imaging axis. However, small adjustments to the
roll, pitch, and yaw values are necessary to achieve optimum
georeferencing results. These adjustments remain constant until
the mounting configuration is changed. As longitude and latitude
is generated for each pixel in a given track, these data are then
used to produce a georeferenced data set. The software package
(Excelis Visual Information Solutions) used also provides a
Google Earth Bridge functionality, which creates a “.kml” file that
places the georeferenced image onto a satellite view of the Earth
surface.

As a demonstration of the empirical mirror-based correction
approaches described below, the technique is applied to NASA
HSI2 scene 062116_15_MBSP, where the file name convention
for the HSI2 images is: <acquisition date (mmddyy)>_<swath
#>_<location ID>. This image was collected on June 21, 2016
over Lake Erie, offshore of MBSP. On this day, the sky conditions
were clear and the NASA aircraft flew at an altitude of 8,500
ft. The image swath collected included station WE6, offshore of
MBSP where the team deployed a mirror panel and collected
surface validation data as described above. The aircraft HSI2
sensor was calibrated preflight for producing absolute radiance
imagery as described above. The image used for this analysis
was corrected for aircraft motion, georeferenced to obtain proper
spatial relationships between pixels, and resampled using a
nearest neighbor algorithm to convert rectangular pixels in the
raw data to square pixels. The rectangular pixels resulted from
an extended along-scan integration time to improve the sensor
signal-to-noise at the low water radiance. After processing, the
resulting pixel GSD was 3.21 m on a side.

Reflectance Factor
Calibration-Inter-Comparison of Four
Methods
For this study, we compare four empirical means of removing
atmospheric effects by transforming from radiance to reflectance
factor (Table 1). Three of these make use of data from the floating
mirror arrays, while one is based on application of the ELM using
parking lot blacktop as the calibration surface.

In the empirical mirror calibration method designated ELM0,
the Sun’s downwelling irradiance hits the mirror surfaces and
is radiated back up to the HSI2 senor flying above the target
during an overpass. The ratio of the HSI2 radiance divided
by the radiance reflected from the mirror is calculated to
yield a biased estimate of the at-sensor reflectance factor. The
measurement is biased due to the dispersion of light by the
curved mirror surfaces. A gain factor for the mirror is then
calculated by dividing the biased estimate of the at-sensor
reflectance factor with the 100% SpectralonTM-calibrated, at-
surface reflectance factor measurement obtained from an ASD
FieldSpec R© HH2 spectroradiometer to remove the bias. This
single-point gain factor is then used to correct the mirror signal
to determine a reflectance factor from the HSI2 radiance. This
correction depends on knowledge of the observed at-surface
reflectance of the target, measured using an ASD FieldSpec R©

HH2 spectroradiometer. For the single-point empirical mirror
calibration method (ELM1), we use a combination of the
mirror radiance and the diffuse to global ratio measured using
an upward looking ASD FieldSpec R© HH2 spectroradiometer
equipped with a cosine-theta receptor to determine the mirror
gain function. For the two-point empirical mirror calibration
method, we add the use of the ASD at-surface lake reflectance
factor, which yields the intercept for the reflectance factor
in addition to the gain of the relationship. Derivations and
equations for the ELM0, ELM1, and ELM2 methods based on
radiative transfer theory are described below.

The MTRI blacktop calibration method does not employ
mirrors to remove the atmospheric effects. Rather, that method
starts with an at-sensor reflectance factor ratio determined
by dividing the HSI2 radiance using the at-sensor irradiance
measured by the upward looking ASD FieldSpec R© HH2
equipped with a cosine theta receptor that is mounted in the
aircraft. A gain function is then determined by comparing the
at-sensor reflectance factor to the well-known measurement of
the reflectance factor of the asphalt blacktop parking lot at
MBSP, which is measured routinely by researchers throughout
the summer. The cosine theta irradiance data is adjusted to the
same time of day as the parking lot reflectance factor data to
minimize sun angle offsets.

Because each of these methods employs data from multiple
instruments, it is possible that minor path radiance biases may be
introduced by the fact that not all measurements are coincident
in time or space. The ELM0method should exhibit minimal path
radiance bias because the reflectance factor ratio that removes
atmospheric effects is determined using the same instrument, the
HSI2. Any offset with this method arises from the calculation
of the gain function by comparison with the surface reflectance
factor measurement. This effect should be minimal, however,
as the surface reflectance factor should vary more slowly than
atmospheric measurements. The ELM2 method should yield
a better estimate of the absolute reflectance factor than the
ELM1 method, since it provides a more complete correction that
accounts for both the slope and intercept. Offsets in the MTRI
blacktop method could arise from calculation of the at-sensor
reflectance factor using three separate instruments, or from the
temporal and spatial offset of the path radiance between the
measurements over the lake and the calibration data obtained
from a nearby ground station.

We used the Kent State University (KSU) Varimax-rotated
Principle Component Analysis (VPCA) visible derivative spectral
decompositionmethod to partition the variance of the reflectance
factor from the resulting derivative-transformed reflectance
images. The resulting VPCA spatial score maps were smoothed
with a 9 × 9 median kernel for presentation. The VPCA method
allows us to compare the level of path radiance bias observed
in the four, empirical reflectance factor calibration methods.
This is a stringent test because the VPCA method is based
on the derivative of the spectra and is capable of separating
correlated signal from systematic bias and random noise (Ali
et al., 2013; Ortiz et al., 2013). The KSU VPCA approach should
thus be effective at separating path radiance biases resulting from
scattering of light on the blue end of the spectrum from the
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TABLE 1 | Reflectance calibration methods employed.

Method Calibration surface Instrumentation and data

designation

ELM0a Floating, convex mirrors HSI2e at-sensor upwelling radiance, mirrors, ASDf at-surface lake reflectance factor

ELM1b Floating, convex mirrors HSI2 at-sensor upwelling radiance, mirrors, ASD at-surface diffuse to global ratio

ELM2c Floating, convex mirrors HSI2 at-sensor upwelling radiance, mirrors, ASD at-surface diffuse to global ratio, ASD at-surface lake reflectance factor

MTRId Blacktop Asphalt parking lot HSI2 at-sensor upwelling radiance, ASD at-sensor downwelling irradiance, ASD at-surface lake reflectance factor

aEmpirical Line Method 0.
bEmpirical Line Method 1.
cEmpirical Line Method 2.
dMichigan Tech Research Institute.
eNASA Glenn, second generation Hyperspectral Imager.
fAnalytical Spectral Devices.

spatially coherent, environmental signals. We predict that the
ELM1 and ELM2 methods will yield similar VPCA signals since
they differ only by a constant. Because the derivative of a constant
is zero, the addition of the second calibration point, while
necessary to yield accurate absolute reflectance factor values,
should contribute little to the derivative spectra. In the sections
that follow, we present theoretical derivations and empirical
descriptions of the methods employed to convert from radiance
to reflectance and to decompose the complex, mixed signals into
independent spectral signatures that can be related to know color
producing agents.

Deriving the Effective Lambertian
Reflectance Factor of a Spherical Mirror
The empirical calibration of aerial and satellite systems to
retrieve surface reflectance factor requires that the reference
target have a known Lambertian reflectance factor. To use a
ground reference target made of spherical convex mirrors, the
specular reflectance factor of the mirror target must be converted
to a Lambertian reflectance factor producing an equivalent sensor
response in each spectral channel for the view angle recorded in
the sensor image. The derivation of the transformation used in
this analysis is described in this section. The spherical convex
mirrors deployed on the water surface are domes designed to
reflect a fraction f of the hemispherical sky toward the sensor as
given by

f = 1− cos 2θm (1)

where θm is the angular width of the mirror surface as measured
from the mirror’s center of curvature. A virtual image of the full
hemispherical sky (f = 1) is seen in the mirror by a nadir looking
sensor when θm = 45◦. Schiller and Silny (2010) have shown that
when illuminated by a hemispherical irradiance on a horizontal

surface from the sun and the sky (E
surf
sun (λ) + E

surf

sky (λ); Watts m−2

nm), that the upwelling radiance (L
surf
m ; Watts m−2 sr−1 nm−1)

from a panel of N convex mirrors can be calculated knowing the
radius of curvature of the mirrors (Rc) and the along-scan and
cross-scan ground sample distance (GSD) of the sensor system

(GSDAS and GSDCS, respectively) using the equation:

L
surf
m (λ) =

[

E
surf
sun (λ) + E

surf

sky (λ)

]

f ρm (λ)Rc
2

4GSDASGSDCS
(2)

where ρm (λ) is the specular reflectance of the mirror measured
in the laboratory. It is important to note that by using spherical
mirrors, there is no foreshortening effect as with a flat diffuse
target. Thus, the upwelling radiance signal is constant and
independent of the sensor view angle and in principle, the tilt of
the sphere representing the mirror’s surface. Although the wave
motion changes the orientation of the hemisphere reflected by a
mirror so that the 180◦ Field of view may include some of the
water surface if f = 1, the effect can be minimized by designing
the mirrors to reflect a sky fraction slightly <1, if one assumes
the integrated diffuse sky is relatively isotropic. As long as the
direct solar contribution continues to be reflected at the sensor, a
constant upwelling radiance will bemaintained even for off-nadir
view geometries of <25◦.

Next, we establish a hemispherical-directional reflectance
factor distribution function, ρ

HDRF
m , for the mirror reflectance

factor target by taking the ratio of the radiance directed
toward the sensor to the horizontal irradiance at the surface
(Schaepman-Strub et al., 2006). Since there are no significant
directional effects in the upwelling signal, applying Equation (2),
one can write:

ρ
HDRF
m (λ) =

L
surf
m (λ)

E
surf
sun (λ) + E

surf

sky (λ)

=

[

1

cos θo
+

(

f −
1

cos θo

)

G(λ)

]

NRc
2

4GSDCSGSDAS
ρm (λ) . (3)

Here, we have included the term
[

1
cos θo

+

(

f − 1
cos θo

)

G(λ)
]

,

which includes the solar zenith angle, θo, and the diffuse-to-
global ratio illuminating a horizontal surface [G(λ)]. This term
is needed to perform a proper conversion of specular reflectance
to an equivalent Lambertian reflectance factor. It corrects for the
fact that there is no foreshortening in the solar contribution to the
mirror reflected signal compared to a Lambertian surface. Amore
detailed description of this correction term will be presented in a
future publication.
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Finally, Palmer (1999) shows that a reflectance factor
distribution function, such as ρ

HDRF
m , is related to a

hemispherical-to-direct Lambertian reflectance factor, ρ
HDRF
m ,

through a simple factor of π steradians. Thus,

ρ
HDRF
m =

[

1

cos θo
+

(

f −
1

cos θo

)

G(λ)

]

πNRc
2

4GSDCSGSDAS
ρm (λ) .

(4)

The result is that Equation (4) provides the needed
transformation equation for converting the specular reflectance
spectrum of the mirror reference target to an equivalent
Lambertian reflectance factor needed for the empirical
calibration of the sensor image radiance to surface reflectance
factor.

Empirical Line Method Reflectance Factor
Calibration
The ELM applied to a lake surface image assumes a linear
relationship between at-sensor water radiance, Lsenw (λ) , recorded
by the HSI2 imaging system and water surface reflectance factor,
ρ
HDRF
w (λ). This can be expressed for a sensor image calibrated to

radiance as:

ρ
HDRF
w (λ) = gm (λ) [Lsenw (λ) + (Lp (λ) + d (λ))]. (5)

In terms of a linear equation, gm (λ) is the gain function that
will be derived from the mirror surface reference target and
gm (λ) (Lp (λ) + d (λ)) = b (λ) is the linear intercept. The term

Lp (λ) is the atmospheric path radiance between the aircraft
and the surface, while d (λ) accounts for any residual sensor
calibration dark bias drift and potential processing offset. The
empirical line equation follows as:

ρ

−surf
w (λ) = gm (λ) Lsenw (λ) + b (λ) . (6)

The determination of the gain and bias coefficients is obtained
by regressing observed radiance values, recorded by the HSI2
sensor, against known reflectance factor values in each band from
at least a high and low reflectance factor target pair in the scene.
For the ELM1 solution, the coefficients needed to determine the
intercept, b (λ) are set to zero, while both the slope and intercept
coefficients are used for the ELM2 solution. This allows us to
determine the impact that both the slope and intercept have on
the solution. The high reflectance factor reference is provided
by the convex mirror target deployed on the water and the low
reflectance factor reference is recorded by a direct measurement
of the water surface reflectance factor from a research vessel in the
scene, or measurement from a nearby ground station. Thus, the
calibration is based on the two reference points (Lsenm (λ) , ρ

HDRF
m )

and (Lsen
w, boat (

λ) , ρ
HDRF
w, boat

), where Lsenm (λ) and Lsen
w, boat (

λ) are
the HSI2 measured reference radiance of the mirror target and
water surface and ρ

HDRF
w, boat

is the reflectance factor recorded at the
location of the research vessel, or nearby ground station.

Thus, for the ELM2 solution, the image calibration equation
converting all pixels in the scene from at-sensor radiance,

Lsenw (λ), to at-surface reflectance factor, ρ
surf
w (λ) , becomes:

ρ
surf
w (λ)=

ρ
HDRF
m (λ)

Lsenm (λ)

[

Lsenw (λ)−Lsenw, boat (λ)

]

+ ρ
HDRF
w, boat (λ) (7)

and provides an algorithm for performing an atmospheric
correction of hyperspectral or multispectral image data. The ratio
ρ
HDRF
m (λ)

Lsenm (λ)
represents the mirror gain function gm (λ) .

One advantage obtained by the use of curved mirrors is
that their convex shape disperses the light reflected back to
the air- or space-bourne sensor passing over the target. This
decreases the possibility that the solar radiance reflected from
the surface will saturate the detector. The dispersion factor is
determined as part of the calibration process. The approach
effectively converts a passive spectroradiometer to an active
spectrophotometer by sacrificing a small number of scene pixels.
An additional advantage of the mirror targets for deployment is
that they are small and generally can be designed to be the size
of an instantaneous field of view (IFOV) pixel or smaller. As a
result, the deployment of reflectance factor reference targets on
water now becomes practical. If actual Lambertian-like targets
were placed on the water instead of the mirror targets, their
surface area would need to be at least 25 times larger in order
to provide a reliable measure of the target radiance. This is due to
the blurring resulting from the aircraft motion, the optical point
spread function (PSF) and pixel resampling, all of which have
the effect of mixing the reference signal with the background.
The blurring effects can be seen in (Figure 2A), which shows
the image of the mirror target deployed on the water surface.
Although the target (1.2m on a side) is smaller than the processed
image pixels (3.21 m on a side), the radiance signal recorded by
the sensor has been spread out over many pixels around it. Thus,
the radiance from the target pixels is a combination of the mirror
signal and the background water. However, because the target
is small, it can be assumed to be a point source, located on a
uniform background. It is thus straightforward to separate the
total target radiance from the background water. An integration
to remove the background is carried out by placing an integration
window containing P pixels around the target centroid enclosing
all the radiance from the target (Figure 2A, red box), as defined
by the system PSF, and calculating the average radiance spectrum,
Lsenm (λ). Outside the perimeter of this window, an average pixel

water radiance spectrum is derived, L
bkg
w (λ), to represent the

background signal (Figure 2A, green box). Thus, the calculation
of the background subtracted at-sensor total integrated radiance
from the mirror target becomes:

Lsenm (λ) = P

[

Lsenm (λ) − L
bkg
w (λ)

]

(8)

Equation (8) provides the at-sensor radiance response for
completing the calculation of the mirror gain function.

To fully explore parameter space, we also consider a different
single-point calibration, the ELM0 method, which is based on
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FIGURE 2 | (A) NASA Glenn, second generation Hyperspectral imager (HSI2) image pixels from swath 15_MBSP, acquired on June 21, 2016, of the mirror

reflectance target (red box: high calibration point), water (blue box: low calibration point) and boat at station Western Erie 6 WE6. Though the mirror target is smaller

than an instantaneous field of view (IFOV) pixel, the energy reflected at the mirror is spread out over multiple pixels due to the aircraft motion, sensor system point

spread function and pixel resampling during processing. Pixels included in target integration are indicated by green and red boxes. (B) Example diffuse to global ratio

spectra, and (C) water surface reflectance spectra measurements taken from the boat located at WE6 on June 21, 2016.

the at-surface water reflectance factor, ρ
HDRF
w, boat

, measured with

an ASD FieldSpec R© HH2 at the boat location, rather than the
mirror target reflectance factor ρ

HDRF
m (λ) . This method first uses

the mirror signal to remove the atmosphere by determining a
ratio of the water leaving radiance and mirror radiance with
both quantities measured directly by the HSI2 sensor. Because
that ratio is biased by the mirror dispersion, it is rescaled using
the at-surface reflectance factor measured from the boat with
an ASD FieldSpec R© HH2 spectroradiometer. After algebraic re-
arrangement, the mirror terms drop out and the radiance to
reflectance conversion equation for the ELM0 has the form:

ρ
surf
w (λ) =

ρ
HDRF
w, boat (

λ)

Lsen
w, boat (

λ)

Lsenw (λ) . (9)

While this transformation will not yield absolute reflectance, it
should be scaled so that spectra at various spatial locations
in the scene have the correct spectral shape as needed
for algorithms based on spectral shape, such as the KSU
VPCA spectral decomposition method. We compare
the results of the ELM0, ELM1, and ELM2 solutions
with the MTRI Blacktop calibration, which is described
below.

RESULTS

Application of the Mirror-Based Empirical
Line Method
The steps in the analysis of the data include the following
for each HSI2 swath. We obtain the subset of the swaths that
includes locations of ground-based measurements conducted
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by researchers in a vessel on the water or at a nearby ground
station. We then identify the location of the research vessel and
floating mirror array in the swath (Figures 1, 2A). The pixels
associated with the mirror array (Figure 2A) are extracted and
averaged, as are lake pixels near the mirror array. The image
cutout of the mirror target and boat are shown in (Figure 2A)
identifying the target integration window and pixel locations
used to estimate the water background. The mirror correction
method for the ELM1 and ELM2 is then applied using Equation
(7) as described in the text and for the ELM0 using Equation
(9). Validation data collected on the lake included measurements
of the diffuse to global ratio obtained from the ratio of shaded
to unshaded downwelling solar irradiance measured with an
upward looking ASD FieldSpec R© HH2 spectroradiometer
equipped with a cosine theta receptor (Figure 2B) and
measurements of the at-surface reflectance factor relative to a
100% SpectralonTM plate measured with a downward looking
ASD FieldSpec R© HH2 spectroradiometer equipped with a 10◦

FOV foreoptic (Figure 2C). The data in Figures 2B,C document
the stability of the atmosphere and lake surface during data
collection.

With knowledge of the sensor GSD for the image, the
calculation of the mirror Lambertian reflectance factor, ρ

HDRF
m ,

can be completed. The specular reflectance spectra of the mirrors
were measured at Kent State University using a Konica Minolta
CM-2600d Spectrophotometer, which was set to measure the
specular component of the reflectance factor relative to daylight
with a brightness temperature of 6,500K. The calibration panel
consisted of N = 16 mirrors deployed on the water surface.
The radius of curvature for the mirrors, Rc = 20.1 cm, and
a hemispherical sky fraction was calculated as f = 0.878. The
resulting specular reflectance factor and Lambertian equivalent
reflectance factor spectra, calculated from Equation (4), are
shown in Figure 3A. The reference target is spectrally flat, which
is ideal for the calibration of a hyperspectral sensor. Note that
a calibrated, diffuse reflectance factor flat panel delivering a
reflectance factor of 18% as shown in Figure 3A would normally
saturate a sensor designed to record a high SNR for water
leaving radiances. However, since the energy from the curved
mirrors is spread over many pixels by the sensor PSF, a small
bright target can be recorded without saturation, providing a
measurement of the target signal with good precision. Figure 3B

FIGURE 3 | (A) Specular reflectance factor and Lambertian equivalent reflectance factor spectra, calculated from Equation (4). (B) Resultant average NASA Glenn,

second generation Hyperspectral imager (HSI2) water and mirror radiance spectra representing the low calibration reference spectrum (HSI2 Boat Water Spectrum)

and the high cal reference (HSI2 Mirror Target Integrated Radiance). (C) Empirical line method 2 (ELM2) transformation reflectance spectra of water pixels extracted

from the HSI2 15_MBSP swath (inset, red region of interest; ROI), compared to in situ reflectance spectra measured concurrently using the Analytical Spectral Devices

(ASD) FieldSpec HandHeld 2 (HH2) around the boat at station WE6 (insert, blue box). (D) Empirical line method 0 (ELM0) transformation reflectance spectra of the

same pixels shown in (C) for comparison.
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shows both the resulting average HSI2 water radiance spectrum
representing the low calibration reference spectrum, Lsen

w, boat (
λ) ,

denoted with the blue box in Figure 2A and the net integrated
HSI2 target radiance with background subtraction as calculated
using Equation (8), Lsenm (λ) , representing the high calibration
radiance spectrum. The ratio of the at-surface mirror target
reflectance factor spectrum and HSI2 measured at-sensor mirror
target integrated radiance spectrum provides the mirror gain
function used to convert any HSI2 radiance spectrum to surface
reflectance factor in the scene via Equation (7), assuming even
illumination throughout the scene.

The at-sensor radiance to surface reflectance factor
transformation is demonstrated in Figure 3C as the average
water radiance spectra, based on HSI2 pixels around the boat
and mirror targets that were extracted from a portion of the
062116_15_MBSP swath, which is shown in the inset image in
Figure 3C. Applying Equation (7) as a two-point calibration
(ELM2), the transformation to a predicted at-surface reflectance
factor spectrum was calculated and shown in the plot for two
locations, the boat location in the blue box and a second,
independent region of interest (ROI) in the red box. The result
produces an estimated absolute reflectance factor water surface
spectrum at each location. The predicted spectrum at the boat
is identical to the ASD measured reflectance factor spectrum
at the research vessel (10:31 a.m. EDT Figure 2C) because it
was recorded nearly coincident with the HSI2 overpass (3 min
apart) and was used as the low reference reflectance spectrum
for calibration and thus sits exactly on the line defined by
Equation (7). The second spectrum in red is the resulting
reflectance factor spectrum for an independent ROI location.
The two spectra represent the absolute appearance of the water
reflectance factor spectra at the two locations recorded by the
HSI2 sensor as scaled in reflectance units by the mirror gain
function. The two-point calibration transformation removes
the solar/sky illumination spectrum and the atmospheric
transmittance and path radiance effects produced between the
sensor and the water surface extracting the water reflectance
factor spectrum for the illumination and view geometries
at the time of the HSI2 collect. In comparison, Figure 3D

shows the resulting transformation using only the mirror gain
function in a single-point calibration (ELM1) without the bias
correction provided by the ASD measured at-surface water
reflectance [the terms for ρ

HDRF
w, boat

and Lsen
w, boat (

λ) were set to
0 in Equation (7)]. The resulting spectrum has similar shape,
but more noise than the EML2 spectrum from Figure 3C, and
a higher path radiance contribution on the blue end of the
spectrum. The ELM1 calculation will allow us to determine
if the KSU VPCA spectral decomposition analysis can still be
performed in this way using less ground validation data. The
mirror gain function correctly scales the relative difference
between the two locations in reflectance units for the ELM2,
but a spatially constant reflectance offset in each spectral band
still remains as revealed in the difference between the spectra in
Figures 3C,D. Though the result is not an absolute reflectance
spectrum, the ELM1 spectrum can still potentially be used for
spatial/spectral decomposition. This will be explored in Section
Comparison of the Reflectance factor calibration methods:
VPCA Decomposition.

The important result is that the methodology of deploying a
single mirror reflectance factor reference target was successful
in performing an atmospheric correction of the HSI2 aircraft
imagery resulting in the retrieval of the at-surface water
reflectance factor spectral profiles based on the image data,
sensor metadata, the mirror target properties, measurements of
the lake surface reflectance and simple measurements of shaded
and unshaded downwelling solar irradiance to establish the
diffuse to global ratio. The utility of the derived spectra will be
demonstrated in the following sections, where we compare the
ELM0, ELM1, and ELM2 reflectance factor estimates with the
extraction of water constituents using the KSU VPCA spectra
decomposition method. Though random path radiance bias
is likely present between the derived HSI2 and the surface
validation spectrum due to offsets in time of measurement
and/or location, they will mostly drop out in the derivative
transformation and decomposition process with minimal effect
on the analysis results.

MTRI Blacktop Calibration Results
We compare the three mirror-based reflectance calibration
methods with an additional empirical approach to estimate
the reflectance factor. The MTRI blacktop vicarious calibration
method involves identifying a natural or artificial site that
can be measured both by the HSI2 sensor, which requires
calibration, and instruments of known calibration, such as the
ASD FieldSpec R© HH2 spectroradiometers used in our field
measurements. The ratio of these measurements is used as the
basis for the vicarious calibration. The MBSP parking lot was
chosen as a suitable location because the site is located along the
immediate shoreline of Lake Erie so that it does not impose an
undue burden on flight planning and navigation; the parking lot
has a consistent and well-characterized spectral response across
both time and space (Figure 4A); and is a relatively large feature
that can be easily identified in HSI2 imagery at any operational
elevation (Figure 4B).

The correction factor (Figure 5), which is a wavelength-
dependent scalar that relates the two reflectance factor
measurements, is then calculated using Equation (10), where C is
a correction coefficient, λ is wavelength, CalRef is the calibrated
reflectance factor (i.e., ASD radiance/ASD irradiance measured
in situ at MBSP), and UncalRef is the uncalibrated reflectance
factor (i.e., HSI2 radiance/ASD irradiance upward looking
from the S3 Viking aircraft). The correction factor equation
will encapsulate the measurement differences between the two
sensors, including all sources of measurement error, and can be
used to convert measurements from one instrument into the
other. Of obvious interest is converting the uncertain sensor to
match the well-calibrated instrument.

C (λ) =

CalRef (λ)

UncalRef (λ)

(10)

CalRef (λ) = C (λ) ∗ UncalRef (λ) (11)

Radiance and irradiance spectroradiometer measurements were
recorded to calculate an at-sensor surface reflectance factor.
Coincident ground data was collected during overflight using
ASD FieldSpec R© HH2 spectroradiometers set up in the MBSP
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FIGURE 4 | (A) Maumee Bay State Park (MBSP) parking lot blacktop spectral response, as measured by MTRI and the University of Toledo (UT) research teams.

(B) NASA Glenn, second generation Hyperspectral imager (HSI2) image of MBSP parking lot in relation to Lake Erie (insert) (After Figures 4.2 and 4.3, Lekki et al.,

2017).

parking lot. This allows collection of data under the same
illumination conditions as the lake surface from a nearby ground
station. We account for the effects of solar angle on the diffuse
illumination component of radiance when a cosine receptor
is used to measure irradiance by applying a time correction.
When using a 100% SpectralonTM panel, mirror, or other known
reflector to estimate solar radiance, the effect of the diffuse
terms will cancel out when computing the reflectance factor. The
cosine receptor does not include this term, whereas the radiance
measurement does, and will therefore remain in the computed
reflectance factor if not addressed. An example of this effect is
readily apparent (Figure 6A) in the split between the 10:30 and
13:00 measurements from the MTRI ASD FieldSpec R© HH2 data
collected on August 24, 2015, in which the time correction for
solar angle removes most of the offset (Figure 6B).

We explore output from the MTRI method using data
from a number of swaths collected in 2015. In Figure 6C,
the parking lot as observed by the HSI2 sensor has a similar
shape in spectra extracted from different swaths; the remaining
differences are likely atmospheric or time of day effects. This
suggests that a single correction factor would be useful even
on days for which it was not recomputed, as demonstrated by
the manner in which the corrected signals clustering around
the observed ASD FieldSpec R© HH2 spectra (Figure 6D). The
two anomalous dates are both flagged as cloudy days (dashed
line), their measurement difference could be explained by clouds
periodically shadowing the irradiancemeasurements, which were
averaged across the entire track, leading to a higher than normal
reflectance factor measurement. The measurements thus likely
differ due to variations in the diffuse to global ratio for cloudy

vs. clear sky.

Reflectance Factor Inter-Comparison
To explore the hyperspectral nature of the reflectance factor
signals, we compare the average reflectance spectra from each
reflectance factor calculation and their derivatives (Figure 7). To
more clearly compare the spectral shapes for each reflectance
factor calculation, we convert the averages to z-scores, by
subtracting the average reflectance value across all wavelengths

in the visible and dividing by the standard deviation across
all wavelengths in the visible. These standardized reflectance
values and standardized derivatives are a useful way to compare
the results because the VPCA method is based on analysis
of the correlation matrix of the derivative spectra. The four
methods of calculating the reflectance factor produce values that
range in amplitude from minimum to maximum reflectance
by 1.8 to 14.8%. None of the average spectra exhibited
negative reflectance factors. The ELM0 method produced the
lowest amplitude signal, while the ELM1 method produced
the largest amplitude signal. The ELM1 and MTRI exhibited
higher reflectance factors on the blue end of the spectrum
relative to the ELM0 and ELM2 methods. This is particularly
apparent when viewing the z-score transformed reflectance
factors (Figure 7B). When the results were z-score transformed,
the similarity in spectral shape of the four methods of calculating
the reflectance factor is readily apparent as is the increased blue-
end reflectance for the ELM1 and MTRI methods relative to the
ELM0 and ELM2 methods. The derivative spectra for both the
absolute reflectance factor values and the z-score transformed
observations were similar, exhibiting the same spectral features,
although they diverged to some extent toward the blue end of the
spectrum.

The ELM2 provides the best estimate of the absolute
reflectance as demonstrated by the goodness of fit with the
measured at-surface ASD FieldSpec R© HH2 surface reflectance
factor. The MTRI and ELM0 methods produced reflectance
spectra of similar amplitude, while the ELM2 values had higher
amplitude. The ELM1 values were considerably higher than the
ELM2 estimates because the intercept term in Equation (8) for

the ELM1 calculation was intentionally set to zero to explore
the impact of the intercept on the solution. In terms of absolute
reflectance, there is a bias offset for the ELM0 and MTRI relative
to the absolute spectrum produced by the ELM2 transformation,
but less offset than for the ELM1 transformation. As predicted,
the ELM0 and ELM2 solutions have the same spectral shape
as can be seen for the z-score transformed results (Figure 7B).
We further explore the differences between the ELM0, ELM1,
ELM2, and MTRI calculations in the following section where
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we evaluate the underlying structure of the images using an
eigenvalue-eigenvector decomposition method, the KSU VPCA
spectral decomposition method.

FIGURE 5 | Wavelength-specific correction coefficients derived from

comparing to in situ reflectance for two NASA Glenn, second generation

Hyperspectral imager (HSI2) tracks (track 19 and 20) (After Figures 4.5, Lekki

et al., 2017).

Comparison of the Reflectance Factor
Calibration Methods: VPCA Decomposition
The four reflectance factor calculation methods listed in
Table 1 when applied to HSI2 swath 062116_15_MBSP produce
reflectance RGB plots that look very similar (not shown) to
the radiance RGB plot in Figure 8A. The dominant pattern
observed in the radiance RGB image for the swath are alternating
bands and filaments that run parallel to the coast, which is
located at the bottom of the image. There is a strong coastal
transition front that marks the end of the reddish-brown coastal
waters and the transition into the bluish-green offshore waters
of the Western Basin. The coastal water appears more red than
the offshore waters, located further into the Western Basin. A
second, strong brighter-colored front can be seen toward the
top of the swath. This front separates milky blue water to the
south in the middle of the image that transition into water of
more buff coloration to the north, before transitioning furthest
offshore into a darker, blue color. Because of the similarity of the
reflectance-derived RGB images, the MTRI reflectance method
was used to calculate the Cyanobacterial Index (CI) (Wynne
et al., 2010, 2013). The calculation of the widely-used NOAA CI,
contributed by collaborators at UT, provides a useful reference
for comparison to the components extracted using the VPCA

FIGURE 6 | (A) Maumee Bay State Park (MBSP) in situ reflectance before time correction. (B) MBSP in situ reflectance after time correction. (C) NASA Glenn, second

generation Hyperspectral imager (HSI2) parking lot reflectance uncorrected. (D) NASA HSI2 parking lot reflectance corrected. In situ reflectance is shown in magenta

(labeled 0803_MTRI) in (C,D) (After Figures 4.4 and 4.6, Lekki et al., 2017).
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FIGURE 7 | (A) Comparison of average scene spectra for each correction method. (B) Comparison of z-score correction of average scene spectra. (C) Comparison

of average derivative scene spectra for each correction method. (D) Comparison of z-score correction of average derivative scene spectra for each correction method.

decomposition method. For comparison with VPCA score maps,
the spatial map of the NOAA CI was smoothed with a 9 × 9
median kernel for presentation as was done with the VPCA score
maps.

Application of the KSU VPCA spectral decomposition
method following (Ortiz et al., 2013; Lekki et al., 2017) to the
four reflectance factor data sets enabled extraction of four to
six components that account for a maximum of 92.8–97.4%
variance in the four derivative transformed data sets (Table 2).
One difference among the various solutions is that in some
cases, the components extracted were flipped relative to similar
components from one of the other calculation methods. This is
a function of the varimax rotation. It can be easily addressed by
multiplying the component scores and loadings by −1, so that
the components with similar shape and spatial pattern have the
same sign. This has been done for ease of comparison between
components. The ELM0 solution explained the largest amount of
variance in the image at 97.4% for five components (Table 2). The
components extracted from the other reflectance factor methods
exhibit subtle differences from each other, but their general
similarity is readily apparent (Figures 8–13).

To identify the composition of the color producing agents in
each component, we standardized the component scores, then

matched the components from each data set without replacement
to their best visual match (if any) in the other data sets to group
them into spectral “patterns.” Comparing the various solutions,
the components can be matched on the basis of their spectral
shapes and spatial patterns into six patterns, labeled A through
F (Table 2, Figure 14). The component loadings for the matches
in the patterns were then averaged and compared using forward,
least-squares, stepwise regression against a library of known
standardized pigments and mineral spectra (Ortiz et al., 2013) to
infer their composition. The quality of the identified patterns was
determined by the spatial coherence of their component score
maps, average spectral loadings < ±3 standard deviations, and
absolute R-values for the stepwise regression >0.8.

The key point to address here is the similarity of the structure
of the results extracted despite the differences in the atmospheric
correction methods applied. All of these patterns (with the
exception of Pattern E) exhibit coherent spatial structures,
partitioning the variance in the hyperspectral image cube into
graceful filaments and bands that run parallel to the coast. The
NOAA CI and the VPCA solutions pull out features similar
to those seen in the RGB images. The NOAA CI indicates
bloom-like conditions offshore and then alternating bands of
higher and lower values parallel to the coast, tapering out toward
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FIGURE 8 | (A) Red, Green, Blue (RGB) image of swath 15_MBSP from June 21, 2016. (B) National Oceanic and Aeronautical Administration Cyanobacterial Index

(NOAA CI) product calculated after Wynne et al. (2010). (C) Spatial distribution of varimax-rotated principal component analysis (VPCA) component pattern A using

Michigan Tech Research Institute (MTRI) correction method decomposition. (D) Spatial distribution of VPCA component pattern A using Empirical Line Method 0

(ELM0) correction method decomposition. (E) Spatial distribution of VPCA component pattern A using Empirical Line Method 1 (ELM1) correction method

decomposition. (F) Spatial distribution of VPCA component pattern A Using Empirical Line Method 2 (ELM2) correction method decomposition. (G) Pattern A

Loadings. Negative signs in loading numbers indicate that pattern has been multiplied by −1 for comparison purposes.

TABLE 2 | Correlation of spectral patterns and variance explained.

Component spectral patterna MTRIb 6VPCAc ELM0d 5VPCA ELM1e 4VPCA ELM2f 4VPCA

Pattern A: VPCA 1 (56%) VPCA 1 (67.3%) VPCA 1 (36.9%) VPCA 1 (36.9%)

+Illite, +Diatoms and −phycoerythrin

Pattern B: VPCA 2 (16.4%) VPCA 2 (15.5%) VPCA 3 (26.3%) VPCA 3 (26.3%)

+Haematite, +Green Algae, −α-carotene, and +phycoycanin

Pattern C: VPCA 3 (10%) VPCA 3 (7.2%) VPCA 2 (26.5%) VPCA 2 (26.5%)

−Goethite and +haematite

Pattern D: VPCA 4 (7.8%) VPCA 4 (6.4%) Absent Absent

+Haematite and +phycocyanin

Pattern E: VPCA 5 (4.4%) Absent VPCA 4 (4.3%) VPCA 4 (4.3%)

Residual Path radiance errors

Pattern F: VPCA 6 (1.3%) VPCA 5 (1%) Absent Absent

−Myxoxanthophyll, +phycocyanin, and –Chl b

Sum patterns A–C 82.4% 90% 89.7% 89.7%

Sum patterns D, and F 9.1% 7.4% Absent Absent

Sum all patterns except E 91.5% 97.4% 89.7% 89.7%

Sum all patterns 95.9% 97.4% 94.0% 94.0%

aPositive or Negative signs indicate a direct or inverse correlation between the component spectral pattern and identified pigment and sediment mixture.
bMichigan Tech Research Institute.
cVarimax rotated principal component analysis.
dEmpirical Line Method 0.
eEmpirical Line Method 1.
fEmpirical Line Method 2.

lower values near the shore. The leading component (Pattern A)
extracted from the four data sets has a spatial patternmost similar
to the NOAA CI (Figure 8B). The first three patterns are found
in all four of the solutions and explain between 82.4 and 90% of
the variance in the data sets (Table 2, Figures 8–10). Patterns D, F

are each found in two of the four solutions (Figures 11, 13). They
represent 6.4 or 7.8%, 1.0 or 1.3%, of the variance in each data set,
respectively. The sum of all the coherent spatial patterns, which
can be related to environment signals in the images accounted for
88.5–97.4% of the image variance.
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FIGURE 9 | Spatial distribution of varimax-rotated principal component analysis (VPCA) component pattern B. (A) Michigan Tech Research Institute (MTRI) correction

method decomposition. (B) Empirical Line Method 0 (ELM0) correction method decomposition. (C) Empirical Line Method 1 (ELM1) correction method

decomposition. (D) Empirical Line Method 2 (ELM2) correction method decomposition. (E) Pattern B Loadings.

FIGURE 10 | Spatial distribution of varimax-rotated principal component analysis (VPCA) component pattern C. (A) Michigan Tech Research Institute (MTRI)

correction method decomposition. (B) Empirical Line Method 0 (ELM0) correction method decomposition. (C) Empirical Line Method 1 (ELM1) correction method

decomposition. (D) Empirical Line Method 2 (ELM2) correction method decomposition. (E) Pattern C Loadings. Negative signs in loading numbers indicate that

pattern has been multiplied by -1 for comparison purposes.

These components can be partitioned into spatially coherent
environmental signals and random noise. A detailed evaluation
of the spectral interpretation of the components is beyond the
scope of this paper and will be addressed in a separate paper,
but Table 2 and Figure 14 identify the most likely composition of
the spectral patterns based on stepwise multiple linear regression

against known standards. Briefly, the components extracted from
the image represent mixtures of sediment (illite, haematite, and
goethite), and algal and cyanophyte groups and pigments known
to be present in the waters of the western basin of Lake Erie (Ortiz
et al., 2013). Matching the features present in the radiance-based
true color image (Figure 8A), the reddish portions of the image
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FIGURE 11 | Spatial distribution of varimax-rotated principal component analysis (VPCA) component pattern D. (A) Michigan Tech Research Institute (MTRI)

correction method decomposition. (B) Empirical Line Method 0 (ELM0) correction method decomposition. (C) Empirical Line Method 1 (ELM1) correction method

decomposition. (D) Empirical Line Method 2 (ELM2) correction method decomposition. (E) Pattern D Loadings. Negative signs in loading numbers indicate that

pattern has been multiplied by -1 for comparison purposes.

FIGURE 12 | Spatial distribution of varimax-rotated principal component analysis (VPCA) component pattern E. (A) Michigan Tech Research Institute (MTRI)

correction method decomposition. (B) Empirical Line Method 0 (ELM0) correction method decomposition. (C) Empirical Line Method 1 (ELM1) correction method

decomposition. (D) Empirical Line Method 2 (ELM2) correction method decomposition. (E) Pattern E Loadings. Negative signs in loading numbers indicate that

pattern has been multiplied by -1 for comparison purposes.

were identified as containing iron-bearing minerals as well as
autotrophs, while the offshore waters were identified as mixtures
of lighter-colored illite, algae, cyanophytes, and various accessory
pigments.

One notable difference between the ELM0 solution and
the other three solutions is Pattern E, which is absent from

the ELM0 solution, but present in each of the other three
data sets (Figure 12). Pattern E exhibits a random spatial
pattern and a spectral pattern with strongest loadings in the
blue end of the spectrum. This pattern accounts for 4.3 to
4.4% of the variance in the data sets where it is found. The
significance of Pattern E is discussed below. Expanding theMTRI
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FIGURE 13 | Spatial distribution of varimax-rotated principal component analysis (VPCA) component pattern F. (A) Michigan Tech Research Institute (MTRI) correction

method decomposition. (B) Empirical Line Method 0 (ELM0) correction method decomposition. (C) Empirical Line Method 1 (ELM1) correction method

decomposition. (D) Empirical Line Method 2 (ELM2) correction method decomposition. (E) Pattern F Loadings. Negative signs in loading numbers indicate that

pattern has been multiplied by -1 for comparison purposes.

FIGURE 14 | Spectral patterns of varimax-rotated principal component analysis (VPCA) components (A–F), indicating inferred composition based on forward,

stepwise least squares regression. Complete description of the composition of each average component spectral pattern is listed in Table 2. The quality of the

regression fit is indicated by the reported R-value.

decomposition to 6 components extracted a 6th component
(Pattern F) that was similar to the 5th component in the ELM0
case. Expanding the ELM1 and ELM2 solutions out to a 5th
or 6th component extracts a 5th component with a spectral
pattern that cannot be matched to any know standards or

mixtures in the spectral library in the 5-component case and
splits the random noise component (Pattern E) in the 6th
component case. This indicates that a 4-component solution is
sufficient to capture all the variability in the ELM1 and ELM2
cases.
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DISCUSSION

Implications for Reflectance Estimation
and Atmospheric Correction
A fundamental challenge associated with analysis of multispectral
and hyperspectral visible remote sensing imagery is removal
of atmospheric effects. Here we explore several different
applications of empirical methods of atmospheric correction,
which enables extraction and separation of mixed environmental
signals from aquatic data sets. Development of atmospheric
correction methods that are effective is important to enable
optimal use of future, planned hyperspectral orbital missions,
such as PACE, HyspIRI, and GeoCAPE. In this application, the
question of interest is to identify the constituents present in the
optically complex waters of the Western Basin of Lake Erie. This
area develops a perennial CyanoHAB bloom that initiates in the
late spring or early summer, depending on the level of runoff to
the system (Stumpf et al., 2012; Bullerjahn et al., 2016). In general,
the bloom is larger and starts earlier during wet years, and is
smaller in dry years (Stumpf et al., 2012). The Maumee River
and other rivers in the region deliver significant nutrient loads,
suspended sediment and a variety of algal and cyanobacterial

taxa into the Western basin (Conroy et al., 2014; Kane et al.,
2014; Matisoff and Carson, 2014; Pennuto et al., 2014). As a
result, the assumption that the optical properties of the water
are controlled only by chlorophyll a is not valid (Ali et al.,
2013, 2014; Ali and Ortiz, 2016). Removal of atmospheric effects
enables further analysis of the reflectance spectra to determine
which constituents are present at any given time. While several
approaches have been proposed to do this, spectral shape-based
algorithms show promise at partitioning the variance associated
with these complex optical mixtures (Simis et al., 2005; Moisan
et al., 2011; Chase et al., 2013; Shuchman et al., 2013). Application
of these methods in these complex environments suggests that
they will be effective at less complex marine applications. Indeed,
a similar EOF analysis approach has been applied in the optically
complex Baltic Sea (Soja-Woźniak et al., 2017) and the lead
author, Ortiz, is applying the VPCA spectral decomposition
method effectively using data sets collected in the USVI.

It is in this context that we compare the reflectance factor

calculations. In our experience in the Western Basin, the ELM

has proven to be very effective at removal of atmospheric

effects, with modest amounts of input data (Lekki et al., 2017).
We present a theoretical basis to support the ELM based on
radiative transfer theory. To evaluate the effectiveness of the ELM
method we employed two complementary means of removing
the atmospheric effects: one approach used mirrors to directly
measure the downwelling irradiance, while the MTRI approach
calculates an at-sensor reflectance factor and then generates a
gain function using the reflectance of a known surface to reshape
the reflectance factor to at-surface values. The two methods are
complimentary. The mirror based correction method is based on
direct observation of the downwelling irradiance at one or more
points in the scene and thus can be used as an effective check on
other methods of atmospheric removal. The MTRI approach can
be applied broadly in the absence of additional equipment that
must be imaged in the scene (the mirrors), which are required to
apply the mirror-based correction methods.

All four of the methods produced average reflectance factors
that were positive, suggesting the in situ calibration data allowed
the methods to yield reasonable reflectance factors. When plotted
as a function of wavelength, the ELM0 method produced the
lowest amplitude reflectance factor, followed by the MTRI, then
the ELM2 and finally the ELM1 method, which is known to
be biased, because it intentionally does not include an intercept
correction (Figure 7). By presenting a theoretical explanation for
a single-point and two-point ELM correction, we can illustrate
the impact of path radiance on the resulting estimated reflectance
factor calculations. The two-point ELM2 correction method
outperforms the single-point EML1 correction method in terms
of recovering absolute reflectance. TheMTRI and ELM0methods
underestimated themaximum reflectance response relative to the
two-point ELM method, but the ELM0 was able to capture the
same spectral shape as the ELM2 method.

To compare the spectral shapes extracted by the four methods,
the average reflectance factor for each method was standardized
by removal of the spectral mean and then the residual was divided
by the spectral standard deviation to calculate z-scores. Several
important points arise from this comparison. First all of the
values lie within 3 standard deviations, indicating that on average,
the spectra did not include individual bands that were biased
by extreme outliers. In addition, (Figure 7B) documents that all
four methods have similar spectral shapes. The ELM0 and ELM2
spectral shapes are consistent throughout the visible. The MTRI
and ELM1 spectra are also similar to each other. However, they
both exhibit considerably more signal on the blue end of the
spectrum than either the ELM0 and ELM2 spectra below ∼475
nm. The MTRI and ELM1 spectra exhibit slightly less reflectance
at wavelengths longer than 600 nm than either the ELM0 or
ELM2 methods. Comparison of the derivative spectra for the
four methods shows similar variability above 540 nm. The curves
diverge somewhat toward the UV end of the spectrum. The
similarity of themethods is particularly apparent in the derivative
of the z-score spectra.

We can make some observations regarding what will happen
if additional secondary analysis methods are applied to the
reflectance factors to extract environmental information, such
as chlorophyll a or other pigment concentrations related to the
scene (e.g., Witter et al., 2009). Methods that rely on accurate
absolute reflectance values will fail when applied to the ELM1
method, which was presented only to show the importance of
the path radiance correction to a valid solution. Based on the
strength of the theoretical basis presented, the ELM2method will
yield a stronger response than if either the MTRI or the ELM0
reflectance factor methods are employed. This may be less of an
issue for band ratio based methods, particularly ones that operate
toward the red end of the spectrum.

Spectral Shape and Identification of
Component Patterns
The z-score analysis of the four methods shows that they
each extract very similar spectral shapes. Methods that extract
information about color producing agents based on a spectral
shape will perform similarly with the fourmethods. To document
this, we applied the KSU VPCA spectral decomposition
method (Ortiz et al., 2013) to each of the four reflectance

Frontiers in Marine Science | www.frontiersin.org 18 September 2017 | Volume 4 | Article 296101

http://www.frontiersin.org/Marine_Science
http://www.frontiersin.org
http://www.frontiersin.org/Marine_Science/archive


Ortiz et al. Vicarious Hyperspectral Reflectance Calibration Methods

factor calculations presented here. The results presented in
Figures 8–14 demonstrate this well. The leading component
extracted in all cases is similar in spatial distribution to the
NOAA CI. This is to be expected, because chlorophyll a is found
in all taxa of algae and cyanobacteria and thus should dominate
the signal.While the NOAACI pattern look similar to the leading
VPCA component for each case, the VPCA results are cleaner,
because they are based on a centered, first derivative, rather than
a second derivative as for the NOAA CI. Each higher order
derivative calculation introduces more error when looking for
small differences between large values (Press et al., 1992).

In addition, the VPCA method removes uncorrelated signal
from the data set so that features that are not related to a
particular pattern show up in other components, or are excluded
as noise (Abdi, 2003). For this reason, the VPCA method is
relatively insensitive to the noise that was left in the ELM1
solution by setting the intercept term to zero (Figure 3C vs.
Figure 3D). Notice that the ELM1 and ELM2 spatial patterns
for the VPCA solutions in Figures 8–13 are virtually identical
because the two solutions differ only by a constant, which drops
out during the derivative calculation step in the VPCA.

The VPCA spectral decomposition approach also provides
additional information beyond that which the NOAA CI alone
can extract. In this application, we were able to extract three to
five consistent components with coherent spatial signals. This
was true despite difference in the way that the atmospheric
effects were removed or due to differences in the absolution
reflectance factor estimates. This result strongly suggests that the
KSU VPCA method, which is based on extraction of spectral
shapes, is relatively insensitive to the need for absolute reflectance
values. Atmospheric corrections that are adequate thus can yield
valuable, higher-order information about the scene. The reason
why this works is because the KSUVPCA spectral decomposition
method is based on decomposition of the correlation matrix of
the derivative spectra, rather than analysis of absolute reflectance
factors. The derivative transformation removes scattering effects,
while the correlation analysis decreases the need for stringently
correct absolute reflectance factors. Obtaining a valid estimate of
the spectral shape—the relationship between bands in the data
set—is sufficient to yield useful results.

Correction for Imperfect Atmospheric
Removal
Another problem that plagues conversion from radiance to
reflectance is a lack of validation data that are precisely coincident
with the overflight observations. In our case, the various
methods presented require one or more of the following data
for calibration or validation: downwelling irradiance, the diffuse
to global ratio, and surface reflectance factor measurements
of a known calibration surface on land or water for one or
more different surface radiance values. Instruments that can
simultaneously measure downwelling irradiance and upwelling
radiance or reflectance are considerably more expensive than
radiometric instruments that can onlymeasure in one orientation
at a time. Likewise, labs that maintain more than one instrument
often opt to place them at multiple locations in the scene to

assess spatial heterogeneity. The lack of strictly coincident data
in space and time can thus lead to errors in calculations because
the properties of the scene can shift with time as lighting or cloud
cover changes.

