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Editorial on the Research Topic

Application ofmultimodal imaging combinedwith artificial intelligence in

eye diseases

Introduction

Vision is the most crucial sensory system for human beings to process external

information. The retina, optic nerve, and visual pathway (lateral geniculate body, optic

radiation, and visual cortex) are all necessary for the complete transmission of visual

information. Numerous eye conditions, including glaucoma, diabetic retinopathy, optic

neuritis, and hereditary optic neuropathy result in vision loss, and as a result, they remain a

key field of study for both clinical and pre-clinical research. Multimodal imaging techniques,

such as optical coherence tomography (OCT), optical coherence tomography angiography

(OCTA), and functional magnetic resonance imaging (fMRI), give essential biological

indicators in the diagnosis of ophthalmic diseases. In fact, combining imaging with artificial

intelligence (AI)may enhance diagnostic precision and accuracy, detect imaging biomarkers,

develop cutting-edge tools that will impact clinical practice and benefit patient outcomes.

This Research Topic on “Application of multimodal imaging combined with artificial

intelligence in eye diseases” included 19 articles. It covered a range of AI applications

in fundus images, OCT, anterior segment images, infrared videos from eye movement

recorders, and steady-state visual evoked potentials (SSVEPs) in order to classify eye

diseases, or to find neuroimaging indicators. Other papers reviewed the literature, identified

indicators from animal model studies, and determined the prognostic factors of transnasal

endoscopic optic decompression. In this editorial, we give an overview of these studies and

group them according to the study design.
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AI-aided diagnosis

Retinal atrophy is a crucial assessment indicator as it is

correlated with the severity of myopia. For 2D fundus images, Chen

et al. developed an attention-aware retinal atrophy segmentation

network based on UNet structure called ARA-Net. To deal with

blurred boundaries and irregular shapes of the retinal atrophic

region, they proposed a novel skip self-attention (SSA) connection

block. They also proposed a multi-scale feature flow (MSFF)

between the SSA connection blocks, greatly enhancing the self-

attention mechanism’s capacity. The Pathological Myopia (PALM)

dataset has been used to validate the proposed method, which

performs noticeably better than other methods. A new deep

learning model called MyopiaDETR was put up by Li M. et al.

for the diagnosis of pathological myopia (PM) using 2D fundus

image data. The architecture of Detection Transformer (DETR)

allows it to effectively tackle the issue of morphology irregularity.

An attentional feature pyramid network (FPN) increases the

difference in feature intensity the between foreground and

background. The experimental results show that their model

outperforms other state-of-the-art object detectors in terms of

localization and classification performance on the iChallenge-

PM dataset.

Huang et al. introduces GABNet, a novel lightweight

classification network model based on the global attention

block (GAB) for OCT. By using their method, classification

accuracy is increased over the EfficientNetV2B3 network model

by 3.7%. Gan, Wu, et al. proposed an AI method based

on multifeature fusion to enable automatic macular edema

(ME) classification on spectral domain OCT (SD-OCT) images.

With an accuracy of 93.8%, the support vector machine

(SVM) model performed the best when compared to other

classification models.

Gan, Liu, et al. and Li, Huang, Peng developed AI segmentation

platforms with a deep transfer-learning algorithm and multi-

feature fusion by using anterior segment images for automatic

cortical cataract staging and fungal keratitis diagnosis, respectively.

One is based on a method of automatic segmentation, whereas

the other is based on a method of manual segmentation. While

the automatic segmentation platform can stage cataracts and

diagnose fungal keratitis more quickly, the manual segmentation

platform can do so more accurately. In addition, Gan, Chen,

et al. developed an AI model based on ensemble DL that

was combined with four benchmark models (the Resnet18,

Alexnet, Googlenet, and Vgg11) for identifying pterygium that

need to be surgically removed. The ensemble DL model exceed

all other models in terms of accuracy and area under the

curve (AUC).

Li and Yang demonstrated that torsional nystagmus

can be recognized by deep learning networks models.

They used convolution neural network to extract the

frame features of the infrared video sequence from

eye movement recorders, and classified the obtained

vector sequence.

For SSVEPs, Wan, Li, et al. proposed a transformer–based

EEGformer analysis model to capture the electroencephalogram

(EEG) characteristics in a unified manner. Across three EEG

datasets [BETA, SJTU emotion EEG dataset (SEED), depressive

EEG database (DepEEG)] the EEGformer achieves the best

classification performance. This finding suggests that the rationality

of model architecture and learning EEG characteristics in a

unified manner can improve model classification performance.

Another study by Wan, Cheng, et al. propose a deep neural

network called GDNet-EEG for SSVEP stimulation frequency

recognition that uses group depth-wise convolutional filtering to

extract regional characteristics from raw EEG data. The findings

show that GDNet-EEG surpasses the existing deep learning

models to process EEG data on two publicly available SSVEPs

datasets (largescale benchmark and BETA dataset) and their

merged dataset.

For resting-state fMRI, Ji, Wang, et al. used the amplitude

of low-frequency fluctuation (ALFF) in conjunction with

sliding window approach to assess the changes of dynamic

neural activity in patients with retinal detachment. Based on

dALFF values, the overall accuracies of SVM classification

were good under three different time windows. In patients

with primary angle-closure glaucoma, Li, Huang, Peng,

Liang, et al. identified changes in functional connectivity

(FC) with primary visual cortex (V1), and found the

increased FC between V1 and calcarine. However, the

discrimination of PACG from healthy controls (HC) was

poor when utilizing the SVM method and the dFC map as the

classification feature.

Neuroimaging indicators

Ji, Huang, et al. explore differences in static FC (sFC)

and dynamic FC (dFC) alteration patterns in the V1 among

patients with high myopia and HCs via seed-based FC analysis.

This disturbance suggests that patients with high myopia could

exhibit impaired cognitive and emotional processing functions,

top-down control of visual attention, and visual information

processing functions. Pang et al. compared retinal OCT and

optic nerve diffusion tensor imaging (DTI) parameters in

patients with non-functioning pituitary adenoma (NFPA). The

degree of adverse changes in OCT and DTI parameters was

found to be stronger in the severe compression group than

that in the mild compression group. Moreover, the fractional

anisotropy (FA) value of the optic chiasma has a high diagnostic

ability for visual pathway impairment. A literature review by

Wang et al. described the use of DTI technology in glaucoma

in humans and animal models, with the advancement of

DTI technology and its coupling with artificial intelligence,

DTI represents a potential future for MRI technology in

glaucoma research.

Indicators from animal models

Accurate axial length (AL) measurement is crucial for

developing animal models of myopia. The accuracy of Quantel

A-B scan, OD-1A scan, and vernier caliper were compared

by Wu et al. for measuring AL in Sprague Dawley rats.

They found that Quantel A-B scan might be more accurate

than OD-1A scan. AL and refractive error (RE) are both
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influenced by gender. Duan et al. employed OCT to assess the

changes in retina thickness after shape deprivation in myopic

mice, and found considerably thinner retina, nerve fiber layer,

inner nuclear layer, and outer nuclear layer. In addition, Shi

et al. found epidermal growth factor-containing fibulin-like

extracellular matrix protein 1 (EFEMP1) may have a role in

the choroidal thickness regulation by using guinea pig model

for myopia.

Last but not least, Tu et al. investigate the clinical effectiveness

and prognostic variables of trans nasal endoscopic optic

decompression in the treatment of traumatic optic neuropathy.

The prognosis is highly dependent on the presence of residual light

perception and the timing of surgery within 7 days.

As we draw to a close, we wish to emphasize the need of making

more efforts to enhance the technical, clinical, and preclinical

advances described in this Research Topic. In future, with the aid

of AI, it will be feasible to provide a comprehensive description of

eye diseases by integrating data from multidimensional modalities,

as well as those from patients and animal models. Furthermore, it

is hoped that the existing large-scale image dataset will be useful in

this regard.
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Application of artificial
intelligence models for
detecting the pterygium that
requires surgical treatment
based on anterior segment
images
Fan Gan1,2, Wan-Yun Chen2, Hui Liu2 and Yu-Lin Zhong2*
1Medical College of Nanchang University, Nanchang, China, 2Department of Ophthalmology,
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Background and aim: A pterygium is a common ocular surface disease, which

not only affects facial appearance but can also grow into the tissue layer,

causing astigmatism and vision loss. In this study, an artificial intelligence

model was developed for detecting the pterygium that requires surgical

treatment. The model was designed using ensemble deep learning (DL).

Methods: A total of 172 anterior segment images of pterygia were obtained

from the Jiangxi Provincial People’s Hospital (China) between 2017 and

2022. They were divided by a senior ophthalmologist into the non-surgery

group and the surgery group. An artificial intelligence model was then

developed based on ensemble DL, which was integrated with four benchmark

models: the Resnet18, Alexnet, Googlenet, and Vgg11 model, for detecting

the pterygium that requires surgical treatment, and Grad-CAM was used to

visualize the DL process. Finally, the performance of the ensemble DL model

was compared with the classical Resnet18 model, Alexnet model, Googlenet

model, and Vgg11 model.

Results: The accuracy and area under the curve (AUC) of the ensemble DL

model was higher than all of the other models. In the training set, the accuracy

and AUC of the ensemble model was 94.20% and 0.978, respectively. In the

testing set, the accuracy and AUC of the ensemble model was 94.12% and

0.980, respectively.

Conclusion: This study indicates that this ensemble DL model, coupled with

the anterior segment images in our study, might be an automated and cost-

saving alternative for detection of the pterygia that require surgery.

KEYWORDS

anterior segment images, artificial intelligence, deep learning, pterygium, surgery

Frontiers in Neuroscience 01 frontiersin.org

8

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2022.1084118
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2022.1084118&domain=pdf&date_stamp=2022-12-20
https://doi.org/10.3389/fnins.2022.1084118
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnins.2022.1084118/full
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-16-1084118 December 14, 2022 Time: 15:24 # 2

Gan et al. 10.3389/fnins.2022.1084118

Introduction

Pterygium is a common ocular surface lesion characterized
by wing-shaped, fibrovascular conjunctival outgrowth that
invades the clear cornea (Xue et al., 2014). The pathogenesis
of pterygia is still not completely understood, several factors
including ultraviolet radiation, immunoinflammatory process,
virus infection, and genetic factors have been reported to be
related to pterygial formation (Chen et al., 2010). A pterygium
not only affects facial appearance but can also grow into the
tissue layer, causing astigmatism and vision loss. A pterygium
is divided commonly into active and stationary phases. In
stationary phase, it is relatively flat, the color is light red or white,
congestion is not obvious, and growth is slow. In active period, it
is thickened, congestion is obvious, the color is red, and growth
is faster. Surgical treatment should be administered in a timely
manner for an active pterygium to prevent damage to the ocular
surface caused by cytokines from pterygium (Liu et al., 2020).

In a clinical setting, ocular surface diseases are diagnosed
by professional ophthalmologists based on anterior segment
images. In primary medical institutions, such as community
hospital, there are few professional ophthalmologists, so
it is difficult to diagnose a pterygium, let alone identify
a pterygium that requires surgical treatment. This might
result in a delay to surgical intervention, and the optimal
treatment time being missed. Unfortunately, surgical removal
of an advanced pterygium also carries higher risk of post-
operative complications, such as corneal scarring, post-
operative complication-induced astigmatism, higher rates of
recurrence, and so poorer prognosis (Fang et al., 2021).
Therefore, it is necessary to detect and refer pterygium requiring
surgical treatment timely. For this reason, an automated
approach for detecting a pterygium that requires surgical
treatment is needed.

With the development of artificial intelligence (AI), it is
being applied increasingly in various healthcare disciplines,
especially in fields, such as ophthalmology, in which medical
image assessment has a key role (Tang et al., 2022). DL
algorithms have been used widely to diagnose fundus diseases
such as diabetic retinopathy (DR), diabetic macular edema
(DME), central serous retinopathy (CSR), and age-related
macular degeneration (AMD) (Gulshan et al., 2016; Syed et al.,
2016; Chen et al., 2021; Tang et al., 2021) and has good
results. Few previous studies using AI to diagnose ocular
surface diseases. Pterygium is one of the most common
ocular surface diseases. Zaki et al. (2018) used support vector
machine (SVM) to detect pterygium. This study on pterygium
detection was based on the two-class detection of pterygium and
traditional machine learning. It has not been further determined
whether the pterygium requires surgical treatment. Hung et al.
(2022) used a multi-layer perception (MLP) model to perform
pterygium grading and further predict surgical prognosis.
Zheng et al. (2021) used MobileNet, AlexNet, VGG16, and the

ResNet18 model for pterygium grading. These studies all based
on the traditional DL models. The performance of these models
still needs to be improved.

Ensemble learning is a kind of machine-learning paradigm
in which multiple models, such as decision trees, neural
networks, and support vector machine (SVM), are combined
together to solve a particular problem (Wang et al., 2015).
An ensemble of various machine-learning models could help
to reduce the bias in a single machine-learning algorithm to
provide a much better prediction performance than single
models (Kong et al., 2021).

Therefore, in this study, an ensemble scheme consisting of
four DL model and multilayer perceptron (MLP) classifier was
designed with aim to detect a pterygium that requires surgical
treatment. In anticipation of detecting and referring pterygium
requiring surgical treatment timely in the clinic work applying
in treatment selection in personalized precision therapy of the
pterygium. Thus, we hypothesized that an ensemble of various
machine-learning models could help to provide a much better
prediction performance than single models.

Materials and methods

Dataset preparation

The total of 172 anterior segment images of pterygium were
obtained from the Jiangxi Provincial People’s Hospital between
2017 and 2022. All the images selected had high quality and
were obtained from the same slit lamp digital microscopy. They
were divided by a senior ophthalmologist into the non-surgery
group and the surgery group. The classifying standard was as
follows (Zheng et al., 2021). The anterior segment images of the
non-surgery group was characterized by the horizontal length
of the pterygium head tissue invading the limbus of the cornea
<3 mm. The anterior segment images of the surgery group
was characterized by the horizontal length of the pterygium
head tissue invading the limbus of the cornea ≥3 mm. LabelMe
software was applied to label the regions of interest (ROIs) of
the anterior segment images. The non-surgery group was labeled
“label 0” and the surgery group was labeled “label 1.” To avoid
over fitting problems, the dataset was established and divided
by stratified sampling into training set (n = 136) and testing set
(n = 34) at a ratio of 8:2 by referring to the previous research
(Lu et al., 2022), ensuring that there was no overlap between the
same person’s data in the development and internal test sets. The
anterior segment images of two group were shown in Figure 1.

Model development

This study developed five prediction models based on deep
learning neural network models, Which were resnet18 model,
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FIGURE 1

The anterior segment images of two group: The anterior segment image of the non-surgery group (A). The anterior segment image of the
surgery group (B).

alexnet model, googlenet model, vgg11 model, and the ensemble
deep learning (DL) model, respectively. The ensemble DL model
was integrated with the alexnet, googlenet, vgg11, and resnet18
models. The flowchart of the ensemble DL model as shown in
Figure 2.

During the training process of deep learning, the anterior
segment images on the training set and the classification labels
of pterygium was entered into the five deep learning models,
separately. Convolutional neural networks (CNNs) coupled with
batch normalization layers were used and the convolutional
layer weights were initialized based on the ImageNet Large Scale
Visual Recognition Challenge (ILSVRC) dataset pre-trained
models (Fang et al., 2021). And then these CNNS were used to
extract features. Usually, lower CNN layers are used to extract
abstract features like edges, and deeper CNN layers are used
to find features that are informative for the target task (Shen
et al., 2017). Deep feature on “avgpool” layer before last FC
layers were extracted. These extracted features from each model
were screened by Least absolute shrinkage selection operator
(LASSO) method separately. Finally, these selected features were
then used to build classification model through a multilayer
perceptron (MLP) neural network. The LASSO method and
MLP neural network were also a part of deep learning models.
And then the models were applied to the test set.

Model visualization

The gradient-weighted class activation mapping (Grad-
CAM) is a widely used method to interpret which features are
responsible for determining outputs. It functions by capturing a
specific class’s vital features from the last Conv layer of a CNN
model to localize its important regions (Chen et al., 2010; Kwon
et al., 2020; Montalbo, 2021).

To understand which areas of the anterior segment images
of our dataset were most likely to be used by the model to predict
whether the pterygium requires surgical treatment. We used
Grad-CAM for visualizing the filters of the penultimate layer of
the deep learning process, that can highlight which parts of an
image contribute to the deep learning models.

Statistical analysis

The accuracy, sensitivity, specificity, F1-score, confusion
matrix and the area under the receiver operating characteristic
curve (AUC) of the prediction models on the training set
and test set were calculated, separately. And the predictive
performances of the ensemble DL, resnet18, googlenet, alexnet,
and vgg11 models were compared based on the above indicators.

Software

The anterior segment images labeled using the LabelMe
Open Annotation Tool.1 Deep learning techniques were
completed using Python version 3.9.

Results

A total of 172 anterior segment images of pterygia are in
our dataset. Of these, 95 images were labeled as the surgery
group and 77 images were labeled as the non-surgery group.
The dataset was divided by stratified sampling into training and

1 http://labelme.csail.mit.edu
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testing sets at a ratio of 8:2. The 136 anterior segment images
of pterygia in the training set were used to train the ensemble
DL model, Resnet18 model, Googlenet model, Alexnet model,
and Vgg11 model. The 35 images in the testing set were used to
test the models.

The LASSO model was used to screen independent
predicting features of ensemble DL model in training set. Each
feature has a coefficient as its weight provided by LASSO,
when the binomial deviance was minimized, features with non-
zero coefficients were selected by optimal lambda. The optimal
lambda was 0.068665, as shown in Figure 3.

Compared with other models, the ensemble DL model
achieved the highest accuracy in both the training and testing
sets. The accuracy was 94.20 and 94.12% in the training set
and testing set, respectively. The accuracies of the Alexnet,
Googlenet, Resnet18, and Vgg11 model in the training set were
only 85.40, 84.67, 80.29, and 84.67%, respectively; whereas their
accuracies were only 85.71, 80.00, 77.14, and 85.71% in the
testing set. All results were shown in Table 1.

All the models had good results with AUC (Table 1 and
Figure 4), of which the ensemble DL model had the highest
AUC in both the training and testing set, of 0.978 and 0.980,

FIGURE 2

The flowchart of the ensemble deep learning model.

FIGURE 3

Feature selection in the least absolute shrinkage selection operator (LASSO) model: (A) LASSO coefficient profiles of the features. (B) Selection
of tuning parameters in the Lasso regression analysis by 10-fold cross-validation.
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TABLE 1 The performances of the models of the models.

Models Train/Test Accuracy AUC 95% CI Sensitivity Specificity F1-score

Ensemble DL Train 94.20% 0.978 (0.958–0.998) 90.79% 98.39% 94.52%

Test 94.12% 0.980 (0.968–1.000) 89.47% 100.00% 94.44%

Alexnet Train 85.40% 0.900 (0.847–0.953) 90.79% 78.69% 87.34%

Test 85.71% 0.878 (0.754–1.000) 89.47% 81.25% 87.18%

Googlenet Train 84.67% 0.912 (0.867–0.958) 77.63% 93.44% 84.89%

Test 80.00% 0.872 (0.759–0.985) 68.42% 93.75% 78.79%

Resnet18 Train 80.29% 0.835 (0.765–0.906) 82.89% 77.05% 82.35%

Test 77.14% 0.816 (0.673–0.959) 63.16% 93.75% 75.00%

Vgg11 Train 84.67% 0.920 (0.878–0.963) 85.52% 83.61% 86.10%

Test 85.71% 0.921 (0.836–1.000) 94.74% 75.00% 87.80%

FIGURE 4

Receiver operating characteristic (ROC) curves and the area under the receiver operating characteristic (AUC) values from five different models
in the training set (A) and testing set (B).

respectively. The AUC of the other models in the training and
testing sets were all <0.950.

The heatmaps of Grad-CAM highlighted areas of the
anterior segment images where the DL models probably focused
on detecting a pterygium that required surgical treatment. The
areas highlighted were the actual sites that correspond well with
the pterygium (Figure 5).

Discussion

In this study, we developed an AI model based on ensemble
DL that was integrated with the alexnet, googlenet, vgg11,
and resnet18 models for detecting the pterygium that requires
surgical treatment and visualizes the DL process by Grad-CAM.

Compared with the classical Resnet18, Alexnet, Googlenet,
and Vgg11 models, respectively, the results showed that the
ensemble DL model achieved the highest accuracy and AUC
than the four classical DL models in both the training and testing
sets. The accuracy of the ensemble DL model was up to 94%. The

maximum accuracy of the classical DL models was only 85%.
The ensemble DL model outperformed classical DL models with
an improvement in accuracy of 9%. The AUC of the ensemble
DL model was up to 98% and was at least 6% higher than that
of the other four classical models. Thus, our results indicated
that this ensemble DL model coupled with the anterior segment
images might be an automated and cost-saving alternative for
detecting the pterygium that require surgery.

In the previous study, Zaki et al. (2018) used an artificial
neural network (ANN) and a SVM to detect a pterygium. The
average accuracy reached 91.27% and the AUC reached 95.6%.
Hung et al. (2022) developed a DL system in pterygium grading
based on the multilayer perceptron (MLP) and the accuracy
was 86.67 to 91.67%. Xu et al. (2021) used MobileNet, AlexNet,
VGG16, and ResNet18 models to diagnose pterygia. The highest
accuracy of the models was 88.30% and the highest AUC of
the models was 0.872. However, the accuracy and AUC of our
ensemble DL model was up to 94 and 98%. In comparison, the
performance of our model was better. It could be related to the
method that they used, which was classical machine learning or
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FIGURE 5

Gradient-weighted class activation mapping (Grad-CAM) heatmaps that highlight important regions for the deep learning model predicted for
pterygium classification. The original anterior segment images (A,C,E). The corresponding heatmaps (B,D,F).

deep learning method. Compared with the traditional method,
DL is a mainly data-driven feature extraction, which does not
require much feature extraction of specific domain knowledge,
and can extract deep abstract features that are difficult to
extract by the traditional method. Its expression of data sets is
more efficient and accurate, and the extracted abstract features
are more robust and have better generalization ability. Also,
compared with the classical DL models, ensemble learning has
the advantages of improving prediction performance, directly
cascading different models, easy implementation, and fewer
parameters.

Precision medicine is a medical model for prevention,
diagnosis, and treatment that aims to achieve an optimal
therapeutic regimen for an individual (Yan et al., 2021). It has
become a focal area of interest and development in medicine
of the 21st century (Iacobas and Xi, 2022). Previous researchers
such as Zaki et al. (2018), Zulkifley et al. (2019), and Zamani
et al. (2020) was based on the two-class detection of pterygium.
Unlike their studies, the model of our study was developed to
further detect the pterygium that requires surgical treatment.
This more closely fits with the current strategy for precision
medicine.

Another key strength of this study was the use of Grad-
CAM. The disadvantage of ensemble learning is that the
prediction results are as uninterpretable as the DL model, i.e.,
black-box system (Yamashita et al., 2021). Therefore, the Grad-
CAM was introduced in our study for visualizing the filters of
the penultimate layer of the DL process. The result of Grad-
CAM heatmaps highlighted important regions for the DL model
predicted for pterygium classification and these regions were
consistent with the actual location of the pterygium. It indicated

that the model was making predictions based on clinical features
of the pterygium.

Of course, our study has some shortcomings. Our sample
size was small and might limit the generalizability of our
findings. Our study also did not combine clinical features in
models. The majority of studies showed that imaging features
combined with clinical features have a high value in predicting
and diagnosing (Stubblefield et al., 2020; Zhou et al., 2021;
Huang et al., 2022). In future research, we will continue to
enroll more cases and use the data augmentations method to
addresses issues of small sample sizes. And we will also combine
with clinical features to detect pterygia that require surgery to
improve the performance of the model.

Conclusion

We developed an AI model based on ensemble DL method
to classify pterygium. The results indicated that ensemble DL
model based on the anterior segment images might be an
automated and cost-saving alternative for detection of the
pterygium that require surgery. We also used the Grad-CAM
to visualize the DL process. The highlighted important regions
in the Grad-CAM heatmaps were consistent with the actual
location of the pterygium. It indicated that the model was
making predictions based on clinical features of the pterygium.
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Background: Obtaining accurate axial length (AL) is very important for the

establishment of animal models of myopia. The purpose of this study is to

compare the accuracy of Quantel A-B scan, OD-1 A scan, and vernier caliper

in measuring AL in Sprague Dawley (SD) rats.

Methods: In total, 60 5-week-old SD rats were divided into female rat group

(n = 30) and male rat group (n = 30). Quantel A-B scan and OD-1 A scan

were, respectively, used to measure the AL of both eyes of each living rat,

and vernier caliper was used to measure the anterior-posterior diameter of

each rat’s eyeball. Besides, the correlation between refractive error (RE) and

AL measured by different instruments was evaluated, and the accuracy of

the three measurement methods was compared according to gender and

left/right eyes.

Results: There were significant differences in AL and diopter of SD rats at the

same age (p < 0.05). the AL of male rats was greater than that of female rats,

while diopter (D) was the opposite; There was no significant difference in AL

and D between left and right eyes in the same SD rats (p > 0.05); There were

statistical differences among the three measurement methods (p < 0.05), AL

measured by vernier caliper was the largest, followed by Quantel A-B scan,

OD-1 A scan; Difference in AL between male and female was not statistically

significant between the results obtained by Quantel A-B scan and vernier

caliper (p > 0.05), but there were statistically significant differences between

the other two measurement methods (p < 0.05).
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Conclusion: Sex is the influencing factor of AL and RE. Imaging measurement

can accurately measure the AL in living small rodents. Compared with OD-1 A

scan, Quantel A-B scan may be more accurate.

KEYWORDS

Quantel A-B scan, OD-1 A scan, vernier caliper, axial length, measuring method

Introduction

Myopia is now a puzzle for public health worldwide
(Ramamurthy et al., 2015) with a prevalence that continues to
rise. It is predicted that, by 2050, the number of people with
myopia will reach as high as 4.95 billion, nearly half of the global
population (Holden et al., 2016). At present, the characteristics
of myopia include low age and advanced development, with
more and more young people suffering from myopia. In East
Asia in particular (He et al., 2015), myopia is more common,
and, indeed, 80–90% of young people aged 14–35 in China
suffer from myopia (Ma et al., 2021). According to statistics, the
myopia rate of 12-year-old children in Hong Kong is as high as
61%, and that of adults is as high as 41.1% (Mak et al., 2018).
The myopia rate in Taiwan’s 18–24-year-old youth conscription
group is as high as 86% (Lee et al., 2013). Moreover, high
myopia (HM) often causes myopic choroidal neovascularization
(mCNV), complicated glaucoma, cataract, macular hole (MH),
and other blinding complications (Wu et al., 2016), which result
in a heavy economic burden to families and society. Statistically,
the annual productivity loss as a result of myopia in China is
as high as US $26.3 billion (Ma et al., 2022), whereas the global
productivity loss caused by myopia alone was as high as US $244
billion in 2015 (Naidoo et al., 2019). These values will increase as
the prevalence of myopia increases in the population. Therefore,
myopia prevention and control is urgent.

Obviously, understanding the mechanisms of myopia
occurrence and development is the key to slowing down the
rapid rise of its global prevalence effectively (Baird et al.,
2020), and the emergence of animal models of myopia is very
important to the research of myopia-related mechanisms. At
present, the animals used widely in myopia research include
monkeys (Zhu et al., 2013), chickens (Liu et al., 2020), guinea
pigs (Zhou et al., 2020), rats (Chen et al., 2021), and mice
(Lin et al., 2021). The two primary animal models are form-
deprivation myopia (FDM) and lens-induced myopia (LIM),
respectively. The refractive status of the eye is determined
mainly by the axial length (AL) or refractive error (RE) and the
matching relationship between them. In fact, the AL is related
closely to the RE (Chamberlain et al., 2021). Myopia is not a
simple RE, but is often accompanied by axial growth, retinal and
scleral thinning, and other pathological changes (Baird et al.,
2020), and the animal models of myopia confirmed these above
pathological changes clearly (Troilo et al., 2019). Therefore, AL

is also one of the important parameters to evaluate myopia,
which is why animal models usually judge whether myopia
induction is successful according to the results of diopter (D)
and AL at the same time.

Although there are many kinds of animals that can
be selected for myopia models, there are differences in
the physiological structure of the eyes of different animals,
which leads to different choices of different animals in
establishing myopia models (Schaeffel and Feldkaemper, 2015).
The structure of the chicken eyeball is quite different from that
of human eye (Glasser and Howland, 1995), and the accuracy of
the conclusion of myopia research in chicken models is worthy
of further confirmation. The eyes of monkeys have macular
fovea, the physiological structure of which is similar to that
of humans, and the instruments available for human eyes can
be applied directly to monkeys, which therefore makes the
monkey eye an ideal model for myopia. However, monkeys are
expensive, have a long experimental period, and are difficult to
domesticate, therefore, few research teams can use monkeys to
conduct large-sample myopia studies. Small rodents, rats, mice,
and guinea pigs, are cheap and reproduce quickly and in large
numbers. Their eyeball development process is also similar to
that of humans. They all have hyperopia reserves in rodents, and
gradually face up with age, which can be better used in myopia
research.

However, although small rodents have been used widely in
myopia research, their eyeballs are small and it is difficult to
measure ophthalmic parameters. Although, at present, optical
coherence tomography (OCT) can be used successfully to
measure the living eyeball parameters of small animals, such as
mice (Zhou et al., 2008), the cost of measuring AL is high and
it OCT is inconvenient to use. For animals with AL > 15 mm
that can be measured by conventional ophthalmology A-scan,
it is difficult to measure small animals, such as rats, and guinea
pigs, with small eyeballs accurately. Even if measurements can
be made, manual mode should be used, which has certain
measurement errors. A-B scan (Quantel, Les Ulis, France) has
been used to measure the AL of guinea pigs (Dong et al., 2019).
Compared with OCT or B scan, it is simple to operate and is a
portable instrument, but it cannot be measured automatically
on small animals directly. The manual measurement mode is
required, and there is error. OD-1 A scan (Kaixin, China)
developed an A-scan measurement mode independently, which
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can manually measure the AL of small animals such as, rats, and
guinea pigs, manually.

So far, there has been no comparative study on the AL
measurement methods of the AL of small animals such as rats.
Therefore, the purpose of this study is to compare the AL of
Sprague Dawley (SD) rats measured by Quantel A-B scan and
Kaixin OD-1 A scan with the AL measured by vernier caliper
after anatomy, and also to explore if there are differences in the
AL of SD rats with different of sexes and eyes, so as to provide a
reliable basis for the study of myopia in small rodents.

Materials and methods

Animals

A total of 60 SD rats [Purchased from Beijing Weitong Lihua
Laboratory Animal Technology Co., Ltd., China. Production
License No: SCXK (Beijing) 2021-0011] were included in this
experiment, male/female.

Inclusion criteria: (1) 5-week old SD rats, with age
difference ≤ 1 week; (2) The body weight of females was 180–
220 g and males 300–400 g, and the individual weight was
within the mean ± 20%; (3) Eye condition is good, cornea,
lens, vitreous eye refractive system is normal, no turbidity,
inflammation. Exclusion criteria: (1) SD rats with poor ocular
and systemic conditions, such as eye trauma, corneal opacity,
and poor mental state; (2) SD rats with irritable temperament
and difficult to accept A-scan and retinoscopy under non-
general anesthesia; (3) Rats whose weight and age exceed the
inclusion criteria.

All SD rats were adapted to the environment for 3–5 days
before the experiment, and healthy rats were selected as the
test animals. According to gender, All SD rats were divided
into female group (n = 30) and male group (n = 30). All
animals were housed in a PP-4 mouse cage (L × W × H:
400 mm × 250 mm × 200 mm) in WestChina-Frontier
PharmaTech Co., Ltd., Chengdu, Sichuan, China, with five
animals per cage. If the animals were abnormal, they were
housed in a single cage. The feeding environment was in
accordance with the national standard of the People’s Republic
of China GB14925-2010, with room temperature of 20–26◦C
(daily temperature difference ≤ 4◦C), relative humidity of 40–
70%, artificial lighting, alternating light and dark day and night
for 12/12 h, and all animals were free to eat and drink.

This study has passed the ethical approval of the Committee
of WestChina-Frontier PharmaTech Co., Ltd. with the ethical
approval number of IACUC- SW-S2022007-P001-01.

Retinoscopy

Fix the rats, completely expose the cornea, and measure the
refractive state with the red strip Optometry (Suzhou 66 Vision

Technology Co., Ltd., China). Under dark room conditions,
SD rats were dripped with 5 g/l compound tropicamide eye
drops to dilate their pupils and paralyze the ciliary muscles, once
every 5 min, at least three consecutive times. After 30 min, the
experimenter grabbed the rats to expose the examined eyes. An
experienced optometrist performed retinoscopy and optometry
on all rats at a working distance of 50 cm, and performed
retinoscopy on the horizontal and vertical meridians at an
interval of 0.5 D, respectively. The astigmatism will be calculated
by half equivalent spherical lens (Zhou et al., 2007).

Quantel A-B scan (Quantel, Les Ulis,
France) measures AL

All SD rats were subjected to superficial anesthesia by
dropping 4 g/l obucaine hydrochloride eye drops on the eye
surface. The operation was repeated 2–3 times with an interval
of 5 min each time, and the corneal reflex disappeared as the
standard. Open the instrument, input the rat number, select the
eye type (right then left), select the A-scan manual measurement
mode, anterior chamber and vitreous set to 1,557.5 ms−1,
lens set to 17,233.3 ms−1 (Jiang et al., 2014). The probe was
pointed at the pupil area of the rat, and the cornea was
vertically touched (without compression). The clear and stable
waveform was taken as the determined image. The value of
the waveform of the anterior interface of the retina is read
as AL.

OD-1 A scan (Kaixin, China) measures
AL

All SD rats were surface anesthetized with 4 g/l obucaine
hydrochloride eye drops. The operation was repeated 2–3 times
with an interval of 5 min. The disappearance of corneal reflex
was taken as the standard. Turn on the instrument, enter the
rat number, select the eye type (right first, then left), select the
mode of manual measurement of AL in small animals. aim the
probe at the center of the rat pupil, touch the cornea vertically
(without pressing the cornea), take a clear and stable waveform
as the determined image, read and record the scale value of the
anterior interface of the retina wave peak, measure three times
for each eye, and take the average value, accurate to 0.01 mm.

The vernier caliper (Shanghai
Measuring Tools Co., Ltd., China)
measures the AL

Sprague Dawley (SD) rats were anesthetized with 3% sodium
pentobarbital sodium (50 mg/kg, intraperitoneal injection) and
euthanized by bleeding of abdominal aorta. quickly remove
the complete eyeballs in the super clean workbench, measure
the anterior and posterior diameters of the binocular axes
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FIGURE 1

Comparison results of the mean values of three AL measurement methods. F-R, female group right eye; M-R, male group right eye; F-L, female
group left eye; M-L, male group left eye; AL, axial length.

FIGURE 2

Comparison of AL in Sprague Dawley (SD) rats of different sex and eye types. (A) AL results from Quantel A-B Scan. (B) AL results from Vernier
caliper. (C) AL results from OD-1 A scan. F-R, female group right eye; M-R, male group right eye; F-L, female group left eye; M-L, male group left
eye; AL, axial length; ns indicates no statistical significance; *p < 0.05; ****p < 0.01.
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TABLE 1 Axial length (AL) of left and right eyes in each group.

Group Male (n = 30) T P Female (n = 30) T P

R (mm) L (mm) R (mm) L (mm)

Quantel A-B scan 5.798 ± 0.122 5.729 ± 0.140 0.879 0.383 5.324 ± 0.176 5.286 ± 0.158 2.050 0.045

Vernier caliper 5.902 ± 0.160 5.942 ± 0.218 0.123 0.903 5.481 ± 0.135 5.476 ± 0.159 −0.816 0.418

OD-1 A scan 5.441 ± 0.073 5.403 ± 0.088 −0.257 0.798 5.173 ± 0.068 5.178 ± 0.072 1.831 0.072

F 114.629 88.522 39.555 37.116

P 0.000 0.000 0.000 0.000

R, right eye; L, left eye; T, t-value; P, p-value; F, f -value (p < 0.05) difference was statistically significant.

with a vernier caliper (Distance from corneal apex to optic
disc of eyeball with clean connective tissue and optic nerve
removed), accurate to 0.02 mm. The axial values were read
and recorded, and the average values were measured three
times for each eye.

Statistical analysis

Statistical software SPSS25.0 (IBM Corp., Armonk, NY,
USA) was used for analysis. Measurement data in this study
were described as mean ± SD. Levene test was used to
test the homogeneity of variance for axial index. When the
variance was homogeneity (P > 0.05), one-way analysis of
variance (ANOVA) was used for statistical test. When the
variance was uneven (P ≤ 0.05), Kruskal-Wallis H rank sum
test was used for statistical analysis. Paired-t-test was used for
comparison of AL between left and right eyes, independent
sample-t test was used for pairwise comparison between
different groups, and ANOVA was used for comparison among
three groups. P < 0.05 was considered statistically significant.
Pearson correlation analysis was used to analyze the correlation
between AL and D.

Results

Comparison of AL results from three
different measurement methods

In the male and female rat groups, the AL measured by
vernier caliper of the left and right eyes was greater than
that measured by Quantel A-B scan, and the result value
of OD-1 A scan was the smallest (as shown in Figure 1).
The AL measured by the three methods was statistically
significant (p < 0.05). Taking the eye type as the variable,
the Quantel A-B scan measurement results in the female rat
group showed that there was a statistical difference in the AL
of the left and right eyes (t = 2.050, p = 0.045; as shown in
Figure 2A), and the other measurement results showed that

there was no statistical difference in the AL of the left and
right eyes of SD rats of the same sex (p < 0.05; as shown
in Figures 2B, C). In the same eye, the AL of male rats was
significantly higher than that of female rats. See Table 1 for the
details.

Results of RE

The RE of the female group was higher than that of the
male group (F-R: 5.083 ± 0.506D; M-R: 4.183 ± 0.328D; F-L:
4.833 ± 0.610D; M-L: 4.208 ± 0.322D), the difference was
statistically significant (p < 0.05), and there was no significant
difference in RE between the left and right eyes (p > 0.05). See
Figure 3 for details.

FIGURE 3

Comparison of RE in Sprague Dawley (SD) rats of different sexes
and eye types. F-R, female group right eye; M-R, male group
right eye; F-L, female group left eye; M-L, male group left eye;
RE, refractive errors; D, diopter; ns indicates no statistical
significance; ****p < 0.01.
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FIGURE 4

Comparison of AL difference between male and female rats by three different measurement methods. (A) AL difference in right eye between
male and female rats. (B) AL difference in left eye between male and female rats. AL, axial length; R, right eye; L, left eye; M-F, AL difference
between male and female rats; ns indicates no statistical significance; *p < 0.05; ***p < 0.01.

Comparison of AL difference between
male and female rats by three different
measurement methods

The comparison of AL difference between male and female
rats shows that there is no significant difference in the
measurement results between Quantel A-B scan and Vernier
caliper, while there are statistical differences between Quantel
A-B scan and OD-1 A scan, Vernier caliper and OD-1 A scan.
The details are shown in Figure 4.

Correlation analysis between AL and D

The AL results measured in three different ways have
negative correlation with D (p < 0.0001). The Pearson
correlation coefficient r2 shows that Quantel A-B scan is 0.2100,
Vernier caliper is 0.2622, and OD-1 A scan is 0.2973. The details
are shown in Figure 5.

Discussion

The commonly used AL measurement methods in clinical
practice mainly include mainly the optical method and
ultrasonic bioassay, the former is mainly intraocular lens-master
(IOL-master) (Roy et al., 2012) and OCT, whereas the latter
is mainly A-scan. However, the optical method is used more

widely because of its higher measurement accuracy than the
ultrasonic method, and is considered as the gold standard of AL
measurement (Goto et al., 2020a). However, the optical method
has high requirements on the refractive stroma. Once the lens,
cornea, and other refractive stroma, are seriously cloudy, AL
cannot be obtained accurately, whereas the ultrasound method
is not subject to this limitation. Thus, at present, both methods
are often used for AL measurement. In addition, AL measured
by the optical method refers to the distance from corneal apex to
retinal pigment epithelium (RPE) cells, whereas AL measured by
the ultrasonic method refers to the distance from corneal apex
to inner limiting membrane (ILM), so the result of the latter is
slightly smaller than that of the former (Goto et al., 2020b).

However, although the accuracy of AL measurement by
A-scan is not as high as that by the optical method, it is
more convenient to apply to small animals. Both OCT and
IOL Master are difficult to coordinate with the measurement
of animals, which not only needs to be performed under
general anesthesia, but also tends to increase the mortality of
experimental animals, and it is difficult to support microaxial
detection using this instrument. Therefore, A-scan is more
suitable for the measurement of AL in small animals. In fact, in
most studies of small rodent myopia models, AL was measured
by A-scan (Tian L. et al., 2021; Yang et al., 2021; Yu et al., 2021).
This is the reason why two kinds of A-scan were selected to
measure the AL of rats in this study.

Axial length (AL) is defined as the length of the
anterior and posterior diameters of the eyeball. For this
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FIGURE 5

Correlation analysis between AL and D measured in different ways. (A) Correlation between AL and D measured by Quantel A-B scan.
(B) Correlation between AL and D measured by Vernier caliper. (C) Correlation between AL and D measured by OD-1 A scan. AL, axial length; D,
diopter; r2, Pearson correlation coefficient; p < 0.0001 indicates that there is great statistical significance.

reason, we chose vernier caliper to measure the anterior
posterior diameter of the eyeball of the intact rat after
removing the conjunctival tissue as the gold standard of
AL. Because the thickness of all tissues (choroid and sclera)
after retinal ILM is included, the measurement result will
be greater than that of A-scan. Consistent with our results,
the AL results measured by the vernier calipers of all
rats were greater than those of the other two groups
of A-scan.

Moreover, because the results of RE tend to be synchronized
with the increase of AL (Tian T. et al., 2021), there is a negative
correlation between them (Jiang et al., 2009), and the AL of
infant female rats is smaller than that of male rats of the same
age, therefore we examined the AL and RE results of male and
female rats at 5 weeks of age. Finally, we found that the AL of
male rats was greater than that of female rats, and the difference
was significant.

Furthermore, the correlation between AL and D in each
group was analyzed and all three AL values had significant
negative correlation with D. In addition, we compared the AL
difference between male and female rats measured by three
different ocular axis measurement methods, and found that
there was no significant difference between Quantel A-B scan
and vernier caliper, although there was a statistical difference
between OD-1 A scan and the other two methods. These
indicate that Quantel A-B scan might be more accurate for
AL measurement of living small rodents, although the accuracy
of this instrument is only 0.1 mm, whereas OD-1 A scan
can be accurate to 0.01 mm. In addition, the price of the
latter is only 1/10 of the former, which might therefore be a
better choice for laboratories under poor economic conditions.
Although the image measurement results are not as accurate as
the anatomical results, they are sufficient for measuring the AL
of small experimental animals.
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As far as we know, this is the first study comparing
the AL values of SD rats measured by an anatomical
method and an imaging method, and the results have certain
significance for the study of myopia in small animals. Unlike
human eye measurements, the AL of small animals is too
small to be measured accurately, although, admittedly, the
AL measurement methods for human eyes are improving
constantly. Among them, swept source optical coherence
tomography (SS-OCT) is considered to be the most accurate AL
measurement method at present (Vounotrypidis et al., 2019).
Huang et al. (2019) compared the AL values measured by three
kinds of SS-OCT with those measured by partial coherence
interferometry (PCI), and found that the success rate of AL
measurement of SS-OCT biometrics was significantly higher
than that of PCI, and so they believed that SS-OCT might
become the gold standard for AL measurement. For animal
studies, the myopic animal model can meet the acquisition of
real AL (anterior posterior diameter of ocular axis), if it is not
required to obtain AL data of living animals, we believe that AL
measured by vernier caliper can be used as the gold standard
of rat AL, which can be accurate to 0.02 mm. However, we
recommend A-scan for the acquisition of AL in small living
animals.

Our study has the following limitations. First, we did not
measure the tissue thickness of the eyeball retina after ILM,
so we could not judge accurately the difference between the
AL value measured by the two A-scan and the actual eyeball
anteroposterior diameter, which requires the assistance of SS-
OCT. Unfortunately, we are unable currently to meet this
condition; Second, we did not detect the changes of AL and D
from young to adult rats to judge the specific impact of changes
in the ocular axis on RE, so as to further detect the accuracy of
Quantel A-B scan and OD-1 A scan. Third, we chose SD rats
as the representative of small animals because they can be used
as myopia models. Compared with other common models, such
as, mice, chickens, their eyeballs are larger and easier to measure.
In fact, we also used these two A-ultrasound to measure AL in
guinea pigs, and successfully obtained AL. However, we have
not tested mice and chickens, so we cannot determine whether
their AL can be obtained by A-scan. We aim to address these
limitations in future studies.

Conclusion

From what we have discussed here, we have confirmed that
A-scan can satisfy the acquisition of AL in small animals. Our
results of Quantel A-B scan for AL measurement of living small
animals might be more reliable, whereas the vernier caliper
can obtain the actual anterior posterior diameter of the ocular
axis, however, it needs to be obtained after the animals are
dissected. With the development of technology, we believe that
accurate and economical AL measuring instruments for small

animals can be developed in the future, which will provide
strong support to relevant myopia research.
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Purpose: A common ocular manifestation, macular edema (ME) is the primary cause

of visual deterioration. In this study, an artificial intelligence method based on multi-

feature fusion was introduced to enable automatic ME classification on spectral-

domain optical coherence tomography (SD-OCT) images, to provide a convenient

method of clinical diagnosis.

Methods: First, 1,213 two-dimensional (2D) cross-sectional OCT images of ME

were collected from the Jiangxi Provincial People’s Hospital between 2016 and

2021. According to OCT reports of senior ophthalmologists, there were 300

images with diabetic (DME), 303 images with age-related macular degeneration

(AMD), 304 images with retinal-vein occlusion (RVO), and 306 images with central

serous chorioretinopathy (CSC). Then, traditional omics features of the images

were extracted based on the first-order statistics, shape, size, and texture. After

extraction by the alexnet, inception_v3, resnet34, and vgg13 models and selected

by dimensionality reduction using principal components analysis (PCA), the deep-

learning features were fused. Next, the gradient-weighted class-activation map

(Grad-CAM) was used to visualize the-deep-learning process. Finally, the fusion

features set, which was fused from the traditional omics features and the deep-fusion

features, was used to establish the final classification models. The performance of the

final models was evaluated by accuracy, confusion matrix, and the receiver operating

characteristic (ROC) curve.

Results: Compared with other classification models, the performance of the support

vector machine (SVM) model was best, with an accuracy of 93.8%. The area under

curves AUC of micro- and macro-averages were 99%, and the AUC of the AMD, DME,

RVO, and CSC groups were 100, 99, 98, and 100%, respectively.

Conclusion: The artificial intelligence model in this study could be used to classify

DME, AME, RVO, and CSC accurately from SD-OCT images.

KEYWORDS

artificial intelligence, macular edema, multi-feature fusion, SD-OCT images, classification
models
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Introduction

Macular edema (ME) is a common ocular manifestation of
fluid infiltration or inflammation in the sensitive macular area of
the retina, and is an important cause of visual deterioration (Song
et al., 2022). There are several ME-related eye diseases, including
diabetic ME (DME), retinal-vein occlusion (RVO), age-related
macular degeneration (AMD), and central serous chorioretinopathy
(CSC). Chronic hyperglycemia in diabetes mellitus (DM) causes
damage to capillaries, resulting in retinal ischemia and increased
vascular permeability, which leads to DME (Kim et al., 2020).
Wet AMD is a result of subretinal choroidal neovascularization,
resulting in fragile and leaky blood vessels that penetrate through
Bruch’s membrane and cause edema (McGill et al., 2017). Excessive
angiogenic growth factors, caused by hypoxia secondary to RVO,
leads to vascular leakage and ME (Narayanan et al., 2021). In
CSC, choroidal congestion, thickening, and hyperpermeability are
considered to cause leakage through the retinal pigment epithelium
(RPE) (Schellevis et al., 2019).

Optical coherence tomography (OCT) is a high-resolution, non-
contact, and non-invasive biomedical imaging technique and is
often used in eye clinics for macular disease. The basic principle
of OCT imaging is that a beam of light is emitted into the tissues
to be examined and detects the reflected or back-scattered light
from the tissues; this reflected light will interfere with light that
originated from the same source and the reflectivity profile along
the light beam can be derived from the interference signal and
used to generate an A-scan (Liu et al., 2019). The combination of
multiple A-scans along the horizontal axis produces a brightness
scan (B-scan) (Khalid et al., 2017). Compared with Fundus cameras,
OCT systems has the high contrast and depth sectioning capability
(LaRocca et al., 2014). And high-quality cross-sectional images of
the neurosensory retina can be acquired without pupil dilatation in
a matter of seconds (Ouyang et al., 2013). Therefore the sensitivity
of OCT for detection of a variety of retinal irregularities was
higher.

Macular edema diagnosis by OCT is based on the visualization
of the retinal structure. However, spectral-domain optical coherence
tomography (SD-OCT) can better delineate the different retinal
layers so that the histological changes of ME can be shown in
more detail. In DME patients, SD-OCT shows mild retinal edema
with cystic spaces located only in the outer plexiform layer (OPL),
whereas, when edema worsens, they involved both the OPL and
the outer nuclear layer (ONL) (Leung et al., 2008). SD-OCT
image analysis was also more sensitive than FAF for identifying
geographic atrophy GA in patients treated for exudative AMD
(Massamba et al., 2019). For CSC patients, SD-OCT can show shallow
serous detachments and provided precise information about the
amount and localization of subretinal fluid and RPE abnormalities
(Murthy et al., 2016). SD-OCT also can quantify retinal thickness
changes in eyes with cystoid macular edema (CME) from central
retinal vein occlusion (CRVO) and is superior to contact lens–
assisted biomicroscopy to identify foveal edema (Decroos et al.,
2013).

Currently, ME diagnosis depends on the subjective evaluation
of OCT and the clinical experience of ophthalmologists. Not only
does this process take a lot of time, energy, and requires training,
but the ability of ophthalmologists at different levels to diagnose
diseases ranges widely. With the application of artificial intelligence

in ophthalmology, a large number of machine learning-based
computer-aided diagnosis (CAD) models have been developed for
the quantitative analysis of OCT images to achieve the automatic
diagnosis of macular diseases. Alsaih et al. (2017) applied machine-
learning techniques for DME classification on SD-OCT images,
both the sensitivity (SE) and specificity (SP) of the best result
were 87.5%. Chen Y. et al. (2021) applied convolutional-neural-
network-based transfer learning to classify AMD, the CNN models
with appropriate algorithm hyperparameters had excellent capability
and performance in classifying OCT images of AMD and DME.
However, their studies made only binary classification, which limits
the application of machine-learning algorithms in the diagnosis
of many diseases. Wang et al. (2016) proposed a CAD model to
discriminate AMD, DME, and healthy macula on OCT images,
the best model based on the sequential minimal optimization
(SMO) algorithm achieved 99.3% in the overall accuracy for the
three classes of samples. However, the coverage of disease types
was still inadequate and their studies were all based on single
features.

Currently, the signal fusion methods have attracted the attention
of many researchers for solving pattern recognition problems,
and that were divided into three categories which are early
fusion, intermediate fusion, and late fusion (Verma and Tiwary,
2014). Early fusion is also named as feature level fusion which
emphasizes the data combination before the classification (Zhang
et al., 2017). It was defined as performing merge and splitting
operations on existing feature sets to generate new feature sets.
Using the feature fusion approach of deep learning and machine
learning, the complementary information of abstract features of
deep learning and detailed features of machine learning can be
realized (Wang et al., 2022). The accuracy of models could be
improved (Khan and Hasan, 2020). Therefore, we introduced an
artificial intelligence method of fusion of traditional features and
deep features, aiming to automate the classification of DME,
AME, RVO, and CSC from DM based on SD-OCT images
(Figure 1).

Materials and methods

Image collection and pre-processing

A total of 1,213 two-dimensional (2D) cross-sectional OCT
images of ME were collected from the Jiangxi Provincial People’s
Hospital (China) between 2016 and 2021. According to OCT reports
of a senior ophthalmologist, 300 images with DME, 303 images
with AMD, 304 images with RVO, and 306 images with CSC
were included. And the set was randomly divided into a training
set and a test set, at a ratio of 8:2. To protect patient privacy,
patient images were all anonymized prior to analysis. All the OCT
images were acquired by the same experienced ophthalmologist
on the same machine, i.e., Heidelberg Spectralis OCT (Heidelberg
Engineering, Dossenheim, Germany). Then, the macular area was
outlined manually with ITK-SNAP software, which was the mask
region of interest (ROI) images. The obtained mask files were used
for traditional omics features extraction. Next, the image was cropped
to the ROI specifications and the segments of ROI were used for DL
features extraction.
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FIGURE 1

The flowchart of this study.

Traditional omics features extraction and
selection

Based on the mask files of the original image files, traditional
omics features of images were extracted based on the first-order
statistics, shape, size, and texture. The Z-score standardization
method was then used to normalize the extracted features and the
Spearman correlation coefficients were used to select the normalized
feature.

DL features extraction and model
visualization

The segments of ROI were input into alexnet, inception_v3,
resnet34, and vgg13 models, respectively, which were initialized
using the pre-trained weights from ImageNet, and the DL
features were obtained. And then the DL features were selected
by dimensionality reduction using principal components
analysis (PCA). Finally, the selected features of the four DL
models were fused.

In order to evaluate the deep learning-focused regions, the
gradient-weighted class activation map (Grad-CAM) method was
used. In this method, gradient information flowing from input layers
to the last convolution layer of a convolutional neural network (CNN)
is used, and coarse heat maps of important regions in the input
images are generated (Chen T. et al., 2021). Based on the coarse heat
maps, we can understand which areas of the segments are most likely
to be focused by the DL models.

Early fusion and lasso model established

Feature fusion was performed after the pooling layer in the
model. The traditional omics features and the deep-fusion features
were fused into a composite feature vector. Then in the training set,
the composite feature vector was input into further fused as fusion
features set. A t-distributed stochastic neighbor embedding (t-SNE)
algorithm was used to visualize the features vectors from feature space
of high dimensions into 2D space. Then, the fusion features set was
divided into a training set and a test set, at a ratio of 7:3. The lasso
model which was established to further select features. We chosed
the optimal λ based on the minimum criteria according to fivefold
cross validation.

Classification models established

The support vector machine (SVM), K-nearest neighbor (KNN),
ExtraTrees, logistic regression (LR), and multilayer perceptron
(MLP) were used to establish the classification models in the training
set and the performance of the final classification models was
evaluated in the test set. Finally, the classification performance of the
different models was assessed and compared.

Statistical analysis

The accuracy, confusion matrix and the receiver operating
characteristic (ROC) curve of the classification models were used

Frontiers in Neuroscience 03 frontiersin.org27

https://doi.org/10.3389/fnins.2023.1097291
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-17-1097291 January 24, 2023 Time: 15:31 # 4

Gan et al. 10.3389/fnins.2023.1097291

FIGURE 2

The pie chart for traditional omics features distribution.

FIGURE 3

Gradient-weighted class-activation map (Grad-CAM) visualization of deep learning feature extraction: CSC (A); AMD (B); DME (C); RVO (D). The blue part
that gathers inward from the red part is active, indicating that the model pays particular attention to this area (Huang et al., 2022).
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FIGURE 4

Feature visualization by t-distributed stochastic neighbor embedding (t-SNE): AMD (red); DME (green); RVO (blue); CSC (purple).

to evaluate the performance of models. All statistical analyses were
performed and visualized in Python (version 3.9.7).

Results

Characteristics of OCT images

The total of 1,213 original images of ME were collected, included
DME (n = 300), AMD (n = 303), RVO (n = 304), and CSC
(n = 306). The training set was consisted of 849 images, included
DME (n = 240), AMD (n = 243), RVO (n = 243), and CSC (n = 245).
The test set was consisted of 364 images, included DME (n = 60),
AMD (n = 60), RVO (n = 61), and CSC (n = 61). And then, the
original image files and corresponding mask files were obtained to
use for traditional omics features extraction. The segments based on
maximum ROI mask were used for deep learning features extraction.

Characteristics of traditional omics
features

For each ROI, a total of 107 features of each image were extracted,
and after the Spearman correlation coefficients, the final 38 features
of each image were selected. Including 6 first-order features, 4
shape-based features, and 28 textural features. The textural features
were composed of 5 Gray Level Co-occurrence Matrix (GLCM), 4
Gray Level Run Length Matrix (GLRLM), 9 Gray Level Size Zone
Matrix (GLSZM), 6 Gray Level Dependence Matrix (GLDM), and 4

Neighboring Gray Tone Difference Matrix (NGTDM) as shown in
Figure 2.

Characteristics of deep learning features
and model visualization

There were 9,216, 2,048, 512, and 16,383 deep learning features
of each image were obtained from the alxnet, inception_v3, resnet34,
and vgg13, respectively, which were on “avgpool” layer before last
FC layers. Dimension reduction with PCA compressed features into
31. Finally, a deep fusion feature subset containing 124 compression
features were obtained. And the heatmaps of Grad-CAM highlighted
areas which the deep learning models likely focused on as shown in
Figure 3.

Characteristics of fusion features

After the early fusion, a subset of each image that contains 162
features was got. Feature was visualized by t-SNE for an intuitive
perception of how well these features can distinguish different types
of ME, was shown in Figure 4.

Lasso model evaluation

The LASSO was used for automated feature selection in this
study. 53 features were selected to build the final classification models
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FIGURE 5

Feature selection in the lasso model: (A) Lasso coefficient profiles of the 162 fusion features, where each curve corresponds to one feature, the vertical
black line indicates an optimal λ. (B) Curve of binomial deviation varied with parameter λ, where value of the optimal log (λ) is marked by vertical dashed
lines.

based on the optimal lambda value and the corresponding coefficients
in the training set as shown in Figure 5.

Classification models evaluation

The accuracy of SVM model was highest than other models, up to
93.8% in the test set. And the KNN, ExtraTrees, MLP, and LR models
in the test set were only 90.08, 82.23, 90.50, and 86.77%, respectivily,
as shown in Table 1.

Since our problem is a multiclass classification, AUC of binary
class classification cannot be considered. So, micro- and macro-
averages (Sokolova and Lapalme, 2009) were calculated from ROC
curves, the macro-average could give equal weight to the classification
of each label, whereas the micro-average incorporates the frequency
of the labels into the label weighting. In the test set, the area under
curves (AUCs) of micro- and macro-averages of the SVM and MLP
models both were 99%, which was highest than the other models.
The ROC curve of the test set for each group compared with that
of the other groups, each group were clearly distinguished from other
groups in the SVM model and the AUC of the AMD, DME, RVO,
and CSC groups were 100, 99, 98, and 100%, respectively. While, the
AUC of the AMD, DME, RVO, and CSC groups compared with that
of other groups in the MLP model only were 99, 97, 97, and 100%,
respectively. It could be seen that in terms of ROC curve results, the
SVM model has the best performance.

The test set was distributed in a 4 × 4 matrix according to the
labeled labels and the classification results. It could be seen that the
recognition performance of SVM and MLP models was better than
others. For example, the recognition rates of RVO were relatively high
in the SVM and MLP model, while RVO was easily misrecognized in
the other three models. However, there were also some differences.
In the SVM model, the recognition rates of AMD, DME, and RVO
were relatively high. While, in the MLP model, the recognition rates
of CSC were relatively high. As shown in Figure 6.

Discussion

The current study used a multi-feature fusion method for
automatic ME classification on SD-OCT images. It fused the

features of traditional omics and four DL models, which were
the alxnet, inception_v3, resnet34, and vgg13. The Grad-CAM
was used to visualize the explanation of DL black-box model.
Finally, after the fusion features were screened by the lasso
model, the non-zero coefficients features were used to developed
six classification models. According the accuracy results, as well
as the ROC curve and confusion matrix, the performance of
the SVM model was the best, and could be used to classify
the DME, AMD, RVO, and CSC accurately from DM SD-OCT
images.

Early intelligent diagnosis mainly relies on artificially designed
feature templates or uses single traditional machine-learning
methods (Turchin et al., 2009), treating intelligent diagnosis as a
classification problem (Srinivasan et al., 2014; Alsaih et al., 2017).
Because a single feature is usually sensitive to the changes of part
of the image features and is not sensitive to the changes of other
features, when the difference between two kinds of images is not big
in the sensitive features of a certain feature, the classifier based on the
training of a single feature cannot output the correct classification. In
addition, the complex background noise in the image will also lead
to the deterioration of feature data quality, which not only increases
the difficulty of classifier training, but also reduces the accuracy of
classification. Our proposed fusion features method, by contrast,

TABLE 1 The accuracy of classification models in the training
set and test set.

Model Accuracy Task

SVM 97.22% train

93.80% test

KNN 90.32% train

90.08% test

ExtraTrees 100% train

82.23% test

MLP 98.35% train

90.50% test

LR 90.83% train

86.77% test
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FIGURE 6

Confusion matrix and ROC curve of the different models: (A1–E1): Confusion matrix of the SVM, LR, KNN, MLP, and ExtraTrees model, respectively. Each
row of the matrix represents the actual class and each column indicates the predicted class. (A2–E2): ROC curve of SVM, LR, KNN, MLP, and ExtraTrees
model, respectively. Label 0 for AMD, label 1 for DME, label 2 for RVO, label 3 for CSC.

realized feature complementarity and reduced the influence of single
feature inherent defects.

In previous studies, Lu et al. (2018) used ResNet to detect
normal images, cystoid ME, serous macular detachment, epiretinal
membrane, and macular hole based on the single deep learning
feature extraction method. The accuracy of their method for
detecting cystoid ME cases was 84.8% which was much lower than
our result. This also confirmed that the feature fusion method can
improve the accuracy of the model compared with the single feature
extraction method. Chen T. et al. (2021) used a convolutional-
neural-network to classify AMD. Chan et al. (2018) used information
from AlexNet, VggNet, and GoogleNet to design a decision model
for automatic classification of normal ME and DME. Although
these models have performed well, they lack the interpretation
capability. The Grad-CAM was introduced in our study to overcome
the common drawback of DL models. It uses the gradient of
the target class and propagates to the final convolutional layer to
generate a rough positioning map, which is used to visualize the
features (Yang et al., 2021). The Grad-CAM could address the
mechanism by which the CAM approach requires changes to the
model architecture. Compared with other interpretation methods,
the computational complexity is reduced and the interpretability
of the model is increased. It also combines the advantages of fine-
grained detection (unable to locate the image) and image positioning
(unable to improve the positioning resolution). The result of Grad-
CAM heatmaps in our study highlighted important areas that the
DL models probably focused on extracting features. This is the same

area in which our eyes recognize ME. This is a good example of
the Grad-CAM identifying the pathologic region of an OCT image
correctly.

Of course, there were also shortcomings to this study. First,
we just collected the OCT images from a single-center study
so the sample does not represent the entire patient population.
Second, single-omics methods were used in this study. For multi-
classification, using multi-omics data can obtain better accuracy
(Lin et al., 2020). Third, the accuracy of our study needs to be
improved. Therefore, in future studies, we will try to incorporate
multicenter data to reinforce the conclusion of our study and
combined multiomics techniques to automate classification of DM
based on SD-OCT images and the color fundus pictures.

Conclusion

In this study, an artificial intelligence method based on multi-
feature fusion was introduced for automatic ME classification on
SD-OCT images. The results showed that the model could be used
to classify the DME, AMD, RVO, and CSC accurately from SD-OCT
images. The result of Grad-CAM heatmaps in our study highlighted
important areas that the DL models probably focused on extracting
features. The results of Grad-CAM heatmap highlighted that the
important areas for the DL model to extract features was the same
as the areas in which our eyes recognize ME.
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Purpose: Glaucoma is the main blindness-causing disease in the world. Previous

neuroimaging studies demonstrated that glaucoma not only causes the loss of

optic ganglion cells but also leads to the abnormal function of the optic nerve

pathway and the visual cortex. However, previous studies also reported that patients

with glaucoma have dysfunction in the visual cortex in a static state. Whether

or not patients with primary angle-closure glaucoma (PACG) were accompanied

by dynamic functional connectivity (FC) changes in the primary visual cortex (V1)

remains unknown.

Methods: A total of 34 patients with PACG (23 men and 11 women) and 34 well-

matched healthy controls (HCs) were enrolled in the study. The dynamic functional

connectivity (dFC) with the sliding window method was applied to investigate the

dynamic functional connectivity changes in the V1.

Results: Compared with HCs, patients with PACG showed increased dFC values

between left V1 and bilateral calcarine (CAL). Meanwhile, patients with PACG showed

increased dFC values between right V1 and bilateral CAL.

Conclusion: Our study demonstrated that patients with PACG showed increased dFC

within the visual network, which might indicate the increased variability FC in the V1

in patients with PACG.

KEYWORDS

dynamic functional connectivity, functional magnetic resonance imaging, primary angle-
closure glaucoma, primary visual cortex, machine learning

Introduction

Primary angle-closure glaucoma (PACG) is a serious irreversible blinding eye disease. PACG
leads to increased intraocular pressure, which in turn leads to the apoptosis of optic ganglion
cells. PACG is characterized by ocular pain and visual field defects, which might lead to blindness
in advanced cases. PACG is more common in Asians than Europeans and Africans, with >80%
of PACG cases worldwide occurring in Asia. At present, the prevalence of PACG is 0.75% in adult
Asians worldwide (Cheng et al., 2014). Glaucoma not only leads to the loss of retinal ganglion
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cells but also leads to abnormal changes in the optic nerve pathway
and visual center function. Retinal ganglion cell death could leads
to anterograde and retrograde in visual pathway (Lawlor et al.,
2018).

With the development of functional magnetic resonance imaging
(fMRI) technology, multimodal MRI techniques, including diffusion
tensor imaging (DTI) and fMRI, have been used widely to investigate
the functional changes of the visual cortex in glaucoma. Numerous
studies have shown that patients with glaucoma have primary visual
cortex (V1) and V1-related dysfunction. Li et al. (2017) demonstrated
that patients with PACG have decreased functional connectivity (FC)
between the left V1 and right V2 and increased FC between the left
V1 and higher cognitive cortex.

Meanwhile, Jiang et al. (2020) reported that patients with PACG
showed abnormal effective connectivity between V1 and the higher
visual area, motor cortices, somatosensory cortices, and frontal lobe.
Graham et al. (2021) found that dogs with unilateral PACG showed
reduced fractional anisotropy (FA) in the visual pathway. Nuzzi et al.
(2018) demonstrated that patients with glaucoma showed abnormal
FC changes in the visual pathway. In addition, Pankowska et al.
(2022) reported that the patients with advanced glaucoma showed an
increase in the gray matter thickness in the V1 region. Meanwhile,
early glaucoma was associated with reduced thickness in the right
lateral occipital gyrus and the left lingual gyrus (Pankowska et al.,
2022). Haykal et al. (2022) reported that patients with primary open-
angle glaucoma (POAG) showed a loss of both axonal coherence and
density in the pregeniculate visual pathways, while the postgeniculate
pathways exhibited a loss of axonal coherence. Meanwhile, patients
with POAG showed a decrease in fiber density and fiber-bundle cross-
section in the pregeniculate optic tracts, whereas the postgeniculate
optic radiation showed a decrease in fiber density (Haykal et al.,
2019).

Thus, combined with our findings, previous studies
demonstrated that patients with glaucoma were along with
visual pathway and visual cortex dysfunction. However, the
abovementioned studies focused mainly on static brain activity
changes in the visual cortex. It is recognized increasingly that the
functional activity changes in the brain not only are constant over
time but also show dynamic changes over time.

The human brain is a complex dynamic system capable of
non-stationary neural activity. The human brain showed inherently
dynamic activity, which is related to the functional ability of
neural networks. The dynamics of neural activity in the brain
is closely related to neurophysiological activity. Growing evidence
demonstrated that the fluctuations in FC are of neural origin and
are also even more prominent during the resting period when mental
activity is unconstrained. Temporal variability of the dynamic brain
activity is related closely to various neurophysiological activities,
including working memory (Shunkai et al., 2021), vision (Di and
Biswal, 2020), and cognition (Patil et al., 2021). Therefore, recent
studies have shown that the dynamics of brain activity can better
reflect neural activity. Dynamic FC with the sliding window method
is applied widely to investigate the dynamic neural activity changes in
neuroimaging studies (Yuan et al., 2019; Li et al., 2020; Tsurugizawa
and Yoshimaru, 2021). Previous neuroimaging studies demonstrated
that patients with PACG showed abnormal neural activity changes
in the visual cortex and visual-related cortex. However, there have
been no studies on the dynamic FC changes in the V1 in patients
with PACG. Thus, we hypothesized that patients with PACG might
be associated with dynamic FC changes in the V1.

Based on these assumptions, our study is the first to determine
whether or not patients with PACG are associated with the dynamic
FC changes in the V1. Moreover, we chose the dFC maps as a feature
of machine-learning classification. Machine learning for MRI-related
neuroimaging has been widely applied in the diagnosis of nervous
system diseases. In addition, the support vector machine (SVM)
method is the most commonly used supervised machine learning
algorithm for MRI classification related to random forests, decision
trees, and convolutional neural networks.

