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Tumor microenvironment-
mediated immune evasion
in hepatocellular carcinoma

Chen Chen †, Zehua Wang †, Yi Ding and Yanru Qin*

Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
Hepatocellular carcinoma (HCC) is the most common primary liver malignancy

and is the third leading cause of tumor-related mortality worldwide. In recent

years, the emergency of immune checkpoint inhibitor (ICI) has revolutionized the

management of HCC. Especially, the combination of atezolizumab (anti-PD1) and

bevacizumab (anti-VEGF) has been approved by the FDA as the first-line treatment

for advanced HCC. Despite great breakthrough in systemic therapy, HCC

continues to portend a poor prognosis owing to drug resistance and frequent

recurrence. The tumor microenvironment (TME) of HCC is a complex and

structured mixture characterized by abnormal angiogenesis, chronic

inflammation, and dysregulated extracellular matrix (ECM) remodeling,

collectively contributing to the immunosuppressive milieu that in turn prompts

HCC proliferation, invasion, and metastasis. The tumor microenvironment coexists

and interacts with various immune cells to maintain the development of HCC. It is

widely accepted that a dysfunctional tumor-immune ecosystem can lead to the

failure of immune surveillance. The immunosuppressive TME is an external cause

for immune evasion in HCC consisting of 1) immunosuppressive cells; 2) co-

inhibitory signals; 3) soluble cytokines and signaling cascades; 4) metabolically

hostile tumor microenvironment; 5) the gut microbiota that affects the immune

microenvironment. Importantly, the effectiveness of immunotherapy largely

depends on the tumor immune microenvironment (TIME). Also, the gut

microbiota and metabolism profoundly affect the immune microenvironment.

Understanding how TME affects HCC development and progression will

contribute to better preventing HCC-specific immune evasion and overcoming

resistance to already developed therapies. In this review, we mainly introduce

immune evasion of HCC underlying the role of immune microenvironment,

describe the dynamic interaction of immune microenvironment with

dysfunctional metabolism and the gut microbiome, and propose therapeutic

strategies to manipulate the TME in favor of more effective immunotherapy.

KEYWORDS

hepatocellular carcinoma, immune evasion, tumor immune microenvironment,
metabolism, gut microbiota, immunotherapy
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1 Introduction

Hepatocellular carcinoma (HCC) is the most common primary

liver malignancy and is the third leading cause of cancer-related

mortality worldwide in 2020 (1). HCC frequently develops on a

background of cirrhosis caused by multiple risk factors, including

chronic viral infection of hepatitis B virus (HBV) or hepatitis C virus

(HCV), alcohol abuse, aflatoxin exposure, non-alcoholic

steatohepatitis (NASH), and drug-related liver injury (2). Treatment

recommendations differ in various stages of HCC. The choice

between locoregional treatments mainly depends on the tumor

burden, location, and liver function (3). Based on clinical practice

guideline, surgical resection, radiofrequency ablation (RFA),

transarterial chemobolization (TACE), and liver transplantation are

effective for tumor confined to the liver, whereas systemic therapy

targeting the TME is available for unresectable HCC (3, 4). Since the

first tyrosine kinase inhibitor (TKI) sorafenib was proven to extend

the survival in advanced HCC patients without compromising liver

function in 2008 (5), multi-TKIs and vascular endothelial growth

factor (VEGF) inhibitors have been integrated into standard systemic

therapy for advanced HCC (6–9).

Cancer immunotherapies have greatly revolutionized the clinical

management of HCC in recent years, particularly the application of

immune checkpoint inhibitor (ICI). It has been proven that the

combination of atezolizumab (anti-PD1) and bevacizumab (anti-

VEGF) was superior to the first-line treatment sorafenib (10).

However, HCC continues one of the worst prognoses due to drug

resistance and frequent recurrence. A large percentage of HCC

patients still do not benefit from these immunotherapies or

undergo immune-related adverse events. A potential explanation is

these immune-based approaches primarily aim to reactivate
Frontiers in Immunology 026
dysfunctional T cell but ignore the immunosuppressive

contribution of the tumor microenvironment (TME).

The tumor microenvironment is a complex ecosystem that plays

an indispensable role from cancer initiation to distant metastasis (11).

It coexists and interacts with various immune cells and their products,

referred to the tumor immune environment (TIME). Dysfunctional

tumor-immunity cycle can lead to immune evasion by flawed antigen

recognition or by immunosuppressive TME (12). Tumor intrinsic

mechanism of immune evasion might be attributed to defects of

antigen presentation, loss of MHC-I molecules, and epigenetic

repression of tumor-associated antigens (TAA) (13). The

immunosuppressive TME is an external driver of immune escape

due to 1) the presence of immunosuppressive cells; 2) co-inhibitory

signals on lymphocytes; 3) the existence of immunosuppressive

soluble factors and signaling cascades; 4) metabolically hostile

tumor microenvironment, imposing barriers to tumor-infiltrating

immune cells; 5) the intra-tumoral microbes that alter the state of

the immune microenvironment to prompt HCC progression (14–19).

Figure 1 depicts mechanisms of immune evasion mediated by tumor

microenvironment in HCC.

The tumor immune microenvironment can determine whether

immunotherapy will be successful. Importantly, gut microbiota and

metabolism profoundly affect the immune microenvironment.

Understanding their complicated interaction will contribute to

better modulating HCC-specific immune response and overcoming

resistance to already developed therapies. In this review, we provide

an overview of immunosuppressive microenvironment in HCC,

mainly introduce mechanisms of immune evasion underlying the

role of immune microenvironment, gut microbial microenvironment,

and metabolism microenvironment, and propose novel strategies to

harness the TME to enhance HCC immunotherapy.
FIGURE 1

Mechanisms of immune evasion led by the tumor microenvironment in hepatocellular carcinoma. The immunosuppressive tumor microenvironment is
an external driver of immune evasion in HCC. The suppressive immune microenvironment is led by intricate interactions among suppressive immune
cells, stromal cells, immunoregulatory cytokines, and signaling cascades. Metabolic constraints and gut microbiota also contribute to the
immunosuppression. The permissive microenvironment favors tumor cells to proliferate in un uncontrolled manner and is no longer confined by the
host immunity. TME, tumor microenvironment; PAMP, pathogen-associated molecular patterns; TLR4, Toll-like receptor 4; AA, amino acid; ROS, reactive
oxygen species.
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2 Immunoediting and immune evasion

Cancer immunoediting is a dynamic process that includes

immune surveillance and tumor progression. It describes the

relationship between tumor cells and immune system, proceeding

through three phases: elimination, equilibrium, and escape (20).

During the elimination phase, immune effector cells are able to

recognize and eliminate tumor cells (20). In the equilibrium stage,

tumor cells have escaped the elimination stage. But adaptive

immunity still prevents the overall growth of the tumor, which

keeps tumor cells in a state of functional dormancy (20, 21). In the

escape stage, tumor cells continue to grow and proliferate in an

uncontrolled manner and is no longer confined by the host immunity

(20, 21). Tumor subclones that have acquired alterations could evade

detection and destruction (20, 21).

The cancer-immunity cycle is a multistep process (Figure 2). The

infinite proliferation and high tumor mutational burden of tumor

cells firstly activate innate immune cells, such as natural killer (NK)

cells, which target and lyse tumor cells to release tumor-associated

antigens into the TME. These molecules are subsequently recognized

by antigen-presenting cells (APCs), which travel to secondary

lymphoid organs where adaptive immune responses are primed and

activated (22). APCs present neoantigens to T cell receptor (TCR) of

CD8+ cytotoxic T lymphocytes via the major histocompatibility

complex (MHC) class I molecules. These activated T cells migrate

and infiltrate into the HCC tissue. The final step is the T lymphocyte-

mediated destruction of tumor cells, which in turn allows more

tumor-associated antigens released into the TME (23, 24). Of note,

the cancer-immunity cycle represents the adaptive aspect of immune

surveillance phase (25–27). Tumors can perturb the processes
Frontiers in Immunology 037
mentioned above to evade immune surveillance by tumor-intrinsic

mechanism (acquisition of genetic alterations) or tumor-extrinsic

mechanism (generation of an immunosuppressive TME).

In acute infection, activated T cells can eliminate harmful

pathogens. However, during the progression of HCC, these

neoantigens are seldom eliminated, leading to the formation of

chronic inflammatory stimulation that mediates the silence of the

immune response and the loss of cytotoxic capacities of T cells.

Previous studies have reviewed the escape of the tumor-intrinsic

mechanism (28). The contributions of TME in this issue is usually be

ignored. Therefore, the crosstalk among immune microenvironment,

gut microbial microenvironment, and metabolic microenvironment is

of great importance to HCC immune evasion.
3 Immune evasion mechanism in the
immune microenvironment of HCC

Immune surveillance and evasion are respectively dictated by the

opposing activities of effector immune cells and immunosuppressive

cells in the TME (Figure 3). The hepatic TME is an intricate

ecosystem that is comprised of tumor cells, immune cells, non-

parenchymal liver cells, tumor-associated fibroblasts (29). Several

lines of evidence suggest that the crosstalk between tumor cells and

TIME components is a critical factor for the immune evasion of HCC

and for the major cause of resistance to immunotherapies. The

immunosuppressive milieu is consisted of immunosuppressive cells,

non-parenchymal cells, T-cell exhaustion, soluble cytokines, and

signaling cascades (30).
FIGURE 2

Cancer-immunity in HCC. Tumor cells release antigens into the tumor microenvironment due to necrosis or treatment. Dendritic cells capture cancer
antigens and traffic to the lymphoid organs where they present antigens to T cells, followed by T-cell priming and activation. These activated T cells
migrate and infiltrate into HCC tissue. CD8+ T cells recognize HCC cells via T cell receptor. The final step is T cell-mediated killing of tumor cells,
allowing more cancer-specific antigens to release. Tumor can perturb the processes mentioned above to occur immune evasion. DC, dendritic cell;
TME, tumor microenvironment; HCC, hepatocellular carcinoma.
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3.1 Immunosuppressive cells

Cytotoxic CD8+ T cells, CD4+ T cells, and NK cells work together

to maintain immune surveillance, whereas abundant immune cells

that resident in HCC contribute to immune evasion to prompt tumor

progression, such as myeloid-derived suppressor cells (MDSC),

regulatory T (Treg) cells, and tumor-associated macrophages

(TAMs). Under physiological conditions, all populations participate

in the manipulation of immune response, and thereby preserving

homeostasis and self-tolerance (30, 31). However, both adaptive and

innate immune response are blunted in HCC, as demonstrated by the

TIME with dysfunctional TILs and NK cells (32–34).

MDSCs is a heterogenous group of immature myeloid cells that

dampen CTL and NK cell effector functions, displaying a strong

immunosuppressive activity in tumor-bearing hosts (35, 36). Several

tumor-originated cytokines, such as IL-6, IL-1b, GM-CSF, G-CSF,

VEGF, and MCP-1, have been reported to induce MDSC

accumulation in preclinical models of HCC (37). An HCC-specific

cell cycle-related kinase (CCRK) could upregulate IL-6 production via

EZH2/NF-KB signaling, resulting in an extensive infiltration of

polymorphonuclear MDSCs (38). Hypoxemia is a key regulatory

factor that induces MDSCs accumulation via the chemokine C-C

motif Ligand 26 (CCL26)/CX3CR1 pathway (39). Hypoxia-inducible

factor 1a (HIF-1a) mediates ENTPD2 overexpression to convert

ATP to 5’-AMP, which recruits a great quantity of MDSCs into the

TME (40). Tumor-associated fibroblasts (CAFs) also facilitate the

production of MDSCs by activating IL-6/STAT3 pathway (41).

MDSCs accumulated in HCC could damage effector T cell function,

reduce NK cell cytotoxicity, and expand immune checkpoint

signaling, which blunt both innate and adaptive immune responses.

The liver contains a large number of MDSCs that up-regulate the

secretion of VEGF, TGF-b, and arginase, which inhibit T cell

activation (42). MDSCs were found to deprive essential amino acids

that are critical to T cell proliferation (43), and they release reactive
Frontiers in Immunology 048
oxygen and nitrogen species (iNOS or NOS2) that disrupt T cell

receptor (TCR) signaling (44). Galectin-9 expressed on MDSCs binds

to TIM-3 on T cells, which is associated with T cell apoptosis (45).

Furthermore, a high infiltration of MDSCs in HCC is able to facilitate

the conversion of naïve T cells into Treg cells (30). MDSCs also foster

an immune escape status by reducing NK cell cytotoxicity. In

senescent hepatocytes, MDSCs are recruited via the CCR2-CCL2

signaling, followed by differentiating into macrophages and blocking

HCC initiation. However, once the tumor is initiated and developed,

they would lose the ability of differentiation and cause inhibition of

NK cell responses (46). Specifically, MDSCs can impair NK cell

cytotoxicity by the NKp30 receptor and interact with Kupffer cells

to enhance PD-L1 expression (47).

The physiological role of Treg cells is to inhibit excessive immune

response to maintain homeostasis and autoimmune tolerance.

However, hyperactive work of Treg cells in HCC supports tumor

invasiveness, triggering a compromised T-cell immune response

through several mechanisms (48–50). More CD4+ CD25+ Treg cells

are enriched in the TME relative to that in in healthy individuals (51,

52). Treg cells are recruited by the chemokine receptor 6 (CCR6) and

chemokine ligand 20 (CCL20) axis and activated by the binding of

TCR with IL-10 and TGF-b signaling (53). Sorafenib, a multi-kinase

inhibitor for HCC, has been proven to reduce hepatic Treg infiltration

via suppressing TGF-b signaling (54). Long noncoding RNAs

(lncRNA) are also involved in Treg cell differentiation (55).

Specifically, the lncRNA-EGFR links an immunosuppressive state to

HCC by augmenting activation of AP-1/NF-AT1 axis in Treg cells,

thus prompting immune evasion (55). Overexpression of IL-35 has

been shown to positively correlate with CD39+ FoxP3+ Treg cell

infiltration, which may be another independent predictor for

treatment efficacy among HCC patients (56). Mechanistically, CD4+

CD25+ FoxP3+ Treg cells could damage CD8+ T cell cytotoxicity by

reducing the release of granzyme A, B, and perforin (57). Treg cells

selectively inhibit some molecules that are essential in CD8+ T cell
FIGURE 3

Roles of major immune cells in the HCC immune microenvironment. Immune cells existing in HCC can be roughly classified into one group that prompts an
effective anti-tumor response, and the other group that limits immune response against HCC cells and contribute to an immunosuppressive TME. DC,
dendritic cell; TIL, tumor-infiltrating lymphocytes; NK, natural killer; MDSC, myeloid-derived suppressor cell; Treg, regulatory T; TAM, tumor-associated
macrophage; VEGF, vascular endothelial growth factor; TGF-b, transforming growth factor-Β; IDO, indoleamine 2, 3-dioxygenase; Arg1, arginase 1; Gln,
glutamine; TCR, T cell receptor; MHC-I, major histocompatibility complex I; TME, tumor microenvironment; HCC, hepatocellular carcinoma.
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activation, such as TNF-a and IFN- g (57, 58). Treg cell constitutively
express CTLA-4 and secrete inhibitory molecules, such as IL-10 and

TGF-b (59, 60).

As a significant component in the TME, TAM frequently portends

a worse prognosis in HCC (61). TAMs arise from marrow-derived

monocytes and obtain versatile immunosuppressive functions at each

stage of differentiation. M1 and M2 are two polarizing phenotypes of

TAMs with high plasticity in response to different stimuli. Substantial

findings support that M1-polarized macrophages create pro-

inflammatory cytokines and prevent malignancy development,

whereas M2-polarized cells are able to produce tumor growth factor

(IL-6), angiogenic molecules (VEGF), and immunosuppressive factors

(Arg1, IL-10, TGF-b, and IDO) (62). Several HCC-originated

cytokines, including IL-4, IL-13, CSF-1, CCL2, CXCL12, and CTG,

promote CCR2+ inflammatory monocytes differentiation into TAMs in

the TME (63–65). Moreover, TME-derived TGF-b facilitates TIM-3

expression on TAMs, fostering HCC development and immune

tolerance (66). Osteopontin (OPN) correlates with PD-L1

upregulation and prompts TAM chemotaxis through the CSF1-CSF1

pathway (67). Under persistent hypoxia, HIF-1a/IL-1b loop between

tumor cells and TAMs fosters epithelial-mesenchymal transition

(EMT) and immune evasion (68). TAMs also produce cytokines and

chemokines to drive immune suppression in HCC. For example,

TAMs-derived CCL17, CCL18, and CCL22 could attract Treg cell

infiltration into the TME (69, 70). The interplay between MDSCs and

TAMs downregulates the production of IL-6, IL-12, and MHC-II but

upregulates IL-10 secretion. TAM-derived IL-10 damages downstream

CD8+ T cell and NK cell cytotoxicity but increases CD4+ CD25+

FOXP3+ Treg cell frequency (71, 72). Activated TAMs in the

peritumoral stroma of HCC secrete a set of pro-inflammatory

cytokines, such as IL-6, IL-23, IL-b, and TNF-a. These cytokines

trigger the expansion of T helper 17 (Th17) cells that overexpress

PD-1, CTLA-4, and GITR to exert an immunosuppressive function

(73). Overall, TAMs might be a promising target for future

HCC treatment.

Less common immunosuppressive cell types in human HCC

consist of B cell population expressing PD-1, Th17 cells, CD4+ T

cells expressing CCR4 and CCR6, CD14+ DCs expressing CTLA-4

and PD-1, tumor-associated neutrophils, tumor-associated

fibroblasts, and type-II T helper cells (Th2) (74–77). These cells

cooperate in the formation of immunosuppressive milieu and their

presence usually manifests a poor prognosis in HCC.
3.2 Non-parenchymal liver cells

Liver is an immune organ with a number of immunocompetent

cells. Non-parenchymal resident cells, such as Kupffer cells, hepatic

stellate cells (HSC), and liver sinusoidal endothelial cells (LSEC),

cooperate in the maintenance of immune tolerance.

Kupffer cells are liver-resident macrophages that act as antigen-

presenting cells (APC) to form the first line of defense against pathogens

(78, 79). Kupffer cells can contribute to hepatocarcinogenesis and

immune escape underlying several mechanisms: 1) secretion of

immunosuppressive cytokines (IL-10) (80); 2) upregulation

of inhibitory immune checkpoint ligand PD-1 (81); 3) downregulation

of costimulatory molecules (CD80 and CD86) (42, 82); 4) production of
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Indoleamine 2-3 dioxygenase (IDO) (83); 5) recruitment of Treg cells

and T helper 17 (TH17) cells (42, 81, 82). The interaction of PD-L1

expressed by Kupffer cells and PD-1 expressed by T cells leads to T-cell

exhaustion in human HCC (84). HSCs can secrete hepatocyte growth

factor (HGF) that enables MDSC and Treg cells to accumulate inside the

liver (85). Also, HSCs express high levels of PD-L1 to induce T cell

apoptosis (86). LSECs not only motivate Treg cell activation via TGF-b
but also highly express PD-L1 (87). Tumor-associated fibroblasts (TAF)

can trigger NK cell dysfunction by secreting prostaglandin E2 (PGE2) and

IDO, and prompt MDSC production by releasing IL-16 and

CXCL12 (41).
3.3 T-cell exhaustion

Immune checkpoints involve co-inhibitory molecules preventing

T-cell overactivation. Liver tumor cells and stromal cells express

corresponding ligands to evade anti-tumor immunity (88). Co-

inhibitory checkpoints include programmed cell death-1 (PD-1),

cytotoxic T lymphocyte protein 4 (CTLA-4), lymphocyte-activation

gene 3 (LAG3), T-cell immunoglobulin and mucin-domain

containing 3 (TIM3), and others (88), acting as pivotal regulators of

T-cell exhaustion (30, 31, 89).

CTLA-4 is expressed by activated T cells and is constitutively

present on Treg cells. It prevents T cell proliferation and induces Treg

cell activity inside HCC tissues (75, 90). PD-1 is expressed by

activated T cells, NK cells, Treg cells, MDSCs, monocytes, and DCs,

while its ligand, PD-L1, is mainly expressed by tumor and stromal

cells. The interaction of PD-1/PD-L1 is suppressive for antigen-

specific T cell activation (91–93). In HCC, high infiltration of PD-

1+ CD8+ T cells predicts a worse prognosis and a higher risk of

recurrence (94). In turn, overexpression of PD-L1 in tumor cells

prompts CD8+ T cell apoptosis (94). The immune microenvironment

of HCC also involves the overexpression of PD-L1 and PD-L2 in

Kupffer cells, LSECs, and leukocytes (95).

The immunosuppressive roles of LAG3 and TIM3 have recently

been uncovered in HCC. LAG3 that binds MHC-II molecules with

high affinity, is upregulated upon T cell activation and is a molecular

signature of T cell exhaustion (96). LAG3 expression is significantly

higher on CD4+ and CD8+ tumor-infiltrating lymphocytes (TILs)

than in other immune constituents among HCC patients (97).

