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Editorial on the Research Topic

Remote sensing advances in biodiversity and ecosystem function-
ing research
1 Introduction

Different dimensions of biodiversity are increasingly appreciated as critical for

maintaining the functions of ecosystems and their services to humans. More recently,

with the emergence of functional biogeography, functional diversity is of particular interest

due to its strong links with ecosystem processes such as carbon, water and energy exchange,

and climate mitigation. The multi-form diversity varies in space and time. Understanding

this variation across scales is important for tracking the resilience of earth’s ecosystem, and

the information on the ecosystem structural features provides necessary foundations for

monitoring, predicting the ecosystem functioning patterns and process of ecosystems from

individual unit to its whole in a holistic manner.

In recent, the high-resolution, high-throughput, non-intrusive, and large-scale data on

biodiversity monitoring and measurement are becoming a new trend toward enhancing the

efficiency and coherency in ecological discovery. Remote sensing has proved to be a critical

technology for addressing this research gap. Air- and satellite-borne spectrometers at

different levels could develop novel diversity measurements and alternatives in various

ecosystems and for different kinds of communities and taxa.

In this Research Topic, our goal is to bring together the latest research in a fast-growing

direction that combines remote sensing techniques and their application in biodiversity

and ecosystem functioning (BEF). We would like to know how the different levels of

ecological theories, from species to ecosystems, are linked more coherently than ever via the

multi-scale digitalized observational and computational method advances. Seen from the

11 published papers in this Research Topic, we generalized the three main directions in this

field: (1) the novel observational techniques of biodiversity and their application, (2) the

ecosystem functioning assessment at macroscopic scale with geoinformatics methods, and
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(3) the linkage analysis of BEF under the geographical gradient of in

a context of environmental change.
2 Novel observational techniques
of biodiversity

In the realm of novel biodiversity observational techniques,

Hagani et al. ‘s research delves into the historical invasion of

Phragmites australis in a brackish coastal marsh, utilizing high-

resolution remote sensing to meticulously map its expansion over

two decades. Despite individual management efforts, Hagani et al.

emphasizes the need for adaptive, collaborative strategies to

eradicate this invasive species on a large scale.

Shifting focus to subtropical forests, Yan et al. introduces a

groundbreaking forest measurement system using SLAM+AR

technology through mobile phones. This system not only

accurately measures tree parameters but also creates a virtual

environment for precise spatial structural analysis, revolutionizing

digitalized forest management practices.

Expanding the scope to forest ecosystems, Li et al. pioneers

UAV-borne hyperspectral and LiDAR data for individual tree-

based species diversity estimation. Li et al. ‘s classification

method, relying on spectral information, proves superior in

accurately predicting species richness and the Shannon-Wiener

index. In contrast, Li et al. ‘s clustering method, while introducing

uncertainties, rapidly captures forest diversity patterns without

distinguishing specific tree species.

In conclusion, the studies showcase the frontier of biodiversity

observation, leveraging remote sensing, mobile technology, and

UAV-based approaches. They embody the innovative strides in

understanding and managing diverse ecosystems.
3 Large-scale ecosystem
functioning assessment

In the realm of large-scale ecosystem functioning assessment,

Lu et al. utilizes geographic information systems (GIS) and spatial

data to quantitatively study diversity patterns within Moraceae

genera. Results reveal significant differences between monotypic

and multiple-species genera, emphasizing the importance of spatial

distribution analysis for effective conservation strategies.

Zhang et al. ‘s exploration of ecosystem services in Xinjiang

Autonomous Region contributes to understanding driving factors

and spatial heterogeneity. The study employs InVEST and RWEQ

models, identifies precipitation, temperature, and fractional

vegetation cover as dominant factors influencing essential

ecosystem services. The study’s county-level analysis provides

nuanced insights for tailored ecological protection policies.

On the analysis of city level, Wang et al. introduces the

application of remote sensing ecological index (RSEI) to monitor

ecological environment quality in Zhanjiang City. Utilizing Landsat

satellite images and four indicators, the study quantitatively assesses

changes in ecological quality over time. The study highlights the
Frontiers in Ecology and Evolution 026
effectiveness of RSEI in evaluating and predicting ecological

changes, essential for guiding conservation measures in

urbanizing areas.

On a larger scale, Wei et al. ‘s study shifts the focus to synergies

and trade-offs in ecosystem services within China’s arid regions.

Using the northern sand-stabilization belt as a case study, Wei et al.

explores how precipitation and fractional vegetation cover influence

five simulated ecosystem services. The research uncovers increasing

synergies with higher precipitation and vegetation cover, providing

valuable insights for sustainable ecosystem management in

arid environments.

These findings underscore the importance of spatial analysis,

remote sensing technologies, and tailored conservation strategies

for effective ecosystem management in diverse environments.
4 BEF under the
environmental change

Peng et al. ‘s study on the impact of climate change on plant

spectral diversity highlights significant shifts in spatial patterns

across various forest types. The intricate relationships between

species diversity, spatial interactions, and climate change are

emphasized. This insight lays the foundation for understanding

the broader implications of environmental changes on biodiversity.

From the forest to the grassland perspective, we delve into Yang

et al. ‘s exploration of plant species diversity and aboveground

biomass in alpine grasslands on the Qinghai–Tibet Plateau.

Through advanced modeling, Yang et al . provides a

comprehensive understanding of the spatial relationships and

driving factors governing these crucial ecological parameters. This

grassland-focused perspective contributes to our knowledge of

ecosystem functioning in alpine regions.

Shifting our focus to urban environments, Ma et al. ‘s research

investigates the projected effects of climate change and urban

expansion on plant biodiversity in the city clusters of Northern

China. Employing habitat suitability models, Ma et al.‘s findings

underscore the urgency of addressing urban expansion as a primary

driver of plant biodiversity loss in this region. The transition from

natural to urban landscapes emphasizes the need for sustainable

urban planning to mitigate the impact on local ecosystems.

Gao et al. ‘s study on vegetation water use efficiency (WUE) in

the West Liao River Plain explores the temporal and spatial

variations of WUE in response to climate change and human

activities. By unraveling the intricate dynamics between carbon

and water cycles, Gao et al.‘s research contributes to our

understanding of ecosystem functioning in regions sensitive to

environmental changes.

These studies collectively contribute to the understanding of

biodiversity and ecosystem functioning under the complex

interplay of environmental changes. From grasslands to forests

and urban areas, each perspective offers unique insights into the

challenges and opportunities for managing and conserving

ecosystems in the face of increasing climate change and

human activities.
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Increase in precipitation and 
fractional vegetation cover 
promote synergy of ecosystem 
services in China’s arid regions—
Northern sand-stabilization belt
Changwen Wei 1†, Kai Su 1*†, Xuebing Jiang 2, Yongfa You 3, 
Xiangbei Zhou 1, Zhu Yu 4, Zhongchao Chen 5, Zhihong Liao 1, 
Yiming Zhang 1 and Luying Wang 1

1 College of Forestry, Guangxi University, Nanning, China, 2 School of Mechanical Engineering, Guangxi 
University, Nanning, China, 3 International Center for Climate and Global Change Research, School of 
Forestry and Wildlife Sciences, Auburn University, Auburn, AL, United States, 4 Guangxi Forest Inventory 
and Planning Institute, Nanning, China, 5 Guizhou Linfa Survey and Design Co., Ltd., Guiyang, China

Research on synergies and trade-offs between ecosystem services (ES) contributes 
to a better understanding of the linkages between ecosystem functions. Relevant 
research mainly focuses on mountain areas, while research in arid areas is obviously 
insufficient. In this research, we use the northern sand-stabilization belt (NSB) as an 
example to explore how the synergies and trade-offs between different ES vary with 
the gradient of precipitation and fractional vegetation cover (FVC) over the period 
2000-2020. Based on five simulated ecosystem services (habitat provision, sand-
stabilization service, water conservation service, soil conservation service and carbon 
sequestration service), the Pearson correlation coefficient method was used to 
analyze the various characteristics of the trade-offs and synergies among the different 
ES pairs along the FVC and precipitation gradients. Results showed that: Synergies 
between most paired ES increased significantly with increasing precipitation and FVC. 
However, ES have different sensitivities to environmental change, FVC promotes bit 
more synergy of ES pairs than precipitation. The study also found that land use/land 
cover may be an important driving factor for trade-offs and synergies between paired 
ES. The findings demonstrate that increased precipitation and FVC promote synergy 
of ecosystem services in arid regions of China. In the future, it can be investigated 
whether anthropogenic increase in FVC in arid regions can significantly contribute to 
the synergy of ES. In the meantime, this study could improve our understanding of arid 
and semi-arid (or macro-regional) ecosystems and contribute to the development of 
ecosystem management and conservation measures in NSB.

KEYWORDS

northern sand-stabilization belt, ecosystem services, FVC, precipitation, trade-offs and 
synergies

1. Introduction

Ecosystem services (ES) are the products, services, and environmental conditions that people 
derive from ecosystems and are essential to human well-being and survival (Costanza et al., 1997). 
However, long-term human over-cultivation and grazing have destroyed the self-regulating 
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capacity of the ecological environment (Dumanski and Pieri, 2000). The 
first to bear the brunt are the arid and semi-arid areas, which are more 
sensitive to changes. Desertification in arid and semi-arid regions is a 
serious problem in China (Zhang, 2017). According to the results of the 
National Desert, Gobi and Sandy Land Survey and Desertification 
Research, the decertified land area in China in 2011 was 262.2 million 
km2, representing 27.4% of the land area, and nearly 400 million people 
were affected by desertification (Fu et al., 2017).

Ecosystem services in arid and semi-arid regions are as valuable 
as ecosystem services in other regions. Ouyang et al. (2016) evaluated 
several ES in China, such as windbreak and sand-stabilization service, 
habitat provision, soil conservation service, and carbon sequestration 
service and found that arid and semi-arid regions were high-value 
areas providing various services and the distribution of ecosystem 
services in arid areas has significant spatial heterogeneity. Although 
the amount of vegetation in arid and semi-arid regions is much less 
than that in other areas, the types of vegetation are rich and play an 
important role in regional ecosystems (Wang et al., 2020; Yixuan et al., 
2022). Meanwhile, these ES can generate substantial potential 
economic benefits. The research results of Su et al. (2020) showed that 
the sand-stabilization amount of Ordos’s ecosystem was approximately 
7.28 ×10

8  tons. The amount of dust-fall in the beneficiary area was 
reduced by 2.87 ×10

8  tons, and an investment of 4318.51 ×10
8  CNY 

in dust removal would be avoided. In addition, trade-off and synergy 
of multiple ecosystem services are also hot research topics at present, 
but the research mainly focuses on farmland, wetlands, oceans, cities, 
and other ecosystems. Especially ecosystems that can generate 
economic benefits, such as farmland and forests (Johns et al., 2014; 
Loomis and Paterson, 2014; Song and Deng, 2015; Malekmohammadi 
and Jahanishakib, 2017; Richards and Friess, 2017; Liao et al., 2022). 
Furthermore, our literature review found that few scholars, such as 
Fensholt et  al. (2012) and Wen et al. (2019), have focused on the 
assessment of ecosystem services in arid and semi-arid regions, 
especially studies in megaregions.

However, previous studies have proven that ecosystems are 
vulnerable to precipitation and climate change, especially grasslands 
are highly sensitive to changes in precipitation (Knapp and Smith, 
2001; Huxman et al., 2004; Heisler-White et al., 2008; Sloat et al., 2018; 
Gherardi and Sala, 2019). For example, Felton’s study in mesic 
grassland found that in dry years, increasing growing season 
precipitation variability reduced rain-use efficiency, thereby reducing 
ecosystem function by up to 42%, but this effect diminishes as the year 
gets wetter (Felton et al., 2020). The gradient effect of environmental 
impact (such as vegetation cover, precipitation, and temperature) has 
been widely studied in mountainous areas (Su et al., 2007; Deng et al., 
2020; Liu et al., 2020). For example, findings of Yu et al. (2021) in the 
Qinling Mountains showed that net primary productivity, soil 
conservation, and habitat quality increased significantly with altitude 
and vegetation coverage gradients, but the effects on water yield and 
grain production weakened. Liu et  al. (2019) found that the 
precipitation increased in Taihang mountains, the trade-offs between 
the soil conservation service and net primary production, the water 
yield and net primary production, habitat quality, and the soil 
conservation service, and water yield and habitat quality all decreased 
significantly. The arid and semi-arid regions span the north of China 
and have obvious horizontal spatial heterogeneity. In the lateral 
direction, there are horizontal differences in climate, upper soil, and 
vegetation distribution affected by precipitation, thus forming the 

horizontal spatial heterogeneity of land use and land cover (farmland, 
grassland, forest, etc.; Sun et al., 1998; Liu and Ren, 2012; Liu et al., 
2014). The special geographical location makes arid and semi-arid 
regions have obvious gradient characteristics such as mountains, and 
this characteristic will have a certain impact on ecological processes 
and lead to changes in the regional ecosystem. The response 
mechanism of multiple mountain ecosystem services on 
environmental gradients is basically clear (Yang et al., 2018; Liu et al., 
2019; Zhang et al., 2020; Zhou et al., 2021); however, the response of 
multiple ecosystem services on environmental gradients in arid and 
semi-arid regions is unclear and lacks in-depth research. An 
understanding of the impact of precipitation, vegetation cover, and 
other factors on ecosystem services would improve our knowledge of 
ecosystem services and develop effective ecological management 
measures in arid and semi-arid regions.

The northern sand-stabilization belt (NSB) is located mainly in 
northwest China, and as one of the ecological security barriers in China, 
the ecological environment in this area plays an important role in 
stabilizing the current ecological security pattern in northwest China 
and even the whole county (Su et al., 2020; Zhu et al., 2020; Wang 
J. et al., 2022). There are also many ecological projects in NSB, such as 
the Three-North Shelter Forest Program (Huang and Kong, 2016), the 
Grain for Green Project (Cao et  al., 2009), and the Natural Forest 
Protection Project (Hu and Liu, 2006). These projects protect and 
improve the habitats of wild animals and play a positive role in water 
conservation and carbon sequestration (Li et al., 2015). Therefore, the 
study chooses five ES of sand-stabilization service, habitat provision, 
water conservation service, soil conservation service, and carbon 
sequestration service, which were selected as research objects.

Using meteorological, soil, remote sensing, and land use data, 
we aimed to quantify the ES in NSB, including soil conservation 
service, habitat provision, carbon sequestration service, water 
conservation service, and sand-stabilization service. Based on the 
image-by-image spatial correlation analysis method-Pearson 
product–moment correlation coefficient method, this study 
intends to address the following questions: (1) What are the 
synergies and trade-offs between different ES? (2) How does the 
synergy and trade-off between different ES change with the 
gradient of precipitation and FVC? (3) Which synergy or trade-off 
are more influenced by precipitation or FVC? Clarifying the trade-
offs and synergy between ES on these environmental gradients can 
provide data and information to support scientific research and 
policy formulation in addressing climate change, implementing 
ecological and environmental protection, achieving sustainable 
development, and ensuring food security.

2. Materials

2.1. Study area

The NSB is a long and thin belt across northern China 
(Figure 1A), located in the transition zone between arid and semi-
arid areas, divided into three sections from west to east, the Tarim 
Basin sand-stabilization belt (TB), the Hexi Corridor sand-
stabilization belt (HC), and the Inner Mongolia sand-stabilization 
belt (IM). With a total area of 869,558.5 km2. The slope of the study 
area ranges from 0 to 55 degrees, with the larger slopes 
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concentrated in the northern part of the TB, the HC, and the 
partial eastern part of the IM. The mean annual precipitation of 
around 300 mm, with a significant precipitation gradient (Zhang, 
2017). The mean annual temperature ranges from −1.9 to 
13.5°C. The average wind speed of sand-raising is about 
6.5–8.0 m/s. The average wind speed of sand-raising is larger in the 
middle and smaller in the west and east. FVC increases gradually 
from west to east. The vegetation types are desert grassland, steppe, 
forest grassland, forest meadow grassland, scrub meadow, alpine 
meadow, coniferous forest, deciduous broadleaved forest, hyper-
arid shrubs, semi-shrubs, small shrubs, and semi-trees. The 
distribution of precipitation is generally uneven and highly variable.

We refer to some conventions and classification standards to 
divide FVC and precipitation gradient. For example, the classification 
of FVC refers to the Standard for “Soil Erosion Classification and 
Grading Standards” (SL190-2007) by the Ministry of Water Resources 
of the People’s Republic of China in 2008. And combined with the 
actual situation of the study area, the FVC was divided into three 
classes: FVC<30% (low vegetation cover), 30% ≤ FVC < 60% (medium 
vegetation cover), FVC ≥ 60% (high vegetation cover; Gao et al., 2015; 
Figure  1B). According to the convention of annual precipitation 
division, above 800 mm is the humid zone, 800–400 mm belongs to 
the semi-humid zone, 400–200 mm belongs to the semi-arid zone, and 
below 200 mm belongs to the arid zone (Zhang et al., 2011; Gao et al., 
2015). The maximum annual precipitation was 685.5 mm in 2020, and 
most of the study area belongs to the arid zone. For convenience of 
analysis, this study divides the grades according to the gradient of 
0–200, 200–400, and 400 mm<, which accounted for 46.31, 22.76, and 
30.93%, respectively, (Figure 1C). The main land use and land cover 
(LULC) of NSB are grassland and desert (Figure 1D). Demonstrating 
the spatial distribution pattern of LULC in the belt-shaped study area 
helps to describe the distribution of ES related to LULC.

2.2. Data source

Loess plateau science data center, National Earth System Science 
Data Sharing Infrastructure, National Science & Technology 

Infrastructure of China,1 including average annual precipitation and 
temperature (Peng et  al., 2019), relative humidity, and hours of 
sunshine. DEM data with 90 m resolution came from the geospatial 
data cloud platform of the Computer Network Information Center of 
the Chinese Academy of Sciences.2 Land cover and FVC data were 
obtained from MODIS-based land use product extraction.3 The soil 
dataset is derived from the Harmony World Soil Database_China 
subset of the National Qinghai-Tibet Plateau/Third Pole 
Environmental Data Center, which includes soil texture, sandy soils, 
chalky soils, clays, and organic carbon. The above data came from 
different platforms, so this study resampled all the raster data to the 
same image size with Arcgis, and then computed the raster data 
in Python.

3. Methods

3.1. Sand-stabilization service

In this study, sand-stabilization service is represented by the sand 
stabilization amount, which is equal to the difference between the 
potential wind erosion amount and the actual wind erosion amount. 
This project uses the revised wind erosion equation (RWEQ) model 
(Fryrear et  al., 2000) to estimate the sand-stabilization service in 
NSB. The calculation formula is shown below:

 G S S= −L L1 2  (1)

 

2

1L1 max12
1

2
x
SxS Q e

S

 
−  ×

= ×
 

(2)

1 http://loess.geodata.cn

2 http://www.gscloud.cn

3 https://ladsweb.nascom.nasa.gov/search

A B

C

D

FIGURE 1

Location of the study area.
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where, G is the amount of sand fixation, kg/m2; SL1  and SL2  are 
the potential amount of wind erosion and the actual amount of wind 
erosion, kg/m2; Qmax1 , Qmax 2  are the maximum transport capacity 
of potential soil erosion and actual soil erosion, respectively, kg/m2; 
S1 , S2  are the critical field lengths for potential and actual soil 
erosion, respectively, m; x is the distance of maximum wind erosion 
occurrence in the downwind direction, m; WF for meteorological 
factors; EF is soil erodibility factor; SCF  as soil crust factor; K′ is the 
surface roughness factor; and COG is the vegetation cover factor.

3.2. Soil conservation service

Soil conservation service is represented by the soil retention 
amount, which is equal to the difference between the potential soil 
retention and the actual soil retention. The Universal Soil Loss 
Equation (USLE) is the most widely used remote sensing quantitative 
model of soil loss with good practicality and has been applied and 
practiced in large regional soil conservation studies in China. 
Therefore, USLE (Pandey et  al., 2007) was selected to assess soil 
conservation services in NSB ecosystems for this project. The 
calculation formula is shown below:

 ( )1p aSC SE SE R K LS COG= − = × × × −
 

(8)

where, SC  for soil retention, 2[t/(hm a)]× ; SEp  and SEa  are the 
potential soil erosion and actual soil erosion, respectively, 2[t/ (hm a)]× ;  
R  is the rainfall erosion force factor, 2mm/(hm h a)MJ × × × ; K is the 

soil erodibility factor, 2 2hm h/(hm MJ mm)t × × × × ; LS and COG are 
topography factor and vegetation cover factor, respectively, and are 
dimensionless. The calculation process for the different factors is 
shown below:

3.2.1. Rainfall erosion force factor ( R )

 
R R

k
k=

=
∑

1

24

 
(9)
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(11)

where, R is the multi-year average annual rainfall erosion force, 
MJ . /( . . )mm hm h a

2 ; Rk  semimonthly k is the rainfall erosion force 
of the kth semimonthly, 2mm/(hm h a)MJ × × × ; k for 24 and a half 
months of the year, i.e., k = 1,2,…,24; i is the year of the used rainfall 
information, i.e., i = 1,2,…,n; j is the number of days of erosive rainfall 
days in the kth half month of the i-th year, i.e., j = 1,2,…,m; Pi j k, ,  is the 
j-th erosive daily rainfall in the k-th half month of year i(mm); α  is a 
parameter with α  = 0.3937 in the warm season and α  = 0.3101 in the 
cold season.

3.2.2. Soil erodibility factor (K)

 ( )0.01383 0.51575 EPICK K= − + ×  
(12)
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where, mc , msilt , ms , and orgC  are the clay grain (<0.002 mm), 
powder grain (0.002–0.05 mm), sand grain (0.05–2 mm), and organic 
carbon, %, respectively.

3.2.3. Topographic factors (LS)

 
L m= ( )λ / .2 13
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(15)

where, L is the slope length factor; S is the slope factor; m is the 
slope length index, θ  is the slope,°; and λ  is the slope length, m.

3.2.4. Vegetation coverage factor (COG)
The vegetation cover factor can have a positive effect on controlling 

soil erosion, between 0 and 1. The larger vegetation coverage factor 
(COG) value, the poorer the vegetation cover and the weaker the soil 
retaining effect; the smaller the COG value, the better the vegetation 
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cover and the stronger the soil retaining effect. The magnitude of the 
vegetation cover factor depends on the combined effect of ecosystem 
type and vegetation cover, and should theoretically be obtained through 
experimental observation calculations. However, the existing assessment 
practice has basically formed two camps of considering only the 
ecosystem type and considering only the vegetation cover, and it is 
unscientific to ignore either the influence of vegetation cover or the 
influence of ecosystem type. Therefore, the vegetation cover factors were 
assigned according to the difference of ecosystem types and the level of 
vegetation cover by combining remote sensing parameter inversion and 
field positioning observation. As the ecosystem types involved in this 
project are grassland, forest and shrub, the values were assigned 
according to the different levels of vegetation cover, taking into account 
expert knowledge and previous research experience (Wang and Jiao, 
1996; Zhang et al., 2017; Table 1).

 COG = −0 221 0 595. . logc  (16)

where, c is the vegetation cover in fractional form.

3.3. Water conservation service

The water conservation service was calculated using the balance 
equation of water quantity (Zhang et al., 2001), which treats the water 
service as precipitation minus evapotranspiration and storm runoff. 
The calculation index includes annual precipitation, annual 
evapotranspiration, and annual stormwater production volume. The 
water balance equation is calculated as follows:

 WR PET ET QF= − −  (17)

where, WR is the water-bearing capacity, mm; PET is the annual 
precipitation, mm; QF is the storm water runoff, mm. ET  is the actual 
evapotranspiration, mm.

The calculation of the main indicator factors required for the 
calculation of the water conservation services is shown below:

3.3.1. Rainfall
Spatial distribution data pre-processing: using weather station data as 

the basis, the daily weather data are accumulated to the annual scale and 
then interpolated to the space using ArcGIS spatial interpolation method.

3.3.2. Evaporation
Here, the actual evapotranspiration is calculated using the Zhang 

model based on the Budyko hydrothermal equilibrium assumption, 
the main formula of which is shown below:

 

ET
w PET

P
w PET

P
P
PET

P=
+ ×

+ × +
×

1

1
 

(18)

where, ET  is actual evapotranspiration; P is rainfall; w is the 
water use coefficient for a particular land use type; PET is potential 
evapotranspiration, mm. The calculation equation is as follows:

 
PET SR DT= +( )0 162

58 5
17 8.

.
.

 
(19)

where, SR is the monthly average total solar radiation of each 
month, cal cm/

2 ; DT is the monthly average temperature of each 
month, °C.

3.3.3. Stormwater runoff
Stormwater runoff is calculated using precipitation multiplied by 

runoff coefficients, where the extent to which different land use types 
respond to precipitation varies.

 QF P= ×α  (20)

where, P is rainfall, mm; 𝛼 is the surface runoff coefficient for 
different land use/cover types (Table 2).

3.4. Carbon sequestration service

Carbon sequestration service is calculated using aboveground 
biomass multiplied by the biomass-carbon conversion coefficient 
(Fang et al., 2001; Piao et al., 2009). The main calculation formula is 
as follows:

 
COS AGB C

i

j

i i= ×
=
∑

1  
(21)

where 𝐶O𝑆 is the above-ground carbon stock of terrestrial 
ecosystems. i is the i-th type of ecosystem; j is the total number of 
ecosystem types; 𝐴𝐺𝐵𝑖 is the aboveground biomass of the ith 
ecosystem type; and 𝐶𝑖 is the biomass-carbon conversion coefficient 
for ecosystem type i.

TABLE 1 C values of different land cover types.

Land 
cover 
type

Vegetation cover (%)

<10 10–
30

30–
50

50–
70

70–
90

>90

Grassland 0.45 0.24 0.15 0.09 0.043 0.011

Forest 0.10 0.08 0.06 0.02 0.004 0.001

Shrub 0.40 0.22 0.14 0.085 0.040 0.011

TABLE 2 Surface runoff coefficients for different grassland types.

Grassland ecosystem type 𝛼
Meadow 8.2

Grassland 4.78

Grass 9.37
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3.5. Habitat provision

Reflected by the biological habitat quality index, the regional 
biodiversity was evaluated in this project mainly in terms of regional 
habitat quality and habitat scarcity, which were obtained using the 
INVEST model calculation (Aneseyee et al., 2020; Wu et al., 2021). 
The calculation formula is as follows:

3.5.1. Site quality
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where, Dxj  is the total stress level of raster x in LULC or habitat 
type j; wr  is the weight of the stressor, indicating the relative 
destructive power of a given stressor on all habitats; βx  is the 
reachability level of the raster x; S jr  is the sensitivity of habitat type j 
to stress factor r. If S jr  = 0, then Dxj  is not a function of threat r; ry  
is the stress factor in raster y; irxy  is the stress effect of the stress factor 
r in raster x on raster y. The stress effect is divided into linear decay 
and exponential decay. dxy  is the linear distance between the raster 
x and y. drmax  is the maximum action distance of the threat r.

3.5.2. Habitat scarcity

 
R

N
Nx

x

X
xy

j

jbaseline
= −











=
∑

1
1σ

 
(25)

where Rx  is the scarcity of the raster x; N j  is the number of grids 
of current land use and land cover j. N jbaseline  is the number of 
LULC type j grids in the baseline landscape pattern. σ xy  is a binary 
number, σ xy  = 1 when the raster x is of LULC type j, 
otherwise σ xy  is 0.

3.6. Quantification of ES trade-offs and 
synergies

Synergies between two ES occur when an enhancement of one ES 
leads to an increase in another ES (Bennett et al., 2009). While, Trade-
offs between two ES occur when one ES is promoted at the expense of 
the other (Rodriguez et  al., 2006). In addition to trade-offs and 
synergies, there is also a neutral category, which means that an 
increase in one ES does not result in an increase or decrease in the 
other. A negative correlation coefficient for two ES that passes the 
significance test is considered a trade-off, while a positive correlation 

coefficient that passes the significance test is considered a synergy 
relationship (Jopke et  al., 2015). NSB is composed of three 
sub-barriers. A certain ES has spatial heterogeneity in each sub-barrier, 
and this spatial distribution pattern may produce trade-offs and 
synergies in the whole area. Therefore, this paper used pixel-by-pixel 
(resampling to align the raster) spatial correlation analysis to calculate 
the correlation coefficients between ES pairs for five periods from 
2000 to 2020  in the study area and conducts significance tests 
(Figure 2).

Based on the pixel-by-pixel spatial correlation analysis is method-
Pearson product–moment correlation coefficient method (Mukaka, 
2012). The correlation coefficients between the two groups of ES were 
calculated separately, and the trade-offs and synergies between the ES 
were measured based on the positive and negative correlation 
coefficients and the absolute magnitude of the relationship. The 
formula is as follows:

 

( ) ( )
( ) ( )2 2

i i

i i
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R

x x y y

∑ − ∑ −
=
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(26)

where, R is the correlation coefficient, if R is positive, the 
relationship between two services is synergistic, and vice versa is a 
trade-off. If R is zero, there is no relationship, and a larger absolute 
value indicates a stronger correlation, i.e., a greater degree of synergy 
or trade-off. x and y are the two ES variables; i is the i-th year.

Significance of trade-offs and synergies between ES determined 
by t-test (Niu et al., 2022). The formula is as follows:

 

21
2

RT
R

n

=
−
−  

(27)

The significance of the interrelationships between ES was judged 
based on the null hypothesis test t-test of the correlation coefficient. 
When ∣T∣ < T0.05, 3, i.e., p > 0.05, the original hypothesis is valid and the 
correlation result is not significant. When T0.05, 3 ≤ ∣T∣<T0.01, 3, i.e., 
0.01<p ≤ 0.05, rejection of the original hypothesis and more significant 
correlation results. When ∣T∣ ≥ T0.01, 3, i.e., p ≤ 0.01, the original 
hypothesis was rejected and the correlation result was 
highly significant.

4. Results

4.1. Spatial variations in ecosystem services

Figure 3 shows the spatial distribution of ES. High values of 
soil conservation service are clustered in the southern part of IM, 
while low values of soil conservation service are mainly distributed 
in the west and the plains between HC and IM. Not only the forests 
and grasslands in eastern IM and eastern HC, but also parts of the 
cropland in TB show a high carbon sequestration supply. The lower 
carbon sequestration service supply is mainly found in the TB and 
desert areas at both ends of the HC. The high sand-stabilization 
service is distributed in the northern part of IM and the grassland 
between IM and HC, and the rest of the area had low 
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sand-stabilization service values. The high habitat provision values 
are mainly distributed in the eastern part of HC where the elevation 
changes are dramatic, and low habitat provision is generally 

distributed in grassland and desert areas. The water conservation 
service in the study area is generally small, but the values of the 
water conservation service are high in lakes and high-altitude 
mountain areas.

4.2. Distribution of ecosystem services 
along different gradients of precipitation 
and fractional vegetation cover

The distribution of five ES in the study area is inhomogeneous, 
showing obvious differences in the precipitation gradient and the 
FVC gradient. We  made statistics on the distribution of 
precipitation gradient, as shown in Figure 4. 33.80–78.10% of the 
total amount of the five ES are mainly distributed in areas with 
precipitation greater than 400 mm, followed by areas with 
precipitation of 200–400 mm. The areas with precipitation in the 
range of 0–200 mm are the least, accounting for 4.43–33.80% of the 
total amount of ES. It shows that ES increases with increased 
precipitation. Figure 5 shows the distribution of five ES across the 
FVC gradient, which is not obvious compared to the distribution 
characteristics of the precipitation gradient. The total distribution 
of habitat provision and carbon sequestration service in the three 
gradients is basically the same. The soil conservation service is 
mainly distributed in areas of FVC greater than 0.6. On the 
contrary, sand-stabilization service and water conservation service 
are mainly distributed in areas with FVC less than 0.3. From the 
perspective of ES per unit area, except soil conservation service 
and water conservation service, other ES increases with the 
increase of FVC. When the FVC range is 0.3–0.6, the soil 
conservation service and water conservation service per unit area 
reach the maximum.

FIGURE 2

Technical processes of the correlation calculation.

FIGURE 3

Spatial distribution of the carbon sequestration service (C, t/km2·a), 
sand-stabilization service (SSS, t/km2·a), water conservation service 
(WCS, t/km2·a), soil conservation service (SCS, t/km2·a), and habitat 
provision (HP, the value is scaled by a factor of 100) in the NSB.
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4.3. Ecosystem service trade-offs and 
synergies

Figure 6 shows the areas where synergies and trade-offs occur 
between the five ecosystem services. As shown in Table 3. The synergy 
between sand-stabilization service and habitat provision accounts for 
86.67% of the study area, and the significant synergy accounts for 
49.08% of the study area. Synergy, especially significant synergy, is 
widely distributed in the study area, but the trade-off area only 
accounts for 2.73%. The significant synergy/trade-off between sand-
stabilization service and soil conservation service is staggered in the 
east of IM, and the significant synergy area (13.54%) is larger than the 
significant trade-off area (3.91%). The area of trade-off between soil 
conservation service and habitat provision is the largest among the 10 
relationships (34.52%), mainly distributed in HC and TB areas with 
weak trade-off relationship. The synergy between sand-stabilization 
service and carbon sequestration service accounts for 43.52% of the 
study area, and the remarkable synergy is clustered and distributed in 
the east of the study area. The distribution of habitat provision and 
carbon sequestration service is similar to that of sand-stabilization 
service and carbon sequestration service. The unconnected 
relationship with carbon sequestration service and soil conservation 
service (43.97%) is distributed in the southern part of TB, the western 

part of HC, the plain between HC and IM, and the land use type is 
desert. The significant synergy/trade-off relationship are staggered in 
the eastern part of the study area. The four relationships between 
sand-stabilization service and water conservation service, carbon 
sequestration service and water conservation service, soil conservation 
service and water conservation service, habitat provision, and water 
conservation service are the relationships between water conservation 
service and other four ES. Obviously, the relationships including water 
conservation service services, unrelated relationships all account for 
more than 75% of the study area. Apart from the forests and grasslands 
in the middle of HC, the forests and grasslands in the southeast of IM, 
and the forests and grasslands in the north of TB, unrelated 
relationships are widely distributed in grasslands and deserts in the 
study area.

Since the unrelated area accounts for most of the total study area, 
the relationship between the two ES is better captured in terms of the 
area ratio of synergies to trade-offs when exploring the trade-offs 
between ES. The ratio of synergy to trade-off between sand-
stabilization service and habitat provision was 31.74: 1, and the area 
of significant synergy represented 49.08% of the total area of the study 
area. The ratio of synergy to trade-off between carbon sequestration 
service and water conservation service was 21.53: 1. The area of 
significant synergy accounted for 9.45% of the total area of the study 
area, while the area of significant trade-off accounted for only 0.01% 
of the total area of the study area. In terms of the area ratio of synergy 
to trade-off, the synergy area was greater than the trade-off area in all 
10 ES pairs, with an average ratio of 8.85:1.

4.4. Response of ecosystem services 
trade-offs and synergies on precipitation 
gradient

See Figures  7, 8. As precipitation increased, trade-offs and 
synergies between 10 paired ES increased, while their trade-offs 
decreased. Specifically, the synergies between soil conservation service 
and habitat provision, sand-stabilization service and habitat provision, 
and sand-stabilization service and soil conservation service all 
exceeded 80% of the study area. And their distribution pattern was 
consistent with the precipitation gradient. Trade-offs and synergies 
between pairs of ES, including water conservation service (habitat 
provision and water conservation service, soil conservation service 
and water conservation service, carbon sequestration service and 
water conservation service, and sand-stabilization service and water 
conservation service) were mainly distributed in the northern end of 
TB, central HC, and central and eastern IM, accounting for only 
16.21–24.10% of the study area. However, note that the uncorrelated 
relationships between these paired ES were widely distributed 
throughout the study area. Nonetheless, the synergies still account for 
the vast majority in different precipitation gradients, and the synergies 
between paired ES also increase with the increase of precipitation. For 
sand-stabilization service and carbon sequestration service, carbon 
sequestration service and soil conservation service, and carbon 
sequestration service and habitat provision, the trade-offs and 
synergies between these ES pairs accounted for about 50–60% of the 
study area, and again, synergy effects dominate. Similarly, synergies 
accounted for the majority, which were mainly distributed in IM and 
scattered in TB and HC. Trade-offs and synergies did not exist in 

FIGURE 4

Spatial distribution pattern of the precipitation gradient.

FIGURE 5

Spatial distribution pattern of fractional vegetation cover (FVC).
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about 40–50% of the areas, which were mainly desert areas. Among 
the 10 paired ES, sand-stabilization service and water conservation 
service changed most obviously with the gradient of precipitation. In 
the annual precipitation range of 0–200 mm, the area ratio of trade-
offs and synergies was 4.23, while in the annual precipitation range of 
400 mm <, it reached 24.59. Compared with other paired ES, the 
synergies of sand-stabilization service and habitat provision accounted 
for the largest proportion of each gradient area, indicating that in arid 
and semi-arid regions, increasing biodiversity can promote more 
sand-stabilization service in ecosystems. In addition, the ES pairs 
containing soil conservation service had the smallest synergies than 
other paired ES, indicating that it was more difficult to play the 
synergy between ES pairs containing soil conservation service than 
other paired ES, but with the increase of precipitation, this gap will 
be reduced. Although less than 20% of the regions have trade-offs and 
synergies between carbon sequestration service and water 
conservation service, the ratio of synergy and trade-off is close to 

sand-stabilization service and habitat provision in each precipitation 
gradient. The study showed that the synergy between ES was greater 
in areas with more precipitation, and this ratio increased with 
increasing precipitation.

4.5. Response of ecosystem services 
trade-offs and synergies on fractional 
vegetation cover gradients

We compared the trade-offs and synergies of ES along the FVC, 
See Figures 8, 9. Similarly to the change in trade-offs and synergies 
between paired ES with precipitation gradients, as the FVC increased, 
the synergies between other paired ES increased except sand-
stabilization service and habitat provision. Furthermore, the 
distribution law of soil conservation service and habitat provision, 
sand-stabilization service and habitat provision, and sand-stabilization 

FIGURE 6

Trade-offs and synergistic salience of ecosystem services. *At a level of 0.05 (two-tailed), the correlation is significant; **At a level of 0.01 (two-tailed), 
the correlation is very significant.

TABLE 3 Significance of trade-offs and synergies of ecosystem service (%).

No relationship Synergy Synergy* Synergy** Trade-off Trade-off* Trade-
off**

SSS_WCS 83.80 9.76 3.24 1.16 1.85 0.11 0.07

SSS_C 50.44 29.19 10.25 4.07 5.70 0.29 0.05

SSS_SCS 19.21 26.06 9.58 13.54 22.72 4.98 3.91

SSS_HP 10.60 15.37 22.22 49.08 2.41 0.23 0.09

C_WCS 80.21 5.00 4.45 9.45 0.81 0.05 0.01

C_SCS 43.97 26.25 6.26 2.59 17.94 2.23 0.77

C_HP 42.74 32.09 13.71 5.03 6.09 0.28 0.06

SCS_WCS 75.92 11.29 2.23 0.81 8.67 0.86 0.23

SCS_HP 10.60 29.74 10.77 14.38 26.54 5.64 2.34

HP_WCS 76.09 11.96 5.71 3.20 2.87 0.14 0.04

C, carbon sequestration service; SSS, sand-stabilization service; WCS, water conservation service; SCS, soil conservation service; and HP, habitat provision.
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service and soil conservation service, as well as the various 
characteristics of the trade-offs and synergies with FVC of paired ES 
containing water conservation service and carbon sequestration 
service, respectively, were also similar to those between pairs of ES and 
precipitation gradient. Nonetheless, along the FVC, there were some 
different regularities in the trade-offs and synergies relationship 
between paired ES. Compared with other paired ES, the synergy of 
sand-stabilization service and habitat provision accounted for the 
largest proportion of each gradient area, indicating that in arid and 
semi-arid regions, increasing biodiversity can promote more sand-
stabilization service in ecosystems. However, FVC had little effect on 
this synergy, and the synergy of sand-stabilization service and habitat 
provision did not increase with the increase of FVC. Although less 
than 20% of the regions had trade-off and synergy between carbon 
sequestration service and water conservation service, the ratio of 
synergy and trade-off is close to sand-stabilization service and habitat 
provision in each FVC gradient. It showed that in areas with low FVC, 
the synergy between ES was less, with the increase of FVC, its 
proportion was increasing. However, with the change of FVC, paired 
ES has a different trend. As FVC increases, the synergy of carbon 
sequestration service and water conservation service increases. This 
shows that increasing FVC in arid and semi-arid regions can first 
increase carbon sequestration, and in some regions can increase water 
conservation service through synergy effects.

5. Discussion

5.1. Trade-offs and synergies of paired 
ecosystem services in different land use 
and land cover

Previous studies suggest that land use/land cover affect trade-
offs and synergies between paired ecosystems (Hasan et al., 2020; 

Liu et al., 2022). We also investigated the characteristics of the 
trade-offs and synergies of paired ES across different land uses and 
land covers (Figure  10). Among the eight land use/land cover, 
except that the trade-off values of sand-stabilization service and 
water conservation service and soil conservation service and water 
conservation service in the impervious is larger, paired ES has been 
synergy dominant in other land use types. However, the same 
paired ES differed among different land use types. Contrary to 
Shao et al. (2020), research that different spaces in the same LULC 
will have different effects on ES there are also differences in the 
performance of different ES in the same land use/land cover. The 
research of Vigl et al. (2017) also shows that land management 
types and biophysical conditions make the provision of ES 
unstable. In forests, grasslands, and barrens, sand-stabilization 
service and habitat provision have greater synergies than other 
paired ES. This finding has practical implications, suggesting that 
through anthropogenically increased vegetation cover (i.e., 
afforestation), similar benefits may be expected for other paired ES, 
while the synergy of sand-stabilization service and habitat 
provision may increase more in multiple paired ES. And this result 
also shows that with the emphasis on biodiversity, sand-
stabilization service gains the most synergy from it. This is of great 
significance to protect wildlife and reduce soil wind erosion. In 
shrub areas, water conservation service and carbon sequestration 
service have greater synergy than other paired ES. In semi-arid and 
arid regions, these types of land use have better hydrothermal 
conditions, and increasing carbon sequestration service can 
promote the synergy growth of other ES. The finding is unexpected, 
but has practical implications, as low shrubs produce more 
ecological benefits than tall trees in semi-arid and arid regions. 
Adding low shrubs can first increase carbon sequestration 
service, and it is beneficial to reduce surface wind speed, reduce 
wind erosion, and can also increase habitat provision growth 
through  synergy. However, it is more significant that in 

FIGURE 7

Ecosystem service synergies and trade-offs with precipitation gradients.
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precipitation-limited arid and semi-arid regions, the transpiration 
and actual evapotranspiration of low shrubs are lower than those 
of tall trees (Zhang and Huang, 2013), and low shrubs can produce 
more water conservation service. Therefore, in arid and semi-arid 
regions, in an attempt to improve the ecological environment 
through artificially increased vegetation coverage, appropriate 
vegetation types should be selected according to the target (the 
type of ES expected to be  improved). For example, in desert-
dominated NSB, by improving the sand-stabilization service of the 
ecosystem to control desert expansion, the choice of planting trees 
and grasses may reap more benefits. In smaller areas, such as cities, 
adding shrubs may be more appropriate. Therefore, in order to 
make better use of the synergistic effect of paired ES and improve 
the ecological environment, the trade-off between trees/grass and 
shrubs is very important.

Through the above analysis of LULC, increasing the greenness of 
land is the most effective way to increase the synergy relationship 
among ecosystem services. For managers, it is the most effective and 
scientific management measure to continuously promote 
desertification control and increase vegetation cover in the Northern 
Sand-stabilization Belt area.

5.2. Variations in trade-offs and synergies 
for paired ecosystem services in northern 
sand-stabilization belt

From the precipitation distribution, 46.31% of the study area in 
2020 has less than 200 mm of annual precipitation, which is an arid 
region. The precipitation distribution is similar to FVC, which 
gradually decreases from east to west. However, there are higher 
precipitation and FVC values in the middle of the HC. In TB region, 
precipitation increases with increasing altitude. Paired ES have 
different sensitivities to vegetation cover and precipitation due to 
differences in distribution patterns. Compared with precipitation, 
there are more pairwise synergistic changes in the effect of FVC. For 
example, among the 10 ES pairs, the synergy between sand-
stabilization service and water conservation service, sand-stabilization 
service and carbon sequestration service, carbon sequestration service 
and water conservation service, carbon sequestration service and 
habitat provision increased significantly with increasing FVC. Because 
in arid and semi-arid regions, high evaporation and low precipitation 
are the norms (Yin et  al., 2005). Vegetation can increase surface 
roughness and shade and reduce surface evaporation, wind erosion, 

FIGURE 8

The ratio of synergies to trade-offs at different gradients. SSS-WCS indicates the relationship between sand-stabilization service and water 
conservation service.
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and water erosion. Synergy of ES pairs that increase with precipitation 
is only sand-stabilization service and soil conservation service. The 
study by Zhang et al. (2022) shows the high contribution of climatic 
factors to vegetation recovery in northern China. Wang X. et al. (2022) 
showed that a 30% increase in precipitation in desert areas stimulated 
the growth of sophora alopecuroides, stipa breviflora, pennisetum 
centrasiaticum, and other species. Thus, increased precipitation 
indirectly contributes to the synergy of sand-stabilization service and 
soil conservation service through increase vegetation. Due to the high 
overlap between the distribution of precipitation and FVC, the other 
four ES pairs were not differently affected by precipitation and FVC.

5.3. Limitations and implications

There are some limitations to this study. Uncorrelated relationships 
between pairs of ES account for a large proportion, especially for ES 
pairs containing water conservation service. We analyze the reasons, 
and the study area is located in northwest China, dominated by deserts 
and grasslands. While most of the water conservation service values 
in these areas are 0. When exploring the trade-offs and synergies 
between water conservation service and other ES, the correlation 
coefficient will be 0, resulting in a large area of irrelevant relationships. 
When the value of a certain ES of a grid is zero in five periods, then 
the relationship between this ES and other ES is irrelevant. There is 
also a situation that when the value of a certain ES does not change for 
five periods, it will also get an irrelevant result with other ES 
calculations. In addition, the interpolation method and resolution of 
the underlying data are also important influencing factors. For 
example, the uncorrelated relationships of sand-stabilization service 
and soil conservation service, carbon sequestration service and soil 
conservation service, soil conservation service and water conservation 
service, and soil conservation service and habitat provision are 
distributed in the eastern part of the study area in a grid-like form. The 
reason for this phenomenon may be that the grid meteorological data 

obtained by spatial interpolation is used in estimating soil conservation 
service. As far as the research content is concerned, this study only 
evaluated 5 ES, and did not evaluate other important ES (such as crop 
production and climate control). The estimation model involves a 
limited number of factors, and the model itself has some inaccuracies. 
In future studies, in addition to further investigating and addressing 
these limitations, we will also explore the driving mechanism of ES 
trade-off and synergy and the model of the relationship between its 
sustainability, so as to better provide information for ecosystem 
management measures, so as to achieve the goal of harmonious 
development between man and nature.

6. Conclusion

This paper selected the northern sand-stabilization belt, which is 
located in northwest China, as the study area. The results of this study 
provide us with a new understanding of arid and semi-arid (or macro-
regional) ecosystems and formulate more reasonable ecosystem 
management and protection measures in NSB.

In this study, we used multi-source data and multiple indicators 
to evaluate the changes of ES in the NSB, the results show that there 
was a clear heterogeneity in the distribution of ES, with soil 
conservation service mainly distributed in the eastern part of HC and 
the southeastern part of IM; the distribution of sand-stabilization 
service had a high overlap with areas where the land cover type was 
desert and grassland; carbon sequestration service distribution is 
closely related to FVC; habitat provision showed higher values in 
places with drastic elevation changes; the values of water conservation 
service were related to the distribution of lakes and snow-
capped mountains.

However, this article mainly focused on assessing the trade-offs 
and synergies of five ESs, especially across the precipitation and 
vegetation cover fraction gradient. The trade-offs and synergies 
among multiple ES were widespread in NSB, but synergies account for 

FIGURE 9

Ecosystem service synergies and trade-offs with changes in fractional vegetation cover gradients.
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a larger proportion. Changes in FVC and precipitation gradients could 
strongly enhance and weaken the trade-offs and synergies of some 
paired ES. The synergy between most paired ES increased significantly 
with increasing precipitation and FVC. However, pairwise ES have 
different sensitivities to FVC and precipitation, and there are more 
synergistic changes in paired ES for FVC effects than for the effects of 
precipitation. For example, the synergy and trade-off area ratio 
between sand-stabilization service and water conservation service in 
areas with less than 200 mm annual precipitation compared to those 
with more than 400 mm annual precipitation changed from 4.23 to 
24.59, the synergy and trade-off area ratio changed from 4.53 to 27.46 
for areas with FVC less than 0.3 compared to greater than 0.6. The 
study found that type of land use may be an important driving factor 
for trade-offs and synergies between paired ES. In arid and semi-arid 
areas, some measures such as planting trees and grass, are often taken 
to improve the ecological environment. To fully exploit the synergistic 
effect of paired ES, our research suggests that in improving the 

ecological environment through artificially increased vegetation 
coverage, appropriate vegetation types should be selected according 
to the target (the type of ES expected to be improved).
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Individual tree-based forest 
species diversity estimation by 
classification and clustering 
methods using UAV data
Xiuwen Li 1,2, Zhaoju Zheng 1, Cong Xu 1,2, Ping Zhao 1,2, 
Junhua Chen 1,2, Jinchen Wu 1,2, Xueming Zhao 1,2, Xuan Mu 1,2, 
Dan Zhao 1,2 and Yuan Zeng 1,2*
1 State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese 
Academy of Sciences, Beijing, China, 2 University of Chinese Academy of Sciences, Beijing, China

Monitoring forest species diversity is essential for biodiversity conservation 
and ecological management. Currently, unmanned aerial vehicle (UAV) remote 
sensing technology has been increasingly used in biodiversity monitoring due to 
its flexibility and low cost. In this study, we compared two methods for estimating 
forest species diversity indices, namely the spectral angle mapper (SAM) 
classification approach based on the established species-spectral library, and the 
self-adaptive Fuzzy C-Means (FCM) clustering algorithm by selected biochemical 
and structural features. We  conducted this study in two complex subtropical 
forest areas, Mazongling (MZL) and Gonggashan (GGS) National Nature Forest 
Reserves using UAV-borne hyperspectral and LiDAR data. The results showed 
that the classification method performed better with higher values of R2 than the 
clustering algorithm for predicting both species richness (0.62 > 0.46 for MZL and 
0.55 > 0.46 for GGS) and Shannon-Wiener index (0.64 > 0.58 for MZL, 0.52 > 0.47 
for GGS). However, the Simpson index estimated by the classification method 
correlated less with the field measurements than the clustering algorithm (R2 = 0.44 
and 0.83 for MZL and R2 = 0.44 and 0.62 for GGS). Our study demonstrated that 
the classification method could provide more accurate monitoring of forest 
diversity indices but requires spectral information of all dominant tree species at 
individual canopy scale. By comparison, the clustering method might introduce 
uncertainties due to the amounts of biochemical and structural inputs derived 
from the hyperspectral and LiDAR data, but it could acquire forest diversity patterns 
rapidly without distinguishing the specific tree species. Our findings underlined 
the advantages of UAV remote sensing for monitoring the species diversity in 
complex forest ecosystems and discussed the applicability of classification and 
clustering methods for estimating different individual tree-based species diversity 
indices.

KEYWORDS

forest species diversity, classification, clustering, UAV, individual tree-based

1. Introduction

Forest biodiversity is essential in maintaining ecosystem patterns, functions and services 
(Balvanera et al., 2006; Thompson et al., 2009; Brockerhoff et al., 2013). Forest species diversity 
is a fundamental component of biodiversity, which refers to the uniformity of the number and 
distribution of tree species in forest ecosystems (Magurran, 1988; Vellend, 2004). However, with 
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the increasing pressure of human activities and climate change, it has 
faced severe threats, such as accelerated species extinction and 
increased endangered species (Iida and Nakashizuka, 1995; Haas et al., 
2011). Therefore, accurate and repeated forest species diversity 
monitoring is important for biodiversity conservation and 
ecological management.

Currently, the assessment of species diversity in a certain region 
is mainly based on species diversity indices, among which species 
richness (Gaston, 2000) emphasizes the number of various species, 
while Shannon-Wiener index (Shannon, 1948) and Simpson index 
(Simpson, 1949) take into account both the amount and evenness of 
species. Traditional forest species diversity monitoring relies on field 
surveys to investigate these diversity indices (Kerr and Ostrovsky, 
2003), which are labor- and material-intensive and focus on forest 
species distribution at the sample scale (Myers et al., 2000; Duro et al., 
2007). Remote sensing has the advantages of an extensive detection 
range and a short data acquisition period, extending the possibilities 
of forest species diversity monitoring at both temporal and spatial 
scales (Turner et al., 2003; Skidmore et al., 2015). Near-surface remote 
sensing platform equipped with hyperspectral sensors and laser 
scanners has been a promising tool for forest species diversity 
monitoring in the past decade (Turner, 2014; Guo et al., 2017; Wang 
and Gamon, 2019; Pu, 2021). In particular, UAV (unmanned aerial 
vehicle) remote sensing technology, due to its advantages of flexibility 
and low cost, has shown great potential in species identification and 
biodiversity monitoring (Anderson and Gaston, 2013; Lin et al., 2019; 
De Almeida et al., 2021).

Hyperspectral data can obtain continuous spectral information 
of vegetation and has been increasingly used for monitoring forest 
species diversity (Féret and Asner, 2014; Ferreira et  al., 2016; 
Laurin et al., 2016). The monitoring methods are mainly divided 
into two categories: supervised classification methods that directly 
identify forest species based on their spectroscopic characteristics 
(Féret and Asner, 2013; Fassnacht et al., 2016; Cao et al., 2018; 
Franklin and Ahmed, 2018), and spectral diversity metrics that 
indirectly link the variation of leaf or canopy spectra to species 
diversity (Palmer et  al., 2002; Gholizadeh et  al., 2018). Light 
Detection and Ranging (LiDAR) data can directly penetrate the 
vegetation canopy by actively emitting high-frequency pulses, so it 
is widely used for high-precision estimation of forest structural 
features, including tree height and crown diameter (Popescu, 2007; 
Morsdorf et al., 2009; Sankey et al., 2013; Wallace et al., 2014). 
Furthermore, advances in lidar remote sensing have enabled the 
accurate extraction of information from individual tree crowns 
(ITCs) (Ene et al., 2012; Zhao et al., 2014). Compared to the pixel-
based approach, the ITC-based approach is more directly 
analogous to the field-based individual sampling method, which 
can better extract structural features of the canopy and minimize 
the signal confusion brought by non-tree pixels (Zheng et  al., 
2022). Based on LiDAR data, forest species diversity at the regional 
scale can be  monitored by establishing relationships between 
structural features and field-measured species diversity indices 
(Lopatin et  al., 2016; Torresani et  al., 2020; Hu et  al., 2021). 
However, the capability of forest species diversity monitoring using 
only hyperspectral data or LiDAR data might be limited by species 
complexity, image spectral mixing and canopy morphological 
variation (Koch, 2010; Guo et al., 2017). The fusion of hyperspectral 
and LiDAR data provides a synergistic ability, which can use 

vertical and horizontal information from each data source to 
acquire more robust diversity monitoring results.