Materials and methods

Participants

In total, 34 patients with PACG and 34 healthy controls (matched
for sex and age) were recruited in this study. The inclusion criteria for
individuals with PACG were as follows: (1) the intraocular pressure
is higher than 21 mmHg; (2) without other eye diseases (cataract,
optic neuritis, high myopia, etc.); (3) no medical treatment of PACG;
(4) eliminate patients with primary open-angle glaucoma (POAG)
and normal tension glaucoma (NTG); and (5) without brain lesions
including cerebral hemorrhage and cerebral infarction.

The inclusion criteria for healthy controls were as follows:
(1) normal visual acuity [>1.0] in both eyes; (2) no ophthalmic
diseases (i.e., optic neuritis, cataract, keratitis, etc.). This study was
performed in accordance with the tenets of the Declaration of
Helsinki. Each participant provided written informed consent before
inclusion in the study.

MRI acquisition and experimental
procedure

Magnetic resonance imaging scanning was performed on
a 3-tesla magnetic resonance scanner (Discovery MR 750W
system; GE Healthcare, Milwaukee, WI, USA) with the eight-
channel head coil. Functional images were obtained using
a gradient-echo-planar imaging sequence. fMRI scanning
parameter:repetition time = 2,000 ms, echo time = 25 ms,
thickness = 3.0 mm, gap = 1.2 mm, acquisition matrix = 64 × 64,
field of view = 240 mm2

× 240 mm2, flip angle = 90◦, voxel
size = 3.6 mm3

× 3.6 mm3
× 3.6 mm3, and 35 axial slices. Before

fMRI scanning, all study subjects were informed of all the caveats of
the experiment and were asked to remove any metal objects. Then,
during the fMRI scanning, all subjects were asked to keep their eyes
closed and relaxed without falling asleep.

fMRI data analysis

All preprocessing was performed using the toolbox for Data
Processing and Analysis of Brain Imaging (DPABI)1 (Yan et al.,
2016), which is based on the Statistical Parametric Mapping
(SPM12)2 implemented in MATLAB 2013a (MathWorks, Natick,

1 http://www.rfmri.org/dpabi

2 http://www.fil.ion.ucl.ac.uk
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TABLE 1 Clinical characteristics for health controls (HCs) and patients with
primary angle-closure glaucoma (PACG).

PACG
group

HC group T-Value P-Value

Sex (male/female) 23/11 23/11 N/A 0.780

Age (years) 45.15 ± 14.95 45.30 ± 13.87 −0.038 0.970

BCVA-OD 0.44 ± 0.27 1.16 ± 0.16 −11.474 < 0.001*

BCVA-OS 0.43 ± 0.37 1.19 ± 0.16 −9.352 < 0.001*

Chi-square test for sex. Independent t-test was used for other normally distributed continuous
data.
Data are presented as mean ± standard deviation.
HC, healthy control; BCVA, best-corrected visual acuity; OD, oculus dexter; OS, oculus sinister;
N/A, not applicable; R, right.
*p < 0.001.

MA, USA) and the details of steps according to a previous study
(Chen et al., 2022).

dFC analysis

The dFC method was performed using DPABI software. Based on
previous studies (Wen et al., 2018; Qi et al., 2021; Tong et al., 2021),

left V1(x = –8, y = –76, z = 10) and right V1 (x = 7, y = –76,
z = 10) with 6 mm radius. Specifically, the R-fMRI indices mentioned
above were computed with hamming windows (window length = 30
TR, window step = 1 TR). To avoid the introduction of spurious
fluctuations during the sliding window select, the minimum window
length should be larger than 1/fmin, where fmin is the minimum
frequency of the time series.

Support vector machine (SVM) analysis

The support vector machine (SVM) algorithm for binary
classification is implemented on the Pattern Recognition for
Neuroimaging Toolbox (PRoNTo) software3 (Schrouff et al., 2013).
The details of the steps for the SVM method were as follows: (1)
The dFC maps were selected as a classification feature. (2) The leave-
one-out cross-validation (LOOCV) was applied to perform the SVM
classifier validation. (3) The permutation test was applied to assess the
statistical significance of the total accuracy of this classification. (4)
The total accuracy, specificity, sensitivity, and area under the receiver

3 http://www.mlnl.cs.ucl.ac.uk/pronto/prtsoftware.html

FIGURE 1

One-sample t-test results of dynamic functional connectivity (dFC) in left V1 maps within primary angle-closure glaucoma (PACG) group (A) and HC
group (B); significant dFC differences in left V1 between two groups (C); the mean of altered dFC values of left V1 between the patients with PACG and
HCs (D). PACG, primary angle-closure glaucoma; HC, health control; V1, primary visual cortex; dFC, dynamic functional connectivity; CAL, calcarine; R,
right; L, left.
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FIGURE 2

One-sample t-test results of dFC in right V1 maps within PACG group (A) and HC group (B); significant dFC differences in right V1 between two groups
(C); the mean of altered dFC values of right V1 between the patients with PACG and HCs (D). PACG, primary angle-closure glaucoma; HC, health control;
V1, primary visual cortex; dFC, dynamic functional connectivity; CAL, calcarine; B, bilateral; R, right; L, left.

TABLE 2 Different dynamic functional connectivity (dFC) values in the left
V1 between two groups.

Condition Brain
regions

BA Peak
T-scores

MNI
coordinates

(x, y, z)

Cluster
size

(voxels)

PACG > HC Calcarine_R – 3.5784 24, −57, 3 10

PACG > HC Calcarine_L – 4.0202 −6, −69, 12 51

Different dFC values in left V1 between two groups (voxel-level p < 0.01, GRF correction,
cluster-level p < 0.05).
PACG, primary angle-closure glaucoma; HC, health control; MNI, Montreal Neurological
Institute; dFC, dynamic functional connectivity; R, right; L, left.

operating characteristic curve (AUC) were determined to assess and
classify the patients with PACG and the HCs.

Statistical analysis

The independent sample t-test was used to investigate the clinical
features between the two groups. In this study, a one-sample t-test
was applied to assess the group the mean of dFC maps within two
groups, and the two-sample t-test was used to compare the two

TABLE 3 Different dFC values in the right V1 between two groups.

Condition Brain
regions

BA Peak
T-scores

MNI
coordinates

(x, y, z)

Cluster
size

(voxels)

PACG > HC Calcarine_B – 4.5846 21, −75, 3 237

Different dFC values in right V1 between two groups (voxel-level p < 0.01, GRF correction,
cluster-level p < 0.05).
PACG, primary angle-closure glaucoma; HC, health control; MNI, Montreal Neurological
Institute; dFC, dynamic functional connectivity; B, bilateral.

group differences in the dFC maps between the two groups using
the Gaussian random field (GRF) method (two-tailed, voxel-level
p < 0.01, GRF correction, cluster-level p < 0.05).

Results

Analysis of ophthalmic clinical data

There were no statistically significant differences between the
PACG and HC groups in gender or age. However, there were
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FIGURE 3

Support vector machine classification results based on the mean dFC maps. Function dFC in left V1 value of SVM algorithm for two groups (class 1: PACG
group; class 2: HC group) (A); the receive operating characteristic curve of the SVM classifier (B); function dFC in left V1 value of SVM algorithm for two
groups (class 1: PACG group; class 2: HC group) (C); the receive operating characteristic curve of the SVM classifier (D); weight maps for SVM models for
left V1 (E); weight maps for SVM models for right V1 (F). PACG, primary angle-closure glaucoma; HC, health control; V1, primary visual cortex; dFC,
dynamic functional connectivity; SVM, support vector machine.
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significant differences between the two groups in visual acuity. More
details of the results are shown in Table 1.

Different dFC values between two groups

The group means of dFC maps of the PACG and HC are shown
in Figures 1A, B, 2A, B. Compared with HCs, patients with PACG
showed increased dFC values between left V1 and bilateral calcarine
(CAL) (Figure 1C and Table 2). The mean values of altered dFC in
left V1 values were shown with a histogram (Figure 1D). Meanwhile,
patients with PACG showed increased dFC values between right V1
and bilateral calcarine (CAL) (Figure 2C and Table 3). The mean
values of dFC in right V1 values were shown with a histogram
(Figure 2D).

Support vector machine (SVM) result

For the left V1 map, the total classification accuracy was 55.88%.
Function value of SVM algorithm for two groups (in scatter diagram.
class 1: PACG group; class 2: HC group) (Figure 3A). A receive
operating characteristic curve of the binary classifiers was generated
to evaluate the system’s performance in distinguishing individuals
with PACG from HCs and the AUC was 0.40 (Figure 3B).

For the right V1 map, total classification accuracy was 51.47%.
Function value of SVM algorithm for two groups (in scatter diagram.
class 1: PACG group; class 2: HC group) (Figure 3C). A receive
operating characteristic curve of the binary classifiers was generated
to evaluate the system’s performance in distinguishing individuals
with PACG from HCs and the AUC was 0.44 (Figure 3D). Weight
maps for SVM models for left V1 (Figure 3E), and weight maps for
SVM models for right V1 (Figure 3F).

Discussion

Our study is the first to investigate the dFC alterations of the V1
in patients with PACG. Patients with PACG showed increased dFC
values between the left V1 and bilateral CAL. Meanwhile, patients
with PACG showed increased dFC values between the right V1 and
bilateral CAL related to the HC group.

Our most interesting finding is that the patients with PACG
showed an increased dFC within the visual network. As we all
know, the most important pathological mechanism of glaucoma is
the loss of retinal ganglion cells. Meanwhile, retinal ganglion cell
death can lead to anterograde and retrograde retinal ganglion cell
degeneration (Lawlor et al., 2018). Thus, the damage to the optic
nerve leads to abnormal visual signaling in the visual cortex. Thus,
we speculated that the reduced afferent visual signals may lead to
increased variability and decreased stability of primary visual cortex
neural activity. Hernowo et al. (2011) reported that reduced volume
in the visual pathway was found in patients with glaucoma. Chen et al.
(2013) found that patients with glaucoma showed decreased gray
matter (GM) volume in the visual cortex. Frezzotti et al. (2014) also
demonstrated that patients with POAG had brain atrophy in both
the visual cortex and other distant GM regions (the frontoparietal
cortex, the hippocampi, and the cerebellar cortex). Wang et al. (2016)
found that patients with glaucoma had significantly reduced cortical

thickness in the right frontal pole and decreased GM volume in LGN,
the right V1, and the left amygdala. Thus, brain structural atrophy in
VI may lead to increased dFC values of V1 in patients with glaucoma.
We speculated that the abnormal brain structure may lead to local
neural activity flexibility changes. Consistent with these findings, our
study found that patients with PACG showed increased dFC values
within the visual network. Increased dFC might reflect increased
neural activity flexibility in the visual cortex, which might indicate
visual function compensation in patients with PACG.

In addition, in our study, the SVM method was used to investigate
the predictive values of classifying individual patient populations
with PACG versus HCs. For the left V1 map, the total classification
accuracy was 55.88%. A receiver operating characteristic (ROC)
curve of the binary classifiers was generated to evaluate the system’s
performance in distinguishing individuals with PACG from HCs and
the area under the ROC curve (AUC) was 0.40. For the right V1
map, the total classification accuracy was 51.47%. A ROC curve of the
binary classifiers was generated to evaluate the system’s performance
in distinguishing individuals with PACG from HCs and the AUC
was 0.44. The SVM algorithm was trained with input data labeled
previously by PACG or HCs to predict the desired outcome. This
powerful multivariate analysis enabled us to make clinical predictions
at the individual subject level.

However, there were some limitations to the study. First, the
sample size of our study was small. Second, blood oxygen level-
dependent (BOLD) signals would be influenced by a variety of
physiological noises such as breathing and heartbeat. Third, the
machine noise of MRI can also have an effect on the BOLD signal.
Finally, a different time window length might affect the results. We
would select a different window length in the future study for the
stability of the results.

In conclusion, our study demonstrated that patients with PACG
showed an increased dFC within the visual network, which might
be indicative of an increased variability of FC in the primary visual
cortex. Our study also provides an important imaging reference to aid
the understanding of the mechanism of nerve damage in the visual
center of patients with glaucoma.
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Glaucoma is the first major category of irreversible blinding eye illnesses worldwide.

Its leading cause is the death of retinal ganglion cells and their axons, which

results in the loss of vision. Research indicates that glaucoma affects the optic

nerve and the whole visual pathway. It also reveals that degenerative lesions caused

by glaucoma can be found outside the visual pathway. Diffusion tensor imaging

(DTI) is a magnetic resonance imaging (MRI) technique that can investigate the

complete visual system, including alterations in the optic nerve, optic chiasm, optic

tract, lateral geniculate nuclear, and optic radiation. In order to provide a more

solid foundation for the degenerative characteristics of glaucoma, this paper will

discuss the standard diagnostic techniques for glaucoma through a review of the

literature, describe the use of DTI technology in glaucoma in humans and animal

models, and introduce these techniques. With the advancement of DTI technology

and its coupling with artificial intelligence, DTI represents a potential future for MRI

technology in glaucoma research.
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1. Introduction

Glaucoma is a diverse group of diseases characterized by damage to the retinal ganglion
cells (RGC) and their axons, the retinal nerve fiber layer (RNFL), which leads to progressive
vision loss (Stein et al., 2021). If left untreated, this condition can result in permanent blindness.
Glaucoma is thought to affect more than 76 million people worldwide; by 2040, that number
is expected to increase to 112 million (Tham et al., 2014). High intraocular pressure (IOP) is a
significant risk factor for glaucoma. In some instances, however, reducing the IOP to normal
or even below normal can cause visual impairment. IOP is the only clinical risk factor that
may be modified. In addition, risk factors for glaucoma include advanced age (Kühn et al.,
2021), race (Cheng and Tanna, 2022), myopia (Haarman et al., 2020), and glaucoma-positive
family history (Bhandari et al., 2021); nevertheless, the exact reason is unknown (Schuster
et al., 2020). Epidemiology studies show that the pathophysiological pathways of glaucoma
are similar to those of Alzheimer’s disease and Parkinson’s disease. They suggested that the
brain may be involved in the development of glaucoma (Zhang et al., 2019; Saccà et al., 2020).
Historically, glaucoma referred to illnesses resulting in optic nerve (ON) atrophy and visual
field (VF) abnormalities. However, an increasing amount of evidence indicates that intracranial
vision-related regions and visual pathways, such as the lateral geniculate nuclear (LGN), optic
tract (OT), and optic radiation (OR), are also affected (Zhou et al., 2017; Schmidt et al., 2018;
Song et al., 2018). In addition, some investigations have found a decrease in the volume of
brain structures outside the visual pathway (Chen et al., 2013). Visual pathways are made up
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of white matter (WM) tracts, so studying glaucomatous WM
degeneration may be crucial to understanding how glaucomatous
neurodegeneration spreads through the visual system.

Diffusion tensor imaging (DTI) is now the most prevalent
method for investigating WM degeneration in glaucoma patients
(Hanekamp et al., 2021; Haykal et al., 2022). In addition, the DTI
technique is frequently utilized to detect glaucoma changes in various
glaucoma types (Zhang et al., 2019). In this review, we explored the
application of DTI in glaucoma and assessed it as a recently created
technique.

2. Conventional glaucoma screening
methods

Routinely used methods for glaucoma evaluation include
gonioscopy, IOP measurement, corneal thickness measurement,
fundus photography, VF inspection, and optical coherence
tomography (OCT) (Stein et al., 2021). Moreover, optical coherence
tomography angiography (OCTA) identifies glaucoma by detecting
alterations in the retinal blood vessels (Rao et al., 2020). Due to
irreversible glaucomatous vision damage, early detection is essential
for preventing its progression. Through screening and identifying
high-risk patients, ophthalmologists can diagnose glaucoma in
its early stages. Given that the morphology of a healthy ON
varies considerably and various eye disorders can present with
glaucomatous alterations in the ON, early identification of glaucoma
can be difficult. For glaucoma diagnosis, direct visual evaluation of
optic papilla morphology has a high mistake rate. Consequently,
early glaucoma is identified by longitudinally assessing structural
changes in the ocular papilla.

The term “visual field” refers to the area the human eye can
perceive, and the “VF examination” primarily refers to the perimeter
measuring this region. VF examination is a subjective test used to
diagnose glaucomatous damage and quantify the degree and severity
of visual impairment in glaucoma patients (Hashimoto et al., 2018).
The automated static visual field test effectively detects and monitors
visual function loss caused by glaucoma. Even in the earliest phases
of glaucoma, more and more macular abnormalities are detected
(Arai et al., 2018). Considering the significance of central visual
function, some have recently proposed that regular targeted central
VF testing, such as the 10-2 approach on Humphrey Field Analyzer
(HFA), can detect glaucomatous alterations in their early phases
(Grillo et al., 2016). In addition, the 10-2 strategy on the HFA can
detect abnormal outcomes in glaucoma patients that the 24-2 strategy
cannot detect (Grillo et al., 2016). Therefore, suitable parameter
values may facilitate earlier diagnosis of glaucoma. In order to
sample the same retinal position, the patient needs to maintain a
steady position throughout standard VF testing for SAP. Thus, the
researchers utilized a fundus-tracked visual field test technique to
lower measurement variability and to be able to quickly detect VF
advancement when patient participation declines over time (Wu
et al., 2016; Rao et al., 2017). Furthermore, implementing a new visual
field threshold technique and an upgraded visual field progression
analysis offer promise for the early identification of glaucoma (Aoki
et al., 2017; Wild et al., 2017).

Optical coherence tomography is a non-invasive imaging
technology that permits the quantitative measurement of changes in
the ON, RGC axon, and RGC body layer, RNFL (Kang and Tanna,
2021). Since its inception in 1991 (Huang et al., 1991), OCT has

undergone several modifications, including time-domain OCT (TD-
OCT), spectral-domain OCT (SD-OCT), and swept-source OCT
(SS-OCT) (Geevarghese et al., 2021). These enhancements have
substantially increased scanning resolution and speed. OCT has
transformed the ability to analyze the anatomical characteristics
of an optic papilla afflicted by glaucoma. In addition, OCT can
detect glaucoma before VF changes (Swaminathan et al., 2021).
OCT has transformed glaucoma from a disease that could only be
diagnosed subjectively to one that can now be evaluated objectively.
This significant development has revolutionized the diagnosis,
monitoring, and treatment of glaucoma. As a result, it has become
the most common method for detecting and monitoring glaucoma
among clinicians. According to the study, RNFL-based SD-OCT and
TD-OCT have the same ability to distinguish glaucoma from other
eye diseases. However, SD-OCT is superior for determining RNFL
advancement (Bengtsson et al., 2012). Due to the SD-OCT rapid
scan speed and excellent images, the retina may be analyzed more
precisely, and there is less variance in the results. Finally, it increased
the precision of glaucoma diagnosis.

Optical coherence tomography angiography is a non-invasive,
dye-free imaging technique that can measure the retina, optic papilla,
and choroidal blood vessels in qualitative and quantitative ways.
OCTA can provide information on the extent of perfusion damage at
various depths in the retina and choroid. Because advanced glaucoma
has a lower vascular density (Yarmohammadi et al., 2018), OCTA
can be utilized to track the progression of ocular damage in this
condition. Patients at risk for a more rapid glaucoma progression are
also included in the OCTA database. OCTA works with VF and OCT
tests (Rao et al., 2020) to diagnose glaucoma, identify development,
and assess progression risk.

Conventional glaucoma diagnostic technologies, including
fundus photography, OCT, OCTA, and VF, focus exclusively on
the retinal region and disregard information regarding the WM of
the brain, which transmits and systematically processes vision. The
visual pathway consists mainly of the WM of the brain, and DTI is
the advanced imaging technology currently available for evaluating
the WM of the brain (Cheng et al., 2021); consequently, DTI is
essential for detecting glaucoma.

3. Application of DTI technology in
glaucoma

Diffusion-weighted imaging (DWI) is a magnetic resonance
imaging (MRI) technique used to assess water diffusion (Graham
et al., 2021). Due to the presence of water diffusion in numerous types
of biological tissues, pathophysiological alterations impact typical
cellular structures, resulting in variations in water diffusion. DWI can
detect aberrant changes in diffusion and can be used to evaluate brain
tissue’s integrity, connectivity, and structure (Martinez-Heras et al.,
2021). Glaucoma is considered a multifactorial neurodegenerative
disease affecting the visual pathway rather than just an ophthalmic
condition with VF abnormalities and optic neuropathy. DTI, which
was first introduced by Basser et al. (1994) in 1994, is a magnetic
resonance technique based on DWI technology that can analyze
the water molecule dispersion characteristics in tissue in three
dimensions at regular intervals and quantitatively and has significant
applications in neuroimaging. DTI enables a sensitive evaluation of
potential microstructural changes that may occur prior to brain tissue
shrinkage. Therefore, this technique is up-and-coming for the study
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of intracerebral damage in glaucoma (Le Bihan and Iima, 2015). DTI
measures several parameters, including fractional anisotropy (FA),
mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity
(RD). FA measures the propensity of water to diffuse in one direction,
with values ranging from 0 (isotropic) to 1 (anisotropic) (Li and
Zhang, 2020). MD describes the average mobility of water molecules
within a voxel. In contrast, AD measures diffusivity along the
horizontal axes, and RD offers an average diffusion measurement
along the two vertical axes (Altobelli et al., 2015). Changes in
these variables may signify alterations in axonal integrity and
demyelination. Recently, DTI has been extensively utilized to evaluate
glaucoma-induced impairments to the intracranial visual system in
humans and animals.

4. DTI in glaucoma in vivo

Changes in DTI parameters of the glaucomatous ON and beyond
the ON are hot areas of current research (Sidek et al., 2014; Zhang
Q. J. et al., 2015). The following section focuses on developing
DTI investigations of the visual pathway in animal and human
populations with glaucoma.

4.1. DTI in animal models of glaucoma

Diffusion tensor imaging has been examined extensively and
thoroughly in glaucoma-affected animal models with altered visual
pathways in experimental animal models. Numerous investigations
on rat glaucoma models have documented an increase in MD and
a decrease in FA of the ON and OT (Hui et al., 2007; Ho et al.,
2015; Yang et al., 2018). Moreover, in vivo DTI was demonstrated
to detect RGC axonal damage earlier than immunohistochemistry
in the early stages of the disease in a mouse model of optic nerve
crush-induced glaucoma (Zhang et al., 2011). DTI can therefore be
utilized to detect FA of OR and OT and aid in the early identification
of POAG. DTI was used to test the visual system integrity in five
animal models of glaucoma (Colbert et al., 2021). The evaluation of
three glaucoma models that are caused by genes and two that are
induced by experiments. Significantly less FA and more RD were
found in the visual pathways of DBA/2J mice and LTBP2-mutant
cats; also, AD was slower in DBA/2J mice. Chronic high IOP is
linked to less FA and more RD along the ON or OT, which suggests
that microstructural integrity has been compromised. In addition,
Graham et al. (2021) use DTI to describe measurements of structures
associated with canine primary angle closure glaucoma (PACG) in
the retina and visual pathways beyond the optic papilla. Quantitative
measurements of the ON, optic chiasma (OC), OT, and LGN were
taken in dogs with and without PACG. A tendency toward a disease-
related decline in FA was seen for all structures evaluated. In vivo
evaluations of axonal, myelin, and trans-synaptic degeneration in
canine PACG can be done using DTI. Research on DTI is currently
being done primarily in rat eyes, and future research on glaucoma in
large animals, including dogs, pigs, and monkeys, will also be done.

4.2. DTI in humans with glaucoma

Glaucoma-related modifications to DTI parameters in the visual
pathway constitute a significant research focus. Multiple studies

have found that glaucoma patients had lower FA and higher MD
on DTI (Chen et al., 2013; Murai et al., 2013). Moreover, studies
have established that FA is a more sensitive and reliable glaucoma
detection indicator than MD (Garaci et al., 2009; Chen et al., 2013).
These works of literature focus on the various types of glaucoma
and the associated changes in the intracranial visual and extra-visual
pathways involved in glaucoma (Giorgio et al., 2018; Schmidt et al.,
2018; Wang et al., 2018; Qu et al., 2019). It is well-known that
VF examination and OCT measurement of the RNFL thickness are
the accepted methods for diagnosing primary open angle glaucoma
(POAG) and ocular hypertension (OHT). And Song et al. (2018)
indicate that DTI distinguishes POAG from OHT by evaluating the
FA and MD of the OT, LGN, and OR in the visual pathway. DTI
characteristics can quantify the evolution of POAG.

Schmidt et al. (2018) studied the potential advantages of
volumetric LGN and DTI evaluation techniques. Normal tension
glaucoma (NTG) was observed to considerably diminish the size
of the LGN compared to healthy controls. In addition, FA of the
OT and OR are lowered in NTG. Although RNFL thickness was
related to LGN volume, FA was not correlated with LGN volume.
Likewise, Li et al. (2019) examined the diagnostic value of DTI
parameters and LGN size in POAG. FA values of the OT may
be a sensitive and accurate biomarker for glaucoma assessment,
even though MD is not connected with this condition. Zhou
et al. (2017) discovered that the DTI parameters FA and RD
correspond with monocular right and left visual fields, although
there is no significant correlation between FA and RNFL thickness.
The connection between FA and contralateral VF scores for OR is
significantly positive. By splitting the left and right VF, FA readings
for OR can be used to evaluate the degree of glaucomatous visual
field loss. The results of the OT evaluation revealed no correlation.
The results of the OT evaluation revealed no correlation. The OT
is relatively narrow, has fewer neuronal bundles, and has poorer
sensitivity, which may cause the absence of association. Engelhorn
et al. (2011) used DTI to assess the pathological abnormalities in
glaucoma patients and found that it can demonstrate the sparsity of
OR. The study included 50 glaucoma patients and 50 age-matched
healthy controls. Twenty-two glaucoma patients (44%) were found
to have significantly lower OR volumes than the control group
(67.16%). As a result, glaucomatous ON atrophy and OR thinning
brought on by DTI coexist. Furthermore, compared to controls,
glaucoma patients had significantly higher incidences of cerebral
microangiopathy affecting OR.

Researchers are particularly interested in determining whether
abnormalities occur outside the visual pathway in glaucoma patients.
In contrast to nature controls, NTG patients show decreased FA
of OR and forceps major in the occipital lobe, according to a DTI
study by Boucard et al. (2016). The same changes were observed
in non-visual regions, including the corpus callosum and parietal
lobe. Moreover, Giorgio et al. (2018) discovered aberrant WM in the
lingual gyrus and lateral occipital cortex of the occipital lobe in the
NTG compared to the NC group, demonstrating a decrease in FA
and an increase in AD. Moreover, Zikou et al. (2012) used DTI to
identify decreases in FA in the inferior frontal-occipital fasciculus, the
longitudinal and inferior frontal fasciculi, the putamen, the caudate
nucleus, the anterior and posterior thalamic radiations, and the
anterior and posterior limbs of the internal capsule.

As a result, we can now consider glaucoma a neurodegenerative
disorder affecting the visual and extra-visual pathways owing to
analyzing various types of glaucoma utilizing DTI. Additionally, DTI

Frontiers in Neuroscience 03 frontiersin.org43

https://doi.org/10.3389/fnins.2023.1125638
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-17-1125638 January 31, 2023 Time: 10:13 # 4

Wang et al. 10.3389/fnins.2023.1125638

offers objective and quantifiable changes in the visual pathway and
improves understanding of the central visual pathway’s degenerative
process in human and animal glaucoma.

5. Correlation of DTI parameters and
glaucoma severity

Multiple investigations have demonstrated that as the disease
progresses, FA and MD values in the ON and OR decrease and
increase, respectively (Garaci et al., 2009; Chen et al., 2013; Li et al.,
2014). In addition, Sidek et al. (2014) found substantial variations
between mild and severe glaucoma in the FA and MD of the
ON and OR. FA values of either the ON or OR showed greater
sensitivity and specificity in differentiating between mild and severe
glaucoma than MD values. Similarly, Li et al. (2014) found that
the heterogeneity analysis shows that FA may have a link with the
severity of glaucoma. This study suggests that DTI may be helpful for
glaucoma diagnosis and management. A meta-analysis investigated
the connection between structural WM alterations and glaucoma
severity. Typically, the severity of glaucoma increases the prominence
of cerebral WM loss (Sidek et al., 2014). Therefore, based on the
extent of parameter measurement in the visual pathway, DTI can
differentiate the severity of glaucoma and offer some clinical support.

6. Limitations of DTI in glaucoma
research

Application DTI has some limitations. The human ON is
small, only 3–4 mm in diameter. There may be specific areas
throughout the inspection when artifacts lead to examination errors
(Wheeler-Kingshott et al., 2006). This restriction can be removed by
utilizing advanced DTI and higher MRI scanners. It is important
to remember that DTI parameters are voxel-based values that the
fiber image located around the same voxel can change. Significant
noise is detected for the DTI image, and the noise image leads to
measurement inaccuracies.

Moreover, the DTI signal acquisition time is extended, which
could cause motion distortions if the patient moves a lot during
the examination. DTI should be enhanced and modified prior to
its widespread usage in clinical glaucoma testing, which is now
employed primarily for research. The accuracy and reproducibility
of DTI results can be impacted by oculomotor interference,
large magnetic sensitivity differences in the orbit caused by
gas and bone in the sinus combined with the thin diameter
of the optic nerve, encapsulation by cerebrospinal fluid in the
sphincter cavity, and surrounding orbital fat (Techavipoo et al.,
2009). The final results may need to be interpreted as a result
of inaccurate diffusion measurements that need to adequately
reflect microstructure information due to methodological and
artificial factors (Concha, 2014). However, DTI measurements need
a more precise biological meaning, and the method has many
technical limitations. The DTI-based analysis is still an impenetrable
technology that relies on complex data gathering and geometrical
models that are predicated on many different assumptions (Pujol
et al., 2015).

In this review, we only discuss the alterations of DTI in the visual
and extra-visual pathways because not only WM alterations but also

gray matter alterations are present in the central visual pathways
of glaucoma patients, and intracranial gray matter alterations are
typically detected by functional MRI (Garaci et al., 2008; Zhang et al.,
2015), which is not discussed in this paper and is its limitation.
Future research will delve deeper into glaucoma sufferers’ gray matter
changes.

7. Future prospects

The area of glaucoma and ophthalmology, in general, is primarily
image-based, and AI is situated to solve many of these problems
(Mayro et al., 2020). Deep learning (DL) is a subset of AI. Using
multilayer neural networks modeled after the mammalian visual
cortex, DL in AI may generate images that modify the glaucoma
field. Autonomous DL algorithms can maximize information in
digital fundus pictures, optical coherence tomography, and visual
fields (Ting et al., 2019; Girard and Schmetterer, 2020). Suppose
DL technology can be merged with DTI to evaluate changes in
images and parameters. In that case, it will be possible to explore
the characteristics of glaucoma as a neurodegenerative disease and
distinguish glaucoma patients from those without the problem. In
the future, the combination of AI and DTI will significantly impact
outpatient glaucoma screening, management, and the exploration
of glaucoma’s relationship to other neurodegenerative illnesses. In
addition, as technology improves and is combined with other MRI
technologies (Lanzafame et al., 2016; Wang et al., 2018), glaucoma
will be detected earlier and can be studied as a whole to find out how
glaucoma starts, cease it from getting worse, improve the prognosis
of glaucoma, and take glaucoma research to a new level, all of which
will help glaucoma patients in the long run.

8. Conclusion

In summary, DTI often showed a rise in MD and a decrease in FA,
strongly linked with increasing disease severity in glaucoma patients
or animal models. DTI is a promising non-invasive technique for
assessing the severity and prognosis of glaucoma. As clinical and
scientific uses of DTI continue to develop, practitioners in the
area will engage with ophthalmologists to overcome its limits and
enhance patient care.
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Exploration of static functional
connectivity and dynamic
functional connectivity alterations
in the primary visual cortex among
patients with high myopia via
seed-based functional connectivity
analysis
Yu Ji†, Shui-qin Huang†, Qi Cheng, Wen-wen Fu, Pei-pei Zhong,
Xiao-lin Chen, Ben-liang Shu, Bin Wei, Qin-yi Huang and
Xiao-rong Wu*

Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi,
China

Aim: This study was conducted to explore differences in static functional connectivity

(sFC) and dynamic functional connectivity (dFC) alteration patterns in the primary

visual area (V1) among high myopia (HM) patients and healthy controls (HCs) via

seed-based functional connectivity (FC) analysis.

Methods: Resting-state functional magnetic resonance imaging (fMRI) scans were

performed on 82 HM patients and 59 HCs who were closely matched for age, sex,

and weight. Seed-based FC analysis was performed to identify alterations in the sFC

and dFC patterns of the V1 in HM patients and HCs. Associations between mean

sFC and dFC signal values and clinical symptoms in distinct brain areas among

HM patients were identified via correlation analysis. Static and dynamic changes in

brain activity in HM patients were investigated by assessments of sFC and dFC via

calculation of the total time series mean and sliding-window analysis.

Results: In the left anterior cingulate gyrus (L-ACG)/left superior parietal gyrus (L-

SPG) and left V1, sFC values were significantly greater in HM patients than in HCs. In

the L-ACG and right V1, sFC values were also significantly greater in HM patients than

in HCs [two-tailed, voxel-level P < 0.01, Gaussian random field (GRF) correction,

cluster-level P < 0.05]. In the left calcarine cortex (L-CAL) and left V1, dFC values

were significantly lower in HM patients than in HCs. In the right lingual gyrus (R-

LING) and right V1, dFC values were also significantly lower in HM patients than in

HCs (two-tailed, voxel-level P < 0.01, GRF correction, cluster-level P < 0.05).

Conclusion: Patients with HM exhibited significantly disturbed FC between the

V1 and various brain regions, including L-ACG, L-SPG, L-CAL, and R-LING. This

disturbance suggests that patients with HM could exhibit impaired cognitive

and emotional processing functions, top-down control of visual attention,
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and visual information processing functions. HM patients and HCs could be

distinguished from each other with high accuracy using sFC and dFC variabilities.

These findings may help to identify the neural mechanism of decreased visual

performance in HM patients.

KEYWORDS

high myopia, brain function, brain region, resting-state functional magnetic resonance
imaging, static functional connectivity, dynamic functional connectivity, seed-based
functional connectivity analysis

1. Introduction

High myopia (HM) is a type of ametropia characterized by a need
for more than −6.00 diopters of refractive correction or the presence
of an axial length ≥ 26 mm1 (Ucak et al., 2020). The typical clinical
manifestations of HM include decline in distance vision, normal near
vision, and decline in dark adaptive function; these manifestations are
often accompanied by visual fatigue. Patients with HM can exhibit
degenerative changes in the fundus related to excessive elongation of
the ocular axis; such changes include patchy or diffuse chorioretinal
atrophy, retinal nerve fiber layer thinning, macular atrophy, macular
hole formation, and altered retinal vessel morphology (Li et al., 2011;
Silva, 2012; Kamal Salah et al., 2015). In East Asia, 80–90% of 18-year-
olds exhibit myopia, and approximately 10–20% of these individuals
have HM (Jonas and Panda-Jonas, 2019). The incidence rate of HM
among Chinese students in primary school does not exceed 1%,
but it is > 2% in junior high school (Wang et al., 2018). There
are multiple risk factors for increased axial length in patients with
HM, such as sex, best-corrected visual acuity, axial length, type of
myopic maculopathy, and choroidal neovascularization status (Du
et al., 2021). Jonas et al. (2020) demonstrated that the prevalence of
glaucoma-like optic neuropathy increases with longer axial length in
eyes with HM; other investigations have shown that glaucoma is both
an eye disease and a degenerative illness of the central nervous system
(Nucci et al., 2015; Mancino et al., 2018). Therefore, a connection may
exist between HM and the central nervous system.

Recently, resting-state functional magnetic resonance imaging
(fMRI) has emerged as an important method for non-invasive
analyses of changes in brain function; it has been used to investigate
various clinical diseases. Resting-state fMRI is based on the
paramagnetic effect of deoxygenated hemoglobin. Increased oxygen
consumption in local tissues leads to an increase in deoxygenated
hemoglobin, which indirectly indicates the degree of local neural
activity in the brain (Glover, 2011). Patients with HM reportedly
exhibit significantly decreased voxel-mirror homotopic connectivity
between the putamen and fusiform gyrus, suggesting that the visual
and recognition functions are affected in HM patients (Cheng et al.,
2022). Huang et al. (2018a) revealed that the whole-brain gray
matter volume of the right cuneus gyrus was decreased in patients
with HM, indicating potential visual cortex functional impairment.
Our previous study demonstrated that HM patients had altered
dynamic regional homogeneity values in the left fusiform gyrus, right
inferior temporal gyrus, right Rolandic operculum, right postcentral
gyrus, and right precentral gyrus (Ji et al., 2022). Thus far, research
has mainly focused on changes in static brain activity in HM
patients; and it is believed that the functional interaction of brain

regions remains unchanged in time during the whole MRI scan,
which is obviously not objective. Recent research has revealed time-
dependent characteristics of brain activity; even when fully at rest,
the brain experiences brief spontaneous oscillations that are strongly
associated with its activities. In some respects, a larger value may
indicate a higher degree of adaptability (Vincent et al., 2007; Allen
et al., 2014). Therefore, dynamic functional connectivity (dFC) could
serve as a new indicator of complex brain functional structure
through the acquisition of time-dependent connections over short
durations of time (Du et al., 2018). Additionally, Preti et al. (2017)
found that resting-state functional connectivity (FC) dynamically
changed throughout the scan cycle. The above findings suggest
that analyses of changes in brain activity in HM patients are not
sufficiently comprehensive when conducted solely on the basis of
static functional connectivity (sFC) or dFC. To our knowledge,
previous studies have not combined static and dynamic analysis
methods to characterize altered brain function in HM patients. We
suspect that such analyses can be used to improve the broader
understanding of altered neural mechanisms in HM patients.

The primary visual area (V1; Brodmann 17), located around
the calcarine cortex of the occipital lobe (Ding et al., 2013), is the
main source of feed forward visual stimuli in higher-level visual
cortices. The lateral geniculate nucleus of the thalamus receives visual
stimuli from the retina and sends it to the V1 (Mock et al., 2018).
Recent studies have revealed two pathways of visual transmission
(ventral and dorsal), both of which originate from the retina and
project to the V1 (Yamasaki and Tobimatsu, 2018). The ventral
pathway is mainly involved in the perception of shape and color,
whereas the dorsal pathway is mainly involved in the perception
of motion (Tobimatsu and Celesia, 2006). Visual stimuli received
by the V1 are then projected to the secondary visual cortex (V2),
which is involved in the perception of color and orientation (Tootell
et al., 2003). Because the V1 is the first stage of visual information
cortex processing visual signals, V1 impairment results in vision
loss. Wu et al. (2020) found that the cortical surface thickness of
the right V1 was decreased in patients with HM, suggesting that
visual and speech functions were affected in those patients. The
aforementioned neuroimaging investigations confirmed that patients
with HM exhibit unique functional and structural changes in the V1.
However, few studies have examined whether individuals with HM
exhibit specific altered FC patterns in the V1. Here, we hypothesized
that patients with HM would show characteristic alterations in FC
patterns in the V1.
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2. Participants and methods

2.1. Participants

From August 2021 to December 2021, 82 HM patients and
59 healthy controls (HCs) were examined in the Department of
Ophthalmology at Nanchang University’s First Affiliated Hospital.
For each participant, age, sex, and educational background were all
met. Individuals with brain illnesses were excluded on the basis of a
clinical examination and physical assessment. All eligible individuals
were examined in the same clinic and provided written informed
consent to participate in the study. All procedures were conducted in
accordance with the Declaration of Helsinki, and the study protocol
was approved by Nanchang University’s First Affiliated Hospital’s
Medical Ethics Committee (Jiangxi Province, China).

The inclusion criteria for HM patients were binocular visual
acuity of −6 diopters or worse; corrected visual acuity of better
than 1.0; and the completion of MRI-related tests, optical coherence
tomography, ultrasonography, and other ophthalmic examinations.
The exclusion criteria for HM patients were binocular visual
acuity of better than −6 diopters; presence of retinal detachment,
maculopathy, choroidal neovascularization, and/or retinal pigment
epithelium disease; and/or history of ocular trauma or ophthalmic
surgery, neurological diseases, and/or cerebral infarction.

According to age, sex, and educational background, HCs were
chosen at random from Nanchang City. The inclusion criteria
for HCs were the absence of eye diseases and major illnesses
(e.g., neurological illness or cerebral infarction); the presence
of uncorrected vision or visual acuity better than 1.0; and the
completion of MRI-related tests, optical coherence tomography,
ultrasonography, and other ophthalmic examinations.

2.2. fMRI data acquisition

All MRI data were obtained using a 3-TeslaTrio magnetic
resonance imaging scanning system (Trio Tim, Siemens Medical
Systems, Erlangen, Germany). During image acquisition, we asked
the participants to close their eyes, minimize movement, and avoid
falling asleep. We also asked the participants to use earplugs to
reduce the impacts of head movement and machine noise during
scanning. The following three-dimensional high-resolution T1-
weighted imaging parameters were used in this study: repetition
time = 1,900 ms, echo time = 2.26 ms, thickness = 1, no intersection
gap, acquisition matrix = 256 × 256, field of view = 240 × 240 mm2,
and flip angle = 12◦.

2.3. fMRI data preprocessing analysis

The Statistical Parametric Mapping (SPM12) and Data
Processing and Analysis for Brain Imaging (DPABI) toolboxes
running on MATLAB 2013b were used for data preprocessing. The
following preprocessing steps were performed: (1) conversion of
DICOM format to NIFTI format; (2) removal of the first 10 volumes
of functional images to eliminate erratic data related to machine
initialization; (3) analysis of functional volumes; (4) time correction;
(5) head motion correction; (6) spatial normalization; (7) spatial

TABLE 1 Montreal Neurological Institute coordinates for region of interest.

Region of interest X Y Z

Right V1 (Brodmann 17) 8 −76 10

Left V1 (Brodmann 17) −8 −76 10

MNI, Montreal Neurological Institute.

TABLE 2 Demographic characteristics of HM patients and HCs.

Characteristic HM patients HCs

Men/women 43/39 24/35

Age (years) 26.53 ± 5.291 25.67 ± 3.102

HM, high myopia; HCs, healthy controls.

smoothing; and (8) removal of linear data, interference noise, and
low-frequency filtering.

2.4. Definition of region of interest (ROI)

The ROI for this investigation was defined as the V1 (Brodmann
17). Computation of FC was conducted with the center of the
V1 as the seed point. The Montreal Neurological Institute (MNI)
coordinates for the right V1 and left V1 were (8, −76, 10) and (−8,
−76, 10), respectively (Table 1). The radius of the ROI was set to
6 mm. The mean time course of the ROI was compared with the
time courses of all other regions to generate a Pearson correlation
coefficient. Fisher’s z-transform analysis was applied to the Pearson
correlation coefficient to evaluate data normality and obtain an
approximate normal distribution for further statistical analyses.

2.5. Seed-based FC analysis

We used seed-based FC analysis to identify the FC of the V1.
First, we established the sFC analysis parameters. In the DPABI
toolbox, we created a sphere with a radius of 6 mm, then calculated
Pearson correlation coefficients for each participant’s seed region and
all voxels in the brain in sequence, using Fisher’s z-transform analysis
to improve normality. The results were used for sFC analysis. Next,
we established dFC analysis parameters. In the DPABI toolbox, we
used the sliding window method within the “Dynamic and Stability
Analyses” module to measure dFC. We extracted the time series
signal of the ROI for each participant, then selected a time window
with a width of 30 repetition time and a length of 1 repetition time.
The Pearson correlation coefficients of the mean time series signals of
all voxels in the whole brain were calculated in a sequential manner;
this allowed acquisition of the correlation coefficient of the whole-
brain voxel sliding window for the ROI of each participant. Finally,
the results of multiple sliding window correlation coefficients for
each participant were normalized, and FC variability was represented
by calculating the standard deviation of the z-value for each voxel
correlation coefficient. The results were used for dFC analysis.

2.6. Statistical analysis

SPSS 8.0 software was used for analyses of aggregated clinical
and demographic data. The chi-squared test was used to analyze
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FIGURE 1

Spatial of distributions of sFC patterns of the left V1 in HM patients and HCs. (A) Mean sFC values of left V1 in HM group; (B) mean sFC values of left V1 in
HC group; (C) different sFC values of left V1 between two groups and (D) significant zsFC maps of left V1 differences among two groups. HCs, healthy
controls; HM, high myopia; sFC, static functional connectivity; zsFC, z-values static functional connectivity; L, left; R, right.

FIGURE 2

Spatial of distributions of sFC patterns of the right V1 in HM patients and HCs. (A) Mean sFC values of right V1 in HM group; (B) mean sFC values of right
V1 in HC group; (C) different sFC values of right V1 between two groups and (D) significant zsFC maps of right V1 differences among two groups. HCs,
healthy controls; HM, high myopia; sFC, static functional connectivity; zsFC, z-values static functional connectivity; L, left; R, right.
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TABLE 3 Significant differences in sFC values of the left V1 between HM patients and HCs.

Brain region BA Peak t-score MNI coordinates (x, y, z) Cluster size (voxels)

L-ACG 32 3.5628 −3, 15, 33 200

L-SPG 3.9879 −18, −81, 48 214

sFC, static functional connectivity; V1, primary visual area; HCs, healthy controls; HM, high myopia; BA, Brodmann area; L-ACG, left anterior cingulate gyrus; L-SPG, left superior parietal gyrus;
MNI, Montreal Neurological Institute.

TABLE 4 Significant differences in sFC values of the right V1 between HM patients and HCs.

Brain region BA Peak t-score MNI coordinates (x, y, z) Cluster size (voxels)

L-ACG 3.8977 −9, 21, 21 158

sFC, static functional connectivity; V1, primary visual area; HCs, healthy controls; HM, high myopia; BA, Brodmann area; L-ACG, left anterior cingulate gyrus; MNI, Montreal Neurological Institute.

FIGURE 3

Spatial of distributions of dFC patterns of the left V1 in HM patients and HCs. (A) Mean dFC values of left V1 in HM group; (B) mean dFC values of left V1 in
HC group; (C) different dFC values of left V1 between two groups and (D) significant zdFC maps of left V1 differences among two groups. HCs, healthy
controls; HM, high myopia; sFC, static functional connectivity; zdFC, z-values dynamic functional connectivity; L, left; R, right.

proportions, whereas independent two-sample t-tests were used
to assess continuous variables (P-values < 0.05 were considered
indicative of statistical significance). Using SPM12 software, one-
sample t-tests were conducted to assess intragroup z-value FC
patterns, and two-sample t-tests were conducted to investigate
differences in z-value FC patterns between two groups [voxel-
level P < 0.01, Gaussian random field (GRF) correction, cluster-
level P < 0.05]. Additionally, Pearson correlation coefficients
were used to examine associations between mean FC signal
values in various brain locations and clinical characteristics in

patients with HM (P-values < 0.05 were considered indicative of
statistical significance).

3. Results

3.1. Demographics

This study included 82 HM patients (43 men and 39 women;
mean age, 26.53 ± 5.291 years) and 59 HCs (24 men and 35 women;
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FIGURE 4

Spatial of distributions of dFC patterns of the right V1 in HM patients and HCs. (A) Mean dFC values of right V1 in HM group; (B) mean dFC values of right
V1 in HC group; (C) different dFC values of right V1 between two groups and (D) significant zdFC maps of right V1 differences among two groups. HCs,
healthy controls; HM, high myopia; sFC, static functional connectivity; zdFC, z-values dynamic functional connectivity; L, left; R, right.

mean age, 25.67 ± 3.102 years). Demographic characteristics are
shown in Table 2.

3.2. Group differences in sFC

Figures 1, 2 show the spatial distributions of sFC values of the
bilateral V1 in HM patients and HCs. In the left anterior cingulate
gyrus (L-ACG)/left superior parietal gyrus (L-SPG) and left V1,
sFC values were significantly greater in HM patients than in HCs
(Figure 1 and Table 3) (voxel-level P < 0.01, GRF correction, cluster-
level P < 0.05). In the L-ACG and right V1, sFC values were
also significantly greater in HM patients than in HCs (Figure 2
and Table 4) (voxel-level P < 0.01, GRF correction, cluster-level
P < 0.05).

3.3. Group differences in dFC

Figures 3, 4 show the spatial distributions of dFC values of the
bilateral V1 in HM patients and HCs. In the left calcarine cortex
(L-CAL) and left V1, dFC values were significantly lower in HM
patients than in HCs (Figure 3 and Table 5) (voxel-level P < 0.01,

GRF correction, cluster-level P < 0.05). In the right lingual gyrus (R-
LING) and right V1, dFC values were also significantly lower in HM
patients than in HCs (Figure 4 and Table 6) (voxel-level P < 0.01,
GRF correction, cluster-level P < 0.05).

4. Discussion

A reliable and efficient approach to assess the correlation
coefficients of blood oxygen level-dependent signal time series
between different brain areas and V1 is the seed-based FC
technique used in the present study. This method has been used
multiple times for analyses of individuals with ophthalmic or
other systemic diseases (Table 7). To our knowledge, the present
study is the first to investigate the sFC and dFC between the
V1 and other brain regions in patients with HM; the findings
may facilitate greater understanding of V1 HCs in such patients.
Notably, we found that, in the L-ACG/L-SPG and left V1, sFC
values were significantly greater in HM patients than in HCs;
in the L-ACG and right V1, sFC values were also significantly
greater in HM patients than in HCs. However, in the L-CAL
and left V1, dFC values were significantly lower in HM patients
than in HCs; in the R-LING and right V1, dFC values were also
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TABLE 5 Significant differences in dFC values of the left V1 between HM patients and HCs.

Brain region BA Peak t-score MNI coordinates (x, y, z) Cluster size (voxels)

L-CAL −3.3452 −3, −81, 3 15

dFC, dynamic functional connectivity; V1, primary visual area; HCs, healthy controls; HM, high myopia; BA, Brodmann area; L-CAL, left calcarine cortex; MNI, Montreal Neurological Institute.

TABLE 6 Significant differences in dFC values of the right V1 between HM patients and HCs.

Brain region BA Peak t-score MNI coordinates (x, y, z) Cluster size (voxels)

R-LING 23 −11.017 6, −75, 9 1,489

dFC, dynamic functional connectivity; V1, primary visual area; HCs, healthy controls; HM, high myopia; BA, Brodmann area; R-LING, right lingual gyrus; MNI, Montreal Neurological Institute.

significantly lower in HM patients than in HCs. These results
may provide some insights regarding the neural mechanisms
involved in HM; they may also be useful in identifying potential
neurological causes of decreased visual performance in HM
patients.

4.1. sFC alterations and their significance

Within the bilateral V1 and L-ACG in HM patients, significantly
increased sFC was observed. The anterior cingulate gyrus, which
plays a key role in regulating cognitive and emotional processing
(Takayanagi et al., 2013), is an important anatomical component
of the salience network (Christopher et al., 2015). The salience
network acts as a mediator within the brain, continuously monitoring
the external environment and assessing how other brain networks
respond to new information and stimuli. Previous studies have
shown that the salience network is primarily responsible for
regulating the switch between the default mode network and
the central execution network, avoiding simultaneous excitation
of both networks (Goulden et al., 2014). Philippi et al. (2018)
found that major depressive disorder patients with greater negative
self-focus thoughts showed significantly increased sFC within the
anterior cingulate gyrus. Hafkemeijer et al. (2013) demonstrated
that Subjective memory complaints (SMC) patients had significantly
increased sFC values in the anterior cingulate gyrus, implying that the
increase in sFC is related to compensation for the loss of cognitive
function and maintenance of task performance. Sacca et al. (2022)
reported that the treatment of migraine with 20-Hz transcutaneous
auricular vagus nerve stimulation led to a significant increase in
sFC within the anterior cingulate gyrus. In a separate study, Sun
et al. (2020) revealed that divergent thinking training intervention
resulted in a significant increase in sFC within the anterior cingulate
gyrus. Similarly, we found a higher sFC between the bilateral V1 and
L-ACG in the present study. Our findings suggest that patients with
HM have difficulty switching between brain networks, which leads
to impairments in cognitive and emotional processing functions.
Furthermore, our findings suggest that neural hyperactivity between
the bilateral V1 and L-ACG is a compensatory response to the loss of
cognitive and emotional processing functions in HM patients.

Additionally, we discovered that patients with HM had
considerably greater sFC values between the left V1 and L-SPG.
The superior parietal gyrus is a component of the apical region of
the parietal lobe, surrounded by the postcentral gyrus, precuneus,
and inferior parietal lobules of the parietal lobe. The superior
parietal gyrus is within the anatomical area of the dorsal attention
network (He et al., 2007), which participates in top-down control

of visual attention (Rajan et al., 2021). As a brain network that
focuses human attention, the dorsal attention network directs
attention to the most salient and active brain networks. Previous
studies have shown that the dorsal attention network maintains
top-down attention control, allowing focus toward and away from
external noise or environmental changes; conversely, the ventral
attention network interrupts ongoing cognitive activities (Corbetta
et al., 2008) and causes changes via bottom-up attention control
(Corbetta and Shulman, 2002). Zou et al. (2021) found that
the sFC of the superior parietal gyrus was increased in patients
with chronic migraine, suggesting that the saliency of painful
input increases in response to aural stimuli. Li et al. (2014)
revealed that patients with primary insomnia exhibit significantly
increased sFC in the superior parietal gyrus, thereby offering
additional insights into the neurobiological mechanism of working
memory deficiency caused by primary insomnia. Ye et al. (2019)
reported that the white matter hyperintensities (WMH) with
cognitive impairment (CI) group led to a significant increase
in sFC within the superior parietal gyrus, which may reflect
a compensatory functional enhancement. Furthermore, Huang
et al. (2019) demonstrated that comatose patients had significantly
increased sFC values in the superior parietal gyrus, implying that
an increased sFC is associated with compensatory remodeling.
Consistent with the previous findings, we demonstrated that patients
with HM had significantly increased sFC values between the left
V1 and L-SPG. Thus, patients with HM may have an inability
to focus their attention to the network that is currently most
active, leading to impaired top-down control of visual attention.
Additionally, hyperactive neuronal connections between the left
V1 and L-SPG may be a compensatory mechanism that protects
against the loss of top-down control of visual attention in HM
patients.

TABLE 7 Use of seed-based FC technique for analysis of individuals with
ophthalmic or other systemic diseases.

References Disease Year

Wu et al. (2021) Bronchial asthma 2021

Tang et al. (2021) Alzheimer’s disease and mild
cognitive impairment

2021

Qi et al. (2021) Diabetic retinopathy 2021

Yu et al. (2020) Proliferative diabetic retinopathy 2020

Ke et al. (2020) Migraine without aura 2020

Nie et al. (2015) Primary insomnia 2015

FC, functional connectivity.
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4.2. dFC alterations and their significance

The calcarine cortex and lingual gyrus are anatomical
regions in the V1 that receive visual signals from the visual
pathway, then transmit those signals to the higher visual cortex
(Beckmann et al., 2005). These rich dynamic properties exhibited
by early visual neurons suggest that V1 does not encode the
environment in a static manner; it exhibits rich spatial and
temporal dynamic features (Lazar et al., 2021). Huang et al.
(2018b) found that amplitude of low-frequency fluctuation values
in the bilateral lingual gyrus were considerably lower in retinitis
pigmentosa patients than in HCs. Tong et al. (2021) demonstrated
that patients with iridocyclitis displayed significantly lower FC
between the V1 and both the bilateral calcarine. Dan et al. (2019)
revealed that regional homogeneity values in the lingual gyrus
were significantly lower in retinitis pigmentosa patients than in
HCs. Furthermore, Wen et al. (2018) also found that late blindness
patients showed a decreased FC between the V1 and the bilateral
calcarine cortex/lingual gyrus. Additionally, Huang et al. (2020)
demonstrated that the dynamic amplitude of low-frequency
fluctuation/dFC of the bilateral calcarine cortex/lingual gyrus was
lower in patients with late blindness than in HCs. Consistent with
the previous findings, the present study showed that HM patients
exhibited significantly decreased dFC values between the L-CAL
and left V1 and the R-LING and right V1. The dFC is an indicator
of the degree of spontaneous neural activity, which represents
temporal variation in energy consumption and reflects neural
network adaptability. Compared with sFC, dFC can better reflect
the dynamic involvement of different brain regions in the actual
brain and is considered a more accurate representation of functional
brain networks (Zhao et al., 2020). Therefore, when the dFC value
between the L-CAL and left V1 and the R-LING and right V1 in
HM patients decreases significantly, it may be difficult to accept
visual stimulation. This leads to impairment of visual information
processing functions.

This study had some limitations. First, the number of HM
patients was limited. Second, the data were frequently affected by
unavoidable factors in the fMRI environment (e.g., heartbeat, muscle
beat, and respiratory motion). Third, there remains debate regarding
the selection of sliding window length because no standardized
criteria have been established. An inadequate window length results
in insufficient time points in each window to generate a stable dFC,
but an excessive window length may reduce temporal variation in
FC and thus fail to detect valid connections. Finally, the duration of
HM varied among patients, which may have impacted the reliability
of the results. In future studies, we plan to increase the sample
size, improve the testing environment, and expand the size of
the sliding window.

5. Conclusion

The results of this study indicated that, compared with HCs,
patients with HM have altered sFC and dFC values in various brain
regions, implying that HM causes extensive changes in static and
dynamic spontaneous brain activity; these changes presumably lead
to the corresponding clinical manifestations. Our findings improve
the broader understanding of altered neural mechanisms in HM

patients and provide new insights into potential neural causes of
vision loss in those patients.
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Background: Automated diagnosis of various retinal diseases based on fundus

images can serve as an important clinical decision aid for curing vision loss.

However, developing such an automated diagnostic solution is challenged by the

characteristics of lesion area in 2D fundus images, such as morphology irregularity,

imaging angle, and insufficient data.

Methods: To overcome those challenges, we propose a novel deep learning

model named MyopiaDETR to detect the lesion area of normal myopia (NM),

high myopia (HM) and pathological myopia (PM) using 2D fundus images provided

by the iChallenge-PM dataset. To solve the challenge of morphology irregularity,

we present a novel attentional FPN architecture and generate multi-scale feature

maps to a traditional Detection Transformer (DETR) for detecting irregular lesion

more accurate. Then, we choose the DETR structure to view the lesion from the

perspective of set prediction and capture better global information. Several data

augmentation methods are used on the iChallenge-PM dataset to solve the challenge

of insufficient data.

Results: The experimental results demonstrate that our model achieves excellent

localization and classification performance on the iChallenge-PM dataset, reaching

AP50 of 86.32%.

Conclusion: Our model is effective to detect lesion areas in 2D fundus images. The

model not only achieves a significant improvement in capturing small objects, but

also a significant improvement in convergence speed during training.

KEYWORDS

myopia detection, fundus images, attentional FPN, detection transformer (DETR),
dichotomous graph matching

Introduction

Retinal diseases are one of the main causes of vision loss, and severe retinal diseases can
also cause irreversible damage to vision. Medical research has found that the deformation of
the front of the eyeball varies with the degree of myopia (Wong et al., 2014), these changes
may be related to the complications of ocular diseases, the complications of pathological
myopia (PM) are considered to be the main cause of visual impairment and blindness. Due to
changes in the environment and lifestyle, the incidence of high myopia-related diseases has been
increasing year by year (Hsu et al., 2004; Iwase et al., 2006; Yamada et al., 2010; You et al., 2011;
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Furtado et al., 2012). As a common eye disease, it affects 20 to 40% of
adults (Iwase et al., 2006) and has become a global burden of public
health, 35% of myopic patients are high myopia (HM) (Yamada
et al., 2010), which will develop into pathological myopia. The PM
is characterized by excessive and progressive elongation of the globe,
which is now considered to be the most visually impaired and blind
cause. Therefore, timely diagnosis and regular review for PM are very
important.

Nowadays, people pay more attention to their health, and the
demand for medical services is also increasing. Although the number
of ophthalmologists in the developed countries is growing (Hsu et al.,
2004; You et al., 2011; Furtado et al., 2012; Sakaguchi et al., 2019),
there is still a big gap in the demand for ophthalmologists. Due to
the long training time for cultivating doctors, the underdeveloped
regions will still face the problem of shortage of medical resources in
the next few decades. With the development of imaging technology,
myopia-related complications have been identified (Lu et al., 2018;
Peng et al., 2019; Nazir et al., 2020; Cui et al., 2021; Zhang et al.,
2021; Muthukannan and Glaret Subin, 2022). At present, fundus
imaging is an important basis for the diagnosis of various ophthalmic
diseases. Most retinal diseases can be avoided with early and timely
treatment. Therefore, early detection and early treatment are of
great significance for the cure of retinal diseases. However, analysing
medical images relies on the extensive medical experience of doctors,
which is laborious and time-consuming. Thus, designing a reliable
and accurate automatic detection method for fundus images is crucial
to the prevention and treatment of diseases.

Many studies utilize deep learning techniques to diagnose eye
diseases. For instance, Nazir et al. (2020) proposed a FRCNN
algorithm with fuzzy k-means for automatic detecting three types of
retinal diseases at early stage. Vyas et al. used common convolutional
neural network for dry eye disease (DED) detection based on
Tear Film Breakup Time (TBUT) videos, the approach shows
high performance in classifying TBUT frames and detecting DED.
Muthukannan and Glaret Subin (2022) designed a CNN that
optimized by flower pollination for feature extraction, increased the
speed and the accuracy of the network for detecting four types of
eye diseases. However, most efforts in the existed deep learning
focused on applying existing techniques to the myopia detection task
rather than proposing new ones specifically suited to the domain.
The standard well-known network architectures were designed for
the data collected in natural scenes (e.g., natural images) and do
not take the peculiarities of the myopia images’ characteristics into
account. Therefore, research is necessary to understand how these
architectures can be optimized for myopia data.

Detection Transformer (DETR) is a new paradigm for end-to-
end object detection. DETR always failed in detecting small object
and it has a slow convergence speed. Since DETR only utilizes the
feature maps (32 × down sampling) from the last layer of backbone,
which leads to a large semantic loss of small objects, thus DETR
performs poorly on small object detection. Additionally, in the
decoder structure of DETR, self-attention is computed for all input
pixels, so the model is presented with computational complexity
in square level, which further results in slow convergence speed.
To solve the problems of the two aspects, Deformable DETR (Zhu
et al., 2020) improves the performance of small object detection and
accelerates the convergence speed by limiting the range of computed
attention using multi-scale feature maps. Conditional DETR (Meng
et al., 2021) uses the conditional spatial query explicitly to find the
extremity region of the object to reduce the searching range of object
and accelerate the convergence.

Figure 1 shows some examples selected from the iChallenge-
PM dataset. The figure shows the typical image characteristics of
the fundus images, the green background indicates normal myopia
(NM), the purple background represents high myopia (HM), and the
yellow background delegates pathological myopia (PM). The black
mask on the right side of myopia image is atrophy area, which
various a lot in shape or to some extend very similar. The white oval
area in yellow background is eye’s optical disk region and the lesion
area appears randomly. These characteristics challenge the model
performance of the deep learning methods. The specific challenges
are illustrated as follows:

(1) Morphology Irregularity: As for the NM and HM shown
in Figure 1, the lesion area which in green and purple background
is irregular and similar, its area only occupies a small part of the
location, which makes the model troubling to learn its morphological
features and the most of the rest area is background.

(2) Imaging Angle: From all images in Figure 1, it is obvious
that the optical disk region hava a tendency to the left of the image,
this man-made imaging method may mislead our model, so the
differences brought by the imaging angle require the learning ability
of the model for location correlation demanding.

(3) Insufficient Data: The iChallenge-PM dataset only contains
1,200 images, around 600 images for PM and 600 images for Non-
PM (NM+HM). Fewer images and the strong fitting ability of neural
network make it easy to overfit, which will reduce the generalization
ability of the model.

In this paper, a novel deep learning model named MyopiaDETR
is proposed for detecting the lesion of NM, HM, and PM using 2D
fundus images. Our base model adopts scalable Swin Transformer as
backbone, which is flexible in depth. When it comes to morphology
irregularity, it is worth noting that the lesion tissue is not only
in irregular shape, but also distributed in a small area of the
whole fundus image, most of the pixels are redundant, and an
impure background will adversely affect the prediction results. To
address those problems, we propose a novel Attentional feature
pyramid networks (FPN) architecture that can purify the feature
representation during the aggregation of feature maps, specifically,
object queries are added to FPN (Lin et al., 2017) levels with positional
encoding to execute multi-head self-attention, which are used to
give more activation weight to the object regions, produce a larger
gap between object and background. Our attentional FPN solves
the problem that traditional DETR cannot utilize multi-scale feature
maps, resulting in poor performance in detecting small objects in
the fundus image. Since most of the regions in the fundus image
are background or useless regions, we want our model to focus
on the ophthalmic disease regions of interest so as to reduce the
computational complexity.

As for the imaging angle, unlike the traditional object detection
method, which first generates many candidate boxes on the image,
and then adjusts the offset of the boxes according to the calculated
loss between the predicted results and the real labels. This method
has strong traces of artificial design, which is different from the
way humans observe objects, and must require post-processing
methods like Non-maximum suppression (NMS) (Neubeck and Van
Gool, 2006), whose drawbacks are inevitable in the face of large
overlapping areas between real labels. The DETR (Carion et al.,
2020) structure, on the other hand, views the object detection from
the perspective of set prediction, calculates the loss through the
dichotomous graph matching method, and the Transformer structure
has global information, which is more in line with the way humans
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FIGURE 1

Fundus images selected from iChallenge-PM dataset. The dataset contains three types of 2D fundus images (NM, HM, PM).

observe objects. Therefore, we choose the DETR structure for further
optimization in the face of sensitive location information.

Finally for the insufficient data mentioned above, Ghiasi et al.
(2021) used data augmentation to address the insufficiency of
the training data for classifying PM. Almahairi et al. (2018) used
CycleGAN with cycle consistency to generate more realistic and
reliable images for training, a res-guided U-Net is constructed for
segmentation, they achieved superior result on PM detection. We
adopt variety of strong data augmentation to enrich iChallenge-PM
dataset while training our model. Unlike the common two-branch
head design, inspired by DETR, we use a feed forward network that
takes the output from Transformer decoder, which will produce the
box coordinates and a matrix for classification if the query has an
object, no post-processing is needed.

The main contributions of this paper are summarized as follows:
(1) Inspired by DETR, we present a novel post-processing free

object detector that uses fundus image data for pathological myopia
diagnosis. For specific, we design an attentional FPN that uses
object queries on feature maps of each level of FPN, the self-
attention mechanism increases the feature intensity gap between
foreground and background. Due to the architecture of DETR, it
can well solve the challenge of morphology irregularity. To the best
of our knowledge, this is the first work using object detection for
pathological myopia diagnosis based on iChallenge-PM dataset.

(2) Several data augmentation methods are used on the
iChallenge-PM dataset to accelerate model convergence and enhance
model robustness.

(3) Extensive experiments are conducted on iChallenge-
PM dataset for discriminating NM, HM, and PM. The results
demonstrate the superiority of our method than other state-of-the-art
(SOTA) object detectors.

The rest of this paper is organized as follows. Section “Related
works” introduces related works of the deep learning based retinal
disease analysis methods. Section “Materials and methods” illustrates
the details of our proposed MyopiaDETR model, which comprizes
of Swin Transformer (Liu et al., 2021) backbone, attentional FPN,
Transformer encoder, and decoder, shared feed forward network for
specific retinal disease analysis tasks. Section “Experimental results”
describes the experimental results of ablation studies and comparison
studies. Finally, section “Discussion” has a discussion about our

method and section “Conclusion” presents the conclusions of this
paper and expounds ideas of future work.

Related works

Deep learning based object detection

Object detection is a popular task in computer vision and is
widely applied in many real-world scenes such as autonomous
driving, video surveillance, remote sensing, and medical diagnosis.
The main task of object detection is to locate and classify the
target of interest from an image. In the context of the rapid
development of computing power, deep learning has been researched
and applied as never before. In the trajectory of vision model,
AlexNet (Krizhevsky et al., 2017) opened a new era of computer
vision by using convolutional neural network years ago, making
CNN architecture the mainstream approach of deep learning for
many years. Object detectors can be divided into anchor-based
and anchor-free model based on whether or not anchor is used
during the detection pipeline. The anchor based models can be
further divided into two-stage and one-stage detector. One-stage
model predicts bounding boxes on grid while two-stage model uses
a proposal network to generate candidate boxes, and then uses a
second network to refine the result. The advantage of one-stage
detectors is that it can complete localization and classification by
going through the network once, hence the one-stage detectors can
offer significant advantages in terms of speed, such as SSD (Liu
et al., 2016) and YOLO (Redmon et al., 2016; Redmon and Farhadi,
2017, 2018; Bochkovskiy et al., 2020) series. Two-stage models
sacrifice speed for obtaining high accuracy, most of the mainstream
detectors with high performance adopt two-stage methods, such as
Faster R-CNN (Ren et al., 2015) and Cascade R-CNN (Cai and
Vasconcelos, 2018). With the trend of Transformer architecture
gradually unifying natural language processing (NLP) and computer
vision (CV), Vision Transformer (Dosovitskiy et al., 2020) (ViT) are
gradually dominating visual tasks. The excellent relational modeling
capability of self-attention mechanism is bringing feature extraction
to a new era. Pyramid Vision Transformer brought pyramid structure
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FIGURE 2

Overall architecture of our MyopiaDETR.