The KSU VPCA spectral decomposition method provides a
means of addressing and quantifying the impact of temporal
variability in scene conditions on data acquisition. In our results,
three of the four methods of calculating reflectance factors
produced a random noise component, with the largest spectral
response in the blue end of the spectrum and near zero responses
at other wavelengths (Figures 12, 14E). This spectral and spatial
pattern is consistent with path radiance effects that likely arise
from ancillary data that are not precisely temporally or spatially
coincident with the observations from the NASA Glenn HSI2.
The only method that did not produce this path radiance
component was the ELM0 method. Because the ELM0 method
calculated a direct ratio of the downwelling and upwelling
radiance measured over the full path length between the surface
and the HSI2 sensor using data from that sensor only, this
method did not produce a path radiance bias component during
the VPCA spectral decomposition, even though its reflectance
factor produced the lowest amplitude response. In addition to
the temporal and spatial coherence of the measured downwelling
and upwelling radiance ratio from the HSI2 used in the ELM0,
this result also arises because the measured at-surface water
reflectance factor spectrum used as the calibration point for the
ELM0 transformation is closer in magnitude to the rest of the
water surface across the scene than the higher mirror target
reflectance factor used as the at-surface reflectance calibration
point in the ELM1 and ELM2 transformation. Even so, the
magnitude of the path radiance bias in the other methods
was small, amounting to just 4.3–4.4% of the total variance
extracted from the image. The ability of the KSU VPCA spectral
decomposition method to partition this random bias from the
environmental components extracted from the image further
documents the usefulness of the method.

The work presented here documents that the empirical line
method, used in conjunction with the KSUVPCA decomposition
method is sufficiently robust to provide adequate atmospheric
correction to hyperspectral visible image data. The use of
derivative spectroscopy also provides a way to extract useful
information even when the absolute reflectance values are not
strictly correct as was demonstrated with the ELM1 test example
where we specifically left off the intercept of the radiance to
reflectance transformation. The VPCA method also explicitly
removes path radiance issues that result from data that is not
precisely temporally synchronous. These results are encouraging
and indicate that as a field, we have methodologies in place
that will enable the community to capitalize on the additional
spectral information that can be extracted from proposed orbital
hyperspectral sensors on missions such as PACE, HyspIRI, and
GeoCAPE. Each of these sensors has been designed for specific
missions. PACE will provide global hyperspectral coverage
at daily temporal and 1 km spatial resolution. HyspIRI will
provide high spatial resolution hyperspectral data (30 m) in
the Landsat orbit to provide continuity with legacy Landsat
data and the capability for highly enhanced data products.
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Finally, GeoCAPE is a proposed geostationary instrument that
would image 70% of the illuminated western hemisphere,
enabling the collection of time series of hyperspectral data
for unprecedented process studies. Deploying these tools will
create the opportunity for enhanced determination of pigment-
related biomass estimates and new capabilities to identify algal
and cyanobacterial composition based on extraction of pigment
spectra by visible derivative spectroscopy as well as a host of other
applications.

CONCLUSIONS

Our results document the utility of empirical calibration
methods, such as the ELM to remove atmospheric errors
from hyperspectral remote sensing data sets. We present a
theoretical basis for the ELM using radiative transfer theory.
The ELM2 and ELM0 methods produced spectral shapes that
were consistent across the entire visible spectrum, but the ELM2
was effective at reconstructing the absolute reflectance values.
The work presented here documents that the empirical line
method, used in conjunction with the KSUVPCA decomposition
method is sufficiently robust to provide adequate atmospheric
correction to hyperspectral visible image data. The VPCA
method extracted more information from the image swaths than
the NOAA CI method, with less random error. The use of
derivative spectroscopy also provides a way to extract useful
information even when the absolute reflectance values are not
strictly correct as was demonstrated with the ELM1 test example
where we specifically left off the intercept of the radiance to
reflectance transformation. In our results, three of the four
methods of calculating reflectance factors produced a random
noise component, with the largest spectral response in the
blue end of the spectrum and near zero responses at other
wavelengths. This spectral and spatial pattern is consistent with
path radiance effects that likely arise from ancillary calibration
data that are not precisely temporally or spatially coincident
with the observations from the NASA Glenn HSI2. The only
method that did not produce this path radiance component
was the ELM0 method. Because the ELM0 method calculated a
direct ratio of the downwelling and upwelling radiance measured
over the full path length between the surface and the HSI2
sensor, this method did not produce a path radiance bias
component during the VPCA spectral decomposition, even
though its reflectance factor produced the lowest amplitude
response. The VPCA decomposition method was effective at
isolating the path radiance issues, thus improving the quality
of the resulting retrievals. The VPCA enabled extraction of
components that can be identified by quantitative comparison
with a spectral library. This approach will enable accurate

analysis of how phytoplankton functional groups and suspended
sediment distribution vary in space and time, particularly once
new hyperspectral sensors are available in orbit.
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Relationships between satellite-derived water quality variables and river discharges,

concentrations and loads of nutrients, organic carbon, and sediments were investigated

over a 9-year period (2003–2011) in Pensacola Bay, Florida, USA. These analyses were

conducted to better understand which river forcing factors were the primary drivers

of estuarine variability in several water quality variables. Remote sensing reflectance

time-series data were retrieved from the MEdium Resolution Imaging Spectrometer

(MERIS) and used to calculate monthly and annual estuarine time-series of chlorophyll a

(Chla), colored dissolved organic matter (CDOM), and total suspended sediments (TSS).

Monthly MERIS Chla varied from 2.0mg m−3 in the lower region of the bay to 17.2mg

m−3 in the upper bay. MERIS CDOM and TSS exhibited similar patterns with ranges of

0.51–2.67 (m−1) and 0.11–8.9 (gm−3). Variations in the MERIS-derived monthly and

annual Chla, CDOM, and TSS time-series were significantly related to monthly and

annual river discharge and loads of nitrogen, organic carbon, and suspended sediments

from the Escambia and Yellow rivers. Multiple regression models based on river loads

(independent variables) and MERISChla,CDOM, or TSS (dependent variables) explained

significant fractions of the variability (up to 62%) at monthly and annual scales. The

most significant independent variables in the regressions were river nitrogen loads, which

were associated with increased MERIS Chla, CDOM, and TSS concentrations, and

river suspended sediment loads, which were associated with decreased concentrations.

In contrast, MERIS water quality variations were not significantly related to river total

phosphorus loads. The spatially synoptic, nine-year satellite record expanded upon the

spatial extent of past field studies to reveal previously unseen system-wide responses to

river discharge and loading variation. The results indicated that variations in Pensacola

Bay Chla, CDOM, and TSS were primarily associated with riverine nitrogen loads. Thus,

reducing these loads may improve water quality issues associated with eutrophication,

turbidity, and water clarity in this system.

Keywords: MERIS chlorophyll a, CDOM, suspended sediments, estuary, nutrient loads, organic matter loads,

sediment loads, Pensacola Bay
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INTRODUCTION

Like many estuarine and coastal systems worldwide, the
Pensacola Bay system in northwest Florida exhibits symptoms
of eutrophication associated with watershed nutrient loading.
Mean annual primary production in this system of 290 g C
m−2 y−1 (Murrell et al., 2007) is moderately high being in
the 70th percentile globally in comparison to other estuaries
(Caffrey and Murrell, 2016). Hypoxia (O2 < 2mg l−1) occurs
in bottom waters over seasonal scales due to both bottom
water respiration driven by organic matter supply and strong
vertical stratification of the water-column driven by a halocline
(Hagy and Murrell, 2007). There have also been large declines
in seagrass extent in the bay (Handley et al., 2007) with the
present extent of 14.3 km2 (Yarbro and Carlson, 2013) being
about 38% of the extent from the 1960s when seagrass covered
8% of the bay bottom (Caffrey and Murrell, 2016). Though
it is still largely unknown what caused this loss of seagrass,
restoration activities in the northern Gulf are targeting water
clarity improvements as a means to restore seagrass (Conmy
et al., 2017). Management strategies for both hypoxia and water
clarity are being pursued by targeting non-point source nutrient
reductions in the watershed as well as by reducing runoff of
sediments in order to reduce bay chlorophyll a (Chla), colored
dissolved organic matter (CDOM), and total suspended sediment
(TSS). Thus, gaining a more quantitative understanding of how
bay Chla, CDOM, and TSS dynamics are related to river loads is
important for improving our understanding of this system and
its management.

Estuarine studies that relate watershed discharges and loads to
estuarine water quality have largely relied on empirical studies
based on time-series analyses or comparative analyses across
systems. For example, there are documented relationships of
estuarine Chla with river discharge (Harding et al., 2016) and
nutrients (Boynton et al., 1982; Monbet, 1992; Lehrter, 2008) and
between suspended sediment loads and water clarity (Borkman
and Smayda, 1998). However, in most estuarine systems there
are insufficient observations to perform these types of analyses.
Water quality measures obtained from high temporal and spatial
resolution ocean color satellites can therefore be useful for

supplementing or establishing baseline water quality conditions
and trends.

Further the satellite data allow for characterizing water quality
dynamics in relation to time-series of river discharge and inputs
of dissolved and particulate constituents (Acker et al., 2005;
Green and Gould, 2008; Green et al., 2008; Chen et al., 2013; Le
et al., 2014, 2016). In this study, we add to the previous work
by examining the relationships of satellite-derived, estuarine
water quality constituents with river concentrations, and loads of
organic and inorganic nitrogen and phosphorus, organic carbon,
and suspended sediment. Specifically, we used a 9-year, water
quality time-series of MERIS-derived Chla, CDOM, and TSS
to explore relationships of these variables with monthly and
annual river discharges, concentrations, and loading dynamics
in Pensacola Bay. The application of MERIS for this analysis
provided data that were otherwise unavailable and allowed for a
synoptic analysis across the entire Pensacola Bay system.

MATERIALS AND METHODS

Study Area
Pensacola Bay is located in the Florida Panhandle of the northern
Gulf of Mexico. The bay has an area of 480 km2 and is
comprised of several distinct hydrographic regions including
oligohaline and mesohaline regions that are river dominated and
polyhaline regions that are more lagoonal in nature (Caffrey
and Murrell, 2016). The river-dominated regions include two
distinct lobes of the upper bay, namely Escambia Bay and East
Bay (Figure 1). Escambia Bay receives the freshwater discharge
of the Escambia River and East Bay receives the discharge of
the Yellow River. The lagoonal region is Santa Rosa Sound.
The Lower Bay region exchanges with the Gulf of Mexico
with which it shares similar hydrographic characteristics (Hagy
and Murrell, 2007). Mean depth in Pensacola Bay is ∼3.0m
with a mean diurnal tide of ∼0.4m (Caffrey and Murrell,
2016) and an average water residence time of 27 days (Bricker
et al., 1999). The Pensacola Bay watershed has an area of
18,100 km2 and land-use/land-cover is comprised primarily of
evergreen (42.6%) and deciduous (10.1%) forest, agriculture
(17.1%), rangeland (9.6%), and urban (7.0%) land uses (Le et al.,
2015). Human population in the watershed is ∼371,000 (Bricker
et al., 1999).

Watershed Discharges and Concentrations
and Loads of Nitrate, Phosphorus, Organic
Carbon, and Suspended Solids
Mean daily river discharge rates (Q) for the largest rivers draining
to Pensacola Bay were obtained from the U.S. Geological Survey
(USGS) for the study period 2003–2012. Discharge data were
retrieved for gaging sites on Escambia River (USGS 02376033),
Big Coldwater Creek (USGS 02370500), Blackwater River (USGS
02370000) and Yellow River (USGS 02369600; Figure 1). The
discharge from the Escambia (mean = 190m3 s−1) and Yellow
rivers (mean = 64m3 s−1) comprised 91% of the total river
discharge (279m3 s−1) to the bay. The remaining 9% is attributed
primarily to the Blackwater River and Big Coldwater Creek,
which drain into upper East Bay. Thus, subsequent analyses were

restricted to the Escambia and Yellow river data. Because elevated
river NO−

3 and Chla were observed under low discharge, baseflow
conditions (discussed below), we considered whether baseflow
loads may be important explanatory variables of estuarine water
quality. Daily baseflow discharges (Qb) for Escambia and Yellow
rivers were calculated using a hydrograph separation method
(Gustard et al., 1992). Briefly, this method consisted of four steps:
(1) Divide the daily discharge record into non-overlapping blocks
of 5 days and compute the minimum of each block that we call
Q1, Q2, Q3,... Qn. (2) Next we consider the series (Q1, Q2, Q3),
(Q2, Q3, Q4),... (Qi−1, Qi, Qi+1). For each series, if 0.9 × center
value < outer values, then we save the center value and its date
as a point for the baseflow line. This results in a series of values
Qb1, Qb2, Qb3, Qbn with different time periods between them.
(3) Linearly interpolate between Qbi values to estimate daily
values of Qb. (4) For the interpolated series, if Qbi > Qi then
set Qbi = Qi.

Frontiers in Marine Science | www.frontiersin.org 2 September 2017 | Volume 4 | Article 274106

http://www.frontiersin.org/Marine_Science
http://www.frontiersin.org
http://www.frontiersin.org/Marine_Science/archive


Lehrter and Le Satellite Derived Estuarine Water Quality

FIGURE 1 | Map of the Pensacola Bay system and sampling sites. Sub-regions of the Bay are delimited by dashed lines between stations PB14 and PB15, which

separates East Bay and Escambia Bay, and between PB07 and PB06, which separates Lower Bay and Escambia Bay. The Pensacola Bay watershed is shown in

gray in the upper panel.

Observed NO−

3 , total Kjeldahl nitrogen (TKN), total
phosphorus (TP), chlorophyll a (ChlaRiver), total organic
carbon (TOC), and total suspended sediment (TSSRiver),
collected by the Florida Department of Environmental
Protection, were obtained from the U.S. water quality
portal (https://www.waterqualitydata.us/). Approximately
monthly samples were collected at the Escambia River site
(21FLBFA_WQX-33020007), which was co-located with the
USGS Escambia River discharge gage. Seasonal samples were
collected at the Yellow River site (21FLBFA_WQX-33040003),

which was co-located with the USGS Yellow River discharge
gage.

In order to calculate monthly averages, a rating curve method
was applied to observed NO3

−, TKN, TP, ChlaRiver, TOC, and
TSSRiver observations (Cohn et al., 1989, 1992). The rating curve
regression model equation was

ln (C) = β0 + β1ln

(

Q

Q′

)

+ β2

(

T − T′

)

+ β3

(

T − T′

)2

+β4 sin (T) + ε, (1)
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where C was a vector of observed constituent concentrations,
Q was a vector of daily discharge rates for the dates (T,
converted to radians) when C were collected, and Q′ and
T′ were centering variables. C and Q were log transformed
to obtain normally distributed residuals. β0, β1, β2, β3, and
β4 were regression coefficients calculated for each regression
model and the last term, ǫ, was the error. Using the regression
models, daily concentrations for each constituent were calculated
for the study period based on the daily observed discharge
rates and time. Then, mean monthly and annual discharge
and constituent concentrations were calculated from the daily
time-series. Finally, monthly and annual constituent loading
time-series were calculated as the products of discharges and
constituent concentrations.

Derivation of MERIS Chla, CDOM, and TSS
The in situ water quality and optical observations used to
develop empirical algorithms for retrieving Chla, CDOM, and
TSS from MERIS observations in Pensacola Bay have been
described previously (Le et al., 2016; Conmy et al., 2017). Here,
a brief summary of the methods is presented for field sampling,
laboratory measurements, and validation of satellite observations
in comparison to measurements.

Water samples for Chla, CDOM, and TSS analysis (n =

161) were collected from the surface of Pensacola Bay (0.5m
depth) at 15 stations (Figure 1) approximately every 6 weeks
from September 2009 to December 2011. Water samples were

processed on the day of collection and retained sample filter pads
and filtrate were stored at −70◦C until analysis. Chla samples
were collected on 25mm GF/F filters (nominal pore size = 0.7
µm), and then, later, extracted from the filter pad with hot
methanol and assayed fluorometrically (Welschmeyer, 1994).
TSS samples from ameasured volume of bay water were collected
on pre-weighed, combusted (550◦C for 4 h) 47mm GF/F filters.
TSS was measured gravimetrically by drying the sample filter
pad (105◦C), reweighing, and subtracting the initial filter weight.
CDOM in the filtrate obtained from TSS processing was assayed
by measuring the specific absorption at 443 nm in a 10-cm quartz
cell on a dual-beam scanning spectrophotometer (Shimadzu UV-
1700). The absorption spectra from λ = 400–700 nm of dissolved
organic matter [ag(λ)] were further measured on the dissolved
fraction (Pegau et al., 2003). Absorption spectra from particles
[ap(λ)] and non-algal detrital particles [ad(λ)] were quantified on
a dual-beam scanning spectrophotometer using the quantitative
filter technique (Kiefer and SooHoo, 1982; Kishino et al., 1985).
After measuring ap(λ), phytoplankton pigments were extracted
from the filter with warm methanol and then the spectra of
the filter pad was scanned again to obtain ad(λ). Phytoplankton
absorption spectra [aph(λ)] were calculated as the difference
between ap(λ) and ad(λ).

Remote sensing reflectance (Rrs) spectral data were measured
at each station with a spectroradiometer (HyperSAS, Satlantic
Inc., Halifax, Nova Scotia) mounted to the top of the boat,
2m above the water surface. The HyperSAS collected spectra

FIGURE 2 | Daily river discharge from the Escambia River (upper) and Yellow River (lower). The red line in both plots shows the calculated baseflow discharge.
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(1 nm resolution at λ 350–800 nm) of above-water radiance, sky
radiance, and downwelling sky irradiance. At each station, An
AC-s (Wet-Labs, Philomath, OR) was used to collect vertical
water-column profiles of absorption and beam attenuation.
Absorption and beam attenuation were measured at 1 nm
resolution from 400 to 735 nm. AC-s absorption, attenuation,
and calculated scattering spectra were corrected for changes

in salinity and temperature, measured with a Seabird CTD
(Wet-Labs; Sullivan et al., 2006). AC-s data were averaged from
the surface of the water column to the observed Secchi depth and
used to correct the Rrs spectra (Gould et al., 1999, 2001).

Rrs bands corresponding with MERIS bands were extracted to
calculate empirical algorithms relating observed Rrs to observed
Chla (mgm−3), CDOM (m−1), and TSS (gm−3; Le et al., 2016).

FIGURE 3 | River concentrations during the study period. Left column are the Escambia river time-series and the right column are the Yellow River time-series.

Concentration units are mmol m−3 for all variables except for Chla (mg m−3) and TSS (g m−3 ). The solid red lines in each plot show the rating curve model fits to the

observations.
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Only data collected on cloud-free days and with wind speed
<3m s−1 were used to develop algorithms. ForChla, the NIR-red
band ratio of Rrs(709)/Rrs(665) was selected in order to minimize
interference from CDOM and non-algal detritus. For CDOM,
the NIR-green band ratio of Rrs(709)/Rrs(510) was used due to
uncertainties in the atmospheric correction at blue bands (443
and 490 nm) and interference from phytoplankton absorption
in the red bands (665 and 681 nm). For TSS, the band ratio
Rrs(709)/Rrs(681) gave the best fit. The equations for the band
ratio algorithms were

Chla = 29.3

(

Rrs(709)

Rrs(665)

)4.15

, R2 = 0.70 (n = 150) (2)

CDOM = 1.41

(

Rrs(709)

Rrs(510)

)0.89

, R 2
= 0.79 (n = 129) (3)

TSS = 13.9

(

Rrs(709)

Rrs(681)

)3.67

, R2 = 0.71 (n = 143), (4)

where R2 were the percentage of variation in the observed data
explained by the algorithms and n were the number of samples.

Daily MERIS level-2 data were obtained from NASA (http://
oceancolor.gsfc.nasa.gov/) for the study period January 1, 2003
to April, 2012. Downloaded products included MERIS Rrs(λ) in
all the spectral bands with 300-m spatial resolution as well as
quality control flags for clouds, atmospheric correction warning,
and stray light. Pixels along the shoreline with water depths
< 2m were masked to avoid issues with bottom-reflectance.
Algorithm Equations (2–4) were then applied to the MERIS Rrs
time-series to generateMERISChla,CDOM, and TSS time-series.
To validate the algorithms, MERIS Rrs(λ) data were extracted
for the dates and locations of sampling stations with a time
window of ±1 d and calculating a median Rrs(λ) from a 3 ×

3 pixel box centered on the sampling location (Le et al., 2013).
For subsequent comparisons with river discharge, concentration,
and loading time-series, the MERIS Chla, CDOM, and TSS have
been averaged to monthly and annual values for the period from
January 2003 to December 2011.

Relating River Discharge, Concentrations,
and Loads to MERIS Chla, CDOM, and TSS
On a per pixel basis, Pearson correlations among MERIS
monthly Chla, CDOM, and TSS time-series and time-series of
Q, Qb, river concentrations, and river loads were calculated.
We examined correlations with concurrent (0-month), 1-
month, and 2-month lagged river time-series. In order to
further identify how multivariate combinations of river loads
could explain variation in MERIS bio-optical water quality,
the MERIS data were averaged over discrete regions, namely
Escambia Bay, East Bay, and Lower Bay (Figure 1), and the
regional time-series were then regressed against monthly and
annual time-series of river loads. We used a partial least
squares (PLS) regression model because of the high degree
of correlation between independent variables (described below
in Results) and because for the annual time-series there
were more independent variables (see Equation 5 below) than
annual samples (n = 9 years). PLS regression reduces the

number of predictor variables by combining the variables
into factors similar to principal component analysis. Nine
regression models were developed: 3 MERIS water quality
variables (i = Chla, CDOM, and TSS) by 3 bay regions (j =
Escambia, East, and Lower). The regression equation had the
form

MERIS WQij ∼ QNO−

3 + QTKN + QTP + QChl+ QTOC

+ QTSS+ QbNO−

3 + QbTKN + QbTP

+ QbChl+ QbTOC + QbTSS (5)

where MERIS WQij were the log transformed MERIS water
quality time-series per bay region, and variables on the right
hand side were the log transformed time-series of river loads
(variables beginning with a Q) and baseflow loads (variables
beginning with a Qb). For Escambia Bay (j = 1) and Lower Bay
(j = 3), the Escambia River loads were used as the independent
variables. For East Bay (j = 2), the Yellow River loads were
used.

TABLE 1 | Mean river concentrations and loads.

NO−

3
TKN TP Chla TOC TSS

Concentrations mmol

m−3
mmol

m−3
mmol

m−3
mg

m−3
mmol

m−3
g m−3

Escambia 15.8 26.3 1.17 1.62 454 9.4

Yellow 8.8 22.9 0.73 1.18 448 8.7

Loads kg

d−1
kg

d−1
kg

d−1
kg

d−1
kg

d−1
kg d−1

Escambia 3,593 5,981 589 26 88,493 152,686

Yellow 724 1,884 133 7 31,585 51,114

Escambia % 83% 76% 82% 79% 74% 75%

Escambia % is the percentage contribution of the Escambia River load to the combined

Escambia + Yellow river loads.

TABLE 2 | Pearson correlation between monthly time (T), river discharge(Q),

baseflow discharge (Qb), and concentrations of nitrate (NO−

3 ), total Kjeldahl

nitrogen (TKN), total phosphorus (TP), chlorophyll a, total organic carbon (TOC),

and total suspended sediment (TSS).

T Q Qb NO−

3
TKN TP Chla TOC TSS

T 1.00 −0.27 −0.50 0.43 0.12 −0.42 0.01 −0.08 0.42

Q −0.27 1.00 0.74 −0.76 0.71 0.59 −0.44 0.85 0.40

Qb −0.50 0.74 1.00 −0.65 0.40 0.73 −0.35 0.57 0.23

NO−

3 0.43 −0.76 −0.65 1.00 −0.72 −0.44 0.32 −0.84 −0.24

TKN 0.12 0.71 0.40 −0.72 1.00 0.40 −0.05 0.97 0.76

TP −0.42 0.59 0.73 −0.44 0.40 1.00 0.10 0.51 0.54

Chla 0.01 −0.44 −0.35 0.32 −0.05 0.10 1.00 −0.20 0.28

TOC −0.08 0.85 0.57 −0.84 0.97 0.51 −0.20 1.00 0.65

TSS 0.42 0.40 0.23 −0.24 0.76 0.54 0.28 0.65 1.00

Bold values are significant correlations (α = 0.05).
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RESULTS

Watershed Discharge, Baseflow,
Concentrations, and Loads
Watershed discharge was greatest in the winter and spring in both
the Escambia and Yellow rivers (Figure 2). Notable discharge
events occurred during April 2005 and December 2009. April
2005 was the wettest month on record at the time for the city
of Pensacola, going back to 1880, with 62 cm of rainfall, which
resulted in a mean monthly discharge of 768 m3 s−1 for the
Escambia River and 283m3 s−1 for the Yellow River. Escambia
River discharge in December 2009 exceeded April 2005 with a
monthly average discharge of 883m3 s−1, while Yellow River
discharge was 127m3 s−1 in December 2009. Overall, for the
study period the mean discharges from the Escambia and Yellow
rivers were 188 and 68m3 s−1, respectively. Discharge rates in the
two rivers were highly correlated (r = 0.85).

Baseflow discharge followed a similar pattern as total
discharge with highest baseflow discharge in the winter and

spring. For the study period, mean baseflow discharges of the
Escambia and Yellow rivers were 109 and 45m3 s−1, respectively,
which represented 75% of the total discharge in the Escambia
River and 72% in the Yellow River. During the summer and fall
low discharge periods, the baseflow discharge often accounted
for all of the observed river discharge (Figure 2). During high
discharge periods the baseflow contribution was considerably
less. For example, during April 2005 and December 2009,
baseflow contributed only 20% and 27%, respectively, of the total
discharge from the Escambia River.

Escambia and Yellow river time-series concentrations are
shown in Figure 3. On average, concentrations were higher in
the Escambia River (Table 1) where mean concentrations for
NO3

−, TKN, TP, Chla, TOC, and TSS were 15.8mmolm−3,
26.3mmolm−3, 1.17 mmolm−3, 1.62mgm−3, 454mmolm−3,
and 9.4 gm−3, respectively. NO3

− and Chla concentrations in
the rivers were negatively correlated with discharge (Table 2). All
the other constituent concentrations were positively correlated
with discharge. Temporal trends and seasonal patterns were

FIGURE 4 | Escambia River monthly mean discharge and loads. River loads of NO−

3 , TKN, TP, and TOC have units of mmol s−1. Loads of Chla have units of mg s−1

and loads of TSS have units of g s−1.
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also observed in the data. Significant temporal trends occurred
in discharge, NO3

−, TP, and TSS (Table 2). Seasonal patterns
were observed in Chla and TKN with generally higher values
in summer than in winter (Figure 3). These trends formed the
basis for our rating curve regression models. All models were
statistically significant (p < 0.05) and R2 ranged from 0.19 for
TSS to 0.76 for NO−

3 .
River loads to Pensacola Bay were mainly from the Escambia

River, which accounted for 74–83% of the total combined
constituent loads from Escambia and Yellow rivers (Table 1).
Mean Escambia River loads of NO3

−, TKN, TP, Chla, TOC,
and TSS were 3,593, 5,981, 589, 26, 88,493, and 152,686 kg d−1,
respectively. Temporal patterns in river loads generallymimicked
the patterns of river discharge (Figure 4).

Pensacola Bay Observed Data and MERIS
Algorithms and Time-Series
We briefly summarize the results from Pensacola Bay optical
observations and MERIS algorithm development as these results
have been presented previously (Le et al., 2016). Rrs was greatest
in East Bay and Escambia Bay and smallest in Lower Bay (Figure
S1A). For the wavelengths coincident with the MERIS bands
used to generate the algorithms in Equations (2–4), spectral
absorption was dominated by CDOM at 510 nm, and by aph and
ad at 665, 681, and 710 nm (Figures S1B–D).

The band ratio algorithms (Equations 2–4) explained 70%,
79%, and 71% of the variability in Chla, CDOM, and TSS,

respectively. Validation results (Figure S2) demonstrate a
reasonable accuracy for MERIS derived Chla, CDOM, and TSS
where error statistics for Chla were R2

= 0.64, MRE = 31.9%, n
= 46; for CDOM were R2 = 0.80, MRE = 18.5%, n = 53; and for
TSS were R2 = 0.54, MRE = 42.7%, n = 53. MRE (mean relative
error) was calculated by

MRE =

1

n

∑

abs

(

MERIS− Observed

Observed

)

· 100 (6)

Upon application of these algorithms to the retrieved MERIS
reflectance, synoptic monthly time-series of MERIS Chla,
CDOM, and TSS were derived. As an example, Figure 5 depicts
Chla in the summer and fall during a low discharge year in 2007
and a high discharge year in 2009 (Figure 2). The fall bloom in
2007 had greater Chla than in 2009 despite the lower discharge.
This points to other potential mechanisms, besides river forcing,
regulating Pensacola Bay Chla such as wind-driven resuspension
events (Le et al., 2016).

After averaging across the bay sub-regions (Figure 1),
seasonal patterns inMERIS Chla, CDOM, and TSSwere apparent
with elevated concentrations in late fall and early winter and
lower concentrations in the summer and early fall (Figure 6).
MERIS Chla, CDOM, and TSS were highly correlated at monthly
(Figure 6) and annual (Figure S3) time scales; monthly Chla and
CDOM (r= 0.91); monthlyChla andTSS (r= 0.85), andmonthly
CDOM and TSS (r = 0.82); annual Chla and CDOM (r = 0.85);

FIGURE 5 | Summer and fall MERIS Chla for the Pensacola Bay system. (A,B) Show the average Chla from August 2007 and August 2009. (C,D) Show the average

Chla from October 2007 and November 2009.
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annual Chla and TSS (r = 0.79), and annual CDOM and TSS
(r = 0.87).

Relating MERIS Time-Series to River
Discharge, Concentration, and Loading
Time-Series
Correlation Maps

We examined correlations by pixel betweenMERISChla, CDOM,
and TSS time-series and 0-, 1-, and 2-month lagged time-series
of Escambia River and Yellow River discharges, concentrations,
and loads of NO3

−, TKN, TP, Chla, TOC, and TSS. Correlations
were similar using either Escambia River or Yellow River data
owing to the strong correlation between river discharge for these
two rivers (r = 0.85). Thus, as the Escambia River was the largest
river input to Pensacola Bay, we present the correlations obtained
using the monthly time-series for Escambia River (Figure 4). For
correlations with 0-month lagged river forcing, MERIS Chla was
most highly correlated with discharge and baseflow discharge

(Figure 7). Correlations with river concentrations of NO3
−, TP,

and TKN were small and correlations with river concentrations
of ChlaRiver were mainly negative. Correlations with river TOC
and TSS concentrations (not shown) had similar patterns as for
TKN. For 1- and 2-month lagged discharge, baseflow discharge,
and river concentrations, MERIS Chla correlations were smaller
than for 0-month (not shown).

To examine spatial patterns of correlation between MERIS
water quality time-series and river loading time-series we focused
our analysis on 0-month river loads of NO3

−, TP, TOC, and
TSS. We included NO3

− and TP as we expected these nutrient
loads to be related to bay Chla. We included river TOC as it was
expected the load would scale with bay CDOM. Further, TOC
and TKN concentrations were highly correlated (r = 0.97). Thus,
TOC could act as a surrogate for organic nitrogen. River TSS load
was expected to scale with bay TSS.

MERIS Chla had greatest correlation with 0-month lagged
NO3

− loads and TOC baseflow loads (Figure 8). East Bay pixels
had higher correlation with loading rates than other regions. In

FIGURE 6 | Monthly time-series of MERIS derived Chla, CDOM, and TSS from January 2003 to December 2011.
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FIGURE 7 | Correlations between monthly Chla time-series (per pixel) with 0-month lagged Escambia River discharge and concentrations. Shown are Chla correlation

with (A) discharge, (B) baseflow discharge, and concentrations of (C) river NO−

3 , (D) river TKN, (E) river TP, and (F) river Chl.

contrast, Santa Rosa Sound and the nearshore Gulf of Mexico
pixels had higher correlation with 1-month lagged loads (Figure
S4). MERIS CDOM also correlated with concurrent NO3

− load
and TOC baseflow load (Figure 9). Correlations were apparent
throughout Escambia Bay, East Bay, and Lower Bay, although
the upper-most reaches of both Escambia and East bays had weak
correlation. CDOM correlations with 1-month lagged loads had
greater correlation in Santa Rosa Sound and nearshore Gulf of
Mexico (Figure S5). MERIS TSS had highest correlation with
NO3

− loads, both total and baseflow loads, and with baseflow
TOC load (Figure 10). Correlations exhibited similar spatial
patterns with highest correlations in East Bay for 0-month loads
and in Santa Rosa Sound and nearshore Gulf of Mexico for
1-month loads (Figure S6).

Partial Least Squares Regression Results

At monthly time-scales, the PLS regression models explained 23–
59% of the monthly variability in bay water quality (Figure 11).

At the annual scale, PLS models explained 20–62% of the
variability (Figure 12). By evaluating more parsimonious forms
of Equation (5), we determined that that the following reduced
equation could represent most of the variability in MERIS Chla,
CDOM, and TSS

MERIS WQij ∼ QNO3
−

+ QTKN + QTSS (7)

Our justification for this reduced equation was based on several
lines of reasoning: (1) the correlation between discharge and
baseflow (r = 0.74, Table 2) suggested we could eliminate
baseflow loads, (2), the weak correlations of MERIS water quality
with either river TP (Figures 8–10) or river Chl (Figure 7F)
indicated these loads made an insignificant contribution, and (3)
the strong correlation between TKN and TOC (r= 0.97, Table 2)
indicated that TKN could be substituted for TOC (discussed
further below in Methodological Considerations see Section
Methodological Considerations). This reduced form of themodel
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FIGURE 8 | Correlation between monthly Chla time-series per pixel with 0-month lagged Escambia River loads. (A,B) Correlation with NO−

3 load and baseflow NO−

3
load, respectively. (C,D) Correlation with TP load and baseflow TP load, respectively. (E,F) Correlation with TOC load and baseflow TOC load, respectively. (G,H)

Correlation with TSS load and baseflow TSS load, respectively.

explained 17–56% of the monthly variability in MERIS water
quality and 17–62% of the annual variability. Based on Table 3

of PLS component loadings, component 1, which included a
linear combination of QTKN and QTSS (equal weights) and
QNO−

3 (lower weight), was the strongest driver of variability
in the MERIS Chla, CDOM, and TSS in the three bay regions.
Component 2, which had the highest loading from QNO−

3 ,
also contributed significantly to the total variance explained
in East Bay (Table 3), and to a lesser extent in Escambia and
East Bay.

DISCUSSION

In many estuarine and coastal systems, observational data
are insufficient to link estuarine water quality responses
to anthropogenic changes in adjacent watersheds. As a
supplemental data source, and in some cases the only data

source, ocean color satellites are emerging as powerful tools
for monitoring and studying estuarine water quality properties
that can be measured optically. Previous work has further
demonstrated that satellite derived water quality is useful for
quantifying the effects of river forcing. Several studies have
assessed the responses of satellite-derived estuarine Chla,
CDOM, and TSS to variations in river discharge (Acker et al.,
2005; Green et al., 2008; Chen et al., 2013; Le et al., 2016) and
nutrient loads (Green and Gould, 2008; Chen et al., 2013; Le
et al., 2014). To our knowledge, no previous studies have used
the satellite data to investigate multivariate relationships between
riverine loads of nutrients, organic matter, and sediments and
satellite-derived Chla, CDOM, and TSS, nor have previous
studies been conducted in small to moderate sized estuaries
such as Pensacola Bay (SCOPUS search for keywords: satellite
ocean color, estuary, and multivariate water quality on Aug 8,
2017).
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FIGURE 9 | Correlation between monthly CDOM time-series per pixel with 0- month lagged Escambia River loads. (A,B) Correlation with NO−

3 load and baseflow

NO−

3 load, respectively. (C,D) Correlation with TP load and baseflow TP load, respectively. (E,F) Correlation with TOC load and baseflow TOC load, respectively. (G,H)

Correlation with TSS load and baseflow TSS load, respectively.

MERIS Chla, CDOM, and TSS

Relationships to River Forcing
Based on correlation and PLS analyses, the river variables that
explained the most variation in MERIS Chla, CDOM, and TSS
were Q, Qb, and NO−

3 , TKN, and TSS loads (Figures 7, 8,
Table 3). This held true for all regions of the Bay, but in East
Bay the influence of QNO−

3 was greater than in either Escambia
or Lower Bay (Table 3). In terms of baseflow river loads, MERIS
CDOM and TSS, exhibited correlations with baseflow river loads
(Figures 9, 10) but Chla had a muted response to baseflow
loads (Figure 8). This latter response is odd given that Chla was
modestly correlated to baseflow discharge, especially in East Bay
(Figure 7). Overall, though, MERIS Chla, CDOM, and TSS had
lower correlations with baseflow loads indicating that the total
loads weremore important throughout the Pensacola Bay system.
We had speculated that baseflow loads may be important because
the most elevated river NO−

3 and Chla concentrations occurred
under low discharge, baseflow conditions (Table 2).

Correlations with 1-month lagged loads and baseflow loads of
NO3

−, TP, TOC, and TSS suggested that East Bay and Santa Rosa
Sound had the greatest response to lagged river loads (Figures
S4–S6). Highest correlations occurred in nearshore areas around
the Gulf Breeze Peninsula and into Santa Rosa Sound. Pixels
in the nearshore Gulf of Mexico, outside of Pensacola Bay, also
exhibited higher correlations with 1-month lagged watershed
loads. The lagoonal region of Santa Rosa Sound and the areas in
the nearshore Gulf of Mexico may have longer water residence
times than other regions of Pensacola Bay owing to the lack
of direct river discharges. The nearshore Gulf region may be
responding to outflows from Pensacola Bay or to larger regional
scale (northern Gulf watersheds) loading to the coastal zone.

PLS regression models based on QNO−

3 , QTKN, and QTSS
were relatively good predictors of MERIS Chla, CDOM, and TSS
in the three bay regions at both monthly (Figure 11) and annual
(Figure 12) time scales. For Pensacola Bay, these empirical
models provide a means to evaluate how changes in nitrogen
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FIGURE 10 | Correlation between monthly TSS time-series by pixel with 0-month lagged Escambia River loads. (A,B) Correlation with NO−

3 load and baseflow NO−

3
load, respectively. (C,D) Correlation with TP load and baseflow TP load, respectively. (E,F) Correlation with TOC load and baseflow TOC load, respectively. (G,H)

Show correlation with TSS load and baseflow TSS load, respectively.

and suspended loads may impact Chla, CDOM, and TSS. Such an
analysis is beyond the scope of the present study, but may be of
interest for managers who need to determine loading reductions
required to achieve water quality targets in the bay. Furthermore,
the covariations exhibited among MERIS Chla, CDOM, and TSS
in the three bay regions (Figure 6) indicate that load reductions
aimed at reducing Chla, CDOM, and TSS are likely to be effective
across the entire Bay.

There are few previous studies relating river forcing to field-
based observations of water quality in Pensacola Bay. One study
found a similar pattern of increased Chla in the bay as a result
of increased river discharge (Murrell et al., 2007). Studies of
nutrient limitation have resulted in mixed results. In one study,
phosphorus limitation of primary production was observed
based on nutrient and phosphorus addition experiments at
two sites, one in an oligohaline and one in a mesohaline
region of the bay (Murrell et al., 2002). In another study,

nitrogen limitation of primary production was reported from
one polyhaline site in Santa Rosa Sound (Juhl and Murrell,
2008). In the present study, river nitrogen (NO−

3 and TKN) loads
explained most of the variability in MERIS Chla as well as in
CDOM and TSS, and, thus, supported nitrogen as being more
important as a limiting nutrient. Neither river concentrations
nor loads of TP were significantly correlated with Chla
(Figures 7D, 8D).

In the present study we did not examine the effects of wind
on water quality patterns. However, previously wind speed was
observed to be significantly correlated (positive) to the MERIS
water quality variables in Escambia Bay and East Bay, but not in
lower Bay, but correlations were weak (r < 0.29) at a monthly
scale (Le et al., 2016). Thus, the percentage of variation explained
by the PLS regressions for Escambia and East bays could be
improved by including wind as an independent variable for these
regions of the bay.
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FIGURE 11 | MERIS monthly water quality variables vs. partial least squares regression models (PLS Model). Monthly MERIS water quality time-series for Escambia

Bay (left column) and Lower Bay (right column) are compared to the PLS model that was based upon Escambia River monthly loads. Monthly MERIS water quality

time-series for East Bay (middle column) are compared to the PLS model that was based upon Yellow River monthly loads. The solid line is the 1:1 line. R2 values

provide the fraction of variability explained by the PLS models.

Methodological Considerations
There are several potential errors in our analysis. First of
these was the accuracy of the MERIS satellite-derived Chla,
CDOM, and TSS. While the algorithms used here appeared to
be robust (Section Pensacola Bay Observed Data and MERIS
Algorithms and Time-Series), the mean relative errors between
field observations and satellite-derived values were 18.5% for
CDOM, 31.9% for Chla, and 42.7% for TSS. In coastal waters,
further work is required to improve the algorithms that equate
remote sensing reflectance and other optical properties to water
quality variables.

A second source of potential error was from the strong
correlations between river discharges and concentrations
(Table 2). For example, TKN and TOC were highly correlated (r
= 0.97). These correlations dictated our use of PLS regression
when relating monthly and annual river time-series to MERIS
water quality. Though PLS is an alternative to typical least squares
regression when independent variables are highly correlated,
the interpretation of the PLS results is not straightforward. For
example, due to the correlation between TKN and TOC we

could have used TOC loads in Equation (7) instead of TKN
loads with little change in the percent variance explained in
the dependent water quality variables. Further, there was a
high degree of covariation between monthly time-series of
MERIS Chla, CDOM, and TSS as observed in Figure 6, which
limits our ability to tease apart the factors controlling these
variables. For example, high CDOM or TSS may limit light
availability for phytoplankton photosynthesis and in turn
limit Chla concentration, yet at the same time Chla, CDOM
and TSS were all correlated with nitrogen loading, thus light
limitation did not appear to have a significant impact on
Chla in surface waters in comparison to the effect of nitrogen
loads.

A third issue was the choice of averaging the river and satellite
data to a monthly time scale. We chose this averaging period for
the practical reason that there may be large gaps in the satellite
record at the daily time step due to cloud cover and/or other
quality control issues. Also, the river concentration data were
collected at monthly to seasonal scales. Averaging at the monthly
scale, however, may obscure estuarine patterns related to episodic
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FIGURE 12 | MERIS annual water quality variables vs. partial least squares regression models based upon Escambia River annual loads of NO−

3 , TKN, and TSS. The

solid line is the 1:1 line. R2 values provide the fraction of variability explained by the PLS models.

events such as a tropical storms (Hagy et al., 2006) or peak river
discharges (Murrell et al., 2007) that can rapidly flush Pensacola
Bay. In future studies, the issue of obtaining greater temporal
sampling from satellite may be overcome by including data
from other ocean color satellites such as MODIS. A challenge
to blending these products is the development of algorithms
for each satellite. Including MODIS data in our analysis of
Pensacola Bay may not have worked since the spatial resolution
and wavelengths of reflectance captured by MODIS are different
than MERIS. The greater spatial resolution of MERIS (300m vs.
1 km forMODIS) and the unique spectral band at 709 nmwas the
reason that MERIS was applied to Pensacola Bay (Le et al., 2016).

CONCLUSIONS AND FUTURE
DIRECTIONS

In this study, we demonstrated the utility of long-term and
spatially synoptic satellite data for examining the effects of river
forcing on estuarine water quality. This is the first study to apply
a multi-variate approach to examine this problem and first to
do so with MERIS in small to moderate size estuary, Pensacola
Bay. The approach to retrieve water quality from MERIS and to
analyze the factors driving water quality variability are readily
portable to other similar sized estuaries globally. Our primary
conclusion was that MERIS Chla, CDOM, and TSS dynamics
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TABLE 3 | Mean PLS loadings for components 1, 2, and 3 of multiple regression

model and the percentage of variance explained in the dependent variables.

Comp 1 Comp 2 Comp 3

QNO3 4.03 1.12 −0.66

QTKN 8.36 0.16 0.73

QTSS 8.31 −0.83 −0.41

% Explained

Chla_Esc 24% 7% 0%

Chla_East 22% 18% 6%

Chla_Low 11% 12% 1%

CDOM_Esc 48% 2% 0%

CDOM_East 33% 18% 5%

CDOM_Low 46% 3% 0%

TSS_Esc 22% 3% 0%

TSS_East 19% 12% 4%

TSS_Low 14% 4% 0%

observed in Pensacola Bay were significantly related to riverine
nitrogen loads. However, the analyses also indicated that some
of the sub-regions of the bay had different responses to the
magnitude and timing of river loads. Overall, the MERIS data
provided unprecedented spatial and temporal coverage beyond
that of past boat-based efforts in Pensacola Bay and revealed
previously unobserved spatial and temporal patterns of responses
to river forcing.

A similar approach to the one used in this study could also be
applied to water column light absorption and attenuation, which
are related measures of water clarity. Improving water clarity
is a common water quality goal in Florida estuaries for both
ecological and economic reasons. Water clarity is a key ecological
attribute in Pensacola Bay that controls primary production
(Murrell et al., 2009) and likely the spatial distribution of seagrass
habitats in the bay. The MERIS-derived water quality variables
used in this study could be applied to better understand controls
on water clarity. Chla and TSS scale to the inherent optical

properties aph and ad, respectively, in Pensacola Bay (Conmy
et al., 2017), and, thus, as CDOM (ag) is already measured in
units of absorption (m−1), it is possible to construct a total
absorption (at) budget by summing aph (obtained by converting
from Chla), ad (obtained by converting from TSS), and ag .
Also, as at is linearly related to light attenuation (m−1, Conmy
et al., 2017), it will be possible in future work to extrapolate the
MERIS derived Chla, CDOM, and TSS to water clarity targets
such as percent of surface solar radiation required to support
seagrass habitats.
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An autonomous surface vehicle instrumented with optical and acoustical sensors was

deployed in Kane’ohe Bay, HI, U.S.A., to provide high-resolution, in situ observations of

coral reef reflectancewithminimal human presence. The data represented awide range in

bottom type, water depth, and illumination and supported more thorough investigations

of remote sensing methods for identifying and mapping shallow reef features. The in situ

data were used to compute spectral bottom reflectance and remote sensing reflectance,

Rrs,λ, as a function of water depth and benthic features. The signals were used to

distinguish between live coral and uncolonized sediment within the depth range of

the measurements (2.5–5m). In situ Rrs,λ were found to compare well with remotely

sensed measurements from an imaging spectrometer, the Airborne Visible and Infrared

Imaging Spectrometer (AVIRIS), deployed on an aircraft at high altitude. Cloud cover and

in situ sensor orientation were found to have minimal impact on in situ Rrs,λ, suggesting

that valid reflectance data may be collected using autonomous surveys even when

atmospheric conditions are not favorable for remote sensing operations. The use of

reflectance in the red and near infrared portions of the spectrum, expressed as the

red edge height, REHλ, was investigated for detecting live aquatic vegetative biomass,

including coral symbionts and turf algae. The REHλ signal from live coral was detected

in Kane’ohe Bay to a depth of approximately 4m with in situ measurements. A remote

sensing algorithm based on the REHλ signal was defined and applied to AVIRIS imagery

of the entire bay and was found to reveal areas of shallow, dense coral and algal cover.

The peak wavelength of REHλ decreased with increasing water depth, indicating that a

more complete examination of the red edge signal may potentially yield a remote sensing

approach to simultaneously estimate vegetative biomass and bathymetry in shallow

water.

Keywords: coral reef, Kane’ohe Bay, autonomous survey, hyperspectral remote sensing, red edge height

INTRODUCTION

Coral reefs are among the most diverse and productive ecosystems worldwide (Odum and Odum,
1955) and provide a variety of goods and services to many tropical and sub-tropical coastal nations
(Spurgeon, 1992; Moberg and Folke, 1999). Coral reef health and diversity are on the decline
worldwide in response to local human impacts and global changes in climate (Hughes et al., 2003)
and this trend is expected to continue (Kleypas et al., 1999; Anthony et al., 2008; Hoegh-Guldberg,
2011). In response, programs tomonitor the health of coral reef ecosystems have been and continue
to be implemented, including remote sensing in the visible and near infrared portions of the
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light spectrum (Dekker et al., 2011). Likewise, more capable
remote sensing systems are planned with features that are
designed to enhance coral reef monitoring on a global scale. For
example, the NASA Hyperspectral Infrared Imager (HyspIRI) is
envisioned as an imaging spectrometer operating in the visible
to the near infrared region of the spectrum (0.38–2.5µm, 10 nm
channels) with a nadir spatial resolution of 30m (Lee et al., 2015).

The success of any remote sensing application depends upon
the collection of key environmental information that can be
used to vicariously calibrate at-sensor radiance, test atmospheric
correction procedures, and develop, test, and validate product
algorithms. For shallow water aquatic applications, data sets that
include water optical properties, depth, and benthic cover are
needed that span appropriate length scales (e.g., >1,000m) and
with sufficient spatial resolution (e.g., <1m). This is especially
true of spatially complex coral reef ecosystems, but the collection
of such observations with diver-based approaches alone is not
feasible. in situ measurements of benthic reflectance using
diver-operated spectrometers have, for example, highlighted the
spectral differences between various coral reef components and
aided assessments of remote sensing systems for coral reef
mapping (Hochberg and Atkinson, 2000; Hochberg et al., 2003;
Kutser et al., 2003), but field operations are laborious and
inefficient for surveying purposes. In situ photogrammetric and
spectral imaging approaches to mapping coral reef structure
have been reported using diver-operated and towed systems (e.g.,
Gleason et al., 2007; Lirman et al., 2007; Shihavuddin et al., 2013).
While these approaches have yielded high-quality photo mosaics
and thematic images of benthic features that can be used to
validate remote sensing products, such as benthic cover, the data
are generally qualitative from a radiometric perspective and of
limited use in developing and testing shallow-water light models.

To address these limitations, this research explored the use
of an autonomous surface vessel (ASV) instrumented with
calibrated radiometers and a side-scan sonar for surveying
large areas of shallow coral reef environments in high spatial
resolution in support of remote sensing operations. To illustrate
the potential utility of the data from a remote sensing perspective,
a coral biomass detection algorithm was developed based on
reflectance features within the red and near-infrared portions
of the spectrum and applied to data collected in the same
time frame using an airborne imaging spectrometer deployed
at high-altitude. It was shown that high resolution optical
and acoustical surveys can be conducted with minimal human
presence resulting in high-quality data necessary to support
remote sensing operations and algorithm development. The work
was conducted in Kane’ohe Bay, Hawai’i, to assess the potential
application of HyspIRI data in studies of coral reef health in
support of planning for the NASA HyspIRI mission (https://
hyspiri.jpl.nasa.gov).