Similarly, TIM3 is expressed on CD4+ and CD8+ TILs, TAMs, NK

cells in human HCC models (98). TIM3 interacts with its ligand

galectin-9 mediating T-cell dysfunction (99), whereas its expression

on Treg cells leads to enhanced suppressive activity (100). Notably,

TIM3 is highly expressed in less differentiated tumor cells (101),

which predicts poor prognosis in HBV-associated HCC (102).

Overall, immune checkpoints are expressed on the surface of T

cells in different phases. Tumor cells evade immune-mediated

destruction not only by expressing ligands to activate these

receptors but also favor a suppressive TME by recruiting non-

neoplastic cells to express these ligands. Immune checkpoint

inhibitors (ICIs) are monoclonal antibodies designed to specifically

disrupt inhibitory ligand-receptor interaction, removing T-cell

exhaustion and recovering immune elimination (103–105)

(Table 1). LAG3, TIM3, and PD-1 may function synergistically to

facilitate HCC immune evasion and develop drug-resistance to PD1
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1133308
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Chen et al. 10.3389/fimmu.2023.1133308
or PD-L1 blockades (66, 106). Preclinical data support LAG3 and

TIM3 inhibitors in combination with PD1 or PD-L1 ICIs, though

their clinical values still require further elucidation.
3.4 Soluble molecules

The local milieu of cytokines and soluble mediators partly dictate

the immune microenvironment of HCC. Considering a more

complex layer, effects of these pleiotropic molecules greatly differ in

their target immune cell population, or in acute or chronic

inflammatory milieu (107). Non-parenchymal cells and infiltrating

immune cells could secrete several cytokines and concurrently keep

sensitive to these cytokines (108, 109). Secretion of TGF-b, IL-10, and
VEGF into the TME all contributes to immunosuppression (42).

A well-identified example is TGF-b that is abundant in the TME

of HCC. It could be generated by tumor cells, TAMs, and Treg cells

and downregulates anti-tumor immunity at varying levels. Explicitly,

TGF-b drives the polarization of TAMs into pro-tumorigenic M2-

phenotype (110); favors the differentiation of naïve CD4+ T cells into

Treg cells (111); impairs effector CD8+ T cell and NK cell cytotoxicity

(112, 113); inhibits DC cell activation (114); and exert inhibitory

effects on B cells (115). High serum TGF-b might predict poor anti-

cancer response to sorafenib and pembrolizumab in HCC patients

(116, 117). Evidently, TGF-b plays multitude effects on immune and

tumor cells, hindering the inflammatory reaction and supporting

immune evasion in HCC.

IL-10, a tolerance-inducing molecule in the HCC TME, is

produced by tumor cells, TAMs, Treg cells, and DCs (118). It

dampens the recruitment of tumor-infiltrating T cells (119) and

upregulates PD-L1 expression in monocytes (120). High circulating

levels of IL-10 have been shown to induce decreased TIL activity (121)

and increased MDSCs (122). Increased plasma level of IL-10 portends

to a poor prognosis in HCC patients (49, 123).

VEGF, a well-known regulator driving tumor angiogenesis, is

mainly secreted by both tumor cells and the surrounding stroma

(124). In addition to prompt angiogenesis, VEGF attenuates anti-

tumor response by negatively affecting antigen-presenting cells
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by positively increasing MDSCs and Tregs recruitment (125). Also,

VEGF increases PD-1 expression on T cells and PD-L1 expression on

TAMs. Focal gains at chromosome 6p21 leads to overexpression of

VEGFA and thereby foster an immunosuppressive TME (126, 127).

Overall, these findings build the fundamental to test the efficacy of

drugs that counteract the immunosuppressive actions of TGF-b,
VEGF, or IL-10 in HCC.
3.5 Signaling cascades

Tumor-intrinsic signaling cascades also affect the composition

and function of HCC immune infiltrates. In a mouse model of HCC,

CTNNB1 mutation or activation of WNT-b-catenin pathway could

downregulate CCL5 expression and dampen DC recruitment, leading

to immune escape and resistance to anti-PD-1 therapy (128). The

expression of NKG2D ligand on HCC cells is also downregulated by

b-catenin signaling, which is detrimental to the MHC-dependent

immune response responsible by NK cells (129). Loss of p53 function

facilitates the recruitment of immunosuppressive cells, and hepatoma

CDK20 activation prompts the recruitment of MDSCs (38). In

addition, overexpression of MYC, accounting for around 50-70%

HCC cases, has been associated with PD-L1 upregulation (130).

Finally, chronic HBV infection also results in overexpression of

PD-L1 on Kupffer cells, leukocytes, and LSECs, and thus enhancing

inhibitory signals in HCC TME (95, 131).
4 Immune evasion mechanism in the
gut microbial microenvironment
of HCC

The microbes reside within the tumor cells and immune cells.

Increasing evidence suggests a critical link between the microbiota and

the immune system (132–134). Intra-tumoral microbes and their

products, defined as the tumor microbe microenvironment, have the

potential to affect the tumor immunemicroenvironment. Gut microbiota
TABLE 1 Immune checkpoint inhibitors and their targets in HCC.

Target ICI Clinical trial Tumor type Phase Status Enrollment

PD-L1

Atezolizumab NCT04803994 Intermediate-stage HCC III recruiting 434

Durvalumab NCT05301842 Locoregional HCC III recruiting 525

Sintilimab NCT04220944 Unresectable HCC I recruiting 45

PD-1

Nivolumab CheckMate-040 Advanced HCC I-II active 659

Pembrolizumab Keynote-224 Advanced HCC II active 156

Tislelizumab NCT03412773 Unresectable HCC III active 674

CTLA-4
Ipilimumab NCT03682276 HCC I-II recruiting 32

Tremelimumab NCT01008358 Advanced HCC II completed 20

TIM-3 Cobolimab NCT03680508 Advanced HCC II recruiting 42

LAG3 Relatilimab None None None None None
HCC, hepatocellular carcinoma; ICI, immune checkpoint inhibitor; PD-1, programmed death 1; PD-L1, programmed death 1-ligand; CTLA-4, cytotoxic T lymphocyte-associated protein 4; TIM-3, T
cell immunoglobulin and mucin domain containing-3; LAG-3, lymphocyte-activation gene 3.
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is termed as a collection of microorganisms that colonize the intestine

(135). Of note, the gut microbiota could repress immunosurveillance and

prompt hepatocarcinogenesis. Understanding how gut microbes affect

hepatic immune escape creates therapeutic innovations to improve HCC

immunotherapy. The negative roles of microbes on TIME are

multifaceted: 1) microbial activation of TLR4; 2) microbial dysbiosis; 3)

microbe-derived metabolites; 4) microbial stimulation of

inhibitory checkpoints.
4.1 PAMP-TLR4 axis mediates
immune evasion

Microbial adjuvanticity is explained as the immunomodulatory

function of the pathogen-associated molecular patterns (PAMP), which

could be sensed by pattern recognition receptors (PRR). The most well-

elaborated subtype of PRR is Toll-like receptor (TLR) (136). Microbial

activation of TLRs contributes to the formation of immunosuppressive

TME. TLR4 is considered to be one of the most important receptors to

prompt hepatocarcinogenesis, which is expressed by hepatocytes,

Kupffer cells, HSCs, LESCs, DCs, NKs, B cells, and T cells (137).

Overexpression of TLR4 has been identified in HCC tumor samples

(138, 139). TLR4 primarily recognizes lipopolysaccharide (LPS) that is a

constituent of the cell wall of Gram-negative bacteria. LPS-induced

TLR4 signaling is associated with microvascular invasion, early

recurrence, and shortened survival in HCC patients (140).

Microbes mediate immune escape of HCC through direct or

indirect TLR4-dependent manners. Firstly, TLR4 affects the

recruitment and differentiation of various tolerance-inducing cells.

Bacterial LPS recognized by TLR4 could stimulate hepatocytes to

express CXCL1 that is a chemokine recruiting CXCR2+

polymorphonuclear MDSCs (141). Similarly, Fusobacterium

recognized by TLR4 regulates IL-6/STAT3/C-MYC signaling

pathway, facilitating TAM polarization into M2 phenotype (142).

The interaction of TLR4 with macrophages indirectly prompts the

accumulation of Treg cells in hepatoma cell lines, along with the

upregulation of IL-10 and CCL22 (138). Secondly, LPS-induced TLR4

directly activates JNK/MAPK signaling to enhance the invasive ability

and EMT of HCC cells (143). EMT enables epithelial cells to obtain

mesenchymal characters to favor the formation of an

immunosuppressive TME via upregulating co-inhibitory

checkpoints and inducing resistance to NK cell-mediated lysis

(144–146). The association between EMT and immunosuppression

has been widely reported in HCC (147). Thirdly, LPS-mediated

TLR4-AKT pathway upregulates the expression of Sox2, a stemness

marker gene, thereby increasing the number of cancer stem cells

(CSCs) of HCC (148). It is well known that CSCs are involved in

immune evasion through certain intrinsic and extrinsic mechanisms

(149). There is a tight association between TLR4 expression and CSC

characteristics, contributing to the failure of immune surveillance

(150). Furthermore, TLR4 is a direct target of microRNA-122 (miR-

122), a tumor suppressor that inhibits the expression and activities of

cytokines, such as VEGF, IL-6, COX-2, prostaglandin E2, and MMP-9

(151). Downregulation of miR-122 is linked to immune escape of

HCC by targeting TLR4, which is associated with PI3K/AKT/NF-KB
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signaling pathway (151). Additionally, LPS-activated STAT3

signaling upregulates VEGF production for HCC angiogenesis

(152). As discussed previously, VEGF is a key negative regulator of

anti-tumor immunity.

Overall, these findings suggest that microbial stimulation of TLR4

can change the TIME. Intriguingly, drugs targeting TLR4 might be

adjuvants to immune checkpoint inhibitors. Besides interacting with

TLR4, a specific gut microbe can exert immunomodulatory effect via

many different PRR-mediated signaling pathways, while some of

them await further exploration (153).
4.2 Microbial dysbiosis mediates
immune evasion

Maintenance of a balanced microbiota composition is crucial to

forming an ecological barrier to insults from the external stimuli. The

gut microbiota and mucosal immunity interact with each other to

maintain intestinal homeostasis. Once this balance is disrupted,

microbial dysbiosis would provide survival advantages for

pathogenic bacteria along with decreased number of beneficial ones

(154). An imbalance in gut microbiota composition is detected in

HCC, with a significant increase of E. coli and Atopobium cluster

while a significant regression of Lactobacillus species, Bifidobacterium

species, and Enterococcus species (154). A recent study pointed out

that a high cholesterol diet could induce gut microbial dysbiosis

(depleted Bifidobacterium and Bacteroides) while altered flora

metabolites in HCC patients (155).

Dysbiosis-mediated immune escape refers to a variety of

mechanisms. Firstly, microbial dysbiosis can affect the content of

immunogenic substances participating in intestinal homeostasis

maintenance. High levels of lipopolysaccharide (LPS) have been

detected in both pre-clinical models and HCC patients (154, 156),

which is likely attributed to the leaky gut and bacterial translocation

(157). Accumulation of circulating LPS from Bacteroides can prompt

immune tolerance and hepatocarcinogenesis (156, 158). Likewise,

TLR2 agonist lipoteichoic acid (LTA) can act on HSC to prompt

senescence-associated secretory phenotype and enhance hepatocyte

proliferation (159, 160). Secondly, microbial dysbiosis may alter the

intracellular tight junction, thereby enhancing the interaction of

dangerous signals with immune cells and facilitating the chronic

inflammation (161–164). Previous studies supported that HCC often

occurs in the context of chronic inflammation (165–167). Explicitly,

some microbiota can invade colonic epithelial cells and activate

intrinsic signaling pathways, aggravating the host inflammatory

responses and releasing more cytokines (168, 169). Dysbiosis-driven

chronic inflammatory can trigger oxidative stress that can deplete

sensitive microbes and leave resistant strains (170). More

importantly, it can mediate immune evasion by prompting

angiogenesis, disrupting adaptive immunity, and altering the

expression of pathogen recognition receptors (such as TLRs) and

downstream signaling (171, 172). Overall, changes in microbiome

composition are associated with the leaky gut (160, 173),

endotoxemia, and systemic inflammation (174–176), predisposing

the affected individuals more sensitive to developing HCC.
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4.3 Microbe-derived metabolites mediate
immune evasion

Microbial metabolites could enter the blood circulation and their

receptors spread over both tumor cells and tumor infiltrating

lymphocytes. Gut microbe-mediated bile acid metabolism regulates

immune escape via decreasing the recruitment of NK T cells.

Secondary bile acids (SBA) are derived from primary bile acids, of

which process is mediated by gut microbes (177). SBA could

downregulate the secretion of chemokine CXCL16 that interacts with

CXCR6 to recruit NK T cells. Therefore, a reduced number of NK T cells

through SBA via downregulating CXCR6-CXCL16, is beneficial for

immune escape and HCC progression. Conversely, antibiotics that

eliminate gut microbes could revert the above effects (178).

Deoxycholic acid (DCA) belongs to a gut bacterial metabolite that

can induce DNA damage. A research confirmed that dietary or

genetic obesity could result in microbial dysbiosis, thereby leading

to an increasing level of DCAs (179). DCA has been shown to induce

hepatic stellate cell senescence, thereby provoking the secretion of

multiple cytokines that prompt hepatocarcinogenesis in mice model

exposed to chemical carcinogen (179). Therefore, decreasing DCA

level or targeting gut microbiota can specifically prevents immune

evasion and inhibits HCC progression. Some other microbial-derived

metabolites, such as N-acetylmuramic acid and N-acetylglucosamine,

also exert their immunosuppressive effects on the TME (180).
4.4 Microbial activation of inhibitory
checkpoints mediates immune evasion

The interactions between microbes and immune checkpoints

could protect tumors from immune attack. The well-known

inhibitory checkpoints include PD-1, CTLA-4, TIM-3, LAG-3,

TIGIT, CEACAM1. Fap2 protein of Fusobacterium mucleatum

binds to inhibitory receptor TIGIT or CEACAM1, repressing the

activity of NK cells and effector T cells (181–183). The helicobacter

pylori HopQ outer membrane protein interacts with CEACAM1 to

inhibit immune cell activities (184). In addition, CD47 expressed by

tumor cells can recognize its ligand SIRPa expressed by DCs and

macrophages. CD47-SIRPa interaction could repress antigen

presentation activity and phagocytosis (185). However,

Bifidobacterium can upregulate the production of IFN-I in DCs,

enhancing antigen presentation and T cell activation. Emerging

evidence indicates that intravenous injection of Bifidobacterium

could improve the efficacy of CD47 blockade (186). Overall,

microbial stimulation of inhibitory checkpoints could manipulate

HCC immune escape, but connections between microbes and

inhibitory checkpoint deserve more investigation.
5 Immune evasion mechanism in the
metabolic microenvironment of HCC

In response to external stress, such as nutrient competition,

hypoxia, suppressive metabolites, tumor cells occur metabolic

adaptions for survival from senescence and immune evasion.

Understanding additional immunosuppressive mechanisms led by
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immune evasion to immune elimination (187). Figure 4 introduces

mechanisms of metabolism-mediated immune escape in HCC.
5.1 Glucose deprivation

Glucose is not only the most dependent nutrient for tumor cells,

but also an essential energy source for immune cell activation,

differentiation, and function (188, 189). Owing to the enhanced

aerobic glycolysis, tumor cells consume a large amount glucose.

This activity limits the glucose availability and results in lactate

accumulation that acidifies the TME, severely impeding CD8+ T

cell activation and function (190). Glucose restriction in TILs is found

to reduce mTOR activity, glycolytic capacity, and IFN-g production,
and thereby immune cells gradually lose their effector functions (191,

192). By contrast, Treg cells can use lactate to fuel the tricarboxylic

acid (TCA) cycle and support their survival under a low glucose

environment (193). Moreover, M2-like TAMs and MDSCs can be

highly glycolytic and use glucose to reinforce their survival and

suppressive activity (194–196). In addition, lactate prompts TAM

M2 polarization, MDSC differentiation, as well as PD-L1 expression in

TAMs and MDSCs, contributing to immunosuppression (196–200).
5.2 Amino acid deprivation

Competition uptake for amino acids also contributes to immune

escape (201, 202). For example, glutamine (Gln) deficiency in the TME

inhibits effector T cell activation and reduces cytokine production

(203). Also, Gln deprivation impairs Th1 cell differentiation while

favoring Treg cell maintenance (204, 205). Intriguingly, TAM can

enhance Gln synthetase to provide Gln and support TAMs in skewing

towards the M2 phenotype even within a Gln-deficiency environment

(206). Likewise, arginine (Arg) has been reported to be deprived in the

TME. Arginase 1 (Arg1) or 2 convert arginine to ornithine that

hampers CD8+ T cell activation and cytotoxicity (207). Conversely,

Arg1 maintains the immunosuppressive property of MDSCs and

facilitate repolarization of M2-like macrophages, consequently

maintaining an immunosuppressive TME (208). In addition, tumor

cells also outcompete T cells for methionine (Met). Met recycling

pathway has been reported to drive T cell exhaustion in HCC (209).
5.3 Lipid metabolism and toxicity

Tumor cells display enhanced lipogenesis and produce a large

amount of lipids in the TME. Immune cells uptake excessive lipids by

CD36 or Mincle, leading to increased lipid metabolism and high

oxidative stress. The direct consequences are T cell dysfunction and

ferroptosis. However, Treg cells with high-level of glutathione

peroxidase 4, prevents ROS accumulation and ferroptosis. Further,

lipid-mediated endoplasmic reticulum stress prompt M2

differentiation and favors their suppressive function. Cholesterol

homeostasis is disrupted due to the overexpression of acyl

coenzyme A-cholesterol acyltransferase 1 (ACAT1), consequently

accelerating the migration of HBV-related tumor cells while

inhibiting the function of HCC-specific TILs (210, 211).
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5.4 Metabolites

Metabo l i t e s ex i s t ing in the HCC TME a l so ho ld

immunomodulatory properties. Indoleamine-pyrrole 2,3-

dioxygenase (IDO) is a heme-containing enzyme catalyzing the

conversion of tryptophan to kynurenine. Its activation supports

malignant cells to escape from immune clearance (30). Hyperactive

IDO leads to the depletion of tryptophan from the TME contributing

to T-cell anergy (212). Moreover, kynurenine accumulation

upregulates PD-1 expression in effector T cells (213) and induce

Treg cell production (214). IDO upregulation plays a role in drug-

resistance to ICIs in patients with HCC. It has been confirmed that

inhibiting IDO adds therapeutic benefits of ICI (215).

Adenosine is another immunosuppressive metabolite,

concurrently impairing T cell functionality and prompting Treg cell

proliferation (216, 217). Both tumor cells and MDSCs express

ectonucleotidase CD39 and CD73 hydrolyzing ATP/ADP to

adenosine (216). HCC patients with high levels of CD39 tend to

have increased risk of recurrence and shortened overall survival (218).

Overexpression of CD73 has been reported in human HCC cell lines,

where it promotes HCC growth and metastasis (219).

5.5 Hypoxia
It is a common phenomenon that tumor cells consume excessive

oxygen leading to an anoxia TME. HIF-1a is a major transcriptional
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factor that is upregulated in T-cell in response to hypoxia. First, hypoxia

prompts the expression of inhibitory checkpoints, such as PD-1, LAG-

3, TIM-3, and CTLA-4 (220). It also drives PD-L1 and IL-10 expression

on MDSCs, which enhances their suppressive activity (221). Second,

HIF-1a-induced EMT could create advantages for hepatoma cells to

recruit IDO-overexpressing TAMs to repress T-cell response, and

thereby facilitating immune escape via CCL20-dependent manner

(147). Third, hypoxia-induced HIF-1a is detrimental to Treg cell

differentiation and stability (222). Furthermore, HIF-1a binds to the

promoter region of VEGF, followed by enhanced tumor angiogenesis

(223). Hypoxia also aggravates the accumulation of lactate, which

acidifies the TME and curtails effector immune cell function (224).

Lactate contributes to the M2-like TAM polarization and maintains

Treg cell function in a glucose-deficiency TME (197, 225). Under

hypoxic condition, the COX-2/PGE2 axis stabilizes HIF-2a expression

and activity to prompt HCC progression and develop drug-resistance

to sorafenib (226). Overall, hypoxia can drive immunosuppression and

exacerbate HCC immune escape.
6 Potential therapeutic strategies
in the TME

Auspiciously, systemic therapies with molecular and immune

therapies have remarkably revolutionized the management of HCC.
FIGURE 4

Mechanisms of metabolism-mediated immune escape. In the TME, hypermetabolic tumor cells interfere with immune cell function by depriving
nutrients and produce various types of metabolic stress. Tumor cells utilize large amounts of glucose and amino acids to fuel their glycolysis and amino
acid metabolism. These activities greatly limit nutrient availability to T cells, leading to the formation of immunosuppressive TME. Tumor cells also release
excessive lipids into the TME, resulting in the enhanced lipid metabolism, high oxidative stress, and T-cell dysfunction. Conversely, Treg cells express
high levels of glutathione peroxidase 4, avoiding ROS accumulation and the induction of ferroptosis. Cancer metabolism produces various metabolic
stimuli, including hypoxia, low PH, and ROS, all of which impede CD8+ cytotoxicity and fitness. The solid black arrows present that the majority of
nutrients are consumed by the cells, whereas the dashed black arrows indicate a paucity of molecule available to the cells. The red arrows represent
inhibited metabolic pathways. MDSC, myeloid-derived suppressor cell; Treg, regulatory T; TAM, tumor-associated macrophage; Th1, T helper 1; IDO,
indoleamine 2, 3-dioxygenase; Arg1, arginase; ROS, reactive oxygen species; KYN, kynurenine; Met, methionine; Gln, glutamine; Gpx4, glutathione
peroxidase 4.
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Five single-agent molecular agents have been adopted by the US Food

and Drug Administration (FDA) (3, 4, 227). In 2017 and 2018, two

anti-PD-1 blockades, nivolumab and pembrolizumab, are approved

as the second-line treatments for HCC (228). Notably, the superior

results of atezolizumab plus bevacizumab versus sorafenib for

advanced HCC heralded a new orientation of combination

therapies (10). Currently, numerous clinical trials are in progress

with ICIs, along with combined with anti-VEGF agents or tyrosine

kinase inhibitor (TKIs). All approved drugs for HCC have been

displayed in Table 2. A more refined understanding of the tumor

microenvironment has led to great interests on ICIs. It is well

evidenced that the immunosuppressive microenvironment in HCC

triggers immune tolerance and escape by different mechanisms.