FIGURE 3

The architecture of transformer encoder and decoder.

in to Transformer, making it seamlessly accessible to a variety of
downstream tasks (e.g., object detection, semantic segmentation).
Swin Transformer (Swin-T) proposed a vision transformer with
sliding window operation and hierarchical design, achieved state-of-
the-art in many tasks. The hierarchical design makes feature fusion
easier. Swin Transformer is an improved version based on ViT, which

has a similar structure of CNN. The hierarchical structure of Swin
Transformer is more suitable to be applied to many downstream
tasks. While ViT is a straight structure, it does not change the
dimension of input feature map. In addition, the resolution of fundus
image is generally large, and many rich semantic features will be lost
if the image shape is resized to a range that is acceptable to ViT.
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FIGURE 4

The visualized results after data augmentations. Subplot (A) is the sample of fundus images in iChallenge-PM dataset, the white grid line added to the
original graph is to better show the effect of different augmentation. Subplot (B–E) represents elastic transform, grid distortion, random rotate, and grid
mask, respectively.

TABLE 1 The effects of attentional FPN.

Model AP50 APS APM APL Epochs FPS MS/SS

DETR 120e 62.53 29.52 65.93 96.18 120 19.31 SS

DETR 200e 71.21 39.12 74.89 97.62 200 19.31 SS

DETR 300e 71.87 39.69 75.47 97.81 300 19.31 SS

DETR + FPN OOM – – – – – SS

UP-DETR 76.08 44.13 81.77 98.03 300 16.21 SS

Deformable DETR 80.53 58.92 82.55 98.76 120 17.86 MS

Conditional DETR 84.29 65.35 83.73 99.10 120 16.60 MS

Ours 85.18 68.71 83.66 99.34 120 8.73 MS

Bold values represent the best metric values achieved by our method and other comparison methods.

Swin Transformer can receive larger image resolution, which means
the Swin Transformer can do better in processing images with large
resolution than ViT model. Thus, we choose Swin Transformer as our
feature extraction backbone network.

Deep learning based eye diseases
detection

The object in medical images usually have small sizes and
certain morphological features. Many studies utilize deep learning
techniques to diagnose eye diseases. Early work such as (Liu et al.,
2010) developed a system called PAMELA (Pathological Myopia
Detection by Peripapillary Atrophy) that automatically identifies
pathological myopia in retinal fundus images. (Wen et al., 2020)
placed the key research on the distinction between pathological
myopia and high myopia, a two-branch network is proposed, where
the first branch distinguishes between normal and abnormal, while
the other branch classifies pathological myopia and high myopia.
Specifically, the previous studies on iChallenge-PM dataset have been
related to image classification and instance segmentation. Cui et al.
(2021) used data augmentation to address the insufficiency of the
training data for classifying PM. Zhang et al. (2021) used CycleGAN
with cycle consistency to generate more realistic and reliable images
for training. A res-guided U-Net is also constructed for segmentation,
they achieved superior result on PM detection. Our work first use
an object detection method for classifying and locating the atrophy
based on retinal fundus images. From the previous studies, we can
know that the majority of automatic diagnose method uses CNN

architecture for feature extraction, and to the best of our knowledge,
our work is the first that uses Transformer architecture as backbone
and also the first post-processing-free end-to-end detector in myopia
diagnosis.

Attention mechanism

With the trend of Transformer architecture gradually unifying
NLP and CV (Gumbs et al., 2021), Vision Transformer is gradually
dominating the visual tasks. In the evolution of vision attention
mechanism, common method can be embedded into CNN for
building more relevant feature, such as soft-attention. Soft-attention
is a continuous distribution problem, focusing more on spatial or
channel, it can be divided into spatial attention and channel attention.
Non-local first utilized the idea of Transformer in computer vision
model, it takes the approach of doing attention on the feature maps
of the intermediate layers, which greatly avoids the computational
cost. Self-attention based model, such as ViT and Swin Transformer,
has excellent capabilities in extracting relationships between image
patches, building the connections of those that are mostly relevant
to each other. The pioneer work DETR is worth noting, it applies
Transformer architecture as an end-to-end object detector, the
post-processing-free design is more compatible with human visual
patterns and also avoid the unstable performance of NMS. In the
retinal fundus image scenario, the cluttered tissue makes it more
difficult to extract the feature of atrophy, so we believe that the
self-attention mechanism can help the model to better capture the
difference between foreground and background.
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TABLE 2 Performance improvement on various augmentations.

Original
image

Elastic
transform

Grid
distortion

Random
rotate

Grid
mask

AP50

√
80.45

√ √
81.81

√ √ √
82.33

√ √ √ √
85.11

√ √ √ √ √
85.18

Bold values represent the best metric values achieved by our method and other comparison
methods.

Materials and methods

Diagnosing myopia by detecting lesions based on fundus images
requires sufficient data for the deep learning model to have a steady
performance (Peng et al., 2019; Virmani et al., 2019). The iChallenge-
PM dataset released by Baidu encourage the data-driven methods to
automatically detect fundus lesion, it contains three types of fundus
diseases images and lesion masks, as illustrate in Figure 1, previous
studies try to design general deep learning based methods to address
the fundus disease identification and localization problems, which
contain image classification and segmentation that are insufficient
and slow, respectively. In order to implement object detection on
this dataset, we transform the mask of lesions into bounding box by
obtaining the length and width of the mask. It can be clearly found
from the sample images that the region occupied by the disease lesion
is only a small part of the fundus image, and the rest of the tissue
without lesions can be considered as redundant information, which
will be detrimental to the feature extraction and representation of
the model. That’s why we choose DETR as our baseline model, detail
improvements are as follows.

Overall architecture

Inspired by DETR, the overall architecture is illustrated as
Figure 2, the main components are: backbone network, attentional
FPN, Transformer Encoder-Decoder, and a detection head, in which
the backbone is responsible for feature extraction, the feature maps of
three stages with different resolutions are fed into attentional FPN for
feature aggregation. The outputs of attentional FPN are further sent
to the encoder-decoder architecture, which consists of multi-head
self-attention mechanism, layer normalization and a feed forward
neural network, the details are similar to the DETR. Positional
encoding is also adopted for retaining positional information of the
feature blocks, while the object queries are used for information
aggregation, give more attention to the positions where objects are
likely to appear. The detection head is in charge of classifying the
output of the decoder and finally getting the detection result. In
particular, the yellow circles in the Figure 2 represent self-attention
module, which calculates the similarity while fusing feature maps.
The red circles represent multiple layers of features for fusion. Small
squares of different colors in object queries represent different query
objects. As the feature map flows from encoder to decoder, the feature
representation becomes clearer and the purple squares become
darker. The final feed forward network (FFN) is shared to calculate
the object box position and category attributes of the object query.

During the training phase, the image batch is fed into the backbone
to obtain feature maps of four stages and reduce the computational
overhead, three relatively small feature maps are selected and fed into
the detection neck for integration. In the upsampling process of the
neck network, self-attention operation is added to obtain features
with better feature representation ability. Then the aggregation of the
neck feature is sent to the following encoder part. In the detection
head, FFN takes the output of decoder as input and utilizes bipartite
matching loss (i.e., Hungarian Maximum Matching algorithms) to
calculate the corresponding loss values. During inference phase, the
learned object query generates box candidates through Transformer
decoder to select boxes with larger confidence as the final prediction
result.

Model backbone

In the overall model architecture, the backbone is in charge
of feature extraction of the image. The mainstream architecture
of backbone are mainly divided into CNN [AlexNet, ResNet (He
et al., 2016), Res2Net (Gao et al., 2019), ResNeXt (Xie et al.,
2017), ConvNeXt (Liu et al., 2022)] and Transformer (e.g., ViT,
Swin Transformer). The translational invariance and localization of
CNNs provide inductive bias, makes CNN models converge faster,
however, the fixed receptive field limits the global view of convolution
operation. The positional encoding enables Transformer based
network to obtain better capabilities in learning global dependencies.
Swin Transformer first splits the image into small patches and then
feed each patch as a token into Transformer encoder, the core idea is
to calculate the similarity between patches for training an attention-
intensive network without convolution operations. Compare with
the Swin Transformer, the CNNs possess inductive bias, and their
convergence speed is relatively fast. The advantages of inductive
bias are reflected at two aspects: (1) the convolutional kernel size
is generally fixed which result in high local correlation existed in
feature maps; (2) the feature maps generated by the CNNs have
characteristics of translational invariance, which indicates the output
of the convolutional layer does not change no matter where the object
appears in the image.

Since our neck network also uses the architecture of the self-
attention mechanism, Swin Transformer is selected as our backbone
so as to keep the consistency of the features representation. Moreover,
the Transformer architecture has good parallel computing capability
and global view characteristics. When we input a fundus image with
the shape of H ×W × C, it will first pass through a patch partition
module with the purpose of descending and chunking the image.
The output gets a sequence of N × (P2 × C) spreading 2D image
blocks, where N is the number of image blocks, P2 is the area of each
patch, H and W are the height and width of the image, respectively,
and C is the number of image channels. Here we set P to 4, and
N is computed by H/4 × W/4. In summary, an input image with
the shape H × W × C passes through the patch partition module
and outputs a tensor of H/4 ×W/4 × 48, which can be understood
as a total of H/4∗W/4 image patches, each of which is composed
of a 48-dimensional token. The W-MSA and SW-MSA modules
help the Swin Transformer to improve its ability of extracting the
global features in the fundus image. The W-MSA module restricts
the receptive field of the model by only applying the self-attentive
mechanism within each patch. The SW-MSA model adds a cyclic shift
operation to the W-MSA for extracting the features between patches.
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FIGURE 5

The comparison between traditional object detection algorithm Faster R-CNN and MyopiaDETR. Subplot (A) shows the test image, subplot (B) shows the
PM location labels, subplot (C) shows the output of the Faster R-CNN algorithm, and subplot (D) shows the output of our MyopiaDETR.

As illustrated by Figure 2. The Swin Transformer backbone network
has four stages corresponding to four feature maps of different sizes.
The feature map sizes are H/4 × W/4 × C, H/8 × W/8 × 2C,
H/16 × W/16 × 4C, H/32 × W/32 × 8C. The feature map of each
layer will be fed to the subsequent attentional FPN structure for
further processing.

Attentional FPN

Due to the high computational complexity of the Transformer
architecture, which is of O(n2) level, only the feature map of the
last layer (32 times down sampling) is utilized in the original DETR,
resulting in the loss of small object feature information and has the
limitation of single scale in feature representation. To address the
above issues, we added the attentional FPN architecture to utilize all
the features that output from the backbone network. The output of
the first layer of the attentional FPN, which is also the last stage output
from the backbone, is down sampled by 32 times. And then, for each
neck level, the feature size is upsampled by 2 times. As the structure
illustrated in Figure 2, the feature size of each neck level is 16 × 16,
32× 32, and 64× 64 when the input size is 512× 512. Self-attention
is aggregate to the FPN to focus on the regions of interest in each layer
of the feature map. The feature map of each layer will be sliced into
8 times × 8 times pixels blocks, and the results computed between
the blocks are used as weights for the output, the final computation
is used to activate the part of interest in the feature map. Specifically,
we add an auxiliary head after the attentional FPN to distinguish the
foreground from the background, and only the foreground region
will be input to the follow-up Transformer structure. The attentional
FPN outputs the final blocks while recording the sparse encoding
matrix of them, which is fed to the Transformer Decoder to map the
features back to the original image.

Since each feature map is partitioned into 8 times × 8 times
pixels blocks, there will be a total of 64 pixel blocks after the slice.
Let’s define the input x = (x1, x2,..., x64). The input elements will
be passed through an embedding layer W to obtain a multiset of
one-dimensional vectors, denoted as a = (a1, a2,..., a64). Meanwhile,
three learnable matrices are also set as WQ, WK , WV , represent the
query matrix, the key matrix, and the value matrix, respectively.
In particular for a single input xi, the proportion of its weights is
calculated by the following formula:

qi = WQWxi = WQai (1)

ki = WKWxi = WKai (2)

vi = WVWxi = WVai (3)

αi, 64 =
qTi ·ki√
dq, k

, α̃i, 64 = Softmax(αi, 64) (4)

bi =
64∑
i=1

α̃i, 64·vi (5)

The subscript (i, 64) of α in the above equation (4), represents that
the similarity of the i-th input patch is currently being calculated,
and there are a total of 64 patches to be calculated. The purpose of
dividing by root dq,k when calculating α is for normalization to avoid
gradient vanish and dq,k means the dimension of q and k vector. The
softmax function is to map the sum of the weight ratios to 1, which is
convenient for calculating bi.
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Transformer encoder-decoder

The structure of Transformer encoder-decoder is shown in
Figure 3, details are as follows:

Transformer encoder
The input requirement of Transformer encoder module is a

sequence, so when getting the feature map output by attentional
FPN, let the original feature map shape be C × H × W, we need
to descend the channel dimension of the feature map first, and then
flatten the H and W dimension. Finally, we get the feature map with
the shape of C × L, where L equals to H × W. Each encoder block
has a unified structure: multi-head self-attention, Add and Norm and
feed forward network. As for Add and Norm structure, Add stands
for residual connection to prevent network degradation, Norm is
the layer normalization, which normalizes the activation values of
each layer. Because of the invariance of Transformer Architecture,
we add the fixed spatial positional encoding to the attention layer to
complement the location information.

Transformer decoder
The architecture of the decoder part is the same as the traditional

Transformer, but the difference is that each decoder module of
our model decodes N inputs from encoder in parallel. Because the
decoder structure is also permutation-invariant, the N inputs should
be different so that different results can be generated. The meaning
of object queries is similar to that of anchor in traditional object
detection methods, and it is learnable. We input them to each multi-
head self-attention module, which will eventually be decoded into
object boxes location information and category information by the
FFN structure, which is described in section “Detection head”.

To sum up, the features extracted from the backbone are
passed through the multi-head self-attention module in the encoder
structure along with the spatial positional encoding. After that, the
N outputs of encoder and object queries are fed to the decoder part.
Finally, the final object boxes and category information is output by
the multiple multi-head self-attention and decoder-encoder attention
and the FNN structure.

Detection head

The role of detection head in DETR is to predicting a fixed set of
object detections for each input image, rather than using a sliding
window or anchor-based approach in traditional object detection
models. After obtaining the output of the decoder, the final result
is processed by a 3-layer perceptron and a linear projection layer,
where the perceptron is comprized of a ReLU activation function.
FNN computes the position of the box. The linear layer computes the
category to which it belongs by softmax function. Since our predicted
set is composed of N boxes, but in fact N is much larger than the
actual number of objects present in the image, we mark the object
query with no detected object as a background class. In particular,
our FFN share the same weights and are calculated equally for all
N object queries.

Loss function

The loss function calculation is performed in two steps. First,
finding the optimal pairwise loss between the ensemble prediction

TABLE 3 Comparisons between different backbones.

Backbone AP50 APS APM APL

Swin-S 85.18 68.71 83.66 99.34

Swin-B 86.23 69.76 84.65 99.35

Swin-L 85.62 69.08 83.72 99.34

ResNet-50 82.25 65.91 80.34 98.72

ResNet-101 84.67 67.21 82.76 99.12

ResNet-152 86.32 69.65 84.78 99.21

and the ground-truth label in the Hungarian algorithm alignment,
the index of the set of solutions is set to σ̂, as illustrated in formula
(6), where yiis the set of prediction, ŷiis the ground-truth, both of
them need to be stretched to a fixed length by adding None value,
where length = max(len(yi), len(ŷi)). The LMATCH is defined as the
gap between the predicted set and the ground-truth labels in the case
of the first group pairing.

σ̂ = argmin
∑

LMATCH(yi, ŷi). (6)

Second, the index value σ̂ that calculated in the first steps is used to
calculate the classification loss and the predicted bounding box loss,
ci is the class label, and the Hungarian loss is calculated as:

LHungarian(y, ŷ) =
N∑
i=1

[−log p̂̂σ(i)
(ci)+ Lbox(bi, b̂̂σ(i))] (7)

where bounding box loss uses weighted IoU and L1 loss, λiou and λL1
are the weight of IoU loss and L1 loss, respectively. The box loss is
calculated as:

Lbox(bi, b̂̂σ(i)) = λiouLiou(bi, b̂̂σ(i))+ λL1||bi − b̂̂σ(i)||1 (8)

Experimental results

Dataset description

iChallenge-PM
Myopia has become a global public health burden. As the

refractive error of myopia increases, high myopia will progress
to pathological myopia, causing irreversible visual damage to the
patient. Therefore, early diagnosis and regular follow-up are very
important. With this challenge, the iChallenge competition jointly
organized by Baidu Brain and Zhongshan Eye Center of Sun Yat-
sen University provides iChallenge-PM, a dataset on pathological
myopia, which includes 1,200 annotated retinal fundus images from
non-pathological myopic subjects and pathological myopic patients
(about 50%). There are 400 training data, validation data, and
test data sets each.

Data augmentation
We adopt several data augmentation methods to address the

challenges of imaging angle and insufficient data. Subplot (b) in
Figure 4 shows the elastic transform, which was proposed by Simard
et al. (2003) and made great progress on the MNIST handwritten
dataset, and the method is gradually applied to medical image
processing and has been widely used [e.g., Mottl et al. (2002), Gulshad
et al. (2021)], for the parameter settings we set the alpha to 50 and the
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FIGURE 6

Retinal fundus image and the corresponding feature heatmap generated by different backbones, the heatmap of the feature learned by ResNet50,
ResNet101, and Swin-S from left to right.

sigma to 5. Subplot (c) is grid distortion, its effect is similar to that
of the elastic transform, which is a non-rigid body transformation.
Submap (d) is random rotation data augmentation, which aims to
increase the diversity of imaging angles to solve the challenge of
imaging angle, and the rotation angle is set from−180 to 180 degrees.
Subplot (e) is the grid mask data augmentation proposed by Chen
et al. (2020), which randomly masks a number of block locations on
the image and fills them with 0 pixel values, this data augmentation
can mask part of the positive samples with certain probability, thus
preventing the model from overfitting to simple local features, for
the parameter settings we set the ratio to 0.3 and the x_holes and
y_holes to be set randomly between 5 and 7. The gains from each
enhancement will be presented in the ablation study part.

Evaluation metrics

For evaluating the performance of our detection method on
iChallenge-PM dataset, we use mAP as the evaluation metrics, which
is the mean average precision of all categories. AP θ is calculated
as the area enclosed by the Precision (P) and Recall (R) and the
coordinate axis at an IoU (Intersection over Union of predicted box
and ground-truth) threshold of θ , as illustrated below:

IoU(A, B) =
A

⋂
B

A
⋃

B
(9)

P =
TP

TP + FP
(10)

R =
TP

TP + FN
(11)

where TP (True Positive) is the number of IoU between the predicted
box and the ground-truth label that is greater than or equal to
the threshold θ , while FP (False Positive) means the number of
IoU between the predicted box and the ground-truth label that is
less than the threshold θ . FN (False Negative) means no positive

object is detected. Finally, we can get mAP by averaging AP θ at
different thresholds.

Implementation details

Our model is implemented using MMDetection object detection
algorithm library based on Pytorch1.8 deep learning framework using
four NVIDIA RTX 3090 GPUs. We pre-trained our model on COCO
dataset for 36 epochs and fine-tuned on iChallenge-PM for 100
epochs with a mini-batch size of 16 due to the limited data amount.
The learning rate is initiated to 0.001, and we use CosineAnnealingLR
to decay the learning rate with 5 epochs warm-up. The AdamW
optimizer is used to optimize the hyper-parameters. For evaluating
model performance, the IoU threshold and confidence threshold are
set to 0.5 and 0.01, respectively. NMS is adopted as post-process
method. As for the data augmentation implementation approach, we
adopt the image processing algorithms based on opencv-python and
Albumentations library (Buslaev et al., 2020).

Ablation study

To verify the effectiveness of our attentional FPN, we set up a
set of ablation experiments. The backbone network used as the base
model was Swin-Small, DETR and its variants are selected to test the
gains we obtained by adding attentional FPN. In object detection,
taking COCO object definition as an example (Kisantal et al., 2019),
we define a small object as an object which pixel number is less
than 32 × 32, a medium object is an object which pixel number is
between 32∗32 and 96∗96, and a large object is an object which pixel
number is larger than 96∗96. APS means object area smaller than
32 × 32 pixel points, APM means object area between 32 × 32 and
96 × 96 pixel points, APL means object area bigger than 96 × 96
pixel points. As can be seen from Table 1, the DETR works well for
large target detection, but suffers from a major shortcoming in small
object detection. If the FPN is added directly to the DETR structure,

Frontiers in Neuroscience 09 frontiersin.org65

https://doi.org/10.3389/fnins.2023.1130609
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-17-1130609 February 2, 2023 Time: 14:56 # 10

Li et al. 10.3389/fnins.2023.1130609

since the Tranformer has an O(n2) computational complexity and
limited computational resources, this method will result in an out
of memory (OOM) error. In contrast, by adding a self-attention
mechanism to the FPN, only a small number of features need to
be fed into the Transformer structure, and our model achieves
29.02% improvement in detecting small objects, and obtains 8.19
and 1.53% improvement in detecting medium and large object,
respectively. It is worth noting that Deformable DETR, Conditional
DETR and our method achieve more significant improvement with
multi-scale (MS) than the other models with single-scale (SS) design.
The result indicates that multi-scale learning allows greater variety
of features. With Attentional FPN, our model not only achieves
a significant improvement in capturing small objects, but also a
significant improvement in convergence speed during training. In
a nutshell, our model not only achieves a significant improvement
in capturing small objects, but also a significant improvement in
convergence speed during training. Note that all experiments adopt
the same data augmentation methods.

Furthermore, it is important to carefully evaluate the impact
of data augmentation on model performance, which can provide
insights into the factors that contribute to model performance.
In Table 2, we focus on the AP boost from the augmentation
method, presenting in a cumulative manner. As can be seen evidently,
Random Rotate brings the most significant performance gains
because it simulates a situation that is similar to the characteristics
of the original data (i.e., the lesion sites tend to appear in different
directions), this greatly expands the training sample. The other
augmentation methods also achieved considerable improvements,
proving that the increment of data volume by the data augmentation
methods is effective to improving model performance.

Comparison study

Subplot (a) in Figure 5 shows the test image, subplot (b)
shows the PM location labels, subplot (c) shows the output of the
Faster R-CNN algorithm, and subplot (d) shows the output of our
MyopiaDETR. The detection result in the first row of subplot (c)
fails to detect the small object compared to the ground truth, and
the traditional object detection algorithm has limited learning of
complex morphological features. The yellow box in the second row
of subplot (c) is the model’s false detection, and if the threshold of
post-processing of NMS is adjusted down, it will lead to the purple
or green box being removed by the post-processing algorithm, and
the detection ability is still very poor for irregular PM regions. Our
MyopiaDETR does not have these problems, and not only can handle
the detection of irregular PM, but also do not have to worry about the
false removal of detection boxes caused by post-processing.

In addition, we compare the effect of different backbone networks
on the performance of our model. As shown in Table 3, in the
small to medium sized network architecture with a similar number of
parameters, Swin Transformer shows better performance, we believe
this is because the feature extracted by Swin Transformer is consistent
with the operations in attentional FPN. Due to the morphology
irregularity, we need a feature extraction network with strong
capability to capturing global context feature. Swin Transformer has
better feature extraction capability than ResNet because of its global
field of view. Thus, the Swin Transformer avoids the problem of
morphology irregularity and shows a better detection performance
than the ResNet. However, because the Transformer architecture

lacks inductive bias, as Swin Transformer becomes deeper, it requires
a lot more data and the model performance is somewhat weakened.
Compared to the CNN structure, the global feature representation
capability of Transformer is more prominent, and Swin Transformer
performance has a significant advantage over the CNN structure in
the case of small model structures.

Figure 6 shows the 8 × down sampled feature maps of ResNet-
50, ResNet-101, and Swin-S. As the CNN is more localized, it will
to some extent activate non-focal regions, such as the cross-focused
symbols in the figure. The Swin Transformer structure, on the other
hand, has a global field of view and can focus on more important
information (e.g., lesion borders as well as slice edge contours). As
shown in Figure 6, Swin Transformer has a better understanding
of the global information and can pay more attention to the global
contour information. ResNet, on the other hand, has a strong
feature extraction capability, but it only pays attention to the local
contour information and has more activation within the local contour
information. In contrast, we do not need to pay attention to all the
information within the local contour information when dealing with
the ophthalmic disease region, thus highlighting the superiority of
Swin Transformer in feature extraction.

Discussion

The sources of novelty in our work are: (1) Ordinary deep
learning-based object detection methods utilize many modules with
obvious traces of artificial design, that is, a paradigm that does not
match the way human vision finds objects. (2) DETR proposes a
new object detection paradigm based on ensemble prediction, which
directly predicts all objects in an image without post-processing,
which is more in line with human visual habits. (3) Due to the high
computational complexity of Transformer and the fact that DETR
only uses the output features of the last layer of the model, which
contains rich semantic information but is weak in the representation
of local information, the performance in small object detection is
poor, so we propose attentional FPN for feature aggregation, which
uses all the output features of the backbone network, significantly
improve the performance in small object detection.

However, although our proposed new method solves the problem
of small object detection as well as purifying the background features,
there are still some drawbacks. The use of Swin Transformer as
backbone makes the training time much longer than traditional
DETR model. Specifically, in DETR, each query is responsible for a
part of the location and size of the object in an image, which requires
all objects in all images in the training set to be well apportioned to
different queries, so more epochs are needed. The data amount is
very important for deep Transformer architecture model. Our follow-
up research is considering to replace the backbone network with an
optimized architecture to adapt to scenarios with small data volumes.

Conclusion

In this paper, we propose attentional FPN and use a new
paradigm for object detection to solve the eye disease detection
challenges based on 2D fundus images. The experimental results
show that our attentional FPN can be adapted to other deep learning
architectures with only a small increment in computational cost to
achieve a significant accuracy improvement. Several augmentation
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methods are utilized to improve the data volume and make our model
achieve considerable performance improvements, proving that the
increment of data volume by the data augmentation methods is
effective to detecting lesion area in 2D fundus images. Our model
not only achieves a significant improvement in capturing small
objects, but also a significant improvement in convergence speed
during training.
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Objective: Optic chiasma compression and associated visual impairment induced

by a non-functioning pituitary adenoma (NFPA) is commonly assessed by the optic

disk and retina but is inadequate to understand the entire visual pathway impairment.

We aim to evaluate the use of optical coherence tomography (OCT) coupled with

diffusion tensor imaging (DTI) for the preoperative evaluation of visual pathway

impairment.

Methods: Fifty-three patients with NFPA (categorized into mild and heavy

compression subgroups) were subjected to OCT to calculate the thickness of the

circumpapillary retinal nerve fiber layer (CP-RNFL), macular ganglion cell complex

(GCC), macular ganglion cell layer (GCL), and macular inner plexus layer (IPL), as

well as to DTI to calculate the fractional anisotropy (FA) and apparent diffusion

coefficient (ADC) values.

Results: Compared to mild compression, heavy compression caused decreased FA

value, increased ADC value of several segments of the visual pathway, thin temporal

CP-RNFL, and quadrant macular GCC, IPL, and GCL. Average CP-RNFL thickness,

inferior-macular inner-ring IPL and GCC thicknesses, inferior CP-RNFL thickness, and

superior CP-RNFL thickness were the best indicators of the impairment of the optic

nerve, optic chiasma, optic tract, and optic radiation, respectively.

Conclusion: DTI and OCT parameters can effectively evaluate visual pathway

impairment and are beneficial for the objective preoperative evaluation of visual

pathway impairment in patients with NFPA.

KEYWORDS

non-functioning pituitary adenoma, diffusion tensor imaging (DTI), visual pathway injury,
optical coherence tomography (OCT), circumpapillary retinal nerve fiber layer (CP-RNFL)
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Introduction

Non-functional pituitary adenoma (NFPA) is the most common
type of pituitary adenoma (PA) and is characterized by a lack
of hormone-related clinical symptoms and signs (Melmed et al.,
2022). Delayed diagnosis of NFPA caused by the absence of
indications generates giant adenomas and subsequently extends to
the surrounding structures. Compressed optic chiasma and the
resulting visual impairment patterns (i.e., vision loss and visual
field defects) occur in 78% of patients with NFPA (Subramanian
et al., 2021). Ophthalmic examinations and the assessment of visual
pathway impairment are critical for early disease diagnosis and
surgery decisions for NFPA. Although visual field examination and
visual evoked potentials can be used to identify impaired visual fields
or pathways, the results are relatively subjective and time-consuming.
Given these limitations, many studies have explored more objective
and quantitative methods for assessing visual impairment in patients
with NFPA.

Optical coherence tomography (OCT) is a new technique for
predicting outcomes after the surgical decompression of PA (Chung
et al., 2020; Agarwal et al., 2021; Santorini et al., 2022). In
addition, diffusion tensor imaging (DTI) is a new type of functional
magnetic resonance used for objectively assessing white matter fiber
connectivity and integrity in the central system tissue by detecting
the diffusion differences between the parallel and vertical motions
of white matter water molecules (Yamada et al., 2016), as well as
for objectively predicting the post-surgery visual recovery of patients
with PA. A strategy that combines OCT and DTI is increasingly used
to predict visual impairment in degenerative neuropathy (Hubers
et al., 2016; Alves et al., 2018) and visual pathways characteristic of
amblyopia (Altintas et al., 2017). In our previous study, fractional
anisotropy (FA) values of the visual pathway were found to be
positively correlated with the thickness of the circumpapillary retinal
nerve fiber layer (CP-RNFL) in patients with PA, suggesting the
feasibility of combining OCT and DTI in evaluating the impairment
of the entire visual pathway (Pang et al., 2022). The current study
compared retinal OCT parameters and optic nerve DTI parameters in
53 patients with NFPA (classified into mild and heavy optic chiasma
compression subgroups). The degree of adverse changes in OCT and
DTI parameters was found to be stronger in the severe compression
group than that in the mild compression group, suggesting the
potential application of these parameters in assessing optic nerve
damage in patients with NFPA.

Materials and methods

Patients

We conducted a retrospective clinical study involving 57 patients
who were first diagnosed with NFPA and received tumor resection
by endoscopic sphenoidal sinus surgery at the Affiliated Hospital of
Guangdong Medical University from January 2020 to April 2022.
All surgeries were done by the same experienced neurosurgeon
and reasonable optic apparatus decompression was accomplished
following tumor removal. Intraoperatively, the structure of the ultra
care was paid to preserve relevant sellar/suprasellar neurovascular
structures, and achieve adequate hemostasis to avoid postoperative
compressing hematoma. Overfilling with skull base reconstructive

materials was avoided to prevent optic apparatus compression. Fifty-
three healthy subjects with matching average gender and age as the
controls. All subjects underwent examination of best-corrected visual
acuity (BCVA) and the visual field, OCT of the optical disk and
macular, and DTI of the visual pathway.

The inclusion and exclusion criteria for the NFPA group were as
follows. I. PA was indicated by plain MRI and enhanced examination
of the brain. II. PA was the first complete resection obtained by
endoscopic sphenoidal sinus surgery by the same brain surgeon
without additional optic nerve damage and was confirmed by
histopathological examination. III. NFPA was clinically diagnosed in
patients aged between 18 and 60 years. IV. Non-contact intraocular
pressure was ≤21 mmHg (1 mmHg = 0.133 kPa). V. There was
no previous history of intracranial diseases and trauma, intracranial
surgery, ocular trauma, glaucoma, neuroretinal disease, or internal
eye surgery. VI. Previous refractive errors were <±6.0D (spherical
mirror) and <3.00D (column mirror). VII. The OCT images were
clear, and the DTI images were of good quality.

The inclusion and exclusion criteria for the control group were
as follows. I. Non-contact intraocular pressure was ≤21 mmHg. II.
Visual acuity or corrected visual acuity was ≥ 0.6, and refractive
errors were <± 6.0D (spherical mirror) and <3.00D (column
mirror). III. There was no previous history of intracranial diseases,
trauma, or intracranial surgery. IV. There was no history of ocular
trauma, glaucoma, neuroretinal diseases, or internal eye surgery. V.
The subjects’ age and sex-matched those of the NFPA group. VII. The
OCT image was clear, and the DTI images were of good quality.

This study was conducted in accordance with the principles of the
Helsinki Declaration and was approved by the Ethics Committee of
the Affiliated Hospital of Guangdong Medical University (Approval
Document No. PJ2020-006 and VJ2020-006-03). All subjects signed
informed consent forms.

Visual field examination

The patients with NFPA underwent a visual field examination
after a corrected refractive error (KowaAP7000 precision visual
field meter, Kowa, Japan) before pituitary tumor resection. The
visual field test was the center 30◦. If solid vision disappeared and
false-negative or false-positive errors exceeded 20%, the test was
considered unreliable and hence repeated. Two reliable visual field
examinations were performed for each patient, and mean defect
(MD) was used to assess the overall visual field defect.

Magnetic resonance examination of the
tumor

All patients were subjected to a preoperative head MRI scan plus
enhancement (Discovery MR750 3.0T, GE, USA) to measure their
tumor sizes. The horizontal diameter line, anteroposterior diameter
line, the epitaxial height of the sella turcica diameter line, the vertical
diameter line of the tumor, and the thickness of the optic chiasma
were recorded (Figures 1A–D). The maximum height of the vertical
diameter line was measured in the sagittal view and used to determine
the anteroposterior diameter line of the tumor. The epitaxial height
of the sella turcica diameter line was measured as the height over
the horizontal line between two points on the anterior and posterior
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tuberosity of the diaphragmatic saddle. The thickest position of the
optic chiasma was selected for measurement. The tumor and optic
chiasma were distinguished according to the degree of enhancement.
Each value was measured three times and averaged. The degree
of tumor compression on the optic chiasma was divided into five
grades (Figure 1E). Grade 0 was defined as no contact between
the tumor and optic chiasma. Grade 1 was defined as a tumor in
contact with the optic chiasma but without surface deformation of
the optic chiasma. Grade 2 was defined as a tumor in contact with
the optic chiasma with surface deformation of the optic chiasma but
visible suprachiasmatic cisterns. Grade 3 was defined as a tumor in
contact with the optic chiasma, with the superior surface of the optic
chiasma malformation and the superior chiasma cisterns invisible
but without brain malformation. Grade 4 was defined as brain
malformation, in addition to these changes. Four grade 0 patients
who met the inclusion and exclusion criteria were excluded from this
study because their tumors had no contact with the optic chiasma.

OCT measures the thicknesses of RNFL,
macular ganglion cell complex, inner
plexus layer, and ganglion cell layer

The optic disk and macular area were scanned using 3D-OCT
(Heideberg Engineering Spectralis, Germany). The OCT parameters
included CP-RNFL of average thickness and four quadrants (nasal,
supra, temporal, and inferior) and ganglion cell layer (GCL) and
inner plexus layer (IPL) thicknesses of 1 mm macular center of the
four quadrants (nasal, supra, temporal, and inferior) of the inner ring
(1–3 mm from the macular fovea) and outer ring (within 3–6 mm
from the macular fovea). Each parameter was evaluated automatically

using Spectralis mapping software. GCC thickness was superimposed
by the thicknesses of the macular RNFL, GCL, and IPL.

DTI examination and image processing

T1WI and DTI scanning were performed using a GE3.0T
Optima MR360 imaging system with a head 16-channel phased-
array coil. The T1WI scanning parameters were set as an axial
3D BRAVO sequence, 12.3/5.1 ms TR/TE, 256 × 256 matrix,
240 mm × 240 mm FOV, 1.4 mm layer thickness, 0 mm interval,
and NEX 1. The DTI scanning parameters were set as a single-
excitation DW-SE-EPI sequence, 9000/100.1 ms TR/TE, 128 × 128
matrix, 240 mm × 240 mm FOV, one acquisition, 25 diffusion-
sensitive gradient directions, b value = 1000 s/mm2, layer thickness
and layer spacing 2/0 mm, and axial scanning. The scanning results
were presented in the form of a color-coded tensor FA graph and
an ADC graph (Figure 2). In DTI data processing, these two graphs
were set as green in the front and back directions, red in the left
and right directions, and blue in the top and bottom directions.
The anterior, middle, and posterior of the optic nerve, optic tract,
and optic radiation, and the left, middle, and right of the optic
chiasma were measured, analyzed, and recorded using the GE3.0
NMR machine software (ADW 4.2 Function Tool). Three regions
of interest (ROIs) were selected at the clearest locations on the
bilateral optic nerve, optic chiasma, bilateral optic tract, and optic
radiation to measure the FA and ADC values. According to the classic
neuroanatomical description and relevant literature (Li et al., 2019),
the ROI was delineated and measured as an area of 8–12 mm2. In
particular, when measuring an ultra-thin optic chiasm resulting from
severe compression, FA and ADC signals were detected at the tumor

FIGURE 1

MRI images of patients with NFPA. (A) Axial position measurement of the horizontal diameter line (30.58 mm) and the anteroposterior diameter line
(15.04 mm). (B) Sagittal measurements of the epitaxial height of the sella turcica diameter line (3.79 mm). (C) Sagittal measurements of the vertical
diameter line (14.99 mm). (D) Thickness measurement of the optic chiasm. (E) Grades (0–4) of tumor compression on the optic chiasm.
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FIGURE 2

FA and ADC diagrams of the optic nerve, optic chiasma, optic tract, and optic radiation.

edge, and the ROI became oval with a size of 8–12 mm2. To minimize
measurement errors, image reconstruction and data measurement
were performed by experienced physicians. The FA and ADC values
of the optic nerve, optic chiasma, optic tract, and optic radiation were
taken as the averages of the three ROIs.

Statistical analysis

IBM SPSS24.0 statistical software was used for the statistical
analysis, and the measurement data of normal distribution were
expressed as mean ± standard deviation. An independent sample
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t-test was used for parameter comparison between groups, and a
one-way ANOVA was used for parameter comparison among three
groups and multiple groups, followed by a pairwise comparison
conducted using the LSD-t test. Spearman correlation was used to
evaluate the relationships among the best corrected visual acuity;
visual field; RNFL, GCC, GCL, and IPL thicknesses; and the FA and
ADC values of the DTI parameters. The area under the receiver
operating characteristic (ROC) curve of the FA and ADC values
was calculated and compared by conducting the Z-test to evaluate
the diagnostic ability of the DTI parameters for optic path injury.
To reduce the results bias, the statistical analysis of the data was
performed by a dedicated researcher who was not selected from
a group of radioactive data measurement researchers. A value of
P < 0.05 was considered statistically significant.

Results

Subject groups and visual field
comparison

The 53 patients were classified according to the degree of
optic chiasma compression: grade 1 (13 patients), grade 2 (12
patients), grade 3 (11 patients), and grade 4 (17 patients). The
average thicknesses of the optic chiasma in these four grades were
(2.82 ± 0.98) mm, (2.62 ± 0.85) mm, (1.84 ± 0.73) mm, and
(1.39± 0.78) mm, respectively, with a significant difference (F= 9.00,
P < 0.05). Among these, there was a statistically significant difference
between grades 1 and 2 and grades 3 and 4 but no statistically
significant difference between grades 1 and 2 and between grades 3
and 4 (P = 0.01 for grade 1 vs. grade 3, P = 0.00 for grade 1 vs. grade
4, P = 0.03 for grade 2 vs. grade 3, P = 0.00 for grade 2 vs. grade 4,
P= 0.55 for grade 1 vs. grade 2, and P= 0.18 for grade 3 vs. grade 4).
Therefore, we combined grade 1 and grade 2 to form the mild optic
chiasma compression group (case group 1) and grade 3 and grade 4 to
form the heavy optic chiasma compression group (case group 2). The
tumor body and optic chiasma in the two case groups were compared.
The tumor suprasellar epitaxial height, anteroposterior diameter line,
horizontal diameter line, and vertical diameter line in case group 2
were greater than those in case group 1, and the optic chiasma in case
group 2 was thinner than that in case group 1 (Table 1).

The BCVA values of case group 1, case group 2, and the control
group were (0.15 ± 0.19) LogMAR, (0.71 ± 0.61) LogMAR, and

(0.03 ± 0.05) LogMAR, respectively, with significant differences
(F = 79.58, P= 0.00). A comparison between the two groups showed
P = 0.00 for case group 1 vs. case group 2, P = 0.03 for case group
1 vs. the control group, and P = 0.00 for case group 2 vs. the control
group. The MD values of case group 1, case group 2, and the control
group were (1.29 ± 3.17) dB, (8.50 ± 7.53) dB, and (0.62 ± 0.92)
dB, respectively, with significant differences (F = 68.80, P = 0.00).
A comparison between the two groups showed P = 0.00 for case
group 1 vs. case group 2, P = 0.35 for case group 1 vs. the control
group, and P = 0.00 for case group 2 vs. the control group.

Comparison of CP-RNFL thickness among
case group 1, case group 2, and the
control group

The temporal CP-RNFL of case group 1 was significantly thinner
than that of the control group (P= 0.04), and the CP-RNFL thickness
of the other quadrants had no statistical significance between the
two groups (P-values of average, nasal, supra, and inferior quadrants
were 0.65, 0.56, 0.95, and 0.47, respectively) (Table 2). A comparison
of CP-RNFL in all quadrants between case group 2 and the control
group indicated statistically significant differences in thickness (all
four quadrants had a P-value of 0.00) (Table 2).

Comparison of the thicknesses of GCC,
IPL, and GCL among case group 1, case
group 2, and the control group

Compared to the control group, case group 1 had significantly
thinner GCC, IPL, and GCL within the macular center of 1 mm, GCC
in the inferior aspect of the inner ring, and GCC in the temporal
aspect of the outer ring (P= 0.00, 0.00, 0.00, 0.00, and 0.01) (Table 3),
indicating that mild optic chiasma compression resulted in local
thinning of the GCC in the macular area.

Compared to the control group, case group 2 had significantly
thinner GCC, IPL, and GCL in the macular center of 1 mm;
nasal-, supra-, temporal-, and inferior-macular inner rings; and
nasal-, supra-, temporal-, and inferior-macular outer rings (all had
P-values < 0.05) (Table 3), indicating that the GCC in the macular
area was thinner diffusely with increasing compression of the optic
chiasma.

TABLE 1 Visual acuity, visual field, and tumor were compared between mild and heavy optic chiasma compression case groups.

Tumor and optic chiasma
parameters (mm)

Classification based on optic chiasma compression t P

Case group 1 Case group 2 Control group

BCVA (LogMAR) 0.15± 0.19 0.71± 0.61 0.03± 0.05 0.00

MD (dB) 1.29± 3.17 8.50± 7.53 0.62± 0.92 0.00

Epitaxial height of sella turcica diameter line 3.68± 2.76 16.69± 6.40 −9.39 0.00

Anteroposterior diameter line 19.98± 6.43 30.54± 7.91 −5.29 0.00

Horizontal diameter line 18.67± 6.43 26.57± 8.57 −3.78 0.00

Vertical diameter line 19.74± 6.10 36.08± 7.79 −8.42 0.00

Optic chiasma thickness 2.72± 0.91 1.57± 0.78 2.95± 0.25 4.97 0.00
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TABLE 2 Comparison of CP-RNFL thickness between case group and control group.

CP-RNFL thickness
(um)

Case group 1
(25 cases, 50 eyes)

Case group 2
(28 cases, 56 eyes)

Control group
(53 cases, 106 eyes)

F P

Average CP-RNFL 105.50± 15.82 81.55± 26.55 106.60± 11.65 40.27 0.00

Nasal CP-RNFL 73.60± 18.34 56.76± 26.26 71.72± 13.01 14.60 0.00

Supra CP-RNFL 131.68± 25.49 100.71± 34.56 131.61± 20.31 29.22 0.00

Temporal CP-RNFL 78.80± 17.30 59.83± 24.11 85.02± 13.79 36.80 0.00

Inferior CP-RNFL 136.16± 29.73 109.94± 35.87 139.76± 20.74 22.50 0.00

TABLE 3 Comparison of the thickness of GCC, IPL, and GCL between two case groups and control group.

Macular GCC, IPL, and
GCL thickness (um)

Case group 1
(50 eyes)

Case group 2
(56 eyes)

Control group
(106 eyes)

F P

Center (1 mm diameter) 33.46± 9.79 34.48± 12.88 46.21± 10.13 34.05 0.00

13.50± 5.16 15.04± 4.70 18.81± 4.39 27.88 0.00

8.84± 4.73 8.94± 6.02 15.23± 4.74 44.53 0.00

Nasal-macular inner ring 105.79± 14.19 88.27± 22.54 107.93± 13.69 26.57 0.00

39.26± 6.36 34.04± 9.43 39.81± 4.97 13.59 0.00

46.50± 9.14 37.16± 13.10 46.74± 7.67 20.64 0.00

Supra-macular inner ring 111.89± 15.70 95.87± 23.57 113.04± 10.15 22.06 0.00

38.91± 5.42 35.17± 8.70 39.33± 4.77 8.35 0.00

50.17± 9.13 40.66± 13.25 49.90± 5.77 22.93 0.00

Temporal-macular inner ring 97.24± 14.52 89.37± 19.10 100.85± 9.08 12.22 0.00

37.51± 6.20 34.04± 7.02 38.50± 4.55 10.55 0.00

42.82± 8.90 37.16± 10.21 44.13± 5.59 15.29 0.00

Inferior-macular inner ring 104.67± 16.72 95.50± 20.76 111.55± 11.78 18.09 0.00

37.82± 5.69 33.60± 7.98 38.43± 4.27 12.56 0.00

45.75± 9.96 40.35± 10.17 48.05± 6.34 15.81 0.00

Nasal-macular outer ring 113.08± 15.55 99.09± 19.26 116.90± 10.75 26.45 0.00

31.10± 4.32 26.52± 4.96 31.81± 3.50 28.66 0.00

38.86± 8.10 32.91± 7.54 39.96± 5.78 20.49 0.00

Supra-macular outer ring 98.15± 14.82 90.55± 17.07 102.37± 11.02 12.78 0.00

28.69± 3.63 26.69± 5.40 29.63± 3.32 9.26 0.00

34.36± 7.48 31.66± 7.23 35.60± 5.20 7.23 0.00

Temporal-macular outer ring 84.08± 13.50 83.11± 12.48 89.19± 8.45 6.77 0.00

31.76± 3.80 30.95± 5.37 32.79± 3.70 3.55 0.03

35.37± 6.67 33.39± 7.59 36.18± 5.18 3.78 0.02

Inferior-macular outer ring 98.55± 14.28 92.16± 15.32 99.45± 12.87 5.10 0.01

27.96± 4.08 26.13± 5.07 28.41± 3.79 4.99 0.00

34.34± 5.93 31.10± 6.57 34.28± 8.26 4.02 0.02

Comparison of the FA and ADC values
among case group 1, case group 2, and
the control group

A comparison of case group 1 with the control group showed
that the FA values of the optic nerve, optic chiasma, and optic
tract in case group 1 decreased significantly (P = 0.00, 0.01,
and 0.00), while the ADC values of the optic nerve and optic
chiasma increased significantly (P = 0.01 and 0.04) (Table 4).

A comparison of case group 2 with the control group showed
that the FA values of the optic nerve, optic chiasma, optic
tract, and optic radiation in case group 2 decreased significantly
(P = 0.00, 0.00, 0.00, and 0.03), while the ADC values of the optic
nerve, optic chiasma, and optic radiation increased significantly
(P = 0.00, 0.00, and 0.00) (Table 4). There was no statistical
difference in the ADC values of the optic tracts in group 1 and
group 2 compared to the control group (P = 0.55 and 0.24)
(Table 4).
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TABLE 4 Comparison of the FA value and ADC value between the two case groups and the control group.

FA value and ADC value
(×10−9mm2/s)

Case group 1
(50 eyes)

Case group 2
(56 eyes)

Control groups
(106 eyes)

F P

Optic nerve 0.38± 0.09 0.35± 0.11 0.43± 0.10 13.83 0.00

1.53± 0.31 1.64± 0.39 1.38± 0.27 12.53 0.00

Optic chiasma 0.28± 0.08 0.20± 0.07 0.32± 0.05 30.37 0.00

1.86± 0.51 2.02± 0.37 1.66± 0.39 5.04 0.01

Optic tract 0.42± 0.10 0.34± 0.10 0.48± 0.09 39.16 0.00

1.22± 0.35 1.25± 0.33 1.18± 0.31 0.72 0.49

Optic radiation 0.53± 0.05 0.49± 0.07 0.52± 0.05 4.90 0.01

0.86± 0.06 0.88± 0.07 0.85± 0.06 4.25 0.00

Analysis of the correlation of BCVA and
MD values with DTI and OCT parameters

We performed a correlation analysis between the BCVA and
MD values and all DTI and OCT parameters and displayed the
parameters with the strongest correlation with BCVA and MD values.
The BCVAlogMAR and MD values showed the strongest negative
correlation with the FA value of the optic chiasma (r = −0.51,
−0.54, P = 0.00), and BCVAlogMAR showed the strongest negative
correlation with the superior CP-RNFL thickness (r = −0.53,
P = 0.00) (Table 5). The MD value of the visual field showed the
strongest negative correlation with CP-RNFL thickness from the
supra and average aspects, respectively (both r = –0.62, P = 0.00)
(Table 5). BCVAlogMAR had the strongest positive correlation with
the tumor’s suprasellar epitaxial height (r = 0.44, P = 0.00). The MD
value had the strongest positive correlation with the vertical diameter
of the tumor (r = 0.60, P = 0.00) (Table 5). These data suggest that
the degree of tumor compression on the vertical diameter line on the
optic chiasma indicates the degree of visual field impairment.

Correlation between DTI and OCT
parameters and the tumor diameter line

In all patients with NFPA, the correlation of FA and ADC values
of the optic nerve, optic chiasma, optic tract, and optic radiation with
RNFL thickness, macular IPL, macular GCL, and macular GCC was
analyzed, and the strongest correlation was displayed. As shown in
Table 6, the strongest positive correlations were observed between
the FA value of the optic nerve and average CP-RNFL thickness
(r = 0.58, P = 0.00), between the FA value of the optic chiasma
and thickness of IPL and GCC in the inferior-macular inner ring
(r = 0.52, P = 0.00), between the FA value of the optic tract and
inferior CP-RNFL thickness (r = 0.47, P= 0.00), and between the FA
value of optic radiation and superior CP-RNFL thickness (r = 0.46,
P = 0.00) (Table 6). These data suggest that the average CP-RNFL
thickness, and thickness of inferior-macular inner-ring IPL, GCC,
inferior CP-RNFL, and superior CP-RNFL are the best indicators of
the impairment of the optic nerve, optic chiasma, optic tract, and
optic radiation, respectively.

The strongest negative correlations were observed between the
FA value of the optic nerve and optic tract and the tumor vertical
diameter line (r = −0.38, P = 0.01; r = −0.39, P = 0.01), between

the FA value of the optic chiasma and epitaxial height of the tumor
suprasellar (r = −0.62, P = 0.00), and between the FA value of the
optic radiation and the tumor horizontal diameter line (r = −0.43,
P = 0.00) (Table 6). These data suggest that the degree of tumor
compression on the vertical diameter line to the optic chiasma
indicates impaired nerve fiber conduction.

Comparison of the test effectiveness of
the FA and ADC values in visual pathway
damage

To evaluate the diagnostic ability of the FA and ADC values
for damage to the optic nerve, optic chiasma, optic tract, and optic
radiation, we calculated the area under the curve (AUC) on the
ROC curve of these values. The Z value of the AUC on the ROC
curve of the FA and ADC values of the structures of the entire
visual pathway showed that the Z optic nerve = 0.71 (P = 0.48), Z
chiasma = 3.77 (P = 0.00), Z optic tract = 4.95 (P = 0.00), and Z
visual radiation = 1.18 (P = 0.23) (Figure 3), indicating that the FA
values of the visual chiasma and optic tract were more effective than
the ADC values.

Discussion

Retinal RNFL can be evaluated from the changes in two
substructures, nasal crossed fibers and temporal uncrossed fibers,
which are bounded by the vertical line of the fovea. In our study,
patients with NFPA showed early thinning of the temporal CP-
RNFL quadrant, the quadrant in which the papillary macular fibrosis
was located. According to the literature, the temporal CP-RNFL
thickness is correlated with visual function. For example, Kawaguchi
et al. (2019) found that the thickness of the temporal CP-RNFL
was significantly correlated with visual function recovery, and the
thinning of the temporal nerve fiber layer had the greatest impact
on vision because the papillomacular fibers converged from the
temporal side of the optic disk. Glebauskiene et al. (2018) found
that the thickness of the temporal CP-RNFL was positively correlated
with the distance between the optic chiasma and the pituitary
tumor. However, none of these studies revealed a relationship
between changes in CP-RNFL thickness and the degree of chiasmatic
compression. In our study, mild optic chiasma compression showed
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TABLE 5 Correlation analysis between BCVAlogMAR and MD and DTI
parameters and OCT parameters.

Correlation coefficient BCVAlogMAR MD

Optic nerve FA

r −0.44 −0.50

P 0.00 0.00

Optic chiasma FA

r −0.51 −0.54

P 0.00 0.00

Optic tract FA

r −0.41 −0.44

P 0.00 0.00

Optic radiation FA

r −0.36 −0.41

P 0.01 0.00

CP-RNFL Supra CP-RNFL Supra or Average
CP-RNFL

r −0.53 −0.62

P 0.00 0.00

Macular IPL Inferior outer ring Supra inner ring

r −0.45 −0.43

P 0.00 0.00

Macular GCL Supra inner ring Supra inner ring

r −0.37 −0.53

P 0.01 0.00

Macular GCC Nasal inner ring Supra inner ring

r −0.38 −0.51

P 0.01 0.00

PA diameter Epitaxial height of
suprasellar extension

Vertical diameter

r 0.44 0.60

P 0.00 0.00

Optic chiasma thickness

r −0.47 −0.46

P 0.00 0.00

thinning of the temporal CP-RNFL, while heavy optic chiasma
compression showed thinning of the CP-RNFL in all quadrants,
indicating the progression of the CP-RNFL from temporal lesions to
diffuse atrophy in patients with NFPA.

Agarwal et al. (2021) suggested that GCL-IPL had a stronger
diagnostic ability for optic nerve injury than CP-RNFL. In addition,
Zhang et al. (2019) found that the GCL was thinned in patients
with early PA without visual field defects. Moon analyzed the OCT
multilayer structure of the retinas of patients with PA and found
that the thicknesses of both GCL and IPL decreased as compared
with the control (Moon and Shin, 2020). Sun et al. (2017) indicated
that the GCC thickness in patients with PA presented quadrant
characteristics, mainly nasal-macular thinning. Consistent with these
studies, we found that the GCC, GCL, and IPL in the macular
area of NFPA patients with mild optic chiasma compression were
damaged locally. Furthermore, heavy optic chiasma compression

caused diffuse thinning of the GCC, IPL, and GCL, indicating that the
tumor compresses both crossed and non-crossed nerve fibers with the
disease progression. Based on this, we infer that similar to the case of
CP-RNFL, thinning of the GCC also starts from a single quadrant and
eventually extends to the entire macular region.

The feasibility of OCT indicators in predicting the reversibility
of visual impairment remains controversial. Iqbal et al. (2020) found
that postoperative visual acuity improved in patients with normal
preoperative RNFL thickness but did not in those with preoperative
RNFL thinning. An et al. indicated that GCC damage occurred
before RNFL thinning (Micieli et al., 2019). However, Lukewich and
Micieli (2019) argued that RNFL thinning appeared earlier than
GCC thinning. One of the reasons for the controversy is that PA
tumors affect the entire visual pathway (from the retina to the visual
center of the brain), and the OCT indicators of the retina alone are
inadequate for understanding the entire visual pathway impairment.
Thus, it is necessary to recognize the objective evaluation effect of
DTI parameters on visual impairment. Decreased FA values and
increased ADC values arise with the loss of nerve fibers and atrophy
of nerve tissue (Lee et al., 2005). Anik et al. (2011) found that a
lower preoperative optic nerve FA value and higher mean defect MD
value were correlated with poor visual effect at 6 months in patients
with PA, and determined DTI parameters to be a good predictor
for PA surgery (Anik et al., 2018). Our data showed decreased FA
value and increased ADC value in parts of the visual pathway of
NFPA patients with mild and heavy optic chiasma compression,
indicating that even mild compression of the optic chiasma results
in impaired signal transduction. The major contribution of this
study was that the decrease in the FA value and the increase
in the ADC value were synchronized with quadrant thinning of
the CP-RNFL, GCC, GCL, and IPL. This optic nerve appearance
indicates that the conduction function and structural abnormalities
of nerve fibers are present simultaneously in patients with NFPA.
In previous studies, in patients with early PA, CP-RNFL thickening
and GCC thinning appeared earlier than visual field defects, while
nerve fiber functional impairment appeared later than structural
abnormalities (Tieger et al., 2017; Blanch et al., 2018; Monteiro,
2018; Micieli et al., 2019). However, some contrasting findings have
also been noted. For example, Lukewich and Micieli (2019) found
visual field abnormalities to appear earlier than OCT GCC and
CP-RNFL thinning. However, the combination of DTI and OCT
results in the present study showed that the functional and structural
abnormalities of optic nerve fibers in patients with NFPA appeared
simultaneously.

Our exploration of the posterior optic pathway indicated that, as
compared to the control group, ADC values did not change in the
mild chiasma compression group but increased significantly in the
heavy chiasma compression group. However, the ADC values of the
optic tract did not change significantly. These results are in agreement
with those of John et al., who also found no statistical difference in
the MD values of the optic tract in the control group (Rutland et al.,
2019). In a previous study, increased MD or ADC values reflected
reduced limits on water diffusion due to myelin or axon membrane
damage (Lutz et al., 2008). Is there a different mechanism through
which the ADC values of the optic tract change? At present, there are
a few similar studies, and the specific mechanism needs to be further
explored.

We conducted an AUC calculation of the FA and ADC values
on the ROC curve of visual pathway injury and found that the
area under the ROC curve of the FA value of the optic chiasma
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TABLE 6 The strongest correlation between DTI parameters and OCT parameters.

Visual pathway
DTI parameters

CP-RNFL
thickness

Macular GCC
thickness

Macular IPL
thickness

Macular GCL
thickness

Diameter line of
tumor

Optic nerve FA Average Center (1 mm diameter) Center (1 mm diameter) Center (1 mm diameter) Vertical diameter line

r 0.58 0.43 0.51 0.43 −0.38

P 0.00* 0.00* 0.00* 0.00* 0.01*

Optic chiasma FA Average Inferior-macular inner ring Inferior-macular inner ring Inferior-macular inner ring Epitaxial height of sella
turcica diameter line

r 0.44 0.52 0.52 0.48 −0.62

P 0.00* 0.00* 0.00* 0.00* 0.00*

Optic tract FA Inferior Nasal-macular outer ring Nasal-macular outer ring Center (1 mm diameter) Vertical diameter line

r 0.47 0.40 0.41 0.40 −0.39

P 0.00* 0.00* 0.00* 0.00* 0.01*

Optic radiation FA Supra Temporal-macular outer ring Nasal-macular outer ring Temporal-macular outer ring Horizontal diameter line

r 0.46 0.38 0.45 0.41 −0.43

P 0.00* 0.00* 0.00* 0.00* 0.00*

*P < 0.001.

FIGURE 3

AUC of FA and ADC values. (A) Optic nerve FA = 0.68. (B) Optic chiasma FA = 0.82. (C) Optic tract FA = 0.76. (D) Optic radiation ADC = 0.65. (E) Optic
nerve ADC = 0.66. (F) Optic chiasma ADC = 0.66. (G) Optic tract ADC = 0.55. (H) Optic radiation ADC = 0.60.

and the optic tract was larger than that of the ADC value, and the
difference was statistically significant. In particular, the area under
the ROC curve of the FA value of the optic chiasma was the largest,
indicating the best performance for the diagnosis of visual pathway
impairment. Although no study has been conducted on the diagnostic
ability of DTI parameters for visual pathway injury in patients with
NFPA, according to a previous comparison of FA and MD values
for visual pathway injury in glaucoma patients, both FA values of the
optic nerve and those of optic radiation showed high sensitivity and
specificity (Sidek et al., 2014). The reason why the FA value is better
than the ADC value may be that the ADC value is affected by complex
factors.

This study also has some limitations. First, as the imaging
principle of DTI is an echo sequence that is more sensitive to motion,
motion artifacts are inevitable. Second, artificial measurement errors
are inevitable due to several factors (i.e., the complex distribution of
white matter fibers, long visual pathways, and multiple cross fibers,
especially in the optic chiasma, and the complex position relationship
between PA and optic chiasma). Third, DTI detection is susceptible
to interference factors (e.g., skull and gas, hemorrhage artifacts, old
brain injury, and primary encephalopathy). All these factors need to
be addressed in the future.

In conclusion, the DTI parameter FA and OCT parameters
RNFL and macular GCC, GCL, and IPL can be used to evaluate
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visual pathway impairment in patients with NFPA. In particular,
the FA value of the optic chiasma has a high diagnostic ability
for visual pathway impairment. The coupled DTI and OCT can be
used to comprehensively understand the microscopic changes in the
structure and function of the visual pathway and to more objectively
evaluate the visual pathway damage induced by PA. We further
explored the predictive ability of this preoperative assessment for
postoperative visual recovery.
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EFEMP1 is a potential biomarker
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myopia
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Purpose: To explore the possible molecular mechanism by which epidermal

growth factor-containing fibulin-like extracellular matrix protein 1 (EFEMP1)

regulates choroid thickness (CT) in the development of myopia.

Methods: In total, 131 subjects were divided into the emmetropia (EM) group,

non-high myopia (non-HM) group and high myopia (HM) group. Their age,

refraction, intraocular pressure, and other ocular biometric parameters were

collected. A 6 × 6 mm area centered on the optic disc was scanned by

coherent optical tomography angiography (OCTA) to measure CT, and the tear

concentrations of EFEMP1 were quantified using enzyme-linked immunosorbent

assay (ELISA) analysis. Twenty-two guinea pigs were divided into the control

group and the form-deprivation myopia (FDM) group. The right eye of the guinea

pig in the FDM group was covered for 4 weeks, and the diopter and axial length

of the right eye of the guinea pig were measured before and after the treatment.

After the measurement, the guinea pig was euthanized, and the eyeball was

removed. Quantitative reverse transcription polymerase chain reaction, western

blotting assays and immunohistochemistry were used to assess the expression of

EFEMP1 in the choroid.

Results: There were significant differences in CT among the three groups

(p < 0.001). CT was positively correlated with age in HM (r =−0.3613, p = 0.0021),

but no significant correlation with SE (p > 0.05) was observed. Furthermore, there

were increased levels of EFEMP1 in the tears of myopic patients. After 4 weeks of

covering the right eye of the FDM guinea pigs, there was a significant increase

in axial length and a decrease in diopter (p < 0.05). The mRNA and protein

expression of EFEMP1 was significantly increased in the choroid.

Conclusion: Choroidal thickness was significantly thinner in myopic patients, and

the expression level of EFEMP1 in the choroid increased during the development

of FDM. Therefore, EFEMP1 may be involved in the regulation of choroidal

thickness in myopia patients.
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Introduction

Myopia has become a growing global threat to public health in
recent years (Baird et al., 2020). In Asia, the prevalence of myopia
is over 80%. Myopia is a major risk factor for ocular diseases, such
as cataracts, glaucoma, and choroidal neovascularization, and it is
also associated with similar levels of risk for hypertension, coronary
heart disease, and stroke (Baumgarten et al., 2018). According to a
study by Naidoo et al. (2019), the potential global economic loss
associated with myopia in 2015 was nearly $250 billion. Hence,
myopia is a medical problem as well as a heavy social problem that
has received increasing attention.

Studies have shown that the choroid plays an important
role in regulating ocular development. Blood vessels are a major
component of the choroid, and studies have shown that choroidal
vessel density decreases with age in healthy people over 30 years
old (Fujiwara et al., 2016), while changes in choroidal vessel
lumen area can directly affect choroidal thickness (Li et al., 2018).
Changes in choroidal thickness (CT) affect the diffusion dynamics
between the retina and the sclera, mediating the effect of retinal
signals on the sclera and thus regulating scleral growth and
refractive state of the eye (Summers, 2013). Numerous previous
studies have found that the choroid thickness in myopia differs
significantly from emmetropia (Tian et al., 2021; Xiuyan et al.,
2021). Nishida et al. (2012) found a negative correlation between
CT and age and diopter in patients with high myopia, which is an
important predictor of visual acuity. Similarly, consistent findings
were obtained in animal models of myopia, where CT was found
to be significantly thinner in both chicks and guinea pigs after
myopia modeling (Fitzgerald et al., 2002; Lu et al., 2009; Zhang
et al., 2019). However, the mechanism leading to CT changes is
not clear.

Epidermal growth factor-containing fibulin-like extracellular
matrix protein 1 (EFEMP1) is a 55 kDa disulfide-bonded secreted
extracellular matrix glycoprotein widely expressed in epithelial
and endothelial cells (Cheng et al., 2020). Numerous studies have
found that EFEMP1 is highly expressed in elastin-rich tissues of
human and mouse eyes, especially in the corneal and choroidal
retinal pigment epithelium (Livingstone et al., 2020). EFEMP1 is
typically characterized by a structural domain rich in epidermal
growth factor (EGF), while EGF has been proven to be highly
associated with myopia (Jonas et al., 2021). Meanwhile, Daniel et al.
(2020) observed structural deformities in the cornea by altering
the expression of EFEMP1. The cornea is part of the refractive
system. These studies suggest that EFEMP1 may play a role in the
development of myopia. In addition, Cheng et al. (2020) found that
EFEMP1-overexpressing HUVECs showed a significant increase
in tube formation and proliferation. Since CT depends on its
perfusion rate, we speculate that EFEMP1 may act as a signaling
molecule to regulate the alteration of CT in the development of
myopia.

To date, whether the protein levels of EFEMP1 in the choroid
change during the development of form-deprivation myopia
(FDM) has not been reported. Therefore, we scanned the choroid
of myopic subjects using OCTA to analyze the changes in thickness,
and EFEMP1 levels in the participants’ tears were measured and
subsequently validated in the choroidal tissue of FDM guinea pigs

to investigate the possible molecular mechanisms involved in the
regulation of CT changes by EFEMP1 in myopic patients.

Materials and methods

Study subjects

One hundred thirty-one subjects (131 eyes) were recruited
at Jinshan Hospital of Fudan University from October 2019 to
October 2021. The inclusion criteria of all subjects were: (1)
age range from 18 to 70 years old, (2) spherical equivalence
(SE) ≤ + 0.5 D, (3) intraocular pressure ≤21 mmHg, (4) no
ocular lesions, and (5) right-handedness. The exclusion criteria
were: (1) smokers and alcoholics, (2) eye diseases, (3) systemic
diseases, such as diabetes and hypertension, (4) pregnant or
breastfeeding patients, (5) long-term chronic treatment, and (6)
history of ophthalmic surgery. All subjects were divided into three
groups: (1) Emmetropia (EM) group: SE ranged from −0.5 to +0.5
(D); (2) Non-high myopia (Non-HM) group: SE > −6.0 D; (3)
High myopia (HM) group: SE ≤ −6.0 D. All examinations were
performed with the patient’s informed consent.

Clinical examinations

All adult subjects underwent ocular examination, including
diopter (CT-5000; Topcan Corporation, Tokyo, Japan), best
corrected visual acuity (BCVA) in angle of minimum resolution
(LogMAR), intraocular pressure measurement (CT- 80; Canon
Inc., Tokyo, Japan), slit lamp examination (SL-F7; Topcan
Corporation, Tokyo, Japan), and fundus photography (VISUCAM
200; Carl Zeiss, Jena, Germany). Eyeball biological parameters
were measured in 131 adult subjects using A-ultrasound
(Aviso; Quantel, France) and IOL-Master 500 (Carl Zeiss,
Jena, Germany), respectively.

Image acquisition and analysis

Fundus scans of the optic disc area were performed on all
subjects using a 6 mm × 6 mm 3D Disc mode in Triton
OCTA (Topcan, Tokyo, Japan) (Liu et al., 2020). The choroid
was automatically stratified using OCTA software, and the
measurement partitions were divided into four quadrants (S,
Superior; I, Inperior; N, Nasal; T, Temporal) according to the
diagonal of the two quadrants by the Early Treatment Diabetic
Retinopathy Study (ETDRS) (Figure 1). The exclusion criteria for
OCTA examination were signal intensity index <40 and images
with severe artifacts due to poor eye fixation.

Tear collection and preservation

A 0.5 mm diameter polyethylene capillary was placed in the
conjunctival sac of the lower dome, and 5–20 µL of tears were
collected from both eyes by siphoning into Eppendorf tubes and
stored at−80◦C for examination.
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FIGURE 1

Representative fundus photographs, optical coherence tomography (OCT) images, and thickness graph of EM (A), non-HM (B), and HM (C) groups.
EM, emmetropia; HM, high myopia.

Enzyme-linked immunosorbent assay

A human EFEMP1 ELISA kit (ZN2177; Xi’an Baiolaib
Biotechnology Co., Ltd) was used for the determination of
EFEMP1 content in tear fluid. One hundred microliters of tear
fluid per tube was used for enzyme-linked immunosorbent assay
(ELISA) analysis. EFEMP1 content in tear fluid was measured
after preparation of 3.125–100 ng/ml standards (Supplementary
Figure 1).