Previous studies have integrated structural features extracted by 
LiDAR data and spectral characteristics from hyperspectral images for 
directly discriminating tree species by using classification techniques, 
including linear discrimination analysis (Alonzo et al., 2014), support 
vector machine (Dalponte et al., 2012), random forest (Liu et al., 2017) 
and spectral angle mapper (Zhao et al., 2020). Mayra et al. (2021) 
compared the performance of different classification methods for 
identifying the major tree species in a boreal forest based on airborne 
hyperspectral and LiDAR data. Assessing forest species diversity using 
remote sensing classification methods has the advantage of providing 
spatially explicit species distribution information for each ITC or 
pixel. However, it remains challenging to directly discriminate the 
species of all individuals accurately in complex subtropical or tropical 
forests due to the potential spectral or structural similarity among 
different species or differences existing for the same species (Price, 
1994; Wang and Gamon, 2019). The confusion in classification usually 
increases with increasing biodiversity levels and more training data 
for species-rich forests is usually needed to improve the classification 
accuracy. Moreover, collecting sufficient training and validation data 
for each tree species in species-rich and topographically complex 
forests can be  a challenging task. Although some methods are 
relatively capable of classifying trees with limited training samples 
(Christian et  al., 2013; Awad, 2018), the classification results are 
achieved using specific images and algorithms with relatively 
lower transferability.

Many indirect approaches using spectral and structural 
information have shown great potential for monitoring forest species 
diversity, such as regression analysis and clustering. Regression 
analysis is to model the spectral and structural information directly 
with the measured species diversity indices, which is a mature and 
straightforward algorithm, but the applicability in different regions is 
poor (Ceballos et al., 2015). The clustering algorithm can evaluate 
species diversity by grouping trees with similar characteristics based 
on the biochemical and structural variation of different tree species 
(Asner et al., 2015; Padilla-Martinez et al., 2020; Pakgohar et al., 2021). 
Clustering can be used to identify patterns or trends in the distribution 
and abundance of different species within a forest ecosystem. Among 
them, the self-adaptive Fuzzy C-Means (FCM) clustering algorithm 
overcomes the disadvantage of traditional clustering methods, which 
require a pre-indication of the initial classes, and can determine the 
optimal number of clusters automatically (Bezdek et al., 1987; Li and 
Yu, 2009). Zhao et al. (2018) estimated the forest species richness and 
Shannon-Wiener index in a subtropical forest based on airborne 
LiDAR and hyperspectral data using seven biochemical components 
and tree height by the adaptive FCM clustering algorithm. The 
biochemical and structural parameters selected in each study area for 
clustering methods may be  dependent, and their applicability to 
species diversity monitoring in other areas still needs to be determined, 
especially for forests with diverse species and complex compositions.

Several studies have used either classification or clustering 
methods to estimate forest species diversity by combining various 
features from remote sensing data, but it remains unclear which 
method is more effective for monitoring different aspects of diversity 
in different forest conditions. Although some studies have used 
spaceborne or airborne data to assess species diversity (Shen and Cao, 
2017; Wan et al., 2021), they are often limited by spatial resolution or 
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expensive costs. UAV-borne hyperspectral and LiDAR data could 
provide spatially explicit information on individual trees, so it is more 
advantageous to explore the applicability of advanced methods in 
different species-rich forests by UAV data.

Therefore, the major objectives of our study are to explore the 
performance of individual tree-based classification and clustering 
methods in estimating three commonly used forest species diversity 
indices (species richness, Shannon-Wiener index and Simpson index) 
in two typical subtropical forests in China using UAV-borne 
hyperspectral and LiDAR data. We aim to: (1) classify tree species 
using the SAM classification method based on hyperspectral image 
and the individual tree crown segmentation results from LiDAR data, 
(2) estimate forest species diversity using the self-adaptive FCM 
clustering algorithm based on optimal biochemical vegetation indices 
and structural features, and (3) further compare the performance of 
classification and clustering methods in these two subtropical 
forest sites.

2. Materials and methods

2.1. Study area

Subtropical forest in China is a hotspot of tree species richness 
and a priority area for forest species diversity monitoring (Li et al., 
2009; Liu et al., 2018). We conducted research in two study areas, both 
of which are typical subtropical forests of China, but their forest 
species compositions and environmental conditions are different. The 
first study area is located in the Mazongling National Nature Reserve 
(MZL, 115°41′37′–115°42′5′E, 31°15′25′–31°15′44′N) in Jinzhai 
county, Anhui province of China (Figure 1). The study area covers 
about 23.8 ha with an elevation varying from 1,000 m to 1,184 m above 
sea level. This region is characterized by a subtropical monsoon 
climate. The average annual temperature is about 13 ~ 15°C, and the 
average annual precipitation is 1,510 mm (Fan et  al., 2022). 
Mazongling National Nature Reserve has abundant forest resources, 
and the study area contains more than 10 dominant tree species, 
including Quercus glandulifera, Platycarya strobilacea, Castanea 
mollissima and Lindera glauca.

The second study area is situated in the Minya Konka National 
Park (also known as Gonggashan, GGS, 102°3′50′–102°4′28′E, 
29°36′2′–29°36′15′N) in Ganzi (Garzê) Tibetan Autonomous 
Prefecture, Sichuan province of China with an elevation varying from 
1959 m to 2,247 m above sea level (Figure 1). This study area is located 
in the transitional zone from the subtropical belt to the temperate belt 
of the eastern Tibetan Plateau, covering an area of approximately 
20.5 ha. The average annual temperature is about 4.2°C, and the average 
annual precipitation is 1947 mm (Zhou et al., 2013). The forest canopy 
across this study area comprises more than 15 dominant tree species, 
including Fagus longipetiolata, Jasminum nudiflorum, Ailanthus 
altissima, Cercidiphyllum japonicum and Bothrocaryum controversum.

2.2. Data acquisition and preprocessing

2.2.1. UAV-borne hyperspectral and LiDAR data
The UAV-borne hyperspectral data were collected on September 

18 and October 15, 2020, using the Cuber UHD185 Firefly imaging 

spectrometer (Cubert GmbH, Ulm, Baden-Württemberg, Germany) 
onboard a DJI Matrice 300 aircraft (Da Jiang innovate technology Ltd., 
Shenzhen, China) under cloudless conditions. The sensor comprises 
125 visible and near-infrared spectral channels ranging from 450 nm 
to 946 nm with an 8 nm spectral resolution. The sensor was equipped 
on the UAV platform and flew at an altitude of 80 m, resulting in a 
7 cm spatial resolution. The preprocessing of the images consisted of 
four preliminary steps. First, the Agisoft PhotoScan software (Agisoft 
LCC Co. St. Petersburg, Russia) was used for image mosaic. Spectral 
radiation calibration was the second step to convert the spectral 
response into the true spectral radiance. Then, the reflectance 
spectrum was calculated from the reference spectra of calibration 
plates and the spectral radiance. Finally, the geometric correction was 
performed in the Image Registration Workflow tool of ENVI5.3 
software (Gai, 2019).

The UAV-borne LiDAR data were obtained simultaneously with 
the hyperspectral dataset acquisition using the LiAir VH Pro scanner 
(Green Valley Inc., Beijing, China) operating at a wavelength of 
905 nm. The scanner provided a 70.4° horizontal (cross-track) and 
77.2° vertical (along-track) angle of view. The height accuracy of the 
laser scanner was 5 cm and had an 80% flight strip overlap. The 
average point density in MZL is more than 117 points/m2, and the 
average point density in MZL is more than 168 points/m2. The point 
cloud data were noise filtered and classified into ground and vegetation 
returns using the software TerraSolid (Terrasolid, Helsinki, Finland). 
We  generated the digital elevation model (DEM) based on the 
classified ground points and constructed the digital surface model 
(DSM) from the first pulse reflections of the LiDAR point clouds, and 
subtracted a canopy height model (CHM) with a resolution of 0.1 m 
(Zhao et al., 2013). The UAV-LiDAR data were normalized based on 
the ground points to remove the influence of terrain undulations on 
the height values. Besides, the vegetation point clouds with a 
normalized height below 2 m were removed to reduce the effect of 
background factors such as shrubs and grasses.

2.2.2. Field measurements
Field measurements were collected simultaneously with the UAV 

data acquisition in September–October 2020, and a supplemental 
survey was conducted in July 2022. A total of 26 square sample plots 
(30 × 30 m) within these two study areas were acquired. Differentially-
corrected GPS determined the coordinates of the four corners of each 
sample plot. Tree parameters were measured in each sample plot, 
including tree species name, diameters at breast height (DBH), crown 
base height, tree height, crown classes (dominant, co-dominant, 
intermediate and suppressed trees) and crown diameters in two 
directions (south–north and east–west) for all individual trees with 
DBH ≥ 5 cm. The plot-level forest canopy closure and leaf area index 
(LAI) were also obtained by hemispherical photographs taken by a 
fish-eye camera along two diagonals. In addition, to validate individual 
tree segmentation and carry out classification research, we measured 
the location of each tree in two of the sample plots in MZL and four 
of the sample plots in GGS by integrating the Real Time Kinematic 
(RTK) GPS/GLONASS System with the total station.

We selected 10 dominant tree species in MZL and 15 dominant 
tree species in GGS and collected top-of-canopy leaves for these 
dominant tree species to measure their biochemical components and 
spectral properties. We measured 10 major biochemical components, 
including chlorophyll a and b (Chl-a, Chl-b), total carotenoids (Car), 
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total carbon (C), nitrogen (N), phosphorus (P), cellulose (Cel), lignin 
(Lig), specific leaf area (SLA) and equivalent water thickness (EWT) 
similar as the previous study (Zheng et  al., 2021). Leaves of each 
species with a mass of more than 150 g were selected and stored in 
plastic bags on ice and immediately transported to the laboratory for 
component analysis and spectroscopic measurement. Hemispherical 
reflectance spectra with 350–2,500 nm wavelengths were measured on 
10 fresh leaves of each dominant tree species using a leaf clip coupled 
with the ASD FieldSpec 4 portable spectroradiometer (ASD Inc., 
Boulder, CO, United States). The bands with a wavelength of less than 
400 nm and more than 2,400 nm were removed to eliminate the 
influence of instrument noise, and the spectra between 400 to 
2,400 nm were smoothed by the Savitzky–Golay filter (Savitzky and 
Golay, 1964).

2.2.3. Species diversity indices
We used species richness, Shannon-Wiener index, and Simpson 

index to represent forest species diversity and calculated them within 
each sample plot based on the field measurements. Species richness 
refers to the total number of species in the sample plot. Shannon-
Wiener index (Shannon, 1948) and Simpson index (Simpson, 1949) 
can reflect species richness and evenness of species distribution. They 
are comprehensive indicators reflecting the degree of species diversity. 
The Shannon-Wiener index is more sensitive to the number of species, 

and the Simpson index is more sensitive to the evenness of enriched 
species (Nagendra, 2002). The calculation formula of the Shannon-
Wiener index (H) and Simpson index (D) were as follows:

 H p p
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i i= −
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 D p
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i= −

=
∑1

1
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  (2)

where n is the total number of species in the sample plot, and pi  
is the proportional abundance of the species i.

2.3. Methods

2.3.1. Individual tree crown segmentation
Based on the 0.1 m CHM data, we used a watershed algorithm 

combined with morphological crown control to separate the 
individual tree crowns (ITCs) (Wang et al., 2004; Chen et al., 2006; 
Zhao et al., 2014). Firstly, a morphological crown closing operator was 
used to determine the crown area and obtain the binary image of the 

FIGURE 1

The location of two study areas (top left) with 10 m spatial resolution from ChinaCover2020 (Wu et al., 2017), and MZL study area (top right) and GGS 
study area (bottom right) with imaging spectroscopy data acquired from Cuber UHD185 Firefly imaging spectrometer (Red: 866 nm, Green: 654 nm, 
Blue: 566 nm). The blue triangles indicate the locations of field-measured sample plots. The green circles indicate the locations of individual tree crown 
(ITC) validation plots. Six photographs of these ITC plots are shown on the bottom left.
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canopy. Next, a local extremum algorithm was used to detect the 
positions of the potential individual treetop. The actual individual 
treetop positions and potential crown shapes were calibrated through 
two watershed transformations and image reconstruction operations. 
Finally, the crown shapes were determined using an adaptive 
optimized morphological crown opening operator.

2.3.2. Spectral angle mapper (SAM) classification
Among many supervised classification methods, the SAM 

classification was used for its better performance in the hyperspectral 
data (Park et al., 2004; Yang et al., 2008; Zhang and Li, 2014). The SAM 
algorithm is a physically based spectral classification that uses an 
n-dimensional angle to match the extracted endmember spectra 
(Kruse et al., 1993; Park et al., 2007; Mohajane et al., 2017). The SAM 
algorithm determines the spectral similarity though calculating the 
angle between the spectrum vectors. Smaller angles correspond to 
closer matches to the endmember spectrum.

We calculated the average spectrum of each canopy based on the 
ITC segmentation results in the sample plots. Firstly, pixels with 
NDVI <0.2 and canopy height < 2 m were removed from the 
hyperspectral images to reduce the effect of background factors such 
as canopy gaps. A total of 2 ITC plots with 14 tree species in MZL 
(covering more than 90% of local tree species) and a total of 4 ITC 
plots with 22 tree species in GGS (covering more than 75% of local 
tree species) were used to establish the endmember spectral library. 
Then we determined the average spectrum of each species in the two 
study areas and used the SAM algorithm to classify them according to 
the established spectral library. With the classification results, 
we acquired the species diversity indices of each sample plot and used 
for validation.

2.3.3. Self-adaptive fuzzy C-means (FCM) 
clustering algorithm

The optimal biochemical components selection followed two 
principles (Zhao et al., 2016): (1) biochemical components can be well 
inverted by the spectrum. (2) these biochemical components are 
sufficient to distinguish different tree species. The partial least squares 
regression (PLSR) was used to determine the relationships between 
the in-situ leaf spectral and the biochemical measurements and 
explore whether the biochemical components of tree species can 
be quantitatively estimated by their spectral signals. The PLSR method 
combines the advantage of principal component analysis, canonical 
correlation analysis, and multiple linear regression analysis. It was 
performed using JMP14.0 statistical software.

After the optimal biochemical components were determined, the 
corresponding vegetation indices (VIs) from the hyperspectral data 
could be selected through the existing vegetation index models to 
estimate the biochemical components. Due to the lack of influential 
lignin invention bands, we finally identified nine canopy-scale VIs to 
indicate Chl (Chl-a and Chl-b), Car, C, N, P, Cel, SLA and EWT based 
on the literature (Table  1). Many studies have confirmed that the 
standard deviation of VIs in an area can reflect the species diversity in 
this region (Cayuela et  al., 2006; Stickler and Southworth, 2008; 
Costanza et al., 2011), so we calculated the standard deviation of VIs 
for all ITCs at the plot scale, and performed Spearman correlation 
analysis with the species diversity indices (corrplot, R-package) to 
select the optimal VIs. The VI for each ITC was calculated by 
extracting the VI of the central pixel of each ITC. These canopy-level 

biochemical VIs were then converted into leaf-scale biochemical VIs 
by dividing the canopy-level biochemical VIs by the ITC’s LAI to 
eliminate the effects caused by the canopy structure (Zarco-Tejada 
et al., 2001; Zhao et al., 2018). ITC’s LAI was calculated by establishing 
the relationship between forest gap fraction (GF) and LAI according 
to Beer–Lambert Law (Richardson et  al., 2009), as shown in 
Formula (3):
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where nground is the number of extracted ground points, nvegetation is 
the number of vegetation points, k is the extinction coefficient and 
takes a value of 0.5 if the vegetation is considered to follow the 
spherical leaf angle distribution, θ is zenith angle (LiDAR scanning 
angle) and GF is gap fraction.

We extracted 58 structural features for each ITC, including 
canopy cover, leaf area index, and height variables (statistical 
parameters related to point cloud height value) based on 
UAV-LiDAR data and the ITC-segmented ITC boundaries using 
LiDAR 360 software (Supplementary Table S1). Then we calculated 
the standard deviation of these structural variables in each sample 
plot. Finally, the Spearman correlation coefficient test with species 

TABLE 1 Vegetation indices corresponding to the biochemical 
components.

Biochemical 
component

Vegetation 
index

Formula Reference

Chl TCARI/ OSAVI TCARI / 

OSAVI = 3[(R750.6–

R704.6)-0.2(R750.6–

R550.6)(R750.66/R704.6)] / 

(1 + 0.16)(R750.66–

R704.6)/

(R750.66 + R704 + 0.16)

Daughtry et al. 

(2000) and Wu 

et al. (2008)

VOG1 VOG1 = R979.95/R720.88 Vogelmann 

et al. (1993)

EWT WBI WBI = R895/R972 Penuelas et al. 

(1993)

Car CRI CRI = 1/R510–1/R550 Gitelson et al. 

(2002)

Cel PRI PRI = (R531 – R570)/

(R531 + R570)

Gamon et al. 

(1992)

N CCCI CCCI = (0.7415R790–

0.6965R720)/

(0.0319R790–

0.281R720)

El-Shikha et al. 

(2007)

P NDSI NDSI = (R553-R518)/

(R553 + R518)

Patil et al. 

(2007)

SLA RVI RVI = R750/R705 Jordan (1969)

C PSRI PSRI = (R680-R500)R750 Merzlyak et al. 

(1999)
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diversity indices was performed to obtain the optimal 
structural features.

Self-adaptive Fuzzy C-Means (FCM) clustering algorithm was 
applied to calculate the species richness (the number of clusters) based 
on the optimal biochemical VIs derived from the hyperspectral image 
and optimal structural features obtained from LiDAR data for each 
ITC. Each cluster was considered to be a specific but unidentified 
species. Then the Shannon-Wiener index and the Simpson index can 
be derived from the cluster amount and the ITC number of each 
cluster in the sample plot [Formula (1) and (2)]. The field-measured 
values of species diversity indices of 26 sample plots in two study areas 
were then compared with the forest biodiversity prediction results to 
verify the estimation accuracy of the clustering algorithms.

The standard Fuzzy C-Means algorithm transforms the cluster 
into a nonlinear optimization problem and achieves the number of 
categories through iteration (Bezdek et al., 1987). Self-adaptive Fuzzy 
C-Means (FCM) clustering algorithm was developed from the 
standard Fuzzy C-Means algorithm (Li and Yu, 2009). Self-adaptive 
FCM automatically determines the optimal number of clusters by 
using a new validity function without relying on the number of pre-set 
categories and prior knowledge, solving the acute problem of the 
clustering algorithm to the initial value. The validity function is 
defined as:
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where c is the number of clusters, m is the fuzzy weighting 
exponent, X x x xn= …{ }1 2, , ,  is a sample data set, V v v vn= …{ }1 2, , ,  
is the cluster center dataset, uij  represents the membership if the j-th 
sample point belongs to the i-th class, x  is the central vector of all 
data, and d x vij j i= −  is the Euclidean distance between the j-th 
sample point and j-th cluster center.

3. Results

3.1. Individual tree crown segmentation

The ITC segmentation results of all 26 sample plots show that 
the amounts of segmented ITCs are quantitatively close to the 
ground-measured tree number (MZL: R2 = 0.76, RMSE = 5.41; GGS: 
R2 = 0.82, RMSE = 7.17; Figure  2). Due to the effects of crown 
overlap, point cloud density, small crowns, multi-stemmed trees 
and other reasons, some extra trees (over-segmentation) and missed 
trees (under-segmentation) can be found in the ITC segmentation 
results. The segmented and measured position of ITCs in sample 
plot 2 of MZL (71 segmented vs. 74 field-measured ITCs) and 
sample plot 4 of GGS (55 segmented vs. 54 field-measured ITCs) are 
shown in Figure  2 as an example. The over-segmentation 
phenomenon occurs in broad-leaved trees with large crowns and 
non-prominent treetops. In contrast, the under-segmentation 

phenomenon is caused by the overlapping crowns owing to the high 
forest canopy density. Multiple overlapping crowns are considered 
as one crown and are not isolated.

3.2. Forest species diversity prediction 
based on classification method

The SAM classification algorithm was applied to obtain the tree 
species of each ITC based on hyperspectral image and ITC boundaries 
from LiDAR data. As illustrated in Figure 3, a total of 14 endmembers 
in MZL and a total of 22 endmembers in GGS were extracted directly 
from the hyperspectral image. These tree species’ endmembers were 
significantly different from each other and thus could be used for 
classification. Figure 4 shows the tree species classification results of 
two typical sample plots using the SAM algorithm.

The performance of the relationships between the predicted values 
and the three field-measured species diversity indices (species 
richness, Shannon-Wiener index, and Simpson index) is shown in 
Figure  5 (Blue colors). In MZL, the SAM classification algorithm 
demonstrated positive and significant predictive validity for species 
richness (R2 = 0.62, RMSE = 1.44), Shannon-Wiener index (R2 = 0.64, 
RMSE = 0.16) and Simpson index (R2 = 0.44, RMSE = 0.05). In GGS, 
the estimated values and the measured species diversity indices were 
positively and significantly correlated only for species richness 
(R2 = 0.55, RMSE = 2.87) and Shannon-Wiener index (R2 = 0.52, 
RMSE = 0.24). The classification-based prediction of the Simpson 
index was positively correlated with the field measurements, but the 
correlation was not significant (R2 = 0.44, p = 0.01).

3.3. Forest species diversity validation of 
clustering algorithm

The estimation accuracies of biochemical components based on 
leaf spectra of tree species are shown in Table 2. It demonstrates that: 
(1) In MZL, Chl-a, Chl-b, EWT, Car, SLA and C could be strongly 
predicted by leaf spectra based on PLSR models (R2 = 0.78–0.82). Cel, 
N, Lig and P are also relatively quantified by spectral reflectance 
(R2 = 0.44–0.74). (2) In GGS, Chl-a, Chl-b, EWT and SLA could 
be well estimated by spectral signatures (R2 = 0.62–0.73). Car, N and 
C also perform a relatively positive relationship with spectral 
properties (R2 = 0.30–0.46). Cel, Lig and P have no obvious correlation 
with spectral reflectance (R2 < 0.30).

Based on the optimal biochemical components that are 
spectrally obtainable (Table 2), we determined 9 biochemical VIs 
(TCARI/OSAVI, VOG1, CRI, WBI, CCCI, RVI, PRI, NDSI and 
PSRI) in MZL to indicate Chl (Chl-a and Chl-b), Car, EWT, N, SLA, 
Cer, P and C, respectively. As for GGS, we selected 7 biochemical 
VIs (TCARI/OSAVI, VOG1, WBI, RVI, CRI, CCCI and PSRI) to 
express Chl (Chl-a and Chl-b), EWT, SLA, Car, N and C, 
respectively. Supplementary Figures S1, S2 show the relationships 
between the standard deviation of ITC’s biochemical VIs of sample 
plots and the species diversity indices in the two study areas. In 
MZL, there was a positive correlation between the standard 
deviation of 7 ITC-based VIs (WBI, TCARI/OSAVI, PRI, RVI, 
CCCI, VOG1 and PSRI) and species richness at the sample plot 
scale. These 7 VIs were selected as the optimal biochemical VIs. In 
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GGS, only 3 ITC’s VIs (TCARI/OSAVI, RVI and PSRI) partially 
correlated with the species diversity indices. We regarded them as 
the optimal biochemical VIs.

The standard deviation of ITC-based structural features was 
weakly correlated with the species diversity indices in MZL. We finally 
conducted the two most relevant characteristics, namely canopy cover 
(CC) and density metric 30% (DM 30%) as the optimal structural 
features. In GGS, many structural features were positively and 
significantly correlated with species diversity indices. We  finally 
determined five optimal structural features, including the interquartile 
range of accumulated elevation (Elev AIQ), coefficient of variance of 
elevation (Elev CV), the variance of elevation (Elev Var), density 
metric 20% (DM 20%) and density metric 30% (DM 30%), which 
showed high correlation with species diversity indices (Spearman 
correlation was above 0.5). Supplementary Figures S3, S4 show the 

relationships between the standard deviation of ITC’s structural 
features of sample plots and the species diversity indices for MZL and 
GGS, respectively.

We applied the Self-adaptive FCM algorithm to estimate the three 
species diversity indices at 26 sample plots in two study areas based 
on the optimal biochemical VIs and optimal structural features for 
each ITC. The results are shown in Figure 5 (Red colors). In MZL, the 
clustering algorithm demonstrated positive and significant predictive 
validity for Shannon-Wiener index (R2 = 0.58, RMSE = 0.22) and 
Simpson index (R2 = 0.83, RMSE = 0.06). The estimated species 
richness was lower than the field-measured value (RMSE = 2.47) and 
performed relatively unsatisfactory inversion results (R2 = 0.46, 
p = 0.01). In GGS, the estimated value and the measured species 
diversity indices were positively and significantly correlated only for 
Simpson index (R2 = 0.62, RMSE = 0.07). The prediction results for 

FIGURE 2

Scatter diagram for verification of ITCs (left) and results of individual tree separation in sample plot 2 of MZL (middle) and sample plot 4 of GGS (right) 
(black boxes represent the boundaries of plots, white polygons refer to the segmented tree crowns, and red points represent the field-measured 
positions at the base of tree stems).

FIGURE 3

Endmember spectral library of dominant tree species in two study areas (left: MZL, right: GGS).
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species richness (R2 = 0.46, RMSE = 3.94) and Shannon-Wiener index 
(R2 = 0.47, RMSE = 0.28) were positive but not significant enough 
(p = 0.01).

4. Discussion

Our results showed that the classification method performed 
better with higher values of R2 than the clustering algorithm for 
predicting species richness (0.62 > 0.46 for MZL and 0.55 > 0.46 for 
GGS) and the Shannon-Wiener index (0.64 > 0.58 for MZL, 
0.52 > 0.47 for GGS) in two study areas (Figure 5). However, the 
Simpson index estimated by the classification method correlated less 
with the field measurements than the clustering algorithm (R2 = 0.44 
and 0.83 for MZL and R2 = 0.44 and 0.62 for GGS). This is probably 
due to the Simpson index weights rare species less and dominant 
species more than Shannon-Wiener index (Magurran, 1988; Daly 
et al., 2018), so the clustering algorithm taking dominant species/
traits more into account are expected to predict the Simpson index 
accurately. Some previous studies have suggested that the Shannon-
Wiener index is more closely related to species richness, while the 
Simpson index is more distantly correlated with richness (Nagendra, 
2002; Costanza et  al., 2011; Leinster and Cobbold, 2012). Our 
outcomes further indicated that the classification method is more 
advantageous in identifying rare species and estimating species 
richness, while the clustering method performs better in indicating 

the evenness of species. Constrained by the limited number of 
sample plots, it could be  considered to use more independent 
validation plots to verify the advantages of classification and 
clustering methods in predicting species diversity indices in the 
future study.

We demonstrated that the individual tree-based SAM 
classification could be  used to monitor the species diversity of 
complex forests and have the ability to distinguish the non-dominant 
species (Figure 4). This is mainly because SAM classification could 
distinguish similar spectra of tree species for classifying species 
based on hyperspectral data (e.g., Platycarya strobilacea and Tilia 
tuan in this experiment, Figure 3) when the endmember spectral 
library of dominant tree species is available (Awad, 2018; Zhao et al., 
2020). However, when the spectra of non-dominant trees and 
dominant trees are very similar (such as Carpinus turczaninowii and 
Castanea mollissima in this study, Figure 3), SAM classification may 
also incorrectly classify them, which brings some challenges to the 
estimation of Shannon-Weiner and Simpson index. To better 
estimate species diversity using the SAM classification approach, it 
is necessary to extract their distinguishable bands to accurately 
classify these tree species. Moreover, forest structure has been 
identified as an essential indicator of forest species diversity (Ishii 
et al., 2004; Zeng et al., 2008; Guo et al., 2017; Torresani et al., 2020). 
We used the SAM classification to monitor species diversity based 
on the ITCs’ spectral signal from UAV-hyperspectral data without 
considering the input of structural characteristics. The fusion of 

FIGURE 4

Tree species classification results of one sample plot in MZL (left) and one sample plot in GGS (right). Different geometric polygons represent identified 
ITCs, with white borders indicating the boundaries of the ITCs.
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spectral and structural features could increase the dissimilarity 
among tree species and improve classification accuracy (Torabzadeh 
et  al., 2019). Therefore, whether integrating LiDAR-derived tree 

structural parameters into the supervised classification of 
hyperspectral data can improve species diversity monitoring is 
worth to be further investigated.

A D

B E

C F

FIGURE 5

Field-measured species diversity indices compared with the predicted values based on classification and clustering approaches for MZL (left) and GGS 
(right).

TABLE 2 Estimation results of leaf biochemical components.

Biochemical 
component

Chl-a Chl-b EWT Car Cel N Lig P SLA C

MZL
R2 0.80 0.81 0.78 0.82 0.44 0.74 0.67 0.61 0.80 0.81

RMSE 1.87 0.96 2.76 0.30 5.99 0.35 3.43 0.02 31.35 1.25

GGS
R2 0.68 0.69 0.62 0.46 0.24 0.34 0.25 0.24 0.73 0.30

RMSE 2.60 1.24 4.37 0.40 3.71 0.40 3.54 0.03 34.88 1.72
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Our results for both study areas demonstrated that forest 
diversity patterns could be  rapidly acquired by the Self-adaptive 
FCM clustering algorithm based on individual tree-based variations 
in biochemical and structural features without distinguishing the 
tree species, which is similar to the previous clustering research 
(Féret and Asner, 2014; Schafer et al., 2016; Zhao et al., 2018). A 
maximum number of 11 and 15 tree species can be identified in the 
sample polt of MZL and GGS based on different optimal feature 
compositions using the clustering algorithm (7 optimal biochemical 
VIs and 2 optimal structural features for MZL, 3 optimal biochemical 
VIs and 6 optimal structural features for GGS, Figure  6). The 
outcomes of our feature selection further illustrated the spectral and 
structural heterogeneity of different regions and also emphasized the 
applicability of our clustering method in subtropical forests. 
Compared to the previous studies using Random Forest (RF) 
algorithm to select the optimal features, we underlined the strength 
of correlation analysis between the variation of biochemical VIs or 
structural features and species diversity indices at sample plot scale 
(Xie et al., 2019; Adhikari et al., 2020; de Almeida et al., 2021). The 
RF algorithm filters the optimal features according to the importance 
of the variables, while our feature selection method considers the 
basic biochemical and structural principles of forest (Hall, 2000; 
Strobl et  al., 2008). However, the biochemical composition and 
structural characteristics of the same tree species vary considerably 
depending on individual development and landscape topography, 
introducing much uncertainty in selecting parameters for 
different forests.

Our results demonstrated better performance for forest species 
richness estimation in complex forests based on UAV-borne data 
(RMSE: 1.44 to 2.47 for MZL, 2.87 to 3.94 for GGS) than previous 
studies using airborne data (RMSE: 4.0 and 6.74) (Hernandez-
Stefanoni et al., 2014; Zhao et al., 2018). Coarser image spatial 
resolution (typically between 1 to 10 m) and relatively lower point 
density (usually between 4 to 10 points/m2) of airborne data can 

make it difficult to identify or segment trees with smaller canopies, 
and image spectral mixing may also be an issue (Medina et al., 
2013; Sankey et al., 2017). This affects the accuracy of forest species 
diversity monitoring, as the spectral and structural differences 
between species may not be accurately captured (Ustin et al., 2004; 
Lesak et al., 2011; Naidoo et al., 2012). In contrast, UAV-borne 
LiDAR data with higher point cloud density (more than 100 
points/m2) could discriminate and detect individual trees with 
satisfactory accuracies (Figure 2). The spectral mixture problem 
would be solved with the ultra-high resolution UAV-borne imagery 
(Somers et al., 2011; Ronay et al., 2022), but how to better represent 
the spectral features of each ITC and avoid potential noise caused 
by intra-crown shade still need to be further studied (Rocchini 
et  al., 2010). Given the lower flight altitude than conventional 
airborne platforms, the UAV-borne hyperspectral images are less 
affected by the atmosphere, leading to improved image quality and 
easier processing. UAV remote sensing has improved the timeliness 
of data acquisition, but it has limitations such as limited payload, 
short flight life, and more fabulous mosaic and geocode efforts 
(Nex and Remondino, 2014; Matese et  al., 2015; Pu, 2021). In 
addition, due to the “top-down” operation method of UAV-borne 
platforms, the data for the understory in dense forest areas are 
often missing. Therefore, combining the advantages of different 
monitoring tools, such as ground-based LiDAR to complement 
and verify each other can provide more information for related 
forest diversity research.

5. Conclusion

In this study, we compared the performance of individual tree-
based classification and clustering methods with UAV-borne data for 
estimating the forest species diversity indices in the Mazongling and 
Gonggashan National Nature Forest Reserves of China. We proved 

FIGURE 6

Selected features of two study areas (left: MZL, right: GGS; red labels: optimal biochemical VIs, orange labels: optimal structural features, blue labels: 
species diversity indices; TR/OV: TCARI/OSAVI, SW: Shannon-Wiener index).
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that the SAM classification could provide more accurate predictions 
of species richness indices but requires spectral information of all 
dominant tree species. The Self-adaptive FCM clustering algorithm 
could achieve high-precision predictions for evenness indices 
(especially Simpson index), although information on specific tree 
species is unavailable.

The combination of UAV imaging spectroscopy and LiDAR 
make it possible to predict regional forest species diversity more 
accurately at individual canopy scale for complex forests. Future 
studies could improve the forest species-spectral library and explore 
forest species identification from multiple perspectives. 
Additionally, considering the variation in forest species 
characteristics over time, it would be valuable to further examine 
the accuracy of classification and clustering methods by 
incorporating phenological or multi-temporal features. Moreover, 
it would be  beneficial to investigate the applicability of species 
diversity estimation models for forests in different ecological 
contexts and how high-resolution UAV data can be leveraged to 
bridge the scale gap between traditional field plot samplings and 
large-scale satellite observations.
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Exploring the driving factors of changing ecosystem services is critical for

supply capacity maintaining and ecological management zoning. Xinjiang of

Northwest China, is considered one of the most fragile ecological environment

areas. However, studies on how ecosystem services’ driving forces respond

to the environmental conditions of Xinjiang are still insufficient, especially in

sub–regions with considerable spatial heterogeneity. Based on 106 counties

across Xinjiang, we employed models of the Integrated Valuation of Ecosystem

Services and Tradeoffs (InVEST) and Revised Wind Erosion Equation (RWEQ) to

quantify four essential ecosystem services (carbon storage, habitat quality, and

sand fixation and water yield). Then, we investigated the spatial distribution

of four ecosystem services and drivers at the county scale in 2020 by using

multi–scale geographically weighted regression (MGWR). The results showed

that the spatial distribution of ecosystem services is higher in the north and

lower in the south, and hotspots and high–value ecosystem services areas were

consistent. Precipitation, temperature, and fractional vegetation cover were the

dominant factors influencing the four ecosystem services. Therefore, regulating

climate and increasing vegetation will maximize the improvement of regional

ecosystem services in Xinjiang. Significant differences exist in the counties of

the type, intensity, and direction of ecosystem services drivers. The correlation

between carbon storage, habitat quality and fractional vegetation cover was

more robust stronger in the south. Water yield was more closely related to

fractional vegetation cover in southern Xinjiang. Under different ecological and

social conditions, the impact of driving forces on ecosystem services showed

different changing trends. Three suggestions for improving ecosystem services

management were proposed based on our results. The comparative analysis

of the driving factors of county ecosystem services in this study will help to

formulate differentiated ecological protection policies and promote a sustainable

supply of ecosystem services in Xinjiang. In the future, it is necessary to strengthen

the long-term monitoring and evaluation of ecosystem services and the research

on the interaction of multiple drivers.

KEYWORDS

ecosystem services, spatial pattern, driving factors, remote sensing, InVEST model,
multi–scale geographically weighted regression (MGWR), Xinjiang
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1. Introduction

Ecosystem services are the benefits humans obtain directly
or indirectly from an ecosystem. They serve as a link between
humans and nature and have been the focus of considerable
research (Costanza et al., 1997). However, the over–exploitation of
land resources under climate warming and changing precipitation
regimes has led to extensive global species extinctions. Ecosystems
and sustainable human development are facing severe threats, and
the supply capacity of ecosystem services is gradually declining
(Jordan et al., 2005; Dobson et al., 2006). Therefore, it is
urgent to support the sustainable use of ecological resources and
determine how to use natural capital sustainably. The county
scale plays a connecting role in China’s ecological protection and
restoration. Ecological and socio–economic driving factors affect
ecological restoration policies and their implementation (Ding
et al., 2022). Therefore, it is essential for guiding ecosystem services
management decisions in the spatial distribution, hotspots, and
driving factors of ecosystem services that have been examined at
the county scale.

Quantifying ecosystem services, identifying ecosystem service
hotspots, and investing limited resources in places with the
greatest need for protection will help maximize the benefits of
these resources. Ecosystem service “hotspots” (“coldspots”) have
gradually been more commonly used in works on ecosystem
services mapping to determine priorities for regional protection
(Zhang L. et al., 2015; Wu et al., 2016; Li et al., 2017; Gao et al.,
2022). The Gi ∗ statistical method is the most widely used. It can
be used to identify spatial clustering of ecosystem services which
show strong spatial correlations. This method identify hotspots of
ecosystem services and determine which areas multiple ecosystem
services are prioritized (Li and Zhang, 2021). The hotspots and
coldspots for soil protection are also determined to support targeted
ecosystem policy formulation (Li et al., 2017). Random areas
are divided according to coldspots and hotspots of ecosystem
services to mitigate the adverse impacts on ecosystem services
(Han et al., 2020).

Ecosystem services are comprehensively affected by climatical
and social factors. Several studies have explored the relationship
between ecosystem services and driving factors at global and
regional scales (Su et al., 2012; Yang et al., 2021; Rong et al., 2022).
However, due to differences in geographical and socio–ecological
factors, the response of ecosystem services to driving factors has
spatial heterogeneity in direction and intensity. Therefore, the
traditional global analysis (generalized linear model and ordinary
least squares) cannot reasonably describe the nonstationary
relationship in the ecosystem process. Multi–scale geographically
weighted regression (MGWR) not only considers spatial non-
stationarity, but also considers the scale differences of different
variables (Fotheringham et al., 2019), which offers a new idea
for the process analysis. For example, Hu et al. (2021) used the
MGWR model to investigate the relationship between ecosystem
services and drivers in Shanxi Province, which showed pronounced
spatial heterogeneity in the nature and intensity of their correlation.
Tang et al. (2016) and Luo et al. (2020) proposed differentiated
ecological protection policies through quantitative measurement
and comparative analysis of driving factors in different regions to
promote the ecosystem service value. Therefore, we implement the

MGWR model in this study to explore the spatial heterogeneity
of ecosystem service drivers. Expected results could clarify the
driving factors and mechanisms of ecosystem services and serve
as a benchmark for how ecosystem service protection policies in
various regions should be measured. The patterns and processes
of ecosystem services show different characteristics at different
scales, and the influence of scale is the focus of current research.
The drivers of ecosystem services are usually related to specific
scales, that is, the drivers of ecosystem services may change at
different scales. Multiple driving factors of ecosystem services
have been evaluated at different scales in macro–regions such as
countries and urban belts, and micro–regions such as provinces
and cities (Lyu et al., 2019; Chen et al., 2020; Qiu et al., 2020).
The relationship between ecosystem services has also varied at
different kilometer scales, and may even be the opposite (Liu et al.,
2017; Sun et al., 2022). At the county level, the impact of driving
forces on ecosystem services significantly differs in the east and
west of Sichuan Province (Huang et al., 2022). Significant spatial
heterogeneity affects a range of influencing factors in the Three
Gorges Reservoir Area on the degree of coupling of ecosystem
services and economic development (Li F. et al., 2022). Grid–scale
can describe the spatial distribution of ecosystems in more detail,
but the county scale is more conducive to ecological management
zoning and regulation (Shen and Li, 2022). Therefore, this study
studied the spatial distribution, hotspots and driving factors of
ecosystem services at the county level.

Xinjiang Autonomous Region has a variety of ecosystems,
which can provide various ecosystem services and species habitats.
Xinjiang is also a typical arid and fragile ecosystem region, whereas
vulnerable to human activities. It is enormously challenging to
recover in a short time once it has been degraded. In recent
years, population increase and infrastructure construction have
accelerated land transformation and environmental degradation.
This has resulted in declining in ecosystem services in the entire
Xinjiang region. There has been an increase in soil erosion
intensity, and a decline in the amount of sand fixation in the north
(Zhang W. et al., 2015; Sun et al., 2021; Niu et al., 2022). Therefore,
it is an ideal area to study the heterogeneity of ecosystem services
and drivers. For example, research shows that the relationship
between net primary productivity, soil and water conservation and
water yield services in Xinjiang has changed in time and space
on the grid scale, but the driving factors have not been analyzed
(Wang et al., 2020). There is an essential interaction between
urbanization and the continuous expansion of agricultural activities
caused by population growth and ecosystem services (Zhang et al.,
2020; Shi et al., 2021). Li et al. (2019) showed that the types
and intensity of driving factors of ecosystem services in Xinjiang
differed between southern and northern Xinjiang. Most studies on
ecosystem services in Xinjiang have been undertaken at the grid
scale (Wei et al., 2018; Yushanjiang et al., 2018; Lu et al., 2022).
Therefore, given the high heterogeneity of Xinjiang’s ecosystem, it
is significant to study the ecosystem, and its driving factors at the
county level for zoning management.

This study aimed to analyze the spatial distribution of
ecosystem services, and the spatial heterogeneity of ecosystem
services drivers at the county level in Xinjiang. Four typical
ecosystem services, namely, carbon storage, habitat quality, sand
fixation and water yield were quantified using InVEST and RWEQ
model. Redundancy analysis (RDA) was then used to explore the
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relationship between ecosystem services and climate, vegetation,
the proportion of urban area, and other multi–factors. A multi–
scale geographically weighted regression (MGWR) model was used
to express the spatial heterogeneity of driving factors to provide
a reference for the sustainable development of ecosystem services
and ecosystem management in Xinjiang.

2. Materials and methods

2.1. Study area

Xinjiang (34◦ 22′–49◦ 33′ N, 73◦ 32′–96◦ 21′ E) is located
in the hinterland of Eurasia near the northwest border of China,
with a total area of approximately 166 × 104 km2, including
106 counties (cities and districts). This study’s counties, cities and
districts are all represented by counties. The land uses comprise
grassland (30%), cultivated land, and the Gobi Desert (Figure 1).
The landforms are relatively complex and are characterized
by the distribution of “three mountains and two basins.” The
specific geographical location and the interaction of various
complex geographical environments form various ecosystem types,
supporting many rare animal and plant species, such as Populus
canescens, Ferula sinkiangensis, and Testudo horsfieldii, etc., (Li
et al., 2011). Xinjiang has an arid and semi–arid climate zone, with
an annual precipitation of approximately 145 mm. The fractional
vegetation cover is generally low, land desertification is severe,
and the ecological environment is highly fragile (Liu et al., 2018;
Bi et al., 2021).

2.2. Data sources

The research data included land use type data, meteorological
data, landform data, and population spatial distribution network
datasets (Table 1).

2.3. Data processing

The station data of wind speed, precipitation, temperature
and sunshine hours are interpolated by the ANUSPLIN method
based on thin slice spline theory, with a spatial resolution of
1 km. The vegetation coverage data is derived from MODIS image
data (MOD13Q1). First, the NDVI annual data is calculated by
resampling, filtering and maximum synthesis methods, and then
the maximum annual vegetation coverage data in Xinjiang is
calculated according to the pixel dichotomy model theory, with
a spatial resolution of 1 km. The percentage of the urban area is
calculated by extracting the construction land in each county’s land
use data and then calculating the percentage of construction land
in the whole county.

2.4. Evaluation of ecosystem services

A series of ecological problems have emerged in Xinjiang,
including water shortages, soil erosion, and desertification

(Zhang W. et al., 2015; Chen et al., 2016). Therefore, according to
the classification of ecosystem services proposed by the Millennium
Ecosystem Assessment (Reid et al., 2005), four important ecosystem
services were selected and combined with the current ecosystem
and ecological pressure in the study area. This included carbon
storage, habitat quality, sand fixation, and water yield. Carbon
storage is vital in climate regulation (Xu et al., 2019). Diversified
ecosystems provide habitats for organisms (Liu and Xu, 2020).
Xinjiang has a large area of sand and bare land, and sand erosion
by wind is severe (Gong et al., 2014). The lack of water resources
and the uneven spatial and temporal distributions are the main
influencing factors restricting economic development in Xinjiang
(Li F. et al., 2022). The ecosystem services was quantified at a
1 km2 scale in 2020, and then the mean values of ecosystem service
indicators at the county scales was calculated. The county scale
was chosen because it is more conducive to ecological management
zoning and regulation.

2.4.1. Carbon storage (CS)
Carbon storage in ecosystem services plays a vital role in

climate regulation and is an essential indicator for measuring the
function of regional ecosystems. Strengthening the carbon fixation
function of terrestrial ecosystems has become one of the primary
needs in mitigating global climate change (Hu et al., 2018). The
carbon pool (Ctotal) includes the aboveground biomass (Cabove),
underground biomass (Cbelow), dead organic carbon (Cdead), and
soil carbon pool (Csoil). The four carbon reserve types were added
to the InVEST model to determine the carbon reserves in the area.
The calculation formula is as follows:

Ctotal = Cabove + Cbelow + Csoil + Cdead (1)

2.4.2. Habitat quality (HQ)
Habitat quality refers to the ability of ecosystems to provide

living conditions suitable for individuals and populations based
on the availability of living resources, biological reproduction,
and existing quantity. It can reflect regional biodiversity and is
closely related to regional land use types (Fellman et al., 2015;
Sallustio et al., 2017). The habitat quality module of the InVEST
model is based on the relationship between land use and stress
factors. It considers the sensitivity of different habitat types to
stress factors and the threat intensity from these stress factors. The
degree of habitat degradation is calculated and then combined with
the habitat adaptability of different land use types to score the
habitat quality to generate a habitat quality grade map. The specific
calculation process is as follows:

Dxj =

R∑
r=1

Yr∑
y=1

(
Wr∑R

r=1 Wr

)
ryirxyβxSjr (2)

Where Dxj is the habitat degradation level of pixel x in habitat
type j; r refers to a single stress factor; y is the pixel of stress factor
r; Wr is the stress factor weight; ry is the number of stress factors
in each grid of the study area; βx is the threat level of habitat pixel;
Sjr is the sensitivity of habitat type j to stress factors and irxy is the
threat level of stress factor in pixel y to habitat pixel x.

Qxj = Hj

(
1−

Dx
xj

Dz
xj + kz

)
(3)
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FIGURE 1

Location, elevation, and land use type of the study area. (A) Xinjiang location. (B) Elevation. (C) Land use type.

Where Qxj is the habitat quality level of pixel x in habitat type j;
Hj is the habitat adaptability of habitat type j; z is a constant, usually
2.5; k is the semi–saturation constant, and the default value is 0.5.

2.4.3. Sand fixation (SF)
Sand fixation is an important ecosystem function. Sand fixation

can reduce soil erosion caused by wind erosion through its
structure and processes. This soil conservation and wind erosion
inhibition service is the sand fixation service. This is the most
important protective service provided by the ecosystem in arid and
semi–arid areas. The revised wind erosion equation (RWEQ) was
used to estimate the sand fixation at the plot scale, taking into
account the climate conditions, surface soil roughness, vegetation
conditions, soil erodibility, and soil crust:

SR = SLS − SL (4)

Qx =
Qmax

[
1−e(

x
s )

2]
x

(5)

Qmax = 109.8
(
WF× EF× SCF× K′ × COG

)
(6)

Where SR is the sediment fixation amount (t · hm−2), SLS is the
potential soil wind erosion under the condition of potential bare
soil, t · hm−2; SL is the actual soil wind erosion under fractional
vegetation cover, t · hm−2; Qx is the sand flux at x (kg· m−1); x
is the length of the plot; Qmax is the maximum transfer amount,
kg/m; s is the length of the key plot (m); WF is the climate
factor, which is calculated from wind speed, soil moisture factor
and snow cover factor; K

′

’ is the surface roughness factor; EF
is the erodible soil factor, calculated according to Fryrear et al.
(2000) equation; SCF is the soil crust factor, and COG is the
fractional vegetation cover factor, which is calculated by vegetation
coverage.

2.4.4. Water yield (WY)
The water yield service is one of the essential ecosystem services

in arid and semi–arid areas. It is crucial to agriculture, industry,
hydropower generation, and entertainment activities. It is also an
important link in achieving sustainable development of ecosystem
services. The water yield service was predominantly based on the
water production module in the InVEST model, that is, the water
yield per unit area at a specific time. According to the water balance
principle, the regional water supply is the precipitation per unit
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TABLE 1 Study data sources.

Data type Data description Data sources

Meteorological data Daily average temperature,
daily precipitation, daily

average wind speed, sunshine
duration (point data.)

The China Meteorological
Data Service Center
(http://data.cma.cn/)

Monthly value of rainfall and
potential evapotranspiration

data (1 km)

National Earth System
Science Data Center

(http://www.geodata.cn/)

Land use data Based on landsat TM image
(1 km)

Research and Environment
Science and Data Center
(https://www.resdc.cn)

Fractional vegetation
cover

Calculated by pixel
dichotomy based on NDVI

data (250 m)

https://ladsweb.modaps.
eosdis.nasa.gov

Snow depth, Soil
attribute data

Snow depth, soil attribute
table and spatial distribution,

soil calcium carbonate
content distribution data

Environmental and
Ecological Science Data
Center for West China

(http:
//westdc.westgis.ac.cn)

Digital elevation
model (DEM) data

SRTMDEMUTM 90 m
resolution digital elevation

data product

Geospatial Data Cloud
(http://www.gscloud.cn/)

Population density Raster data (1 km) WorldPop (http:
//www.worldpop.org/)

area minus evapotranspiration. The main formula for calculating
the water yield under each grid pixel is:

Yx,j =

(
1−

AETx,j

Px

)
· Px (7)

AETxj

Px
=

1+ ωxRxj

1+ ωxRxj +
(

1
Rxj

) (8)

ωx = Z
AWCx

Px
(9)

Where Yx,j is the water yield of pixel x of land use type j
(mm); Px is the annual precipitation on different pixels x (mm);
AETx,j is the annual actual evapotranspiration of pixel x of land
cover type j (mm); ωx is the ratio of annual vegetation available
water and precipitation; Rxj is the dry coefficient; and AWCx is the
effective moisture content of vegetation of pixel x (mm), and Z is
Zhang’s coefficient.

2.5. Analysis of ecosystem services
hotspots

Spatial hotspot analysis can identify high–value spatial clusters
of specific phenomena, limited direct resources to places with
greater need, and achieve more effective and strategic resource
allocation. This technique has been widely used in the field of
ecological geography. In this study, the county was taken as the
smallest unit, using the “Zone Statistics as Table” in ArcGIS 10.8
to calculate the average value of ecosystem services and drivers in
each county. The Getis Ord Gi ∗method in the ArcGIS 10.8 hotspot

analysis tool was used to identify the hotspot area with solid spatial
correlation and the coldspot area with weak spatial correlation of
ecosystem services. The Z score is statistically significant in Getis
Ord Gi ∗. The larger the Z–score, the higher the cluster value
(hotspots). The smaller the Z–score, the lower the cluster value
(coldspots) (Benjamini and Yekutieli, 2001).

2.6. Drivers analysis

Factors affecting ecosystem services mainly include two types:
ecological factors and socio–economic factors (Hu et al., 2022;
Huang et al., 2022; Lu et al., 2022; Zhuang et al., 2022). The
ecological factors selected in this study include precipitation (PRE),
temperature (TEM), fractional vegetation cover (FVC), slope (SL),
and digital elevation model (DEM). Social factors include a
percentage of urban area (PU) and population density (PD) (Peng
et al., 2017). RDA was used to detect the relationship between
multiple response variables, such as ecosystem services and several
explanatory variables such as drivers. This study used RDA to
analyze the multicollinearity relationship between variables and
perform a collinearity test in SPSS. When 0 < VIF (Variance
inflation factor) < 10, it indicates that there is no collinearity for the
driver (Sheng et al., 2017). Canoco software (version 5.0) was used
to explore the correlation between ecosystem services and impact
factors using RDA.

Geographically weighted regression (GWR) establishes the
regression relationship between independent and dependent
variables at the local scale, effectively avoiding errors caused by
spatial differences of variables. The expression is as follows:

yi = β0 (ui, vi)+

p∑
j=1

βj (ui, vi) xij + εi, i ∈ {1, 2, · · · ,n} (10)

Where y is the dependent variable (including different types
of ecosystem services); (ui, vi) is the position of the ith sample;
βj (ui, vi) is the intercept; xij is the independent variable, including
altitude, precipitation and other factors; βj(ui, vi) represents the
regression coefficient of the ith sample for the jth driving factor,
and εi is the error term.

Multi–scale geographically weighted regression (Oshan et al.,
2019) is an improved version of GWR, which considers
spatial multi–scale heterogeneity and reflects these differences in
ecosystem services. The MGWR model expression is as follows:

yi = β0 (ui, vi)+

p∑
j=1

βbwj (ui, vi) xij + εi, i ∈ {1, 2, · · · ,n} (11)

Where βbwj in bwj is the broadband used to calibrate
the jth conditional relationship. MGWR allows local regression
coefficients of dependent and independent variables to be estimated
at different spatial scales.

In this study, the MGWR and GWR models used the Gaussian
kernel function and golden section broadband selection routine for
calibration. The OLS, GWR, and MGWR parameters were then
compared. The higher R2 indicates a better degree of the fitting. All
the model calibrations were performed using MGWR2.2 software.
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3. Results

3.1. Analysis of ecosystem services
patterns

Four ecosystem services, namely, carbon storage, habitat
quality, sand fixation and water yield were significantly different
across the entire Xinjiang region (Figure 2), and they clustered
in space (Moran’s I > 0.43, p < 0.001). Due to Xinjiang’s
geographical location, the spatial heterogeneity of water and heat
conditions was relatively high. As a result, the spatial distribution
of various ecosystem services was quite different. Carbon storage,
habitat quality, and water yield presented similar spatial patterns.
High–value areas were predominantly distributed in the Tianshan
Mountains and the eastern part of the Kunlun Mountains, as
well as the Ili Kazakh Autonomous Prefecture, Altay City, Burqin
County, and Habahe County near the Altay Mountains. Important
areas of forest land and grassland were distributed in these areas.
At the county scale, the maximum carbon storage, sand fixation
and water yield per unit area are 116.4 t/hm2, 385.2 t/hm2, and
291.17 mm. The highest habitat quality in Xinyuan County of Ili
Kazak Autonomous Prefecture is 0.78. Among them, there was
a significant difference in water yield between the north and the
south. High–value areas were mainly distributed in the north of
Xinjiang. High–value water source protection areas were found in
Altay and Tacheng. In the south of Xinjiang, the water yield of 30
counties is lower than 0. The high–value areas for sand fixation
had a dispersed distribution and were predominantly in the east
of the Taklimakan Desert, around the Altun Mountains, and near
the Junggar Basin. The altitude was 500–1,000 m, the wind speed
was relatively low, and the service level for sand fixation on the
construction land was high, possibly due to buildings blocking
some of the wind. In general, the spatial distribution of ecosystem
services was higher in the north and lower in the south.