Therefore, harnessing the TME by direct or indirect manners

would provide new breakthroughs in HCC clinical treatment.
6.1 Targeting the immune
microenvironment

A promising approach is to deprive or neutralize cells with

immunosuppressive functions. MDSCs have been considered as a

potential target for resetting the immune tolerance status of HCC.

Trabectedin not only targets malignant cells but also induces

apoptosis or senescence of bone marrow cells (236). It has been

reported to exert a strong cytotoxic effect on HCC cells (237). Another

agent is estrogen that reportedly reduces IL-6 stimulation and inhibits

STAT6 activation, leading to the disruption of bone marrow cells in

HCC models (238, 239). The combination therapy of anti-PD1/PD-
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L1 and anti-MDSCs (CCRK inhibition, p38 MAPK inhibitor, and

C5AR blockade) may exert a synergistical effect on eradicating HCC

(38, 240, 241). Also, combination use of radiation and IL-12 could

boost anti-tumor immunity by reducing MDSC accumulation and

ROS production (242). Many potential targets of MDSCs have been

designed to interfere with immature myeloid cells (Table 3), but their

combination with anti-PD-1/PD-L1 blockades still require additional

validation in preclinical and clinical models. Alternatively, inhibiting

Tregs or TAMs is another strategy to restore immune response (258,

259). Treg can be depleted by numerous agents, such as

cyclophosphamide, gemcitabine, mitoxantrone, fludarabine, and

CCR4-targeted antibodies (253). Sorafenib, a multi-kinase inhibitor

for HCC, is able to reduce Treg infiltration into the liver by

downregulating the TGF- b signaling (54). It has been shown that

WNT-b-catenin signaling induces M2-like polarization of TAM and

thereby reinforces malignant behaviors, whereas blocking WNT-b
-catenin pathway in TAMs may rescue immune evasion of HCC

(260). Overall, the modulation of suppressive immune cells is a

possible adjuvant therapy to attenuate HCC progression. As shown

in Table 3, treatment of MDSCs, TAMs, and Tregs targets in HCC has

been documented and could be a new strategy for treating HCC (254–

257, 261).

TGF-b pathway is a promising target for HCC therapy, as its

inhibition tends to reduce the EMT and reactivate NK cells.

Galunisertib is a small molecular inhibitor that reduces the

phosphorylation of SMAD2, downregulating TGF-b pathway and

inhibiting HCC progression (262). Galunisertib monotherapy has

been shown to extend overall survival of advanced HCC patients in a

phase-II trial (263). Combination of galunisertib and sorafenib
TABLE 2 FDA-approved drugs for hepatocellular carcinoma.

Drug Classification Target Approval Treatment Clinical
trial Efficacy Reference

Sorafenib
Multi-kinase
inhibitor

BRAF, VEGFR, PDGFR, KIT 2007 First line NCT00492752
OS: 10.7 VS 7.9 months

(placebo)
(229, 230)

Regorafenib
Multi-kinase
inhibitor

VEGFR, PDGFR, FGFR1, KIT,
RET, BRAF

2017 Second line NCT01774344
OS: 10.6 VS 7.8 months

(placebo)
(7)

Nivolumab ICI PD-1 2017 Second line

CheckMate-
040

CheckMate-
459

ORR: 20%
OS: 16.4 VS 14.7 months

(sorafenib)
(231, 232)

Lenvatinib
Multi-kinase
inhibitor

VEGFR, FGFR, PDGFR, RET,
KIT

2018 First line NCT01761266
OS: 13.6 VS 12.3 months

(sorafenib)
(8)

Pembrolizumab ICI PD-1 2018 Second line
Keynote-224
Keynote-240

ORR: 17%
OS: 13.9 VS 10.6 months

(placebo)
(233, 234)

Cabozantinib
Multi-kinase
inhibitor

VEGFR, MET, RET, KIT, AXL 2019 Second line NCT01908426
OS: 10.2 VS 8 months

(sorafenib)
(6)

Ramucircumab
Monoclonal
antibody

VEGFR 2019 Second line NCT02435433
OS: 8.5 VS 7.3 months

(placebo)
(9)

Nivolumab +
Ipilimumab

ICI plus ICI PD-1 + CTL1-4 2020 Second line
CheckMate-

040
ORR: 33% (235)

Atezolizumab +
Bevacizumab

ICI plus anti-
VEGF

PD-L1 + VEGF 2020 First line IMbravel
OS: 19.2 VS 13.4 months

(sorafenib)
(10)
f

ICI, immune checkpoint inhibitor; OS, overall survival; ORR, overall response rate; VEGFR, vascular endothelial growth receptor; PDGFR, platelet-derived growth factor receptor; FGFR, fibroblast
growth factor; PD-1, programmed cell death-1; PD-L1, programmed cell death ligand 1; CTLA-4, cytotoxic T lymphocyte-associated antigen-4.
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demonstrated an improvement of efficacy compared to historical

records of sorafenib monotherapy (NCT01246986). The combination

strategy of galunisertib and PD-1 blockade is ongoing in clinical trials

(NCT02423343 and NCT02947165). The monoclonal anti-TGF-b
antibody ascrinvacumab also showed hopeful results among HCC

patients in a phase I-II trial (264) and its combinational application

with nivolumab is currently under investigation (NCT05178043).

Targeting VEGF enables ICIs more effective through multiple

pathways (265, 266). VEGF inhibition not only transiently normalizes

abnormal vasculature, but also increases CTL infiltration and

modulates checkpoint expression on T lymphocytes (267, 268).

Therefore, VEGF inhibition appears to be an ideal combinatorial

partner for ICI as a locoregional therapy for HCC. IMbrave150 trial

demonstrated that the addition of anti-VEGF inhibitor

(Bevacizumab) significantly improved efficacy from ICI

(atezolizumab) (10). Other combinations of ramucirumab (anti-

VEGFR2) or Lenvatinib (anti-VEGFR and anti-FGFR) with ICIs

also have been investigated (269).
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6.2 Harnessing the microbiome for
HCC immunotherapy

Targeting the gut microbiota for HCC is increasingly attractive,

including probiotics, prebiotics, fecal microbiota transplantation

(FMT), and antibiotics. Since the gut microbiota dynamically

regulates the host immunity, manipulating the gut microbiota may

be a new orientation to improve anti-HCC immunotherapy.

Probiotics can keep gut microbial balance when given in certain

amounts. Probiotic supplement as a dietary approach to repress HCC

growth has been demonstrated. Feeding probiotics mixture Prohep

(comprising Lactobacillus rhamnosus and Escherichia coli) could

reduce liver tumor size, alter gut microbial composition to

beneficial bacteria (Oscillibacter and Prevotella), and decrease the

secretion of VEGF (270). Supplementing probiotics to Chinese

subjects who are exposed to AFB1, such as Lactobacillus rhamnosus

LC705 and Propionibacterium, could reduce the urinary excretion of

aflatoxin-DNA adduct (AFB1-N7-guanine) (271). This finding kept
TABLE 3 A summary of molecular targets in the tumor immune microenvironment of HCC.

Target
cell Molecule Major effects Therapeutic strategy Reference

MDSC

CCL26 CCL26 mediates MDSC recruitment in the hypoxic regions of HCC. CCL26 blockade (39)

CCL9/CCR1 CCL9/CCR1 induces MDSCs recruitment to the spleen. CCL9/CCR1 blockade (243)

ENTPD2/CD39L1 HIF-1 prompts MDSC accumulation via ENTPD2/CD39L1 in HCC. ENTPD2/CD39L1 blockade (40)

CCRK
CCRK induction drives mTORC1-dependent G-CSF expression to recruit MDSCs and
enhance tumorigenicity in HCC.

Anti-CCRK (244)

IL-6 IL-6 expression level is highly associated with MDSC phenotype in HCC patients. Anti-IL-6 (245)

PD-L1 PD-L1+ MDSCs are increased in HCC patients. PD-L1 blockade (246)

C5AR C5AR can recruit MDSCs to the TIME. C5AR blockade (240)

Treg

PD-1 PD-1-mediated inhibitory signal in the TME. PD-1 blockade (247, 248)

CTLA-4
Tumor-induced regulatory DC subset inhibit immunity via CTLA-4-dependent IL-10
and IDO production.

CTLA-4 blockade (75, 249)

TIM3
Antibodies against TIM3 restore immune response of HCC-derived T cells to tumor-
specific antigens.

TIM3 blockade (97, 250)

LAG3
Antibodies against LAG3 restore immune response of HCC-derived T cells to tumor-
specific antigens.

LAG3 blockade (97)

GITR
GITR-ligation can improve anti-tumor response by abrogating Treg-mediated
suppression in HCC.

GITR blockade (251)

ICOS ICOS+ FOXP3+ Treg cells are enriched in the HCC TME. ICOS blockade (252)

CCR4 Tregs can be targeted and depleted by mABs towards CCR4. Anti-CCR4 (253)

TGF-b TGF-b prompts Treg infiltration into the liver. Sorafenib (54)

TAM

IL-6, IL-23, IL-b,
TNF-a

Cytokines enhance the expansion of IL-17-producing CD4+ Th17 cells.
Anti-IL-6, anti-IL-23, anti-

IL-b, anti-TNF-a
(73, 254)

TGF-b TGF-b prompts TIM-3 expression in TAMs. Anti-TGF-b (66)

IL-1b IL-1b prompts EMT and HCC immune escape. Anti-IL-1b (68)

CCR2 CCR2 prompts EMT transition and M2-plarization of TAMs. Anti-CCR2 (255, 256)

CSF-1 CSF-1 reprograms polarization of TAMs. CSF-1 receptor antagonist (257)
f

MDSC, myeloid-derived suppressor cell; Treg, regulatory T; TAM, tumor-associated macrophage; HCC, hepatocellular carcinoma; TME, tumor microenvironment; TIME, tumor immune
microenvironment; CCL26, C-C motif ligand 26; ENTPD2, endothelial growth factor; IDO, indoleamine 2, 3-dioxygenase; HIF, hypoxia-inducible factor; G-CSF, granulocyte-colony-stimulating factor;
CSF, colony-stimulating factor; DC, dendritic cell; mAB, monoclonal antibody; TNF-a, tumor necrosis factor a; TGF-b, transforming growth factor b; EMT, epithelial-mesenchymal transition.
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in line with the protective capacity of probiotics against AFB1-

induced HCC (272, 273). In another rat study, probiotics treatment

containing Lactobacilli , Bifidobacteria , and Streptococcus

thermophilus subsp Salivarius, can alleviate diethylnitrosamine

(DEN)-induced hepatocarcinogenesis by preserving intestinal

homeostasis and ameliorating chronic inflammation (154). Also,

mice models treated with probiotics had a lower level of Th17 cells

in gut compared to untreated mice. Therefore, probiotic can improve

microecological balance, enhance intestinal barrier function, and

prevent immune evasion of HCC.

Prebiotics are foods that selectively accelerate beneficial

microorganism growth and suppress harmful bacterial growth,

thereby adjusting gut microbial homeostasis (274). Besides, they

can result in the production of short-chain fatty acid (SCFA) and

ultimately inhibit HCC development. Prebiotics were found to

maintain microbial stability and decrease pro-inflammatory

pathways that trigger HCC initiation and progression (275). In

mice given transplantation of BCR-ABL-transfected BaF3 cells,

insulin-type fructans hold the promise to decrease hepatic BaF3 cell

infiltration, relieve inflammation, and increase portal propionate

content (276). Propionate inhibits BaF3 cell proliferation via

cAMP-dependent pathway or by binding with GPR43 (276).

Overall, prebiotics supplementation is a novel strategy to treat HCC.

Using antibiotics is another effective strategy to interrupt the

tumor-prompting gut-liver axis. Antibiotics can reduce bacteria

translocation, decrease pro-inflammatory signals from the leaky gut,

and repress the synthesis of bacterial metabolites. For example,

intestinal sterilization with antibiotic cocktail (containing neomycin,

ampicillin, vancomycin, and metronidazole) has been proven to

efficiently reduce the number and size of liver tumors induced by

DEN-CCL4 or DMBA-HFD (179, 277). Consistently, the antibiotic

cocktail (ABX, including vancomycin, primaxin, neomycin) or

vancomycin treatment selectively elicited anti-tumor responses with

increased CXCR6+ NK T cells and heightened IFN-g production in

HCC mouse models (178). As mentioned previously, CXCR6

expression level is controlled by gut microbiome-mediated primary-

to-secondary bile acid conversion. A recent study suggests that

vancomycin can inhibit HCC progression in insulin-fed TLR5-

deficient mice (278). Concurrently, vancomycin can lead to

selective depletion of gut microbiota, comprising Bifidobacteria, G+

Lachnospiraceae, and Ruminococcaceae.

FMT refers to the infusion of fecal solution from a healthy donor

to the recipient intestinal tract to treat a disease associated with

altered gut microbiota (279). FMT has successfully been used to treat

Clostridium difficile infection via mechanisms including activation of

mucosal immune system, maintenance of bile acid metabolism, and

repair of the intestinal barrier (280). For example, alcohol-sensitive

mice exhibited a decrease in Bacteroidetes and an increase in

Actinobacteria following alcohol intake. After FMT, liver injury was

relieved and dysregulated flora was partially recovered (281). Bajaj

et al. reported that FMT enriched with Lachnospiraceae and

Ruminococcaceae is able to restore the disruption of microbial

diversity and function led by antibiotics in advanced cirrhosis

patients (282). However, there are limited data on FMT in the

treatment of HCC, and it is unclear whether microbial dysbiosis

can be reverted by FMT (275). More studies are needed to validate the

safety and efficacy of FMT in the future.
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The significance of gut microbiota in modulating anti-tumor

response to ICIs has been widely highlighted (283, 284). On the

one hand, the dynamic change of gut microbiota can predict early

outcome of immunotherapy. In a study, fecal samples from patients

who respond to ICI showed higher taxa richness and more gene

counts compared to non-responding patients (285). Stool fecal

microbiota transplantation from cancer patients, who respond to

ICIs, into germ-free or antibiotic-treated mice, ameliorated the

efficacy of PD-1 ICIs, whereas fecal transplantation from non-

responders failed to do so (286). This provoking finding is also

supported by two other studies, describing different gut microbiota

associated with improved response to ICIs (287, 288). Given those

HCC patients with microbial dysbiosis, it is reasonable to speculate

that the underlying dysbiosis potentially leads to immunotherapy

failure. Microbial intervention may produce more profound effects in

HCC than in other tumors. A feasible strategy is to combine ICI and

selective microbiota manipulation. Recently, a clinical trial

(NCT03785210) combining vancomycin treatment with ICI has

been initiated, which will answer whether such a combination

strategy would benefit patients with HCC. On the other hand, there

is an association between the gut microbiota and immune-related

toxicity (289). Targeting the specific microbiota may strengthen the

effects of CTLA-4 blockade by reducing collateral toxicity (148).
6.3 Manipulating immunometabolism
in the TME

The tumor-immune crosstalk inevitably leads to metabolic

modifications in tumor cells and immune cells, serving as one of

the most important mechanisms of immune evasion of HCC.

Nutritional interventions aim to target immunometabolism in the

TME (290). Dietary has been shown to have direct effects on both

immune cells and tumor cells.

A ketogenic diet targets the Warburg effect in tumor cells by

reducing glucose consumption while reprogramming effector T cells

to rely on the OXPHOS (290, 291). In response to an increase of

ketone bodies, CD4+ and CD8+ T cell secrete more cytokines, such as

IFN-g, TNF-a, perforin, and granzyme B (290). Nutritional

interventions of essential amino acids also affect anti-tumor

response. For example, arginine supplementation could switch T-

cell metabolism from glycolysis to OXPHOS to enhance their survival

(292, 293). Met supplementation might restore anti-tumor immunity

by prompting the secretion of IL-2, TNF-a, and IFN-g from TILs

(294). IDO inhibition renders the TME less immunosuppressive by

avoiding tryptophan depletion. It has been reported that IDO is

involved in drug-resistance to ICI (295). Combinatorial treatments of

IDO inhibitor and anti-PD1 or anti-CTLA4 blockades were shown to

prolong survival in mouse models (295, 296). A phase I-II clinical trial

(NCT03695250) is underway to evaluate IDO1 inhibitor (BMS-

986205) in combination with nivolumab in patients with liver

cancer. Caloric restriction is an alternative strategy to treat HCC. A

study supported that caloric restriction in combination with radiation

can decrease the abundance of Treg cells and expand the proliferation

of CD8+ TILs in the TME (297). Moreover, it supports an immune

signature linked to superior anti-tumor immunity and confers stem

cell-like properties to effector T cells (298, 299). Altogether, targeting
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tumor-associated metabolic pathways is crucial to enhancing

response to immune surveillance.
7 Conclusion

The tumor microenvironment of HCC is a dynamic and

complicated network. Intricate interactions among suppressive

immune cells, immunoregulatory cytokines or signaling, hostile

metabolites, and the unbalanced gut microbiome collectively create a

permissive TME that mediates immune evasion to favor HCC growth.

In recent years, the combination therapy of atezolizumab and

bevacizumab opened a new era for HCC treatment. However, HCC

is still one of the worst prognoses and novel strategy targeting the TME

is an urgent need. Given the complexity of the TME in HCC,

combinatorial therapies can include ICIs, agents targeting

immunosuppressive immune cells, anti-VEGF inhibitors, anti-TGF-b
antibodies, microbiota manipulation, and metabolism intervention. A

more holistic approach should be considered as a standard treatment

for patients with advanced HCC. However, the molecular

underpinnings governing immune evasion still need further

clarification. Profound appreciation of the tumor-stromal interactions

will enhance our understanding of the negative drivers of

immunosurveillance. Multidimensional analysis, such as single cell

analysis and next-generation sequencing technology, contribute to

exploring detailed mechanisms behind HCC occurrence and

identifying other targets in the TME.
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AML is a malignant disease of hematopoietic progenitor cells with unsatisfactory

treatment outcome, especially in patients that are ineligible for intensive

chemotherapy. Immunotherapy, comprising checkpoint inhibition, T-cell

engaging antibody constructs, and cellular therapies, has dramatically

improved the outcome of patients with solid tumors and lymphatic neoplasms.

In AML, these approaches have been far less successful. Discussed reasons are

the relatively low mutational burden of AML blasts and the difficulty in defining

AML-specific antigens not expressed on hematopoietic progenitor cells. On the

other hand, epigenetic dysregulation is an essential driver of leukemogenesis,

and non-selective hypomethylating agents (HMAs) are the current backbone of

non-intensive treatment. The first clinical trials that evaluated whether HMAs

may improve immune checkpoint inhibitors’ efficacy showed modest efficacy

except for the anti-CD47 antibody that was substantially more efficient against

AML when combined with azacitidine. Combining bispecific antibodies or

cellular treatments with HMAs is subject to ongoing clinical investigation, and

efficacy data are awaited shortly. More selective second-generation inhibitors

targeting specific chromatin regulators have demonstrated promising preclinical

activity against AML and are currently evaluated in clinical trials. These drugs that

commonly cause leukemia cell differentiation potentially sensitize AML to

immune-based treatments by co-regulating immune checkpoints, providing a

pro-inflammatory environment, and inducing (neo)-antigen expression.

Combining selective targeted epigenetic drugs with (cellular) immunotherapy

is, therefore, a promising approach to avoid unintended effects and augment

efficacy. Future studies will provide detailed information on how these

compounds influence specific immune functions that may enable translation

into clinical assessment.

KEYWORDS

acute myeloid leukemia, hypomethylating agents, immunotherapy, epigenetics,
checkpoint inhibition, cellular therapy, chromatin modifiers, combination therapy
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Introduction

Acute myeloid leukemia (AML) is a malignant neoplasm of

hematopoietic progenitor cells driven by acquired genetic

aberrations that mediate uncontrolled proliferation and a block in

differentiation (1, 2).