MATERIALS AND METHODS

The approach consisted of instrumenting a small ASV with
synchronized optical and acoustical sensors, deploying the
system to collect in situ observations in high spatial resolution

on and around a small patch reef within Kane’ohe Bay, using
the observations to derive shallow benthic properties of
ecological importance, including water depth, benthic cover
and reflectance, relating these properties to computations
of water column reflectance, and comparing the in situ
measurements with similar remotely sensed observations
corrected for atmospheric effects. Measurements of water optical
properties, collected manually, were used to aid the analysis
of the autonomous data. The data processing procedures and
underpinning radiative transfer theory are presented briefly in
the following sections.

Study Site
Kane’ohe Bay is a semi-enclosed embayment (surface area of 41.4
km2) located on the east coast of O’ahu, Hawai’i. The bay is
bounded on the eastern side by a barrier reef that is cut by two
tidal channels that bracket a semi-exposed barrier island, Ahu
O Laka. The bay is flushed with clear oceanic waters driven by
waves topping the barrier reef and tidal exchange through the
channels. Seaward of the barrier island, within the depth range
0.3–1.2m, the bottom consists almost entirely of mixed corals
and sand (Jokiel, 1991). Landward of the barrier island, the bay
is characterized as an estuarine lagoon of average depth 19m and
highlighted by numerous patch reefs with depths of less than 1m
that are partially exposed during extreme spring tides. Shallow
fringing reefs are present along most of the shoreline. Bottom
sediments within the bay are composed of coral rubble and gray
coral mud.

The study was focused primarily on a 33,000 m2 patch
reef located southeast of Moku o Lo’e (Coconut Island) in the
southern portion of Kane’ohe Bay (centered at 21.4304◦N latitude
and 157.7849◦W longitude, Figure 1). The reef, referenced as the
coconut patch reef, forms a nearly flat plateau that rises abruptly
from the surrounding bay floor to an average depth of between 3
and 4m. The reef was dredged during World War II in order to
make room for a seaplane base (Hunter and Evans, 1995). Since
that time, the area has become partially recolonized by coral and
associated reef organisms that have gradually built up portions of
the reef to within 2.5m of the surface.

Measurements
Physical and optical data were collected in situ on 12 February
2017 using sensors deployed with a small, commercially available,
coastal kayak equipped for autonomous operations (Figure 2)
and described in detail by Curcio et al. (2005) and Wood
et al. (2007). The ASV received GPS signals and navigated to
pre-defined waypoints by controlling the speed and orientation
of an articulating electric trolling motor located in the stern
and powered with a 12V marine battery. Autonomous control
was achieved with a 3D Robotics Pixhawk auto-controller
and GPS with compass and mission planning and execution
was conducted using Mission Planner software. A Lowrance
Structure Scan 3-D side-scan sonar and depth finder was
mounted through the center of the keel and operated at 800KHz,
yielding bathymetry and high-resolution acoustical images of the
surrounding bay floor. SonarTRX Pro side-scan sonar software
was used to process and view sonar images as geo-referenced
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FIGURE 1 | The study location, Kane’ohe Bay, is located on the east coast (windward side) of O’ahu, Hawai’i. In situ physical and optical measurements were

collected across a shallow patch reef located off the southeast shore of Coconut Island in the southern portion of the bay.

mosaics and to extract bathymetric information including water

depth and benthic roughness. Surfer v.11 2D & 3D mapping
and visualization software was used to create geo-referenced, 2-D
bathymetric contour plots and 3-D bathymetric contour surfaces
using Kriging interpolation.

A Satlantic HyperPro hyperspectral radiometer buoy was
attached to the ASV with a power and communications cable
and towed at a trailing distance of approximately 3m, in order
to avoid shadows cast by the ASV hull. The system measured
downwelling irradiance above the water surface Ed,λ(0+) and
upwelling radiance just below the surface at a depth of 0.24m
Lu,λ(0.24) in 137 spectral bands between 349 nm and 804 nm
with an average half-power bandwidth of 3.34 nm. The Ed,λ(0+)
sensor was fitted with a diffuse cosine collector. The in-water
field of view (FOV) of the Lu,λ(0.24) sensor was 8.5

◦. A weighted
keel of length 1m was built into the radiometer buoy and
provided a relatively stable, vertical orientation. A tilt and roll
sensor provided deviations in radiometer orientation (measured
in degrees) from a horizontal plane in two orthogonal directions.
A Teledyne Benthos PSA-916 acoustical depth sounder was
attached to the keel of the radiometer at a depth of 0.95m,
and it measured the distance to the bottom Dr m beneath the
radiometer with an accuracy of ±0.01m. Therefore, the total
water column depth was computed as D = Dr + 0.95.

A down-looking GoPro camera (GP1), enclosed in
a watertight housing, was affixed to the bottom of the

radiometer keel, and it provided high definition photographic

documentation of shallow benthic features. The in-water FOV
of the camera was determined to be 83.4◦ in the long direction
and 63.9◦ in the short direction. It was uncertain precisely where
the radiometer sampled within the GP1 imagery. However, care
was taken to visually aligned the camera with the radiometer
keel to ensure that the radiometer subsampled the GP1 frames
simultaneously. A second GoPro camera (GP2) was affixed
to the aft deck of the ASV and pointed toward the stern to
provide simultaneous photographic documentation regarding
the orientation of the radiometer, the sea state, and atmospheric
conditions. All data were collected at 1Hz or greater and
time-stamped for post processing.

The ASV survey consisted of a 3 km track, starting within
a small boat basin on the southeast shore of Coconut Island,
extending out of the basin through a narrow cut and to the study
area, where nine East-West transects (labeled T1 through T9
from South to North) were conducted over the coconut patch
reef before returning to the boat basin (Figure 3). The average
speed of the ASV was approximately 1.8 km h−1, yielding a set of
optical and acoustical measurements every 0.5m.

Water column properties within 2m of the surface, including
spectral absorption (apg,λ m−1), attenuation (cpg,λ m−1), and
backscatter (bbp,λ m−1) due to particulate and dissolved
impurities, were collected over the coconut patch reef from a
small boat several days after the ASV survey, on 17 February
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FIGURE 2 | A survey of the coconut patch reef was conducted on 12 February 2017 using an instrumented, autonomous kayak capable of navigating pre-planned

routes and collecting simultaneous optical and acoustical observations of benthic features in high spatial resolution.

FIGURE 3 | The ASV survey route (black line) on 12 February 2017, included

nine East-West transects over the coconut patch reef labeled T1 through T9

from South to North.

2017, using equipment and methods reported by Dierssen and
Russell (2017). In addition, fluorometric chlorophyll, (Fchl mg
m−3), water temperature t◦C, and salinity s psu were collected on

16 and 18 February using a pre-calibrated, self-logging YSI EXO2
water quality sonde deployed by hand from a second, manned
kayak.

A hyperspectral image of the study site was collected on
3 March 2017 using the Jet Propulsion Laboratory Airborne
Visible Infrared Imaging Spectrometer-Classic sensor (AVIRIS)
deployed on the NASA ER-2 aircraft at an altitude of
approximately 19.8 km (Figure 4). AVIRIS measures radiance
in 224 contiguous bands between 400 nm and 2,500 nm with
a nominal spectral channel full-width at half maximum and
sampling interval of 10 nm (Vane et al., 1993). At the deployed
altitude, the ground sampling distance was approximately 7m.

The overflight occurred at 19:00 GMT, 09:00 local time, with the
sky partly cloudy, but clear over most of Kane’ohe Bay, including
the coconut patch reef.

Theoretical Considerations and
Computations
In Situ Observations
Radiometer buoy data were used to compute in-water radiance
reflectance at 0.24m depth as

rrs,λ(0.24) = Lu,λ(0.24)/Ed,λ(0.24) . (1)

In order to perform this computation, the downwelling
irradiance at 0.24m must be computed from the measured
downwelling irradiance impinging upon the surface and
knowledge of the optical properties of the water;

Ed,λ(0.24) = nw (1−Rd) Ed,λ(0+) e−0.24 Kd,λ , (2)
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FIGURE 4 | (A) Hyperspectral image of Kane’ohe Bay collected on 3 March 2017 at 19:00 GMT, 09:00 local time, using the Jet Propulsion Laboratory Airborne

Visible Near Infrared Imaging Spectrometer - Classic (AVIRIS) deployed on the NASA ER-2 aircraft at an altitude of approximately 19.8 km. The ground sampling

distance was approximately 7m. (B) Reef areas examined for spectral reflectance. (C) The coconut patch reef, where ASV surveys were conducted.

where nw is the real portion of the refractive index of
water relative to air (≈1.34), Rd is the surface reflectance of
downwelling irradiance illuminating the surface (≈0.02), and
Kd,λ is the diffuse attenuation of downwelling irradiance within
the top 0.24m of the water column. The exponential term
in Equation (2) defines how much downwelling irradiance is
transmitted to the depth of the down-looking radiometer and
Kd,λ is a function of the absorbing and scattering properties of the
water, including particulate and dissolved matter (Mobley, 1994
and references cited therein). Kirk (1984) reported an empirical
relationship for Kd,λ based on numerical simulations of radiative
transfer;

Kd,λ ≈

aλ

µd

[

1+ (0.425 µd − 0.19)
bλ

aλ

]
1
2

, (3)

where aλ (= aw,λ + apg,λ) is the total absorption coefficient
of the water mixture and bλ (= bw,λ + cpg,λ − apg,λ) is the
total scattering coefficient of the water mixture. The subscript
w refers to pure water, the properties of which are considered
constant (Smith and Baker, 1981; Pope and Fry, 1997), and µd

is the average cosine of the in-water, near-surface, down-welling
radiance distribution. In relatively clear water, as is the case in
Kane’ohe Bay, µd may be approximated as the cosine of the
in-water solar zenith angle θs, i.e., after refraction at the water
surface; µd = cos

[

sin−1
(sin θs/nw)

]

.
Following shallow water radiative transfer theory and

modeling reported by Philpot (1987, 1989) and Maritorena et al.
(1994), the in-water reflectance at 0.24m depth may be expressed
as

rrs,λ(0.24) = rrs,λ,∞(0.24)

+[
ρb,λ

π

− rrs,λ,∞(0.24)]e−(Kd,λ+Ku,λ) (D−0.24), (4)

where the subscript ∞ refers to the reflectance of an optically
deep water column and ρb,λ is the irradiance reflectance of the
ocean floor. The diffuse attenuation for upwelling irradiance Ku,λ

was computed using Eqn. (3) and replacing µd with uu = 0.7,
the approximate average cosine for upward propagating light. As
D ⇒ ∞, rrs,λ(0.24) approaches the optically deep solution, while
as D ⇒ 0.24, the depth of the in-water radiometer, rrs,λ(0.24)
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approaches
ρb
π
, the radiance reflectance of the bottom substrate.

Rearranging Equation (4) for benthic reflectance yields

ρb,λ = π

[

(

rrs,λ(0.24)− rrs,λ,∞(0.24)
)

e(Kd,λ+Ku,λ) (D−0.24)

+ rrs,λ,∞(0.24)
]

. (5)

The unknown quantity in Equations (4, 5) is the reflectance of
optically deep water. While the maximum depth encountered
within the study site was approximately 14m, this may
not be deep enough to provide an accurate deep-water
signal, especially in the green portion of the spectrum where
transmittance is expected to be greatest and where the bottom
substrate, uncolonized calcareous sediment, can be highly
reflective. Gordon et al. (1988) provides an accurate empirical

representation of rrs,λ,∞ as a function of X = bb
(

a+ bb
)

−1
,

where bb (= bbp + bbw) is the total backscatter coefficient for the
water mixture;

rrs,λ,∞ =

∑2

i=1
giX

i (6)

and gi are coefficients empirically derived from a Monte Carlo
radiative transfer model. Lee et al. (1999) provided updated
values based on a large number of simulations using the
community model Hydrolight (Mobley and Sundman, 2012); g1
= 0.084 and g2 = 0.125. Thus, benthic irradiance reflectance was
computed from measured above water irradiance illumination,
in-water, upwelling radiance, water depth, and estimated
values of diffuse attenuation and deep-water reflectance from
independent measurements of water optical properties.

In-water reflectance of optically shallow water was computed
using ρb,λ, rrs,λ,∞, and D to constrain Equation (5);

rrs,λ = rrs,λ,∞ + [
ρb,λ

π

− rrs,λ,∞]e−(Kd,λ+Ku,λ) (D). (7)

The implicit assumption in Equation (7) is that the deep-water
reflectance measured at 0.24m below the surface is equal to
the reflectance measured immediately below the surface (zero
depth). While reflectance is a function of radiance distribution
and bothµd and uu are known to change with depth independent
of the water optical properties (Mobley, 1994 and references
cited), changes between the surface and 0.24m in the absence of
strong bottom effects are expected to be negligible.

Finally, following Lee et al. (1999), above-water remote
sensing reflectance, Rrs = Lu(0+)/Ed(0+), was computed from
the in-water reflectance as

Rrs,λ =

0.52 rrs,λ

1− 1.7 rrs,λ
. (8)

Remote Sensing Observations
In order to compare the remotely sensed observations with the
ASV observations, AVIRIS measurements of at-sensor radiance,
Ls,λ, must be corrected for atmospheric effects and the resulting
radiances converted to remote sensing reflectance, [Rrs,λ]AVIRIS.
Since no field measurements were collected at the time of the
AVIRIS overpass, the atmospheric correction procedure must be

completely image-based. Following procedures summarized by
Chavez (1996),

[Rrs,λ]AVIRIS =
Ls,λ − La,λ

τ Eo,λ(0+) cos(θs)
, (9)

where τ is the atmospheric transmittance in the direction of the
sensor, Eo,λ(0+) is the downwelling solar irradiance at the water
surface on a plane perpendicular to the solar direction, and θs

is the solar zenith angle at the location and time of imaging.
Chavez estimated that under a clear atmosphere, τ ≈ 0.81 for
Landsat TM Bands 1 through 4, which span the spectral range
450–900 nm. La,λ is approximated with the at-sensor radiance
representing dark pixels within the image for which surface
reflectance is nearly zero; [Ls,λ]dark ≈ La,λ. Substituting the
estimates for τ and La,λ into Equation (9) yields.

[Rrs,λ]AVIRIS =
Ls,λ − [La,λ]dark

0.8 Eo,λ(0+) cos(θs)
. (10)

For the AVIRIS image of Kane’ohe Bay, a dark shadow cast
upon a deep water area by a cloud, located slightly south of the
coconut patch reef, was used to compute [Ls,λ]dark. Note that this
likely yielded a slight over-adjustment as the shadowed water-
leaving radiance, while quite small, is not zero. Finally, AVIRIS
reflectance was corrected for sunglint, i.e., light reflected from the
water surface, using methods reported by Hedley et al. (2005).

Equation (10) has been shown to work reasonably well over
land where targets may be treated as Lambertian reflectors.
However, over water where Rrs,λ is affected by reflectance and
transmittance at the air/water interface, the amount of light
entering the water and, thus, available to be reflected must also
be taken into consideration. For θs < 30◦, surface reflectance, ρs,
≈ 0.02 and about 98% of the energy enters the water. However, as
θs increases, so does ρs according to the equations of Fresnel (see
(Mobley, 1994) and citations referenced). Replacing Eo,λ(0+) in
Equation (10) with (1− ρs) Eo,λ(0+) yields.

[Rrs,λ]AVIRIS =
Ls,λ − [La,λ]dark

0.8 (1− ρs) Eo,λ(0+) cos(θs)
. (11)

At the time of the AVIRIS overflight, θs ≈ 61.4◦ and the
corresponding Fresnel reflectance of unpolarized light, assuming
the water surface to be flat, was ρs ≈ 0.067. Equation (11) was
used to compute reflectance for all cloud-free water pixels within
the AVIRIS image.

RESULTS

The ASV survey of coconut reef was conducted under a clear to
partly cloudy sky and low wind. The sea surface varied between
smooth and slightly choppy. Acoustical measurements indicated
that the reef rose up abruptly from the surrounding bay floor
from a depth of approximately 14m to an average depth on the
reef plateau of 3.4 ± 0.57m. (The confidence range, here and
throughout the remainder of the paper, is expressed as plus or
minus one standard deviation.) The side-scan sonar recorded
higher acoustic backscatter in the central portion of the reef (i.e.,
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lighter tones in the sonar image) and lower returns (i.e., darker
tones in the sonar image) in areas mostly around the periphery
(Figure 5). Imagery from the GP1 camera revealed benthic
features down to approximatelyD= 5m. Visual inspection of the
imagery indicated that the higher acoustical returns represented
uncolonized sediment while the lower returns represented areas
colonized by coral. Coral areas tended to be shallower than
adjacent areas of uncolonized sediment as a result of the coral
structures having been built up over time by reef-forming
organisms.

Water Properties
In situ measurements made several days after the ASV survey
indicated stable, near-surface temperatures, ranging between
23.5◦ and 24.6◦C, and salinities, ranging between 33.45 and
33.6 psu. Total absorption due to impurities increased toward
the blue portion of the spectrum, e.g., apg,414 = 0.186 m−1,
and indicated the presence of small quantities of colored
dissolved organic matter (CDOM). Fluorometric chlorophyll
concentrations ranged from Fchl = 0.2 to Fchl = 0.8 mg m−3.
Light scatter due to suspended particulate matter was relative
low, e.g., bp,400 = 0.82 m−1, indicating relatively clear water, and
decreased non-linearly with increasing wavelength, as is typical of

coastal marine particles (Babin et al., 2003). Likewise, backscatter
measured at three discrete wavelengths decreased with increasing
wavelength; bbp,470 = 0.0106 ± 0.0007 m−1, bbp,532 = 0.0096 ±

0.0005 m−1, and bbp,660 = 0.0065 ± 0.0004 m−1. The average

fractional backscatter, ˜bb =

bb
b
, at each wavelength was ˜bb,470 =

0.0149, ˜bb,532 = 0.0141, and ˜bb,660 = 0.0117.
Equation (3) was used to compute near-surface Kd for

optically deep water using total absorption and light scatter
computed from in situmeasurements of apg and bp = cpg − apg ,
literature values for pure water (Smith and Baker, 1981; Pope and
Fry, 1997), and the average solar zenith angle during the February
12 survey, θs = 54.6◦ (Figure 6). A slight rise in Kd within the
blue portion of the spectrum was likely due to the combined
effects of absorption by small quantities of CDOM while the
shape of the spectrum within the red portion was attributed
to absorption by pure water. Likewise, in-water optically deep

reflectance was computed using Equation (6), where bb,λ =
˜bbbλ

and ˜bb was the spectrally averaged fraction of light scatter in
the backward direction (≈0.0136). Equation (8) was used to
compute Rrs,λ,∞. Similar to the Kd spectrum, the spectral shape
of Rrs,λ,∞ indicated that the water column was relatively clear
(low reflectance) but, contained small quantities of CDOM (e.g.,

FIGURE 5 | Acoustical data from an autonomous survey was used to map bathymetry within and around the coconut patch reef and identify areas colonized by coral

(dark, heterogeneous tones in acoustical backscatter) and uncolonized sediment (lighter, more homogeneous tones). Visual inspection of imagery from a

down-looking, in-water camera (GP1) was used to validate the interpretation of the acoustical backscatter signals.
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FIGURE 6 | Remote sensing reflectance Rrs,∞ str−1 (dashed curve) and diffuse attenuation of downwelling irradiance Kd,λ m−1 (solid curve) computed from

near-surface, in situ optical measurements collected over the coconut patch reef.

slightly depressed reflectance at wavelengths < 500 nm), and
low concentrations of suspended particles (e.g., slightly elevated
reflectance at wavelengths > 500 nm).

ASV Survey
In-Water Reflectance
In-water reflectance was highly variable as the radiometer passed
over shallow areas of the coconut patch reef due to reflectance
from benthic features (e.g., rrs,550, shown in Figure 7A).

In comparison, adjacent deep-water areas, D ≈ 14m, were
consistently darker than the shallow reef features and much less
variable.

Along the course of the ASV survey, the in situ radiometer
orientation changed with the tow direction (Figure 7B) and
variability was attributed to how the radiometer interacted with
the local wave field. Along eastward transects (T2, T4, T6, and
T8), the radiometer deviated an average of 3.6◦ from a vertical
orientation and the maximum deviation at times exceeded 10◦.
When towed in a westward direction (T1, T3, T5, T7, and T9),
the average radiometer deviation from a vertical orientation
increased to 6.9◦ and the maximum deviation exceeded 20◦.
In order to assess the impact of sensor orientation on the
computed reflectance, subsets of the data were examined where
tow direction resulted in large changes in radiometer orientation
and, at the same time, the effects of bottom reflectance were
small and surface illumination was relatively stable. This situation
occurred within the time interval between 12.95 and 13.14 h
(shaded area within the right hand side of Figure 7B) when the
radiometer was over deep water. The sky was fairly overcast,

but illumination was reasonably stable. Radiometer orientation
changed on average more than 10◦ as the ASV turned from the
eastward T8 track to the westward T9 track and then back toward
the boat basin. At the same time, variability in rrs,550(0.24) was
small, with the exception of a slight increase at 13.05 h when
the radiometer passed over the northern edge of the reef and D
decreased to 5m. Thus, within the observed range of radiometer
motion, radiometer orientation appeared to have a minor impact
on computed reflectance relative to the dominant environmental
factors, i.e., water depth and bottom type.

In addition to radiometer orientation, illumination due to
clouds changed significantly along the course of the survey
(Figure 7C). Downwelling irradiance, e.g., Ed,550, varied by a
factor of four, ranging from approximately 0.5W m−2 nm−1

under clouds to >2W m−2 nm−1 under direct, un-obstructed
sunlight. At the same time, as in the case of the radiometer
orientation, the response of rrs,550(0.24) was quite small, as
illustrated by the observations within the time interval between
11.96 and 12.12 h (i.e., the shaded area on the left hand side of
Figure 7C).

Benthic Cover
The in-water, down-looking imagery (GP1 data) effectively
documented the condition of the shallow bottom where D <

5m (Figure 8). Visual inspection of the imagery indicated that,
within the boat basin, the bottom was dominated by turf algae,
mixed debris of terrigenous origin, and the frequent presence
of benthic fauna, such as the sea cucumber O. spectabilis. The
floor of the coconut patch reef, on the other hand, was either
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FIGURE 7 | Radiometer data collected along the entire ASV survey course. The boat basin and transects over the coconut patch reef are indicated at the top of the

figure and shaded areas indicate portions of the data where variability in cloud effects and radiometer orientation were apparent. (A) In-water reflectance (solid curve)

and water bottom depth (dotted curve) along the ASV survey course. (B) Deviation of the radiometer from vertical. (C) Downwelling irradiance, λ = 550 nm, measured

above the water surface (solid curve) and in-water, upwelling radiance measured at a depth of 0.24m.

comprised of a mixed community of coral, dominated by Porites,
or uncolonized sediment and silt.

Benthic Reflectance
Benthic reflectance, ρb,λ, was computed according to Equation
(5) for all areas where D ≤ 5m, the maximum depth at which
benthic features could be identified within the GP1 imagery.
In order to assess variability in ρb,λ as a function of bottom
type, spectra representing coral and uncolonized sediment were
selected based on visual inspection of the GP1 imagery. Given
the uncertainty in the location of the radiometer sampling within
the GP1 FOV (the approximate size of the radiometer FOV is
shown as a circle in center of the upper right panel of Figure 8),
radiometer data were selected for which the entire corresponding
GP1 frame appeared to represent the bottom type of interest,
i.e., the FOV was either all coral or all uncolonized sediment.
Data representing images with a mixture of bottom type were
not included in the analysis. Benthic reflectance representing the
two bottom types indicated two distinct reflectance spectra with
little overlap throughout the visible and near infrared spectrum

(Figure 9). The average water depth for coral was D = 3.0 ±

0.5m, and for uncolonized sediment the average was D = 3.9 ±
0.6m.

The coral reflectance spectra were similar to the lower range

in reflectance of brown hermatypic coral and the uncolonized

sediment spectra were similar to terrigenous mud and lower
than the reflectance typical of calcareous sand (Hochberg et al.,

2003). The low reflectance of the uncolonized sediment was in
agreement with previous descriptions of bottom sediments in
Kane’ohe Bay as coral ruble, sand, and “gray coral mud” (Bahr
et al., 2015 and references cited therein). While the spectra were
parsed based upon the apparent dominate bottom type within
the GP1 images, it was likely that each spectrum represents
a combination of bottom types. For example, gray colored
sediment was often apparent within the GP1 imagery covering
small spaces between coral features. Furthermore, the benthic
environment had a heterogeneous appearance, such that the
likelihood of obtaining a pure spectrum for either bottom type
decreased with increasing benthic area viewed by the radiometer.
Given the field of view of the down-looking radiometer (8.5◦), a
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FIGURE 8 | In-water, down-looking imagery (GP1 camera) of selected benthic conditions along the ASV survey track over the coconut patch reef. The approximate

field of view of the in-water, down-looking radiometer is shown as a circle centered on the top right plate representing uncolonized sediment at a depth of 3.5m.

measurement 2m from the bottom would integrate ρb,λ across
an area of 0.08 m2 (horizontal length scale = 0.31m), while a
measurement made at an altitude of 4m from the bottom would
integrate over 0.31 m2 (horizontal length scale= 0.63m).

Similar to published in situ measurements, ρb,λ increased
rapidly for both uncolonized sediment and coral within the red
portion of the spectrum, λ > 680 nm. When live vegetative
biomass is present, the absorption of light by chlorophyll leads
to a depression in reflectance within a narrow spectral region
centered at roughly 675 nm, resulting in an abrupt increase in
reflectance at longer wavelengths. This feature, often referred
to as the red edge (e.g., Gates et al., 1965), is well documented
for healthy terrestrial plants and aquatic grasses (Felella and
Penuelas, 1994; Fyfe, 2003; Zimmerman, 2003) and it is apparent
in published measurements of ρb,λ for both live coral and, to a
lesser extent, uncolonized sediment (Hochberg et al., 2003).

In Situ Remote Sensing Reflectance
Remote sensing reflectance Rrs,λ was computed for each
observation along the ASV track using Equation (8), where
D < 5m. The results represented the combined effects of ρb,λ

and bottom depth, assuming stable water optical properties.
Parsing the data into primary bottom types using the GP1
imagery indicated that Rrs,λ representing coral, turf algae, and
uncolonized sediment remained distinct within the depth range
observed (2m≤D≤ 5m) and that each was distinguishable from
the adjacent deep water signature (Figure 10).

The reflectance spectra were slightly depressed in the blue
portion of the spectrum, λ < 550 nm, typical of absorption by
CDOM. Variability around the mean of each class represented
the combined effects of ρb,λ and bottom depth, assuming that
water optical properties were stable and that the influences
of sensor orientation and illumination were small. Areas
of uncolonized sediment were quite bright relative to the
coral, turf algae, and deep-water reflectance, where λ ≤

600 nm. Reflectance from coral and algae were generally
greater than the deep-water signals, where λ ≤ 550 nm. While
there were areas within the spectra where bottom type was
indistinguishable, there were also areas where each bottom type
was unique. All bottom types, for example, were similar in
reflectance at 600 nm, but they exhibited little overlap at shorter
wavelengths.
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AVIRIS Remote Sensing Reflectance
AVIRIS remote sensing reflectance [Rrs,λ]AVIRIS was computed
using Equation (11). Downwelling solar irradiance measured
during the ASV survey representing clear sky conditions was
used to estimate downwelling irradiance with the sun at

nadir; Eo,λ(0+) = [Ed,λ(0+)]ASV
[

cos(θs,ASV )
]

−1
, where θs,ASV

FIGURE 9 | Mean benthic reflectance of coral (solid curve) and uncolonized

sediment (dotted curve) within the coconut patch reef computed using

Equation (5), where D < 5m. Data were parsed based on manual

interpretation of in-water imagery (GP1 camera). Vertical bars indicated ±1

standard deviation relative to the mean.

FIGURE 10 | Mean remote sensing reflectance of coral (solid black curve) and

uncolonized sediment (dotted black curve) on the coconut patch reef where D

< 5m, turf algae within the boat basin on Coconut Island, D < 2m (dashed

black curve), and over deep water, D > 14m (solid gray curve), adjacent to the

patch reef. Data representing shallow water were parsed on bottom type

gleaned from manual interpretation of in-water imagery (GP1 camera). Vertical

bars indicated ±1 standard deviation relative to the mean.

is the solar zenith angle at the time of the kayak survey.
[Rrs,λ]AVIRIS was in agreement with in situ determinations of
remote sensing reflectance, [Rrs,λ]ASV , representing coral and
uncolonized sediment within the coconut patch reef and adjacent
deep water (Figure 11). The magnitude of the AVIRIS reflectance
tended to be greater than the in situ determinations, especially in
the blue portion of the spectrum and, for the adjacent deep water,
at all visible wavelengths. This was not surprising as Kane’ohe
Bay is influenced by runoff from the adjacent land areas during
rain events that transports particulate and dissolved matter into
the bay. Light scatter from suspended particles impacted all
wavelengths while the effects of impurity absorption were mostly
constrained to wavelengths <̃550 nm. However, for the shallow
coral and sand areas, where benthic reflectance dominated the
signal, the in situ and remotely sensed measurements for λ >

600 nm were similar in both magnitude and spectral shape.
The red edge spectral feature was evident in both the coral and

sediment reflectance along the ASV survey route as an increase
in red and near-infrared reflectance (Figures 10, 11). The feature
was also apparent, but to a lesser extent, within the surrounding
deep water area and was likely the result of phytoplankton
absorption. An examination of the AVIRIS reflectance from
selected reef features within the northern portion of Kane’ohe
Bay (locations 1 through 5 indicated in Figure 4) revealed
red edge features associated with coral that were far more
pronounced than in the coconut patch reef (Figure 12). The
patch reefs in the northern bay are very shallow, occasionally
piercing the water surface during low tide, and the coral cover
tends to be greater than on the coconut patch reef due to the
absence of dredging. Also, the water in the northern portion

FIGURE 11 | Comparison of remote sensing reflectance derived from in situ

measurements of the coconut patch reef collected on 12 February 2017 (black

curves) and high-altitude AVIRIS imagery collected on 3 March 2017 (gray

curves) representing coral (solid curves), uncolonized sediment (dashed

curves) and deep water adjacent to the reef (dotted curves).
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FIGURE 12 | Reflectance from selected shallow reef features in northern

Kane’ohe Bay derived from AVIRIS imagery, collected on 3 March 2017; black

curves, labeled 1 through 4 (see labeled areas in Figure 4B), represent patch

reefs colonized by coral and algae and the gray curve, labeled 5, represents an

area that appears to be uncolonized sediment.

of the bay tends to be clearer due to more efficient flushing by
adjacent Pacific Ocean water. Thus, the larger red edge signals
in the northern bay were attributed to greater coral biomass and
less water attenuation of the benthic signal by the relatively clear,
shallow water column.

Red Edge Height
Given that the waters in the Kane’ohe Bay, and on coral reefs
in general, are typically very low in chlorophyll concentration,
the red edge feature can potentially be used as a proxy for
shallow, benthic vegetative biomass. In order to examine the red
edge feature further, the red edge height, REHλ, was defined as
the difference between the measured reflectance and a baseline
reflectance, computed as a cord connecting the endpoints of the
spectral region of interest; Rrs,λ1 at the shorter wavelength end
and Rrs,λ2 at the longer wavelength end;

REHλ = Rrs,λ − R′rs,λ, (12)

where

R′rs,λ =

Rrs,λ2 − Rrs,λ1

λ2 − λ1
· (λ − λ1)+ Rrs,λ1. (13)

Based upon inspection of the in situ and AVIRIS reflectance data,
the lower and upper wavelengths bounds of the red edge feature
were defined as λ1 = 675 nm and λ2 = 740 nm, respectively.
Positive values of REHλ were expected to indicate the presence
of live, photosynthetic biomass.

Computations of REHλ with in situ measurements over the
coconut patch reef representing both coral and uncolonized
sediment was positive at shorter wavelengths, λ < 710 nm,
and negative at longer wavelengths (Figure 13). The curves

representing coral decreased in amplitude with increasing water
depth and appeared to converge upon the deep-water signal. This
result was to be expected since deeper water, i.e., a longer optical
path length, will result in greater attenuation of the benthic
signal at longer wavelengths. Furthermore, the wavelength of
maximum REHλ representing coral decreased with increasing
water depth from approximately 690 nm, where 2m ≤ D ≤ 3m,
to approximately 688 nm, where 3m ≤ D ≤ 4m. The peak
REHλ wavelength for uncolonized sediment, where 3.5m ≤

D ≤ 4.5m, was approximately 687 nm. REHλ computed from
AVIRIS data collected over the coconut patch reef yielded results
that were similar to both coral and uncolonized sediment, where
D > 3m. AVIRIS data representing shallow patch reefs in the
northern portion of the bay yielded REHλ values that were as
much as 2 orders of magnitude greater than the coconut patch
reef and values were generally positive for all wavelengths within
the computation range. AVIRIS data representing adjacent bright
areas within the image that appeared to be shallow uncolonized
sediment yielded REHλ values that were similar to the in situ
results for uncolonized sediment on the coconut patch reef.
Furthermore, the maximum REHλ values for the northern bay
patch reefs were shifted to longer wavelengths relative to the
coconut patch reef results, 702 nm ≤ λ ≤ 708 nm, suggesting
that the northern patch reefs were shallower and perhaps more
densely covered with coral.

As an operational means of detecting and mapping the
distribution of live vegetation biomass associated with coral, a
REHλ-based algorithm was defined as

REHN =

REH705

R′rs,705
, (14)

where the magnitude of the red edge height at 705 nm was
normalized to the computed base reflectance at that wavelength.
This approach was necessary to reduce the effects of the
magnitude of the baseline reflectance, e.g., high reflectance over
areas of very shallow, bright sand, such as the Ahu O Laka
barrier island. Applying Equation (14) to the in situ data revealed
areas of coral cover along each transect across the coconut patch
reef (Figure 14). For D < 5m, REHN > 0 and positive values
tended to occur in shallower areas, where the GP1 imagery and
sonar data indicated the presence of coral, i.e., dark acoustical
returns due to increased benthic roughness associated with
coral cover (Figure 5). The maximum depth at which positive
REHN values were detected was between 3 and 4m. Parsing
the data between coral-dominated and sediment-dominated
observations, [REHN]CORAL = 0.06 ± 0.13 and [REHN]SAND
= −0.13 ± 0.05. Where D ≤ 3m, [REHN]CORAL = 0.12 ±

0.33.
The REHλ signal was used to estimate coral cover as the

fraction of observations exceeding a defined threshold value.
Defining the threshold as [REHN]CORAL ≥ 0.057 (the mean
[REHN]CORAL minus one standard deviation) and constraining
the analysis to in situ measurements over the coconut patch reef
where D ≤ 5m, the percent coral cover along the combined
nine ASV transects was 25.2% (N = 2,039). Hunter and Evans
(1995) reported on decadal changes in coral cover at selected
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FIGURE 13 | Red edge height computed for data collected during the in situ survey of the coconut patch reef on 12 February 201 (left) and selected patch reefs in

the northern Kane’ohe Bay imaged by AVIRIS on 3 March 2017 (right; locations indicated in Figure 4B). For comparison, the AVIRIS REHλ signal is also plotted with

the ASV data (dash-dot curve in both panels).

sites within Kane’ohe Bay, including the coconut patch reef,
in response to sewage exposure using traditional diver-based
methods. The coconut patch reef was found to have increased in
coral coverage, from 1.2% in 1971, when the bay was impacted
by sewage outflow, to 33.3% in 1990, after the sewage outflow
was diverted to deeper waters outside of the bay. In addition,
the percent coral cover generally increased with decreasing depth
to a maximum cover of >40% where D = 2m. From the ASV
survey of the coconut patch reef, the percent coral cover was
also found to increase as depth decreased; coral cover was 28.4%
(N = 1,800) where D ≤ 4m and 63.4% (N = 688) where
D ≤ 3m.

As a further test of the utility of the red edge algorithm,
Equation (14) was applied to the AVIRIS image of the entire
Kane’ohe Bay (Figure 15). The results indicated areas of high
vegetative biomass that were in agreement with the reported
distribution of near-surface coral cover (e.g., Bahr et al., 2015
and references cited therein). Highest REHN values were found
fringing many of the shallow banks bordering the coastline,
including Coconut Island, and over many of the small patch reefs
in the northern bay. Shallow, bright areas that were relatively
barren of healthy coral were generally characterized as lowREHN .
While the central portions of the Ahu O Laka barrier island
indicated relatively low REHN values, the seaward side of the
island, where the bottom gradually falls off to the deeper waters

of the adjacent Pacific Ocean, revealed a broad area of moderate
REHN .

Contrary to the patch reefs in the northern portion of the
bay, the coconut patch reef did not stand out within the AVIRIS
imagery as higher REHN values relative to the surrounding
deeper water, even though data from the ASV survey indicated
slightly enhanced red edge features detectable at depths of
between 3 and 4m, (Figure 11). This result may have been due
to the observed heterogeneity of benthic features across the
coconut patch reef. Coral cover and vibrancy in dredged areas
of the southern portion of the bay had not yet recovered to pre-
dredging conditions (Jokiel, 1991). Thus, less coral cover, deeper
average coral depth, and less clear water resulted in more subtle
differences between the remotely sensed signals from coral and
the adjacent deep water. In addition, the in situ measurements
represent reflectance averaged across a much smaller area (0.08–
0.31 m2) compared with a typical AVIRIS pixel (49 m2). The
averaging of coral and sediment signals across an AVIRIS pixel
would have tended to decrease REHN . Thus, the useful depth of
remotely sensed REHN was somewhat less than 3m within the
southern portion of the bay. The depth limit for detecting REHN

from healthy coral was expected to be deeper within the northern
portion of the bay where coral cover was greater, the water was
more transparent due to flushing with adjacent ocean waters, and
the reefs had not been impacted by dredging activities.
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FIGURE 14 | Red edge height (REHλ, solid curves) and depth (dotted curves) representing observations collected by the ASV along transects across the coconut

patch reef.
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FIGURE 15 | REHN derived from AVIRIS imagery of Kane’ohe Bay collected on 3 March 2017. Land, clouds, and values of REHN < 0 are displayed as black.

(A) Shallow patch reefs in the northern bay yielded some of the largest signals. (B) Narrow fringing reefs along the coastline are well resolved. (C) REHN from the area

of the coconut patch reef, where D > 3m, was not significantly different than the surrounding deep water.

DISCUSSION

The ASV was shown to rapidly survey physical and optical
properties of the coconut patch reef in high spatial resolution.
Simultaneous measurements of bathymetry and reflectance from
acoustical sensors were in agreement with optical signals and
in-water photographic evidence of bottom features associated
with coral and uncolonized sediment. In situ measurements of
remote sensing reflectance were shown to reasonably match
surface reflectance derived from atmospherically corrected
measurements from an imaging spectrometer deployed at high
altitude. In situ data, collected over the course of a 2 h
autonomous survey, comprised over 10,000 sets of simultaneous
optical and acoustical observations representing a diverse
combination of bottom type and cover, water depth, sea state,
and illumination. Highly diverse data sets, such as this, should
permit more scientific and technical questions to be addressed
than would be possible with traditionally sparse and less diverse
data sets collected manually by divers. Additionally, the sampling
error associated with radiometer orientation and cloud cover was
determined to be small and to have no discernable impact on
in situ remote sensing reflectance. Consequently, these results
suggested that valid field surveys could be conducted under more
diverse environmental conditions, including those that would
confound high-altitude aircraft or satellite-based remote sensing

operations. The insensitivity of remote sensing reflectance to
cloud cover also suggested that under-cloud remote sensing, e.g.,
the application of drone-based sensors, is possible with minimal
impact on algorithm performance.

Autonomous observations of high resolution spectral and
spatial measurements of the visible and near infrared spectrum
with radiometers positioned above and below the water surface
provided detailed information regarding a large range in reef
environmental conditions and permitted the investigation of a
potential remote sensing algorithm and the associated limits
of application. The red edge signal, characteristic of healthy
vegetation, was shown to reveal the presence of live coral and turf
algae and provided a means of distinguishing between benthic
vegetation and uncolonized sediments within shallow water.
While the REHN was shown to decrease with depth due to
attenuation of the light reflected from benthic features, the signal
was detectable over the coconut patch reef at depths of between
3m and 4musing in situ observations. However, theREHN signal
over the coconut patch reef computed from AVIRIS imagery,
while similar to the in situ determinations, were not significantly
different from the surrounding deep water signal, and suggested
that remote determinations may be limited to areas where D
<3m, at least in the southern portions of the bay. The REHN

algorithm applied to the AVIRIS image of the entire Kane’ohe
Bay revealed shallow areas known to contain moderate to dense
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coral cover. These results, including the negative results over the
coconut patch reef, were in general agreement with a previous
application of AVIRIS imagery to map coral and algae within
Kane’ohe Bay using spectral matching techniques (Goodman and
Ustin, 2007).

The detailed hyperspectral signal was necessary to optimize
the wavelength range for the REHN algorithm, but once
determined, only three wavelengths were required for an effective
algorithm; two wavelengths bracketing the red edge signal, e.g.,
675 and 740 nm, and one wavelength representing the REH peak,
e.g., 705 nm. Any remote sensor meeting these requirements
should be able to detect the red edge signal from shallow
coral environments, assuming that the spatial resolution is
appropriate. The Landsat series of satellites, for example, with
30m spatial resolution, have been used to map coral reefs (e.g.,
Palandro et al., 2008) and the most recent Landsat multispectral
sensor to date, the Operational Land Imager (OLI) onboard
Landsat-8, has five bands spread across the visible and near-
infrared spectrum. Within the red edge region, band 4 (centered
at 655 nm, 1λ = 50 nm) and band 5 (centered at 865 nm,
1λ = 40 nm) could potentially serve to bracket the red edge
region, but there is no appropriate intermediate band coinciding
with the peak REHλ wavelengths. The Multispectral Imager
(MSI) onboard the Sentinel-2 satellite, on the other hand, has
a higher spatial resolution, between 10 and 20m, compared to
OLI data, and it includes several bands that could satisfy an
REHN algorithm; band 4 (665 nm,1λ= 10 nm), band 5 (705 nm,
1λ = 10 nm), and band 6 (740 nm, 1λ = 10 nm). In fact, MSI
bands 5 and 6 were selected specifically for detecting red edge
signals from terrestrial vegetation. However, spatial convolution
of the benthic signal across a 10m ground sampling distance may
reduce the maximum depth of red edge detection where coral
coverage is sparse, as was the case with the AVIRIS data (with 7m
spatial resolution) collected over the coconut patch reef. Thus, the
optimum spatial resolution for coral reef remote sensing remains
an open question.

However, in order to measure the peak REH wavelength,
which is expected to be sensitive to the depth of the vegetative
material, the entire red and near-infrared portion of the spectrum
must be measured in high spectral resolution. To date, there are
no operational satellite systems capable of providing such data.

One limitation of the REHN algorithm was that it could not
alone distinguish between the type of vegetation responsible for
the signal. Coral, turf algae, sea grass, and any floating vegetation
would all result in similar signals. Therefore, application of the
REHN algorithm would require a level of a priori knowledge
about the study site that may not exist for remote locations.
While this can be problematic for remote observations, an in situ
autonomous system that includes in-water imagery, such as the
system developed for this project, provides a degree of benthic
classification capability that can be used to parse the data and
provide class-specific statistics.

We have illustrated the utility of a low-cost, commercially
available, coastal kayak, modified for autonomous operations and
instrumented with optical and acoustical sensors to survey coral
reefs in support of remote sensing operations. We examined the
utility of the red edge height as an indicator of live coral and algae
and, based on the results, constructed a remote sensing algorithm

to map corals in shallow water within Kane’ohe Bay. A more
complete examination of the red edge signal may potentially
yield information regarding benthic cover and biomass, e.g., as
a function of REHλ amplitude, and water depth derived from the
peak REHλ wavelength. While these results are encouraging, the
details of REHλ response to physical conditions (e.g., water depth
and optical properties) and vegetation type (e.g., coral and algae
species), cover, and health (e.g., the effects of coral bleaching)
remain to be elucidated.
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In this study, we examine the capabilities of the Landsat 8 Operational Land

Imager (OLI), Thermal Infrared Sensor (TIRS), and Aqua Moderate resolution Imaging

Spectroradiometer (MODIS) for monitoring the environmental impact of the 2015

Hyperion Treatment Plant (HTP) wastewater diversion in Santa Monica Bay, California.

From 21 September−2 November 2015, the HTP discharged ∼39×103 m3 h−1 of

treated wastewater into Santa Monica Bay through their emergency 1-mile outfall

pipe. Multi-sensor satellite remote sensing was employed to determine the biophysical

impact of discharged wastewater in the shallow nearshore environment. Landsat 8

TIRS observed decreased sea surface temperatures (SST) associated with the surfacing

wastewater plume. Chlorophyll-a (chl-a) concentrations derived from Landsat 8 OLI and

Aqua MODIS satellite sensors were used to monitor the biological response to the

addition of nutrient-rich wastewater. In situ chl-a and in situ remote sensing reflectance

(Rrs) were measured before, during, and after the diversion event. These in situ data were

paired with coincident OLI and MODIS satellite data to yield a more comprehensive view

of the changing conditions in Santa Monica Bay due to the wastewater diversion. Two

new local chl-a algorithms were empirically derived using in situ data for the OLI and

MODIS sensors. These new local chl-a algorithms proved more accurate at measuring

chl-a changes in Santa Monica Bay compared to the standard open ocean OC2 and

OC3M algorithms, and the regional southern California CALFIT algorithm, as validated

by in situ chl-ameasurements. Additionally, the local OLI algorithm outperformed the local

MODIS algorithm, especially in the nearshore region. A time series of chl-a, as detected

by the local OLI chl-a algorithm, illustrated a very large increase in chl-a concentrations

during the wastewater diversion, and a subsequent decrease in chl-a after the diversion.

Our study demonstrates the capability of using Landsat 8 TIRS and OLI sensors for the

monitoring of SST and surface chl-a concentrations at high spatial resolution in nearshore

waters and highlights the value of these sensors for assessing the environmental effects

of wastewater discharge in a coastal environment.

Keywords: Landsat 8, Chlorophyll, coastal water quality, sea surface temperature (SST), wastewater diversion,

satellite remote sensing
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INTRODUCTION

The coastal waters of the Southern California Bight border
one of the most densely populated regions in North America
and are increasingly affected by pollution from both publicly
owned treatment works (POTWs) and stormwater runoff due
to increasing population growth and urbanization (McKinney,
2002; Bay et al., 2003; Creel, 2003; Schiff and Bay, 2003; Crossett
et al., 2004; Lyon and Stein, 2009; Gierach et al., 2017; Holt
et al., 2017). The Hyperion Treatment Plant (HTP) is the
largest POTW in the Southern California Bight, discharging
wastewater directly into Santa Monica Bay. Servicing the Los
Angeles Metropolitan Area, HTP releases a daily average of
8.71×105 m3 of secondary treated effluent into Santa Monica
Bay via a 5-mile (8.1 km) outfall pipe (Southern California
Coastal Water Research Project, 1973; Steinberger and Stein,
2004; Lyon and Stein, 2009). However, during diversion events,
when their main 5-mile outfall pipe is temporarily shut down,
HTP diverts the wastewater to their 1-mile (1.2 km) outfall pipe,
discharging the wastewater into the nearshore environment of
Santa Monica Bay (Figure 1). Based on the findings from a
2006 inspection and diversion event (Reifel et al., 2013; Gierach
et al., 2017), HTP scheduled another diversion event in Fall
2015 in order to conduct necessary infrastructure repairs. During
this 6-week diversion event from 21 September−2 November
2015, HTP discharged an average of 39×103 m3 h−1 of treated
wastewater through their backup 1-mile outfall pipe into the
coastal environment.

Secondary treated effluent released in coastal waters not
only contains contaminants (e.g., harmful chemicals, coliform
bacteria, oils, and metals), but also organic matter and nutrients
that can affect water quality (Steinberger and Stein, 2004).
Wastewater effluent has been found to contribute as much
nitrogen to coastal regions as wind-driven upwelling in several
sub-regions of the Southern California Bight, including Santa
Monica Bay, thereby doubling the nitrogen load (Howard et al.,
2014;McLaughlin et al., 2017). A primary environmental concern
of the release of nutrient-rich wastewater into the Southern
California Bight is the stimulation of primary production,
which can lead to eutrophication and the proliferation of

toxic harmful algal blooms (Caron et al., 2017). Under typical
density-stratification conditions for the region, the discharge
of wastewater near the head of the Santa Monica Submarine
Canyon (8.1 km offshore at 57m depth), limits the likelihood that
wastewater will surface and affect marine life and human health
(Washburn et al., 1992; Uchiyama et al., 2014). In contrast, the 1-

mile outfall pipe terminates within the shallow nearshore region
of Santa Monica Bay, discharging the wastewater at 18m depth.
During diversion events, the discharge of wastewater through

the 1-mile outfall pipe increases contaminant and nitrogen

concentrations in the shallow and sunlit coastal waters of Santa
Monica Bay, thereby increasing the probability of phytoplankton

blooms and contaminant exposure to marine life and humans, as
Santa Monica Bay is a major coastal recreation area (Caron et al.,
2017; Gierach et al., 2017).

With the advent and continued advancement in satellite
sensors, remote sensing has become an effective tool for

monitoring the biophysical impacts of coastal pollution (e.g.,
DiGiacomo et al., 2004; Hu et al., 2004; Nezlin and DiGiacomo,
2005; Nezlin et al., 2005, 2008, 2012; Marmorino et al., 2010;
Holt et al., 2017). Radar, thermal, and optical sensors have,
respectively, been used to track the surface expression of
wastewater plumes through reduced sea surface roughness,
decreased temperature, and changes in surface-water reflectance
due to increased organic matter (DiGiacomo et al., 2004;
Marmorino et al., 2010; Nezlin et al., 2012). Most recently,
Gierach et al. (2017) demonstrated the capabilities of the
Moderate resolution Imaging Spectroradiometer (MODIS), on
board NASA’s Aqua satellite, launched in 2002, and the Advanced
Spaceborne Thermal Emission and Reflection Radiometer
(ASTER), on board NASA’s Terra satellite, launched in 1999,
in detecting changes in chlorophyll-a (chl-a) and sea surface
temperature (SST) associated with the surfacing wastewater
plume during the 2006 HTP diversion. Chl-a, a photosynthetic
pigment present in phytoplankton, can be measured by optical
satellite sensors, and is used as a proxy for phytoplankton
biomass in the surface ocean.