3.2. Analysis of ecosystem services
hotspots

Regarding individual ecosystem services, the spatial pattern of
hotspots and coldspots of ecosystem services showed pronounced
spatial heterogeneity (Figure 3). The hotspots were predominantly
concentrated in northern Xinjiang. Compared with the other three
services, hotspots for water yield services were the largest, with 49
counties accounting for 46.23% of the total number in Xinjiang.
They were mainly distributed in the Altay region, a national key
ecological functional area for water conservation. The hotspots
for carbon storage and habitat quality were highly coincident,
with 35 and 31 counties, respectively, mainly distributed in Ili
Kazakh Autonomous Prefecture, Bortala Mongolian Autonomous
Prefecture, and Tacheng region in the west of the Tianshan
Mountains. The hotspot area is mainly forest with strong carbon
storage capacity, while the coldspot area is mainly unused land,
cultivated land and other land use types with weak carbon storage
capacity. As a whole, the level of habitat quality in Xinjiang is
low. Due to urbanization construction, the surface vegetation is
destroyed and the habitat quality is degraded. There are 39 counties
serving as hotspots for sand fixation, and 48 counties serving

as coldspots. Owing to the vast expanse of desert, sand fixation
capacity in Xinjiang is weak, and the number of cold spots is
larger than that of hotspots, mainly located in the northern part
of Xinjiang.

Four counties, namely, Kuitun City, Huyanghe City, the Duzi
Mountain Area and Karamay City provided four ecosystem service
types. At the same time, there are 26 counties with three kinds
of ecosystem service hotspots and 21 counties with two kinds
of ecosystem service hotspots. These areas can be classified and
managed according to the actual situation, prioritizing protecting
cold spot services (Figure 4). In general, the supply capacity of
ecosystem services in these areas is relatively low due to the
ecological degradation in most of northern Xinjiang. In the future,
we should not only maintain the ecosystem services of hotspots, but
also take measures to improve the ecosystem services of coldspots.

3.3. Drivers analysis

3.3.1. Drivers of ecosystem services
We used the variance expansion factor for diagnosis. As

shown in Table 2, VIF < 10 indicates no multicollinearity
between the seven drives. Figure 5 showed that ecosystem services
were significantly correlated with the precipitation, fractional
vegetation cover, the percentage of urban area, DEM, temperature
(p < 0.01), and population density (p < 0.05). Ecological factors
predominantly determined the first RDA axis explaining 49.01%
of the variance. Social factors and altitude mainly determined
the second axis explaining 14.87% of the variance. Precipitation
and fractional vegetation cover contributed 61.7 and 17.0% to
ecosystem services, respectively, which was considered decisive.
This showed that precipitation and fractional vegetation cover were
the main limiting factors for ecosystem services in Xinjiang. The
percentage of urban area was also an important factor with an 8.7%
contribution, indicating that urbanization considerably affected
ecosystem service. Precipitation, fractional vegetation cover, and
slope were positively correlated with water yield, carbon storage,
and habitat quality, and were negatively correlated with sand
fixation. Temperature, population density, and the percentage of
urban area were positively correlated with sand fixation. However,
these factors had little impact on ecosystem services. In general,
the contribution of ecological factors was substantially higher
than social factors, which indicated that precipitation, fractional
vegetation cover, and terrain played an important role in the spatial
distribution of ecosystem services in Xinjiang.

3.3.2. Spatial heterogeneity of ecosystem service
drivers

The MGWR model was used to determine the spatial
distribution of the influence of different driving factors on the
change in ecosystem services. The Akaike information criterion
(AIC) and calibration R2 are widely used to describe the predictive
power of models, whereby the lower the AIC, the closer the
situation is to reality. The higher the adjusted R2, the better
the variance explanation. In general, the MGWR had strong
explanatory power (Table 3).

The MGWR regression coefficient was positive, indicating that
increasing influencing factors will increase the ecosystem service
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FIGURE 2

Spatial distribution of ecosystem services. (A–D) Carbon storage, Habitat quality, Sand fixation, and Water yield.

FIGURE 3

Spatial distribution of ecosystem service hotspots and coldspots. The statistical significance is shown as follows: (1) ∗∗∗ refers to the 99% confidence
level; (2) ∗∗ refers to the 95% confidence level, and (3) ∗ represents the 90% confidence level. (A–D) Carbon storage, Habitat quality, Sand fixation,
and Water yield. (E) Legend.

level. Meanwhile, the negative regression coefficient indicated that
increased in influencing factors would reduce the ecosystem service
level. The results have shown that the regression coefficients
in different regions had different values. In Xinjiang, the local
coefficients for the seven drivers varied between counties, which
reflected the non–stationary spatial response of ecosystem services
to the influencing factors in Xinjiang. The seven influencing factors
selected in this study could explain 73.0, 79.0, 77.1, and 97.8%,
of carbon storage, habitat quality, sand fixation and water yield,
respectively (Table 4).

Figure 6 and Table 4 show that carbon storage and habitat
quality correlate strongly with fractional vegetation cover, with
correlation coefficients of 0.737 and 0.440, and higher in the
south. The correlation between carbon storage and precipitation,
the percentage of urban area gradually increases from north
to south (Figures 6C, D). The relationship between habitat
quality and precipitation gradually increases from east to west
(Figure 6F). The proportion of urban areas will lead to the
reduction of habitats suitable for biological survival and the

reduction of habitat quality (Figure 6G). There is a negative
correlation between sand fixation and the percentage of urban
area. The impact direction and intensity of precipitation on sand
fixation in different regions of Xinjiang are also very different
(Figure 6I). Temperature, DEM, and fractional vegetation cover
negatively impacted water yield, with correlation coefficients of
−0.730,−0.639 and−0.139, respectively. Precipitation has a direct
positive impact on water yield, and the correlation coefficient is
0.693. The relationship between fractional vegetation cover and
water yield is closer in the south of Xinjiang. In the north,
the relationship between water yield and DEM, temperature and
precipitation is closer. With the intensification of human activities
and the increase in domestic water consumption, with the increase
of cultivated land in the north, the expansion of irrigation area
has increased evaporation to a certain extent, negatively impacting
water yield (Liang et al., 2021). To sum up, ecological factors
were the main driving factors for changes in regional ecosystem
services. Therefore, regulating climate and increasing vegetation
will maximize the improvement in regional ecosystem services.
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FIGURE 4

Concurrence of the four ecosystem service hotspots.

TABLE 2 Collinearity test.

Variable Digital elevation
model

Slope Fractional
vegetation cover

Precipitation Temperature Percentage of
urban area

Population
density

VIF 5.700 7.063 1.893 3.759 4.158 5.316 4.937

The spatial correlation and correlation intensity changes between
the seven factors selected and the four ecosystem services were
significantly different. This indicated that the ecosystem services
in different regions were affected by different factors and that
zoning management may be crucial to the sustainable supply of
ecosystem services.

4. Discussion

In this study, our results show that high–value areas for
carbon storage, habitat quality, sand fixation, and water yield,
were predominantly distributed in the Tianshan Mountains, Altai
Mountains, and oases around the southern Tarim Basin across
Xinjiang. It is consistent with the finding of Wang et al. (2020). It
was mainly attributed to the large area of forest land and grassland
in the north, where is abundant rain, provides excellent habitat
for species, and has a high capacity for carbon storage and sand
fixation (Li et al., 2021). Altay, known as the “water tower” in
northern Xinjiang, is a water conservation type mountain grassland
ecological functional area that has significantly improved water
supply. Therefore, conserving of mountain vegetation and water
resources is a top priority for sustainable development in Xinjiang.

Identifying the hotspots of ecosystem services helps to set priorities
and take measures to maintain the level of ecosystem services.
In the coldspots of ecosystem services, we should take targeted
measures to improve the level of ecosystem services by analyzing
the driving factors of ecosystem services.

According to the results of RDA and the regression coefficient
of the MGWR model, we found that ecological and social factors
significantly differ in the impact of ecosystem services in different
regions. The comprehensive impact of precipitation and fractional
vegetation cover on ecosystem services is significantly stronger than
other factors (Figure 5). Precipitation is the main factor affecting
the water yield in Xinjiang, and its coefficient value increases from
south to north in turn (Figure 6N). Previous studies have shown
that precipitation increase is the most important factor, because
it significantly affects water volume and land hydrological process
(Ziadat and Taimeh, 2013; Ma et al., 2021a,b). Temperature reduces
water yield by affecting precipitation and evapotranspiration.
Climate change can affect the distribution of water production
by affecting hydrological processes and energy balance. Therefore,
climate change can affect the water yield by changing the
precipitation and temperature of Xinjiang. Sand fixation is affected
by precipitation, vegetation and human activities, showing spatial
heterogeneity, reflecting the comprehensiveness and complexity of
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FIGURE 5

RDA showing the relationship between four ecosystem services and
seven ecological, social drivers. The black arrow represents
ecosystem services, and the red arrow represents ecological, and
social driving factors. CS, carbon storage; HQ, habitat quality; SF,
sand fixation; WY, water yield; DEM, digital elevation model; SL,
slope; FVC, fractional vegetation cover; PRE, precipitation; TEM,
temperature; PU, percentage of urban area; PD, population density.

the ecological process (Gong et al., 2022; Niu et al., 2022; Cui
et al., 2023). From the perspective of the regression coefficient,
fractional vegetation cover and precipitation strongly impact
windbreak and sand fixation, and are the main driving factors
for sand fixation. Higher precipitation can promote the growth
of vegetation, which is conducive to soil surface crusting and
thus enhance the resistance of the surface to wind erosion (Wu
et al., 2021). The spatial distribution of precipitation in Xinjiang
is extremely uneven, resulting in strong spatial heterogeneity of
the impact of precipitation on sand fixation. Fractional vegetation

cover can affect the wind erosion resistance of soil by affecting
temperature, humidity and evapotranspiration (Řeháček et al.,
2017). Fractional vegetation cover in eastern Xinjiang is low, and
evaporation reduces the water content, which may be the reason
for the spatial differentiation of the impact of fractional vegetation
cover on sand fixation in eastern and western regions.

The carbon storage of terrestrial ecosystems is mainly
distributed in vegetation and soil carbon pool, and the correlation
between carbon storage and fractional vegetation cover is the
strongest. There is a negative correlation between carbon storage
and slope. When the slope is gentle, the soil erosion intensity
is small, the conversion rate of microorganism to soil organic
matter is low, and the soil carbon loss is low, conducive to carbon
storage and fixation (Olson et al., 2012). Habitat quality is mainly
affected by vegetation coverage, however, He et al. (2017) showed
that habitat quality is mainly affected by land use types given
that extensive construction land will occupy biological habitat. An
important breakthrough required to improve the habitat quality in
Xinjiang is to strategically determine the scope of construction land
expansion from the perspective of land use, increase development
of unused land, and reduce damage to forest land, grassland,
and other natural landscapes (Deng et al., 2021). The study
shows that the correlation between social factors and ecosystem
services is weak, and there is spatial heterogeneity in direction and
intensity, consistent with previous research results (Bennett et al.,
2009; Guo et al., 2021). However, Zhang et al. (2020) showed a
strong interaction between ecosystem services and human activities
in Xinjiang, mainly due to differences in calculation methods
and human activity indicators. In this study, the MGWR model
was used to distinguish the spatial relationship strength between
ecosystem services and driving factors, and the key factors affecting
ecosystem services were identified from the perspective of spatial
non–stationary, but the interaction between several variables could
not be investigated.

This study reveals the impact of driving factors on
ecosystem services in space, which is crucial to ecosystem
service management. On this basis, three suggestions were put
forward to improve the management of ecosystem services in

TABLE 3 Comparison of OLS, GWR, and MGWR model parameters.

Ecosystem services AICc Adjusted R2 Moran’s I p

AICcO AICcG AICcM RO
2 RG

2 RM
2

Carbon storage 192.647 194.985 183.599 0.680 0.679 0.730 0.430 0

Habitat quality 157.079 159.684 155.658 0.771 0.774 0.790 0.454 0

Sand fixation 270.976 228.461 182.647 0.330 0.656 0.771 0.725 0

Water yield −17.932 −36.002 −73.216 0.956 0.968 0.978 0.833 0

TABLE 4 Mean of regression coefficient of ecosystem services and drivers in the MGWR model.

Mean value
of correlation
coefficient

Digital elevation
model

Slope Fractional
vegetation

cover

Precipitation Temperature Percentage of
urban area

Population
density

Carbon storage 0.275 −0.324 0.737 0.280 −0.019 0.259 −0.188

Habitat quality 0.080 0.137 0.440 0.271 −0.206 −0.335 0.073

Sand fixation 0.109 −0.178 −0.153 0.167 −0.032 −0.251 0.285

Water yield −0.639 −0.064 −0.139 0.695 −0.730 0.026 −0.002
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FIGURE 6

Expression of spatial heterogeneity of drivers. (A–D) CS–SL, CS–FVC, CS–PRE, and CS–PU. (E–G) HQ–FVC, HQ–PRE, and HQ–PU. (H–K) SF–FVC,
SF–PRE, SF–PD, and SF–PU. (L–O) WY–DEM, WY–FVC, WY–PRE, and WY–TEM. (CS, carbon storage; HQ, habitat quality; SF, sand fixation; WY, water
yield; DEM, digital elevation model; SL, slope; FVC, fractional vegetation cover; PRE, precipitation; TEM, temperature; PU, percentage of urban area;
PD, population density).

Xinjiang. This study has shown that among the ecological factors,
temperature had the largest negative correlation with ecosystem
services (Figures 5, 6). This indicated that policymakers should
attempt to reduce temperature to improve ecosystem services.
Crops can reflect sunlight to reduce temperature. According
to the differences in climate, landform, and other conditions
of counties, selecting suitable crops can effectively reduce the
surface temperature (Ridgwell et al., 2009). Second, water is
the lifeline of sustainable development in Xinjiang. The main
potential of water–saving in Xinjiang lies in agriculture. On the
one hand, we should strengthen the construction of farmland
and water conservancy infrastructure, and on the other hand,
we should implement sustainable farmland to restore rivers and
lakes to reduce habitat fragmentation caused by human activities

(Wang et al., 2017). Third, ecosystem service hotspots should be
reserved to avoid being damaged. In this study, the hotspots of
ecosystem services mainly appear in areas with high vegetation
coverage, while the coldspots appear in areas with high unused
land (Figure 6). Based on this, we suggest that the afforestation
plan should be appropriately implemented in the coldspot area in
combination with local conditions. However, farmers often destroy
forests to increase their income. Appropriate commercial plants
can be introduced into mixed agriculture to protect biodiversity
and farmers’ livelihoods (Njurumana et al., 2021).

This study focused on the spatial distribution, hotspots, and
driving factors of ecosystem services, which can provide a reference
for ecosystem management in Xinjiang. However, there were still
some limitations in this study. Our method only captured the
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relationship between ecosystem services and their social drivers
in 2020. However, the study lacked provision for long–term
monitoring and assessment of changes in ecosystem services.
Future research should focus on the “over time” approach. In
addition, we only focused on four typical ecosystem services in
Xinjiang, excluding other supply services such as food and cultural
services such as tourism. There are many scenic spots in Xinjiang.
The spatial area of cultivated land and grassland is relatively large,
and the self–sufficiency rate for grain, oil, meat, eggs, and milk
is relatively high. Therefore, the comprehensive assessment of
ecosystem services should be the focus of future research (Castillo-
Eguskitza et al., 2018). To date, most studies on the impact of
ecosystem services have only focused on a single factor while
excluding the impact of the effects on ecosystem services. However,
the response of ecosystem services to climate factors is not a
simple, isolated, linear response, but rather an in–depth response
to multiple climate factors, vegetation conditions, and other
conditions (Xue et al., 2023). Therefore, it is necessary to strengthen
research on the compounding mechanisms of ecological and social
factors on ecosystem services. Regional differences and the main
driving factors should be considered when formulating policies.

5. Conclusion

Based on the InVEST and RWEQ models, this study evaluated
ecosystem service hotspots and determined the priority for their
protection by exploring the spatial distribution of carbon storage,
habitat quality, water yield and sand fixation in Xinjiang. RDA
and MGWR models analyzed the driving factors of ecosystem
services and their spatial differentiation by integrating climate,
vegetation, terrain, and social factors. The results showed that the
ecosystem services (carbon storage, habitat quality, sand fixation
and water yield) showed spatial heterogeneity at the county level.
The high–value areas of ecosystem services were consistent with
the hotspots, mainly distributed in the north of Xinjiang, e.g., Ili
Kazak Autonomous Prefecture, Bortala Mongolian Autonomous
Prefecture, Tacheng Prefecture and Altay Prefecture. The types,
intensities, and directions of ecosystem services drivers were
significantly different at counties scale. There was a stronger
correlation between carbon storage, habitat quality and fractional
vegetation cover in the southern regions. Water yield was affected
by many drivers, and is more closely related to fractional
vegetation cover in southern Xinjiang. This study contributes to
determining the local characteristics that affect ecosystem services
and formulating effective ecosystem management policies for
different regions, intending to provide a reference for sustainable
development and ecological security of ecosystems in Xinjiang.
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Řeháček, D., Khel, T., Kučera, J., Vopravil, J., and Petera, M. (2017). Effect of
windbreaks on wind speed reduction and soil protection against wind erosion. Soil
Water Res. 12, 128–135.

Reid, W. V., Mooney, H. A., Cropper, A., Capistrano, D., Carpenter, S. R., Chopra,
K., et al. (2005). Ecosystems and human well-being-synthesis: A report of the millennium
ecosystem assessment. Washington, DC: Island Press.

Frontiers in Ecology and Evolution 12 frontiersin.org48

https://doi.org/10.3389/fevo.2023.1168313
https://doi.org/10.1016/j.ecolind.2018.06.004
https://doi.org/10.1016/j.scitotenv.2019.134687
https://doi.org/10.1038/srep35458
https://doi.org/10.1038/srep35458
https://doi.org/10.1038/387253a0
https://doi.org/10.1177/03091333221105403
https://doi.org/10.1177/03091333221105403
https://doi.org/10.14108/j.cnki.1008-8873.2021.02.013
https://doi.org/10.1016/j.eng.2022.08.008
https://doi.org/10.1890/0012-9658(2006)87[1915:HLTCAT]2.0.CO;2
https://doi.org/10.1371/journal.pone.0132652
https://doi.org/10.1016/j.ecolind.2022.109567
https://doi.org/10.3390/ijerph182111074
https://doi.org/10.1016/j.scitotenv.2020.137818
https://doi.org/10.1016/j.ecolmodel.2017.10.001
https://doi.org/10.1016/j.ecolmodel.2017.10.001
https://doi.org/10.1016/j.ecolind.2021.108188
https://doi.org/10.3389/fenvs.2022.927818
https://doi.org/10.13869/j.cnki.rswc.2018.03.046
https://doi.org/10.1007/s11356-022-20867-x
https://doi.org/10.1016/j.agee.2005.01.013
https://doi.org/10.1016/j.agee.2005.01.013
https://doi.org/10.1007/s40333-022-0059-z
https://doi.org/10.1007/s40333-022-0059-z
https://doi.org/10.1016/j.gecco.2021.e01729
https://doi.org/10.13866/j.azr.2011.01.001
https://doi.org/10.13866/j.azr.2011.01.001
https://doi.org/10.1016/j.jenvman.2021.113408
https://doi.org/10.1016/j.jenvman.2021.113408
https://doi.org/10.3390/su142215467
https://doi.org/10.1007/s11442-017-1400-x
https://doi.org/10.1016/j.jclepro.2020.123851
https://doi.org/10.13287/j.1001-9332.202007.014
https://doi.org/10.1038/s41598-017-09863-1
https://doi.org/10.3390/land11122164
https://doi.org/10.1016/j.scitotenv.2020.138452
https://doi.org/10.1016/j.scitotenv.2020.138452
https://doi.org/10.1016/j.apgeog.2019.05.003
https://doi.org/10.1016/j.jclepro.2021.128592
https://doi.org/10.1016/j.jclepro.2021.128592
https://doi.org/10.1016/j.ecolind.2020.107225
https://doi.org/10.1097/SS.0b013e318244d8d2
https://doi.org/10.3390/ijgi8060269
https://doi.org/10.1016/j.scitotenv.2017.06.218
https://doi.org/10.1177/0309133320933525
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/


fevo-11-1168313 March 22, 2023 Time: 14:53 # 13

Zhang et al. 10.3389/fevo.2023.1168313

Ridgwell, A., Singarayer, J. S., Hetherington, A. M., and Valdes, P. J. (2009). Tackling
regional climate change by leaf albedo bio-geoengineering. Curr. Biol. 19, 146–150.
doi: 10.1016/j.cub.2008.12.025

Rong, Y., Li, K., Guo, J., Zheng, L., Luo, Y., Yan, Y., et al. (2022). Multi-scale
spatio-temporal analysis of soil conservation service based on MGWR model: A case
of Beijing-Tianjin-Hebei, China. Ecol. Ind. 139:108946. doi: 10.1016/j.ecolind.2022.
108946

Sallustio, L., De Toni, A., Strollo, A., Di Febbraro, M., Gissi, E., Casella, L., et al.
(2017). Assessing habitat quality in relation to the spatial distribution of protected
areas in Italy. J. Environ. Manag. 201, 129–137. doi: 10.1016/j.jenvman.2017.06.031

Shen, W., and Li, Y. (2022). Multi-Scale assessment and spatio-temporal interaction
characteristics of ecosystem health in the middle reaches of the yellow river of China.
Int. J. Environ. Res. Public Health 19:16144. doi: 10.3390/ijerph192316144

Sheng, J., Han, X., and Zhou, H. (2017). Spatially varying patterns of
afforestation/reforestation and socio-economic factors in China: A geographically
weighted regression approach. J. Clean. Prod. 153, 362–371. doi: 10.1016/j.jclepro.
2016.06.055

Shi, L., Halik, Ü, Mamat, Z., Aishan, T., Abliz, A., and Welp, M. (2021).
Spatiotemporal investigation of the interactive coercing relationship between
urbanization and ecosystem services in arid northwestern China. Land Degrad. Dev.
32, 4105–4120. doi: 10.1002/ldr.3946

Su, S., Xiao, R., Jiang, Z., and Zhang, Y. (2012). Characterizing landscape pattern
and ecosystem service value changes for urbanization impacts at an eco-regional scale.
Appl. Geograph. 34, 295–305. doi: 10.1016/j.apgeog.2011.12.001

Sun, C., Ma, Y., and Gong, L. (2021). Response of ecosystem service value to land
use/cover change in the northern slope economic belt of the Tianshan Mountains,
Xinjiang, China. J. Arid Land 13, 1026–1040. doi: 10.1007/s40333-021-0082-5

Sun, X., Wu, J., Tang, H., and Yang, P. (2022). An urban hierarchy-based approach
integrating ecosystem services into multiscale sustainable land use planning: The
case of China. Resour. Conserv. Recycl. 178:106097. doi: 10.1016/j.resconrec.2021.
106097

Tang, X., Hao, X., Liu, Y., Pan, Y., and Li, H. (2016). Driving factors and spational
heterogeneity analysis of ecosysten services value. Trans. Chin. Soc. Agric. Mach. 47,
336–342.

Wang, X., Cheng, C., Yin, L., Feng, X., and Wei, X. (2020). Spational-temporal
changes and tradeoff/synergy relationship of ecosystem services in Xinjiang. Chin. J.
Ecosyst. 39, 990–1000. doi: 10.13292/j.1000-4890.202003.028

Wang, X., Dong, X., Liu, H., Wei, H., Fan, W., Lu, N., et al. (2017). Linking land
use change, ecosystem services and human well-being: A case study of the Manas
River Basin of Xinjiang, China. Ecosyst. Serv. 27, 113–123. doi: 10.1016/j.ecoser.2017.
08.013

Wei, H., Liu, H., Xu, Z., Ren, J., Lu, N., Fan, W., et al. (2018). Linking ecosystem
services supply, social demand and human well-being in a typical mountain–oasis–
desert area, Xinjiang, China. Ecosyst. Serv. 31, 44–57. doi: 10.1016/j.ecoser.2018.
03.012

Wu, J., Xue, D., Wang, A., and Zhao, F. (2016). Case studies on the identification of
key biodiversity areas(KBAs) in foreign countries and progress and prospects in China.
Acta Ecol. Sin. 36, 3108–3114. doi: 10.5846/stxb201408261695

Wu, X., Fan, J., Sun, L., Zhang, H., Xu, Y., Yao, Y., et al. (2021). Wind erosion and
its ecological effects on soil in the northern piedmont of the Yinshan Mountains. Ecol.
Ind. 128:107825. doi: 10.1016/j.ecolind.2021.107825

Xu, Z., Fan, W., Wei, H., Zhang, P., Ren, J., Gao, Z., et al. (2019). Evaluation and
simulation of the impact of land use change on ecosystem services based on a carbon
flow model: A case study of the Manas River Basin of Xinjiang, China. Sci. Total
Environ. 652, 117–133. doi: 10.1016/j.scitotenv.2018.10.206

Xue, C., Chen, X., Xue, L., Zhang, H., Chen, J., and Li, D. (2023). Modeling
the spatially heterogeneous relationships between tradeoffs and synergies among
ecosystem services and potential drivers considering geographic scale in Bairin Left
Banner, China. Sci. Total Environ. 855:158834. doi: 10.1016/j.scitotenv.2022.158834

Yang, M., Gao, X., Zhao, X., and Wu, P. (2021). Scale effect and spatially explicit
drivers of interactions between ecosystem services—A case study from the Loess
Plateau. Sci. Total Environ. 785:147389. doi: 10.1016/j.scitotenv.2021.147389

Yushanjiang, A., Zhang, F., Yu, H., and Kung, H.-T. (2018). Quantifying the spatial
correlations between landscape pattern and ecosystem service value: A case study in
Ebinur Lake Basin, Xinjiang, China. Ecol. Eng. 113, 94–104. doi: 10.1016/j.ecoleng.
2018.02.005

Zhang, L., Fu, B., Lü, Y., and Zeng, Y. (2015). Balancing multiple ecosystem services
in conservation priority setting. Landsc. Ecol. 30, 535–546. doi: 10.1007/s10980-014-
0106-z

Zhang, W., Zhou, J., Feng, G., Weindorf, D. C., Hu, G., and Sheng, J. (2015).
Characteristics of water erosion and conservation practice in arid regions of Central
Asia: Xinjiang, China as an example. Int. Soil Water Conserv. Res. 3, 97–111. doi:
10.1016/j.iswcr.2015.06.002

Zhang, Z., Xia, F., Yang, D., Huo, J., Wang, G., and Chen, H. (2020). Spatiotemporal
characteristics in ecosystem service value and its interaction with human activities in
Xinjiang, China. Ecol. Ind. 110:105826. doi: 10.1016/j.ecolind.2019.105826

Zhuang, Z., Li, C., Hsu, W.-L., Gu, S., Hou, X., and Zhang, C. (2022). Spatiotemporal
changes in the supply and demand of ecosystem services in china&rsquo;s huai river
basin and their influencing factors. Water 14:2559. doi: 10.3390/w14162559

Ziadat, F. M., and Taimeh, A. Y. (2013). Effect of rainfall intensity, slope, land use
and and antecedent soil moisture on soil erosion in an arid environment. Land Degrad.
Dev. 24, 582–590. doi: 10.1002/ldr.2239

Frontiers in Ecology and Evolution 13 frontiersin.org49

https://doi.org/10.3389/fevo.2023.1168313
https://doi.org/10.1016/j.cub.2008.12.025
https://doi.org/10.1016/j.ecolind.2022.108946
https://doi.org/10.1016/j.ecolind.2022.108946
https://doi.org/10.1016/j.jenvman.2017.06.031
https://doi.org/10.3390/ijerph192316144
https://doi.org/10.1016/j.jclepro.2016.06.055
https://doi.org/10.1016/j.jclepro.2016.06.055
https://doi.org/10.1002/ldr.3946
https://doi.org/10.1016/j.apgeog.2011.12.001
https://doi.org/10.1007/s40333-021-0082-5
https://doi.org/10.1016/j.resconrec.2021.106097
https://doi.org/10.1016/j.resconrec.2021.106097
https://doi.org/10.13292/j.1000-4890.202003.028
https://doi.org/10.1016/j.ecoser.2017.08.013
https://doi.org/10.1016/j.ecoser.2017.08.013
https://doi.org/10.1016/j.ecoser.2018.03.012
https://doi.org/10.1016/j.ecoser.2018.03.012
https://doi.org/10.5846/stxb201408261695
https://doi.org/10.1016/j.ecolind.2021.107825
https://doi.org/10.1016/j.scitotenv.2018.10.206
https://doi.org/10.1016/j.scitotenv.2022.158834
https://doi.org/10.1016/j.scitotenv.2021.147389
https://doi.org/10.1016/j.ecoleng.2018.02.005
https://doi.org/10.1016/j.ecoleng.2018.02.005
https://doi.org/10.1007/s10980-014-0106-z
https://doi.org/10.1007/s10980-014-0106-z
https://doi.org/10.1016/j.iswcr.2015.06.002
https://doi.org/10.1016/j.iswcr.2015.06.002
https://doi.org/10.1016/j.ecolind.2019.105826
https://doi.org/10.3390/w14162559
https://doi.org/10.1002/ldr.2239
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/


Frontiers in Ecology and Evolution 01 frontiersin.org

Quantitative analysis of the spatial 
diversity of Moraceae in China
Dangui Lu 1, Lichuan Qiu 2, Meiqi Jiao 3*, Zhongke Feng 1,4* and 
Zhichao Wang 1*
1 Precision Forestry Key Laboratory of Beijing, Forestry College, Beijing Forestry University, Beijing, 
China, 2 School of Geographical Sciences, Taiyuan Normal University, Jinzhong, China, 3 Department of 
Hospitality Management, Shanghai Business School, Shanghai, China, 4 College of Forestry, Hainan 
University, Haikou, China

Changes in distribution patterns of economically essential forest species under 
global change are urgently needed in the scientific forecast, and large-scale 
spatial modeling is a crucial tool. Using diversity pattern indicators and other 
data obtained through geographic information systems (GIS) and spatial data on 
Moraceae species obtained from published data, we  quantitatively studied the 
spatial diversity patterns of genera in the Moraceae in China. The results revealed 
that the patch richness, diversity index, and total shape index of the genera with 
multiple species were significantly higher than those of the monotypic genera. 
Monotypic genera had no spatial diversity and no distribution in patterns of spatial 
diversity. Maclura had the most concentrated spatial distribution and the lowest 
distribution area among the Moraceae in China. The number of patches and 
the total area were the smallest, while the most significant patch index was the 
highest. Maclura had no spatial diversity. Streblus had the highest patch abundance 
compared to other genera with fewer species. Streblus had the smallest number 
of patches and total area of distribution, the lowest spatial distribution, and a 
small total shape index, indicating its concentrated distribution. The values of 
the Shannon’s Diversity Index (SHDI) and Simpson’s Diversity Index (SIDI) were 
the highest, and the spatial distribution was the most diverse among the genera 
with fewer species. The patch type of Streblus had a more considerable value 
than other genera, but the number of patches was small, and the total shape 
index was low. Streblus was primarily distributed in the south of Yunnan, western 
Guangxi, the west and central parts of Hainan, and southern Guangdong. Most 
of these areas were mountainous. The temperature decreased with elevation, 
providing diverse environmental conditions for the narrow-stem genus. Among 
the Moraceae in China, the spatial distribution of Ficus was the most diverse, 
with the highest number of patches, patch types, total shape index, SHDI, and 
SIDI values. The spatial diversity of Ficus could be used as a protected area for 
Moraceae in China.

KEYWORDS

Moraceae, spatial diversity, China, geographic information systems, genus

1. Introduction

Large-scale patterns of species diversity are not only one of the central issues in 
macroecological and biogeographical studies (Colwell and Lees, 2000). In modern China, 
Moraceae includes 12 genera: Antiaris, Artocarpus, Broussonetia, Cannabis, Cudrania, Fatoua, 
Ficus, Humulus, Maclura, Malaisia, Morus, and Streblus. The diversity of Moraceae has been 
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studied in terms of genetic diversity (Elhawary et al., 2018; Marcotuli 
et al., 2019; Martins et al., 2021), species diversity (Gardner et al., 
2017; Machado et al., 2018; Shi et al., 2018; Pederneiras et al., 2020), 
and ecosystem diversity (Kong et al., 2020; Dong et al., 2022; Wang 
et al., 2022). Most studies on diversity in the Moraceae have been 
conducted for limited species of the genus Morus (Chen et al., 2016; 
Islam and Rahman, 2019; Hashemi and Khadivi, 2020) and Ficus 
species (Teixeira et al., 2018; Zhang et al., 2018; Chakraborty et al., 
2022). On the contrary, in this work, all genera in the Chinese 
Moraceae were applied to investigate species diversity. Concerning 
research methodology for the study of the Moraceae in China, tabular 
statistics are frequently applied in studies to document plant species 
diversity (Chen et al., 2010), which has the disadvantage of requiring 
a great deal of work in discovering interprovincial relationships 
among species diversity. With the use of geographic information 
systems (GIS) technology, it is feasible to observe species diversity, i.e., 
spatial diversity, among regions. For now, the limited spatial 
distribution of some genera and species of Moraceae has been studied 
by researchers utilizing GIS (Berg, 1989). However, studies on the 
spatial distribution and diversity of all Moraceae across China are 
insufficient. Furthermore, studies on the species diversity of Moraceae 
are usually conducted using qualitative methods, and quantitative 
studies are insufficient (Zerega et al., 2005; Kumar et al., 2011). In this 
paper, we used GIS to study the species diversity of all Moraceae 
species in all of China. This was done because of these problems.

A quantitative study of species diversity in communities can 
utilize the Shannon-wiener index, which integrates species richness 
and evenness, combined with the Simpson index (Nagendra, 2002; 
Ganivet et al., 2020; Shukla et al., 2020), the Pielou evenness index 
(Pielou, 1966; Ricotta and Avena, 2003; He et  al., 2019), and the 
Jaccard similarity index (Oluyinka Christopher, 2020). The index 
formula of spatial diversity patterns, such as the number of patches 
and total area, was applied to compute the index of spatial diversity 
patterns of the genus Moraceae in China. However, all of them lacked 
the ability to link with geoinformation to provide national-scale 
knowledge. In this research, GIS was applied to map the spatial 
distribution of 12 genera of Moraceae in China, with the county as the 
fundamental unit of spatial data and the Moraceae as the 
research object.

Large-scale vegetation distribution data can be obtained using 
remote sensing images, and landscape diversity indicators can analyze 
the spatial distribution pattern of vegetation. The Moraceae are 
primarily dominated by trees and shrubs, with a small number of 
vines. When the Moraceae building species are evident, the spatial 
pattern of the dominant species in the primary layer can be obtained 
using remote sensing technology. When the prevalent phenomenon 
of Moraceae is not evident, the spatial pattern does not contain 
species. However, species are the basis of plant community 
composition, and the workload of a species survey is immense. The 
published botanical histories of various places in China have the 
distribution sites of Moraceae, which lay the foundation for the study 
of the spatial distribution of Moraceae. Studying how species are 
spread out in space can help protect species and give a guide for 
figuring out what information about plants is in high-resolution 
remote sensing images.

In this study, GIS was used to create a map of the spatial diversity 
of 12 Moraceae genera in Chinese, using counties as the basic spatial 
data unit and Moraceae as the research object, from which not only 

the spatial distribution characteristics of the genera, but also further 
indicators of spatial diversity calculation, such as the number of 
patches and patch richness, can be obtained, providing a foundation 
for its quantitative study of spatial divergence. The quantitative study 
of the spatial diversity of Moraceae can provide a more accurate basis 
for species diversity, conservation, use, and restoration of Moraceae 
in China.

2. Materials and methods

2.1. Data collection and processing

In the first step, based on the contents of the Flora Reipublicae 
Popularis Sinicae [Vol. 23(1)], the species of Moraceae in China and 
their Latin names were collated and reviewed by plant taxonomy 
experts to determine a list of Moraceae species in China. Secondly, the 
database of Moraceae in China was established by compiling all kinds 
of data sources to record the geographical distribution of Moraceae. 
The primary data sources for geographical distribution were the full-
text FRPS website1, the National Plant Specimen Resource Center2, 
and the National Specimen Information Infrastructure website3. Up 
to the end of 2021, they issued papers and journals on the geographical 
distribution of Moraceae in China (Wu Zhengyi, 1989; Arimoto et al., 
2020), and regional flora was issued by some provinces and regions. 
Determine the particular distribution of each plant in the county. The 
data of provinces and regions and the range of distribution that the 
counties cannot determine will not be  adopted. In the final step, 
we tested all species names for synonyms and merged all synonymized 
species records.

We also excluded cultivated species and hybrids, and all 
distribution data were natural species distributions. The attribute data 
in the database includes genus name, species name, Latin name, 
province of distribution, county of issuance, and data source, with a 
total of 28,537 county-level distribution records. The attribute data in 
the database contained genus name, species name, Latin name, 
distribution province, distribution county, and data source. It was 
eventually determined that there were 12 genera and 149 species of 
Moraceae in China, and a total of 28,537 county-level distribution 
records were compiled.

2.2. Methods

All of the species’ spatial data, which includes both graphic and 
attribute data, was made in ArcGIS 10.2. The graphic data used a map 
of China with the county as the basic unit (a scale of 1:1,000,000). The 
attribute data was the distribution of species. Then, the number of 
genera was obtained, and the spatial diversity map was created. In the 
spatial distribution of the genus, an isolated county was a patch, and 
adjacent counties jointly formed a patch. The number of genera in the 
patch was different, forming different patch types. The spatial diversity 
and its pattern for the genus could be obtained by calculating the 

1 http://www.iplant.cn/frps2019/

2 https://www.cvh.ac.cn/index.php

3 http://www.nsii.org.cn/2017/home.php
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index of spatial diversity pattern. The applicable data was obtained 
from the spatial data and studied according to the spatial diversity 
pattern indicators (Table 1). Complete all raster data calculations in 
Fragstats 3.3.

3. Results and analysis

3.1. Spatial diversity of monotypic genera

Monotypic genera are genera that comprise just one species. 
Moraceae includes Maclura, Antiaris, Malaisia, and Cannabis. 
Among Moraceae in China, these genera had the smallest patch 

richness, with a value of 1 (Table 2), indicating merely one patch 
type. However, the different genera had different numbers of 
patches. Shannon’s diversity index (SHDI), Simpson’s diversity 
index (SIDI), Shannon’s evenness index (SHEI), and Simpson’s 
evenness index (SIEI) of monotypic genera were all 0 (Table 2), 
implying that there was no diversity. The monotypic genus 
exhibited a high degree of aggregation. Additionally, it had a 
maximum plaque index but a low total shape index  
(Table 2).

The total number of all patches (NAP) on Maclura was six 
(Table 2), indicating six patches. Among the 12 genera of Moraceae, 
the spatial distribution of Maclura was the lowest, predominantly 
distributed in Medog County in Tibet and the eastern, central, 

TABLE 1 Indices of spatial diversity patterns.

Index Formula Meaning Unit，Range

1 Patch richness PR = m Number of patch types in the genus PR ≥ 1

2 Shannon’s diversity index
SIDI P P

i

m
i i= − ×( )

=
∑

1

ln

Diversity of spatial distribution in the genus 0 ≤ SIDI<1

3 Simpson’s diversity index
SHDI P

i

m
i= −

=
∑1

1

2

Diversity of spatial distribution in the genus SHDI ≥ 0

4 Shannon’s evenness index

( )ln

ln
1

P P

SHEI
m

m
i i

i
− ×

= =
∑

Evenness of spatial distribution in the genus 0 ≤ SHEI ≤ 1

5 Simpson’s evenness index
1

11

2

1
Pi

SIEI

m

m

i
−

=
 −  
 

=
∑

Evenness of spatial distribution in the genus 0 ≤ SIEI ≤ 1

6 Area of patch type
1 1

10000 100000001
APT a

m
ij

j
= × ×

=
∑

Area of patch type i 107hm2 APT>0

7 Percentage of the genus

1001
a

PG
A

n
ij

j= ×=
∑

Proportional abundance of patch type i in the genus %，0<PG ≤ 100

8 Number of patches NP ni= Number of patches in patch type i NP ≥ 1

9 Largest patch index

( )max

1001
= ×

=
a

LPI
A

n
ij

j

Percentage of the genus area comprwased by the 

largest patch in patch type i

%，0<LPI ≤ 100

10 Shape index

min
eSI

e
i

i
=

Measure of aggregation in patch type i SI ≥ 1

11 Total area TAP APT= ∑ Area of genus 107hm2

12 Number of all patches NAP NP= ∑ Number of all patches in genus NAP ≥ 1

13 Total largest patch index TLPI LPI= ∑ Sum of largest patch index of every patch type in 

genus

%，0<TLPI ≤ 100

14 Total shape index TSI SI= ∑ Sum of shape index of every patch type in genus TSI ≥ 1

m = number of patch types in the genus; Pi = proportion of the genus occupied by patch type i; aij = area of patch ij; ij = patch j in patch type i; A = area of genus; ni = number of patches in patch 
type i; ei = total length of patch type i.
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northern, and southern parts of Yunnan. Maclura in the five counties 
had a significantly lower distribution range than the other genera. 
Consistent with the data shown in Figure  1A, the number of all 
patches (NAP) and total area (TA) of Maclura were the smallest 
(Table 2). Among monotypic genera, the Maclura spatial distribution 
was the most concentrated (Figure 1A), and the most extensive patch 
index (TLPI) was the highest among the 12 genera of Moraceae 
(Table 2).

The NAP value of Antiaris was 14 (Table 2), indicating that the 
number of patches was 14. The number of all patches (NAP) of 
Antiaris was slightly higher than that of Maclura, but Antiaris’ 
distribution range was significantly larger. The numbers of all patches 
(NAP), total area (TA), and full shape index (TSI) of Antiaris in 
Table 2 were consistent with those of Maclura.

The number of all patches (NAP) of Malaisia was 20 (Table 2), 
which indicates that the number of patches in this genus was 20, and 
the number of patches was slightly larger than that of Antiaris. The 
distribution range was somewhat more extensive than that of Antiaris. 
The number of all patches (NAP) and total area (TA) of the three 
genera in Table 2 were the smallest among the Moraceae in China, and 
the total area (TA) of the three genera was comparable.

Among the monotypic genera, the number of all patches (NAP), 
total area (TA), and complete shape index (TSI) of Cannabis were 
extensive (Table 2). Cannabis was distributed in other parts of the 
county, though not in regions including Hainan, Taiwan, Hong Kong, 
and Macau. Cannabis had the most comprehensive distribution, and 
the sum of the most extensive patch index of every patch type in the 
genus (TLPI) was the lowest among the monotypic genera (Table 2).

TABLE 2 Spatial diversity of genera in the Moraceae in China.

Genera Index

PR SHDI SIDI SHEI SIEI TA NAP TLPI TSI

Maclura 1 0 0 0 0 0.534 6 59.081 3.492

Antiaris 1 0 0 0 0 0.934 14 27.985 6.702

Malaisia 1 0 0 0 0 1.338 20 37.607 7.605

Cannabis 1 0 0 0 0 17.973 139 26.131 16.262

Fatoua 2 0.411 0.246 0.594 0.492 4.513 114 13.340 22.312

Humulus 3 0.034 0.01 0.031 0.015 11.661 158 12.488 20.836

Broussonetia 3 1.033 0.624 0.941 0.937 17.917 295 11.717 44.713

Cudrania 4 0.864 0.499 0.623 0.665 15.982 227 16.056 41.419

Streblus 5 1.302 0.683 0.809 0.854 1.964 42 32.517 23.884

Morus 7 1.184 0.628 0.609 0.733 31.357 428 18.856 61.714

Artocarpus 8 1.294 0.654 0.622 0.747 6.675 104 23.872 41.345

Ficus 41 3.017 0.931 0.813 0.954 23.664 742 15.975 200.219

A B C D

E F G H

FIGURE 1

Spatial diversity distribution of every genus in the Moraceae in China. (A) Fatoua, (B) Humulus, (C) Broussonetia, (D) Cudrania (E) Streblus, (F) Morus, 
(G) Artocarpus, (H) Ficus.
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3.2. Spatial diversity of lesser genera

The lesser genera (2–7 species) included Fatoua, Humulus, 
Cudrania, Broussonetia, and Streblus. Patch richness (PR) values of the 
five species were more significant than 1 (Table 2), and the patch 
richness increased as patch type gradually increased from 2 to 5. The 
species in these genera were diverse, and their SHDI, SIDI, SHEI, and 
SIEI index values were all greater than 0 (Table 2) and slightly higher 
than those of monotypic genera. Table 1 shows that the correlation 
index of the lesser genus species (except for Cannabis) was higher than 
monotypic genera for patch richness (PR), total area (TA), and the 
number of all patches (NAP). The species were more widely 
distributed and more dispersed than monotypic genera. The total 
shape index (TSI) was significantly higher than that of monotypic 
genera (Table 2).

The total area (TA) of Fatoua was close to that of Artocarpus 
(Table 2). The difference can be easily observed by comparing the plots 
of these two genera. The plaque richness (PR) value of Fatoua is 2 
(Table 2). There are two types of patches with low patch richness. One 
plaque type had one species, and the other had two species, 
corresponding to 1 and 2 in the legend of Figure 1A, higher than 
Fatoua. In Figure 1G, the patch types are classified into five classes. 
Fatoua is more widely distributed, and it was concentrated in tropical 
and subtropical regions (Figure 1A). Artocarpus is concentrated in 
tropical and southern subtropical regions (Figure  1G). Although 
Fatoua had a slightly larger number of patches, Artocarpus had more 
patch types and a slightly higher total area (TA).

The spatial distribution of Humulus (Figure 1B) was analogous to 
that of monotypic Cannabis. The PR of Humulus was 3 (Table 2), 
indicating that its patch richness was higher than that of Cannabis. 
Humulus has three patches: patches with species, patches with two 
species, and patches with three species, which correspond to 1, 2, and 
3 in the legend of Figure 1B, respectively. According to the total shape 
index (TSI), Humulus species had greater spatial dispersion and 
uniform spatial distribution than Cannabis (Table 2). However, the 
total most extensive patch index (TLPI) was less than that of Cannabis. 
Compared with Cannabis, Humulus had a slightly smaller number of 
patches, but the total area was slightly larger (Table 2). The SHDI, 
SIDI, SHEI, and SIEI index values of Humulus were more significant 
than 0, but the value was lower because the first patch type was more 
evenly distributed. In contrast, the second and third  
patches were distributed in the southwest in small quantities  
(Figure 1B).

Compared with the lesser genera in the previous section, the total 
area of Broussonetia was the largest, as was the number of patches. The 
PR of Broussonetia was 3 (Table 2), and patch richness was low. The 
spatial distribution of Broussonetia (Figure 1C) was similar to that of 
Cudrania (Figure 1D), and its total area (TA) and several patches (NP) 
were slightly higher than those of Cudrania (Table 2), with distribution 
in the south and north. The SHDI and SIDI diversity index values and 
the SHEI and SIEI meanness index values of Broussonetia were higher 
than the corresponding indicators for Cudrania (Table  2), so 
we determined that the spatial distribution of Broussonetia was diverse.

The total area of distribution of Streblus was similar to Malaisia 
(Table 2). The number of patches (NP) of Streblus was twice that of 
Malaisia, and the total shape index (TSI) was three times that of the 
latter. The spatial distribution of Streblus was western. The distribution 
was more dispersed (Figure 1E). The PR of Streblus was 5 (Table 2), 

indicating that its patch richness was the highest among the lesser 
genera. However, the total area (TA) and number of all patches (NAP) 
of Streblus were the smallest (Table 2). The smallest spatial distribution 
range was found (Figure  1E). Its total shape index (TSI) was 
moderately small and relatively concentrated. The SHDI and SIDI 
diversity indices of Streblus were the highest among the lesser genera, 
and the SHEI and SIEI values were higher than average. The spatial 
distribution was the most diverse among the more inferior generation. 
Streblus had the most considerable number of patch types, but the 
number of patches (NP) was small, and the total shape index (TSI) 
was weak. Because Streblus was predominantly distributed in the 
south of Yunnan, western Guangxi, the west and central parts of 
Hainan, and southern Guangdong (Figure  1E), most were in 
mountainous areas. The temperature decreases with height, providing 
different and challenging environmental conditions for Streblus, which 
grows in a limited range of suitable conditions.

3.3. Spatial diversity of multiple genera

The multiple genera (more than seven species) include Morus, 
Artocarpus, and Ficus. Among the 12 genera of Moraceae in China, 
the genera with more than 10 species had the most outstanding patch 
richness (PR). The number of patches (NP), total shape index (TSI), 
SHDI, SIDI, SHEI, and SIEI values of these genera were higher than 
those of smaller genera, but the most extensive patch index (LPI) 
values were lower (Table 2).

Morus had a PR of 7 (Table 2), with seven types of patches. Patch 
types 1, 2, 3, 4, 5, 6, and 7 represented patches comprising 1, 2, 3, 4, 
5, 6, and 7 species, respectively. In Figure 1F, the patch types were 
divided into five levels. The number of patches (NP) and total shape 
index (TSI) values of Morus were high (Table  2), which was 
consistent with the number and distribution of patches in 
Figure 1F. Among genera with more than 10 species, Morus had the 
largest total area (TA) and was the most evenly distributed across the 
county. Morus’s SHDI, SIDI, SHEI, and SIEI values were higher than 
those of other large genera, and the spatial distribution had 
higher diversity.

The PR of Artocarpus was 8 (Table 2), and patch richness (PR) 
was slightly higher than Morus’s. Patch types 1, 2, 3, and 4 
represented patches containing 1, 2, 3, and 4 species, respectively, 
and patch type 5 represented patches containing 5–8 species. In 
Figure 1G, the patch types were divided into five levels. Among 
genera with more than 10 species, the patch richness of Artocarpus 
was relatively high. However, the number of patches (NP), total 
area (TA), and total shape index (TSI) values were the smallest 
(Table 2). The distribution range of Artocarpus was the smallest, 
and the spatial distribution was the most concentrated 
(Figure 1G). In Table 2, the SHDI, SIDI, SHEI, and SIEI values of 
Artocarpus were shown to be  between the corresponding 
indicators for Morus and Ficus, with high spatial diversity.

The PR of Ficus was 41 (Table 2), the highest among the 12 
genera of Moraceae in China. The patch types were species 
comprised of 1 to 37, 38, 40, 43, 49, and 50 (Figure 1H). The spatial 
distribution of Ficus was close to that of Broussonetia, though 
farther to the south (Figure 1H), and the spatial distribution was 
centered. However, the number of Ficus patches was 2.5 times that 
of Broussonetia, and the total shape index (TSI) was 4.5 times that 
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of Broussonetia. The most extensive patch index (LPI), SHDI, and 
SIDI values of Ficus were higher than those of Broussonetia 
(Table 2). Among the Moraceae in China, the spatial distribution of 
Ficus was the most diverse and widely distributed, with the highest 
number of all patches (NAP), number of patch types, total shape 
index (TSI), SHDI, and SIDI values (Table 2). Therefore, areas with 
a substantial number of Ficus could be used as protected areas to 
protect the Moraceae resources in China.

4. Discussion

Our research applied spatial variety pattern indicators using 
spatial calculations based on the number of patches, genus and species 
types, and distribution areas. Spatial diversity patterns were calculated 
using spatial arrows based on the number of patches, genus or species 
types, and their distribution areas to create Moraceae’s genus and 
species diversity in each county. Based on the patches, the analysis of 
the kinds of genera or species and their distribution areas in the study 
enables the species of mulberry genera and species in each county to 
be  derived, and the spatial variety index can be  computed. The 
computation of the spatial diversity index can quantify spatial 
diversity, which is unique to this research.

One of the most important features of species spatial 
distribution was the large-scale pattern of species diversity 
(Tittensor et al., 2010). The large-scale pattern of species diversity 
and its formation mechanism is one of the core issues in ecology 
and the basis of biodiversity conservation planning (Stuart-Smith 
et al., 2013). The most significant feature of this study was that the 
distribution was precise to the county level, quantitatively studying 
the spatial diversity of the Moraceae in China, and the diversity 
types were divided based on the number of species. Using GIS to 
draw distribution maps enabled us to carry out a spatially simple 
and intuitive observation of the species diversity of Moraceae in 
China and obtain spatial diversity computation indicators from 
patch maps. We obtained data on the spatial diversity, evenness 
index, and several patches using the spatial diversity model 
indicators. And then, we  can quantitatively analyze the spatial 
diversity of Moraceae in China. Carrying out a study at this large 
scale not only enabled us to discover the spatial diversity center of 
Moraceae in China more accurately but could also aid in protecting 
and utilizing it.

The diversity analysis of genera can provide evidence and 
indications for investigating the evolution of flora (Yue, 2001). Among 
the Moraceae in China, the patch indicators of monotypic genera were 
consistent with the species, and spatial diversity did not differ between 
the species and genus. The number of all patches (NAP), total area 
(TA), and spatial distribution range of Maclura were the lowest among 
all 12 genera. Maclura’s most extensive patch index (LPI) was the 
highest among the 12 genera, and the spatial distribution was the most 
concentrated. Among monotypic genera, Cannabis had a moderately 
substantial total shape index (TSI), the most substantial number of 
patches (NP) and entire area (TA), and the most comprehensive 
distribution range. Among monotypic genera, the patch richness of 
Streblus was the highest, the total number of patches and total 
distribution area was the smallest, and the spatial distribution range 
was the smallest. The total shape index of Streblus was moderately 

small, and the distribution was relatively concentrated. We found that 
Streblus was mainly distributed in the south of Yunnan, the western 
part of Guangxi, the central and western parts of Hainan, and the 
southern part of Guangdong. This was because these areas are mostly 
mountainous, and the temperature decreases with elevation, providing 
different environmental conditions for Streblus, which can tolerate a 
narrow range of conditions.

The SHDI and SIDI diversity indices of Streblus were the highest, 
and the spatial distribution was the most diverse among the genera 
with few species. Streblus had more patch types, but the number of 
patches was small, and the total shape index (TSI) was low. Streblus 
was a non-monophyletic group, far from other genera. We found that 
Streblus was mainly distributed in the south of Yunnan, the western 
part of Guangxi, the central and western parts of Hainan, and the 
southern part of Guangdong. Because these areas were primarily 
mountainous, the temperature decreased with elevation, providing 
different environmental conditions for Streblus, which can tolerate a 
narrow range of conditions.