Novel mechanism-based drugs have improved treatment

options in recent years (2), but intensive chemotherapy is still the

backbone of curative treatment and induces complete remissions in

up to 70% of patients (3). However, relapse is common, and overall

survival is generally unsatisfactory and heterogeneous based on two

significant factors: the genetic alterations of individual AML blasts

and the patient’s age at diagnosis (2, 4). Despite intensive treatment,

most elderly patients will ultimately succumb to their disease (2–5).

Survival for patients unfit for intensive treatment is dismal, with a 5-

year overall survival (OS) below 10% with current standard of care

options (3–6) underpinning the need for more efficient and less

toxic treatment options.

Epigenetic dysregulation has been recognized as an essential

driver for leukemogenesis, thereby providing a therapeutic

opportunity. Hypomethylating agents (HMA) are non-selective

first-generation epigenetic drugs and are considered a mainstay in

treating unfit and elderly patients (7). Several more selective

compounds targeting specific epigenetic dependencies have been

developed in recent years with promising responses in clinical trials

(8–10). Immunotherapy has revolutionized the treatment of solid

tumors and lymphatic neoplasms (11–30), but has been far less

successful against AML. Mechanisms behind the limited efficacy

remain obscure but have been attributed to difficulties in finding a

target exclusively expressed on AML blasts, their relatively low

mutational burden, and low neo-antigen expression (31–34).

Epigenetic manipulation has been reported to induce immune

modulatory effects, including an increased expression of tumor-

associated antigens (35, 36) that may sensitize AML blasts for

immunotherapy. Here we review the concept of combined

epigenetic targeting with immunotherapeutic approaches

against AML.
Epigenetic treatment in AML

Epigenetic dysregulation has been implicated in the

pathogenesis of most cancer types, including AML. Sequencing

efforts to characterize the genomic landscape of various cancer types

have revealed recurrent mutations in epigenetic regulators, affecting

AML in more than 60% of cases (37, 38). Epigenetic regulators

determine the chromatin state by controlling regulatory regions and

gene expression via chemical modifications, including DNA

methylation and histone protein acetylation, methylation, or

phosphorylation as reviewed elsewhere (39–41). Therefore,

epigenetic regulators were recognized as therapeutic opportunities

for many cancers, particularly AML.

First-generation HMAs such as azacitidine and decitabine are

non-selective drugs that reduce promotor hypermethylation to

restore the expression of tumor suppressor genes (42). These

drugs have built the backbone for non-intensive AML treatment
Frontiers in Immunology 0225
(7), and their combination with the BCL2 inhibitor venetoclax is the

current standard of care for unfit AML patients resulting in a

median overall survival (OS) of 14.7 months (6). Histone

deacetylase (HDAC) inhibitors, another class of non-selective

epigenetic drugs that initially showed promising activity in

preclinical models (43), failed to induce sustainable remissions in

clinical trials in monotherapy (44–46). Reasons for the low efficacy

in clinical studies are not fully elucidated, however missing

predictive biomarkers, the heterogeneous activity of different

HDAC inhibitors, and dose-limiting off-target effects of pan-

HDAC inhibitors remain an unsolved problem, especially in

combination with other anti-neoplastic agents (47–49).

Second-generation epigenetic inhibitors were developed to

target specific chromatin modifiers and epigenetic dependencies

in various cancers with potentially less off-target toxicity. Research

has particularly focused on the development and clinical assessment

of drugs targeting the following chromatin modifiers:

Bromodomain-containing transcriptional activators (BRDs) are

recruited to histone-acetylated transcription sites to accelerate gene

expression. BRD4 is a Bromodomain and extra-terminal (BET)

protein, and its function is best characterized in AML (50, 51).

Inhibitors of BET proteins, particularly BRD4, have shown

promising preclinical activity (52) but demonstrated only modest

activity as a single agent against AML with an overall response rate

(ORR) of only 6% in relapsed refractory (R/R) AML (53).

The histone methyltransferase Disruptor of Telomeric Silencing

1-like (DOT1L) is the only histone 3 lysine 79 methyltransferase

known to date. It maintains leukemic transcription in leukemias

with Mixed-Lineage Leukemia (MLL, also known as KMT2A)-

rearrangement (MLL-r) or partial tandem duplication and NPM1

mutant (NPM1mut) leukemia (54, 55). Similar to BET inhibitors, the

first clinical trials with DOT1L inhibitors demonstrated limited

activity with only two complete remissions (CR) in 52 patients in a

phase I trial (56) despite promising preclinical activity (54, 55).

Protein Arginine Methyltransferase 5 (PRMT5) regulates gene

expression by dimethylation of histone and non-histone proteins

(e.g.,RNA splicing factors) (57, 58). Inhibition of PRMT5 has

demonstrated anti-leukemic activity and induction of

differentiation in preclinical MLL-r and FLT3-ITD AML models

(59, 60), and several inhibitors are currently evaluated in early

clinical trials for solid tumors, lymphomas, and leukemias, which

was reviewed elsewhere (61). In brief, phase I studies have reported

limited efficacy, with common adverse effects in solid tumors and

primary myelofibrosis (62–64). One phase I study is currently

recruiting AML patients (65).

Enhancer of Zeste Homolog 2 (EZH2) is a lysine

methyltransferase and the catalytic subunit of Polycomb

Repressive Complex 2 (PRC2) that silences its target genes via

H3K27 trimethylation (66, 67). EZH2 mutations are found in solid

tumors and usually as gain-of-function events in lymphomas (68,

69). The inhibitor tazometestat induced durable and complete

responses in Phase I/II trials in sarcomas and lymphomas (70–

72). EZH2 has been reported to act context-dependently as a tumor

suppressor or sometimes as an oncogene in myeloid malignancies

(66, 73). Its loss has been associated with poor prognosis and

chemotherapy resistance, and mutations are more common in
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relapsed AML patients (74–76). EZH1/2 inhibition has

demonstrated in vitro and in vivo anti-leukemic activity (77, 78).

Clinical outcome data for EZH2 inhibition in AML do not exist,

also because a phase I trial was terminated due to insufficient

patient recruitment (NCT03110354).

Lysine-Specific Demethylase-1 (LSD1, also known as KDM1A)

is a histone 3 demethylase and is believed to participate in the

control of leukemic gene expression programs (79). LSD1 inhibition

had promising activity in preclinical leukemia models, and

preliminary efficacy against AML has been reported from an

ongoing clinical phase I/II trial (80, 81). Additional studies are

needed to define the clinical activity in specific AML subtypes

in detail.

Dramatic clinical responses in AML were observed with specific

inhibitors of mutant isocitrate-dehydrogenase (IDH) 1 and 2

enzymes and are also explained by epigenetic mechanisms:

Mutations in IDH1 and IDH2 lead to a neo-enzyme activity of

both enzymes, accumulating the ordinarily absent oncometabolite

2-hydroxyglutarate (2-HG) (82). 2-HG inhibits ten-eleven

translocation (TET) family enzymes responsible for DNA

methylation, ultimately resulting in aberrant expression of

leukemic genes (83) . IDH1/2 inhibit ion induces cel l

differentiation of IDH-mutated AML blasts (84). The first phase I

trial assessed the IDH2 inhibitor enasidenib as a single agent with

an ORR of 40.3% and a median OS rate of 9.3 months in R/R AML

patients (85). The combination of the IDH1 inhibitor ivosidenib

with azacitidine was recently approved for newly diagnosed IDH1

mutated AML in Europe and the U.S. The approval was based on a

randomized, placebo-controlled phase III trial where the

combination significantly increased CR rates (47% vs. 15%,

p<0.001) and survival (recently updated median OS: 29.3 vs. 7.9

months; HR 0.42, p-value <0.0001) compared to azacitidine plus

placebo (9, 86).

A novel epigenetic target and auspicious therapeutic

opportunity against specific AML subtypes is the protein

interaction of the histone methyltransferase KMT2A (also known

as MLL1) with its oncogenic adaptor protein menin (encoded by the

MEN1 gene). While it was reported that menin is required for

chromatin binding and target gene activation of oncogenic MLL1-

fusion proteins in MLL1-rearranged leukemias (87), our group

reported that the direct interaction of wildtype MLL with menin

is a dependency in the most prevalent NPM1mut AML subtype (55).

Characteristic leukemic gene expression programs, including high-

level expression of MEIS1, PBX3, and various HOX transcription

factor genes, also depend on the protein interaction (55).

Pharmacological inhibition of the menin-MLL interaction has

demonstrated profound in vitro and in vivo anti-leukemic activity

inducing uniform transcriptional repression ofMEIS1, PBX3, FLT3,

and BCL2, and leading to differentiation and apoptosis in MLL-r

and NPM1mut leukemias (55, 87–90). These preclinical data

translated into an ongoing clinical assessment of five different

menin inhibitors against AML (NCT04067336, NCT04065399,

NCT05153330, NCT04811560, NCT04988555) with astonishing

first efficacy data from two phase I trials: The oral menin

inhibitor revumenib induced complete remissions (combined;

CRc) in 38% of heavily pretreated R/R AML with NPM1mut or
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MLL-r as a single agent, with responding patients exhibiting

sustainable responses of more than 9.1 months (8). Ziftomenib

also had promising clinical activity in NPM1mut or MLL-r R/R

AML, with 35% of patients achieving CR/CRh or CRp rate in a

phase I/II study (91). The single-agent evaluation of both drugs is

currently ongoing. Combinatorial clinical trial assessment with

intensive chemotherapy and specific small molecule inhibitors is

also underway, as both inhibitors have exhibited synergistic in vitro

and in vivo efficacy with various targeted cancer drugs (92–94).
Targeting the immune system in AML

Within the last decade, similarly great excitement has greeted

cancer immunotherapy, revolutionizing the treatment of many

cancer types (11–30). Concepts to guide the immune system in

recognizing and fighting cancer cells comprise antibody-directed

targeting, blockage of immune checkpoints, and adoptive transfer of

immune cells. These approaches have led to sustainable responses,

prolonged survival, and even cure of previously untreatable

malignancies, but single-agent efficacy against AML has

been limited.

Immune checkpoint blockade (ICB) with anti-CTLA-4 and

anti-PD-L1/PD-1 antibodies dramatically improved overall

survival in patients with advanced solid tumors as well as

Hodgkin’s lymphoma (13–18) and is now considered the

standard of care for the treatment of many other cancer entities.

AML cells also have higher surface expression of inhibitory

immune checkpoints (such as PD-L1) compared to normal

hematopoietic stem (HSCs) and progenitor cells (HSPCs) and

higher expression of PD-1 is observed on T-cells of AML patients

compared to healthy donors (95–102). Still, clinical trials assessing

therapeutic checkpoint blockade yielded generally discouraging

results in myeloid neoplasms. Only 1 out of 9 patients with AML

or myelodysplastic syndrome (MDS) responded to the anti-PD-1

antibody pidilizumab in a first phase I trial (103). Also, ORR in

studies assessing the anti-PD-1 antibody pembrolizumab and anti-

PD-L1 antibody atezolizumab in R/R MDS patients were only 4%

and 0%, respectively (104, 105). Responses to the anti-CTLA-4

antibody ipilimumab in early clinical trials assessing selected AML

patients that relapsed following allogenic stem cell transplantation

(SCT) were more promising, with 23% of patients achieving a CR.

However, treatment was commonly associated with severe graft

versus host disease (12).

CD47 is a checkpoint of the innate immune system that

mediates a “do not eat me “ signal to macrophages (106, 107).

Magrolimab, a monoclonal anti-CD47 antibody, demonstrated

limited efficacy as a single-agent in AML with no objective

responses (stable disease: 73%) (108), but might be more

efficacious if added to established combination regimens

(discussed below).

Bispecific T-cell engager (BiTE) or dual-affinity retargeting

antibodies (DART) are artificial antibody constructs that contain

two antigen binding sites, one directed against immune effector cells

(mostly CD3 for T-cells) and the other against a specific surface

antigen on tumor cells. The convergence leads to T- or NK-cell
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1269012
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Rausch et al. 10.3389/fimmu.2023.1269012
activation and killing (31). BiTEs targeting CD3 and CD19, such as

blinatumomab, are efficient against and approved for treating B-cell

neoplasms (28). Defining a unique leukemic target on myeloid

blasts has yet limited efforts to extend this concept for successful

AML treatment (discussed below), and so far, efficacy has been

unsatisfactory. In a phase I trial assessing the anti-CD33xCD3

directed bispecific antibody AMG330 against R/R AML, CR/CRi

rates were 17% (109) and 3 and 5% in ongoing phase I studies

testing the anti-CD33xCD3 BiTE molecules AMV564 and AMG673

(110, 111). Reported ORR from a phase I/II trial exploring

flotetuzumab, an anti-CD123xCD3 DART construct, against R/R

AML was 30%. However, treatment was associated with high rates

of severe cytokine release syndrome (CRS) (81%, 8% ≥3) (112),

which was also commonly observed with the bispecific anti-CD123

antibody XmAb14045 (113). Other CD123-targeting antibodies are

under clinical investigation (NCT03647800, NCT02715011).

Several reports suggest that the myeloid antigens WT1,

PRAME, and CLL-1 (CLEC12A) are expressed only at low levels

on HSCs, which may be associated with less hematologic toxicity if

targeted by immunotherapy (32, 114–117). A lower CRS rate was

reported from a phase I trial exploring the first CLL-1xCD3-

directed bispecific antibody MCLA-117 in R/R AML but with

only 15% of patients achieving a partial response (118).

Cellular immunotherapy describes the adoptive transfer of

genetically engineered autologous chimeric-antigen receptor

(CAR)-T or -Natural Killer (NK) cells. Astonishing successes

were reported from treatment of B-cell neoplasms with various

CAR-T cell products and have led to their approval in the Europe

and the U.S. (19–28). As with BITEs and DARTs, CAR construct

development against AML faces similar challenges in defining

unique immunotargets on AML blasts. Lineage-specific antigens

such as CD33 and CD123 are commonly expressed on AML blasts

and evaluated as potential targets. Their expression on hematologic

stem cells (HSCs) bears the risk of post-treatment bone marrow

failure (32, 119, 120). As CAR-T cells commonly have a “memory

effect”, hematologic toxicity might be even more severe compared to

BITEs and DARTs.

One strategy to avoid the off-tumor toxicity is the development

of AND-gated and NOT-gated CAR-T cells that engage two

antigens to increase selectivity (121, 122). Perriello et al.

developed cytokine-induced killer (CIK) cells with two CARs

directed against CD123 and CD33. In this case, simultaneous

binding of both CARs is necessary for a cytotoxic T-cell

activation, because the CD33 CAR delivers the essential co-

stimulatory signal (122). The authors also demonstrate that

reduced binding activity of a CAR may increase selectivity by

restricting reactivity to cells with high antigen expression. NOT-

gates CARs represent an different approach to avoid off-tumor

toxicity: Richards et al. developed CD93-directed CAR T-cells that

express a second inhibitory CAR (iCAR) directed against an antigen

present on endothelial cells but absent on myeloid blasts. This iCAR

contains endodomains from ITIM-containing proteins including

PD-1, TIM-3 or TIGIT delivering an inhibitory signal that

interferes with the CAR T-cell activation signal (121).

So far, CAR-T-cells targeting CD33, CD123, or two antigens at

once (e.g., CD33 and CLL-1; CD13 and TIM-3) are currently
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evaluated in early clinical trials (NCT03971799, NCT03795779,

NCT03631576, NCT03190278, NCT03114670, NCT02159495,

NCT04272125, NCT03222674, NCT04010877, NCT04097301).

Three studies reported activity against heavily pretreated patients

(123–125), but longer follow-up efficacy data needed to draw more

definitive conclusions are pending. For CD70, another immune

target expressed on AML blast and low expression on HSCs,

promising activity has been reported in preclinical AML models.

Clinical trial evaluation is expected shortly (126, 127).

CAR-engineered NK cells may have potential advantages over

CAR-T cells and be a promising alternative for two reasons: a) their

HLA-class I independent tumor cell recognition allows maintaining

intrinsic anti-tumor activity in case of antigen loss (128), and b) the

lack of clonal expansion protects recipients from persistent graft

versus host disease (GvHD) or long-term hematologic toxicity,

reviewed in (129). First clinical applications have demonstrated

encouraging anti-leukemic activity and tolerability with cord-

blood-derived CD19-CAR NK cells against chronic lymphatic

leukemia (130). CAR-NK cell products are effective against

preclinical AML models in vitro and in vivo but clinical activity

remains to be demonstrated (131).

While the efficacy of these concepts still needs improvement,

the strong graft versus leukemia effect that has been observed over

decades following allogenic SCT indicates that AML may still be

prone to immunotherapy (132–134). As mentioned above, one

potential reason might be the particularly low mutational burden

found in AML blasts compared to other cancers, which has been

associated with generally lower responses to immune-based

treatments (33, 34). Defining an AML-specific immunotarget that

is not expressed on HSC is also an ongoing challenge for the

development of potent immune-based treatments (32).
Combination of epigenetic treatment
with immunotherapy

Epigenetic mechanisms have been implicated in contributing to

the poor responses of AML to immunotherapy. One example is the

silencing of HLA class II molecules observed in AML patients that

relapsed after allogenic SCT (135–137). This has been attributed to

the DNA-hypermethylation of respective promotor regions (96).

Therapeutic manipulation with HMAs to reverse promotor-

methylation has successfully been used at relapse to boost graft-

versus leukemia effects of donor lymphocyte infusions. However,

this concept is less efficient with high leukemia burden (138–140).

Additional immune modulatory effects of HMA are currently being

discussed. These include enhanced expression of tumor-associated

antigens such as MAGE-1 and NY-ESO-1 (35, 36). Also, HMA-

treatment is associated with tumor re-expression of endogenous

retroviruses (ERVs) that is believed to improve T- and NK-cell

activation via enhanced IFN-g expression (141–144), enhances

tumor lymphocyte infiltration (145), and impairs expansion of

regulatory T-cells (146), (Figure 1). The limited activity of HMAs

commonly observed in the clinical setting may partly be explained

by the upregulation of the immune inhibitory checkpoints

(147, 148).
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HMA treatment has also been investigated in combination with

immune checkpoint blockade in clinical trials. Encouraging results

demonstrated a first phase II trial assessing the combination of PD-

1 antibody nivolumab and azacitidine in R/R AML resulting in an

ORR of 58% in HMA-naive and 22% in HMA-pretreated patients,

respectively (149). Newly diagnosed and R/R patients achieved a

CRc in 47% and 14% in a phase II trial assessing the combination of

the PD-1 antibody pembrolizumab with azacitidine (150).

Azacitidine combined with the anti-TIM-3 monoclonal antibody

sabatolimab led to an ORR of 57% and a CRc of 30% in newly

diagnosed AML in a phase Ib trial (151). The only randomized data

available come from a trial assessing the anti-PD-L1 antibody

durvalumab, Here, no significant benefit for the combination of

durvalumab and azacitidine was observed over azacitidine alone in

MDS/AML patients (152). Consistent with the data above, the

authors of a recent meta-analysis concluded that the activity of

checkpoint inhibitors is generally low in the relapsed/refractory

AML setting (153). Further studies are currently ongoing (Table 1).

HMAs in combination with immune checkpoint inhibitors

were also assessed in the post-transplant setting, with only a few

responses reported and increased immune-related toxicity (12,

154). This was demonstrated by the combination of avelumab

and azacitidine, resulting in CR rates of only 10.5% and an

increased risk of severe graft versus host disease (155). Several

clinical trials are ongoing and will allow more definitive conclusions

concerning efficacy and safety.

HDAC inhibitors can also induce tumor-associated antigens,

improve antigen presentation, influence T-cell trafficking and
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activity but also increase PD-1 expression (156–159). Several

trials reported responses to HDAC inhibitors in combination

with checkpoint blockade in solid tumors (160). However, in R/R

MDS/AML patients, no activity of this concept has been reported in

a recent phase 1b study assessing pembrolizumab plus entinostat

with no responses in any of the patients (161).

In contrast, encouraging activity of combining the anti-CD47

antibody magrolimab with azacitidine and the BCL2-inhibitor

venetoclax was reported from a phase I/II trial in the adverse

TP53 mutated AML subtype. CRc rates were 63%, with an

average one-year overall survival of 53% (162). Two randomized

phase III trials are currently ongoing (NCT05079230,

NCT04778397, Table 1).

HMAs and HDAC inhibitors were also reported to increase the

expression of AML-associated antigens such as CD33 (163) and

may therefore be a suitable combination partner for BiTEs, DARTs,

and CAR-T, and -NK-cell treatment. Experimental in vitro and in

vivo studies indicated improved T-cell activity for combined HMA

or HDAC inhibitors with CD33-, CD123-, and CD70-directed

CAR-T cells or bispecific antibodies (126, 164–166).