Satellite remote sensing greatly expands the spatio-temporal
coverage of the marine environment compared to in situ
monitoring. However, the coarse spatial resolution (∼750–
1 km at nadir) of current optical satellite sensors used to
monitor marine environments, and the uncertainties associated
with instrument calibration and data processing algorithms in
optically complex water (McClain, 2009), have limited the ability
to monitor water quality in urban coastal waters like Santa
Monica Bay. While improvements have been made in on-orbit
assessment of sensor characteristics, atmospheric correction, and
sensor calibration procedures over time (Franz et al., 2007),
the resolution of current ocean color sensors still remains one
of the most limiting factors for water quality applications in
nearshore areas, as they are unable to accurately resolve coastal
ocean characteristics (Mouw et al., 2015). The Thermal Infrared
Sensor (TIRS) and the Operational Land Imager (OLI) on
board Landsat 8, launched in 2013, provide two high-resolution
sensors with high signal-to-noise ratios to more precisely
monitor biophysical changes in the coastal Santa Monica Bay.
With 100m and 30m spatial resolution, respectively, TIRS
and OLI are better suited to resolve detailed features of
SST and surface chl-a in the nearshore region compared to
MODIS (1 km) and other similar satellite sensors, e.g., SeaWiFS
(1.1 km), AVHRR (1.1 km), and VIIRS (750m). Additionally,
improved sensor signal-to-noise ratio and radiometric resolution
of OLI and TIRS, compared to its predecessors, e.g., Landsat 7
ETM+, permits use of these land-designed sensors for marine
applications. For example, the ability to monitor water quality
in coastal regions, as coastal waters are generally dark targets,
requires better signal-to-noise ratio and radiometric resolution to
accurately resolve coastal features (Vanhellemont and Ruddick,
2014).

Though high-resolution sensors are likely to yield
more detailed measurements than their coarser resolution
counterparts, discrepancies in satellite chl-a values continue to
be common in optically complex nearshore waters, such as the
Southern California Bight (Kim et al., 2009). Therefore, we argue
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FIGURE 1 | (A) Map of Santa Monica Bay, California, with the 5-mile and 1-mile outfall pipes denoted as black and red lines, respectively, and in situ sampling

stations denoted as green circles. (B) Photo of the wastewater plume surfacing at the terminus of the 1-mile outfall pipe during the diversion.

the necessity for the derivation and application of more locally
derived empirical chl-a algorithms, as opposed to the standard
open-ocean chl-a algorithms commonly used for each satellite
sensor. In this study, we investigate the utility of high-resolution
Landsat 8 TIRS and OLI satellite sensors, as compared to coarser
resolution Aqua MODIS, in conjunction with corresponding in
situ field measurements, to monitor the biophysical impacts of
the Fall 2015 HTP wastewater diversion in Santa Monica Bay.
Standard chl-a algorithms for each sensor are compared to newly
derived empirical local chl-a algorithms, tuned specifically for
the optically complex nearshore waters of Santa Monica Bay to
accurately distinguish chl-a from other optical constituents in
the water, such as suspended sediments and colored dissolved
organic matter (CDOM). To the extent of our knowledge,
this study is the first to develop, validate, and apply OLI chl-a
retrievals for water quality monitoring in coastal waters.

The paper is organized as follows. Section Data and Methods
describes the study region of Santa Monica Bay and the data
utilized, including in situ, TIRS SST, satellite chl-a as detected
by OLI and MODIS using standard and newly derived local
chl-a algorithms. Section Data and Methods also describes the
development of the local chl-a algorithms using in situ chl-a and
in situ remote sensing reflectance (Rrs) measurements during the
wastewater diversion. Results from the Fall 2015 HTP diversion
are presented in section Results. Finally, in section Discussion we
discuss the satellite findings and application of the newly derived
local Landsat 8 OLI chl-a algorithm to more accurately monitor
the evolution of the biological impact of the wastewater diversion.

DATA AND METHODS

Study Area
Santa Monica Bay is a semi-enclosed nearshore bay in the
Southern California Bight whose coastal waters are directly

influenced by the densely-populated Los Angeles basin. The
bay is characterized by a relatively wide continental shelf
and features a mixture of submarine outcrops and canyons
(Figure 1). The unique geography and coastal processes in the
region create favorable conditions for a relatively productive
coastal environment and diverse ecosystem (Hickey, 1992;
Eganhouse and Venkatesan, 1993; Hickey et al., 2003; Corcoran
and Shipe, 2011). Though the seasonal supply of nutrients from
coastal upwelling is a major driver of phytoplankton biomass
variability in Santa Monica Bay, there is increasing evidence
that anthropogenic nutrient point sources also contribute
significantly to the phytoplankton dynamics of the bay (Nezlin
and Li, 2003; Corcoran and Shipe, 2011; Nezlin et al., 2012;
Howard et al., 2014; Gierach et al., 2017).

In Situ Measurements
In situ samples and measurements in Santa Monica Bay were
collected before, during, and after the wastewater diversion
as part of a large collaborative sampling effort led by the
City of Los Angeles’ Environmental Monitoring Division
(CLAEMD) to monitor the impacts of the HTP diversion
on water quality (Figure 1 and Table 1). The samples and
measurements were collected onboard the R/V La Mer
and R/V Surveyor along a grid of 13 stations between
26 August and 11 November 2015 (Figure 1). Three main
categories of samples/measurements were collected in situ:
(1) hydrographic data from a Conductivity-Temperature-Depth
(CTD) instrument, (2) surface water samples for lab-based chl-a
concentration analyses, and (3) radiometric measurements to
derive in situ hyperspectral remote sensing reflectance (Rrs).
When possible, the in situ sampling was planned to coincide with
satellite overpasses in order to facilitate comparison between in
situmeasurements and remote sensing retrievals.
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TABLE 1 | In situ and remote sensing sampling dates before, during, and after the

wastewater diversion event in Santa Monica Bay.

Date In situ Chl-a In situ Rrs OLI MODIS

26 August 2015 X

8 September 2015 X X

16 September 2015 X X

23 September 2015 X

24 September 2015 X X X

30 September 2015 X X

7 October 2015 X

10 October 2015 X X

14 October 2015 X X

17 October 2015 X

21 October 2015 X X

26 October 2015 X X X

28 October 2015 X

5 November 2015 X X

11 November 2015 X X X X

27 November 2015 X X

The diversion period (21 September – 2 November 2015) is highlighted in gray.

Hydrographic Profiles
Vertical hydrographic profiles were collected at all stations along
the sample grid (Figure 1) using a SBE 19-plus Conductivity-
Temperature-Depth (CTD) package (Sea-Bird Electronics, Inc.
Bellevue WA), mounted on a rosette also equipped with a C-star
transmissometer (WET Labs, Inc. Philomath, OR), andWETStar
chl-a and CDOM fluorometers (WET Labs, Inc. Philomath, OR)
(City of Los Angeles, 2009; Reifel et al., 2013) to determine
temperature and chlorophyll fluorescence from 1m below the
surface to 1m above the ocean floor.

In Situ Surface Chlorophyll-a Concentrations
Discrete surface water samples were collected at 1 meter for chl-a
analysis at selected stations along the sample grid before, during,
and after the wastewater diversion (Figure 1, Table 1). Duplicate
water samples were collected from Niskin bottles and filtered
immediately onboard the ship by gentle filtration of 5–100mL of
water onto 0.7-µm GF/F glass fiber filters. The filtration volume
was reduced incrementally from 100mL based on the biomass
indicated by in situ chlorophyll fluorescence measured at 1 meter
by the CTD profiler. Filters were then stored at−20◦C until they
were analyzed fluorometrically for chl-a in the laboratory using
the non-acidification method (Welschmeyer, 1994). Filters were
extracted in 100% acetone at −20◦C in the dark for 24 h. Filter
extracts were analyzed on a Turner Designs Trilogy fluorometer
(Turner Designs, Sunnyvale, CA).

In Situ Remote Sensing Reflectance
In situ hyperspectral remote sensing reflectance, Rrs(λ,0+),
was measured in the λ = 350–700 nm wavelength range at
selected stations before, during, and after the diversion event
(Table 1). Rrs(λ,0+) was derived from field measurements of
spectral downwelling irradiance, Ed(λ), and upwelling radiance,

Lu(λ), acquired using a Satlantic
R© HyperPRO free-falling optical

profiler equipped with a surface irradiance reference. The
measured Ed(λ) and Lu(λ) were used to calculate Rrs(λ,0+)
following Equation (1):

Rrs(λ, 0+) =
Lw (λ)

Ed
(

λ, 0+
) (1)

where Ed(λ,0
+) is the spectral downwelling irradiance just above

the surface and Lw(λ) is the spectral water-leaving radiance,
equivalent to Lu(λ) measured just above the surface: Lu(λ,0

+).
About half of the Rrs(λ,0+) spectra were measured and

derived using the HyperPRO in profiling mode. In this
configuration, simultaneous profiles of Ed(λ,z) and Lu(λ,z)
(where z is depth) were used to calculate Rrs(λ,0+). The
maximum depth of the optical profiles ranged from a few meters
in nearshore waters to 60m in the more oligotrophic waters.
Profiles were performed away from the influence of the ship,
at a distance of at least 30m and on the sunny side of the
ship. Any data with an instrument tilt of >5◦ was discarded.
At each sampled station, measurements of Ed(λ,z) and Lu(λ,z)
were collected during three or four optical profiles in clear waters,
and up to 10 optical profiles in more shallow and turbid waters.
The data were processed to Level-2 with the Satlantic R© Prosoft
software. Our own MatLab R© routine was then used to do a
supervised processing of the Ed(λ,z) and Lu(λ,z) profiles and
calculate Rrs(λ,0+). In this routine, Ed(λ,0

−) was calculated as
the exponential of the intercept (z = 0) of the least-square fit
of the pooled profiles of ln[Ed(λ,z)] against depth z, and it was
then converted to Ed(λ,0

+) using the approximation: Ed(λ,0
+)=

1.04 Ed(λ,0
−) (Austin, 1974). Similarly, Lu(λ,0

−) was calculated
as the exponential of the intercept (z = 0) of the least-square fit
of the pooled ln[Lu(λ,0

−)] profiles against depth z, and it was
then converted to Lw(λ) using the approximation Lw(λ) = 0.54
Lu(λ,0

−) (Austin, 1974). Data from the multiple profiles were
pooled together in order to provide sufficient data density to
derive reliable linear fits of Ed(λ,z) and Lu(λ,z) against depth,
and supervised processing with our MatLab R© routine allowed
to select adequate depth ranges (between 0.5m to several meters
depth) for reliable fits. At each station, profiles were collected
within a short period of time (<20–30min) and, in most cases,
the illumination conditions were very stable throughout the
data collection. Any Ed(λ,z) and Lu(λ,z) profile that differed
substantially was discarded in order to minimize errors in the
fit. Note here that the spectral diffuse attenuation coefficient
of upwelling radiance, KLu(λ), was also derived from these
optical profiles as the slope of the least-square fit of the pooled
ln[Lu(λ,0

−)] profiles against depth z.
The remainder of the Rrs(λ,0+) were measured and derived

by using the HyperPRO deployed in buoy mode. The use of
the buoy-mode configuration was done for practical reasons
and in the interest of saving time during the sampling cruises.
In this configuration, Ed(λ,0

+) and Lu(λ,0
−) were measured

directly for a short time period of ∼2min and used as in
equation (1) to estimate Rrs(λ,0+) assuming Lw(λ) = 0.54
Lu(λ,0

−). The Lu(λ,0
−) measurements were corrected for the

fact that upwelling radiance was measured ∼ 0.2m below the
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water surface rather than just below the surface. Estimates
of KLu(λ) were thus used following the equation Lu(λ,0

−) =

Lu(λ,0.2)
∗exp(KLu(λ)

∗0.2) to correct for the diffuse attenuation
of Lu(λ) occurring in the top 20 cm. However, KLu(λ) could not
be measured using the HyperPRO configured in “buoy mode”
and therefore had to be estimated from uncorrected Rrs(λ,0+)
determined by assuming Lu(λ,0.2) = Lu(λ,0

−). The estimation
of KLu(λ) from the uncorrected Rrs(λ,0+) was made possible by
using a partial-least-squares (PLS) regression model specifically
developed for this study. The PLS model was developed using
the other data set collected with the HyperPRO in “profiling
mode”: First, the KLu(λ) and Rrs(λ,0+) derived from the profiles
were used to simulate uncorrected Rrs(λ,0+). Then, a model of
KLu(λ) applicable to uncorrected Rrs(λ,0+) was developed by
doing a PLS regression of KLu(λ) on the simulated uncorrected
Rrs(λ,0+). This PLS regression model, developed from the
“profiling mode” data, was then applied to the “buoy mode”
uncorrected Rrs(λ,0+) to provide a first-order approximation of
KLu(λ) and derive corrected values of Rrs(λ,0+) for that data
set. The approach presented above only provides an approximate
correction. However, the differences between corrected and
uncorrected Rrs(λ,0+) amounted to no more than a few percent
for the stations sampled in this study, and the uncertainties
linked to this correction therefore have a minimal impact on
the measured Rrs(λ,0+) and especially on Rrs(λ,0+) ratios. For
simplicity, in situ Rrs(λ,0+) will be further denoted in the paper
as in situ Rrs.

Development of Local Chlorophyll-a
Algorithms
The in situ hyperspectral Rrs spectra and simultaneously
collected in situ chl-a concentrations were used to develop local
blue-green band-ratio algorithms applicable to Landsat 8 OLI
and Aqua MODIS. A total of 96 in situ chl-a concentrations
and 49 in situ Rrs measurements were collected over the 14-
week period, with 36 of these measurements coinciding in time
and space for deriving the local algorithms (Table 1). Briefly, the
natural log values of the measured surface chl-a concentrations
were regressed on the natural log values of blue-green Rrs ratios
following Equation (2):

ln(chl–a) = a0 + a1 ln(
Rrs

(

λblue
)

Rrs
(

λgreen
) ) (2)

The hyperspectral in situ Rrs facilitated the development of two
different local algorithms using the respective blue and green
wavebands of OLI and MODIS (Table 2). The highly correlated
logarithmic relationship between in situ Rrs and in situ chl-
a, including the regression coefficients (R2 = 0.90 and 0.89,
respectively) and the coefficients of determination, are presented
in Figure 2 and Table 2. These local algorithms were expected
to perform better than the standard global, open ocean chl-
a algorithms (e.g., OC2 and OC3M) for this study because of
the unusual environmental conditions caused by the wastewater
diversion.

TABLE 2 | Respective OLI and MODIS red, green, and blue band wavelengths,

and derived local chl-a satellite algorithm coefficients.

Sensor Red band

(nm)

Green band

(nm)

Blue band

(nm)

a0 a1

OLI 665 561 482 0.9375 −1.8862

MODIS 667 547 488 0.8822 −2.3694

Satellite Retrievals of Chlorophyll-a
Concentrations
Satellite Rrs from Aqua MODIS and Landsat 8 OLI were
used to monitor potential changes in chl-a concentration in
Santa Monica Bay associated with the diversion (Table 1). Data
from Aqua MODIS and Landsat 8 OLI were obtained for the
region, before, during, and after the diversion from the Ocean
Biology Distributed Active Archive Center (OB.DAAC; https://
oceancolor.gsfc.nasa.gov) and the United States Geological
Survey (USGS) EarthExplorer (https://earthexplorer.usgs.gov/),
respectively. All satellite data were processed using the SeaWiFS
Data Analysis System (SeaDAS) version 7.4 (https://oceancolor.
gsfc.nasa.gov/seadas).

Aqua MODIS
Daily Aqua MODIS Level 1 radiance data were obtained from
the OB.DAAC. SeaDAS was used to atmospherically correct
MODIS optical radiance data, using a standard multi-scattering
and iterative near infrared (NIR) model (Bailey et al., 2010) with
bidirectional reflectance correction (Morel and Gentili, 1996),
and generate a standard 1-km OC3M chl-a product. The 1-km
chl-a product was then interpolated to a 250-m product (Franz
et al., 2006) for a more detailed evaluation of the wastewater
plume in the nearshore environment. The standard open-ocean
OC3M model (Maritorena et al., 2002; Hu et al., 2012) was
used to obtain chl-a measurements using the MODIS specific
Rrs wavelengths in Table 2. Additionally, a more regional chl-a
algorithm (CALFIT) developed by Kahru et al. (2012) forMODIS
was used to potentially improve chl-a accuracy in Santa Monica
Bay. The CALFIT algorithm was empirically derived from a large
archive of in situ chl-a data for the coastal waters of the greater
southern California Current system.

The local chl-a algorithm for MODIS (Table 2, Figure 2B),
as well as the standard OC3M algorithm, and regional CALFIT
algorithmwere then applied to theMODIS-specific blue-green in
situ Rrs retrievals to estimate chl-a concentrations. These values
were compared to corresponding in situ chl-a measurements to
determine the accuracy of each algorithm in Santa Monica Bay
during the wastewater diversion. Additionally, each local and
standard chl-a algorithm was then applied directly to MODIS
satellite Rrs data. These remotely-sensed chl-a values were then
directly compared to in situ chl-a measurements in order to
determine the capability of MODIS under each algorithm in
accurately detecting chl-a concentrations during the diversion.
Due to its relatively coarse spatial resolution of 1 km, a single
MODIS chl-a pixel value was compared to surface in situ chl-a
from the corresponding station.
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FIGURE 2 | Local empirical relationships between in situ surface chl-a concentrations and in situ blue-green Rrs: (A) OLI (blue: 482 nm and green: 561 nm),

(B) MODIS (blue: 488 nm and green: 547 nm).

Landsat 8 OLI
Data from Landsat 8 OLI were obtained from the USGS
EarthExplorer. The OLI radiance at the top of atmosphere
data were atmospherically corrected, using the same methods
described for MODIS, and processed to generate a standard
OC2 chl-a product using SeaDAS (Werdell and Bailey, 2005).
The local chl-a algorithm for OLI (Table 2, Figure 2A), as
well as the standard OC2 OLI algorithm, were then applied
to OLI-specific blue-green (Table 2) in situ Rrs retrievals to
estimate chl-a concentrations. These values were compared to
corresponding in situ chl-a measurements to determine the
accuracy of each algorithm in Santa Monica Bay during the
wastewater diversion. Additionally, each local and standard
chl-a algorithm was then applied directly to OLI satellite Rrs
data. These remotely-sensed chl-a values were then directly
compared to in situ chl-ameasurements in order to determine the
capability of OLI under each algorithm in accurately detecting
chl-a concentrations during the diversion. With its high spatial
resolution of 30m, a 3 × 3 pixel mean chl-a value around
the sample station was compared to surface in situ chl-a from
the corresponding station. A time series analysis was completed
using the local chl-a algorithm for OLI in which maximum chl-
a concentrations for each OLI scene were found within in Santa
Monica Bay.

Landsat 8 TIRS Retrievals of Sea Surface
Temperature
The effect of the surfacing wastewater plume on SST was
monitored using Landsat 8 TIRS data obtained from the USGS
EarthExplorer. TIRS has two longwave thermal bands, band
10 and 11 (10.3–11.3µm and 11.5–12.5µm, respectively), that
can facilitate the retrieval of SSTs with a spatial resolution of
100m, resampled to 30m resolution. Stray light issues limit
the applicability of the split-window algorithm traditionally
used to derive SSTs from thermal imagery (Barsi et al., 2014;

Montanaro et al., 2014). Therefore, we applied a single channel
method developed byMalakar et al. (in preparation). Themethod
uses physical emissivity data from ASTER GEDv3 (Hulley
et al., 2015) and a radiative transfer model for atmospheric
correction (Berk et al., 2005). Specifically, to estimate SST from
observed thermal radiance data the measured radiance was (1)
atmospherically corrected using a radiative transfer model (Berk
et al., 2005), (2) the ASTER GEDv3 was spectrally adjusted
to the TIRS wavebands, and (3) the temperature was retrieved
by inverting the atmospherically and emissivity corrected TIRS
radiances using a look-up table (Alley and Jentoft-Nilsen,
1999).

The TIRS band 10 data was used because it is less affected
by the stray light issue than band 11 (Barsi et al., 2014). The
correction algorithm of Montanaro et al. (2015), refined by
Gerace and Montanaro (2017), was applied to the TIRS band 10
data to further reduce the effects of stray light. This stray light
correction algorithm has since been implemented operationally
into the Landsat Product Generation System in early 2017 by the
USGS (Gerace andMontanaro, 2017), and methods are currently
being developed to continually improve the accuracy of SST
retrievals from the Landsat 8 TIRS. Herein, TIRS data are used
solely to detect relative SST differences between plume and non-
plume waters due to current limitations in TIRS-derived SST
accuracy and lack of in situ skin temperature data collection
during the diversion.

Additionally, MODIS Level 1 thermal infrared (TIR) radiance
data were atmospherically corrected and processed to generate
a standard 250-m product in SeaDAS, as described above
in the Aqua MODIS section. However, given the spatially
confined nature of the SST plume during the Fall 2015 diversion
(Figure 3B), and the comparatively coarse spatial resolution of
MODIS, MODIS TIR data were not able to detect changes in
SST during the 2015 HTP wastewater diversion related to the
wastewater plume (Supplemental Figure 1).
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FIGURE 3 | (A–C) Landsat 8 TIRS-derived SST in Santa Monica Bay with the 5-mile and 1-mile outfall pipes shown as black lines and a 4 km alongshore transect at

the terminus of the 1-mile outfall pipe denoted by red dashed lines. (D–F) SSTs across the 4 km alongshore transect, from north to south. (A,D) SST on 8 September

2015, pre-diversion; (B,E) SST on 24 September 2015, during the diversion; (C,F) SST on 11 November 2015, after the diversion. Cooler SSTs were detected at the

terminus of the 1-mile outfall pipe during the diversion, due to entrainment of cold bottom water as the wastewater plume surfaced. Pre- and post-diversion, no SST

anomalies were observed at the terminus of the 1-mile outfall pipe. The warm signature of an oil tanker to the southwest of the 1-mile outfall pipe is clearly visible.

SSTs uniformly decreased from September to November due to seasonal cooling, therefore each image is shown on different temperature scales.

RESULTS

Wastewater Plume Detection via Sea
Surface Temperature
The SST response to the wastewater plume was clearly detected
by Landsat 8 TIRS (Figure 3). Before the diversion, on 8
September 2015, wastewater was being discharged from the 5-
mile outfall pipe and no SST anomalies were detected in the
vicinity of either the 5-mile or 1-mile outfall pipes (Figure 3A).
Figure 3D shows no significant change in SST across an
alongshore transect, shown as a dashed red line, in the vicinity
of the 1-mile outfall pipe. During the diversion, on 24 September
2015, the wastewater was diverted from the 5-mile outfall pipe to
the shallow (18m depth) 1-mile outfall pipe and decreased SSTs
were clearly detected at the terminus of the 1-mile outfall pipe
in comparison to ambient waters (Figures 3B,E). The wastewater
plume was∼1◦C colder than the surrounding water (Figure 3B).
The depressed SSTs at the terminus of the 1-mile outfall pipe
resulted from the entrainment of colder bottom water to the
surface as the buoyant wastewater plume rose (Washburn et al.,
1992; Marmorino et al., 2010; Rogowski et al., 2014). This cold
SST signal was absent in MODIS TIR data from the same day,
due to the coarse resolution of MODIS (Supplemental Figure
1). The wastewater was diverted back to the 5-mile outfall

pipe on 2 November 2015, and by 11 November 2015, no SST
anomalies were observed near either outfall pipe (Figure 3C) and
no significant change in SST was detected across the alongshore
transect (Figure 3F). By late fall, SSTs had uniformly decreased
compared to September due to seasonal cooling.

TIRS SST data clearly show the relative temperature difference
between the wastewater plume and ambient waters. The observed
difference was similar to those detected by MODIS Aqua and
ASTER during the 2006HTP and 2012Orange County Sanitation
District diversions (Gierach et al., 2017). In situCTD temperature
data also showed colder water temperatures in the plume
compared to ambient waters. Direct comparisons to in situ
data are not provided herein as TIRS SST data provide skin
temperature measurements of the top few millimeters of the
ocean surface, whereas in situ CTD temperature measurements
were taken at depths greater than 1m below the surface.

Wastewater Impact on chl-a in Santa
Monica Bay
Satellite and In Situ Rrs Comparison
To validate satellite retrievals for use in ocean color monitoring
of the wastewater diversion, OLI and MODIS Rrs at the red,
green, and blue wavelengths were compared to corresponding in
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situ Rrs measurements (Supplemental Figures 2, 3). Respective
OLI andMODIS blue-green Rrswavelength ratios (Table 2) were
compared to corresponding in situ Rrs as an initial measure of
suitability for chl-a measurements in Santa Monica Bay during
the diversion. Figure 4A shows OLI Rrs(482)/Rrs(561) retrievals
compared to in situ measured Rrs(482)/Rrs(561). OLI and in
situ Rrs values corresponded well (R2 = 0.78), with most of the
satellite retrievals falling within±30% of in situ values. The mean
percent error between OLI Rrs and in situ Rrs blue-green ratio
was±19%. Figure 4B showsMODIS Rrs(488)/Rrs(547) retrievals
compared to in situmeasured Rrs(488)/Rrs(547). MODIS greatly
overestimated the Rrs blue-green ratio by over 30%, as seen
in the inset showing the full range of MODIS Rrs ratio values
compared to corresponding in situ values (R2 = 0.05). The mean
percent error between MODIS Rrs and in situ Rrs blue-green
ratio was ±271%. OLI Rrs retrievals for each red, blue, green,
wavelength (Supplemental Figure 2), as well as the blue-green
ratio (Figure 4A), corresponded much more closely to in situ Rrs
values than MODIS Rrs retrievals (Supplemental Figure 3 and
Figure 4B), demonstrating the suitability of the higher resolution
OLI sensor for the monitoring of surface chl-a in the nearshore
coastal waters of Santa Monica Bay.

Local and Standard chl-a Algorithm Comparison
To demonstrate the performance capabilities of the standard OLI
and MODIS chl-a algorithms (OC2 and OC3M, respectively),
in comparison to the newly derived local OLI and MODIS chl-
a algorithms (Figure 2), we applied the algorithms to in situ
derived Rrs using respective OLI and MODIS Rrs blue-green
wavelengths (Table 2) and compared the resulting estimated
satellite chl-a values to corresponding surface in situ chl-a
measurements (Figure 5).

When the standard OC2 chl-a algorithm was applied to
OLI in situ Rrs wavelengths, the mean percent error between
the estimated chl-a values and in situ chl-a values was ±40%
(Figure 5A). The standard OC3M chl-a algorithm applied to

MODIS in situ Rrs wavelengths yielded a mean percent error
of ±35% (Figure 5B). Applying our local OLI-derived chl-a
algorithm to OLI in situ Rrs wavelengths yielded a mean percent
error between the estimated chl-a values and in situ chl-a values
of ±30% (Figure 5C). When our local MODIS-derived chl-a
algorithm was applied to MODIS in situ Rrs wavelengths, the
mean percent error between the estimated chl-a values and in
situ chl-a values was ±32%. The standard algorithms tended to
underestimate midlevel chl-a values and overestimate high chl-a
values in respect to measured values, with the highest values
falling well above the +30% error dashed line (Figures 5A,B).
The local OLI chl-a algorithm (Figure 5C), with the lowest mean
percent error, estimated chl-a values more accurately than the
standard OC2, standard OC3M, and local MODIS algorithms.

In addition to the standard open ocean algorithms (OC2
and OC3M), we applied the Kahru et al. (2012) Aqua MODIS
CALFIT chl-a algorithm, empirically derived for the regional
southern California Current system, to MODIS in situ Rrs
wavelengths and compared it to corresponding in situ chl-
a measurements (Supplemental Figure 4). This regional chl-
a algorithm more accurately estimated chl-a values than the
standard OC3M algorithm, but still greatly overestimated high
chl-a values with respect to measured values, and performed less
accurately than our local MODIS chl-a algorithm (Figure 5).

The local and standard chl-a algorithms were applied directly
to OLI and MODIS scenes from 11 November 2015, which is
the only date in our time series for which there were coincident
in situ chl-a and in situ Rrs measurements with Landsat 8 OLI
and Aqua MODIS overpasses (Table 1). Figure 6 illustrates the
differences between the local and standard chl-a algorithms for
OLI and MODIS in comparison to in situ chl-ameasurements at
each sampling station. Comparison of in situ chl-a to remotely-
sensed chl-a as detected by our local OLI chl-a algorithm
(Figure 6A), standard OC2 chl-a algorithm (Figure 6B), our
local MODIS chl-a algorithm (Figure 6C), and standard OC3M
chl-a algorithm (Figure 6D) highlight the discrepancies in chl-a

FIGURE 4 | Comparison between in situ and satellite-derived Rrs blue-green ratios. (A) OLI Rrs(482)/Rrs(561) vs. in situ Rrs(482)/Rrs(561). (B) MODIS

Rrs(488)/Rrs(547) vs. in situ Rrs(488)/Rrs(547). The inset graph in panel (B) shows the full extent of MODIS data, indicating that several nearshore reflectance ratio

values are significantly overestimated, a problem that is much less pronounced for the OLI data. The solid black line is the 1:1 line. Dashed lines are ± 30% from the

1:1 line.
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FIGURE 5 | Algorithm performance comparison using in situ data. Comparison of estimated chl-a derived from standard and local algorithms to in situ chl-a on a

log-log scale. (A) Standard OC2 chl-a algorithm applied to OLI Rrs. (B) Standard OC3M chl-a algorithm applied to MODIS Rrs. (C) Local OLI-derived chl-a algorithm

applied to OLI Rrs. (D) Local MODIS-derived chl-a algorithm applied to MODIS Rrs. Standard algorithms (A,B) tend to overestimate chl-a values in respect to

measured values. The local OLI chl-a algorithm (C) estimates chl-a values more accurately than the standard OC2, standard OC3M, and local MODIS algorithms. The

solid black line is the 1:1 line. Dashed lines are ± 30% from the 1:1 line.

conditions depending on which sensors and algorithms are used
to monitor Santa Monica Bay.

On 11 November 2015, 9 days after the end of the diversion,
there was no evidence of any chl-a response at either outfall
pipe in association with excess nutrient availability from surfaced
wastewater (Figure 6). Elevated chl-a levels were observed
along the coastline, decreasing in concentration in the offshore
direction. This trend is seen in both OLI and MODIS data, as
well as in situ chl-a data. However, MODIS greatly overestimated
chl-a concentrations, both inshore and offshore, with OC3M
doing the worst job reconciling in situ chl-a concentrations.
More fine scale details in chl-a distribution are visible in OLI
data compared to MODIS. As seen in Figure 6, in situ chl-a
samples most closely matched concentrations detected by OLI
using our local chl-a algorithm. Table 3 illustrates the statistical
differences between the four chl-a algorithms analyzed for OLI
andMODIS and in situ chl-a concentrations from Figure 6. Nine

out of 10 corresponding observations present in both OLI and
MODIS retrievals were analyzed as MODIS was unable to detect
the southernmost nearshore in situ sampling location due to
its coarser spatial resolution and inability to fully resolve the
shoreline. Overall, OLI chl-a retrievals were more accurate than
MODIS. The local OLI chl-a algorithm outperformed MODIS
(local and OC3M) and OC2 algorithms with a mean percent
error of ∼29% and the smallest RMSE of ∼0.36. The standard
OC2 algorithm underestimated chl-a values and had a mean
percent error of ∼26% and RMSE of ∼0.58. Our local MODIS
chl-a algorithm performed better than the OC3M algorithm,
but still overestimated chl-a concentrations with a mean percent
error of ∼37% and RMSE of ∼0.67. The standard OC3M
algorithm had a mean percent error of ∼349% and RMSE of
∼18.2, performing an order of magnitude poorer than our local
MODIS chl-a algorithm and either OLI algorithm (local or
OC2).
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FIGURE 6 | Maps of chl-a concentrations on 11 November 2015, overlaid with 10 corresponding in situ chl-a measurements from sampling stations (denoted as

circles using the same color scale as the satellite chl-a concentrations). (A) Local OLI chl-a algorithm. (B) Standard OC2 OLI chl-a algorithm. (C) Local MODIS chl-a

algorithm. (D) Standard OC3M MODIS chl-a algorithm. Inset graphs show comparison between and in situ chl-a values. Orange data points in the insets of (A,B)

denote the southernmost nearshore in situ sampling location, where there is no corresponding MODIS chl-a retrieval.

Chlorophyll-a Evolution in Response to the

Wastewater Diversion
A time series of chl-a from before, during, and after the
diversion using the local OLI algorithm is shown in Figure 7.
The white box denotes a coastal region of interest (ROI)
most affected by changes in chl-a, analyzed in Figure 9. Pre-
diversion, on 8 September 2015, elevated chl-a levels were
confined along the shore of Santa Monica Bay (Figure 7A).
On 24 September 2015 (3 days into the diversion) elevated
chl-a levels were detected in the vicinity of the 1-mile outfall
pipe and extend northward along the coastline (Figure 7B). The
area of enhanced chl-a concentration near the 1-mile outfall
pipe increased in spatial extent on 10 October 2015 (19 days
into the wastewater diversion), extending well offshore and
alongshore (Figure 7C). Elevated chl-a concentrations remained
visible alongshore on 26 October 2015 (35 days into the
wastewater diversion) (Figure 7D). Figure 8 shows an enlarged
area view of chl-a data on 26 October 2015, in which the
full extent of the chl-a bloom could be seen along the Santa

Monica Bay coast wrapping around the peninsula to the south,
then moving offshore and to the east. Post-diversion, chl-
a concentrations returned to nominal levels along the shore
of Santa Monica Bay (Figures 7E,F). Similar trends in chl-a
were observed using the local MODIS algorithm (Supplemental
Figures 5, 6); however, MODIS tended to overestimate chl-a
concentrations and did not capture the fine scale structure shown
by OLI. Additionally, MODIS was unable to resolve the shoreline
as well as OLI, leaving gaps in the observed response to the
diversion.

Figure 9 shows a boxplot distribution of chl-a concentration
within the ROI denoted by the white box on each date of the
time series shown in Figure 7.The period during the wastewater
diversion is highlighted in gray. The ROI selected focuses on
the coastal area most impacted by the wastewater diversion
and chl-a blooms. Prior to the diversion, the maximum chl-a
concentration detected by OLI in the ROI was 2.90 mg/m3.
There was a low range of variability in chl-a concentration
prior to the diversion. During the diversion, the maximum
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chl-a concentrations increased to 4.33 mg/m3 on 24 September
2015 and peaked at 9.99 mg/m3 on 10 October 2015. The
small range of chl-a values in terms of the first quartile and
third quartiles on 24 September 2015 can be attributed to the
small spatial extent of the bloom and the high presence of
low chl-a pixels. The greatest range of chl-a values occurred in
the large chl-a patch in the ROI on 10 October 2015 during
the diversion. The ROI does not fully encompass the chl-a
bloom of 26 October 2015 (Figure 7D), in which the majority

TABLE 3 | Comparison of local and standard OLI and MODIS algorithm chl-a

retrievals vs. in situ chl-a on 11 November 2015 for nine observations (see

Figure 6 for observation locations).

Chl-a Algorithm Trend Line R2 Average % Error RMSE

Local OLI y=1.1925x-0.5002 0.89 29.0 0.38

OC2 OLI y=0.7815x-0.271 0.89 26.4 0.58

Local MODIS y=1.5973x-0.3062 0.93 37.0 0.67

OC3M MODIS y=19.464x-16.233 0.44 348.7 18.2

of the bloom was advected to the south, wrapping around
the peninsula, as seen in Figure 8. Nevertheless, the part of
the bloom captured in the ROI (Figure 7D) yielded high chl-
a concentrations, with a maximum of 8.89 mg/m3. After the
diversion, chl-a concentration in Santa Monica Bay declined. On
11 November 2015, the maximum chl-a concentration in the ROI
was 3.90 mg/m3. By 27 November 2015, chl-a concentrations in
the ROI declined to a maximum of 1.20 mg/m3, and exhibited
a very low chl-a range, as illustrated by the first quartile
and third quartiles, similar to 8 September 2015, prior to the
diversion.

DISCUSSION

Utility of Landsat 8 TIRS and OLI for
Coastal Water Quality Monitoring
The scheduled maintenance work by HTP, as a result of the
findings from their 2006 wastewater diversion event, allowed
for foresight into planning monitoring efforts for the Fall 2015
diversion. This allowed for a large collaborative effort in which

FIGURE 7 | Time series of chl-a in Santa Monica Bay using the local OLI algorithm. The white box denotes a coastal region of interest most affected by changes in

chl-a, analyzed in Figure 9. (A) 8 September 2015, pre-diversion; (B) 24 September 2015, 3 days into the diversion; (C) 10 October 2015, 19 days into the diversion;

(D) 26 October 2015, 35 days into the diversion; (E) 11 November 2015, 9 days post-diversion; (F) 27 November 2015, 25 days post-diversion. During the diversion,

elevated chl-a levels were detected in the vicinity of the 1-mile outfall pipe, extending offshore, and along the coastline. Values returned to nominal levels post-diversion.
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the pairing of satellite remote sensing and in situ sampling
created a unique opportunity, not only for monitoring crucial
changes in the environment in response to the shallow discharged
wastewater, but also for creating and validating new and existing
satellite remote sensing chl-a algorithms with coincident, high
precision in situ data. Additionally, the Fall 2015 timeframe for
the diversionminimized influences of upwelling nutrients, as well
as incidences of cloud cover for the Southern California Bight
region, which allowed for optimal satellite acquisitions with no
sunglint issues.

Our results show that high-resolution thermal and optical
sensors, such as Landsat 8 TIRS and OLI, with improved
high signal-to-noise ratio, can facilitate the monitoring of
SST and chl-a in complex nearshore coastal environments.
Like many coastal environments, the nearshore waters of
Santa Monica Bay are heterogeneous, dynamic, and optically
complex due to high primary production and proximity to
varied and multiple terrestrial inputs. The southward flowing
California Current delivers relatively cold waters into Santa
Monica Bay through the Santa Barbara Channel, with flow
intensifying in spring in response to large-scale upwelling (e.g.,
Lynn and Simpson, 1987; Bray et al., 1999; DiGiacomo and
Holt, 2001). The Southern California Countercurrent (Sverdrup
and Fleming, 1941) penetrates the basin alongshore, bringing
relatively warm waters from the southeast. SST gradients
near the coast are enhanced by the effects of local wind-
driven upwelling. This upwelling of cold, nutrient-rich waters
injects nitrogen into surface waters along the coast and drives
increased phytoplankton production (Cullen and Eppley, 1981;
Hickey, 1992; Jones et al., 2002; Nezlin and Li, 2003; Kim
et al., 2009; Nezlin et al., 2012). As a result, the bay is
characterized by dynamic temperature gradients and relatively
high primary production year-round compared to offshore
oligotrophic waters. Furthermore, nutrient inputs associated
with the wastewater diversion represent an additional source of
biogeochemical and optical variability to this already complex
system. Therefore, incorporating high-resolution satellite sensors
into the monitoring of coastal SantaMonica Bay greatly increases
the ability to detect environmental change, especially during
pollution-related events.

In this study, we demonstrate the utility of TIRS in
resolving small scale cold water plumes associated with surfacing
wastewater. The buoyant wastewater, discharged at a temperature
of about 25–29◦C, entrains colder deep ocean water as it
rises through the water column, resulting in a cold SST
anomaly at the surface. Satellite SST has been available from a
number of operational and experimental satellites for over 30
years (Guan and Kawamura, 2003). Sensors such as AVHRR
(1.1 km) and MODIS (1 km) are widely used in global SST
retrievals. However, these sensors, with comparatively coarser
spatial resolution, are inadequate for detecting thermal plumes
in complex coastal waters as they are unable to resolve
features finer than a few kilometers (Thomas et al., 2002;
Tang et al., 2003; Ahn et al., 2006). Radiometers optimized for
terrestrial applications, such as the Landsat satellite series, deliver
considerably higher spatial resolution (Thomas et al., 2002).
The thermal infrared bands of Landsat-5 Thematic Mapper

FIGURE 8 | Larger spatial extent of chl-a distribution on 26 October 2015,

using the local OLI chl-a algorithm. Elevated chl-a values were detected along

the coast that continue to wrap around the peninsula to the south. A large

cloud region has been masked out in the bottom of the OLI frame.

(TM), Landsat-7 Enhanced Thematic Mapper Plus (ETM+),
and Terra ASTER, have high spatial resolutions of 120, 60,
and 90m, respectively, and have been adapted for use in
coastal SST retrievals (Gibbons et al., 1989; Mustard et al.,
1999; Chen et al., 2003; Suga et al., 2003; Gierach et al.,
2017). Landsat 8 TIRS is the latest high-resolution thermal
sensor for use in coastal monitoring. In this study, we found
that the spatial resolution of TIRS was fine enough to detect
not only the cold surfacing wastewater plume, but also the
thermal signature of an oil tanker moored just offshore from
the 1-mile outfall pipe (Figure 3). TIRS has great promise for
application to coastal SST studies; however, at present further
refinement to TIRS SST accuracy is necessary and is an ongoing
effort.

Landsat 8 OLI has been shown to outperform its predecessors
(e.g., TM and ETM+) in terms of waterbody classification
(Ko et al., 2015; Kim et al., 2016). Before its launch, the
suitability of OLI for coastal water monitoring was demonstrated
using simulated data (Gerace et al., 2013; Pahlevan and Schott,
2013), as the suite of relatively narrow spectral bands and
high spatial resolution in the visible to shortwave infrared
made OLI a potential tool for ocean color radiometry (Franz
et al., 2015). OLI ocean color monitoring in terms of total
suspended solids was first analyzed by Vanhellemont and
Ruddick (2014), in which they demonstrated the enhanced
accuracy of OLI compared to dedicated wide-swath ocean
color instruments such as MODIS, as well as TM and
ETM+. Compared to its predecessors, OLI offers higher signal-
to-noise ratios, due mainly to longer integration times on
the push-broom scanner, better quantization due to 12-bit
radiometric resolution, and the addition of a band centered
at 443 nm (Knight and Kvaran, 2014; Pahlevan et al., 2014).
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The presence of the high-quality SWIR bands on Landsat 8
facilitates more accurate quantification of aerosol contribution
to the top of atmosphere radiance over very turbid waters,
enabling more accurate remote sensing of ocean color and water
quality monitoring (Franz et al., 2015; Garaba and Zielinski,
2015; Vanhellemont and Ruddick, 2015). These enhanced
features of OLI allow for a more lucid characterization of
chl-a and CDOM in open ocean and coastal waters (Franz
et al., 2015). In Franz et al. (2015), standard chl-a algorithm
coefficients were tuned for OLI using the NASA Bio-Optical
Marine Algorithm Dataset (NOMAD) but no OLI data or
coincident in situ measurements were used in the algorithm
development. Here, we expand on the demonstrated applications
of Landsat imagery in marine environments by validating
the utility of OLI for coastal chl-a measurements as an
indicator of changing water quality due to anthropogenic
pollution with coincident in situ measurements of both Rrs and
surface chl-a.

This study demonstrates the improved accuracy of chl-a from
high-resolution OLI in comparison to coarser resolution MODIS
for coastal chl-a detection, wherein the high-resolution of OLI
enables detection of a large range of chl-a values found for a
single MODIS pixel (Figure 4). Moreover, we show that the
application of our local chl-a algorithms, developed using in situ
chl-a and in situ Rrs measurements, improves chl-a retrievals in
Santa Monica Bay during the 2015 HTP wastewater diversion in
comparison to the standard open ocean algorithms (i.e., OC2
and OC3M) (Figure 5), and the regional CALFIT algorithm
(Kahru et al., 2012; Supplemental Figure 4). The OC3M and
OC2 algorithms are empirical algorithms developed for global
applications and have been shown to overestimate chl-a in coastal
environments, in part due to increased concentrations of other
optical constituents (e.g., Muller-Karger et al., 2005). Within
optically complex coastal waters such as Santa Monica Bay,
CDOM, sediments, bottom reflectance (Maritorena et al., 1994;
Cannizzaro and Carder, 2006), land adjacency effects (Santer and
Schmechtig, 2000), and urban and absorbing aerosols (Moulin
et al., 2001; Claustre et al., 2002; Ransibrahmanakul and Stumpf,
2006) can all interfere with the accurate detection of chl-a.
This challenge is potentially exacerbated during the unusual
conditions created by the wastewater diversion. The wastewater
diversion increased the concentration of optical constituents
in the water. Prior to the diversion, the beam attenuation
coefficient at 650 nm was 0.89 m−1 at 1 meter depth at the
sampling station at the terminus of the 1-mile outfall pipe. At
the same sampling station, this increased to 1.78 m−1 during the

wastewater diversion event. After the diversion ended, the beam
attenuation coefficient decreased to 1.08 m−1. Additionally, the
absorption coefficient of CDOM at 400 nm prior to the diversion

at the same sampling station was 0.29 m−1. During the diversion,
it increased to 0.57 m−1. After the diversion, it decreased to 0.12

m−1. Here, the development and application of our local OLI
chl-a algorithm clearly improved chl-a retrievals relative to the
standard OC2 and OC3M retrievals. Overall, our local OLI chl-a

algorithm provided the best assessment of change in surface chl-a
concentrations related to the 2015 HTP wastewater diversion.

Environmental Impacts of the 2015 HTP
Wastewater Diversion
High-resolution TIRS and OLI were used to monitor two
major environmental impacts of the Fall 2015 HTP wastewater
diversion, SST and chl-a. Changes in SST were spatially limited
to cold plumes near the terminus of the 1-mile outfall pipe,
before mixing with warmer ambient surface water. The cold SST
anomaly provides a physical indicator of whether or not the
discharged wastewater has risen to the surface and provides some
indication of its transport direction. The surfacing wastewater
introduces excess nutrients, mainly ammonium, to the euphotic
zone, where it has been shown to stimulate phytoplankton
growth and production in the region (Reifel et al., 2013; Howard
et al., 2014; Caron et al., 2017; Gierach et al., 2017).

During the diversion event, cold water plumes were detected
by TIRS (Figure 3) and in situ measurements (not shown) at the
terminus of the 1-mile outfall pipe, indicating that, throughout
the diversion, the fresh wastewater plume consistently reached
the surface, entraining cold bottom water with it as it rose
through the water column. Pre- and post-diversion, when
wastewater was discharged through the 5-mile outfall pipe,
no SST anomalies were seen in the vicinity of either the 1-
mile or 5-mile outfall pipes. The 5-mile outfall pipe terminates
at 57m depth, allowing the discharged wastewater to mix
more thoroughly with ambient seawater and largely remain at
depth in association with density stratification (Washburn et al.,
1992; Uchiyama et al., 2014). TIRS data additionally shows
warmer SSTs along the coast, cooling in the offshore direction,
and an overall decrease in SST from September to November
(Figure 3). These trends are consistent with the inshore-offshore
temperature gradient and seasonally driven temperature decrease
characteristic of the coastal Santa Monica Bay region (Corcoran
and Shipe, 2011).

In the Southern California Bight, like many other coastal
waters dominated by seasonal upwelling, nitrogen is generally
the limiting nutrient for phytoplankton growth (Capone and
Hutchins, 2013). Nitrate is the dominant form of nitrogen
brought to surface waters via upwelling. Ammonium is
overwhelmingly the dominant form of nitrogen (92%) in
secondarily-treated wastewater discharged into the Southern
California Bight (Howard et al., 2014). In Santa Monica Bay,
the flux of nitrogen from upwelling and treated wastewater are
about equal (102×102 kg N km−2 y−1 and 99×102 kg N km−2

y−1, respectively), comprising over 95% of the total nitrogen flux
for the region (Howard et al., 2017). During normal operations,
treated wastewater is discharged from the 5-mile outfall pipe
at the head of a submarine canyon that quickly drops off to
over 100m depth (Figure 1), allowing for dilution and mixing
and limiting the impact on the near-surface phytoplankton
community. During the diversion, there was major concern not
only in regards to the magnitude of nitrogen being released into
surface waters, but also in regards to the species of the nitrogen
being released (Howarth and Marino, 2006) as it may cause
shifts in phytoplankton community structure due to different
nutrient preferences among algal taxa (Howard et al., 2007;
Ryan et al., 2017). Ammonium is the most biologically available
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form of nitrogen and is usually present in the euphotic zone
in limited concentrations because it is assimilated so quickly.
Therefore, such a large release of ammonium, specifically in the
fall, a time in which nutrients tend to be limited, can rapidly
stimulate phytoplankton blooms in this area. The preferential
stimulation of harmful algal blooms was a particular concern as
anthropogenic nutrients have been shown to be a factor in the
increased occurrence of these outbreaks (Anderson et al., 2002;
Heisler et al., 2008; Kudela et al., 2008). The increased frequency
and duration of phytoplankton blooms related to anthropogenic
nutrient loading have also coincided with increased incidents
of eutrophication of coastal waters over the last several decades
(Howarth, 2008; Paerl and Piehler, 2008).

During the 6-week 2015 HTP wastewater diversion, ∼1.61
× 106 kg of ammonium was released into the shallow coastal
waters of Santa Monica Bay. This amount of nitrogen loading
was likely to have greatly altered the composition of the
nitrogen pool available to phytoplankton populations.With these
concerns in mind, the main goal of this study was to use
high-resolution satellite remote sensing to monitor changes in
the biological response through chl-a concentrations in surface
waters during the wastewater diversion. Given the immense
amount of ammonium introduced into surface waters, the
observed increase in chl-a during the diversion in Santa Monica
Bay was not surprising (Figure 7). The maximum chl-a level
during the diversion in the ROI, using our local OLI chl-a
algorithm, was 9.99 mg/m3 on 10 October 2015 (Figure 9), far
exceeding the nominal chl-a value of 1.7± 0.33 mg/m3 measured
in situ (Corcoran and Shipe, 2011) and 0.61 mg/m3 remotely-
sensed by SeaWiFS (Nezlin and Li, 2003) for the same region and
time of year. The chl-a enhancement seen during the 2015 HTP
wastewater diversion was larger than that seen during the 2006
HTP diversion (Reifel et al., 2013; Gierach et al., 2017), not only
in terms of concentration but also in terms of spatial extent. This
can most likely be attributed to the much longer duration of the
2015 diversion (6 weeks as opposed to 3 days in 2006).

Prior to the diversion, the maximum chl-a concentration
measured by OLI, was 2.90 mg/m3 (Figure 9). After the diversion
event, on 27 November 2015, the maximum chl-a concentration
measured by OLI was 1.20 mg/m3. These maximum chl-a values
were found in the most nearshore region of Santa Monica Bay.
The general inshore-offshore gradient in chl-a detected before
and after the diversion is characteristic of the Southern California
Bight, with higher values of chl-a observed at shallower depths
(Kim et al., 2009; Corcoran and Shipe, 2011; Gierach et al.,
2017). However, during the diversion, high chl-a values, were
found further offshore and away from the terminus of the 1-
mile outfall pipe (Figures 7B–D). As exemplified in Figure 8 and
Supplemental Figure 6, the effects of the wastewater diversion
were not confined to the nearshore region. Given the complex
nature of currents and wind in the region, as demonstrated by
models of current velocity and direction, as well as by tracks
of experimental drifters placed in the water near the 1-mile
outfall pipe (City of Los Angeles, Environmental Monitoring
Division, 2017), and the volume of wastewater being discharged,
the nutrient- and organic matter-rich wastewater can be exported
offshore into the more oligotrophic region of Santa Monica

FIGURE 9 | OLI-derived chl-a concentration range in the region-of-interest for

each date of the time series shown in Figure 7. Prior to the diversion, chl-a

levels were relatively low with low variability within the ROI. During the

diversion, gray region, chl-a levels increased well above nominal values.