Among the genera with lesser species, the number of all 
patches (NAP), total area (TA), total shape index (TSI), SIDI, and 
SHEI values of Broussonetia were the highest. Broussonetia was 
widely distributed, and its distribution was the most diverse. The 
ecological adaptation of Broussonetia papyrifera was strong, and 
this species was widely distributed in China. The reason why is 
that the B. papyrifera population has high genetic diversity due to 
the fact that the tree was a cross-pollinated plant and geographical 
isolation due to features such as rivers, mountains, roads, and 
canals that block the flow of genes between Broussonetia 
papyrifera populations.

Among the Moraceae in China, the spatial distribution of Ficus 
was the most diverse, with the most significant number of all patches 
(NAP), number of patch types, total shape index (TSI), SHDI, and 
SIDI values. The diversified centers of Ficus were distributed in 
southeastern Gansu, northeastern Guizhou, southern Yunnan, 
southwestern Guangxi, southern Taiwan, and western Hainan. The 
spatial diversity of Ficus could be used when designating protected 
areas for the Moraceae in China. The spatial diversity center of the 
Moraceae in China was mainly distributed in tropical and subtropical 
regions. This conclusion was consistent with the view put forth by the 
Flora Reipublicae Popularis Sinicae that the Moraceae in China were 
prolific in tropical and subtropical areas, with a few distributed in the 
temperate zone.

Data availability statement

The datasets presented in this study can be found in online 
repositories. The names of the repository and accession number(s) can 
be found in the article.

Author contributions

DL: conceptualization, validation, formal analysis, data 
curation, and writing - original draft. LQ: conceptualization, 
resources, and acquisition of the financial support for the project 
leading to this publication. MJ: software, validation, formal analysis, 

55

https://doi.org/10.3389/fevo.2023.1110018
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Lu et al. 10.3389/fevo.2023.1110018

Frontiers in Ecology and Evolution 07 frontiersin.org

data curation, and acquisition of the financial support for the 
project leading to this publication. ZF: conceptualization and 
resources. ZW: provided guidance on article format and acquisition 
of the financial support for the project leading to this publication. 
All authors contributed to manuscript revision, read and approved 
the submitted version.

Funding

This work was supported by grants from the National Natural 
Science Foundation of China (41071335, 41171423).

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors 
and do not necessarily represent those of their affiliated organizations, 
or those of the publisher, the editors and the reviewers. Any product 
that may be evaluated in this article, or claim that may be made by its 
manufacturer, is not guaranteed or endorsed by the publisher.

References
Arimoto, K., MacGowan, I., and Su, Z.-H. (2020). New data on lance flies (Diptera, 

Lonchaeidae) associated with figs (Moraceae, Ficus spp.) in Japan and Taiwan, with 
descriptions of two new species of the genus Silba Macquart. J. Asia Pac. Entomol. 23, 
364–370. doi: 10.1016/j.aspen.2019.11.007

Berg, C. (1989). Classification and distribution of Ficus. Experientia 45, 605–611. doi: 
10.1007/BF01975677

Chakraborty, A., Mahajan, S., Bisht, M. S., and Sharma, V. K. (2022). Genome 
sequencing and comparative analysis of Ficus bengalensis and Ficus religiosa species 
reveal evolutionary mechanisms of longevity. iScience 25:105100. doi: 10.1016/j.
isci.2022.105100

Chen, H., Chen, J., Yang, H., Chen, W., Gao, H., and Lu, W. (2016). Variation in total 
anthocyanin, phenolic contents, antioxidant enzyme and antioxidant capacity among 
different mulberry (Morus sp.) cultivars in China. Sci. Hortic. 213, 186–192. doi: 
10.1016/j.scienta.2016.10.036

Chen, R.-F., Xu, L., Yu, M. D., Liu, X.-Q., and Chen, L.-Q. (2010). Determination of the 
Origin and Evolution of Morus (Moraceae) by Analyzing the Internal Transcribed Spacer 
(ITS) Sequences. In 2010 4th International Conference on Bioinformatics and Biomedical 
Engineering. IEEE.

Colwell, R. K., and Lees, D. C. (2000). The mid-domain effect: geometric constraints 
on the geography of species richness. Trends Ecol. Evol. 15, 70–76. doi: 10.1016/
S0169-5347(99)01767-X

Dong, J.-L., Li, Z., Gao, J. X., Sun, B. N., and He, Y. L. (2022). Ficus leaves within the 
Ficus subgenus Urostigma (Moraceae) from the middle Miocene in South China and 
their biogeography implications. Rev. Palaeobot. Palynol. 302:104671. doi: 10.1016/j.
revpalbo.2022.104671

Elhawary, S. S., Younis, I. Y., el Bishbishy, M. H., and Khattab, A. R. (2018). LC–
MS/MS-based chemometric analysis of phytochemical diversity in 13 Ficus spp. 
(Moraceae): correlation to their in vitro antimicrobial and in silico quorum sensing 
inhibitory activities. Ind. Crop. Prod. 126, 261–271. doi: 10.1016/j.indcrop. 
2018.10.017

Ganivet, E., Unggang, J., Bodos, V., Demies, M., Ling, C. Y., Sang, J., et al. (2020). 
Assessing tree species diversity and structure of mixed dipterocarp forest remnants in a 
fragmented landscape of North-Western Borneo, Sarawak, Malaysia. Ecol. Indic. 
112:106117. doi: 10.1016/j.ecolind.2020.106117

Gardner, E. M., Sarraf, P., Williams, E. W., and Zerega, N. J. C. (2017). Phylogeny and 
biogeography of Maclura (Moraceae) and the origin of an anachronisticfruit. Mol. 
Phylogenet. Evol. 117, 49–59. doi: 10.1016/j.ympev.2017.06.021

Hashemi, S., and Khadivi, A. (2020). Morphological and pomological characteristics 
of white mulberry (Morus alba L.) accessions. Sci. Hortic. 259:108827. doi: 10.1016/j.
scienta.2019.108827

He, Y.-H., Gao, P.-L., and Qiang, S. (2019). An investigation of weed seed banks reveals 
similar potential weed community diversity among three different farmland types in 
Anhui Province, China. J. Integr. Agric. 18, 927–937. doi: 10.1016/S2095-3119(18)62073-8

Islam, S. M. S., and Rahman, M. S. (2019). Genetic diversity analysis based on morphological 
characters in mulberry (Morus spp.). J. Biosci. 28, 111–119. doi: 10.3329/jbs.v28i0.44717

Kong, W., Wu, S. H., Wu, X. Q., Zheng, X. R., Sun, X. R., Ye, J. N., et al. (2020). First 
report of leaf spot disease caused by Colletotrichum tropical on Ficus binnendijkii var. 
variegata in China. Plant Dis. 104:585. doi: 10.1094/PDIS-04-19-0834-PDN

Kumar, A., Bajpai, O., Mishra, A. K., Sahu, N., Behera, S. K., and Chaudhary, L. B. (2011). 
Assessment of diversity in the genus Ficus L. (Moraceae) of Katerniaghat wildlife sanctuary, 
Uttar Pradesh, India. American. J. Plant Sci. 2, 78–92. doi: 10.4236/ajps.2011.21011

Machado, A. F. P., Rønsted, N., Bruun-Lund, S., Pereira, R. A. S., and Paganucci de 
Queiroz, L. (2018). Atlantic forests to the all Americas: biogeographical history and 

divergence times of neotropical Ficus (Moraceae). Mol. Phylogenet. Evol. 122, 46–58. doi: 
10.1016/j.ympev.2018.01.015

Marcotuli, I., Mazzeo, A., Nigro, D., Giove, S. L., Giancaspro, A., Colasuonno, P., et al. 
(2019). Analysis of genetic diversity of Ficus carica L. (Moraceae) collection using simple 
sequence repeat (SSR) markers. Acta Sci. Polon. Hortorum Cultus 18, 93–109. doi: 
10.24326/asphc.2019.4.9

Martins, L. A. R., Lorenzoni, R. M., Pereira, R. M., de Miranda, F. D., Fontes, M. M., 
Carrijo, T. T., et al. (2021). Genetic diversity and structure of Dorstenia elata (Moraceae) 
in an Atlantic Forest remnant. Rodriguésia:72.

Nagendra, H. (2002). Opposite trends in response for the Shannon and Simpson indices of 
landscape diversity. Appl. Geogr. 22, 175–186. doi: 10.1016/S0143-6228(02)00002-4

Oluyinka Christopher, A. (2020). Comparative analyses of diversity and similarity indices 
of West Bank Forest and block a Forest of the International Institute of Tropical Agriculture 
(IITA) Ibadan, Oyo state, Nigeria. Int. J. Forest. Res. 2020, 1–8. doi: 10.1155/2020/4865845

Pederneiras, L. C., da Costa, A. F., Medeiros, H., Rivera, N. M., Forzza, R. C., 
Romaniuc-Neto, S., et al. (2020). Species diversity of Ficus L. sect. Americanae 
(Moraceae) in acre, Brazil. Brittonia 72, 215–231. doi: 10.1007/s12228-020-09620-1

Pielou, E. C. (1966). The measurement of diversity in different types of biological 
collections. J. Theor. Biol. 13, 131–144. doi: 10.1016/0022-5193(66)90013-0

Ricotta, C., and Avena, G. (2003). On the relationship between Pielou’s evenness and 
landscape dominance within the context of Hill’s diversity profiles. Ecol. Indic. 2, 
361–365. doi: 10.1016/S1470-160X(03)00005-0

Shi, Y., Mon, A. M., Fu, Y., Zhang, Y., Wang, C., Yang, X., et al. (2018). The genus Ficus 
(Moraceae) used in diet: its plant diversity, distribution, traditional uses and 
ethnopharmacological importance. J. Ethnopharmacol. 226, 185–196. doi: 10.1016/j.
jep.2018.07.027

Shukla, G., Rai, P., Abha Manohar, K., and Chakravarty, S. (2020). Quantification of 
diversity, biomass and carbon storage of climber and liana community in a foothill forest 
of Indian Eastern Himalayas. Acta Ecol. Sin. 40, 478–482. doi: 10.1016/j.
chnaes.2020.09.009

Stuart-Smith, R. D., Bates, A. E., Lefcheck, J. S., Duffy, J. E., Baker, S. C., Thomson, R. J., 
et al. (2013). Integrating abundance and functional traits reveals new global hotspots 
offish diversity. Nature 501, 539–542. doi: 10.1038/nature12529

Teixeira, S. P., Costa, M. F. B., Basso-Alves, J. P., Kjellberg, F., and Pereira, R. A. S. 
(2018). Morphological diversity and function of the stigma in Ficus species (Moraceae). 
Acta Oecol. 90, 117–131. doi: 10.1016/j.actao.2018.02.008

Tittensor, D. P., Mora, C., Jetz, W., Lotze, H. K., Ricard, D., Berghe, E. V., et al. (2010). 
Global patterns and predictors of marine biodiversity across taxa. Nature 466, 
1098–1101. doi: 10.1038/nature09329

Wang, H.-F., Xu, X., Cheng, X. L., Liu, Y., Luo, A., Lyu, T., et al. (2022). Spatial patterns 
and determinants of Moraceae richness in China. J. Plant Ecol. 15, 1142–1153. doi: 
10.1093/jpe/rtac025

Wu Zhengyi, Z. X. (1989). Taxa nova nonnulla moracearum sinensium. Plant Divers. 
11, 1–3.

Yue, T. (2001). Studies and questions of biological diversity. Acta Ecol. Sin. 21, 462–467.

Zerega, N. J., Clement, W. L., Datwyler, S. L., and Weiblen, G. D. (2005). Biogeography 
and divergence times in the mulberry family (Moraceae). Mol. Phylogenet. Evol. 37, 
402–416. doi: 10.1016/j.ympev.2005.07.004

Zhang, J., Zhu, W. F., Xu, J., Kitdamrongtham, W., Manosroi, A., Manosroi, J., et al. 
(2018). Potential cancer chemo preventive and anticancer constituents from the fruits of 
Ficus hispida L.f. (Moraceae). J. Ethnopharmacol. 214, 37–46. doi: 10.1016/j.jep.2017.11.016

56

https://doi.org/10.3389/fevo.2023.1110018
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://doi.org/10.1016/j.aspen.2019.11.007
https://doi.org/10.1007/BF01975677
https://doi.org/10.1016/j.isci.2022.105100
https://doi.org/10.1016/j.isci.2022.105100
https://doi.org/10.1016/j.scienta.2016.10.036
https://doi.org/10.1016/S0169-5347(99)01767-X
https://doi.org/10.1016/S0169-5347(99)01767-X
https://doi.org/10.1016/j.revpalbo.2022.104671
https://doi.org/10.1016/j.revpalbo.2022.104671
https://doi.org/10.1016/j.indcrop.2018.10.017
https://doi.org/10.1016/j.indcrop.2018.10.017
https://doi.org/10.1016/j.ecolind.2020.106117
https://doi.org/10.1016/j.ympev.2017.06.021
https://doi.org/10.1016/j.scienta.2019.108827
https://doi.org/10.1016/j.scienta.2019.108827
https://doi.org/10.1016/S2095-3119(18)62073-8
https://doi.org/10.3329/jbs.v28i0.44717
https://doi.org/10.1094/PDIS-04-19-0834-PDN
https://doi.org/10.4236/ajps.2011.21011
https://doi.org/10.1016/j.ympev.2018.01.015
https://doi.org/10.24326/asphc.2019.4.9
https://doi.org/10.1016/S0143-6228(02)00002-4
https://doi.org/10.1155/2020/4865845
https://doi.org/10.1007/s12228-020-09620-1
https://doi.org/10.1016/0022-5193(66)90013-0
https://doi.org/10.1016/S1470-160X(03)00005-0
https://doi.org/10.1016/j.jep.2018.07.027
https://doi.org/10.1016/j.jep.2018.07.027
https://doi.org/10.1016/j.chnaes.2020.09.009
https://doi.org/10.1016/j.chnaes.2020.09.009
https://doi.org/10.1038/nature12529
https://doi.org/10.1016/j.actao.2018.02.008
https://doi.org/10.1038/nature09329
https://doi.org/10.1093/jpe/rtac025
https://doi.org/10.1016/j.ympev.2005.07.004
https://doi.org/10.1016/j.jep.2017.11.016


Frontiers in Ecology and Evolution 01 frontiersin.org

Relationship between plant 
species diversity and aboveground 
biomass in alpine grasslands on 
the Qinghai–Tibet Plateau: Spatial 
patterns and the factors driving 
them
Mingxin Yang 1,2, Ang Chen 2, Min Zhang 2, Qiang Gu 1, 
Yanhe Wang 1, Jian Guo 3,4, Dong Yang 2, Yun Zhao 1, 
Qingdongzhi Huang 1, Leichao Ma 2,5 and Xiuchun Yang 2*
1 Xining Natural Resources Comprehensive Survey Center, China Geological Survey, Xining, China, 
2 School of Grassland Science, Beijing Forestry University, Beijing, China, 3 State Key Laboratory of 
Remote Sensing Science, Faculty of Geographical Science, Beijing Normal University, Beijing, China, 
4 Beijing Key Laboratory for Remote Sensing of Environment and Digital Cities, Faculty of Geographical 
Science, Beijing Normal University, Beijing, China, 5 Natural Resources Comprehensive Survey 
Command Center, China Geological Survey, Beijing, China

Alpine grasslands are important ecosystems on the Qinghai–Tibet Plateau and 
are extremely sensitive to climate change. However, the spatial responses of plant 
species diversity and biomass in alpine grasslands to environmental factors under 
the background of global climate change have not been thoroughly characterized. 
In this study, a random forest model was constructed using grassland ground 
monitoring data with satellite remote sensing data and environmental variables to 
characterize the plant species diversity and aboveground biomass of grasslands 
in the Three-River Headwaters Region within the Qinghai–Tibet Plateau and 
analyze spatial variation in the relationship between the plant species diversity 
and aboveground biomass and their driving factors. The results show that (1) 
the selection of characteristic variables can effectively improve the accuracy of 
random forest models. The stepwise regression variable selection method was 
the most effective approach, with an R2 of 0.60 for the plant species diversity 
prediction model and 0.55 for the aboveground biomass prediction model, (2) 
The spatial distribution patterns of the plant species diversity and aboveground 
biomass in the study area were similar, they were both high in the southeast and 
low in the northwest and gradually decreased from east to west. The relationship 
between the plant species diversity and aboveground biomass varied spatially, they 
were mostly positively correlated (67.63%), but they were negatively correlated 
in areas with low and high values of plant species diversity and aboveground 
biomass, and (3) Analysis with geodetector revealed that longitude, average annual 
precipitation, and elevation were the main factors driving variation in the plant 
species diversity and aboveground biomass relationship. We characterized plant 
species diversity and aboveground biomass, as well as their spatial relationships, 
over a large spatial scale. Our data will aid biodiversity monitoring and grassland 
conservation management, as well as future studies aimed at clarifying the 
relationship between biodiversity and ecosystem functions.
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1. Introduction

The relationship between species diversity and productivity has 
been the subject of much debate (Waide et al., 1999; Adler et al., 2011; 
Grace et al., 2016; Chen et al., 2018). Biodiversity is concerned with the 
stability and sustainability of ecosystem functions and affects the value 
of ecosystem services and regional quality development (Bai et  al., 
2004). In large-scale grassland ecosystems, there is great spatial 
heterogeneity in species composition and productivity due to variation 
in geography, climate, and other environmental conditions; 
consequently, the relationship between species diversity and 
productivity can vary. Single-peaked patterns, positive correlations, and 
negative correlations have been observed, and the lack of a correlation 
between species diversity and productivity has also been observed (Ma 
and Fang, 2006; Adler et al., 2011). At the regional scale, enhancing the 
monitoring and assessment of grassland biodiversity and ecosystem 
functions is essential for the development of grassland biodiversity 
conservation policies and grassland ecosystem management.

Remote sensing technology has a wide monitoring range and can 
be used to monitor vegetation over long periods unlike traditional ground 
survey approaches, it has thus been widely used to monitor variables such 
as grassland aboveground biomass (AGB) and plant species diversity 
(PSD) (Reddy et al., 2021; Ge et al., 2022; Sun et al., 2022). Indicators such 
as grassland biomass and plant species richness are well correlated with 
remotely sensed vegetation indices such as the normalized vegetation 
index (NDVI) and enhanced vegetation index (EVI), and they are often 
used to construct grassland models (Oindo and Skidmore, 2002; Chitale 
et  al., 2019; Reddy, 2021; Yu et al., 2021). Due to the large area and 
diversity in grassland types, spatial heterogeneity in grasslands is 
pronounced, and multiple environmental variables need to be integrated 
to construct high-precision models. In previous studies in which biomass 
has been monitored via remote sensing, several variables including 
vegetation indices, climate, topography, soil, and other variables have been 
used to increase model accuracy (Liang et al., 2016). However, few studies 
have integrated variables such as effective vegetation index, climate, 
topography, soil, and other variables into models for large-scale grassland 
species diversity monitoring (Choe et al., 2021; Zhao et al., 2022). In 
addition, some studies (Fauvel et al., 2020; Ge et al., 2022) have compared 
the efficacy of multiple machine learning models for modeling grassland 
species diversity and biomass, previous studies have shown that the 
random forest (RF) model is particularly effective. However, the inclusion 
of various environmental variables can increase model complexity, 
multicollinearity of the model can also affect model accuracy. 
Consequently, the selection of key variables is critical for enhancing the 
computational efficiency and accuracy of models (Zeng et al., 2019; Yu 
et  al., 2021). Screening for effective variables can improve the 
computational efficiency of models and reduce the workload of model 
spatial simulations.

Study of the spatial relationship between plant species diversity 
and aboveground biomass (PSD–AGB) in grasslands, as well as the 
mechanisms driving it is important for enhancing our understanding 

of grasslands and promoting their conservation. Some researchers 
have analyzed the PSD–AGB relationship in local areas using field 
data (Waide et al., 1999; Zhu et al., 2017; Sakowska et al., 2019), and 
some valuable insights have been obtained. But these studies have 
been limited to small spatial scales based on ground survey data. 
However, the PSD–AGB relationship varies with the spatial scale of 
the study (Chase and Leibold, 2002), Ni et al. (2007) showed that the 
PSD–AGB relationship varies at different ecological scales and 
geographic scales. Previous studies have been limited by the inability 
to achieve large scale PSD and AGB, so the PSD–AGB relationship at 
large scales is still inadequate, while the current remote sensing-based 
technology can provide high precision estimation of PSD and AGB at 
the large scales (Choe et al., 2021; Wang et al., 2022), which providing 
us with the possibility to study the spatial relationship between the 
two. In addition, the relationship between species diversity and 
biomass is not only influenced by multiple environmental factors but 
also by spatial factors (Spyros Tsiftsis, 2018; Li et al., 2020; Du et al., 
2022; Ma et al., 2022). Qi et al. (2022) showed that the relationship 
between species diversity and biomass in the Qinghai–Tibetan Plateau 
was generally nonlinear and positive over space, and Omidipour et al. 
(2021) showed that the relationship between species diversity and 
biomass differed among grassland areas. But in study areas with large 
environmental differences, it is well worthwhile to deeply investigate 
how the PSD–AGB relationship in large scale grasslands, and what 
environmental factors drive spatial distribution patterns.

The Qinghai–Tibet Plateau features typical alpine grassland 
ecosystems, there is wide spatial variation in vegetation growth, and this 
region is highly sensitive to climate change (Ma et al., 2017; Piao et al., 
2019). Therefore, several environmental variables need to be considered 
to efficiently monitor spatial patterns of and correlations between 
grassland species diversity and their productivity functions, as well as the 
response of grassland ecosystems to global climate change, this 
information can also aid ecological conservation efforts. In this study, 
grassland species richness and above-ground biomass data obtained from 
ground-based surveys, along with satellite remote sensing data, were used 
to analyze spatial relationships between species diversity and productivity 
and their drivers in alpine grasslands of the Qinghai–Tibet Plateau. The 
specific objectives were to (1) establish a reliable model to estimate the 
spatial distribution of species diversity and grassland productivity in the 
study area; (2) analyze spatial patterns in correlations between grassland 
species diversity and productivity in the study area; and (3) explore the 
main factors driving the spatial relationships between grassland species 
diversity and productivity in the study area.

2. Materials and methods

2.1. Study area

Our study was conducted in the Three-River Headwaters Region in 
the eastern part of the Qinghai–Tibet Plateau. The Three-River 
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Headwaters Region is located in southern Qinghai Province, China from 
31°39′N to 36°16′N and from 89°24′E to 102°41′E. The average elevation 
of the region is above 4,000 m, the average annual temperature ranges 
from −5.4 to 6.9°C, the average annual precipitation ranges from 392 to 
764 nm, and the total area of the study area is 395,000 km2. The sources of 
the Yangtze River, Yellow River, and Lancang River are located in the 
Three-River Headwaters Region, this region is also the world’s highest and 
largest plateau wetland area and the most biodiversity high-altitude area, 
it is thus often referred to as the “Chinese Water Tower,” “Plateau Species 
Gene Bank,” and the “gene pool of plateau species” (Zhao, 2021). In 
addition, 71% of the region comprises typical alpine grassland ecosystems, 
the main types of grasslands are alpine meadows, alpine grasslands, and 
temperate grasslands. These grasslands provide several extremely 
important ecosystem services for the region, such as water containment, 
climate regulation, biodiversity maintenance, and a pasture supply.

2.2. PSD and AGB ground monitoring data

We collected field data during the peak of the grassland growing 
season from July to August 2021. In the field survey, 429 sample plots 
were set up to cover all grassland types in the study area as far as 
possible, with a relatively uniform spatial distribution and easy 
accessibility (Figure 1). In order to match with modis pixels, we set the 
sample plot size to 250 m × 250 m, and investigated the information of 
centroid coordinates, grassland vegetation types within the sample 
plot. Three to five replicate quadrats were set up in each sample plot, 
and the quadrat size was 1 m × 1 m. To collected information on the 
longitude (X), latitude (Y) and elevation of each quadrat, as well as the 
vegetation species richness, cover and height of the grassland 
community within the quadrat. The species richness was determined 
by counting the total number of species present within the quadrat. 
The vegetation cover was visually estimated by determining the 
percentage of the quadrat area covered by the vertical projection of the 
vegetation. The vegetation in the quadrats was mowed, bagged, taken 
to the laboratory, dried in an oven at 65°C for 48 h, and weighed to 
obtain the dry weight of grass biomass. To match quadrat-scale data 
to the sample plot scale, we took the average species richness and 
biomass dry weight of all quadrats in each sample plot to represent the 
PSD and AGB of that sample plot. A total of 417 valid sample plot data 
were obtained using the sample data set.

2.3. Remote sensing vegetation index

The satellite remote sensing data were called MOD09Q1 data and 
obtained using the Google Earth Engine (GEE) platform with a spatial 
resolution of 250 m and a temporal resolution of 8 d. The entire 
coverage of the study area required three scenes of images(h24v05, 
h25v05, and h26v05), and a total of 15 remote sensing images were 
obtained throughout the field survey (July 27 to August 24). A total of 
five vegetation indices, normalized vegetation index (NDVI), 
enhanced Vegetation Index 2 (EVI2), ratio vegetation index (RVI), soil 
adjustment vegetation index (SAVI), and optimization of soil-adjusted 
vegetation index (OSAVI), were calculated and downloaded through 
the GEE platform editor. The vegetation indices of each sample plot 
were extracted separately using ArcGIS software.

2.4. Data on other variables

Digital elevation model (DEM) data were obtained from Space 
Shuttle Radar Topography Mission (SRTM) images with a spatial 
resolution of 30 m and a spatial reference of GCS_WGS_1984. Slope 
gradient (SLOPE) and slope orientation (ASPECT) data with a 
resolution of 30 m were generated using ArcGIS software.

The National Geoscience Data Center1 application was used to 
obtain month-by-month precipitation, temperature, and potential 
evapotranspiration data for 2021 with a spatial resolution of 1 km. The 
data were converted from nc format to tiff format in ArcGIS software, 
and the average values for the 12 months were used to calculate annual 
mean temperature (MAT), mean annual precipitation (MAP), and 
mean annual potential evapotranspiration (SPEI). The averages for 
May to October were used as the mean growing season temperature 
(MGT), mean precipitation (MGP), and mean potential 
evapotranspiration (GSPEI) in the study area.

Soil data were obtained from the National Geoscience Data 
Center (see text footnote 1) in nc format with a spatial fraction of 
1 km. The data included soil bulk weight (BD), sand content (SA) 
chalk content (SI), clay content (CL), soil organic matter (SOM), total 
nitrogen content (TN), and total phosphorus content (TP) for eight 

1 http://www.geodata.cn/

FIGURE 1

Location of the study area and spatial distribution of sample plots.
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soil layers at a depth of 0 to 3 m. Due to the relatively shallow root 
system of the grasslands, soil data from a depth of 0 to 0.3 m in the soil 
surface layer were used.

Grassland spatial distribution data were extracted from the 
secondary classification by downloading the LUCC2020 surface 
classification data. These grassland cover data in the study were 
extracted by masking the vector boundary of the Three-River 
Headwaters Region and these data were used to mask the grassland 
boundary in the study area.

We resampled the above data (DEM, SLOPE, ASPECT, MAT, 
MAP, SPEI, MGT, MGP, GSPEI, BD, SA, SI, CL, SOM, TN, and TP) 
at different resolutions to 250 m, the grassland boundary in the study 
area was then masked to extract the sample data for analysis.

2.5. PSD and AGB modeling inversion 
methods

2.5.1. Variable filtering methods
We prepared sample site latitude and longitude, five remotely 

sensed vegetation indices, and 16 environmental variables for a total 
of 23 variable factors to construct grassland PSD and AGB models. 
The complexity of the model increases with the number of variables 
included, variable screening can eliminate the problem of 
multicollinearity between multiple variables to improve model 
accuracy and computational efficiency. Thus, the selection of variables 
appropriate for machine learning modeling is key.

In this study, two methods, stepwise regression (STEP) and least 
absolute shrinkage and selection operator (LASSO), were used to 
determine the optimal set of variables and the optimal model. The STEP 
model works by introducing variables one by one into the model. STEP 
eliminates insignificant variables so that the multicollinearity between the 
retained variables is reduced, thus ensures that the final set of explanatory 
variables chosen by the model is optimal. LASSO (Wang et al., 2008) can 
deal with multicollinearity by automatically selecting the most important 
independent variables and setting the values of less important predictor 
variables to zero, thereby only retaining the most useful features. Both 
variable selection methods were implemented in RStudio, STEP was 
conducted through a stepwise fitting function, and LASSO was conducted 
through the “glmnet” package.

2.5.2. RF model construction and accuracy 
verification

In this study, PSD and AGB regression models for grasslands were 
established using the RF model. The models used the measured PSD 
and AGB data as dependent variables, and the variables obtained from 
the above 23 variables, as well as the variables identified from the 
STEP and LASSO variable selection methods, as independent 
variables. A total of six models were established, and the accuracy of 
the models was evaluated using the PSD and AGB data to identify the 
optimal variable screening results and models.

RF is a novel nonparametric machine learning algorithm that 
uses multiple decision trees to train samples and integrate 
predictions (Li, 2019). We incorporated all the independent and 
dependent variables into 417 datasets according to their spatial 
location, and randomly selected 293 sample plot data points (70% 
of valid samples) from the datasets as training datasets and 124 
sample plot data points (30% of valid samples) as test datasets in 

the RF modeling process. In this study, the RF algorithm was 
implemented using the “randomForest” package in RStudio, and 
the optimal model was obtained by adjusting the number of 
decision classification trees (ntree) and the number of features of 
node segmentation (mtry) to find the optimal model. The model 
accuracy was evaluated using three metrics: root mean square 
error (RMSE), correlation coefficient (R2), and mean absolute error 
(MAE). The formulas used to calculate these metrics are as follows:
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where n is the number of sample plots, yi  is the model predicted 
value of the ith sample plot, yi  is the measured value of the ith 
sample plot, and yi  is the average of the measured values.

2.6. PSD and AGB correlation analysis 
method

Traditional raster data correlation analysis can only be used to 
calculate the correlation coefficients between two variables; however, 
this approach cannot be used to characterize the spatial distribution 
of correlations between raster data pixel-by-pixel. Consequently, 
we used a 3 × 3 moving window (nine pixels in each window) for the 
two raster data sets, the correlation coefficient of each spatially 
corresponding window was determined, and the spatial distribution 
of the correlations between the two raster data pixels was 
determined. The spatial distribution of the image-by-image 
correlations of raster data was finally obtained. The spatial 
distribution of the PSD–AGB relationship was obtained using the 
above method to analyze the pixel-by-pixel correlation of the PSD 
and AGB rasters.

2.7. Determination of the factors driving 
variation in the dependent variables

We used geodetector (Wang and Xu, 2017) to detect spatial 
heterogeneity, which mainly includes factor detectors, interaction 
detectors, risk detectors, and ecological detectors. Factor detectors are 
mainly used to detect the degree to which the independent variable X 
explains spatial heterogeneity in the dependent variable Y, and 
interaction detectors are used to detect the degree to which the 
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interaction between two independent variables explains spatial 
heterogeneity in the dependent variable Y. The principle can 
be summarized as follows.
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where q is an indicator of spatial heterogeneity; σ 2  is the variance 
of the variable; h is the stratification of the variable, and the value of q 
ranges from 0 to 1. Larger q values indicate stronger explanatory 
power of the variable.

In this study, a total of 16 geographic factors (LAT, LON, DEM, 
SLOPE, and ASPECT), climatic factors (MAT, MAP, and SPEI), and 
soil factors (BD, SA, SI, CL, SOM, TN, and TP) were used for single-
factor detection and interaction detection of the spatial relationships 
of PSD–AGB to identify the factors driving variation in PSD–
AGB. The GD package in R software was used for geodetector factor 
detection and interaction detection.

3. Results

3.1. Descriptive statistics of the PSD and 
AGB data

The descriptive statistics of PSD and AGB of the 417 measured 
samples used in the modeling are shown in Table 1. The maximum 
value of PSD was 26 n/m2, the minimum value was 3 n/m2, the mean 
value was 10.27 n/m2, the standard deviation (SD) was 4.60 n/m2, and 
the coefficient of variation (CV) was 0.45. The maximum value of 
AGB was 4365.70 kg/ha, the minimum value was 157.90 kg/ha, the 
mean value was 1465.43 kg/ha, the SD was 824.21 kg/ha, and the CV 
was 0.56.

3.2. Variable selection and model accuracy 
evaluation

In the PSD variable screening, STEP screening yielded eight 
variables: X, Y, EVI2, RVI, SAVI, MAT, SPEI, and SI. LASSO screening 
yielded nine variables: X, Y, EVI2, RVI, SPEI, SLOPE, BD, SI, and 
TN. Variables selected by both variable selection results included X, 
Y, EVI2, RVI, SPEI, and SI6. The model built with variables based on 
STEP screening had the highest accuracy (R2, RMSE, and MAE of the 
test set were 0.60, 2.92, and 2.37, respectively), followed by the model 
built with all variables (R2, RMSE, and MAE of the test set were 0.58, 
3.00, and 2.45, respectively). The R2, RMSE, and MAE of the test set 
from the LASSO-screened variables were 0.57, 3.03, and 2.46, 
respectively (Table 2). According to the accuracy indicators of the 
model training set and test set, the RF model established by the STEP 

screened variables was the optimal model for PSD estimation in the 
study area.

STEP screening of AGB variables yielded seven variables: X, Y, 
EVI2, RVI, MAT, DEM, and TN. LASSO screening yielded eight 
variables: X, Y, NDVI, EVI2, RVI, MAT, SLOPE, and CL. According 
to the RF model accuracy evaluation, variable screening can improve 
the estimation of AGB accuracy, and the R2, RMSE, and MAE of the 
test set from the STEP-screened variables were 0.55, 578.93, and 
434.10, respectively, followed by LASSO-screened variables (R2, 
RMSE, and MAE of 0.52, 596.51, and 450.99, respectively, for the test 
set) (Table 2). The RF model established by STEP screened variables 
was finally used for AGB estimation in the study area based on the 
above results.

3.3. Comparison of measured and model 
predicted values of PSD and AGB

Based on the optimal models of PSD and AGB, we extracted the 
predicted and measured values of the models in the test set and 
established linear relationships and value domain distribution plots to 
evaluate the estimation ability of the models (Figure 2). In general, 
there were strong linear relationships of measured values with the PSD 
estimation model and the AGB estimation model, the PSD estimation 
model explained 60% of the variation in grassland PSD, and the AGB 
estimation model explained 55% of the variation in grassland 
AGB. However, both models underestimated high values and 
overestimated low values. In the PSD estimation model, the median 
model estimate was slightly higher than the measured value overall, 
and the model estimates were significantly higher than measured 
values between 8 and 12 n/m2. In the AGB estimation model, the 
median model estimates were slightly lower than the measured values, 
the model overestimates AGB near values of 1,500 kg/ha and 
underestimates AGB when values exceed 2,200 kg/ha.

3.4. PSD and AGB spatial distribution 
characteristics

We inferred the spatial distribution of the maximum PSD and 
AGB in the study area in 2021 using the optimal model obtained by 
STEP screening variables (Figure 3). In general, the spatial distribution 
patterns of PSD and AGB are basically similar and mainly decrease 
from east to west and from southeast to northwest, some differences 
in their distribution were also observed in local areas. PSD and AGB 
were high in Nangqian and Yushu in the southern Three-River 
Headwaters Region and Henan, Zeku, Jiuzhi, and Banma in the 
southeast. PSD and AGB are medium in Xinghai, Maduo, Qumalai, 
Zaduo, and Eastern Zhiduo. The PSD and AGB are low in western 
Zhiduo and Geermu. Slight spatial differences were observed between 
PSD and AGB in some local areas, such as northwestern Republican 

TABLE 1 Descriptive statistics of the PSD and AGB data of the measured grassland.

Category Samples Minimum Maximum Average SD CV

PSD 417 3 26 10.27 4.60 0.45

AGB 417 157.90 4365.70 1465.43 824.21 0.56
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County where AGB is not high, but PSD is high, the same pattern was 
also observed in local areas in Xinghai and Zhiduo counties, as well 
as in local areas in Zeku, Henan, Maqin, Gande, and Jiuzhi counties 
where AGB is particularly high, but PSD is not particularly high. The 
minimum value of PSD of the inversion model in the study area was 
4 n/m2, the maximum value was 18 n/m2, the mean value was 9.42 n/
m2, and the standard deviation was 2.37 n/m2. The minimum value of 
AGB of the inversion model was 541.13 kg/ha, the maximum value 
was 2695.14 kg/ha, the mean value was 1392.34 kg/ha, and the 
standard deviation was 395.09 kg/ha.

3.5. Spatial pattern of PSD–AGB 
relationships

To analyze the spatial PSD–AGB relationships in different regions, 
we conducted pixel-by-pixel correlation analysis of PSD and AGB and 
obtained the spatial pattern shown in Figure 4. Large spatial variation 
was observed in the PSD–AGB relationship, mostly negative 
correlations were observed in the northwest and southeast, and mostly 
positive correlations were observed in the central region. Areas with 
negative correlations were mainly distributed in Geermu, Western 
Zhiduo, and Northern Qumalai in the northwestern part of the study 
area and local areas in Henan, Zeku, Maqin, and Jiuzhi counties in the 
southeastern part of the study area. In addition, negative correlations 
were also observed in the Jifushan mountain range (source of the 
Lancang River) at the junction of Zhiduo and Zaduo and in the valley 
of the Yellow River Basin (upstream of Longyangxia) in eastern 
Xinghai County. In addition, the PSD–AGB correlation coefficient 
was positive and strong in the central part of the study area in 
Qumalai, Eastern Zhiduo, Zaduo, and Chengduo and in the 
northeastern part of the study area in Xinghai, Guinan, and Guide. 
The correlations were positive and weak in the central part of the study 
area in Yushu, Maduo, Dari, Gande, and Banma. According to the 
PSD–AGB correlation coefficient significance statistics, a significant 
positive correlation was observed for 39.24% of the regions in the 
study area (p < 0.05), non-significant positive correlations were 
observed for 28.39% of the regions in the study area, significant 
negative correlations were observed for 9.36% of the regions in the 
study area (p < 0.05), non-significant negative correlations were 
observed for 20.58% of the regions in the study area, and 

non-significant relationships were observed for 2.43% of the 
study area.

3.6. Factors affecting spatial variation in the 
PSD–AGB relationship

Based on the q-statistic values of single factors detected via the 
geodetector (Figure 5A), the most important factors driving spatial 
variation in the PSD–AGB relationship in the study area were LON, 
followed by MAP, DEM, SI, TP, LAT, MAT, SLOPE, BD, SPEI, SOM, 
TN, SA, CL, and ASPECT. The q-value of LON was the largest (0.29), 
followed by MAP (0.21), DEM (0.18), and SI (0.15), indicating that 
spatial variation in the PSD–AGB relationship in the study area was 
mainly affected by LON, followed by MAP, DEM, and SI. The q-values 
of the other factors were lower, the q-value of ASPECT was the 
lowest (0.01).

Interaction effects (Figure 5B) on spatial variation in the PSD–
AGB relationship were stronger than the effects of any single factor, 
and this same finding was obtained via two-factor enhancement and 
nonlinear enhancement. Factors with high performance include LON, 
MAP, and DEM, and the strongest interaction effect was that of LON–
LAT (0.5 according to the nonlinear enhancement), followed by the 
interactions of LON–MAP (0.49 according to two-factor 
enhancement) and MAP–DEM (0.47 according to 
nonlinear enhancement).

4. Discussion

4.1. PSD and AGB inversion model accuracy

The results of this study show that variable selection effectively 
improved the accuracy of both the PSD and AGB models. The 
accuracy of the variable model was highest according to the STEP 
method, which is consistent with the results of Ge et  al. (2022) 
showing that the accuracy of the variable model was highest when the 
STEP method was used. Wang et  al. (2022) used three variable 
selection methods, although they did not use the STEP method, their 
results show that variable selection improves model accuracy. The 
STEP method used in this study introduces variables into the model 

TABLE 2 Results of variable selection and evaluation of model accuracy.

Category Variable 
selection

Variables Training dataset Test dataset

R2 RMSE MAE R2 RMSE MAE

PSD ALL

X, Y, NDVI, EVI2, RVI, SAVI, OSAVI, DEM, SLOPE, 

ASPECT, MAT, MGT, MAP, MGP, SPEI, GSPEI, BD, 

SA, SI, CL, SOM, TN, TP

0.92 1.66 1.31 0.58 3.00 2.45

STEP X, Y, EVI2, RVI, SAVI, MAT, SPEI, SI 0.90 1.65 1.24 0.60 2.92 2.37

LASSO X, Y, EVI2, RVI, SPEI, SLOPE, BD, SI, TN 0.91 1.63 1.27 0.57 3.03 2.46

AGB ALL

X, Y, NDVI, EVI2, RVI, SAVI, OSAVI, DEM, SLOPE, 

ASPECT, MAT, MGT, MAP, MGP, SPEI, GSPEI, BD, 

SA, SI, CL, SOM, TN, TP

0.92 268.85 210.08 0.50 600.47 454.89

STEP X, Y, EVI2, RVI, MAT, DEM, TN 0.92 256.15 195.51 0.55 578.93 434.10

LASSO X, Y, NDVI, EVI2, RVI, MAT, SLOPE, CL 0.92 263.46 198.66 0.52 596.51 450.99
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one by one and eliminates insignificant variables, thus ensuring that 
the final set of explanatory variables obtained is optimal. In light of the 
widespread use of machine learning, an increasing number of 
environmental variables have been used as independent variables in 
models; thus, variable selection can greatly improve the computational 
efficiency of the model while also improving model accuracy. Overall, 
the specific variable selection method that enhances model accuracy 
likely varies with the study objective, data source, and 
comparison method.

The optimal AGB model of this study had an R2 of 0.55, which is 
less accurate than previous simulations of the AGB of grasslands in 
the Three-River Headwaters Region according to the studies of Liang 
et al. (2016) (R2 of 0.701) and Wang et al. (2022) (R2 of 0.60) but more 
accurate than the study of Wang et al. (2018) (R2 of 0.31). The optimal 
model of Liang et al. (2016) used grassland height, which has a direct 
relationship with productivity; consequently, their inverse AGB 
accuracy is higher. However, there is still much uncertainty in the 
inverse of grassland height. In contrast, Wang et al. (2022) used 1,620 

samples obtained over 10 years, on the one hand the sample size was 
larger, and on the other hand the model was trained for environmental 
changes over a 10 year period, so the model accuracy was higher than 
this study. The R2 of the optimal model in this study was 0.60, and the 
RMSE was 1.65 n/m2 in the simulation of PSD; the RMSE of the RF 
model in Zhao et al. (2022) was 1.94 n/m2, and the RMSE of the 
optimal HASM-XGBoot model reached 1.19 n/m2. HASM can 
effectively solve ecological environmental surface modeling errors, 
thus improving the accuracy of conventional machine learning 
models, we aim to test combinations of HASM methods in the future. 
Generally, the sample size involved in the model, the variables 
involved in the modeling, and modeling methods vary, and this 
greatly affects the accuracy of the model.

Comparison of the measured and predicted values of the two 
models in this study revealed that the accuracy of both models was 
high; however, both models underestimated high values and 
overestimated low values, which is a common problem of many 
machine learning models (Ge et al., 2022; Sabatini et al., 2022; Zhao 

FIGURE 2

Comparison of the measured values of PSD and AGB with the predicted values of the optimal model.
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et al., 2022). In addition, the overall fit of the PSD model was better 
than that of the AGB model, the model overestimated PSD when 
values were near 9 n/m2, and the model overestimated AGB when 

values were near 1,500 kg/ha. This might be explained by the uneven 
spatial distribution of our field sampling data, the large size of the 
study area, the large altitudinal gradient, and the fact that the western 

FIGURE 3

PSD and AGB spatial distribution map.

FIGURE 4

Spatial variation in the PSD–AGB relationship.
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region is mostly uninhabited because of its harsh climate. Thus, some 
areas with low values in the west were not considered, and areas with 
medium values were mainly concentrated in the center of the study 
area (Figure 1).

4.2. PSD and AGB spatial distribution 
characteristics

According to the spatial distributions of the inversion models of 
PSD and AGB, both PSD and AGB were high in the southeastern 
portion of the study region and low in the northwestern portion of the 
study region. The spatial distribution of AGB was similar to that 
observed in Zeng et al. (2019) using the RF model and Wang et al. 
(2018) using the ANN model; AGB values were high in southeastern 
portions of Henan, Zeku, Gander, and Jiuzhi and central and southern 
parts of Nangqian and Yushu; AGB values were lower in western 
regions. AGB ranged from 540 to 2,700 kg/ha in our study, which is 
similar to the range reported in Zeng et al. (300 to 2,500 kg/ha). The 
range of AGB values observed in Wang et al. (250 to 3,250 kg/ha) 
differed from that observed in our study, this difference might 
be related to differences in the variables included in the model and the 
methods used. The similar spatial distributions of PSD and AGB 
observed in our study are consistent with the hypothesis that 
biodiversity and productivity are positively correlated (Loreau et al., 
2001); however, local differences in their distributions were observed. 
The PSD and AGB of species around Qinghai Lake are likely high 
because of the suitable water and heat conditions around the lake, but 
this area is traditionally used for grazing (Zhai et al., 2017), and the 
reason for the low AGB may be related to the high grazing intensity in 
the area. In addition, large-scale inverse mapping of grassland species 
diversity models has not been widely studied, the results of our study 
are superior in terms of model accuracy and spatial distribution. This 
method permits large-scale biodiversity remote sensing monitoring 

in grasslands with large heterogeneity, which fills gaps with no 
monitoring data in some unoccupied areas. Moreover the PSD spatial 
distribution map shows the spatial distribution pattern on a large 
scale, and these data can aid biodiversity assessment and conservation.

4.3. Spatial variation in PSD–AGB 
relationships and factors driving variation 
in PSD–AGB relationships

Recent studies that have examined PSD–AGB relationships have 
seldom considered the possible effects of spatial scale and spatial 
heterogeneity on PSD–AGB relationships. Most studies have focused 
exclusively on small spatial scales or regions with little spatial variation. 
In this study, we analyzed spatial variation in the PSD–AGB relationship 
on a large scale while accounting for geographical heterogeneity. Our 
findings indicate that the relationship between PSD and AGB in the 
western and southeastern parts of the study area was mostly negatively 
correlated, and the relationship between PSD and AGB in other regions 
was positively correlated. Significant positive correlations were 
observed over 39.24% of the study region, and significant negative 
correlations were observed over 9.36% of the study region. It is 
noteworthy that combining the spatial distribution of PSD and AGB 
(Figure 3), we found that PSD and AGB were negatively correlated in 
areas with low and high values; by contrast, PSD and AGB were 
positively correlated in areas with medium values. For this reason, 
we determined the relative contributions of various environmental 
factors driving spatial variation in the PSD–AGB relationship using 
geodetector. According to the single-factor analysis, longitude was the 
factor that had the largest effect on the PSD–AGB relationship 
(explaining 29% of the variation in the spatial pattern), followed by 
annual precipitation, altitude, and SI. And the factor interaction 
analysis revealed that longitude explained 50% of the variation in the 
PSD–AGB relationship; however, the interaction between precipitation, 

A B

FIGURE 5

Value of the q-Statistic for each variable. (A) shows the univariate probes for each variable and (B) shows the interaction probes for each variable.
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elevation, and SI had the greatest effect on spatial variation in the PSD–
AGB relationship. Zhu et al. (2017) also showed that the PSD–AGB 
relationship varied with longitude in the Tibetan Plateau. Wang et al. 
(2007) and Xu et al. (2019) showed that spatial variation in the PSD–
AGB relationship was correlated with longitude, latitude, and altitude. 
The study area spans several degrees of longitude but only a few degrees 
of latitude; consequently, there is large variation in longitude, as well as 
a significant elevational gradient and precipitation gradient in the east–
west direction of the study area. Longitude, elevation, and precipitation 
in the east–west direction thus explain much spatial variation in the 
PSD–AGB relationship. Temperature varies more in the latitudinal 
direction, and the latitudinal variation in our study area was low, this 
might explain the weak effect of temperature on spatial variation in the 
PSD–AGB relationship. In addition, the spatial resolution of soil 
property data used in this study was 1 km, and spatial variation in 
several variables was low, this might contribute to explaining the weak 
effects of soil environmental variables on variation in the PSD–AGB 
relationship, with the exception of SI. Spatial variation in the 
environment of grassland plant communities can lead to differences in 
community characteristics and thus spatial variation in the PSD–AGB 
relationship. We  speculate that the resource use complementarity 
hypothesis might explain variation in the PSD–AGB relationship across 
our study area (David Tilman, 1997; Loreau et al., 2001), the western 
part of the study area has a harsh climate, infertile soils, fewer available 
resources for plants, and strong interspecific competition, which results 
in a negative relationship between PSD and AGB. In the central part of 
the study area, the hydrothermal conditions are improved and the 
abundance of resources available to plants is greater. Increases in 
species diversity promote the complementary use of resources among 
species, which enhances the accumulation of biomass. However, PSD 
values plateaued in the southeastern part of the study area where 
biomass was highest. In addition, ecological niche space was lower, 
light, soil nutrients, and other resources were limited, interspecific 
competition was intense, and some dominant plants suppressed the 
growth of inferior plants in this region, such observations explain the 
negative relationship between PSD and AGB in areas with high AGB 
values (Schnitzer et al., 2011; Guo and Berry, 2013; Albert et al., 2022; 
Qi et al., 2022). Grassland productivity includes AGB and belowground 
biomass. In our study, we only monitored and analyzed the relationship 
between AGB and PSD. Additional monitoring of belowground 
biomass is needed in subsequent studies to characterize the spatial 
relationships between PSD and productivity.

5. Conclusion

In this study, an RF model was constructed using grassland 
ground monitoring data along with satellite remote sensing data and 
environmental variables to characterize spatial distribution patterns 
in PSD and AGB in the Three-River Headwaters Region. The accuracy 
of the model was compared using three variable selection methods, 
and the STEP variable selection method showed the highest 
performance, which indicates that variable selection could effectively 
improve the accuracy of the RF model. The R2 of the PSD and AGB 
test sets based on the optimal STEP-RF model was 0.6 and 0.55, and 
the RMSE was 2.92 n/m2 and 578.93 kg/ha, respectively. Spatial 
distribution patterns in PSD and AGB across the study area was 
similar, the PSD and AGB values were generally high in the southeast 

and low in the northwest. The modeling approach used in this study 
could be used to monitor grassland species diversity and productivity 
on a large scale, it could also aid biodiversity monitoring and grassland 
conservation management.

We also analyzed spatial variation in the PSD–AGB relationship, 
as well as the environmental variables driving variation in this 
relationship, including climate, topography, and soil. The PSD–AGB 
relationship tended to be mostly positively correlated. However, the 
PSD–AGB relationship was mostly negatively correlated in regions 
with low and high PSD and AGB values. Analysis using geodetector 
probes revealed that longitude, mean annual precipitation, and 
elevation were the main drivers of variation in the PSD–AGB 
relationship. The results of this study provide information that will aid 
future studies of the relationship between species diversity and 
ecosystem function in grasslands on the Qinghai–Tibet Plateau.
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Spatio-temporal variation and 
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ecological index – a case study of 
Zhanjiang City, China
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RS and GPS, Beijing Forestry University, Beijing, China

A significant portion of Zhanjiang City’s ecological land areas have been reduced 
as a result of the city’s growing urbanization, which has caused the city’s 
ecological environment quality to decline. In order to monitor the quality of the 
ecological environment, the remote sensing ecological index (RSEI) is frequently 
utilized. In this study, the Landsat series satellite images from 2000, 2005, 2009, 
2015, and 2020 were used. The Normalized Differential Vegetation Index (NDVI), 
Wetness (WET), Normalized Differential Build-up and bare Soil Index (NDBSI), 
and Land Surface Temperature (LST) were the four indicators utilized in the 
RSEI to quantitatively evaluate the changes in ecological environment quality in 
Zhanjiang City. The results are as follows. (1) The mean RSEI values for the years 
2000, 2005, 2009, 2015, and 2020 are, respectively, 0.579, 0.597, 0.597, 0.607, 
and 0.601. In addition, the overall ecological environment of Zhanjiang is very 
good. In terms of spatial differences, the ecological environment quality in the 
central and southeastern parts of Zhanjiang is significantly higher than that in 
other areas, while the ecological environment quality in its coastal town areas 
is much worse. The lower RSEI index of developed land in coastal areas proves 
that the RSEI index can reflect the deterioration of the urban environment in 
coastal areas from 2000 to 2020. Therefore, the RSEI can be used to evaluate the 
ecological environment quality of Zhanjiang City. (2) The ecological environment 
changes in the study area are “substantially better,” “better,” “no change,” “worse,” 
and “much worse,” respectively, according to the difference in RSEI processed 
between 2000 and 2020. These changes were 38.38, 6,047, 13.93, 6.65, and 
34.58%. The percentage of ecological environmental quality in Zhanjiang City that 
has become better is higher than that has become worse. This indicates that the 
quality of ecological environment in Zhanjiang City has improved between 2000 
and 2020. (3) The regression produced the following equation for the association, 
which was significant at the 0.053 level: 100*Rsei = 154.69–1.18*IS(R = 0.66). The 
remote sensing ecological index for Zhanjiang in 2035 is 0.488 when the city’s 
planned population and area are added together.

KEYWORDS

ecological environment quality, remote sensing ecological index, Zhanjiang City, 
forecast, impervious area balance
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1. Introduction

Ecosystem quality is closely related to human beings and is the 
material basis for human survival and social development, so it is of 
great practical significance to monitor and evaluate ecosystem quality. 
In recent years, remote sensing technology has been widely used for 
ecological environment monitoring with its advantages of multi-
directional, large range, long time series and low cost (Rai, 2013; 
Matco-Caria et al., 2018), but most of the traditional remote sensing 
ecological evaluation methods are based on a single indicator for 
monitoring, which does not reveal the ecosystem changes 
comprehensively (Qin et al., 2023).

Therefore, Ministry of Environmental Protection (2005) proposed 
the Ecological Environment Index (EI) based on remote sensing 
technology in 2005. It was proposed to quantitatively analyze the quality 
of the ecological environment from six aspects, such as biology, 
vegetation, land and human activities. This method is difficult to obtain 
statistical data, and the assignment of ecological index weights is more 
subjective (2015). On this basis, Xu et al. (2013) proposed the Remote 
Sensing Environment Index (RSEI) to evaluate the ecological quality of 
Fuzhou City in 2013, using the Normalized Differential Vegetation Index 
(NDVI) to represent the greenness component, the tasseled cap 
transformation (TCT) to represent the Wetness (WET), Land Surface 
Temperature (LST) and Normalized Differential Build-up and bare Soil 
Index (NDBSI). And combined with Principal Component Analysis 
(PCA) to establish a remote sensing ecological index model for rapid 
quantitative analysis of the regional ecological environment. This 
algorithm is simpler to calculate, easier to obtain data sources, and can 
objectively reflect the quality of the regional ecological environment. 
Therefore, this method has been widely used in a variety of scenarios 
(Gao et al., 2020; Nong and Wang, 2020; Miao and Liang, 2021; Wu et al., 
2021; Ji et  al., 2022). In the subsequent research on remote sensing 
ecological index, scholars proposed MSRE, IRSEI and ERSEI, which are 
improved versions of remote sensing ecological index models adapted to 
different geographic environments, according to the changes of 
geographic environments in the study area, such as: cities, villages, 
forests, wetlands, islands, deserts, loess lands, mining areas, etc. (Jiang 
et al., 2019; Song et al., 2019; Wang et al., 2020; Cheng et al., 2021).