Multiple lines of evidence support the view that epigenetic

silencing of NKG2D-ligands (NKG2DL) contributes to impaired

NK-cell function, which was reversed with HMA treatment in

studies on cultured NK cells (167–169). In preclinical AML

models, decitabine enhanced the activity of BI836858, an anti-

CD33 antibody that also engages NK cells via CD16 (170). In

contrast, combining the NK-cell engaging and CD123 targeting

monoclonal talacotuzumab with decitabine could not improve
FIGURE 1

Epigenetic targeting in AML. Epigenetic regulators control transcription via chemical chromatin modifications, including histone protein and DNA
(de-)methylation or histone (de-)acetylation that determine chromatin state. As therapeutic opportunities against AML, chromatin modifiers can alter
leukemogenic gene expression, causing cell differentiation and proliferation arrest of the malignant blasts. Additional pro-immunogenic effects have
recently been discussed, including an increased neoantigen-, immune checkpoint-, NK2GDL- and calreticulin expression on leukemic blasts and an
augmented immune checkpoint expression and IFN-Y response of immune cells. The figure was created with BioRender.com.
frontiersin.org

https://BioRender.com
https://doi.org/10.3389/fimmu.2023.1269012
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Rausch et al. 10.3389/fimmu.2023.1269012
TABLE 1 Current clinical trials evaluating combinations of epigenetic targeting and immunotherapy in AML.

NCT Trial
Patient Eligi-
bility

Drug Combination
Clinical
Phase

Status

HMA + PD1

NCT02845297
R/R, ND elderly/
unfit

Pembrolizumab + Azacitidine Phase II completed

NCT02397720
R/R, ND elderly/
unfit

Nivolumab + Azacitidine +/- Ipilimumab Phase II recruiting

NCT03825367 R/R, pediatric Nivolumab + Azacitidine Phase I/II active, not recruiting

NCT03769532
MRD relapse in
NPM1 mut.

Pembrolizumab + Azacitidine Phase II recruiting

NCT02996474 R/R Pembrolizumab + Decitabine Phase I/II completed

NCT03969446
R/R, ND elderly/
unfit

Pembrolizumab + Decitabine +/- Venetoclax Phase I recruiting

NCT04284787 ND elderly/unfit Azacitidine + Venetoclax +/- Pembrolizumab
Phase II,
randomized

active, not recruiting

NCT04277442 ND, TP53 mut. Nivomumab + Decitabine + Venetoclax Phase I active, not recruiting

NCT03358719 ND + R/R NY-ESO-1 vaccination + Decitabine + Nivolumab Phase I completed

NCT04722952 R/R Visilizumab + Azacitidine + Homoharringtonine, Cytarabine (HAG) Phase III recruiting

NCT05772273 R/R post aHSCT Camrelizumab + Azacitidine + Low-dose DLI – recruiting

NCT03092674 ND elderly/unfit Azacitidine +/- Nivolumab or Midostaurin vs. Decitabine + Cytarabine
Phase II/III,
randomized

active, not recruiting

HMA + PD-L1

NCT02775903 ND elderly/unfit Azacitidine +/- Durvalumab
Phase II,
randomized

completed

NCT02281084 R/R to HMA CC-486 +/- Durvalumab
Phase II,
randomized

active/not recruiting

NCT02953561 R/R Avelumab + Azacitidine Phase I/II terminated

NCT02892318
R/R, ND elderly/
unfit

Atezolizumab + Guadecitabine Phase I completed

NCT02935361 R/R Atezolizumab + Guadecitabine PhaseI/II active, not recruiting

NCT03395873 ND elderly/unfit Avelumab + Decitabine Phase I
terminated (AZA/VEN
approval)

NCT03390296 R/R
Poly-chemotherapy combinations of OX40, Venetoclax, Avelumab, Glasdegib,
Gemtuzumab Ozogamicin, and Azacitidine

Phase I/II completed

HMA + TIM-3

NCT04623216
MRD positive post
aHSCT

Sabatolimumab +/- Azacitidine Phase I/II recruiting

NCT04150029 ND elderly/unfit Sabatolimumab + Azacitidine + Venetoclax Phase II active, not recruiting

NCT03066648
R/R, ND elderly/
unfit

Sabatolimumab +/- Decitabine +/- Spartalizumab vs. Azacitidine +
Sabatolimumab

Phase I active, not recruiting

NCT05367401
R/R, ND elderly/
unfit

Sabatolimumab + Magrolimab +/- Azactidine Phase I/II not yet recruiting

NCT05426798
R/R, ND elderly/
unfit

TQB2618 + Azacitidine/Decitabine Phase I recruiting

NCT05367401
R/R, ND elderly/
unfit

Sabatolimab + Magrolimab + Azacitidine Phase I/II not yet recruiting

(Continued)
F
rontiers in Immu
nology
 0629
 frontiersin.org

https://doi.org/10.3389/fimmu.2023.1269012
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Rausch et al. 10.3389/fimmu.2023.1269012
responses over decitabine alone in a phase II/III trial (171). Based

on these data, combinations of HMAs with bispecific antibodies or

CAR-T/CAR-NK cell treatment may also constitute an attractive

combination. A comprehensive assessment of the biological effects

of HMAs on cellular treatments is required before these

combination treatments can be introduced into clinical testing.

Combining the more selective second-generation targeted

epigenetic drugs with cancer immunotherapy appears attractive as

it may be associated with fewer unintended effects and more

efficacy. However, it also requires detailed studies before those

concepts enter clinical trials. In particular, more data are needed

on how these individual compounds may modulate effector and

regulatory immune cell function in the context of substance-specific
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effects in leukemia cells. Most selective epigenetic compounds, for

example, IDH or menin inhibitors, alter specific gene expression

and induce differentiation (54, 55, 84, 93, 94), (Figure 1). These

effects may represent a synergistic opportunity for combinatorial

approaches as they commonly lead to the induction of surface

antigen expression that may be utilized for immunotherapy, as

reported with other targeted agents (172). Several other compound-

specific effects may confer synergy with immunotherapeutic

approaches: BET inhibitors, for instance, have been reported to

impair PD-1 expression and T-cell exhaustion in vitro (173).

Accordingly, improved T-cell expansion and anti-tumor efficacy

have been observed in an adoptive T-cell transfer model upon JQ1

treatment (174). In a landmark study, it was observed that LSD1
TABLE 1 Continued

NCT Trial
Patient Eligi-
bility

Drug Combination
Clinical
Phase

Status

HMA + CTLA-4

NCT02890329 R/R Ipilimumab + Decitabine Phase I active, not recruiting

NCT02397720
R/R, ND elderly/
unfit

Nivolumab + Azaztidine +/- Ipilimumab Phase II recruiting

HMA + LAG3 + PD-1

NCT04913922
R/R, ND elderly/
unfit

Nivolumab + Relatlimab + Azacitidine Phase II recruiting

IDH1 + PD-1

NCT04044209 R/R IDH1 + Nivolumab Phase II
withdrawn, no patient
recruitment

HMA + CD47

NCT05823480 after HCT Magrolimab + Azacitidine Phase I not yet recruiting

NCT05367401
RR, ND elderly/
unfit

Magrolimab + Azacitidine + Sabatolimumab Phase I/II not yet recruiting

NCT05079230 ND elderly/unfit Azacitidine + Venetoclax + Magrolimab vs. Placebo
Phase III,
randomized

recruiting

NCT04435691
R/R, ND elderly/
unfit

Magrolimab + Azacitidine + Venetoclax Phase I/II recruiting

NCT04778397
ND with TP53
mut.

Magrolimab + Azacitidine + Venetoclax vs. Physician’s Choice Phase III recruiting

NCT02472145 trial in the HMA + CD123

NCT04086264
R/R, ND elderly/
unfit

IMGN632 +/- Azacitidine +/- Venetoclax Phase I/II recruiting

NCT02472145
ND elderly/unfit,
R/R

Talacotuzumab (CD123/CD16) + Decitabine vs. Decitabine, randomized Phase II/III completed

HMA + CD70

NCT03030612 ND elderly/unfit Cusatuzumab + Azacitidine Phase I/II completed

NCT04227847 R/R SEA-CD70 +/- Azacitidine Phase I recruiting

NCT04150887 ND elderly/unfit Cusatuzumab + Venetoclax +/- Azacitidine Phase I active not recruiting

HMA + NK-cell therapy

NCT05834244 R/R allogeneic NK + Azacitidine + Venetoclax Phase I not yet recruiting
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inhibition stimulated T-cell-mediated anti-tumor responses by

inducing endogenous ERV expression in cancer cells that resulted

in type 1 interferon activation (175). Confirmative studies are

needed before these approaches can be translated into

clinical applications.
Summary and outlook

As outlined above, immunotherapy has dramatically improved

treatment outcomes in patients with many cancers while these

approaches have been far less successful in AML.

While the detailed mechanisms behind the relative resistance

against immunotherapy remain obscure, the low immunogenicity

of myeloid blasts for immune checkpoint blockade (31, 33, 34) and

the difficulties in defining AML-specific antigens not expressed on

HSCs for immune-directed treatment (32, 119, 120) remains an

unsolved challenge. Epigenetic manipulation was shown to improve

the responses to immunotherapy by inducing neoantigens,

increasing antigen presentation, and co-regulating immune

checkpoints (35, 36, 96, 141–144, 146–148). Clinical trials

evaluating the combination of non-selective epigenetic drugs

(such as HMAs) with checkpoint inhibitors have mainly reported

modest activity in the R/R AML setting (12, 153, 176), while

approaches combining the anti-CD47 antibody magrolimab with

azacitidine with or without venetoclax resulted in very promising

response rates in clinical trials (162, 177). Clinical data for the

combination of HMAs with cellular immunotherapy is pending,

while CAR-NK cell concepts seem auspicious due to their only

temporary toxicity for the normal hematopoiesis (129). Promising

strategies include the introduction of (second-generation) targeted

epigenetic drugs into immunotherapeutic treatment regimens.

These drugs commonly have less adverse effects and their

common ability to release the differentiation block in AML blasts

accompanied by antigen-induction may enhance cellular

immunotherapy. Studies that define specific effects of these drugs
Frontiers in Immunology 0831
on various immune cells are underway to enable translation of these

concepts into clinical investigation.
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year outcomes with pembrolizumab versus chemotherapy for metastatic non–small-
cell lung cancer with PD-L1 tumor proportion score ≥ 50%. JCO (2021) 39(21):2339–
49. doi: 10.1200/JCO.21.00174

19. Grupp SA, Kalos M, Barrett D, Aplenc R, Porter DL, Rheingold SR, et al.
Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N Engl J Med
(2013) 368(16):1509–18. doi: 10.1056/NEJMoa1215134

20. Maude SL, Laetsch TW, Buechner J, Rives S, Boyer M, Bittencourt H, et al.
Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N
Engl J Med (2018) 378(5):439–48. doi: 10.1056/NEJMoa1709866

21. Schuster SJ, Bishop MR, Tam CS, Waller EK, Borchmann P, McGuirk JP, et al.
Tisagenlecleucel in adult relapsed or refractory diffuse large B-cell lymphoma.New Engl
J Med (2019) 380(1):45–56. doi: 10.1056/NEJMoa1804980

22. Neelapu SS, Locke FL, Bartlett NL, Lekakis LJ, Miklos DB, Jacobson CA, et al.
Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma.N Engl
J Med (2017) 377(26):2531–44. doi: 10.1056/NEJMoa1707447

23. Wang M, Munoz J, Goy A, Locke FL, Jacobson CA, Hill BT, et al. KTE-X19 CAR
T-cell therapy in relapsed or refractory mantle-cell lymphoma.N Engl J Med (2020) 382
(14):1331–42. doi: 10.1056/NEJMoa1914347

24. Shah BD, Ghobadi A, Oluwole OO, Logan AC, Boissel N, Cassaday RD, et al.
KTE-X19 for relapsed or refractory adult B-cell acute lymphoblastic leukaemia: phase 2
results of the single-arm, open-label, multicentre ZUMA-3 study. Lancet (2021) 398
(10299):491–502. doi: 10.1016/S0140-6736(21)01222-8

25. Kamdar M, Solomon SR, Arnason J, Johnston PB, Glass B, Bachanova V, et al.
Lisocabtagene maraleucel versus standard of care with salvage chemotherapy followed
by autologous stem cell transplantation as second-line treatment in patients with
relapsed or refractory large B-cell lymphoma (TRANSFORM): results from an interim
analysis of an open-label, randomised, phase 3 trial. Lancet (2022) 399(10343):2294–
308. doi: 10.1016/S0140-6736(22)00662-6

26. Munshi NC, Anderson LD, Shah N, Madduri D, Berdeja J, Lonial S, et al.
Idecabtagene vicleucel in relapsed and refractory multiple myeloma. New Engl J Med
(2021) 384(8):705–16. doi: 10.1056/NEJMoa2024850

27. Martin T, Usmani SZ, Berdeja JG, Agha M, Cohen AD, Hari P, et al.
Ciltacabtagene autoleucel, an anti-B-cell maturation antigen chimeric antigen
receptor T-cell therapy, for relapsed/refractory multiple myeloma: CARTITUDE-1 2-
year follow-up. J Clin Oncol (2023) 41(6):1265–74. doi: 10.1200/JCO.22.00842

28. Kantarjian H, Stein A, Gökbuget N, Fielding AK, Schuh AC, Ribera JM, et al.
Blinatumomab versus chemotherapy for advanced acute lymphoblastic leukemia. N
Engl J Med (2017) 376(9):836–47. doi: 10.1056/NEJMoa1609783

29. Budde LE, Sehn LH, Matasar M, Schuster SJ, Assouline S, Giri P, et al. Safety and
efficacy of mosunetuzumab, a bispecific antibody, in patients with relapsed or refractory
follicular lymphoma: a single-arm, multicentre, phase 2 study. Lancet Oncol (2022) 23
(8):1055–65. doi: 10.1016/S1470-2045(22)00335-7

30. Dickinson MJ, Carlo-Stella C, Morschhauser F, Bachy E, Corradini P, Iacoboni
G, et al. Glofitamab for relapsed or refractory diffuse large B-cell lymphoma. New Engl J
Med (2022) 387(24):2220–31. doi: 10.1056/NEJMoa2206913

31. Daver N, Alotaibi AS, Bücklein V, Subklewe M. T-cell-based immunotherapy of
acute myeloid leukemia: current concepts and future developments. Leukemia (2021)
35(7):1843–63. doi: 10.1038/s41375-021-01253-x

32. Haubner S, Perna F, Köhnke T, Schmidt C, Berman S, Augsberger C, et al.
Coexpression profile of leukemic stem cell markers for combinatorial targeted therapy
in AML. Leukemia (2019) 33(1):64–74. doi: 10.1038/s41375-018-0180-3

33. Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SAJR, Behjati S, Biankin AV,
et al. Signatures of mutational processes in human cancer. Nature (2013) 500
(7463):415–21. doi: 10.1038/nature12477
Frontiers in Immunology 0932
34. YarchoanM, Hopkins A, Jaffee EM. Tumor mutational burden and response rate
to PD-1 inhibition. N Engl J Med (2017) 377(25):2500–1. doi: 10.1056/NEJMc1713444

35. Almstedt M, Blagitko-Dorfs N, Duque-Afonso J, Karbach J, Pfeifer D, Jäger E,
et al. The DNA demethylating agent 5-aza-2′-deoxycytidine induces expression of NY-
ESO-1 and other cancer/testis antigens in myeloid leukemia cells. Leukemia Res (2010)
34(7):899–905. doi: 10.1016/j.leukres.2010.02.004

36. Weber J, Salgaller M, Samid D, Johnson B, HerlynM, Lassam N, et al. Expression
of the MAGE-1 tumor antigen is up-regulated by the demethylating agent 5-aza-2’-
deoxycytidine. Cancer Res (1994) 54(7):1766–71.

37. Papaemmanuil E, Gerstung M, Bullinger L, Gaidzik VI, Paschka P, Roberts ND,
et al. Genomic classification and prognosis in acute myeloid leukemia. N Engl J Med
(2016) 374(23):2209–21. doi: 10.1056/NEJMoa1516192

38. Kandoth C, McLellan MD, Vandin F, Ye K, Niu B, Lu C, et al. Mutational
landscape and significance across 12 major cancer types. Nature (2013) 502(7471):333–
9. doi: 10.1038/nature12634

39. Dawson MA, Kouzarides T, Huntly BJP. Targeting epigenetic readers in cancer.
N Engl J Med (2012) 367(7):647–57. doi: 10.1056/NEJMra1112635

40. Baylin SB, Jones PA. Epigenetic determinants of cancer. Cold Spring Harb
Perspect Biol (2016) 8(9):a019505. doi: 10.1101/cshperspect.a019505

41. Sasca D, Guezguez B, Kühn MWM. Next generation epigenetic modulators to
target myeloid neoplasms. Curr Opin Hematol (2021) 28(5):356–63. doi: 10.1097/
MOH.0000000000000673

42. Stomper J, Rotondo JC, Greve G, Lübbert M. Hypomethylating agents (HMA)
for the treatment of acute myeloid leukemia and myelodysplastic syndromes:
mechanisms of resistance and novel HMA-based therapies. Leukemia (2021) 35
(7):1873–89. doi: 10.1038/s41375-021-01218-0
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Tumor development and progression is shaped by the tumor microenvironment

(TME), a heterogeneous assembly of infiltrating and resident host cells, their

secreted mediators and intercellular matrix. In this context, tumors are infiltrated

by various immune cells with either pro-tumoral or anti-tumoral functions.

Recently, we published our non-invasive immunization platform DIVA suitable

as a therapeutic vaccination method, further optimized by repeated application

(DIVA2). In our present work, we revealed the therapeutic effect of DIVA2 in an

MC38 tumor model and specifically focused on the mechanisms induced in the

TME after immunization. DIVA2 resulted in transient tumor control followed by an

immune evasion phase within three weeks after the initial tumor inoculation.

High-dimensional flow cytometry analysis and single-cell mRNA-sequencing of

tumor-infiltrating leukocytes revealed cytotoxic CD8+ T cells as key players in

the immune control phase. In the immune evasion phase, inflammatory CCR2+

PDL-1+ monocytes with immunosuppressive properties were recruited into the

tumor leading to suppression of DIVA2-induced tumor-reactive T cells.

Depletion of CCR2+ cells with specific antibodies resulted in prolonged

survival revealing CCR2+ monocytes as important for tumor immune escape in

the TME. In summary, the present work provides a platform for generating a

strong antigen-specific primary and memory T cell immune response using the

optimized transcutaneous immunization method DIVA2. This enables protection

against tumors by therapeutic immune control of solid tumors and highlights the

immunosuppressive influence of tumor infiltrating CCR2+ monocytes that need

to be inactivated in addition for successful cancer immunotherapy.

KEYWORDS

cancer immunotherapy, transcutaneous immunization, tumor micro environment
(TME), immune evasion, CCR2 monocytes +
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1 Introduction

Despite major treatment advances in cancers by various

approaches including polychemotherapy, surgery, radiotherapy or

combinations thereof resulting in improved tumor control, survival

or even cure, the treatment of cancer remains a major health burden

due primary or secondary development of therapy resistance. In this

context, the tumor microenvironment (TME) has a key role in the

regulation of the susceptibility of cancer cells to therapeutics,

especially with respect to immunotherapies. The TME includes

beyond tumor cells numerous other cell types, such as fibroblasts,

endothelial cells, and various immune cells, as well as secreted

mediators in addition to blood vessels and structure-giving

extracellular matrix (1).

Beyond the suppression of immune inhibitory signals by immune

checkpoint inhibition via PD-1/PD-L1 or CTLA4, the use of cancer

vaccines that induce the generation of high-quality tumor-specific T

cells is a promising tool to mount immune responses against tumor

specific target antigens, a field of intense investigation (2). Here

therapeutic approaches are needed that specifically sensitize the host

immune system to the tumor, able to specifically address the targets in

the complex immune-inhibitory network of the TME. This comprises a

major challenge for the immune mediated elimination of cancer cells

due to its heterogeneity and multitude of immunosuppressive factors

(3). Therefore, the characterization of immunosuppressive

mechanisms within the TME is of central importance in the

development of immunotherapeutic vaccination approaches. In this

regard, non-invasive immunization strategies applying a vaccine onto

the intact skin (transcutaneous immunization; TCI) are of increasing

interest. In comparison to conventional vaccines, TCI targets skin-

resident professional antigen-presenting cells (APC), inducing efficient

T cell priming in draining lymph nodes and mounting potent anti-

tumor T cell responses. Since the primary description of TCI using

cholera toxin by Glenn et al. in 1998 (4), various approaches have been

developed to deliver antigens and adjuvants over the skin barrier,

distinguishing between active and passive approaches (5). In our

approach, we use the passive transport of antigenic peptides together

with the Toll-like receptor 7 (TLR7) agonist imiquimod (IMQ) (6) and

the anti-psoriatic agent dithranol (also known as anthralin) onto the

intact skin (DIVA, dithranol imiquimod-based vaccination). DIVA

initiates superior primary CTL responses and a long-lasting memory T

cell response after a single treatment (7). Further optimizing this

vaccination protocol towards a more effective boost strategy, termed

DIVA2, generates potent primary and memory immune responses,

crucial for immunotherapeutic vaccination against cancer (8).