Animal experiments

Two-week-old, 100–150 g tricolor male guinea pigs were
purchased from Danyang Changyi Laboratory Animal Breeding Co
(Jiangsu, China). All animals are kept in natural light conditions to
ensure an adequate daily supply of food, water, and fresh vegetables.
All animal experiments were approved by Shanghai Public Health
Clinical Center Laboratory Animal Welfare & Ethics Committee
and in accordance with the ARVO Statement on the Use of Animals
in Ophthalmic and Vision Research.

Animal grouping and model preparation

Twenty-two guinea pigs were randomly divided into the FDM
group and the control group. For the FDM group, a translucent
latex balloon mask was used to cover the right eye, and all other
parts of the face were exposed. No treatment was used for the
control group. All animals were kept in a natural light environment.

Measurement of ocular biometric
features

All guinea pigs were labeled and numbered, and SE was
measured in a dark room with streak retinoscopy (YZ24; Six-
Six Vision Technology Co., Ltd). Measurements were averaged
three times and were accurate to 0.01 D. The conjunctival sac
was filled with 1% tropicamide drops three times, each time at
5 min intervals, and the axial length of the eye was measured using
A-scan ultrasound (OD1-A, Kaixin Electronic Instrument Co., Ltd.,

TABLE 1 The primer sequences.

Primer Forward 5′-3′ Reverse 5′-3′

EFEMP1 GGACGCACAACTGTAGAGCAG
AC

CTTTGGTGGCAATATGGAGGG
ATGG

β-actin CTGGGTATGGAATCCTGTGGC
ATC

CTGTGTTGGCATAGAGGTCCT
TACG

FIGURE 2

Spherical equivalent in the right eyes of the three groups.
∗∗∗p < 0.001, compared with EM group; ###p < 0.001, compared
with non-HM group. SE, spherical equivalent; EM, emmetropia; HM,
high myopia.

China). Manual measurements were averaged 10 times and were
accurate to 0.01 mm. Fundus photography was used to take pictures
of the fundus of the right eye of each guinea pig after anesthesia
(VISUCAM 200; Carl Zeiss, Jena, Germany).

Tissue preparation

The animals were euthanized by overdose with an
intraperitoneal injection of sodium pentobarbital. The right
eyeball was removed, and a portion of the eyeball was separated
from the choroidal tissue, quickly placed in a lyophilization
tube and stored at −80◦C for western blot experiments. The
remaining eyeball was fixed by perfusion and paraffin-embedded
for immunohistochemical experiments.
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TABLE 2 Demographics and clinical measurements by groups.

Parameter EM Non-HM HM p-value p-value1 p-value2 p-value3

Sample Size 15 46 70 NA NA NA NA

Age(years) 33.67± 12.12 36.39± 12.29 33.90± 12.09 0.721 1.000 1.000 1.000

SEX, F/M 7/8 16/30 28/42 0.698 – – –

SE(Diopter) −0.15± 0.25 −3.31± 1.46 −7.70± 1.36 <0.001 <0.001 <0.001 <0.001

BCVA, logMAR −0.01± 0.05 0.00± 0.02 0.05± 0.12 0.002 0.573 0.002 0.002

IOP(mmHg) 15.40± 2.53 14.96± 1.71 14.83± 2.63 0.737 0.899 0.824 0.985

p-value among the three groups; p-value1 , p-value EM and non-HM; p-value2 , p-value between EM and HM; p-value3 , p-value between non-HM and HM. EM, emmetropia; HM, high myopia;
NA, not applicable; SE, spherical equivalent.

Quantitative reverse transcription
polymerase chain reaction

Extraction of total RNA from choroidal tissues using
Tissue RNA Purification Kit (Yishan Biotechnology, China).
The gene transcription was quantified by quantitative RT-PCR
with PrimeScriptTM RT Master Mix Kit (Takara, Shiga, Japan).
The sequence of the primers are shown in Table 1 (Sangon
Biotechnology, China).

Western blotting

Frozen choroidal tissues were added proportionally (10 mg)
to 100 µL of radioimmunoprecipitation assay buffer (Beyotime,
China), and 1 mm phenylmethanesulfonyl fluoride (PMSF,
Beyotime, China) was mixed and then homogenized on ice
using a tissue homogenizer. Protein concentrations were then
determined using a BCA protein assay kit (Beyotime, China).
Protein samples (25 µg) were separated by 10% SDS–PAGE and
transferred to a polyvinylidene difluoride (PVDF) membrane.
After blocking with 5% skim milk for 1 h at room temperature,
the membrane was incubated with EFEMP1 antibody (1:1000,
ab106429, Abcam, Cambridge, MA, USA) at 4◦C overnight and
then incubated with species-specific HRP-conjugated secondary
antibodies (diluted 1:5000, CoWin Biosciences, Cambridge, MA,
USA) for 1 h at room temperature. Then, radioautography-
enhanced chemiluminescence (ECL, Thermo Scientific) was
performed. β-actin (1:5000, 69,009-1, ProteinTech, Chicago, IL,
USA) was used as an internal standard. The grayscale values of each
band were calculated and statistically analyzed.

Immunohistochemistry

Paraffin-embedded sections containing eyeball tissue were
deparaffinized in a 60◦C oven for 50 min and then rehydrated
in xylene and graded alcohol solutions. First, tissue antigens were
extracted in a rice cooker at 95◦C containing citrate antigen
retrieval solution, and tissue sections were then incubated in 3%
H2O2 solution for 15 min at room temperature to inactivate
endogenous peroxidase. Nonspecific binding was blocked with goat
serum for 10 min at room temperature. Slides were incubated
overnight at 4◦C with EFEMP1 primary antibody (ab106429,
Abcam, Cambridge, MA, USA) diluted to 1:50. After 18 h, the

FIGURE 3

Ocular biometric parameters of the right eye measured by A-scan
and IOL-Master. (A) AL in three groups. (B) VCD in three groups.
(C) AC/AL in three groups. (D) VCD/AL in three groups. (E) ACD in
three groups. (F) AL/CR in three groups. ∗∗∗p < 0.001, compared
with EM group; ###p < 0.001, compared with non-HM group. EM,
emmetropia; HM, high myopia; AL, axial length; VCD, vitreous
chamber depth; AC, anterior chamber depth; ACD, anterior
chamber depth; CR, radius of corneal curvature.

slides were washed with PBS (0.01 M; pH 7.4) for 5 min, which
was repeated three times. After incubating with secondary antibody
for 30 min, a 3,3′-diaminobenzidine-dine chromogen kit was used
for staining, followed by staining with hematoxylin for 2.5 min at
room temperature, rinsing the sample with tap water, using dilute
hydrochloric acid to acidify the hematoxylin and allowing the slide
to dry. Then, they were sealed with neutral gum. PBS was used as a
negative control instead of primary antibody.

Statistical analysis

All data were analyzed using the statistical software SPSS
(version 25, SPSS Inc., Chicago, IL, USA). Data are presented
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TABLE 3 Choroidal parameters in the participant’s right eye.

Parameter EM Non-HM HM p-value p-value1 p-value2 p-value3

Sample size 15 46 70 NA NA NA NA

CT (µm) 270.87± 62.01 233.76± 80.94 195.91± 63.23 <0.001 0.029 0.001 0.015

CTs (µm) 163.00± 58.96 165.33± 60.58 143.57± 46.52 0.079 1.000 0.606 0.100

CTi (µm) 131.87± 47.00 125.43± 52.86 99.67± 34.91 0.005 1.000 0.03 0.006

CTt (µm) 150.33± 63.65 125.35± 52.90 104.19± 40.33 0.009 0.247 0.003 0.065

CTn (µm) 165.87± 62.35 154.50± 59.18 146.40± 45.19 0.383 0.903 0.607 0.817

p-value among the three groups; p-value1 , p-value EM and non-HM; p-value2 , p-value between EM and HM; p-value3 , p-value between non-HM and HM. EM, emmetropia; HM, high myopia;
NA, not applicable; CT, choroid thickness; s, superior; i, inferior; t, temporal; n, nasal.

FIGURE 4

Choroidal thickness of right eye. (A) Thickness in three groups. (B) Scatter plot of correlation between age and CT. (C) Scatter plot of correlation
between SE and CT. ∗∗p < 0.01, compared with EM group; ##p < 0.01, compared with non-HM group. EM, emmetropia; HM, high myopia; CT,
choroid thickness; SE, spherical equivalence; s, superior; i, inferior; t, temporal; n, nasal. ∗p < 0.05.

as the means ± SEM. Comparisons between groups were
performed using independent t test, one-way ANOVA, Welch,
and Brown-Forsythe test followed by Bonferroni and Tamhini
multiple comparison tests. A p-value < 0.05 was considered
statistically significant.

Results

General information and ocular
parameters

In total, 131 subjects (51 females and 80 males) were collected in
this study and divided into EM (−0.5 D ≤ SE ≤ + 0.5 D), non-
HM (−6 D < SE < −0.5 D), and HM groups (SE ≤ −6 D); the
mean SE of the three groups were−0.15± 0.25 D,−3.31± 1.46 D,
and−7.70± 1.36 D, respectively. There was a significant difference
in SE among the three groups (p < 0.001) (Figure 2 and Table 2).
The demographic characteristics and clinical data of the subjects
in the three groups are shown in Figures 3 and Supplementary
Tables 1, 2.

CT in different choroid regions and
correlation between CT, SE, and age

The mean choroidal thicknesses of the EM group, non-HM
group, and HM group were 270.87± 62.01 µm, 233.76± 80.94 µm,

FIGURE 5

EFEMP1 concentrations of tear between different groups. (A) Tear
EFEMP1 concentration in emmetropia group and myopic group.
(B) EFEMP1 concentration of tears in male and female groups.
∗∗∗p < 0.001, compared with EM group. EM, emmetropia.

and 195.91 ± 63.23 µm, respectively, with significant differences
between the three groups (p < 0.001). The segmentation of
choroidal regions using ETDRS showed that the thickness of CTi
and CTt in the EM group was significantly thinner than that in
the HM group (p < 0.05), and the thickness of CTi in the HM
group was significantly thinner than that in the non-HM group
(p < 0.01) (Table 3). In the high myopia group, there was a
significant positive correlation between CT and age (r = −0.3613,
p = 0.0021), while there was no significant correlation with SE
(p > 0.05) (Figure 4). Signal intensity index of OCTA examination
was >40 in all subjects.
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FIGURE 6

Correlation between tear concentrations of EFEMP1 and ocular biometric parameters in two groups. (A) Spherical equivalence. (B) Axial length.
(C) Anterior chamber depth. (D) Axial length/Corneal curvature radius. •, ◦, 4, N: scatter plot.

Tear concentrations of EFEMP1 and
correlations between EFEMP1 levels and
ocular biometric parameters

The average levels of EFEMP1 tears in the myopia group
and the emmetropia group were 150.53 ± 42.37 ng/ml and
244.89 ± 51.35 ng/ml, respectively, with a significant difference
between the two groups (p< 0.001) (Figure 5). Tear concentrations
of EFEMP1 in the myopia group were negatively correlated with SE
(r = −0.4800, p < 0.001), and AL (r = 0.5991, p < 0.001), ACD
(r = 0.4175, p < 0.001), and AL/CR (r = 0.4639, p < 0.001) were
positively correlated (Figure 6).

Diopter and axial length and expression
of EFEMP1 mRNA and protein in guinea
pigs

After 4 weeks of covering, the FDM group showed a significant
decrease in diopter (p < 0.001), a gradual increase in axial length
(Figure 7), and a significant increase in EFEMP1 mRNA and
protein expression in the choroid compared with the control group
(all p < 0.001) (Figure 8).

EFEMP1 immunohistochemical staining

As shown in Figure 9, EFEMP1 was mainly localized in the
ganglion cell layer, inner plexiform layer, inner nuclear layer, RPE

layer, scleral extracellular matrix, choroidal vessel wall, and other
structures.

Discussion

The choroid is a highly vascularized tissue structure located
between the retina and the sclera. In addition to providing oxygen
and nutrients to the outer retina, it also mediates visual signals
to regulate refractive development and plays an important role
in the process of emmetropia or myopia progression (Nickla and
Wallman, 2010). Histological studies have suggested that choroidal
thickness is closely related to changes in choroidal blood flow (CBF)
(Fitzgerald et al., 2002), and numerous studies have been conducted
to measure changes in CBF between myopia and emmetropia
groups, yet the results have been inconsistent. Some studies
have concluded insignificant changes in CBF between myopia
and emmetropia (Milani et al., 2018), but others have shown a
significant decrease in CBF in myopic patients (Wu et al., 2021).
Furthermore, Al-Sheikh et al. (2017) found that blood flow density
in the retinal layer was reduced in highly myopic eyes compared
to controls, while blood perfusion in the choroidal capillary layer
was increased. The inconsistency of the results of the above studies
may be related to various factors, such as the observation site
and the sensitivity of the instrument. As an objective indicator of
choroidal changes, CT provides a clearer indication of the role it
may play in myopia development than CBF (Ohno-Matsui and
Jonas, 2019). An abundance of studies has found that CT decreases
with increasing axial length, especially in patients with high myopia
(Duan et al., 2019). In the present study, we found significant
differences in CT values among the three groups of subjects, in
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FIGURE 7

Changes in right eye diopter and axial length in two groups.
(A) Changes of refraction. (B) Changes of axial length. (C) Fundus of
guinea pigs in control group. (D) Fundus of guinea pigs in FDM
group. ∗∗∗p < 0.001, compared with control group. FDM,
form-deprivation myopia.

FIGURE 8

Expression of EFEMP1 mRNA and protein. (A) Western blot image of
the two groups. (B) mRNA expression of EFEMP1. (C) Protein
expression of EFEMP1. ***p < 0.001, compared with control group,
n = 5.

particular, the HM group was significantly different from the other
two groups, suggesting a possible association between the myopia
degrees and choroidal thicknesses, which is consistent with the
results of previous studies (Deng et al., 2018).

In the process of searching for the molecular mechanism of
choroid changes in myopia patients, the collection of tears from
myopia patients is a feasible operation, which has the advantages
of being noninvasive and acceptable. At present, tear detection is
mainly used for the analysis of ocular surface diseases, such as
dry eye and conjunctivitis (O’Neil et al., 2019). Fewer studies have
observed changes in tear composition in myopia studies; however,
we consider this to be an exploration of ways to find relevant

molecular mechanisms. First, tears are secreted by lacrimal glands
and conjunctival goblet cells. The blood flow of the lacrimal gland,
conjunctiva, and choroid all belong to the branches of ophthalmic
arteries and return to the cavernous sinus through the superior
ophthalmic vein (Wang, 2002), with a certain homology between
the three, which may indirectly reflect molecular changes in the
choroid or in the eye. Second, tears have been used as a biomarker
to assess the progression and prognosis of ophthalmic diseases,
such as cataracts and age-related macular degeneration (Brown
et al., 2018; Engelbrecht et al., 2020). This study is the first to report
the relationship between the tear concentration of EFEMP1 and
biological parameters of myopic eyes. We found that the EFEMP1
concentration in myopic tears was significantly increased and
showed a significant negative correlation with SE and a significant
positive correlation with AL, ACD, and AL/CR, suggesting that
upregulation of EFEMP1 may be associated with the development
of axial myopia.

Combined with the decrease in choroid thickness in myopic
patients and the significant increase in EFEMP1 concentrations
in the tears of myopic patients in this study, we speculated that
EFEMP1 might be involved in the molecular mechanism of CT
changes during the development of myopia. Due to the limitations
of tear detection, we subsequently verified this hypothesis with
FDM guinea pigs and found that EFEMP1 was significantly
increased in choroid tissue. However, how EFEMP1 acts on
downstream molecules and the possible specific mechanism of
EFEMP1 in the FDM process need to be further studied.

Previous studies have found that altered EFEMP1 expression is
closely associated with many ocular diseases (Springelkamp et al.,
2015), mutations in EFEMP1 expression (R345 W) may lead to
Malattia Leventinese (Tsai et al., 2021), and the expression of
EFEMP1 is abnormally high in the ciliary body of patients with
open-angle glaucoma (Collantes et al., 2022). However, studies
on changes in EFEMP1 protein in the choroid in myopia models
have not been reported. EFEMP1 contains 493 amino acids and
belongs to a family of proteins containing the EGF structural
domain. All known sequences of epidermal growth factor receptor
(EGFR)-binding proteins have been compared with EFEMP1
sequences, and it was found that EFEMP1 has high homology
with EGF and interacts with EGFR (Camaj et al., 2009; Chu and
Peters, 2008). Dong et al. (2020) showed that EGFR expression is
significantly increased in myopic guinea pigs and that intravitreal
injection of EGFR antibody is dose-dependently associated with
axial elongation of lens-induced myopia in guinea pigs, suggesting
that EFEMP1 may synergize with EGFR in myopia regulation.
In addition, (Roybal et al., 2005) found that overexpression of
EFEMP1 in RPE cells effectively activated the unfolded protein
response (UPR), leading to upregulation of vascular epidermal
growth factor (VEGF) expression. UPR is thought to be a
protective mechanism for cells against external stimuli, but when
endoplasmic reticulum stress is persistent, UPR is unable to correct
the imbalance protein homeostasis and initiates apoptosis-related
signaling. Studies have shown that as myopia progresses, especially
high myopia, RPE cell density decreases (Zhang and Wildsoet,
2015). Meanwhile, anti-VEGF was proven to have an inhibitory
effect on myopia development in a chick model of deprivation
myopia (Mathis et al., 2014). Scholars have found that vascular
endothelial factor A (VEGF-A) is highly expressed in the choroidal
vessel wall and may play a large role in the response to choroidal
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FIGURE 9

Immunohistochemical staining of EFEMP1. A brown stain (red arrow) represents the location of EFEMP1 and a blue stain represents the nucleus.

thickening caused by myopic defocusing (Mathis et al., 2014).
Enhanced EFEMP1 expression around the choroidal canal wall
was seen in the IHC results of this study. Therefore, we speculate
that the increase in EFEMP1 may be associated with the increase
in EGFR and VEGF during myopia development. Moreover,
EFEMP1 is important for maintaining the integrity of the basement
membrane and the binding of other extracellular matrices, such as
elastic fibers and basement membranes (Zhang et al., 2020). Some
researchers have found that EFEMP1 interacts with elastin as well as
collagen 15A1 (a component of collagen fibrils) to produce proteins
that affect the expression and function of these proteins (Jorgenson
et al., 2015). Peng et al. (2022) found reduced EFEMP1 expression
in the abdominal fascia of patients with inguinal hernia. Albig et al.
(2006) concluded that EFEMP1-deficient female rats had broken
elastic fibers in the vaginal wall. The above studies suggest that
EFEMP1 has a specific role in the integrity of elastic fibers. The
choroid is rich in elastin, and as the choroidal thickness thins due
to the growth of the eye axis in myopic patients, the elastin content
is altered, which may stimulate the altered expression of EFEMP1.
Targeted regulation of EFEMP1 may be useful for investigating the
molecular mechanism of CT changes during myopia development.

In summary, OCTA was used to measure the CT thickness
of patients with different degrees of myopia, and significant
differences were found between groups. Meanwhile, tears of
patients with emmetropia and myopia were collected and analyzed,
and EFEMP1 concentrations in tears were significantly increased.
Subsequently, FDM guinea pigs were used to validate EFEMP1
for CT thickness changes. The expression of EFEMP1 mRNA
and protein was upregulated in the choroid of FDM guinea pigs.
We speculate that EFEMP1 may be involved in the development
of myopia, especially in choroid thickness. EFEMP1 may be a
potential target for the prevention and treatment of choroid
thickness changes in myopia. However, the limitations of this study
are the small sample size collected and the need to further explore

the potential mechanisms of EFEMP1 and CT changes in molecular
as well as different experimental models in the future.
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Background: The effective analysis methods for steady-state visual evoked

potential (SSVEP) signals are critical in supporting an early diagnosis of glaucoma.

Most efforts focused on adopting existing techniques to the SSVEPs-based brain–

computer interface (BCI) task rather than proposing new ones specifically suited

to the domain.

Method: Given that electroencephalogram (EEG) signals possess temporal,

regional, and synchronous characteristics of brain activity, we proposed a

transformer–based EEG analysis model known as EEGformer to capture the EEG

characteristics in a unified manner. We adopted a one-dimensional convolution

neural network (1DCNN) to automatically extract EEG-channel-wise features.

The output was fed into the EEGformer, which is sequentially constructed using

three components: regional, synchronous, and temporal transformers. In addition

to using a large benchmark database (BETA) toward SSVEP-BCI application to

validate model performance, we compared the EEGformer to current state-of-

the-art deep learning models using two EEG datasets, which are obtained from

our previous study: SJTU emotion EEG dataset (SEED) and a depressive EEG

database (DepEEG).

Results: The experimental results show that the EEGformer achieves the best

classification performance across the three EEG datasets, indicating that the

rationality of our model architecture and learning EEG characteristics in a unified

manner can improve model classification performance.

Conclusion: EEGformer generalizes well to different EEG datasets, demonstrating

our approach can be potentially suitable for providing accurate brain activity

classification and being used in different application scenarios, such as

SSVEP-based early glaucoma diagnosis, emotion recognition and depression

discrimination.
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1. Introduction

Glaucoma is known as a “silent thief of sight,” meaning
that patients do not notice the health condition of their visual
function until vision loss and even blindness occur (Abdull et al.,
2016). According to the world health organization, the number
of people with glaucoma worldwide in 2020 is 76 million, and
the patient number would be increased to 95.4 million in 2030.
As the population ages, the number with this condition will also
increase substantially (Guedes, 2021). Glaucoma causes irreversible
optic nerve vision damage. It is crucial to provide accurate early
screening to diagnose patients in their early stages so that they
can receive appropriate early treatment. Steady-state visual evoked
potentials (SSVEPs), which refer to a stimulus-locked oscillatory
response to periodic visual stimulation commonly exerted in the
visual pathway of humans, can be used to evaluate the functional
abnormality of the visual pathway that is essential for the complete
transmission of visual information (Zhou et al., 2020). SSVEPs are
always measured using electroencephalogram (EEG) measurement
and have been widely used in the study of brain–computer interface
(BCI). Because peripheral vision loss is a key diagnostic sign of
glaucoma, patients cannot be evoked by certain repetitive stimuli
with a constant frequency from vision loss regions (Khok et al.,
2020). Therefore, stimuli with the corresponding frequency are not
detected by the primary visual cortex. Thus, the SSVEPs-based BCI
applications can be used in the early diagnosis of visual function
detection for patients with glaucoma.

The effective analysis method for SSVEPs is critical in the
accurate early diagnosis of glaucoma. SSVEPs are EEG activity with
a spatial-spectral-temporal (SST) pattern. It is easy to understand
that SSVEP signals, such as the EEG signal measured over time,
could be analyzed using time series analysis methods. Brain
functional connectivity (BFC) can be used to capture spatial
patterns from multiple brain regions by analyzing the correlations
between brain activities detected from different regions. The
spectral pattern extraction method is the most popular method for
analyzing the frequency characteristics of EEG signals. For instance,
power spectra density–based analysis (PSDA) is a commonly used
frequency detection method that can classify various harmonic
frequencies from EEG signals (Zhang et al., 2020). In addition,
canonical correlation analysis (CCA) (Zhuang et al., 2020) and
other similar algorithms, such as multivariate synchronization
index (MSI) (Qin et al., 2021) and correlated component analysis
(COCA) (Zhang et al., 2019), are effective frequency detection
algorithms based on the multivariate statistical analysis method.
Although SST pattern extraction algorithms have demonstrated
satisfactory results, most patterns or features extracted from raw
EEG data require a manually predefined algorithm based on expert
knowledge. The procedure of learning handcrafted features for
SSVEP signals is not flexible and might limit the performance of
these systems in brain activity analysis tasks.

In recent years, deep learning (DL) methods have achieved
excellent performance in processing EEG-based brain activity
analysis tasks (Li Z. et al., 2022; Schielke and Krekelberg, 2022).
Currently, the mainstream technologies of using DL to process
SSVEP signal could be divided into two aspects: convolutional
neural network (CNN) based methods and transformer-based
methods. For the CNN-based methods, Li et al. (2020) propose a
CNN-based nonlinear model, i.e. convolutional correlation analysis

(Conv-CA), to transform multiple channel EEGs into a single EEG
signal and use a correlation layer to calculate correlation coefficients
between the transformed single EEG signal and reference signals.
Guney et al. (2021) propose a deep neural network architecture
for identifying the target frequency of harmonics. Waytowich
et al. (2018) design a compact convolutional neural network
(Compact-CNN) for high-accuracy decoding of SSVEPs signal.
For the transformer-based methods, Du et al. (2022) propose
a transformer-based approach for the EEG person identification
task that extracts features in the temporal and spatial domains
using a self-attention mechanism. Chen et al. (2022) propose
SSVEPformer, which is the first application of the transformer
to the classification of SSVEP. Li X. et al. (2022) propose a
temporal-frequency fusion transformer (TFF-Former) for zero-
training decoding across two BCI tasks. The aforementioned
studies demonstrate the competitive model performance of DL
methods in performing SSVEPs-based BCI tasks. However, most
existing DL efforts focused on applying existing techniques to the
SSVEPs-based BCI task rather than proposing new ones specifically
suited to the domain. Standard well-known network architectures
are designed for data collected in natural scenes and do not consider
the peculiarities of the SSVEP signals. Therefore, further research is
required to understand how these architectures can be optimized
for EEG-based brain activity data.

The main question is what is the specificity of the SSVEP
signal analysis domain and how to use machine learning methods
(particularly DL methods) to deal with the signal characteristics.
Because the SSVEP signal is EEG-based brain activity, we can
answer the question by analyzing the EEG characteristics in the
brain activity analysis domain. Specifically, EEG characteristics are
reflected in three aspects: temporal, regional, and synchronous
characteristics. The temporal characteristics (e.g., mean duration,
coverage, and frequency of occurrence) are easily traceable in
standard EEG data and provide numerous sampling points in a
short time (Zhang et al., 2021), thereby providing an efficient way
to investigate trial-by-trial fluctuations of functional spontaneous
activity. The regional characteristics refer to different brain regions
that are linked to distinct EEG bands (Nentwich et al., 2020).
The synchronous characteristics refer to the synchronous brain
activity pattern over a functional network including several brain
regions with similar spatial orientations (Raut et al., 2021).
Traditionally, brain response to a flickering visual stimulation
has been considered steady-state, in which the elicited effect is
believed to be unchanging in time. In fact, the SSVEPs belongs
to a signal with non-stationary nature, which indicates dynamical
patterns and complex synchronization between EEG channels can
be used to further understand brain mechanisms in cognitive and
clinical neuroscience. For instance, Ibáñez-Soria et al. explored
the dynamical character of the SSVEP response by proposing
a novel non-stationary methodology for SSVEP detection, and
found dynamical detection methodologies significantly improves
classification in some stimulation frequencies (Ibáñez-Soria et al.,
2019). Tsoneva et al. (2021) studied the mechanisms behind SSVEPs
generation and propagation in time and space. They concluded that
the SSVEP spatial properties appear sensitive to input frequency
with higher stimulation frequencies showing a faster propagation
speed. Thus, we hypothesize that a machine learning method that
can capture the EEG characteristics in a unified manner can suit the
SSVEPs-based BCI domain and improve the model performance in
EEG-based brain activity analysis tasks.
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In this study, we propose a transformer–based EEG analysis
model known as the EEGformer (Vaswani et al., 2017) to capture
the EEG characteristics in the SSVEPs-based BCI task. The
EEGformer is an end-to-end DL model, processing SSVEP signals
from the EEG to the prediction of the target frequency. The
component modules of the EEG former are depicted as follows:

(1) Depth-wise convolution-based one-dimensional convolution
neural network (1DCNN). The depth-wise convolution-based
1DCNN is first used to process the raw EEG input. Assuming
the raw data is collected from C EEG channels, there are
M depth-wise convolutional filters for generating M feature
maps. Each convolutional filter is responsible for shifting
across the raw data in an EEG-channel-wise manner and
extracting convolutional features from the raw data of each
EEG channel to form a feature map. Unlike other techniques
that manually extract temporal or spectrum features based
on the time course of the EEG signal, we use the depth-wise
convolutional filter to extract the EEG features in a completely
data–driven manner. Because the feature map is generated
by the same depth-wise convolutional filter, each row of the
feature map shares the same convolutional property. Follow-
up convolutional layers are allocated with several depth-
wise convolutional filters to enrich the convolutional features
and deepen the 1DCNN network. A three-dimensional
(3D) feature matrix is used to represent the output of the
1DCNN network. The x, y, and z dimensions of the 3D
feature matrix represent temporal, spatial, and convolutional
features, respectively.

(2) EEGformer encoder. This component module consists of
three sub-modules: temporal, synchronous, and regional
transformers, which are used in learning the temporal,
synchronous, and regional characteristics, respectively. The
core strategy of learning EEG characteristics by our model
mainly include two steps: input tokens that serve as the basic
elements of learning the temporal, synchronous, and regional
characteristics are sliced from the 3D feature matrix along the
temporal, convolutional, and spatial dimension, respectively.
And then, self-attention mechanism is employed to measure
the relationships between pairs of input tokens and give
tokens more contextual information, yielding more powerful
features for representing the EEG characteristics. The three
components could be performed in a sequential computing
order, allowing the encoder to learn the EEG characteristics in
a unified manner.

(3) EEGformer decoder. This module contains three
convolutional layers and one fully connected (FC) layer.
The output of the last FC layer is fed to a softmax function
which produces a distribution over several category labels.
The categorical cross entropy combined with regularization
was used as the loss function for training the entire
EEGformer pipeline. The EEGformer decoder is used to deal
with specific tasks, such as target frequency identification,
emotion recognition, and depression discrimination. In
addition to using a large benchmark database (BETA) (Liu
et al., 2020) to validate the performance of the SSVEP-BCI
application, we validate the model performance on two
additional EEG datasets, one for emotion analysis using EEG
signals [SJTU emotion EEG dataset (SEED)] (Duan et al.,

2013; Zheng and Lu, 2015) and the other for a depressive
EEG database (DepEEG) (Wan et al., 2020) obtained from
our previous study, to support our hypothesis that highlights
the significance of learning EEG characteristics in a unified
manner for EEG-related data analysis tasks.

The main contributions of this study are as follows: (1) current
mainstream DL models have superior ability in processing data
collected in natural scenes and might not adept at dealing with
SSVEP signals. To achieve a DL model that can be applied to the
specificity of the SSVEP signal analysis domain and obtain better
model performance in SSVEPs-based frequency recognition task,
we propose a transformer–based EEG analysis model known as
the EEGformer to capture the EEG characteristics in a unified
manner. (2) To obtain a flexible method for addressing the SSVEPs-
based frequency recognition and avoid the model performance
limited by manual feature extraction, we adopt 1DCNN to
automatically extract EEG-channel-wise features and fed them into
the EEGformer. This operation transforms our method into a
complete data–driven manner for mapping raw EEG signals into
task decisions. (3) To ensure the effectiveness and generalization
ability of the proposed model, we validate the performance of the
EEGformer on three datasets for three different EEG-based data
analysis tasks: target frequency identification, emotion recognition,
and depression discrimination.

2. Materials and methods

2.1. Dataset preparation

Table 1 shows some detailed information about the three
datasets (BETA, SEED, and DepEEG) that we used as benchmarks
to validate the effectiveness of this study. The participants’
column in the table describes how many subjects joined in the
corresponding data collection. The experiment per participant
(EPP) column shows how many experiments were performed by
each participant. The trails per experiment (TPE) column shows
how many trails are executed in one experiment. The channel
number (CHN) column shows the CHN of the EEG dataset.
The sampling rate (SR) column shows the down-sampling rate of
the EEG signal. The time length per trail (TLPT) column shows
the time length of a single trail in seconds. The labels column
shows the categorical emotion labels for the classification task and
emotional intensity for the regression task. Specifically, for the
target frequency identification task, we classified 40 categories of
harmonic frequencies and the frequency range is 8–15.8 HZ with
0.2 HZ intervals. For the emotion recognition task, we used arousal,
valence, and dominance rating scores as the dataset labels. For the
depression discrimination task, we classified EEG samples from
depressive or normal control.

2.2. Pipeline of EEGformer–based brain
activity analysis

Figure 1 shows the pipeline of EEGformer–based brain activity
analysis. The core modules of the pipeline include 1DCNN,
EEGformer encoder, and decoder. The input of the 1DCNN is an
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TABLE 1 Detail information on the three datasets.

Dataset Participants EPP TPE CHN SR (HZ) Labels TLPT

BETA 70 healthy subjects 4 40 64 250 40 harmonics, e.g., fj ∈ {8,8.2,. . . ,15.8} 2/3 s

SEED 15 healthy subjects 3 15 62 200 Positive, neutral, negative 305 s

DepEEG 12 healthy subjects and 23 depressives 1 1 6 500 Depressive, normal control ≥480 s

FIGURE 1

Pipeline of EEGformer for different tasks of brain activity analysis.

EEG segment represented using a two-dimensional (2D) matrix
of size S × L, where S represents the number of EEG channels,
and L represents the segment length. The EEG segment is de-trend
and normalized before being fed into the 1DCNN module, and the
normalized EEG segment is represented by x ∈ RS × L. The 1DCNN
adopts multiple depth-wise convolutions to extract EEG-channel-
wise features and generate 3D feature maps. It shifts across the data
along the EEG channel dimension for each depth-wise convolution
and generates a 2D feature matrix of size S × Lf , where Lf is the
length of the extracted feature vector. The output of the 1DCNN
module is a 3D feature matrix of size S × C × Le, where C is
the number of depth-wise convolutional kernels used in the last
layer of the 1DCNN module, Le is the features length outputted
by the last layer of the 1DCNN module. More specifically, the
1DCNN is comprised of three depth-wise convolutional layers.
Hence, we have the processing x → z1 → z2 → z3, where z1,
z2, and z3 denote the outputs of the three layers. The size of
the depth-wise convolutional filters used in the three layers is
1 × 10, valid padding mode is applied in the three layers and
the stride of the filters is set to 1. The number of the depth-
wise convolutional filter used in the three layers is set to 120,
ensuring sufficient frequency features for learning the regional and
synchronous characteristics. We used a 3D coordinate system to
depict the axis meaning of the 3D feature matrix. The X, Y, and
Z axes represent the temporal, spatial, and convolutional feature
information contained in the 3D feature matrix, respectively. The
output of the 1DCNN module is fed into the EEGformer encoder
for encoding the EEG characteristics (regional, temporal, and
synchronous characteristics) in a unified manner. The decoder is
responsible for decoding the EEG characteristics and inferencing
the results according to the specific task.

2.3. EEGformer encoder

The EEGformer encoder is used to provide a uniform
feature refinement for the regional, temporal, and synchronous
characteristics contained in the output of the 1DCNN module.
Figure 2 illustrates the EEGformer architecture and shows that
the EEGformer encoder uses a serial structure to sequentially

refine the EEG characteristics. The temporal, regional, and
synchronous characteristics are refined using temporal, regional,
and synchronous transformers, respectively. The outputs of the
1DCNN are defined as z3 ∈ RS × C × Le and are represented using
black circles in the green rectangle box.

The specific computing procedures of each transformer module
are depicted as follows:

2.3.1. Regional transformer module
The input of the regional transformer module is represented

by z3 ∈ RC × Le × S. The 3D matrix z3 is first segmented into S
2D submatrices along the spatial dimension. Each submatrix is
represented by Xreg

i ∈ RC × Le (i = 1,2,3,. . .,S). The input of the
regional transformer module is represented by S black circles in
the green rectangle box and each circle represents a submatrix.
The vector Xreg

(i,c) ∈ RLe is sequentially taken out from the Xreg
i

along the convolutional feature dimension and fed into the linear
mapping module. According to the terminology used in the vision
of transformer (ViT) studies, we defined the vector Xreg

(i,c) as a patch
of the regional transformer module. Each Xreg

(i,c) is represented by a
tiny yellow block in the Figure 2. The Xreg

(i,c) is linearly mapped into

a latent vector z(reg,0)
(i,c) ∈ RD using a learnable matrix M ∈ RD × Le :

z(reg,0)
(i,c) = MXreg

(i,c) + epos(i,c), (1)

where epos(i,c) ∈ RD denotes a positional embedding added to encode
the position for each convolutional feature changing over time.
The regional transformer module also consists of K ≥ 1 encoding
blocks, each block contains two layers: a multi-head self-attention
layer and a position-wise fully connected feed-forward network.
The resulting z(reg,0)

(i,c) is defined as a token representing the inputs

of each block, and the z(reg,0)
(0,0) indicates the classification token.

The l-th block produces an encoded representation z(reg,l)(i,c) for each
token in the input sequence by incorporating the attention scores.
Specifically, at each block l, three core vectors, including q(l,a)

(i,c) , k(l,a)
(i,c) ,

and v(l,a)
(i,c) are computed from the representation z(reg,l−1)

(i,c) encoded
by the preceding layer:

q(l,a)
(i,c) = W(l,a)

Q LN(z(reg,l−1)
(i,c) ) ∈ RDh , (2)
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Illustration of the EEGformer architecture.

k(l,a)
(i,c) = W(l,a)

K LN(z(reg,l−1)
(i,c) ) ∈ RDh , (3)

v(l,a)
(i,c) = W(l,a)

V LN(z(reg,l−1)
(i,c) ) ∈ RDh , (4)

where W(l,a)
Q , W(l,a)

K , and W(l,a)
V are the matrixes of query, key,

and value in the regional transformer module, respectively. LN()
denotes the LayerNorm operation, and a ∈ {1, 2, 3, . . ., A} is an
index over the multi-head self-attention units. A is the number of
units in a block. Dh is the quotient computed by D/A and denotes
the dimension number of three vectors. The regional self-attention
(RSA) scores for z(reg,l−1)

(i,c) in the a-th multi-head self-attention unit
is given as follows:

α
(l,a)
(i,c)

reg
= σ

q(l,a)(i,c)
√
Dh
·

[
k(l,a)(0,0)

{
k(l,a)(i,c)

}
c = 1,...,C

] ∈ RC, (5)

where σ denotes the softmax activation function, and the symbol ·
denotes the dot product for computing the similarity between the

query and key vectors. k(l,a)(i,c) and q(l,a)(i,c) represent the corresponding
key and query vectors, respectively. The equation shows that the
RSA scores are merely computed over convolutional features of
single brain region. That is, the RSA can calculate the contribution
of a changing mono-electrode convolutional feature to the final
model decision at a specific EEG channel. An intermediate vector
s(l,a)(i,c) for encoding z(reg,l−1)

(i,c) is given as follows:

s(l,a)(i,c) = α
(l,a)
(i,0)v

(l,a)
(i,0) +

C∑
j = 1

α
(l,a)
(i,j)

v(l,a)
(i,j)
∈ RDh . (6)

The encoded feature z(reg,l)(i) ∈ RC × D by the l-th block is computed
by first concatenating the intermediate vectors from all heads,
and the vector concatenation is projected by matrix WO ∈ RD × L,
where L is equal to A = Dh. z

′(reg,l)
(i) is the residual connection

result of the projection of the intermediate vectors and the z(reg,l−1)
(i)

encoded by the preceding block. Finally, the z
′(reg,l)
(i) normalized

by LN() is passed through a multilayer perceptron (MLP) using
the residual connection. The output of the regional transformer is
represented by z4 ∈ RS × C × D.

2.3.2. Synchronous transformer module
The input of the synchronous transformer module is

represented by z4 ∈ RS × Le × C. The 3D matrix z4 is first segmented
into C 2D submatrices along the convolutional feature dimension.
Each submatrix is represented by Xsyn

i ∈ RS × D (i = 1,2,3,. . .,C).
The vector Xsyn

(i,s) ∈ RD is sequentially taken out from the Xsyn
i along

the spatial dimension and fed into the linear mapping module. The
Xsyn

(i,s) is defined as a patch and is linearly mapped into a latent vector

z(syn,0)
(i,s) ∈ RD using a learnable matrix M ∈ RD × D:

z(syn,0)
(i,s) = MXsyn

(i,s) + epos(i,s), (7)

where epos(i,s) ∈ RD denotes a positional embedding added to encode
the spatial position for each EEG channel changing over time. The
synchronous transformer also consists of K ≥ 1 encoding blocks,
and each block contains two layers: a multi-head self-attention
layer and a position-wise fully connected feed-forward network.
The resulting z(syn,0)

(i,s) is defined as a token representing the inputs

of each block, and the z(syn,0)
(0,0) indicates the classification token.

The l-th block produces an encoded representation z(syn,l)(i,s) for each
token in the input sequence by incorporating the attention scores.
Specifically, at each block l, three core vectors, including q(l,a)

(i,s) , k(l,a)
(i,s) ,

and v(l,a)
(i,s) are computed from the representation z(syn,l−1)

(i,s) encoded
by the preceding layer:

q(l,a)
(i,s) = W

′(l,a)
Q LN(z(syn,l−1)

(i,s) ) ∈ RDh , (8)

k(l,a)
(i,s) = W

′(l,a)
K LN(z(syn,l−1)

(i,s) ) ∈ RDh , (9)

v(l,a)
(i,s) = W

′(l,a)
V LN(z(syn,l−1)

(i,s) ) ∈ RDh , (10)

where W
′(l,a)
Q , W

′(l,a)
K , and W

′(l,a)
V are the matrixes of query, key,

and value in the synchronous transformer module, respectively.
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Synchronous e self-attention (SSA) scores for z(syn,l−1)
(i,s) in the

a-th multi-head self-attention unit are given as follows:

α
(l,a)
(i,s)

syn
= σ

q(l,a)(i,s)
√
Dh
·

[
k(l,a)(0,0)

{
k(l,a)(i,s)

}
s = 1,...,S

] ∈ RS, (11)

where k(l,a)(i,s) and q(l,a)(i,s) denote the corresponding key and query
vectors, respectively. The equation shows that the SSA scores are
merely computed over the feature map extracted by the same
depth-wise convolution. The SSA can calculate the contribution of
convolution features changing over time to the final model decision
at a specific EEG channel. An intermediate vector s(l,a)(i,s) for encoding

z(syn,l−1)
(i,s) is given as follows:

s(l,a)(i,s) = α
(l,a)
(i,0)v

(l,a)
(i,0) +

C∑
j = 1

α
(l,a)
(i,j)

v(l,a)
(i,j)
∈ RDh . (12)

The encoded feature z(syn,l)(i) ∈ RS × D by the l-th block is computed
by first concatenating the intermediate vectors from all heads,
and the vector concatenation is projected by matrix WO ∈ RD × L.
z
′(syn,l)
(i) is the residual connection result of the projection of the

intermediate vectors and the z(syn,l−1)
(i) encoded by the preceding

block. Finally, the z
′(syn,l)
(i) normalized by LN() is passed through

a multilayer perceptron (MLP) using the residual connection. The
output of the synchronous transformer is represented by z5 ∈

RC × S × D.

2.3.3. Temporal transformer module
The input of the temporal transformer module is z5 ∈

RC × S × D. To avoid huge computational complexity, we compress
the original temporal dimensionality D of z5 into dimensionality M.
That is, the 3D matrix z5 is first segmented and then averaged into
M 2D submatrices along the temporal dimension. Each submatrix
is represented by Xtemp

i ∈ RS × C (i = 1,2,3,. . .,M) and the M
submatrices are concatenated to form Xtemp

∈ RM × S × C. Each
submatrix Xtemp

i is flattened into a vector X
′temp
i ∈ RL1, where L1

is equal to S × C. The X
′temp
i is defined as a patch and is linearly

mapped into a latent vector z(temp,0)
(i) ∈ RD using a learnable matrix

M ∈ RD × L:
z(temp,0)
(i) = MX

′temp
(i) + epos(i) , (13)

where epos(i) ∈ RD denotes a positional embedding added to encode
the temporal position for each EEG channel changing over the
features extracted by different depth-wise convolutional kernels.
The module consists of K ≥ 1 encoding blocks, each block contains
two layers: a multi-head self-attention layer and a position-wise
fully connected feed-forward network. The resulting z(temp,0)

(i) is
defined as a token representing the inputs of each block, and the
z(temp,0)
(0) indicates the classification token. The l-th block produces

an encoded representation z(temp,l)
(i) for each token in the input

sequence by incorporating the attention scores. Specifically, at
each block l, three core vectors, including q(l,a)

(i) , k(l,a)
(i) , and v(l,a)

(i)

are computed from the representation z(temp,l−1)
(i) encoded by the

preceding layer:

q(l,a)
(i) = W

′′(l,a)
Q LN(z(temp,l−1)

(i) ) ∈ RDh , (14)

k(l,a)
(i) = W

′′(l,a)
K LN(z(temp,l−1)

(i) ) ∈ RDh , (15)

v(l,a)
(i) = W

′′(l,a)
V LN(z(temp,l−1)

(i) ) ∈ RDh , (16)

where W
′′(l,a)
Q , W

′′(l,a)
K , and W

′′(l,a)
V are the matrixes of query, key,

and value in the temporal transformer, respectively. The temporal
self-attention (TSA) score for z(T,l−1)

(i,s) in the a-th multi-head self-
attention unit is given as follows:

α
(l,a)
(i)

temp
= σ

q(l,a)(i)
√
Dh
·

[
k(l,a)(0)

{
k(l,a)(i)

}
i = 1,...,M

] ∈ RM. (17)

The equation shows that the TSA scores are merely computed over
the temporal dimension. The TSA can calculate the contribution of
multiple electrode features changing over different convolutional
features to the final model decision at a specific time. An
intermediate vector s(l,a)(i) for encoding z(temp,l−1) is given as follows:

s(l,a)(i) = α
(l,a)
(i,0)v

(l,a)
(i,0) +

M∑
j = 1

α
(l,a)
(i,j)

v(l,a)
(i,j)
∈ RDh . (18)

The encoded feature z(temp,l)
∈ RM × L1 by the l-th block is

computed by first concatenating the intermediate vectors from
all heads, and the vector concatenation is projected by matrix
WO ∈ RL1 × L. z

′(temp,l) is the residual connection result of the
projection of the intermediate vectors and the z(temp,l−1) encoded
by the preceding block. Finally, the z

′(temp,l) normalized by LN() is
passed through a multilayer perceptron (MLP) using the residual
connection. The output of the temporal transformer is represented
by O ∈ RM × L1.

2.4. EEGformer decoder

The EEGformer is used to extract the temporal, regional,
and synchronous characteristics in a unified manner, as well
as to deal with various EEG-based brain activity analysis tasks.
Unlike the original transformer decoder, which uses a multi-
head self-attention mechanism to decode the feature output of
the corresponding encoder, we designed a convolution neural
network (CNN) to perform the corresponding task. The CNN
contains three convolutional layers and one fully connected layer.
Specifically, the output O ∈ RM × L1 of the EEGformer encoder is
reshaped to X ∈ RS × C × M , where M is the dimensional length of
the encoded temporal feature. The first layer of our EEGformer
decoder (with the weights w1 ∈ RC × 1) linearly combined different
convolutional features for normalization across the convolutional
dimension. Thus, the output data shape of the first layer is X1 ∈

RS × M . The motivation to convolve C feature maps along the
convolutional dimension of X into one is to allow the network
to make data–driven decisions about the contribution of different
convolutional features to the final model decision. The second layer
of our CNN was responsible for combining information across
spatial dimensions of X and extracting the entire information
while discarding redundancy or noninformative variations. To
this end, our CNN convolved X along the spatial dimension
using the weights w2 ∈ RS × N and returns the plane X2 ∈ RM × N ,
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where N denotes the number of convolutional filters used in the
second layer. The third layer halved the dimension and reduced
the parameter complexity using the weights w3 ∈ R(M/2) × N to
produce the output plane X3 ∈ R(M/2) × N . The fourth layer of our
CNN is a fully connected layer that produced classification results
for the brain activity analysis task. The corresponding equation of
the loss function is given as follows:

Loss =
1
Dn

Dn∑
i = 1

−log
(
pi
(
yi
))
+ λ |w| (19)

where Dn is the number of data samples in the training dataset,
pi and yi are the prediction results produced by the model and
the corresponding ground truth label for the i-th data sample,
respectively, and λ is the constant of the L1 regularization.

3. Experiment results

3.1. Experimental setup

For generating the input of the EEGformer and other
comparison models, we first extract the raw EEG data of each
trial of the three datasets to form data samples and assign the
corresponding label to each data sample. Further, we apply a sliding
window with the step of ratio × SR (i.e., SR) on each data sample
and generate the final input samples in a non-overlapping manner.
The data shape of each input sample is ratio × SR × Nc, and the
Nc denotes the number of EEG channels (i.e., 64). The equation
for representing the relationship between segment length T and the
total number of input samples N is given as follows:

N =
Nsub × EPP × TPE × TLPT

ratio
, (20)

where Nsub denotes how many subjects joined in the corresponding
data collection experiment. Taking the data splitting method for
BETA dataset as an example, we remove the EEG data collected
during the gaze shifting of 0.5 s guided by a visual cue and an
offset of 0.5 s followed by the visual stimulation. The final BETA
dataset consists of 11,200 trials and 40 categories. For the first 15
participants and the remaining 55 participants in the BETA dataset,
the time length of the flickering visual stimulation in each trial is 2
and 3 s, respectively. When the number of data points of each input
sample is 100, meaning the ratio is set to 0.4 and the SR is equal
to 250 Hz, and the time length of each input sample is 0.4 s, the
total number of input samples of the BETA dataset for training and
testing models is 78,000. Under the same setting, the total number
of input samples of the SEED and DepEEG dataset for training and
testing models is 514,687 and 42,000.

The state-of-the-art DL models, which have performed well in
previous studies, were tested on the three datasets to compare their
model performance with ours. In our comparison, we followed the
same test procedures for all these methods. The EEGformer and
other comparison baselines were trained with a batch size of 64 and
Adam optimizer with a learning rate of 0.001. In each transformer
module, the number of encoding blocks is equal to three. The
models were trained using an early-stop training strategy. Note
that all training hypermeters were optimized using the testing

data. Pytorch was used to implement these models, which were
trained on an NVIDIA Tesla A100 GPU. As mentioned above, we
tested our model on three datasets (BETA, SEED, and DepEEG).
Fivefold cross-validation was applied to separate the dataset, and
the average classification accuracy (ACC) rate, sensitivity (SEN),
and specificity (SPE) and the corresponding standard deviation
(SD) of them were used as model performance metrics. For multi-
category classification, the accuracy rate, which means how many
data samples are corrected and labeled out of all the data samples,
is calculated as the sum of true positive and true negative divided
by the sum of true positive, false positive, false negative, and true
negative. The above metrics are calculated using the following
formula:

ACC = (TP+TN)/(TP+FP+FN+TN) (21)

SEN = TP/(TP+ FN), (22)

SPE = TN/(TN+ FP), (23)

where TP denotes true positives, TN denotes true negatives, FP
denotes false positives, and FN denotes false negatives.

3.2. Comparison baselines

To show the effective model performance of EEGformer, we
compared several commonly used DL methods in other studies
of EEG-based data analysis tasks, which were target frequency
identification, emotion recognition, and depression discrimination.
The comparison models are described as follows:

(1) EEGNet (Lawhern et al., 2018). It is a Compact-CNN for EEG-
based BCIs. The network starts with a temporal convolution
operation to learn frequency filters. The operation is made up
of F1 convolutional filters, and each size equals 1×N, whereN
represents the length of the convolutional filter. It used D× F1
depth-wise convolutional filters to learn frequency-specific
spatial filters and the size of each filter is C × 1. The separable
convolution followed by point-wise convolution was used
to learn the summary for each feature map and optimally
combine them. The network architecture shows that EEGNet
considers temporal and spatial information of EEG signals.

(2) Conv-CCA (Waytowich et al., 2018). It is designed for
SSVEPs-based target frequency identification and can be
used in other EEG-based classification tasks. Unlike pure
DL models, the Conv-CCA uses a signal-CNN with three-
layers to transform multiple channel EEGs (Ns × Nc × 1)
into a single x̄ with a shape of Ns × 1 × 1, where Ns
and Nc are the numbers of sampling points and channels,
respectively. Another reference CNN with two-layers was
used to transform the reference signal (Ns × Nf × Nc) into
a 2D signal Ȳ with a shape of Ns × Nf , where Nf is the
number of target frequencies. Correlation analysis was used
to calculate the coefficients of x̄ and each Ȳn for all n ∈ [1, Nf ].
A dense layer with Nf units and a softmax activation function
was used as the final layer for classification.
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(3) 4DCRNN (Shen et al., 2020). It is a DL model known
as a four-dimensional (4D) convolutional recurrent neural
network that extracts and fuses frequency, spatial and
temporal information from raw EEG data to improve model
performance of emotion recognition. It is not an end-to-
end model for BCI tasks because it requires the Butterworth
filter to decompose frequency bands and manually extract
differential entropy features from each frequency band.
The model input is represented as a 4D structure X ∈
Rh × w × d × 2T, where h and w are the height and width of
the 2D brain topographical map, respectively, d denotes the
number of frequency bands and T denotes the length of the
signal segment. CNN was used to extract the frequency and
spatial information from each temporal segment of an EEG
sample, and long short-term memory (LSTM) was adopted to
extract temporal information from CNN outputs.

(4) EmotionNet (Wang et al., 2018). Instead of using 2D
convolution filters to extract features from input data,
EmotionNet used a 3D convolution filter to learn spatial and
temporal features from raw EEG data. The first two layers
and the third layer of the model used a 3D convolution filter
to learn spatiotemporal and fuse spatial features, respectively.
The fourth and fifth layers of the model performed temporal
feature extraction using a 2D convolutional filter. The sixth
layer of the model is a fully connected layer for dense
predictions.

(5) PCRNN (Yang et al., 2018). The model is an end-to-end DL
model known as a parallel convolutional recurrent neural
network for EEG-based emotion classification tasks. It also
takes 3D shape (X ∈ Rh × w × T) of raw EEG data as model
input. CNN model was first used to learn spatial feature
maps from each 2D map, and the LSTM was used to extract
temporal features from the CNN outputs. Note that the CNN
and LSTM were organized by a parallel structure to extract
the spatial and temporal features from the model input. The
outputs of the parallel structure were integrated to classify
emotions.

3.3. Ablation studies

3.3.1. Effect of the EEGformer decoder
constructed by different transformer
combination

We conducted an ablation study to show the effectiveness
of the EEGformer by constructing the encoder with different
combinations of temporal, synchronous, and regional
transformers. The classification results (ACC, SPE, SEN, and
their corresponding SDs) on the three EEG datasets using different
transformer module combinations to construct the EEGformer
encoder are shown in Table 2. The table shows that the EEGformer
encoder constructed by the combinations of the three transformers
achieves the best classification results. For BETA dataset, the
average sensitivity, specificity, and accuracy are 69.86, 75.86, and
70.15%, respectively. For SEED dataset, the average sensitivity,
specificity, and accuracy are 89.14, 92.75, and 91.58%, respectively.
For DepEEG dataset, the average sensitivity, specificity, and
accuracy are 77.83, 70.95, and 72.19%, respectively. The result
supports our hypothesis that a machine learning method can

capture EEG characteristics in a unified manner that can suit the
EEG-based brain activity analysis tasks.

The table also demonstrates that the EEGformer that contains
a synchronous transformer achieves better model performance
than the EEGformer without a synchronous transformer. For
instance, the EEGformer constructed using a single synchronous
transformer outperforms the EEGformer constructed using the
other two types of single transformers, with better accuracy
of 57.29, 80.12, and 60.12% on BETA, SEED, and DepEEG,
respectively. The EEGformer constructed using a transformer
pair consisting of a synchronous transformer outperforms the
EEGformer constructed using the transformer pair without a
synchronous transformer, with better accuracy on the BETA,
SEED, and DepEEG datasets. The results indicate the significance
of learning spatial distribution characteristics of EEG activity
generated by multiple brain regions for the task of SSVEPs-
based frequency discrimination. In addition, the EEGformer
constructed using synchronous transformer and regional
transformer outperforms the EEGformer constructed using
other transformer pairs, with better classification results on SEED
and DepEEG dataset. On the one hand, the result demonstrates
that the convolutional features could represent regional and spatial
characteristics of EEH signal well. On the other hand, the result
indicates that the integration of the synchronous and regional EEG
characteristics improves discrimination ability of our model.

3.3.2. Effect of using 1DCNN or not to construct
the EEGformer pipeline

The model performance affected by using 1DCNN or not
is validated to show the rationality of using a 1D depth-
wise convolutional filter to learn regional characteristics in a
completely data–driven manner. Figure 3 compares the results of
using 1DCNN or not constructing the EEGformer pipeline. The
figure shows that using a 1D depth-wise convolutional filter to
learn regional characteristics is beneficial for improving model
performance in EEG-based classification tasks.

3.3.3. Effect of EEG channel number on the
model performance

Table 3 reports the classification results (ACC, SPE, SEN, and
their corresponding SDs) of our model with varying number of
EEG channel. The EEG CHN and the corresponding name of brain
regions are illustrated as follows: 3 (O1, Oz, and O2), 6 (O1, Oz,
O2, POz, PO3, and PO4), 9 (O1, Oz, O2, Pz, PO3, PO5, PO4,
PO6, and POz), 32 channels (all channels from occipital, parietal,
central-parietal regions and C3, C1, Cz, C2, C4, and FCz) as well
as all 64 channels. From the table, we can know that as the EEG
CHN increases, the classification results of the EEGformer show an
upward trend. This result indicates that although the EEG channels
that are placed over the occipital and parietal regions provide
perhaps the most informative SSVEP signals, other channels are
informative as well. The result also illustrates the data mining
ability of our model, which can learn representational features from
complex data structure.

3.4. Comparison studies

Leave-one-subject-out (LOSO) cross-validation method is
utilized to compare the model performance between EEGformer
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TABLE 2 Classification results (ACC, SPE, SEN, and their corresponding SDs) on the three EEG datasets by using different transformer module
combinations to construct EEGformer encoders.

Combinations BETA SEED DepEEG

ACC (%) SPE (%) SEN (%) ACC (%) SPE (%) SEN (%) ACC (%) SPE (%) SEN (%)

Reg 41.63± 5.91 46.59± 3.58 35.67± 3.26 76.53± 1.68 77.26± 2.41 73.58± 1.94 58.78± 5.21 60.51± 2.58 57.25± 3.42

Syn 57.29± 6.50 62.86± 5.89 55.28± 4.69 80.12± 5.12 82.83± 4.65 78.86± 2.71 60.12± 4.86 65.94± 3.59 55.26± 4.27

Temp 45.36± 7.18 53.38± 6.38 43.86± 5.68 77.28± 4.12 78.29± 3.83 76.69± 3.82 61.73± 4.12 65.82± 4.78 60.83± 2.65

Temp + Syn 66.52± 3.82 70.25± 2.97 62.23± 4.32 85.36± 3.61 88.36± 4.75 83.45± 2.86 70.15± 3.18 68.97± 3.56 75.65± 4.81

Temp + Reg 59.29± 3.27 65.93± 2.65 58.79± 3.54 80.12± 3.19 82.33± 2.08 79.16± 3.19 65.21± 2.89 62.14± 4.72 72.31± 3.75

Syn + Reg 65.72± 2.91 70.85± 2.58 61.23± 5.12 86.73± 2.95 88.04± 2.36 83.77± 3.76 71.46± 2.85 61.96± 2.36 75.64± 3.19

Temp + Syn + Reg 70.15± 2.18 75.86± 2.04 69.86± 3.29 91.58± 2.77 92.75± 3.72 89.14± 2.98 72.19± 2.67 70.95± 2.38 77.83± 2.15

FIGURE 3

Comparison results of using 1DCNN or not to construct the EEGformer pipeline.

TABLE 3 Classification results (ACC, SPE, SEN, and their corresponding SDs) of our model is reported versus varying number of channels and
1.0 s of stimulation.

Channel number BETA SEED DepEEG

ACC (%) SPE (%) SEN (%) ACC (%) SPE (%) SEN (%) ACC (%) SPE (%) SEN (%)

3 42.73± 3.60 50.73± 5.17 36.83± 4.39 69.54± 3.86 70.49± 2.96 66.76± 4.85 51.29± 2.99 50.86± 3.75 55.71± 4.51

6 50.86± 4.49 63.69± 2.38 55.17± 6.73 73.21± 2.83 74.62± 3.79 73.61± 2.73 56.74± 3.85 54.14± 2.64 60.26± 3.29

9 56.52± 2.17 70.46± 3.96 65.89± 5.26 76.37± 3.72 77.24± 4.21 78.18± 3.82 61.21± 4.74 59.75± 3.82 65.78± 2.79

32 65.21± 3.05 72.17± 2.57 65.36± 4.74 85.98± 3.16 86.91± 2.64 86.27± 4.54 68.56± 2.38 65.37± 3.57 70.39± 4.26

64 70.15± 2.18 75.86± 2.04 69.86± 3.29 91.58± 2.77 92.75± 3.72 89.14± 2.98 72.19± 2.67 70.95± 2.38 77.83± 2.15

and other five comparison methods. As shown in Figure 4,
the upper figure shows accuracy comparison results between
EEGformer and Conv-CCA across using BETA dataset, and
the lower figure shows standard deviation comparison between
EEGformer and other five comparison methods across subjects
using BETA dataset. The reason of only choosing Conv-CCA to
compare with EEGformer is both of them achieve high accuracy on
the BETA dataset. From the Figure 5, we can find that EEGformer

achieves the lowest standard deviation among other comparison
methods, indicating the proposed method generalizes well on
unseen data and potentially requires little to model training and
calibration for new users, suitable for SSVEP classification tasks.

1. Accuracy comparison between EEGformer and Conv-CCA
across subjects using BETA dataset.
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FIGURE 4

Performance comparison between EEGformer and other five comparison methods using leave-one-subject-out cross-validation method based on
BETA dataset. (A) Accuracy comparison between EEGformer and Conv-CCA across subjects using BETA dataset. (B) Standard deviation comparison
between EEGformer and other five comparison methods across subjects using BETA dataset.

FIGURE 5

Performance (average ACC ± SD %) of segment length T using the EEGformer and other comparable models on the three EEG datasets.

2. Standard deviation comparison between EEGformer and
other five comparison methods across subjects using BETA
dataset.

Furthermore, according to the SSVEP studies, they pursue a
higher information transfer rate by not using long EEG segments
to execute the target frequency identification task. The model
performance can be improved by increasing the segment length
T because longer EEG segments contain more information about
brain activity. Therefore, we investigated the impact of segment
length T ranges [0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5]
on model performance. The performance (average ACC and SD)
of segment length T using the EEGformer and other comparable

models on the three EEG datasets are shown in Figure 5. The
figure shows that our model achieves the best accuracy rate across
the three datasets. For other comparison baseline models, the
model performance reduces in some cases if the segment length
T exceeds 1.2 s. The model performance of the EEGformer on
the three datasets showed an increasing trend as the segment
length T increases, indicating that our method can extract inherent
temporal information from EEG and is unaffected by segment
length. In addition, the model performance of 4DRCNN and
EmotionNet outperforms the performance of other comparison
baselines. Because 4DRCNN and the EmotionNet are models that
learn spatiotemporal features simultaneously, this operation may
facilitate the DL model to learn better feature representation of EEG
regional and synchronous characteristics.
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4. Discussion

The abovementioned ablation and comparison studies show the
rationality of our EEGformer architecture and demonstrate that
our model performs outperforms other comparison baselines. This
section covers several noteworthy points and future works:

(1) The unified manner, sequentially maps an input sequence
into an abstract continuous representation that holds
temporal, convolutional, and spatial information of that
input outperforms the 2D and 3D structures that integrate
frequency, spatial and temporal information of EEG. The
EEGformer achieved the highest accuracy rate compared
with other comparison baselines, which could be due to
the unified EEG characteristics learning manner. Compared
with 4DRCNN, which requires the user to manually
extract frequency information from raw EEG data and
use it as model input, our model is an end-to-end deep
method because it uses depth-wise 1DCNN to learn the
feature in an EEG-channel-wise manner. In the EEGformer
encoder, we sequentially encode the convolutional results
generated by the 1DCNN from temporal, convolutional, and
spatial dimensions. The temporal, regional, and synchronous
transformers were responsible for learning the temporal,
regional, and synchronous characteristics of EEG signals.
This type of feature learning strategy contains more cues of
EEG characteristics than other model structures and performs
better than them.

(2) EEG signals are well-known to exhibit data statistics that
can drastically change from one subject to another in
various aspects (e.g., regional characteristics), but also
share similarities in certain other aspects (e.g., synchronous
characteristics). To exploit the commonalities while tackling
variations, we require a large data sample to train the
model and improve its generalization ability. However, the
performance of a DL model is always affected by the
dataset size. Compare with the dataset size in the computer
vision studies, researchers find it difficult to collect a dataset
with a similar size in EEG-based clinical studies. Therefore,
increasing the number of EEG datasets used for training DL
models is crucial to reduce the influence of small dataset size
on model performance. To this end, many studies separate the
EEG signal collected in a trial into several segments and label
them with the same label. Those segments were then used
in cross-subject and within-subject classifications, which are
two commonly used experimental designs, to execute model
training and validate model performance. Meanwhile, those
studies also designed model training strategies to improve the
model generalization ability. For instance, Guney et al. (2021)
trained their model in two stages: the first stage trains globally
with all the available data from all the subjects, and then the
second stage fine-tunes the model individually using the data
of each subject separately. In the future, we can also design a
training strategy to reduce the influence of small dataset size
on model performance.

(3) Although the experimental results demonstrated that learning
temporal, regional, and spatial characteristics in a unified
manner facilitates the EEGformer to achieve promising

classification performance across three EEG datasets, this
result might be unable to provide strong support for clinical
treatment that is associated with EEG biomarkers. Because
DL methods are essentially considered black boxes, we require
novel methods to open the box and visualize the feature
learned by the DL model. To this end, an emerging technique
known as explainable artificial intelligence (AI) enables the
understanding of how DL methods work and what drives their
decision-making. The competitive model performance of DL
methods and the explainable AI provided a promising way to
support effective EEG-based brain activity analysis. By using
the explainable AI method, we could visualize the form of the
temporal, regional, and spatial characteristics learned by the
EEGformer and use it to connect with BFC, as well as perform
brain activity analysis.

5. Conclusion

In this study, we proposed a transformer–based EEG analysis
model known as EEGformer to capture EEG characteristics
in a unified manner. The EEGformer consists of 1DCNN,
an EEGformer encoder (sequentially constructed by three
components: regional, synchronous, and temporal transformers),
and an EEGformer decoder. We conducted ablation studies to
demonstrate the rationality of the EEG former. The results not
only supported our hypothesis that a machine learning method
capable of capturing the EEG characteristics in a unified manner
can be applied to EEG-based brain activity analysis tasks but
also demonstrated that convolutional features could accurately
represent regional and spatial characteristics of EEG signals. The
LOSO cross-validation method is utilized to compare the model
performance between EEGformer and other five comparison
methods, the result shows the proposed method generalizes well
on unseen data and potentially requires little to model training
and calibration for new users, suitable for SSVEP classification
tasks. We also investigate the impact of segment length T on model
performance, and the results show that our method can extract
inherent temporal information from EEG and is unaffected by
the segment length. The proposed EEGformer outperforms the
comparison models, which perform well in other studies on the
three EEG datasets.
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Effect of shape deprivation on 
retinal thickness in myopic mice 
using an OCT method
Ming-Ming Duan 1, Hui Liu 2 and Yu-Lin Zhong 2*
1 Department of ophthalmology, the First People's Hospital of Jiujiang City, Jiujiang, Jiangxi, China, 
2 Department of ophthalmology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of 
Nanchang Medical College, Nanchang, Jiangxi, China

Purpose: The purpose of this study was to study in retina thickness changes in 
myopic mice using optical coherence tomography (OCT).

Methods: There were 18 mice in the form-deprivation myopia (FDM) group，in 
which the left eye was not treated as a control;18 untreated mice served as a 
normal control group. The diopter of all mice was measured 21 days after birth 
(P21), before form deprivation. After 4 weeks of form deprivation (P49), the 
refraction, fundus, and retinal sublayer thickness of all mice were measured.

Results: After 4 weeks of form deprivation, the refractive power of the right eye 
in the FDM group was significantly higher than that in the left eye (p < 0.05). 
There was no significant change in the refractive power of the left eye in 
the FDM group compared with the normal control group. The retina, nerve 
fiber layer (NFL), inner nuclear layer (INL), and outer nuclear layer (ONL) in 
the right eye of the FDM group were significantly thinner than those of both 
the FDM and control groups (p  < 0.05). There was no significant change in 
photoreceptor (PR).

Conclusion: Our study highlights that the myopic mice have decreased R 
thickness, which might reflect the potential pathological mechanism of myopia.

KEYWORDS

form-deprivation myopia, retina thickness, optical coherence tomography, myopia 
mice, myopia

1. Introduction

Myopia is one of the most common diseases in ophthalmology. The disease can affect 
almost all of the population and has reached epidemic levels, especially in East and 
Southeast Asia (Jung et al., 2012; Saw et al., 2002; He et al., 2004). It has become a major 
public health problem that needs to be solved urgently. It is estimated that, by 2050, nearly 
half of the world’s people will be suffering from myopia (Holden et al., 2016). With the 
increase in the incidence of early-onset myopia (Myrowitz, 2012), more and more people 
will develop high myopia and pathological myopia. Pathological myopia leads to blindness, 
such as glaucoma, retinal detachment, and macular hole. A previous study suggests that the 
occurrence of myopia is caused by the interaction of genetic and environmental factors 
(Baird et al., 2020), and the environmental factors include the close work or study time, 
outdoor activities time and the excessive sugar intake. Some studies suggest the hyperopic 
defocusing causes axial length growth, which might lead to the decreased retina thickness. 
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However, the pathogenesis is still unclear. At present, low 
concentrations of atropine and orthokeratology have achieved 
results in controlling the development of myopia (Bullimore & 
Richdale, 2020). However, the pathological structural changes in 
intraocular structure of the sclera, choroid, and retina (R) caused 
by myopia are irreversible (Lee et  al., 2020; Jonas & Panda-
Jonas, 2019).