Zhanjiang is subject to the interaction of fresh and brackish water as 
well as land and sea, therefore, Zhanjiang is characterized by rich 
biodiversity as well as complex and diverse wetland types, such as 
mangrove wetlands, mudflat wetlands, etc. (Xu et al., 2006; Chen et al., 
2018). However, along with the development of socio-economic and 
urbanization processes, the increasingly frequent reclamation projects 
have caused some damage to the ecological environment of coastal areas, 
resulting in some coastal areas becoming typical ecologically fragile and 
sensitive areas, causing habitat destruction, resource reduction and 
landscape degradation. At present, there is a lack of research on the long 
time series monitoring of the ecological environment in Zhanjiang City, 
and it is necessary to study the spatial and temporal changes in ecological 
environment quality in Zhanjiang City.

In this paper, the Google Earth Engine (GEE) cloud platform was 
used to acquire Landsat remote sensing images for the years 2000, 2005, 
2009, 2015, and 2020. The ENVI 5.3 and ArcGIS 10.8 platforms were 
used to construct the Remote Sensing Ecological Index (RSEI) for the 
ecological pattern evaluation of Zhanjiang City, and the Spss platform 
was used to predict the ecological environment quality of Zhanjiang 
City, using the relationship between the change of impervious area and 

ecological environment quality, combined with the planned population 
and total planned area of Zhanjiang City in 2035. Ecological 
environment quality is predicted. It provides a scientific basis for the 
subsequent ecological development of Zhanjiang City, fills the gap of 
ecological environment quality evaluation in the coastal zone, and 
provides a scientific basis and sustainable development strategy to 
ensure the effective use of resources and avoid ecological risks.

2. Materials and methods

2.1. Study area

The region for the research is the city of Zhanjiang, which is situated 
between latitudes 20°13′N and 21°57′N and longitudes 109°40′E and 
110°58′E. The majority of the territory is made up of peninsulas and 
islands, with Donghai Island being the sixth largest island in China. The 
region is long and width. The urban area is around 13,225 square 
kilometers in size, while the coastline is 1,556 kilometers long. It is 
surrounded by the South China Sea to the south, Maoming City to the 
east, and Beibu Gulf to the west. It is situated where the provinces of 
Guangxi, Guangdong, and Hainan converge. Its authority spans two 
counties, three county-level cities, and five districts. Its authority spans 
two counties, three county-level cities, and five districts (Figure 1). The 
area has a tropical northern monsoon climate that is mostly influenced 
by the ocean, with an average yearly temperature ranging from 22.7°C 
to 23.5°C. The wet season lasts from April to September, and the dry 
season lasts from October to March. Zhanjiang’s geography is primarily 
flat, with terraced land only making up a small fraction of the coastline 
region. The landscape has a relatively low slope of 1–4° and is typically 
high from north to south and low from east to west.

Mudflat wetlands abound in Zhanjiang, which also has China’s 
most concentrated, diverse, and sizable mangrove wetland natural 
reserve with a total size of roughly 20, 278.8 acres (Wang, 2008).

2.2. Data sources

The remote sensing images of Zhanjiang City are of poor quality 
due to the influence of clouds, so it is necessary to de-cloud/cloud 
shadow the multiview images before stitching them to obtain cloud-
free images with complete coverage of the study area. Therefore, this 
paper acquires Landsat-5 surface reflectance dataset from May 2000 
to September 2009 and the Landsat-8 surface reflectance dataset from 
May 2015 to September 2020 for the Zhanjiang city area based on GEE 
platform. And the minimum cloud image synthesis is performed to 
remove the cloudy image elements and synthesize the target year 
image with cloud-free image elements.

The land use data with a spatial resolution of 30 m in the fifth 
period were obtained from the product data (Earth System Science 
Data) of the study by Huang Xin’s team at Wuhan University (Yang 
and Huang, 2021). The administrative boundary vector data of 
Zhanjiang city districts and counties were obtained from the 
geographic state monitoring platform (Table 1).1

1 http://www.dsac.cn
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2.3. Remote sensing ecological index

2.3.1. Indicators used in RSEI
Vegetation Greenness, humidity, heat, and dryness all play 

significant roles in how humans perceive ecological conditions visually, 
and as a result, they are frequently used to evaluate ecosystems (Moran 
et al., 2004; Yuan and Bauer, 2007; Gupta et al., 2012; Wei et al., 2022). 
Based on this, Xu Hanqiu proposed RSEI, combining four crucial 
ecological factors—vegetation greenness, humidity, dryness, and heat, 
which can accurately describe the quality of the ecological environment 
(Xu et  al., 2013). Thus, this essay makes reference to his work in 
developing RSEI to evaluate the ecological environment quality of the 
city of Zhanjiang. The following are the calculation formulas for each 
ecological index.

Vegetation greenness is used to quantitatively reflect the 
information of vegetation growth status, vegetation cover and biomass 
(Li et al., 2020). The normalized differential vegetation index (NDVI) 
is used to represent vegetation greenness. The calculation formula of 
NDVI is as follows.

 
NDVI NIR Red NIR Red= −( ) +( )ρ ρ ρ ρ/

 (1)

The wet indicator (WET) is intently connected to the ecologic 
environment, which indicates the humidity of water, soil, and 
vegetation (Nong et  al., 2021). It acquired from the Tasseled Cap 
transformation (TCT). The calculation formula of WET is as follows 
and it is expressed differently by different satellite sensors (Wang 
et al., 2019).

 

WET TM Blue Green Red

NIR

( ) = + +

+ −

0 0315 0 2021 0 3102

0 1594 0 6

. . .

. .

ρ ρ ρ
ρ 8806 0 61091 2ρ ρSWIR SWIR− .  (2)

  

WET OLI Blue Green Red

NIR

( ) = + +

+ −

0 1511 0 1973 0 3283

0 3407 0

. . .

. .

ρ ρ ρ
ρ 77117 0 45591 2ρ ρSWIR SWIR− .  (3)

Heat reflects the surface temperature of an area and is closely 
related to the ecologic environment (Nichol, 2005). The land surface 
temperature (LST) is used to represent heat index.

FIGURE 1

Location of Zhanjiang City.

TABLE 1 Data sources.

Data types Resolution of 
data

Data source

Landsat5 SR 30 m Google earth engine

Landsat8 SR 30 m Google earth engine

Land use types 30 m 《30 m annual land cover and 

its dynamics in China from 

1990 to 2019》

Administrative District 

Vector Boundaries

30 m Geographical State Monitoring 

Platform
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The standard method for retrieving LST from raw Landsat 
datasets requires the conversion of the DN values of the thermal bands 
into at-satellite spectral radiance values (L6). And then into the 
at-satellite brightness temperature (T; Chander et  al., 2009). The 
calculation formula of LST, T, and L6 is as follows:

 
LST H= + ∗( ) T R T p/ / ln1

 (4)

 
T K K L= +( )2 1 6 1/ ln /

 (5)

 L gain DN bias6 = × +  (6)

The index-based built-up indicator (IBI) just reflects the situation 
of building land. Therefore, the dryness index can be declared by the 
average value of SI and IBI, called “NDBSI” (Rikimaru et al., 2002). 
The calculation formula of NDBSI, IBI, and SI are as follows:

 NDBSI IBI SI= +( ) / 2 (7)

 

IBI WIR SWIR NIR
NIR NIR Red Green
Gre

= +
− + +

{ / ( )

[ / ( )]

/ (

2 1 1ρ ρ ρ
ρ ρ ρ ρ
ρ

S

een SWIR SWIR
SWIR NIR NIR NIR
Red G

+
+ +

+ +

ρ ρ
ρ ρ ρ ρ
ρ ρ

1 1

1

2)]} / {

/ ( ) [ / (

)] rreen Green SWIR/ ( )]}ρ ρ+ 1  
(8)

 

SI SWIR Red NIR Blue

SWIR Red NIR Blue

= +( ) − +( ) 
+( ) + +

ρ ρ ρ ρ

ρ ρ ρ ρ
1

1/ (( )   (9)

2.3.2. Combination of the indicators
In this study, principal components analysis (PCA) was used to 

construct a remote sensing ecological index (RSEI). It couples four 
single indicators into one comprehensive index, concentrating the 
main information on the first principal component (PC1), which 
enables the RSEI to synthesize the information of the four indicators. 
The advantage of using the principal component analysis method is 
that the index weights are more objective and avoid the bias of results 
caused by weight settings that vary from person to person and from 
method to method.

Before creating the RSEI index, each index must be normalized 
such that its value is between 0 and 1, as the dimensions of the NDVI, 
WET, NDBSI, and LST are not uniform. The formula is defined 
as follows:

 ( ) ( )N min max minT /= − −T T T T  (10)

T represents the original index, Tmax and Tmin represent the 
maximal and minimal values, and TN represents normalized value.

Due to the existence of a large range of water bodies and 
wetlands in the study area, the modified Normalized difference 

Water index (MNDWI) was used to mask the water bodies in 
Zhanjiang City before the principal component analysis of the 
indicators to avoid the influence of the water bodies on the weight 
of the WET components, which in turn affects the load value 
distribution of PCA.

The principal component analysis (PCA) was performed on the 
ecologic indicators of greenness, wetness, dryness, and heat obtained 
after normalization and water body masking, and ENVI software 
calculated the RSEI. The formula is showed as.

 ( )RSEI f , , ,= NDVI Wet LST NDBSI  (11)

To facilitate comparison and metrics among indicators, RSEI can 
be normalized similarly.

 ( ) ( )0 0min 0max 0min/= − −RSEI RSE RSEI RSEI RSEI  (12)

The higher the value of RSEI is, the better the quality of ecological 
environment, and vice versa, the worse the quality of 
ecological environment.

2.4. Estimation of total is area

Regional planning often takes into account population issues. 
Population growth will require more impervious developed space for 
work, living, and various social activities, which will result in the loss 
of natural landscapes such as vegetation and water, and affect the 
impact of regional planning on ecosystems and the environment. Xu 
(2013) related population density to potential IS growth area in order 
to predict the impact of the amount of population growth on the 
ecological environment. Therefore, this study combines population 
growth with potential IS area growth to predict the impact of future 
population growth on the ecological environment of Zhanjiang City.

Based on the predicted population expansion through 2035, the 
impervious equilibrium area is computed. After the expansion of IS, 
the area’s general ecological quality will not be impacted. This amount 
is referred to as the imperviousness level metric. Current population, 
current IS area, current population density, planned future population, 
and planned future population density are among the factors used in 
the determination of the imperviousness level metric. The model is 
developed as follows:

 
A a p kp= ∗ ∗

 (13)

 a A Pc C= /  (14)

 K D Dc p= /  (15)

where A is the estimated balance amount of total impervious surface 
area, where Ac is the current impervious surface area, Pc is the current 
population, Dc is the current population density, and Dp is the 
planned future population density.
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2.5. Relevance of impervious surface and 
RSEI

Analyzing the functional relationship between the RSEI and 
impervious areas is an important prerequisite for predicting the ecological 
impact of urban development planning in Zhanjiang. In this paper, based 
on land use data and RSEI value in 2000, 2005, 2009, 2015, and 2020, 
we used a one-dimensional linear regression method to quantify the 
functional relationship between the percentage of impervious area and 
the RSEI through spss software to predict the possible impact of future 
construction activities on the environmental quality of the study area 
(Hanqiu et al., 2019).

3. Results and analysis

3.1. Factor attributes

According to Table 2, which shows the eigenvalue contribution 
rate for each year as well as the loadings of the four ecological 
indicators in various main components in 2000, 2005, 2009, 2015, 
and 2020, the Eigenvalue of the four indices is concentrated in 
PC1. 67.9, 71.1, 59.1, 75.6, and 75.2%, respectively, of the 
contributions to the PC1 eigenvalue in the years 2000, 2005, 2009, 
2015, and 2020. The four indices’ loadings are clearly symmetrical 
in PC1, with WET and NDVI having positive loadings and LST 
and NDBSI having negative loadings. This shows that ecosystem 
quality is positively impacted by humidity and greenness and 
negatively impacted by dryness and high heat indices. The 
outcome is essentially in accordance with the actual situation. As 
a result, the first principle component served as the foundation 
for this study’s RSEI.

3.2. Ecological status

Table 3 shows that from 2000 to 2020, the RSEI went from 0.579 
to 0.601, an increase of about 2.2%. One of them, the RSEI index, 
showed no change from 2005 to 2009, a 3.1% increase from 2000 to 
2005, a 1.7% increase from 2009 to 2015, and a 0.1% decrease from 
2015 to 2020. With a maximum value of 0.684 in 2015, the average 
correlation between NDVI and RSEI—which compares the four 
ecological indicators—is the greatest at 0.642. The average correlation 
between the four ecological indicators LST and RSEI is lower, at 0.435, 
with the minimum values occurring in 2015 at 0.395. The average 
correlation scores for the last two indicators are 0.575 and 0.596.

The spatial distribution of RSEI values in Zhanjiang city in 2000, 
2005, 2009, 2015, and 2020 is shown in Figure  2. As can be  seen, 
between 2000 and 2009, places with poor ecological conditions were 
primarily distributed in coastal urban areas and the north, while areas 
with better ecological conditions were primarily spread in the center and 
southern areas. The northern region’s ecological environment quality 
has increased between 2000 and 2005. Nonetheless, the ecological 
condition of the northern region declined between 2005 and 2009. The 
RSEI values’ spatial distribution is similar between 2015 and 2020. 
Urbanized coastal areas tend to have places with a worse natural 
environment. In general, Zhanjiang City’s center and southeast regions 
have superior ecological conditions than its coastal metropolitan districts.

Table 4 displays the ecological environment quality in Zhanjiang 
City for the years 2000, 2005, 2009, 2015, and 2020. In general, the 
ecological conditions are good or exceptional in more than 60% of 
Zhanjiang City’s areas. In terms of proportion, the distribution of 
grades in 2000, 2005, and 2009 is similar. Also, the percentages of each 
grade’s natural environment are similar between 2015 and 2020. In 
Zhanjiang, the percentage of bad ecological quality declined by 5% 
from 2009 to 2015, while the percentage of good ecological quality 

TABLE 2 Results of the principal component analysis of each index in each year.

Year Principal component NDVI WET NDBSI LST Percent correlation 
Eigen value (%)

2000

PC1 0.504 0.470 −0.400 −0.604 0.679

PC2 −0.337 0.676 0.632 −0.174 0.207

PC3 0.645 −0.342 0.663 −0.166 0.098

2005

PC1 0.514 0.420 −0.465 −0.586 0.711

PC2 0.429 −0.728 −0.480 0.235 0.195

PC3 0.575 −0.231 0.743 −0.251 0.079

2009

PC1 0.522 0.432 −0.372 −0.635 0.591

PC2 −0.096 0.466 0.842 −0.255 0.214

PC3 0.718 −0.575 0.391 −0.029 0.174

2015

PC1 0.532 0.427 −0.563 −0.466 0.756

PC2 0.322 −0.643 0.325 −0.614 0.162

PC3 0.690 −0.322 −0.119 0.637 0.075

2020

PC1 0.559 0.411 −0.593 −0.408 0.752

PC2 0.277 −0.617 0.298 −0.674 0.171

PC3 0.658 −0.423 −0.096 0.615 0.070

72

https://doi.org/10.3389/fevo.2023.1153342
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Wang et al. 10.3389/fevo.2023.1153342

Frontiers in Ecology and Evolution 06 frontiersin.org

rose by 5%. As a result, Zhanjiang City’s total ecological environment 
quality has improved since 2009, with the places with poor ecological 
quality seeing the most improvement.

According to the RSEI values and using equal intervals, the 
study region was categorized into five categories in Figure  3: 
excellent, good, medium, fairly poor, and poor. The majority of 

the regions with a pretty low grade are found in coastal towns, 
demonstrating that human activities have a negative impact on the 
ecological quality. The southeast and center regions of the country 
tend to have the best ecological conditions. Since this area 
contains forest land, it is clear that vegetation positively affects the 
ecological quality.

3.3. Spatiotemporal ecological changes

The RSEI values of Zhanjiang City were differed for 5 periods 
in order to further study the temporal and spatial variations in 
ecological environmental quality in Zhanjiang City from 2000 to 
2020. The differential results were graded. Table  5 shows the 
changes in Zhanjiang City’s ecological environment quality and 
its percentage during a 20-year period. The percentage of 
Zhanjiang City’s ecological environment that was significantly 
better and significantly worse over the course of the five periods 

TABLE 3 The mean value of RSEI and mean correlation between RSEI and 
each index in different years.

Year NDVI WET NDBSI LST RSEI_mean

2000 0.611 0.572 0.475 0.427 0.579

2005 0.628 0.564 0.450 0.400 0.597

2009 0.622 0.563 0.434 0.550 0.597

2015 0.684 0.592 0.499 0.395 0.607

2020 0.666 0.585 0.502 0.403 0.601

Mean value 0.642 0.575 0.472 0.435 0.596

FIGURE 2

Remote sensing Ecological Index from 2000 to 2020; (A) Remote sensing Ecological Index in 2000, (B) Remote sensing Ecological Index in 2005, 
(C) Remote sensing Ecological Index in 2009, (D) Remote sensing Ecological Index in 2015, (E) Remote sensing Ecological Index in 2020.
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is quite close to 30%. Around 7% of changes are for the better, 
whereas 7% are for the worse. Overall, the percentage of Zhanjiang 
City’s ecological environment that is better than significantly 
worse is significantly higher, whereas this is not the case for the 
time periods 2005 to 2009 and 2015 to 2020, where the percentage 
of ecological environment that is better than significantly worse 
is lower. In Zhanjiang, the percentages of a better and substantially 
better ecological environment quality during the last 20 years are 
6.47 and 38.38%, respectively. These percentages are somewhat 
higher than those of a poorer and significantly worse ecological 
environment quality. This suggests that in 2020, Zhanjiang City’s 
ecological environment quality has increased compared to 2000.

According to Figure 4, there were similar regional variations in 
ecological quality between 2000 and 2005 and 2009 and 2015, with the 
northern portion of Zhanjiang experiencing significantly better 
ecological quality and the southern region experiencing significantly 
worse ecological quality. The areas with significantly worse ecological 
quality occur in the northern part of Zhanjiang, while the areas with 
significantly better ecological quality primarily occur in the southern 
part of the city, which is a similar pattern to the spatial changes in 
ecological quality from 2005 to 2009 and from 2015 to 2020. In the 
southern region and coastal urban area, the ecological environment’s 
quality has declined.

3.4. Relation between impervious surface 
and RSEI

Using the RSEI index as the dependent variable and the percentage 
of impervious surface area in the study area as the independent 
variable, a multiple linear regression analysis was performed to obtain 
the following relationship equation.

 
100 54 69 1 18 0 66∗ = − ∗ =( )Rsei IS R. . .

 (16)

Equation (12) shows that R is greater than 0.6, indicating that the 
whole equation has a high agreement with the original data. The 
negative sign of the coefficient of IS indicates that impervious surfaces 
have a bad impact on environmental quality. The p < 0.1 significance 
test was passed in the regression equation, indicating that it is an 
important influence on regional environmental quality, influencing 
factors. According to model 16, as long as the percentage of 
impervious surfaces in the study area increases by 10% (e.g., from 20 
to 30%), the RSEI value will decrease by 0.118.

3.5. Prediction of RSEI in 2035

According to the Zhanjiang City 2035 planning, the population 
growth and area expansion planned for 2035 are available at this stage. 
Therefore, this paper predicts the impact of population growth on 
ecological quality by linking population growth to IS increase based 
on the previous relationship between the two variables.

Zhanjiang City has a planned maximum population of 10 million 
in 2035 and a population density of 679 persons/km2. According to 
the census data, the area has a population of 7.03 million in 2020 and 
a density of 576 persons/km2. This study shows that the IS area and T

A
B

LE
 4

 A
re

a 
an

d
 p

ro
p

o
rt

io
n

 o
f 

R
SE

I o
f 

ea
ch

 g
ra

d
e 

in
 e

ac
h

 y
ea

r.

G
ra

d
e

2
0

0
0

2
0

0
5

2
0

0
9

2
0

15
2

0
2

0

P
ro

p
o

rt
io

n
/%

A
re

a/
km

2
P

ro
p

o
rt

io
n

/%
A

re
a/

km
2

P
ro

p
o

rt
io

n
/%

A
re

a/
km

2
P

ro
p

o
rt

io
n

/%
A

re
a/

km
2

P
ro

p
o

rt
io

n
/%

A
re

a/
km

2

Po
or

13
.2

7
17

54
.6

5
12

.8
3

16
96

.3
7

12
.5

2
16

56
.0

4
7.

15
94

5.
32

8.
13

10
75

.7
8

Ra
th

er
 p

oo
r

10
.1

2
13

38
.6

2
8.

83
11

67
.9

5
8.

77
11

59
.2

5
9.

83
12

99
.4

8
9.

70
12

82
.7

6

M
ed

iu
m

18
.9

2
25

02
.2

3
16

.7
3

22
11

.9
5

16
.9

2
22

37
.7

3
19

.5
0

25
79

.4
6

18
.8

5
24

92
.8

0

G
oo

d
24

.1
4

31
92

.9
5

24
.2

8
32

11
.5

7
24

.7
2

32
68

.6
1

29
.1

1
38

50
.1

6
29

.7
8

39
37

.8
0

Ex
ce

lle
nt

33
.5

5
44

36
.5

5
37

.3
3

49
37

.1
6

37
.0

8
49

03
.3

8
34

.4
1

45
50

.5
7

33
.5

4
44

35
.8

7

74

https://doi.org/10.3389/fevo.2023.1153342
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Wang et al. 10.3389/fevo.2023.1153342

Frontiers in Ecology and Evolution 08 frontiersin.org

the average RSEI of the area in 2020 are 470.53 km2 and 0.758 km2. 
These data are the inputs to the estimation model.

The expected value of the total IS area was first estimated using 
Eq. (13), and the results were subsequently used as input to Eq. (16) 
as a way to predict the RSEI in 2035.

The results show that the projected value of Eq. (16) for the total 
IS area of Zhanjiang City is 511 km2. The mean value of RSEI in 2035 
projected using this quantity is 0.488.

4. Discussion

Some academics analyze the relationship between population 
and ecological environment because they predict that increasing 

populations would result in resource shortages, exacerbate 
environmental contamination, and put more strain on ecosystems 
(Chen et al., 2009). According to some scholars, large-scale urban 
development not only modifies the original natural environment, 
causing significant ecological changes that make it easier to 
trigger geological disasters like landslides, debris flows, and soil 
erosion, but also causes cities to produce heat islands that have 
varying degrees of an impact on the natural environment around 
them (He et al., 2017; Zhao et al., 2017). The interaction of many 
components in the ecological environment is currently being 
given more attention in academic circles (Ping and Fang, 2014; 
Zhong et al., 2015; Yuan et al., 2016). Analysis reveals that the 
contribution level of a single factor is greatly outweighed by the 
interaction effect of numerous factors. Our research offers a 

FIGURE 3

Remote sensing Ecological Index Grading from 2000 to 2020; (A) Remote sensing Ecological Index Grading in 2000, (B) Remote sensing Ecological 
Index Grading in 2005, (C) Remote sensing Ecological Index Grading in 2009, (D) Remote sensing Ecological Index Grading in 2015, (E) Remote 
sensing Ecological Index Grading in 2020.
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comparatively thorough identification approach for carefully 
taking into account numerous governance-related criteria. The 
RSEI integrates four factors, greenness, humidity, dryness and 
heat, which can more accurately represent the ecological 
environment quality of Zhanjiang City.

The findings of this study (Figure 2) are similar with those the 
study of Wang et al.’s (2022), arable land and impermeable surfaces 
tend to have a lower RSEI, wetlands and forests tend to correspond 
to higher RSEI values, and grasslands have RSEI values in the 
middle. In general, RSEI can more correctly describe the 
ecological environment quality of Zhanjiang. These show that the 
trend of ecological environmental quality is related to 
land-use types.

Table 3 shows the mean values of NDVI, WET, NDBSI and LST 
in 2000, 2005, 2009, 2015, and 2020. From the Table 3, it can be seen 
that the trend of NDVI change is similar to the trend of RSEI values 
in Zhanjiang City, which shows an increase in 2000–2015 and a 
decrease from 2015 to 2020. This indicates that, among these four 
indicators, the RSEI values are mainly influenced by NDVI. The other 
three indicators have less influence.

In this study, spass software was used to perform univariate linear 
regression between the impervious area and the RSEI value in the fifth 
period, and the Eq. (16), in which the impervious area showed a 
negative correlation with RSEI, and the RSEI value decreased with the 
increase of the impervious area. This is consistent with the results of 
Xu’s (2013) study.

Although this study can relatively objectively analyze the changes 
in ecological environment quality in Zhanjiang City through RSEI, 
and objectively predict the RSEI values in 2035 based on the regression 
model of impervious planning area and RSEI values. However, there 
are shortcomings in the study.

The atmosphere, vegetation, water system, temperature, and 
population diversity are also causes of changes in ecological 
environment quality, and the driving mechanism of the above 
factors on ecological environment quality changes still needs to 
be  studied. If future studies can consider other ecological 
indicators comprehensively, the ecological environment quality of 
Zhanjiang City can be evaluated more comprehensively.

Due to the cloud cover in some areas of the study area and the 
presence of a small amount of water bodies, the data were de-clouded 
and masked with water bodies. As a result, there are a few blank image 
elements in Figures 2–4.

There are large areas of mudflat wetlands in the study area, 
and there are certain differences in the area and extent of water 
bodies in different seasons, which have certain effects on the 
moisture factor and water body mask extraction. The time range 
of the image data selected in this study is summer, therefore, the 
RSEI of the study area has some seasonal differences. In the future 
development, the seasonality of ecological regions can 
be  considered so that the RSEI can monitor the quality of 
ecological environment more comprehensively.

5. Conclusion

This study takes Zhanjiang City as the study area and constructs 
the Zhanjiang City Ecological Environment Evaluation System-RSEI 
model. The findings of the study are as follows.T
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 (1) The contribution rates of the first principal components of 
the RSEI constructed in this paper are all over 59%, and in 
PC1, the eigenvalue signs of the greenness index and the 
humidity index are positive and play a positive role in 
ecological environment quality assessment, while the 
eigenvalue signs of the dryness index and the heat index are 
negative and play a negative role in ecological environment 
quality assessment. Spatially speaking, the areas with high 
RSEI values were distributed in the central and southeastern 
regions of Zhanjiang City, and the land use types in these 
areas were mainly forests. In contrast, the RSEI index is low 
in the eastern coastal area, which is the central urban area 

of Zhanjiang and is a type of building land. In summary, the 
effect of the four ecological indicators on the quality of the 
ecological environment is in line with the actual basic 
situation. The RSEI index can accurately and 
comprehensively assess the ecological environment quality 
of Zhanjiang city.

 (2) From 2000 to 2020, the RSEI values were 0.579, 0.597, 0.597, 0.607, 
and 0.601, respectively, showing a trend of “rising-falling.” 
According to the analysis of the difference between the remote 
sensing ecological index in 2000 and 2020, the ecological 
environment quality of Zhanjiang City has improved in the last 
20 years.

FIGURE 4

Space change of ecological environment in Zhanjiang city from 2000 to 2020, (A) Space change of ecological environment in Zhanjiang city in 2000, 
(B) Space change of ecological environment in Zhanjiang city in 2005, (C) Space change of ecological environment in Zhanjiang city in 2009, 
(D) Space change of ecological environment in Zhanjiang city in 2015, (E) Space change of ecological environment in Zhanjiang city in 2020.
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 (3) According to the regression model of impervious area and 
RSEI obtained from the study area’s population planning and 
total area planning in 2035, if the impervious planning area is 
4.196% of the total planning area, obtain the 2035 Zhanjiang 
City RSEI forecast value of 0.488.
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Introduction: Forest spatial structures are the foundations of the structure and 
function of forest ecosystems. Quantitative descriptions and analyses of forest 
spatial structure have recently become common tools for digitalized forest 
management. Therefore, the accuracy and intelligence of acquiring forest spatial 
structure information are of great significance.

Methods: In this study, we developed a forest measurement system using a mobile 
phone. Through this system, the following tree measurements can be achieved: 
(1) point cloud of tree and chest diameter circle to measure tree diameter at breast 
height (DBH) and position coordinates of tree by using simultaneous localization 
and mapping (SLAM) technology, (2) virtual boundary creation of the sample plot, 
and the auxiliary measurement function of tree with the augmented reality (AR) 
interactive module, and (3) position coordinates and single-tree volume factor 
to calculate the spatial structural parameters of the forest (e.g., Mingling degree, 
Dominance index, Uniform angle index, and Crowdedness index).The system was 
tested in three 32 x 32 martificial forest plots.

Results: The average DBH estimations showed BIAS of -0.47 to 0.45 cm and 
RMSEs of 0.57 to 0.95 cm. Its accuracy level met the requirements of forestry 
sample surveys. The tree position estimates for the three plots had relatively 
small RMSEs with 0.17 to 0.22 m on the x-axis and 0.16 to 0.26 m on the y-axis. 
The spatial structural parameters were as follows: the mingling degree of plot 
1 was 0.32, and the overall mixing degree of tree species was low. The trees in 
plots 2 and 3 were all single species, and the mixing degree of both plots was 
0. The dominance index of the three plots was 0.56, 0.51, and 0.51, indicating 
that the competitive advantage of the whole orest species was not obvious. The 
uniform angle index of the three plots was 0.55, 0.59, and 0.61, indicating that the 
positions of trees in the three plots were randomly distributed. The crowdedness 
index of plot 1 was 1.03, indicating that the degree of aggregation of the trees 
was low and showed a random distribution trend. The crowdedness index of the 
other plots were 1.36 and 1.40, indicating that the trees in the plots show a trend 
of uniform distribution, and the uniformity of plot 3 is higher than that of plot 2, 
but the overall uniformity is relatively weak.

Discussion: The findings of this study provide support for the optimization of 
forest structures and improve our conceptual understanding of forest community 
succession and restoration, in addition to the informatization and precision of 
forest spatial structure surveys.
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Introduction

Forest structure describes the relationship between the 
distribution of individual trees and their attributes. Forests are 
ecosystems, and each tree is a structural element of the ecosystem, 
with species, size, and spatial distribution characteristics (Hui et al., 
2019). Measuring and regulating forest structure is essential for 
achieving forest management objectives. Currently, various indices 
for quantitative analysis of forest structure have been proposed, 
which can be  divided into two types: non-spatial and spatial 
structural parameters (Tang, 2010). Non-spatial structural parameters 
mainly include single-tree volume factor such as DBH, tree height, 
crown width, and tree species, which focus on the quality and 
quantity of trees in the forest. Spatial structural parameters (e.g., 
Mingling degree, Dominance index, Uniform angle index, and 
Crowdedness index) describe the spatial distribution characteristics 
of trees and their attributes, and require determining the position 
coordinates of trees and their relationships with neighboring trees 
(Hui and Gadow, 2003; Dong et al., 2022). Spatial grouping mainly 
refers to the positions of trees and their spatial associations (Pastorella 
and Paletto, 2013). Spatial distribution is fundamental to the study of 
the spatial behavior of populations (Hui et al., 2007). Any population 
is distributed in different positions in space, but due to the interaction 
between individuals within the population and the adaptation of the 
population to the environment, the same population presents 
different spatial distribution patterns under different environmental 
conditions. These spatial aspects determine not only the intensity of 
competition between adjacent trees but also the spatial niche between 
trees and the growth potential and stability of the surrounding forest 
(Gao et al., 2021). Therefore, the spatial aspect of the position of 
individual trees is often considered more important than the 
non-spatial aspect (Dong et al., 2022).

In traditional forestry inventory, the collection of forest structural 
parameters often relies on manual collection. Using traditional 
methods for forest inventory, variables such as tree height and DBH 
are obtained using tools such as the Blume-Leiss hypsometer, diameter 
tape, and measuring tape (Yan et al., 2012). However, the process of 
field measurements using these instruments is costly and inaccurate 
(Božić et  al., 2005). Although ocular estimation is helpful for 
improving the efficiency of forest inventory, it hardly meets the 
accuracy requirements. A total station is a precise electronic surveying 
instrument that combines distance measurement, angle measurement, 
and automatic data processing with much higher accuracy. Total 
stations have been used for forest area measurements and tree height 
measurements since the 1990s in many developed countries (Feng 
et al., 2003).

The development of light detection and ranging (LiDAR) 
technology, coupled with improvements in computer performance, 
has provided new solutions for forest inventory (Lim et al., 2003). 
LiDAR technology involves scanning the sample plot to obtain a 3D 
sampling point cloud, from which the sample plot properties can 
be objectively extracted (Heidenreich and Seidel, 2022). Terrestrial 
laser scanning (TLS), a ground-based LiDAR technology, has been 
used by many scholars to sample plot inventory and extract and 
evaluate forest attributes using algorithms (Liang et al., 2016). TLS 
has been used to collect tree attributes in sample plots, such as DBH 
and tree position (Bienert et al., 2006; Maas et al., 2008; Vastaranta 
et al., 2009; Murphy et al., 2010). However, the scanning efficiency 

of general ground-based LiDAR is often limited due to the large size 
of the equipment, the limited scanning angle, and mutual occlusion 
by trees. The advent of mobile laser scanning (MLS) has solved 
some of these problems, allowing forest attribute inventory to 
be  carried out in larger plots (Liang et  al., 2014). MLS is 
characterized by easy installation, easy operation and portability, 
and adaptability to dense forests and complex terrain. MLS relies 
on the inertial measurement unit (IMU) and Global Navigation 
Satellite System (GNSS) to estimate the position and attitude 
information of LiDAR. However, MLS systems can be difficult to 
build globally consistent point clouds in areas under the forest that 
are not covered by GNSS. Hand-held mobile laser scanning (HMLS) 
has been used in forestry inventory in recent years (Bauwens et al., 
2016). Simultaneous localization and mapping (SLAM) technology 
has enabled HMLS to locate under the forest without GNSS 
signaling. During the movement of the SLAM system, sensors such 
as LiDAR and cameras are used to observe the surrounding 
environment, thereby obtaining an observation sequence. This 
observation sequence is then used to map the surrounding 
environment and estimate the posture of the SLAM system (Fan 
et al., 2019). In forestry survey work, SLAM technology is used to 
construct point cloud maps of forest plots to quickly and accurately 
obtain the spatial location, shape, distribution, and other 
information of forest resources. Using mobile LiDAR scanners for 
SLAM technology measurements, information such as the three-
dimensional structure of the forest, the height, diameter, and 
canopy coverage of trees can be  obtained. Several studies have 
examined the use of SLAM techniques (James and Quinton, 2014; 
Ryding et al., 2015), and they found that HMLS could map complex 
environments about 40 times faster than TLS. However, LiDAR 
systems still have some limitations, such as high cost, cumbersome 
post-data processing, and inability to control measurement errors 
in real time. Additionally, current forest structure survey methods 
often focus on obtaining non-spatial structural parameters, and 
there is no complete solution for investigating and solving spatial 
structural parameters.

Forestry surveys using SLAM technology have primarily focused 
on LiDAR SLAM, with few studies exploring the use of visual 
SLAM. In this study, we designed a new measurement system that 
can be installed on a mobile phone, which uses real-time positioning 
technology to perceive the forest landscape environment and 
estimate the system’s self-pose. By utilizing the camera as a sensor, 
the cost is significantly reduced compared to LiDAR. Our 
measurement system employs monocular SLAM algorithm to 
construct a point cloud map of the forest and fit the chest diameter 
circle according to the coordinates of the discrete point cloud. 
Additionally, the system calculates the position information of the 
tree based on the position and posture of the mobile phone and the 
fitting chest diameter circle. The augmented reality module of the 
system enables real-time interactive operation. It constructs a virtual 
sample boundary to assist surveyors in determining the 
measurement range, thus facilitating better measurement and error 
control. Based on the measured tree position information and 
non-spatial structural parameters, we aim to solve the forest’s spatial 
structural parameters, such as mingling degree, dominance index, 
uniform angle index, and crowdedness index. Our goal is to provide 
a new measurement scheme for forest inventory and spatial 
structural parameter investigation.
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Methods

Simultaneous localization and mapping

Simultaneous localization and mapping is a technology that 
allows sensors to build the consistent map of the unknown 
environment, and at the same time, use this map to deduce its 
position. That is, during SLAM, the position of the motion platform 
state and all road signs is estimated in real time without any prior 
information. From the point of view of probability distribution, the 
SLAM problem requires that the probability distribution P 
be computed for all times k (Bailey and Durrant-Whyte, 2006).

 k 0:k 0:k 0P(x , m|Z , U , x )  (1)

Z0:k = {z1, z2, · · ·, zk} = {Z0:k − 1, zk}: the set of all landmark observations.
xk: the state vector describing the position and orientation of 

the vehicle.
U0:k = {u1, u2, · · ·, uk} = {U0:k − 1, uk}: the history of control inputs.
m = {m1, m2, · · ·, mn} the set of all landmarks.

In the SLAM algorithm, the motion model and the observation 
model can solve the posterior distribution of the current state through 
Bayes theorem. This computation requires a state transition model 
and an observation model those were described the effect of the 
control input and observation, respectively. Control input can 
be described as motion models.

 k k-1 kP(x |x , u )  (2)

uk: the control vector, applied at time k − 1 to drive the vehicle to 
a state xk at time k.

Observational inputs can be described as observational models.

 k kP(z |x , m)  (3)

zk: an observation taken from the vehicle of the position of the 
landmark at time k.

The SLAM algorithm is completed by estimating the prior state 
and solving the post-state by using the prior distribution and 
observation model. The estimation of prior state is described as 
time-update.

 

k-1 0:k-1 0:k, 0

k k-1 k k-1 0:k-1 0:k-1, 0 k-1

P(x , m|Z , U  x )

P(x |x , u )× P(x , m|Z , U  x )dx

=

∫  (4)

Post-check state estimation using prior distributions and 
observational models is described as measurement Update.

 

k 0:k 0:k 0

k k k 0:k-1 0:k 0

k 0:k-1 0:k

P(x , m|Z , U , x )= 
P(z |x , m)P(x , m|Z , U , x )

P(z |Z , U )  
(5)

Through the recursion of the above two steps, the joint posterior 
P (xk, m|Z0:k, U0:k, x0) for the state x of the sensor and map m at a time 
k are calculated. Bayes theorem only solves the SLAM problem from 
the perspective of probability, and the specific form of the motion 
model and the observation model needs to be  given in 
practical application.

Measurement system

In this paper, the system is divided into two parts: the front end 
and the back end. The front end is a visual-inertial odometer which 
estimates the pose of the device and the position of the landmark 
points using techniques such as those described in Gui et al. (2015) 
and Leutenegger et  al. (2015). The back end uses loop closure 
detection to identify the areas that have been visited, and then employs 
graph optimization techniques, such as those described in Angeli et al. 
(2008) and Hu et al. (2013), to optimize the global pose. In this way, 
the system is able to achieve drift-free pose estimation and construct 
a globally consistent map.

Front end
The SLAM front-end fuses observation sensor data, such as 

cameras, with motion sensor data, such as IMU, to achieve pose 
estimation in complex application scenarios. The front-end used in 
this paper is a visual-inertial odometer, which uses the camera as the 
observation input sensor and the IMU as the motion input sensor. 
During the movement of the mobile platform, the two data are fused 
in real-time to estimate the current pose. This study employs an EKF 
to fuse IMU data and camera observation data for real-time pose 
estimation. Firstly, the IMU data is pre-integrated from the previous 
frame to the current frame to estimate the prior pose estimation of the 
current frame. After acquiring the camera image, feature extraction is 
performed on the image, and the descriptor is calculated. Based on the 
descriptor, it is matched with the features retained in the sliding 
window. Finally, the posterior pose estimation is performed based on 
the prior pose estimation and feature constraints (Li and Mourikis, 
2012, 2013).

In this study, the Oriented-FAST and Rotated BRIEF algorithms 
are chosen for feature extraction and descriptor calculation, 
respectively. Specifically, Oriented-FAST is used for feature detection, 
and the BRIEF descriptor is calculated to describe the feature points 
for matching (Rublee et al., 2011). Based on tests, this feature detection 
algorithm and descriptors are 100 times faster than SIFT, SURF, and 
other methods, making them more suitable for real-time scenarios 
and devices with low computing power, such as mobile phones 
(Figure 1).

Back end
After completing front-end pose estimation, the system enters 

back-end loop detection work. The Bag of Words method (BoW) is a 
popular appearance-based loop detection method (Angeli et al., 2008). 
The system uses the feature point description sub-sample of the 
observed environment image to obtain a dictionary through k-means 
training. Then, it checks whether a loop is formed by calculating word 
frequency (TF), inverse document frequency (IDF), and similarity 
calculation. Generally, when a loop is detected in multiple consecutive 
frames, it is considered that a loop is detected, and the pose 
transformation relationship (loop constraint) between the frame and 
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the compared frame is calculated through feature matching, 
optimization, etc. Finally, new pose nodes and loop constraints are 
added to the keyframe pose graph, and the global pose can 
be corrected through graph optimization (Figure 2).

DBH and position calculation

The main difference between the DBH measurement function 
adopted in this study and the current forest survey using LiDAR 
SLAM lies in the real-time performance. With LiDAR SLAM, post-
processing is required on the obtained point cloud data after scanning 
the plot, and additional work is needed to extract the DBH position. 
In contrast, this research is mainly based on the single-frame point 
cloud solution obtained by visual SLAM to calculate the diameter, 
position of the tree, and various forest parameters in real-time.

To obtain the DBH, the system first acquires more than three 
points at the height of the DBH of the tree and projects them onto the 
horizontal plane to obtain their plane coordinates. It then calculates 
the vertical bisector between two points and sets the corresponding 
weight coefficient according to the position. The center coordinates 
are calculated when the angle bisector intersects in pairs, and the 
weighted center plane coordinates, that is, the position coordinates, 
are determined according to the weight. Finally, the system uses the 
center coordinates and DBH height points to calculate the radius and 
its mean value to determine the cross-sectional area. Once the area is 
obtained, this value can be used to calculate the DBH.

System operation process

In this study, a mobile phone camera is used as the sensor in the 
SLAM system (Figure 3). The system acquires images and solved state 
data, and constructs a consistent point cloud map. Then, the 

single-tree volume factor is solved. The images and states are used to 
build 3D virtual scenes using OpenGL. By aligning the SLAM 
coordinate system with the OpenGL coordinate system, observers can 
view augmented reality (AR) scenes through the mobile phone screen 
(Figure 4). The AR scene can be interacted with through the screen in 
the following ways: (1) The plot boundary is constructed in the 
OpenGL coordinate system. When the observer approaches the plot 
boundary, the mobile phone screen displays the position of the plot 
boundary. (2) When measuring a tree, the observer clicks the position 
of the ground diameter and the position of the breast diameter on the 
mobile phone screen. This helps the system determine the point cloud 
at the diameter circle and fit the discrete point cloud in a circle. The 
measurement system consists of four parts: defining the sample 
coordinate system, constructing a globally consistent sparse map, 
measuring each tree, and calculating parameters. The operation flow 
is shown in Figure 5. The defined plot coordinate system describes the 
position of each tree in the plot. The construction of a globally 
consistent sparse map reduces the drift of the mobile phone pose 
obtained during measurement through loop detection, thereby 
reducing the estimation error of tree position. All trees in the sample 
plot are observed during the measurement of each tree. The parameter 
calculation process calculates the forest structural parameters of the 
area represented by the sample plot.

SLAM operates through a process that is divided into four 
modules: front-end odometer, back-end optimization, loop closure 
detection, and map building. The loop closure detection module is 
crucial for refining data and correcting pose drift caused by the 
front-end visual odometer. Its main function is to detect similar data 
collected by the sensor at the same place, and use this information to 
ensure data consistency. The accuracy of the globally consistent map 
is closely related to the scan trajectory, and proper loop closure 
detection during the scanning process is essential for obtaining an 
accurate map. In this study, a fixed sample scan path was designed, 
starting at the center of the sample plot and measuring the trees along 
the route of progress, as shown in the Figure 6. Traditional SLAM 
systems with image feature-based backends may not work well in 
poorly constructed forests. Therefore, an online trunk-based backend 
was designed in this study to estimate tree position accurately and 
correct pose drift in real time for large-scale forest inventories. 
Specifically, a trunk-based loop closure detection algorithm was 
developed to detect whether an earlier observed tree is re-observed, 
providing nodes and constraints for tree position graph optimization. 
This algorithm builds and optimizes the tree position graph using the 
provided nodes and constraints, and corrects the current pose based 
on the optimized globally consistent tree position graph.

Spatial parameter selection

The forest spatial structure index based on the relationship 
between adjacent trees has been widely used in the research of forest 
spatial structure analysis, competition and advantage calculation, 
species diversity measurement, forest structure reconstruction and 
management optimization. The spatial structural parameters are 
mainly a comprehensive expression of the single-tree volume factor 
and spatial position. The position of standing trees and the single-tree 
volume factor were measured by mobile phone measurement system 
to solve the spatial structural parameters, and the spatial structural 

FIGURE 1

Front-end workflow.
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parameters considered in this study mainly included Mingling degree, 
Dominance index, Uniform angle index, and Crowdedness index.

Mingling degree mainly describes the species composition and 
spatial pattern in the forest. It is defined as the proportion of 
individuals in the four nearest neighboring trees of the target tree 
i who are not of the same species as the target tree.
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Uniform angle index describes the uniformity of adjacent trees 
around the reference tree i, and is defined as the proportion of the 
number of α angles less than the standard angle α0 in the number of 
nearest neighboring trees. The standard angle α0 is selected as 72° 
according to the research conducted by Hui et al. (2004).
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The Dominance index quantitatively describes tree competition 
and is defined as the proportion of the adjacent trees of the reference 
tree whose DBH is greater than the number of reference trees to the 
four nearest neighbors examined.
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FIGURE 2

System workflow.

FIGURE 3

Measurement phone.
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The Crowdedness index describes the horizontal distribution 
pattern of tree positions and is defined as the ratio of the average 
distance of the nearest neighbor to the expected average distance 
under random distribution.
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ri is the distance from the tree i to its nearest neighbor; n is the 
total number of plants in the plot; S is the sample area.

Study area and sample plots information

In this study, three plots of 32 m × 32 m were selected for testing, 
located in the campus forest area of Beijing Forestry University, the 
Olympic Forest Park, and Dongsheng Bajia Park in Beijing, China. 

Plot 1 is a mixed forest with Juniperus chinensis L. as the dominant 
tree species, while the other two plots are artificial pure forests 
dominated by Ginkgo biloba L. and Populus L. The three plots contain 
trees of different diameters, and the number and distribution of trees 
in each plot are different, which comprehensively tests the function of 
the measurement system. The sample plots have few shrubs and are 
convenient for data collection. The mobile phone measurement 
system was used to conduct the sample plot survey, and the spatial 
structure of the forest area was analyzed using the calculated spatial 
structural parameters. Additionally, the chest diameter and position 
data of the trees were recorded as reference data using a total station 
and a chest diameter ruler to test the accuracy.

Results

DBH accuracy

The diameter at breast height (DBH) of trees in the sample plot 
was estimated using a mobile phone measurement system, and the 

FIGURE 4

Different statuses of system during observation. (A) Determine the location of the plot center. (B) Sample boundaries. (C) Click on the position of the 
tree. (D) Click on the position of the DBH. (E) Overview of the sample. (F) Calculated forest structure parameters.
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estimated values were compared to the true DBH obtained by 
measuring the trees with a diameter tape as a reference. In this study, 
the accuracy of DBH estimation was evaluated using the BIAS, RMSE, 

relative BIAS (relBIAS), and relative RMSE (relRMSE) metrics, which 
were calculated using the following formulas:
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where xi is an estimate; xir is the reference value corresponding to 
xi; n is the total number of trees.

The Figure 7A displays the overall distribution of DBH estimates 
for the three plots obtained using the mobile phone measurement 
system. The figure shows that all DBH estimates were close to the 
corresponding reference values, and there were no apparent abnormal 
estimates. This observation suggests that this method of estimating 
breast diameter is highly robust. Statistical analysis of all DBH 
estimates was performed, and the results are presented in Table 1.

The DBH obtained through the mobile phone measurement 
system had a BIAS value close to zero, indicating that it was nearly 
unbiased (−0.47 ~ 0.45 cm, −2.04% ~ 2.74%) compared to the 
reference value obtained using the diameter tape. Moreover, the DBH 
estimates had small RMSEs overall (0.57 ~ 0.95 cm, 2.95% ~ 4.5%), as 
shown in Table 1. Figure 7B is a box plot of the error of the DBH 
estimates in different diameter steps, which indicates that the average 
error of the DBH estimate in different DBH ranges was close to zero. 
These results demonstrate that the mobile phone measurement system 
can achieve high-precision DBH measurement, and the measurement 
accuracy meets the requirements for further determining forest 
structural parameters.

Position accuracy

The measured tree position data for the three plots are shown in 
Figure 8. The overall deviation was small, and the estimated position 
could accurately reflect the actual position of the sampled trees. As 
shown in Table 2, the BIAS of the x-axis was −0.04 to 0.22 m and the 
y-axis was 0.01 to 0.20 m. The tree position estimates for the three 
plots had relatively small RMSEs of 0.17 to 0.22 m on the x-axis and 
0.16 to 0.26 m on the y-axis. The scatter distribution of errors in the 
two axes was relatively uniform. Since the spatial structural parameters 
only require the determination of neighboring trees based on their 
position, and the position data was not calculated as a parameter, the 
position accuracy of the system fitting could meet the requirements 
for further spatial structural parameter calculations.

FIGURE 5

Workflow of forest inventory system.

FIGURE 6

Scanning trajectory for building plot map.
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Spatial structural parameter calculation

The horizontal distance between trees was calculated based on the 
position coordinates, and the four nearest neighboring trees of each 
reference tree were determined based on their distances. By comparing 
the non-spatial structural parameters (such as DBH, tree species, and 
position distribution) of the reference tree and its neighboring trees, 
and applying the relevant formula, the spatial structural parameters of 
the forest area in the sample plot were calculated, including Mingling 
degree, Dominance index, Uniform angle index, and Crowdedness 
index. The value range and index system of each spatial parameter are 
presented in Table 3.

The spatial distribution of each tree species in Plot 1 can be clearly 
seen in Figure 9, where it shows that Juniperus chinensis L. was the 
dominant tree species in the area. The parameter values of the forest 
stand are presented in Table 4, showing that the mixing degree of the 
whole forest stand was 0.32, which is considered weak. As both Plots 
2 and 3 were single-species plots, their species distribution is not 
shown, and the mixing degree of both plots was 0. From Figure 10A, 
a relatively high percentage of 0 values can be observed, indicating 
that trees of the same species were clustered in Plot 1. This conclusion 
is also apparent from Figure 8, as trees of the same species in the 
sample plot had a higher degree of aggregation. The dominance index 
reflects the competition among forest trees, and the dominance index 
values for the three plots were 0.56, 0.51, and 0.51, suggesting that the 
competitive advantage of the whole forest species was not apparent, 
and tree growth was relatively balanced. The uniform angle index and 
crowdedness index describe the spatial distribution of trees in the 
forest area. The uniform angle index values for the three plots were 
0.55, 0.59, and 0.61, indicating that the position of trees in the plots 

was randomly distributed. The crowdedness index is the ratio of the 
mean distance between the horizontal distance of the reference tree 
and the neighboring trees to the expected average distance. The 
crowdedness index for Plot 1 was 1.03, indicating that the degree of 
aggregation of the trees was low and showed a random distribution 
trend. The crowdedness index for Plots 2 and 3 were 1.36 and 1.40, 
respectively, suggesting that the trees in the plots showed a trend of 
uniform distribution, and the uniformity of Plot 3 was higher than 
that of Plot 2, but the overall uniformity was relatively weak.

Discussion

In recent years, the development of forestry inventory has been 
based on intelligence and precision. Obtaining point cloud data of 
forest plots is an essential method to construct a 3D forest model and 
invert forest structural parameters. At this stage, the construction of 
forest point clouds mainly uses LiDAR (TLS, MLS, HMLS, etc.) to 
register the point cloud with different algorithms and realize the 
construction of a complete point cloud map. Its core is to find the 
corresponding relationship between the initial point cloud and the 
target point cloud, transform the point cloud on the target object into 
the coordinate system, and convert the point cloud of the same target 
object scanned multiple times into the same coordinate system. The 
difference in the algorithm between LiDARs with different working 
methods lies in the use of different methods to obtain the 
corresponding relationship of point clouds at different times. The 
SLAM algorithm is an algorithm that obtains the position and attitude 
changes of the sensor during its movement and calculates the 
corresponding relationship of point clouds at different times according 
to the changes to realize the work of point cloud registration and map 
construction. Research on intelligent forestry survey tools is mainly 
concentrated on LiDAR, and they include (1) designing a multi-sensor 
fusion LiDAR system to improve the scanning range and improve the 
point cloud mapping effect, (2) designing and improving point cloud 
matching algorithms to obtain high-quality point cloud data, and (3) 
proposing a more efficient and accurate circle fitting method based on 
the original discrete point fitting DBH circle algorithm (e.g., least 
squares method, random sample consensus, and HoughCircles). 

FIGURE 7

DBH estimates error statistics. (A) DBH estimates distribution. (B) The errors under different DBH ranges.

TABLE 1 Accuracies of the DBH estimates.

BIAS 
(cm)

relBIAS (%)
RMSE 
(cm)

relRMSE (%)

Plot 1 0.45 2.74% 0.57 3.08%

Plot 2 −0.47 −2.04% 0.95 4.50%

Plot 3 −0.25 −0.9% 0.94 2.98%
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These research efforts have greatly improved the efficiency and 
accuracy of forestry inventory.

However, lidar-based research still relies on computers for post-
data processing and parameter extraction, which increases workload 
and reduces real-time performance. In this study, a measurement 
system was constructed on a mobile phone using visual SLAM+AR 
technology installed in the mobile phone camera to visually construct 
a sample site cloud map. This system got rid of the limitations of lidar 
for data collection, and real-time integrated measurement work was 
realized without requiring post-processing.

The results of the study show that the mobile phone 
measurement system can accurately solve the single-tree volume 
factor, meeting the needs of forestry inventory and providing high-
quality data support for further solving other forest structural 
parameters. The system also allows for the investigation of forest 
spatial structure, which has become an increasingly important 
content of forestry investigation. The nearest neighbor method is an 
important means to calculate the parameters of the forest spatial 
structure. Using neighboring trees to investigate spatial structure 
parameters usually requires manual determination of neighboring 
trees to calculate parameters and assign values. This process is 
cumbersome and may cause errors due to subjective factors of the 
measurer. According to the position of the trees measured by this 
system, the four neighboring trees of the reference tree can 
be determined, and the spatial structural parameters of the forest 
can be preliminarily solved according to the relationship between 
the breast diameter and position of the reference tree and the 
neighboring tree. Therefore, by optimizing the forest inventory 
method, this study obtains the forest spatial structural parameters 

FIGURE 8

Position estimates error statistics. (A) Tree position distribution. (B) Position errors of all trees in plots.