In our present work, we report the influence of therapeutic

vaccination on the TME by DIVA2 which provides transient tumor

immune control. As major counter regulator of immunological

tumor control, we identify tumor-infiltrating immunosuppressive

monocytes contributing to immune evasion in this setting. Upon

treatment with DIVA2 as therapeutic cancer vaccine, transitional

immune control of tumor growth was achieved by the induction of

OVA257-264 -specific highly functional CD8+ T cells, characterized

by IFN-g production and cytotoxic gene signature. However, this

was followed by secondary failure and tumor outgrowth. Flow

cytometry and scRNA-seq analysis revealed CCR2+ monocytes to
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be only detectable during immune evasion, but not during immune

control. When the monocyte-depleting anti-CCR2 antibody MC-21

was injected after DIVA2, a temporary reduction in tumor

growth was observed, suggesting that the immunosuppressive

phenotype of the CCR2+ tumor-infiltrating monocytes is

responsible for the failure of tumor specific T cells to eradicate

tumors. In summary, we present a characterization of the TME

upon cancer immunotherapy by therapeutic vaccination through

transcutaneous immunization. Specifically, we highlight CCR2+

monocytes as key players in the TME that potentially serve as

new targets for optimized immunotherapy using DIVA.
2 Results

2.1 DIVA2 induces transient tumor immune
control that turns into immune evasion

Our transcutaneous immunization approach DIVA2 is a non-

invasive immunization technique generating highly specific anti-

tumor T cell responses (8). In this study, we wanted to characterize

the composition of the TME upon therapeutic vaccination by

DIVA2. The colorectal tumor model MC38 is an established

tumor model for optimizing immunotherapeutic approaches (9).

MC38 is a so called “hot” tumor, characterized by rich immune cell

infiltration and susceptible to immunotherapy. To reveal the

biological relevance of DIVA2 in a therapeutic tumor setting, we

transfected MC38 cells with ovalbumin (MC38mOVA). Therefore,

we injected C57BL/6 mice with ovalbumin-expressing MC38

(MC38mOVA) tumor cells and applied DIVA2 with ovalbumin

peptides (OVA257-264 and OVA323-337) when tumors were palpable

(Figure 1A). Compared to untreated mice, DIVA2-treatment

reduced the tumor volume, resulting in immune control that was

maintained for over two weeks. However, this phase of immune

control quickly turned into immune evasion, reflected by strongly

increasing tumor volumes (Figure 1B). During immune control, the

tumor volumes were significantly reduced compared to untreated

mice, but this difference was rapidly lost resulting in no significant

differences in tumor size over the next 6 days (Figure 1C). As there

is a variety of molecular mechanisms of tumor cells to escape

immune control, we interrogated the most common ways of

immune evasion and asked for the loss of antigen presented to T

cells via MHC class I molecules on the surface of tumor cells. This

occurs by downregulating proteins involved in the antigen

processing or presentation machinery, resulting in a decrease or

loss of presented antigen. Therefore, we investigated whether there

is a decrease or loss of the OVA257-264 epitope on the surface of

MC38mOVA cells during DIVA2-induced immune control that

could cause immune evasion. We performed a proliferation assay of

OT-I transgenic T cells recognizing the OVA257-264 epitope in the

context of H2-Kb on ex vivo MC38mOVA tumor cells

(Supplementary Figure 1A). DIVA2 induced up to 40% OVA257-

264-specific tumor-infiltrating T cells with highly activated

phenotype (Supplementary Figures 1B, C). However, OT-I T cells

proliferated after co-culture with ex vivo MC38mOVA cells,

regardless of the timepoint of tumor cell isolation and whether
frontiersin.org
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mice were immunized (Supplementary Figure 1D) suggesting that

antigen loss as a possible reason for immune evasion after initial

DIVA2-induced immune control can be excluded as well as the lack

of access of specific CTLs to the TME.
2.2 DIVA2-induced immune control is
accompanied with infiltration of OVA-
specific T cells and absence of
inflammatory monocytes

To gain more detailed information on the TME, we examined

the CD45+ tumor-infiltrating leukocytes by high dimensional flow

cytometry during immune control (day 16) and immune evasion

(day 22/27). In the immune control phase, DIVA2 induced

significant higher numbers of CD8+ T cells and especially

OVA257-264-specific CD8+ T cells, characterized by a high

expression of PD1 and a very low expression of CTLA-4 and

Lag3, suggesting a highly activated, but not exhausted state

(Figures 2A, B). Furthermore, we detected the functional

phenotype of OVA257-264-specific CD8+ T cells by specific

restimulation of whole tumor cell suspensions in an IFN-g
ELISpot assay (Figure 2C). However, since tumor volumes still

increased after initial immune control, there must be

immunosuppressive factors in the TME hindering the cytotoxic

lymphocytes from eliminating tumor cells completely. To find out

more precisely which mechanisms in the TME prevent a successful

immunotherapy by DIVA2, we set out to perform single-cell RNA-

sequencing (scRNA-seq) of the tumor-infiltrating leukocytes during
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immune control and evasion (Figure 3A, B). We assigned single

cells to immune cell types based on the immgen database

annotation immgen main and visualized them in t-distributed

stochastic neighbor Embedding algorithm (t-SNE) plots.

Tumor-infiltrating leukocytes isolated during immune evasion

from DIVA2-treated and untreated mice clustered very similarly. In

contrast, tumor-infiltrating leukocytes isolated during immune

control clustered differently across conditions (Figure 3C).

Strikingly, the t-SNE plot showed that during immune control, a

monocyte population of the DIVA2-treated group was merely

absent which was accompanied by a higher proportion of

macrophages (Figure 3C). In contrast, monocytes made up about

30% of the tumor-infiltrating leukocytes in the untreated group.

However, in the immune evasion phase we detected this monocyte

population in both conditions. Furthermore, we detected fewer DCs

in the DIVA2-treated group. Since regulatory T cells (Treg) can act

immunosuppressive on cytotoxic lymphocytes in the TME, we

analyzed the proportions of FoxP3+ Tregs. However, we did not

detect any significant differences in any of the respective conditions.

As expected, DIVA2 induced a significant increase in cytotoxic

lymphocytes (CLs) in the immune control phase, including T cells,

NK cells, NKT cells and ILCs. However, the number of cytotoxic

lymphocytes decreased significantly until immune evasion,

suggesting a decreasing cytotoxic capacity and thus anti-tumor

effect (Figure 3D). The decreased frequency of CLs in the

immune evasion phase accompanied by the increased abundance

of monocytes in the DIVA2-treated group suggesting an

immunosuppressive effect on CLs, a property associated with

inflammatory CCR2+ monocytes [reviewed by (10)].
A

B C

FIGURE 1

Therapeutic DIVA2 induces transient tumor control that turns into immune evasion. (A) Application pattern for DIVA2 in a therapeutic tumor setting.
Mice were immunized twice one and two weeks after tumor implantation using DIVA2 or left untreated and the tumor volume was monitored three
times per week. In this setting, two independent experiments were performed. (B) Tumor volumes were assessed three times per week until day 16
(green lines) or until day 27 (red lines). Every curve represents the tumor volume of one individual animal (n=11-15). (C) Tumor volumes during
immune control phase on day 16 and immune evasion phase on day 22 were displayed. Visualized are individual data points, mean and SD. *p < 0.05
by two-way ANOVA with Sidak’s multiple comparisons test and one-way ANOVA with Kruskal-Wallis test, when sample numbers were different.
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2.3 DIVA2-induced CD8+ T cells mainly
mediate cytotoxicity but also
show slight exhaustion

To characterize the phenotype of CLs in more detail, we

analyzed the various subsets for the expression of cytotoxic gene

signatures based on the scRNA-seq data. The t-SNE plots showed

that the expression of cytotoxic marker genes is essentially restricted

to T cells, NKT cells, NK cells and ILCs in relation to all tumor-

infiltrating leukocyte populations. We observed that DIVA2

induced a larger population of T cells expressing the cytotoxic

gene signature compared to untreated during both immune control

and immune evasion (Figure 4A). To highlight the differences in

lymphocytes expressing the cytotoxic gene signature, we analyzed

the expression intensities and proportions relative to tumor-

infiltrating leukocytes for each cytotoxic lymphocyte subtype

separately (Figures 4B, C). The expression analysis showed that

the DIVA2-induced CD8+ T cells also largely expressed cytotoxic

marker genes. This phenotypic pattern increased from immune

control to immune evasion. In general, these findings confirm the
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results of the flow cytometry-based TME analysis and the IFN-g
ELISpot of the tumor cell suspensions (Figure 2). The ILCs, detected

in greater numbers during immune control, also expressed

cytotoxic marker genes to a large extent, suggesting an ILC type 1

phenotype possibly contributing to immune control (11). However,

this effect was limited in time, as their number decreased until

immune evasion. For CD4+ T cells, the signature score was similar

in both conditions and time points, but the number of cells had

increased in the untreated mice until immune evasion. Moreover,

the average signature score was lower compared to other subtypes

suggesting a lower cytotoxic activity of CD4+ T cells. In addition,

NKT cells were detected in equal frequencies regardless of

treatment during immune control. However, upon DIVA2

treatment, NKT cells showed a slightly increased signature score,

indicating a more pronounced cytotoxic phenotype. The number of

NKT cells was decreased by half during immune evasion in both

conditions suggesting they also could eliminate less tumor cells

from the onset of immune evasion. NK cells were represented in the

least cell number of cytotoxic lymphocytes. However, NK cells had

the highest averaged signature score in the expression analysis,
A

B

C

FIGURE 2

DIVA2-induced tumor-infiltrating CD8+ T cells exhibit an activated and functional phenotype. (A) Cell counts of tumor-infiltrating CD45+ cells, CD8+

T cells, (B) specific CD8+ T cells and frequencies of their PD-1, CLTA-4 and Lag-3 expression were assessed by flow cytometry during immune
control (day 16) and immune evasion (day 22) (n=11-15). Visualized are individual data points, mean and SD. (C) Ex vivo tumor cell suspensions were
restimulated for 20 h with OVA257-264 or left unstimulated to determine IFN-g production by ELISpot assay. p< 0.05 by one-way ANOVA with
Kruskal-Wallis test. The Flow cytometric gating strategy is shown in Supplementary Figure 3.
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indicating their contribution in eliminating tumor cells. Taken

together, these observations show that CD8+ T cells and ILCs

highlighted in the quantitative analysis were also strongly

expressing cytotoxic marker genes, while NKT cells, NK cells and

CD4+ T cells were less likely to contribute to cytotoxicity. The

decrease in the total cell number of cytotoxic lymphocytes until

immune evasion might indicate tumor progression and thus the

switch from immune control to immune evasion.

Although the expression of cytotoxic marker genes is a prerequisite

for the elimination of tumor cells, T cells can exhibit the state of

exhaustion. Therefore, we analyzed CD8+ T cells for the expression of

exhaustion markers which indicates suppressed effector T cell
Frontiers in Immunology 0540
functions. We performed a gene expression analysis with the

exhaustion marker genes PD-1, CTLA-4, Lag3, Tim-3 and Tigit

(Figure 4D) (12). PD-1 and Tim-3 expression increased from

immune control to immune evasion in the DIVA2-treated group,

suggesting a continued antigen contact and activation state of these T

cells. CTLA-4, Lag3 and Tigit expression after DIVA2 were comparable

at both timepoints. The expression of exhaustion marker genes

suggests reduced effector T cell functions. In addition to the

decreasing total number of CLs at the time of immune evasion

compared to immune control (Figure 3D), exhaustion of CD8+ T

cells potentially represents a second mechanism for increased tumor

growth after initial tumor immune control.
A B

D

C

FIGURE 3

Single-cell RNA-sequencing analysis reveals monocytes to be absent during DIVA2-induced immune control. (A) Application pattern for DIVA2 in a
therapeutic tumor setting. Tumor cell suspensions were prepared during immune control (day 16) or immune evasion (day 20). Tumor-infiltrating
leukocytes were prepared by MACS isolation of CD45+ cells. (B) Tumor volumes during immune control (day 16, green line) and immune evasion
(day 20, red line). Visualized are the means and SD. *p<0.05 by two-way ANOVA with Sidak’s multiple comparisons test. Statistics were analyzed on
day 16 and day 20, compared to the non-immunized control groups. (C) scRNA-seq-based t-SNE plots of tumor-infiltrating leukocytes, merged per
condition (n=2-3). Cell types were predicted based on the immgen database annotation immgen main. (D) Quantitative distribution of tumor-
infiltrating leukocytes per immune cell type and condition.
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2.4 CCR2+ Monocytes infiltrating the TME
during immune evasion express
immunosuppressive marker genes

To analyze the impact of the myeloid compartment within the

TME on the immunosuppression of T cells, we calculated and

visualized myeloid populations based on high dimensional flow

cytometry data using FlowSOM and t-SNE algorithms. Based on the

fluorescence intensity of the myeloid flow cytometry markers in the

FlowSOM heatmap, we assigned the predicted populations to their

respective cell types (Figure 5A). Strikingly, we found four different

monocyte populations (P3, P4, P6 and P9) and two different

macrophage populations (P0 and P1), in various differentiation

stages, indicated by their MHCII and Ly6C expression intensities.
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While the t-SNE clustering during immune evasion is very similar

between DIVA2 and untreated, the corresponding t-SNE plots during

immune control differ remarkably. These differences mainly relate to

the monocytic populations P3 and P9 and the macrophage population

P0. These data suggest that the composition of the myeloid

compartment is altered when mice are treated by DIVA2. Due to the

limited number of markers in the flow cytometry analysis, we were not

able to determine a functional phenotype of the monocytes. Therefore,

we analyzed the expression of immunosuppressive marker genes based

on the ex vivo scRNA-seq data from tumor tissue (Figure 5B). The

strongest expression of these marker genes was observed in the

monocyte population which was almost absent during immune

control phase. To further examine the extent to which the expression

of the immunosuppressive marker genes relates to monocytes, we
A

B

D

C

FIGURE 4

DIVA2 treatment induced mainly cytotoxic CD8+ T cells with a mild exhaustion characteristic. (A) scRNA-seq-based t-SNE plots of tumor-infiltrating
leukocytes showing signature score of cytotoxic gene signature. (B) Signature score of cytotoxic gene signature, split by cytotoxic lymphocyte
subtype. (C) Quantitative distribution of cytotoxic lymphocyte subtypes. (D) scRNA-seq-based expression analysis of indicated exhaustion marker
genes by CD8+ T cells. All samples are merged per condition (n=2-3).
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plotted the expression intensity for each cell type (Figure 5C). As

already indicated in the t-SNE plots, macrophages also expressed the

immunosuppressive marker genes, but at a lower signature score than

monocytes. Only neutrophil granulocytes had a signature score

comparable to monocytes but were represented in a very small cell
Frontiers in Immunology 0742
number. These results indicate that monocytes infiltrating the TME

after the immune control phase exhibit an immunosuppressive

phenotype. Hence, they can contribute significantly to

immunosuppression of pro-inflammatory immune cells within the

TME, for example by causing exhaustion of CD8+ T cells. To verify the
A

B

D

C

FIGURE 5

Inflammatory CCR2+ Monocytes infiltrating the TME during immune evasion express immunosuppressive marker genes. (A) FlowSOM Map of CD45+

tumor-infiltrating immune cells and their predicted cell types. Cells were pre-gated on living cells, single cells, Lineage- cells and CD45+ cells.
Expression intensities were relatively set by the FlowSOM algorithm. t-SNE plots of CD45+ tumor-infiltrating immune cells, merged per condition
(n=11-15). FACS Markers included in the t-SNE calculation are analogous to the markers in the FlowSOM map. For coloring, FlowSOM populations
were applied onto the t-SNE plots. (B) scRNA-seq-based t-SNE plots of tumor-infiltrating leukocytes showing signature score of immunosuppressive
gene signature. (C) Signature score of immunosuppressive gene signature, split by immune cell types. (D) scRNA-seq-based t-SNE plots of tumor-
infiltrating leukocytes showing expression of indicated genes. All scRNA-seq samples are merged per condition (n=2-3). Flow cytometric gating
strategies are shown in Supplementary Figure 3. The flow cytometric gating strategy until gating of CD45+ lineage- cells was performed according to
the gating strategy of Figure 2.
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immunosuppressive effect of these monocytes in an in vivo experiment,

we examined the monocytes for a potential target suitable for depletion

in a tumor setting. The CCL2/CCR2 axis plays a crucial role in the

recruitment of monocytic cells to the tumor site. The chemokine CCL2

can be expressed in the TME by stroma cells, endothelial cells, tumor

cells or leukocytes (13), forming a CCL2 gradient within the tissue.

Cells expressing the CCL2-receptor CCR2 on their cell surface can

migrate along a CCL2 gradient to the peripheral tumor site. Once in the

TME, these cells can contribute to the suppression of pro-

inflammatory cells. The t-SNE plot split by conditions showed that

besides macrophages, mainly monocytes expressed CCR2 (Figure 5D).

CCL2-expression was stronger in the untreated group during immune

control and immune evasion. Since monocytes were almost absent in

the DIVA2-treated group during immune control, the total number of

CCL2-expressing cells was thus also lower. However, we detected a

strong increase in CCR2+ monocytes in the immune invasion phase,

regardless of treatment, suggesting that these monocytes migrate into

the TME via CCL2/CCR2 signaling. Notably, these monocytes

expressed Ly6C, confirming the classification as inflammatory

monocytes capable of mediating immunosuppression (Figure 5D).

Taken together, we identified inflammatory monocytes as key players

in the immunosuppressive mechanisms most likely influencing T cell

functions in the TME.
2.5 Depletion of CCR2+ Monocytes in a
therapeutic tumor setting leads to
decreased tumor growth demonstrating
their immunosuppressive capacity

Next, we characterized the anti-inflammatory phenotype of

CCR2+ Tumor-infiltrating monocytes, absent in DIVA2-treated

mice during immune control, but detectable during immune

evasion. To evaluate their tumor promoting capacity we depleted

CCR2+ cells in a therapeutic tumor setting with the anti-CCR2

antibody MC-21 and hypothesized a decrease of tumor growth after

depletion. As we only detected the monocytes after the immune

control phase, we started the MC-21 treatment on day 15

(Figure 6A). We verified the depletion of Ly6Chigh CCR2+

peripheral blood monocytes 24 h after the first injection. As

expected, we observed a depletion of Ly6Chigh CCR2+ peripheral

blood monocytes. This depletion was accompanied by an almost

complete depletion of CCR2+ monocytes in the tumors on day 20.

These findings suggest that CCR2+ monocytes infiltrate the TME

from peripheral blood, but that infiltration can be prevented by the

anti-CCR2 antibody MC-21. However, we detected CCR2+

monocytes in the peripheral blood again 48 h after the last MC-

21 injection at day 21, administered on 5 consecutive days

(Figure 6B). Combining DIVA2 and MC-21 treatment in a

therapeutic tumor setting reduced the tumor growth significantly,

compared to DIVA2 alone. However, this effect was limited and

lasted only until about 5 days after the last MC-21 injection.

Thereafter, we observed that the tumor volume increased more

rapidly. Since the monocytes were detectable in the blood about

24 h after the last injection, these findings suggest that the CCR2+

monocytes exhibit a tumor-promoting effect, which unfolds again
Frontiers in Immunology 0843
when the depletion effect runs out. Notably, treatment with MC-21

alone did not induce a reduction in tumor growth, indicating that

depletion of tumor-promoting monocytes no longer has an effect

when started in the later evasion phase (Figures 6C, D). In this

context, the effect of MC-21 alone on the tumor growth at an earlier

stage cannot be predicted. The combined immunotherapy

prolonged the median survival of the mice to 32 days, confirming

the enhanced anti-tumoral effect (Figure 6E). However, the

combined immunotherapy did not significantly enhance the

overall survival compared to DIVA2-treatment alone. We further

clarified if this anti-tumoral effect was due to depletion of tumor

promoting CCR2+ monocytes or rather to an altered T cell immune

response. For this purpose, we functionally characterized the

circulating T cells at different time points. Surprisingly, despite

decreased tumor growth in MC-21-treated animals, we found even

fewer CD8+ T cells and Ova257-264-specific CD8
+ T cells. These cells

produced similar amounts of IFN-g, TNF-a and KLRG-1,

suggesting a functional, non-senescent phenotype. Even though

CD8+ T cells can express CCR2 (14), depletion of CCR2+ cells did

not induce depletion of T cells, as we found no difference in T cell

count after treatment with MC-21 alone compared to untreated

mice (Supplementary Figure 2A). Addressing CD4+ T cells, we also

observed no differences between DIVA2-treated and untreated mice

(Supplementary Figure 2B). Taken together, the findings highlight

the role of CCR2+ tumor-infiltrating monocytes in contributing to a

tumor-promoting microenvironment. The associated tumor growth

could only be slowed down temporarily by the anti-CCR2 antibody

MC-21, demonstrating the need for alternative substances to

permanently deplete tumor-promoting monocytes.
3 Discussion

Therapeutic vaccines aim to induce tumor regression and long-

lasting tumor control (15) by inducing highly specific T cell-

mediated immune responses to tumor antigens (16). Recently, we

established a novel transcutaneous immunization approach DIVA,

based on imiquimod and dithranol (7), capable to induce tumor

rejection after further optimization (DIVA2) (8). However, in a

therapeutic setting DIVA2 merely mediates transient protection

during an immune control phase followed by a tumor evasion phase

with tumor outgrowth (Figure 1B), indicating that our potent

vaccination approach alone merely is insufficient for

tumor rejection.