Post-diversion, chl-a values returned to nominal levels.

Bay where it can fuel primary production and heterotrophic
processes in areas that may not commonly experience such
conditions during the fall (Boehm et al., 2002; Landry et al., 2009).
Fortunately, testing in areas with enhanced chl-a as identified by
OLI found that no algal blooms produced harmful toxins during
the wastewater diversion (City of Los Angeles, Environmental
Monitoring Division, 2017).

Satellite chl-a data clearly show the spatial contrast between
productive coastal waters and oligotrophic offshore waters along
the coast of California (Eppley, 1992; Thomas et al., 1994;
Legaard and Thomas, 2006). However, as noted in previous
studies (Kahru and Mitchell, 1999; Darecki and Stramski, 2004;
Kim et al., 2009; Kahru et al., 2012; Gierach et al., 2017),
satellite chl-a data in very nearshore waters have systematic and
variable errors due to the proximity of land (e.g., adjacency
effects, breaking waves) and due to the optical complexity of
the waters caused by varying concentrations of CDOM and
inorganic suspended particles, and bottom reflectance. Errors
due to proximity of land appeared to be less pronounced in high-
resolution Landsat 8 OLI (30m) compared toMODIS. The newly
derived local chl-a algorithm, tuned for the optically complex
nearshore environment of Santa Monica Bay, helped reduce the
discrepancy between satellite chl-a and in situ chl-a.

In this study, we demonstrated the enhanced performance
of TIRS and OLI for detecting mesoscale nearshore features,
in terms of SST and surface chl-a concentrations. Although
TIRS and OLI show great promise for monitoring water quality
indicators in coastal environments, Landsat 8 has a repeat cycle
of 16 days. This infrequent coverage yielded a limited number of
satellite overpasses during a diversion event and did not capture
the complete biophysical response to the wastewater diversion
event. Phytoplankton blooms and die-offs were captured by
in situ monitoring on timescales less than the 16-day repeat
cycle. In contrast to Landsat 8, MODIS has a coarser spatial
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resolution but daily repeat cycle. In the future, coastal water
quality monitoring efforts can employ additional high-resolution
sensors with improved temporal resolutions, such as the two
Sentinel-2 MultiSpectral Instruments (MSI) with a 5-day repeat
cycle and Landsat-9, predicted to launch in December 2020,
with an 8-day offset from Landsat 8 repeat cycle, to capture the
environmental response over greater temporal resolution. This
study was the first to use high-resolution Landsat 8 TIRS and OLI
for coastal water quality monitoring of wastewater diversions. By
employing satellite monitoring in concert with in situ sampling,
we were able to develop local empirical chl-a algorithms for
both OLI and MODIS to gain an improved understanding of the
biophysical dynamics occurring within Santa Monica Bay during
a wastewater diversion event.
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Román M. Vásquez-Elizondo 3, Susana Enríquez 3 and Heidi M. Dierssen 2

1Numerical Optics Ltd., Tiverton, United Kingdom, 2Department of Marine Sciences, University of Connecticut, Groton, CT,
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The capability for mapping two species of seagrass, Thalassia testudinium and

Syringodium filiforme, by remote sensing using a physics based model inversion method

was investigated. Themodel was based on a three-dimensional canopymodel combined

with a model for the overlying water column. The model included uncertainty propagation

based on variation in leaf reflectances, canopy structure, water column properties, and

the air-water interface. The uncertainty propagation enabled both a-priori predictive

sensitivity analysis of potential capability and the generation of per-pixel error bars when

applied to imagery. A primary aim of the work was to compare the sensitivity analysis

to results achieved in a practical application using airborne hyperspectral data, to gain

insight on the validity of sensitivity analyses in general. Results showed that while the

sensitivity analysis predicted a weak but positive discrimination capability for species, in

a practical application the relevant spectral differences were extremely small compared

to discrepancies in the radiometric alignment of the model with the imagery—even

though this alignment was very good. Complex interactions between spectral matching

and uncertainty propagation also introduced biases. Ability to discriminate LAI was

good, and comparable to previously published methods using different approaches. The

main limitation in this respect was spatial alignment with the imagery with in situ data,

which was heterogeneous on scales of a few meters. The results provide insight on

the limitations of physics based inversion methods and seagrass mapping in general.

Complex models can degrade unpredictably when radiometric alignment of the model

and imagery is not perfect and incorporating uncertainties can have non-intuitive

impacts on method performance. Sensitivity analyses are upper bounds to practical
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capability, incorporating a term for potential systematic errors in radiometric alignment

may be advisable. While T. testudinium and S. filiforme were too spectrally similar to be

discriminated purely on spectral grounds, mapping of these, and other species may be

achievable by exploiting co-incident factors based on ecological zonation.

Keywords: seagrass, remote sensing, inversion, hyperspectral, leaf area index, species

INTRODUCTION

Seagrasses are a key biotic component of coastal environments
and provide numerous ecosystem services such as oxygen
production, regulation of water quality, sediment stabilization,
protection from wave energy (Fonesca and Cahalan, 1992),
organic and inorganic carbon sequestration (Enríquez and
Schubert, 2014), and nursery habitats for fish of commercial
importance (Beck et al., 2001) or that have a role in associated
habitats such as coral reefs (Nagelkerken et al., 2002; Verweij
et al., 2008). Increasingly ecosystem services are recognized to
have real economic value (Costanza et al., 1997) and seagrasses
fall under a number of national and international initiatives
for protection, such as the Water Framework Directive in
Europe (Gobert et al., 2009), the Convention on Biological
Diversity (United Nations, 1992), the Ramsar convention
(Ramsar Convention Secretariat, 2013).

Using satellite or airborne imagery for monitoring and
management of seagrasses is an attractive proposition given their
global and spatial extent, estimated at 177,000 km2 (Green and
Short, 2003). Published demonstrations include estimation of
canopy biophysical parameters such cover, biomass, leaf area
index, and species (Mumby et al., 1997; Phinn et al., 2008;
Knudby and Nordlund, 2011). The majority of approaches
use classification or regression based on spectral reflectance
in one or more wavelength bands. That these methods can
deduce biophysical parameters indicates that, at least under
some conditions, the information is present in the remote
sensing reflectance to make these determinations. However, from
empirical techniques it is difficult to infer the transferability
and general limitations: would the same result be achievable at
another site, for another species, with different depth or water
conditions?

Another approach to benthic mapping by remote sensing
is that of physics-based approaches, which rather than using
in-situ empirical training data, rely on the parameterization of
a physical model for spectral reflectance as seen by a remote
sensing instrument. The model is then “inverted” by successive
approximation (Lee et al., 1999) or look-up tables (Mobley et al.,
2005) to deduce which biophysical parameter values can produce
the reflectance in each pixel. The model incorporates a range
of possibilities for bottom type and the optical properties of
the water, this represents what is not known about the site or
can vary from pixel to pixel. These variations can form the
basis for uncertainty propagation, the possibility of multiple
solutions within the bounds of instrument or environmental
noise determines the fundamental limitation of the method
(Hedley et al., 2012b). In addition, the underlying model can
be used for sensitivity analysis before image processing. While

sensitivity analyses and uncertainty propagation are key tools
for predicting capability and informing on sensor design (Lubin
et al., 2001; Hochberg and Atkinson, 2003; Hedley et al., 2012b,
2015; Botha et al., 2013) their results are not often directly
compared to practical image analyses, to determine if the
predictions of the sensitivity analysis are borne out in practice.

Physics-based inversion methods have been applied in
seagrass environments (Dekker et al., 2011; Hedley et al.,
2015) and are in theory more transferable, since they can be
parameterized generically and are not linked to any specific
site or imagery. Being based on a physical model rather
than statistical inference, these methods also facilitate greater
understanding of the fundamental limitations and uncertainties.
However, applying physics-basedmethods presents a different set
of challenges. In particular the input parameters and the model
should encompass all the major sources of variation, otherwise
spectra resulting from those variations may be non-physical from
the point of view of the model, leading to errors in estimations
and under-estimates of the uncertainty. For the same reason,
atmospheric, and water interface corrections (sun-glint) must
be performed with high accuracy (Goodman et al., 2008), any
discrepancies in the radiometry of the imagery with respect to
that of the model will lead to inaccurate results.

In this paper we present a two-species physics-basedmodel for
mapping seagrass species, canopy density (leaf area index, LAI),
and depth. As an advance to previous work (Hedley et al., 2015)
the new model incorporates two species, Thalassia testudinum
and Syringodium filiforme, and incorporates uncertainty in the

leaf reflectance of both species, in addition to variation in
canopy structure, water optical properties and depth. Here we
describe the application of the model in a sensitivity analysis
and to hyperspectral imagery of Florida Bay. A key aim of
the work was to gain insight into the relationship between the
theoretical and practical method performance, in the context of
the included uncertainties. For example, does including more
uncertainties lead to an algorithm that has poor discrimination
both theoretically and in practice? Which objectives: depth,
LAI or species; are most compromised by the introduced
uncertainties, and again does the theory (sensitivity analysis)
match the practice (image application)? The results are relevant
for improving the incorporation of uncertainties into physics-
based methods, and for interpreting sensitivity analyses in the
context of practical applications.

In summary the key objectives of the work presented here
were:

1) Develop the conceptual framework for a multi-species model
with variation in leaf reflectance, canopy structure, depth, and
water optical properties, and parameterize that model.
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2) Understand which sources of variation and factors are
theoretically limiting in the mapping of species and leaf area
index, with respect to that model.

3) Assess the capability of the method in a field test with
hyperspectral airborne imagery.

4) Compare the predicted capability to the actual capability, and
to understand the basis of discrepancies between theoretical
and achievable performance.

5) Draw conclusions on the capability for mapping seagrass
species and leaf area index by remote sensing.

METHODS

Overview
The following sections discuss successive components of the
methods starting with the canopy reflectance model (Figure 1A);
the above-water reflectance model which combines the canopy
model and a water column model (Figure 1B); the sensitivity
analysis used to understand the fundamental limitations of
spectral separability, and finally the image analysis (Figure 1C).
The steps in the development of the physics-based model are
similar to those described in Hedley and Enríquez (2010), Hedley
et al. (2015), so here the description is briefer and focuses on the

key differences in the current work. The two species considered
are T. testudinium and S. filiforme, for readability these are
henceforth referred to simply as Thalassia and Syringodium.

Canopy Reflectance Model
The first step was to conduct many runs of a three-dimensional
canopy model (Figure 1) for monospecific Thalassia,
Syringodium, and 50:50 mixed canopies in terms of LAI, in
order to establish the distribution of top of canopy spectral
reflectance as a function of species, LAI, and canopy structure
and position. Seagrass meadows are not monospecific in reality
but often either Thalassia or Syringodium can represent greater
than 70% of the total above-ground biomass of the macro-phyto-
benthic community in Caribbean coastal habitats (Enríquez
and Pantoja-Reyes, 2005). A range of community compositions
are also common, associated with environmental conditions
(Medina-Gómez et al., 2016). By including monospecific and
50:50 canopies in the model the idea was to cover the range of
what might occur, with the concept of a mixed canopy included.
The technical details of the model itself are described in Hedley
(2008), Hedley and Enríquez (2010), and Hedley et al. (2014,
2015). Table 1 gives the full details of the treatments included in
the model.

The factors of canopy structure and position were considered
a source of variation, leaves were modeled as flexible strips
that under simple model of wave motion assume naturalistic
canopy positions, of which four treatments were used, two of
each termed loosely “upright” and “flattened” (Table 1). The
leaves are modeled as reflecting and transmitting surfaces 0.9
cm wide for Thalassia and 0.25 cm wide for Syringodium. In
reality Syringodium leaves are circular in cross-section, however
most previous modeling work and measurements of reflection
and transmission treat Syringodium leaves in the same way as
flat leaves (Thorhaug et al., 2007; Stoughton, 2009). The optical

data to model them as circular volumes is not available and
would be difficult to obtain in practical terms. The canopy model
is also designed such that all leaves originate at the substrate
whereas, unlike Thalassia, Syringodium has a short shoot from
which leaves branch (Eiseman, 1980). Since the application
here is remote sensing and not within-canopy light fields for
photobiology (Hedley et al., 2014) these compromises are most
likely optically insignificant in the context of the other factors
such as canopy position (Figure 1), depth, and water column
optical properties.

An important consideration was to incorporate variation
in leaf optical properties, since the previous model (Hedley
et al., 2015) assumed every Thalassia leaf had the same
reflectance. In reality leaf reflectance varies at many scales:
along the leaf length, between leaves and between sites (Hedley
and Enríquez, 2010). Using only a single reflectance and
absorptance spectra for all leaves represents an underestimate
in that component of spectral variation, but how to quantify
the appropriate variation at given spatial scale is not obvious.
In this study each species was represented by three pairs
of reflectance and absorptance spectra, corresponding to low,
medium and high reflectance, coupled with high, medium, and
low absorptance (Figure 2). The reflectance and absorptance
data for Syringodium and Thalassia leaves were collected using
samples of clean leaves from the Puerto Morelos reef lagoon,
Yucatan, Mexico. Leaf reflectance spectra were measured using
an Ocean Optics USB2000 spectroradiometer according to the
methods described in Vásquez-Elizondo et al. (2017). Reflection,
RL(λ), was measured with a 2mm diameter fiber optics placed
over the surface of the sample at an angle of 45◦C and a
distance of 5mm with a Teflon panel as a reference. Diffuse
illumination was provided from light reflected from a semi-
sphere coated with barium oxide (BaO) illuminated was with
a white LED ring (450–650 nm) located around the sample,
plus violet-blue LEDs and halogen lamps, to increase the diffuse
illumination below 450 nm and above 650 nm (Vásquez-Elizondo
et al., 2017). Transmission spectra were determined as TL(λ)
= 10−D(λ), whereD(λ) denotes absorbance, using a conventional
spectrophotometer (AMINCO DW2, USA) controlled by an
OLIS data collection system equipped with an opal-glass in
front of the detector, following the methodology proposed by
Shibata (1959) and described in Enríquez (2005) and Vásquez-
Elizondo et al. (2017). Absorptance estimations were calculated
as AL(λ) = 1 − TL(λ) − RL(λ). For Syringodium, leaves
were sampled from six sites and the three reflectance and
absorptance pairs were selected from 193 optical determinations
as representative of the range in the data. For Thalassia
absorptance the model described in Hedley and Enríquez (2010)
was used to generate spectral absorptance based on 50, 60,
and 70% PAR absorptance, a typical range as shown in that
paper. Additional reflectance measurements of leaf samples,
not included in Hedley and Enríquez (2010) were taken to
provide the three reflectance spectra (Figure 2A). For each
individual modeled top of canopy reflectance (Table 1) one of
the reflectance-absorptance pairs was selected for each species.
This means that the spatial scale of the variation that is included
was assumed pixel-to-pixel in a remote sensing context. This
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FIGURE 1 | Overview of seagrass reflectance model and analysis. (A) Canopies are parameterized by four factors: Composition, leaf area index (LAI), leaf lengths,

and leaf position. (B) A three dimensional canopy model estimates the top of canopy reflectance over all conditions and the results are reduced to a simpler functional

form that includes the water column. (C) A spectral matching procedure applies the simplified model in sensitivity analyses and image processing.

TABLE 1 | Experimental design of model runs for establishing the variation of above canopy diffuse reflectance with LAI and other factors.

Leaf length LAI Position Sand reflectance Leaf reflectance SZA Depth Random repeats Total

Thal. x 3 x 11 x 4 x 1 x 1 x 2 x 3 x 5 3,960

short

medium

long

Max. ∼6.5 2 upright

2 flattened

A random choice

of 1 out of 3 each

time

26◦

56◦
1m

5m

10m

Sy. x 2 x 9 x 4 x 1 x 1 x 2 x 3 x 5 2,160

short

long

max. ∼5.5 2 upright

2 flattened

A random choice

of 1 out of 3 each

time

Mix x 1 x 9 x 4 x 1 x 1 x 2 x 3 x 5 1,080

Thal.

medium

Sy.

short

2 upright

2 flattened

A random choice

of 1 out of 3 each

time for Thal. and

Sy.

Thal, were monospecific Thalassia canopies; Sy, Syringodium; and Mix was a mix of Thalassia and Syringodium that is on average 50:50 in terms of LAI. SZA denotes solar zenith angle.

For Thalassia leaf length distributions in terms of mean and standard deviation were: short 6 ± 3 cm; medium 12 ± 6 cm; long 24 ± 12 cm, for Syringodium, short 25 ± 10 cm; long

50 ± 20 cm. Each column shows the number of treatments and the final column the number of canopy model runs used to characterize the distribution of top of canopy reflectances.

inclusion of variation in leaf reflectance is approximate, as
the appropriate variation at a given spatial scale is unknown.
However, to include no variation at all would be the weakest

treatment because it could lead to spectral differences between
the species for purely numerical reasons. Two spectra, as
single data points, could have a distinguishing feature at
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FIGURE 2 | Leaf level reflectances and absorptances as used in the modeling for (A,C) Thalassia and (B,D) Syringodium. Each plot shows three lines, corresponding

to the high, medium, and low reflectance variants (high reflectance being paired with low absorptance etc.).

random. Further discussion of these questions is deferred to the
Discussion but the key point is that the specification of this
variation (Figure 2) must be borne in mind when interpreting
the results.

The reflectance of the underlying sand was the same as that
used in Hedley et al. (2015), being a typical calcium carbonate
sand reflectance spectra with increasing reflectance in the red
to a maximum of about 40% (Hedley et al., 2015). Note that in
Hedley et al. (2015) the leaf reflectances were modified to include
a component of sand reflectance to account for the observation
that in some sparse Thalassia canopies there was sediment on the
leaves, that term was not included here.

To factor in variations due to canopy BRDF (Bi-directional
Reflectance Distribution Function) with repeat runs canopies
were illuminated from two solar zenith angles, 26◦ and 56◦,
by sky radiance distributions computed by libRadtran, (Mayer
and Kylling, 2005), and at three depths, 1, 5, 10m, with the
directional light field at depth computed by PlanarRad1. These
factors are discussed in more detail in Hedley et al. (2015). In
the incorporation of the water column to the image analysis
algorithm by necessity the top of canopy reflectance is considered
Lambertian. Hedley et al. (2015) showed this simplification
was insignificant in comparison to other factors but the
propagation of the BRDF related uncertainty is retained for
completeness.

1www.planarrad.com

The canopy model was configured to calculate in 16
spectral bands of 20 nm width over the range 400–720 nm
and all reflectances were resampled to these bands. The
spectral reflectance properties of Thalassia and Syringodium
are dominated by chlorophyll a and b therefore no species-
dependent fine scale spectral features are lost by this process
(Figure 2).

Top of Water Column Reflectance Model
The next step was to develop a model of top of water column
reflectance that was fast enough in application to be used for
image analysis. For each of the three canopy species structures,
mono specific Thalassia and Syringodium and the 50:50 mix, the
reflectance at each wavelength was fitted to an exponential model
of the form,

R (λ) = A (λ) exp
[

−k (λ) × LAI
]

+ B (λ) + ε (λ) (1)

Where the A(λ), k(λ), and B(λ) values were deduced by
regression over all the canopymodel results for each canopy type.
An exponential decrease in reflectance with LAI was shown to
work well in the previous study (Hedley et al., 2015). The term
ε(λ) represents a set of spectra, which are the residual differences
between the regression model and the actual spectra, largely due
to the factors that introduce variation. It is assumed that ε(λ) can
be treated as random since we are not interested to deduce factors
such as canopy position. A model for the range of magnitude and
shape of ε(λ) is established by principle components analysis and
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ε(λ) is reduced to a wavelength independent single parameter
e1, which ranges from 0 to 1 (Hedley et al., 2015). A check is
performed that the full model, including the component captured
by e1 can replicate all the top of canopy spectra to within
acceptable accuracy (Figure 3). On this basis one error term was
judged sufficient, so top of canopy spectral reflectance becomes
a function of species composition (canopy type), leaf area index,
and the random error term drawn from a uniform distribution of
0 to 1.

R (λ) ≈ f
(〈

type
〉

, LAI, e1, λ
)

(2)

This expression was embedded into Lee et al.’s (1998, 1999)
semi-analytical model for shallow water remote sensing. A input
parameter of Lee et al.’s model is bottom spectral reflectance,
R(λ), so using Equation (2) this input can be eliminated and a
function of the following form implemented,

Rrs (λ) ≈ f
(

P,G,X,H,
〈

type
〉

, LAI, e1, λ
)

(3)

where the remote sensing reflectance, Rrs(λ), at wavelength λ

is calculated dependent on the amount of phytoplankton (P),
dissolved organic matter (G), backscatter (X), depth (H), and
bottom reflectance R(λ). LAI, <type>, and e1 represent the
canopy, where<type> is a categorical parameter (integer) taking
the value 0, 1, or 2 for Thalassia, Syringodium, or mixed canopy
type respectively. This model can be used in both forward
mode, to estimate the remote sensing reflectance for a specific
situation represented by the input parameters, or in inverse mode
using a successive approximation technique such as Levenberg-
Marquardt (Wolfe, 1978), where the input parameters that give
the best least-squares match to a given remote sensing reflectance

FIGURE 3 | The five Syringodium dominated locations (S1-S5) and three

Thalassia dominated locations (T1-T3) where the in situ LAI and depth data

points were located. Image produced using Sentinel-2A data from the

European Space Agency.

are deduced. Since <type> in Equation (3) is not a continuous
parameter, for inversion three best-fit solutions are found for
<type>= 0, 1, 2, and the overall best fit is considered the optimal
solution and determines canopy composition type. The possible
range of the parameter values for all inversions in this study were
P [0, 0.2]; G [0, 0.5]; X [0, 0.05]; H [0, 20]; LAI [0, 6]; e1[0, 1]
(Table 2). The possible canopy type was in some cases restricted,
or all three of Thalassia, Syringodium, or 50:50 mix were used.
For further details of what underlies Equation (3) see Hedley et al.
(2009, 2015).

In the sensitivity and image analyses, Equation (3) was
evaluated at a wavelength resolution corresponding to a subset
of the bands of the PRISM hyperspectral data, specifically 107
bands with centers from 410 to 710 nm. The canopymodel results
and other spectrally tabulated coefficient data were resampled to
these wavelengths by linear interpolation. Local optima in the
inversion were avoided by repeating each inversion five times
with a random parameter start point, and the best matching
solution of the five taken.

Sensitivity Analysis
The model for remote sensing reflectance (Equation 3) was
applied in a sensitivity analysis to deduce the fundamental
uncertainty, which occurs when two different physical situations
lead to the same remote sensing reflectance within a tolerance
that is negligible in practical terms. In other words, spectra are
so close that they cannot be reliably differentiated. The model
included sources of variation in spectra from components of the
system up to the top of the water column, with the intention
that it would be applied to atmospheric and glint corrected
imagery. Optical processes that occur above the water column
that cause pixel-to-pixel variation were outside the scope of the
model and are effectively noise. In this context the fundamental
uncertainty can be deduced by noise perturbed self-inversion of
the model. i.e., a specific set of parameters are used to model
remote sensing reflectance from Equation (3), a random noise
term is added on, then the model is inverted to see if the input
parameters can be recovered. The variability in the recovered
parameters is the fundamental uncertainty of the model in the
context of the noise. In the sensitivity analysis we used a spectrally
correlated noise model (Hedley et al., 2012a; Garcia et al., 2014)
based on the covariance matrix over a deep water area of the
Florida Bay PRISM imagery (see next section). Being empirically
derived, the covariance matrix captures all sources of pixel to
pixel variation that occur over the deep water area, including
both environmental effects and instrument noise. A spectrally
correlated model is used because a large part of the noise is
residual surface glint, even after images have been glint corrected
(Kay et al., 2009), and so is not independently random in each
band.

The model of Equation (3) was used to randomly generate
spectral remote sensing reflectances with parameters being drawn
from uniform distributions over the ranges in Table 2. Depth
ranged from 0 to 10m, LAI from 0 to 5. Five separate analyses
were conducted, three where canopy type was fixed as only
one of the basic classes: Thalassia, Syringodium, or a 50:50
mixture, one where canopy type could be one of either Thalassia
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TABLE 2 | Sensitivity analysis design showing range of parameters used for forward modeling and for inversion.

Forward modeling Inversion

Analysis P G X H LAI <type> e1 P G X H LAI <type> e1

Thal. 0.03 0.05 0.01 0–10 0–5 1 0–1 0–0.2 0–0.5 0–0.05 0–20 0–6 1 0–1

Sy. 2 2

50% Mixed 3 3

Thal. & Sy. 1, 2 1, 2

All 3 1, 2, 3 1, 2, 3

These inversion parameters were also used for the image analysis. Canopy type <type> corresponds to: 1, Thalassia; 2, Syringodium; 3, 50% mixed by LAI.

and Syringodium, and one where each modeled spectra could
arise from any of the three classes. The idea was to simulate
varying degrees of canopy composition changes from pixel to
pixel, and investigate the consequences of introducing canopy
type variability. All five analyses were performed three times:
(1) using results with leaf level reflectance variation (Figure 2);
(2) using only canopies modeled with no leaf level variation
in reflectance and absorptance: using the medium reflectance
and absorptance (middle lines in Figure 2); and (3) using the
canopy reflectances directly from the 3D canopy model, hence
bypassing the simplified reflectance model (Equation 1) and
using more “realistic” canopy reflectances in the forward model
while retaining the simplified model in the inversion. The aim
was to understand the consequences of introducing leaf level
variation to the fundamental uncertainty, and also to verify if
the performance of the simplified canopy model against the 3D
canopy model which it is based. For the forward modeling the
water optical properties were fixed at the values shown inTable 2.
This is equivalent to assuming an area of spatially homogenous
water optical properties.

For each analysis, 15 in all, 2,500 random spectra were
generated by the forward model, random noise was added
on and then the inversion model was applied to attempt to
recover the input parameters. The resulting dataset facilitated an
investigation into the various sensitivities of the model and is
presented in the Results and Discussion section.

Image Data Analysis
The inversion model was applied to hyperspectral airborne
imagery acquired by the Portable Remote Imaging Spectrometer
(PRISM) instrument (Mouroulis et al., 2014) in Florida Bay,
January 2014 (Dierssen et al., 2015), using 107 of the PRISM
bands from 410 to 710 nm. Details of the imagery pre-processing
are given in Hedley et al. (2015), but in short this consisted
of: atmospheric correction and conversion to Rrs(λ) using a
modified version of the ATREM radiative transfer model (Gao
and Davis, 1997); per-pixel sun-glint correction by use of
the Rayleigh-corrected reflectance at 980 nm; and a vicarious
calibration adjustment based on above-water spectral reflectance
measurements taken with an ASD FieldSpec 4 co-incidentally
with image acquisition (Dierssen et al., 2010). The imagery is at
∼1m resolution. The above-surface solar zenith angle was ∼30◦

at the time of acquisition.

A number of flight lines were available, some of which covered
sites at which canopy composition, LAI, and depth had been
recorded co-incident with GPS data (see Hedley et al., 2015
for methods). The data included areas that were dominated by
Thalassia or Syringodium, typically located ocean side or bay
side respectively (Figure 3). The analysis utilized eight locations
from three flight lines that covered the in-situ data locations,
and varied in pixel size from ∼1 to 2m. Five locations (S1-S5)
were Syringodium dominated (close to monospecific) and three
(T1-T3) where Thalassia dominated. Each location contained
between two and 12 in-situ data points of LAI determinations
based on 20 × 20 cm quadrats in transects spaced 2m apart.
In total 42 data points were available however the seagrass
beds were patchy and in some cases visual inspection indicated
that the location of the data in the imagery was only reliable
to within a few meters. For this reason precise image to data
registration of the 42 individual points was not possible and the
data was processed as grouped into the eight locations. At each
location the mean and standard deviation of LAI estimates from
4-pixel window (∼4–8m dependent on pixel size) around the
data points was taken, and compared to the mean and standard
deviation of the in-situ data points at that location. Depth data
was also available for each of the eight locations; this was assumed
constant at each location.

Parameterization of the model for image processing was the
same as described in the sensitivity analysis, inversion ranges as
in Table 2 and with all three bottom composition types included.
A deep water area at the end of the flight line containing
the Thalassia dominated canopies was used to characterize the
above-surface noise covariance matrix (the same noise matrix as
used in the sensitivity analysis), the other flight line did not have
a suitable deep water area for noise assessment, so the same above
surface noise was assumed. For each pixel 20 noise perturbed
inversions were performed to provide the mean results and 90%
confidence intervals for the parameters of interest, in particular
LAI and depth.

RESULTS AND DISCUSSION

Variation in Modeled Top of Canopy
Reflectance
The leaf level reflectance measurements of Thalassia
and Syringodium (Figure 2) were consistent with those
measured by others for those species and for other seagrasses
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(Lüning and Dring, 1985; Zimmerman, 2003; Runcie and
Durako, 2004; Enríquez, 2005; Thorhaug et al., 2007; Stoughton,
2009) although our reflectances tended to be higher at the peak
of 550 nm. Consistent with Enríquez (2005) and Thorhaug et al.
(2007) the spectral shapes of the leaf reflectance of Thalassia
and Syringodium were almost identical to each other and the
reflectance of Syringodium at 550 nm was slightly higher than
Thalassia (Figure 2).

The first question of interest in this study is how the
sources of variation in the 3D canopy model affected the top
of canopy reflectances for Thalassia and Syringodium, and in
particular the relative contribution of variation of leaf level
reflectance. The input data on reflectance and absorptance of
Thalassia and Syringodium leaves contains a wider variation for
Thalassia than Syringodium, especially in terms of absorptance

(Figure 2). This has a consequence for the variation in the
top of canopy reflectance (Figure 4). For Thalassia at an LAI
of 3 the variation in reflectance at 630 nm was around three
times greater when leaf level variation is included (Figure 4B vs.
Figure 4A), whereas for Syringodium the variation in reflectance
was relatively unaffected by the introduction of leaf level variance
(Figure 4D vs. Figure 4C). At a given LAI the “base level”
variation induced by variation in canopy structure and position
was similar for Thalassia and Syringodium (Figures 4A,C); a
small level of variation in leaf optical properties is negligible in
comparison (Figure 4D) but clearly above a certain threshold of
leaf level variation the variation in canopy reflectance becomes
much greater (Figure 4C). In our data Syringodium was below
this threshold and Thalassia was above it. Whether this level of
variation is appropriate for the spatial scale of the remote sensing

FIGURE 4 | Top of canopy (TOC) reflectance at 630 nm for modeled (A,B) Thalassia and (C,D) Syringodium canopies under all treatments but differentiated by (A,C)

medium leaf reflectances only and (B,D) all three leaf reflectance and absorptance treatments.
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analysis (1–2m pixels) remains unknown, as the data were not
collected with this objective in mind, this will be discussed later.

Spectral Separability in Top of Canopy
Reflectance
Given the level of variation introduced by canopy position,
structure, and leaf level variations (Figure 4) the next question is
how much spectral separability for determining LAI or between
canopy compositions of Thalassia and Syringodium remained in
the top of canopy reflectances? While this will be answered more
comprehensively by the sensitivity analysis an initial band ratio
plot for 450 and 550 nm for all of themodeled canopy reflectances
indicates that separability in themodel data is possible (Figure 5).
Considering LAI first (Figure 5B) there was a clear trend of
darkening in both bands where LAI graduates across the plot
area. Despite a few isolated places where, for example, LAIs of
5 were mixed with LAIs of 3, there is a monotonic trend in
LAI in both bands up to LAIs of around 4. This is consistent
with the previous Thalassia only model (Hedley et al., 2015) and
suggests the introduction of Syringodium does not compromise
this capability.

The ability to spectrally discriminate species in the modeled
top of canopy reflectances is less clear (Figure 5A). Syringodium
was distributed in the upper range of the variation with respect
to reflectance at 550 nm, in part at least because leaf reflectance
was generally higher at 550 nm (Figure 2), but still overlaps
with Thalassia in the two-band space of 450 and 550 nm. At
any specific LAI the species were separable by the ratio of
reflectance at 550–450 nm (Figure 5C), but for ratio values less
than around eight either species could be present but with
different LAIs. There is a region on the left of Figure 5A where
only Syringodium occurs, corresponding to an LAI greater than
3 (c.f. Figure 5B), this corresponds to reflectance ratios greater
than 8, where only Syringodium occurs in Figure 5C. In this
region Syringodium could be distinguished from Thalassia in top
of canopy reflectance using only the bands at 450 and 550 nm.
The basis of this is that in our data at 550 nm Syringodium leaves
were slightly brighter than Thalassia to an extent that is beyond
the incorporated variation, but at 450 nm they were similar.

Capability for discrimination using all the spectral bands can only
be greater, but water column variations and above surface noise
will compromise that ability.

Simplified Model for Top of Canopy
Reflectance
The next set of results verified that the simplified model for top
of canopy reflectance (Equation 1) for each canopy composition
adequately captured the variations previously discussed. The
question is how much is “lost” going from the 3D model
reflectances to the simplification of Equation (1). This is also
checked later in the sensitivity analysis, but the first evaluation
is to consider the magnitude of the residual spectra between the
3D canopy model reflectances and those that can be produced
by the simplified model (Figure 6). In all cases the spread of the
residuals was very small compared to the range of reflectances
captured. For wavelengths lower than 700 nm, over all six models
70% of the 90% confidence intervals on the residuals were less
than 5% of the reflectance range, and nowhere were the residual
90% confidence intervals greater than 10% of the reflectance
range. Residual ranges greater than 5% of the reflectance only
occur when leaf level optical variation is introduced. This
indicates that leaf level optical variation does introduce different
modes of variation that can’t be captured by a single variation
term (e1, section Top of Water Column Reflectance Model). But
since the effect is small a single error term was retained for this
study.

Sensitivity Analysis—Bathymetry
The sensitivity analysis indicated that the fundamental
uncertainty for bathymetry was very low under all treatments
(Figure 7). Even for the treatment that included the most
sources of variation, including all three canopy compositions
of Thalassia, Syringodium, and 50% mixtures, 90% confidence
intervals on bathymetry retrieval were better than ±1m at
10m depth (Figure 7J). For the other treatments the confidence
intervals on bathymetry retrieval mirrored the amount of
variation included in the model; the confidence intervals for
canopy treatments of single composition types with no leaf

FIGURE 5 | Distribution of top of canopy (TOC) reflectance for all modeled Thalassia and Syringodium canopies with 26◦ solar zenith angle, in two band space: 450

and 550 nm. (A) Distribution by species, (B) distribution color coded by LAI, (C) band ratio of reflectance at 550–450 nm, as a function of LAI. Note that all points are

plotted in a random order so the dominance of a color in particular area does not arise simply because other points are obscured.
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FIGURE 6 | Magnitude of discarded residuals for each of the simplified canopy models for (A,B) Thalassia, (C,D) Syringodium, (E,F) 50% mixed canopies of

Thalassia and Syringodium, and for (A,C,E) canopies where leaf reflectance is fixed, (B,D,F) variable leaf reflectance. The upper region of each plot shows the full

range of reflectances from all treatments in the 3D canopy model, the lower line shows the magnitude of the discarded residual error when the model is simplified, in

terms of 100, 95, and 75% of the inputs, i.e., 75% of the residuals lie with the bounds of the 75% shaded region.

level variation were particularly narrow (Figures 7A,C,E). That
bathymetry is a robust result under physics based inversion
approaches is well-established (Dekker et al., 2011) and this

result is as expected. What is important here is that introducing
different canopy compositions and leaf level optical variation
made very little difference to the fundamental uncertainty in
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FIGURE 7 | Sensitivity analysis results for bathymetry. Dots are 2,500 noise-perturbed self-inversion results, lines are mean 90% confidence intervals binned in steps

of 0.5m. Treatments are (A–F) single benthic types of Thalassia, Syringodium and 50% mixed canopies, plus (G–J) models with multiple bottom types. Right and left

columns are with and without variation in leaf reflectance.
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bathymetry. However, being an estimate of the uncertainty from
self-inversion of the model this is an upper bound on what could
be expected in a real application. The possibility of errors in
image pre-processing is neglected, for example.

Sensitivity Analysis—Leaf Area Index
Leaf area index was a less robust result than bathymetry
(Figure 8). The confidence intervals for LAI retrieval are
relatively large, especially for LAIs greater than 2. This
corresponds to the increasing saturation of the LAI effect on
reflectance as canopy reflectance becomes less, beyond a certain
LAI no further darkening can occur and approaching this limit
uncertainties become high (Figure 5) (Knyazikhin et al., 1998).
In the inversion parameter limits (Table 2) the upper limit on the
LAI confidence interval is capped at 6 and this explains why the
upper confidence interval curves toward the horizontal for high
LAIs (Figure 8). The upper limit acts to reduce the uncertainty
and is akin to including the a priori information that LAIs greater
than 6 cannot occur. Including a priori limits or probabilities is
useful for reducing uncertainty in inversion methods (Jay and
Guillaume, 2016) but is unsuitable if anomalies are of interest
or the bounds are too restrictive. Other seagrass species such
as Posidonia sinuosa and Posidonia oceanica can achieve much
higher LAIs (e.g., >8 reported in Collier et al., 2007; and >12
reported in Olesen et al., 2002, respectively) and in that case it
would be preferable that the uncertainty accurately reflects this.

Leaf area index was also more sensitive to the specific canopy
composition treatment or inclusion of leaf level variation, but
not exceptionally so and without any clear pattern (Figure 8).
Introducing leaf level optical variation in general increased
uncertainty in LAI retrievals, as expected, but the effect
was relatively small. Interestingly, without leaf level variation
Syringodium LAI determinations had higher uncertainty than
for Thalassia (Figure 8C vs. Figure 8A). This was likely the
result canopy position and structure, the longer and thinner
leaves of Syringodium will have a greater effect on the
apparent areal density as viewed from above, when they assume
different positions. The higher leaf level variation in Thalassia
(Figure 2) more than compensated for this factor and when
leaf level variation was included Thalassia had slighter higher
uncertainty (Figures 8B,D). Overall though, all treatments
performed similarly, and introducing a model with two species
(Figures 8G,H) or two species plus mixtures (Figures 8I,J) did
not greatly increase the uncertainty in LAI estimation.

Sensitivity Analysis—Canopy Composition
Determining the canopy composition type, either monospecific
Thalassia or Syringodium, or between the two monospecific
canopies and 50:50 mixed canopies, would be expected to have
high uncertainty since the spectral shapes of Thalassia and
Syringodium leaf optical properties are almost identical (Figure 2,
and Thorhaug et al., 2007). However, as previously mentioned,
in our model a degree of species separability at the top of
canopy exists because the Syringodium was relatively brighter
than Thalassia at 550 nm (Figure 2). The sensitivity analysis
also indicates some capability for species discrimination, in fact
for depths less than 0.5m the self-inversion analysis was able

to accurately recover the canopy composition type 100% of
the time (Figure 9), hence even including low LAI conditions
that Figure 5 indicated might be inseparable. Therefore, despite
including above surface noise, the top of canopy reflectances were
spectrally separable to a much greater extent than implied by the
two-band analysis of Figure 5. This is partly a consequence of
the simplified canopy reflectance model, which reduces variation
by multiple factors into a single degree of freedom. However,
this issue is not large, when using the original 3D canopy model
reflectances in the forward model, accuracy in composition type
for depths less than 0.5m is in the range 60–80% for most
treatments (Figure 9), but by a depth of 4m the ability to
distinguish canopy type has reduced to around 50–70% and any
artefactual advantage in using the simplified canopy forward
model is lost. This provides an alternative estimate of the “cost”
of the simplified canopy model: At a depth of 4 meters the
above surface noise in relation to the benthic “signal” was already
greater than what was lost in simplifying the canopy model.

Ability to determine canopy composition decreases with
increasing depth (Figure 9). For canopies that can be either
Thalassia or Syringodium (Figures 9A,B) a random choice would
be correct 50% of the time, so at 10m depth separability
of ∼60% indicates the ability to determine species is almost
completely lost. Likewise for three bottom compositions of
Thalassia, Syringodium, or mixed canopies ∼40% accuracy at
10m is close to a random choice.

It might be expected that the ability to determine species
would increase with LAI, since the “signal” of the species
would be expected to increase with leaf area. This was true
only for treatments that included leaf level optical variation,
and the effect was small (Figures 10B,D). For multiple canopy
types where there was no leaf variation, ability to discriminate
canopy composition actually decreased slightly with LAI
(Figures 10A,C). However, these results do not give any strong
indication since overall ability to discriminate canopy type was
averaged over all depths from 0 to 10m, the primary conclusion
is depth was the more significant factor (Figure 9).

The sensitivity analysis is therefore pessimistic as regards
the ability to distinguish between Thalassia and Syringodium by
remote sensing. These results should be considered upper bounds
of what is achievable, in the context of what is included in the
model. That is, in any application results can only be worse
unless there is some aspect not included in the model that could
be leveraged to facilitate species discrimination. In Florida Bay
Syringodium tends to occur bay-side whereas Thalassia is ocean-
side, therefore there could be systematic differences in water
optical properties co-incident with species that would increase
discrimination. Here, we have only considered clean leaves free
of large epiphytes. Thalassia leaves have a longer life span than
Syringodium, which facilitates the formation of more complex
epiphyte communities on the leaves. The dominant epiphyte taxa
are calcifying red coralline algae, although foraminifera, diatoms,
and other small calcifiers have also been reported (Corlett and
Jones, 2007). Epiphyte cover is greatest at the apical segments
of Thalassia leaves, since these are the oldest part of the leaf.
Being located at the top of the canopy there is good potential
for epiphytes to contribute to the reflectance. On the other hand,
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FIGURE 8 | Sensitivity analysis results for leaf area index (LAI). Dots are 2,500 noise-perturbed self-inversion results, lines are mean 90% confidence intervals binned

in steps of 0.25 in LAI. Treatments are (A–F) single benthic types of Thalassia, Syringodium and 50% mixed canopies, plus (G–J) models with multiple bottom types.

Right and left columns are with and without variation in leaf reflectance.
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FIGURE 9 | Sensitivity analysis results for the accuracy of canopy composition

type determination as function of depth. Each dot is the overall accuracy from

the uncertainty propagation (20 repeats) of each of the 2,500 noise-perturbed

self-inversions. Dark lines are the mean accuracy binned in steps of 0.5m.

Thin lines are the mean accuracy when input bottom reflectances are drawn

directly from the canopy model results. Treatments include (A,B) the model of

two bottom types and (C,D) three bottom types. Each is repeated (B,D) with

and (A,C) without leaf level variance.

red wavelengths, where coralline algae are spectrally distinct,
have low penetration in water so any discrimination advantage
may be limited to the shallowest canopies. The situation will
also vary between canopies since dependent on conditions
some canopies are relatively free of epiphytes and the epiphyte
community follows a progressive process of organization coupled
with leaf age (Cebrián et al., 1999), Understanding the epiphyte
contribution for the purposes of optical modeling is therefore
a complicated task, but these kind of co-incident factors could
explain the relatively reasonable performance of classification
techniques applied to multispectral data (Phinn et al., 2008).

Image Data Analysis
Visually, LAI results from the hyperspectral imagery appeared
reasonable over both the Thalassia and Syringodium dominated
areas (Figure 11). Sand areas were identified as LAI close to
zero, and denser seagrass areas, especially over Syringodium
dominated locations, contained the full range of LAIs up to 5
or more, which was the limit of discrimination predicted by
the sensitivity analysis (Figure 8). The algorithm output did
highlight some artifacts in the source imagery such as a vertical
line (Figure 11, left LAI image) presumably corresponding to
detector anomaly such as dust contamination. Image-derived
LAI corresponded well to in situ data in terms of both
area-averaged LAI and standard deviation at each location
(Figure 12A). Linear regression of the area-averaged estimated
LAIs against the in situ data yielded an r2 of only 0.32 with

FIGURE 10 | Sensitivity analysis results for the accuracy of canopy

composition type determination as function of leaf area index (LAI). Each dot is

the overall accuracy from the uncertainty propagation (20 repeats) of each of

the 2,500 noise-perturbed self-inversions. Dark lines are the mean accuracy

binned in steps of 0.25 in LAI. Thin lines are the mean accuracy when input

bottom reflectances are drawn directly from the canopy model results.

Treatments include (A,B) the model of two bottom types and (C,D) three

bottom types. Each is repeated (B,D) with and (A,C) without leaf level

variance.

a y-intercept of 1.54 and slope of 0.48 (Figure 12B). However,
it is clear that the method identifies areas of zero LAI very
well (Figure 11) but there is no in situ data at zero LAI to
represent this. Acknowledging this capability by constraining
the regression to have an intercept at zero gives an r2 of 0.86
and a slope of 1.01 (Figure 12B ). This would seem a more
sensible result given visual interpretation of Figure 11: zero LAI
areas are not identifed as LAI of 1.54. In general the high
variation exhibited by the in situ LAI point data at a scale of
2m (the transect sampling distance at each location) is clearly a
confounding factor for validation of a remote sensing analysis. It
places a very high demand on the geo-correction of the imagery
and accuracy of the GPS system. The in situ data used here
was not collected with this study in mind, for future studies
placing benthic markers that can be identified in the imagery
may be a better solution (Mumby et al., 2004). Nevertheless, both
visually and in comparison to the available data (Figures 11, 12)
LAI estimations from the image data analysis appear reasonably
accurate.

Depths at the eight locations ranged from ∼1.5m to 8m,
depth estimates from the inversion model agreed well in general
but there was a dependency on LAI (Figure 13). All locations
except T1 were highly heterogeneous in terms of canopy density,
to generate Figure 13 the mean estimated depth at 5 pixels with
relatively low LAI within an approximate 20m radius were taken,
and likewise depth estimates from pixels with relatively high
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FIGURE 11 | Application of inversion model to hyperspectral PRISM imagery in (left) a Thalassia dominated area (T2 and T3) and (right) a Syringodium dominated area

(S1). LAI image is from model containing all bottom compositions, (a–d) show spectral matches for models constrained to Thalassia or Syringodium only.
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FIGURE 12 | (A) Leaf area index as estimated from imagery compared to in-situ data, for the five sites dominated by Syringodium (S1-S5) and the three by Thalassia

(T1-T3). Bars show mean and standard deviation for in-situ data points and for a 4-pixel window around those points. The number of pixels contributing to each bar

varies from 71 to 170. The individual data points at each location are plotted to show the variation that exists at each location. (B) Scatterplot of LAIs from in-situ data

and 4-pixel window imagery estimates, i.e., the same information as in the bars in (A).

LAI within that area. Figure 13 therefore gives an indication
of the effect of LAI on depth estimation at each location. A
regression plot using both low and high LAI results (Figure 13B)
gave an r2 of 0.94 and slope of 1.10. Clearly this is a good
result but the number of data points is too low to make any
strong conclusions. It might be expected that high LAI, giving

rise to darker pixels, would cause depth over-estimation. Indeed
for most cases over low LAI areas (typically bare sand) depth
estimates were quite accurate while for high LAI depth was
over-estimated (Figure 13A, S1, S4, T2, T3, and Figure 13B).
However, the pattern was not always consistent, in fact the
highest LAI areas (S2, S3, LAI greater than 5) gave good depth
estimates. It seems that intermediate LAIs give rise to the largest
potential for depth over-estimation. The largest depth errors were
greater than the uncertainty in depth estimation predicted by the
sensitivity analysis over all LAIs (Figure 7J) and the uncertainty
propagation (error bars in Figure 13). The sensitivity analysis
of Figure 7 covers LAIs from 0 to 5, but if the analysis is
restricted to LAIs from 3 to 4 the plots appear almost identical
and the depth uncertainty is still only around ±1m at 10m
depth. In comparison at S1 an LAI of 3 gave rise to error of
+1.5m in a depth of 2.4m. The true depth at location S1 lies
outside the uncertainty estimates for the high LAI pixels and so
points to either an omission from the model or a radiometric
discrepancy between the model and the image data. In other
words, the spectral reflectance from the image data does not lie
within the possibilities that can be produced for a depth of 2.4m
from the forward model. It is worth noting that the parameters
for the optical properties of the water column, P, G, and X, are
not estimated as their minimal or maximal values (Table 2) and
so are not unduly constraining the inversion.

With respect to canopy composition, model inversion
uniformly converged on a solution for monospecific Thalassia
canopies. Even over the Syringodium dominated sites (Figure 11,
right, S1) the model almost never selected Syringodium canopies
or a 50:50 mix as giving the best spectral match. The only

exceptions occurred on or around the edges of sand patches
where LAI was close to zero so canopy composition is irrelevant.
The sensitivity analysis suggested that discrimination of species
would be subject to high uncertainty (Figure 9), but that one
bottom type is systematically chosen in all cases indicates an issue
of the radiometric alignment of the model with the image pixel

reflectances, since the expected outcome under high uncertainty
would be random bottom composition.

Sensitivity Analysis vs. Image Data Results
While overall the results for LAI and depth are reasonable, a
few discrepancies have arisen between the performance predicted
by the sensitivity analysis and the performance demonstrated
by application to image data. The sensitivity analysis and
uncertainty propagation are based on the assumption that the
forward model is (1) radiometrically aligned with the image
reflectances, i.e., ideally both the model is accurate and the image
data is radiometrically accurate, or at least they are systematically
comparable; and (2) that the model incorporates all possible
sources of variation that could occur over the application area.
If either condition is not met, then the behavior when applying
the model to the image data will lead to results outside the scope
of the sensitivity analysis.

The spectral matches achieved were in general very good
(Figures 11a–d). Over either the Thalassia or Syringodium
dominated sites when the model was constrained to only allow
one composition type, then either Thalassia or Syringodium
canopies were capable of generating spectra that matched
the overall shape of the image reflectances, and which were
virtually indistinguishable from each other (Figures 11a–d). It
is therefore not surprising Thalassia and Syringodium could not
be discriminated in the image data, any spectral difference in
the forward model due to canopy composition was negligible
in comparison to the residual fit between the model and image
data. One reason that the Thalassia composition is preferentially
selected may be that the Thalassia canopy model contains more
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FIGURE 13 | (A) Depth estimates for the five sites dominated by Syringodium (S1-S5) and the three by Thalassia (T1-T3). Low LAI and high LAI are each averages

over 5 pixels within an approximate 20m radius of the location center, selected as examples of low and high LAI pixels. Error bars are the mean of the upper and

lower 90% confidence intervals from the uncertainty propagation. (B) Scatterplot of actual depth against estimated depths over low and high LAI locations, i.e. the

same data as (A).

leaf level optical variation that does Syringodium (Figure 2) so
the greater degree of freedom permits a marginally closer match
than is possible with the Syringodium model. This implies that
incorporating uncertainty could bias the inversion when the
model and reflectances aren’t exactly radiometrically aligned, and
this may be a limitation of the approach. How much variation
is the correct amount to include in the canopy modeling is also
difficult to assess. Strictly it should be the pixel-to-pixel variation
at the scale of image pixels within the spatial domain of the
application, but to quantify this is unrealistic. A better approach
may be to standardize the amount of optical variation between
species, as this might remove the bias or at least reveal the extent
by which the inversion was biased by differences in uncertainty.