TABLE 2 Accuracies of the position estimates.

BIASx (m) BIASy (m)
RMSEx 

(m)
RMSEy 

(m)

Plot 1 0.22 0.20 0.21 0.16

Plot 2 0.01 0.01 0.17 0.19

Plot 3 −0.04 0.05 0.22 0.26
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TABLE 4 Frequency values for different spatial structural parameters.

Spatial parameters Frequency distribution Parameter value

0 0.25 0.5 0.75 1

Plot 1

Mingling degree 0.61 0 0.07 0.18 0.14 0.32

Dominance index 0.21 0.14 0.14 0.11 0.4 0.56

Uniform angle index 0.04 0.07 0.5 0.25 0.14 0.55

Crowdedness index – – – – – 1.03

Plot 2

Mingling degree 1 0 0 0 0 0

Dominance index 0.21 0.21 0.18 0.30 0.14 0.51

Uniform angle index 0.09 0.08 0.26 0.52 0.06 0.59

Crowdedness index – – – – – 1.36

Plot 3

Mingling degree 1 0 0 0 0 0

Dominance index 0.16 0.21 0.26 0.16 0.21 0.51

Uniform angle index 0.16 0.05 0.05 0.68 0.05 0.61

Crowdedness index – – – – – 1.40

more efficiently, moreover, provides good data support for the study 
of forest ecology, and ultimately realizes the promotion of forest 
ecological management, optimization, and promotion of ecological 
sustainable development.

However, due to the performance gap between the mobile phone 
camera and the lidar, the current system based on vision has issues 
with its stability. The problem of pose drift occurs in actual use, and 
the stability and robustness of the system need to be improved. In the 

future, more measurement and auxiliary functions can be developed 
on mobile phones, including tree species recognition based on the 
surface characteristics of trunks or leaves and using point clouds to 
realize 3D modeling of trees. Overall, this system has high application 
value and broad development space in forestry inventory, as it 
optimizes the forest inventory method, provides good data support for 
the study of forest ecology, and ultimately promotes ecological 
sustainable development.

TABLE 3 Forest spatial structure index system.

Spatial 
parameters

Variable
Values

0 0.25 0.5 0.75 1

Mingling degree (M) Species Non mixture Low mixture Intermediate mixture High mixture Complete mixture

Dominance index (D) Diameter Pre-dominant Sub-dominant Intermediate Disadvantaged Absolutely disadvantaged

Uniform angle index (U) Angle Very regular Regular Random Clumped Very clumped

Crowdedness index (C) – C > 1 is regular distribution; C = 1 is random distribution; and C < 1 is clustered distribution

FIGURE 9

Spatial distribution of different tree species.
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Conclusion

In this study, the mobile phone is used as a sensor, and the visual 
SLAM technology is used to replace the HMLS based on LiDAR 
SLAM, which improves the efficiency and portability. At the same 
time, the embedding of augmented reality technology realizes real-
time measurement and can control errors well with high 
measurement accuracy of DBH and position, which can be used to 
determine the neighboring trees and calculate the spatial structural 
parameters of the forest areas. The test results show that the system 
can meet the inventory needs well and can be used as a new direction 
for future forest resources investigation and solving spatial 
structure parameters.

At this stage, there are still some problems in this study. The 
positioning method based on vision sometimes has positioning drift, 
and the stability still needs to be further improved. In addition, the 
number of system calculation parameters is currently limited, and in 
some surveys it is still necessary to rely on other tools for assistance, 
and more measurement functions need to be embedded in the future.

Data availability statement

The raw data supporting the conclusions of this article will 
be made available by the authors, without undue reservation.

Author contributions

FY conceived and designed the project. TG and MU wrote the 
manuscript. YF and FY conceptualized the study, designed the 
methodology, and reviewed the manuscript. LG conducted field 

experiments. All authors contributed to the article and approved the 
submitted version.

Funding

This work was supported by Tibet Autonomous Region Science 
and Technology Plan Project, project number: XZ202301YD0043C.

Acknowledgments

The authors would like to extend our sincere gratitude to the 
undergraduate students and staff of the Laboratory of Forest 
Management and “3S” technology and Beijing Forestry University for 
various help in the experimentation.

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors 
and do not necessarily represent those of their affiliated organizations, 
or those of the publisher, the editors and the reviewers. Any product 
that may be evaluated in this article, or claim that may be made by its 
manufacturer, is not guaranteed or endorsed by the publisher.

References
Angeli, A., Doncieux, S., Meyer, J. A., and Filliat, D. Real-time visual loop-closure 

detection. In 2008 IEEE International Conference on Robotics and Automation. IEEE, 
(2008). 1842–1847.

Bailey, T., and Durrant-Whyte, H. (2006). Simultaneous localization and mapping 
(SLAM). Part II. IEEE Robotics and Automation Magazine, 13108–117. doi:10.1109/
MRA.2006.1678144

Bauwens, S., Bartholomeus, H., Calders, K., and Lejeune, P. (2016). Forest inventory 
with terrestrial LiDAR: a comparison of static and hand-held Mobile laser scanning. 
Forests 7:127. doi: 10.3390/f7060127

Bienert, A., Scheller, S., Keane, E., Mullooly, G., and Mohan, F. (2006). Application of 
terrestrial laser scanners for the determination of forest inventory parameters. Int. Arch. 
Photogram. Remote Sens. Spatial Inform. Sci.:36, 1–5.

Božić, M., Čavlović, J., Lukić, N., Teslak, K., and Kos, D. (2005). Efficiency of 
ultrasonic vertex III hypsometer compared to the most commonly used hypsometers in 
Croatian forestry. Croatian J. For. Eng. J. Theory Appl. Forest. Eng. 26, 91–99.

Dong, L., Bettinger, P., and Liu, Z. (2022). Optimizing neighborhood-based stand 
spatial structure: four cases of boreal forests. For. Ecol. Manag. 506:119965. doi: 
10.1016/j.foreco.2021.119965

FIGURE 10

Frequency distribution of different spatial structural parameters. (A) Mingling degree. (B) Dominance index. (C) Uniform angle index.

90

https://doi.org/10.3389/fevo.2023.1152955
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://doi.org/10.1109/MRA.2006.1678144
https://doi.org/10.1109/MRA.2006.1678144
https://doi.org/10.3390/f7060127
https://doi.org/10.1016/j.foreco.2021.119965


Yan et al. 10.3389/fevo.2023.1152955

Frontiers in Ecology and Evolution 12 frontiersin.org

Fan, Y., Feng, Z., Chen, P., Gao, X., and Shen, C. (2019). Research on Forest plot survey 
system based on RGB-D SLAM Mobile phone. J. Agric. Mech. 50, 226–234. doi: 
10.6041/j.issn. 1000-1298.2019.08.024, in Chinese.

Feng, Z. K., Han, X. C., Zhou, K. L., Nan, Y. T., and Fu, X. (2003). The analysis of 
forestry mensuration principle and precision in fixed samples by total station. Beijing 
Surv. 2003, 28–30. in Chinese.

Gao, W., Lei, X., Liang, M., Larjavaara, M., Li, Y., Gao, D., et al. (2021). 
Biodiversity increased both productivity and its spatial stability in temperate 
forests in northeastern China. Sci. Total Environ. 780:146674. doi: 10.1016/j.
scitotenv.2021.146674

Gui, J., Gu, D., Wang, S., and Hu, H. (2015). A review of visual inertial odometry from 
filtering and optimisation perspectives. Adv. Robot. 29, 1289–1301. doi: 
10.1080/01691864.2015.1057616

Heidenreich, M. G., and Seidel, D., (2022). Assessing Forest vitality and Forest structure 
using 3D data: A case study from the Hainich National Park, Hainich: Frontiers in Forests 
and Global Change.

Hu, G., Khosoussi, K., and Huang, S.. Towards a reliable SLAM back-end. 2013 
IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, 
(2013). 37–43.

Hui, G., and Gadow, G. (2003). Quantitative analysis of forest spatial structure. Beijing: 
Science and Technology Press.

Hui, G., Gadow, K., and Hu, Y. (2004). Standard angle selection of angular scale of 
Forest stand spatial structure parameters. For. Res. 2004, 1001–1498. doi: 10.3321/j.
issn:1001-1498.2004.06.001, (in Chinese).v

Hui, G., Li, L., Zhao, Z., and Dang, P. (2007). Comparison of methods in analysis of 
the tree spatial distribution pattern. Acta Ecol. Sin. 27, 4717–4728. doi: 10.1016/
S1872-2032(08)60008-6

Hui, G., Zhang, G., Zhao, Z., and Yang, A. (2019). Methods of Forest structure 
research: a review. Curr. Forest. Rep. 5, 142–154. doi: 10.1007/s40725-019-00090-7

James, M. R., and Quinton, J. N. (2014). Ultra-rapid topographic surveying for 
complexenvironments: the hand-held mobile laser scanner (HMLS). Earth Surf. Process. 
Landforms 39, 138–142. doi: 10.1002/esp.3489

Leutenegger, S., Lynen, S., Bosse, M., Siegwart, R., and Furgale, P. (2015). Keyframe-
based visual–inertial odometry using nonlinear optimization. Int. J. Robot. Res. 34, 
314–334. doi: 10.1177/0278364914554813

Li, M., and Mourikis, A. I.. Improving the accuracy of EKF-based visual-inertial 
odometry. 2012 IEEE international conference on robotics and automation. IEEE, 
(2012). 828–835.

Li, M., and Mourikis, A. I. (2013). High-precision, consistent EKF-based visual-
inertial odometry. Int. J. Robot. Res. 32, 690–711. doi: 10.1177/0278364913481251

Liang, X., Hyyppä, J., Kukko, A., Kaartinen, H., Jaakkola, A., and Yu, X. (2014). 
The use of a Mobile laser scanning system for mapping large Forest plots. IEEE 
Geosci. Remote Sens. Lett. 11, 1504–1508. doi: 10.1109/LGRS.2013.2297418

Liang, X., Kankare, V., Hyyppä, J., Wang, Y., Kukko, A., Haggrén, H., et al. (2016). 
Terrestrial laser scanning in forest inventories. ISPRS J. Photogramm. Remote Sens. 115, 
63–77. doi: 10.1016/j.isprsjprs.2016.01.006

Lim, K., Treitz, P., Wulder, M., St-Onge, B., and Flood, M. (2003). LiDAR remote sensing of 
forest structure. Progr. Phys. Geogr. Earth Environ. 27, 88–106. doi: 10.1191/0309133303pp360ra

Maas, H. G., Bienert, A., Scheller, S., and Keane, E. (2008). Automatic forest inventory 
parameter determination from terrestrial laser scanner data. Int. J. Remote Sens. 29, 
1579–1593. doi: 10.1080/01431160701736406

Murphy, G. E., Acuna, M. A., and Dumbrell, I. (2010). Tree value and log product yield 
determination in radiata pine (Pinus radiata) plantations in Australia: comparisons of 
terrestrial laser scanning with a forest inventory system and manual measurements. Can. 
J. For. Res. 40, 2223–2233. doi: 10.1139/X10-171

Pastorella, F., and Paletto, A. (2013). Stand structure indices as tools to support forest 
management: an application in Trentino forests (Italy). J. Forest Sci. 59, 159–168. doi: 
10.17221/75/2012-JFS

Rublee, E., Rabaud, V., Konolige, K., and Bradski, G. (2011). ORB: an efficient 
alternative to SIFT or SURF. Int. Conf. Comp. Vis. 2011:107.

Ryding, J., Williams, E., Smith, M. J., and Eichhorn, M. P. (2015). Assessing handheld mobile 
laser scanners for forest surveys. Remote Sens. 7, 1095–1111. doi: 10.3390/rs70101095

Tang, M. (2010). Advances in study of Forest spatial structure. Scientia Silvae Sinicae 
46, 117–122. (in Chinese).

Vastaranta, M., Melkas, T., Holopainen, M., Kaartinen, H., Hyyppä, J., and Hyyppä, H. 
(2009). Laser-based field measurements in tree-level forest data acquisition. Photogram. 
J. Finland 21, 51–61.

Yan, F., Mohammad, R. U., Gong, Y., Feng, Z., Chowdury, Y., and Wu, L. (2012). Use 
of a no prism total station for field measurements in Pinus tabulaeformis Carr. Stands in 
China. Biosyst. Eng. 113, 259–265. doi: 10.1016/j.biosystemseng.2012.08.007

91

https://doi.org/10.3389/fevo.2023.1152955
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://doi.org/10.6041/j.issn. 1000-1298.2019.08.024
https://doi.org/10.1016/j.scitotenv.2021.146674
https://doi.org/10.1016/j.scitotenv.2021.146674
https://doi.org/10.1080/01691864.2015.1057616
https://doi.org/10.3321/j.issn:1001-1498.2004.06.001
https://doi.org/10.3321/j.issn:1001-1498.2004.06.001
https://doi.org/10.1016/S1872-2032(08)60008-6
https://doi.org/10.1016/S1872-2032(08)60008-6
https://doi.org/10.1007/s40725-019-00090-7
https://doi.org/10.1002/esp.3489
https://doi.org/10.1177/0278364914554813
https://doi.org/10.1177/0278364913481251
https://doi.org/10.1109/LGRS.2013.2297418
https://doi.org/10.1016/j.isprsjprs.2016.01.006
https://doi.org/10.1191/0309133303pp360ra
https://doi.org/10.1080/01431160701736406
https://doi.org/10.1139/X10-171
https://doi.org/10.17221/75/2012-JFS
https://doi.org/10.3390/rs70101095
https://doi.org/10.1016/j.biosystemseng.2012.08.007


Frontiers in Ecology and Evolution 01 frontiersin.org

A remote sensing approach to 
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coastal marsh
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Introduction: Coastal estuarine wetlands provide important habitats for a variety 
of endemic flora and fauna but are particularly vulnerable to biological invasions. 
Regular monitoring of changes in these vulnerable wetlands has become 
increasingly important for effective management, especially considering threats 
from climate change effects and human disturbance. Historical analyzes of 
plant invasions may guide targeted management strategies to eradicate harmful 
species. Estimating the distribution of invasive species has never been more 
accessible with the improved availability of high-resolution data and innovations 
in remote sensing, estimating the distribution of invasive species has never been 
more accessible.

Methods: We  assessed the spread of non-native Phragmites australis subsp. 
australis in Suisun Marsh on the upper San Francisco Estuary, one of the largest 
brackish coastal wetlands in North America. Suisun Marsh consists of managed 
and tidal wetlands, and efforts have been made to control invasive P. australis on 
the managed wetlands to support habitat values for wildlife. We used remote-
sensing analyzes of publicly available, biennial color-infrared images taken by the 
National Agriculture Imagery Program (NAIP) to map the expansion of invasive 
P. australis across two decades. We generated random forest classifications of 
representative images to map the distribution of P. australis, then calculated a 
variety of metrics describing the rate and spatial extent of the P. australis spread. 
Additionally, we ran generalized linear models to examine factors related to the 
growth of P. australis.

Results: Our classifications yielded accuracies of over 90% and showed a 234% 
(1,084 ha) increase in P. australis between 2003 and 2018. The expansion rate of 
P. australis patches averaged 1.32 m/year (±0.53 SD) which is higher than most 
reported in the literature. We found that P. australis expansion in managed areas 
within levees was significantly correlated with invasion in tidal areas outside the 
levees on the same parcel and also related to its spread on adjacent parcels.

Discussion: Our findings suggest that despite individual landowner management 
efforts, P. australis has continued to expand substantially throughout Suisun Marsh. 
Future efforts to treat invasive P. australis may require emphasizing adaptive, 
collaborative management rather than individual management strategies to 
ensure the invasive species is eradicated on a large scale to preserve the valued 
ecosystem functions.

KEYWORDS

Phragmites australis, invasive species, marsh, estuary, random forest classification, 
wetland
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1. Introduction

The spread of non-native, invasive species poses a major threat to 
plant diversity, ecosystem function, and habitat quality (Vitousek 
et al., 1997; Mack et al., 2000; Quirion et al., 2018; Tadros et al., 2020). 
An estimated 5,000 invasive plant species have been introduced into 
the United States (Pimentel et al., 2000; Tallamy, 2004) and managing 
the spread of these non-native plants costs millions of dollars annually 
(Pimentel et al., 2000). The non-native common reed (Phragmites 
australis subsp. australis; hereafter P. australis) is one such plant–it is 
a broadly distributed grass species now found throughout the wetlands 
of North America. While there are some native P. australis lineages in 
different parts of North America (Phragmites australis subsp. 
americanus), the Eurasian lineage of P. australis was first introduced 
in the early 19th century and has since expanded throughout the 
continent (Saltonstall, 2002; Meyerson et al., 2010a). The Eurasian 
lineage has aggressively expanded into native wetlands and altered 
vegetation communities (Saltonstall, 2002; Meyerson et al., 2010a,b; 
Kettenring and Mock, 2012). It is now widely considered to be invasive 
in most wetland ecosystems across North America and especially in 
tidal marshes, brackish wetlands, salt marshes, and freshwater coastal 
wetlands (Meyerson et al., 2010a,b; Kettenring et al., 2012).

Invasive P. australis has been shown to cause detrimental impacts 
to native plant biodiversity, the quality of wildlife and fish habitat, and 
sedimentation rates (Lambert et al., 2010; Dibble et al., 2013; Wails 
et al., 2021). While in its native European range, P. australis reedbeds 
support a variety of specialized bird species (Poulin et al., 2002; Battisti 
et al., 2020), there is little evidence to suggest that invasive P. australis 
provides habitat for these species in North America (Benoit and 
Askins, 1999; Robichaud and Rooney, 2017; Tozer and Mackenzie, 
2019). In addition, human development has exacerbated the spread of 
P. australis; its invasions are often associated with the soil denudation, 
nutrient enrichment, and hydrologic alteration caused by 
anthropogenic activities (Saltonstall, 2002; Kettenring et al., 2011; 
Mozdzer et  al., 2013; Long et  al., 2017b). For these reasons, the 
management of P. australis has become a priority for conservation 
practitioners in many wetlands (Hazelton et  al., 2014; Long 
et al., 2017a).

Managing to control or eradicate P. australis is notoriously 
challenging (Hazelton et al., 2014; Long et al., 2017a). As a rhizomatous 
grass, P. australis can propagate both clonally as an underground 
network of rhizomes and via seeds resulting in rapid expansion from 
a local source (Kettenring et  al., 2011; McCormick et  al., 2016; 
Minchinton and Bertness, 2023). Early detection and rapid response 
(EDRR) efforts to control small patches (i.e., seed source patches) 
followed by efforts to slow expansion of increasingly larger patches is 
likely to lead to the most effective management across the landscape 
(Long et al., 2017a, Quirion et al., 2018; Rohal et al., 2019a). Numerous 
methods have been developed for treating P. australis with herbicides 
including hand-wiping, backpack spraying, and aerial spraying and 
with non-chemical approaches such as mowing, burning, and grazing 
(Hazelton et al., 2014; Samiappan et al., 2017; Volesky et al., 2017). 
However, while some methods may effectively control P. australis in 
the short term, a lack of monitoring and continuous follow-up 
treatments may result in reemergence of P. australis 2–3 years after the 
original control efforts (Lombard et al., 2012; Hazelton et al., 2014). 
Therefore, effectively managing P. australis to recover preferred 
wetland plant communities may be expensive to achieve over long 

time frames (Rohal et al., 2019a,b, 2023). A better understanding of 
the distribution of P. australis and the mechanisms that control its 
spread is necessary to improve management of this invasive species 
and to reduce its negative effects.

With advancements in the quality of aerial imagery and spatial 
analyzes, remote sensing has emerged as a valuable tool for studying 
and monitoring plant invasions (Samiappan et al., 2017; Abeysinghe 
et al., 2019; Paz-Kagan et al., 2019; Royimani et al., 2019). Recent 
images collected by satellites, aircraft, or unmanned aerial vehicles 
(UAVs) can be used to generate coverages for landscapes at a very 
high (<1-meter) resolution. Furthermore, remotely-sensed imagery 
provides a unique opportunity to examine historical landscapes and 
to detect changes, even where ground data are unavailable or costly 
(Andrew and Ustin, 2009). Covariates derived from remote-sensing 
imagery can be used to identify plant communities or particular 
species of interest with high accuracy (Andrew and Ustin, 2009; 
Samiappan et al., 2017; Abeysinghe et al., 2019; Paz-Kagan et al., 
2019; Tadros et al., 2020). For example, Samiappan et al. (2017) used 
texture analysis to classify P. australis in the wetlands of Louisiana 
with an average accuracy of 85%, while in northern China invasive 
Spartina alterniflora was identified to a similarly high degree of 
accuracy (87–100%; Okoye et al., 2020). These classifications can then 
be used to target management efforts and reduce non-native plant 
invasions to improve overall ecosystem health (Abeysinghe et al., 
2019; Tadros et al., 2020). Classifications of non-native plant species 
further provide the ability to follow EDRR principles and detect 
biological invasions early, providing managers with a better 
opportunity to eradicate or control the problem (Huang and Asner, 
2009; Bradley, 2014).

While previous research has used aerial or satellite imagery to 
classify P. australis and other co-occurring vegetation in other regions 
of the United  States (Rice et  al., 2000; Philipp and Field, 2005; 
Samiappan et al., 2017; Long et al., 2017b; Abeysinghe et al., 2019), 
little effort has been directed at measuring the invasion of P. australis 
in Suisun Marsh in the upper reach of the San Francisco estuary, the 
largest contiguous brackish marsh on the Pacific coast of the 
continental U.S. Suisun Marsh is recognized as an important wetland 
for regional biodiversity supporting many endemic species of wildlife 
and plants and as an important migratory stopover for waterbirds 
along the Pacific Flyway (Moyle et  al., 2014). A comprehensive 
understanding of the trajectory of the P. australis invasion in Suisun 
Marsh is especially crucial in light of the impending threats of sea-level 
rise that may further degrade natural resources in this region 
(Takekawa et al., 2006; Thorne et al., 2018). Native plants may struggle 
to tolerate increased inundation and salinity caused by sea-level rise, 
providing an opportunity for P. australis invasion and expansion 
(Patger et al., 2005; Touchette et al., 2007; Eller et al., 2017).

Our primary objective was to estimate the magnitude, 
distribution, and potential mechanisms of P. australis spread in Suisun 
Marsh. Thus, we used publicly available aerial imagery to conduct a 
historical analysis of the distribution and spread of P. australis in 
Suisun Marsh over two decades from 2003 to 2020. We  used an 
iterative machine-learning approach (Breiman, 2001; Cutler et al., 
2007) to compare patches of P. australis and non-P. australis and to 
generate an estimate of the changing extent of P. australis. We also 
compared the distributions generated with our method compared 
with those estimated with a manual classification approach to see if 
our models produced similar or higher accuracies.
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2. Methods

2.1. Study area

We examined the historic spread of P. australis in the 46,950-ha 
brackish Suisun Marsh located on the upper reach of the San Francisco 
estuary in northern California, United  States (38.1475 N, 
−122.0053 W). The region provides crucial habitat for over 200 bird 
species, 45 mammal species, and a wide variety of native plants 
(CDFW, 2023). These species include the endangered salt marsh 
harvest mouse (Reithrodontomys raviventris) and the endemic Suisun 
thistle (Cirsium hydrophilum var. hydrophilum). It also serves as an 
important nursery for several fishes in the San Francisco estuary, such 
as the critically endangered delta smelt (Hypomesus transpacificus) 
and endangered runs of Chinook salmon (Oncorhynchus tshawytscha). 
Ownership and management of wetlands involves a mix of public, 
private, and nonprofit landowners (CDFW, 2011).

There are two major types of wetlands in Suisun Marsh (Figure 1): 
managed wetlands that are surrounded by levees with water 
infrastructure controlling the timing and duration of applied water, 
and tidal wetlands that are open to the influence of the mixed diurnal 

tides resulting in twice-daily high and low tides differing in height by 
up to 2 m (CDFW, 2011). Most of the land parcels are managed 
wetlands with vegetated tidal berm areas on the exterior side of levees, 
although in the recent past, several parcels have been restored to tidal 
wetlands to benefit fish. Private landowners primarily oversee 
managed wetlands to support waterfowl habitat during the winter 
months, a traditional land use practice that was established in the late 
1800s (Arnold, 1996). The area has been protected by state law since 
1977, and recent goals for the region established in the Suisun Marsh 
Habitat Management, Preservation, and Restoration Plan EIR/EIS 
(CDFW, 2011) have included enhancing 16,000–20,000 ha of managed 
wetlands and restoring 2,000–3,000 ha of tidal wetlands.

While the exact timing of the invasion is unknown, it is believed 
that non-native P. australis was introduced to Suisun Marsh about 
50–60 years ago. Historic reports and vegetation survey results do not 
mention P. australis until after the 1970s, but the species was not a 
dominant plant reported in the region at that time (Simpson and 
Baruth, 1966). The invasion was still not considered to be extensive as 
recently as 20 years ago when P. australis was found only occasionally 
in brackish marshes of the region (Chambers et  al., 1999). The 
dramatic expansion of P. australis in the estuary is therefore a recent 

FIGURE 1

Suisun Marsh in the upper San Francisco estuary of northern California, United States. The location of Suisun Marsh in central California is indicated by 
the red square on the right inset map. Managed wetlands are shaded green, and tidal wetlands are brown. There are an estimated 20,562 hectares of 
managed and tidal wetlands in Suisun Marsh.
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phenomenon. Thus, while it remains a possible that some native 
Phragmites australis subsp. americanus are found Suisun Marsh 
(B. Grewell, pers. comm.), the majority of the species in the region are 
considered to be the invasive Eurasian lineage (Saltonstall, 2002).

2.2. Random forest classifications

We obtained aerial imagery from 2003 to 2020 taken under the 
National Agriculture Imagery Program (NAIP) of the U. S. Department 
of Agriculture. In California, these images were collected every 3 years 
from 2003 to 2009 and every 2 years from 2010 to the present. NAIP 
flights are typically conducted from early April to mid-August with 
most images of Suisun Marsh collected in May (2012, 2016, 2020) or 
June (2003, 2006, 2009, 2014). The exception to this timing was in 
2018 when images were taken in July. Aerial imagery obtained just 
before peak growth season (late-spring to early-summer in Suisun 
Marsh) may allow for early detection of P. australis (Abeysinghe et al., 
2019) which would be helpful to promote a rapid response (Reaser 
et al., 2020); however, P. australis does not reach its peak growth until 
the late summer (Rice et al., 2000; Engloner, 2009), and new growth 
may not be detected until the subsequent year’s images are taken. 
NAIP images from 2003 and 2006 had a 2-meter resolution and 
included three color bands: red, blue, and green. From 2009 onwards, 
NAIP images included an additional band of near infrared (NIR) and 
were processed at a 1-meter resolution. Therefore, our classifications 
were built on slightly different image characteristics pre-2009 versus 
post-2009; however, our preliminary analyzes indicated that these 
resolution differences were not substantially affecting 
our classifications.

We generated classifications from aerial imagery spanning eight 
different years over the past two decades: 2003, 2006, 2009, 2012, 2014, 
2016, 2018, and 2020. For each year, representative P. australis patches 
were selected from the image and manually classified (Tadros et al., 
2020) to use as a baseline to automate classification of the entire image. 
Phragmites australis often displays a unique, lime-green spectral 
signature and forms ovular patches (Kettenring et al., 2016; Figure 2). 
These patches were assumed to be  homogeneous polygons of 
P. australis, since the species forms dense monocultures within 
1–2 years of its initial invasion (Orson, 1999; Holdredge and Bertness, 
2011). Separate polygons were manually selected to serve as 
“non-P. australis” data for the classifications; these polygons were 
much larger than the P. australis polygons and included a wide range 
of spectral values including those with signatures similar to P. australis.

For each classification, the P. australis and non-P. australis 
polygons were randomly subset into groups: 70% for training and 30% 
for validation (Paz-Kagan et al., 2019). Within the P. australis training 
polygons, 3,500 pixels were randomly selected for analysis, and within 
the validation polygons, 1,500 pixels were selected. Seven thousand 
pixels were randomly selected for analysis from the non-P. australis 
training polygons, and 3,000 pixels were randomly selected from the 
validation polygons. This process ensured that we maintained the 
70:30 split between training and validation data while including 
substantially more non-P. australis than P. australis pixels in 
our models.

Classifications were built with three color bands for 2003 and 2006 
and four bands (color and infrared) for 2009–2020. We also included 
an additional predictor variable for every year following 2003 which 

described the distance of every pixel from the nearest P. australis pixel 
classified on the previous image. Phragmites australis often spreads 
rapidly from a source patch (Lathrop et al., 2003; Kettenring et al., 
2011, 2016); therefore, we expected that if P. australis was present in a 
given location in 1 year, there was a much greater probability of its 
presence nearby in the subsequent year. This additional predictor 
variable was created as a continuous raster in ArcGIS Pro (ESRI, 2019) 
with the “Euclidean Distance” tool from a shapefile of the previous 
year’s classification (Eq. 1). Covariate values were extracted at each 
P. australis and non-P. australis point in R Studio Version 1.2.5033  
(R Core Team, 2021; R Studio Team, 2021). We generated models 
from covariates derived from the publicly accessible imagery to 
simplify the analysis and make it easier to replicate the classification 
for continued future monitoring of P. australis. We used the equation,

 

( ) ( ) ( ) ( )
( ) ( )_ 1

Phrag t red t blue t green t
NIR t Phrag Dist t

= + +
+ + −  (1)

where, Phrag(t) is the distribution of P. australis at time t, red(t), 
blue(t), green(t), and NIR(t) refer to color and infrared values 
extracted from NAIP imagery at time t, and Phrag_Dist(t – 1) is the 
distribution of P. australis in the previous classification iteration. 
We used random forest classifiers (Breiman, 2001; Cutler et al., 2007) 
built in R to compare the covariate values of P. australis points against 
those of non-Phragmites points. Random forest is a machine-learning 
model which generates a series of decision trees that each “cast a vote” 
for the most popular output class based on input vectors (Breiman, 
2001; Pal, 2005). We conducted preliminary testing on a variety of 
other model types including Mahalanobis distance, Maximum 
Likelihood, and Spectral Angle Mapping (SAM) on the 2020 NAIP 
imagery; however, random forest produced the highest accuracy 
metrics and was selected for our analyzes (Supplementary Table S1).

Random forest classifiers were generated using the package 
“randomForest” (Liaw and Wiener, 2002), and we  employed 500 
decision trees. To examine the accuracy of our classifiers, we compared 
the classes predicted by the model against the observed classes for our 
validation points. This process allowed us to calculate a variety of 
accuracy metrics including user’s accuracy, producer’s accuracy, 
overall accuracy, and Kappa’s statistic (Fielding and Bell, 1997; 
Kraemer, 2015) for all classifications. User’s accuracy is calculated for 
each class separately and describes the proportion of validation points 
that were correctly classified by the model. Producer’s accuracy is 
similarly calculated for each class separately and measures the 
proportion of points classified as a class that are truly that class. 
Overall accuracy describes the percentage of all validation points that 
were correctly classified by the model. User’s, producer’s, and overall 
accuracies are measured on a scale from 0.00 to 1.00 (0–100%). Lastly, 
Kappa’s statistic yields a metric similar to overall accuracy, while 
accounting for random chance in classification. Kappa’s statistic is 
measured from −1.00 to 1.00 with higher values indicating 
higher accuracies.

For each year, we  ran five random forest models based on a 
different random selection of training and validation data and 
averaged the accuracy metrics. The singular random forest model 
which produced the best accuracy metrics was then used to create a 
map of predicted P. australis each year with the package “raster” in R 
(version 3.6–11; Hijmans and van Etten, 2012). This process produced 
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a 2-meter (2003, 2006) or 1-meter (all other years) resolution raster 
with values of “1” to represent P. australis and “0” to represent 
non-P. australis.

2.3. Assessment of spread in Suisun Marsh

For each classification year, we examined a variety of metrics in 
ArcGIS Pro to better quantify the spread of P. australis. 
We calculated the hectares of classified P. australis for each year for 
all wetlands, managed wetlands and tidal wetlands, and the 
magnitude of change between each classification. We also quantified 
the amount of overlap between P. australis from one classification 
to the previous classification to determine the extent to which 
established patches persisted. This metric served to describe the 
spread of P. australis as expansion from existing patches compared 
to new emergent patches.

Since the rate of expansion is considered an important component 
of invasion (Kettenring et  al., 2016), we  calculated it on six 
representative patches distributed throughout the region that were 
present in both 2003 and 2020 (Figure 3). These patches needed to 
be spatially distinct from each other and unconfined by natural or 
anthropogenic barriers that could inhibit growth (i.e., roads or upland 
edges). We chose to measure perimeter expansion, rather than area 
expansion, following the methods described in Philipp and Field 
(2005). While generally ovular, P. australis patches can display 
irregular shapes, and we generated ellipses for each patch in each 
classification year to reconcile this issue. We found that the area and 
semi-major axis of these ellipses matched those of their respective 
patches as calculated in ArcGIS Pro, and a perimeter expansion rate 
(in meters/year) could be calculated from these ellipses by averaging 
the increase or decrease in both the semi-major and semi-minor axes 
and dividing by the number of years between classifications.

2.4. Comparison to VegCAMP manual 
classification

We examined the efficacy of our random forest models in 
classifying P. australis against a manual classification of the Suisun 
Marsh plant communities established in 1999 to detect change in 
habitats of the endangered salt marsh harvest mouse (CDFW, 2011; 
Askim et  al., 2022). The Vegetation Classification and Mapping 
Program (VegCAMP) was established by the California Department 
of Fish and Wildlife to provide a vegetation mapping standard for the 
state (Askim et  al., 2022). Observers manually identify plant 
associations or species from a mosaic of true-color images collected 
in the year of interest to create vegetation maps of key areas in 
California including Suisun Marsh (Askim et al., 2022).

VegCAMP maps have been generated from aerial images of 
Suisun Marsh taken every 3 years since 2000, and each report 
documents the vegetation composition that existed 3 years prior (the 
2021 VegCAMP release describes the vegetation in 2018, for example). 
The 3-year or longer delay in providing the vegetation maps has been 
caused by the extensive manual processing and has been considered 
to be a shortcoming of VegCAMP, as the outdated information limits 
its value for ongoing annual vegetation management. Furthermore, 
VegCAMP plant associations are produced on a relatively coarse scale 
with the average polygon measuring 0.69 ha and the minimum 
measuring 0.10 ha (Askim et al., 2022) compared to 1-square meter 
pixels analyzed with NAIP imagery. Therefore, VegCAMP is unable to 
identify small, emergent vegetation patches, while remote sensing 
classifications with NAIP offer a quicker, cheaper, and more accurate 
method for examining specific vegetation types on a local scale and to 
guide invasive species management.

We extracted P. australis polygons from VegCAMP classifications 
in ArcGIS Pro by selecting classes labeled Phragmites australis from 
the “NVCSName” attribute. We compared the accuracy of VegCAMP 

FIGURE 2

(A) Spectral signature of Phragmites australis subsp. australis and non-P. australis patches. Note that P. australis displays a unique signature and is visible 
in a narrow range of red, blue, green, and near-infrared values. (B) Distinct, green patches of P. australis in Suisun Marsh as they appear in the 2020 
National Agriculture Imagery Program (NAIP) imagery.
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relative to our NAIP classifications by (1) measuring the percent 
overlap between the two classifications for each year in ArcGIS Pro, 
and (2) calculating user’s, producer’s, and overall accuracies from the 
P. australis and non-P. australis polygons that we outlined to create our 
random forest models. Comparisons were made for the 5 years during 
which VegCAMP and NAIP overlapped in 2003, 2006, 2009, 2012, 
and 2018.

2.5. Generalized linear mixed models

Management of P. australis in Suisun Marsh has been ongoing 
since 2000 (S. Chappell, pers. comm.); however, the type of 
management practices allowed depends on the type of wetland 
(managed or tidal). The Suisun Resource Conservation District 
(SRCD) leads a P. australis control program in Suisun Marsh that was 
initiated in 2000 to encourage managed wetland landowners to 
control P. australis supported by funds from a foundation grant to 
subsidize the cost of herbicides for private landowners from 2000 to 
2021 (S. Chappell, pers. comm.). Treatment on managed wetlands 
including herbicide applications is allowed when the marsh plains are 
drained for maintenance work during the mid-summer (July–
September). However, treating P. australis with herbicides is not 
allowed on tidal wetlands to protect rapid dispersal into the estuarine 
waters, and most non-chemical methods are restricted in tidal 
wetlands to protect endangered species habitat. Therefore, land parcels 
that include areas open to tides often have source populations of 

P. australis that are essentially untreatable. In addition, Suisun Marsh 
is comprised of a mixture of both public and private landowners who 
make management decisions independently (Figure 4), and P. australis 
management may therefore differ greatly between neighboring 
land parcels.

To examine the effect of these management differences for 
managed and tidal wetlands, we generated generalized linear mixed 
models in R. We assessed the relationship between P. australis growth 
on wetland parcels with both managed and tidal areas or on wetland 
parcels with neighboring parcels with P. australis. The within-parcel 
models were excluded if they did not contain P. australis at any point 
between the first and last image. We  used the change in area of 
P. australis on managed areas for each parcel between classification 
iterations as a response variable, the change in area of P. australis in 
tidal areas between classifications and parcel size as fixed effects, and 
year as a random effect.

For the neighboring parcel models, we included land parcels which 
directly shared a border with at least one other parcel that contained 
P. australis between the first and last image. Also, island parcels or those 
separated by sloughs or other sources of permanent water were not 
included. We used the change in the area of P. australis in managed 
areas for each parcel between classifications as a response variable. 
We included the change in area of P. australis in managed areas and 
tidal areas in neighboring parcels as fixed effects. The number of 
neighbors was also treated as a fixed effect, while year was considered 
a random effect. Neighbor statistics were calculated in ArcGIS Pro 
using the “Neighborhood Summary Statistics” tool.

FIGURE 3

Expanding patches of Phragmites australis subsp. australis on Lower Joice Island, a parcel with both managed and tidal wetlands in Suisun Marsh, 
upper San Francisco estuary, northern California, United States. The patches are determined from random forest classifications where different colors 
are associated with different years. The growth in the size of existing patches is likely indicative of growth from spreading rhizomes.

97

https://doi.org/10.3389/fevo.2023.1171245
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Hagani et al. 10.3389/fevo.2023.1171245

Frontiers in Ecology and Evolution 07 frontiersin.org

Before running any models, we  tested for collinearity between 
covariates using Pearson’s correlation test (Benesty et al., 2009; Sedgwick, 
2012; Supplementary Table S2). After running our models, we employed 
a likelihood ratio test (package “lmtest”; Zeileis and Hothorn, 2002) to 
compare the full model with all covariates against a nested model from 
which each fixed effect was removed to identify the influence of individual 
covariates on P. australis expansion in managed areas. Models were 
processed using the “lme4” package (Bates et al., 2015).

3. Results

3.1. Random forest classifications

Random forest classifications of the yearly images included in the 
analysis yielded an average overall accuracy greater than 0.90 (Table 1). 
For P. australis, user’s accuracy was >0.90 for all years except for 2006 
(0.85); producer’s accuracy was 0.90 for all years but 2003 (0.85) and 
2006 (0.73). All classifications produced user’s and producer’s accuracies 
for non-Phragmites that was >0.90 and consistently >0.95 (Table 1).

3.2. Assessment of spread in Suisun Marsh

In 2003, 463 ha of Suisun Marsh were classified as P. australis, but 
by 2020, 980 ha were classified as P. australis (a 112% increase over 
17 years; Figure 5). Phragmites australis peaked in 2018, with 1,547 ha 
classified as the invasive species (a 234% increase over 15 years; 
Figures 5, 6). The largest areal increase between classification years 

occurred between 2016 and 2018 (+392 ha); the largest percentage 
increase occurred between 2014 and 2016 (+35%). The areal extent of 
P. australis increased from the previous year except for in 2 cases: 2009 
to 2012 (13% decrease) and 2018 to 2020 (37% decrease; Figure 5). 
With a total of about 20,560 ha of wetlands in Suisun Marsh, the 2020 
classification indicated that 5% are covered by P. australis with a peak 
of 8% in 2018 compared with an initial estimate of 2% in 2003. 
We classified 271 ha of P. australis in managed wetlands and 191 ha in 
tidal wetlands in 2003 (Figure 6). At its peak in 2018, P. australis had 
expanded in managed wetlands by 721 ha (+266%), and by 364 ha in 
tidal wetlands (+190%).

The perimeter expansion of six representative P. australis patches 
averaged 1.32 m/year (± 0.53 SD) over 17 years. Expansion of patch 
perimeters ranged from a mean of 0.50 to 2.19 m/year Mean perimeter 
expansion was highest between 2012 and 2014 (2.19 ± 1.25 m/year) 
and lowest between 2018 and 2020 (0.61 ± 0.84 m/year; Figure 7). The 
largest expansion rate for a single P. australis patch between two 
classification years was 4.03 m/year (2012 to 2014); the lowest was 
−1.31 m/year (2010 to 2012; Figure 7).

3.3. Comparison to VegCAMP manual 
classification

VegCAMP manual classifications yielded accuracy metrics >0.90 
for all years except 2003 (Table  2). The percent overlap between 
VegCAMP and random forest classifications presented here 
consistently increased from a low of 19% in 2003 to a maximum of 
79% in 2018 (Table 2). In 2003, VegCAMP analyzes estimated 314 ha 

FIGURE 4

Ownership of land parcels in Suisun Marsh, upper San Francisco estuary in northern California, United States. Public lands are displayed in orange and 
private land parcels (including nonprofits) are shown in blue.
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of P. australis in Suisun Marsh while in 2018, VegCAMP analyzes 
estimated 1,739 ha (a 453% increase).

3.4. Generalized linear mixed models

We analyzed 227 land parcels of varying size (137 ha ± 274) in 
Suisun Marsh, and of those, 186 had P. australis at some point during 
the study period. During this time frame, one third of parcels (61, 33%) 
showed a decrease in P. australis on their managed areas. For the 
within-parcel analysis, we included 167 parcels that possessed both 
managed and tidal areas within their boundaries. The change in area 
of P. australis in tidal areas within a parcel had a statistically significant 
effect (p < 0.01) on the change in P. australis in the managed areas of the 
same parcel. Change in area of P. australis increased with increasing 
parcel size, but the effect was not significant (p = 0.06; Table 3).

Our adjacent neighbor models included 178 parcels that shared a 
border with at least one other parcel and that had P. australis between 
2003 and 2020. The number of adjacent neighbors ranged from 1 to 
16, with a mean of 4.3 (± 2.2). Increasing P. australis in both tidal and 
managed wetlands of adjacent neighboring parcels had a significant 
effect associated with the change in area of P. australis in managed 
areas as did the number of adjacent neighbors (Table 4).

4. Discussion

Understanding the historical expansion of P. australis as well as 
potential mechanisms that promote its growth may help landowners 
and conservation practitioners implement effective management plans 
to combat its continued spread (Meyerson et al., 2010a,b; Hazelton 
et al., 2014; Long et al., 2017b). We used publicly accessible NAIP 

TABLE 1 Accuracy metrics for random forest classifications of Phragmites australis subsp. australis in Suisun Marsh.

Metric 2003 2006 2009 2012 2014 2016 2018 2020

P. australis

User’s accuracy 0.96 0.85 0.96 0.88 0.94 0.98 1.00 1.00

Producer’s accuracy 0.95 0.73 0.95 0.92 0.96 0.97 0.97 0.95

Non-P. australis

User’s accuracy 0.97 0.93 0.97 0.95 0.98 0.99 0.98 0.98

Producer’s accuracy 0.99 0.96 0.98 0.94 0.97 0.99 1.00 1.00

Overall accuracy 0.97 0.92 0.97 0.93 0.97 0.99 0.99 0.98

Kappa statistic 0.90 0.73 0.93 0.84 0.92 0.97 0.97 0.96

Metrics are an average of five model iterations, each built and tested on a different random subset of data. User’s, producer’s, and overall accuracies are proportions ranging from 0.0–1.0 with 
higher values indicating a greater accuracy. The Kappa statistic controls for random chance in classifications and can range from −1.0 to 1.0 with higher values indicating a greater accuracy.

FIGURE 5

Estimated change in area of Phragmites australis subsp. australis between 2003 and 2020 as classified by random forest models. Columns are 
partitioned by wetland type: managed wetlands (orange) are surrounded by levees and have water control structures to regulate flooding and draining, 
while tidal wetlands (blue) are open to tidal waters which includes two mixed, daily semi-diurnal low and high tides. Managed wetlands are maintained 
during the summer (July–September) after wetlands are drained, while management of tidal wetlands are restricted and must be individually permitted 
to protect water quality and listed species. Labels above the bars indicate the total estimated area (in hectares) of P. australis in all wetlands for each 
classification year and show an increasing trend of P. australis over the past 2 decades.
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imagery to create a simple, replicable, but highly accurate classification 
for P. australis to document the historical expansion of the invasion. 
Our results indicated that P. australis has expanded substantially in the 
region over the past two decades despite extensive management efforts 
to control it. We also found that P. australis expansion in managed 
wetland areas in Suisun Marsh may be related to the extent of invasion 
in tidal areas within the same parcel or in neighboring parcels of 
managed or tidal wetlands.

4.1. National Agriculture Imagery Program 
(NAIP) classifications and the expansion of 
Phragmites australis in Suisun Marsh

The results produced by our classification models highlighted the 
challenges of managing an invasive species over large temporal and 

geographic scales. Phragmites australis has increased substantially and 
consistently in Suisun Marsh over the past 2 decades, and the 234% 
increase in P. australis extent or 16%/year rate was greater or more 
rapid than results published from other ecosystems (Wilcox et al., 
2003; Philipp and Field, 2005; Ji et al., 2009). In Lake Erie, a 152% 
increase in P. australis was reported between 1945 and 1999 (3%/year, 
Wilcox et  al., 2003), and a 242% expansion was estimated in the 
Liahoe Delta of China between 1953 and 2006 (5%/year, Ji et  al., 
2009). Similarly, the perimeter expansion rate of P. australis in wetland 
ecosystems has varied considerably (Burdick et al., 2001; Philipp and 
Field, 2005; Fussell et al., 2015; Kettenring et al., 2016), but the mean 
perimeter expansion rate estimated here (1.32 m/year) was higher 
than most other estimates in the literature. For example, In the 
wetlands of Delaware and Maine, P. australis perimeter expansion was 
calculated at a mean of 0.91 and 0.70 m/yr (Philipp and Field, 2005; 
Fussell et al., 2015).

FIGURE 6

Expansion of Phragmites australis subsp. australis in Suisun Marsh, upper San Francisco estuary, northern California, United States from the first 
classification year (2003, lime green) to the most recent peak extent in 2018 (pink). We estimated 463 hectares of Phragmites in 2003, which expanded 
to a peak in 2018 (1,547 hectares; 234% increase).
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TABLE 2 Accuracy and comparison metrics for VegCAMP manual classifications of Phragmites australis subsp. australis.

Metric 2003 2006 2009 2012 2018

P. australis extent

NAIP (hectares) 463 586 766 665 1,547

VegCAMP (hectares) 314 460 739 1,006 1738

Overlap (hectares) 89 119 253 373 1,226

Overlap (percent; relative to NAIP) 19 20 33 56 79

VegCAMP P. australis

User’s accuracy 0.79 0.77 0.94 0.97 0.99

Producer’s accuracy 1.00 1.00 1.00 0.97 1.00

VegCAMP Non-P. australis

User’s accuracy 1.00 1.00 1.00 0.99 1.00

Producer’s accuracy 0.96 0.94 0.97 0.99 1.00

VegCAMP overall accuracy 0.97 0.95 0.98 0.98 1.00

Metrics were calculated only for years in which VegCAMP and NAIP overlap. User’s, producer’s, and overall accuracies are proportions ranging from 0.0–1.0, with higher values indicating a 
greater accuracy. The Kappa statistic controls for random chance in classifications, and can range from −1.0 to 1.0, with higher values indicating a greater accuracy.

The patch expansion rate that we  estimated combined with a 
larger and more rapid increase in total area suggests that our brackish 
study site may be particularly susceptible to the invasive P. australis 
growth and expansion. Previous studies have shown that the species 
is especially adept at invading disturbed areas, and its detrimental 
impact is aggravated by anthropogenic activities (Saltonstall, 2002; 
Mozdzer et al., 2013; Hazelton et al., 2014; Kettenring et al., 2015). 
Wide variation in annual precipitation in this Mediterranean climate 
region may likewise play a role in the P. australis expansion reported 
in this study. Average perimeter expansion of P. australis patches was 

highest in 2014 (2.19 m/yr) a drier period regionally, and lowest in 
2012 (0.50 m/yr) during a comparatively wetter period (California 
Nevada River Forecast Center, National Ocean and Atmospheric 
Administration). Phragmites australis may therefore be  able to 
withstand, if not thrive, in years of water deficit (Patger et al., 2005; 
Touchette et al., 2007), as it has been shown to rapidly expand in 
extreme low-water conditions elsewhere (Eller et al., 2017).

Other classification types, including object-based classification, 
texture analysis, and hyperspectral classification, have been used to 
model the distribution of P. australis (Arzandeh and Wang, 2003; 

FIGURE 7

Perimeter expansion rates for six representative Phragmites australis subsp. australis patches distributed across Suisun Marsh shows consistent 
increases in the growth of patches. The perimeter expansion was calculated from 2006 to 2020 and indicated a consistent rate of linear increase that 
would result in an exponential increase in area. The average expansion rate of the six patches is displayed by a black dashed line. Data was unavailable 
for Patch 5 (dark blue) in 2012.
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Pengra et al., 2007; Samiappan et al., 2017; Abeysinghe et al., 2019). 
These previous efforts have consistently yielded accuracies over 0.80 
but rely on more expensive methods of data collection (Abeysinghe 
et  al., 2019). The accuracies produced from NAIP imagery were 
generally higher (> 0.90) and provide a more replicable and cost-
effective option for wetland managers interested in monitoring 
P. australis distributions in the future (Walter and Mondal, 2023). 
Similarly, the use of publicly available imagery to create our 
classification will remove a barrier to continuous and long-term 
monitoring of the invasive species (Walter and Mondal, 2023). The 
ability to effectively monitor P. australis in the long term has shown to 
be critical in successfully managing the invasive species, but logistical 
and financial constraints are among the strongest deterrents to long-
term monitoring (Hazelton et al., 2014; Long et al., 2017a; Quirion 
et  al., 2018). Having a simple, replicable, and highly accurate 
classification model, is therefore valuable to ensuring future 
monitoring and successful control of P. australis. Managers interested 
in assessing the distribution or expansion of any invasive species 
should consider using publicly-available imagery like NAIP 
where applicable.

4.2. Remote sensing and manual 
classification accuracy: the potential for 
informing management

Our results on P. australis expansion generally agreed with results 
from the lengthy manual classification method conducted under 
VegCAMP. While VegCAMP may provide the accurate distribution 

of large P. australis patches, the size of the polygons analyzed limits its 
ability to identify small, emergent patches. This finding is further 
reinforced by the increased percent overlap between our random 
forest classifications and the VegCAMP analyzes. As P. australis 
patches become pervasive and more established, the overlap between 
the two classifications became larger (~80% in 2018).

In contrast to VegCAMP, our classifications built with remote 
sensing imagery can be generated in days, yield comparatively high 
accuracy metrics, and have the potential to effectively locate not only 
large patches but also emergent P. australis growth to support EDRR 
management (Huang and Asner, 2009; Bradley, 2014). The use of 
publicly available imagery also provides a much cheaper alternative to 
VegCAMP which costs 10 to over a hundred thousand dollars for each 
iteration (R. Klingonsmith, Department of Water Resources, pers. 
comm.). Finally, the rapid processing time of our classification allows 
better adaptive management to identify and target new invasions in 
real time (Huang and Asner, 2009; Bradley, 2014).

Despite the high accuracies produced by all of our classification 
iterations, certain shortcomings may be present. During its primary 
growth season, P. australis displays a distinct bright green signature 
and clusters of the invasive tend to form large, ovular patches 
(Kettenring et al., 2016). The classifications produced here were built 
upon these features; however, P. australis patches can demonstrate 
other visual characteristics. Before annual growth commences or 
toward the conclusion of its annual lifespan, P. australis patches may 
appear brown or beige (Figure 8). These brown marcescent patches 
can be difficult to distinguish and isolate given their visual similarity 
to a variety of other plants.

Similarly, annual precipitation varies considerably in this system, 
and in drier years P. australis biomass may be less visibly apparent 
despite its continued presence. Phragmites australis in Suisun Marsh 
increased steadily from 2003 to 2018 before dropping almost 50% 
between 2018 and 2020. This dramatic decrease could be attributed to 
precipitation in the rainy season preceding the 2 years which affected 
their color rather than an actual reduction in P. australis. October 
2016–April 2018 yielded 145.8 cm of rain, while October 2018–April 
2020 yielded just 114.6 cm (California Nevada River Forecast Center, 
National Ocean and Atmospheric Administration).

Also, other variation among years could have affected the results 
of our classification. The 2018 NAIP imagery was collected in July (all 
other years were collected in May or June), and biomass of P. australis 
is likely greatest later in the summer (Rice et al., 2000; Engloner, 2009). 
Ideally, classifications targeting P. australis or plants which grow 
through the summer would use aerial imagery taken at the end of the 
peak growing season. In addition, P. australis can be affected by the 
annual management of water in managed wetlands (Rohal et  al., 
2019a). Year-to-year changes occur when landowners flood or drain 
their land parcels with leach cycles to reduce soil salinities on different 
schedules depending on the availability and water quality (salinity) of 
applied water. It may affect when and how long the P. australis growth 
season occurs and when P. australis is most visible from the air. 
Recognizing the limitations in classifying P. australis from aerial 
imagery is crucial for interpreting the distribution maps presented 
here and for creating management plans based on the findings.

The unique spectral signature of healthy P. australis allowed for 
the development of a highly successful classification based primarily 
on color attributes. Unfortunately, the historical nature of this study 
limited our ability to include ground-truthing data for the NAIP data. 

TABLE 3 Likelihood ratio tests indicated that increases in growth of 
Phragmites australis subsp. australis in managed areas were related to 
change in area of P. australis in tidal areas on the same land parcels 
between two subsequent iterations of our random forest classifications.

Model DF Chi-Sq Value of p

Full (all covariates) 5 --- ---

Change in tidal P. australis 4 52.0 <0.01

Parcel size 4 3.6 0.06

Null (no fixed effects) 3 56.5 <0.01

The response may have been related to parcel size, but the effect was not significant. 
Classification year was included as a random effect. All model comparisons were made 
relative to the full model.

TABLE 4 Results of likelihood ratio tests assessing the effect of change in 
area of Phragmites australis subsp. australis in managed and tidal areas of 
adjacent neighboring land parcels on the change in area of P. australis in 
managed areas on a given parcel between two subsequent iterations of 
our random forest classifications.