To understand the underlying mechanisms driving tumor

progression, we compare the TME during the phase of tumor

control and tumor progression. Firstly, we can exclude the loss of

antigen on MC38mOVA tumor cells as a potential reason for

immune evasion, using an in vitro proliferation assay with

transgenic T cells (OT-1 T cells; Supplementary Figure 1D) (17,

18), as no impact on the proliferation of OT-1 T cells after co-

cultivation with ex vivo MC38mOVA tumor cells was detectable.

Secondly, to understand the mechanisms driving immune control

after DIVA2, we confirm the tumor (OVA257-264) specificity and

functional phenotype of the induced CD8+ T cells by a pronounced

cytotoxic gene expression profile and strong IFN-g release
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(Figures 2, 4) (19–21). IFN-g is a key effector molecule for the

cytotoxic function of CD8+ T cells (22) inhibiting tumor

proliferation by promoting the expression of cell cycle inhibitors

(p27Kip, p16 or p21) (23–25). Furthermore, IFN-g induces

apoptosis and necrosis (26) and acts as an inhibitor of

angiogenesis in tumor tissue (27–29). However, in contrast to its

anti-tumoral functions, IFN-gmay also exert pro-tumoral functions

(30–36) by activating immune checkpoint genes such as PD-L1 or

PD-L2 on tumor cells. These ligands bind to PD-1 on T cells or NK

cells leading to immunosuppression (37–40). Along these lines, the

strong IFN-g production induced by DIVA2 may trigger pro-

tumoral properties, in turn inhibiting the induced T cells. This

notion is supported by our single-cell RNA-sequencing data in the

immune evasion phase revealing a decrease in the population of

cytotoxic lymphocytes (Figure 3D) mainly formed by CD8+ T cells,

ILCs and NKT cells (Figure 4C). Analysis of the exhaustion markers
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of CD8+ T cells in the immune phase as well as in the immune

evasion phase, show an increased expression of PD-1, Lag3 and

Tim-3 in this phase, indicative of a moderate exhausted phenotype

[reviewed by Catakovic et al. (41)] (Figure 4D). In an exhausted

state, T cells are inhibited in their effector function and therefore

cannot promote anti-tumor immunity, leading to tumor growth

(42–45). ILCs are most abundant in the immune control phase after

DIVA2 treatment. Clustering of this population in the t-SNE plots

closely to NK cells (Figures 3C, 4A) suggests an ILC1 phenotype by

the cytotoxic gene marker analysis (Figure 4B). Collectively,

DIVA2-induced immune control is mainly mediated by ILCs and

CD8+ T cells. However, exaggerated IFN-g production in this

setting may promote a pro-tumoral milieu driving tumor

progression. Therefore, IFN-g cannot be regarded as a master

regulator of tumor immunity and may act as a double-edged

sword depending on the cellular context in the TME.
A
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FIGURE 6

Depletion of CCR2+ Monocytes in a therapeutic tumor setting leads to a decreased tumor growth demonstrating their immunosuppressive capacity.
(A) Schematic overview of the application pattern for Boost DIVA in a therapeutic tumor setting. DIVA2-treated or untreated mice were i.v. injected
with anti-CCR2 antibody MC-21 from day 15-19 (20 µg daily) or left untreated (n=4-9). (B) Representative flow cytometry dot plots of LY6C+ CCR2+

peripheral blood cells of an untreated and anti-CCR2 treated mouse. (C) Tumor volumes were assessed three times per week. Every curve
represents the tumor volume of one individual mouse. (D) Tumor volumes visualized as mean and SD per condition. (E) Kaplan-Meier survival curve.
p < 0.05 by two-way ANOVA with Sidak’s multiple comparisons test and one-way ANOVA with Kruskal-Walli’s test, when sample numbers were
different. Comparisons of survival curves were performed by Log-rank (Mantel-Cox) test.
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Given the persistence of the DIVA2-induced cytotoxic CD8+ T

cells in the tumor and the concurrent loss of immune control,

immunosuppressive mechanisms in TME must prevent tumor cell

elimination and immune evasion. High dimensional flow cytometry

of tumor infiltrating CD45+ leukocytes draws our attention to the

myeloid compartment of the TME to be mainly composed of several

monocyte- and macrophage populations. More detailed t-SNE

analysis at individual time points after treatment revealed that the

myeloid compartment during the immune control differed greatly

compared to the untreated group. Interestingly, IFN-g is also

associated with the polarization of macrophages into

inflammatory M1 macrophages (46). Along this line, we observe

an increased infiltration of macrophages in the tumor in the

immune control phase (Figures 3D, 5A). In contrast, in immune

evasion phase the clustering was very similar across the conditions

(Figure 5A), suggesting a relevant impact of the myeloid

compartment in the initiation of immune evasion. ScRNA-seq

data of tumor-infiltrating CD45+ leukocytes confirmed the flow

cytometry data. Notably, monocytes were nearly absent in the

DIVA2-treated group in immune control phase compared to

untreated animals. In contrast, during the immune evasion phase,

monocytes are abundant regardless of treatment (Figure 3C).

Expression analysis of immunosuppressive marker genes,

associated with MDSC phenotypes (47), indicates an

immunosuppressive phenotype of the monocytes infiltrating the

TME in the immune evasion phase (Figures 5B, C).

Chemokines produced by tumor cells can drive the infiltration

of immune cells into the TME and chemokine (C-C motif) ligand 2

(CCL2), also known as monocyte chemoattractant protein-1 (MCP-

1) plays an important role in this context (48). CCR2 expressing

monocytes are recruited along the CCL2 gradient to the peripheral

tumor site (49, 50). In the TME, monocytes can further mature and

develop pro-tumoral functions (51, 52) by maturing into tumor-

associated macrophages (TAMs) promoting tumor growth (51, 53,

54). Pre-clinical models targeting the CCR2/CCL2 axis have already

revealed an impact on tumor growth by blockade of CCR2/CCL2

binding (55). As shown in Figure 5D, tumor-infiltrating leukocytes

display a high CCR2 as well as Ly6C expression on monocytes

during immune evasion independent of treatment indicating a

monocyte derived-MDSC (M-MDSC) phenotype (56). In

addition, to some extent CCL2 expression was also observed in

the scRNA-seq data (Figure 5D). The abundance of CCR2+

monocytes in the TME is associated with the suppression of T

cells in various cancer models (57–60) shaping tumor progression

because of immunosuppressive mechanisms initiated upon

recruitment. In line with this, the observed CCR2+ monocytes

expressed Irf8 (Supplementary Figure 4), which is associated with

the induction of T cell exhaustion, further promoting tumor growth

(61). Furthermore, tumor-infiltrating monocytes are known to

induce the recruitment of tumor promoting Treg cells (60, 62).

Nevertheless, Treg cell frequencies were comparable in all groups

(Figure 3D) at the investigated time points suggesting no prominent

impact of Tregs on the immunosuppressive mechanisms shaping

tumor progression. A limitation of our studies is certainly the

circumstance that we did not investigate the functional

interaction of tumor-infiltrating monocytes with T cell
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populations. Hence, we are at present unable conclude whether

these cells are truly responsible for tumor progression in the

immune evasion phase. Further studies are needed to confirm this

and pinpoint the underlying mechanisms to disclose the full

potential of specific cancer immunotherapies.

To gain insight on the biological relevance of CCR2+

monocytes, we used a CCR2 depleting antibody MC-21 in our

therapeutic tumor setting (63). As these CCR2+ monocytes are

required for DIVA-induced T cell responses (7), depletion was

started after the second immunization and before the infiltration of

monocytes into the TME (Figure 6A). The rather late application of

the depleting mAb for only a limited time is certainly a suboptimal

experimental setup to evaluate the therapeutic efficacy of combining

tumor vaccination with the depletion of CCR2+ cells, as we only

observe minute effects on survival (Figure 6E) and a transient delay

of tumor growth (Figures 6C, D). While this is suggestive of the

immunosuppressive capacity of the CCR2+ monocytes, this

combined approach appears to be insufficient to completely stop

tumor growth. This is most likely due to the transient depletion of

CCR2+ cells that reappear in peripheral blood shortly after ceasing

the antibody treatment (Figure 6B) or tumor intrinsic adaptions

alleviating the need for the CCR2/CCL2 axis. Unfortunately, the

administration period of MC-21 is limited to 5 days by to the

induction of neutralizing antibodies in the host mice (64) leaving us

unable to clarify this with this mAb. Nevertheless, it is safe to

assume that CCR2+ monocytes recruited into the TME contribute

to the immunosuppression of cytotoxic lymphocyte functions and

thus promoting tumor progression in vivo. To explore the

therapeutic potential of combined vaccination with CCR2

blockade to effectively prevent infiltration of immunosuppressive

monocytes into the TME alternative CCR2- or CCL2-blocking

agents are needed allowing prolonged application to achieve

durable effects. Here, the selective CCR2 antagonist RS504393

that inhibits the infiltration of immunosuppressive MDSC into

the TME in a bladder cancer mouse model (65) or CCL2 specific

antibodies such as C1142 inhibiting tumor progression in a glioma

model (66) might be interesting novel agents.

Taken together, our transcutaneous immunization method

DIVA2 displays a promising approach to generate high quality

antigen-specific T cells enabling tumor control in a therapeutic

setting. Thorough analysis of the induced TME identifies

immunosuppressive CCR2+ monocytes as important counterparts

of antigen-specific T cells limiting their anti-tumor capacity.

Therefore, besides boosting tumor specific cytotoxic T cell

responses, future immunotherapeutic vaccination approaches must

focus on the immunosuppressive TME, including CCR2+ monocytes.
4 Materials and methods

4.1 Mice

C57BL/6 mice - purchased from the Envigo Laboratory (Envigo,

Indianapolis, USA) - were used at the age of 8-10 weeks. All animal

studies were conducted according to the national guidelines and

were reviewed and confirmed by an institutional review board/
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ethics committee headed by the local animal welfare officer (Dr. M.

Fassbender) of the University Medical Center (Mainz, Germany).

The responsible federal authority (Federal Investigation Office

Rhineland-Palatinate, Koblenz, Germany) gave approval of the

animal experiments (Approval ID: AZ 23 177-07/G18-1-096).
4.2 Transcutaneous immunization

Immunizations were performed under isoflurane/oxygen

anesthesia (0.5% oxygen, 2.5% isoflurane). For DIVA (7), both

ears of the mice were treated, each with 25 mg dithranol in vaseline

(0,3 µg/mg, manufactured by the Pharmacy of the UMC Mainz

according to European Pharmacopeia (Ph. Eur.) standards)

corresponding to a total amount of 8 µg dithranol per ear. After

24 h the treatment with 50 mg IMI-Sol formulation (67) containing

imiquimod (5% w/w, manufactured by Jonas Pielenhofer and

Sophie Luise Meiser, JGU Mainz, Germany) on each ear was

conducted, followed by the application of officinal cremor basalis

together with OVA257-264 and OVA323-337 (100 µg each, from

peptides & elephants, Henningsdorf, Germany) on each ear. For

DIVA2, immunization was repeated after 7 days.
4.3 Tumor cell inoculation

For the inoculation of MC38mOVA tumor cells (68) mice were

anesthetized with isoflurane and oxygen as indicated above. 5x104

tumor cells were inoculated subcutaneously (s.c.) on the shaved right

flank. After 6 days tumors were palpable and measured three times per

week with a digital caliper. The survival of the mice was monitored.

Tumor experiment was stopped when the tumor volume of a mouse

exceeded 600 mm3 or when ulceration of a tumor was observed.
4.4 Depletion of CCR2+ monocytes

When indicated mice were injected intravenously (i.v.) with

CCR2-depleting antibody (clone MC-21, 20 µg in PBS, once per day

on day 15-19 after inoculation of tumor cells, provided by Matthias

Mack, Regensburg, Germany).
4.5 Preparation of single cell suspensions
from blood, tumor and spleen

To obtain peripheral blood samples tail vein incision was

performed. Red blood cells were removed by a hypotonic lysis

step with ACK buffer. Tumors were digested with Collagenase type

4 (800 U/ml, Worcester, Pappenheim, Germany) and DNAse type I

(100 µg/ml, Sigma-Aldrich, Taufkirchen, Germany) on a

gentleMACS Octo Dissociator (Miltenyi Biotec, Bergisch

Gladbach, Germany). Spleens were grinded on a 70 µm cell

strainer with a syringe plunger, followed by a hypotonic lysis with

Gey´s lysis buffer for 2 min.
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4.6 Flow cytometric analysis of circulating
specific T cell responses

For flow cytometric analysis of DIVA induced specific T cell

responses, blood cells were prepared as mentioned above and

incubated for 30 min at 4°C with fluorescently labeled antibodies

against CD8 (Pacific Blue-conjugated, clone 53-6.7), CD44 (APC-

conjugated, clone IM7) and CD62L (FITC-conjugated, clone MEL-

14). CTLs specific for H-2Kb-OVA257-264 were detected by H2-Kb

tetramer (PE-conjugated, own product). Dead cells were detected

using eBioscience™ fixable viability dye (eFluor780-conjugated).

Measurements were performed with a LSRII Flow Cytometer and

FACSDiva software (BD Pharmingen, Hamburg, Germany).
4.7 Flow cytometric analysis of tumor-
infiltrating leukocytes

For flow cytometric analysis of tumor-infiltrating myeloid cells,

tumor single cell suspensions were incubated for 30 min at 4°C with

fluorescently labeled antibodies against CD45 (BUV805-

conjugated, clone 30-F11), CD3 (PE-Cy5-conjugated, clone 145-

2C11/17A2), CD19 (PE-Cy5, clone 6D5), NK1.1 (PE-Cy5-

conjugated, clone PK136), MHCII (BV786-conjugated, clone M5/

114.15.2), CD11c (APC-R700-conjugated, clone N418), CD11b

(BV605-conjugated, clone M1/70), Ly6C (BV580-conjugated,

clone HK1.4), Ly6G (BV750-conjugated, clone 1A8), F4/80

(BB790-conjugated, clone T45-2342), XCR1 (BV650-conjugated,

clone ZET), CD24 (BUV395-conjugated, clone M1/69), CD64

(BUV737-conjugated, clone X54-5/7.1), FcgRIe (PE-Dazzle594-

conjugated, clone Mar1). Tumor-infiltrating lymphoid cells were

incubated with fluorescently labeled antibodies against CD45

(BV421-conjugated, clone 30-F11), CD3 (PE-Cy5-conjugated,

clone 145-2C11/17A2), CD8 (BV480-conjugated, clone 53-6.7),

CD44 (BV786-conjugated, clone IM7), CD62L (FITC-conjugated,

clone MEL-14), H2-Kb-OVA257-264 tetramer (PE-conjugated, own

product), PD1 (PE-Cy7-conjugated, clone RMP1-30), CTLA-4

(BV605-conjugated, clone UC10-4F10-11) and Lag3 (PerCP

eFl710-conjugated, clone eBioC9B7W). In both panels, dead cells

were detected using eBioscience™ fixable viability dye (eFluor780-

conjugated). Measurements were performed with a FACSymphony

Cytometer and FACSDiva software (BD Pharmingen,

Hamburg, Germany).
4.8 IFN-g ELISpot assay

Production of IFN-g was assessed by IFN-g-ELISpot assay as

described previously (7). 96-Well MultiScreenHTS IP plates

(0.45 mm, Merck Millipore, Darmstadt, Germany) were coated

over night at 4°C with murine anti-IFN-g antibody (clone AN18,

Mabtech, Nacka Strand, Sweden). The membrane was blocked with

IMDM + 10% FCS for at least 60 min at 37°C, whereupon 5x105

splenocytes or ex vivo tumor cells were added in the absence or

presence of OVA257-264 or OVA323-337 (each 1 mM). After 20h
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incubation at 37° C the plate was washed and stained with a

biotinylated anti-IFN-g antibody (clone R4-6A2, Mabtech, Nacka

Strand, Sweden). For detection of produced IFN-g Vectastain ABC

Kit (Vector Laboratories, Burlingame, USA) together with AEC

(Sigma-Aldrich, Taufkirchen, Germany) was used as described in

manufacturer´s instruction. The analysis of the ELISpot plate was

performed with an AID iSpot ELISpot reader (AID Autoimmun

Diagnostika, Straßberg, Germany).
4.9 Single-cell mRNA-sequencing of
tumor-infiltrating leukocytes

Tumor-infiltrating leukocytes were isolated from tumor cell

suspensions by MACS sorting using CD45 MicroBeads and LS

Columns (both from Miltenyi Biotec, Bergisch Gladbach,

Germany). The viability analysis, single cell capturing and mRNA

isolation was performed with a BD Rhapsody™ Single-Cell analysis

system (BD Biosciences, Franklin Lakes, USA), following the

manufacturer´s guidelines. Each sample was tagged with a unique

sample tag allowing multiplexing of samples on the same single cell

capturing cartridge. DNA libraries for Whole Transcriptome

Analysis (WTA) and Sample Tags were created, following the BD

Rhapsody System mRNA Whole Transcriptome analysis (WTA)

and Sample Tag Library Preparation protocol with the BD WTA

Amplification Kit (BD Biosciences, Franklin Lakes, USA). The

sample preparation was performed in cooperation with the

Research Center for Immunotherapy (FZI) Core Facility NGS of

the Johannes Gutenberg-University Mainz. Sequencing was

performed by Novogene Co. Ltd. (Cambridge, UK).
4.10 Bioinformatic analysis of the
scRNA-seq data

Single cell RNA-seq libraries were constructed according to BD

Rhapsody WTA library preparation protocol. Short read sequences

were processed using the Seven Bridges analytic workflow (version

1.9). Two to three independent biological replicates of single-cell

libraries were sequenced on Illumina NovaSeq6000 sequencer

instruments. The dataset was annotated to gene-level information

based on ENSEMBL [v92]. Quality control was performed on each

dataset independently to remove poor-quality cells, using the scater

package (version 1.24.0) (69). The proportion of mitochondrial

gene content was used as a proxy for damaged cells, using three

median absolute deviations as a threshold, fol lowing

the recommendations of the OSCA resource (https://

bioconductor.org/books/release/OSCA/ (70). Normalization of

cell-specific biases was performed on the sets of cells passing the

quality control filters using the deconvolution method of Lun et al.

(version 1.24.0) (71). Counts were divided by size factors to obtain

normalized expression values that were log-transformed after

adding a pseudocount of one. Integration of different biological

samples was performed using the MNN method (72). Highly

variable genes were identified on the pooled set of cells after

decomposing the per-gene variability into technical and biological
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components based on a fitted mean-variance trend. Next, we

performed dimension reduction and clustering. Principal

Component Analysis (PCA) was performed and provided as

initialization to the t-SNE algorithm/UMAP algorithm (73) to

obtain a reduced dimensionality representation of the data.

Clustering was performed using the highly variable genes

(HVGs), building a shared nearest neighbor graph (74). The

Walktrap community finding algorithm was applied to determine

cluster memberships. Cluster annotations were initially performed

with the SingleR package (version 1.10.0) (75), using the ImmGen

database as a reference. Annotations were also refined manually

based on canonical markers, in conjunction with marker genes

identified programmatically with the scran function “findMarkers”.

Complementary exploration was performed with iSEE (version

2.8.0), which was adopted to generate most single-cell data

visualizations (76). Differential state analyses, as a combination of

differential expression analysis and differential abundance analysis,

were conducted in the pseudobulk framework, following the

implementation of the muscat package (version 1.10.0) (77).
4.11 Analysis and visualization of flow
cytometry data

Flow cytometry data were analyzed and visualized using FlowJo

(version 10.8.2, Mac OS Ventura). For dimensionality reduced

visualization of tumor-infiltrating myeloid cells 1x104 CD45+ cells

were first downsampled by running the DownsampleV3 plugin.

After concatenating the obtained fcs files, t-SNE plots were

calculated by running the t-SNE plugin. For clustering of different

myeloid populations, the FlowSOM plugin was performed and

applied onto the t-SNE plots.
4.12 Statistical analysis

The statistical analysis was performed using GraphPad Prism

(version 9.4.1 for Mac OS Ventura, GraphPad Software, San Diego

California, USA). Multiple comparisons between more than two

groups were performed by two-way ANOVA with Sidak’s multiple

comparisons adjustment. When sample numbers in multiple

comparisons were different, one-way ANOVA with Kruskal-

Wallis test was performed. Comparisons of two groups were

performed by unpaired Mann-Whitney test. When sample

numbers of two compared groups were different, unpaired t test

with Welch´s correction was performed. Comparisons of survival

curves were performed by Log-rank (Mantel-Cox) test. The

significance level was determined as a p value a=0,05.
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Single-cell gene expression analysis using sequencing (scRNA-seq) has gained

increased attention in the past decades for studying cellular transcriptional

programs and their heterogeneity in an unbiased manner, and novel protocols

allow the simultaneous measurement of gene expression, T-cell receptor

clonality and cell surface protein expression. In this article, we describe the

methods to isolate scRNA/TCR-seq-compatible CD4+ T cells from murine

tissues, such as skin, spleen, and lymph nodes. We describe the processing of

cells and quality control parameters during library preparation, protocols for

multiplexing of samples, and strategies for sequencing. Moreover, we describe a

step-by-step bioinformatic analysis pipeline from sequencing data generated

using these protocols. This includes quality control, preprocessing of sequencing

data and demultiplexing of individual samples. We perform quantification of gene

expression and extraction of T-cell receptor alpha and beta chain sequences,

followed by quality control and doublet detection, and methods for

harmonization and integration of datasets. Next, we describe the identification

of highly variable genes and dimensionality reduction, clustering and

pseudotemporal ordering of data, and we demonstrate how to visualize the

results with interactive and reproducible dashboards. We will combine different

analytic R-based frameworks such as Bioconductor and Seurat, illustrating how

these can be interoperable to optimally analyze scRNA/TCR-seq data of CD4+ T

cells from murine tissues.