The spectral matches from the model at the Syringodium
dominated site S1 (Figures 11c,d) do not fully capture the
chlorophyll absorption features in wavelengths from 570 nm
upward (Jeffery et al., 1997). The model is a smoother
approximation because the 3D canopy model operates at
20 nm resolution. Improving the spectral resolution of the
canopy model may help match these chlorophyll features and
disambiguate increased LAI from increased depth, although that
issue primarily afflicted the deeper site where these features are
almost absent in the image data (Figures 11a,b). These spectral
features are unlikely to assist in species discrimination since they
are also present in reflectances from the shallow Thalassia site
(T3, data not shown). In particular the shoulder at 570 to 585 nm
and reflectance peaks at ∼645 nm and ∼690 are ubiquitous and
arise from features also visible in the leaf level reflectances for
both species (Figure 2).

The flight line over the Syringodium site S1 (Figures 11c,d)
contained much more spectral noise up to 550 nm than for
the Thalassia sites (Figures 11a,b). However, the band-to-band
noise appears to average out satisfactorily with respect to the
overall spectral fit. The documented signal to noise ratio of the

PRISM instrument is more than adequate for this application. By
the sensitivity analysis parameterization (Table 2) the reflectance
change at 550 nm to detect 1m change in depth at a depth
of 10m over a canopy of LAI 4 is 0.8% of the reflectance
for bare sand at zero depth (the brightest target required for
subsurface applications). This dynamic range would be covered
by a signal to noise ratio (SNR) of 120 and 8-bit digitization,
while PRISM is 14-bit with an SNR of 200 per band, and much
greater when bands are combined as they are here (since fitting a
spectrum is a effectively a kind of band-averaging) (Mouroulis
et al., 2014). So for hyperspectral imagers such as PRISM the
radiometric limiting factors, especially for physics based aquatic
applications, lie not in the instrument specifications but in the
data processing (see also Goodman et al., 2008; Hedley et al.,
2012b). Since here discrepancies between the sensitivity analyses
and practical performance appear to be due to radiometric
differences between the model and data, this suggests future
model based sensitivity analyses should include a term for
“radiometric discrepancy.” That is, regardless of the cause of such
a discrepancy (atmospheric correction issues, model inadequacy,
etc.) it seems overly optimistic that such a term should be
zero. The common practice of relying entirely on a sensor
or environmental noise characterization (Brando et al., 2009;
Hedley et al., 2012b, 2015; Garcia et al., 2014) is not really
adequate to predict practical performance.

Implications for Remote Sensing of
Seagrasses
In this study, the sensitivity analysis suggested the ability to
discriminate between T. testudinium and S. filiforme by remote
sensing is at best weak. In a practical application reflectance
spectra arising from either canopy were virtually identical, with
differences below the accuracy of the radiometric alignment
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of the model with imagery data. The situation with respect
to other species may be better, Fyfe (2003) indicated that
Zostera capricorni, Posidonia australis, and Halophila ovalis were
separable in terms of leaf reflectance, but that study did not
include other sources of variability at remote sensing scales.
For those species spectral matching may be more effective if
the matching were weighted on wavelength regions in which
discrimination is possible, but this would be at the cost of other
factors such as depth determination.

On the other hand, a physics-based approach with spectral
matching may not be the best way to extract species information.
Phinn et al. (2008) demonstrated a weak ability to map seagrass
species using a classification approach on 54-band CASI data
(Compact Airborne Spectrographic Imager). Of eight classes of
canopy composition (including five species) around three classes
were identified with overall accuracies greater than around 40%.
However, the classification applied in Phinn et al. (2008) was
based on top of water column reflectances, so if for example
species were associated with depth then the classification can
use this information since it is also contained in the reflectance
spectra. Classification approaches are in general able to use
whatever information is present in the reflectances they are
presented with, so results can be better but are site-specific and
contingent on training data being representative of the entire site.

Phinn et al. (2008) were able to identify four classes of leaf
projected area with around 50% accuracy in depths to 3m.
Direct comparison is difficult but if LAI here is treated as four
classes from 0 to 6 with step 1.5, then 4 of the 8 locations
in Figure 12 represent correct classifications (so also 50%), but
that includes depths to 8m and the two deep points are those
with greatest relative error. The performance of the physics-
based method and the classification approach for LAI would
certainly appear to be comparable, the physics based method is
possibly better but the geolocation of in situ data in the imagery
is insufficient conclude this. Empirical regression methods using
band-pair depth invariant indices (Mumby et al., 1997) have
reported calibration data correlations of r = 0.83 in depths to
10m. However, being a calibration plot the figure from Mumby
et al. (1997) (their Figure 4) is more directly comparable to the
sensitivity analyses here (Figure 8). Together these underline
that the information is present to achieve the LAI accuracy
predicted by the sensitivity analysis, but practically accessing that
information and relating it to in situ data is challenging. Themost
successful demonstrable benthic mapping results occurred in
studies where in situ data collection was tailored for the objective
in mind. In particular, with calibrated visual assessment methods
the in situ LAI estimation is performed in a way that is closer to
remote sensing, i.e., by visual assessment (Mumby et al., 1997;
Knudby and Nordlund, 2011), so it is likely that good match
between remote sensing and in situ data can be achieved.

CONCLUSIONS

The capability for mapping two species of seagrass,
T. testudinium and S. filiforme, using a physics-based model
inversion method was investigated. A key aspect of the model

was that variations (uncertainties) were included at all levels,
from individual leaf reflectances, through canopy structure,
the water column and the air-water interface. The results were
consistent with the performance of a previously developed
single species model that lacked leaf reflectance variation
(Hedley et al., 2015). LAI estimates were reasonable within
the limitations of the in situ data available for assessment.
Depth estimates were in many cases accurate down to 8m but
increasing LAI tended to cause depth over-estimation, especially
for intermediate LAI values. T. testudinium and S. filiforme could
not be distinguished by remote sensing reflectance alone, due to
their spectral similarity. Canopies of other seagrass species may
be more spectrally distinct, and discrimination could be aided
by making use of information on ecological zonation, perhaps
in a Bayesian framework. The presence of epiphytes such as
encrusting coralline red algae on Thalassia leaves but noton
those of Syringodiummay be worth investigating but any spectral
features will be a small component of the reflectance and may
not be detectable at remote sensing scales. Spectral matching to
chlorophyll features of the canopy reflectance could be improved
by increasing the spectral resolution of the 3D canopy model.
Although this would be computationally expensive and there
is no clear indication from this study that any improvements
would result. With respect to environments dominated by
Thalassia and Syringodium a better algorithm design might be to
focus on LAI and relegate species as a contributor to variability
in canopy structure rather than a remote sensing objective.
Practical considerations of collecting and aligning in situ data
with imagery are a major limiting factor in demonstrating the
capability of methods, this aspect of the experimental design
requires careful consideration in order to advance benthic
remote sensing methods.

Examination of the sensitivity analysis and model
parameterization highlighted the challenges involved in fully
exploiting hyperspectral data using model inversion methods.
In particular in the absence of exact radiometric alignment
between model and the hyperspectral imagery, there can be
a complex relationship between uncertainty and the spectral
matching process: features with higher uncertainty may permit a
closer spectral fit to “noise” and hence be preferentially selected.
Sensitivity analyses should be interpreted with caution since
they are always an upper bound on what can be achieved. Here,
in practice there was a greater confusion between depth and
LAI than was predicted by the sensitivity analysis. This suggests
that future work on predicting remote sensing capability should
consider a “radiometric discrepancy” term in addition to sensor
and environmental noise. While the aim is that such a term
should be zero, in practice, considering the challenges inherent
in atmospheric and surface reflectance corrections, that is likely
an overly optimistic assumption.
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Marine ecosystems are under the increasing stress of natural and anthropogenic

climate variability and change. Knowledge of the patterns of distribution of chlorophyll

concentrations as an indicator of phytoplankton abundance, its spatial and temporal

variability, and the processes that control this variability is required to better understand

the dynamics of marine populations and their fluctuations, including species of ecological

and commercial importance. The Patagonia (PLME), South Brazil (SBLME), Humboldt

(HLME), and Pacific Coastal Central America (PCACLME) Large Marine Ecosystems

(LMEs) around South and Western Central America support high primary productivity

and fisheries catch. During the past few decades, climate change and warming in most

ecosystems has become evident, which in combination with variations in production

rates could impact the dynamics of marine ecosystems. The goal of this study is to

assess the variability and longer-term trends in chlorophyll concentrations in the PLME,

SBLME, HLME, and PCACLME, and to discuss implications for higher trophic levels. We

use a combination of high-resolution satellite-derived chlorophyll concentration data from

SeaWiFS (1997–2006) and MODIS Aqua (2002–2017) to examine spatial and temporal

variability and analyze the record-length linear trends in these LMEs (25◦N-60◦S, 30–

120◦W). We use monthly composites with 2 × 2 km spatial resolution for the period

of overlap between sensors (2002–2006) to compare retrievals and adjust the MODIS

Aqua data series at all pixels using linear regressions. We then apply the corrections to

the MODIS data and combine the SeaWiFS and adjusted MODIS datasets to generate

the longest time series in chlorophyll concentrations to date in the region. Our results

revealed significant increases in chlorophyll concentrations in large areas of the PLME

(78.23%) and HLME (43.03%) during the last∼20 years, with large potential implications

for trophic relationships and the reproductive success of fish. For the mostly subtropical

SBLME (26.35%) and tropical PCACLME (13.35%), increasing trends were detected
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only in relatively small regions, while changes in the PLME and HLME are widespread.

Results from this study contribute to a better understanding of the potential effects

of environmental change on ecosystem dynamics and provide new tools to assess

longer-term trends in satellite chlorophyll concentrations.

Keywords: chlorophyll concentrations, SeaWiFS, MODIS, trends, climate change, Large Marine Ecosystems,

South America, Central America

INTRODUCTION

Coastal marine ecosystems contribute ∼15% of the global
carbon sequestration (Le Quéré et al., 2016) and more than
80% of the global fish catch (Pauly et al., 2008) and they
are, therefore, a critically important component of our living
planet. Large Marine Ecosystems (LMEs) are relatively large
ocean regions of 200,000 km2 or greater that encompass
coastal areas from rivers and estuaries to the outer margins
of continental shelves and major current systems, and are
characterized by distinct bathymetry, hydrography, productivity,
and trophically dependent populations (Sherman and Alexander,
1989; Sherman, 1993; Duda and Sherman, 2002). The world’s
oceans have been classified in 66 LMEs (IOC-UNESCO UNEP,
2016), which have been used since 1984 as a practical
framework to evaluate and manage the global coastal ocean
based on changing states of productivity, fisheries, pollution,
and ecosystem health, socioeconomics, and governance (Duda
and Sherman, 2002; Sherman and Hempel, 2008; Sherman,
2014a,b).

In recent decades, fisheries around South America have
undergone accelerated growth and currently all commercially
exploited stocks are either fully- or over-exploited, with large
changes in catch potential predicted for upcoming decades
(Cheung et al., 2010). In addition, populations show natural
fluctuations in abundance, presumably due to environmental
effects. Recent changes in the abundance and catch of crustacean,
fish, and sea turtles were associated with regional climate
variability in a variety of timescales, such as El Niño Southern
Oscillation (ENSO) (Brander, 2007; Möller et al., 2009; Quiñones
et al., 2010; Acha et al., 2012).

The South Brazil Shelf Large Marine Ecosystem (SBLME)

extends from 22 to 34◦S along the southwestern Atlantic Ocean
with a surface area of ∼550,000 km2. SBLME presents moderate
to high productivity influenced by the meandering of the Brazil
Current, wind driven coastal upwelling, the proximity to the
Brazil/Malvinas Confluence, the plume of the Río de la Plata
River, the discharge of the Patos-Mirim lagoon system, and
the propagation of Subantarctic Shelf Water derived from the
Argentine shelf (Ciotti et al., 1995; Zavialov et al., 2003; Piola
et al., 2005; Möller et al., 2008; Palma et al., 2008; Matano et al.,
2010; Campos et al., 2013). The Uruguayan and Brazilian fishing
efforts are largely concentrated in the regions near the Río de la
Plata and southern Brazil. The SBLME supports approximately
one half of Brazil’s fisheries (IBAMA, 2002), with sardines being
the most important group over the continental shelf and the
whitemouth croaker (Micropogonias furnieri), other scienids,
skipjack tuna (Katsuwonus pelamis), and penaeids shrimps being

important demersal species (Paiva, 1997; Valentini and Pezzuto,
2006).

The Patagonian Shelf Large Marine Ecosystem (PLME) lies
south of the SBLME and extends along the western South Atlantic
continental shelf, from the Río de la Plata to Tierra del Fuego,
covering ∼1.2 million km2. The continental shelf is one of the
widest in the world and one of the most productive and complex
marine regions in the Southern Hemisphere (Heileman, 2009).
The high production of the PLME is associated with several shelf
and shelf-break fronts controlled by the strong winds and large-
amplitude tides, freshwater discharge, and the Malvinas Current
(Acha et al., 2004; Romero et al., 2006; Matano and Palma, 2008;
Palma et al., 2008; Matano et al., 2010). The high biological
production of the PLME sustains an intense fishing activity. The
species most targeted are the Argentine hake Merluccius hubbsi,
the shrimp Pleoticus muelleri, and the Argentine shortfin squid
Illex argentinus (Secretaría de Agricultura, Ganadería y Pesca,
Ministerio de Agroindustria, Argentina, 2016). In addition, the
high phytoplankton productivity of the PLME drives the uptake
of large amounts of CO2 (Bianchi et al., 2005, 2009).

The PLME and the SBLME are influenced by their proximity
to two distinct western boundary currents: the Brazil and
Malvinas currents, which flow in opposing directions along the
margins of Brazil, Uruguay, and Argentina and collide near
38◦S. This region is known as the Brazil-Malvinas Confluence
(BMC) and is one of the most energetic globally (e.g., Chelton
et al., 1990; Garzoli, 1993; Piola and Matano, 2001). The
circulation is characterized by the northward flow of theMalvinas
Current carrying cold nutrient-rich and relatively fresh water of
subantarctic origin, and the southward flow of warmer nutrient-
poor and saltier waters from the Brazil Current (Piola et al., 2000;
Palma et al., 2008; Matano et al., 2010). The strong frontal zone
that separates these distinct watermasses presents highmesoscale
variability in the BMC region (e.g., Saraceno et al., 2004), which
has in turn a strong effect on species distribution (Brandini
et al., 2000). The encounter of shelf waters of subantarctic and
subtropical origin close to the mouth of the Río de la Plata near
32◦S (Figure 1) also leads to a cross-shelf front known as the
Subtropical Shelf Front (STSF), which appears to be an extension
of the transition observed at the BMC over the shelf (Piola et al.,
2000).

The Humboldt Large Marine Ecosystem (HLME) is an
eastern boundary system that extends from northern Peru to
southern Chile in the eastern South Pacific Ocean, where it
is adjacent to the PLME (Figure 1). The large-scale circulation
of the HLME includes the broad eastward flowing West Wind
Drift at ∼43◦S that reaching the coast of South America splits
into the equatorward Humboldt Current and the poleward
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FIGURE 1 | Distribution of SeaWiFS climatological (1997–2006) surface

chlorophyll concentrations in austral spring (October–December) around

Central and South America (mg m−3, 2 km pixel−1). The locations of the South

Brazil (SBLME), Patagonia (PLME), Humboldt (HLME), and Pacific Coastal

Central American (PCACLME) Large Marine Ecosystems (LMEs) are indicated.

flowing Cape Horn Current (Strub et al., 1998). The oceanic
circulation includes a complex pattern of intense surface jets,
subsurface undercurrents, and eddies, meanders and filaments,
which exchange mass, energy, and biota with the deep ocean
(Strub et al., 1998). Ekman offshore divergence due to the trade
winds north of ∼35◦S results in the largest coastal upwelling
system in the world, characteristic of this LME. This system
shows large oceanographic and climatic variability and is strongly
influenced by ENSO (Heileman et al., 2009). About 65% of
the area of HMLE corresponds to the Humboldt Current
System (HCS) and is under the influence of coastal upwelling
from ∼4 to 40◦S. The fishery off Peru is the most productive
in the world, with harvests of anchoveta and sardine that
peaked up to 12 million metric tons during 1994. The Chilean
fishery concentrates primarily on horse mackerel, anchovy,
sardine, and hake (Prado and Drew, 1999). The Cape Horn
Current flows poleward along coast of southern Chile (40–
55◦S) next to a complex fiord system and is mostly under
the influence of downwelling-favorable (poleward) winds. The
HCS includes an extensive and pronounced oxygen minimum
zone (OMZ) centered at 300–400m and is characterized by
high primary production at the surface and a permanent and
sharp thermocline that restricts ventilation of subsurface waters
(Karstensen et al., 2008) This OMZ has a strong impact on
the local ecosystem as well as on global climate through the
exchange of greenhouse gases with the atmosphere (Bertrand
et al., 2010).

The Pacific Central-American Coastal LME (PCACLME)
includes the Pacific Coast of Central America (22◦N−4◦S)
from Mexico to Ecuador and covers ∼2 million km2. The

PCACLME is characterized by recirculating coastal currents
and milder temperatures than those of the adjacent California
Current and Humboldt Current LMEs. A large part of this
LME is under the influence of the meridional displacements
of the Inter-tropical Convergence Zone (Bakun et al., 1999)
and is also vulnerable to ENSO variability at interannual time
scales.

Several studies have observed recent changes in marine
environmental conditions at both global and regional scales.
Trend analyses of global sea surface temperature (SST) indicate
mean increases of 0.71◦C century−1 since 1900 (Wu et al., 2012)
and between 0.09◦ ± 0.03 and 0.18◦ ± 0.04◦C decade−1 since
the 1980s (Lawrence et al., 2004; Good et al., 2007). Long-
term trends in chlorophyll concentrations are variable, with
areas of increasing and decreasing chlorophyll around the globe
(Gregg et al., 2005; Demarcq, 2009; Saulquin et al., 2013; Boyce
et al., 2014; Gregg and Rousseaux, 2014; O’Brien et al., 2017).
The factors driving these changes in environmental conditions
are not fully understood, and although climate driven changes
can have a global effect (i.e., increased SST and more intense
stratification), other factors have variable effects on regional
scales. It has been shown that climate driven changes of marine
ecosystems have a large impact on artisanal fisheries, which
in turn have a substantial socio-economic impact in Central
and South American countries (e.g., Castilla and Defeo, 2001;
Caddy and Defeo, 2003; Defeo et al., 2009; Möller et al., 2009;
Schroëder and Castello, 2010). The analysis of longer-term
changes in environmental variables is essential for understanding
the effects of climate change and ecosystems dynamics on
marine populations. The recent increase in the number of ocean
color missions allows a great variety of applications, although
different durations and timing for the individual missions lead
to relatively short datasets that are not appropriate for assessing
changes at interdecadal scales. Thus, there is a need for longer
time series, which can be obtained by applying a multi-sensor
approach.

The VOCES Project (Variability of ocean ecosystems around
South America) (CRN 3070) is aimed at assessing the impact
of climate variability on the Humboldt, Patagonia, and South
Brazil LMEs through collaborative research (http://www.iai.
int). The Pacific Central-American Coastal LME is adjacent
to HLME and includes the study area of the project “Study
of the upwelling system in the Santa Elena Gulf, north
Pacific coast of Costa Rica” (CONICIT FV-027-13, Costa
Rica). Our study is part of these projects and analyzes the
four LMEs as a contribution to the understanding of the
processes controlling variability in chlorophyll concentrations
and trends around South and Central America. The main
objectives of this study are (1) to develop extended time series
of satellite chlorophyll concentrations in four LMEs around
South and Central America using a combination of SeaWiFS
and MODIS high-resolution data, (2) to compare the spatial
and temporal patterns and variability observed in chlorophyll
concentrations in the different ecosystems, and (3) to determine
statistically significant trends in chlorophyll concentrations
and discuss their potential implications for the different
LMEs.
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MATERIALS AND METHODS

The study area includes the Patagonia (PLME), South Brazil
(SBLME), Humboldt (HLME), and Pacific Central American
Coastal (PCACLME) Large Marine Ecosystems around
South and Central America between 25◦N−60◦S and 30–
120◦W (Figure 1). LMEs were defined according to the limits
established in http://www.lme.noaa.gov. A preliminary analysis
of chlorophyll concentrations within these regions revealed that
the limits established originally for PLME excluded part of the
shelf-break front where high chlorophyll concentrations of up to
∼20mg m−3 often develop during spring and summer (Garcia
et al., 2008; Lutz et al., 2010). For this reason, the offshore limit
was extended to the 500m isobath in order to include all high
chlorophyll waters in the region.

Daily SeaWiFS Local Area Coverage (LAC) data with 1 ×

1 km spatial resolution are available between August 1997 and
December 2006. In addition, 9 km pixel−1 data are available
until December 2010, when the satellite stopped communicating.
The MODIS Aqua dataset includes the period July 2002-present
at 1 km pixel−1 and, together, both sensors provide over 20
years of high spatial resolution surface chlorophyll concentration
measurements with ∼5 years of temporally overlapping data
(2002–2006, 54 months). Surface chlorophyll concentrations
(CHL, mg m−3) from SeaWiFS (SWF) and MODIS Aqua (AQ)
were analyzed in the area bounded by 25◦N−60◦S and 30–
120◦W.All available high-resolution (∼1 km pixel−1) level 2 data
were processed with the standard flags and empirical algorithms
(OC4v4 for SeaWiFS and OC3M for MODIS, O’Reilly et al.,

2000), binned, and mapped to a 2 km pixel−1 spatial resolution.
Reprocessing versions 2014.0 (SWF) and 2014.0.1 (AQ) were
used. To reduce errors caused by digitization and random
noise without losing spatial resolution, a smoothing filter was
applied by computing the mean chlorophyll concentration in
a 3 × 3 box around each pixel (Hu et al., 2001). Chlorophyll
concentrations <0.02 and >30mg m−3 were excluded from
the analyses. Monthly composites were generated from SWF
(September 1997–December 2006) and AQ (July 2002-January
2017) data. Data are distributed by the Ocean Biology Processing
Group (OBPG) at NASA’s Goddard Space Flight Center.

It is well documented that ocean color satellite sensors
overestimate chlorophyll concentrations in waters of the Río de
la Plata (Figure 1) where high concentrations of sediment and
terrigenous material are present (Armstrong et al., 2004; Garcia
et al., 2005); thus, this area was excluded from all error and
trend analyses. Since there is no significant seasonality in river
discharge volume for the Río de la Plata (Piola et al., 2005),
years of higher than normal discharge were selected (1998, 2002,
2003, 2010, and 2016; Piola et al., 2008a) and average chlorophyll
concentrations for those years were calculated in the area. Amask
was defined using the 5mg m−3 isoline as the limit of the river
waters and the area included within the mask was excluded from
all quantitative analyses.

Previous comparisons of monthly CHL data from SWF
and AQ data for the overlapping period (2002–2006) in the
Patagonia LME region revealed differences between sensors
(Marrari et al., 2016). Preliminary analyses of data for the larger

study area included here revealed that in highly productive areas
during spring and summer, both estimates agreed well at lower
chlorophyll concentrations (<1mg m−3) but AQ systematically
produced larger estimates than SWF at higher values
(Figure 2A). For lower productivity waters, SWF produced
somewhat higher estimates than AQ, although differences were
smaller than for AQ > SWF. The spatial patterns observed
in the relationship between SWF and AQ estimates showed a
moderate association with the amplitude in spring chlorophyll
concentrations (r = 0.525, p < 0.0001; Figure 2B), which in turn
is associated with the distribution of spring SST (r = −0.262, p
< 0.0001; Figure 2C). In general, warm oligotrophic waters with
small spring chlorophyll amplitudes are characterized by higher
SWF than AQ estimates, whereas nutrient-rich colder areas that
support large phytoplankton blooms and large amplitudes in
spring chlorophyll concentrations present the opposite pattern.
Based on the high productivity of the LMEs analyzed here and
previous reports of SWF performing better than AQ at higher
chlorophyll concentrations (e.g., Werdell et al., 2009), the AQ
dataset was corrected using SWF as reference. Model II ordinary
least squares (OLS) regressions (Legendre and Legendre, 1998)
were calculated at all pixels on the log-transformed chlorophyll
data using monthly composites for the overlap period, between
July 2002 and December 2006. Other analyses with higher order
polynomials and other nonlinear fits did not reduce the errors;
thus, we present results based on linear fits. Using the coefficients
estimated from the regressions, corrections were applied to
the entire AQ dataset at all pixels (2002–2017). Taking into
consideration the lognormal distribution of chlorophyll data
(Campbell, 1995), all error estimates and corrections were made
to the log-transformed (base 10) data. The root mean square
error (RMS) and bias were calculated at each pixel according to
Gregg and Casey (2004) and Marrari et al. (2006):

log_RMS =

√

∑

[log(AQ)− log(SWF)]2

n

log _bias =

∑

[log (AQ) − log (SWF)]

n

In addition, errors were calculated for different CHL ranges at
the different LMEs and compared. Two types of time series were
generated at each pixel, each using data from a different sensor for
the overlapping period (2002–2006): a first time series combined
data from SWF for the entire period available (September 1997–
December 2006) with corrected data from AQ for January 2007–
January 2017 (TS-A), while the second analysis included SWF
data for September 1997–June 2002 and corrected AQ for the
entire mission (July 2002–January 2017) (TS-B) (n= 233 months
in both cases).

The analysis of trends was done at all pixels jointly for the
SWF and AQ time series following the methodology developed
in Saulquin et al. (2013). This method considers the noise
autocorrelation in the time series, which affects the estimation
of the uncertainty in the trend estimate and consequently the
ability to detect a significant trend. The time series of chlorophyll
concentration, yt, is modeled as the sum of a long-term linear

Frontiers in Marine Science | www.frontiersin.org 4 November 2017 | Volume 4 | Article 372179

http://www.lme.noaa.gov
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/marine-science#articles


Marrari et al. Chlorophyll Trends in American LMEs

FIGURE 2 | (A) Differences in average spring (October–December) chlorophyll concentration retrievals from SWF and AQUA during the period of overlap of both

sensors (2002–2006) (AQ-SWF, mg m−3). The geographic limits for the four LMEs analyzed in this study are indicated. (B) Amplitude in climatological spring

chlorophyll concentrations from SeaWiFS (maximum-minimum at each pixel, mg m−3) for the period 2002–2006 (C) Distribution of average spring sea surface

temperature (SST, ◦C) from MODIS Aqua for the period 2002–2006.

trend (ω), a seasonal pattern (St), and a noise process (Nt)
(Weatherhead et al., 1998):

yt = µ + ωt + St + Nt , t = 1 . . . . n

where n is the length of the time series and µ is the y-intercept
term. Nt is the correlated noise, assumed to be first-order
autoregressive process: Nt = φNt−1 + εt, with εt representing
a white noise and φ the noise autocorrelation. For two sensors,
the assumption is that both datasets share a long-term trend
and seasonal pattern but include an unknown level shift, δ, and
correlated noise processes. The seasonal component is removed
from all time series and the equations are then transformed
to remove the autocorrelation (Cochrane and Orcutt, 1949).
Spectral analyses conducted on the chlorophyll concentration
extended time series show no significant concentration of energy
at time periods longer than 12 months. Therefore, we have not
included an interannual component other than the linear trend.

For periods when only one time series is available, the
equations for SeaWiFS (y∗1t) and MODIS (y∗2t) are:

y∗1t = µ (1− φ1) + ωφ1 + ω (1− φ1) t + ε1t

y∗2t = µ (1− φ2) + ωφ2 + ω (1− φ2) t + δ (1− φ2) + ε2t

where t is time relative to each time series. When both time series
are available:

y∗t = µ (1− α) + ω (1− α) t − αδ + ε3t

with α representing the correlation between N1 and N2. The
transformed equation can be expressed in matrix form as:

Y∗

= X∗A+ ε

where X∗ is the Tx3 coefficient matrix for the equation system,
A is the parameter vector (µ, δ, ω), and ε is the residual white
noise. The OLS estimator of A yields estimates of µ, δ, and
ω. In practice, the equation is solved through iteration until
convergence, with initial parameter values estimated from the
data. Then, all parameters are revaluated. The variable |ω|/σω is
used to detect significant trends, and the 95% confidence level
is reached for |ω|/σω > 1.96. Only trends satisfying the 95%
detection threshold are considered in the analyses. More details
on the numerical resolution of the equations can be found in Tiao
et al. (1990) and Saulquin et al. (2013).

RESULTS

The correction of the AQ dataset (AQcorr) improved the
relationship between SWF and AQ for most of the region and
allowed the combination of SWF and AQcorr data to develop the
longest time series of high-resolution chlorophyll concentrations
in the region to date. Although the correction did not greatly
improve the root mean squared error (log_RMS) for the SWF
vs. AQ regression, the bias (log_Bias) was significantly reduced
in the entire study area and the ratios AQ/SWF were greatly
improved (closer to 1) for all LMEs examined (Figure 3 and
Table 1).

The differences between SeaWiFS and MODIS retrievals
varied between LMEs, with the highest ratios AQ/SWF occurring
in HLME followed by SBLME and PLME, and the best agreement
observed at PCACLME. Before applying the corrections to
AQ, the ratio AQ/SWF was >1 for the entire chlorophyll
concentration range at HLME and PLME. High ratios between
1.30 and 1.57 (indicating an overestimation of AQ relative to
SWF of 30–57%) occurred for chlorophyll concentration values
between 1 and 9mgm−3 at HLME. At SBLME, an overestimation

Frontiers in Marine Science | www.frontiersin.org 5 November 2017 | Volume 4 | Article 372180

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/marine-science#articles


Marrari et al. Chlorophyll Trends in American LMEs

FIGURE 3 | Distribution of root mean squared error (log_RMS) (upper panels) and bias (lower panels) for the regression of SWF vs. AQ chlorophyll concentrations

before (left) and after (right) correction of the AQ dataset at all pixels in the LMEs examined. Statistics are presented in Table 1.

TABLE 1 | Area (km2), mean ± standard deviation (SD) spring (October–December) chlorophyll concentration (mg m−3) and SST (◦C) from MODIS Aqua (2007–2017) for

the LMEs analyzed.

LME Area (km2) Spring CHL (mg m−3) Spring SST (◦C) AQ/SWF ± SD AQcorr/SWF ± SD log_RMS ± SD log_RMScorr± SD log_Bias ±S D

SBLME 547,393 0.800 ± 0.538 22.195 ± 0.231 1.045 ± 0.092 1.029 ± 0.077 0.093 ± 0.016 0.091 ± 0.030 0.004 ± 0.008

PLME 1,126,103 3.037 ± 0.862 11.058 ± 1.322 1.181 ± 0.040 1.054 ± 0.038 0.140 ± 0.008 0.124 ± 0.011 0.047 ± 0.007

HLME 2,468,858 1.233 ± 0.606 13.587 ± 2.987 1.215 ± 0.081 1.110 ± 0.080 0.162 ± 0.020 0.181 ± 0.041 0.040 ± 0.021

PCACLME 1,945,330 0.406 ± 0.275 27.346 ± 0.388 1.005 ± 0.061 1.044 ± 0.070 0.098 ± 0.018 0.108 ± 0.035 −0.010 ± 0.017

Different measures of average errors before (AQ/SWF, log_RMS, log_Bias) and after correction of the AQ dataset (AQcorr /SWF, log_RMScorr ) are also indicated.

ranging between 10 and 20% was observed for chlorophyll
concentrations between 1.5 and 8mg m−3, while at PLME, ratios
of ∼1.15 occurred between 1 and 6mg m−3 (Figure 4A). On
the other hand, for PCACLME, AQ/SWF ratios were ∼1 for

most of the chlorophyll concentration range examined, only
decreasing to values <1 at >5mg m−3. After applying the
corrections, the relationship between sensor retrievals was greatly
improved, with ratios AQcorr/SWF closer to 1 for all chlorophyll
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concentration values examined at all LMEs (Figure 4B). For
HLME, AQcorr/SWF remained high (∼1.2) for chlorophyll values
within the 1.5–4mg m−3 range.

The distribution of ratios AQ/SWF before and after correction
of AQ showed some interesting spatial patterns (Figure 5).
Before corrections, AQ/SWF ratios were predominantly >1 at
PLME and HLME, and mostly <1 at SBLME and PCACLME,
in coincidence with the spatial patterns observed in chlorophyll
concentrations at those LMEs, which are evident from the
spring climatology presented in Figure 1. In areas where
chlorophyll reaches high spring and summer values, AQ tends
to overestimate concentrations relative to SWF, whereas the
opposite is true for areas where chlorophyll concentrations
remain relatively low, such as the mostly subtropical SBLME and
the tropical PCACLME areas. It is interesting to note that even
though the mean ratio AQ/SWF at SBLME was >1 for most
of the chlorophyll range examined (Figure 4A), the majority of
the pixels (63.89%) had values <1 (Figure 5A). After applying
corrections, ratios became closer to 1 at all LMEs, except for some
areas of HLME where the ratios AQcorr/SWF >1 observed in
Figure 4B are evident (Figure 5B).

The correction of AQ and improvement of the agreement
between sensors allowed the combination of both datasets to
generate extended time series of chlorophyll concentrations at
all pixels of the LMEs examined. The newly extended time
series TS-A and TS-B represent the longest records of high-
resolution chlorophyll concentration data in the region. At each
LME, monthly mean chlorophyll concentrations were calculated
and time series were generated, which revealed important
differences between the regions examined for both sets of time
series (Figure 6). For both TS-A (SWF 1997–2006 + AQcorr

2007–2017), and TS-B (SWF 2997–2002 + AQcorr 2002–2017),
the highest monthly mean chlorophyll concentrations occurred
consistently at PLME, followed by HLME and SBLME, while the
lowest values were prevalent at PCACLME. Even though overall
chlorophyll concentrations at HLME were higher than those at
SBLME, chlorophyll maxima were regularly higher at the latter,
most likely driven by the high winter values often observed in
the southern part of SBLME. A seasonal pattern was evident in
all regions, although more marked at PLME and SBLME, with
peaks during austral spring for PLME (October–December) and
HLME (September–November) (Figure 6). Maxima at SBLME
occurred during July–September, in coincidence with the period
of maximum extension of the Río de la Plata river plume,
whereas at PCACLME, they were observed during late boreal
winter-early spring (February–April). For both TS-A and TS-B,
significant increasing trends were observed in the areal mean
chlorophyll concentrations at PLME and HLME, whereas no
trends were detected at SBLME or PCACLME (Table 2). The
strongest positive trends occurred at PLME (0.0032mg m−3

month−1 for both TS-A and TS-B) and HLME (0.0009mg m−3

month−1 for TS-A and TS-B) and represent average increases of
∼66% and 32% since 1997, respectively.

To further examine the differences between the LMEs, an
analysis of the climatology of monthly mean chlorophyll
concentrations (1997–2017) clearly shows the highest
values at PLME throughout the year, with austral spring

and summer concentrations up to 2.5 times higher than
any other LMEs, followed by HLME during austral spring,
summer and fall (Figure 7). During winter, SBLME shows
higher average concentrations than HLME, with climatological
areal mean values of 1.19 and 1.17mg m−3 for July and
August, respectively. PCACLME presented the lowest monthly
chlorophyll concentrations of all LMEs during austral winter and
spring, but slightly higher values than SBLME during summer
and fall. It is interesting to note that PLME and SBLME had
the highest seasonality, with peaks in austral spring and winter,
respectively, while both HLME and PCACLME showed little to
no seasonal variability in chlorophyll concentrations (Figure 7).

A more detailed analysis of the spatial distribution of trends
within each LME revealed that significant trends occurred in
78.23% of PLME and 43.03% of HLME, whereas only smaller
subareas of SBLME (26.35%) and PCACLME (13.35%) showed
significant changes since 1997 (Table 3). The largest trends were
observed at PLME (median slope = 0.0011mg m−3 month−1),
where 99.22% of the pixels with significant trends showed
increasing chlorophyll concentrations (Figure 8). At HLME, the
median trend was 0.0009mg m−3 month−1, and again 88.98%
presented positive values. For SBLME and PCACLME, changes
in chlorophyll concentrations over time were less evident. At
SBLME, 26.35% of the pixels showed significant trends, 97.69% of
which were positive. Themedian trend for SBLMEwas 0.0005mg
m−3 month−1, while at PCACLME the median trend was
0.0011mg m−3 month−1 but only 13.35% of the pixels showed
changes corresponding to 62.64% increases and 37.36% decreases
in overall chlorophyll concentrations since 1997 (Figure 8 and
Table 3).

DISCUSSION

Variability in Chlorophyll Concentrations
Globally, the distribution of phytoplankton is primarily
controlled by the degree of stratification, which in turn
affects nutrient supply and light exposure: while in warm and
permanently stratified waters nutrients limit phytoplankton
growth, in seasonally stratified areas, nutrient-rich waters from
below the mixed layer supply nutrients to the illuminated
layer after the breakdown of the thermocline, supporting
phytoplankton growth during spring and summer (Behrenfeld
et al., 2006; Doney, 2006). The comparison of average conditions
between LMEs confirmed this inverse relationship between
surface temperature and chlorophyll, with the coldest area
(PLME) supporting the highest chlorophyll concentrations
and seasonality in the study area. At PLME the maximum
climatological monthly CHL concentration of 2.76mg m−3

was observed in November, and a minimum of 1.15mg m−3 in
August, which is noteworthy considering this value is higher
than the maxima observed at HLME and PCACLME, and very
similar to the maximum at SBLME. The high productivity of
PLME has been long recognized, especially in the shelf-break
area where large blooms develop during summer, supporting
some of the largest fisheries in the world and serving as foraging
areas for higher trophic levels (e.g., Campagna et al., 2006).

Frontiers in Marine Science | www.frontiersin.org 7 November 2017 | Volume 4 | Article 372182

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/marine-science#articles


Marrari et al. Chlorophyll Trends in American LMEs

FIGURE 4 | Mean ratio of (A) AQ/SWF before and (B) after correction of the AQ dataset as a function of chlorophyll concentration ranges (mg m−3) from SWF for the

period 2002–2006 at the LMEs examined: PLME (green), SBLME (red), HLME (blue) and PCACLME (black). Error bars represent 1 standard deviation. (C) Frequency

of SWF chlorophyll concentration values at each LME.

FIGURE 5 | Spatial distribution of the ratio AQ/SWF before (A) and after (B) correcting the AQ dataset at all pixels in the LMEs examined. Statistics are presented in

Table 1.
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FIGURE 6 | Extended time series (1997–2017) of monthly mean CHL (mg m−3, n = 233) at the PLME, HLME, SBLME, and PCACLME using a combination of SWF

data for the period September 1997-December 2006 and AQcorr for January 2007-January 2017 (TS-A, gray), and SWF data for September 1997-June 2002 and

AQcorr for July 2002-January 2017 (TS-B, black). The thick lines represent the 13-month running mean. Regression parameters are presented in Table 2.
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TABLE 2 | Regression parameters for extended time series of monthly mean chlorophyll concentrations at the four LMEs analyzed for the period September

1997-January 2017 (n = 233 months).

LME TS-A (SWF 9/1997-12/2006 + AQcorr 1/2007-1/2017) TS-B (SWF 9/1997-6/2002 + AQcorr 7/2002-1/2017)

Intercept Slope Total change

(% mg m−3)

Change per year

(% mg m−3 year−1)

Intercept Slope Total change

(% mg m−3)

Change per year

(% mg m−3 year−1)

SBLME 0.6055 0.0006 21.588 1.112 0.6013 0.0006 22.784 1.174

PLME 1.1270 0.0032* 66.158 3.407 1.1251 0.0032* 66.270 3.414

HLME 0.6682 0.0009* 32.488 1.674 0.6683 0.0009* 32.283 1.663

PCACLME 0.4554 0.0002 12.537 0.646 0.4545 0.0003 13.006 0.670

Results for the two types of time series generated are presented. Significant trends (*) are indicated in bold. Trend significance was determined following the methods in Saulquin et al.

(2013).

FIGURE 7 | Monthly climatological chlorophyll concentrations (mg m−3) for the period September 1997-January 2017 using TS-A (SeaWiFS data for 1997–2006 and

MODIS Aqua data for 2007–2017). For each LME, values represent the climatology of the areal mean chlorophyll concentration for each month. Errorbars represent 1

standard deviation.

TABLE 3 | Statistics for the trends estimated at the four LMEs examined,

including the area of each LME (km2 ), the percentage (%) of the area that

presented significant trends, the percentage (%) of those significant trends that

were positive (increasing chlorophyll concentrations), and the median trend for

each LME (mg m−3 month−1).

LME Area

(km2)

% Area % Increasing trends

(+ slopes)

Median

slope

SBLME 547,393 26.35 97.69 0.0005

PLME 1,126,103 78.23 99.22 0.0011

HLME 2,468,858 43.03 88.98 0.0009

PCACLME 1,945,330 13.35 62.64 0.0011

HLME has been characterized as moderately productive, even
though localized areas of high productivity occur along the
coast (Heileman et al., 2009). HLME includes a large area of
wide latitudinal range and high spatial variability in physical
and biological processes: while the northern part is affected
by ENSO, the southern sector is not directly impacted by

this phenomenon. The most prominent area is the HCS, one
of the four major global eastern boundary current systems,
characterized by coastal upwelling of cool nutrient-rich waters
and dramatically increased biological production, including

∼10% of the global fish catch (Chavez et al., 2008). High
variability in this region is associated with ENSO, with El
Niño (warm) conditions resulting in elevated sea level, a deeper

thermocline, and warmer temperatures. Alongshore winds and
offshore Ekman transport persist during El Niño (Carr et al.,
2002; Escribano et al., 2004), but bring waters from above

the deepened thermocline, which is nutrient-depleted, resulting
in decreased production. On average, HLME supports about
half of the monthly mean chlorophyll concentration of PLME
throughout the year, with monthly climatological chlorophyll

concentrations ranging between 0.75 and 1.8mg m−3, and an
overall ratio PLME/HLME of 1.92 ± 0.44. However, HLME
encompasses about twice the area, which translates into a
monthly mean integrated chlorophyll concentration 14% higher
than that recorded at PLME. In addition, HLME presents low
seasonality, with the variability between monthly chlorophyll
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FIGURE 8 | Spatial distribution of significant trends in CHL (mg m−3 month−1 ) in the four LMEs examined around South and Central America for the period

1997–2017. The central panel presents the distribution of climatological spring chlorophyll concentrations from MODIS Aqua for the period 2002–2017 (mg m−3).

Black solid lines represent the limits of each LME. White areas in LME panels indicate that the trend is not significantly different from zero at the 95% confidence level.

Statistics for each LME are presented in Table 3.

values being ∼25% of that observed at PLME, and comparable
to that of the oligotrophic PCACLME. Previous studies showed
that off northern Chile, chlorophyll concentrations are somewhat
higher in winter and early spring, while in central southern Chile
(30–40◦S), the chlorophyll peak develops during the summer
months (Thomas et al., 2001). Another study observed a peak in
biomass during summer north of 22◦S and during spring further
south, with maximum values >5mg m−3 north of 20◦S and
south of 35◦S. Primary production followed the same pattern,
with minimum values (∼2 g C m−2 day−1) in the central area
of HLME (∼27◦S) and maxima north of 18◦S and south of 34◦S
(>4 g C m−2 day−1) (Carr and Kearns, 2003).

At PCACLME, SST values are the highest and chlorophyll
concentrations the lowest of the LMEs analyzed. Waters in this
region are permanently stratified and nutrient availability limits
photosynthesis throughout the year. Chlorophyll concentrations
at PCACLME remain relatively low throughout the year and
do not exceed 0.66mg m−3 for the climatological monthly
mean. However, within PCACLME there are areas of localized
increased chlorophyll concentrations as a result of a combination
of regional atmospheric and oceanographic processes. The Gulf
of Papagayo on the Pacific coast of Costa Rica, for example, is
a dynamic area characterized by high seasonal productivity and
sustains ∼45% of the fisheries in the country (www.incopesca.

go.cr). Other localized areas of high production include the Gulf
of Tehuantepec off Mexico and the Gulf of Panama. In these
regions, primary production is determined by vertical mixing and
upwelling, which supply nitrate-rich waters to the surface. The
regional climate is dominated by the north-south migration of
the Intertropical Convergence Zone (ITCZ) located between the
equator and 10◦N and by the influence of cold air masses moving
in from North America. During boreal winter (December–
February), the ITCZ moves south, the easterlies intensify, and
cold fronts move through the Caribbean, leading to strong winds
blowing from the Atlantic to the Pacific Ocean and inducing
coastal upwelling and the formation of large cyclonic and
anticyclonic eddies that propagate offshore. The result is a sharp
increase in coastal chlorophyll concentrations that can extend up
to 900 km offshore and have a strong influence on the biology of
the area (McClain et al., 2002). Results from numerical models
reproduce the variability observed in chlorophyll concentrations
and its relationship with Ekman pumping velocities and ENSO
(Sasai et al., 2012).

SBLME is the smallest of the LMEs examined here and
presented intermediate chlorophyll concentrations. In austral
fall and winter freshwater runoff from the Río de La Plata and
Lagoa dos Patos move northward along the coast supplying
nutrients to the area and promoting primary production in the
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southern sector of the SBLME (Brandini, 1990). In addition,
SBLME showed moderate seasonal variability, with a winter peak
in chlorophyll concentrations that can be accounted for by the
tongue of chlorophyll-rich waters from the Río de la Plata that
migrate northward along the coast and lead to high chlorophyll
concentrations of up to >3.5mg m−3 in this area (Garcia and
Garcia, 2008; Piola et al., 2008b). Although high concentrations
of suspendedmatter likely cause an overestimation of chlorophyll
in the estuary, in situ data have confirmed that the Río de la
Plata supports values of up to 7.7mg m−3 (e.g., Carreto et al.,
1986). Our results agree with previous studies that indicate that
the slope and continental shelf in the northern part of SBLME are
characterized by low chlorophyll concentrations throughout the
year (Brandini, 1990; Castro et al., 2006).

Trends in Large Marine Ecosystems
The corrections made to the MODIS Aqua dataset in this
study allowed the combination of multi-sensor data to generate
the longest time series of satellite chlorophyll concentrations
available to date around South and Western Central America.
The newly developed extended time series include almost 20
years of data at high spatial resolution and revealed significant
trends in chlorophyll concentrations. Previous studies observed
varying trends in global average chlorophyll concentrations,
with reports of a general decline (e.g., Behrenfeld et al., 2006;
Vantrepotte and Mélin, 2009; Boyce et al., 2014; Lorenzoni
et al., 2017), as well as no detectable trends (Beaulieu et al.,
2013) or even a global increase of 4.13% (Gregg et al., 2005).
However, there is general consensus in that there is high global
variability, with regions of increasing and decreasing trends.
For example, Hammond et al. (2017) detected a small global
decline in chlorophyll between 1997 and 2013, but observed
regional variability with both positive and negative trends present
across the globe ranging from ∼−2 to 1% year−1. Our results
indicate that within the LMEs analyzed the greatest changes have
occurred at the Patagonia (PLME) and Humboldt (HLME) Large
Marine Ecosystems, where the largest and almost exclusively
increasing trends were recorded and the largest percent areas
showed significant changes. On the other hand, the warmer
SBLME and PCACLME showed no significant trends in areal
mean chlorophyll concentrations, and only smaller percent
areas showed significant trends. The increasing chlorophyll
concentrations observed on the Patagonian Shelf and in the
Humboldt upwelling system have been reported in previous
global studies (Gregg et al., 2005; Saulquin et al., 2013; Siegel
et al., 2013; Muller-Karger et al., 2017), although these analyses
were based on shorter time series with coarser resolution. The
high resolution data used in this study allows a more detailed
analysis of the variability in the distribution of trends within
the LMEs and the relationship with other variables, leading to a
better understanding of the mechanisms controlling chlorophyll
distribution and the changes occurring over the past two decades.

At PMLE, maximum chlorophyll concentrations occur during
austral summer over the mid-shelf and in proximity of the
shelf-break, where a sharp thermal front system develops
separating vertically stratified warm shelf waters from weakly
stratified waters of the Malvinas Current (Acha et al., 2004;

Romero et al., 2006). Our results revealed that large positive
trends also occurred mostly in these areas that support high
spring and summer chlorophyll, suggesting that the processes
that favor production most likely have intensified. Although
rich in nutrients, the Malvinas Current is characterized by
low phytoplankton abundances presumably due to intense
mixing and light limitation. On the seasonally stratified shelf,
phytoplankton growth is limited by nutrient concentrations. As
theMalvinas Current flows northward, upwelling along the shelf-
break supplies cold nutrient-rich waters onto the shelf (Matano
and Palma, 2008; Piola et al., 2010; Valla and Piola, 2015) favoring
increased primary production in the vicinity of the shelf break
and adjacent shelf waters. Model results suggest that theMalvinas
Current controls cross-shelf exchanges at the shelf-break as well
as the circulation over the continental shelf (Matano et al.,
2010). In turn, the shelf break upwelling is controlled by the
along-shelf pressure gradient associated with the presence of a
slope current (Matano and Palma, 2008). The increasing trends
observed in the shelf-break area and over the continental shelf
could be an indication of changes affecting the supply of nutrients
onto the shelf via changes in the interaction between the shelf
break and the Malvinas Current (e.g., Matano and Palma, 2008).
Alternatively, changes in along-slope winds over the outer shelf
can modulate the intensity and location of shelf break upwelling
(e.g., Carranza et al., 2017). To the best of our knowledge there
are no published reports of increased transport of the Malvinas
Current or changes in the along-slope winds that might lead to a
more intense upwelling during the last two decades. The factors
leading to the large positive trends in chlorophyll in the PLME
should be further investigated.