Optical coherence tomography (OCT) is a non-invasive imaging 
method in vivo, which provides a high-resolution image of the retina, 
and can be used for quantitative and qualitative evaluation of different 
regions and layers of retina and optic nerve (Bhende et al., 2018). It 
can also be used to evaluate the relationship between refractive state 
and retinal thickness (Bonnin et al., 2015). OCT suggests that the 
retina and choroid will become thinner in myopic children (Matalia 
et al., 2018), and with the increase of axial length, the retinal nerve 
fiber layer (NFL) becomes thinner (Leung et al., 2006). As in myopia, 
atrophy around the optic papilla and thinning of the retinal NFL can 
be observed. However, there are also studies that suggest the opposite, 
in which the whole and temporal NFL of high myopia is thicker than 
that of the normal control group (Hsu et al., 2013). Therefore, our 
study of the changes of retinal structure and thickness might reveal 
the potential pathological mechanism of myopia, providing a new 
direction for the prevention and control of myopia.

The emergence of myopic animal models has promoted greatly 
the research on the occurrence, development, and treatment of 
myopia. Form deprivation in childhood can induce the change of 
myopia refractive state and prolongation of eye axis. This phenomenon 
has been confirmed in monkeys, sloths, marmosets, mice, guinea pigs, 
and chickens (Wiesel & Raviola, 1977; Schaeffel et al., 1988; Barathi 
et al., 2008; Shaikh et al., 1999; Graham & Judge, 1999), and it provides 
a basis for the establishment of a suitable animal model of myopia. 
Mice have become the first choice of myopic animal model because of 
the possibility of genetic manipulation, abundant available antibodies, 
and low-cost breeding. A large number of experiments have studied 
the changes of intraocular structure in myopic mice. However, there 
are few studies on the interlamellar thickness of the retina in myopic 
mice. The hypothesis of the study is that the form-deprivation myopia 
(FDM) causes the changes of retinal interlamellar thickness. Based on 
the hypothesis, our study is to establish a mouse model of FDM and 
use OCT method to study the changes of retinal interlamellar 
thickness in myopia.

2. Materials and methods

2.1. Animals

The study was approved by the Ethics Committee of Jiangxi 
Provincial People’s Hospital (Nanchang, China). The experimental 
procedure adhered strictly to the ARVO Statement for the Use of 
Animals in Ophthalmic and Vision Research.

In our study, 36 male C57BL/6 wild type mice (3 weeks old) 
were obtained from the Jiangxi Laboratory Animal Center. Mice 
were examined clinically to confirm no injuries or infections to the 
eyes and the refractive level remained consistent. After being 
divided randomly into 2 groups, all animals were kept at a constant 
temperature of 25 deg. Celsius. A 12-h light–dark cycle provided 
the light conditions for visual development in mice. Refractive 

errors in the FDM group (n = 18) were induced by wearing a 
translucent diffuser on the right eye from postnatal day 21 (P21). 
The contralateral untreated eyes in the FDM group served as a self-
control group. The remaining untreated mice (n = 18) served as the 
control group.

2.2. Form deprivation

After anesthetizing with an injection of avertin, the model of 
shape deprivation myopia was constructed by covering the right eye 
of FDM group (n = 18) with a handmade translucent occluded device 
for 4 weeks. A collar made of thin plastic was attached to the neck to 
prevent the mice from removing the translucent balloon. For both the 
FDM group and control group, weight, refraction, and R were 
measured before and at the end of the 4-week treatment. After 4 weeks 
of form deprivation, mice with corneal ulcers and lesions were 
removed. To minimize measurement errors, all measurements were 
performed by one researcher.

2.3. Biometric measurements

Unanesthetized mice were placed in a dark room and their 
refractive status was measured with an infrared eccentric 
photorefractor at a working distance of 50 cm. At 3 min before the 
measurement, the mice were given eye drops of tropicamide in both 
eyes to dilate the pupils and facilitate the measurement of refractive 
status. After gently limiting the movement of the mouse, the head 
position of the mouse was adjusted to image the center of the pupil 
successfully, and the eyeball diopter number was read at this time. 
Each mouse was measured 5 times alternately in both eyes 
and averaged.

In the present study, we used OCT (Phoenix, MICRON IV) to 
measure the thickness of R in the mouse eye in vivo. After 
anesthetizing with an injection of avertin, the test eye was dilated with 
tropicamide, and ofloxacin ointment was applied to the corneal 
surface to facilitate clear fundus imaging. To improve image clarity, 
each OCT image is composed of 50 instantaneous layers. After OCT 
image acquisition, retinal stratification and thickness analysis were 
performed using Insight software. The thickness of different parts of 
the mouse R was different; here we  focused on the 200  μm area 
adjacent to the optic nerve for analysis.

2.4. Statistical analysis

Data analysis was conducted using SPSS version 19.0. The 
deprived eyes and contralateral eyes of FDM mice were compared 
by paired t-test. Independent t-test was applied to compare the 
control and FDM eyes. After confirming the normal distribution 
of the data (Shapiro–Wilk test), analysis of variance (ANOVA) was 
used to compare the data of each parameter at different times or 
the four sets of data. Kruskal-Wallis test was used for data that did 
not conform to the normal distribution. In our study, data 
were expressed as mean ± standard deviation (SD) in the table 
or as mean ± SD in the figure. P<0.05 was considered 
statistically significant.
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3. Results

As shown in Figure 1 and  Table 1, after 4 weeks of continuous form 
deprivation treatment in FDM group, the refractive power between the 
left and right eyes was significantly different in the FDM group. There 
were no statistically significant differences among left eyes in the FDM 
group and bilateral eyes in the control group. Figure 2 showed the fundus 
of left and right eyes of mice in FDM group after 4 weeks of form 
deprivation treatment, without obvious abnormal indications. Figure 3 
showed the OCT images of the right and left eyes of mice in the FDM 
group after 4 weeks of treatment. Combined with  Table 2, it could 
be seen that the retinal thickness (include NFL, INL, and ONL) of the 
right eye of mice in the FDM group was significantly thinner than that 
of the left eye and the control group (P<0.001). Figure 4 showed the 
retinal thickness of each layer in the bar graph between two groups.

4. Discussion

At present, researchers have successfully established common 
myopia models such as monkey, tree shrew, mouse, guinea pig, 
and chicken. There are differences in the structure and 

developmental characteristics of the eyeball in these common 
myopia models, so their applications in myopia research are also 
different. Mice are easy to obtain and raise, and their eyeball 
structure is similar to that of humans. In addition, the mouse is 
highly fertile and has complete genome information and mature 
genetic manipulation methods, which make this animal model 
widely used in myopia research. There are two main types of 
classical myopia induction methods: form-deprivation myopia 
(FDM) and lens-induced myopia (LIM). In this study, we found 
the R, NFL, inner nuclear layer (INL), and outer nuclear layer 
(ONL) around the optic nerve were thinner in myopic mice with 
FDM method. Thinning of the R caused by myopia has been 
reported in many studies, with a large number of studies 
suggesting that the R thins in myopia (Xie et al., 2009; Zereid & 
Osuagwu, 2020). However, some studies have reported an increase 
in retinal thickness in the central macular area of high myopia 
(Guo et  al., 2020; Kim et  al., 2019). Further analysis of the 
thickness of different retinal layers showed that the macular 
ganglion cell complex (GCC)(Guo et al., 2019), NFL (Ucak et al., 
2020), and inner plexiform layer (Lee et  al., 2020) were also 
thinned in myopia. Because previous studies on myopic retinal 
thickness changes are controversial. To clarify this issue, in this 
study, we used OCT to analyze the interlayer thickness of the eyes 
in myopic mice because it is non-invasive and can obtain high-
definition images of the intraocular cross-section. Form 
deprivation caused the thinning of all retinal layers. The number 
of cells in the nucleated cell layer, photoreceptor cell layer, inner 
nuclear cell layer and ganglion cell layer decreased, and their 
arrangement was sparse and disordered. The thinning of the R 
might be caused by the stretching effect of the increase of the eye 
axis or by the thinning of different layers of the R.

The thickness of the NFL around the optic nerve in this study was 
significantly lower than that in the control group. Similar findings 
have been found in other myopic animals, such as thinning of the NFL 
in myopic chickens (Swiatczak et al., 2019), and patients with high 
myopia also have progressive loss of R NFL around the optic nerve 
papilla (Chopra & Lee, 2019), with some studies suggesting that the 
thinning of NFL is related to the blood perfusion of the R and the 
decrease of microvessels (Wang et al., 2016; Ucak et al., 2020; Li et al., 
2017), and it is suggested that there is a correlation between retinal 
ischemia and NFL thinning. Myopia is a risk factor for open-angle 
glaucoma and studies have shown that the damage of the NFL 
structure often occurs before the visual-field damage and the thinning 
of the NFL in myopia might also affect the development of glaucoma 
in some young patients (Lee et al., 2017). The length of eye axis is 
correlated negatively with the thickness of NFL and the thinning of 
the NFL might be a result of the stretching effect of eye axis growth 
(Ganekal et al., 2021). However, contrary to our results, an earlier 
study suggests that only the nasal NFL is lower than normal, the 
thickness of the NFL of the upper and lower nasal side is normal, and 
even the whole and temporal NFL is thicker than normal (Hsu 
et al., 2013).

Our study found that the INL and ONL around the optic nerve 
were also significantly thinner. Similar changes were found in other 
animal models of form deprivation myopia. For example, INL 
thinning was found in myopic tree shrew and chickens (Mao et al., 
2006; Abbott et al., 2011). Similar to our results, the thickness of the 
inner and outer layers of the R decreased in high myopia and thinning 

FIGURE 1

Refractions between the FDM and control groups. FDM: 
form-deprivation myopia; OD: oculus dexter; OS: oculus 
sinister.

TABLE 1 Refractions between the FDM and control groups.

group n Diopter (D)

P21 P49

FDM-od 18 4.68 ± 0.89 0.88 ± 0.84

FDM-os 18 4.66 ± 0.90 7.87 ± 0.96*

Control-od 18 4.72 ± 0.70 8.26 ± 1.02*

Control-os 18 4.76 ± 0.93 8.14 ± 1.08*

F 0.048 241.670

P 0.986 0.000

FDM: form-deprivation myopia; OD: oculus dexter; OS: oculus sinister. * indicate P < 0.05
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of the INL and outer plexiform layer (OPL) was also found in 
anisometropia myopia (Kim et al., 2020; Kirik et al., 2021). Some 
studies have suggested that the thinning of the inner R might 
be caused by the tangential tensile force caused by the elongation of 

the axial length，and the thinning of the outer R is caused by anterior 
and posterior traction (Wu et al., 2008). Recent studies have found 
that increased release of dopamine in myopic chicks leads to cell 
activation and cell density of bipolar cells and amacrine cells in INL 

A B

FIGURE 2

Fundus imaging. Notes: (A): FDM-OD; (B): FDM-OS. FDM: form-deprivation myopia; OD: oculus dexter; OS: oculus sinister.

A B

C D

FIGURE 3

OCT images for the FDM-OD and FDM-OS. Notes: (A, B): FDM-OD; (C, D): FDM-OS. FDM: form-deprivation myopia; OD: oculus dexter; OS: oculus 
sinister; OCT: optical coherence tomography.
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(Mathis et  al., 2020). The thinning of the INL might also be  the 
atrophy caused by the decrease of the activation of retinal inner layer 
cells in myopia.

The ONL is composed mainly of cell bodies of rods and cones 
and our study suggests that ONL becomes thinner. Similar to our 
results, studies have confirmed that ONL is thinner in high 
myopia and the packing density and regularity of cones in the 
outer layer of the R decreased (Park et al., 2013; Wang et al., 2019). 
As the axial length lengthens, the elongation and thinning of the 
R might lead to sparse cones and the choroid of myopia will 
become thinner and the blood flow will decrease (Zhang et al., 
2019; Wong et al., 2017). The oxygen supply of the outer layer of 
the R is mostly provided by the choroid, therefore, the thinning of 
the outer layer of the R might also be caused by hypoxia caused by 
myopia. Some studies have suggested that the change of the 
thickness of the outer retinal sublayer is related to the microvessel 
density in the R (Ye et  al., 2020). Our study suggests that the 
changes of photoreceptor are not statistically significant, but, 
unlike our results, there are other studies that suggest that the 
photosensitive layer of myopia becomes thinner (Chen et  al., 
2012) and, in pathological myopia, the myoid and ellipsoid zone 
also becomes thinner (Ye et al., 2020).

The study still has some shortcomings in the study. First, 
anterior segment OCT scanning should be performed on myopic 
mice. This measurement captures a number of indicators of the 
overall structure of the eye, including axial length, central corneal 
thickness, anterior chamber depth, retinal thickness, and corneal 
curvature radius. Secondly, the sample size should be expanded 
and the success rate of FDM modeling should be  improved. 

Finally, in future experiments, we should not only test the mouse 
model, but also the guinea pig or macaque model which is more 
similar to the human visual system, so as to increase the 
universality and conviction of the theory.

In conclusion, our study highlights the decreased retina thickness 
in myopia mice, which might reflect the potential pathological 
mechanism of myopia.
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TABLE 2 Thickness of the retina between the FDM and control groups (mean ± s，μm).

Groups n R NFL INL ONL PR

FDM-od 18 201.97 ± 8.59 16.36 ± 1.76 25.45 ± 2.55 47.99 ± 4.49 21.70 ± 2.19

FDM-os 18 220.93 ± 12.83* 23.58 ± 3.61* 29.98 ± 3.17* 57.08 ± 4.09* 21.48 ± 2.17

Control-od 18 224.65 ± 12.38* 23.39 ± 3.75* 29.53 ± 2.73* 55.46 ± 1.68* 22.33 ± 2.50

Control-os 18 221.44 ± 9.56* 25.28 ± 3.67* 28.62 ± 3.20* 56.04 ± 4.53* 23.42 ± 2.29

F 15.862 38.376 22.314 26.967 2.574

P 0.000 0.000 0.000 0.000 0.061

FDM: form-deprivation myopia; R: retina; NFL: nerve fiber layer; INL: inner nuclear layer; ONL: outer nuclear layer; PR: photoreceptor; OD: oculus dexter; OS: oculus sinister. 
*indicate p < 0.05.

FIGURE 4

Thickness of the retina between the FDM and control groups. FDM: 
form-deprivation myopia; OD: oculus dexter; OS: oculus sinister; R: 
retina; NFL: nerve fiber layer; INL: inner nuclear layer; ONL: outer 
nuclear layer; PR: photoreceptor.
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Background: Steady state visually evoked potentials (SSVEPs) based early

glaucoma diagnosis requires effective data processing (e.g., deep learning)

to provide accurate stimulation frequency recognition. Thus, we propose

a group depth-wise convolutional neural network (GDNet-EEG), a novel

electroencephalography (EEG)-oriented deep learning model tailored to learn

regional characteristics and network characteristics of EEG-based brain activity

to perform SSVEPs-based stimulation frequency recognition.

Method: Group depth-wise convolution is proposed to extract temporal and

spectral features from the EEG signal of each brain region and represent regional

characteristics as diverse as possible. Furthermore, EEG attention consisting of

EEG channel-wise attention and specialized network-wise attention is designed

to identify essential brain regions and form significant feature maps as specialized

brain functional networks. Two publicly SSVEPs datasets (large-scale benchmark

and BETA dataset) and their combined dataset are utilized to validate the

classification performance of our model.

Results: Based on the input sample with a signal length of 1 s, the GDNet-EEG

model achieves the average classification accuracies of 84.11, 85.93, and 93.35%

on the benchmark, BETA, and combination datasets, respectively. Compared

with the average classification accuracies achieved by comparison baselines, the

average classification accuracies of the GDNet-EEG trained on a combination

dataset increased from 1.96 to 18.2%.
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Conclusion: Our approach can be potentially suitable for providing

accurate SSVEP stimulation frequency recognition and being used in early

glaucoma diagnosis.

KEYWORDS

group depth-wise convolution, EEG attention, SSVEPs, stimulation frequency
recognition, EEG signal

1. Introduction

Glaucoma is one of the leading causes of blindness in the
world. The damage to visual function caused by glaucoma is
irreversible, and it can be difficult for the patients to realize this
disease until their vision is damaged. According to the World
Health Organization (WHO), the number of people living with
glaucoma worldwide reached 76 million in 2020 and will rise to
95.4 million by 2030 (Guedes, 2021). China is one of the countries
with the largest number of glaucoma patients. In 2020, the number
of glaucoma patients in China reached 21 million, of which 5.67
million were blind (Soh et al., 2021). Glaucoma is generally not
preventable, but most patients can maintain adequate vision in
later life if detected early and appropriately treated. Therefore,
early detection and diagnosis are significant for glaucoma blindness
prevention. Traditional methods for assessing functional loss in
glaucoma always adopt standard automated perimetry (SAP),
which requires considerable subjective response from patients. The
subjective assessment is limited by large test-retest variability, and
may result in late diagnosis or delayed detection of progressive
degeneration of retinal ganglion cells (RGCs).

Steady-state visual evoked potentials (SSVEPs) are typically
recorded by electroencephalography (EEG) and reliably applied
to brain-computer interface systems (BCIs). When exposed to a
fixed frequency of visual stimuli, the brain’s visual cortex produces
a continuous frequency-dependent response (Nuzzi et al., 2018).
This response known as SSVEPs can be used to assess functional
abnormalities in visual pathways (Geethalakshmi et al., 2022).
For glaucoma patients, due to the loss of peripheral vision,
some constant frequency of repeated stimuli can no longer be
received, so the corresponding stimulation frequency cannot be
detected from the EEG brain signal (Lin et al., 2015; Chen
et al., 2021, 2022a,b). Therefore, SSVEP can be considered as an
objective assessment of visual field damage caused by glaucoma.
For example, Lin et al., 2015 hypothesized that a brain region
corresponding to a visual field deficit would be less perceivable
and thereby would result in weaker SSVEP amplitude. Their study
demonstrated that the SSVEP dynamics in terms of amplitude is
capable of serving as objective biomarkers to assess visual field
loss in glaucoma. Medeiros et al., 2016 produced nGoggle, a
portable brain-based device, to assess the visual function deficits
in glaucoma. Moreover, Nakanishi et al., 2017 investigated the
ability of nGoggle equipment to discriminate glaucomatous from
healthy subjects in a clinic-based setting. The aforementioned
studies demonstrate the feasibility of using SSVEP signal to provide
objective assessment of visual field damage.

The SSVEPs-based early detection for glaucoma requires
effective analysis methods for recognizing stimulation frequencies.
Traditional analysis methods for SSVEP signal can be mainly
divided into two categories: spatial-spectral-temporal (SST) based
method (Mora-Cortes et al., 2018; Salelkar and Ray, 2020; Zhang
et al., 2020) and canonical correlation analysis (CCA) based
method (Liu Q. et al., 2020; Cherloo et al., 2022; Ma et al.,
2022). The former tries to extract SST features from the EEG
signal and use them to execute classification tasks. Based on
statistical analysis, the latter attempts to identify and measure
the associations between the SSVEP signal and reference signal
(e.g., sinusoidal signal). For example, Chen et al. (2015) construct
the filter bank CCA (FBCCA) which decompose SSVEPs into
multiple sub-band components under multiple pre-processing
filters, then fuse the classifications from all sub-band. Although
both achieve satisfactory results in SSVEPs-based applications,
they require manually predefined algorithms based on expert
knowledge to extract handcrafted features. This procedure is not
flexible and may limit the usage of the method in SSVEPs-based
applications. In recent years, convolution neural network (CNN)
based deep learning (DL) methods have been widely used in
processing SSVEPs-based frequency recognition tasks and achieved
excellent performance (Khok et al., 2020). Combined with existing
methods (e.g., SST analysis, CCA), CNN models use multiple layers
to progressively extract higher-level features from model input
and perform automatic feature extraction. Many advanced CNN-
based technologies have been proposed in the recent years. For
example, Li et al., 2022 proposed DSCNN, a dilated shuff CNN
model for actualizing EEG-based SSVEP signal classification. Yao
et al., 2022 constructed FB-EEGNet by fusing features of multiple
neural networks for SSVEP target detection. To achieve reasonable
model architecture with superior model performance, many studies
designed the deep learning models specifically suited to the domain
of EEG-based SSVEP signal classification. For example, Waytowich
et al., 2018 proposed a Compact-CNN for classifying asynchronous
SSVEPs. The Compact-CNN’s architecture is similar to EEGNet
(Lawhern et al., 2018), which performs two convolutional steps
(temporal convolution and depth-wise convolution) sequentially to
learn frequency and frequency-specific spatial filters, respectively.
Guney et al., 2021 designed a novel deep neural network (DNN)
to process the multi-channel SSVEP with convolutions across sub-
bands of harmonics, channels, and time and classify them at a fully
connected layer. Li et al., 2020 implemented a CNN-based non-
linear model, i.e., convolutional correlation analysis (Conv-CA),
which first uses CNNs at the top of a self-defined correlation layer.
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Further, it utilizes the correlation layer to calculate the correlation
coefficients between EEG and reference signals.

Previous studies of CNN-based SSVEP stimulation frequency
recognition (Waytowich et al., 2018; Li et al., 2020; Guney
et al., 2021) have usually adopted one-dimensional (1D) temporal
convolution to mimic a bandpass frequency filter for filtering
the signal of each EEG channel, followed by depth-wise spatial
convolutions to combine the channels to obtain a better frequency
pattern. Because the same 1D convolutional filter filters the data of
each EEG channel, different rows in the same feature map contain
the same EEG frequency components. The following depth-wise
spatial convolution is used to learn spatial filters for each temporal
filter, enabling the efficient extraction of frequency-specific spatial
filters. However, the brain signal generated from different regions
presents different harmonics in the same period (Atasoy et al., 2016;
Retter et al., 2021), the frequency-specific spatial characteristics
might be insufficient to reflect the diversity of brain signals in
different brain regions. In addition, regional neural complexity
and network functional connectivity may relate to the brain’s
information processing (McDonough and Nashiro, 2014). The
regional neural complexity reflects the richness or diversity of brain
signals in different brain regions, the more complex the regional
neural activity, the higher functional connectivity this region has
with other brain regions. Thus, it is reasonable to believe that
diverse frequency combinations across different EEG channels may
play an essential role in EEG-based brain activity classification. To
simulate the regional characteristics of the EEG signal and reflect
the diversity, we are interested in creating the different rows in
the single feature map containing different frequency components.
This motivates us to use different convolutional filters to process
the EEG signal of different EEG channels.

Our brain is a coherent information processing system
integrated by distributed and specialized networks (Ferraro et al.,
2018). The current theory of brain functional networks suggests
that the integration of specialized networks in the brain is facilitated
by a set of essential nodes (Shine et al., 2016; Ferraro et al., 2018).
The theory highlighted the significance of specialized networks and
the relation between different specialized networks in evaluating
brain function. Instead of using the connectivity of all brain
regions, the connectivity features of partial brain regions might be
more effective in representing different brain activities accurately.
However, most existing combination studies of the DL and brain
functional connectivity (BFC) focus on automatically learning the
global connectivity feature of all brain regions (Babaeeghazvini
et al., 2021; Avberšek and Repovš, 2022; Lin et al., 2022).
Few concentrate on automatically learning the local connectivity
features of specialized networks and the relations between different
specialized networks. Considering different brain states involve
different functional connectivity networks, we have reasons to
believe the EEG characteristics over the local BFC network
may contain useful classification information for discriminating
different brain activities. The critical step of learning specialized
network characteristics by the CNN model is identifying essential
nodes. The attention mechanism (Vaswani et al., 2017; Lv et al.,
2021) provides an automatic solution to identify essential nodes
from whole brain regions since it can assign high attention weights
for important regions. According to the definition in the field of
computer vision (Chen et al., 2020), temporal-wise attention can
assign weights to different EEG temporal segments collected in one

experiment trail. Channel-wise attention can assign a higher weight
to a more important feature map and refine feature maps. Spatial-
wise attention can identify important feature regions in a single
feature map. For example, Woo et al., 2018 propose convolutional
block attention module (CBAM), sequentially infers attention maps
using channel-wise attention and spatial-wise attention, then the
attention maps are multiplied to the input feature map for adaptive
feature refinement. To differentiate the three attention methods
mentioned above, we use the terminology of EEG channel-wise
to describe the attention operation for identifying important EEG
channels (i.e., essential nodes) from a single feature map. The
weight vector learned by the EEG channel-wise attention helps
us to identify the EEG channels which are not important for
the specialized network and emphasize the EEG channels which
are essential to the specialized network. In addition, we re-term
channel-wise attention as specialized network-wise attention to
make our study easier to comprehend.

This study addresses the SSVEPs-based frequency recognition
task as a multi-category classification problem. It proposes a
novel CNN model named group depth-wise convolutional neural
network (GDNet-EEG) to execute the task. To overcome the
problem of the frequency-specific spatial characteristics might be
insufficient to reflect the diversity of brain signals in different
brain regions, we construct group depth-wise convolutional filter,
which comprises C 1D depth-wise convolutional filter, to extract
as diverse regional characteristics as possible from raw EEG
data. Furthermore, to automatically learn the local connectivity
features of specialized networks and the relations between different
specialized networks, we propose EEG attention to sequentially
infer attention maps along two dimensions (EEG channel and
feature map): the former identifies essential brain regions to form
a specialized network in a single feature map, and the latter infers
important specialized networks across multiple feature maps. More
specifically, the GDNet-EEG model is comprised of several group
depth-wise convolutional layer. Each layer consists of multiple
group depth-wise convolutional filter that employs C different 1D
depth-wise convolutional filters to process the data outputted by the
previous layer. Each depth-wise convolutional filter is separately
utilized to process the signal of a single EEG channel and learn
regional characteristics originating from different brain regions.
C denotes the number of EEG channels, i.e., the row number of
the feature map in every convolution layer is the same as the
EEG channel number. We set K group depth-wise convolutional
filters to generate K feature maps and adopt the same operation
in the following convolution layers. Further, the EEG attention is
embedded into the GDNet-EEG for learning essential nodes (i.e.,
significant EEG channel) and meaningful specialized networks (i.e.,
important feature map). For a feature map generated by a group
depth-wise convolution layer, EEG attention first infers attention
maps along the EEG channel dimension. Then the attention maps
are multiplied by the feature maps for adaptive feature refinement.
The refined feature map concerns important brain regions essential
to a specialized network. After that, specialized network-wise
attention is utilized to give further feature refinement to the
different feature maps, highlighting the significance of different
specialized networks. The main contributions of this study are
depicted as follows:
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(1) Unlike the previous studies adopted 1D temporal convolution
followed by depth-wise spatial convolutions to extract
frequency-specific spatial characteristics, we propose
a deep neural network named GDNet-EEG, utilizing
group depth-wise convolutional filter to extract regional
characteristics from raw EEG data, for SSVEP stimulation
frequency recognition. The advantage of using group
depth-wise convolutional filter is that it can learn the
regional characteristics of the EEG signal and reflect the
diversity. The diverse frequency combinations across
different EEG channels may be beneficial for EEG-based
brain activity classification.

(2) Instead of using DL models to automatically learning
the global connectivity feature of all brain regions from
BFC matrix, we introduce attention mechanism to identify
essential nodes and form specialized connectivity feature
of the nodes to improve the performance of SSVEP
stimulation frequency recognition. The EEG attention,
containing EEG channel-wise attention and specialized
network-wise attention, is proposed to identify important
EEG channels from a single feature map and recognize
important feature map as meaningful specialized networks.

(3) We have used two publicly available SSVEP datasets and
their combination dataset consisting of the EEG data of
105 subjects with 40 target characters to validate the model
performance of the GDNet-EEG. The related results have
been presented to support the correctness of our study.

2. Materials and methods

2.1. Data description

Two SSVEP datasets (a benchmark dataset for SSVEPs-based
BCI (Wang et al., 2016) (benchmark for short) and a large-scale
benchmark database toward SSVEP-BCI application (BETA for
short) (Liu B. et al., 2020)) and their combination dataset are
used to validate the classification performance of the GDNet-EEG
model. Each experiment of the benchmark dataset contains six
sessions, and each session is comprised of 40 trials. The time length
of each trial is 6 s which consists of three parts: gaze shifting
of 0.5 s guided by a visual cue, visual stimulation of 5 s, and
an offset of 0.5 s followed by the visual stimulation. A target
character flickers at a specific frequency on screen in each trial,
and the subject is asked to gaze at the flickering character for
visual stimulation. The 40 stimulation frequencies are 8–15 Hz with
0.2 Hz strides, and there is a 0.5πphase difference between adjacent
frequencies. The EEG data collected in each trial is down-sampled
to 250 Hz.

The BETA dataset is similar to the benchmark dataset, and
the main difference between them is illustrated as follows. The
character matrix layout resembling the traditional QWERTY
keyboard is used for the stimulus presentation in the experiment
of BETA collection. In contrast, the corresponding layout in the
experiment of the benchmark dataset is arranged in a square. The
BETA dataset is collected from 70 healthy subjects. Each subject
is asked to participate in 4 sessions of the experiment, and each
session also consists of 40 trials. The time length of each trial is also

comprised of three parts: gaze shifting of 0.5 s guided by a visual
cue, visual stimulation of 2 or 3 s, and a rest time of 0.5 s followed by
the visual stimulation. Visual stimulation of 2 s and 3 s are given to
the first 15 subjects and the remaining 55 subjects, respectively. The
EEG data collected in each trial is also down-sampled to 250 Hz.

2.2. Data preprocessing

A Chebyshev TypeIfilter filters the EEG signal collected in
each trial with cutoff frequencies from 6 to 90 Hz and stopband
corner frequencies from 4 to 100 Hz. The multi-channel EEG data
collected in one trial is a 2D time series which can be represented by
a data matrix X of size C∗Len, where C denotes the number of EEG
channels, and Len means the signal length of visual stimulation in
one-trial EEG record. The record is split into t segments {X1, X2,...,
Xt}. The size of each segment Xi is C∗l, where l is the ratio of Len
and t. Each segment Xt has a corresponding classification label Lt ,
and segments collected from the same trial have the same label. The
Lt means the target frequency of the visual stimulus given to the
subject in the corresponding trial.

2.3. GDNet-EEG construction

Figure 1 shows the architecture of the GDNet-EEG model,
which contains a regular convolution layer, four group depth-
wise convolution layers, a depth-wise separable convolution layer,
and a dense layer. Note that the regular convolution layer and
the depth-wise separable convolution layer are inherited from the
EEGNet model to support the feature learning. Considering the
pooling operation in the convolution results may cause the loss of
meaningful features, we did not add a pooling layer to the GDNet-
EEG model. Table 1 shows the specific parameters setting of the
GDNet-EEG model. The specific operations of the GDNet-EEG are
illustrated as follows:

2.3.1. Regular convolution layer
This layer aims at generating multiple frequency-specific

feature maps which will be fed into the group depth-wise
convolution layer for further feature learning. The input of the
regular convolution layer is represented by Xi∈RC∗Ns (i.e., a volume
of 64 × 50 in the case of C = 64, Ns = 50 = T × = fs
with T = 0.2 s and fs = 250 Hz). As shown in Table 1,
64 convolutional filters are utilized to process the input data,
and the size of each filter is set to 1 × 17. Every filter
sweeps the temporal and EEG channel dimensions in one
stride. This layer is followed by batch normalization and
linear activation layer. It utilizes the “SAME” padding mode
to pad the input of the convolutional layer if the filter does
not fit the input. The output of the layer is represented by
z1∈RC∗Ns∗64.

2.3.2. Group depth-wise convolution layer
The motivation for using this layer is to learn diverse regional

EEG characteristics and deepen the neural network for achieving
more abstract EEG features. This layer contains three subparts:
group depth-wise convolutional layer, a batch normalization layer,
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FIGURE 1

The architecture of the GDNet-EEG model for SSVEP stimulation frequency recognition.

TABLE 1 Specific parameters setting in the GDNet-EEG model, where C means the number of EEG channels, T denotes the number of time points, and
N indicates the number of SSVEP stimulation frequencies.

Layer Layer type Output size Hyperparameters

1 Input (C, Ns)

2 Conv2D (C, Ns, 64)


1 × 17, 64, stride 1

BatchNorm

Linear Activation

 × 1, mode = same

3 Group depth-wise Conv2D (C, Ns /16, 64)


1 × 17, 64, stride 2

BatchNorm

Linear Activation

 × 4, mode = same

4 Dropout (C, Ns /16, 64) rate = 0.5

5 Depth-wise Conv2D (1, Ns /16, 64)

 C × 1, 64, stride 1

ELU Activation

 × 1, mode = valid

6 Point-wise Conv2D (1, Ns /16, 16)


1 × 1, 16, stride 1

BatchNorm

ELU Activation

 × 1, mode = same

7 Dropout (1, Ns /16, 16) rate = 0.5

8 Dense Nclass

and a linear activation layer. Unlike the traditional depth-wise
separable convolutional operation, which utilizes a single depth-
wise convolution to convolve the data of each feature map,
the group depth-wise convolution employs C 1D depth-wise
convolutional filters to convolve the EEG data of C channels
simultaneously. More specifically, we can consider the C 1D depth-
wise convolutional filters as a filter set that can produce a 2D
feature map, and K (i.e., K = 64) filter sets produce K 2D feature
maps. The Figure 1 has K dashed line frames in black, and each
contains a filter set. The long frames with different colors (e.g., red,
yellow, blue, or green) represent different depth-wise convolutional
filters. The output of the group depth-wise convolution layer is
represented by a three-dimensional (3D) feature cube comprised
of a feature map, temporal, and EEG channel dimensions. If
l = 0, layer l is the input layer, with the input being EEG

fragment Xm∈RC∗Ns∗64. Let l (1 ≤ l ≤ N) be a group depth-
wise convolution block. Then, the input of block l comprises
ml−1 feature maps from the previous block. The output of block
l consists of ml feature maps. Yc,l

i denotes the row of the ith feature
map in block l where c∈[1, C]. The Yc,l

I is computed as follows:

Yc,l
I = f

Bc,l
i +

ml−1∑
j = 1

Kc,l
i,j ∗ Yc,l−1

j

 (l > = 1), (1)

where Bc,l
i is bias matric, and Kc,l

i,j is the convolution filter
connecting the jth feature map in block l-1 with the ith feature
map in block l. After the convolution operation, the leaky rectified
linear unit (LeakyReLU) is used as the activation function f(·).
The ith feature map is obtained by stacking Yc,l

i s together. Every
convolution filter shifts along the temporal dimension by stride
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s1 (i.e., s1 = 2). The block l is followed by the dropout layer
with a dropout rate of 0.5 and adopts the “SAME” padding mode
considering the original elements in the layer input. From Table 1,
we can see that the filter size (i.e., 1× 17) equals the size used in the
2D convolutional filter. There are 4 group depth-wise convolution
block in the layer, and the final output of the layer is represented by
z2∈RC∗(Ns/16)∗64. Compared with the depth-wise convolution layer
in the Compact-CNN to classify 12 categories of SSVEP stimulus
frequency, the group depth-wise convolution layer in our model
covers the receptive field of the same size. It has a deeper model
architecture with fewer parameters which is beneficial for avoiding
over-fitting.

2.3.3. Depth-wise separable convolution layer
The motivation for using this layer is to (1) reduce the

number of parameters to fit and (2) explicitly decouple the
relationship within and across feature maps by first learning a
kernel summarizing each feature map individually, then optimally
merging the outputs afterward. More specifically, it firstly uses
depth-wise spatial convolution in which the kernel shape is C∗1
to convolve each 2D feature map into a 1D vector along the
temporal dimension of each feature map. Then it utilizes point-
wise convolution to combine information across feature map
dimensions. The depth-wise spatial convolution layer employs
exponential linear unit (ELU)’s nonlinearity and “VALID” padding
mode. The filter number of the depth-wise spatial convolution
layer is set to 64, and the output of the layer is represented
by z3∈R(Ns/16)∗64. It is noteworthy that the depth-wise spatial
convolution filter sweeps the data along temporal and EEG channel
dimension in one stride and C stride, respectively. The point-wise
layer is followed by batch normalization and dropout layer. The
ELU activation and “SAME” padding mode are adopted in the
point-wise convolutional layer. The point-wise convolutional layer
employs the convolution filter with size of 1 × 1 to process the
data, and the filter number of the point-wise convolution is set to
16 to reduce the number of parameters to fit. The output of the
point-wise convolutional layer is denoted by z4∈R(Ns/16)∗16.

2.3.4. Dense layer and the corresponding loss
function

The feature maps outputted by the depth-wise separable
convolution layer are flattened and concatenated into one vector,
fed into the dense layer. It is noteworthy that the GDNet-EEG
model only contains one dense layer for avoiding high computation
complexity. Let l be a dense layer, the identity activation function is
utilized as activation function g(·), and the output of the ith unit in
layer l is computed as follows:

Zl
i = g

 Ns∑
j = 1

wl
i,jZ

l−1
j

 , (2)

where wl
i,j, and Zl−1

j denote the weights of the ith unit in layer l and
the outputs of layer (l-1), respectively. The outputs of the dense
layer are passed into a softmax function for yielding stimulation
frequency recognition results. Thus, the very first input Xi is
predicted as ŷ argmax s(Zl

i), where s∈[0,1]Nclass (i.e., Nclass = 40)
is the softmax output of the dense layer.

2.4. EEG attention module

Figure 2 shows the overall process of the EEG attention
module. In the GDNet-EEG, the group depth-wise convolution
block output is defined as feature map F ∈ RC × M × Len, in which
C represents the number of EEG channels, M means the number of
feature maps, and Len indicates the length of convolution feature.
F is fed into the EEG attention module as input. The EEG attention
module sequentially infers a 2D EEG channel-wise attention map
MEC ∈ RC × M × 1 and a 1D specialized network-wise attention
vector MSN ∈ RM × 1 × 1. The process of the EEG attention
module could be illustrated as:

F
′

= MEC (F) × F, (3)

F
′′

= MSN

(
F
′
)
× F

′

, (4)

where F’ is the EEG channel-wise refined feature, calculated by
multiplying EEG channel-wise attention map MEC and the input
feature F. The final output F,” the feature for refining the specialized
network, is calculated by multiplying specialized network attention
MSN and the EEG channel refined feature F’. The final output F” is
fed into the next group depth-wise convolution block.

Figure 3 shows the overall process of the EEG attention
module. The module includes two sequential parts: EEG channel-
wise attention sub-module and specialized network-wise attention
sub-module. The EEG channel-wise attention sub-module chooses
essential brain regions from each feature map, regarded as a
specialized network. The specialized network-wise attention sub-
module acts on the feature map refined by the EEG channel-
wise attention and generates an attention vector to represent the
importance of different specialized networks. As the top part of
Figure 3 shows, we have generated the EEG channel-wise attention
map along the feature map dimension. Every feature map generated
by the previous convolution layer is downsampled along the
convolution feature dimension using both average and maximum
pooling. Every feature map is down-sampled into a 1D vector
whose length is the same as the EEG channel number. The data
representation of the average-pooled feature FEC

avg∈ RC × M × 1 and
max-pooled feature FEC

max∈ RC × M × 1 are 2D matrix, in which the
row represents the EEG channel, and the column means feature
map. We stack the FEC

avg and FEC
max together as the input of a

separable convolution layer, which uses M 1∗1 convolution filters
to separately convolve the pooled feature stack along the EEG
channel axis and generate M vectors. Every vector is passed into
a sigmoid function to assign attention weight for EEG channels
in every feature map. M attention weight vectors constitute the
2D EEG channel-wise attention map MEC. The EEG channel-wise
attention map is computed as follows:

MEC (F) = σ
(

f M;1∗1 ([AvgPool (F) ;MaxPool (F)
]))
=

σ
(

f M;1∗1
(
[FEC

avg; F
EC
max]

))
, (5)

where σ means the sigmoid function andf M;1∗1 denotes a separable
convolution network.

As the bottom part of Figure 2 illustrates, the input of
the specialized network-wise attention is the feature maps
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FIGURE 2

EEG attention integrated with a convolution block in GDNet-EEG.

FIGURE 3

The overall process of the EEG attention module. The module includes two sequential parts: EEG channel-wise attention sub-module and
specialized network-wise attention sub-module.

refined by the EEG channel-wise attention sub-module. These
are the dot multiplication results of the 2D EEG channel-
wise attention map MEC and the original feature map F.
The feature maps refined by the EEG channel-wise attention
sub-module are pooled by using two pooling operations:
average-pooled feature FSN

avg ∈ RM × 1 × 1 and max-pooled
feature FSN

max ∈ RM × 1 × 1. The two vectors are forwarded
separately to a shared network composed of a multi-layer
perceptron (MLP) with one hidden layer to produce two refined
pooled vectors. After the shared network is applied to each
descriptor, we merge the output feature vectors using element-wise
summation. The specialized network-wise attention is computed
as follows:

MSN (F) = σ

(
MLP

(
AvgPool

(
F
′′

))
+MLP

(
MaxPool

(
F
′′

)))
= σ

(
W1

(
W0

(
FSN

avg

))
+W1

(
W0

(
FSN

max

)))
, (6)

where σ denotes the sigmoid function, W0 and W1 are the MLP
weights shared for average-pooled vector FSN

avg and max-pooled
vector FSN

max.

3. Results

3.1. Experimental setup

The EEG data collected during the visual stimulation period
is kept. To split the raw EEG data collected in each session into
EEG segments, we remove the EEG data collected during the gaze
shifting of 0.5 s guided by a visual cue and an offset of 0.5 s
followed by the visual stimulation. The benchmark dataset contains
8,400 trials and 40 categories, and the time length of the flickering
visual stimulation in each trial is 5 s. The BETA dataset consists
of 11,200 trials and 40 categories. For the first 15 participants
and the remaining 55 participants in the BETA dataset, the time
length of the flickering visual stimulation in each trial is 2 and
3 s, respectively. For generating the input of the GDNet-EEG and
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other comparison models, we first extract the raw EEG data of
each trial of the two datasets to form data samples and assign the
corresponding flickering character as the label to each data sample.
Further, we apply a sliding window with the step of ratio × 250 on
each data sample and generate the final input samples in a non-
overlapping manner. For example, assuming the ratio equals 0.4,
the data shape of each input sample is 100uNc, and the Nc denotes
the number of EEG channels (i.e., 64).

Because longer EEG segments contain more information
about brain activity, the model performance for target frequency
identification can be improved by increasing the segment length
T. Considering this fact, we investigated the impact of segment
length T ranges [0.2, 0.4, 0.6, 0.8, and 1.0] on model performance.
More specifically, when the number of data points of each input
sample is 50, meaning the ratio is set to 0.2, and segment length T
representing the time length of each input sample is 0.2 s, the total
number of input samples of the combination dataset for training
and testing models is 366,000. The models are trained with a batch
size of 64, and mini-batch gradient descent and Adam optimizer
with a learning rate of 0.001 are used to optimize the model
parameters. An early-stop training strategy is adopted to train the
models. Ten-fold cross-validation is applied to divide the dataset
into training data and testing data, and the average classification
accuracy (ACC) rate, sensitivity (SEN), and specificity (SPE) and
the corresponding standard deviation (STD) of them are employed
as model performance metrics. The above metrics are calculated
using the following formulas:

ACC = (TP+TN)/(TP+FP+FN+TN), (7)

SEN = TP/(TP+ FN), (8)

SPE = TN/(TN+ FP), (9)

where TP denotes true positives, TN denotes true negatives, FP
denotes false positives, and FN denotes false negatives.

3.2. Model training and further details

The GDNet-EEG and other comparable models are
implemented by Pytorch and trained with a Tesla A100 GPU.
The GDNet-EEG model is initialized by sampling the network
weights from Gaussian distribution with 0 mean and 0.01 variance.
Categorical cross-entropy is used as the loss function to train
the model by comparing the probability distribution with true
distribution. More specifically, the EEG data collected in one
trial is represented by (X, Y), where X∈RC∗Len and Y∈RNclass. As
mentioned above, X is split into t segments {X1, X2,..., Xt} and
segments collected from the same trial have the same label Y. To
train the GDNet-EEG, we select the EEG signal of Db trials as a
batch of data to train the model in each iteration. The loss function
of the categorical cross-entropy is computed as follows:

−1
t ∗ Db

t∗Db∑
i = 1

Nclass∑
j = 1

yij log
(
sij
)
+ λ|w|2, (10)

where λ (i.e., λ = 0.001) denotes the constant of the L2
regularization. sij∈[0,1]Nclass and yi represent softmax output for

the input segment Xi and the corresponding frequency label of
the input segment Xi, respectively. w means the weights of the
GDNet-EEG model. The GDNet-EEG model is trained by two
stages: the first stage is trained by the benchmark dataset and the
second stage is trained by the BETA dataset. Note that the second
stage re-initializes the network with the weights trained by the
first stage and fine-tunes the weights to fit the data distribution of
the BETA dataset. The model training strategy originates from the
consideration of inter-dataset statistical variations.

3.3. Comparison baselines

Five kinds of CNN models are reproduced as baseline
approaches for result comparison. To perform the SSVEPs-
based stimulation frequency recognition task, we reconstruct the
output layer of these models to distinguish 40 target stimulation
frequencies. The simplified description of the baseline approaches
is depicted as follows:

EEGNet (Lawhern et al., 2018): The network starts with a
temporal convolution to learn frequency filters and then uses
depth-wise convolution to learn frequency-specific spatial filters.
The depth-wise convolution combines all EEG channels to obtain a
better frequency pattern.

Compact-CNN (Waytowich et al., 2018): The network is a
variant of the EEGNet for classifying the SSVEP signals. Unlike the
EEGNet, the dense layer of the Compact-CNN does not adopt the
max-norm constraint function to the kernel weights matrix.

DeepConvNet (Schirrmeister et al., 2017): The model is a deep
convolution network for end-to-end EEG analysis. It is comprised
of four convolution-max-pooling blocks and a dense softmax
classification layer. The first convolutional block is split into a first
convolution across time and a second convolution across space
(electrodes). The following blocks utilize standard convolution
operation with a large filter whose width is equivalent to the
number of feature maps.

Shallow ConvNet (Schirrmeister et al., 2017): The network
is a shallow version of the DeepConvNet and contains one
convolution-max-pooling block and a dense softmax classification
layer. Compared with the deep ConvNet, the temporal convolution
of the shallow ConvNet adopts a larger kernel size. After the two
convolutions of the shallow ConvNet, a squaring nonlinearity, a
mean pooling layer, and a logarithmic activation function followed.

Convolutional correlation analysis (Li et al., 2020): The network
consists of a signal-CNN branch and a reference-CNN branch. The
former is comprised of three convolutional layers, and the latter
contains two convolutional layers. The output of the two branches
is fed into the dropout layer for regularization. A correlation layer
is followed by the dropout layer for calculating the correlation
coefficients of the output of the two branches. A dense layer and
softmax activation function is applied as the final classification
layer.

FB-SSVEPformer (Chen et al., 2022c). This is the first
Transformer-based deep learning model for SSVEP classification.
The frequency spectrum of the SSVEP signals is extracted by filter
bank technology and fed into SSVEPformer, which further learns
spectral and spatial characteristics by self-attention mechanism for
final frequency classification.
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Filter bank CCA (Chen et al., 2015). This method tries to
make use of harmonic SSVEP components to enhance the CCA-
based frequency detection. By incorporating the fundamental and
harmonic SSVEP components in target identification, the method
significantly improves the performance of the SSVEP-based BCI.

3.4. Ablation studies

On the one hand, we design a comparison experiment to
compare the classification performance of the GDNet-EEG model
and its variations. The motivation of designing this comparison
experiment is to validate the main innovations of our model, such
as group depth-wise convolution and EEG attention module. On
the other hand, the effect of EEG channel number on the model
performance is also validated for demonstrating whether our model
can recognize more informative SSVEP features from the signal of
multiple EEG channels or not.

3.4.1. Comparison results between the
GDNet-EEG model and its variations

The main innovation of our model mainly includes two
aspects: (1) GDNet-EEG is a deep convolution architecture using a
group depth-wise convolutional filter to extract as diverse regional
characteristics as possible from raw EEG data. (2) EEG attention
consisting of EEG channel and specialized network-wise attention
is proposed to refine EEG feature of single EEG channel and
recognize specialized networks to improve the model performance
of SSVEPs-based target stimulation frequency recognition. To
validate the model performance of the GDNet-EEG affected by the
above two aspects, we design the following models: (1) we adopt
a regular convolutional filter to substitute the group depth-wise
convolutional filter in the GDNet-EEG; (2) we implement a shallow
version of the GDNet-EEG, comprised of two group depth-wise
convolutional layers; (3) we remove the EEG attention module of
the GDNet-EEG; (4) the EEG channel-wise attention is removed
from the GDNet-EEG; (5) the specialized network-wise attention is
removed from the GDNet-EEG; (6) Instead of using EEG attention
module, we embedded CBAM block into the GDNet-EEG model
for refining the feature maps learned by the group depth-wise
convolution layer We use model 1 model 6 to denote the five
models for simplification.

The model performance affected by the signal length of the
input sample is investigated. Figure 4 gives average classification
accuracies obtained by the GDNet-EEG and model 1 model 6
over 10-fold cross-validation, and error bars indicate standard
errors. The figure shows that the GDNet-EEG outperforms other
models in classification accuracy across the three datasets in various
signal lengths. As the signal length increases, the classification
accuracy of different models shows an upward trend. This result
shows that the EEG signal with a longer time length contains a
more apparent characteristic pattern, which facilitates the deep
learning models to generate more accurate decisions. Especially
in the signal length of 1 s, the GDNet-EEG model achieves the
highest classification accuracy of 84.11, 85.93, and 93.35% on
the benchmark, BETA, and combination datasets, respectively.
The models trained on the combination dataset obtained better
model performance than the models trained on the benchmark

dataset and BETA dataset, which may be attributed to the impact
of dataset size on the deep learning model. Compared with the
model 1 which is implemented by a regular convolutional filter,
the GDNet-EEG obtains better classification accuracy, indicating
the superiority and rationality of the group depth-wise convolution
layer. The shallow GDNet-EEG (model 2) achieves the lowest
accuracy, indicating the deep layer structure might provide an
accuracy increment for the GDNet-EEG. The superiority of the
EEG attention is also validated by comparing model 3 model 5 with
the classification accuracy of the GDNet-EEG. More specifically,
the classification rate of the model 3 is lower than the classification
rate of our model, as well as the classification performance of model
4 or model 5 is also worse than the classification performance of
the GDNet-EEG, demonstrating the EEG attention module can
improve the classification performance of the GDNet-EEG. The
comparison results between classification rate of model 4 and
model 5 indicate the specialized network-wise attention seems to
be capable of better boosting the classification performance of our
model. By comparing the classification performance of model 6
with the classification performance of the GDNet-EEG, we can
know the EEG attention module might be more suitable for refining
representational EEG feature and improve the model performance
for target frequency identification.

3.4.2. Effect of EEG channel number on the
model performance

Note that the EEG channel location is arranged by international
10-10 EEG system. Although previous studies demonstrated the
EEG channels that are placed over the occipital and parietal regions
provide perhaps the most informative SSVEP signals, we want to
validate the effectiveness of our approach on using the data of
varying number of EEG channel. Table 2 gives the classification
results (ACC, SPE, SEN, and their corresponding STDs) of our
model is reported versus varying number of channels and 1.0 s of
stimulation. We conducted five experiments to validate the effect
of varying number of EEG channel on the model performance, the
channel number and the corresponding channel name are given as
follows:

• three EEG channels (labeled by O1, Oz, and O2) that are placed
over the occipital (O) regions;
• six EEG channels (labeled by O1, Oz, O2, POz, PO3, and PO4)

that are placed over the occipital and parietal- occipital (PO)
regions, it is noteworthy that PO denotes the EEG channel
placed between occipital and parietal regions;
• on the basis of the six EEG channels, we add another three

EEG channels that are placed over PO regions, the nine EEG
channels are labeled by O1, Oz, O2, Pz, PO3, PO5, PO4, PO6,
and POz;
• thirty-two EEG channels that are placed over occipital,

parietal, central, and central-parietal regions.
• Sixty-four EEG channels are placed over all brain regions.

The results demonstrate that there is an increasing tendency
of the classification metrics of our approach as the EEG
channel number increases, indicating the data collected from
all EEG channels can help to improve the model performance.
In addition, it is noteworthy that based on the combination
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FIGURE 4

Average classification accuracies obtained by GDNet-EEG and model 1∼model 6 over 10-fold cross-validation. Error bars indicate standard errors.

TABLE 2 Classification results (ACC, SPE, SEN, and their corresponding STDs) of our model is reported versus varying number of channels and
1.0 s of stimulation.

Channel
number

Benchmark BETA Combination

ACC (%) SPE (%) SEN (%) ACC (%) SPE (%) SEN (%) ACC (%) SPE (%) SEN (%)

3 65.32± 1.96 68.95± 2.12 63.58± 70.52± 1.74 69.72± 3.26 72.56± 2.51 86.16± 2.07 83.47± 1.85 88.73± 2.36

6 68.89± 2.52 70.32± 1.73 65.49± 72.46± 1.38 69.89± 2.79 73.85± 1.86 86.73± 1.96 84.59± 2.20 89.39± 1.82

9 75.28± 1.15 78.64± 1.58 73.24± 76.57± 2.21 74.87± 2.58 77.31± 2.70 91.27± 1.47 89.76± 1.63 92.26± 2.18

32 80.19± 1.09 81.79± 1.17 79.37± 82.91± 1.93 79.41± 2.90 83.46± 1.93 91.52± 2.15 89.50± 2.37 91.87± 2.60

64 84.11± 1.28 85.27± 0.93 83.81± 1.70 85.93± 1.36 83.26± 2.14 86.97± 2.36 93.35± 1.59 91.24± 1.54 94.12± 1.67

dataset, the classification metrics of 9 EEG channels are
close to the classification metrics of 32 EEG channels while
lower than the classification metrics of 64 EEG channels.
This result indicates the EEG channels that are placed over
the occipital and parietal regions might provide the most
informative SSVEP signals while other channels might be
informative as well.

3.5. Comparison studies

The ablation study shows that the GDNet-EEG model achieves
the best classification accuracies based on the three datasets with
the input sample length of 0.8 and 1 s. To further validate the model
performance of the GDNet-EEG, we present average classification
accuracies obtained by GDNet-EEG and five other models over 10-
fold cross-validation using the signal length of 0.8 and 1 s. Figure 5
shows that the average classification accuracies of the other five
model baselines trained on a combination dataset decreased from
1.96 to 18.2% compared to the GDNet-EEG. It indicates that the
GDNet-EEG can produce more robust features than existing EEG-
oriented deep learning methods and improve the discriminability
between different stimulation frequencies. Compare with FB-
SSVEPformer, our model achieves better classification rate based
on the combination dataset, indicating the superiority of the

GDNet-EEG based on the dataset with larger scale. In addition,
the average classification accuracies of the FBCCA are lower
than the classification accuracies of the GDNet-EEG model across
the three EEG datasets, while the Conv-CA trained on the
benchmark and BETA datasets outperformed the GDNet-EEG
in average classification accuracies. Since the technical route
of the Conv-CA and the GDNet-EEG is different, it gives us
a cue for adapting the model architecture of the GDNet-EEG
by integrating the CCA method to discriminate stimulation
frequencies.

4. Discussion

Glaucoma is a common eye condition caused by a damaged
optic nerve and can lead to vision loss if not diagnosed and
treated early. The SSVEPs-based BCI application can generate
brain signals when human looks at something flickering. If
a patient has a blind area in a region, the signals extracted
from these stimuli are weak, and it is reflected on the visual
response map. That is, the patient cannot accept the stimulation
from the flickering object at the field of vision loss occurred.
Thus, the SSVEPs-based BCI application, e.g., visual speller,
can diagnose glaucoma (Lin et al., 2015; Nakanishi et al.,
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FIGURE 5

The average classification accuracies obtained by GDNet-EEG and five other models over 10-fold cross-validation using a signal length of 0.8
and 1 s.

2017; Khok et al., 2020). Based on SSVEPs-based BCI application,
accurate glaucoma diagnosing requires effective EEG analysis
methods to discriminate stimulation frequencies. Machine learning
methods, especially deep learning, can achieve high accuracy in
EEG-based classification tasks. However, most EEG-oriented deep
learning methods focused on applying existing techniques to the
EEG-based brain activity analysis task rather than proposing new
ones specifically suited to the domain (Rasheed and Extraction,
2021). The standard well-known network architectures were
designed for the data collected in natural scenes (e.g., natural
images) and did not consider the EEG-based brain activity’s
peculiarities. Therefore, research must understand how these
architectures can be optimized for SSVEPs-based classification
tasks.

The peculiarities of EEG-based brain activity at least include
the following two aspects: regional characteristics and network
characteristics. The former can be represented by the temporal
and spectral features of the signal generated from a single brain
region. The BFC can represent the latter via learning all brain
regions’ global and local connectivity features. Although many
existing studies extract temporal, spectral, and spatial features
to represent the regional and network characteristics and feed
them into deep learning models for generating decision results
(Rocca et al., 2014; Amin et al., 2019; Su et al., 2020), they are
not end-to-end deep learning frameworks. Convolution operation
using the 1D convolutional filter is the priority choice for
building the end-to-end deep learning framework for SSVEPs-
based BCI applications (Waytowich et al., 2018). Unlike the
previous studies using the regular 1D convolutional filter to
learn EEG features, we utilize group depth-wise convolution
operations containing a set of 1D convolutional filters and
use each filter to convolve the data of the corresponding
single brain region. An attention mechanism is adopted to
identify important EEG channels from a single feature map
and recognize significant feature maps as specialized brain
networks.

An ablation study and comparison study are implemented to
validate the performance of our proposed method in discriminating
stimulation frequencies. From the experiment results described
in Figures 4, 5 we can conclude that the average classification
accuracies achieved by the models trained on the combination
dataset are better than the average classification accuracies of the
models trained on the benchmark and BETA datasets. The average
classification accuracies obtained via the models trained on the
BETA dataset are better than the models trained on the benchmark
dataset. The reason can be explained from the aspect of deep
learning model performance affected by the dataset size. As we
know, insufficient training data can lead to poor performance
of deep learning models. Small training and testing datasets will
result in underfitting the deep learning model, generating an
optimistic and high variance estimation of model performance.
By observing the experiment results of the ablation study, we
can see an upward trend of average classification accuracies along
with the signal length increasing. This result coincides with the
experiment result of other studies (Li et al., 2020; Guney et al.,
2021), which indicates better classification accuracy can be obtained
by lengthening the stimulation duration (i.e., signal length of
input sample). In addition, the comparison results between the
average classification accuracies obtained by the GDNet-EEG
using a regular 1D convolutional filter. Additionally, our method
demonstrates the superiority of the group depth-wise convolution
operation. Compared with EEGNet and Compact-CNN, our
model’s group depth-wise convolution layer covers the receptive
field of the same size and has a deeper model architecture with fewer
parameters. The higher classification accuracies achieved by our
model indicate that the architecture of our model can capture more
robust EEG features to discriminate stimulation frequencies. The
ablation study also validates that using an attention mechanism can
improve the classification accuracies of models in discriminating
different stimulation frequencies.
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Our proposed GDNet-EEG has three potential improvement
directions: (1) This study is a pilot study for glaucoma diagnosing
by implementing an effective deep learning method for SSVEPs-
based stimulation frequency discrimination. The datasets used
in this study are collected from healthy participants. Collecting
an SSVEP dataset from glaucoma patients is a feasible route
for making our method more available in SSVEPs-based BCI
application of early glaucoma diagnosis. (2) Inspired by the method
of using CCA to discriminate stimulation frequencies, we plan to
use a self-attention mechanism (e.g., Transformer model) (Vaswani
et al., 2017) to calculate how similar between stimulation signals
and reference signals and utilize the similarity to generate more
robust EEG feature for discriminating stimulation frequencies.
(3) Although the experimental results have demonstrated that
group depth-wise convolution and EEG attention facilitates the
GDNet-EEG to achieve promising classification performance in
discriminating SSVEPS-based stimulation frequencies, this result
may be unable to provide strong support for clinical treatment
that is associated with EEG biomarkers. Because DL methods are
essentially black boxes, we require novel methods to open the box
and visualize the feature learned by the DL model. To this end,
an emerging technique known as explainable artificial intelligence
(AI) (Gunning et al., 2019) enables the understanding of how DL
methods work and what drives their decision-making. We plan
to use the explainable AI method to visualize the critical brain
regions and significant specialized networks and further validate
our method’s performance.

5. Conclusion

In this study, we propose a novel deep learning model named
the GDNet-EEG, which is tailored to learn regional characteristics
and network characteristics of EEG-based brain activity to perform
the SSVEPs-based stimulation frequency recognition task. The
group depth-wise convolution is proposed to extract temporal
and spectral features from the EEG signal of each brain region
and represent regional characteristics as diverse as possible. Based
on the output of the group depth-wise convolutional layer, EEG
attention consisting of EEG channel-wise attention and specialized
network-wise attention is designed to identify essential brain

regions and form significant feature maps as the specialized brain
functional networks. The experiment results demonstrate that our
method outperforms the existing deep learning models tailored
to process EEG data on two publicly SSVEPs datasets (large-
scale benchmark and BETA dataset) and their combined dataset.
Our approach could be potentially suitable for providing accurate
stimulation frequency discrimination and being used in the early
glaucoma diagnosis using SSVEP signals.
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Purpose: Cataract is one of the leading causes of blindness worldwide,

accounting for >50% of cases of blindness in low- and middle-income countries.

In this study, two artificial intelligence (AI) diagnosis platforms are proposed for

cortical cataract staging to achieve a precise diagnosis.

Methods: A total of 647 high quality anterior segment images, which included

the four stages of cataracts, were collected into the dataset. They were divided

randomly into a training set and a test set using a stratified random-allocation

technique at a ratio of 8:2. Then, after automatic or manual segmentation of the

lens area of the cataract, the deep transform-learning (DTL) features extraction,

PCA dimensionality reduction, multi-features fusion, fusion features selection,

and classification models establishment, the automatic and manual segmentation

DTL platforms were developed. Finally, the accuracy, confusion matrix, and area

under the receiver operating characteristic (ROC) curve (AUC) were used to

evaluate the performance of the two platforms.

Results: In the automatic segmentation DTL platform, the accuracy of the model

in the training and test sets was 94.59 and 84.50%, respectively. In the manual

segmentation DTL platform, the accuracy of the model in the training and test sets

was 97.48 and 90.00%, respectively. In the test set, the micro and macro average

AUCs of the two platforms reached >95% and the AUC for each classification was

>90%. The results of a confusion matrix showed that all stages, except for mature,

had a high recognition rate.
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Conclusion: Two AI diagnosis platforms were proposed for cortical cataract

staging. The resulting automatic segmentation platform can stage cataracts more

quickly, whereas the resulting manual segmentation platform can stage cataracts

more accurately.

KEYWORDS

anterior segment images, artificial intelligence, cortical cataract, multi-feature fusion,
automatic segmentation

1. Introduction

Cataract is one of the leading causes of blindness worldwide,
accounting for over 50% of cases of blindness in low- and middle-
income countries (Wu et al., 2019). It is a visual impairment
characterized by cloudiness or opacification of the crystalline lens,
and most cataracts are age-related, although they can also be
attributed to disease, trauma, or congenital factors (Do et al., 2013;
Gao et al., 2015; Satyam et al., 2015). The pathogenesis of cataract is
quite complex and results from the long-term comprehensive effect
of various internal and external factors on the lens. Surgical removal
of the lens and implantation of intraocular lens are the only effective
treatments of a visually significant cataract (Son et al., 2022).

Cortical cataract is the most common type of the senile (age-
related) cataract. Depending on its severity, cortical cataract is
divided into four stages: (1) incipient stage, in which the lens
is partially opaque, with spokes and vacuoles, and wedge-shaped
opacity; (2) intumescent stage (immature stage), during which
lens thickness is increased and the depth of the anterior chamber
becomes shallow; (3) mature stage, in which the lens is completely
opaque; and (4) the hypermature stage, which has a shrunken
and wrinkled anterior capsule owing to water leakage out of the
lens and might also have calcium deposits. In the incipient stage,
because the lesion rarely involves the pupil area, vision is affected
rarely. Some measures can be taken to slow cataract progression,
such as by wearing anti-glare sunglasses (Gao et al., 2015). In the
intumescent stage, for patients with anatomic factors of angle-
closure glaucoma, an acute glaucoma attack can be induced by
anterior chamber shallowing. By the mature stage, the patient will
have severe vision loss and will require surgical treatment. In the
hypermature stage, patients will have serious complications, such as
phacolytic glaucoma and phacoanaphylactic uveitis. Therefore, for
timely cataract treatment, to prevent complications, and to improve
quality of life, accurate staging is important.

Currently, the diagnosis of cataract relies on the rich experience
of the ophthalmologist and slit-lamp biomicroscopy examination.
However, the distribution of medical resources is far from
satisfactory for cataract diagnosis and management (Wu et al.,
2019). The COVID-19 pandemic has also led to a shift from on-site
medical needs to telemedicine. In the previous research, Xie et al.
(2020) applied a semiautomated telemedicine platform combining
a deep learning system with human assessment to achieve the
best economic return for diabetic retinopathy (DR) screening in
Singapore, resulting in potential savings of approximately 20% of
the annual cost. Therefore, it is particularly important to develop
an artificial intelligence (AI) diagnosis platform for cataracts to

achieve high-precision automated diagnosis and lay the foundation
for the combination of AI and telemedicine in the future.

Recently, artificial intelligence (AI) has made remarkable
progress in medicine (Amjad et al., 2021). An increasing number
of AI diagnostic models for ophthalmologic diseases have been
proposed. Lin et al. (2020) used the random forest (RF)
and adaptive boosting (Ada) algorithms for the identification
of congenital cataracts. Gao et al. (2015) used deep-learning
algorithms to grade nuclear cataracts. Hasan et al. (2021) used a
transfer-learning algorithm to detect cataracts. All these models
exhibit excellent performance. However, to the best of our
knowledge, there has not been research applying AI for automatic
cortical cataract staging. Most previous studies used the traditional
machine learning or deep learning based on original slit-lamp
images. Compared with traditional methods, transfer-learning
represents an important way of solving the fundamental problem
of insufficient training data in deep learning (He et al., 2020).
In addition, for similar experimental conditions, a pre-trained
network can be adjusted quickly through transfer-learning, which
can reduce the training time greatly (Lin et al., 2021). It has also
been suggested that the image features derived from segmented
images yield increased accuracy than those from non-segmented
images (Zhang et al., 2020). Automatic segmentation can be faster
and more reproducible compared with manual delineation but
might not have the same accuracy as manual segmentation (Huang
et al., 2019; Tsuji et al., 2020).

Therefore, unlike previous studies, we combined segmentation
with a deep transfer-learning algorithm and multi-feature fusion to
create two AI platforms for automatic cortical cataract staging. One
is based on an automatic segmentation method, whereas the other
is based on a manual segmentation method; the flowchart of the
detailed processes within this study is shown in Figure 1.

2. Materials and methods

2.1. Data collection

We collected the anterior segment images of cataract-
affected eyes from the Department of Ophthalmology, Jiangxi
Provincial People’s Hospital. All images were diffuse-illuminated
photographs that were collected from the same slit-lamp digital
microscopy and taken by experienced ophthalmic technologists
using standardized techniques. All images were screened, the
images that clearly demonstrate the characteristics and reflect
different stages of cataracts were retained, and blurry images

Frontiers in Neuroscience 02 frontiersin.org123

https://doi.org/10.3389/fnins.2023.1182388
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-17-1182388 April 15, 2023 Time: 17:5 # 3

Gan et al. 10.3389/fnins.2023.1182388

FIGURE 1

The flowchart of the detailed processes of the study: manual segmentation procedure (left), automatic segmentation procedure (right).

and images of corneal disease that affected lens observation
significantly were excluded. The screened high-quality images
were then divided randomly into a training and test set using a
stratified random-allocation technique at a ratio of 8:2, in which
stratification was by staging of cortical cataracts. This means the
distribution of data in each stage was random in both the training
and testing sets.

2.2. The region of interest delineating
and cataract labeling

An experienced ophthalmologist used the LabelMe software
to delineate the region of interest (ROI), which was the
lens regions of the images. Based on the diagnostic reports
obtained from the electronic medical record system and combined
with the opacity of the lens in the images, the ROIs were
labeled as “label 0”, indicating the incipient stage, “label 1”,
indicating the intumescent stage (immature stage), “label 2”,
indicating the mature stage, and “label 3” indicating the
hypermature stage.

2.3. Establishment of the automatic
segmentation DTL platform

2.3.1. Establishment of the automatic
segmentation model

First, we trained the automatic segmentation model with the
FCNResnet50 architecture. The FCN model ‘learns’ a pixel’s class
by finding optimal values for the model parameters through
minimizing the prediction error against the target data set (Larsen
et al., 2021). The images that the experienced ophthalmologist had
delineated the lens regions of were then used as the gold standard.
The model was run for 30 ‘epochs’, each time training on 80% of the
dataset and evaluating model performance on a 20% hold-out set.
Finally, the trained model was applied to the whole dataset and the
segmentations of lens regions were obtained.