Model DF Chi-Sq Value 
of p

Full (all covariates) 6 --- ---

Change in neighbors’ tidal P. australis 5 13.8 <0.01

Change in neighbors’ managed P. australis 5 5.45 0.02

Number of neighbors 5 53.2 <0.01

Null (no fixed effects) 3 74.6 <0.01

Classification year was included as a random effect. All model comparisons were made 
relative to the full model.
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We encourage scientists and wetland managers to employ ground-
truth data to support the remote-sensing classifications when possible. 
The manual selection of training and validation P. australis polygons 
with aerial images can introduce human error and biases, and while 
we are confident that the polygons selected for our classifications were 
P. australis, ground-truth data would confirm our assessment. With 
adequate planning, the polygons used for classification could 
be  outlined in the field to provide a more accurate training and 
validation data set for models. Ground-truth data also is valuable to 
better identify very small and emergent patches of P. australis (<5 m2) 
that would benefit remote-sensing classifications (Huang and Asner, 
2009; Bradley, 2014) and allow implementation of EDRR management 
practices. Ground-truth data are best collected in the field 
concurrently with aerial imagery flights to ensure that temporal 
mismatches in phenology are avoided.

4.3. Drivers of Phragmites australis 
expansion and management implications

Control of P. australis in Suisun Marsh has included ground and 
aerial herbicide spraying, burning, mowing, and disking (S. Chappell 
pers. comm.). While P. australis has spread dramatically over the past 
two decades despite these efforts, it is important to note that P. australis 
management has not been completely ineffective. Although we lack a 
database to indicate which specific wetland areas were treated, 61 land 
parcels showed a decrease in P. australis between 2003 and 2020 
despite the 111.6% increase in P. australis overall. It is likely that 
without management efforts, the current distribution of P. australis 
would be much more expansive. Instead, our findings reinforce the 
difficulty in managing a pervasive and highly successful invasive 
species at a large scale (Kettenring et al., 2011; Hazelton et al., 2014) 
and the importance of consistent, multi-year treatment programs 
(Rohal et al., 2019a,b). Innovative solutions may be needed to help 
reduce the pervasive spread of P. australis. For example, advancements 

in drone technology have produced an effective alternative for treating 
plant invasions (Shahbazi et al., 2014; Roslim et al., 2021; Takekawa 
et al., 2023). Small survey drones can shoot high-resolution imagery 
of small-to-medium geographic areas relatively quickly (Koh and 
Wich, 2012; Cruzan et  al., 2016), after which spray-drones can 
precisely target invasive plants to treat with herbicides (Martinez-
Guanter et al., 2019; Takekawa et al., 2023).

In addition, alternative factors to individual management efforts 
may influence P. australis expansion. Natural processes, such as 
wildfire, flooding, and drought, may also influence P. australis 
distributions (Thompson and Shay, 1985; Patger et al., 2005; Touchette 
et  al., 2007; Eller et  al., 2017) in addition to limiting herbicide 
effectiveness (i.e., P. australis response to herbicide is diminished 
under drought conditions, Rohal et al., 2019a,b). Also, P. australis in 
Suisun Marsh may be developing a resistance to herbicide, which 
could contribute to its unrelenting spread. Little is known about 
P. australis and herbicide resistance (Wang et al., 2017; Blossey et al., 
2020), but resistance has been demonstrated on a variety of other 
wetland or aquatic plants, such as Hydrilla verticillata and Agrostis 
stolonifera (Bollman et al., 2012; Simberloff and Leppanen, 2019). 
Such resistance can severely hinder management efforts by failing to 
kill invasive plants and creating even stronger and more pervasive 
strains (Peterson et al., 2018).

Our within-parcel model showed that the change in P. australis in 
managed areas was significantly correlated with the change in 
P. australis in tidal areas within the same parcel. Most managed areas 
are bordered by tidal areas on the exterior side of the levee; P. australis 
in these tidal areas are likely the primary source that spread into the 
managed wetlands. P. australis has been shown to spread 0.5–10 
kilometers via seed transmission, and rhizome fragments can spread 
clonally via water drift (Fér and Hroudova, 2009; McCormick et al., 
2016). Continuous monitoring of P. australis will help ensure curtail 
its spread, but long-term monitoring has been expensive and time-
consuming (Hazelton et al., 2014; Long et al., 2017a; Quirion et al., 
2018). Our classification method that uses NAIP imagery may help to 

FIGURE 8

Effects of drought or seasonality on the visualization of Phragmites australis subsp. australis in Suisun Marsh, upper San Francisco estuary, northern 
California, United States. Vibrant, green patches of P. australis (2018) may appear as senesced and brown (2020) in drier years or earlier in the growing 
season. Our models were not trained to identify brown patches of P. australis.
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reconcile these issues and provide a simpler way to promote long-
term monitoring.

Varying management efforts between adjacent neighboring 
parcels has also inhibited the overall eradication of P. australis. Our 
results show that the change in P. australis over time on managed areas 
of a parcel was associated with the change in P. australis on the tidal 
and managed areas of neighboring parcels. The number of neighbors 
bordering a parcel was also a significant factor influencing P. australis 
growth. Our results highlighted the complexity of P. australis 
management in a diverse landscape (Epanchin-Niell et  al., 2010). 
Co-management of invasive species has shown to be a crucial aspect 
of successful eradication of detrimental plants (Graham, 2019; 
Graham et  al., 2019; Clarke et  al., 2021), including P. australis 
management in other regions (Young and Kettenring, 2020). The 
different ownerships that comprise Suisun Marsh create a landscape 
in which collaboration is essential to protecting health of the overall 
ecosystem. There is a clear need for more research on the social 
aspects of P. australis management, including decision-making 
processes, in order to establish an adaptive and cooperative treatment 
strategy where neighboring parcels, as well as private and public 
entities, work together more closely to halt the spread of this disruptive 
invasive species (Young and Kettenring, 2020; Conrad et al., 2023). 
Conservation practitioners in similarly complex social-ecological 
landscapes will need to consider these factors when managing their 
invasive plants.
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Climate change alters the spatial
pattern of plant spectral diversity
across forest types

Yu Peng*, Jiaxun Xin and Nanyi Peng

College of Life and Environmental Sciences, Minzu University of China, Beijing, China
Species distribution, spatial distance, and neighboring interact6ions are among

the most important drivers of global variation in plant species diversity. However,

the effects of climate change on the relationship between spatial interactions and

species diversity remain unknown. Here, we applied 12 machine learning models

to assess the responses of spectral diversity (indicating species diversity) in

forests in seven protected forest areas in China. Changes in 27 climatic

variables during two time periods, 1990–2005 and 2005–2020, were

analyzed. The results indicated that spectral diversity and intraspecific spatial

distance have increased significantly with climate change. These results also

provide insights into the variations in spectral diversity. Particularly, the

contributions of neighboring interactions and plant–plant distances to the

variation in species diversity between 1990 and 2000 were greater than the

contribution of climate change in all forest types. Our analysis revealed that

species diversity, plant–plant interactions, and spatial distance are closely

associated with each other and sharply shifted under climate change. From

this perspective, spatial interaction analysis—to a greater degree than analysis of

community composition—can provide additional insights into the underlying

mechanisms of changes in species diversity under current global-

warming conditions.

KEYWORDS

spectral diversity, forests, spatial distance, macroecology, species diversity,
climate change
1 Introduction

Global climate has been in a state of continuous warming for nearly a century. The

current rate of temperature increase is approximately twice that of the previous century

(Karl et al., 2015), and this increase is most pronounced at high elevations and latitudes

(Peñuelas et al., 2013). Several studies have focused on the effects of climate change on plant

diversity in different regions of the world (Boutin et al., 2017; Harrison et al., 2020). The

species richness of vascular plants has also increased with the rise in temperature and

nitrogen deposition, resulting in notable species-composition shifts (Boutin et al., 2017). In

the Columbia River Gorge National Scenic Area, species richness, annual average
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temperature, and relative humidity were found to be significantly

and positively related to each other (Matos et al., 2017). The higher

the plant species diversity, the lower the impact of climate change

(Li et al., 2018). Globally, regions with warm and wet climates

support more species than those with cold or arid climates. This

broad-scale climatic influence outweighs any other contributor to

plant species diversity (Kreft & Jetz, 2007; Harrison et al., 2020).

Reportedly, taxonomic diversity increases with increasing rainfall or

varies with increasing productivity despite a slight decrease in

temperature (Kreft & Jetz, 2007; Harrison et al., 2020). The

relationship between woody species composition and climate is

highly consistent across spatial scales and organizational levels

(Kreft & Jetz, 2007; Harrison et al., 2020). Based on a very large

dataset of six million trees in more than 180,000 field plots in

central Africa, researchers have shown that sensitivity to climate

change is the highest in endemic species-dominated forests and the

driest forests (Réjou-Méchain et al., 2021). Further, recent studies in

West Africa have shown that dry tropical forests exhibit larger

functional changes compared with moist forests in response to

long-term drought (Aguirre-Gutiérrez et al., 2019) and are likely to

be more sensitive to global warming (Sullivan et al., 2020). In

another study conducted in the Amazon, researchers found a peak

in phylogenetic diversity at an intermediate level of precipitation

(Neves et al., 2020). Conversely, forests dominated by widespread

tree taxa adapted to anthropogenic pressures show relatively low

sensitivity to climate change (Réjou-Méchain et al., 2021). Based on

model predictions (Réjou-Méchain et al., 2021), undisturbed semi-

deciduous and transitional forests appear phylogenetically more

diverse than evergreen forests and demonstrate less sensitivity to

climate change. However, these in-depth studies have mainly

focused on the effects of climate change on plant species diversity

in certain regions. Notably, an overall understanding of the spatial

patterns of species diversity across vegetation types on a large scale

remains lacking.

The measurement of species diversity on a large spatial scale is

expected to be more time- and labor-intensive and expensive than

on a small scale. With the use of remote sensing, it is now possible to

monitor species diversity in large areas over a short period of time

(Rocchini, 2007; Madonsela et al., 2017). Of the many different

spectral vegetation indices that serve as proxy measures of species

diversity, the coefficient of variation in the Normalized Difference

Vegetation Index (CV-NDVI), which indicates the variation in

spectral species within a plot, i.e., alpha diversity, is most widely

used (Peng et al., 2019).

Forests are more appropriate for observing the effects of climate

change than other ecosystems because trees have long growth stages

and are less affected by occasional, short-term, or intravariable

climatic fluctuations (Engler et al., 2009; Zwiener et al., 2018).

Spectral diversity indices extracted from remote sensing imagery are

particularly useful for predicting forest species diversity because the

size of a tree crown usually matches well with the pixel size of

satellite images. Furthermore, the use of protected areas (PAs) in

this type of analysis can minimize non-climate anthropogenic

impacts on plant diversity. An examination of the spatial

distribution of plant species can help us to understand the

mechanism of climate change impacting plant diversity and
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provide a reference for biodiversity conservation in world forests.

In this study, we used spectral diversity (CV-NDVI) to evaluate

plant species diversity. Based on the results of previous studies, we

hypothesized the following: 1) species diversity could increase due

to a rise in global temperature, associated with increased

productivity; 2) increased plant diversity would produce strong

neighboring effects, and plant–plant competition could become

severe; 3) stronger neighboring interactions and plant–plant

competition could lead to a longer spatial distance between

plants, and the clustering community would become diffused; and

4) the changes in spatial distance and neighboring interactions

could produce a feedback effect on species diversity (Figure 1).

Using remote sensing techniques and spatial analysis, we tested our

hypotheses based on the spectral diversity of vegetation in seven

protected forests in China.
2 Study area and methods

2.1 Study area

For the present study, protected forest areas in China were

selected as the data source based on the following criteria: 1) PAs

established before 1980 to guarantee an undisturbed status of plant

diversity in the area; 2) PAs having Landsat images in the growing

seasons in 1990, 2005, and 2020, with a cloud cover of less than

10%; 3) PAs larger than 100 km2, in which a core area with a buffer

zone (larger than 2 km) can be created; and 4) PAs located entirely

within one forest biome and not mixed with other forest types.

These criteria were selected to ensure the quality of Landsat images,

sufficient space for plot sampling, and the reliability of comparisons

across different forest types. Out of all 474 national PAs, seven (with

a median area of 100 km2) (Figure 2), representing a geographically

stratified and broad selection of evergreen broad-leaved, deciduous,

and needle-leaved forests from low to high latitudes (Ricklefs & He,

2016), were selected for this study.
2.2 Plant diversity indices derived from
Landsat images

Prior to calculating the spectral diversity indices, all the Landsat

images were processed. Cloud-free Landsat satellite images (with a

spatial resolution of 30 m) were obtained for the years 1990,

2005, and 2020 from the Global Land Cover Facility

website (http://glcfapp.umiacs.umd.edu). All Landsat images were

radiometrically and atmospherically corrected using Idrisi

GIS (Levin et al., 2007). Thereafter, the images were validated

for shading effects at 30-m resolution caused by topography

u s i n g t h e ASTER g l o b a l d i g i t a l e l e v a t i o n mode l

(http://gdem.ersdac.jspacesystems.or.jp). In order to differentiate

the biological features of forests while minimizing the problems of

image incompatibility due to seasonal or annual differences, images

during the growing seasons were included. Radiance values were

converted to surface reflectance, which helped identify the

differences in exoatmospheric irradiance and solar zenith angles
frontiersin.org
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(Rocchini, 2007; Duro et al., 2014). All image processing was

performed using ERDAS Imagine software.

After pre-processing, the CV of the NDVI (CVn) within a

window of 3 × 3 pixels was calculated as the spectral alpha diversity

index of the plot. A series of spectral biodiversity indices (CVn) was

then generated at plot sizes of 3 × 3, 5 × 5, 9 × 9, 17 × 17, and 33 × 33

pixels. After investigating the effects of spatial autocorrelation,

estimation accuracy, and environmental scale, we selected a

window of 33 × 33 pixels as the most convenient size to calculate

spectral diversity, which has also been used in similar studies on

tropical mountain rainforests (Wallis et al., 2017) and savannah

woodlands (Madonsela et al., 2017).
2.3 Spectral–spatial metrics

From the NDVI imagery, we derived three spectral–spatial

measures, namely, spatial distance, spatial aggregation, and

neighboring correlation, as species spatial pattern representatives.

The Euclidean nearest-neighbor distance (ED) represents the

distance (m) from spectral plant a to the nearest neighboring

spectral plant b of the same species, computed from the shortest

pixel–pixel distance. The aggregation index (AI) represents the

number of similar adjacencies involving the corresponding

spectral species divided by the maximum possible number of

similar adjacencies involving the corresponding spectral species

(0 ≦ AI ≦ 100). Given any pi, AI equals 0 when the focal cluster is

maximally disaggregated (i.e., when there are no adjacencies), and

AI equals 100 when the cluster is maximally aggregated into a

single, compact cluster.
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Neighboring interactions can be determined using the

correlation coefficients (COs) of neighboring pixel–pixel pairs

within a moving window (Hall-Beyer, 2017). Image texture

metrics were derived from multiple-scale spectral values using a

gray-level co-occurrence matrix (GLCM) in the ENVI 5.3 program.

A detailed description of image texture measurements can be found

in the ENVI software manual. A 33 × 33-pixel window size was used

to detect the spectral–spatial variability (Kelsey and Neff, 2014), as

this size was consistent with the spatial variability defined by the

semi-variogram analysis in the present study area (Hernández-

Stefanoni et al., 2012). We selected these metrics because they can

successfully derive plant–plant spatial patterns across different

extents (He et al., 2000). ED and AI values were calculated using

Fragstats 4.3.
2.4 Climate data

Temperature and precipitation data for each PA between 1982

and 2020 were obtained from the China Meteorological Data

Service Center. The data were developed using the spatial

interpolation method in ArcGIS, based on more than 2,400

meteorological stations across the country. This method has been

widely applied in the fields of meteorology, climate, ecology, and

environment (Boutin et al., 2017; Harrison et al., 2020). Lastly, 27

groups of climatic data were developed at the annual level (e.g.,

annual maximum temperature (ATmax), annual minimum

temperature (ATmin), and annual precipitation (AP)) and at the

monthly level (e.g., mean monthly temperature (MMT), monthly

maximum temperature (MTmax), and monthly minimum
FIGURE 1

Conceptual illustrations of predicted changes in vegetation spectral diversity under climate warming. Under climate warming, species diversity (CV)
could increase, the abundance of plants could increase, the neighboring interactions (CO) would become stronger, and, consequently, self-thinning
effects will lead to a longer distance (ED) between two plants of the same species. The variation in ED and CO can also work on CV. Different
symbols represent different spectral species; CV, spectral alpha diversity; CO, neighboring correlation; ED, spatial distance.
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temperature (MTmin)). Additionally, we collected data

corresponding to cumulative temperatures ≥5°C and ≥10°C and

precipitation seasonality.
2.5 Trends in plant diversity change

The spectral–spatial metric (CV, CO, ED, and AI) values for

1990, 2005, and 2020 were compared using Duncan’s new multiple

range test (DNMRT). This approach has been widely used to

compare results across different measurements, environmental

conditions, and sampling locations (Wang et al., 2010; He et al.,

2017). The data were tested for normality and equality of variances

and, if necessary, were converted to the square-root value or log-

transformed prior to analysis. Change trends were classified based

on six levels: decrease at p < 0.01, decrease at p < 0.05, insignificant

decrease, insignificant increase, increase at p < 0.05, and increase at

p < 0.01. DNMRT was conducted using the DPS software (http://

www.chinadps.net, Zhejiang University, China).
2.6 Identification of key drivers

Twelve models were analyzed to identify the key influential

factors of spectral–spatial patterns under climate change using the

SPSS modeler (SPSS modeler 18, Statistical Package for the Social

Sciences, Chicago, IL, USA). These 12 models were included with
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four regression models (linear regression, linear assignment (AS),

general linear model, and partial least square regression), one

classification model (k-nearest neighbors), and seven machine

learning models (support vector machine (SVM), linear SVM,

random tree, tree AS, classification and regression tree analysis,

artificial neural network, and chi-squared automatic interaction

detector). Model performance was assessed using three indicators:

the coefficient of determination (R2, calculated as the squared

Pearson’s correlation coefficient), root mean square error (RMSE),

and significance level (p). The models with the highest R2 and

lowest RMSE (p < 0.01) were considered the best fit (Fassnacht

et al., 2014). The climate variables in the best models with the most

important values were regarded as key influencing variables and

were further analyzed to determine their contributions to the

variation in spectral–spatial matrices from 1990 to 2020. A total

of 168 models were analyzed. The reliability and appropriateness of

the 12 models for modeling and predicting spectral CV for climate

change are described in the Supplementary Material.

To explore the relationships between the selected key climate

variables, a redundancy analysis (RDA) was conducted using

Canoco software 5.0. Partition analysis of the RDA-related

variation was used to analyze the relative contributions of the

three groups of explanatory variables (climate, spatial distance

(ED), and neighboring interaction (CO)) to the variance of the

response variable (CV). RDA-related ordination and variation

partitioning analyses were conducted using Canoco 5.0 (Leps ̌ and
Šmilauer, 2003).
FIGURE 2

Study area. Seven protected forest areas across a latitudinal gradient. Forest types are indicated by colored areas.
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3 Results

3.1 Spectral CV variation

From 1990 to 2020, ED significantly (p < 0.05) increased as AI

decreased (Figure 3). In contrast, CO did not vary significantly

during the different periods. The regional spectral CVs in 2020 were

higher than those in 1990 (p < 0.05). In addition, the CV values in
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cold-temperate climates increased more than the corresponding

values in subtropical and tropical climates.

From low to high latitudinal gradient, CV values showed a

significant v-curve (r2 = 0.22), ED significantly (r2 = 0.33)

decreased, and AI (r2 = 0.90) significantly increased (Figure 4). In

turn, CO exhibited the least change. When annual precipitation

increased from 900 to 1,900 mm, the values of CV increased

significantly (r2 = 0.33), and AI decreased significantly (r2 = 0.23),
A
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FIGURE 3

Values of CV, CO, ED, and AI in 1990, 2005, and 2020 for seven forest PAs. Lines in boxes represent medians, and box ends represent quartiles;
whiskers mark the 95th percentiles, and circles represent outliers. Box width is proportional to the square root of the number of data points in each
category. CV, spectral alpha diversity; CO, neighboring correlation; ED, spatial distance; AI, aggregation index; PAs, protected areas. (A) hz; (B) kns;
(C) qls; (D) wl; (E) slj; (F) phs; (G) hls.
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whereas no significant (r2 = 0.18) increase in ED (r2 = 0.18)

was observed.
3.2 Identification of key influential factors

Among the 12 models, the chi‐squared automatic interaction

detector (CHAID) model yielded the most accurate predictions

for all response variables across the seven PAs under study

(average R2 = 0.66), generalized linear modeling (GLM) (average

R2 = 0.61), and artificial neural network (ANN) (average R2 =

0.56) (Figure 5). CHAID is based on multi‐way splits and adjusted

significance testing (Bonferroni testing, p < 0.05). In every step,

the predictor variable with the strongest interaction with the

dependent variable was selected for the split. Default values of

100 iterations were used, with a minimum change of 0.05 in the
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expected cell frequencies. Our CHAID model yielded an out-of-

sample predictive accuracy of 78%–98%. Therefore, five key

influential climate variables were extracted based on the best

model for each PA.

Nearly 10 climate variables (Figure 5) emerged as important in

the overall models, explaining 89.82% of the variation in the

response matrix of spectral CV between 1990 and 2005 and

87.22% of the variation between 2005 and 2020. Both cumulative

temperature values of ≥5°C and ≥10°C were important in these

models, particularly in April, June, September, and October (T10-6,

T5-04, T10-04, T10-09, and T5-10), as was the average temperature in

March and November (m03 and m11). Of all 140 selected climate

variables in the 168 models, 27.86% were accounted for.

The most influential climatic factors also varied from low to

high latitudinal gradients (Figure 6). For boreal forests (hz), the

highest temperature in December contributed the most to the
A B DC

A B DC

FIGURE 4

Patterns of CV, CO, ED, and AI with latitude and annual precipitation (×0.1 mm) gradients in 1990, 2005, and 2020. Forest spectral parameters and
the environmental variables demonstrated a significant (p < 0.001) association, except those of CO. CV, spectral alpha diversity; CO, neighboring
correlation; ED, spatial distance; AI, aggregation index. (A) CV; (B) CO; (C) ED; (D) AI.
FIGURE 5

Model selection for regional vegetation spectral variation responses under climate change for core zones in seven protected forest areas. Vegetation
spectral responses include differences between 1990–2005 (CV9005) (Left) and 2005–2020 (CV0520) (Right). Seven predictive models are shown
and ranked by R2 and RMSE. ANN, artificial neural network; C&R, classification and regression tree analysis; CHAID, chi-squared automatic
interaction detector; GLM, generalized linear model; LR, linear regression; MSLR, multiple stepwise linear regression; SVM, support vector machine.
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variation in the value of spectral CV (IV > 0.29). Cumulative and

lowest temperatures in April (spring) were among the top

predictors (IVs > 0.14) of changes in spectral CV in temperate

forests (qls). The lowest temperature in winter was the key factor for

changes in the spectral CV in subtropical forests (slj and phs). In the

case of rainforests (hls), the key climatic factors were the highest

and lowest temperatures in winter and cumulative temperatures in

the spring and autumn (Figure 6).
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3.3 RDA ordination: relationships among
key climate variables

As per RDA ordination, the two axes explained 14.0% of the

vegetation variation in the PA of hz, 18.55% of qls, 31.11% of wl,

13.49% of slj, 64.48% of phs, and 25.39% of hls (Figure 7). In PAs

with cold temperate conditions, CV values were negatively related

to AI, low08 (the lowest temperature in August, the following is
A B D E F GC

FIGURE 6

The 10 key climate variables that contributed the most to the variation in regional spectral CV from 1990 to 2005. m, mean temperature; h, highest
temperature; low, lowest temperature; 01–12 indicate January to December; Tfive, cumulative temperature of ≥5°C; Tten, cumulative temperature
of ≥10°C; 900502 indicates the difference in February between 1990s (1980–1990) and 2005s (1995–2005). (A) hz; (B) kns; (C) qls; (D) wl; (E) slj;
(F) phs; (G) hls.
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FIGURE 7

RDA ordinations between the regional spectral CV, ED, AI, CO, and environmental variables in seven forest PAs (A–G). EDc, Euclidean distance (m);
Coc, neighboring correlation; m, average temperature during a period (×0.1°C; low, lowest temperature during a period; h, highest temperature
during a period; T5, cumulative temperature ≥ 5°C during a period; T10, cumulative temperature ≥10°C during a period). RDA, redundancy analysis;
CV, spectral alpha diversity; ED, spatial distance; AI, aggregation index; CO, neighboring correlation; PAs, protected areas.
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same), and h11 and positively related to m05 and m012. The

performances of kns and qls were similar in that CV and CO

values were positively associated. With respect to wl, T10-5 and

T10-6 were negatively correlated with the CV. In sjl, low11 was

positively and negatively correlated with CV and m03, respectively.

Lastly, in the case of tropical and subtropical climate PAs (phs and

hls), AI was negatively related to CV and differed from the values

obtained in the other PAs.
3.4 Variation partitioning

Interestingly, spatial distance metrics (b; ED and AI) explained

most (>10%) of the regional spectral variation of CV values in all

seven PAs (Figure 8), and climate variables (a) explained a negligible

proportion of CV variation (major in 0%–5%). Moreover, a greater

proportion of the CV variation was explained by distance metrics

(23.8%) in cold climate areas than in other areas. On average, the

portion of neighbor correlation (c; Cor, 3.7%) was larger than that of

climate variables (a; 2.3%). In tropical areas (hls), the interaction

between climatic conditions and neighboring correlations (f) showed

10.8% of the spectral CV variation, whereas in cold areas (hz), this

interaction accounted for only 0.6%.
4 Discussion

This study is the first attempt to link climate change,

neighboring interactions, and spatial distance to species richness

and evenness. Using high-accuracy modern machine learning

models, we identified the key influencing factors that contributed

to the variation in spectral diversity on a large scale using 27

climatic variables. Furthermore, we evaluated the contribution of

climate, neighboring interactions, and spatial distance to the

variation in spectral CV across forest types.
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Consistent with previous studies (Zhang et al., 2017), our results

indicated that spectral diversity has increased with climate

warming. A recent study found that species richness increased on

mountain summits in boreal-temperate forests in Europe (Pauli

et al., 2012). Over 30 years of succession, species richness and

phylogenetic diversity of plantation trees have increased

monotonically (Yu et al., 2019). An increase in spectral species

richness is closely associated with an increase in the NDVI, effective

cumulative temperature, and seasonal variation in moisture

availability (Harrison et al., 2015). In heterogeneous grasslands in

California (USA), livestock grazing, fire, succession, nitrogen

deposition, and exotic species did not contribute to fluctuations

in plant diversity (Harrison et al., 2015). In this study, monthly

cumulative temperature, rather than annual average temperature,

contributed the most to the increase in spectral CV from 1990

to 2020.

We found that neighboring interactions and plant–plant spatial

distance increased with increasing species diversity, presumably due

to an increase in tree productivity and tree abundance resulting

from ecological complementarity. A previously published global

meta-analysis demonstrated that diversity effects are prevalent in

the most productive environments, whereas abundance effects

became dominant under the most limiting conditions (Madrigal-

González et al., 2020). Therefore, a higher abundance will definitely

affect plant–plant interactions (i.e., neighboring interactions), and

the consequences of this may be either positive or negative,

depending on species traits, economics, and environmental

conditions (Madrigal-González et al., 2020). A meta-analysis

showed that larger positive effects favored sapling emergence and

survival, whereas smaller negative effects act on plant growth and

density (Gómez-Aparicio, 2009). The life form of the interacting

species largely influences the outcome of the interaction; for

example, herbaceous plants have strong negative effects, especially

on other herbaceous species, whereas shrubs have strong supportive

effects, especially on trees (Gómez-Aparicio, 2009). Semiarid and
A B D
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FIGURE 8

RDA ordination-based regional spectral CV variation partitioning in seven protected forest areas by selecting “Var-part-3groups-conditional-effects-
tested.” a, climate (ten climate variables selected); b, spatial distance (ED and AI); c, neighbor interaction (CO); d = a + b, e = b + c, f = a + c, and g =
d + e + f. (A) hz; (B) kns; (C) qls; (D) wl; (E) slj; (F) phs; (G) hls; (H) components of variation partitioning. RDA, redundancy analysis; CV, spectral alpha
diversity; ED, spatial distance; AI, aggregation index; CO, neighboring correlation.
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tropical ecosystems, but particularly temperate ecosystems, show

more positive neighbor effects than wetlands (Gómez-Aparicio,

2009). Biotic interactions are thought to be relatively more

important in shaping biodiversity at tropical than at temperate

latitudes (Roslin et al., 2017). Ignoring biotic interactions affects the

estimate of climatic niche limits that determine the responses of

plant diversity to climate change in models (Newbold et al., 2020).

The results of the current study underscore the need to include

biotic interactions in climate change modeling.

Neighboring species may demonstrate strong positive or

negative correlations. However, when both types of correlation

exist, the total neighboring interaction in the region may become

null or weak, given that positive and negative values counteract each

other (Dray et al., 2012). Weak or null values of neighboring

interactions may result when both positive and negative

correlations shape species spatial distributions (Wagner, 2013;

Biswas et al., 2016). In the present study, warming on a regional

scale increased plant species richness (spectral CV), creating a

stronger spatial correlation between neighboring species, whereas

competition on a plant–plant scale created a negative spatial

correlation (Biswas et al., 2017). Although neighboring

interactions were weak, they still highly contributed to variation

in plant species diversity (spectral CV) in our study.

Considering these results, it is reasonable to expect that stronger

neighboring interactions will enhance plant–plant competition,

thereby producing a negative effect on intraspecific associations.

Conclusively, only species distributed over large distances will

survive. Therefore, climate warming leads to a large plant–plant

distance. Hypotheses 2 and 3 were confirmed by our data.

Specifically, we found that the spatial distance between the same

spectral species increased with increasing spectral CV under climate

change. The spatial patterns of communities are shaped by

env i ronmenta l fi l t e r ing and bio log ica l compet i t ion .

Environmental filtering produces a spatially aggregated pattern,

whereas competition produces a spatially segregated pattern (He &

Biswas, 2019). Possibly, intraspecies competition played a stronger

role than environmental filtering in structuring the communities

studied from 1990 to 2020, likely because the soil properties,

landforms, and slope remained unchanged during this period,

whereas plant diversity (spectral CV) increased. To a certain

extent, higher plant abundance and species numbers might have

confounded the positive effects of climate warming at a local scale.

Moreover, our results confirmed that the contribution of plant–

plant distance to species diversity was higher than that of climate

variables for all forest types (hypothesis 1). Consistent with these

findings, a previously published field experiment has shown that

biotic interactions have a strong effect on plant fitness and

eventually override the effects of climate (Tomiolo et al., 2015).

The patterns of spectral metrics in response to climate change

were the same as those in the field survey. Consequently, we

determined that spectral metrics are reliable proxy measures of

plant species parameters. Several dissimilarity measurements have

been introduced to quantify the overall heterogeneity in plant species

composition on a few or multiple sites. However, pairwise

dissimilarities do not account for patterns of co-occurrence at more
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than two sites (Baselga, 2013). Consequently, the average of the

pairwise dissimilarities may not accurately reflect the overall

compositional heterogeneity at multiple sites (Baselga, 2013). Within

a highly diverse plant community, many plant species lived together or

were associated with higher stem abundance. In remote sensing

images, the former demonstrates a cluster with high heterogeneity,

while the latter demonstrates similar neighboring pixels. A dataset

based on remote sensing is reliable for analyzing both the spectral

diversity and spatial patterns of plant species in forests.

In the current study, we found that geophysical factors

including soil pH and clay content tended to have higher effects

on tree species diversity. Although climate is changing rapidly,

geophysical factors are relatively fixed and are not likely to change

significantly over the timescales considered in this analysis.

Consequently, geophysical variables were not included in the

models. In addition, evolutionary and biogeographic histories,

including past diversification processes and environmental

changes, influence the distribution of tree diversity, and such

factors should be considered in future studies on the spatial

patterns of plant diversity.
5 Conclusions

Our results indicated that climate warming has increased

species diversity, which in turn has increased neighboring

interactions, ultimately leading to a longer plant–plant distance.

However, we found that climate change contributed less to species

diversity than neighboring interactions and spatial distance.

Conclusively, we did not detect a significant change in the overall

neighboring correlation on a regional scale under climate warming,

although we did observe an increase in the spatial distance across

spectral species. In future studies, the relevant biotic and abiotic

factors should be quantified, and an assessment of the relative

contribution of abiotic factors to the spatial pattern of species

diversity should be performed. The general effects of neighboring

interactions on plant diversity should be considered at the global

scale, considering all vegetation types under the conditions of

ongoing climate change.
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Réjou-Méchain, M., Mortier, F., Bastin, J. F., Cornu, G., Barbier, N., Bayol, N., et al.
(2021). Unveiling African rainforest composition and vulnerability to global change.
Nature 593 (7857), 90–94. doi: 10.1038/s41586-021-03483-6
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fevo.2023.1137111/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fevo.2023.1137111/full#supplementary-material
https://doi.org/10.1111/ele.13243
https://doi.org/10.1111/j.1600-0587.2012.00124.x
https://doi.org/10.1007/s10980-017-0488-9
https://doi.org/10.1111/oik.02277
https://doi.org/10.1111/1365-2745.12743
https://doi.org/10.1890/11-1183.1
https://doi.org/10.1111/j.1600-0587.2009.05789.x
https://doi.org/10.1111/j.1600-0587.2009.05789.x
https://doi.org/10.1016/j.rse.2014.07.028
https://doi.org/10.1111/j.1365-2745.2009.01573.x
https://doi.org/10.1073/pnas.1502074112
https://doi.org/10.1073/pnas.1921724117
https://doi.org/10.1111/oik.05876
https://doi.org/10.1023/A:1008102521322
https://doi.org/10.1023/A:1008102521322
https://doi.org/10.1111/gcb.13479
https://doi.org/10.1016/j.jag.2012.04.002
https://doi.org/10.1126/science.aaa5632
https://doi.org/10.1126/science.aaa5632
https://doi.org/10.3390/rs6076407
https://doi.org/10.1073/pnas.0608361104
https://doi.org/10.1111/j.1472-4642.2007.00372.x
https://doi.org/10.1111/gcb.14378
https://doi.org/10.1016/j.isprsjprs.2017.10.008
https://doi.org/10.1038/s41467-020-19460-y
https://doi.org/10.1111/2041-210X.12712
https://doi.org/10.1038/s41598-019-55621-w
https://doi.org/10.1038/s41559-020-01303-0
https://doi.org/10.1126/science.1219033
https://doi.org/10.3390/rs11050588
https://doi.org/10.1111/gcb.12143
https://doi.org/10.1038/s41586-021-03483-6
https://doi.org/10.3389/fevo.2023.1137111
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Peng et al. 10.3389/fevo.2023.1137111
Ricklefs, R. E., and He, F. (2016). Region effects influence local tree species diversity.
Proc. Natl. Acad. Sci. United States America 113, 674–679.

Rocchini, D. (2007). Effects of spatial and spectral resolution in estimating ecosystem
a-diversity by satellite imagery. Remote Sens. Environ. 111, 423–434. doi: 10.1016/
j.rse.2007.03.018

Roslin, T., Hardwick, B, Novotny, V, Petry, WK, Andrew, NR, Asmus, A, et al.
(2017). Higher predation risk for insect prey at low latitudes and elevations. Science
356, 742–744. doi: 10.1126/science.aaj1631

Sullivan, M. J. P., Lewis, S. L., Affum-Baffoe, K., Castilho, C., Costa, F., Sanchez, A. C.,
et al. (2020). Long-term thermal sensitivity of Earth’s tropical forests. Science 368, 869–
874. doi: 10.1126/science.aaw7578

Tomiolo, S., van der Putten, W. H., and Tielbörger, K. (2015). Separating the role of
biotic interactions and climate in determining adaptive response of plants to climate
change. Ecology 96, 1298–1308. doi: 10.1890/14-1445.1

Wagner, H. H. (2013). Rethinking the linear regression model for spatial ecological
data. Ecology 94 (11), 2381–2391. doi: 10.1890/12-1899.1
Frontiers in Ecology and Evolution 11117
Wallis, C. I. B., Brehm, G., Donoso, D. A., Fiedler, K., Homeier, J., Paulsch, D., et al
(2017). Remote sensing improves prediction of tropical montane species diversity but
performance differs among taxa. Ecol. Indicators 83, 538–549.

Wang, C., Yang, J., and Zhang, Q. (2010). Soil respiration in six temperate forests
in China. Global Change Biol. 12 (11), 2103–2114. doi: 10.1111/j.1365-
2486.2006.01234.x

Yu, Q., Rao, X., Ouyang, S., Xu, Y., Hanif, A., Ni, Z., et al. (2019). Changes in
taxonomic and phylogenetic dissimilarity among four subtropical forest communities
during 30 years of restoration. For. Ecol. Manage. 432, 983–1001. doi: 10.1016/
j.foreco.2018.10.033

Zhang, J., Nielsen, S. E., Chen, Y., Georges, D., Qin, Y., Wang, S., et al. (2017).
Extinction risk of North American seed plants elevated by climate and land-use change.
J. Appl. Ecol. 54, 303–312. doi: 10.1111/1365-2664.12701

Zwiener, V. P., Lira-Noriega, A., Grady, C. J., Padial, A. A., and Vitule, J. R. S. (2018).
Climate change as a driver of biotic homogenization of woody plants in the Atlantic
Forest. Global Ecol. Biogeogr. 27, 298–309. doi: 10.1111/geb.12695
frontiersin.org

https://doi.org/10.1016/j.rse.2007.03.018
https://doi.org/10.1016/j.rse.2007.03.018
https://doi.org/10.1126/science.aaj1631
https://doi.org/10.1126/science.aaw7578
https://doi.org/10.1890/14-1445.1
https://doi.org/10.1890/12-1899.1
https://doi.org/10.1111/j.1365-2486.2006.01234.x
https://doi.org/10.1111/j.1365-2486.2006.01234.x
https://doi.org/10.1016/j.foreco.2018.10.033
https://doi.org/10.1016/j.foreco.2018.10.033
https://doi.org/10.1111/1365-2664.12701
https://doi.org/10.1111/geb.12695
https://doi.org/10.3389/fevo.2023.1137111
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Frontiers in Ecology and Evolution

OPEN ACCESS

EDITED BY

Juergen Pilz,
University of Klagenfurt, Austria

REVIEWED BY

Lesley Lovett-Doust,
Nipissing University, Canada
Haimeng Liu,
Chinese Academy of Sciences (CAS), China

*CORRESPONDENCE

Yu Liang

liangyu@iae.ac.cn

Zhouyuan Li

lizhouyuan@bjfu.edu.cn

Yue Feng

lunamoon77@163.com

RECEIVED 29 January 2023

ACCEPTED 06 July 2023

PUBLISHED 27 July 2023

CITATION

Ma T, Liang Y, Li Z, Liu B, Wu MM, Lau MK
and Feng Y (2023) Projected effects of
climate change and urban expansion on
species-level biodiversity of plants in main
city clusters of Northern China.
Front. Ecol. Evol. 11:1153448.
doi: 10.3389/fevo.2023.1153448

COPYRIGHT

© 2023 Ma, Liang, Li, Liu, Wu, Lau and Feng.
This is an open-access article distributed
under the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 27 July 2023

DOI 10.3389/fevo.2023.1153448
Projected effects of climate
change and urban expansion on
species-level biodiversity of
plants in main city clusters of
Northern China

Tianxiao Ma1, Yu Liang1,2*, Zhouyuan Li3*, Bo Liu1, Mia M. Wu1,
Matthew K. Lau4 and Yue Feng1*

1CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese
Academy of Sciences, Shenyang, China, 2Key Laboratory of Terrestrial Ecosystem Carbon Neutrality,
Liaoning, Shenyang, China, 3China Grassland Research Center, School of Grassland Science, Beijing
Forestry University, Beijing, China, 4Department of Applied Sciences, University of Hawai’i, Kapolei, HI,
United States
Introduction: Northern China is considered a global hotspot of biodiversity loss

due to dramatic climate and land use change characterized by rapid urban

expansion. However, little is known that the impacts of these two drivers in

shaping the future availability of habitat for plants in urban areas of Northern

China, especially at a high spatial resolution.

Methods: Here, we modelled the habitat suitability of 2,587 plant species from

the flora of Northern China and estimated how future climate and urban

expansion may affect species-level plant biodiversity across three shared

socioeconomic pathway (SSP) scenarios for the year 2050 in main city clusters.

Results: The results suggested that climate and urban expansion combined

could cause a decline of up to 6.5% in plant biodiversity of Northern China, while

urban expansion alone may cause 4.7–6.2% and climate change cause 0.0–0.3%

by 2050. The contribution of urban expansion was higher in urban areas, while

the contribution of climate change was higher in natural areas. Species may lose

an average of 8.2–10.0% of their original environmentally suitable area. Our

results verified that the process of urban expansion would necessarily result in

large-scale biodiversity loss.

Discussion: The plant biodiversity loss in city clusters of Northern China was

mainly determined by urban expansion rather than climatic change. The impact

of climate change should not be ignored, since climate change will likely cause a

higher reduction of area for some species. Based on these findings, we proposed

that plant biodiversity loss in Northern China will accelerate in the future unless

both urban expansion change and climate change are minimized.

KEYWORDS

climate change, urban expansion, plant biodiversity, species distribution modelling,
Northern China
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1 Introduction

Biodiversity loss has been reported as one of the most serious

menaces to sustainable development, threatening the contribution

and regulation of ecosystem services on which humanity relies

(Steffen et al., 2015; Diaz et al., 2018; Roberts et al., 2021). A growing

body of evidence indicates that the current rate of biodiversity loss is

higher than that documented in historic times (Dirzo et al., 2014;

Ceballos et al., 2020) and is predicted to further accelerate in future

(Di Marco et al., 2019; Seebens et al., 2021). This is associated with

significant natural and anthropogenic threats such as climate

change (Scheffers et al., 2016) and the intensification of urban

expansion (Simkin et al., 2022; Zhou et al., 2023), resulting in

substantial reductions in habitat suitability and species’ range size

(Velazco et al., 2019). As two major drivers of terrestrial biodiversity

loss (IPCC, 2021; Li et al., 2022; Newbold, 2018), impacts of climate

change and urban expansion are usually estimated separately

because of the differences in time scales and patterns of

biodiversity loss (Gomes et al., 2019). A realistic scenario that

guides ecological conservation policies should take the combined

effects of climate change and urban expansion, which may be the

greatest threat to future biodiversity, especially for plants

(McDonald et al., 2020; Fang et al., 2021).

Climate-driven changes with the most pervasive impact on

species redistribution, such as habitat loss and elevational range

shifts (Powers & Jetz, 2019; Scheffers and Pecl, 2019), will affect

global biodiversity patterns and shape new hotspots. This may be

more profound in the future when climate change intensifies

(Visconti et al., 2016). For example, recent climate change has

likely exacerbated habitat loss and fragmentation in 18.5% of

ecoregions, while 43.5% of ecoregions with loss is projected under

future climate change scenarios (Segan et al., 2016). However, the

responses of plant species to climate change are complex and hard

to predict (Corlett, 2016). Projected changes in climate differ among

regions and across emissions scenarios, potentially leading to

distinct ecological responses of plants across the world (Di Marco

et al., 2019). Furthermore, biodiversity decline is substantially

underestimated when indirect interactions between climate

change and other stressors (e.g. urban expansion, pollution) are

neglected (Arneth et al., 2020). Thus, it will be important to know

how climate change will affect plant species and how it combines

with other major threats.

Urban expansion occurs alongside threats to biodiversity driven

by climate change, contributing to global biodiversity declines.

Here, “urban expansion” was defined as the increase in the area

of cities or towns, which is different from the term “urbanization”

that usually was used to refer to the change in the proportion of a

population living in an urban area (McDonald et al., 2020). The

urban area tends to alter the type of habitats available (Geschke

et al., 2018), support more invasive species (McKinney, 2006), and

produce rapid eco-evolutionary change (Alberti et al., 2017). In

addition, urban expansion can accelerate urban microclimate

change, increase warming in urban and the intensity of

precipitation in the local area (Krayenhoff et al., 2018). These
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impacts generally rise with urban area expansion and intensity in

changing climate, resulting in significant changes in the abundance

and composition of species when urban area replaces natural

habitat (McDonald et al., 2020). Existing researches demonstrate

that future global urban expansion will lead to 11–33 million

hectares of natural habitat loss and a 34% reduction in species

richness by 2100 (Li et al., 2022). Despite the apparent importance

of urban expansion as a driver of habitat loss, three main

shortcomings in present forecasts for urban impacts on

biodiversity. The first concerns driving factors, which until

recently have not considered climate change and urban expansion

together (Li et al., 2022; Simkin et al., 2022). The second

shortcoming is that most studies are conducted on a single

climate change scenario and coarse spatial resolution (Seto et al.,

2012; McDonald et al., 2020). The third shortcoming is that existing

studies only focus on vertebrates without containing plant species

(Li et al., 2022; Simkin et al., 2022), which are more sensitive to

climate change and urban expansion (Burley et al., 2019).

Therefore, such forecasts become less useful and an updated set

of forecasts to overcome these limitations is required.

Northern China is considered a global hotspot of biodiversity

loss due to dramatic climate and land use change characterized by

rapid urban expansion in the past few decades and projected future

(McDonald et al., 2018; McDonald et al., 2020). From 1978, the

Chinese government implemented large-scale ecological restoration

programs (Fu et al., 2018) to prevent further ecological problems in

Northern China. Thus, the combined effects of natural and

anthropogenic factors have been, still are, and will be shaping

biodiversity patterns in Northern China (Mi et al., 2021).

However, few studies examined the impacts of climate change

and urban expansion on the biodiversity of plants simultaneously,

as shortcomings existed in present studies. This inadequacy limits

our understanding of the spatiotemporal heterogeneity in

biodiversity and the underlying mechanisms behind the effects of

climate change and urban expansion. Realistic forecasting of plant

biodiversity changes in the urban area of Northern China is

urgently needed to explore the underlying mechanisms of species

distribution, quantify threats to endangered species and evaluate the

interaction between biodiversity and socioeconomic development.

Here, we aim to quantify (i) changes in species-level biodiversity

of plants due to climate change and urban expansion, (ii) the

relationship between changes in species-level biodiversity and

climate change/urban expansion, and (iii) the relative importance

of these two drivers to the future species range and richness in five

main city clusters of Northern China. Specifically, we hypothesized

that: (a) combined effects of projected climate change and urban

expansion will cause substantially larger losses of habitat suitability;

(b) species with smaller increased temperature and greater

increased precipitation are more negatively affected by climate

change and urban expansion; and (c) urban expansion has the

higher relative contribution than climate change for change in

species-level diversity under all climate change scenarios. To test

these hypotheses, we estimated the area of occupancy (AOO) for

2,587 plant species based on a species distribution model (SDM) in
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Northern China. We then quantified the species richness and its

changes produced by historical urban expansion, three scenarios of

urban expansion for 2050, three scenarios of climate change for

2050 and their interactions. Specifically, we investigated how

projected changes in climate and urban area affect the AOO and

species richness in five main city clusters of Northern China, which

is a relatively rapid urban expansion and highly threatened region.

The results would highlight important implications of our study for

biodiversity conservation of plant and help form better planning for

ecological restoration project in Northern China.
2 Method and materials

2.1 Study area

Northern China has a large area, which consists of 236.14

million km2 with 8 Provinces and Municipalities (Figure 1). The

average annual precipitation of this area varies between 300 and

1000 mm, and the annual average temperature ranges from −3 to

10°C. To quantify the impacts of climate change and urban

expansion on species-level biodiversity, five main city clusters

(79% of urban area in Northern China) were focused (Table 1

and Figure S1) in analysis. The five main city clusters include

Beijing-Tianjin-Hebei (BTH), Central-South Liaoning (CSR),

Harbin-Changchun (HC), Hohhot-Baotou-Ordos (HBO), and

Middle Shanxi (MS). Detailed information of city clusters was

also given in Table 1.
Frontiers in Ecology and Evolution 03120
2.2 Data source and processing

2.2.1 Species occurrence data
20,892,510 raw occurrences of plants were obtained from

Global Biodiversity Information Facility (GBIF, www.gbif.org)

and iPLANT platform (www.iplant.cn). To avoid problems in

SDM related to modelling with partial geographic ranges, the

occurrences in Northern China and also all occurrences in

Eurasia were obtained for each species (Raes, 2012). To improve

the quality of these records, we used the R package

“CoordinateCleaner” (Zizka et al., 2019) to flag and remove

records that satisfied any of the following criteria: 0,0 coordinates,

coordinates in an ocean, coordinates within 5 km of country

centroids and capitals, records within 1 km of biodiversity

institutions, and records with reversed latitude and longitude

values. After removing these geographical errors, we cleaned the

species names by removing unusual characters and uncertain

identifications, and assigned all single occurrence at the species

level. Then, we checked synonyms and used accepted names, and

kept only species occurring in the eight provinces of Northern

China according to Flora of China (FOC) from iPLANT. Our

database was composed of 325,027 unique records, representing

3,214 total species (92% of the 3,503 species of Northern China).

All species with a small number of collections were tested with

all datasets to identify poorly collected species (Ter Steege et al.,

2015). Only species occurring in 5 or more unique locations had

their habitat suitability modelled. This procedure ensured that each

species had robust range size (Rivers et al., 2011) and an
FIGURE 1

Spatial pattern of main city clusters in Northern China.
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environmental suitability model significantly different from a bias-

corrected null models (Gomes et al., 2019), which is important to fit

reliable habitat suitability models (Thibaud et al., 2014). Species

with a small number of collections (<5) and not present in the final

dataset based on a restricted number of locations (Gomes et al.,

2019). Consequently, further modelling and analyses were

conducted for 2,587 plant species (74% of the total species).

2.2.2 Current and future climate data
To estimate the area of occupancy (AOO) for each species based

on environmental suitability, we initially obtained 19 bioclimatic

variables derived from the current climate at 30 seconds spatial

resolution (approximately 1 km at the equator) from WorldClim

(Hijmans et al., 2005, https://www.worldclim.org/), which were

produced using monthly interpolated climate data. For future

climate data, we used multi-model ensemble estimates of 19

bioclimatic variables from seven global climate model (GCM)

projections (including ACCESS-ESM, BCC-CSM2, FIO-ESM2,

GFDL-ESM4, INM-CM5, IPSL-CM6A-LR, and MIROC6) for the

IPCC Sixth Assessment Report (AR6). These selected future climate

datasets were also downloaded from the WorldClim Database. The

derived bioclimatic variables were used to assess the effects of

climate change in the year 2050 (average for 2041–2060) under

the three shared socioeconomic pathways (SSP126, SSP245, and

SSP585), which represent taking the sustainability, middle of the

road, and the fossil-fueled development, respectively (You et al.,

2021; Li et al., 2022). SSP126, SSP245, and SSP585 typically lead to

421 ppm, 538 ppm, and 936 ppm of CO2 concentrations by the year

2100, which represent low, moderate, and high emission scenario

separately (Tian and Zhang, 2020).

Due to spatially correlated bioclimatic variables, we selected the

less correlated predictor variables based on their biological

relevance and on their scores using Spearman’s rank correlation

coefficient threshold |r| > 0.7 (Dormann et al., 2013). Those

variables that presented correlation values over 0.7 were removed

from the analysis (Supplementary materials Figure S1). For the final

modelling stage, we selected six less correlated predictor variables:

mean diurnal range (BIO2), Isothermality (BIO3), temperature

annual range (BIO7), mean temperature of warmest quarter

(BIO10), annual precipitation (BIO12), precipitation seasonality

(BIO15). These climatic parameters were preprocessed to a general
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spatial resolution of 5 km as it represents a fine scale to avoid

undesired distortions and recognize spatial patterns (Leao

et al., 2020).

2.2.3 Data of urban expansion
Current (2015) and projected future (2050) patterns of urban

expansion with three selected SSP scenarios in Northern China

were obtained from the global projection of urban expansion

datase t (Chen et a l . , 2020 ; h t tps : / /do i .org /10 .1594/

PANGAEA.905890), which describes the grid cells of 1km

resolution occupied by current and future urban land demand

(Supplementary materials Figure S2). This dataset used panel data

regression to estimate future urban land areas based on the factors

of population, urbanization rate (percentage of urban population to

total population) and gross domestic product (GDP). In this study,

we selected three climate change scenarios (SSP126, SSP245, and

SSP585) which represent sustainability, middle of the road, and

fossil-fueled development routes, respectively (Jiang and O’Neill,

2017). Specifically, SSP126 (“sustainability” scenario) envisions a

development path of rapid urban expansion with high income

growth for all country groups. SSP245 (“middle of the road”

scenario) envisions a development path of moderate urban

expansion and moderate income growth for all country groups.

SSP585 (“fossil-fueled development” scenario) envisions that all

country groups will experience rapid urban expansion. Under

SSP126, SSP245, and SSP585, urban area corresponds to

predictions of 65%, 55% and 70% expansion for 2050 in five

main city clusters of Northern China, respectively.

To further estimate the spatial distribution of biodiversity

change due to urban expansion under three SSP scenarios in each

5 km grid cell, we calculated the fraction of area that will be

occupied by urban expansion between 2015 and 2050. We then

multiplied this value by the number of species in each grid cell to

estimate the potential number of species change due to urban

expansion (Li et al., 2022). Generally, the species with lower

habitat suitability are more vulnerable to urban expansion. To

determine which species are affected by urban expansion, we

estimated the habitat suitability using Maxent models for each

species and all species were sorted by their habitat suitability in each

grid cell. Species with lower habitat suitability for the potential

number of species loss were regarded as the species affected by
TABLE 1 The detailed information of five main city clusters in Northern China.

Urban cluster Abbreviation Area
(km2)

Annual average
precipitation (mm)

Annual average
temperature (°C)

Population density
(people per km2)

Beijing-Tianjin-
Hebei

BTH 311,210 1,076.8 12.9 1,370

Central-South
Liaoning

CSL 171,631 796.1 9.9 294

Harbin-
Changchun

HC 346,253 751.8 5.5 111

Middle Shanxi MS 119,380 593.6 10.4 238

Huhhot-Baotou-
Ordos

HBO 223,923 390.7 7.3 21
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urban expansion. Corresponding grid cells were eliminated from

the AOO of affected species.
2.3 Estimating the area of occupancy for
each species in Northern China

In this study, we used the maximum entropy model (Phillips

et al., 2006; Maxent version 3.4.1) to estimate the area of occupancy

(AOO) in Northern China. For each species, 75% of the occurrence

data were used as a training model and the remaining 25% for

validating the Maxent model. Climate values from 10,000 randomly

sampled points records as background data to account for sampling

intensity and reduce spatial sampling bias (Thornhill et al., 2017).