Most of HMLE also presented increasing trends in chlorophyll
concentrations. Based on the primary productivity of coastal
waters, previous studies described four provinces along HLME
(Montecino and Pizarro, 2006; Quiñones et al., 2009; Gutiérrez
et al., 2016). The most productive province is located off Peru,
followed by the area off central Chile, which shows stronger
seasonality associated with changes in wind stress. The coastal
areas off northern Chile and the Magellanic region have the
lowest production rates. This description coincides, in general,
with the spatial distribution of CHL trends observed at HLME,
where the largest positive trends occurred off Peru and central
Chile, smaller increases were observed off northern Chile, and
no trends were detected off the southern Chilean coast, in the
area under the influence of the Cape Horn Current. North of
40◦S, the increasing trends in chlorophyll concentrations were
associated with negative trends in SST. HLME is one of two
LMEs in the world showing a cooling trend, the other being
the California Current LME (Chavez et al., 2008; Belkin, 2009).
Within HLME, there are two regions of persistent cooling close
to the continent: a larger one off northern Chile and southern
Peru (∼10–30◦S) and a smaller one at∼40–50◦S (Gutiérrez et al.,
2016; Thompson et al., 2017), which largely coincide with the
areas of maximum positive trends in chlorophyll. HLME is under
the influence of the Humboldt upwelling system, where cold
nutrient-rich waters from below the thermocline are upwelled
to the surface as a result of the prevailing easterlies, favoring
increased phytoplankton concentrations. It has been suggested
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that upwelling intensity has increased as a result of climate
change (Bakun, 1990; Demarcq, 2009; Sydeman et al., 2014), and
that an observed cooling of 0.10◦C for the period 1982–2006
is the result of increased upwelling, which ultimately translates
into higher nutrient supply and chlorophyll concentrations in
the area (Belkin, 2009). Gutiérrez et al. (2011) used sediment
core data spanning 150 years to reconstruct the SST record
from an upwelling area off Peru and confirmed a temperature
decrease since the 1950s, which was in phase with an increase
in productivity and also coincided with strengthened alongshore
winds and intensified upwelling.

Global warming has the potential to increase stratification,
affecting phytoplankton distribution and abundance and has
been suggested as the cause of the expansion of the low-
chlorophyll, low-productivity central ocean gyres (McClain
et al., 2004; Polovina et al., 2008; Irwin and Oliver, 2009).
Signorini et al. (2015) used a combination of satellite and
model data to analyze trends in chlorophyll concentration,
primary production, SST, mixed layer depth (MLD), and sea
level anomaly (SLA) in five oligotrophic gyres for the period
1998–2013. They observed that, in general, the oligotrophic
waters are expanding, with positive trends in SST, MLD and
SLA, and reduced chlorophyll concentrations and primary
production, with important implications for atmospheric CO2

uptake and the biological pump. In an analysis of SST change
in the world ocean LMEs, SBLME showed the strongest
warming among the four LME’s considered here, with a net
increase in SST of 0.53◦C during the period 1982–2006, while
PCACLME and PLME showed milder changes of 0.14 and
0.08◦C, respectively (Belkin, 2009). The observation of mostly
positive trends in chlorophyll concentrations at the four LMEs
examined in this study is an unexpected result considering
the general surface warming recorded for the global ocean. A
recent IOC-UNESCO report that examined global trends in
SST and chlorophyll concentrations for the period 1998–2012
using monthly averaged satellite data with a 0.5◦ × 0.5◦ spatial
resolution described mixed relationships, with warming and
cooling areas associated with both increasing and decreasing
chlorophyll concentrations (O’Brien et al., 2017). In general,
reduced chlorophyll concentrations associated with warmer SSTs
can be explained in terms of increased vertical stability and
changes in mixed layer depth (e.g., Behrenfeld et al., 2006). As the
surface layer warms, the mixed layer becomes shallower and the
thermocline stronger, which constrains the nutrient input from
sub-thermocline water and ultimately reduces phytoplankton
abundance. However, although most of our study area showed
warming trends, decreasing chlorophyll concentrations were
only observed in a small area of PCACLME. This suggests that
no single factor can be identified as controlling changes in
these LMEs but that a variety of mechanisms besides changes
in stratification and mixed layer depth due to warming must be
operating regionally at different scales. An alternative proposed
mechanism that might explain, at least in part, increasing
chlorophyll concentrations in a warming environment include
changes in the composition and physiology of the phytoplankton
community. Behrenfeld et al. (2015) pointed out that due to
photoacclimation, chlorophyll variability is not simply a measure

of phytoplankton biomass, but is also modulated by changes
in pigmentation and as a physiological response to variability
in nutrient supply. The study also concluded that relationships
between trends in chlorophyll concentration and ocean warming
do not represent proportional changes in primary production, as
declines in chlorophyll can be related to constant or increased
photosynthesis.

Implications for Higher Trophic Levels
The changes occurring in SST and chlorophyll concentrations
have important implications for ecosystem dynamics and trophic
interactions. For fish and many invertebrates, the highest
mortality occurs during the early developmental stages of egg and
larva, which are highly susceptible to changes in environmental
conditions, such as temperature and oxygen concentrations,
food availability (i.e., phyto- and zooplankton concentrations),
and physical processes (turbulence and advection) (Cushing,
1975; Cury and Roy, 1989; Bakun, 1998; Mann and Lazier,
2005). Fluctuations in the environment will affect the timing
of the onset of the spring bloom, with early or delayed
blooms having a negative impact on the survival of fish larvae
and recruitment (match-mismatch hypothesis, Cushing, 1990).
Previous studies have shown that interannual variability in
chlorophyll concentrations during the reproductive season can
have strong effects on recruitment (Platt et al., 2003; Fuentes-
Yaco et al., 2007; Marrari et al., 2008, 2013), with not only the
concentration of chlorophyll having an effect on reproductive
success, but also other aspects of phytoplankton dynamics,
such as the timing and duration of the spring bloom. At
HLME, the fish community is dominated by four pelagic species:
the anchoveta Engraulis ringens, the sardine Sardinops sagax,
the jack mackerel Trachurus murphyi, and the chub mackerel
Scomber japonicus. These species feed on phytoplankton and/or
zooplankton for part or all of their life cycles; thus, changes in the
abundance and composition of the phytoplankton community
can have a direct impact on their population via changes in the
availability of food.

At PLME, the increases in chlorophyll concentrations
observed at the shelf break and in some coastal areas are of
special interest in terms of fisheries. The northern population
of the argentine anchovy Engraulis anchoita spawns in coastal
waters shallower than ∼50m between 34 and 41◦S, in the
vicinity of a thermal front that separates mixed coastal waters
from seasonally stratified mid-shelf waters. At the front, high
chlorophyll concentrations develop during spring. A recent study
showed that variability in the timing, magnitude, and duration
of the spring bloom explained a large fraction of the variability
in anchovy recruitment (Marrari et al., 2013). On the other
hand, the area of Isla Escondida and the San Jorge Gulf (43–
47◦S) represent the main spawning and nursery grounds for
the argentine hake Merluccius hubbsi, the main demersal fishery
in the region. Recent results indicated that larval survival was
related to spring chlorophyll concentrations and the timing of the
chlorophyll maximum in themain spawning area, suggesting that
phytoplankton dynamics likely affects the reproductive success
of hake via de production of zooplanktonic prey for the larvae
(Marrari et al., under review).
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Changes in phytoplankton abundances can have a direct
effect on the biological pump and global carbon budget.
Kahl et al. (2017) analyzed the distribution of sea-air CO2

fluxes on the Patagonia shelf and observed that on the mid-
and outer-shelf areas fluxes were dominated by biological
processes, leading to a strong sink of atmospheric CO2 of
−6.0 × 10−3 m−2 day−1, equivalent to −20 TgC year−1,
with the maximum uptake occurring in spring. This suggests
that an analysis of the seasonality in the trends observed
should be included in future studies to more accurately
describe the effects of long-term changes in chlorophyll
concentrations on the ecosystem. Increased phytoplankton
abundances will intensify carbon export to the deep ocean
with a direct effect on benthic-pelagic interactions. Franco
et al. (2017) used particle-tracking models and observed that
80% of the particles released at the surface in proximity of
shelf break at PLME settled on the bottom in areas where
scallop beds are known to occur; thus an increase in surface
phytoplankton abundances could positively impact benthic
communities.

The changes occurring in chlorophyll concentrations over
the last two decades have important ecological and economic
implications for marine populations. In light of the ongoing
climate change, further changes in phytoplankton dynamics are

anticipated. This highlights the need to continue the analysis
of trend in key environmental variables in order to better
understand and predict the effects on ecosystem dynamics and
the economy of the LMEs.
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Anthony Reisinger 1*, James C. Gibeaut 1* and Phillippe E. Tissot 2

1Coastal and Marine Geospatial Laboratory, Harte Research Institute, Texas A&M University—Corpus Christi, Corpus Christi,

TX, United States, 2Conrad Blucher Institute, Texas A&M University—Corpus Christi, Corpus Christi, TX, United States

Suspended sediment dynamics of Corpus Christi Bay, Texas, USA, a shallow-water

wind-driven estuary, were investigated by combining field and satellite measurements of

total suspended solids (TSS). An algorithm was developed to transform 500-mModerate

Resolution Imaging Spectroradiometer (MODIS) Aqua satellite reflectance data into

estimated TSS values. The algorithm was developed using a reflectance ratio regression

of MODIS Band 1 (red) and Band 3 (green) with TSS measurements (n= 54) collected by

the Texas Commission on Environmental Quality for Corpus Christi Bay and other Texas

estuaries. The algorithm was validated by independently collected TSS measurements

during the period of 2011–2014 with an uncertainty estimate of 13%. The algorithm

was applied to the period of 2002–2014 to create a synoptic time series of TSS for

Corpus Christi Bay. Potential drivers of long-term variability in suspended sediment were

investigated. Median and IQR composites of suspended sediments were generated for

seasonal wind regimes. From this analysis it was determined that long-term, spatial

patterns of suspended sediment in the estuary are related to wind-wave resuspension

during the predominant northerly and prevalent southeasterly seasonal wind regimes.

The impact of dredging is also apparent in long-term patterns of Corpus Christi Bay as

concentrations of suspended sediments over dredge spoil disposal sites are higher and

more variable than surrounding areas, which is most likely due to their less consolidated

sediments and shallower depths requiring less wave energy for sediment resuspension.

This study highlights the advantage of how long-synoptic time series of TSS can be used

to elucidate the major drivers of suspended sediments in estuaries.

Keywords: suspended sediments, MODIS, wind-driven estuary, wind-wave resuspension, Corpus Christi Bay,

dredging influence

INTRODUCTION

Estuaries are highly dynamic environments. They exist in transitional zones where riverine systems
combine with oceanic systems and exhibit characteristics of both, such as floods and droughts
as well as tides and waves. Suspended sediments are an integral part of estuarine systems; their
flux within estuaries is a result of interplay between freshwater inflow, tidal currents, wind-wave
resuspension, commercial fishing, and dredging operations (Ward and Montague, 1996). The
relative importance of physical processes influencing the spatial distributions of suspended
sediments varies as a function of time and space, morphology, bathymetry, and regional climate,
however, the influence of anthropogenic activities is largely unknown (Ward and Montague, 1996;
Green and Coco, 2014).
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Most US state and federal agencies use a few point
measurements within estuarine systems to characterize overall
conditions. Typically, suspended sediment concentrations have
been quantified by collecting water samples from discrete
locations within an estuary and measuring their total suspended
solids (TSS) concentrations (Ward and Montague, 1996). For
temporal studies, the sampling is repeated at the same station
over time, thus providing insight into the processes ongoing in
the area (Shideler, 1984). The spatial resolution of this approach,
however, is limited by time and expense thus restricting the
number of regularly sampled locations. Conditions observed at
a single point, however, can be the result of many complex
and interrelated processes. Early attempts to bridge this spatial
gap in Texas included eight repeated sample collections at 14
locations within 5 h, in Corpus Christi Bay using a helicopter
(Shideler, 1984). Shideler’s study produced some of the first
quasi-synoptic measurements of suspended sediments in this
region and documented the dominant spatial patterns of
suspended sediment distributions including the bay’s response
to wind-wave resuspension from prevalent northerlies associated
with frontal passage and predominant southeasterlies. While
these measurements provided much-improved coverage, their
relatively limited spatial and temporal resolutions and their fair-
weather bias created impediments when trying to characterize the
complexity and heterogeneity of the Corpus Christi Bay estuarine
system.

A major advance in the monitoring of suspended sediments
came when Stumpf and Pennock (1989) discovered that weather
satellites were able to quantify suspended sediments in the
Chesapeake and Delaware Bays. Satellite remote sensing has
increasingly provided synoptic views of suspended sediment
dynamics leading to some of the first Environmental Data
Records (EDR) of suspended sediments acquired daily and
spanning decades (Stumpf and Pennock, 1989; Ruhl et al., 2001).
More recently, satellites have been used to monitor suspended
sediment and other water quality parameters such as chlorophyll-
a (CHL-α) and colored dissolved organic matter (CDOM)
(Matthews, 2011). While most of this research based on satellite
imagery has focused on oceanic areas (McClain, 2009), there is
now much interest in studying suspended sediments in estuaries
and coastal areas (Miller and McKee, 2004; D’sa and Miller, 2005;
Zawada et al., 2007; Doxaran et al., 2009; Chen et al., 2010; Petus
et al., 2010; Feng et al., 2014).

This study was conducted to gain a better understanding of
estuarine sedimentary processes in Texas estuaries using satellite-
derived TSS data by taking advantage of the spatial and temporal
resolution data provided by the MODIS-Aqua almost-daily 500-
m data. These measurements allow for the identification of
prevalent and predominant controls that force the distribution
of estuarine suspended sediments in shallow-water estuaries.
The study starts with the development and assessment of an
inversion algorithm to create an EDR of suspended sediment.
The algorithm is calibrated by comparing MODIS-Aqua satellite
reflectance data with a long term data set of TSS collected by the
Texas Commission on Environmental Quality (TCEQ) in Texas
estuaries. The algorithm is then validated using independent in
situ measurements collected by Paudel and Montagna (2014).

The study area and in situ measurement locations are illustrated
in Figure 1. The 12-year EDR is analyzed for a case study
in Corpus Christi Bay. For this analysis, seasonal patterns of
suspended sediment are identified as well as their main forcings.
The influence of dredging is also considered.

STUDY AREA

Climate and Sedimentary Processes
Numerous shallow-water estuaries are found along the Texas
coast (see Figure 1). These estuaries are drowned river valleys
that formed during theHolocene after the last sea-level low stand.
They are separated from the Gulf of Mexico by a thin chain of
barrier islands and spits that span the length of the Texas Coast
(Davis and FitzGerald, 2004; Davis, 2011). Small tidal inlets, the
majority of which are jettied and dredged, connect the estuaries to
the Gulf. These estuaries are in a microtidal (0.6m Gulf and less
than 0.3m estuary tidal range), wave-dominated mixed energy
coastal setting, and are affected by a climatic gradient with wetter
conditions to the north and drier to the south (McKee and
Baskaran, 1999; Davis, 2011; Montagna et al., 2011). For all bays,
marine sediment input is thought to be relatively small due to the
microtidal setting (Yeager et al., 2006). The bottom sediments

and those in suspension mostly consist of fine-grained silt and
clay (McKee and Baskaran, 1999). Average grain size for Texas
bays range from 2.3 to 8 phi (Folger, 1972). For Corpus Christi
Bay, the predominant bay bottom sediments range in grain size
from 4.0 to 8.0 phi (Shideler, 1984). Average depths in Texas
estuaries range from 2 to 4 m.

This case study focuses on the suspended sediment dynamics
of Corpus Christi Bay (Figure 2). Corpus Christi Bay is about 284
km2 and the deepest of the Texas bays with an average depth of
4m (McKee and Baskaran, 1999). This estuary was chosen for
comparison with a previous study by Shideler (1984). Relatively
little freshwater enters this estuary from the Nueces River and
Oso Creek. Low amounts of freshwater inflows coupled with high
rates of evaporation cause the estuary to become hyper-saline for
much of the year (Montagna et al., 2012).

Wind along the Texas coast is prevalently from the
southeast for the majority of the year (spring-summer)
complemented by predominant northerlies (fall-winter). The
prevalent southeasterlies are stronger in the south and decrease
in speed moving northeastward along the coast. The wind is
strongest during spring and progressively decreases in speed
during the summer. In contrast, frontal passages, “northers” or
winter storms, bring the dominant wind from the north with
wind speed often greater than 15 m/s. During these frontal
passages, northerly wind gusts are generally preceded by high
southerly wind speeds (Ward, 1997). Shideler (1984) showed
that wind-waves is the most important forcing of suspended
sediments in Corpus Christi Bay.

Dredging and Related Impacts
Substantial modifications have occurred within Texas estuaries
through the dredging of deep ship channels. In Corpus Christi
Bay, the main channel is 14m deep, spans the length of
the estuary in an east-west direction and is maintained for
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FIGURE 1 | Texas estuaries and in situ data collection sites of the TCEQ and Paudel and Montagna (2014).

FIGURE 2 | Detailed map of Corpus Christi Bay.

navigation (Kraus, 2007). Other shallower dredged channels
are scattered throughout these estuarine systems (Figure 2). In
Corpus Christi Bay, the Intracoastal Waterway (ICW) bisects the

eastern portion of the bay. Sediment from routine dredging for

channel maintenance are placed in subaqueous disposal areas

next to navigation channels. While active dredging operations

suspend large amounts of sediment, the materials are typically
contained in boomed-off areas resulting in small impacted areas
relative to the size of the estuary. Dredging operations are
conducted over short periods of time for up to a few months. A
lasting effect of dredging, however, is the alteration of the Bay

bathymetry through the creation of subaqueous disposal areas.
Sediments of placement areas may have a higher propensity to be
suspended by wind-wave action as less wave energy is needed to
suspend these materials due to their shallower depth relative to
the rest of the bay.

DATASETS

The main data sets for this study consisted of two in situ data sets
for the calibration and independent validation of the algorithm
and MODIS satellite imagery processed to remove sun glint. The
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in situ suspended sediment data used to calibrate the study’s
model for transforming MODIS imagery to TSS was collected
by the TCEQ. The TCEQ catalogs its surface water samples
in the Surface Water Quality Monitoring Information System
(SWQMIS) (Texas Commission on Environmental Quality,
2008). TCEQ in situ measurements are collected following the
Total Suspended Solid (TSS) EPA STORET Standard Method
2450b. This measurement involves taking a volume of water
from a point within an estuary and passing it through a pre-
weighed glass fiber filter. The filter is then dried and weighed with
the mass of the sample divided by the volume of water filtered,
normally denoted in mg/l. These measurements are typically
made quarterly, however, some sites in the dataset are sampled
sporadically for special projects. Data were extracted from
the SWQMIS (Texas Commission on Environmental Quality,
2008) for the period spanning 2002–2010. For this analysis,
only TSS data collected from the primary and secondary bays
(Figure 1) were used. If coincident sampling of CHL-α was
present, this too was extracted. To avoid mixed land-water
pixels in the MODIS data, TCEQ data were omitted if stations
were within a kilometer of the shoreline. Measurements were
also removed if they were located within or near Sabine Lake
and any points south of Corpus Christi Bay. Sabine Lake data
were removed because the CDOM-rich water coming from
the Neches River may bias the optical signal. Areas south of
Corpus Christi Bay were left out of the input dataset because
the area is relatively shallow, and the possibility for bottom
reflectance contaminating the TSS signal is high. As a result, a
total of 704 in-situ samples were selected for inputs for model
development.

Overflights from the polar-orbiting satellite Aqua carrying
National Aeronautics and Space Administration’s (NASA)’s
Moderate-Resolution Imaging Spectroradiometer (MODIS)
provide almost-daily images of estuaries and coastal areas.
The MODIS sensor onboard NASA’s Aqua satellite has been
in orbit since 2002. MODIS was designed with 36 spectral
channels to support observations of oceans, land, and clouds
(McClain, 2009). There are nine 1-km bands designed for
ocean color observations in the visible to near-infrared (NIR)
(412–816 nm) portion of the electromagnetic spectrum. Over
turbid waters of inland and coastal areas, however, the dynamic
range of the sensor can be exceeded, leaving the actual signal
to be unknown (Franz et al., 2006). Many researchers are now
using the land/cloud bands to quantify suspended sediment
concentrations in coastal waters (Matthews, 2011). The land
(1 and 2) and cloud bands (3–9) have spatial resolutions
of 250 and 500 m, respectively. These land/cloud bands are
less sensitive than the 1-km ocean color bands, have broader
dynamic ranges and do not suffer from the problems of the
l-km resolution ocean color bands (Franz et al., 2006). Band
1 is optimal for detecting suspended sediment due to high
reflectance from sediment in the water column around the red
portion of the spectrum centered at 645 nm. Using the red
portion of the spectrum, quantifying suspended sediments has
little impact from phytoplankton pigments, such as CHL-α,
in low concentrations (Bukata, 1995). Recently, MODIS land
bands have been used to quantify suspended sediments in coastal

estuaries with 250 and 500-mMODIS data (Doxaran et al., 2009;
Feng et al., 2014).

The 500-m MODIS-Aqua Surface-Reflectance Product
(MYD09GA) was chosen for use in this study because it includes
atmospherically corrected bands 1–4, red, near infrared blue,
and green, mostly used for ocean color applications and a
cloud detection flag. The MYD09GA product is generated from
MODIS Level 1B for land bands 1–7 and are estimates of surface
spectral reflectance corrected for both atmospheric scattering
and absorption (Vermote and Kotchenova, 2008). Doxaran
et al. (2009) used the MYD09 and its counterpart MOD09 to
quantify suspended sediments accurately in the Gironde estuary,
France. Doxaran et al. (2009) developed an algorithm using
a remote sensing reflectance (Rrs) ratio of Bands 1 and 2, red
and near-infrared, respectively. In their study, they found that
the atmospheric correction used by the land data community
was sufficient to quantify suspended sediment concentration
ranging from 77 to 2,182 g/m3. The combination of high spatial
resolution, daily-repeat time, and a greater than 12-year data
period, makes these land products ideal for creating an EDR of
suspended sediments in estuaries and coastal water bodies.

Wind speed and direction data were extracted from the
National Center for Environmental Prediction (NCEP) North
American Regional Reanalysis model (NARR) (Mesinger et al.,
2006). These data were used for creation of the wind roses
and the implementation of the sun glint algorithm. Over water,
significant areas of remotely-sensed satellite imagery can be
contaminated with sun glint, a disk-like spot that has higher
reflectance values than the surrounding area in the satellite
imagery. Fresnel reflection causes sun glint and its magnitude
is dependent on a combination of complex interactions of
surface roughness of the water that is influenced by wind speed
and direction, and solar and sensor viewing geometries (Zhang
and Wang, 2010). MODIS data are routinely contaminated by
sun glint because the satellite does not have a glint tilting
avoidance strategy (Wang and Bailey, 2001). The MYD09GA
data product does not include a glint coefficient because its use
is for land applications; thus, Rrs data over water is sometimes
contaminated by sun glint. We, therefore, implemented the sun
glint algorithm created by Wang and Bailey (2001). Use of this
algorithm allowed for the removal of contaminated Rrs data
from inputs into algorithm development and the removal of
contaminated data in the TSS EDR created for this study. Wind
speed data were extracted from the NCEPNARR (Mesinger et al.,
2006) for the locations and time of the MODIS image capture for
input into the sun glint algorithm.

An independent dataset collected by Paudel and Montagna
(2014) was used to validate the final TSS algorithm. These
data were collected in Matagorda, San Antonio, and Corpus
Christi Bays, and follow the same methods as the TCEQ
SWQMIS. Sampling sites are spread over these estuaries and
provide quarterly sampling from 2011 to 2013. In total, there
were 137 cloud free data points that were available prior to
sunglint filtering. Surface water samples for TSS and CHL-α
were collected for every in situ location. Use of this independent
dataset gave an impartial assessment of the final algorithm’s
accuracy and illustrated its robustness.
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METHODS

Model Development for Transforming Rrs

to TSS
The TSS reflectance model was developed using in situ and
remote sensing reflectance data derived from theMYD09GAdata
product. These data products were downloaded using NASA’s
Reverb data discovery tool (http://reverb.echo.nasa.gov/) for
each day data were available in the SQWMIS database. From the
709 in-situ samples, a total of 294 unique days of satellite data
were available. Satellite data collected from Reverb spanned from
8-13-2002 to thru 5-3-2010. NASA’s SeaDAS 7.0.1 software was
used to extract atmospherically corrected reflectance, viewing
geometries, and flags from MYD09GA files over the SWQMIS
collection sites when concurrent collections were within 4 h
of the overflight of the satellite. Atmospherically corrected
reflectance data were then multiplied by pi to derive Rrs data.

After data extraction was complete, MYD09GA data were
combined with SQWMIS in situ data. To avoid the influence of
bottom reflectance and algal absorption on Rrs data, individual
TSS measurements were removed from the calibration data if
(1) the collection depth was <3m unless TSS values were greater

than 50 mg/l, and (2) the sample’s CHL-α values were greater
than 30 mg/l following suggestions from Bukata (1995). To avoid
sun glint and other interference, data were removed if (1) it was
flagged as cloud reflectance in the MYD09 dataset, (2) sun glint
coefficient was >0.001 (Wang and Bailey, 2001), and (3) sensor
zenith angles were greater than or equal to 60 degrees. After these
data had been filtered, 55 of the 704 data points remained for the
development of the TSS model with TSS values ranging from 4 to
178 mg/l.

Spearman rank correlation coefficients were generated from
Rrs Bands 1–4 and combinations of Rrs ratios between TSS
to determine the best candidates for inputs into the model.
Spearman correlation was used because it is less influenced
by outliers and can show non-linear relationships among data
(Wilks, 2011). Using the first three highest ranked correlation
coefficients, linear and exponential regression models were fit
to satellite and TSS data. Finally, the MYD09GA data over the
in situ sites of Paudel and Montagna (2014) were extracted.
The dataset was filtered following the same procedure as the
calibration dataset with the difference that high CHL-α samples
were not removed. This step was omitted as only one data point
would have been excluded, and this portion of the data is used for
validation only. The high CHL-α content collected in this sample
shows how the algorithm is influenced in algal bloom conditions.
After filtering had been applied to the validation set, 35 of the
137 data points were left in this validation dataset. The models’
fit to the calibration dataset was quantified using the Root Mean
Squared Error (RMSE) and the R-squaredmetrics. The validation
dataset was used to quantify theMean Absolute Error (MAE) and
mean bias of the model.

TSS Time Series Development
The TSS reflectance model with the best performance was
then applied to all available scenes of the MYD09GA land
product over the study areas. These data were downloaded from

https://lpdaac.usgs.gov/ and totaled 4,503 analyzed scenes for
this study. Each image was then filtered for clouds, sun glint,
and satellite geometries following the methodologies mentioned
above, and daily cloud-free TSS maps were created at 500-m
resolution. There was a maximum of 1,444 scenes of cloud
free, glint free, and geometrically compatible imagery, however,
on a pixel-by-pixel basis, this number varied due to the cloud
mask and on average there were 1,226 scenes available for
Corpus Christi Bay. Both individual scenes and composites were
produced to show suspended sediment patterns in the estuaries
(see Figure 5). Composite images were generated by computing
medians and interquartile ranges (IQR) of satellite-derived TSS
data for the entirety of the valid scenes of the satellite dataset.
Seasonal comparisons were generated for Corpus Christi Bay for
wind patterns to highlight the respective temporal variability,
and show the different distributions and patterns of TSS for the
different time periods. Here satellite data within 1 km of land are
removed to avoid mixed pixels of land and water. Also, to avoid
data contamination from bottom reflectance, any data occurring
in water shallower than 1m was removed.

Seasonal Wind Analysis
To investigate wind-wave resuspension, wind speed data at
10m height for the study period were extracted from the NCEP
NARR model (Mesinger et al., 2006) over Corpus Christi Bay.
The NARR’s 32-km spatial and 3-h temporal resolutions were
considered sufficient for this analysis. Wind data were analyzed
to determine seasonal patterns. Data were split into seasonal
wind regimes, and wind roses were plotted and compared to TSS
composites for each regime. The period of November—February
is characterized by frontal passages and dominant northerly
winds and is referred to as the frontal passages period. The
March–June period is characterized by weaker fronts at the
beginning of the period and prevalent southeasterlies, and
is referred to as the southeasterly period. The last period of
July–October is also characterized by prevalent southeasterlies,
however, their magnitude is lower when compared to the
southeasterly period and referred to as the quiet period (quiet
period). Wind data were then plotted as wind roses for each
regime. Composites of satellite-derived TSS patterns are
compared to the related wind rose plots for the three identified
wind regimes in Figure 6 to determine if the wind speed and
directional component influences the sediment distributions in
the estuary.

RESULTS AND DISCUSSION

TSS Model Results and Discussion
Spearman rank correlations identified the highest correlations
between individual bands and band ratios with the TSS data
collected by the TCEQ. The correlation analysis found that
Rrs 645, Rrs 645/Rrs 555, and Rrs 645/Rrs 469 had the highest
correlations with TSS, at 0.65, 0.79, and 0.63, respectively. These
radiometric values were then fit to derive TSS using linear and
exponential models. In total there were six models tested three
linear and three exponential (Table 1). A comparison of the
empirical models tested to derive TSS from Rrs and Rrs ratios are
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TABLE 1 | Model fit statistics for calibration dataset and validation dataset error

metrics for linear and exponential models for estimating TSS from Rrs and Rrs

band ratios.

Fit type Band input Calibration data Validation data

R-square RMSE MAE Mean bias

Exponential Rrs 645/Rrs 469 0.46 27.06 22.74 −18.39

Exponential Rrs 645 0.19 33.13 258.56 240.20

Exponential Rrs 645/Rrs 555 0.81 16.06 17.52 −13.40

Linear Rrs 645/Rrs 469 0.45 27.22 24.63 −19.64

Linear Rrs 645 0.28 31.15 43.22 24.03

Linear Rrs 645/Rrs 555 0.70 20.26 18.06 −9.63

presented inTable 1 along with their fit statistics. Themodel with
lowest MAE of validation dataset was selected to create the TSS
EDR. As indicated in Table 1, the best model was an exponential
function using the band reflectance ratio of Rrs 645/ Rrs 555. The
equation for this algorithm is:

y = a∗eb∗x (1)

Where y is the estimate for TSS in mg/l and x is the Rrs 645/Rrs
555 reflectance ratio from the MYD09GA dataset. Coefficients
a and b and their 95% confidence intervals were 1.696 (0.703,
2.689) and 3.562 (3.030, 4.094), respectively. The model fits quite
well to the data with an R-square of 0.81 and RMSE of 16.1 (n =

55) for the TCEQ calibration data (Figure 3). The MAE for the
validation dataset is 17.52 (n = 35) with a mean bias of −13.40.
Model fit to the data is illustrated in Figure 3. The uncertainty
in this model is estimated to be 13% according to the RMSE
compared to the range of the calibrated data. It is interesting to
note that the model underestimates 66% of the validation dataset,
however, these values still fall with the 95% confidence interval of
the model fit. While exact cause of the bias is unknown, potential
reasons for the bias include radiometer drift and slight differences
in TSS processing. The model was fit to data spanning 2003 to
2010 and validation data was collected from 2011 to 2013, a drift
in the satellite radiometer could account for this difference. Slight
differences in the TSS samplingmethodsmay also account for the
differences.

In order to gain more confidence in this model high
concentration TSS measurements are needed in both the
calibration and validation dataset to achieve a more robust
quantification of error. While this model performs well over a
range of TSS values in several Texas estuaries, more validation
data is needed to quantify the true error of the model. Individual
models tuned for individual estuaries may reduce the error using
the same method, but this was not possible due to an insufficient
number of in situ data points within each estuary.

Usage of this algorithm for deriving TSS from Rrs will cause
over- and under-estimations of TSS in high concentrations of
CDOM and CHL-α, respectively. An example is included in
the validation data set where a high concentrations of CHL-α
causes the algorithm to underestimate the true concentration of
sediment in the water (Figure 3). The TSS value of 133.7 mg/l
in the validation data set occurred during an algal bloom with

FIGURE 3 | Model produced by Equation 1 for the estimation of TSS from

MYD09 reflectance with in situ data collected by TCEQ (black circles) and

validation dataset (gray triangles) collected by Paudel and Montagna (2014).

a CHL-α density of 38.4 mg/l. For this case, the modeled TSS
was 59.8 mg/l, which underestimates the actual measurement
by 73.9 mg/l. While this is a large error, algal blooms in these
estuarine waters are infrequent events. To further illustrate CHL-
α influence on the model a sensitivity analysis was conducted
on CHL-α vs. modeled TSS residuals for both the calibration
and validation datasets (Figure 4). We found no systematic
influence of CHL-α on predicted TSS values, except for the
aforementioned high concentration sample of CHL-α. For the
majority of the year, the suspended sediments in these Texas
estuaries are mostly composed of suspended inorganic particles
(McKee and Baskaran, 1999). Thus, the influence of algal blooms
will only impact the EDR created from this algorithm for a
small percentage of the time allowing for analysis of suspended
sediment dynamics in Texas estuaries. The influence of CDOM
on the algorithm could not be quantified because neither TCEQ
nor Paudel and Montagna (2014) collected such measurements.
With these limitations, this algorithm shows promise in creating
a TSS EDR for Texas estuaries.

Development of this model enables the creation of synoptic
suspended sediment maps in Texas estuaries. Figure 5

compares a MODIS-Aqua true color image with estimated
TSS concentrations for the same scene, the Texas estuaries and
coast, following the passage of a cold front. The largest TSS
concentrations along the coast are observed for Galveston Bay
and Matagorda Bay.

TSS Patterns and Forcings for Corpus
Christi Bay
TSS composites and wind roses for Corpus Christi Bay are
presented in Figure 6. During the frontal passages period,
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median, and IQR TSS are higher in the southern portion
of the estuary, windward of the predominant north-northeast
wind direction. Median TSS and IQR values increase as the
fetch lengths increase. The similar patterns of both IQR and
median TSS with values increasing with fetch length and
highest on the windward side of the estuary suggest that
wind-wave resuspension from frontal passages is the dominant
process controlling suspended sediment concentrations during
this period. These patterns are similar to those reported by
Shideler (1984) during the same wind regime. TSS median
values are the lowest during this period when compared to
other wind regimes in this estuary, possibly resulting from the
combination of low wind speeds between frontal passages and
a relatively low frequency of such events. The majority of wind
speeds during this period are <7.5m/s (Figure 6) while there

FIGURE 4 | Residual TSS from TSS model plotted against CHL-a sampled

concurrently for both the calibration (triangles) and validation dataset (circles).

Calibration and validation datasets are colored based on in situ TSS-values.

are typically 10 frontal passages during the frontal passages
period (Ward, 1997). Low wind speeds between frontal passages
are likely not significant enough to generate waves that impart
sufficient bed shear stress for resuspension as the bay is 4m
deep on average, the deepest along the Texas coast. Another
area that exhibits a behavior similar to the southern portion
of the estuary during the same period are the dredge spoil
deposition sites along the ICW (Figure 6). Elevated median
TSS and higher IQR values compared to the rest of the bay
occur at these locations. Yet these areas fetch lengths are
considerably smaller in the direction of the prevalent wind.
These areas have more unconsolidated dredged sediments and
are shallower than the rest of the estuary thus sediments are more
readily suspended.

Another factor that may influence the measured patterns
is bias due to cloud presence (Eleveld et al., 2014). Higher
wind periods may be under represented compared to the actual
resuspension events that occur because themajority of cold fronts
are accompanied by cloud-cover that obscures the satellites view
of the estuary. The frontal passages period composites of Corpus
Christi Bay support Shideler’s (1984) hypothesis that Nueces Bay
is a fluvial sediment storage basin having a control valve activated
by strong northerly wind. Suspended sediments are released
into Corpus Christi Bay during frontal passages as indicated
by the higher median and IQR TSS values near the entrance
to Nueces Bay. These higher TSS values compared to those of
the surrounding area are consistent with suspended sediments
spilling into Corpus Christi Bay when strong wind is blowing for
a prolonged period from the north.

The influence of tides is more difficult to identify using the
composite patterns, however, some observations can be made.
Lower IQR values are observed along the length of the Corpus
Christi Ship Channel (Figure 6). Additionally, median and IQR
values are lower than surrounding values at the entrance of
the Corpus Christi Ship Channel into the main portion of the
bay. Both observations are consistent with flood plumes that are

FIGURE 5 | MODIS-Aqua 500-m True Color RGB image and example of output from TSS algorithm for same scene following the passage of a cold front on January

10th 2006.
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FIGURE 6 | Corpus Christi Bay TSS Median and IQR with corresponding wind rose for each wind regime. Red rectangular polygons are dredge spoil deposition sites.

lower in suspended sediment concentration originating in the
Gulf of Mexico. These lower values indicate that, for Corpus
Christi Bay, inflow of Gulf waters reduces the concentration of
sediment within and surrounding the ship channel but not for
the bay at large. Export of suspended sediments from the Bay
to the Gulf of Mexico is evident from an ebb plume at the exit

of the ship channel into the Gulf of Mexico for all wind regimes

with the largest plumes observed for the frontal passages period
(Figure 6). Higher TSS concentrations are observed along the
shorelines of the Gulf of Mexico for the frontal passages period
as compared to the other wind regimes consistent with strong
offshore northerly winds often accompanying frontal passages. It
is hypothesized that wave action generated by the southerly winds

preceding frontal passages results in resuspension of nearshore
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sediments and that offshore northerly winds then transport the
suspended sediments further offshore.

The southeasterly period has the highest concentrations of
median and IQR TSS values. Similar to the frontal passages
period, both Median and IQR TSS values increase along fetch
length in the dominant wind direction. Highest median and IQR
TSS values are located along and near the windward shore in the
northwestern quadrant of Corpus Christi Bay. This area is where
the predominant and prevalent wind of this wind regime has the
longest fetch lengths, ∼18 km. Similarly to the frontal passages
period, this pattern indicates that wind-wave resuspension is
the dominant process influencing estuarine suspended sediment
distribution during this period. The median TSS composite
resembles the pattern in Shideler’s (1984) southeasterly mode.
Similar to Shideler’s (1984) observations, the southeastern
quadrant of Corpus Christi Bay has very low concentrations
of TSS. These low TSS concentrations are attributed to a flux
of sediment free waters from the Upper Laguna Madre being
pushed into the southern portion of Corpus Christi Bay by the
southeasterly wind.

Dredge spoil placement sites exhibit similar behavior to those
during the frontal passages period. The dredge spoil area located
on the ICW has higher median and IQR TSS values than the
surrounding area (Figure 6). These higher values during both
the frontal passages period and southeasterly period illustrate
that these areas are more prone to wind-wave resuspension. The
dredge spoil site next to the entrance of the port of Corpus
Christi also has higher median and IQR values than those of the
surrounding area.

During the quiet period (Figure 6), the Corpus Christi Bay
median and IQR values are relatively uniform. Areas near
and along the windward shore have slightly elevated values
when compared to the rest of Corpus Christi Bay. The low
concentrations of median and IQR TSS values are compatible
with a wave dominated TSS with less sediment than during any of
the other time periods. The IQR pattern also displays the lowest
values indicating consistently low TSS concentrations during the
quiet period. The highest concentrations of median TSS values
are located over the dredge spoil deposition area near the Port of
Corpus Christi similar to during the southeasterly period.

Potential Limitations of the Study
It is important to note that the seasonal median TSS composites
may be biased by cloud presence obscuring satellite view of
estuaries and thus providing lower representation of scenes
associated with frontal passages, southeasterlies, sea breeze, and
thunderstorms.While these biases likely influence total estimated
suspended sediment concentrations, the overall seasonal changes
in resuspended sediment concentration patterns are unlikely
to be substantially affected by these biases and are still clearly
identifiable permitting assessment of the importance of the
respective forcing mechanisms.

Another potential limitation of this study is the influence that
CDOM and high CHL-α have on the reflectance ratio algorithm.
Areas with high CDOM concentrations cause overestimates
of TSS concentrations while areas of high CHL-α cause
underestimates of TSS concentrations. This bias is believed to be
minimal for Corpus Christi Bay.

CONCLUSIONS

A TSS algorithm was created to quantify suspended sediment
in estuaries of the Texas Coast based on MODIS reflectance
data and a comparison with two in situ data sets collected in
the study area during the period 2002–2014. The algorithm
includes filtering of the data for geometries, sun glint, and water
depth, and an exponential function that gives the best fit for
TSS concentrations ranging from 4 to 176 mg/l. After calibration
based on a long-term TCEQ data set, the algorithm was further
validated with an independent data set, acquired outside of
the model’s calibration period. However, we did find that the
algorithm does not provide accurate results for cases with CHL-α
values greater than 30 mg/l. Future users of the model and TSS
EDR generated for this study should be aware of this and other
limitations of the method.

The model was applied to create an EDR of suspended
sediments for Corpus Christi Bay. Analysis of the EDR
reveals that the bay is influenced by wind-wave resuspension
with different patterns during the predominant northerlies
and prevalent southeasterlies seasons. The impact of dredging
is apparent in long-term TSS patterns as concentrations of
suspended sediments over dredge spoil disposal sites are higher
and more variable than surrounding areas, which is most likely
due to their less consolidated nature and shallower depths
requiring less wave energy for sediment resuspension. This study
highlights the advantage of how long-synoptic time series of TSS
can be used to elucidate themajor drivers of suspended sediments
in estuaries.
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Biogeo-Optical Modeling of the
Diffuse Attenuation Coefficient
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Commonly we see the diffuse attenuation coefficient of downwelling irradiance (Kd)

expressed as a sum of the contributions of various constituents. We show here that,

both theoretically and numerically, because Kd is an apparent optical property (AOP),

this approach is not consistent with radiative transfer. We further advocate the application

of models of Kd developed in past decades that are not only consistent with radiative

transfer but also provide more accurate estimates, in particular for coastal turbid

waters.

Keywords: solar radiation, apparent optical properties, inherent optical properties, diffuse attenuation coefficient,

optical additivity

BACKGROUND

Solar radiation is the energy source for the entire earth system. In aquatic environments, unlike
terrestrial environments, solar radiation can penetrate to great depths to fuel photosynthesis and
to heat up the upper layer (Zaneveld et al., 1981; Platt, 1986; Lewis et al., 1990). The propagation of
solar radiation from surface to greater depths can be expressed as (Mobley, 1994)

Ed(z, λ) = Ed(0
−, λ) e−Kd(λ) z . (1)

Here Ed (W/m2/nm) is the downwelling irradiance, z (m) is the depth from the surface (0− for
subsurface), Kd (m

−1) is the attenuation coefficient of downwelling irradiance between surface and
depth z, andλ (nm) for wavelength. Since the variation of Ed(0

−) is independent of water properties
(except extremely turbid waters where the enhanced upwelling flux will result in significant
contributions to Ed(0

−) due to internal reflection), it is then imperative to describe the variation
of Kd for various aquatic environments when quantifying the impact of water constituents on the
heat budget (Morel and Antoine, 1994; Ohlmann et al., 2000), the feedback of oceanic systems on
climate changes (Rochford et al., 2001; Gnanadesikan and Anderson, 2009), as well as the vertical
variation of primary production (Sathyendranath and Platt, 1995).

Historically, with an objective of easy modeling and efficient calculation for large scale
applications, Kd is commonly expressed as (Smith and Baker, 1978; Morel, 1988; Morel and
Maritorena, 2001),

Kd(λ) = Kw(λ) + Kbio(λ), (2)

with Kw the contribution of pure (sea)water, and Kbio the contributions of phytoplankton. In this
expression, i.e., the so-called “Case-1” scheme (Morel and Prieur, 1977), the attenuation of pure
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(sea)water is considered as a background, while other
constituents that are actively changing, such as phytoplankton
and suspended mineral solids, are considered as added
contributions. In addition, the contributions of colored dissolved
organic matter (CDOM) and organic detritus are considered as
co-varying with phytoplankton, and lumped into the Kbio term.
So their contributions are not ignored or omitted as might be
implied by the equation, although its application is limited to
“Case-1” waters.

In order to explicitly evaluate and understand the impact of
constituents such as CDOM and/or suspended mineral particles
or particulate inorganic matter (PIM) on the propagation of solar
radiation, Kd in many studies is expanded as a sum of more
components, although there are subtle variations among these
models (Smith and Baker, 1978; Baker and Smith, 1982; Gallegos
et al., 1990; Devlin et al., 2009; Kim et al., 2015),

Kd(λ) = Kw(λ) + Kbio(λ)+ KCDOM(λ)+ KPIM(λ). (3)

Here KCDOM and KPIM are the diffuse attenuation coefficients
resulted from CDOM and PIM, respectively. In essence, these
biogeo-optical models of Kd effectively treat Kd, an apparent
optical property (AOP) (Preisendorfer, 1976), as an inherent

optical property (IOP) (Preisendorfer, 1976), which is not
consistent with the definitions and the nature of variations of
Kd (Stavn, 1988). The attitude of treating Kd as an IOP might
stem from that Kd of “Case 1” water, after correcting for the
sun angle effect, can be considered as a “quasi” IOP (Gordon,
1989). However, it was never claimed that this would work in any
other water types than “Case 1” water. Many subsequent studies
have, for the most part, somehow ignored these limitations in
applications.

Fundamentally Kd is sun-angle dependent (Stavn, 1988;
Mobley, 1994) (also weakly dependent on atmospheric
properties). So, considering the model of Morel and Maritorena
(2001), it is specifically stated that the model and the empirical
coefficients (Equation 3 in Morel and Maritorena, 2001) are
valid just for low zenith sun angles. But this restriction has in fact
largely been ignored by the research community, which leads to
inconsistent applications and errors. For instance, if we use this
model for early morning or late afternoon situations, because of
the likely large sun angle, this can easily result in 30% or greater
errors in estimating Kd (Morel et al., 2002; Lee et al., 2005b). In
the following, we demonstrate the non-additive nature of Kd

theoretically and numerically.

THEORETICAL MODEL OF Kd

Based on radiative transfer, Kd is a function of IOPs (especially
the absorption, a, and backscattering, bb, coefficients) as (Lee
et al., 2005b),

Kd =

1

µd
a+

(

rd

µd
−

ru R

µu

)

bb. (4)

Here µd (µu) is the average cosine and rd (ru) is the shape
factor for the downwelling (upwelling) light field (Stavn and

Weidemann, 1989), respectively. R is the irradiance reflectance
(Gordon et al., 1975). Through numerical simulations via
Hydrolight, it was found that the above expression could be
simplified as (Lee et al., 2005b)

Kd(λ) = m0 a(λ)+m1

(

1−m2 e
−m3 a(λ)

)

bb(λ), (5)

with m0−3 constants that are independent of wavelength and
water properties. Note that these model parameters vary weakly
with depth (Lee et al., 2005b) due to changes of light field
structure, consistent with the change of µd with depth (Stavn,
1988; Berwald et al., 1995; McCormick, 1995). Also note that
for large zenith angles, the forward scattering coefficient will
also contribute to the diffuse attenuation coefficient through its
contribution to µd, µu, rd and ru (Stavn and Weidemann, 1989).
Mathematically, Equation (5) can be rewritten as,

Kd(λ) = m0 a(λ)+m1 bb(λ)−m1m2 e
−m3 a(λ) bb(λ). (6)

Consequently, although a(λ) and bb(λ) are additive, a nature of
IOPs, the interaction term between a(λ) and bb(λ) (the third term
on the right side of Equation 6) is not additive, thus Kd cannot be
additive—a general nature of AOPs. This characteristic is further
highlighted in details below.

For simplicity, let’s consider a medium has just two
constituents: pure seawater and suspended inorganic mineral
particles (PIM). For pure seawater alone, following Equation (6),
there is

Kw(λ) = m0 aw(λ)+m1 bbw(λ)−m1m2 e
−m3 aw(λ) bbw(λ). (7)

Here aw(λ) and bbw(λ) are the spectral absorption and
backscattering coefficients of pure seawater.

For suspended inorganic mineral particles alone,

KPIM(λ) = m0 aPIM(λ)+m1 bbPIM(λ)

−m1m2 e
−m3 aPIM(λ) bbPIM(λ), (8)

with aPIM and bbPIM being the absorption and backscattering
coefficients of suspended mineral particles.

Therefore, a sum (Ksum
d

(λ)) of the two contributions to Kd

following Equations (2) and (3) resulted in,

Ksum
d (λ) = m0(aw(λ) + aPIM(λ))+m1(bbw(λ) + bbPIM(λ))

−m1m2

(

e−m3 aw(λ) bbw(λ)+ e−m3 aPIM(λ) bbPIM(λ)
)

.

(9)

However, when the medium is composed of both pure seawater
and suspended mineral particles, its Kd following radiative
transfer (Equation 6) is

Kd(λ) = m0(aw(λ) + aPIM(λ))+m1(bbw(λ) + bbPIM(λ))

−m1m2

(

e−m3 aw(λ)−m3 aPIM(λ)
)

(bbw(λ)+ bbPIM(λ)).

(10)
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Clearly, as shown above, when there are more constituents,
because the light field is determined by the bulk properties
(Stavn, 1988; Stavn and Weidemann, 1989; Lee et al., 2005b),
aw and aPIM will affect the contribution of both bbw and bbPIM
to Kd. However, when Kd is treated as an additive property
of Kw and KPIM , the effect of aw on the contribution of
bbPIM and the effect of aPIM on the contribution of bbw are
excluded.

NUMERICAL DEMONSTRATION

To demonstrate the above point numerically, Figure 1 compares
Kd spectra from Hydrolight (Mobley and Sundman, 2013)
simulations with Ksum

d
, where the two component spectra (Kw

and KPIM) were also obtained from Hydrolight simulations
using the same constituents as for Kd. Specifically, spectral
(400–800 nm, 10 nm interval) Ed(z) were simulated with
Hydrolight, and Kd between surface and z is calculated
following

Kd(λ) =
1

z
ln

(

Ed(0
−, λ)

Ed(z, λ)

)

(11)

For the derivation of Kw from Hydrolight, all other constituents
were held to 0 except for the properties of pure seawater. Values
of aw are a combination of Lee et al. (2015) and Pope and Fry
(1997) while values of bbw are those of Morel (1974). For the
derivation of KPIM from Hydrolight, PIM was set as 10 g/m3

and the default optical model parameters for suspended minerals
included in Hydrolight were used to get the absorption and
scattering coefficients of PIM. Note that this PIM concentration
is just a low-medium value for turbid coastal waters (Babin
et al., 2003; Doxaran et al., 2009). For this simulation, an
idealized “transparent pure seawater” was used where very low
values of aw (0.1 × 10−4 m−1) and bbw (0.5 × 10−5 m−1)
were employed. With such a setup the contribution of this
“transparent pure seawater” to the calculated Kd (Equation 11) is
then negligible, and the resultantKd fromHydrolight simulations
can be considered as KPIM . The sun angle for all simulations for
both Kw and KPIM was set as 30◦ from zenith along with a clear
sky.