2.3.2. Deep fusion features extraction
First, the alexNet, googleNet, and resnet18 models were

pretrained on the natural image dataset ImageNet dataset1,

1 www.image-net.org/
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respectively. Then the pretraining parameters obtained from
the ImageNet dataset were used to initialize our models. The
resulting pretrained alexNet, googleNet, and resnet18 models
were then utilized to extract DTL features from the output of
the avgPool layer, respectively. To reduce dimensionality, we
employed principal components analysis (PCA). Subsequently,
we utilized channel concat to combine the output features
after PCA dimension reduction, and this resulted in the deep
fusion features.

2.3.3. Feature selection
The final deep fusion features used to construct the model

were selected in the training set. The least absolute shrinkage and
selection operator (LASSO) algorithm was used to construct the
feature selection model. First, all the deep fusion features were
standardized to a mean of 0 and a variance of 1 by the regularization
method. The formula used is shown here:

column =
column−mean

std

Then, the LASSO model selected features using a tuning
parameter (λ). The optimal λ was chosen based on a ten-fold cross-
validation. Depending on the regulation weight λ, LASSO shrinks
all regression coefficients toward zero and sets the coefficients of
many irrelevant features exactly to zero (Lao et al., 2017). The
features with non-zero coefficients were retained.

2.3.4. Establishment of the classification model
After features selection, the selected features were used

to establish the classification models. Seven machine-learning
algorithms were imported from the scikit-learn python library
to establish seven classification models, respectively, including
naive bayes (NB), support vector machines (SVM), extremely
randomized trees (Extra Trees, ET), extreme gradient boosting
(XGBoost, XGB), light gradient boosting machine (LightGBM),
gradient boosting (GB), and multilayer perceptron (MLP) models.
To prevent overfitting, five-fold cross-validation was used to fit
each classification model.

2.4. Establishment of the manual
segmentation DTL platform

Manual segmentation of the DTL platform included manual
segmentation, deep fusion features extraction, feature selection,
and the classification model establishment.

The rest was the same as the automatic segmentation
DTL platform, except that the segmentation was different.
First, based on the lens regions delineated by an experienced
ophthalmologist, a ROI was segmented manually from each image.
Then, based on the ROI, as with automatic segmentation
DTL platform, pretrained alexNet, pretrained googleNet,
and pretrained resNet18 models were used to extract DTL
features, respectively. Next, PCA was used for dimensionality
reduction. The reduced DTL features were fused. The LASSO
model was used to select features. Finally, seven different
classification models, NB, SVM, ET, XGB, LightGBM, GB, and
MLP were established.

2.5. Model validation and performance
evaluation

The trained models were applied to the test set for independent
testing. Different quantitative metrics, such as pixel accuracy
(PA), intersection over union (IoU), and Dice coefficient (Dice),
were adopted to evaluate the performance of the automatic
segmentation model and the classification model. PA is the
simplest indicator of image segmentation, which is the percentage
of correctly classified pixels out of the total pixels in each
image (Larsen et al., 2021). IoU is a concept used in object
detection, which measures the overlap between two boundaries:
the predicted boundary and the truth boundary (Kim and Hidaka,
2021). The higher the IoU, the more accurate is the position
of the prediction boundary. The Dice coefficient is a score
that indicates the similarity between two samples (Takahashi
et al., 2021). It used to measure the amount of overlap of
regions.

To the classification models, the classification accuracy,
confusion matrix, and the receiver operating characteristic (ROC)
curve and area under the ROC curve (AUC) were also introduced to
evaluate the performance. The classification accuracy is computed
as the ratio of the correctly classified number of samples
and the total number of samples (Masood and Farooq, 2019).
The confusion matrix is a visualization tool used typically in
multiclass supervised learning and contains information about
the actual classifications and the classifications predicted by a
classification model (Bang et al., 2021). ROC curve and AUC
was another class of indicators to evaluate the classification
accuracy. The closer the ROC curve is to the upper left corner,
the larger the AUC value, and the better the classification
effect.

2.6. Statistical analysis

ROI was delineated, segmented, and labeled using an open-
source annotation tool LabelMe. All statistical calculations and
the drawing of statistical graphs were performed in Python
(version 3.9.7).

3. Results

3.1. Imaging dataset

A total of 647 high quality anterior segment images were
included into the dataset. One hundred ninety one incipient stage
images, 171 intumescent stage images, 100 mature stage images and
183 hypermature stage images. Through stratified random division,
with 80% of the images used for training and 20% for testing.
517 images were included in training set, of these, included 153
incipient stage images, 136 intumescent stage images, 80 mature
stage images and 147 hypermature stage images. One hundred
thirty images were included in test set, of these, included 38
incipient stage images, 35 intumescent stage images, 20 mature
stage images and 36 hypermature stage images.
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FIGURE 2

Diagrams of comparisons between automatic and manual segmentation: original images of cataracts at different stage (A–D); the corresponding
automatic segmentation mask (A1–D1); the corresponding manual segmentation mask (A2–D2).

3.2. Segmentation performance of the
automatic segmentation model

The whole automatic segmentation process took 2 min and
43 s. While the manual segmentation process from the experienced
ophthalmologist required approximately a week. The segmentation
results graph of the automated and manual segmentations as shown
in Figure 2. The visualization of the FCNResnet50 model training
process was shown in Figure 3. The loss value decreases gradually
with epoch and stabilizes at 5 epochs, and the accuracy reaches
95% in the test set. It can be seen that the contours obtained
manually often fit better with the true contour of the lens compared
with the automatic segmentation. And the results of automatic
segmentation showed that the PA was 98.9, the mean IoU was 93.3,
and the mean Dice score was 96.4%.

3.3. Results of the feature extraction and
fusion

In the automatic segmentation platform, the automatic
segmentation lens images were input to the three pretrained

models, the extracted features were output from the last fully
connected layer. 512, 1024, 9216 DTL features of each image were
extracted from pre-trained alexNet, pre-trained googleNet and pre-
trained resNet 18, respectively. After PCA dimension reduction,
31 features of each image from each model were obtained. And
then after features fusion, the feature subset included 93 features of
each image were obtained. In the manual segmentation platform,
the manual segmentation lens images were input to the three
pretrained models. After features extraction, PCA dimension
reduction and features fusion, the 93 features of each image
were also obtained.

3.4. Results of feature selection

The optimal λ (λ = 0.025595) was chosen based on a ten-
fold cross-validation. Depending on the optimal λ, 49 features
were retained in the automatic segmentation platform, including
21 features of alexNet model, 12 features of resNet model and
16 features of googleNet model. 51 features were retained in the
manual segmentation platform, including 20 features of alexnet
model, 17 features of resNet model and 14 features of googleNet
model. The selection process was shown in Figure 4.
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FIGURE 3

The loss convergence and accuracy curves of FCNResNet50 model in the test. The loss convergence curve (left), the pixel accuracy (PA) and
Intersection over Union (IoU) curve (right).

FIGURE 4

The figure of LASSO coefficient distribution (left): the colored curve shows the path of the coefficients for each input feature as lambda varies; the
figure of partial likelihood deviation of the LASSO coefficient distribution (middle): the vertical dashed line represents the optimal value of the
regularization parameter determined by cross-validation; feature weight coefficient graph (right). Automatic segmentation platform (A–C); manual
segmentaion platform (D–F).

3.5. The classification performance of the
automatic segmentation DTL platform
and the manual segmentation DTL
platform

By five-fold cross-validation, the result of classification
accuracy revealed that the accuracy of SVM model was the best
in both the automatic segmentation DTL platform or the manual
segmentation DTL platform. In the automatic segmentation DTL
platform, the accuracy of the model in the training set and the test
set were 94.59 or 84.50%, respectively. In the manual segmentation
DTL platform, the accuracy of the model in the training set and

the test set were 97.4 or 90.00%, as shown in Table 1. The range of
classification accuracy rates were shown in Figure 5.

The result of AUC also revealed that the performance of
SVM model was best in both two platforms. In the automatic
segmentation DTL platform, the micro and macro average AUC
of SVM model both were 96% in the test set. In the manual
segmentation DTL platform, the micro and macro average AUC
of SVM model both were 97% in the test set. And in both two
platforms, the AUC for each classification was all more that 90%
in the test set. As shown in Figure 6.

The results of 4 × 4 matrix show the number of correct and
incorrect classifications by the SVM model in each stage of cataract.
In the automatic segmentation DTL platform, the recognition rates
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TABLE 1 The accuracy of classification models in the automatic and
manual segmentation DTL platforms.

Group Model name Accuracy Train/Test

Manual NaiveBayes 81.82% Train

NaiveBayes 79.23% Test

SVM 97.48% Train

SVM 90.00% Test

ExtraTrees 100% Train

ExtraTrees 80.77% Test

XGBoost 96.71% Train

XGBoost 78.46% Test

LightGBM 96.71% Train

LightGBM 78.46% Test

GradientBoosting 89.17% Train

GradientBoosting 72.31% Test

MLP 95.94% Train

MLP 78.46% Test

Automatic NaiveBayes 73.55% Train

NaiveBayes 69.77% Test

SVM 94.59% Train

SVM 84.50% Test

ExtraTrees 100% Train

ExtraTrees 58.14% Test

XGBoost 100% Train

XGBoost 66.67% Test

LightGBM 94.79% Train

LightGBM 63.57% Test

GradientBoosting 84.94% Train

GradientBoosting 54.26% Test

MLP 92.66% Train

MLP 75.97% Test

of incipient stage, intumescent stage, hypermature stage were all
high. The hypermature stage had the highest recognition rate.
Of the 36 images, 34 of them were correctly recognized (94.5%)
and only 2 were incorrectly recognized (5.5%). While, the mature
stage had the lowest recognition rate. Of the 20 images, 14 of
them were correctly recognized (70%) and 6 were incorrectly
recognized (6%). In the manual segmentation DTL platform, the
results also show that all stages except for mature had high
recognition rate. Of the 20 images in the mature stage, 15 of
them were correctly recognized (75%) and 5 were incorrectly
recognized (5%). The recognition rate of the intumescent stage was
highest, of the 35 images, 34 of them were correctly recognized
(97.1%) and only 1 were incorrectly recognized (2.9%) as shown
in Figure 7.

In addition to the SVM model, we also drew the ROC
curves and confusion matrix of the other models, which
included NB, ET, XGB, LightGBM, GB, and MLP models of the
manual segmentation platform and the automatic segmentation
platform. The ROC curves of other models were shown in the

Supplementary Figures 1, 2. The confusion matrix of other models
were shown in the Supplementary Figures 3, 4.

4. Discussion

Precision medicine is an emerging medical model that has
great promise for the prevention, diagnosis, and treatment of
many diseases (McGonigle, 2016). Accurate staging of cataracts
is a precise classification of the different states and processes
of a disease, which is the embodiment of precision medicine
strategies. It is also essential to planning of appropriate treatment,
assessing outcome, and future prognosis. The establishment of an
automated cataract diagnosis platform not only makes medical
services more convenient and efficient, but also contributes to
epidemic prevention and control. In this study, we developed two
AI platforms based on using a deep transfer-learning algorithm
and a multi-feature fusion method. The results of our study
indicated that both platforms can stage cataract well. In the
automatic segmentation DTL platform, the segmentation process
completed in just 2 min and 43 s, with training and test set
accuracies of 94.59 and 84.50% respectively. On the other hand,
the manual segmentation DTL platform required approximately
a week for an experienced ophthalmologist to manually segment.
However, the model achieved higher accuracies in the training
and test sets, at 97.48 and 90.00%, respectively. On the whole, the
manual segmentation DTL platform was more precise, whereas the
automatic segmentation DTL platform was more rapid.

The grading of cataracts is based on the opacity of the lens,
and good segmentation performance is the basis of classification.
The difference in the tissue outside the lens might affect the
classification results. In the automatic segmentation DTL platform,
based on the FCNResnet50 model, we have presented a method for
the automatic segmentation of the lens from cataract images. The
segmentation results showed that the proposed model was able to
segment the lens accurately. Compared with previous research, the
PA, IoU, and Dice improved by 8.4, 14.9, and 9.5%, respectively (Cai
et al., 2021).

In previous studies, Gao et al. (2015) used a deep learning
method to grade nuclear cataracts, but the accuracy only reached
70%. Lin used a convolutional recursive neural network to
develop an AI platform for diagnosing childhood cataracts and
the accuracy was 87.4%, whereas the accuracy of our study
reached 90.00%. In addition to the task itself, the reason is
possibly caused by the algorithmic upgrading. In this study,
we adopt three pretrained models trained on the ImageNet
and then fine-tuned into our dataset, which makes up for the
insufficient datasets and leads to a reduction in the learning
time. We also adopt the early fusion approaches for the
classification task. Early fusion is also called feature level fusion,
which emphasizes data combination before the classification
(Zhang et al., 2017), which reduced the influence of single
feature inherent defects and realized feature complementarity.
Multiple studies have also confirmed that the combination
of different features presents better classification results than
individual features (Fang et al., 2019; Wan and Tan, 2019;
Nemoto et al., 2020).

Comparing the results of the ROC curves of the two
platforms, the macro average calculates the indicators of
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FIGURE 5

Boxplots for the range of accuracy of each classification model, the automatic segmentation platform (left); the manual segmentation platform
(right).

FIGURE 6

The ROC curves of SVM model of two different platforms in the test set. The automatic segmentation platform (A); the manual segmentation
platform (B), “Class 0” indicated incipient stage, “class 1” indicated intumescent stage, “class 2” indicated mature stage, and “class 3” indicated
hypermature stage.

FIGURE 7

The confusion matrix of the SVM model of two different platforms in the test set. Each column represents the predicted class and each row of the
matrix represents the actual class. The automatic segmentation platform (A); the manual segmentation platform (B). “Label 0” indicated incipient
stage, “label 1” indicated intumescent stage, “label 2” indicated mature stage, and “label 3” indicated hypermature stage.

each class independently and then takes the mean value
to treat all classes equally; the micro average aggregates
the contributions of all classes to calculate the average

indicator (Huang et al., 2022). The results of the two
platforms can reach >95%, indicating that both show good
performance. The AUC for each classification was >90% in the
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test set, indicating that both platforms have excellent classification
accuracy.

The confusion matrices showed the prediction results of each
sample in the test set. Although the results showed that all stages,
except for mature, had high recognition rate, the probabilities of
correct identification (PCIs) of mature stage in the two platforms
achieved >70%. The images of the mature stage were misassigned
to the hypermature stage easily. The major reason for this result
might be that the staging of the cataracts is determined by the
opacity of the lens, also, sometimes it is hard to define clear
boundaries of adjacent stage, and a large sample size might be
required. Compared with other stages, the sample size of the mature
stage was the smallest.

This study had some other limitations. All data are only based
on the diffuse-illuminated photographs, it is important to note
that slit-lamp photography, fundus photography, and clinical data
can also provide valuable insights into the disease. And this study
was only based on clinical diagnosis of the disease; however,
individualized treatment is an integral and mandatory part of
precision medicine. Therefore, in future studies, we will increase
the sample size and combine multiple modal data to combine
diagnosis and treatment, to build a more perfect and convenient
AI platform for clinical diagnosis and treatment.

5. Conclusion

In this study, two AI diagnosis platforms have been proposed
for cortical cataract staging. Through the multi-feature transfer-
learning method combined with an automatic or manual
segmentation algorithm, the resulting automatic segmentation
platform can stage cataracts more quickly, whereas the resulting
manual segmentation platform can stage cataracts more accurately.

Data availability statement

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

Ethics statement

The studies involving human participants were reviewed and
approved by Declaration of Helsinki and was approved by the

Medical Ethics Committee of the Jiangxi Provincial People’s
Hospital. The patients/participants provided their written informed
consent to participate in this study. Written informed consent
was obtained from the individual(s) for the publication of any
potentially identifiable images or data included in this article.

Author contributions

FG, HL, W-GQ, and S-LZ contributed to data collection,
statistical analyses, and wrote the manuscript. All authors read and
approved the final manuscript, contributed to the manuscript and
approved the submitted version.

Acknowledgments

Some of our experiments were carried out on OnekeyAI
platform. Thanks OnekeyAI and it’s developers’ help in this
scientific research work.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fnins.2023.
1182388/full#supplementary-material

References

Amjad, A., Khan, L., and Chang, H. (2021). Effect on speech emotion classification
of a feature selection approach using a convolutional neural network. PeerJ Comput.
Sci. 7:e766. doi: 10.7717/peerj-cs.766

Bang, C., Yoon, J., Ryu, J., Chun, J., Han, J., Lee, Y., et al. (2021). Automated severity
scoring of atopic dermatitis patients by a deep neural network. Sci. Rep. 11:6049.
doi: 10.1038/s41598-021-85489-8

Cai, W., Xu, J., Wang, K., Liu, X., Xu, W., Cai, H., et al. (2021). EyeHealer: A large-
scale anterior eye segment dataset with eye structure and lesion annotations. Precis.
Clin. Med. 4, 85–92. doi: 10.1093/pcmedi/pbab009

Do, D., Gichuhi, S., Vedula, S., and Hawkins, B. (2013). Surgery for post-
vitrectomy cataract. Cochrane Database Syst. Rev. 12:CD006366. doi: 10.1002/
14651858.CD006366.pub3

Fang, T., Zhang, Z., Sun, R., Zhu, L., He, J., Huang, B., et al. (2019). RNAm5CPred:
Prediction of RNA 5-methylcytosine sites based on three different kinds of nucleotide
composition. Mol. Ther. Nucleic Acids 18, 739–747. doi: 10.1016/j.omtn.2019.10.008

Gao, X., Lin, S., and Wong, T. (2015). Automatic feature learning to grade nuclear
cataracts based on deep learning. IEEE Trans. Biomed. Eng. 62, 2693–2701. doi: 10.
1109/TBME.2015.2444389

Frontiers in Neuroscience 09 frontiersin.org130

https://doi.org/10.3389/fnins.2023.1182388
https://www.frontiersin.org/articles/10.3389/fnins.2023.1182388/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fnins.2023.1182388/full#supplementary-material
https://doi.org/10.7717/peerj-cs.766
https://doi.org/10.1038/s41598-021-85489-8
https://doi.org/10.1093/pcmedi/pbab009
https://doi.org/10.1002/14651858.CD006366.pub3
https://doi.org/10.1002/14651858.CD006366.pub3
https://doi.org/10.1016/j.omtn.2019.10.008
https://doi.org/10.1109/TBME.2015.2444389
https://doi.org/10.1109/TBME.2015.2444389
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-17-1182388 April 15, 2023 Time: 17:5 # 10

Gan et al. 10.3389/fnins.2023.1182388

Hasan, M., Tanha, T., Amin, M., Faruk, O., Khan, M., Aljahdali, S., et al. (2021).
Cataract disease detection by using transfer learning-based intelligent methods.
Comput. Math. Methods Med. 2021:7666365. doi: 10.1155/2021/7666365

He, L., Li, H., Wang, J., Chen, M., Gozdas, E., Dillman, J., et al. (2020). A multi-task,
multi-stage deep transfer learning model for early prediction of neurodevelopment in
very preterm infants. Sci. Rep. 10:15072. doi: 10.1038/s41598-020-71914-x

Huang, C., Tian, J., Yuan, C., Zeng, P., He, X., Chen, H., et al. (2019). Fully
automated segmentation of lower extremity deep vein thrombosis using convolutional
neural network. Biomed. Res. Int. 2019:3401683. doi: 10.1155/2019/3401683

Huang, T., Yang, R., Shen, L., Feng, A., Li, L., He, N., et al. (2022). Deep transfer
learning to quantify pleural effusion severity in chest X-rays. BMC Med. Imaging
22:100. doi: 10.1186/s12880-022-00827-0

Kim, S., and Hidaka, Y. (2021). Breathing pattern analysis in cattle using infrared
thermography and computer vision. Animals (Basel) 11:207. doi: 10.3390/ani11010207

Lao, J., Chen, Y., Li, Z., Li, Q., Zhang, J., Liu, J., et al. (2017). A deep learning-
based radiomics model for prediction of survival in glioblastoma multiforme. Sci. Rep.
7:10353. doi: 10.1038/s41598-017-10649-8

Larsen, A., Hanigan, I., Reich, B., Qin, Y., Cope, M., Morgan, G., et al. (2021). A
deep learning approach to identify smoke plumes in satellite imagery in near-real
time for health risk communication. J. Expo. Sci. Environ. Epidemiol. 31, 170–176.
doi: 10.1038/s41370-020-0246-y

Lin, D., Chen, J., Lin, Z., Li, X., Zhang, K., Wu, X., et al. (2020). A practical model
for the identification of congenital cataracts using machine learning. EBioMedicine
51:102621. doi: 10.1016/j.ebiom.2019.102621

Lin, H., Lee, H., Tague, N., Lugagne, J., Zong, C., Deng, F., et al. (2021). Microsecond
fingerprint stimulated Raman spectroscopic imaging by ultrafast tuning and spatial-
spectral learning. Nat. Commun. 12:3052. doi: 10.1038/s41467-021-23202-z

Masood, N., and Farooq, H. (2019). Investigating EEG patterns for dual-stimuli
induced human fear emotional state. Sensors (Basel) 19:522. doi: 10.3390/s19030522

McGonigle, I. (2016). The collective nature of personalized medicine. Genet. Res.
(Camb) 98:e3. doi: 10.1017/S0016672315000270

Nemoto, K., Shimokawa, T., Fukunaga, M., Yamashita, F., Tamura, M., Yamamori,
H., et al. (2020). Differentiation of schizophrenia using structural MRI with

consideration of scanner differences: A real-world multisite study. Psychiatry Clin.
Neurosci. 74, 56–63. doi: 10.1111/pcn.12934

Satyam, S., Bairy, L., Pirasanthan, R., and Vaishnav, R. (2015). Grape seed extract
and Zinc containing nutritional food supplement delays onset and progression of
Streptozocin-induced diabetic cataract in Wistar rats. J. Food Sci. Technol. 52, 2824–
2832. doi: 10.1007/s13197-014-1305-y

Son, K., Ko, J., Kim, E., Lee, S., Kim, M., Han, J., et al. (2022). Deep learning-based
cataract detection and grading from slit-lamp and retro-illumination photographs:
Model development and validation study. Ophthalmol. Sci. 2:100147. doi: 10.1016/j.
xops.2022.100147

Takahashi, S., Takahashi, M., Kinoshita, M., Miyake, M., Kawaguchi, R., Shinojima,
N., et al. (2021). Fine-tuning approach for segmentation of gliomas in brain
magnetic resonance images with a machine learning method to normalize image
differences among facilities. Cancers (Basel) 13:1415. doi: 10.3390/cancers1306
1415

Tsuji, S., Sekiryu, T., Sugano, Y., Ojima, A., Kasai, A., Okamoto, M., et al. (2020).
Semantic segmentation of the choroid in swept source optical coherence tomography
images for volumetrics. Sci. Rep. 10:1088. doi: 10.1038/s41598-020-57788-z

Wan, X., and Tan, X. (2019). A study on separation of the protein structural types
in amino acid sequence feature spaces. PLoS One 14:e0226768. doi: 10.1371/journal.
pone.0226768

Wu, X., Huang, Y., Liu, Z., Lai, W., Long, E., Zhang, K., et al. (2019). Universal
artificial intelligence platform for collaborative management of cataracts. Br. J.
Ophthalmol. 103, 1553–1560. doi: 10.1136/bjophthalmol-2019-314729

Xie, Y., Nguyen, Q., Hamzah, H., Lim, G., Bellemo, V., Gunasekeran, D.,
et al. (2020). Artificial intelligence for teleophthalmology-based diabetic retinopathy
screening in a national programme: An economic analysis modelling study. Lancet
Digit. Health 2, e240–e249. doi: 10.1016/S2589-7500(20)30060-1

Zhang, L., Xu, Z., Xu, D., Ma, J., Chen, Y., and Fu, Z. (2020). Growth monitoring
of greenhouse lettuce based on a convolutional neural network. Hortic. Res. 7:124.
doi: 10.1038/s41438-020-00345-6

Zhang, P., Wang, X., Chen, J., and You, W. (2017). Feature weight driven interactive
mutual information modeling for heterogeneous bio-signal fusion to estimate mental
workload. Sensors (Basel) 17:2315. doi: 10.3390/s17102315

Frontiers in Neuroscience 10 frontiersin.org131

https://doi.org/10.3389/fnins.2023.1182388
https://doi.org/10.1155/2021/7666365
https://doi.org/10.1038/s41598-020-71914-x
https://doi.org/10.1155/2019/3401683
https://doi.org/10.1186/s12880-022-00827-0
https://doi.org/10.3390/ani11010207
https://doi.org/10.1038/s41598-017-10649-8
https://doi.org/10.1038/s41370-020-0246-y
https://doi.org/10.1016/j.ebiom.2019.102621
https://doi.org/10.1038/s41467-021-23202-z
https://doi.org/10.3390/s19030522
https://doi.org/10.1017/S0016672315000270
https://doi.org/10.1111/pcn.12934
https://doi.org/10.1007/s13197-014-1305-y
https://doi.org/10.1016/j.xops.2022.100147
https://doi.org/10.1016/j.xops.2022.100147
https://doi.org/10.3390/cancers13061415
https://doi.org/10.3390/cancers13061415
https://doi.org/10.1038/s41598-020-57788-z
https://doi.org/10.1371/journal.pone.0226768
https://doi.org/10.1371/journal.pone.0226768
https://doi.org/10.1136/bjophthalmol-2019-314729
https://doi.org/10.1016/S2589-7500(20)30060-1
https://doi.org/10.1038/s41438-020-00345-6
https://doi.org/10.3390/s17102315
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


Frontiers in Neuroscience 01 frontiersin.org

ARA-net: an attention-aware 
retinal atrophy segmentation 
network coping with fundus 
images
Lei Chen 1, Yuying Zhou 1, Songyang Gao 2, Manyu Li 2, Hai Tan 3* 
and Zhijiang Wan 1,2,4*
1 Second College of Cinical Medicine, Nanchang University, Nanchang, Jiangxi, China, 2 Information 
Engineering College, Nanchang University, Nanchang, Jiangxi, China, 3 School of Computer Science, 
Nanjing Audit University, Nanjing, Jiangsu, China, 4 Industrial Institute of Artificial Intelligence, Nanchang 
University, Nanchang, Jiangxi, China

Background: Accurately detecting and segmenting areas of retinal atrophy are 
paramount for early medical intervention in pathological myopia (PM). However, 
segmenting retinal atrophic areas based on a two-dimensional (2D) fundus image 
poses several challenges, such as blurred boundaries, irregular shapes, and size 
variation. To overcome these challenges, we have proposed an attention-aware 
retinal atrophy segmentation network (ARA-Net) to segment retinal atrophy areas 
from the 2D fundus image.

Methods: In particular, the ARA-Net adopts a similar strategy as UNet to perform 
the area segmentation. Skip self-attention connection (SSA) block, comprising a 
shortcut and a parallel polarized self-attention (PPSA) block, has been proposed 
to deal with the challenges of blurred boundaries and irregular shapes of the 
retinal atrophic region. Further, we  have proposed a multi-scale feature flow 
(MSFF) to challenge the size variation. We have added the flow between the SSA 
connection blocks, allowing for capturing considerable semantic information to 
detect retinal atrophy in various area sizes.

Results: The proposed method has been validated on the Pathological Myopia 
(PALM) dataset. Experimental results demonstrate that our method yields a high 
dice coefficient (DICE) of 84.26%, Jaccard index (JAC) of 72.80%, and F1-score of 
84.57%, which outperforms other methods significantly.

Conclusion: Our results have demonstrated that ARA-Net is an effective and 
efficient approach for retinal atrophic area segmentation in PM.

KEYWORDS

retinal atrophy, segmentation, self-attention, multi-scale, 2D fundus images

1. Introduction

The eyes are one of the essential sensory organs in humans; many people worldwide have 
myopia, which causes many inconveniences in their lives. Holden et al. (2016) performed a 
meta-analysis of myopia prevalence. They predicted that by 2050, 49.8 and 9.8% of the world’s 
population would suffer from myopia and high myopia, respectively. High myopia has the risk 
of deteriorating into pathological myopia. Retinal changes caused by myopia include fundus 
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tessellation, parapapillary atrophy, optic disc tilting, myopic 
maculopathy, and retinal detachment. Retinal atrophy is a condition 
that leads to the loss of retinal layers, affecting vision quality. It is 
associated with choroidal retinal thinning and attenuation of the 
parapapillary retinal pigment epithelium (RPE) adjacent to the optic 
nerve head (ONH). Myopia, glaucoma, and age-related macular 
degeneration (AMD) are among the diseases that can cause retinal 
atrophy (Jonas et al., 1988; Manjunath et al., 2010; Srinivas et al., 
2018). Accurate segmentation of retinal atrophic regions from OCT 
or fundus images is essential for eye condition diagnosis, monitoring, 
and treatment. It enables personalized interventions and plays a 
crucial role in improving the overall management of these 
ocular conditions.

The degree of retinal atrophy is a valuable medical assessment 
indicator as it is correlated closely with the severity of ophthalmic 
diseases and conditions, including glaucomatous optic nerve damage, 
visual field defects, and myopia (Park et al., 1996; Uchida et al., 1998; 
Dai et al., 2013). Consequently, the segmentation of retinal atrophic 
regions has become a significant part of diagnosing ophthalmic 
diseases. Although experienced ophthalmologists can give accurate 
results, manual segmentation is laborious and time-consuming, and 
different ophthalmologists might make different treatments. The 
development of an automatic segmentation model to accurately 
segment the retinal atrophy regions is thus vital, as it offers a reliable, 
efficient, and arguably more consistent diagnosis for ophthalmic 
diseases. The automatic segmentation models always adopt fundus 
images to perform the segmentation task of retinal atrophy areas. 
Compare with three-dimensional (3D) fundus image, 
two-dimensional (2D) fundus image are more widely available and 
easier to be acquired. The 3D fundus images require special equipment 
and technology that may not be accessible or affordable for many 
clinics or researchers. In addition, the 2D fundus images can provide 
sufficient information for segmenting retinal atrophy areas, which are 
mainly located on the surface of the retina.

In previous studies, most segmentation models are based on 
traditional image segmentation algorithms with manually designed 
features. Lu et al. (2010) segmented and quantified the optic disc and 
parapapillary area automatically using a combination of techniques, 
such as scanning filter, thresholding, region growing, and a modified 
Chan-Vese model (Chan and Vese, 2001) with a shape constraint. Li 
et al. (2018) proposed a novel parapapillary atrophy segmentation 
algorithm that utilizes evenly-oriented radial line segments and ellipse 
fitting. Although the traditional methods utilize machine learning to 
implement the image segmentation algorithm, most of them require 
manual feature selection and are not end-to-end solutions. Recent 
strides in deep learning have enabled the utilization of deep learning-
based techniques in the medical domain, surpassing traditional 
methods in image segmentation with a higher degree of accuracy. 
Current mainstream deep learning methods for object segmentation 
can be  divided into convolution-based and transformer-based 
methods. Long et al. (2014) proposed full convolutional networks 
(FCN), a model foundation of many segmentation networks for pixel-
wise semantic segmentation tasks. Transformer-based (Vaswani et al., 
2017) image segmentation models have emerged because they learn a 
global understanding of images which facilitates image segmentation 
models to achieve accurate segmentation results.

Deep learning models, especially UNet, have been widely adopted 
in various studies for segmenting areas of retinal atrophy based on 

fundus images. The UNet is a convolutional neural network designed 
for biomedical applications (Ronneberger et  al., 2015). The core 
module, the FCN, utilizes the skip connections between the encoder 
and decoder to improve model performance. Due to its low demand 
on dataset size and the U-shaped structure containing contextual 
information, UNet has become a prevalent choice for medical 
segmentation and yields promising results. Furthermore, variations of 
UNet have been proposed to enhance the model performance. Zhou 
et al. (2018) proposed UNet++ and re-designed the skip pathways to 
reduce the semantic gap between the feature maps of the encoder and 
decoder networks. Guo et al. (2020) proposed a novel Lesion-aware 
segmentation network inspired by the UNet encoder-decoder 
structure and contained a binary classifier. The feature flows were 
integrated into the decoder to absorb various scales of feature maps. 
Ruben et al. (2020) evaluated the detection of pathological myopia 
(PM) using deep learning and the semantic segmentation of myopia-
related lesions from fundus images. They used UNet++ as their 
network and used ResNet-18 as encoders. Chai et al. (2020) proposed 
a novel multi-task fully convolutional network (MFCN) model for 
peripapillary atrophy area segmentation from retinal images by 
transforming the atrophic area into two regions with relatively regular 
and uniform shapes. Wan et al. (2021) proposed OT-Unet, combining 
parallel partial decoder, edge attention, and reverse attention modules 
to enhance the segmentation accuracy.

Although the existing UNet-based retinal area segmentation 
algorithms achieved good results, the performance of the segmentation 
model is challenged by the following characteristics of retinal atrophic 
regions in the 2D fundus image, such as blurred boundaries, irregular 
shape, and size variation. These characteristics can make the 
segmentation models challenging to segment the areas accurately. As 
depicted in Figure 1, the top and bottom parts show a 2D fundus 
image and the corresponding retinal atrophy areas (i.e., areas in 
white), respectively. The bottom parts of subfigures (a) and (b) exhibit 
larger areas of retinal atrophy, while the bottom parts of subfigures (c), 
(d), and (e) show significantly reduced areas of atrophy. From the 
figure, we know that retinal atrophic areas can vary significantly in size 
from patient to patient, and the areas of each patient are randomly 
distributed in the fundus image. In addition, the model’s generalization 
ability is restricted by the limited availability of annotated fundus 
image datasets.

To overcome these challenges, we proposed an attention-aware 
retinal atrophy segmentation network based on UNet structure, 
containing an encoder, a decoder, skip self-attention (SSA) 
connection blocks and multi-scale feature flow (MSFF), to segment 
retinal atrophic areas from 2D fundus image. The SSA connection 
block contains two distinct components: a shortcut and a parallel 
polarized self-attention (PPSA) block. The shortcut helps to 
preserve the original features, while the PPSA block can enhance 
feature learning capabilities. The PPSA block can capture 
contextual information over long distances and map semantic 
information from the encoder in both channel and spatial 
dimensions. Thus, it enables the model to learn features more 
robustly for alleviating the challenges, such as blurred boundaries 
and irregular shapes of the retinal atrophy region. Furthermore, a 
MSFF is added between the SSA connection blocks to address the 
challenge of size diversity in the retinal atrophy region. In addition, 
the transfer learning strategy and data augmentation are 
introduced to improve the performance and generalization ability 
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of the model. Due to the significant time and computational 
resources required for developing effective deep learning models, 
transfer learning has become a widely used strategy. Transfer 
learning uses the knowledge gained from pre-trained models to 
improve the performance of new tasks. Pre-trained models can 
train models efficiently for new segmentation tasks, reducing time 
and computational costs. And the transfer learning can help 
combat overfitting by providing a starting point for the model and 
reducing the reliance on training data. To improve the sensitivity 
rate of the retinal atrophy segmentation, a customized hybrid loss 
was employed to assign a higher weight to false negative detections. 
It enabled the algorithm to be  more sensitive to false negative 
detections, thus leading to more precise segmentation results. The 
main contributions of our work can be enumerated as follows:

 1. We proposed a novel skip connection block named the SSA 
connection block, which can be easily integrated into existing 
UNet-based architectures. The SSA connection block can 
better capture the global structure of the retinal atrophy, 
allowing the model to learn features more robustly. It is capable 
of dealing with blurred boundaries and irregular shapes of the 
retinal atrophic region. Additionally, it only requires a minimal 
increase in computational overheads.

 2. We proposed an MSFF between the SSA connection blocks, 
allowing the network to capture multi-scale semantic 
information and significantly enhancing the self-attention 
mechanism’s ability to capture multi-scale spatial and channel 
features. Thus, it improves the segmentation performance and 
more accurate detection of retinal atrophy and effectively 
addresses the challenge of size diversity in the retinal 
atrophic region.

 3. We introduced a learning strategy to improve the performance 
and generalization of the model. By employing pre-trained 
models with large datasets to initialize the model weights, 
adaptation to new datasets with reduced training data is 
expedited. This improves segmentation accuracy, shortens 
training time, and reduces computing resources.

2. Materials and methods

2.1. Data preparation

Retinal images were obtained from the “Detection of Pathological 
Myopia from Retinal Images” challenge (iChallenge-PALM) held at 
the IEEE International Symposium on Biomedical Imaging, organized 
in 2019 (Fu et al., 2019). The training and validation datasets contain 
311 fundus images and 271 fundus images, respectively. The Zeiss 
VISUCAM device took these fundus images at an angle of 45° with a 
resolution of 2,124 × 2,056, or 30 ° angle with a resolution of 
1,444 × 1,444. To improve the computational efficiency and conserve 
computing resources, all fundus images were resized to 512 × 512 and 
normalized to facilitate faster and more stable processing by the neural 
network. Finally, a logical AND operation of the network’s predicted 
mask and the original image was performed to generate the resulting 
color output.

2.2. Model architecture

Figure  2 illustrates the proposed deep learning network for 
segmenting retinal atrophic areas from 2D fundus images. The 
proposed network consists of an encoder, a decoder, and the PPSA 
block. The encoder is responsible for extracting the features of an 
input image, while the decoder is responsible for recovering the image 
details and capturing the boundaries of the retinal atrophy region. The 
PPSA blocks act as a bridge between the encoder and decoder, 
providing a source of feature information to the decoder. This 
connection is essential in allowing the network to reconstruct high-
frequency details.

2.2.1. UNet backbone
UNet is a fully convolutional network architecture for medical 

research applications such as segmentation and classification. It 
consists of an encoder and a decoder based on convolutional neural 
networks (CNNs). The encoder utilizes 3 × 3 convolutional layers, 

FIGURE 1

2D fundus images (top part) and the corresponding retinal atrophic areas (bottom part). Subfigures (A–D) are fundus images of patients with PM. 
Subfigure (E) is a fundus image of patients with non-pathological myopia. PM images have more significant retinal atrophic regions than non-
pathological myopia images.
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batch normalization, 2 × 2 max-pooling layers, and ReLu activation 
functions to extract features from the input image. In contrast, the 
decoder contains transposed convolutional layers (bilinear 
interpolation), 3 × 3 convolutional layers, batch normalization, 2 × 2 
max-pooling layers, and ReLu activation functions to reduce the 
number of channels and to segment pixels into different regions. The 
skip connections between the encoder and decoder networks further 
facilitate the flow of low-level features from the encoder to the decoder 
and improve segmentation performance. UNet can learn complex 
feature representations and provide high-quality performance in 
biomedical image segmentation tasks.

2.2.2. SSA connection block
In the original UNet architecture, features from the encoder flow 

directly to the decoder via a skip connection. However, the features 
received by the decoder are mostly background information, do not 
provide meaningful semantic information, and are not on the same 
semantic level as the encoder. To overcome this problem and make the 
network more attentive to atrophic region edges and shape 
information, we propose the SSA Connection block, which can better 
capture long-range dependencies in the feature maps. In addition, the 
parallel polarization design of the self-attention mechanism allows the 
block to learn feature maps in both the spatial and channel dimensions, 
allowing it to capture features of the retinal atrophy region effectively.

Our skip self attention blocks not only retain the original Unet skip 
connection which allow direct connections between the encoder and 
decoder layers, preserving low-level features that can then be combined 
with high-level features, but also include a PPSA branch in which 
contains two key modules: polarized self-attention and mapping 
enhancement. Figure 3 shows the proposed SSA block, subfigure (a) 
gives a shortcut path and PPSA block paths, and subfigure (b) 
introduces the detailed structure of the PPSA block. As shown in 

subfigure (b), the PPSA block has two convolution layers, followed by 
polarized self-attention, which contains two branches: Spatial-only self-
attention and Channel-only self-attention. Polarized filtering is a 
design technique in deep learning that involves maintaining the 
internal resolution of both the channel and spatial attention 
computations, while reducing the dimensionality of the input data. 
This helps to filter out irrelevant data and preserve important details, 
allowing the model to focus on the most important features. Mapping 
enhancement is a design strategy that involves mapping the output of 
the model to a distribution that more closely resembles a typical fine-
grained regression. In retinal atrophy segmentation, the output can 
be mapped to a 2D Binomial distribution that represents the probability 
of each pixel belonging to the segmented object. This design helps the 
model to better fit the output to the desired distribution, resulting in 
more accurate predictions. The computation method of the spatial-
only self-attention is given as follows:

 

Out X Sigmoid

Softmax GP Conv X Conv X

sp

R R

( ) =

( )( )( ) × ( )( )




× ×1 1 1 1














R
,

 
(1)

where Conv1 1×  is standard convolutional layer using 1 1×  
convolution, Softmax and Sigmoid are activation functions, R is tensor 
reshape operation, and GP is global average operation. The 
computation method of the channel-only self-attention is described 
as follows:
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FIGURE 2

The structure of the proposed deep learning network for segmenting retinal atrophic areas from 2D fundus images. The encoder on the left extracts 
features, and the decoder on the right recovers image details. The SSA connection block represented by purple rectangular flows the feature from the 
encoder to the decoder.
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where LN means layer normalization. The final output of the 
PPSA block is listed as follows:

 
PPSA X CBR CBR Out X X Out X Xsp

sp
ch

ch
( ) = ( ) + ( )

















  ,

 
(3)

where CBR is a combination of the convolution layer, BatchNorm, 
and ReLu activation function, 

sp
 and 

ch
 are multiplication operators 

in spital and channel dimensions, respectively. The output of the skip 
connection block is given as follows:

 
Block X X PPSA Xskip ( ) = + ( ).  

(4)

2.2.3. Multi-scale feature flow
The MSFF is a critical component of our proposed model, as it 

integrates features from multiple resolutions to understand the input 
data comprehensively. It enhances the ability of the self-attention 
mechanism to capture spatial and channel features at different 
resolutions. This is especially important in retinal atrophy 
segmentation, where the size and shape of the atrophic lesions can 
vary greatly. MSFF is implemented using a 1 × 1 convolutional layer 
followed by a 2 × 2 average pooling layer that downsamples the high-
resolution feature map to a low-resolution feature map. This affects the 
resolution of the feature maps, but by inserting MSFF blocks between 
SSA blocks to enhance the model’s ability to perceive multi-scale 
semantic information. In this case, the MSFF blocks reduce the 
resolution of the feature maps without affecting the overall perceptual 

capability of the network, as the feature maps from different scales are 
already fused together. This ultimately improves the model’s 
segmentation accuracy, thus mitigating information loss and 
distortion. The output of the skip connection block is given as follows:

 
MSFF X Conv X( ) = ( )( )∗ ∗AP2 2 1 1 .

 
(5)

2.3. Loss function

The image segmentation task can be viewed as a pixel-level 
classification problem, which refers to the process of categorizing 
every pixel in an image into its corresponding semantic class, such 
as atrophic regions or healthy tissue. In the context of retinal 
atrophy segmentation, pixel-level prediction enables the 
identification and localization of atrophic regions with high 
precision. This is achieved by assigning every pixel in the image a 
label based on its semantic class (i.e., atrophic or healthy tissue), 
allowing for the creation of a segmented image highlighting the 
area of atrophic regions. Therefore, we used binary cross-entropy 
loss (BCE), shown in Eq. 6, as a part of the loss function. However, 
since the pixel number of the region of interest (ROI) generally 
accounts for less than 20% of the total pixel number in an image, 
only using the BCE loss function alone may not be sufficient for 
accurate ROI classification as it prioritizes overall accuracy over 
foreground or background classification. In addition, the 
foreground pixels in the most fundus images, which includes the 
retina and blood vessels, makes up about 90% of the image. The 

FIGURE 3

The proposed novel SSA connection block. As shown in subfigure (A), it contains a shortcut path and PPSA block paths. The PPSA block is shown in 
subfigure (B).
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pixels of atrophic area, makes up less than 10% of the image. The 
problem with this sample imbalance is that if a model is trained 
using a simple cross-entropy loss function, which is a common 
loss function used in image classification tasks, the model may 
learn to predict the outcome tendency as the foreground. In other 
words, the model may learn to ignore the atrophic area and only 
focus on the larger, more prominent foreground. This might be a 
problem in medical image analysis, because it may lead to false 
negatives or missed diagnosis. The Tversky Loss introduces the 
Tversky Index, with two adjustable parameters, α and β, that 
balance false positives and false negatives while prioritizing false 
negatives for small ROIs. Incorporating the Tversky Loss into the 
loss function can improve the accuracy of ROI classification, 
leading to better overall performance in the task. Therefore, 
we introduce the Tversky Loss ( LTL ) (Abraham and Khan, 2018), 
shown in Eq. 7, in the loss function to improve sensitivity for 
small ROIs. The Tversky Loss introduces the Tversky Index, with 
two adjustable parameters, α and β, that balance false positives 
and false negatives while prioritizing false negatives for small 
ROIs. The final combination loss function is shown in Eq. 8,

 
L

N
y p y y p yBCE

i

N
i i i i= − −( ) − ( )( )( ) + ( )( )





=
∑1

1 1

1

·log ·log ,
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1

,

 

(7)

 
L L Lf BCE TL= × + −( )×µ µ1 ,

 
(8)

where the total number of pixels is represented by N, and the 
pixels yi are labeled by 1 to represent the pixels located in the 
atrophic area. The pixels in the image background are labeled by 
0. pa(yi) is the probability of the pixel belonging to the atrophic 
area, and pb(yi) is used to denote the probability of the pixel in the 
image background. ga(yi) is the probability of the pixel in ground 
truth belonging to the atrophied area, and gb(yi) is the probability 
of the pixel in ground truth belonging to the background. We set 
∝  to 0.75, α to 0.6 and β  to 0.4.

3. Experiments and results

3.1. Evaluation metric

To evaluate the performance of our model and compare it with 
other models, we use six evaluation metrics: Dice coefficient (DICE) 
(Dice, 1945), Jaccard index (JAC, IoU) (Jaccard, 1912), Precision 
(PRE), Sensitivity (SEN, also known as recall), Accuracy (ACC) and 
F1-score. The six metrics are defined as follows:

 DICE G P
G P

TP
FP FN TP

=
∩
+

=
+ +

2 2

2

· ·

·
,

| |

| |  | |
 (9)
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− =
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(14)

where G and P refer to ground truth and predicted mask, 
respectively, TP, TN, FP, and FN represent the number of true 
positives, true negatives, false positives, and false negatives, 
respectively. The DICE and JAC metrics are used to measure how 
accurate the predicted segmentation produced by a model is when 
compared to the ground truth. The scores range from 0 to 1, with 
higher scores indicating a higher level of accuracy. These metrics are 
useful for evaluating model performance and comparing different 
models against each other. The F1-score is a combination of PRE and 
SEN. PRE measures how often the model accurately identifies 
positives, while SEN measures how often the model identifies true 
positives and is a measure of sensitivity. The F1-score ranges from 0 
to 1, with higher scores indicating a better balance between precision 
and sensitivity. This metric is important because it provides an overall 
assessment of how well the model is able to identify true positives and 
true negatives while minimizing false positives and false negatives. 
Overall, these metrics are important for evaluating a model’s ability to 
accurately identify the target object without including false positives 
or false negatives.

3.2. Implementation details

The implementation of the proposed network is based on the 
Pytorch computing library and was performed on a system equipped 
with RTX A5000, offering 24 GB of memory, and Tesla P100 with 
16 GB of memory. To improve the generalization performance and 
prevent overfitting of our model, we  employed various data 
augmentation techniques, including random flipping and image 
cropping. By setting a horizontal and vertical flip probability of 0.5, 
we randomly flip each image, while cropping the training images to 
320 × 320 allows us to extract multiple sub-images from a single image, 
increasing the quantity and variability of our training data. To 
optimize the network, the initial learning rate of the AdamW 
optimizer was set to 0.008, the betas to (0.9, 0.999) and the weights 
decayed to 1e-4. Mini-batch is a popular optimization algorithm used 
for the training of deep neural networks. It works by dividing the 
training data into smaller batches and updating the model parameters 
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based on the gradients computed from each batch. The batch size in 
our experiment was set to 32, ensuring comparable training and 
consistency from all experiments.

3.3. Ablation study

3.3.1. Effectiveness of blocks
We conducted an ablation study to investigate the contribution 

of each block to the model performance. We began with the native 
UNet and then sequentially added novel SSA connection blocks 
and MSFF to the architecture to show the effectiveness of each of 
our proposed blocks. For the experiments conducted, four groups 
of models were developed, each consisting of an ARA-Net model 
combined with a different backbone ResNet18 
(ARA-Net(ResNet18)), MobileNet-v3 (ARA-Net(MobileNet-v3)), 
and EfficientNet-b3 (ARA-Net(EfficientNet-b3)). ResNet18, with 
its 18 layers and residual connections, allows the network to learn 
deeper features and prevent vanishing gradients. MobileNet-v3, on 
the other hand, uses depth wise separable convolutions to reduce 
the number of parameters and computation needed while 
maintaining good accuracy. EfficientNet-b3 uses a compound 
scaling method to optimize the network architecture for different 
resource constraints, making it a relatively lightweight choice for 
real-time applications. Three ablation experiments were conducted 
for each group, namely type a (as the blank control group), type b 
(with novel SSA connection blocks added), and type c (with multi-
scale feature flows added on top of type b). The results are 
presented in Table 1. The computation is calculated regarding the 
number of floating point operators (FLOPs). In all these 
experiments, we used the loss function defined in Eq. 8.

As illustrated in Table 1, among the four experimental groups, the 
type c model has higher performance metrics in DICE, JAC, and 
F1-score, yielding a uniform 0.5% improvement compared to type b 
and a significant improvement compared to the control group, type a. 
The superior performance achieved by the proposed method with 
minimal computational overhead increase demonstrates that the 
novel SSA connection block and MSFF can provide a better solution 
to the difficulties of segmenting retinal atrophy.

3.3.2. Effectiveness of transfer learning
To measure the effectiveness of using transfer learning, we also set 

up three groups of experiments, and the results are shown in Table 2. 
The results show that using transfer learning achieves the best results. 
Type ‘a’ represents the control groups without transfer learning, and 
type ‘b’ represents groups that use transfer learning. Note that, in all 
these experiments, we use the loss function defined in Eq. 8. The 
application of transfer learning to segmentation methods has been 
proven to produce significant performance gains.

Specifically, when this strategy was implemented in segmentation 
tasks, the DICE, JAC, and F1-score realized an average improvement 
of 4, 6, and 4%, respectively. This demonstrates the potential of 
transfer learning to develop more accurate segmentation models. 
Moreover, the boost in performance can result in higher quality 
predictions of segmentation masks and increased usability in 
medical applications.

3.3.3. Effectiveness of loss functions
To show the model performance affected by the loss function, 

we  utilize three backbones (ResNet18, MobileNet-v3, and 
EfficientNet-b3) to build and compare their model performance across 
three loss functions (BCE loss, Tversky loss, and their combination). 
The results obtained are shown in Table  3. There is about a 2% 
improvement of DICE and F1-score when combining the two loss 
functions compared to using any one of the two loss functions alone.

3.4. Comparison study

We compare our proposed method with other UNet-based 
methods, including UNet++ (Zhou et  al., 2018), AttentionUNet 
(Oktay et  al., 2018), R2UNet (Alom et  al., 2018), and UNeXt 
(Valanarasu and Patel, 2022). Table 4 shows the comparison results, 
demonstrating that our model performs better than the comparison 
methods. Results from Table 4 indicate that ARA-Net (EfficientNet-b3) 
performed best among all architectures, achieving a DICE of 84.57%, 
a JAC of 72.80%, an ACC of 96.95%, a PRE of 89.09%, an SEN of 
80.49%, and an F1-score of 84.57%. Further, this was followed by 
ARA-Net (MobileNet-v3) and UNeXt. However, their performance is 

TABLE 1 Performance comparison, number of parameters, and FLOPs of different models for ablation experiments.

Methods Type DICE (%) JAC (%) ACC (%) PRE (%) SEN (%) F1-score (%) Param (M) FLOPs (G)

ARA-Net a 10.31 5.43 88.67 40.52 45.00 42.64 16.47 40.29

b 71.29 55.38 95.13 75.35 68.01 71.49 2.78 30.77

c 71.63 55.80 95.00 76.25 68.26 72.03 2.78 30.77

ARA-Net (ResNet18) a 70.40 54.32 94.50 73.60 68.87 71.16 81.53 15.71

b 73.33 57.90 95.16 73.40 74.32 73.86 108.79 21.07

c 74.27 59.06 95.17 77.93 72.39 75.06 108.79 21.07

ARA-Net 

(MobileNet-v3)

a 76.37 61.77 95.51 75.36 78.24 76.77 13.18 3.24

b 76.15 61.49 95.12 77.66 77.48 77.57 14.35 4.16

c 77.27 62.96 95.54 83.09 73.94 78.25 14.35 4.16

ARA-Net 

(EfficientNet-b3)

a 76.64 62.13 95.49 81.50 74.19 77.67 44.51 5.51

b 77.03 62.65 95.65 82.62 73.18 77.62 57.68 7.17

c 78.60 64.74 95.82 81.53 77.08 79.24 57.68 7.17
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commendable due to fewer parameters and computation resources 
compared to EfficientNet-b3.

Figure  4 compares DICE scores for various segmentation 
methods, where the parameters and GLOPs utilized in each method 
are varied. It can be  seen from the results that the ARA-Net 
(EfficientNet-b3) performs most efficiently in terms of segmentation 
performance. This is due to the comparatively low GLOPs requirement 
and the number of parameters needed for this model compared to 
other methods. UNeXt and ARA-Net (MobileNet-v3) perform 
significantly better than any other networks in terms of computational 
complexity and parameter count, which are crucial considerations for 
practical applications. Figure 5 depicts the change in loss function 
values during training and DICE values on the validation set. As 
illustrated in Figure 5, the training process of the networks proceeded 
gradually, except for R2Unet, which had a more stable loss. On the 
validation set, the Dice scores for ARA-Net (EfficientNet-b3) and 
ARA-Net (MobileNet-v3) were both favorable, with ARA-Net 

(EfficientNet-b3) displaying a more consistent result. Sample 
qualitative results from various methods are shown in Figure  6. 
ARA-Net (EfficientNet-b3) and ARA-Net (MobileNet-v3) effectively 
segment both large and tiny atrophic regions of the retina, as shown 
in Figure 6. On the other hand, the other networks either produced 
excessive segmentation of smaller areas or failed to detect more 
expansive areas of atrophy effectively. Compared to other techniques, 
ARA-Net (EfficientNet-b3) generates high-quality segmentation 
predictions, making it a viable option for atrophic area segmentation.

4. Discussion

The automated segmentation of the retinal atrophy in fundus 
images is a valuable tool for ophthalmologists in detecting and 
diagnosing myopia, as the size of the retinal atrophy is positively 
correlated with the severity of the condition. Automated 

TABLE 4 Comparison of segmentation performance, number of parameters, and FLOPs of different methods.

Methods DICE (%) JAC (%) ACC (%) PRE (%) SEN (%) F1-score 
(%)

Param (M) FLOPs (G)

UNet++(ResNet-18) 76.84 62.39 96.12 86.67 69.66 77.24 60.92 64.05

AttentionUNet 71.00 55.04 94.50 67.79 78.97 72.95 54.56 67.21

R2UNet 68.13 51.67 94.10 78.29 66.06 71.65 388.88 262.76

UNeXt 77.01 62.62 95.58 80.00 74.71 77.26 5.61 0.57

ARA-Net (ResNet18) 76.47 61.90 95.75 79.29 75.66 77.43 108.79 21.07

ARA-Net (MobileNet-v3) 82.30 69.91 96.37 86.96 79.17 82.88 14.35 4.16

ARA-Net (EfficientNet-b3) 84.57 72.80 96.95 89.09 80.49 84.57 57.68 7.17

TABLE 2 Performance comparison of the proposed method with and without using transfer learning.

Methods Type DICE (%) JAC (%) ACC (%) PRE (%) SEN (%) F1-score (%)

ARA-Net (ResNet18)
a 74.27 59.06 95.17 77.93 72.39 75.06

b 76.47 61.90 95.75 79.29 75.66 77.43

ARA-Net (MobileNet-v3)
a 77.27 62.96 95.54 83.09 73.94 78.25

b 82.30 69.91 96.37 86.96 79.17 82.88

ARA-Net (EfficientNet-b3)
a 78.60 64.74 95.82 81.53 77.08 79.24

b 84.57 72.80 96.95 89.09 80.49 84.57

TABLE 3 Performance comparison of the methods across different loss functions.

Methods Loss function DICE (%) JAC (%) ACC (%) PRE (%) SEN (%) F1-score 
(%)

ARA-Net (ResNet18)

BCE 68.74 52.36 94.61 68.97 68.30 68.63

Tversky Loss 74.91 59.89 94.83 77.28 73.92 75.56

BCE + Tversky Loss 76.47 61.90 95.75 79.29 75.66 77.43

ARA-Net (MobileNet-v3)

BCE 76.56 62.02 96.18 84.82 69.94 76.66

Tversky Loss 78.03 63.97 94.81 75.42 84.07 79.51

BCE + Tversky Loss 82.30 69.91 96.37 86.96 79.17 82.88

ARA-Net 

(EfficientNet-b3)

BCE 82.39 70.05 96.66 89.43 76.38 82.39

Tversky Loss 82.99 70.93 96.57 90.37 77.23 83.29

BCE + Tversky Loss 84.57 72.80 96.95 89.09 80.49 84.57
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segmentation techniques allow for efficient extraction and 
representation of image features, reducing the need for 
human intervention.

The advance of deep learning has the potential to further enhance 
segmentation accuracy through the development of advanced 
segmentation network models and improved hardware performance. 

FIGURE 4

Comparison charts. X-axis corresponds to FLOPs(G) and the number of parameters (lower the better). Y-axis corresponds to DICE (higher the better).

FIGURE 5

(A) The value of the loss function during training. (B) The DICE value during validation.
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FIGURE 6

Visual segmentation results for myopic parapapillary atrophy. It shows the color fundus input images, the ground truth masks, and the segmentation 
results for UNet++ (ResNet18), AttentionUNet, R2UNet, UNeXt, ARA-Net (ResNet18), ARA-Net (MobileNet-v3) and ARA- Net (EfficientNet-b3).
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However, the field of automated retinal atrophy segmentation is 
currently under-researched, with the majority of studies utilizing optical 
coherence tomography (OCT) images (Fang et al., 2017; He et al., 2021; 
Szeskin et  al., 2021) due to their high image resolution and cross-
sectional tissue structure. The limited availability of appropriate datasets, 
the significant variations in retinal atrophy shape and size among 
patients, and the interference of blood vessels present significant 
challenges for applying deep learning approaches to retinal atrophy 
segmentation. Additionally, the proximity of the retinal atrophy to the 
optic disc, which can be a source of brightness that can mask the retinal 
atrophy, further complicates the task. These challenges must 
be addressed to facilitate progress in retinal atrophy segmentation using 
deep learning.

The experimental results indicate that other Unet-based 
models struggle to accurately segment retinal atrophic areas of 
varying sizes, and the segmentation boundaries are not distinct. To 
address this challenge, novel SSA connection blocks and multi-
scale feature flows were incorporated into the model to extract 
boundary information and shape features of the atrophic regions. 
The SSA block includes the initial skip connection as well as the 
PPSA branch. The polarized filtration and enhancement are two 
crucial modules. By reducing the dimensions of the inputting data 
while maintaining the accuracy of the channel and spatial 
attention, our model can focus on the most critical features and 
retaining critical details, leading to better feature extraction and 
more accurate predictions. In addition, the enhancement strategy 
maps the model’s results to a desired distribution, resulting in more 
accurate predictions.

The proposed model demonstrated superior segmentation results 
on atrophic regions of different sizes, as shown in Figure 6. Additionally, 
during the training phase, the ARA-Net model utilized three 
pre-training models (ResNet, MobileNet-v3, and EfficientNet-b3) to 
extract richer feature information, resulting in improved performance. 
This approach leverages pre-trained models on large datasets to initialize 
the model weights, allowing the model to adapt to new datasets with 
limited training data quickly. Furthermore, using a combination of BCE 
loss and TVERSKY loss during training enabled the model to focus 
more on small ROIs, reducing the likelihood of predicting small-size 
retinal atrophy areas as background.

Due to the scarcity of data, the proposed method can achieve 
better results to some extent depending on the pre-trained model 
of ImageNet. In the training phase, we use pre-trained model of 
ImageNet for training the ARA-Net. As we known, the pre-trained 
model of ImageNet is trained on the images collected from natural 
environment, and the model is not specific to the medical domain. 
Thus, we  might use some pre-trained model based on medical 
images to substitute the pre-trained model of ImageNet, and 
investigate the effect of different image domain based pre-trained 
model on the segmentation performance for retinal atrophy areas. 
Meanwhile, future study might consider utilizing other data 
improvement methods, such as the use of generative models for 
data augmentation or the integration of multimodal imaging. 
Additionally, further improvements can consider few-shot learning 
methods and design segmentation networks for different myopic 
stages of retinal atrophy. As retinal atrophy can vary in size and 
shape across different stages, it is crucial to develop segmentation 
techniques tailored to each stage. These enhancements hold the 

potential to improve the accuracy of retinal atrophy segmentation, 
leading to more precise diagnosis and treatment.

5. Conclusion

In this work, we proposed an ARA-Net model for segmenting 
the retinal atrophic area from 2D fundus images. In particular, our 
proposed novel skip-connect blocks named PPSA effectively fuse 
the feature maps between the encoder and decoder, enabling the 
network to learn representational feature maps from both channel 
and spatial dimensions. The MSFF utilized by our model also help 
to enhance the semantic information of the images, and the 
combined Tversky and BCE loss functions further improve the 
model performance. Comprehensive experimental results 
demonstrate that our proposed ARA-Net model achieves awesome 
performance on retinal atrophy segmentation, especially in 
challenging scenarios with blurred boundaries and irregular 
shapes. Our work has made significant contributions in solving the 
retinal atrophy segmentation challenges and introducing the PPSA 
blocks as a new technique for feature fusion in medical image 
segmentation. Comprehensive experimental results demonstrate 
the effectiveness of ARA-Net and its potential clinical value in 
retinal atrophic area segmentation applications.
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Diagnosis and treatment of 
transnasal endoscopic optic canal 
decompression for traumatic 
optic neuropathy
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1 Department of Otolaryngology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 
China, 2 The Department of Orbital Disease and Ophthalmic Oncology, Shenzhen Eye Hospital, 
Shenzhen Eye Institute, Jinan University, Shenzhen, China

Objective: To investigate the clinical efficacy and prognostic factors of transnasal 
endoscopic optic decompression in the treatment of traumatic optic neuropathy 
(TON).

Methods: A retrospective analysis was performed on 13 TON patients in The 
Seventh Affiliated Hospital of Sun Yat-sen University and Shenzhen Eye Hospital in 
Shenzhen City (China) from June 2020 to April 2022. These patients had received 
transnasal endoscopic optic decompression, and hormonal and neurotrophic 
drugs were given after surgery. Visual acuity (VA) improvement was used as the 
criterion to judge clinical efficacy.

Results: In a total of 13 patients, 13 injured eyes (12 men and 1 woman; mean 
age, 28.0 ± 11.8 years) received transnasal endoscopic optic decompression. After 
surgery, nine patients had improved VA, whereas four patients failed to show 
any improvement, resulting in a total effective rate of 69.2%. Of the six patients 
with no light perception preoperatively, three had effective results after the 
operation, giving an effective rate of 50.0%. Of the seven patients with residual 
light sensation preoperatively, six had effective results after the operation, giving 
an effective rate of 85.7%. Of the 10 patients operated on within 7 days after injury, 
seven had effective results, giving an effective rate of 70%. Of the three patients 
injured and operated on after 7 days, two had effective results, giving an effective 
rate of 66.7%.

Conclusion: Transnasal endoscopic optic nerve decompression is an effective 
treatment method for TON. The presence of residual light perception and the 
timing of surgery within 7 days are crucial to the prognosis.

KEYWORDS

nasal endoscopy, optic nerve decompression, traumatic optic neuropathy, trauma, 
glucocorticoid

Introduction

Traumatic optic neuropathy (TON) is a type of injury to the optic nerve resulting from 
external force impacting the optic nerve canal in the skull or face. This condition is characterized 
by a sudden or gradual loss of visual acuity (VA) and/or visual field defects following trauma 
(Yu-Wai-Man, 2015). TON is caused mainly by an external force acting on the optic nerve that 
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causes optic nerve damage. The basic injury mechanism of this disease 
can be divided into direct and indirect injury. Direct injury is caused 
mostly by open craniomaxillofacial trauma, which causes anatomical 
fracture and avulsion of the optic nerve directly (Yu-Wai-Man and 
Griffiths, 2013). Direct injury can lead to severe irreversible vision loss 
or even complete loss, and the treatment response and prognosis are 
poor. TON caused by indirect injury, which is transmitted to the optic 
nerve by the energy generated though open or closed craniomaxillofacial 
trauma, causes the fracture of the osseous optic canal or the compression 
of the surrounding structures, such as the reactive edema of the optic 
nerve sheath, indirectly. The vascular supply and neurotrophic supply 
of retinal ganglion cells (RGCs) might be  compromised to trigger 
apoptosis. The primary and secondary injuries caused by RGC 
apoptosis also lead to axon transport disorders, inflammatory reactions, 
and electrochemical disorders, which eventually lead to optic nerve 
injury (Giacci et  al., 2014). However, owing to the complex 
pathophysiological mechanism of TON, various related molecular 
pathogenesises still need to be further explored. Treatment options for 
TON are complex, with some studies suggesting that glucocorticoid 
pulse or transnasal endoscopic optic nerve decompression might 
be crucial in preserving surviving RGCs (Yu-Wai-Man and Griffiths, 
2013; Sefi-Yurdakul and Koç, 2018; Yu et al., 2020), Despite this, some 
studies advocate for a conservative approach of observation, because 
spontaneous visual improvement can occur in some TON patients 
(Sosin et  al., 2016). There is still much debate among medical 
professionals about the most effective treatment for TON owing to a 
lack of large-scale clinical evidence. In recent years, advancements in 
clinical research and technology have led to improved diagnosis and 
treatment strategies for TON, with transnasal endoscopic 
decompression surgery gaining widespread recognition (Abhinav et al., 
2015). However, various factors can impact the outcome of TON 
treatment, such as the timing of surgery, preoperative vision, and optic 
nerve tube fractures (Ma et al., 2018). This study analyzed the clinical 
data of 13 TON patients retrospectively, and evaluated the factors 
influencing surgical outcomes to determine surgical efficacy on TON.

Patients and methods

We collected clinical data from patients with TON who were 
admitted to the Department of Otorhinolaryngology of the Seventh 
Affiliated Hospital of Sun Yat-sen University and the Department of 
Orbitopathy and Ophthalmic Oncology of Shenzhen Eye Hospital 
(China) between June 2020 and April 2022. The Ethics Committees of 
the two hospitals did not require the application of ethical approval for 
this type of study, and all aspects of the study were conducted in 
accordance with the Declaration of Helsinki. In the 13 TON patients, 
four of whom had a surgical interval of >4 days and also accepted 
hormone treatment before the operation, whereas the other nine patients 
accepted no treatment before surgery. To assess the effect of optic nerve 
decompression, we first conducted ophthalmological examinations to 
assess the visual acuity of patients, which helps to rule out preexisting 
optic neuropathy and retinopathy. The best corrected VA (BCVA) was 
tested initially using a Snellen chart, and a VA of <0.01 was documented 
with counting fingers (CF), hand motion (HM), light perception (LP), 
and no light perception (NLP). Additionally, ophthalmic equipment 
inspection, such as optical coherence tomography (OCT) (Carl Zeiss 
Meditec, United States or Heidelberg Engineering, Germany), visual 

field (Carl Zeiss, Germany Humphrey HFA), visual evoked potential 
(ROLAND, Germany), anterior segment photography (CSO, Italy), and 
fundus photography, were used to appraise visual function. Second, 
image analysis, such as computed tomography (CT)/magnetic resonance 
imaging (MRI), was applied to observe the optic canal fracture and 
orbital fracture. A thin-slice CT scan of the orbit was performed, and CT 
angiography (CTA) was performed in the case of craniocerebral trauma. 
Third, complete routine preoperative examination for patients was 
carried out. Finally, all patients underwent ophthalmological 
examinations after transnasal endoscopic optic nerve decompression 
and had postoperative drugs, such as hormones, nutritional nerves, and 
vasodilators. Efficacy determination: this study divided visual acuity into 
five different grades: I, NLP; II, LP; III, HM; IV, CF; and V, logarithm of 
minimum angle of resolution (logMAR) with a VA of 0.02 and above. 
Postoperative VA that improved by one level or more than preoperative 
was defined as valid; no improvement in VA was defined as ineffective; 
a reduction of one level or more was defined as a failed operation.

Results

Demographic characteristics

There were 13 patients (12 males, 1 female, average age 
28.0 ± 11.8 years) with 13 injured eyes (12 right eyes, 1 left eye). The 
causes of injury were six car accidents, four blunt object injuries, and 
three fall injuries, and none of them had simultaneous bilateral optic 
nerve injury. Of these, six patients had no light sensation (I) before 
surgery, three had LP (II), one had CF (IV), and three had preoperative 
residual VA (V) (Table 1).