The algorithm runs either 1000 iterations of these processes or

continues until convergence (threshold 0.00001). The modelling

extent was restricted to the complete area of Eurasia, which was

used for all species models. MaxEnt models were generated using 10

cross-validated replicate runs with the aforementioned parameters.
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Outputs were transformed into binary maps with a 10% training

presence threshold and restricted to Northern China by clipping.

To calibrate and validate the performance of the Maxent model,

threshold-independent receiver-operating characteristic (ROC)

analyses were used (Phillips et al., 2006). An area under the ROC

curve (AUC) was examined for additional precision analyses. The

AUC values between 0 and 0.5 indicate predictions are no better

than random and the highest value of 1 gives the best prediction

(Elith et al., 2011). The average AUC training value was 0.949,

indicating both models performed well and generated excellent

evaluations. We also used a Jackknife test and the percent variable

contribution to identify the relative importance of each variable. In

MaxEnt, the jack-knife test systematically drops one variable each

time and compares the predictions using the model with all

variables except the dropped one and a model based on that

variable only (Phillips et al., 2006).

To estimate the impacts of urban expansion and climate change

on plants in Northern China, we produced eleven different

scenarios (Table 2). First, we modelled the species’ current AOO
TABLE 2 Results for all scenarios showing estimation of change in AOO and mean species richness.

Scenario

City clusters BTH CSL HC HBO MS

Average
change in
AOO (%)

Mean
species
richness

Average
change in
AOO (%)

Mean
species
richness

Average
change in
AOO (%)

Mean
species
richness

Average
change in
AOO (%)

Range of
species
richness

Average
change in
AOO (%)

Mean
species
richness

Average
change in
AOO (%)

Mean
species
richness

Current 0.0 1,280 0.0 1,621 0.0 1,667 0.0 1,203 0.0 668 0.0 1,218

Current
and 2015
urban
area

−3.8 1,227 −4.8 1,498 −2.9 1,598 −1.7 1,178 −1.2 663 −1.0 1,196

SSP126 1.0 1,304 0.5 1,645 3.2 1,676 0.1 1,206 6.5 706 0.0 1,286

SSP245 0.0 1,274 0 1,610 0.2 1,666 0.0 1,178 2.5 675 0.0 1,241

SSP585 −0.3 1,265 0.2 1,647 0.0 1,623 0.0 1,169 0.0 627 0.0 1,232

SSP126
and 2015
urban
area

−2.7 1,249 −2.5 1,522 −1.7 1,606 −0.8 1,180 4.0 701 −0.2 1,261

SSP126
and 2050
urban
area

−3.7 1,237 −4.0 1,493 −2.4 1,590 −1.2 1,176 3.6 700 −0.5 1,255

SSP245
and 2015
urban
area

−3.8 1,220 −4.0 1,488 −1.8 1,597 −1.3 1,154 0.5 670 −0.3 1,219

SSP245
and 2050
urban
area

−4.7 1,210 −5.2 1,463 −2.4 1,584 −1.7 1,150 0.3 669 −0.5 1,214

SSP585
and 2015
urban
area

−5.3 1,212 −3.2 1,526 −2.9 1,555 −1.7 1,145 −0.6 623 −0.3 1,209

SSP585
and 2050
urban
area

−6.5 1,198 −4.9 1,492 −3.8 1,537 −2.1 1,140 −0.9 622 −0.6 1,202
front
For change in AOO, positive values represent expand of AOO, whereas negative values represent loss of AOO.
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with and without considering urban area. Then, we estimated the

impacts of climate change by modelling the species’ AOO of 2050

(SSP126, SSP245, and SSP585) without considering urban area.

Furthermore, we calculated the impacts of six combined scenarios

of urban expansion and climate change: 1) no urban expansion:

SSP126, SSP245, and SSP585 with 2015 urban area; 2) urban

expansion: SSP126, SSP245 and SSP585 with their corresponding

2050 urban area. Considering these eleven scenarios, we produced

species distribution model (SDM) maps for all species, and species

richness maps (defined as the number of species per grid cell) by

adding the predicted species in each grid cell for each scenario to

assess species richness.
2.4 Data analysis for main city clusters in
Northern China

To reflect the potential impact of urban expansion and climate

change, the range of analyses presented here was restricted to five

main city clusters based on projected results of Northern China

under eleven scenarios. We first calculated the change in species

richness and AOO of each scenario to evaluate future changes in

species distribution. The change in species richness and AOO was

calculated as the difference between the projected results under

scenarios for the years 2050 and scenarios without considering

urban area in 2015. For analyzing the individual and combined

effects of urban expansion and climate, we separated the change of

urban area and climate when designing the scenarios (see the names

of these scenarios in Table 2). For example, we could estimate the

individual effect of climate change under SSP585 by comparing the

“current” and “SSP585” scenario; we could estimate the individual

of urban expansion by comparing the “SSP585 and 2015 urban

area” and “SSP585 and 2050 urban area” scenario. For combined

effects, we could compare scenarios which has different conditions

of climate and urban area. In addition, we fitted simple ordinary

least-squares regression models to understand how changes in

species richness and AOO change relate to increased temperature,

precipitation, and urban expansion to examine the roles of urban

expansion and climate influences on vegetation dynamics. Finally,

we used the metrics proposed by Lindeman, Merenda, and Gold

(LMG) (Grömping, 2006) to quantify the relative contributions of

climate change and urban expansion to the variation of the species

richness dynamics in each 25 km2 grid cell of five main city clusters

under three climate change scenarios.
3 Results

3.1 Changes in species-level
biodiversity of plants due to climate
change/urban expansion

Urban expansion is the major cause of species that may lose

sufficient AOO to become threatened, while the losses of species
Frontiers in Ecology and Evolution
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richness produced by combined effects of climate change and urban

expansion are expected to be higher (Table 2). The mean current

species richness in the urban area of Northern China was 1,280. The

2015 urban area was responsible for a mean decline of 3.8% in the

estimated AOO of plant species. Current species richness was

higher in CSL and BTH, while loss by urban area mainly

occurred in the same region. The average change in AOO by

2050 was 1.0%, 0.0%, and −0.3% in the SSP126, SSP245, and

SSP585 scenario without considering urban expansion, whereas

mean species richness is expected to slightly decrease under SSP245.

Compared to the current scenario, climate change scenarios have a

lower average change in AOO. Under the SSP126 scenario, the

species richness will increase in most city clusters. Under the

SSP245 climate scenario, the AOO stayed the same as current

scenario. Under the SSP585 climate scenario, the species richness

will have a great loss, and the change in AOO will shift from gain

to loss.

The combined effect of urban expansion and climate change is a

greater threat to plant biodiversity in Northern China under

SSP585. The projected urban expansion for 2050 (with urban

growth of 65% in SSP126, 55% in SSP245, and 70% in SSP585) is

expected to produce an average loss of AOO of 3.7%, 4.7%, and

6.5% for SSP126, SSP245, and SSP585, respectively. The patterns of

change in losses of species richness by urban expansion are

consistent with the projections of urban area. As the projected

urban expansion is high in BTH, species richness was predicted to

suffer higher impacts of urban expansion in BTH.

Species richness is more negatively affected by the combined

effects of climate change and urban expansion, and by the

independent effects of urban expansion (Figure 2). When
FIGURE 2

Box plot of the predicted effects of climate change and urban
expansion for change in species richness given the three scenarios
in the year 2050 at the urban area.
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simulating the effects of climate change alone and keeping urban

area constant, the mean species richness of each grid cell increased

by 0.5% under SSP126 (min. = −6.6%, max. = 8.3%), decreased by

0.5% under SSP245 (min. = −6.8%, max. = 5.9%) and by 1.4% under

SSP585 (min. = −11.2%, max. = 7.1%). Simulating the effects of

urban expansion alone, keeping the climate constant, reduced the

mean species richness of each grid cell by around 8% for all three

climate change scenarios (min. = −40.0%, max. = −3.2%). The

combined effect of climate change and urban expansion reduced the

mean species richness of each grid cell by 8.7% under SSP126

(min. = −36.3%, max. = 11.3%) by 10.1% under SSP245 (min. =

−35.3%, max. = 8.2%) and by 12.7% under SSP585 (min. = −42.5%,

max. = 10.9%). In addition, our prediction showed that the negative

effects of urban expansion to the urban area in the high latitude (e.g.

HC) would become more significant.

Few species gained AOO due to projected combined change in

climate and urban area, while the majority of the species lost

substantial amounts of AOO (Figure 3). The mean change in

AOO by climate change was 1.4% in the SSP 126 scenario, 0.3%

in the SSP245 and −0.7% in the SSP585 (Figure 3A). Mean AOO is

expected to decrease by urban expansion between 5.1% in SSP245

and 5.4% in SSP585. The best-case combined scenario for 2050

resulted in a mean loss of estimated AOO of 3.9% (SSP126),

followed by SSP245 with 4.9%, and the worst-case combined

scenario (SSP585) with 6.7%. Another striking aspect of the

predicted combined impacts is the right-skewed distribution of

changes in AOO (Figures 3B–D). Future AOO was at least 10%

smaller for 31% of the species under SSP126, 36% of the species

under SSP245, and 38% of the species under SSP585. In contrast,

future habitat suitability was at least 10% larger for only 10% of the

species under SSP126, and 7% of the species under SSP245

and SSP585.
Frontiers in Ecology and Evolution 07124
3.2 Relationship between changes in
species-level biodiversity and climate
change/urban expansion

Under effects of climate changes and urban expansion, the

correlation between change in species richness and climatic driving

factors were converse (Figure 4). Due to the effect of climate change,

grid cells with larger increased precipitation and smaller increased

temperature lost larger species richness, especially for city clusters

with lower urban expansion (e.g. HBO and HC). In contrast, grid

cells lost larger species richness with smaller increased precipitation

and larger increased temperature due to urban expansion and

combined effects. Across SSP scenarios, this pattern of correlation

is more obvious under scenario SSP585 than under other scenarios.

It is consistent for all scenarios that projected urban expansion is

expected to reduce species richness.

Changes in AOO were negatively associated with increased

annual precipitation, temperature, and urban expansion, especially

for SSP585 due to urban expansion and combined effects (Figure 5).

Linear regressions between the factors and changes in AOO were

significant at a 99% confidence level. The slopes of linear regression

indicate that there is more loss in estimated AOO with much larger

increased annual precipitation, temperature, and urban expansion,

particularly true in temperate regions with high urban expansion

(e.g. BTH and CSL).
3.3 Relative contribution of climate change
and urban expansion

The contribution of urban expansion and climate change

suggested that urban expansion (> 50%) is the key driving factor for
A B

D

C

FIGURE 3

(A) Box plot of the predicted effects and (B–D) frequency distribution of climate change and urban expansion in AOO change given the three
scenarios for climate change and urban expansion in the year 2050. In (A), lines inside the boxes show median effects, the lower and upper limits of
the boxes show first and third quantiles respectively, and whiskers show range from minimum to maximum values excluding outliers (not shown).
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the change in species richness under all climate change scenarios in

the urban area (Figure 6). Around 89%, 92%, and 82% area of change

in species richness could be mainly explained by urban expansion for

SSP126, SSP245, and SSP585, respectively (Figure 6A). The

contribution ratio of urban expansion exceeded 60% in all city

clusters (Figure 6B). The responses of species richness to climate

change and urban expansion exhibited strong discrepancies among

city clusters. More developed city clusters with more precipitation (i.e.

BTH and CSL) would be more sensible to the effect of urban

expansion (Figure 6B). It showed that species richness of southern

BTH was more sensitive to the effect of climate change across

scenarios. The species richness of CSL displayed higher sensitivity to

the effect of urban expansion. The species richness of MS was sensitive

to climate change under SSP126, whereas the species richness of MS

wasmainly affected by urban expansion under the other two scenarios.

In addition, the contribution ratio of MS had a greater variation than

other city clusters among climate change scenarios. The species

richness of HC demonstrated strong sensitivity to climate change

under SSP585.

At different city clusters, the relative contributions of climate

change and urban expansion to changes in AOO strongly vary
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depending on the climatic characteristic and level of urban

expansion for different future scenarios (Figure 7). The changes

in AOO were mainly explained by urban expansion, while the

contribution of climate change was less than 20%. In contrast, the

relative contribution of urban expansion exceeded 80% in all city

clusters. Generally, the higher relative contribution of urban

expansion were found in CSL, BTH, and HC, and the lowest one

was in HBO (less than 88%). Compared to other city clusters, the

variation of relative contribution was higher in arid region, such as

MS and HBO with 9–11% and 13–15% for relative contribution of

climate, respectively.
4 Discussion

Our results demonstrated that biodiversity loss will accelerate in

the future unless both urban expansion and climate change are

minimized. In particular, if the sustainable pathway (i.e., scenario

SSP126) is properly implemented, humans will be able to maintain

a relatively low natural habitat loss and a high level of species

conservation. On the other hand, SSP585 and 2050 urban area was
FIGURE 4

Relationship between the magnitude of species richness of change and driving factors (increased annual precipitation, increased temperature and
urban expansion) in each climate change scenarios. Grey points represent change in species richness and corresponding driving factors in each grid.
Colorful points indicate mean values of city clusters. Error bars shows the range of x- and y-axis values of corresponding city clusters. Lines are the
fitted lines based on the generalized least squares model in natural and urban area. Significance levels p < 0.01 for all fitting.
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the most extensive biodiversity loss among the three climate

scenarios. This finding is in accordance with the results of Li

et al. (2021), which claimed that greater declines in habitat

quality would be observed under SSP585. However, it is different

that urban expansion per se was the predominant driver of

biodiversity loss rather than climate change due to the different

methods used to assess their impacts. In addition, we noticed that

species’ sensitivity to climate change and urban expansion varies

among scenarios and regions (Table 2). The existence of such

geographical and climatic variation implies that attempts to

extrapolate the impact of climate change and urban expansion

may be misleading (Newbold et al., 2020). This suggests that further

work on the impacts of climate change and urban expansion (based

on multi-source datasets) at different regions and scenarios is

needed to achieve precise conservation of plant biodiversity.

Avoiding the SSP585 scenario should be largely beneficial to the

conservation of plant species in Northern China.

Our results suggested that losses of habitat area will be much

larger from the impacts of urban expansion than climate change

(Table 2; Figures 2, 3), which is consistent with the findings from

other studies at the national scale (Li et al., 2020). Our results

showed the urban expansion may cause 4.7–6.2% of loss in plant

biodiversity. This is consistent with other literature, which showed

the loss caused by urban expansion ranged from 3.3% to 10.4% (He

et al., 2014; Tang et al., 2021). Although the influences of
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temperature and precipitation among different climate change

scenarios were very similar, the response of species richness and

mean geographic range (AOO) to temperature and precipitation

exhibited strong differences (Figures 4, 5). Our results are in

agreement with previous studies that temperature tended to

negatively affect species’ geographic range in Northern China,

whereas the temperature positively affects the species richness (Li

et al., 2020; Figures 4, 5). The spatial shift of species’ geographic

range (i.e. AOO changes) reflects the ability of tracking suitable

climatic conditions at the regional scale, while species richness

reflects the ability of adapting to the new climatic conditions in the

local range (Bellard et al., 2012). The opposite response of AOO and

species richness to climate change with the positive effect of

temperature on AOO changes indicate that plant species of

Northern China tend to adapt to the new conditions rather than

shift to a different habitat.

Urban expansion explained above 85% of the variations in plant

species richness of urban areas under all scenarios (Figure 6), which

indicated that the effects generated by urban expansion should not

be ignored. Specifically, the future urban expansion will

disproportionately affect the natural habitat around the urban

area. The biodiversity loss becomes higher in as urban areas get

closer to the patch edges of natural habitat. In addition, the key

biodiversity hotspots and ecologically vulnerable ecoregions that

have higher plant species richness will suffer the highest percentage
FIGURE 5

Relationships between projected change in species’ AOO and increased annual precipitation, increased temperature and urban expansion in different
city clusters under SSP126, SSP245 and SSP585 due to climate change, urban expansion and their combined effects. The linear fits are also shown
each subplot.
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of urban expansion such as BTH, CSL, and MS (Figure 6). These

city clusters usually have a population density higher than 200

people/km2 (Zhou et al., 2021), indicating explicit shifts and

depletion of plants occurs when exceeding 200 people/km2. For

these city clusters with high population density and located in

biodiversity-vulnerable regions, choosing an appropriate urban

development pathway may be the most considered requirement

for balancing urban expansion and biodiversity conservation of

plant (Peng et al., 2016).

The combined effects of urban expansion and climate change

are the greatest threat to plant biodiversity in Northern China. In

regions with lower increased temperature, high urban expansion,

and higher increased precipitation, species richness was more

sensitive to the combined impacts of urban expansion and

climate change (Figures 4, 5). Leersia spp. and Amaranthus spp.

suffered more than other species. This pattern may be related to

species in numerous human-dominated land uses (e.g. Northern

China), which have been found to have higher proportions of

individuals affiliated with higher temperatures and lower

precipitation levels than that within natural habitats (Williams

and Newbold, 2020). When the increased temperature is lower

and increased precipitation is higher, species in Northern China

with higher temperatures and lower precipitation levels are more

susceptible and often suffer from projected changes in climate.

More attention should be given to such relatively susceptible

regions and species, which is important for biodiversity

conservation under future climate change.

In our study, we quantified biodiversity loss by using species

richness and AOO, which represent two aspects of species-level
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biodiversity dynamics. Change in AOO, which can include changes

in range size or location of species, can be driven by changes in local

habitat suitability (Molinos et al., 2015). Changes in species richness

are driven by individual species shifting their ranges (i.e. AOO) into

or out of a region (Batt et al., 2017). Therefore, the selection of

indicators substantially determines whether the climate change or

urban expansion are important for biodiversity loss. Our results

indicated that plant species richness is more sensitive to the

combined changes in climate and urban area (Figures 2, 3).

However, changes in plant species richness are more commonly

driven by the loss due to the impact of urban expansion for multiple

species to shift their geographic ranges (Figures 2, 3) and become

more common as urban expands for future developed scenarios (Li

et al., 2022). Currently, less clear is how species-level range size

affects plant species richness at regional scales. Future work should

consider whether climate change or urban expansion played a role

in affecting range sizes and richness of plant species, and how the

timing of changes in these two drivers affect.

Applying broad-scale models to analyze the response of

biodiversity to both urban expansion and climate change has

several important known limitations. First, we only examined

how future urban expansion will directly affect plant biodiversity

without considering its indirect effects. Indirect impacts include the

impacts of resources (e.g. Energy and food) and wastes (including

solid, liquid and gaseous wastes) from urban areas (McDonald et al.,

2020). Although it is currently difficult to accurately quantify such

indirect effects which are not simply additive, high-resolution data

may facilitate us to analyze the embodied biodiversity loss from

such indirect effects. Second, due to a lack of available future land
A

B

FIGURE 6

(A) Spatial distributions and (B) mean value of the relative importance of climate change and urban expansion for the projected change in species
richness in different city clusters of Northern China under SSP126, SSP245 and SSP585.
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cover and dynamic biodiversity data, we could not accurately

estimate the dynamic changes in habitat fragmentation and

biodiversity losses due to climate change and urban expansion.

Third, we used SDM based on presence‐only data for estimating

species habitat suitability to reflect biodiversity patterns. However,

the time lag between the reduction in habitat suitability and the loss

of biodiversity may be large enough to hinder our perception of

climate change and urban expansion, particularly for plants (Leao

et al., 2021). In addition, rare species and species with few records

are also probably over-predicted (Gomes et al., 2019). Finally,

though our results suggest that plants in urban areas of Northern

China may lose lower proportions of their habitat from climate

change, this should not be taken as evidence that climate change is

not a major threat in urban areas. Current CMIP6 climate data

forecast more extreme changes in climate, and therefore greater

losses in biodiversity, which should be particularly concerning in

future research because previous estimates were based on climate

data that typically project smaller climate changes.
5 Conclusion

In this study, we quantified the effects of climate change and urban

expansion on plant biodiversity by mapping the variations of species’

habitat range and richness of Northern China for the current and the

year 2050. Firstly, urban expansion rather than climate change will

likely cause more losses to the species richness of plants during the

next several decades in city clusters of Northern China. The

contribution of urban expansion was higher in urban areas which

have higher plant species richness and population density. Secondly,

the combined effects of projected urban expansion and climate change

are the greatest threat to plants in Northern China, especially under

the SSP585 scenario. It should be noted that the SSP585 scenario

should be avoided to benefit the conservation of plant species. Thirdly,

the results indicate that species with smaller increased temperature
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and greater increased precipitation are more negatively affected by

climate change and urban expansion. These findings will be beneficial

in future urban built-up strategies and policy decisions to enable both

the satisfaction of human needs and biodiversity maintenance. For

future research, other impacts of urban expansion (e.g. road

expansion, afforestation, or agricultural activities) and climate (e.g.

fire, solar radiation, nitrogen deposition, or rising CO2) need to be

further investigated to improve our understanding the dynamics of

plant biodiversity. Also, policy-related issues of urban expansion in

regard to the intensity of settlement (high density high-rise apartment

buildings, or larger single-family properties with gardens, etc.) and

transportation system (public transit, personal vehicles etc.) could be

useful areas to explore in future.
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efficiency and its response
to climate change and
human activities in the
West Liao River Plain, China

Mengmeng Gao1, Qiong Liu1*, Yali Liu2*, Nan Yang1,3,
Yi Wang1 and Xiaolei Li1

1China Institute of Geological Environmental Monitoring, Beijing, China, 2School of Grassland Science,
Beijing Forestry University, Beijing, China, 3Institute of Geophysical and Geochemical Exploration,
Chinese Academy of Geological Sciences, Langfang, China
Water use efficiency [WUE = gross primary production (GPP)/evapotranspiration

(ET)] is an important indicator of the degree of coupling between carbon and

water cycles in ecosystems. However, the response of the carbon and water

cycles to climate change and human activities,as well as the underlying driving

mechanisms in the West Liao River Plain (WLRP), a typical farming–pasturing

ecotone in northern China, remain unclear. This study examined the temporal

and spatial variation characteristics of WUE in theWLRP from 2000 to 2020 using

linear regression and the coefficient of variation (CV) method based on MODIS

GPP and ET datasets. The relationships between WUE, meteorological factors,

and human activities as well as the mechanism driving WUE changes were

revealed through correlation analyses, residual analysis, and the grey

correlation model. The interannual change of WUE from 2000 to 2020

showed a fluctuating but weakly upward trend. The intra-annual change in

WUE followed an M-type bimodal trend, with two peaks from May to June and

August to September. Areas with increased WUE accounted for 50.82% of the

study area, and 11.11% of these showed a significant increasing trend. WUE was

mainly positively correlated with temperature and solar radiation and negatively

correlated with precipitation and VPD and presented obvious regional

differences. Solar radiation had the most significant impact on WUE. WUE

change is not entirely driven by climate change, and human activities have also

played an important role. In areas where WUE increased, The average

contribution rate of climate change was 72.4%, and that of human activities

was 27.6%. This study reveals the temporal and spatial dynamics of WUE in the

WLRP and highlights the influence of human activities on WUE changes.

KEYWORDS

water use efficiency (WUE), climate change, human activities, residual analysis, grey
correlation model, West Liao River Plain (WLRP)
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1 Introduction

Water use efficiency (WUE) is defined as the amount of biomass

produced per unit of water used by a plant. This concept was

introduced 100 years ago by Briggs and Shantz (1913), who

demonstrated the relationship between plant productivity and

water use. As a key measurement of the coupled carbon and

water cycle function of terrestrial ecosystems, WUE not only

reflects the interrelationship between these two factors but also

explains the response of terrestrial ecosystems to climate change

(Gang et al., 2016; Hatfield and Dold, 2019).

WUE can be estimated in different ways, depending on the

temporal and spatial scales or the scientific question of interest

(Bhattacharya, 2019). Based on its definition, agricultural scientists

usually determine WUE as the relationship between either biomass

or crop yield and either transpiration or the total water provided to

the crop, which includes the amount of water provided by

precipitation and irrigation (Gadanakis et al., 2015; Bhattacharya,

2019). In ecology, when WUE is calculated on a regional scale, the

mass of CO2 assimilation may be measured as the gross primary

productivity (GPP), net primary productivity (NPP), or net

ecosystem carbon production (NEP), and the water use may be

measured as evapotranspiration (ET) or annual rainfall (Tian et al.,

2020). Among these, one common way of calculating WUE is to use

the ratio of GPP to ET. This method is typically used to analyze the

carbon and water coupling characteristics of ecosystems and their

responses to environmental changes over long timescales, such as

months or years (Jassal et al., 2009; Zhen et al., 2017; Ai et al., 2020).

In addition to being regulated by the vegetation system, WUE is

closely related to external environmental conditions. Temperature,

precipitation, humidity, solar radiation, and CO2 concentration are

key climatic factors affecting vegetation WUE (Hatfield and Dold,

2019). In the context of global climate change, the warming rate is

remarkable, precipitation on land has increased, the carbon dioxide

concentration is at its highest level in the past two million years, and

extreme climate events are occurring frequently (IPCC, 2021).

Therefore, temporal and spatial variations in ecosystem WUE

under climate change and the response of WUE to climate

change have attracted considerable attention (Niu et al., 2011;

Klein et al., 2013; Hao et al., 2019; Jia et al., 2023).

The West Liao River Plain (WLRP), located between the eastern

plain of Inner Mongolia and the southwestern part of Northeast

China, is one of the important birthplaces of agricultural civilization

in northern China. As this region is located in the monsoon fringe

area, the transition zone between arid, semi-arid, and semi-humid

regions, and at the edge of the Horqin Sandy Land, plant growth is

particularly sensitive to climate change, environmental transition,

and human activities. Currently, studies on the vegetation ecology

and related climatic factors in this region focus mostly on the

vegetation community and coverage, NPP, crop yields, biomass,

and NEP (Huang et al., 2013; Feng et al., 2014; Gao et al., 2017;

Zhao, 2017; Yan et al., 2018; Aruna, 2020; Gao W. D. et al., 2022;

Zhu et al., 2022). Few studies have examined WUE and its response

to meteorological factors and human activities.
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Through an analysis of the spatiotemporal change trend of

WUE and the relationship between WUE, climate change, and

human activities from 2000 to 2020, this study identified the driving

mechanism of WUE change in the WLRP. This study has

considerable significance for promoting the protection of

ecosystems, utilizing and managing water resources, and

achieving sustainable development of agriculture in the region.
2 Materials and methods

2.1 Study area

The WLRP is located in a farming–pasturing ecotone in

Northeast China (42°21’–45°20’ N, 119°01’–123°43’ E), which is

within a semiarid region including the Horqin Sandy Land, where

the ecological environment is extremely fragile. It covers an area of

57,600 km2 (Gao M. M. et al., 2022), has an altitude range of

6–748 m, and slopes gradually from southwest to northeast

(Figure 1A). The main geomorphic units are river impact plains

and eolian dunes. The land-use types are mainly grassland and

cropland, which account for more than 89% of the total area

(Figure 1B). The grassland pastoral area is distributed in the north,

agricultural areas are distributed in the center and at the southern

edge, and sandy land is mainly distributed in the southwest. The

average annual precipitation in this area is 385 mm, which occurs

mainly in the form of rainstorms from June to September. The

average annual temperature of the WLRP is 6.9°C.

The WLRP includes the Xiliao and Xinkai Rivers, which have

run dry since 1999. Exploitation of groundwater since the 1960s has

reduced groundwater levels in the surrounding sandy land and

aggravated desertification. However, in recent years, the ecological

environment has improved as a result of comprehensive actions to

control desertification.
2.2 Data sources and processing

2.2.1 Modis data
GPP data and ET data were obtained from MOD17A2 and

MOD16A2 during the time period from 2000 to 2020

(https://earthdata.nasa.gov/). The spatial resolution of GPP (Zhao

et al., 2005; Fu et al., 2017) and ET (Mu et al., 2011; Stavroula and

Konstantinos, 2021) is 500 m, and the temporal resolution is 8 days.

MODIS Reprojection Tool (MRT) software was used to process the

GPP and ET datasets, including mosaic, projection, and

format conversion.

WUE was expressed as the ratio of the GPP to ET of vegetation

based on previous research (Hu et al., 2008; Zhu et al., 2014; Adams

et al., 2016; An, 2022). It was formulated as follows:

WUE =
GPP
ET

(1)
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where WUE is the water use efficiency (gC·mm−1·m−2), GPP is

the gross primary productivity of the terrestrial ecosystem

(g C·m−2), and ET is the evapotranspiration of the ecosystem (mm).

2.2.2 Meteorological data
Precipitation, temperature, solar radiation, and vapor pressure

deficit (VPD) data were used in this study. Monthly precipitation

and temperature data of 11 meteorological observation stations in

the WLRP and surrounding areas were obtained from

China Meteoro log ica l Data Shar ing Serv ice Sys tem

(http://cdc.cma.gov.cn). Monthly solar radiation data with a

spatial resolution of 0.1° × 0.1° were obtained from European

Centre for Medium-Range Weather Forecasts (ERA5) Reanalysis

Datasets (https://cds.climate.copernicus.eu/). All these monthly

data were processed to annual data using kriging interpolation

with a resolution of 500 m.

The vapor pressure deficit (VPD) indicates the dryness of air,

which is often used to study the impact of climate change on WUE

(Riha and Melkonian, 2023). This factor was calculated using the

mean monthly maximum temperature, minimum temperature, and

relative humidity and the following formula (Li et al., 2014). The

above data used in Eqs. 3 and 4 were also obtained from China

Meteorological Data Sharing Service System. The monthly VPDs

were calculated first, and then, the average annual VPD was

calculated using the monthly VPD.

VPD = es − ea (2)

es =
e0(Tmax) + e0(Tmin)

2
(3)
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ea = es
lmean

100
(4)

where es is saturated vapor pressure (kPa), ea is the actual vapor

pressure (kPa),lmean is the mean relative humidity (%), and e0

(Tmax) and e0(Tmin) are the saturated vapor pressure at the mean

monthly maximum temperature and minimum temperature,

respectively, which can be calculated by Tetens’ empirical formula

(Allen et al., 1998) as follows:

e0(T) = 0:6108 exp
17:27T

T + 237:3

� �
(5)

where T is the temperature (°C), and e0(T) is the saturated vapor

pressure at the temperature T (kPa). The spatial distribution of the

multi-year mean precipitation (A), temperature (B), solar radiation

(C), VPD (D) from 2000 to 2020 in the WLRP were shown in

Supplementary Figure 1.
2.2.3 Human activities data
Land use data were obtained from Landsat-derived annual land

cover product of China (CLCD) developed by Yang and Huang

(2021), with a spatial resolution of 30 m. The land cover was

classified into eight types: cropland, forest, grassland, wetland,

shrubland, water, bareland, and impervious surface (Figure 1B).

Population density datasets were obtained from Worldpop hub

(https://hub.worldpop.org/) with a 1 km resolution from 2000 to

2020. Global NPP-VIIRS-Like Nighttime Light data (NTL) were

obtained from National Earth System Science Data Center with 500

resolution from 2000 to 2020.
B

A

FIGURE 1

Location of the West Liao River Plain (WLRP). Meteorological station distribution and elevation (A) and land use in 2020 (B).
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2.3 Methods

2.3.1 Linear regression
The mean annual WUE trends from 2000 to 2020 were analyzed

using linear regression analysis, which was calculated using the

following formula (Mafi-Gholami et al., 2019; Yan et al., 2022):

slope =

no
n

i=1
iWUEi −o

n

i=1
io
n

i=1
WUEi

no
n

i=1
i2 − (o

n

i=1
i)2

(6)

where n is the number of samples, i is the serial year number (i =

1,2,3……, 21), WUEi is the WUE value in year i, and slope

represents the change trend. If slope > 0, WUE has an increasing

trend; if slope = 0, WUE does not change; if slope< 0, WUE has a

decreasing trend.

The F-test was used to analyze the significance of the results. By

combining the slope value and the F test, the results were divided

into five grades: extremely significant decrease area (slope< 0, p<

0.01), significant decrease area (slope< 0, 0.01< p< 0.05), stable area

(p > 0.05), significant increase area (slope > 0, 0.01< p< 0.05), and

extremely significant increase area (slope > 0, p< 0.01).

The calculation formula for the F-test was based on the study of

Chen et al. (2017).

2.3.2 Coefficient of variation
The coefficient of variation (CV), a statistic describing the

degree of dispersion of random variables, was used to analyze the

dispersion of WUE (Tucker et al., 1991; Milich and Weiss, 2000).

The formula was

CVWUE =
sWUE

WUE
(7)

where CVWUE is the coefficient of variation of WUE, sWUE is the

standard deviation of WUE, and WUE is the mean annual WUE.

When the CV is larger, the change of WUE is more unstable; when

CV is smaller, it is more stable.

2.3.3 Correlation analysis
The correlation between WUE and the meteorological factors

was analyzed. The correlation coefficient was calculated as follows:

rxy =
o
n

i=1
(xi − x)(yi − y)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

o
n

i=1
(xi − x)2

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o
n

i=1
(yi − y)2

s (8)

where rxy is the correlation coefficient of factor x and y, xi and yj
are the values of factor x and y in year i, �x   and  �y are the mean

values of xi and yj, respectively. The value range of rxy is [−1,1]. If

rxy>0, the correlation between x and y is positive. The greater the

absolute value of rxy, the stronger the correlation between x and y.

The t-test was used to test the significance of the correlation

coefficient. The calculation formula for t-test refers to the paper

Miao et al. (2023).
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2.3.4 Residual analysis
The sampling multiple linear regression residual analysis

method was used to analyze the effects and contributions of

human activities and climate change on WUE (Evans and

Geerken, 2004). The predicted and residual WUE was calculated

using the following formula:

WUEpre = a� PRE + b� TEM + c� VPD + d � RAD + e (9)

WUEres = WUEobs −WUEpre (10)

where a, b, c, d, and e are regression coefficients, PRE is the

annual precipitation, TEM is the average annual temperature, VPD

is the average annual vapor pressure deficit, RAD is the annual solar

radiation. WUEres, WUEobs, and WUEpre are the residual, observed,

and predicted values of WUE, respectively. The value of WUEres
reflects the influence of human activities on WUE, while the value

of WUEpre reflects the influence of climate change on WUE.

The contribution of climate change and human activities to the

changes in WUE can be analyzed by grading the residual results.

The criteria for determining the drivers of WUE changes

(Supplementary Table 1) were defined by referring to previous

studies (Gao W. D. et al., 2022; Yu et al., 2022).

2.3.5 Grey correlation model
To quantify the impact of climate change and human activity on

WUE in the study area, the grey correlation model was introduced

to calculate the correlation degree of each evaluation index (Liu

et al., 2017). The higher the correlation degree, the higher the

influence of this index on WUE.
3 Results

3.1 Spatial distribution of the multi-year
mean WUE

The spatial distribution of WUE differed significantly across the

WLRP (Figure 2). The multi-year mean WUE of the WLRP ranged

from 0.458 to 2.027 gC·mm−1·m−2. The areas with the highest WUE

were predominantly located in the southern and central regions of

the study area. The areas with the lowest WUE were mainly in the

western Horqin Sandy Land. The average WUE values of different

vegetation types were ranked as follows: forest (1.38 gC·mm−1·m−2),

cropland (1.34 gC·mm−1·m−2), grassland (1.31 gC·mm−1·m−2),

wetland (1.23 gC·mm−1·m−2), shrubland (1.22 gC·mm−1·m−2) and

bareland (1.04 gC·mm−1·m−2), respectively.
3.2 Temporal change of WUE

3.2.1 Interannual change of WUE
Figure 3 shows the interannual variations of WUE from 2000 to

2020, revealing the temporal changes of WUE in the WLRP. The

interannual change of WUE showed a fluctuating but weakly upward
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trend, with the highest and lowest values being observed in 2019 and

2010, respectively. The interannual change trend was divided into two

stages. The first stage, from 2000 to 2010, showed a downward trend

with a rate of decrease of 0.00449 gC·mm−1·m−2·a−1. The second stage,

from 2010 to 2020, showed an upward trend with a rate of increase of

0.00766 gC·mm−1·m−2·a−1.

3.2.2 Intra-annual change of WUE
Figure 4 shows the monthly WUE change from 2000 to 2020,

revealing the intra-annual change of WUE in the WLRP. The intra-

annual change of WUE showed an M-type bimodal mode, with two

peaks occurring from May to June and August to September,

respectively. The average seasonal WUE decreased in the

following order: summer (2.00 gC·mm−1·m−2) > spring (1.64
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gC·mm−1·m−2) > autumn (1.23 gC·mm−1·m−2) > winter

(0.01 gC·mm−1·m−2).
3.3 The spatial distributions of trend
in WUE

Figure 5 shows the slope of the annual WUE for each pixel from

2000 to 2020, revealing the spatial change of WUE in the WLRP.

The change trend of WUE in the study area showed obvious spatial

differentiation, with slope values ranging from −0.05 to 0.05

gC·mm−1·m−2·a−1. The areas of increasing and decreasing trends

of WUE accounted for 50.82% and 49.18% of the total, respectively

(Figure 5A). However, the significance test of the WUE change

trend showed that more than half of the total area (77.13%) showed

no significant change. The extremely significant decrease and

significant decrease areas accounted for 6.57% and 5.20% of the

total, respectively, and were mainly distributed in the western

region. The extremely significant increase and significant increase

areas accounted for 5.85% and 5.26%, respectively, and were mainly

distributed in the southern and central regions (Figure 5B).

Figure 6 shows the proportions of different types of WUE

change trends for the different land-use types. Areas where WUE

showed no trend accounted for the largest proportion of the total

area in all land-use types: forest (84.39%), grassland (81.23%),

wetland (78.37%), shrubland (74.86%), cropland (74.24%), and

bareland (70.35%). The proportions of areas that showed

decreasing trends (including both extremely significant decrease

and significant decrease) were in the following order: bareland

(18.96%) > cropland (16.01%) > forest (11.13%) > shrubland

(8.69%) > grassland (6.75%) > wetland (3.85%). The proportions

of areas that showed an increasing trend (extremely significant

increase and significant increase) were in the following order:
FIGURE 3

Interannual variations of WUE from 2000 to 2020 in the WLRP.
FIGURE 2

Spatial distribution of the multi-year mean water use efficiency (WUE) from 2000 to 2020 in the WLRP.
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wetland (17.77%) > shrubland (16.45%) > grassland (12.80%) >

bareland (10.69%) > cropland (9.75%) > forest (4.48%).

Figure 7 shows the degree of dispersion of WUE. The CV of the

annual WUE ranged from 0.02 to 0.68. As there was low dispersion

of WUE in most of the study area, the WUE in most areas was likely

relatively stable. Areas with high CV values, exhibiting unstable

WUE changes, were mainly located in the west, south, and

northeast portions of the study area. The CV values of the

different vegetation types were in the following order: bareland

(0.120), shrubland (0.080), wetland (0.077), grassland (0.064),

cropland (0.051), and forest (0.050), respectively.
3.4 Correlation analysis between WUE and
meteorological factors

The correlations between meteorological factors andWUE were

examined to determine the causes of the WUE trends. To analyze

the impact of each meteorological factor on WUE, the coefficient of

correlation was calculated between WUE and each meteorological

factor. There were obvious regional differences in the correlation

between WUE and precipitation, temperature, solar radiation, and

VPD and their average correlation coefficients were −0.015, 0.124,
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0.222, and −0.044, respectively (Figures 8A, C, E, G). Areas with

positive and negative correlations between WUE and precipitation

accounted for 46.20% and 53.80% of the WLRP. The areas with a

positive correlation in the western region were larger than those in

the eastern region. Areas with a positive correlation between WUE

and temperature accounted for 71.60% of the WLRP which were

mainly distributed in the northern and southern parts of the study

area, whereas areas with a negative correlation accounted for

28.40% of the WLRP which were mainly distributed in the

southwestern and central portions of the study area. Areas with a

positive correlation between WUE and solar radiation accounted

for 84.55% of the WLRP which were mainly distributed in the

southeastern parts of the study area, whereas areas with a negative

correlation accounted for 15.45% of the WLRP which were mainly

distributed in the central and western regions of the study area. The

areas with positive and negative correlations between WUE and

VPD accounted for 45.65% and 54.35%, respectively. The regions

with positive correlation were mainly distributed in the eastern and

northern regions, while that with negative correlation were mainly

distributed in the central and southwestern regions.

Overall, WUE in the WLRP was positively correlated with

temperature and solar radiation, while it was negatively correlated

with precipitation and VPD. However, the areas that passed the
BA

FIGURE 5

The spatial distributions of trend in WUE from 2000 to 2020 in the WLRP. Slope of annual WUE (A), and significant changes in WUE (B).
FIGURE 4

Monthly change of WUE from 2000 to 2020 in the WLRP.
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significance test (P<0.05) only accounted for 4.70%, 7.33%, 16.12%,

and 0.64% (Figures 8B, D, F, H), which indicated that the change in

WUE in the WLRP was not determined by a single indicator and

was influenced by multiple indicators. In addition to meteorological

factors, human activities need to be considered.
3.5 Trends of climate change on
WUE change

The value of the predicted WUE could reflect the influence of

climate change on WUE. The slope of the predicted WUE ranged
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from -0.03 and 0.03 gC·mm−1·m−2·a−1, with a regional average of

0.0008 gC·mm−1·m−2·a−1 (Figure 9A). The proportion of areas

where meteorological factors have a positive impact on WUE was

60.27%, and these areas were mainly distributed in the western

regions, indicating that climate change had a positive impact on

WUE in this region. The proportion of areas where meteorological

factors have a negative impact on WUE was 39.73%, and these areas

were mainly distributed in the central and southern regions,

indicating that climate change had a negative impact on WUE in

this region. Among them, the regions with significant positive

(P<0.05) and significant negative effects (P<0.05) accounted for

22.82% and 11.76%, respectively (Figure 9B).
3.6 Trend of human activities on
WUE change

The value of residual WUE could reflect the influence of human

activities onWUE. The slope of the predictedWUE ranged from −0.02

and 0.02 gC·mm−1·m−2·a−1, with a regional average of

−0.0007gC·mm−1·m−2·a−1 (Figure 10A). The proportion of areas

where human activities have a positive impact on WUE was 38.07%,

and these areas were mainly distributed in the southeastern and

northwestern regions, indicating that human activities had a positive

impact on WUE in this region. The proportion of areas where human

activities have a negative impact on WUE was 61.93%, and these areas

were mainly distributed in the central and southern regions, indicating

that human activities had a negative impact on WUE in this region.

Among them, the regions with significant positive (P<0.05) and
FIGURE 7

Spatial distribution of the CV of annual WUE from 2000 to 2020 in
the WLRP.
FIGURE 6

Proportions of different types of WUE change in different land-use types from 2000 to 2020 in the WLRP.
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significant negative effects (P<0.05) accounted for 0.83% and 2.58%,

respectively (Figure 10B).
3.7 Comprehensive analysis of
WUE change

The contribution rate of climate change and human activities to

regional WUE from 2000 to 2020 in the WLRP could be obtained by
Frontiers in Ecology and Evolution 08138
determining the criteria for driving factors and calculating the

contribution rate (Supplementary Table 1). Overall, driven by both

human activities and climate change, the area where the WUE has

improved accounted for 50.82%, with an average contribution rate of

72.4% for climate change and 27.6% for human activities (Figures 11A,

B). The combined effect of human activities and climate change could

also have a negative impact on WUE. The area where WUE decreased

driven by both factors accounted for approximately 49.18% of the total

area of the region, with an average contribution of 39.9% for climate
B

C D

E F

G H

A

FIGURE 8

Spatial distributions of the correlation coefficients between WUE and (A) precipitation, (C) temperature, (E) solar radiation, and (G) VPD in the WLRP
from 2000 to 2020; Significant test of correlation between WUE and (B) precipitation, (D) temperature, (F) solar radiation, and (H) VPD in the WLRP
from 2000 to 2020.
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change and 60.1% for human activities (Figures 11C, D). Overall, the

main contribution of WUE improvement was climate change, while

the decrease in WUE was mainly due to human activities.

To further explore the driving factors affecting WUE, human

activity indicators such as population density (PD), the proportion of

impervious surface area (IS), and nighttime light (NTL) were selected

and were combined with meteorological factors such as precipitation

(PRE), temperature (TEM), vapor pressure deficit (VPD), and solar

radiation(RAD), the grey correlation model was used to identify the

main control factors on WUE changes (Table 1). The results showed

that for the seven evaluation factors in this study, the top three factors

in terms of correlation degree were RAD, PD, and VPD, in which RAD

had the highest correlation degree (0.939), indicating that WUE

changes were considerably affected by RAD. The impact of human

activities on WUE cannot be ignored, especially that of PD, which had

a correlation degree of 0.93.
4 Discussion

4.1 Spatial and temporal distribution
of WUE

From 2000–2020, the annual mean WUE of the WLRP ranged

from 0.458 to 2.027 gC·mm−1·m−2, and the regional average was
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1.31. This result is consistent with the result of Luo et al. (2022),

who reported an annual mean WUE in Inner Mongolia of

1.39 gC·mm−1·m−2, with a range of 0–3.03 gC·mm−1·m−2 and an

increasing trend. There were different trends of regional WUE

during 2001-2010 and 2010-2020 in WLRP, which is directly

related to the sharp decrease in WUE in 2010. In 2010, the

decrease in solar radiation led to a decrease in vegetation

photosynthesis and carbon sequestration capacity, resulting in

lower levels of GPP, while an increase in precipitation resulted

in higher levels of ET, resulting in a drastic decrease in WUE values.

In previous studies, although some regions also showed a

downward trend in WUE from 2000 to 2010 (Zhang et al., 2016),

most regions showed an overall upward trend in WUE during the

study period and did not show a significant segmented trend (Zhao

et al., 2019; Luo et al., 2022). This is related to the differences in

geographical location, meteorological conditions, and human

activity interference in the study area.

WUE reflects the trade-off between GPP and ET in an

ecosystem, that is, the relationship between organic carbon and

water consumption (Shao et al., 2020). There was no significant

change trend in most areas of the WLRP from 2000 to 2020. The

main reason for this result is that the change trends of GPP and ET

in the study area were consistent (Figures 12A, B), and the linear

correlation coefficient of these variables was as high as 0.94

(Figure 12C), indicating that the carbon-fixing ability in this area
BA

FIGURE 9

The spatial distributions of trend in predicted WUE from 2000 to 2020 in the WLRP. Slope of predicted WUE (A), and significance test in predicated
WUE (B).
BA

FIGURE 10

The spatial distributions of trend in residual WUE from 2000 to 2020 in the WLRP. Slope of residual WUE (A), and significance test in residual WUE (B).
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is directly proportional to water consumption and leads to the

insignificant change trend of WUE.

The average WUE values of the different vegetation types

ranked in the order of forest, cropland, grassland, wetland,

shrubland, and bareland, respectively, were in general agreement

with the results of previous studies (Feng et al., 2018; Chang et al.,

2021). Although the WUE values followed the same order rule, the

same land-use type showed different WUE values in different

regions, which is consistent with the conclusions of other

researchers (Liu et al., 2015; Muhammad et al., 2018). This is

probably attributable to physiological, zonal, and climatic

differences (Tang et al., 2014; Yao et al., 2014; Zhang et al., 2022).

Wang et al. (2020) also reported water and heat conditions and their

uneven distribution as the main reasons for zonal differences in
Frontiers in Ecology and Evolution 10140
WUE, which are not solely determined by the physiological

characteristics of plants.

Forest vegetation can obtain deep soil water and nutrients

through developed roots to support plant growth (Chang et al.,

2021), and croplands often receive sufficient irrigation water for

plant growth(Zheng et al., 2019). Both forest and cropland have

relatively high vegetation coverage, which can reduce soil water

evaporation and increase the efficiency with which water is

converted into organic matter, which is produced more

abundantly by forests than cropland (Xia et al., 2015). Therefore,

the WUE values of cropland and forest were high, and those of

forest were the highest. The GPP values of bareland and shrubland,

with little vegetation, are low, and evapotranspiration depends

mainly on soil water evaporation. Therefore, bareland and

shrubland had the smallest values of WUE. The GPP of

shrubland may also be underestimated (Zhang et al., 2012; Zhang

et al., 2015; Chang et al., 2021). In grassland, the root system is

short, plants depend primarily on precipitation and shallow soil

water, and evaporation of soil water is high, making full use of the

available water difficult.

In areas with a significant downward trend in WUE, the

proportion of bareland, cropland, and forest land is relatively

large. This is because better hydrothermal conditions can lead to

an increase in ET, resulting in a significant decrease of WUE in

bareland. Cropland and forest in the area mainly depend irrigation,

resulting in a more stable interannual variation in GPP (Tian et al.,

2011). However, unreasonable irrigation may promote higher ET,

which may lead to a decreasing trend of WUE in cropland

and forest.
B

C D

A

FIGURE 11

Spatial distribution of positive (A, B) and negative (C, D) contributions of climate change and human activities to WUE in the WLRP from 2000 to 2020.
TABLE 1 The grey correlation result.

Evaluation factors Correlation degree Ranking

RAD 0.939 1

PD 0.93 2

VPD 0.884 3

TEM 0.858 4

IM 0.775 5

PRE 0.725 6

NLI 0.576 7
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4.2 Effects of climate change and human
activities on WUE change

In addition to being regulated by the internal vegetation of the

system, WUE is also affected by external environmental conditions.

Previous studies have shown that precipitation and temperature

have either promotional or inhibitory effects on WUE (Zhang et al.,

2012; Qiu et al., 2015; Xue et al., 2015; Sun et al., 2016; Wei et al.,

2016). Generally, a moderate increase in precipitation is favorable

for WUE, but excessive precipitation is unfavorable (Tian et al.,

2010; Qiu et al., 2015; Wei et al., 2016; Li et al., 2017). Qiu et al.

(2015) and Xue et al. (2015) found a nonlinear relationship between

WUE and precipitation and other researchers have reported similar

findings (Hu et al., 2010; Mu et al., 2014; Li et al., 2015). Yin et al.

(2022) and Shao et al. (2020) found that WUE was negatively

correlated with temperature. However, some studies also found that

there was a critical value for the impact of temperature on WUE:

temperatures that are too high or too low are unfavorable for

vegetation WUE (Xiao, 2001; Zhou et al., 2014; Qiu et al., 2015; Xue

et al., 2015; Wei et al., 2016). Solar radiation is one of the important

factors in plant photosynthesis and also has a significant impact on

plant WUE. Previous studies have found a high correlation between

solar radiation and WUE (Xu, 2008). In areas with solar radiation

below 242.2 W/m2, WUE showed an increasing trend with an

increase in solar radiation, and after exceeding the critical value,

WUE showed a decreasing trend (Xue et al., 2015). In addition,

most studies have found that the increase in VPD has a negative

impact on WUE (Wang et al., 2022; Zheng and Zhang, 2022; Li F.

et al., 2023).

WUE was positively correlated with temperature and solar

radiation in most of the study area. The increase in temperature
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and solar radiation promoted photosynthesis, resulting in higher

production of dry matter and an increase in the GPP (Li et al.,

2002). Although the increase in temperature and solar radiation can

also lead to an increase in ET, previous studies have found that the

impact on GPP is more significant than that on ET (Wang et al.,

2020). WUE was negatively correlated with precipitation and vapor

pressure deficit in most of the study area.

In arid and semi-arid areas, available water is the most

important factor in controlling vegetation function, and its

reduction can increase the physiological stress and vulnerability

of plants. In arid areas, vegetation chooses more conservative water

use methods when the precipitation decreases and adapts to

drought stress by increasing WUE (Chen et al., 2003). The main

reason for the negative correlation between VPD and WUE was the

interannual variation of VPD, which has a limiting effect on the

terrestrial primary productivity (GPP) (He B. et al., 2022). This is

because an increase in VPD may cause stomatal closure to avoid

excessive water loss in plants due to high air evaporation demand.

However, this can also lead to a negative carbon balance, causing

plants to consume a large amount of carbohydrate reserves and

cause carbohydrate starvation (Yuan et al., 2019). This is consistent

with the conclusion of Li F. et al. (2023), who showed that an

increase in VPD leads to WUE stagnation.

In addition, the impact of human activities on WUE cannot be

ignored, and population density has the highest correlation with

WUE. The main reason was that in the past two decades, with the

increase in population and the implementation of a series of

ecological engineering practices, the area of cropland and forest in

the region has increased. Due to their high WUE, the overall WUE

has increased. Although the WUE values of forest and cropland were

high, this result does not mean that a large amount of land can be
B
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FIGURE 12

Change trends of ET and GPP with precipitation (A), change trends of ET and GPP with temperature (B), and correlation between ET and GPP (C) on
an annual scale.
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reclaimed for artificial tree planting or expansion of cultivated land

area. The high WUE was largely attributable to the relatively

abundant water resource conditions caused by artificial irrigation,

and the local irrigation water is mainly sourced from groundwater;

thus, excessive exploitation of this water will lead to the deterioration

of the ecological environment.
4.3 Limitations and uncertainties

4.3.1 Data accuracy
This study analyzed the impact of meteorological factors on

WUE based on remote sensing data. The Kriging interpolation

method was used for the meteorological data. However, the volume

and accuracy of the data were limited, and the difference in

interpolation methods may have affected the results. Previous

studies have shown that ET and GPP data from MODIS play a

good performance (Turner et al., 2006; Velpuri et al., 2013), which

were widely used in WUE calculations (Huang et al., 2017; Li X. Y.

et al., 2023). But the use of remote sensing data, especially that from

the same sensor inevitably introduces some potential uncertainties

such as data self-correlated problem. Besides MODIS data, more

and more remote sensing data products were used in WUE

calculated such as GLASS data (Luo et al., 2023), Sentinel-2 data

(Elfarkh et al., 2023) and PML-V2 product (He S. Y. et al., 2022; Ji

et al., 2023). Different data sources may result in differences in

evaluation results due to differences in resolution and model.

Therefore, further analysis is needed to obtain more reliable

conclusions regarding the consistency and uncertainty generated

by different data sources, combining multi-source data.

4.3.2 Analytical methods
Only linear methods such as linear regression analysis and

residual analysis were used to analyze the relationship between

WUE and factors such as temperature, precipitation, VPD, and

solar radiation, without considering the nonlinear relationship

between meteorological factors and WUE. In addition, this paper

demonstrated the impact of human activities on WUE, but its

driving mechanism needs to be further analyzed. For example,

human activities affect biological characteristics such as Leaf area

index (LAI) and NDVI by modifying surface features such as

afforestation, urban expansion, cropland reclamation, or changing

irrigation methods, thereby affecting WUE.
5 Conclusions

This study explored the changes in WUE in the WLRP from

2001 to 2020 using linear regression and the CV method based on

the MODIS GPP and ET datasets. The relationships between WUE

and climate change and human activities and the driving

mechanism of WUE changes were revealed through correlation

analyses, residual analysis, and the grey correlation model. From
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2001 to 2020, most areas of the WLRP (77.13%) were in a stable

state without significant changes, whereas a small part of the WLRP

(22.87%) changed significantly. WUE change is not entirely driven

by climate change, and human activities have also played an

important role. In areas where WUE increased, the average

contribution rate of climate change was 72.4%, and that of

human activities was 27.6%.
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