There are distinct differences in Kd (at least for this case) in
the longer wavelengths (∼10–15% for the 600–800 nm range),
where aw makes significant contributions to the total a; and this
contribution, when there are sediments, to Kd is not represented
in the additive descriptions of Kd (the red curve). For the
shorter wavelengths (<∼500 nm), because most (>∼98%) of
the contributions to Kd comes from PIM, the sum of the two
terms match the bulk results well. Certainly the impact of the
non-additive nature of Kd depends on the values of both a
and bb. For “Case-1” waters or waters where the scattering
coefficients are relatively small, it might be applicable, without
great errors, to treat Kd(λ) as an additive property. However, this
will depend on the validity of the above-mentioned assumptions.
While not based on any assumptions of “Case-1” conditions or
dependencies, the modeled Kd spectrum following Equation 5
is in an excellent agreement with the Hydrolight Kd spectrum

FIGURE 1 | Comparison of Kd spectra between Hydrolight simulation (blue),

sum of individual components (red), and that from semi-analytical model

based on bulk IOPs (green). The range for Kd is between surface and 5m.

(∼1% differences, see Figure 1), which highlights themuch wider
applicability of models based on radiative transfer. And, the
robust performance of this model was also demonstrated in
Zimmerman et al. (2015) for the quite turbid Chesapeake Bay
waters.

Historically (Lorenzen, 1972; Smith and Baker, 1978;
Woodruff et al., 1999; Gallegos, 2001; Devlin et al., 2008), there
are also studies that treat the attenuation coefficient (K(PAR)) of
the photosynthetic available radiation (PAR) as being additive of
the contributions of individual constituents,

K(PAR) = Kw(PAR) + Kbio(PAR)+ Kx(PAR), (12)

with Kx(PAR) for contributions except phytoplankton and pure
(sea)water. Following the above logic and discussion regarding
spectral Kd, we easily observe that this model is not consistent
with radiative transfer either (Morel, 1988). In particular, it
is ambiguous of the light spectra that should be used for the
calculation of Kw(PAR) or Kbio(PAR). Further, because K(PAR)
is the attenuation coefficient of solar radiation of a wide spectral
range (400–700 nm, i.e., the PAR spectral range), while the
spectral quality of Ed(z) changes significantly from surface to
depths, which then causes K(PAR) to change greatly (as much as
a factor of 4) from surface to depth (Lee et al., 2005a; Lee, 2009).
Consequently, the applicability of such biogeo-optical models for
K(PAR) is ambiguous at the very least.

CONCLUSIONS

Because the interaction term (the third term on the right side
of Equation 6) of Kd(λ) (or K(PAR)) depends on the values of
both a and bb, the contribution of this term to Kd is not always
small or negligible. Also, this interaction term is not a linear
function of a and bb. Therefore, for consistency with radiative
transfer and formore accurate estimation, and also to incorporate
advancements in ocean optics of recent decades, it is better to
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get bulk IOPs first from biogeochemical properties, and then to
calculate Kd based on IOPs. In short, IOPs are additive, but AOPs
are not.
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Temperature and light are fundamental environmental variables which regulate

phytoplankton growth rates when nutrients are in excess. For polar coastal oceans

that are undergoing changes in sea ice cover and warming, light, and temperature are

particularly important for bloom dynamics. Using colonial Phaeocystis antarctica cultures

grown at steady-state, we assessed the combined effect of these two environmental

controls on net growth rate (µn), chlorophyll-specific absorption of light (a∗ph (λ)), and

quantum yields for growth (φµ). Specific net growth rates (µn) varied from 0.04 to 0.34

day−1 within a matrix of light and temperature ranging from 14 to 542 µmol quanta

m−2 s−1 and −1.5 to 4◦C. Values of a∗ph (λ) varied significantly with light but only slightly

with temperature. Values of φµ ranged from 0.003 to 0.09mol C (mol quanta absorbed)−1

with highest values at low light and 4◦C. For excess irradiances or low temperatures

where growth rate is inhibited, quantum yields were low. The low φµ values are attributed

both to increased absorption by photoprotective pigments compared to photosynthetic

pigments and thermodynamic control of dark reaction enzymes. The systematic changes

in photophysiological properties of P. antarctica in relation to temperature and light

were used to develop a series of nested light- and temperature-dependent models

for µn, a
∗

ph (λ), and φµ. A model for a∗ph (300–700 nm) was developed that takes into

account the systematic changes in a∗ph (λ) due to pigment packaging effects and cellular

concentrations of chlorophylls and photoprotective pigments. Also, a model for φµ was

developed based on a cumulative one-hit Poisson probability function. These model

parameterizations for absorption and quantum yield are combined into an overall model

of net growth that can be applied easily to P. antarctica bloom dynamics using remote

sensing data for temperature, light, and chlorophyll a. Furthermore, modeling based

on the biophysical variables a∗ph (λ), and φµ that are shown to regulate the growth

rate provides a more fundamental mechanistic approach compared to other modeling

methods that do not explicitly resolve photon flux into the cell or the quantum yield.
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INTRODUCTION

The colonial prymnesiophyte Phaeocystis can dominate coastal,
ice edge, and open ocean blooms in polar and temperate waters
with significant implications for carbon export (Smith et al.,
1991; DiTullio et al., 2000; van Leeuwe et al., 2007; Pavlov
et al., 2017). The importance of light, temperature, and nutrients
in governing phytoplankton growth and bloom formation has
motivated research on metabolic and cellular characteristics of
phytoplankton in response to environmental stressors. Singly, the
light-, temperature-, and nutrient- dependence of phytoplankton
growth has been well-characterized for a variety of species under
a wide range of experimentally controlled laboratory conditions
providing the basis for generalized models of phytoplankton
growth for temperature, nutrients, and light limitation. Nutrient-
limited growth has been described as a function of cell quota
which is determined by Michaelis-Menten uptake kinetics
(Droop, 1983). These kinetic models have been modified to
account for multiple nutrients by invoking Leibig’s Law of the
minimum (Falkowski and Raven, 2007). Temperature-dependent
growth has been modeled with the Arrhenius equation (Li, 1980)
and maximal growth has been based on empirical derivations
determined from cultures (Eppley, 1972). Light-dependent
growth has been modeled as a variety of different formulations
which allows growth to increase with irradiance, saturate, and
decrease at high irradiances (Goldman and Carpenter, 1974;
Laws and Bannister, 1980; Moisan et al., 2002). While nutrient
limitation is generally modeled on the basis of the “limiting”
nutrient, phytoplanktonmust also acclimate to large variations in
light and temperature (Behrenfeld et al., 2002; Ciotti et al., 2002).
Often these regulate growth in an interactive co-limitationmatrix
(Sosik and Mitchell, 1994; Sunda and Huntsman, 1997, 2011)
however there is lacking a mechanistic framework for modeling
phytoplankton growth rate based on the biophysical variables
of cellular absorption and quantum yield under simultaneous
co-limitation.

Blooms of Phaeocystis sp. have been reported in diverse

oceanic provinces for temperature ranging from less than 0◦C

to greater than 35◦C and for both shallow and deep mixed

layers (Gieskes et al., 2007; Gypens et al., 2007). Data sets
required to specify physiological parameters for growth at various

environmental conditions are relatively rare. A review of Chl:C
ratios in polar and temperate microalgae at different acclimation
states is found in Lacour et al. (2017)Various mathematical
descriptions for modeling phytoplankton growth that include
multiple limitations establish the foundations for our approach
(Shuter, 1979; Laws and Bannister, 1980; Rhee and Gotham,
1981a,b; Geider et al., 1998; Behrenfeld et al., 2002; Edwards et al.,
2016). These concepts have been extended to the estimates of
primary production and growth rates from satellites (Behrenfeld
et al., 2005; Arteaga et al., 2014, 2016). Growth rates regulated
by irradiance, temperature, and nutrients have been modeled
using different approaches based on algal metabolism (Laws
and Bannister, 1980), elemental ratios of chlorophyll or carbon
(Geider et al., 1998; Graff et al., 2016), or cell carbon quota
(Zonneveld et al., 1997). Some of these models have limited
ecological applicability because they require parameters that

are not easily measured in natural systems. We model steady-
state growth based on the mechanistic biophysical parameters of
chl-a specific spectral absorption and photosynthetic quantum
yeield (a∗

ph
(λ) and φµ,) which are directly regulated by light,

temperature, and nutrients (Kiefer and Mitchell, 1983; Sakshaug
et al., 1989; Cullen, 1990;Moisan andMitchell, 1999). For brevity,
all symbols are defined in Table 1. For steady-state growth, a∗

ph

(λ) and φµ vary in response to temperature, light, and nutrient
regulation of growth (Mitchell and Kiefer, 1988; Nelson and
Prézelin, 1990; Sosik and Mitchell, 1991, 1995; Moisan and
Mitchell, 1999; Westberry et al., 2008). Combining estimates of
phytoplankton absorption (Kishino et al., 1985) with rates of
carbon fixation allows for validation of models based on a∗

ph
(λ)

and φµ for natural communities (Cleveland et al., 1989; Smith
et al., 1989; Marra et al., 1995; Sosik and Mitchell, 1995; Sosik,
1996). Thus, the model we describe here to predict a∗

ph
(λ) and

φµ for light and temperature co-limitation can easily be applied
and validated for natural communities in polar regions using
routine methods and is most applicable when blooms dominated
by Phaeocystis are forming and nutrients are in excess. The model
is most likely not as robust during pre-bloom situations with
a mixed community assemblage and for post bloom conditions
when nutrients are exhausted.

Modeling growth rates of phytoplankton over large
geographical scales will require parameterizations that take
into account the taxonomic diversity of the phytoplankton
community and variability driven by physiological acclimation
(Moisan et al., 2017). In this paper, we have developed a model
of growth rate using the colonial prymnesiophyte, P. antarctica,
an ecologically and biogeochemically important organism
in the polar and subpolar carbon cycle (Stuart et al., 2000;
Smith et al., 2003; Pabi and Arrigo, 2006; Smith et al., 2006;
Gieskes et al., 2007) and is responsible for significant amounts
of new production (Arrigo et al., 1999). Temperature, light,
and iron are major limiting factors that control the initiation
and development of phytoplankton blooms in the Southern
Ocean. We describe the range of variability and relationships
of µn, a

∗

ph
(λ), and φµ for P. antarctica for a realistic range of

temperature, light, and nutrient conditions that occur during the
Antarctic spring bloom. Using steady-state experimental data,
we developed a series of nested models that together form a
photophysiological model of net growth. Our model is based on
contemporary bio-optical models for photosynthesis (Kiefer and
Mitchell, 1983; Cullen, 1990; Moisan and Mitchell, 1999) which
utilize a∗

ph
(λ) and φµ as photophysiological variables to describe

phytoplankton net growth,

µn =

chl a

C

∫ 700nm

350nm
a∗ph (λ)E0(λ)φµ dλ. (1a)

We determined the environmental control of a∗
ph

(λ), and φµ

by assessing their magnitude for co-limitation using controlled
light and temperature experiments. Our model for φµ is based
on a cumulative one-hit Poisson probability distribution and
introduces the concept that both light and temperature regulate
the maximal quantum yield of growth for any acclimated state.
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TABLE 1 | Symbols used throughout the text.

λ Wavelength (nm)

chl a Chlorophyll a (mg m−3 )

T Temperature (◦C)

Pnet Net primary production

µn Specific rate of net growth (day−1)

µm Maximal specific rate of net growth (day−1)

C Particulate carbon (mg m−3)

Eo(λ) Spectral quantum scalar irradiance (mol quanta m−2 s−1

nm−1)

PAR Photosynthetically available radiation defined as
∫ 700nm
350nm Eo(λ)dλ (µmol quanta m−2 s−1)

FDCMU In vivo DCMU-enhanced fluorescence (relative units)

aph (λ) Absorption by phytoplankton (m−1)

a*ph (λ) Chl-specific absorption of phytoplankton (m2 mg chl a−1)

a*ps (λ) Chl-specific absorption due to photosynthetic pigments

(m2 mg chl a−1)

a*pp (λ) Chl-specific absorption due to photo-protective pigments

(m2 mg chl a−1)

φµ Quantum yield for growth [mol C fixed (mol quanta

absorbed)−1]

φm Maximal quantum yield [mol C fixed (mol quanta

absorbed)−1]

φmE0 ,T Maximal quantum yield at a steady state irradiance and

temperature [mol C fixed (mole quanta absorbed)−1]

Ekµ
Photoacclimation parameter (m2/µmol quanta m−2 s−1)

a, b Coefficients of power function fit for φmEo,T

C0, CE, CT Coefficients for intercepts, irradiance and temperature

multiple-linear regression fit for a*ph (λ)

α, µs
β, β Coefficients for fitting light-dependent growth

α1, α2 Coefficients for temperature-dependence of α

Psb Curve fitting parameter for a P vs. E curve

In general, the maximal quantum yield for any acclimated
state should be modeled as a function of the limiting growth
conditions (Moisan and Mitchell, 1999) rather than using the
theoretical maximum (Sakshaug et al., 1989). Our formulation
is based on Cullen (1990) and we extend our previous model of
φµ (Moisan and Mitchell, 1999) as a variable dependent on both
light and temperature,

φµ = φmEo ,T
1− exp−Eo/Ekµ

Eo/Ekµ
(1b)

where φµ is the quantum yield of growth, φm,Eo,T is the
maximal quantum yield for growth for an acclimated state
within the light and temperature limitation matrix, Ekµ is the
photoacclimation parameter (Falkowski and Raven, 2007), and
E0 is photosynthetically available radiation.

The culture experiments were designed to assess the broad
range of temperature and light that Antarctic phytoplankton
experience in nature that is relevant to formation of blooms.
Since a bloom cannot form unless there are excess nutrients to
support the growth of the bloom, we do not model nutrients
although clearly macronutrients and iron can regulate the

crop size and productivity (Sedwick, 2007; van Leeuwe and
Stefels, 2007). By characterizing the light and temperature
response of phytoplankton absorption and quantum yield over
a realistic environmental range, we have parameterized a bio-
optical model for µn for application to ocean color satellites
and buoys. This effort to describe and model the variability
in the biophysical parameters that mediate temperature and
light control of phytoplankton growth provides important
details related to phytoplankton acclimation when multiple
environmental variables are regulating growth simultaneously.

MATERIALS AND METHODS

Cultures of colonial P. antarctica (CCMP 1374) were grown
semi-continuously at −1.5, 0, 2, and 4◦C for 5–8 generations in
f/2 medium (Gulliard and Ryther, 1962) under continuous blue
light ranging from 14 to 542mol quanta m−2 s−1. The spectrum
of the light source was similar to the light quality observed in
the upper ocean (Moisan and Mitchell, 1999). Cultures were
maintained at ∼30% of the carrying capacity of the culture
medium. This protocol results in a steady-state acclimated
condition at the time of experimental sampling. Details of the
illumination source, blue filter and culturing system and our
method to estimate spectral quantum flux in the cultures can be
found in Moisan and Mitchell (1999).

Specific Growth Rate (µn)
Specific growth rate was estimated by a linear regression of
loge transformed daily determinations of in vivo fluorescence
intensity (n = 2) measured with a Turner Model 10 fluorometer
at the same time each day. POC data was also collected during
mid-log phase growth at the time of the experiments, allowing an
estimate of the carbon-based growth rate for each experimental
culture.

Fluorometric Estimates of Chl a
Chl a concentrations (n = 3) were estimated fluorometrically
using a Turner Model 10-AU fluorometer according to
(Welschmeyer, 1994).

High Performance Liquid Chromatography
(HPLC)
Duplicate samples (n = 2) were concentrated onto Whatman
GF/F filters and extracted in cold 100% acetone by grinding with
a teflon-tip grinding rod. After centrifugation, the supernatant
was mixed with 20% (v/v) HPLC-grade water and analyzed on a
Shimadzu LC10-ADHPLC system (Wright et al., 1991). Pigment
concentrations were based on absorption at 440 nm (Dynamax
Model UV-1). Integrated HPLC peak area was quantified with
external standards. Canthaxanthin was used as an internal
standard. A spectral diode detector provided spectral absorption
of peaks which were used to confirm the individual pigments by
reference to a spectral library of standards. Duplicate samples
(N = 2) differed by less than 2% of each other on replicate filtered
samples. Note that there was a small difference (2–20%) between
HPLC samples and fluorometric samples. For this reason, we
have averaged the HPLC and fluorometric samples.
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Chl-Specific Absorption Coefficient
(a∗

ph (λ))
For experiments at−1.5, 2, and 4◦C, in vivowhole cell absorption
spectra were determined (n = 4) on concentrated samples from
300 to 800 nm at 1 nm intervals with an integrating sphere
accessory in a dual beam Perkin Elmer Lambda 6 UV/Vis
spectrophotometer. Fresh f/2 medium was used as a reference
and a blank. For cultures grown at 0◦C, the integrating sphere
failed and we estimated the absorption coefficient with the glass
fiber filter method of Mitchell (1990) which has been shown to
agree well with the integrating sphere methods after corrections
for pathlength amplification (Mitchell et al., 2000). The chl-
specific absorption coefficient was estimated by dividing loge
absorption, aph (λ), by the corresponding chl a value:

a∗ph(λ) = aph (λ) [chl a]
−1. (2)

Particulate Carbon and Nitrogen Content
Samples (n = 3) were filtered onto pre-combusted GF/F filters,
stored at −20◦C and run on a Carlo Erba carbon analyzer.
Samples of acetanilide were used to validate the system’s
calibration. See Moisan and Mitchell (1999) for details.

Cell Concentrations
Cell concentrations were estimated in Palmer Maloney chambers
both fresh (unfixed) and observed at a magnification of 400X. See
Moisan and Mitchell (1999) for details.

Quantum Yield for Growth
Quantum yield for growth was based on the carbon-specific
net growth rate, whole cell in vivo spectral absorption, and
the spectral irradiance in each treatment (Sosik and Mitchell,
1991; Moisan and Mitchell, 1999) and is a rearrangement of
Equation (1a).

Non-linear Curve Fitting
Coefficients for P-E curves, and temperature and light dependent
equations for growth and quantum yield for growth were fit using
a Marquardt-Levenberg non-linear least squares minimization
routine (Marquardt, 1963). See Moisan and Mitchell (1999) for
details.

RESULTS AND DISCUSSION

The Relationship between Growth Rate,
Temperature, and Light
Growth rates of P. antarctica varied ∼8-fold ranging from 0.04
day−1 to 0.34 day−1 under conditions which were limiting to
inhibiting for growth (Figure 1A). Specific net growth rates (µn)
increased in response to light and approached photoinhibition
at higher irradiances (Table 2). The initial slope of the light-
dependent growth was lowest at 4◦C (0.007 average± S.E.
0.001) and highest at 0◦C (0.030 average ± S.E. 0.006). A
photoacclimation parameter (Ekµ) was derived utilizing a curve-
fitting scheme of all of the light treatments for a single
temperature and other studies. Values of Ekµ were both
temperature- and light- dependent (Figure 1A).

Relative growth rates (µn/µm) for our treatments exhibited a
strong dependence on temperature, withmaximal values between
0 and 2◦C except at photoinhibiting intensities (Figure 1B, Tilzer
and Dubinsky, 1987). In general, µn had a parabolic response
to temperature, with a 1.5-fold change between minima and
maxima with the exception of the treatments at 14 µmol quanta
m−2 s−1. At low temperatures under moderate light intensities,
P. antarctica achieved maximal growth similar to those grown
at high light at 4◦C. For example, the maximal growth rates,
µm (0.98 ± 0.05, average ± S.E.) achieved at 37 µmol quanta
m−2 s−1 at temperatures <2◦C were lower than those observed
at inhibiting growth conditions at 542 µmol quanta m−2 s−1 at
4◦C (Figure 1A, t-test; p > 0.05).

Empirical Model of Growth Rate
The systematic dependence of net growth rate (µn) on
temperature and light allowed for the derivation of a simple
empirical model for µn (Figure 1C). We modeled the light-
dependence of growth with a hyperbolic tangent equation
commonly used for photosynthesis-irradiance relationships
(Platt et al., 1980, Figure 1A) which allows µn to increase
with irradiance and become saturated or photoinhibited at
higher irradiances (Table 3). We modeled µm as a function
of temperature (Eppley, 1972). Values of α were fit as linear
functions of temperature and light (R2 = 0.85) as has been
observed for Antarctic phytoplankton (Lizotte and Sullivan,
1991). Net growth for P. antarctica can be estimated with
knowledge of light and temperature using the following
equations,

µm = log(2)0.851∗(1.066T), (3a)

α = α1+ (α2T), (3b)

µn = µsb[1− exp(
−αPAR

µsb
)]exp(

−βPAR

µsb
) (3c)

µsb =

µmax[α + β/α]

[β/α + β]β/α
(3d)

where µn is net growth rate, µm is the maximal growth
rate (day−1), T is temperature (◦C), α is the initial slope
of the µn vs. irradiance relationship, β is the inhibition of
growth at high irradiance, α1 and α2 are the y-intercepts and
slope for α with temperature, respectively, µsb (analogous to
Psb in Platt et al., 1980) is a fitting parameter and PAR is
photosynthetically available radiation (350–700 nm). Equations
(3c,d) represent a growth equation originally derived by Platt
et al. (1980) as a function of P vs. I. parameters. The values
for α1 and α2 are 0.0069 ± 0.001 and (−0.001 ± 0.0003),
respectively (p < 0.00001). We have very few treatments
where irradiance was sufficient to inhibit growth. However,
other investigators have clearly documented that phytoplankton
growth is inhibited at higher irradiances (Goldman and
Carpenter, 1974; Laws and Bannister, 1980; Platt et al., 1980).
Therefore, we allow β to be constrained in a relatively large
range to accomodate photoinhibition at high light under low
temperature. These dynamics are in general agreement with
increases in photoinhibition of short-term photosynthetic carbon
fixation at high light (Platt et al., 1980).
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FIGURE 1 | (A) Specific growth rates (µn, day
−1) of P. antarctica with respect to irradiance for growth temperatures ranging from −1.5 to 4◦C. (B) Relative growth

rate (µn/µm) with respect to temperature for irradiances in units of µmol quanta m−2 s−1. (C) An empirically-derived model for growth rate based on combined

limitation of light and temperature. The continuous surface is the model prediction and discrete points are experimental observations. (D) Modeled vs. observed µ

(day−1) based on Equation (4).

This simple empirical model has an excellent ability for
predicting µn based only on light and temperature as input
(Figure 1D; r2 = 0.89, p < 0.05). However, it does not
include explicit information about mechanisms of physiological
acclimation. Therefore, we have also developed a model to
predict growth using a series of nested models that predict the
biophysical parameters, a∗

ph
(λ) and φµ, based on acclimation to

temperature and light.

Temperature and Light Dependence of a∗

ph
(λ): Observations and Modeling of
Variability
The in vivo whole cell chlorophyll-specific absorption properties,
a∗
ph

(λ), of P. antarctica varied with both irradiance and

temperature (Figures 2A,B). Values of a∗
ph

(λ) increased with

increasing irradiance (Figures 2C–E). Values of a∗
ph

(λ) at 436

and 676 nm generally increased with decreasing temperature but
the magnitude of the temperature dependence was less than the
irradiance dependence (Figures 2C,D, ANOVA p> 0.05). Values

of a∗
ph

(330), due to mycosporine-like amino acids (Moisan

and Mitchell, 2001), had less dependence on temperature than
estimates at 436 and 676 nm (Figure 2E). Our observations
are within the range of a∗

ph
(λ) observed during Phaeocystis-

dominated blooms (Cota et al., 1994; Arrigo et al., 1998; Reynolds
et al., 2001).

Pigment package effects, changes in pigment ratios (Table 2),

and thylakoid stacking played an important role in determining

both the spectral shape and large changes in the magnitude of a∗
ph

(λ) (Moisan andMitchell, 1999;Moisan et al., 2006). Ratios of aph
(330) to aph (676) increased linearly from 1.8 to 13 due to changes
in MAA to Chl a concentrations as a photo-protective response
to increased irradiance (Moisan and Mitchell, 2001).

We explored the dependence of a∗
ph

(λ) on irradiance and

temperature in an attempt to specify a simple parameterization
for spectral absorption that could accurately capture the changes
in both shape and magnitude caused by changes in pigment
ratios and packaging. Singly, a∗

ph
(676) was highly predictable by a

linear regression with either irradiance (r2 = 0.62, Figure 3A) or
temperature (r2 = 0.63, data not shown). However, the accuracy
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TABLE 2 | Growth and pigmentation of P. antarctica grown under nutrient-replete conditions.

Irradiance µmol

quanta m−2 s−1
µ Chl a Pg

(cell)−1
Ratio to HPLC Chl a Total Pigment Per

cell

PS/total Pig

(w/w)

PP/ total Pig of

total (w/w)
Chl

(c1+c2+c3)

19′hex Fuco 19′but β-car DD+DT

T = 4◦C

14 0.04 0.38 0.415 0.609 0.008 ND 0.003 0.015 0.76 0.99 0.01

37 0.12 0.45 0.407 0.640 0.031 ND 0.003 0.016 0.92 0.99 0.01

85 0.19 0.45 0.307 0.268 0.010 ND 0.010 0.070 0.82 0.95 0.05

151 0.24 0.35 0.325 0.368 0.012 ND 0.011 0.099 0.60 0.94 0.06

259 0.25 0.37 0.380 0.386 0.009 ND 0.011 0.077 0.69 0.95 0.05

400 0.34 0.28 0.264 0.298 0.042 ND 0.016 0.120 0.50 0.92 0.08

542 0.29 0.17 0.204 0.230 0.015 ND 0.028 0.371 0.38 0.78 0.22

T = 2◦C

14 0.07 0.10 0.503 0.725 0.217 0.010 0.006 0.038 0.22 0.98 0.02

37 0.27 0.31 0.528 1.254 0.076 0.028 0.005 0.053 0.74 0.98 0.02

85 0.34 0.36 0.519 1.585 0.052 0.035 0.010 0.189 1.04 0.94 0.06

106 0.30 0.30 0.489 1.529 0.057 0.039 0.012 0.199 0.86 0.94 0.06

214 0.31 0.06 0.525 1.624 0.070 0.039 0.010 0.183 0.17 0.94 0.06

T = 0◦C

14 0.06 0.26 0.508 1.305 0.061 0.019 0.005 0.085 0.65 0.97 0.03

37 0.28 0.37 0.511 1.079 0.079 0.020 0.006 0.065 0.85 0.97 0.03

85 0.28 0.41 0.473 0.933 0.023 0.025 0.009 0.097 1.15 0.96 0.04

106 0.33 0.34 0.470 0.834 0.027 0.023 0.006 0.087 0.65 0.96 0.04

214 0.21 0.05 0.402 0.797 0.022 0.017 0.011 0.180 0.11 0.92 0.08

T = −1.5◦C

14 0.05 0.02 0.461 0.529 0.164 0.014 0.004 0.028 0.05 0.99 0.01

37 0.17 0.03 0.529 1.425 0.048 0.044 0.009 0.159 0.77 0.95 0.05

85 0.20 0.27 0.533 1.528 0.051 0.042 0.008 0.135 0.79 0.96 0.04

106 0.25 0.30 0.539 1.340 0.047 0.042 0.008 0.133 0.96 0.95 0.05

214 0.16 0.10 0.475 1.386 0.038 0.046 0.012 0.321 0.26 0.90 0.10

Photosynthetic pigments (PS) include Chlorophyll (Chl), 19′hexanoyloxyfucoxanthin (19′hex), and fucoxanthin (Fuco). Photo-protective pigments (PP) include diadinoxanthin (DD),

β-carotene (β-car), and diatoxanthin (DT). Chl a values are the average of HPLC and fluorometric (Fluor) values. HPLC values (N = 2) were within 2% of each other.

of modeled estimates of a∗
ph

(λ) was improved by using a multiple

linear regression with light and temperature,

a∗ph(λ) = Co + CEPAR + CTT, (4)

where PAR is in units of µmol quanta m−2 s−1, temperature (T)
is in ◦C, Co is the intercept of the multiple linear regression,
CE and CT are the multiple linear regression coefficients
for PAR and T. The multiple regression fit for a∗

ph
(676)

for temperature and light had an r2 = 0.82 (Figure 3B), a
considerable improvement compared to the fit for only irradiance
(r2 = 0.62, data not shown). A comparison of modeled (10 nm
resolution) and observed (1 nm hyperspectral) a∗

ph
(λ) are shown

in Figures 3C,D. Our modeled values are in excellent agreement
with measured a∗

ph
(λ) in the visible region. Variability in a∗

ph

(λ) between 300 and 400 nm is dominated by irradiance (Moisan
and Mitchell, 2001) with negligible dependence on temperature
(data not shown). For consistency, a single parameterization
based on PAR and T is used for the full spectrum (300–700 nm).
Coefficients for the model based on light and temperature are
given in Table 4. The model does an excellent job of describing

a∗
ph

(λ) as illustrated for an extreme range of acclimation states

representing high (Figure 3C) and low (Figure 3D) degrees of
pigment packaging and changes in photosynthetic and photo-
protective pigments relative to chlorophyll a. High relative error
in the UV for the high light sample (Figure 3C) is caused in part
because a∗

ph
(330) is∼10 times smaller than the low light example

(Figure 3D) caused by changes in cellular concentrations of
mycosporine-like amino acids relative to chlorophyll a (Moisan
and Mitchell, 2001). There was insignificant irradiance in the
system below 350 nm so the large variance in the a∗

ph
(λ) model

for data between 300 and350 nm did not affect the estimates of
φµ or µn; see section Performance of the Biophysical Model of
Net Growth for P. antarctica for dertails on model application
and Figures 5C,D for results modeling φµ and µn .

Temperature and Light Dependence of the
Quantum Yield for Growth: Observations
and Modeling
The quantum yield for growth, φµ, is the molar ratio of carbon
fixed for net growth to the quanta absorbed. Understanding
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TABLE 3 | Growth fitting parameters of Phaeocystis grown between −1.5 and

4◦C.

Temperature ◦C αµ µnm Ekµ

−1.5 0.026 ± 0.003 0.95 ± 0.06 37

0 0.030 ± 0.006 0.99 ± 0.01 34

2 0.026 ± 0.006 1.06 ± 0.12 41

4 0.007 ± 0.001 0.93 ± 0.06 128

how φµ varies as a function of environmental conditions that
are easily measured either in situ or remotely is critical in
the parameterization of photosynthetic bio-optical models that
have ecological relevance. We have chosen to estimate φµ in
relation to light and temperature because they limit bloom
formation, control cellular absorption, and enzymatic activity.
Although phytoplankton may exhibit chromatic adaptation that
optimizes the absorbing pigments to selectively absorb the
modified under water light spectrum (Dubinsky and Stambler,
2009), the quantum yield of photosynthesis (oxygen evolved
or carbon fixed per photon absorbed) is relatively flat from
about 400–650 nm (Luning and Dring, 1985). In the classic
review Photosynthesis by Rabinowitch and Govindjee (1969) they
show the spectral quantum yield determined by Emerson and
Lewis (1943) for Chlorella pyrenoidosa ranged from 0.07 to
0.09 over the spectral range 400–680 nm with the lowest values
in the area of photoprotective carotenoids 480–510 nm. While
this classic work shows very modest spectral variation in the
spectral quantum yield of ±15% from 400 to 680 nm, there
are other articles that show larger variations more like ±30%,
including our work on the chlorophyll-a fluorescence yield of
P. antarctica (Moisan and Mitchell, 2001) with a similar dip in
the photoprotective carotenoid band and very low yields below
350 nm where mycosporine amino acids absorb. The work by
(Luning and Dring, 1985) for 4 genera of macro algae indicated
quantum yield varied by ±15% from 400 to 670 nm. There is
spectral variation in the quantum yield that we did not determine
in this study, but for the PAR region below 680 nm the variations
are modest, depending on which study is cited.

We spectrally quantified total photon absorption and total
carbon growth so we do not have resolution of the spectral
dependence of φµ. The quantum yield for growth at steady
state for experimental samples was estimated by rearranging
Equation (1a),

φµ =

µn

Chl :C
∫ 700nm
350nm a∗

ph
(λ)E0(λ)dλ

. (5)

For our study, φµ varied by 30-fold (Figure 4A) ranging from
0.003 to 0.09mol C (mol quanta absorbed)−1. Values of φµ

were highest at low irradiances and decreased at high light
intensity but with a large difference in the relationship with
light for different temperatures. For a given light level, φµ

generally decreased with decreasing temperature (Figure 4A);
the curve fitted to the 4◦C was consistently higher than all other
temperatures. Values of φµ for the 0 and 2◦C treatments were
similar to each other for the corresponding light treatments

(t-test, p > 0.05). Our values for φµ are in the range previously
reported for Phaeocystis-dominated blooms (SooHoo et al., 1987;
Cota et al., 1994; Carder et al., 1995; Vaillancourt et al., 2003).

The quantum yield for net photosynthesis has previously
been modeled as a product of the maximal quantum yield
for net photosynthesis, φm and a Poisson probability function
that an open photosynthetic unit will be hit. This model was
originally formulated and validated with experiments on O2

evolution by short-term flashes of light (Dubinsky et al., 1986;
Falkowski and Raven, 2007) and adopted to model the quantum
yield for growth (Sakshaug et al., 1989; Cullen, 1990). Typically,
φm has been set for all acclimation states to the theoretical
maximal value which is equal to 0.125mol C (mol quanta
absorbed)−1 (e.g., Sakshaug et al., 1989). However, as reviewed by
Laws et al. (2002), absorption by non-photosynthetic pigments
will automatically result in quantum yields of photosynthesis
less than the theoretical maximum. To address this important
modeling issue, Moisan and Mitchell (1999) proposed a novel
approach where the maximal quantum yield (φm) for each
acclimated state was dependent on the irradiance. Here, we
extend this concept of an environmentally controlled maximal
quantum yield by also parameterizing it based on temperature
which controls the thermodynamics of photosynthetic enzymes
and therefore affects the quantum yield for growth. Thus, as we
have shown for a∗

ph
above, here we present a mechanistic control

of φm based on co-limitation by light and temperature.
We found lower quantum yield for growth values at low

light (<20 µmol quanta m−2s−1) whereas the cumulative hit
Poisson Probability does not allow this roll off at low light.
Johnsen and Barber (2003)have shown excellent experimental
data that demonstrates that there are different photophysiological
mechanisms at reduced light levels which contribute to a
reduced quantum yield. Despite low quantum yields for
growth and photosynthesis, there is experimental evidence
that photosynthetic efficiency is not always maximal at low
irradiances (Johnsen and Barber, 2003). Low photosynthetic
quantum yield has been attributed to the Kok effect, S-state decay
(S3 to S2), and imbalances in photosystem excitation (Diner
and Mauzerall, 1973). Furthermore, it is expected that the ratio
of respiration to photosynthesis may increase at very low light,
leading to the observed reduction in quantum yield at very low
light.

Given observed values of φµ, a function for φmEo,T was
derived which exponentially decreased from low to high
irradiances (Figure 4B). The equations used to predict φmEo,T

are given below and the final estimate of φµ compared to
observed values are plotted in in Figure 5C. Values of φmEo,T

were described as a function of irradiance (Figure 4B) and the
temperature dependence was incorporated into the coefficients
a and b which are modeled as linear functions of temperature
(Table 5),

φmEo,T = ae−bEo, (6a)

a = 0.0125T + 0.058 r2 = 0.70 (6b)

b = −0.0010T + 0.0075 r2 = 0.85 (6c)
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FIGURE 2 | Absorption characteristics of P. antarctica. In vivo chl-specific absorption spectrum (a*ph (λ)) for P. antarctica grown at (A) 4C and (B)−1.5◦C between a

range of irradiances (µmol quanta m−2 s−1). Irradiance- and temperature- dependent values of a*ph (circles) at (C) 436 nm (D) 676 nm and (E) 330 nm. Multiple linear

regressions based on temperature and light (continuous surface) are overlaid on the discrete points of a*ph (λ). Each point represents the average of 4 replicates. C.V.

for a*ph (λ) values are 5%.

where T is temperature in ◦C and Eo is in units of µmol quanta
m−2 s−1. Values of a and b which are in Equation (6a) are linear
relationships of parameters that rely on temperature. Values of
φmEo,T and for Ekµ as estimated below were introduced into
Equation (1b) to estimate φµ.

Performance of the Biophysical Model of
Net Growth for P. antarctica
To test the performance of the biophysical model for net
photosynthesis, we predicted a∗

ph
(λ) and φµ using the

temperature and light dependent model parameterizations as
described above. Overall, the predicted values of a∗

ph
(λ)

underestimate the observed values by about 10% (Figures 3C,D,
5A) with greatest accuracy achieved in the region between 350
and 700 nm. Relatively more scatter was seen in the UV region
between 300 and 350 nm. Figure 5B is a compilation of net
growth normalized to the maximum value of the experiment
vs. irradiance for the data presented here, Moisan and Mitchell
(1999), and data from the literature for the genus Phaeocystis. To
estimate an Ekµ value to introduce into Equation (1b), we used a
non-linear curve fit (Platt et al., 1980) for the full data synthesis in
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FIGURE 3 | Modeled vs. observed values of a*ph at 676 nm based on a linear regression using (A) light and (B) a multiple linear regression based on temperature and

light. Comparison of a*ph (λ) observed (1 nm resolution continuous line) vs. modeled values (10 nm resolution) based on temperature and light for cultures grown at (C)

4◦C 542 µmol quanta m−2 s−1 and −1.5◦C and (D) 37 µmol quanta m−2 s−1. Note scale difference in a*ph in (C,D). Standard error bars are shown for model

estimates.

Figure 5B. This fit resulted in a single value of µm and α for the
full data set in Figure 5B that we used to estimate a generalized
value of Ekµ (µm/α) for Phaeocystis spp. This resulted in a Ekµ
value of 110 µmol quanta m−2 s−1 overall fit with r2 = 0.83
(Figure 5B). We also explored modeling using Ekµ determined
from each individual growth vs. irradiance data set at the different
temperatures (Figure 1A) but that did not improve the overall
variance in our biophysical model so we kept the model simpler
by using one generalized value determined from our data and
literature synthesis (Figure 5B).

We predicted values of φµ using a cumulative one hit Poisson
probability parameterization where φmEo,T in Equation (1b)
is predicted from temperature and light (Equation 5). The
φµ model also requires an input variable for Ekµ. Figure 5B
combines data for Phaeocystis spp. presented in Moisan and

Mitchell (1999) and the new data for−1.5, 0, and 2◦C treatments
that are presented here. Using the combined data set, we have
derived an Ekµ. Our sensitivity analysis shows that the φµ is
the most sensitive to φmEo,T as compared to Ekµ.We prefer the
use of a composite Ekµ at this time although in principle it
should depend on environmental acclimation, in this case the
steady-state conditions we imposed in our experiment. Although
we acknowledge that in nature both light and temperature
may fluctuate on time scales faster than division rates and
hence impact acclimation, our experiments were not designed
to resolve that additional, and potentially important, variability.
We conducted a sensitivity analysis of φµ that indicates that the
relative magnitude of the error is greatest at high intensities;
however, the absolute error is minor. These assumptions are
justified on the basis that the entire equation is dependent on
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TABLE 4 | Coefficients for multiple-linear regression model for a*ph (λ) based on

temperature and light.

λ (nm) C0 CE CT Standard error

of estimate

R2

300 0.016 3.25E-04 0.0050 0.000715 0.79

310 0.020 2.96E-04 0.0027 0.000609 0.77

320 0.022 3.84E-04 0.0011 0.000834 0.79

330 0.022 5.42E-04 0.0007 0.001282 0.83

340 0.022 5.72E-04 −0.0001 0.001190 0.85

350 0.023 4.41E-04 −0.0007 0.000553 0.88

360 0.019 2.07E-04 −0.0002 0.000121 0.88

370 0.016 1.09E-04 0.0008 4.69E-05 0.85

380 0.017 9.93E-05 0.0008 3.71E-05 0.86

390 0.019 1.08E-04 0.0006 3.37E-05 0.89

400 0.021 1.11E-04 0.0004 2.83E-05 0.91

410 0.026 1.19E-04 −0.0004 3.72E-05 0.87

420 0.028 1.24E-04 −0.0006 3.27E-05 0.89

430 0.030 1.29E-04 −0.0010 3.21E-05 0.90

440 0.032 1.32E-04 −0.0011 3.05E-05 0.90

450 0.032 1.21E-04 −0.0013 2.74E-05 0.90

460 0.033 1.14E-04 −0.0014 2.07E-05 0.91

470 0.033 9.90E-05 −0.0015 1.66E-05 0.90

480 0.030 8.94E-05 −0.0015 1.12E-05 0.92

490 0.023 8.21E-05 −0.0012 8.63E-06 0.93

500 0.019 6.05E-05 −0.0010 5.40E-06 0.91

510 0.017 3.95E-05 −0.0011 3.92E-06 0.86

520 0.015 2.77E-05 −0.0011 4.49E-06 0.74

530 0.012 1.87E-05 −0.0010 3.63E-06 0.65

540 0.010 1.12E-05 −0.0008 2.64E-06 0.54

550 0.008 6.36E-06 −0.0007 2.42E-06 0.41

560 0.007 4.36E-06 −0.0006 2.21E-06 0.34

570 0.006 4.46E-06 −0.0005 2.76E-06 0.23

580 0.007 4.16E-06 −0.0005 2.76E-06 0.22

590 0.008 5.02E-06 −0.0006 2.45E-06 0.34

600 0.007 4.29E-06 −0.0004 2.41E-06 0.19

610 0.006 4.70E-06 −0.0003 1.79E-06 0.21

620 0.006 6.50E-06 −0.0004 1.57E-06 0.33

630 0.007 6.18E-06 −0.0004 1.57E-06 0.33

640 0.007 5.83E-06 −0.0003 1.68E-06 0.26

650 0.007 6.40E-06 −0.0002 1.13E-06 0.34

660 0.009 1.23E-05 −0.0003 2.28E-06 0.49

670 0.017 2.79E-05 −0.0008 3.04E-06 0.80

680 0.015 2.57E-05 −0.0009 4.18E-06 0.72

690 0.005 7.53E-06 −0.0004 3.77E-06 0.16

700 0.001 8.76E-07 −0.0001 9.27E-07 −0.03

See Equation (6) for abbreviated terms.

ϕmax. We do observe some variability in Ekµ between the lower
temperature treatments and the 4◦C treatment (Figure 1A).
We derived a composite Ekµ from the intersection between
the initial slope of the growth curve and the maximal growth
rate (Figure 5B). The use of a generic Ekµ is appropriate
because of the overall variability in growth curves with respect
to irradiance for various Phaeocystis spp. Also, a sensitivity
analysis of Ekµ within the model revealed that φµ was relatively
insensitive to the changes that we observed in Ekµ. Using an
Ekµ value of 110µmol quanta m−2 s−1 and a temperature-light
dependent model of φmEo,T results in an excellent prediction of

FIGURE 4 | (A) Light and temperature dependence of φµ (mol C (mol quanta

absorbed)−1) for P. antarctica (symbols). Our modeled φµ relationship with

light and temperature (solid line) is calculated with a constant Ekµ and a

modeled φmEo,T (Equation 6). (B) φmEo,T response to different temperature

and irradiance treatments (Symbols are experimental observations, lines are

model predictions). A fixed Ekµ value was used to calculate φmEo,T.

φµ (Figure 5C, r2 = 0.80). Using these individual component
models for a∗

ph
(λ) and φmEo,T in Equations (1a,b), a comparison

between observed and predicted values of µn (Figure 5D; r2

= 0.66). The simple empirical model using only temperature
and light resulted in a slightly better estimate (r2 = 0.70;
Figure 1C) however that empirical approach does not include
the mechanistic dynamics of changes in a∗

ph
(λ) and φmEo,T that

represent how light and temperature co-limitation regulate the
cellular physiology.

Although we used a single value of Ekµ a sensitivity
analysis proved that using the estimated Ekµ for the different
temperatures did not improve our model fit. Also, our quantum
yields for growth are a net process of growth after respiration
which can be important in nature (Grégori et al., 2002; Siegel
et al., 2002; Marra and Barber, 2004; López-Urrutia et al., 2006).
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FIGURE 5 | (A) The relationship between modeled a*ph (λ) based on temperature and light (Equation 6, Table 4) and observed values at individual wavelengths.

(B) Relative growth rates measured from various Phaeocystis species grown under a variety of temperature and irradiance regimes. Note that there are overlapping

data points. (C) Modeled φµ vs. observed values. There are overlapping points. (D) Relationship between the observed carbon-specific growth rate and model

predictions of carbon-specific rate of net growth (µn). Model is based on Equation (1) and Table 4.

TABLE 5 | Model variables for maximal quantum yield based on irradiance at

discrete temperatures.

Temperature a value b value r2 value

−1.5 0.0377 −0.0095 0.90

0 0.0600 −0.0061 0.93

2 0.0447 −0.0025 0.09

4 0.0958 −0.0014 0.32

Values of φm are described as an exponential function of irradiance with the form,

φmEo=ae
−bEo.

Our quantum yield for net growth calculations can be defined by:

φµn =

µnC

Eabsorbed
=

P − R

Eabsorbed
.

Although respiration is often modeled as a fixed ratio to growth
rate, or a basal a rate plus a fixed fraction of growth rate,
this likely is not so simple. There are relatively few data sets
in the literature for phytoplankton respiration over a range
of growth conditions and we did not estimate respiration
for our study. Respiration data that is commonly used in

models is very noisy (Laws and Bannister, 1980; Geider et al.,
1998) and is mostly limited to a modest range of intensity
from about 50–200 µmol quanta m−2 s−1 so the fidelity of
respiration models may not be robust over the full range of
light intensity that is relevant to phytoplankton communities.
One expects that the ratio of respiration to net growth (R/µn)
will actually go to infinity at the limit as light goes to zero
where there is no photosynthesis but basal respiration continues.
Also, for the growth inhibiting irradiances greater than about
150 µmol quanta m−2 s−1 we observed at lower temperatures
(Figure 1A), we speculate that the ratio of R/µn also must
increase. Models that assume a basal respiration rate plus a
fixed fraction of growth rate will not predict this increase in
R/µn at higher growth inhibiting irradiances but will instead
predict lower respiration as growth rate decreases. This seems
flawed since inhibiting irradiances would cause damage from
oxidative stress and hence very likely a greater respiration rate,
not a lower rate. These two thought experiments based on
simple logic indicate that it is important to obtain more data
that includes respiration at very low light that and also at high
growth inhibiting irradiances, but such data is lacking in the
literature.
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Our biophysical model includes explicit descriptions of the
regulation of absorption and quantum yield by environmental
controls which results both in an accurate model of net growth
and captures details of light and temperature regulation of the
biophysical variables that mediate light utilization. Our quantum
yields for growth were calculated in a traditional way of modeling
based on carbon, chlorophyll a, phytoplankton absorption, and
spectral irradiance flux. However, our estimates are relatively
high compared to other phytoplankton; our high C: chl a
ratios are above the typical ratio of 75–150 for phytoplankton
(Falkowski and Raven, 2007). This is likely due to the fact that
Phaeocystis can accumulate a carbohydrate/glucan-rich mucilage
that is not metabolically active in addition to metabolically active
cellular carbon. Mathot et al. (2000) estimates that mucus-related
carbon at peak bloom is about 14 ± 4% of total colony carbon
but mucus-related carbon may be as high as 90% for a senescent
bloom (Verity and Medlin, 2003). The colonial matrix acts as
a spillover mechanism probably for storage of low molecular
weight compounds (Lancelot and Mathot, 1985) and hence may
accumulate when there is excess light.

Although natural systems may have substantial variations
in both light and temperature over time-scales that are much
less than the doubling times that will affect acclimation of
algae in a more complicated way than the simple steady-state
experiments we conducted, it is very time consuming to try to
add that complexity to the matrix of growth and acclimation
control. There is a relatively small literature for the steady-state
co-limitation of light, nutrients and temperature acclimation
of cellular pigments, absorption, quantum yield and growth
(Laws and Bannister, 1980; Kiefer and Mitchell, 1983; Sosik
and Mitchell, 1991, 1994; Geider et al., 1997). There is even
more limited knowledge for cold water obligate psychrophiles
like P. antarctica, for example the study of Luxem et al. (2017)
who explored light and iron limitation for this organism. In
the area of applied phycology aimed at commercial production,
recent work with a similar experimental design for light and
temperature as ours, for the seaweed Gracilaria, Nejrup et al.
(2013), reported growth rates andmetabolic capacity. Grobbelaar
et al. (1996) have explored microalgae acclimated to different
light levels, then exposed to light fluctuations that would be
found in commercial cultivation. However, neither of these
studies quantified spectral absorption or quantum yield, that
ultimately underlie the responses for growth and bulk PvsE
relationships. Our work advances the state of knowledge with
greater detail of how light and temperature combined affect
acclimation of the fundamental biophysical parameters light
absorption and quantum yield of algae and provides a level
of detail not previously reported for the ecologically important
prymnesiophyte, Phaeocystis antarctica, that is a key structural
component of the Southern Ocean and that may show changes in
its role as stratification and heating of the Southern Ocean change
both light and temperature climate in the future.

CONCLUSIONS

Understanding the contribution of Phaeocystis in the overall
global carbon cycle is important because this genus can dominate
mesoscale blooms and make a significant contribution to the

carbon and sulfur cycle for open and coastal oceans as well
in the vicinity of ice edges. The strain of P. antarctica we
used for these experiments exhibits flexibility in its ability
to absorb light due to changes in cell size and the cellular
concentrations of photoprotective and photosynthetic pigments
that are regulated by light and temperature co-limitation.
These cellular changes have consequences for how P. antarctica
captures light required for carbon fixation. Photo-protective
pigments that divert absorbed photons from the photosynthetic
reaction centers will automatically result in photosynthetic
quantum yields below the theoretical maximum. Using data from
our controlled laboratory experiments, we have developed both
empirical and biophysical models that predict growth rates based
on knowledge of chlorophyll a, light, and temperature. It is
important to note that unlike some proposed models that depend
only on easily measured variables our biophysical model, a∗

ph
(λ)

and φµ is parameterized based on light and temperature since
nutrients are not regulating during the onset and development
of blooms. We propose a conceptually important improvement
over previous models by accepting the fact that the maximum
quantum yield for any acclimated state may be considerably
less than the theoretical maximum (Moisan and Mitchell, 1999)
and that it should be regulated by environmental control,
in this case light and temperature co-regulation. In general,
a∗
ph

(λ), Ekm and φµ, should all be modeled as variables

determined by the simultaneous interaction of light, temperature,
and nutrients. Furthermore, future ocean color missions with
hyperspectral ability, such as PACE, may be capable of
remote sensing phytoplankton spectral shape that we document
changes significantly with different acclimation states (Figure 2).
Such a capability might allow a link between community
structure, photosynthetic processes and the biophysical model for
absorption, cellular pigmentation and pigment packaging that is
dependent on light and temperature co-limitation (see alsoWang
et al., 2016; Moisan et al., 2017). While this level of detail remains
aspirational for our community, an accurate understanding of
how biophysical variables (Equation 1) depend on the full
matrix of environmental forcing requires these essential but time-
consuming laboratory studies for representative taxa over the full
range of environmental variability experienced by phytoplankton
to advance our ability to apply advanced remote sensing methods
to coastal processes of primary production and the carbon
cycle.
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