Clinical characteristics

Figure 1 demonstrates the fracture line of the optic nerve tube 
from the horizontal and coronal positions, respectively. The fracture 
was located in the right sphenoid sinus and was accompanied by a 
fracture of the nasal bone (Figure 1). The visual field of the patient was 
improved on the first day after the operation and improved 
significantly 6 months after the operation (Figure 2). The fovea of the 
macula and thickness were normal (Figures  2B1−B3), as was the 
thickness of the retinal nerve fiber layer (Figures 2C1−C3). Prior to 
surgery, the amplitude of N2, P2, and N3 had decreased apparently in 
the left eye compared with the right eye (Figure 2D1), whereas, on the 
first day post surgery, the amplitude of N2, P2, and N3 had not 
improved obviously compared with the preoperative surgery 
(Figure 2D2). By 6 months after the surgery, the amplitude of N2, P2, 
and N3 had not improved obviously compared with the first day after 
the surgery (Figure 2D3). The fundus blood vessels were normal and 
the retina was flat, without bulging after 6 months (Figure 2).

Treatment and prognosis

Surgical method

General anesthesia and supine position were used. (a) The 
deviated nasal septum that impeded the surgical field was corrected 
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initially. (b) High-definition nasal endoscopy was used to open the 
maxillary sinus, ethmoid sinus, and sphenoid sinus according to the 
Messerklinger procedure. (c) The optic tube carina (part of the optic 
nerve) was confirmed to be free from the sphenoid sinus lumen, and 
the internal carotid artery carina was exposed, revealing the medial 
and inferior wall of the orbit and optic nerve tube. (d) Multiple 

fractures of the neural tube wall and multiple bone defects in the lower 
orbital wall were observed. (e) Part of the medial orbital wall and the 
inner as well as lower and upper inner walls of the optic nerve tube 
were thinned carefully, and a thin bone piece was peeled off carefully 
with a microstripper. (f) The full length of the optic nerve tube was 
opened and decompressed by approximately 180°. A gelatin sponge 

TABLE 1 Clinical features for 13 patients.

Case
Age at 

onset(years)
Involved 

eye

Time to 
operation 

(days)

Cause of 
injury

Fracture of 
skull base

Preoperative 
vision

Postoperative 
vision for 6 

months

1/M 12 OD 0.83 BFT N NLP 0.6

2/M 40 OS 1 TA Y NLP NLP

3/M 47 OD 1 FI Y NLP NLP

4/M 30 OD 0.71 TA N NLP LP

5/M 18 OS 10 TA N LP CF

6/M 23 OD 30 TA N 0.16 0.25

7/M 26 OD 4 BFT N 0.1 0.4

8/M 13 OD 14 BFT N 0.05 0.05

9/M 41 OD 7 FI N LP CF

10/M 24 OS 1 TA N LP CF

11/F 29 OD 3 BFT N CF 0.3

12/M 42 OD 1 TA N NLP NLP

13/M 19 OD 0.67 FI Y NLP 0.4

BFT, blunt force trauma; CF, counting fingers; D, days; F, female; FI, falling injury; HM, hand motion; LP, Light perception; M, male; N, no; NLP, no light perception; OD, oculus dexter; OS, 
oculus sinister; TA, traffic accident; Y, yes.

FIGURE 1

Preoperative orbital computed tomography (CT) thin-slice scan. (A) The axial position of the optic nerve tube shows the fracture line. (B) The coronal 
position of the optic nerve tube shows the fracture line.
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soaked with dexamethasone was covered over the optic nerve and an 
inflated sponge tamponade was used to compress the middle nasal 
passage to stop bleeding. Intraoperative endoscopic images are shown 
in Figure 3. After surgery, symptomatic comprehensive treatment, 

such as antibiotics, glucocorticoids, neurotrophic and vasodilators 
that can penetrate the blood and brain barrier, was administered. A 
total of nine patients experienced an improvement in their visual 
power, whereas four patients failed to show any improvement, 

FIGURE 2

(A1) Before surgery, most of the visual field of the injured eye disappeared. Only visible is a small part of the temporal visual field. The pattern deviation 
chart shows that the threshold of average defect is exceeded. (A2) First day after operation, temporal visual field improved significantly. (A3) At 
6 months after surgery, temporal visual field expanded. Also, a small amount of nasal visual field appeared. (B1.2.3) Indicates that the fovea of the 
macula and thickness are normal. (C1.2.3) Shows that the thickness of the retinal nerve fiber layer was normal. (D1) Before surgery, the amplitude of 
N2, P2, and N3 descended apparently in the left eye, compared with the right eye. (D2) On the first day after surgery, the amplitude of N2, P2, and N3 
had not obviously improved, compared with before surgery. (D3) At 6 months after surgery, the amplitude of N2，P2, and N3 had no obviously 
improved, compared with the first day after surgery. (E1.2.3) Implies that fundus blood vessels were normal and the retina is flat, without bulge. 
(B1,C1,E1) Before surgery. (B2,C2,E2) First day after surgery. (B3,C3,E3) At 6 months after surgery.

FIGURE 3

Surgical image. (A) Open ethmoid sinus and sphenoid sinus. (B) Fracture line of the optic nerve bony canal. (C) Orbital cranial line (a) and orbital floor 
line (b). (D) Thinning the bone of the optic nerve tube at 180°. (E) Starting point for bone removal: orbital ostia (c), end point for bone removal: cranial 
ostial (d). (F) Optic nerve tube decompressed adequately.
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resulting in a postoperative effective rate of 69.2%. The time from 
trauma to surgery ranged from 0.7 to 30 days (average time 
5.7 ± 8.43 days). A total of 10 patients were operated on within 7 days, 
seven of whom showed improved visual power, resulting in an 
effective rate of 70%. Another three patients were operated on 7 days 
later, two of whom showed improved visual power, resulting in an 
effective rate of 66.7%. Only six patients had no light preoperatively, 
three of whom had improved visual power after surgery, resulting in 
an effective rate of 50.0%. A total of seven patients had residual light 
sensation preoperatively, six of whom had improved visual power after 
surgery, resulting in an effective rate of 85.7%. The VA of three cases 
was >0.02, and the VA improved in two cases after surgery (Table 2).

Discussion

TON is a rare but serious complication of closed head injury 
(Dhaliwal et al., 2016). The risk group is mainly young men aged 
30 years range (Lee et al., 2010). Road traffic accidents (especially 
collisions with motorcycles, electric bicycles, and rickshaws), falls 
from heights, and other blunt trauma are the main causes of TON 
(Pirouzmand, 2012).

TON includes both primary and secondary injuries 
(Huempfner-Hierl et  al., 2015). Primary injury is caused by 
transient external force resulting in optic nerve rupture, optic nerve 
contusion, or optic nerve sheath hemorrhage, leading to immediate 
vision loss. Secondary injury after external force can cause optic 
nerve edema, local vascular compression, vascular occlusion, and 
other circulatory disorders, which can lead to avascular necrosis of 
the optic nerve, resulting in delayed vision loss, which usually 
occurs within hours or days after injury. The optic nerve is divided 
into intrabulbar, intraorbital, intracanal, and intracranial segments, 
of which the main rhinological segments related to rhinology are 
the intraorbital and intracanal segments. Approximately 90% of 
traumatic optic neuropathy cases occur in the intracanal segment 
(Steinsapir and Goldberg, 2011). Orbital thin-slice CT scan can 
determine the location of optic nerve tube injury effectively. A 
quick eye examination after an injury can assess the patient’s vision. 
Initial fundoscopy can also help rule out pre-existing optic 
neuropathy and retinopathy, and might identify patients with 

papillary swelling and adjacent retinal hemorrhage. Visual Evoked 
Potential (VEP) is an objective indicator of optic nerve function and 
can be used as a predictor of long-term prognosis, and its reduced 
amplitude and increased latency are associated closely with visual 
impairment (Tabatabaei et al., 2011).

In recent years, there has still been no unified standard treatment 
strategy for clinicians to consider for TON. Surgical intervention or 
glucocorticoid pulse therapy is an effective treatment option in 
patients with TON (Simsek et al., 2006), although the exact efficacy of 
optic nerve decompression remains controversial. There are some 
opinions suggesting that optic nerve decompression improves 
prognosis, emphasizing the importance of surgery (He et al., 2016). 
The operation improves vision by opening the full length of the optic 
nerve bone canal, resecting 1/2 of the circumference of the tube wall, 
and cutting the optic nerve sheath and the total tendon ring at the 
front end longitudinally (Sofferman, 1981). The operation improves 
vision by opening the full length of the optic nerve bone canal, 
resecting 1/2 of the circumference of the tube wall, and cutting the 
optic nerve sheath and the total tendon ring at the front end 
longitudinally (Dhaliwal et  al., 2016). By contrast, some studies 
suggest that optic nerve decompression should not be recommended 
for patients owing to the fact that surgical decompression of the optic 
nerve does not result in good clinical benefits, and that surgery itself 
is a traumatic procedure, coupled with the risks associated with 
surgery (Sosin et al., 2016). Furthermore, the effect of optic nerve 
decompression surgery is affected largely by relevant prognostic 
factors, such as the patient’s consciousness after injury and appropriate 
operation time (Ma et al., 2018).

In this study, 13 patients with TON were assessed, all of whom 
underwent transnasal endoscopic optic nerve decompression, and 
the visual improvement of patients before and after surgery was 
analyzed comparatively; 69.2% of patients had an improvement in 
VA postoperatively. This suggests that optic nerve decompression 
has a significant effect on the treatment of TON. To investigate the 
influence of related prognostic factors, our study divided patients 
into two groups based on the time of onset to surgery, with one 
group being within 7 days and the other being >7 days, and analyzed 
the effective rate of postoperative VA improvement between the two 
groups. The results showed that the effective rate of visual 
improvement in patients within 7 days was better than the patients 
who took more than 7 days to receive treatment. This indicates that 
the timing of TON surgery is related closely to the pathophysiology 
of optic nerve injury. Shortening the timing of surgery as much as 
possible is beneficial in interrupting the progression of 
pathophysiological processes and minimizing the harm caused by 
secondary injury to the optic nerve. Although surgery has been 
reported to improve impaired vision after months of visual 
impairment (Thakar et  al., 2003), most of the center’s findings 
suggest that early surgical intervention is still performed within 7 
or even 3 days of visual impairment (Chen et al., 2018).

Studies have demonstrated that the rate of visual improvement 
after surgery in patients with TON who have residual vision is 
significantly higher than that of those with non-photosensitive 
TON (Ma et al., 2018). This study further revealed that the rate of 
postoperative visual improvement in TON patients without LP 
before surgery was significantly lower than that in patients with 
residual vision. This might be attributed to the fact that patients 
with totally blind TON suffer irreversible optic neuropathological 

TABLE 2 Clinical features for operative efficiency.

Clinical features Cases (n) (Operative 
efficiency (%))

Total cases 13 (69.2)

Gender

  Male 12 (58.3)

  Female 1 (100)

Operation time

  ≤ 7 days 10 (70)

  >7 days 3 (66.7)

Initial vision

  No light 6 (50.0)

  Residual light 7 (85.7)
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changes and have fewer retinal ganglion cells (RGCs) than those 
with residual vision. Nevertheless, preoperative VA and timing are 
sometimes not isolated and correlated, thus the effects of both 
should be taken into account when undertaking surgery in patients 
with TON.

The impact of optic nerve fractures on the final visual outcome 
of patients with TON remains a matter of debate. Studies have 
demonstrated that the presence of optic nerve fractures is an 
independent predictor of poor visual prognosis (Yu et al., 2018). 
Nevertheless, some reports suggest that the presence or absence of 
optic nerve fractures does not influence the treatment outcome of 
patients with TON significantly (Gupta et al., 2007). The use of 
glucocorticoids in the treatment of TON has also been a subject of 
debate. There is no uniform standard for the treatment of TON, 
and its application is based on the treatment of acute spinal cord 
injury (Bracken et  al., 1997). The purpose of glucocorticoid 
therapy for TON is to reduce optic nerve microcirculation spasm, 
anti-inflammatory effects, reduce swelling, scavenge free radicals, 
and protect the optic nerve by antioxidants. Entezari et al. (2007) 
found no significant difference between the glucocorticoid-based 
and non-glucocorticoid groups, whereas Kircher et al. (2008) have 
suggested that glucocorticoids can promote the repair of damaged 
optic nerves. Taking into account its anti-inflammatory, swelling 
and other effects, as well as the serious consequences of TON, the 
leading clinical recommendation is to apply glucocorticoids as 
soon as possible after the onset, while avoiding adverse reactions, 
such as gastrointestinal ulcers, osteoporosis, and elevated blood 
glucose. All patients in this study were treated with glucocorticoids 
after surgery.

Conclusion

In conclusion, this study found that transnasal endoscopic optic 
nerve decompression is a safe and effective treatment for 
TON. Preoperative residual vision and surgery within 7 days are 
essential for successful outcomes, but should not be strictly adhered 
to, and the earlier surgery is performed, the better the prognosis, 
depending on the pathophysiology of the optic nerve injury. 
Additionally, owing to the involvement of multiple disciplines, such 
as ophthalmology, otolaryngology, and neurosurgery, there is a 
disparity in the understanding of the diagnosis and treatment of the 
disease. Therefore, interdisciplinary collaboration is necessary to 
develop the most suitable treatment plan for the patient.
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Introduction: The retina represents a critical ocular structure. Of the various

ophthalmic a	ictions, retinal pathologies have garnered considerable scientific

interest, owing to their elevated prevalence and propensity to induce blindness.

Among clinical evaluation techniques employed in ophthalmology, optical

coherence tomography (OCT) is the most commonly utilized, as it permits non-

invasive, rapid acquisition of high-resolution, cross-sectional images of the retina.

Timely detection and intervention can significantly abate the risk of blindness and

e�ectively mitigate the national incidence rate of visual impairments.

Methods: This study introduces a novel, e�cient global attention block (GAB)

for feed forward convolutional neural networks (CNNs). The GAB generates

an attention map along three dimensions (height, width, and channel) for any

intermediate feature map, which it then uses to compute adaptive feature

weights by multiplying it with the input feature map. This GAB is a versatile

module that can seamlessly integrate with any CNN, significantly improving

its classification performance. Based on the GAB, we propose a lightweight

classification network model, GABNet, which we develop on a UCSD general

retinal OCT dataset comprising 108,312OCT images from 4686 patients, including

choroidal neovascularization (CNV), diabetic macular edema (DME), drusen, and

normal cases.

Results: Notably, our approach improves the classification accuracy by 3.7% over

the E�cientNetV2B3 network model. We further employ gradient-weighted class

activation mapping (Grad-CAM) to highlight regions of interest on retinal OCT

images for each class, enabling doctors to easily interpret model predictions and

improve their e�ciency in evaluating relevant models.

Discussion: With the increasing use and application of OCT technology in the

clinical diagnosis of retinal images, our approach o�ers an additional diagnostic

tool to enhance the diagnostic e�ciency of clinical OCT retinal images.

KEYWORDS

retinal OCT, retinal disease classification, attention mechanism, model visualization,

GABNet
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1. Introduction

The retina, the visual component responsible for sensing light

stimuli, is a soft and transparent membrane located adjacent to

the inner surface of the choroid, play an essential role in human

vision (Zrenner, 2002). In recent years, there has been a significant

increase in the number of patients with retinal disease, which can

cause irreversible damage to vision and, in severe cases, result in

blindness. Age-related macular degeneration (AMD) and diabetic

macular edema (DME) are most common retina diseases (Das,

2016). AMD is divided into two types depending on its clinical

presentation and pathological changes: dry AMD and wet AMD.

In the early stages of dry AMD, yellowish-white, rounded vitreous

warts (drusen) of varying sizes can be seen in the posterior

pole of the eye. Wet AMD induces the outward growth of new

blood vessels in the choroidal capillaries (known as choroidal

neovascularization, CNV). All these pathological features could be

important diagnostic indicators of disease progression.

Optical coherence tomography (OCT) is currently the most

advanced technique for the detection of retinal diseases, with

the advantages of being a noncontact, noninvasive and fast

imaging method (Chen and Lee, 2007). The use of OCT

technology for fundus images has becomewidespread, leading to an

improvement in the clinical diagnosis of retinal diseases. However,

the recognition capability of retinal OCT images varies greatly

between different regions, particularly in developing countries

where there is a significant shortage of expert physicians compared

to the number of patients. Therefore, there is a need to develop an

automated machine that can perform recognition on retinal OCT

images, reducing the workload of specialist physicians.

Due to the outstanding performance of deep learning in

image recognition, more and more researchers have begun to

explore its applications in the medical field. However, there

are still some challenges in applying deep learning to medical

image classification, such as the problem of obtaining enough

standardized medical images. In view of this, many researchers

have proposed different solutions, among which transfer learning

is one of the most commonly used methods. Transfer learning is

a machine learning method that is used to correlate two different

tasks. Specifically, the parameters of a model trained in one task

are transferred to the same model in another task. Since case

sourcing in the medical field is extremely difficult and medical

image recognition based on deep learning requires a large number

of cases to achieve a good classification effect. Transferred model

utilizing a model trained on a public dataset can effectively alleviate

the difficulty of collecting a dataset in the medical field. A large

number of researchers have also used transfer learning in the

medical field to obtain good classification results (Narayan Das

et al., 2022). Chougrad et al. (2018) developed a computer-aided

diagnosis system based on deep convolutional neural networks

(DCNNs) to help radiologists classify mammographic occupancy

lesions. Kassem et al. (2020) proposed a highly accurate model

for the classification of skin lesions, utilizing transfer learning

and GoogleNet for pre-training. The initial values for the model

parameters are used as before, and they are subsequently adjusted

during the training process in order to achieve the best capability to

classify various types of skin lesions.

Inspired by the human vision system, which can efficiently

view focal regions in complex scenes, a variety of plug-and-play

attention mechanisms have been investigated in computer vision

(Woo et al., 2018; Hu et al., 2020; Hou et al., 2021) and are

widely used in multiple computer vision tasks (Aditya et al.,

2021; Wang et al., 2022). Liang et al. (2020) proposed a semi-

supervised classification approach based on a CNN model and

introduced an attention mechanism to balance the sample weights.

Additionally, the focal loss was used to alleviate the poor training

effect caused by uneven samples. Farag et al. (2022) proposed

a new automatic deep learning-based method for the detection

of diabetic retinopathy (DR) severity, first using DenseNet169 as

a feature extractor and then introducing a convolutional block

attentionmodule (CBAM) on top of it to enhance its discriminative

power. Finally, the approach was tested on an external real-world

dataset, resulting a good classification capability. Deng et al. (2020)

produced a benchmark dataset of breast density images divided

into four classes: A (fatty), B (fibrous gland), C (uneven dense),

and D (dense). The method begins with data enhancement and

normalization of breast images, followed by the implementation of

a squeeze-and-excitation (SE) attention module. This module helps

to recalibrate the image features and improve the classification of

breast density.

Many scholars have also conducted researches on the issue

of retinal OCT images. Liu et al. (2011) used the global image

descriptor and local binary pattern histogram formed by a

multiscale spatial pyramid as a feature vector, which could encode

the texture and shape information of a retinal OCT image and its

edge image, respectively. Sotoudeh-Paima et al. (2022) proposed a

multiscale automated method for classifying AMD-related retinal

lesions. Their multiscale CNN architecture was designed by

feature fusion based on a feature pyramid network architecture,

enabling end-to-end training and reducing the computational

complexity of the model compared to that of using multiple

CNNs in parallel. Fang et al. (2019) proposed a novel iterative

fusion CNN method for retinal OCT image classification. In

order to exploit the information between different convolutional

layers, the proposed method introduces an iterative layer fusion

strategy. Specifically, features from the current convolutional layer

are iteratively combined with those from all previous layers in

the CNN. Experimental results show that iteratively combining

feature information from all layers can achieve better classification

results.

Therefore, the challenges in constructing a lightweight network

model for retinal OCT grading tasks are as follows.

(1) How to create a plug-and-play attention module.

(2) How to efficiently apply an attention module into a classification

network model.

2. Related work

2.1. Previous studies on retinal OCT image
analysis

In recent years, a large number of researchers have been

working on retinal OCT analysis, which can be broadly divided
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into two directions: machine learning methods based on semi-

automatic feature extraction and deep learning methods based on

fully automatic feature extraction.

Machine learning methods based on semiautomatic feature

extraction can be divided into two types: feature extraction and

classifier design techniques. The main feature extraction methods

are local binary patterns (LBPs), histograms of oriented gradients

(HOGs) and scale-invariant feature transform (SIFT) (Lee et al.,

2015). The main classifiers are random forests, support vector

machines, multilayer perceptron, naive bayes, etc. Srinivasan

et al. (2014) designed a method to classify OCT retinal lesion

images based on the HOG extracted feature to classify healthy

retina, AMD, and DME, achieving high classification accuracy.

While machine learning approaches have exhibited promising

outcomes in classifying retinal OCT images in recent years, they

are accompanied by certain limitations. First, machine learning

methods based on semi-automatic feature extraction require

manual operations, making them time-consuming and unable to

guarantee the quality of the results. In addition, the inconsistency

in retinal OCT feature extraction among experts in different regions

yields incongruity, thus resulting in inaccurate diagnosis, thereby

questioning the veracity of classification outcomes generated

by the classifier.

A deep learning approach based on fully automated feature

extraction for end-to-end retinal OCT image grading was

developed (Das et al., 2021). Kayadibi and Güraksin (2023) used

a stacked ensemble learning approach based on CNNs to detect

DME, vitreous warts and CNV disease in OCT images. First,

features were extracted from OCT images using a fine-tuned

AlexNet and then applied to classify using homogeneous and

heterogeneous stacked ensemble learning methods.

Semi-automatic feature extraction-based retinal OCT

classification methods exhibit certain limitations, including

intricate feature engineering and inadequate classification

accuracy. While deep learning-based automatic feature extraction

has several advantages and can achieve end-to-end prediction

effects in retinal OCT disease classification, the current retinal

OCT-based deep learning network models suffer from several

limitations, including a large number of network parameters and

slow model training.

2.2. Attention mechanisms

SE (Hu et al., 2020) is a new generic network module

architecture unveiled by the autonomous driving company

Momenta in 2017 (SE is shown in Figure 1). It models the

correlations between feature channels and enhances important

features to achieve improved accuracy. The addition of this

structure also resulted in an error rate of 2.251% in the top-

5 ILSVR competition. SE has been used by a large number of

researchers in various industries since its introduction (XinSheng

and Yu, 2022). Zhang et al. (2022) proposed a MobileNetV2-

SENet-based approach to identify fish foraging behavior. Firstly,

the fish images were pre-processed with some operations in order

to enhance sample diversity. Then, MobileNetV2 was used to

extract fish image features, and an SENet-based feature weighting

network was built. Weights were assigned to features with different

values. A linear classifier was used to identify the feeding behaviors

of the fish. Finally, a method was provided to determine the

amount of feeding based on the identification results to reduce

feed consumption. Li et al. (2020) fused a DenseNet with SENet

modules as the basic classification framework, and conducted

extensive experiments on the proposed framework with the public

BreakHis dataset, demonstrating the effectiveness of the proposed

framework. Yan and Hua (2020) proposed a deep residual SENet

(R-SENet) for leaf recognition. The R-SENet employs an SE strategy

to learn and obtain the importance level of each channel in

each convolutional layer of the residual block to accomplish the

recognition task. Subsequently, the weight of each channel is

readjusted by the importance level to promote relevant channels

and suppress unimportant ones.

CBAM (Woo et al., 2018) is a lightweight convolutional

attention module published in the ECCV conference by Woo et al.

in 2018 that combines both channel attention module (CAM) and

the spatial attention module (SAM) (Figure 1 shows the CBAM).

CAM and SAM pay attention to channels and space, respectively.

This procedure not only saves parameters and computational

power but also ensures that the CAM and SAM can be integrated

into existing network architectures as plug-and-playmodules. Since

its introduction, the CBAM has been used by a large number of

researchers (Chen et al., 2020; Li et al., 2021). Luo and Wang

(2021) proposed a neural network algorithm incorporating the

CBAM in the ResNet architecture by adding the residual blocks of

the attention module in the second to fifth layers of the ResNet

architecture. The results were finally output by adaptive average

pooling and fully connected layers.

Coordinate attention for efficient mobile network design

(CoorDatt) is a new attention mechanism designed for lightweight

networks that was presented by Hou et al. (2021) at CVPR in 2021

(Figure 1 presents CoorDatt), this mechanism embeds location

information into channel attention. Unlike channel attention,

which converts the given feature tensor into individual feature

vectors via 2-dimensional global pooling, coordinate attention

decomposes channel attention into two 1-dimensional feature

encoding processes that aggregate features along two spatial

directions so that remote dependencies can be captured along

one spatial direction while retaining accurate location information.

Since the introduction of the CoorDatt module, it has been used

by a large number of researchers (Shi et al., 2022; Xiang et al.,

2022). Dai et al. (2022) proposed a method for tunnel crack

identification based on an improved You Only Look Once version

5 (YOLOv5) architecture. First, tunnel cracks are labeled according

to a novel labeling method that uses one labeling box for regular

cracks and multiple boxes for irregular cracks. Second, various data

augmentations are used to improve the generalization capability

of the model. Third, training YOLOv5 in combination with the

CoorDatt module can achieve higher tunnel crack recognition

rates. Zha et al. (2021) proposed the YOLOv4_MF model. The

YOLOv4_MFmodel utilizes MobileNetV2 as the feature extraction

block and replaces the traditional convolution operation with

depthwise-separable convolution (DSC) to reduce the number of

model parameters. In addition, a coordinate attention mechanism

is embedded in MobileNetV2 to enhance feature information. A
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symmetric structure consisting of a three-layer spatial pyramid pool

is proposed, and an improved feature fusion structure is designed

to fuse the target information. For the loss function, the focal loss

is used instead of the cross-entropy loss to enhance the network’s

ability to learn small targets.

SE only considers the internal channel information in the

feature map and ignores the importance of location information,

while the spatial structures of targets in vision are quite important;

the CBAM tries to introduce location information by perform

global pooling on the channels, but this approach can only capture

local information and not long range-dependent information; the

CoorDatt approach encodes spatial information throughmaximum

pooling in the horizontal and vertical directions, then transforms

it, and finally fuses the spatial information by weighting it over

the channels. This approach is not able to resolve the information

differences between features in terms of heights, widths, and

channels, without the ability to aggregate the information across

dimensions. The GAB encodes the height, width and dimension

of each data point on the channel of the input feature map. To

reduce the number of attention mechanism parameters, we use

DSC instead of normal convolution operations.

As shown in Figure 1, the maximum pooling and average

pooling operations are first performed on the height and width,

and then the DSC operation is performed on them to extract

the spatial information of the given feature map from different

angles. The obtained feature map is concerned with the detailed

information in the image. In this paper, the channel operations

are similar to those of the CBAM, where the importance of each

channel is learned through attention mechanisms. Additionally,

global average pooling is applied to obtain global feature maps,

which focus the significant information of interest in the input

image.

This paper presents three innovative research content to tackle

the limitations of semi-automatic feature extraction, enhance deep

learning-based feature extraction methods, and fully exploit the

potential of attention mechanisms. The objective of these research

content is to improve the accuracy and efficiency of retinal OCT

disease classification.

(1) A new attention mechanism module, a global attention block

(GAB), is constructed.

(2) A new lightweight classification network model based on the

GAB is constructed.

(3) This network is validated on both internal and external retinal

OCT datasets and a fundus photograph dataset with DR.

3. GAB based on retinal OCT disease
classification

3.1. System architecture

In this study, a classification model consisting of a GAB for

retinal OCT disease classification is proposed. The classification

model architecture is divided into two modules: a retinal OCT

image preprocessing module, and a model training and prediction

module. The system architecture is shown in Figure 2. The image

preprocessing module mainly includes image data normalization

and scaling operations, which are used to unify retinal OCT images

of different sizes and facilitate the training of the network. The

model training and prediction module constructs the algorithm

model and compares predictions in terms of various evaluation

metrics. This module is mainly used to train and predict models

from the unified retinal OCT images and thus to test the strengths

and weaknesses of various algorithmic models.

3.2. Image preprocessing module

In the dataset preprocessing module, the input images are

mainly deflated to widths of 299 and heights of 299 (by

bilinear interpolation) and subsequently normalized (formula 1) to

facilitate the calculation of the network.

Xnorm =
X − Xmin

Xmax − Xmin
(1)

Xmin and Xmax represent the minimum and maximum image

pixel values, respectively, and Xnorm denotes the normalized image

pixel values. The normalized image pixel values are restricted to

be between 0 and 1, which accelerates the convergence of the

neural network and ensures faster convergence when the program

is running.

3.3. Model training and prediction module

3.3.1. GAB
Given a feature map TH∗W∗C, H, W, and C represent the

dimensional information of the feature map T (height, width and

number of channels, respectively), and m, n, and k represent the

size of the feature map (height, width and number of channels,

respectively), so the average pooling results in terms of the height

and width are obtained via formula 2 and formula 3, respectively.

AvgPool_H =
1

m

m∑

i=1

Ti(W,C) (2)

AvgPool_W =
1

n

n∑

i=1

Ti(H,C) (3)

The maximum pooling height and width are shown in formula

4 and formula 5, respectively.

MaxPool_H = max(T0(W,C),T1(W,C),T2(W,C), ...,Tm(W,C))

(4)

MaxPool_W = max(T0(H,C),T1(H,C),T2(H,C), ...,Tn(H,C))

(5)

The global average pooling process conducted on the channels

and global maximum pooling are presented in formula 6 and

formula 7, respectively.

GAP =
1

m ∗ n

m∑

i=1

n∑

j=1

Ti,j(C) (6)
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FIGURE 1

Attention mechanism. GAP, global average pooling layer; GMP, global max pooling layer; Channel AvgPool and Channel MaxPool represent the

average and maximum pooling operations conducted on the channels, respectively; W AvgPool and W MaxPool represent the maximum and

average pooling operations conducted on the width, respectively; H AvgPool and H MaxPool represent the maximum and average pooling

operations conducted on the height, respectively; FC, fully connected layer; ReLU, sigmoid and H-swish are the activation functions; BN, batch

normalization; Conv2D, convolutional layer; Add, element-by-element addition; Multiply, vector multiplication; Transpose, transposition of

high-dimensional vectors; Concat, stitching according to a certain dimension.
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FIGURE 2

System architecture.

FIGURE 3

GABNet architecture.

GMP = max(T0,0(C),T0,1(C), ...,T0,n(C), ...,Tm,n(C)) (7)

Therefore, the weighted values in the height attention module,

width attention module and channel attention module are

calculated as in formula 8, formula 9, and formula 10, respectively.

H1∗W∗C
= AvgPool_H(f 1∗1(d1∗1(Concat(AvgPool_H(TH∗W∗C),

MaxPool_H(TH∗W∗C))))) (8)

WH∗1∗C
= AvgPool_W(f 1∗1(d1∗1(Concat(AvgPool_W(TH∗W∗C),

MaxPool_W(TH∗W∗C))))) (9)

C1∗1∗C
= W1(W0(GAP(RH∗W∗C)))+W1(W0(GMP(RH∗W∗C)))

(10)

where f represents the 1*1 convolution operation, batch

normalization (BN) and the fusion operation of the rectified

linear unit (ReLU) non-activation function; d represents the 1*1

convolution operation, BN and the fusion operation of the ReLU

non-activation function; W0 is the fusion operation of the fully

connected layer and the ReLU non-activation function; W1 is

the fusion operation of the fully connected layer and the sigmoid

non-activation function.

For the input feature map RH∗W∗C, the weighted output feature

map is calculated as in formula 11.

OH∗W∗C
= RH∗W∗C

∗H1∗W∗C
∗WH∗1∗C

∗ C1∗1∗C (11)

3.3.2. GABNet
In this paper, GABNet is used as a feature extraction network

after data preprocessing. The overall structure of the network

model is shown in Figure 3, and it can be divided into four

parts: a DSC module (Figure 4A), a DSC residual (DSCR) Block

A (Figure 4B), DSCR Block B (Figure 4C), and a global attention

module (GAB; Figure 1 GAB). It has been shown that the DSC

operation is effective in reducing the computational complexity

of a network while maintaining little variation in its accuracy

(Howard et al., 2019). Thus, GABNet makes extensive use of

the DSC operation. The use of residual structures can effectively

reduce the degradation of the network (He et al., 2016), so two

modules, DSCR Block A and DSCR Block B, are constructed

throughout the network. The attention mechanism is effective in

improving the classification accuracy of the network when the

number of parameters does not vary greatly, so the global attention

mechanism is followed by an attention mechanism in each residual

structure, in order to improve the effect of the network in this case.

4. Experiment

4.1. Experimental conditions

In the experimental environment of this paper, the evaluation

is conducted on an Nvidia Tesla V100 with 16 GB of memory. The
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FIGURE 4

GABNet subnetwork architecture. (A) DSC module. (B) DSC residual (DSCR) Block A. (C) DSCR Block B. DW Conv2D, deep separable convolution

layer; Conv2D, convolution layer; BN, batch normalization; ReLU, activation function; MaxPool, maximum pooling layer; Add, element-by-element

addition.

CUDA, cuDNN, Python, TensorFlow, and Keras versions are 11.6,

8.4.1, 3.8.8, 2.8.0, and 2.4.3, respectively.

4.2. Dataset

The dataset used in this paper is the UCSD retinal OCT dataset,

which contains 108,312 OCT images from 4686 patients (Kermany,

2018). These images were acquired using Spectralis OCT from

Heidelberg Engineering, Germany. The dataset consists of four

categories: CNV, DME, drusen, and normal. The sample sizes of the

four categories are 37,206, 11,349, 8,617, and 51,140, respectively.

Each category has 250 samples in the test set. The dataset was

collected from retrospective cohorts of adult patients by various

institutions, including the Shiley Eye Institute of the University of

California San Diego, the California Retinal Research Foundation,

Medical Center Ophthalmology Associates, the Shanghai First

People’s Hospital, and the Beijing Tongren Eye Center, between July

1, 2013 and March 1, 2017. More details about the dataset can be

found in the study (Kermany, 2018). Typical images and the sample

size distribution of each dataset category are shown in Figure 5.

4.3. Evaluation criteria

To perform a quantitative analysis and obtain objective

comparison results, we evaluate the diagnostic performance of

the proposed approach according to the Accuracy (Acc), Recall,

Precision, Specificity, F1, and area under the curve (AUC) metrics.

It should be noted that the aforementioned Acc, Recall, Precision,

Specificity, F1, and AUC metrics are all calculated based on

weighted averages for each corresponding class, in order to obtain

a comprehensive performance evaluation. Table 1 presents the

confusion matrix for multi-class classification of Retinal OCT

images. For each class i, the true positive (TPi), false positive

(FPi), false negative (FNi), and true negative (TNi) can be easily

obtained using the formula 12–15. The number of samples in

the class i is represented by support_i. With these four values,

we can calculate the Acc, F1 score, precision, specificity and

recall. Acc is the proportion of correctly classified samples among

all participating samples, as shown in formula 16. Recall is the

proportion of correct predictions among all positive samples, as

shown in formula 17. Precision is the proportion of correctly

classified positive examples among all divided positive examples,

as shown in formula 18. Specificity is the proportion of correctly

classified negative examples among all divided negative examples,

as shown in formula 19. F1 is an index used in statistics to measure

the accuracy of binary classification models. It takes both model

accuracy and recall into account, as shown in formula 20. The F1

score can be regarded as a harmonic average of the model accuracy

and recall, whose maximum value is 1 and minimum value is 0.

The AUC is the area under the receiver operating characteristic

(ROC) curve enclosed by the coordinate axes, and its value range

is between 0.5 and 1.

TPi = Xii (12)
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FIGURE 5

An overview of samples in dataset. (A) Representative OCT images of each category. (B) Sample size distribution of each category.

FPi =

4∑

j=1

Xji − TPi (13)

FNi =

4∑

j=1

Xij − TPi (14)

TNi =

4∑

j=1

4∑

k=1

Xjk − TPi − FPi − FNi (15)

Acc =

4∑
j=1

Xjj

4∑
j=1

4∑
k=1

Xjk

(16)

Recall =

4∑
i=1

TPi∗support_i
TPi+FNi

4∑
i=1

support_i

(17)

Precision =

4∑
i=1

TPi∗support_i
TPi+FPi

4∑
i=1

support_i

(18)

Specificity =

4∑
i=1

TNi∗support_i
TNi+FPi

4∑
i=1

support_i

(19)

F1 =
2 ∗ Precision ∗ Recall

Precision+ Recall
(20)

TABLE 1 Confusion matrix for retinal OCT classification.

Confusion matrix Predicted class

CNV DME Drusen Normal

Actual class CNV X11 X12 X13 X14

DME X21 X22 X23 X24

Drusen X31 X32 X33 X34

Normal X41 X42 X43 X44

4.4. Experimental results

To ensure objective and fair comparison among the algorithms,

we used softmax as the activation function and cross-entropy as

the loss function for all compared algorithms. We utilized adam

optimizer with an initial learning rate of 0.0001 and a batch size of

10. The model was trained for 300 epochs. Moreover, we employed

several optimization strategies, including scaling down the learning

rate to 1/10 if the validation accuracy did not improve for 5

consecutive times, and early stopping if the model did not improve

validation accuracy for 11 consecutive times.

Regarding the selection of data, we conducted experiments

using two distinct approaches. The first approach involved training

the models on the complete dataset, which will be subsequently

referred to as “complete model” throughout this paper. The second

approach consisted of training the models on a balanced subset of

the complete dataset, containing corresponding 1,000 images per

class, which will be referred to as “limited model” in the following

sections.

On the general UCSD retinal OCT dataset, this paper evaluates

the model performance in four perspectives: whether to use

balanced data, different classification algorithms, whether to use

transfer learning, and whether to use attention mechanisms. Our
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TABLE 2 Comparative evaluation of various algorithms on di�erent datasets.

Dataset Classification
algorithm

Transfer
learning

Attention
mechanism

Acc Recall Specificity F1 AUC

Limited model Xception No No 0.94 0.94 0.98 0.9398 0.9937

Yes No 0.976 0.976 0.992 0.9761 0.9988

Yes SE 0.978 0.978 0.9927 0.9779 0.9988

Yes CBAM 0.978 0.978 0.9927 0.978 0.9979

Yes CoorDatt 0.985 0.985 0.995 0.985 0.9991

Yes GAB 0.99 0.99 0.9967 0.99 0.9994

EfficientNetV2 No No 0.838 0.838 0.946 0.8335 0.9649

Yes No 0.971 0.971 0.9903 0.971 0.9985

Yes SE 0.971 0.971 0.9903 0.971 0.9984

Yes CBAM 0.972 0.972 0.9907 0.972 0.9986

Yes CoorDatt 0.974 0.974 0.9913 0.9739 0.9975

Yes GAB 0.976 0.976 0.992 0.976 0.9958

GABNet - No 0.733 0.733 0.9113 0.7208 0.9084

- GAB 0.954 0.954 0.9846 0.954 0.998

Complete

model

Xception No No 0.95 0.95 0.9833 0.9501 0.9961

Yes No 0.977 0.977 0.9923 0.977 0.9992

Yes SE 0.978 0.978 0.9927 0.978 0.9985

Yes CBAM 0.961 0.961 0.987 0.9612 0.9985

Yes CoorDatt 0.971 0.971 0.9903 0.9709 0.9985

Yes GAB 0.98 0.98 0.9933 0.98 0.9992

EfficientNetV2 No No 0.928 0.928 0.976 0.9273 0.9929

Yes No 0.968 0.968 0.9893 0.9681 0.9977

Yes SE 0.971 0.971 0.9903 0.9711 0.9986

Yes CBAM 0.973 0.973 0.991 0.973 0.9976

Yes CoorDatt 0.966 0.966 0.9887 0.966 0.9979

Yes GAB 0.978 0.978 0.9927 0.9781 0.9983

GABNet - No 0.965 0.965 0.9883 0.9648 0.991

- GAB 0.965 0.965 0.9883 0.965 0.9971

Value in bold means the best of the same class.

“-” Means that the algorithm does not have this feature or property.

proposed GAB attention mechanism is tested against different

attention mechanisms, such as SE, the CBAM and CoorDatt.

The proposed GABNet is compared with the Xception and

EfficientNetV2B3 algorithms. The results of the test comparisons

are shown in Table 2. Compared with the general attention

mechanisms proposed in recent years, such as SE, CBAM, and

CoorDatt, the GAB attention mechanism is improved to some

extent. The GABNet classification algorithm has demonstrated

superior performance over Xception and EfficientNetV2B3,

without the use of transfer learning, in terms of parameter

efficiency and various classification metrics. This confirms the

effectiveness of the GAB attention mechanism and the GABNet

classification algorithm.

4.4.1. Validity of the GAB and GABNet
In this paper, Xception and EfficientNetV2B3 are regarded

as the basic classification modules, in which the input height

and width of the Xception classification framework are 299.

To achieve the best classification effect for EfficientNetV2B3

(Tan and Le, 2021), the height and width of the input image

provided to this classification model are scaled to 300. To

verify the effectiveness of the GAB attention mechanism, we

test whether the GAB has any influence on the Xception and

EfficientNetV2B3 classification algorithms based on the same

dataset and the same algorithm. Under the limited model, the

effects of Xception and EfficientNetV2B3 integrated with GAB

module is 1.4 and 0.5% higher than those obtained by models
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FIGURE 6

Performance comparison of classification algorithms with and without GAB on di�erent datasets. (A) E�ect of GAB on classification accuracy across

diverse datasets and algorithms. (B) E�ect of GAB on ROC of di�erent algorithms in the limit model dataset. (C) E�ect of GAB on ROC of di�erent

algorithms in the complete model dataset. Xception_No_GAB, Xception_Yes_GAB represent Xception without GAB and with GAB respectively;

E�cientNetV2_No_GAB, E�cientNetV2_Yes_GAB represent E�cientNetV2 without GAB and with GAB respectively.
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FIGURE 7

The impact of attention mechanisms on classification performance: a comparative study across multiple algorithms and datasets. (A) E�ect of

attention mechanisms on classification accuracy across diverse datasets and algorithms. (B) E�ect of attention mechanisms on ROC of di�erent

algorithms in the limit model dataset. (C) E�ect of attention mechanisms on ROC of di�erent algorithms in the complete model dataset.

Xception_SE, Xception_CBAM, Xception_CoorDatt and Xception_GAB represent the fusion of Xception with four di�erent attention mechanisms, SE,

CBAM, CoorDatt and GAB, respectively; E�cientNetV2_SE, E�cientNetV2_CBAM, E�cientNetV2_CoorDatt, and E�cientNetV2_GAB represent the

fusion of E�cientNetV2 with four di�erent attention mechanisms, SE, CBAM, CoorDatt and GAB, respectively.
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TABLE 3 Evaluation of di�erent algorithms on retinal OCT classification.

Algorithm Acc Recall Specificity F1 AUC Parameters
(M)

Test time

ResNet50a(He et al.,

2016)

0.941 0.941 0.9803 0.9411 0.9923 23.595 4.81 s± 315

ms

InceptionV3a(Szegedy

et al., 2016)

0.96 0.96 0.9867 0.9599 0.9947 21.811 4.78 s ± 277

ms

Xceptiona(Chollet, 2017) 0.95 0.95 0.9833 0.9501 0.9961 20.87 4.81 s± 285

ms

EfficientNetV2B3a(Tan

and Le, 2021)

0.928 0.928 0.976 0.9273 0.9929 12.937 5.39 s± 204

ms

Huanga(Huang et al.,

2019)

0.884 0.846 N/A N/A N/A N/A N/A

GABNeta 0.965 0.965 0.9883 0.965 0.9969 9.361 7.26 s± 353

ms

FN-F1-OCTb(Ai et al.,

2022)

0.985 0.985 0.995 0.985 0.99 99.717 18.1 s± 831

ms

FN-Weight-OCTb(Ai

et al., 2022)

0.984 0.984 0.995 0.984 0.99 99.717 15.6 s± 419

ms

FN-Auto-OCTb(Ai et al.,

2022)

0.987 0.987 0.996 0.987 0.991 99.774 15.8 s± 451

ms

Kermanyb(Kermany

et al., 2018)

0.961 0.961 0.987 0.961 0.99 N/A N/A

Hwangb(Hwang et al.,

2019)

0.9693 N/A N/A N/A N/A N/A N/A

Sinhab(Sinha et al., 2023) 0.944 0.944 0.9815 0.9448 N/A N/A N/A

EfficientNetV2B3+GABb 0.978 0.978 0.9927 0.9781 0.9983 18.281 5.53 s± 94.5

ms

Xception+GABb
0.99 0.99 0.9967 0.99 0.9994 30.354 4.88 s ± 240

ms

aNon-transfer learning methods.
bTransfer learning methods.

Value in bold means the best of the same class.

“N/A” Means that the metric was not displayed in the comparison article.

without the GAB module, respectively. Under the complete model,

Xception and EfficientNetV2B3 with the GAB module achieve 0.3

and 1% improvements, respectively, over the models without the

GAB module.

The GAB attentionmechanism is composed of DSC operations,

so it can be used as a general module and can be seamlessly

connected to any network feature map. The evaluation results

obtained by different algorithms on different datasets (lines 2, 6,

8, 12, 16, 20, 22, and 26 in Table 2 and Figure 6) are improved to a

certain extent, thus proving the effectiveness of the GAB algorithm.

To verify the efficiency of the GAB attention mechanism, we

conduct tests on the same dataset with the same algorithm, as

shown in rows 3–6, 9–12, 17–20, and 23–26 in Table 2 and Figure 7,

where the sample size of each dataset category is balanced 1,000

for the limited model dataset. In comparison of different attention

modules, such as SE, CBAM, CoorDatt and GAB, the Acc, F1 value

and AUC results show that they all provide certain improvements

over models without any attention mechanisms. Notably, the GAB

attention module proposed in this paper provides improvements

of up to 1.4%. Under EfficientNetV2, in the same comparison, the

GAB module is 0.5% better than the original algorithm. Compared

to SE, the CBAM and CoorDatt, the GAB module can effectively

learn the main differences between the categories when the sample

size of the dataset is small, which can maximally improve the

classification effect of the model. In parallel, for the complete model

dataset, the dataset is the complete dataset provided by UCSD with

a large sample size but significant imbalances between categories.

The Xception algorithm in the complete model with four attention

mechanisms is reduced compared to that in the limited model. The

unbalanced training dataset of the model has an impact, resulting

in the model having inconsistent recognition abilities for various

categories and being biased toward categories with large sample

sizes. The reason for that may be the Xception model has some

limitations regarding its prediction ability for cases with small

sample sizes. EfficientNetV2B3 produces little difference between

the prediction results obtained on the two different datasets,

indicating that it has little influence on the dataset differences and

has some resistance to interference.

Similarly, to verify the effectiveness of the GABNet algorithm,

comparison experiments are conducted on different classification

algorithms with same datasets. For this paper, the comparison

models Xception and EfficientNetV2B3 were chosen. These
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FIGURE 8

Comparing classification results of di�erent algorithms on diverse datasets. (A) E�ect of di�erent algorithms on classification accuracy on di�erent

datasets. (B) E�ect of di�erent algorithms on ROC obtained on limit model dataset. (C) E�ect of di�erent algorithms on ROC obtained on complete

model dataset. GABNet_No_GAB, GABNet_Yes_GAB represent GABNet without GAB and with GAB respectively.
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TABLE 4 Evaluation of retinal OCT classification algorithms on external dataset.

Classification algorithm Acc Recall Specificity F1 AUC

GABNet 0.8047 0.8047 0.9332 0.7988 0.9654

EfficientNetV2+GAB 0.8594 0.8594 0.9531 0.8556 0.9727

Xception+GAB 0.9141 0.9141 0.9723 0.915 0.9914

Value in bold means the best of the same class.

TABLE 5 Evaluation of DR classification algorithms on fundus photograph dataset.

Classification
algorithm

Transfer
learning

Attention
mechanism

Acc Recall Specificity F1 AUC

VGG19 (Wu and Hu, 2019) - - 0.51 N/A N/A N/A N/A

ResNet50 (Wu and Hu, 2019) - - 0.49 N/A N/A N/A N/A

Inception V3 (Wu and Hu,

2019)

- - 0.61 N/A N/A N/A N/A

DR-IIXRN (Ai et al., 2021) - - 0.793 0.7933 0.8778 0.7602 0.7602

Xception NO NO 0.7479 0.7479 0.8307 0.6808 0.7307

YES NO 0.7901 0.7901 0.8767 0.7539 0.8093

YES YES 0.7939 0.7939 0.8711 0.7487 0.7942

EfficientNetV2B3 NO NO 0.7358 0.7358 0.8271 0.6628 0.7127

YES NO 0.797 0.797 0.8776 0.7555 0.8025

YES YES 0.804 0.804 0.8831 0.7653 0.8109

GABNet - NO 0.6877 0.6876 0.807 0.6242 0.5987

- YES 0.7607 0.7607 0.8398 0.6954 0.743

Value in bold means the best of the same class.

“N/A” Means that the metric was not displayed in the comparison article.

“-” Means that the algorithm does not have this feature or property.

models used their respective network architectures without

utilizing “ImageNet”-based initialization of the weight parameters.

Instead, they were initialized with random values for their

weight parameters. The number of parameters required by the

proposed GABNet in this paper is significantly lower, as can be

observed from the numbers of network parameters presented in

Table 3. Specifically, the GABNet requires 0.44 and 0.72 times

fewer parameters compared to Xception and EfficientNetV2B3,

respectively, indicating a substantial reduction in the number of

parameters. From a dataset perspective (Figure 8; lines 1, 7, 13–

15, 21, and 27–28 in Table 2), if all three comparison algorithms

use random initialization parameters, the results obtained with

the complete model are much better than those of the limited

model, where random network parameter initialization requires

more image data to be fitted for optimization purposes. Under

the limited model, GABNet improves by 1.4% over Xception

and by 11.6% over EfficientNetV2B3. The small sample size in

the training dataset has a large impact on the nonmigratory

learning abilities of Xception and EfficientNetV2B3, and their

training processes have difficulty in reaching saturation, so their

prediction effects drop sharply. In contrast, GABNet still maintains

a high prediction accuracy in this situation. With a larger

sample size of the complete model dataset, all four algorithm

models have been improved, especially GABNet without the

attention module, which has increased its accuracy by 23.2%.

The GABNet model with the attention module achieves an

improved prediction effect with the completed model over that

obtained with the limited model, but the improvement is not

very significant, indicating that GABNet is able to learn the main

differences between the categories even when the sample size is

small.

To conduct an ablation experiment on the GABNet network,

the enhancement effect of the attention module in GABNet is

verified. For the test effect in Figure 8, GABNet improves by 22.1%

on the basis of the limited model. GABNet can effectively maintain

the stability of the classification index when the sample size of the

given dataset is not large. In view of the difficulty in obtaining

medical data at present, GABNet has application potential in

certain scenarios.

The UCSD retinal OCT dataset is by far the largest open source

dataset in terms of data volume for retinal classification, and thus

a large number of researchers have conducted research tests on

this dataset. To compare the effectiveness of the GAB and GABNet

techniques proposed in this paper, we collect and download the

network models that have been tested on the UCSD retinal OCT

dataset over the past five years, as shown in Table 3. To ensure

fairness in comparison, we conducted evaluation synthetically

on Complete model and Limited model datasets using NVIDIA

Geforce RTX 3060Ti with 8GB memory and a batch size of 10.

We selected the model with higher accuracy for further analysis.
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FIGURE 9

E�ects of di�erent algorithms on the classification results obtained for retinal fundus images. Xception_N_N, Xception_Y_N, Xception_Y_Y

respectively represent Xception as the base classifier, no transfer learning and no GAB attention mechanism; Using transfer learning when not using

GAB attention mechanism; Using transfer learning and use the GAB attention mechanism. E�cientNetV2_N_N, E�cientNetV2_Y_N,

E�cientNetV2_Y_Y respectively represent E�cientNetV2 as the base classifier, no transfer learning and no GAB attention mechanism; Using transfer

learning when not using GAB attention mechanism; Using transfer learning and use the GAB attention mechanism. GABNet_N,GABNet_Y represent

GABNET without attention mechanism and with attention mechanism respectively.

As shown in Table 3, “Parameters (M)” represents the total number

of parameters in the model, and “Test Time” represents the mean

± sd time obtained by running 5 tests per round for 10 rounds on

the test dataset.

We compared non-transfer learning algorithms with transfer

learning algorithms. In the comparison of non-transfer learning

algorithms (Table 3, rows 1-6), the GABNet algorithm had a certain

disadvantage in testing time due to its wider branch compared to

other algorithms. However, with the improvement of computing

performance, we believe that this gap can be further reduced.

Specifically, in terms of classification performance, GABNet

showed extremely strong feature extraction and classification

capabilities in the comparison of non-transfer learning algorithms.

In the comparison of transfer learning algorithms (Table 3, rows

7-14), the accuracy of Xception and EfficientNetV2B3 algorithms

with GAB attention mechanism was greatly improved. The

Ai et al. (2022) method used ensemble learning with strong

feature extraction, but the Xception+GAB method proposed in

this paper significantly reduced the number of required parameters

while improving the evaluation metrics, indicating the improved

effectiveness of the GAB attention mechanism compared to the Ai

et al. (2022) method. Compared to the transfer learning algorithms

proposed in the literature, the accuracy of GABNet was slightly

lower, which is also the focus of future work in this paper. The

algorithm will be trained on the ImageNet dataset to obtain

a network with strong feature extraction capabilities, and then

transfer learning will be performed on this dataset.

4.4.2. External validation dataset extension
This study retrospectively collected 256 retinal OCT images

from Beijing Chaoyang Hospital, Capital Medical University.
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FIGURE 10

Model visualization maps of Choroidal Neovascularization (CNV), Diabetic Macular Edema (DME), Drusen and Normal by di�erent attention

mechanisms. The highlighted areas in red spectrum are considered as important in making its diagnosis.

The dataset comprises four categories: CNV, DME, Drusen, and

Normal, with sample sizes of 59, 94, 20, and 83, respectively.

The Medical Ethics Review Board of Beijing Chaoyang Hospital

approved the retrospective study. We directly used the trained

algorithm model to predict all image data. Similarly, we employed

the preprocessingmethod used for the internal testing set to process

the external validation dataset. The evaluation metrics for each

category in the external validation dataset are shown in Table 4.

As the OCT images used for training the network models were

generated by a “Spectralis OCT” device, while the external dataset

images were acquired from a “Cirrus HD” device, there were certain

discrepancies observed in the OCT image characteristics produced

by the two devices. Specifically, the Spectralis OCT equipment is

known to produce images with higher clarity compared to the

Cirrus HD-OCT, which might have resulted in a decline in the

evaluation metrics during model testing. This is undoubtedly one

of the future research directions that we plan to pursue. We aim

to evaluate the generalization ability of our proposed algorithms by

utilizing other locally available high-resolution image databases.

4.4.3. Extension to other types of datasets
To verify the performance of GAB and GABNet on

other application scenario datasets, we selected a DR dataset

for validation (Kaggle: https://www.kaggle.com/c/diabetic-

retinopathy-detection/data). The dataset is taken from the Diabetic

Retinopathy Detection Competition, a data modeling and data

analysis competition platform. A total of 35,126 image samples

are available and categorized into five categories: normal, mild,

moderate, severe and proliferative DR. The sample sizes for

each category are 25810, 2443, 5292, 873 and 708, respectively.

Due to the severe imbalance in the dataset, this paper performs

preprocessing using the data preprocessing scheme mentioned by

(Ai et al., 2021). On this dataset, we use Xception, EfficientNetV2B3

and GABNet for testing, the results of which are shown in Table 5

and Figure 9.

First, it can be seen from Figure 9 that transfer learning can

greatly improve the classification ability of the associated algorithm.

The accuracy of Xception and EfficientNetV2B3 are improved by

4.2 and 6.1%, respectively. This demonstrates that the efficacy

of feature extraction by each network is significantly enhanced

through the “ImageNet” pre-training approach, which involves

utilizing large datasets and ensuring a balance across various

categories. Using the GAB attention mechanism, the accuracy of

Xception and EfficientNetV2B3 are improved by 0.4 and 0.7%,

respectively, which shows that the attention mechanism proposed

in this paper is effective and efficient. On the other hand, GABNet

can also improve the classification accuracy by 3% over that of

Xception and EfficientNetV2B3 without transfer learning. This

shows that GABNet has certain advantages not only in retinal OCT

disease classification but also in DR grading detection by fundus

photograph, indicating a good generalization ability.

As shown in Table 5, it is evident that the Xception+GAB,

EfficientNetV2B3+GAB, and GABNet approaches presented in this

study yield enhanced accuracy compared to the methods proposed

by Wu and Hu (2019) and Ai et al. (2021). While the fusion
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network utilized in Ai et al. (2021) demonstrated robust feature

extraction, its parameter count was relatively high. In this paper,

EfficientNetV2B3 and GABNet achieve improved classification

correctness rates while reducing the number of required network

parameters, proving that the GAB attention mechanism has a

strong feature-weighted optimization function.

4.4.4. Model visualization and interpretation
To compare the differences of contributing regions between

the proposed GAB attention mechanism and other attention

mechanisms, a heatmap is created for each image using a

visualization method, i.e., gradient-weighted class activation

mapping (Grad-CAM). In the heatmaps (Figure 10), the most

relevant category discriminating regions are highlighted in red.

The fundamental purpose of heatmap generation is to construct

an image that reveal the subregions of the original image to

identify areas contributing to the algorithm’s determination of

the diagnosis. In this study, the Xception classifier is selected as

the underlying model, and one image per category is arbitrarily

chosen for feature visualization from the No AttentionMechanism,

SE, CBAM, CoorDatt, and GAB methods.The contributing areas

depicted in the heatmaps reveal that the GAB method highlights

smaller regions compared to the Original, SE, CBAM, and

CoorDatt methods, focusing predominantly on the lesion areas

while disregarding other irrelevant regions. This substantiates the

efficacy of the GAB attentionmechanism. The locations highlighted

by the GAB heatmap are partially consistent with human experts’

experience which means good interpretation of this model.

5. Conclusion

This study presents a novel and effective Global Attention Block

(GAB) for feedforward CNNs. The GAB is a versatile module that

can be easily integrated into any CNN to improve its classification

performance. Compared to commonly used attention mechanisms

in current research, the GAB is shown to better focus on lesion

locations in retinal OCT images, leading to improved classification

results. Based on the GAB, a lightweight classification network

model called GABNet is proposed, which demonstrates superior

performance while also having a smaller number of parameters.

Our future work includes testing the proposed algorithm on a larger

set of locally sourced clinical image databases and optimizing it

accordingly to improve the performance. Additionally, the use of a

larger image classification database, such as ImageNet, is planned

for training, and the transfer learning of the obtained GABNet

classification model to more application scenarios will be expected

to verify the algorithm’s robustness.
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Purpose: This study combines automatic segmentation and manual fine-tuning

with an early fusion method to provide e�cient clinical auxiliary diagnostic

e�ciency for fungal keratitis.

Methods: First, 423 high-quality anterior segment images of keratitis were

collected in the Department of Ophthalmology of the Jiangxi Provincial People’s

Hospital (China). The images were divided into fungal keratitis and non-fungal

keratitis by a senior ophthalmologist, and all images were divided randomly into

training and testing sets at a ratio of 8:2. Then, two deep learning models were

constructed for diagnosing fungal keratitis. Model 1 included a deep learning

model composed of the DenseNet 121, mobienet_v2, and squeezentet1_0

models, the least absolute shrinkage and selection operator (LASSO) model,

and the multi-layer perception (MLP) classifier. Model 2 included an automatic

segmentation program and the deep learning model already described. Finally,

the performance of Model 1 and Model 2 was compared.

Results: In the testing set, the accuracy, sensitivity, specificity, F1-score, and the

area under the receiver operating characteristic (ROC) curve (AUC) of Model 1

reached 77.65, 86.05, 76.19, 81.42%, and 0.839, respectively. ForModel 2, accuracy

improved by 6.87%, sensitivity by 4.43%, specificity by 9.52%, F1-score by 7.38%,

and AUC by 0.086, respectively.

Conclusion: The models in our study could provide e�cient clinical auxiliary

diagnostic e�ciency for fungal keratitis.

KEYWORDS

anterior segment images, artificial intelligence, automatic segmentation, fungal keratitis,

diagnosis

Introduction

Fungal keratitis, also known as keratomycosis, is a common blinding eye disease

(Thomas et al., 2005). The main manifestations are corneal infiltration, rough corneal edge,

and “satellite” lesions (Mahmoudi et al., 2017). Patients often suffer from eye injury, require

eye surgery, must wear contact lenses, and suffer from other diseases caused by organic

substances (especially plants; Ali Shah et al., 2017). According to statistics, every year∼1–14

million people are infected with fungal keratitis worldwide, of which 75% of patients might
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be blind in one eye and 60% of patients might be blind even after

treatment (Brown et al., 2021), which results in a huge burden to

families and society. Therefore, early diagnosis and treatment of

fungal keratitis is necessary. However, at present, fungal keratitis

diagnosis depends mainly on traditional microbial culture (Sadik

et al., 2022), which takes considerable time and cannot provide

a basis for early treatment. At present, the diagnosis of fungal

corneal ulcer is mainly based on confocal microscopy of corneal

culture. Fungal corneal ulcer can cause corneal perforation and

fungal endophthalmitis. Thus, accurate and rapid early diagnosis

of fungal keratitis is important.

Recently, artificial intelligence (AI), especiallymachine learning

(ML), has been applied in the field of ophthalmology (Lee et al.,

2020) and has a significant role in corneal disease diagnosis

(Siddiqui et al., 2020). A corneal ulcer can be diagnosed by anterior

segment photography. At the same time, artificial intelligence

technology has shown better diagnostic efficiency in medical

image processing. Moreover, ML based on the deep neural

network (DNN) is called deep learning and is considered the

most advanced ML (LeCun et al., 2015; Litjens et al., 2020).

Huang et al. used the deep learning model built by different

convolutional neural networks (CNNs) to evaluate 580 patients to

help distinguish bacterial keratitis (BK) and fungal keratitis quickly

in clinical practice and found that DenseNet 161 in CNN has

the best performance. This deep learning model can improve the

recognition rate significantly between the two kinds of keratitis

and provide better accuracy for clinical diagnosis (Hung et al.,

2021). Additionally, Li et al. compared the classification ability of

AlexNet, DenseNet 121, and InceptionV3 algorithms for 48,530

slit lamp images of different keratitis and found that DenseNet

121 had the best classification performance (Li et al., 2021). AI

is used widely in the field of keratitis diagnosis, and algorithms,

such as DenseNet 161 and DenseNet 121, have high performance

in deep learning models. However, most of the existing AI-assisted

diagnosis of fungal keratitis methods compare the performance

of different single algorithm models. The application of the deep

learning model built by integrating these different algorithms in

the diagnosis of keratitis is relatively rare. In contrast to the

abovementioned research, Ghosh et al. used three deep learning

models constructed by VGG19, DenseNet 121, and RestNet50 to

separate fungal keratitis and BK and then compared the results

of each model and ensemble learning. Finally, ensemble learning

had the largest area under the precision-recall curve (AUPRC)

compared with any single architecture model, and they believed

that ensemble learning can improve the performance of assisted

diagnosis of diseases significantly (Ghosh et al., 2022). Therefore,

the ensemble learning model composed of multiple algorithms is

more accurate. Ensemble learning is a kind of fusion technology

that is a fusion at the model level and belongs to late fusion. Early

fusion is also named feature-level fusion, which emphasizes the

data combination before the classification. The final feature vector

consists of the features extracted from heterogeneous signals, and

early fusion should put the final feature vector into the classifier

alone (Zhang et al., 2017).

Currently, prior AI studies have mainly focused on the

diagnosis of viral keratitis and bacterial keratitis. Most previous

studies used traditional machine learning or deep learning based

on original slit lamp images. No studies have investigated the early

fusion method for fungal keratitis. Moreover, previous studies were

based mostly on whole anterior segment images. However, the

area outside the keratitis lesion might affect the performance of

models. Therefore, it is necessary to segment the lesion area from

the images. Manual segmentation is tedious, time-consuming, and

user-dependent (Wang et al., 2016), and automatic segmentation

can be faster but might not have the same accuracy as manual

segmentation (Wang et al., 2016; Huang et al., 2019). Thus, we

hypothesized that the early fusion method for fungal keratitis with

automatic and manual segmentation may show better diagnostic

and sorting efficiency.

Therefore, this study combines automatic segmentation

and manual fine-tuning with an early fusion method to

provide efficient clinical auxiliary diagnostic efficiency for fungal

keratitis. In detail, we developed two AI platforms with a deep

transfer-learning algorithm and multi-feature fusion for fungal

keratitis and non-fungal keratitis; one is based on an automatic

segmentation method, whereas the other is based on a manual

segmentation method.

Materials and methods

Study design

To realize the automated diagnosis of fungal keratitis, two

deep learning models were constructed. Model 1 only included

a deep learning model which was composed of the DenseNet

121 (The idea of Dense Connection is used, that is, every layer

is connected with all the previous layers, so that the model

has better information transmission and reuse ability in feature

extraction. DenseNet 121 refers to the fact that the model has

121 layers), mobienet_v2 (this is a lightweight Convolution neural

network model, mainly is the depth of Separable Convolution

(Depthwise Separable Convolution) and Linear Bottleneck (Linear

Bottleneck) technology, such as small parameters, run fast) and

squeezentet1_0 models (Squeezentet1_0 is another lightweight

convolutional neural network model, which is composed of a

Squeeze layer and an Expand layer. It also runs fast with fewer

parameters) which are common convolutional neural network

models are used for image classification and object detection. The

least absolute shrinkage and selection operator (LASSO) model

and multi-layer perception (MLP) classifier. Model 2 included the

automatic segmentation program and the deep learning model as

described above. The deep learning pipeline of our study is shown

in Figure 1.

Establishment of a dataset and image
preprocessing of anterior segment images

We collected 423 high-quality anterior segment images of

keratitis in the Department of Ophthalmology of the Declaration

of Helsinki and were approved by the Medical Ethics Committee of

the affiliated Hospital of Jiangxi University of Traditional Chinese

Medicine from February 2020 to September 2023. The inclusion

criteria of fungal keratitis are as follows: the corneal scrape was

examined with 10% potassium hydroxide wet tablet bacteria or
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FIGURE 1

Deep learning pipeline. The two deep learning models were developed separately, and the performances of di�erent models were compared based

on a new testing set.

cornea, necrotic tissue, and pus in the potato culture medium to see

bacteria falling growth and to make clinical manifestations such as

ulcer surface with moss-like bad dead tissue, satellite foci, feathery

edges, and furrow pits that can be seen around ulcer depression,

and focal stromal infiltration dense, that may be accompanied by

stromal abscess. The cornea is often pasted with a white mushy

posterior corneal deposit (KP), anterior room pus color white

matter thick, longer use of antibiotics, or cortical stimulation of

patients with ineffective vegetarian treatment or ulcer aggravation.

To protect patient privacy, identifiable information was

removed. Then, the images were divided into the fungal keratitis

group and non-fungal keratitis group by a senior ophthalmologist,

and all the images were randomly divided into training and testing

sets at the ratio 8:2. The dataset contained a training set and a

testing set, where the training set contained 168 fungal keratitis

images and 170 non-fungal keratitis images, and the testing set

contained 42 fungal keratitis images and 43 non-fungal keratitis

images. This study was approved by the Ethics Committee of

Jiangxi Province Peoples Hospital and adhered to the Declaration

of Helsinki and the ARVO statement on human subjects.

Establishment of the automatic
segmentation model

First, based on the anterior segment images, a senior

ophthalmologist used the LabelMe software (https://github.com/

wkentaro/labelme) to annotate the keratitis lesions area as the

region of interest (ROI), respectively. The ROI of each image was

annotated as “label 0” or “label 1.” “Label 0” was defined as the

fungal keratitis lesions area. “Label 1” was defined as the non-

fungal keratitis lesions area. The FCNResnet50 which was a fully

convolutional network based on ResNet50 was used to extract

the ROI masks. First, the original images in the training set were

used to train the FCNResnet50 model, and the obtained optimal

parameters were then applied to the whole anterior segment

images to get the automatic segmentation mask. Then, the manual

segmentation mask annotated by the senior ophthalmologist was

used as the gold standard. After the segmentation errors were

adjusted, the final mask was obtained. Based on the final masks, the

keratitis lesions area was segmented.

Establishment of the deep learning
diagnostic model

The fungal keratitis detection was defined as a binary

classification problem, with a label of 0 or 1 indicating that

the image was fungal keratitis or non-fungal keratitis. This

classification task was performed by the deep learning diagnostic

models composed of DenseNet 121, mobienet_v2, squeezentet1_0,

the least absolute shrinkage and selection operator (LASSO) model,

and the multi-layer perception (MLP) classifier. In the training set,

first, we used three models to extract features of the penultimate

layers of the network and principal components analysis (PCA)

in feature dimensionality reduction. Then, the features after

dimensionality reduction were fusioned by channel concat which

meant that the layer stacked features from each branch together.

The LASSO logistic regression algorithm was used to select the

optimal features. Finally, the optimal feature set was input into

the MLP classifier to establish the final diagnostic model. In the
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testing set, the 5-fold cross-validation was performed for parameter

optimization. The selected features and the best parameters were

applied for model evaluation.

Comparison and validation of diagnostic
models

In Model 1, the original images in the training set were used to

train the deep learning diagnostic model, and the original images in

the testing set were used to validate this model. InModel 2, first, the

original images in the training set were used to train the automatic

segmentation model, then after manual fine-tuning, the keratitis

lesions area segmented from the original images which were in the

training set was used to train the deep learning diagnostic model.

Finally, the original images in the testing set were used to validate

Model 2.

To compare the performance of the two models, the receiver

operating characteristic (ROC) curve was performed in this study

to analyze the diagnostic ability of each model. The decision curve

analysis (DCA) was used to evaluate the net benefit of the models

for clinical decisions. The highest curve at any given threshold

probability is the optimal decision-making strategy tomaximize the

net benefit (Gao et al., 2022). The gradient-weighted class activation

mapping (Grad-CAM) was used for the visual verification of the

diagnostic results of this method. The heatmap images created

by the Grad-CAM indicated where the deep learning model

was focused.

Statistical analysis

For the automatic segmentation model, we used the pixel-level

classification accuracy, the average intersection-over-union (IOU),

and dice coefficient to evaluate the performance. The pixel-level

classification accuracy was the percentage of correctly classified

pixels out of the total pixels in each image, and IoU evaluated

precision by calculating the overlap between the prediction and

target variables (Mahmoudi et al., 2017; Larsen et al., 2021). The

dice coefficient is a set similarity measure function, the higher

the dice coefficient, the better the segmentation effect (Li et al.,

2020). For the deep learning diagnostic model, we measured the

accuracy, sensitivity, specificity, and F1-score from the training set

and testing set. We also plotted the DCA curves and the ROC

curves from the two models. The area under the curve (AUC) with

a 95% confidence interval (95% CI) of each model which was in

the training set and testing set was calculated. All the methods were

implemented in Python language using Python 3.9.7 version.

Results

Performance of automatic segmentation
model

The pixel-level classification accuracy was 96.2%. The average

IoU score was 81.3%. Themean dice score was 89%. The diagram of

the segmentation image effect of the keratitis lesions area is shown

in Figure 2.

Comparing the di�erent deep learning
diagnostic models in diagnosing fungal
keratitis

In the testing set, the accuracy, sensitivity, specificity, and

F1-score of Model 1 reached 77.65, 86.05, 76.19, and 81.42%,

respectively. For Model 2, which is based on the segmentation

images, the accuracy improved by 6.87%, sensitivity by 4.43%,

specificity by 9.52%, and F1-score by 7.38%, respectively, as shown

in Table 1.

FIGURE 2

Diagram of the segmentation image e�ect of the keratitis lesions area: the original images (A), the automatic segmentation results (B), and the

manual segmentation result (C). The red area indicated the segmented lesion area of keratitis.

TABLE 1 Performance comparison of Model 1 and Model 2.

Model name Train/test Accuracy AUC 95% CI Sensitivity Specificity F1-score

Model 1 Train 82.84% 0.905 (0.874–0.937) 82.94% 83.33% 82.94%

Test 77.65% 0.839 (0.751–0.927) 86.05% 76.19% 81.42%

Model 2 Train 81.71% 0.894 (0.861–0.928) 85.38% 79.76% 83.21%

Test 84.52% 0.925 (0.869–0.981) 90.48% 85.71% 88.80%
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FIGURE 3

Selected features and their coe�cient values in Model 1 (A) and Model 2 (B). DL, M, and S indicate that the feature was from the DenseNet 121,

mobienet_v2, and squeezentet1_0 models, respectively.

FIGURE 4

Representative LASSO coe�cient distribution map, Model 1 (A) and Model 2 (B). Selection of features based on the LASSO regression model, Model 1

(C), and Model 2 (D).
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FIGURE 5

Decision curves and receiver operating characteristic (ROC) curves for the di�erent models. (A) The net benefit of Model 1 in making a correct

diagnosis of fungal keratitis; (B) the net benefit of Model 2 in making a correct diagnosis of fungal keratitis. The x-axis is the threshold probability, and

the y-axis measures the net benefit. “Treat none” indicates that all samples were negative without intervention and the net benefit was 0. “Treat all”

indicates that all samples were positive with intervention. (C) ROC curve for the di�erent Model 1; (D) ROC curve for Model 2. AUC indicates the area

under the curve of ROC.

In each model, a total of 50,176 features, 62,720 features,

and 43,265 features were extracted from the DenseNet 121,

mobienet_v2, and squeezentet1_0 models separately. After

dimension reduction and channel concat, a total of 93 features

were retained. After screening with the Lasso model, 13 features

and 29 features were left for further classification in Model 1 and

Model 2, respectively. The selected features and their coefficient

values are shown in Figure 3. The LASSO screening process is

shown in Figure 4.

Comparing the results of ROC curves, in the testing set,

Model 1 achieved an AUC of 0.839 (95% CI 0.751–0.927). Model

2 achieved the highest AUC of 0.925 (95% CI 0.869–0.981).

Compared with the result of the DCA curve analysis, Model 2

would substantially benefit in diagnosing fungal keratitis when the

threshold probability was between 0 and 90% in the test set, which

received a higher net benefit than Model 1, as shown in Figure 5.

Visualization of the deep learning process

We used Grad-CAM to locate the important region for the

classification. The results of the heat map displayed the areas which

Model 1 likely focused on and were located in the keratitis lesions

area but covered the surrounding normal corneal tissues. The areas

that Model 2 likely focused on were located in the center of the

keratitis lesions area, as shown in Figure 6.

Discussion

Delayed diagnosis remains the main reason for the poor

prognosis of deteriorating lesions (Wei et al., 2023). Therefore, this

study developed an automatic diagnosis model to provide efficient

clinical auxiliary diagnostic efficiency for fungal keratitis. As far
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FIGURE 6

Image region heat maps based on Grad-CAM: the original images of Model 1 (A, C) and Model 2 (E, G). The heat maps correspond to the original

image of Model 1 (B, D) and Model 2 (F, H). The blue areas were that the models likely focused on.

as we know, this is the first AI-assisted diagnostic model that

combines automatic segmentation and manual fine-tuning with an

early fusion method for fungal keratitis (FK) diagnosis.

Comparing the performance of Model 1 with Model 2 in our

study, the accuracy, sensitivity, specificity, F1-score, and AUC of

Model 2 were all significantly higher than that of Model 1 in the

test set. In previous research, Hung et al. (2021) used U square

Net (U2 Net) to crop the image of the cornea and various CNN

for identifying BK and FK. The DenseNet 161 model had an

accuracy of 65.8%, which was the highest among all the models.

The performance of their models is far below ours, indicating the

limitation of single features in classification (Geng et al., 2017).

Zhang et al. (2022) used a CNN to classify infectious keratitis.

The highest accuracy and AUC of individual models was 77.11%.

After the fusion of ResNext101_32x16d and DenseNet 169 models,

although the accuracy was improved by 0.6%, this result is still

lower than that of our Model 2. This is probably owing to the

precise segmentation of the keratitis lesion area in ourmodel, which

ruled out the interference of the background. The performance

of Model 1 is lower than Model 2 in our study, which also

confirmed this notion. From this, the performance of models could

be further improved by combining the segmentation model with

the fusion method.

The decision curve analysis was implemented to evaluate the

clinical usefulness of the model for diagnosing FK. The decision

curve of a model is compared with extreme cases that include

all patients or none. A model can be recommended for clinical

use if its net benefit is greater than treating all and no patients

(Du et al., 2021). Comparing the result of Model 1 with Model

2, the two models were both better than extreme cases (none

and all) in the test set. Model 2 has greater potential for clinical

application. Comparing the results of ROC curves, in the testing

set, Model 1 achieved an AUC of 0.839 (95% CI 0.751–0.927).

Model 2 achieved the highest AUC of 0.925 (95% CI 0.869–0.981).

Compared with the result of the DCA curve analysis, Model 2

would substantially benefit in diagnosing fungal keratitis when

the threshold probability was between 0 and 90% in the test set.

Through themulti-feature transfer learningmethod combinedwith

an automatic or manual segmentation algorithm, the resulting

automatic segmentation platform can diagnose FK more quickly,

whereas the resulting manual segmentation platform can diagnose

FK more accurately.

Another strength of this study is the Grad-CAM introduction.

Deep learning models are usually regarded as black boxes because

the information regarding which features are important cannot be

interpreted easily from the model (Wang et al., 2019). In our study,

the heatmap images of Grad-CAM highlighted the important areas

in corneal ulcer images used for AI diagnosis, which interprets the

deep learning process effectively.

Our study also has certain limitations. First, the sample size

included in this study was small. Second, the diagnosis of fungal

keratitis is not entirely accurate, and some subjects lack laboratory

tests. Third, the study only diagnosed FK and did not distinguish

between different types of keratitis. Finally, accuracy needs to be

improved. Therefore, in future studies, we will attempt to introduce

transform learning to identify different keratitis types.

Conclusion

In this study, we combined automatic segmentation and

manual fine-tuning with the early fusion method for FK diagnosis

which provides efficient clinical auxiliary diagnostic efficiency

for fungal keratitis. Through the multi-feature transfer learning

method combined with an automatic or manual segmentation

algorithm, the resulting automatic segmentation platform can

diagnose FK more quickly, whereas the resulting manual

segmentation platform can diagnose FK more accurately.
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Torsional nystagmus recognition 
based on deep learning for vertigo 
diagnosis
Haibo Li * and Zhifan Yang 

College of Electronic and Electrical Engineering, Shanghai University of Engineering Science, Shanghai, 
China

Introduction: Detection of torsional nystagmus can help identify the canal of 
origin in benign paroxysmal positional vertigo (BPPV). Most currently available 
pupil trackers do not detect torsional nystagmus. In view of this, a new deep 
learning network model was designed for the determination of torsional 
nystagmus.

Methods: The data set comes from the Eye, Ear, Nose and Throat (Eye&ENT) 
Hospital of Fudan University. In the process of data acquisition, the infrared 
videos were obtained from eye movement recorder. The dataset contains 
24521 nystagmus videos. All torsion nystagmus videos were annotated by the 
ophthalmologist of the hospital. 80% of the data set was used to train the model, 
and 20% was used to test.

Results: Experiments indicate that the designed method can effectively identify 
torsional nystagmus. Compared with other methods, it has high recognition 
accuracy. It can realize the automatic recognition of torsional nystagmus and 
provides support for the posterior and anterior canal BPPV diagnosis.

Discussion: Our present work complements existing methods of 2D nystagmus 
analysis and could improve the diagnostic capabilities of VNG in multiple 
vestibular disorders. To automatically pick BPV requires detection of nystagmus 
in all 3 planes and identification of a paroxysm. This is the next research work to 
be carried out.

KEYWORDS

torsional nystagmus, deep learning, classification and identification, convolution 
network, benign paroxysmal positional vertigo

1. Introduction

The vestibular system informs us of three-dimensional (3D) head position in space. 
Vestibular asymmetry creates a hallucination of head movement and therefore generates a 
compensatory slow phase eye movement and a quick phase that returns the eye closer to its 
starting position. Nystagmus is an involuntary oscillating eye movement that accompanies 
vestibular disorders (Leigh and Zee, 2015). The involvement of a specific vestibular end organ 
can be identified by the nystagmus trajectory (Jiang et al., 2018). Nystagmus can be summarized 
into two types: pathological nystagmus and physiological nystagmus. A variety of diseases, such 
as BPPV, Meniere’s disease and vestibular neuritis, are all associated with pathological nystagmus 
(Newman et al., 2019). Pathological nystagmus arises from asymmetries in the peripheral or 
central vestibular system. Physiological nystagmus can be generated by rotational or thermal 
stimulation of the vestibular system (Henriksson, 1956; Cohen et al., 1977). BPPV is usually 
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accompanied by nystagmus, which provoked by changes of the head 
position relative to gravity (Lim et al., 2019). To diagnose different 
types of BPPV, clinicians inspect the directional and velocity 
characteristics of positional nystagmus during provocative testing. 
Among them, for BPPV with the highest incidence rate in the 
posterior semicircular canal, the typical torsional nystagmus was 
regarded as an important diagnostic factor. So, nystagmus examination 
is very important for the diagnosis of BPPV (Wang et al., 2014).

Some nystagmus can be observed by doctors with naked eyes or 
Frenzel googles that allow for better visualization of nystagmus at the 
bedside. However, this diagnostic method was easily affected by the 
subjective experience of doctors (Slama et al., 2017). Not all pathological 
nystagmus was visible to the naked eye, since visual fixation suppresses 
peripheral spontaneous nystagmus. The other method is objective. This 
method usually uses electronystagmography (ENG) or video 
nystagmography (VNG) to record eye movements. The ENG method 
(Costa et al., 1995; Cesarelli et al., 1998) places sensors around the eyelid. 
Benign positional nystagmus arising from stimulation stimulation of one 
or more semicircular canals produces horizontal, vertical and torsional 
eye movements in the plane of that canal. The potential difference 
measured by the sensors is related to the horizontal and vertical 
movement of eyes. The velocity and frequency of eye movements can 
be  obtained through potential difference analysis. BPPV also 
demonstrates a crescendo decrescendo velocity profile, the identification 
of which could assist with separation of BPV from its mimics. However, 
this method is vulnerable to electromagnetic interference, in which case 
the measured information is not accurate enough. The VNG methods 
generally uses infrared camera to obtain nystagmus video. The frequency 
and amplitude of nystagmus were obtained by analyzing the motion 
information of pupil in video (Eggers et al., 2019). Recognizing 3D eye 
movement trajectory assists in identifying the canal of origin in patients 
with BPPV.

Under normal test conditions, VNG system includes a series of 
visual and dynamic function tests (Halmágyi et al., 2001; Newman-
Toker et al., 2008). At present, some researchers (Buizza et al., 1978; 
Van Beuzekom and Van Gisbergen, 2002; Akman et al., 2006) have 
done some related work on how to use technical means to detect 
nystagmus. Most of the proposed methods can not fully recognize 
nystagmus automatically. Some parts or stages of these methods need 
human intervention, for example, a recognition method of nystagmus 
proposed by Buizza et al. (1978). In this method, doctors need to 
calibrate the direction of phase change. Akman et  al. proposed a 
method to detect the period of nystagmus (Akman et al., 2006). The 
confirmation of the end point of nystagmus still needs to be further 
improved with this method. Van et  al. proposed a nystagmus 
recognition method with VNG technology (Van Beuzekom and Van 
Gisbergen, 2002). This method requires researchers to manually 
confirm the two endpoints of the phase and remove interference 
factors such as noise from videos.

The research work stated above can be summarized as invasive 
and non-invasive (Newman et al., 2019). Invasive methods, such as 
electromagnetic coil method, mainly embed hardware equipment into 
human eyes, which leads to direct contact between equipment and 
human eyes. This will cause direct or potential harm to human eye 
health. The non-invasive detection methods were mainly gaze 
description methods based on video image processing. These methods 
detect and locate the pupil based on the contours of the eyes, which 
were greatly improved in comfort and accuracy.

The Non-invasive inspection methods can be  combined with 
artificial intelligence (AI) methods. At present, AI technology is 
developing rapidly. Deep Learning has promoted the development of 
Computer Vision (He et al., 2016; Mane and Mangale, 2018; Kim and 
Ro, 2019; Cong et al., 2020), Natural Language Processing (Karpathy 
and Fei-Fei, 2014; Sundermeyer et al., 2015; Young et al., 2018) and 
other technologies. The development of deep learning technology also 
provides the possibility for medical intelligent aided diagnosis. For 
example, CT images of thoracic nodules were analyzed to determine 
whether there was a tumor in the chest (Anthimopoulos et al., 2016; 
Setio et  al., 2016). Other medical applications include automatic 
analysis of skin disease images (Rathod et al., 2018; Wu et al., 2019), 
automatic analysis of fundus disease images (Ting et al., 2017; Sertkaya 
et al., 2019) and automatic analysis of tumor pathological sections (Tra 
et al., 2016; Lavanyadevi et al., 2017), etc. A variety of algorithms 
based on deep learning were integrated into the innovative diagnosis 
and treatment system (Litjens et al., 2017). For example, Google used 
neural network to analyze diabetic retinopathy, and its analysis results 
were similar to those of human experts (Gulshan et al., 2016). In other 
application fields, deep learning has been applied to motion detection 
in videos and achieved good recognition results (Saha et al., 2016). 
Therefore, the recognition of nystagmus can be tried by using the 
method of deep learning. At present, many scholars have begun to use 
artificial intelligence methods to identify nystagmus (Zhang et al., 
2021; Lu et  al., 2022; Wagle et  al., 2022). From the experimental 
results, the deep learning method can be used to detect nystagmus, 
and the recognition accuracy can be further improved.

This paper mainly focuses on a torsional nystagmus recognition 
method based on deep learning. With the development of deep 
learning technology, this paper proposed an automatic recognition 
method of torsional nystagmus based on deep learning technology to 
help doctors make rapid diagnosis.

2. Materials and methods

2.1. Detail of data sources

The data set of this paper comes from Eye, Ear, Nose and Throat (Eye 
& ENT) Hospital of Fudan University. In the process of data acquisition, 
the infrared videos were obtained from eye movement recorder with the 
model of VertiGoggles R ZT-VNG-II, which was provided by Shanghai 
Zhiting Medical Technology Co., Ltd. Eye movement recorder was used 
to record and save the patient’s eye movements video. The video format is 
MP4. The size of video frame is 640×480 and the frame rate is 60fps. The 
data set include 26,931 nystagmus videos from 1,236 patients. After 
removing the abnormal and disturbed data, the remaining 24,521 videos 
were used as the data set. The length of each nystagmus video was not 
required to be exactly equal. The length of video in the data set was 
reduced to 6–10 s. The data were from patients with BPPV. The videos 
were monocular, including left and right eyes. All data were annotated by 
four ophthalmologists according to the motion characteristics of torsional 
nystagmus. 80% of the data were used for training and 20% for verification.

The doctors recruited eligible subjects in the otolaryngology clinic or 
vestibular function examination room. For patients who complained of 
positional vertigo, bilateral Dix-Hallpike test was performed first, and 
then bilateral Roll test was performed. Each body position change was 
rapid, but not exceeded the patient’s tolerance. In case of atypical 
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symptoms such as hearing loss, severe headache, limb sensation or 
movement disturbance, consciousness disturbance, ataxia, etc., 
corresponding audiological or imaging examination was carried out first 
to eliminate other inner ear or central lesions. After judging that the 
conditions for enrollment were met, the subjects themselves signed the 
informed consent form and collected their basic information and contact 
information. The doctor collected nystagmus videos of patients in the 
whole process of Dix-Hallpike test suspension sitting position and Epley 
method reduction. The Epley reposition method maintained each 
position for at least 30 s until the nystagmus disappears. After the 
restoration, the subjects rested for 15 min, and then performed 
Dix-Hallpike test again. The negative person indicated that the restoration 
was successful. If the first reset failed, the doctor performed the reset again 
and collected the nystagmus video of the second reset.

2.2. Network model structure and 
classification process

Ethical statement. The study was conducted according to the 
guidelines of the Declaration of Helsinki and approved by Ethics 
Committee of the Eye, Ear, Nose and Throat Hospital affiliated to 
Fudan University (approval number: 2020518). Written informed 
consent was obtained from all enrolled patients.

In order to recognize nystagmus automatically by deep learning, 
a recognition model as shown in Figure  1 was designed in this 
paper. Firstly, the nystagmus video was sent to the sequence layer 
in the model for processing. The output video frame sequence was 
transmitted to the input of the sequence folding layer. Secondly, the 
motion characteristics of each frame in the video was extracted 
independently by convolution operation. Thirdly, the extracted 

features were restored to the sequence structure after passing 
through the sequence unfolding layer and flattening layer. At the 
same time, the output was transformed into vector sequences. 
Finally, the obtained vector sequences were classified by using 
Bi-directional Long Short-Term Memory (BiLSTM) layer and 
output layer. The functions of each part of the network model are 
introduced as follows.

2.3. Converting video into video sequence 
and sequence folding

Firstly, a single video was processed to obtain the relevant 
parameters of the video, such as the height, width, number of channels 
and frames of the video. Then the video was cropped. This paper 
adopted the longest edge of the cropped video and adjusted its size to 
obtain a 224 × 224 fixed size. In order to enable the feature extraction 
network to obtain the features of single frame, a sequence folding layer 
was constructed to convert sequences into images. The sequence 
folding layer converts a batch of image sequences into a batch of 
images. The sequence unfolding layer restores the sequence structure 
of the input data after the sequence was folded.

2.4. Feature extraction

Feature extraction was mainly completed by five modules. The first 
module includes convolution layers and the maximum pooling layer. 
Convolution layer: the kernel size is 7 × 7; the step of sliding window is 
2; the number of output channels is 64. Pooling layer: the window size 
is 3 × 3; the step of sliding window is 2; the output channel number is 64. 

FIGURE 1

Network model structure of the proposed method.
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The second module has two convolution layers and a maximum pool 
layer. Convolution layer: the kernel size is 3 × 3; the step of sliding 
window is 1; the output channel number is 192. Pooling layer: the 
window size is 3 × 3; the step of sliding window is 2; the output channel 
number is 192. The third module has two Inception modules in series, 
followed by a maximum pool layer. Figure 2 illustrates the structure of 
the Inception module. The Inception module adopts the idea of network 
in network (NIN). It extracts the local features of the image by using 
multiple convolution kernels with different scales. Each branch in the 
Inception module adopts 1 × 1 convolution kernel. It can effectively 
improve the receptive field of convolution kernel and reduce the 
dimension to accelerate the network calculation and strengthen the 

real-time performance. As can be seen from Figure 2, the Inception 
module has four main components: 1 × 1, 3 × 3, 5 × 5 convolution and 
3 × 3 pooling. An example of extracted features in the four components 
of the inception module was shown in Figure 3. The main purpose of 
this structure is to extract the multi-scale information through a variety 
of convolution kernels of different sizes, and then fuse them, so as to 
have better image representation ability. In practice, using 3 × 3 and 5 × 5 
convolution directly will lead to too much calculation. So, 1 × 1 
convolution layer should be concatenated in front. The nonlinearity of 
the network can be increased at the same time.

The numbers of channels output by 4 lines of the first Inception 
are 64, 128, 32 and 32. The total number of output channels is the 

FIGURE 2

Inception structure.

FIGURE 3

An example of extracted features. (A) Original image. (B) Extracted features.
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accumulation of the four lines, which is 256. The numbers of channels 
output by 4 lines of the second Inception are 128, 192, 96 and 64 
respectively, and the total number of output channels is 480. Pooling 
layer: the window size is 3 × 3; the step of sliding window is 2; the 
output channel number is 480.

The fourth module has five Inception blocks in series, followed by 
a maximum pool layer. The numbers of channels output by 4 lines of 
the first Inception are 192, 208, 48 and 64 respectively, and the total 
number of output channels is 512. The numbers of channels output by 
4 lines of the second Inception are 160, 224, 64 and 64 respectively, 
and the total number of output channels is 512. The numbers of 
channels output by 4 lines of the third Inception are 128, 256, 64 and 
64 respectively, and the total number of output channels is 512. The 
numbers of channels output by 4 lines of the fourth Inception are 112, 
288, 64 and 64 respectively, and the total number of output channels 
is 528. The numbers of channels output by 4 lines of the fifth Inception 
are 256, 320, 128 and 128 respectively, and the total number of output 
channels is 832. Pooling layer: the window size is 3 × 3; the step of 
sliding window is 2; the output channel number is 832.

The fifth module has two Inception blocks in series, followed by a 
pooling layer. The output channel number of 4 lines are 256, 320, 128 
and 128, respectively, in the first Inception, and the total number of 
output channels is 832. The numbers of channels output by 4 lines of 
the second Inception are 384, 384, 128 and 128 respectively, and the 
total number of output channels is 1,024. The pooling layer adopts 
global average pooling and the convolution layer with height and 
width of 1 is obtained. The number of output channels is 1,024.

2.5. Recovering sequence structure

The sequence structure was deleted by the sequence folding 
layer. So, the sequence structure should be restored after feature 
extraction. The recovery task of sequence structure was 
completed by sequence unfolding layer. The sequence unfolding 
layer takes the minibatchsize output information of the sequence 
folding layer as the minibatchsize input information of the 
sequence unfolding layer. The output of the sequence unfolding 
layer was reconstructed into vector sequences. The spatial 
dimension of the tensor was flatted to channel dimension. Flatten 
layer flattens input spatial dimension into a single channel. This 
layer retains the observation dimension (N) and sequence 
dimension (S) after flattening.

2.6. Sequence classification

Long Short-Term Memory (LSTM) model can record the 
relationship between elements in a spatial distance. This memory 
function can be  realized by training LSTM model. But one 
disadvantage of LSTM model is that the order of memorizing 
information can only be from front to back. In order to better classify 
the types of nystagmus, this paper uses BiLSTM to solve this problem. 
BiLSTM is composed of two LSTMs with opposite directions. Figure 4 
shows the structure of the one-way branching model in BiLSTM. In 
the figure, xt , ot, Ct, ft , ht, Ct and it represent input vector, output gate, 
cell state, forgetting gate, hidden layer state, temporary cell state and 
memory gate, respectively.

The classification calculation process was completed by the 
following steps. Step 1: The discarded information was determined by 
calculating the forgetting gate. The input is the hidden layer state ht−1 
at time t-1 and the input vector xt  at time t. The output is the value ft  
of the forgetting gate at time t. As shown in Figure 5.

The input of ht−1 and xt  were calculated to obtain a forgetting gate 
output ft  through the sigmoid function, and its expression is shown 
in Equation (1).

 
f w h x bt f t t f= ⋅[ ] +( )−σ 1,

 (1)

Where ft ∈[ ]0 1,  (0 indicates to discard the information 
completely, and 1 indicates to retain the information completely); σ  
indicates the activation function; wf  represents a learnable connection 
vector; xt  is input; bf  represents the offset value.

Step  2: The retained information was determined by 
calculating the memory gate. The input is the hidden layer state 
ht−1 at time t-1 and the input vector xt  at time t. The output is the 
value it  of the memory gate at time t and the value Ct  of the 
temporary cell state at time t. As shown in Figure 6. The value of 
the memory gate was obtained after that the hidden layer state 
value at time t-1 and the input vector at time t pass through the 
sigmoid activation function. The value of the temporary cell state 
was obtained after the hidden layer state value at time t-1 and the 
input vector at time t pass through the tanh activation function. 
The output values of two activation functions were multiplied to 
obtain the value of the input gate. The corresponding equation 
can be written as:

xt

σht-1

ot
tanh

ht

ht
Ct

σ σ tanh

ft it
tC%

FIGURE 4

Structure of one-way branching model.

σht-1

xt

ft

FIGURE 5

Computation of the forgetting gate.
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xt

σht-1

ot
tanh

ht

ht

Ct

FIGURE 8

Calculation of hidden layer.

 
i W h x bt i t t i= ⋅[ ] +( )−σ 1,

 (2)

 
C W h x bt c t t c= ⋅[ ] +( )−tanh 1,

 (3)

Where: tanh represents the activation function; Wi and Wc  
represent the learnable connection vectors; bi  and bc represent the 
offset values.

Step 3: The cell state Ct was obtained through the joint action of 
forgetting gate and input gate. The input is the memory gate it at time 
t, the forgetting gate ft  at time t, the temporary cell state Ct at time t 
and the cell state Ct−1 at time t-1. The output is the cell state Ct at time 
t. As shown in Figure 7. The corresponding equation can be written as:

 C f C i Ct t t t t= ∗ + ∗−1   (4)

Step 4: The value of the output gate and the value of the hidden layer 
state were determined by calculation. The input is the hidden layer state 
ht−1 at time t-1, the input vector xt  at time t and the cell state Ct at time 
t. The output is the value ot of the output gate at time t and the value ht of 
the hidden layer at time t. As shown in Figure 8. The value of output gate 
was obtained after that the hidden layer state value at time t-1 and the 
input vector at time t pass through the sigmoid activation function. The 
value of hidden layer state was obtained after that the output gate value 
at time t and the cell state at time t pass through the tanh activation 
function. The corresponding expression can be written as:

 
o W h x bt O t t O= ⋅[ ] +( )−σ 1,

 (5)

 h o Ct t t= ∗ ( )tanh  (6)

WO  and bO represent learnable connection vectors and offset 
values, respectively.

Through the above steps, we can get the corresponding sequence, 
which is h h hn0 1 1, , , −{ }. BiLSTM consists of two branches in different 
directions mentioned above. The parameters on each branch are 
independent of the other branch. One branch can only fit time-related 
data from one direction. BiLSTM has two branches in opposite 
directions so that it can capture patterns that one branch may ignore. 
The structure can be seen in Figure 9.

If the hidden layer state sequence calculated by one branch of 
BiLSTM was represented by hr, the hidden layer state sequence of the 
other branche in the opposite direction was represented by hl. The 
final output result is as follow:

 h h ht
r l= +α β  (7)

 y ht t= ( )σ  (8)

Where α , β  are constants and α β+ =1. σ  is the 
activation function.

After that the output results pass through the classification layer, 
the type results of nystagmus recognition can be obtained. The output 
layer includes dropout layer, full connection layer, softmax layer and 
classification layer.

3. Results

3.1. Model training and verification process

The data set of this paper comes from Eye, Ear, Nose and Throat (Eye 
& ENT) Hospital of Fudan University. In the process of data acquisition, 
the infrared videos were obtained from eye movement recorder with the 
model of VertiGoggles R ZT-VNG-II, which was provided by Shanghai 
Zhiting Medical Technology Co., Ltd. Eye movement recorder was used 
to record and save the patient’s eye movements video. The video format is 
MP4. The size of video frame is 640×480 and the frame rate is 60fps. The 

xt

σht-1
it

tanh
tC%

FIGURE 6

Calculation of the input gate.

FIGURE 7

Calculation of the current cell state.
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data set include 26,931 nystagmus videos from 1,236 patients. After 
removing the abnormal and disturbed data, the remaining 24,521 videos 
were used as the data set. All data were annotated by four ophthalmologists 
according to the motion characteristics of torsional nystagmus. 80% of the 
data were used for training and 20% for verification. The model training 
and verification process are shown in Figure 10.

Figure 10 shows that the classification accuracy of the training and 
verification process tends to be stable with the increase of iterations. 
The average accuracy after stabilization is shown in Table 1.

The loss during training and verification is shown in Figure 11.
As can be seen from Figure 11, with the increase of the number 

of iterations, the loss in the training and verification process has 
decreased to a stable state. In order to further evaluate the designed 
method. Figure 12 shows Area Under Curve (AUC).

3.2. Results of feature extraction by 
different methods

In addition, we also study the impact of different methods to 
extract video frame features on the classification effect. We use eight 

Fire modules to extract the video frame features, and the structure of 
other parts remains unchanged. This method is named method 2. The 
structure of Fire module (Kim and Kim, 2020) is shown in Figure 13.

It can be  seen from Figure  12 that the proposed method can 
identify torsional nystagmus more accurately. In addition, 
sensitivity⊕0 912.  and specificity⊕0 946. .

The same data set was used for training and verification. Figure 14 
shows the classification accuracy of training and verification by 
method 2.

As can be seen from Figure 14, the classification accuracy tends to 
be  stable with the increase of iterations, whether in the training 
process or verification process. Figure 15 shows the Loss during the 
training and verification process by method 2 using the same data set.

As can be seen from Figure 15, with the increase of iterations, the 
Loss of method 2 decreased to a stable state, whether in the training 
process or verification process. Method 2 was compared with the 
method proposed in this paper. The comparison results of 
classification accuracy in training set are shown in Figure 16.

As can be seen from Figure 16, the recognition accuracy of two 
methods tends to be stable with the increase of iterations. The average 
accuracy after stabilization is shown in Table 2.

It can be seen from Table 2 that the proposed method has high 
recognition accuracy in training process. The recognition accuracy of 
two methods in verification set is shown in Figure 17.

Figure 17 shows that the recognition accuracy of two methods in 
verification set tends to be stable with the increase of iterations. The 
average recognition accuracy of two methods after stabilization is 
shown in Table 3.

It can be seen from Table 3 that the proposed method has high 
recognition accuracy in verification set.

4. Discussion

The proposed method was compared with Zhang’s method 
(Zhang et al., 2021) and Zhou’s method (Zhou et al., 2022). The same 
data set was used for training and verification, respectively. The 
recognition accuracy of different methods in training set is shown in 
Figure 18.

As can be seen from Figure 18, the recognition accuracy of all 
methods in training set tends to be  stable with the increase of 

yt-1 yt

hrt-1

yt+1

xt-1 xt xt+1

hrt hrt+1

hlt-1 hlt hlt+1

FIGURE 9

Structure of BiLSTM.

FIGURE 10

Classification accuracy of training and validation process.
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FIGURE 11

Loss during training and verification.

FIGURE 12

AUC curve.

iterations. The average recognition accuracy of different methods after 
stabilization is shown in Table 4.

It can be seen from Table 4 that the proposed method has high 
recognition accuracy in training set. The recognition accuracy of 
different methods in verification set is shown in Figure 19.

Figure  19 shows that the recognition accuracy of different 
methods in verification set tends to be stable with the increase of 
iterations. The average recognition accuracy of different methods after 
stabilization is shown in Table 5.

It can be seen from Table 5 that the proposed method in this paper 
has high recognition accuracy in verification set. This shows that the 
proposed method has a good effect in torsional nystagmus recognition. 
In addition, other statistical comparisons of the variable performance 
accuracy across models are shown in Table 6.

It can be seen from Table 6 that the proposed method has high 
precision and recall rate, which indicates that the recognition 

TABLE 1 Recognition accuracy in training and verification stage.

Recognition accuracy Stage

96.1% Training

92.9% Validation

TABLE 2 Recognition accuracy of two methods in training set.

Recognition accuracy Method

96.1% The proposed method

89.9% Method 2

TABLE 3 Recognition accuracy of two methods in verification set.

Recognition accuracy Method

92.9% The proposed method

87.4% Method 2

TABLE 4 Recognition accuracy of different methods in training set.

Recognition accuracy Method

96.1% The proposed method

91.2% Zhang’s method

93.9% Zhou’s method

TABLE 5 Recognition accuracy of different methods in verification set.

Recognition accuracy Method

92.9% The proposed method

89.4% Zhang’s method

90.7% Zhou’s method

TABLE 6 Statistical comparisons of the variable performance accuracy.

Method Precision Recall

The proposed method 94.3% 91.2%

Zhang’s method 90.1% 87.6%

Zhou’s method 91.9% 88.4%
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1×1 convolu�ons

1×1 and 3×3 convolu�ons

ReLU

ReLU

FIGURE 13

Fire module structure.

FIGURE 14

Classification accuracy of method 2.

FIGURE 15

Loss during training and verification with method 2.
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FIGURE 16

Comparison of accuracy in training set.

FIGURE 17

Comparison of accuracy in verification set.

FIGURE 18

Comparison of accuracy in training set.
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performance of the algorithm is better than other methods. In 
addition, we also compared with the method proposed by Wagle et al. 
(2022), and the recognition accuracy of their method is 82.7%, which 
is lower than the proposed method.

Based on the real data of a large number of clinical patients, the 
characteristics and types of torsional nystagmus were intelligently 
recognized through the deep learning algorithm. The diagnosis of BPPV 
can be accurately predicted by combining the body position information, 
so as to realize the intelligent diagnosis and treatment of BPPV, improve 
the diagnosis efficiency and reduce the pain of patients. It is expected to 
comprehensively improve the diagnosis and treatment capacity of medical 
institutions at all levels for typical BPPV patients.

5. Conclusion

In this paper, a recognition model of torsional nystagmus was 
proposed based on deep learning network. From the experimental 
results, the nystagmus recognition model used convolution neural 
network to extract the frame features of the video sequence, and 
classified the obtained vector sequence, which can effectively identify 
torsional nystagmus. This shows that the recognition of torsional 
nystagmus can be accomplished by using deep learning network 
models with different structures. Although these changes in 
nystagmus are very complex for clinicians, they are indeed 
extractable features for deep learning. Once these specific nystagmus 
classification features are obtained, computer-aided clinical 
screening and classification of typical diseases can widely benefit 
patients with vertigo disease and help improve the diagnosis 
efficiency of vertigo disease. Compared with the existing methods, 
the proposed method further improved the recognition accuracy. In 
the future, we  will label the slow phase velocity (SPV) of the 
nystagmus, so that we can analyze the performance of the model 
according to the SPV of the nystagmus. The development of an 
accurate torsion detection method has implications for correct 
interpretation of nystagmus overall. BPV is not the only disorder 
producing torsional nystagmus: stroke, vestibular migraine can 
present with torsional nystagmus; vestibular neuritis and Menieres 
disease can also generate horizontal torsional nystagmus. Our 

present work complements existing methods of 2D nystagmus 
analysis and could improve the diagnostic capabilities of VNG in 
multiple vestibular disorders. To automatically pick BPV requires 
detection of nystagmus in all 3 planes and identification of a 
paroxysm. This is the next research work to be carried out.
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Comparison of accuracy in verification set.
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Machine learning analysis reveals 
aberrant dynamic changes in 
amplitude of low-frequency 
fluctuations among patients with 
retinal detachment
Yu Ji 1†, Yuan-yuan Wang 2†, Qi Cheng 1, Wen-wen Fu 1, 
Shui-qin Huang 1, Pei-pei Zhong 1, Xiao-lin Chen 1, Ben-liang Shu 1, 
Bin Wei 1, Qin-yi Huang 1 and Xiao-rong Wu 1*
1 Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 
China, 2 Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, 
Jiangxi, China

Background: There is increasing evidence that patients with retinal detachment 
(RD) have aberrant brain activity. However, neuroimaging investigations remain 
focused on static changes in brain activity among RD patients. There is limited 
knowledge regarding the characteristics of dynamic brain activity in RD patients.

Aim: This study evaluated changes in dynamic brain activity among RD patients, 
using a dynamic amplitude of low-frequency fluctuation (dALFF), k-means 
clustering method and support vector machine (SVM) classification approach.

Methods: We investigated inter-group disparities of dALFF indices under three 
different time window sizes using resting-state functional magnetic resonance 
imaging (rs-fMRI) data from 23 RD patients and 24 demographically matched 
healthy controls (HCs). The k-means clustering method was performed to analyze 
specific dALFF states and related temporal properties. Additionally, we selected 
altered dALFF values under three distinct conditions as classification features for 
distinguishing RD patients from HCs using an SVM classifier.

Results: RD patients exhibited dynamic changes in  local intrinsic indicators of 
brain activity. Compared with HCs, RD patients displayed increased dALFF in the 
bilateral middle frontal gyrus, left putamen (Putamen_L), left superior occipital 
gyrus (Occipital_Sup_L), left middle occipital gyrus (Occipital_Mid_L), right 
calcarine (Calcarine_R), right middle temporal gyrus (Temporal_Mid_R), and 
right inferior frontal gyrus (Frontal_Inf_Tri_R). Additionally, RD patients showed 
significantly decreased dALFF values in the right superior parietal gyrus (Parietal_
Sup_R) and right paracentral lobule (Paracentral_Lobule_R) [two-tailed, voxel-
level p <  0.05, Gaussian random field (GRF) correction, cluster-level p <  0.05]. For 
dALFF, we  derived 3 or 4 states of ALFF that occurred repeatedly. There were 
differences in state distribution and state properties between RD and HC groups. 
The number of transitions between the dALFF states was higher in the RD group 
than in the HC group. Based on dALFF values in various brain regions, the overall 
accuracies of SVM classification were 97.87, 100, and 93.62% under three different 
time windows; area under the curve values were 0.99, 1.00, and 0.95, respectively. 
No correlation was found between hamilton anxiety (HAMA) scores and regional 
dALFF.

Conclusion: Our findings offer important insights concerning the neuropathology 
that underlies RD and provide robust evidence that dALFF, a local indicator of 
brain activity, may be useful for clinical diagnosis.
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1. Introduction

Retinal detachment (RD) constitutes the separation of the 
neurosensory retina from the retinal pigment epithelium. There are 
multiple types of RD, among which rhegmatogenous is the most 
common (Steel, 2014). According to a recent report, there are 42 cases 
of RD per 100,000 people in Germany each year (Gerstenberger et al., 
2021). In the early stage of RD, patients often experience acute-onset 
floaters, flashes of light, and visual field defects (Lumi et al., 2015). 
When the range of RD invades the macular area, vision decreases to 
light sensitivity or blindness. Many factors are associated with the 
occurrence of RD, including high myopia, eye trauma, cataract 
surgery, a history of retinal tears, and a family history of RD (Verhoekx 
et  al., 2021). Because the retina and optic nerve are regarded as 
extensions of the central nervous system (CNS), they can be used as 
windows for assessment of CNS abnormalities (Vujosevic et al., 2023). 
Accordingly, a link may exist between RD and the CNS.

Currently, the diagnosis of RD mainly relies on optical coherence 
tomography and B-scan ultrasonography; the results of these 
examinations can help to identify the type of RD and extent of 
detachment (Ibrar et al., 2021). However, such examinations only 
explore ocular visual function in RD patients; it has been unclear 
whether CNS abnormalities exist in such patients. Recently, the 
increasing use of resting-state functional magnetic resonance 
imaging (rs-fMRI) to explore intrinsic brain activity has provided 
important information concerning the pathological mechanisms 
involved in RD (Huang et al., 2017; Kang et al., 2019). RD patients 
reportedly have aberrant functional connectivity (FC) density (Shao 
et al., 2021) and percent amplitude of fluctuation (Yang et al., 2021) 
values in various brain regions. Furthermore, Su et  al. (2018) 
discovered that RD patients have altered FC in their default mode 
network. Thus far, research has mainly focused on changes in the 
static brain activity of RD patients; there has been a belief that 
functional interactions among brain regions remain unchanged in 
time during the whole MRI scan, which is obviously not objective. 
Chang and Glover (2010) found that when the relationships of the 
posterior cingulate gyrus were measured over time, FC differed 
throughout the brain, indicating that relationships among brain 
regions dynamically fluctuate over time. Since then, there has been 
increasing evidence that brain activity characteristics exhibit 
dynamic temporal variation (Sporns, 2011; Abrams et  al., 2013). 
Accordingly, we presumed that analyses of dynamic brain activity 
would provide insights concerning altered neural mechanisms in 
RD patients.

The amplitude of low-frequency fluctuations (ALFF) method 
is useful for measurements of local brain activity. Previous studies 
have shown that low-frequency oscillations (<0.08 Hz) of blood 
oxygen level-related (BOLD) signals in the human brain are 
physiologically significant; such oscillations may represent 
spontaneous local neural activity (Biswal et al., 1995; Raichle, 2011; 

Gehrig et al., 2019). Zang et al. (2007) developed the ALFF index 
and used it to explore the regional intensity of spontaneous 
fluctuations in BOLD signals. Because the ALFF is calculated 
under the assumption that the data display temporal stability 
throughout the acquisition period, it excludes temporal variation 
in BOLD signals during fMRI scanning. Dynamic ALFF (dALFF) 
offers a new approach to dynamic brain activity analysis that 
involves a combination of ALFF and sliding-window 
methodologies. The dALFF analysis technique has been successfully 
used to evaluate dynamic changes in brain activity among patients 
with diabetic retinopathy (Huang et  al., 2021), primary 
dysmenorrhea involving chronic menstrual pain (Gui et al., 2021), 
and transient ischemic attack (Ma et  al., 2021). Additionally, 
k-means clustering method can cluster the dALFF values of all 
subjects under different sliding time Windows into several states, 
so as to better describe the working mode of human brain during 
the whole scanning time process. Finally, the support-vector 
machine (SVM) is a supervised machine learning technique that 
seeks to maximize the margin to sort input points into classes in a 
high-dimensional space (Pereira et  al., 2009). The method of 
combining SVM and dALFF to analyze changes in brain activity in 
various diseases has been a research hotspot in recent years, such 
as comitant exotropia (Chen et  al., 2022) and active thyroid-
associated ophthalmopathy (Wen et al., 2023) and SVM has high 
accuracy in distinguishing patients from healthy populations. In 
the present study, we tested two hypotheses: (1) RD patients exhibit 
greater temporal variability compared with healthy controls (HCs); 
and (2) dALFF values are sensitive biomarkers that can distinguish 
RD patients from HCs.

2. Participants and methods

2.1. Participants

From January 2023 to April 2023, 23 RD patients and 24 HCs were 
enrolled in this study. All participants were matched for age and sex; 
they all were examined in the same clinic and provided written 
informed consent to participate in the study. All experimental 
procedures were conducted in accordance with the Declaration of 
Helsinki, and the study protocol was approved by the Medical Ethics 
Committee of the First Affiliated Hospital of Nanchang University 
(Jiangxi Province, China).

The inclusion criteria for RD patients were (1) idiopathic RD 
involving one or two retinal tears, (2) RD affecting one or two 
quadrants, and (3) absence of any ocular illness (e.g., cataracts, 
glaucoma, optic neuritis, or maculopathy) in both eyes. The 
exclusion criteria for RD patients were (1) recurrent RD or 
recurrence after RD repair surgery, (2)RD caused by high myopia, 
(3) ocular trauma-related RD, (4) serious complications associated 
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with RD (e.g., proliferative vitreoretinopathy, vitreous hemorrhage, 
or macular degeneration), (5) a history of laser treatment or 
surgery, (6) cardiovascular diseases (e.g., heart disease or 
hypertension), and (7) psychiatric disorders and cerebral infarction.

According to age, sex, and educational background, HCs were 
chosen at random from Nanchang City. The inclusion criteria for HCs 
were the absence of eye diseases and major illnesses (e.g., neurological 
illness or cerebral infarction); the presence of uncorrected vision or 
visual acuity better than 1.0; and the completion of MRI-related tests, 
optical coherence tomography, ultrasonography, and other 
ophthalmic examinations.

2.2. fMRI data acquisition

Rs-fMRI data were collected at the Department of Radiology in 
the First Affiliated Hospital, Nanchang University, China, using a 3 T 
MR scanner (Siemens, Erlangen, Germany) equipped with an 
8-channel phased-array head coil. The following parameters were used 
to capture 240 resting-state volumes over 8-min: field of view, 
240 mm × 240 mm; repetition time, 2,000 ms; echo time, 40 ms; flip 
angle, 90°; matrix, 64 × 64; slice thickness, 4 mm; and gap, 1 mm. 
Thirty axial slices were included in each brain volume. The following 
three-dimensional MRI parameters were used to acquire high-
resolution T1-weighted images of each participant: repetition time, 
1,900 ms; echo time, 2.26 ms; flip angle, 9°; field of view, 
240 mm × 240 mm; matrix, 256 × 256; number of sagittal slices, 176; 
and slice thickness, 1 mm.

2.3. fMRI data preprocessing

All data preprocessing was conducted using SPM12 and RESTplus 
(Jia et  al., 2019) version 1.25 running in matlab2017b. The data 
preprocessing steps were as follows: (1) Data collation and 
classification. (2) Conversion of file format from DICOM to NIFTI. (3) 
Removal of the first 10 time points. (4) Slice timing correction. (5) 
Head movement correction. (6) Normalization (standardization of 
individual space to Montreal Neurological Institute [MNI] standard 
space). (7) Spatial smoothing. (8) Detrending. (9) Regression of 
nuisance covariates.

2.4. dALFF variance computing

The Time Dynamic Analysis toolbox in RESTplus version 1.25 
was used to calculate dynamic metrics. Appropriate window length 
is essential for dynamic analysis, and sliding windows have key roles 
in the assessment of dynamic spontaneous brain activity. Previous 
studies showed that an excessively short window length can increase 
dALFF signal instability, whereas an excessively long window length 
does not adequately reflect dynamic temporal changes in dALFF 
(Leonardi and Van De Ville, 2015; Li et al., 2019). To minimize 
subjective error caused by a single window length, we  used a 
window length and step size of 1TR for 30TR (60 s), 50TR (100 s), 
and 80TR (160 s) to calculate the dALFF for each participant. For 
each participant’s window-based ALFF map, we  calculated the 
mean and standard deviation of each voxel, then determined the 

appropriate coefficient of variation (CV = standard deviation/
mean). Further statistical analyses were conducted using the 
CV maps.

2.5. Statistical analysis

One-sample t-tests were used for statistical analyses of the 
CVALFF maps of RD patients and HCs. Two-sample t-tests were used 
to assess differences in CVALFF maps between groups. The Gaussian 
random field (GRF) method was used to correct for multiple 
comparisons and regressed covariates of age and sex (two-tailed, 
voxel-level p < 0.05; GRF correction, cluster-level p < 0.05).

2.6. Clustering analysis

To determine the dALFF occurrence state, a k-means method was 
used to the dALFF values for each participant. The k-means algorithm 
combines together data that is related in “k” ways, ensuring that the 
total of squares within clusters is as small as possible (Zhang et al., 
2018). The Manhattan (L1) distance function method was performed 
to assess the reoccurrence over time in patterns of ALFF. All of the 
dALFF windows were clustered using the clustering centroids for the 
departure points.

2.7. Support vector machine analysis

To determine whether changes in dynamic metrics can be used as 
diagnostic indicators of RD, we  investigated possible diagnostic 
indices using Gaussian radial basis function kernel SVMs and the 
LIBSVM software package (Pereira et al., 2009). The steps were as 
follows: (1) region of interest signal values were extracted from all 
differential brain regions; (2) a NII file was created to mask differential 
brain regions; and (3) the radial basis function of the grid search 
optimization algorithm was used to calculate parameters.

3. Results

3.1. Demographic characteristics

This study included 23 RD patients (12 men and 11 women; mean 
age, 51.70 ± 19.37 years) and 24 HCs (11 men and 13 women; mean 
age, 50.46 ± 14.55 years). Demographic characteristics are shown in 
Table 1.

3.2. Differences in dALFF values

Figure  1 shows the spatial distribution of dALFF values 
between RD patients and HCs at a sliding window size of 30TR. In 
the bilateral middle frontal gyrus, left putamen, left superior 
occipital gyrus, and right calcarine, dALFF values were 
significantly higher in RD patients than in HCs (Figure 1; Table 2; 
two-tailed, voxel-level p  < 0.05; GRF correction, cluster-level 
p < 0.05).
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Figure 2 shows the spatial distribution of dALFF values between 
RD patients and HCs at a sliding window size of 50TR. In the right 
middle temporal gyrus, left middle frontal gyrus, right calcarine, left 
putamen, left middle occipital gyrus, and right inferior frontal gyrus, 
dALFF values were significantly higher in RD patients than in HCs. 
Conversely, in the right superior parietal gyrus, dALFF values were 
significantly lower in RD patients than in HCs (Figure 2; Table 3; 
two-tailed, voxel-level p  < 0.05; GRF correction, cluster-level 
p < 0.05).

Figure 3 shows the spatial distribution of dALFF values between 
RD patients and HCs at a sliding window size of 80TR. In the left 
middle frontal gyrus, dALFF values were significantly higher in RD 
patients than in HCs. Conversely, in the right paracentral lobule, dALFF 
values were significantly lower in RD patients than in HCs (Figure 3; 
Table 4; two-tailed, voxel-level p < 0.05; GRF correction, cluster-level 
p < 0.05).

3.3. Clustered dALFF states

Figure 4 depicts the overall state transition mode of all participants 
at sliding window sizes of 30TR, 50TR, and 80TR. The frequency and 
mean dwell time are shown for different states, along with the 
probability of transition between states.

3.4. Mean weighted dALFF values

The mean altered dALFF values between RD patients and HCs 
at sliding window sizes of 30TR, 50TR, and 80TR are shown in 
Figure 5.

3.5. SVM classification results

Figure 6A shows that the total accuracy and area under the curve 
score of SVM classification, based on dALFF with a sliding window size 

FIGURE 1

Spatial distributions of dALFF values in (A) RD patients (one-sample t-test) and (B) HCs (one-sample t-test). (C,D) Spatial distributions of dALFF values 
between RD patients and HCs (two-sample t-test). HCs, healthy controls; RD, retinal detachment; dALFF, dynamic amplitude of low-frequency 
fluctuation; L, left; R, right (two-tailed, voxel-level p <  0.05; GRF correction, cluster-level p <  0.05).

TABLE 1 Demographic characteristics of RD patients and HCs.

Characteristic RD patients HCs p-value

Men/women 12/11 11/13 0.664x

Age (years, mean ± SD) 51.70 ± 19.37 50.46 ± 14.55 0.225t

Duration of detachment 

(days)

15 (7, 90)a N/A N/A

IOP (mmHg, 

mean ± SD)

14.52 ± 4.62 N/A N/A

Axial length of eye (mm, 

mean ± SD)

24.36 ± 1.88 N/A N/A

Corneal endothelial cell 

count (mm2, mean ± SD)

2,317 ± 512.24 N/A N/A

HAMA score 3.89 (2, 5)a N/A N/A

xData were obtained using Pearson’s Chi-square tests; tData were obtained using two-sample 
t-tests; aMedian (interquartile range); SD, standard deviation; RD, retinal detachment; HCs, 
healthy controls; IOP, intraocular pressure; HAMA, Hamilton Anxiety Scale; N/A, not 
applicable.
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of 30TR, were 97.87% and 0.99, respectively. Figure 6B shows that the 
total accuracy and area under the curve score of SVM classification, 
based on dALFF with a sliding window size of 50TR, were 100% and 
1.00, respectively. Figure 6C shows that the total accuracy and area under 
the curve score of SVM classification, based on dALFF with a sliding 
window size of 80TR, were 93.62% and 0.95, respectively. These results 
indicate that the dALFF may be useful in the clinical diagnosis of RD.

3.6. Correlation analysis

Pearson and Spearman correlation analyses revealed that region 
of interest values in positive brain regions identified in RD patients at 
sliding window sizes of 30TR, 50TR, and 80TR were not correlated 
with HAMA scores (Table 5).

4. Discussion

This study showed that RD patients exhibited increased 
dALFF values in the bilateral middle frontal gyrus, left putamen, 
left superior occipital gyrus, left middle occipital gyrus, right 
calcarine, right middle temporal gyrus, and right inferior frontal 
gyrus. Additionally, RD patients showed significantly decreased 
dALFF values in the right superior parietal gyrus and right 
paracentral lobule (two-tailed, voxel-level p  < 0.05; GRF 
correction, cluster-level p < 0.05). Using k-means clustering, three 
or four dALFF states were identified among all subjects. There 
were differences in state distribution and state properties between 
RD and HC groups. The number of transitions between the 
dALFF states was higher in the RD group than in the HC group. 
Based on dALFF values in various brain regions, the overall 
accuracies of SVM classification were 97.87, 100, and 93.62% 
under three different time windows; area under the curve values 
were 0.99, 1.00, and 0.95, respectively. No correlation was found 
between HAMA scores and regional dALFF.

FIGURE 2

Spatial distributions of dALFF values in (A) RD patients (one-sample t-test) and (B) HCs (one-sample t-test). (C,D) Spatial distributions of dALFF values 
between RD patients and HCs (two-sample t-test). HCs, healthy controls; RD, retinal detachment; dALFF, dynamic amplitude of low-frequency 
fluctuation; L, left; R, right (two-tailed, voxel-level p <  0.05; GRF correction, cluster-level p <  0.05).

TABLE 2 Significant differences in dALFF values between RD patients and 
HCs at a sliding window size of 30TR.

Brain 
region

BA Peak 
t-score

MNI 
coordinates 

(x, y, z)

Cluster 
size 

(voxels)

Frontal_

Mid_L

– 4.5014 −24, 48, 9 232

Putamen_L – 4.1322 −18, 9, 0 59

Frontal_

Mid_R

– 3.5413 33, 42, 9 63

Occipital_

Sup_L

– 4.0016 −15, −102, 15 56

Calcarine_R – 3.595 21, −96, 0 67

dALFF, dynamic amplitude of low-frequency fluctuation; HCs, healthy controls; RD, retinal 
detachment; BA, Brodmann area; MNI, Montreal Neurological Institute; Frontal_Mid_L, left 
middle frontal gyrus; Putamen_L, left putamen; Frontal_Mid_R, right middle frontal gyrus; 
Occipital_Sup_L, left superior occipital gyrus; Calcarine_R, right calcarine.
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4.1. Differences in dALFF variability

The frontal lobe, which constitutes approximately one-third of the 
cerebral cortex in humans, is a region of the brain that develops more 

slowly than other regions. Its wide-ranging and complex functions 
encompass nearly all cognitive neuropsychological activities. In this 
study, we found that the RD group had significantly higher dALFF 
values in the bilateral middle frontal gyrus and right inferior frontal 
gyrus, which are important for high-level cognition (e.g., executive 
function and working memory; Zheng et al., 2015). The decreased 
central vision, visual distortion, and reduced field of vision in RD 
patients may cause some motor execution impairment and poor 
memory. Kawashima et al. (2021) found that functional activation of 
the bilateral dorsolateral prefrontal cortex and middle frontal gyrus 
was reduced in Parkinson’s disease patients, presumably in relation to 
the pathophysiology of working memory disorder in such patients. 
Through voxel-based morphometry analysis, Zhao et  al. (2021) 
demonstrated that gray matter volume was decreased in the bilateral 
middle frontal gyrus of patients with major depressive disorder, which 
may influence executive function in those patients. Chen et al. (2017) 
also revealed that FC between the right dorsolateral prefrontal cortex 
and right hippocampus was significantly reduced in long-term breast 
cancer survivors who had been treated with tamoxifen, implying 
significant defects in working memory and overall executive function. 
The above studies indicated that dALFF values in the bilateral middle 
frontal gyrus and right inferior frontal gyrus are significantly higher 
in RD patients than in HCs. Accordingly, we  speculate that RD 
patients display motor execution impairment and poor working 
memory. In such patients, motor function and working memory are 
maintained before visual decline through compensatory mechanisms 
involving the bilateral middle frontal gyrus and right inferior 
frontal gyrus.

FIGURE 3

Spatial distributions of dALFF values in (A) RD patients (one-sample t-test) and (B) HCs (one-sample t-test). (C,D) Spatial distributions of dALFF values 
between RD patients and HCs (two-sample t-test). HCs, healthy controls; RD, retinal detachment; dALFF, dynamic amplitude of low-frequency 
fluctuation; L, left; R, right (two-tailed, voxel-level p  <  0.05; GRF correction, cluster-level p <  0.05).

TABLE 3 Significant differences in dALFF values between RD patients and 
HCs at a sliding window size of 50TR.

Brain 
region

BA Peak 
t-score

MNI 
coordinates 

(x, y, z)

Cluster 
size 

(voxels)

Temporal_

Mid_R

21 3.8444 63, −3, −15 52

Frontal_

Mid_L

– 4.7678 −24, 48, 9 249

Calcarine_R – 4.1172 21, −96, 0 73

Putamen_L – 3.7194 −18, 9, 0 58

Occipital_

Mid_L

– 4.4051 −12, −105, 6 73

Frontal_Inf_

Tri_R

– 3.5666 51, 30, 6 101

Parietal_

Sup_R

5 −3.2846 24, −48, 69 69

dALFF, dynamic amplitude of low-frequency fluctuation; HCs, healthy controls; RD, retinal 
detachment; BA, Brodmann area; MNI, Montreal Neurological Institute; Temporal_Mid_R, 
right middle temporal gyrus; Frontal_Mid_L, left middle frontal gyrus; Calcarine_R, right 
calcarine; Putamen_L, left putamen; Occipital_Mid_L, left middle occipital gyrus; Frontal_
Inf_Tri_R, right inferior frontal gyrus; Parietal_Sup_R, right superior parietal gyrus.
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The putamen, a key component of the basal ganglia, is important 
for motor regulation (Romero et  al., 2008; Vicente et  al., 2012). 
We  observed increased dALFF values in the left putamen of RD 
patients. Huang et al. (2018) found that the gray matter volume in the 
left putamen was increased among high myopia (HM) patients, 
suggesting that HM causes structural alterations in the bilateral 
putamen; this finding is consistent with the compensatory motor 
function observed in HM patients. Tong et al. (2021) revealed an 
increase in regional homogeneity in the left putamen among patients 
with iridocyclitis; they speculated that iridocyclitis causes functional 
changes in the putamen, which may lead to compensatory motor 
function. Hu et  al. (2022) also demonstrated that voxel-based 

FIGURE 4

Temporal properties of dALFF patterns between RD and HC groups at sliding window sizes of 30TR (A), 50TR (B), and 80TR (C).

TABLE 4 Significant differences in dALFF values between RD patients and 
HCs at a sliding window size of 80TR.

Brain 
region

BA Peak 
t-score

MNI 
coordinates 

(x, y, z)

Cluster 
size 

(voxels)

Frontal_

Mid_L

– 4.4058 −27, 51, 9 133

Paracentral_

Lobule_R

– −3.6793 9, −36, 63 74

dALFF, dynamic amplitude of low-frequency fluctuation; HCs, healthy controls; RD, retinal 
detachment; BA, Brodmann area; MNI, Montreal Neurological Institute; Frontal_Mid_L, left 
middle frontal gyrus; Paracentral_Lobule_R, right paracentral lobule.
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morphometry values were decreased in the left putamen of female 
menopausal dry eye patients, indicating that these patients may 
exhibit cognitive or motor impairments. Because RD causes sudden 
vision loss, patients cannot rapidly adapt to monocular vision, and 
their motor regulation is partially decreased relative to the pre-injury 
state; this phenomenon may also explain a portion of the increase in 
dALFF in the left putamen of RD patients. Therefore, we suspect that 
the increased dALFF in the left putamen compensates for the decrease 
in motor regulation among RD patients.

The occipital lobe, located in the posterior cerebral cortex, is 
responsible for visual perception. In this study, we found that dALFF 
values were increased in the left superior occipital gyrus, left middle 
occipital gyrus, and right calcarine in RD patients. Shao et al. (2021) 
reported increased FC density values in the left inferior occipital gyrus 
of RD patients, which may influence the brain’s effectiveness and 
accuracy in terms of processing visual digital information. Huang 
et  al. (2017) also demonstrated that RD patients had decreased 
regional homogeneity in the right occipital lobe; they speculated that 
the decreased regional homogeneity reflected diminished synchrony 
among local brain regions, consistent with altered function in the 
primary visual cortex of RD patients. Wu et al. (2021) revealed that 

voxel-mirrored homotopic connectivity (VMHC) values in the 
bilateral calcarine were lower in bronchial asthma patients than in 
HCs. They suggested that the reduced VMHC values represent 
aberrant visual network function in asthma patients, leading to 
changes in visual function. The calcarine divides the occipital lobe into 
the cuneus above and lingual gyrus below; the primary visual cortex 
is located on both sides of the calcarine. Because the detached portion 
of the retina in RD patients cannot perceive light stimuli, the occipital 
lobe receives weaker visual signals, which may explain the increased 
dALFF values in the left superior occipital gyrus, left middle occipital 
gyrus, and right calcarine in RD patients. We  suspect that these 
elevated dALFF values represent a compensatory mechanism by 
which the brain attempts to cope with vision loss in RD patients.

The temporal lobe, located below the lateral fissure, is divided into 
the superior temporal, middle temporal, and inferior temporal gyri; 
the inferior temporal gyrus is mainly involved in language 
comprehension (Dronkers et al., 2004). We found that dALFF values 
in the right middle temporal gyrus were increased in RD patients. Yu 
et al. (2008) reported that FC between the left superior temporal gyrus 
and middle temporal gyrus was decreased in patients with early 
blindness, whereas Huang et al. (2019) showed that degree centrality 

FIGURE 5

Mean weighted dALFF values of RD patients and HCs in altered brain regions at sliding window sizes of 30TR (A), 50TR (B), and 80TR (C).

FIGURE 6

SVM classification of RD patients and HCs based on altered brain regions identified using sliding window sizes of 30TR (A), 50TR (B), and 80TR (C).
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(DC) in the left inferior temporal gyrus was increased in patients with 
advanced monocular blindness. They speculated that the increase in 
DC compensated for vision loss in patients with advanced monocular 
blindness. Qi et al. (2022) showed that VMHC values in the bilateral 
medial temporal gyrus were decreased in patients with thyroid-
associated ophthalmopathy, which may reflect diminished visual 
processing and attention in such patients. To our knowledge, there 
have been no reports of language comprehension problems among RD 
patients. We suspect that RD patients undergo a long period of visual 
improvement from the initial detachment until postoperative 
recovery; they may experience some reductions in the ability to learn 
and perceive external things, which could affect language 
comprehension. Thus, the elevated dALFF value in the right temporal 
gyrus may represent a compensatory mechanism for the decrease in 
language comprehension.

Finally, our study showed that dALFF values were decreased in 
the right superior parietal gyrus and right paracentral lobule in RD 
patients. The parietal gyrus, located above the medial parietal sulci, is 
involved in the transmission of visual information and the integration 
of visual movement (Caminiti et al., 1996; Iacoboni and Zaidel, 2004). 
Tan et al. (2018) found that the DC of the right superior parietal gyrus 
was decreased in comitant exotropia strabismus patients; this 
decreased DC may reflect functional impairment of the right superior 
parietal gyrus, which would explain eye movement dysfunction in 
such patients. In a previous study, we found that FC between the left 
V1 and L-SPG was increased in HM patients; we speculated that this 
increase in FC was a compensatory response to prevent impaired 
top-down control of visual attention in HM patients (Ji et al., 2023). 
Considering the previous findings, the decreased dALFF values in the 
right superior parietal gyrus of RD patients may reflect functional 
impairment in this brain area, which would explain why RD patients 
experience visual impairment. Moreover, the paracentral lobule 
extends from the lateral surface of the anterior and posterior central 
dorsal gyrus to the medial surface, which is closely associated with 
cognitive impairment (Mascalchi et al., 2014). Kim et al. (2019) found 

that changes in subnetworks, such as the paracentral lobule, were 
associated with cognitive scores in patients with subjective cognitive 
decline. However, Liang et al. (2020) showed that gray matter volume 
in the paracentral lobule was increased in patients with subjective 
cognitive decline; they suggested that the increased gray matter 
volume in the paracentral lobule represents a compensatory 
mechanism, although it is unclear whether the mechanism is 
associated with cognitive function. This notion is consistent with our 
findings that the dALFF value of the right paracentral lobule was 
decreased in RD patients, although we found no correlation between 
this brain region and HAMA scores. Therefore, we speculate that the 
decreased dALFF value of the right paracentral lobule in RD patients 
reflects inhibition of this brain region. However, there is no clear 
evidence of diminished cognitive function in RD patients.

In our study, the overall accuracies of SVM classification were 
97.87, 100, and 93.62% under three different time windows; area 
under the curve values were 0.99, 1.00, and 0.95, respectively. Thus, 
dALFF may offer sensitive biomarkers for distinguishing patients with 
RD from HCs.

4.2. Differences in metrics of the dALFF 
states

Importantly, there were significant differences in the temporal 
characteristics of dALFF states between the two groups. Our 
results showed that the number of transitions in RD patients was 
higher than that in HC group at both 30TR and 50TR, while the 
number of transitions in RD patients and HC group was zero at 
80TR. At the same time, compared with the HC group, RD patients 
at 30TR and 50TR showed 3 different time states, and RD patients 
at 80TR showed 4 different time states. In other words, during the 
entire resting state MRI scanning period, the brain’s working mode 
can be divided into three states at 30TR and 50TR, and the brain’s 
working mode can be divided into four states at 80TR. For patients 

TABLE 5 Correlations between HAMA scores and brain regions with significant differences in RD patients at sliding window sizes of 30TR, 50TR, and 
80TR.

Sliding window size Brain region Normality test  
(p-value)

Pearson correlation 
analysis (p-value)

Spearman correlation 
analysis (p-value)

30TR

Frontal_Mid_L 0.016 – 0.572

Putamen_L 0.795 0.696 –

Frontal_Mid_R 0.006 – 0.360

Occipital_Sup_L 0.893 0.735 –

Calcarine_R 0.084 0.821 –

50TR

Temporal_Mid_R 0.392 0.887 –

Frontal_Mid_L 0.334 0.870 –

Calcarine_R 0.258 0.673 –

Putamen_L 0.898 0.961 –

Occipital_Mid_L 0.020 – 0.683

Frontal_Inf_Tri_R 0.009 – 0.734

Parietal_Sup_R 0.185 0.407 –

80TR
Frontal_Mid_L 0.564 0.354 –

Paracentral_Lobule_R 0.071 0.671 –
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with RD, state 1 accounted for a larger proportion of these states, 
suggesting that state 1 may represent a pattern of major brain 
activity in individuals with RD. In general, the mean dwell time 
and number of transitions are used as parameters in dynamic 
pattern analysis to describe state properties that represent brain 
functional activity and can be  reconfigured during illness (Xu 
et al., 2023). Previous studies have found that patients with diabetic 
retinopathy exhibit three different temporal states, with state 1 
occupying a larger proportion, while patients with diabetic 
retinopathy have a lower number of transitions than those in the 
HC group (Huang et al., 2021). Zhao et al. (2021) proposed that an 
increase in the number of transitions is associated with a decrease 
in the efficiency of information flow in brain networks. Therefore, 
we  speculate that visual dysfunction leads to a decrease in the 
efficiency of information flow, which increases the number of 
conversions in patients with RD. This result also suggests that the 
whole brain integration of visual functions is abnormal.

5. Limitations

This study had some important limitations. First, it included a 
small number of RD patients. The lack of correlation between region 
of interest values in positive brain regions and HAMA scores may have 
been related to the small sample size. Second, the data were frequently 
affected by unavoidable factors in the fMRI environment (e.g., 
heartbeat, muscle beat, and respiratory motion).

6. Conclusion

In this study, we used the dALFF method, k-means clustering 
method and an SVM classification approach to explore dynamic 
changes in spontaneous brain activity among RD patients. Our 
findings offer important insights regarding the neuropathology that 
underlies RD and provide robust evidence that dALFF, a local 
indicator of brain activity, may be useful for clinical diagnosis.
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