KEYWORDS

scRNA seq, scTCR seq, TCR (T-cell receptor), CD4 T cell, tissue CD4 T cell
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Introduction

Single-cell sequencing-based technologies have significantly

changed our view on cellular architecture and heterogeneity of

samples (1–4). One particular example includes single-cell

sequencing-based gene expression profiling (scRNA-seq) of

individual cells (5, 6), which is based on the linear amplification

of RNA derived from individual cells, followed by complex

bioinformatic processing steps and identification of cell types in

an unbiased way (7–9). Despite differences in technology and

chemistry (benchmarked in (10)), single-cell sequencing

experiments generally require four main steps (11).

First, tissues or organs have to be processed and digested to

liberate target cells from the extracellular matrix in the tissue

network. This yields a single-cell suspension where our target

cells are present in varying frequencies, based on the tissue itself

and its state, often dependent on the experimental conditions under

investigation (Inflamed? Tumor-bearing? Virus-infected? Necrotic?

Hypoxic)?. These steps have to be optimized to yield viable, intact

cells without causing too much stress or hypoxic damage (12).

While experimental procedures are now established for various cell

and tissue types, no detailed workflow is available for tissue T cells,

covering not only the wet-lab steps but also providing

comprehensive guidance on the bioinformatic analyses for the

datasets generated. In previous work, we have developed

protocols for isolating T cells from a wide array of murine and

human tissues such as skin, visceral adipose tissue, colon, lungs,

liver, or different lymphoid tissues, and used them for downstream

sequencing-based analysis (13–16). In the methods paper presented

here, we will describe protocols to isolate target cells from murine

skin and secondary lymphoid tissues such as spleen and lymph

nodes (LN). To promote best data quality, we pre-enrich for viable,

high-quality target cells using fluorescence-activated cell sorting

(FACS) before performing single-cell barcoding. This allows the

removal of unwanted cells, dead cells, dying cells, and cellular debris

that might otherwise compromise quality. We will provide advice

on cell sorting and sample multiplexing using barcoded antibodies.

In the second critical step, highly pure target cells are processed

(“barcoded”) and genetic material is amplified. Single-cell isolation

and library preparation can be based on several different

technologies. This begins with limiting dilution technologies,

magnetic cell sorting, micromanipulation using microscope-

guided capillary pipettes or laser microdissection, sorting of single

cells into a 96- or 384-well plate using FACS, to microfluidic

systems that combine droplets and cells, and new technologies

and adaptations are developed rapidly (12, 17). Importantly, all

different technologies aim to capture a single cell in an isolated

reaction volume to add a unique barcode specific for this cell.

In a third step, a sequencing library is prepared. In our case, we

prepare not only one, but three libraries: a gene expression library

that contains sequencing reads allowing to identify and quantify

genes expressed on a cell-individual level (GEX library); a second

library that contains quantitative information about cell surface

protein expression and sample multiplexing (hashtag oligo)
Frontiers in Immunology 0252
information (CSP library); and a library that contains the T-cell

receptor usage information as nucleotide sequence (VDJ library).

We will provide examples of all three libraries including PCR cycles,

concentration, and electrophoresis-based size profiles.

The last step of the wet-lab procedure is the sequencing of all

three libraries using high-throughput next-generation sequencing

technology. At the end of the run, FastQ data are demultiplexed and

copied from the sequencing instrument, and are now ready to

undergo bioinformatic processing. In this methods paper, we

provide an example dataset which we generated for this

publication, where we applied the above-mentioned protocols to

combine single-cell gene expression, TCR sequencing and cell

surface protein barcoding to characterize and track CD4+ T-cell

clones from murine tissues, and which can be downloaded by the

reader for reproducing our bioinformatics workflow. The datasets

include several thousand CD4+CD25+ Treg cells from murine

spleen, mesenteric LN (mLN), inguinal LN (iLN) as well as CD3+

immune cells from skin, for all of which GEX, CSP and VDJ

libraries have been generated and sequenced.

Using this dataset, we will describe a step-by-step bioinformatic

workflow to help repeat and reproduce the results achieved using

the methods described in this paper. First, we apply FastQC and

CellRangerMulti to enable a combined analysis of all individual

samples and determine overall sequencing quality and identify

individual cells. Here, we discuss critical quality-related

parameters that CellRanger delivers, and discuss typical results

obtained with CD4+ T cells from tissues. In a next step, we create

the count matrix from CellRangerMulti output. We describe the

pre-processing of scRNA-seq data using a variety of freely available

R packages to perform quality control (QC) and filtering,

dimensionality reduction, removal of doublets, evaluation of

batch effect correction, and generating the final filtered dataset for

analysis (following best practices outlined in (8) and (7)). We will

also provide guidance on clustering, marker gene detection, cell type

annotation, and interactive data exploration, accompanying this

manuscript with a notebook containing all code and output from

the analysis of our test dataset, which we refer to in the

corresponding paragraphs. All essential steps for this end-to-end

workflow are summarized in Figure 1.
Methods – experimental procedures

Isolation of T cells from murine spleen,
mLN and iLN

To isolate T cells from murine secondary lymphoid tissues such

as spleen or lymph nodes, a midline excision is performed to open

the skin and abdominal wall, and forceps are used to expose the

peritoneal cavity. The spleen is harvested immediately and stored at

4°C until use. To isolate mLNs, the cecum is located, the small

intestine is moved to the side and the chain of mLNs are exposed.

Using forceps, the tissue is harvested, placed in FACS buffer

(Table 1) and stored at 4°C. Inguinal lymph nodes are collected
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from both hemispheres beneath the skin, placed in FACS buffer and

stored at 4°C until use. To process the spleen, it is placed on a 100

µM filter unit and is mechanically dissociated using a plunger or

forceps. Following centrifugation (2 min, 1000g, 4°C), red blood

cells are lysed using a commercially available ACK lysis buffer (e.g.,

Thermo Fisher #A1049201). The cell suspension is filtered using a

70 µm strainer, resuspended in 500 µl FACS buffer, and cells are

counted. To process LNs, the individual nodes are placed on a 100

µM filter unit and are mechanically dissociated using a plunger or
Frontiers in Immunology 0353
forceps. Following centrifugation (2 min, 1000g, 4°C), the

suspension is filtered using a 70 µm strainer, resuspended in 500

µl FACS buffer, and counted.

Afterwards, we add Fc blocking reagent (Miltenyi Biotec #130-

092-575) to prevent unspecific binding of antibodies and beads,

followed by specific labeling using 1 µg PE-conjugated anti-mouse

CD4 (Clone RM4-5, Biolegend #100512) or 1 µg PE-conjugated

anti-mouse CD25 (Clone PC61, Biolegend # 102008) antibodies in

500 µl and stain for 20 min at 4°C. After staining, cells are
TABLE 1 Formulation for FACS buffer.

Ingredient Manufacturer Final concentration

Phosphate-buffer saline 10X Gibco #10010023 or other 1X

FCS 100% Sigma #F7524 or other 2%

Deionized water NA Up to final volume
FIGURE 1

Graphical abstract. The left panel describes tissue processing and library prep: Tissues harvested from an individual mouse are enzymatically and
mechanically digested (1) and material is magnetically enriched for target cells (2) to make cell sorting (3) more efficient. After obtaining a pure target
population (3), cells (labelled with Biolegend TotalSeqC anti-mouse Hashtagging antibodies) and 10X beads are loaded on the 10X Chromium
controller (4) followed by scRNA-seq library preparation (5). The middle panel describes sequencing (1) quality control using CellRangerMulti and
FastQC (2). Using R and Bioconductor, data can be pre-processed. These steps include QC and filtering (3.1), the identification of doublets (3.2), and,
if necessary, batch effect correction (3.3) to yield the final, filtered dataset (4). The right panel describes data analysis, comprising the clustering (1),
marker gene detection (2) as well as TCR repertoire diversity analysis (3). Furthermore, cell type annotations (4) and trajectory analysis can be
performed (5). Moreover, an interactive data exploration by using iSEE can be done (6). Elements of this figure have been created with Biorender
using figures and plots generated in this manuscript.
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centrifuged (2 min, 1000g, 4°C), washed using 1000 µl of FACS

buffer, and resuspended in MACS buffer (Table 2). Next, target cells

are bound by anti-PE ultrapure microbeads (Miltenyi Biotec #130-

105-639) for 20 min at 4°C, followed again by two centrifugation

(2 min, 1000g, 4°C) and washing steps using 1000 µl of FACS buffer.

Finally, samples are re-suspended in 500 µl MACS buffer. A 70µl

filter unit is placed on an equilibrated MACS column (we

recommend working at 4°C to prevent cellular degradation) and

the sample is loaded. The column is washed twice with 5 ml

MACS buffer.

Afterwards, the sample is eluted in 500 µL FACS buffer and

stained for 30 min at 4°C using fluorescence-labelled antibodies as

well as TotalSeqC anti-mouse Hashtagging antibodies (Biolegend

#155861 (C1), #155863 (C2), #155865 (C3), #155865 (C4)). To

increase TotalSeqC antibody labeling, it is recommended to wash

cells 3-5 times with 500 µL FACS buffer after staining. For sorting,

cells can be resuspended in 200 µLMACS buffer. In order to prevent

aggregates during the co-staining of fluorescence-labeled antibodies

and Biolegend TotalSeqC antibodies, it’s recommended to

centrifuge the antibody mix at 14,000 x g for 10 min at 4°C.

Afterwards the supernatant should be transferred to a new tube

and maintained at 4°C. The antibody aggregates will stay at the

bottom of the original tube. For sorting, an example is shown in

Figure 2. We recommend a gating strategy where CD4+ or CD25+ T

cells are enriched to high purity using FACS, and dead cells,

unwanted cell types and doublets are excluded. The target cells

can be sorted into MACS buffer. A small part of the sorted

population (target cells) can then be re-analyzed before

downstream processing to determine post sort purity, viability,

and cell recovery/sort efficiency. If the post sort QC indicates that

cells are of good viability and purity (for troubleshooting see

Table 3), the sample can be subjected to single-cell barcoding, as

described later.
Isolation of T cells from murine skin tissue

To isolate T cells from skin tissue, hair must be removed from

the back of the animal with an electric shaver and depilatory cream.

The cream is applied for 2 minutes, followed by vigorous washing

using tap water to remove hair. It is important that excess hair is

completely removed to avoid complications during downstream

filtration steps. After cleaning, the skin is separated from the dorsal
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surface, cut into small pieces, and transferred to a GentleMACS

tube (Miltenyi Biotec #130-096-334) containing 10ml of skin

digestion buffer (Table 4). We recommend 10ml digestion buffer

for 0.5 g of skin tissue.

Then, the sample is digested using the GentleMACS

Dissociator (program: 37_C_Multi_H) or via orbital shaking in

a preheated waterbath (37°C). After 90 minutes of digestion or

completion of the GentleMACS program, the single-cell

suspension can be cut again, centrifuged (10 min, 400g, 4°C),

resuspended in 5000 µl FACS buffer and transferred to a 15 ml

tube through a 100 µm filter unit. Then, the sample is centrifuged

again (2 min, 1000g, 4°C), resuspended in 1000 µl FACS buffer

and filtered into a new 1.5 ml tube using a 70 µm filter unit. The

sample can now be stained for 30 min at 4°C using fluorescence-

labelled antibodies as well as Biolegend TotalSeqC anti-mouse

Hashtagging antibodies, as described before. For sorting, cells can

be resuspended in 200 µL MACS buffer. An example of the sorting

strategy of T cells from murine skin tissue is shown in Figure 2E

To increase efficiency, it is beneficial to first enrich for CD45+

immune cells (yield sort) by sorting target cells into MACS buffer,

followed by a second purity sorting (4-way purity sort) of target

cells (Table 5).
Single droplet barcoding of T cells for
combined scRNA/TCR-seq

Target cells from spleen (12,500 CD3+CD4+CD25+ Treg cells,

TotalSeqC1), mLN (10,000 CD3+CD4+CD25+ Treg cells,

TotalSeqC2), iLN (7,500 CD3+CD4+CD25+ Treg cells, TotalSeqC3)

and skin (10,000 CD3+ T cells, TotalSeqC4) have all been sorted into

a single 1.5 mL Eppendorf tube containing 350 mL MACS buffer, and

the sample collection tube was cooled to 4°C. It is important to

process the sample quickly after sorting to decrease the number of

dying/dead cells in the collection tube. Therefore, shortly after

sorting, cells are pelleted by centrifugation (5 min, 300 xg, 4°C).

Supernatant is removed and the sample is supplemented with master

mix and beads to a final volume of 70 mL, loaded on a 10X Chromium

Next GEM Chip K (10X Genomics #1000287) and processed on the

10X Chromium Controller (10X Genomics #120212), followed by

cDNA amplification using the Chromium Next GEM Single Cell 5’

Reagent Kit v2 (10X Genomics #1000263) and 5’ Feature Barcode Kit

(10X Genomics #1000256). Afterwards V(D)J amplification was done
TABLE 2 Formulation for MACS buffer.

Ingredient Manufacturer Final concentration

Phosphate-buffer saline 10X Gibco #10010023 or other 1X

Bovine Serum Albumin 100% Sigma #A4503 or other 0,5% (w/v)

Ethylenediaminetetraacetic acid ThermoFisher #15575020 1 mM

Deionized water NA Up to final volume
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from cDNA by using the Chromium Single Cell Mouse TCR

Amplification Kit (10X Genomics #1000254) and GEX, CSP and

VDJ library preparation according to the Library Construction

protocol (10X Genomics #1000190). In Figure 3A, we show the

elements of each library, including the sample indexes i5 and i7, read1

and read2 with their purpose and recommended sequencing length.

In Figure 3B, cycle numbers and typical library sizes are shown. Upon

completion of cDNA amplification and library preparation, the

fragment length composition is usually evaluated using

electrophoretic separation of the sample, for which we show

examples in Figures 3C–F.
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Methods – sequencing and QC
strategy for scRNA-seq libraries

Next-generation sequencing of GEX, VDJ
and CSP libraries
In Figure 3B, we listed the total number tagged and sorted cells

and the total number of cells identified after sequencing. The

recovery rates were 38.0% for spleen CD25+ Treg cells, 40.1% for

mLN CD25+ Treg cells, 41.0% for iLN CD25+ Treg cells, and 33.4%
B

C

D

E

A

FIGURE 2

Overview of sample preparation for scRNA-seq of CD4+ T cells from murine tissues. (A) Procedural overview. Organs are removed, followed by
tissue digestion and pre-enrichment for CD4+ T cells. These are then sorted, followed by single-cell barcoding using 10X Chromium controller.
(B, C) Flow cytometry plots illustrating the gating scheme to isolate T cells from lymphoid tissues such as spleen and mLN. (D) Post sort QC of
spleen, mLN, iLN CD25+ sorted into the same collection tube. (E) Flow cytometry plots illustrating the gating scheme to isolate T cells from murine
skin tissue. Figure elements created with Biorender.
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for skin CD4+ T cells, with a mean recovery rate of 38.13%.

Peripheral tissues that undergo enzymatic digestion, such as skin,

liver, lung, or colon tissue, have varying recovery rates based on cell

preparation steps, pre-enrichment, duration of processing, sort

efficiency and sort setup. This can sometimes lead to recovery

rates below 10% and requires optimization. Usually, all samples are

sequenced in “one batch”, and varying recovery rates can lead to

“under- or over-sequencing” of libraries. Therefore, we recommend

performing a pre-sequencing using only the gene expression (GEX)

library. This reduces the cost for sequencing, allows for the

identification and removal of low-quality and degraded samples,

and increases the overall comparability of the datasets due to

harmonized sequencing depth. Here, using a rough estimate of a

projected cell number recovery (in our case, we estimate about 40%

of sorted cells to be recovered later for bioinformatic analysis) helps

to estimate the total number of reads required to sequence the GEX

library to the desired depth. Now, for pre-sequencing, we only run

5%-10% of the estimated required reads to determine the

approximate cell number for each library. These values are then

used to sequence all libraries with a rather precise estimate of the

required numbers of reads per library. In our lab, we routinely

sequence 10X 5’ scRNA-seq libraries using a paired-end run with

26-10-10-90 sequencing strategy with a 150-cycle high-output

cartridge on a NextSeq 500/550 sequencing unit. In a typical run,

read 1 identifies the i5 index (cell barcode) with 10 nucleotides and

reads 26 nucleotides of 10X Barcode and UMI. On the reverse
Frontiers in Immunology 0656
strand (read 2), primer P7 initiates the i7 read (sample index) with

10 nucleotides and reads 90 nucleotides of the cDNA (Figure 3A.

The remaining 90 reads of read 2 are important for calling the gene

(GEX library), the cell surface protein and/or hashtag oligo (e.g.

TotalseqC), which appears at a fixed position (10th base) in read 2

(CSP library) or the VDJ information for the TCR (VDJ library). For

the samples available as open access download alongside this paper,

we used a 300-cycle high-output cartridge with a paired-end run

and 26-10-10-149 sequencing strategy. In Figures 3C–F examples

for library profiles from full length DNA (c), GEX (d), VDJ (e) and

CSP (f) of a sample containing CD25+ cells from spleen, mLN and

iLN as well as CD3 skin T cells is shown. Since we used hashtag

oligos (TotalseqC1-4) and pooled the different organs into one

sample during sort, we only get one cDNA, GEX, VDJ and CSP

library for all 4 samples.
Investigating sequencing quality
using FastQC

To investigate whether we can estimate library quality, we ran

FastQC on all L001 files generated from the different libraries. A plot

labeled “per base sequence quality” shows the distribution of quality

scores at each position in the read across all reads (Figure 4A). It can

alert to whether there were any problems during sequencing. As the

read 2 contains the information for the gene expression, we focus on
TABLE 3 Troubleshooting and Recommendations.

Description Solution

All cells are dead Analyze buffer ingredients, optimize erythrocyte lysis procedure

Erythrocyte contamination Optimize ACK lysis procedure

Low purity of CD4+ or CD25+ T cells Use Fc blocking reagent, work at 4°C
TABLE 4 Formulation for skin digestion buffer.

Ingredient Manufacturer Final concentration

DMEM media Gibco #41965 1X

Collagenase Type II Sigma #C6885 4 mg/ml

Bovine Serum Albumin Sigma #A4503 20 mg/ml

DNAse I Roche #11284932001 20 µg/ml
TABLE 5 Troubleshooting and Recommendations.

Description Solution

Clogging caused by hair Additional filter steps after skin digestion get rid of hair and avoid clogging. Repeat hair removal if patches of hair remain.

Clogging during cell sorting For cell sorting, samples should be filtered again immediately before acquisition and cooled at 4°C to avoid clogging.

Poor cell recovery after sorting Use a two-step sorting protocol with a pre-sort (“yield”) and a high purity sort (sort strategy “4-way-purity”) mode.

Low expression of CD4+ on T cells Optimize processing time and amount of collagenase enzymes.
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this read in our analysis. Warnings related to “per base sequence

content” are common for RNA-seq data and can be safely ignored in

most cases. Also, warnings related to “per sequence GC content” has

already been observed in literature (18) and can be ignored according

to the manufacturer’s guidelines. The “sequence duplication level”
Frontiers in Immunology 0757
and “overrepresented sequences” error can indicate a low complexity

library which could result from too many cycles of PCR amplification

or less cDNA concentration before preparing the library. In this data

set, we see a low contamination of a known primer sequence. If this

contaminating sequence would be very high, it might be useful to get
B

C D

E F

A

FIGURE 3

Overview of recovery and typical profiles for scRNA-seq libraries. (A) Overview of GEX, VDJ and CSP library and recommended sequencing length
(source: 10X Genomics). (B) Tabular overview of parameters in scRNA-seq experiments. The percentage of all events indicates the total frequency of
target cells (either CD4+ or CD25+ T cells) in all events from the sample. (C-F) Examples for library size profiles for samples with a good library
profile listed in (A) for either (C) full length cDNA, (D) GEX Library, (E) VDJ Library or (F) Cell Surface Protein (CSP) library. Electrophoretic separation
was performed on a Bioanalyzer.
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FIGURE 4

FastQC report of the GEX Library, VDJ Library and CSP Library. Statistics of FastQC run for the GEX library (A), VDJ library (B) and CSP library (C) on
for read 1 (26 bp), read 2 (149 bp), i5 (10 bp) and i7 (10 bp). Errors and Warnings listed here as reported in FastQC documentation. Produced by
FastQC (version 0.11.9).
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rid of it before downstream analysis. As shown in the schematic

overview (Figure 3A), the VDJ and CSP Library are very different

from the GEX Library because they contain VDJ information and

very few cell surface protein barcode sequences. FastQC is not

tailored for analysis of such low-complexity libraries, but we

included the results for reference (Figures 4B, C).
Methods – use of CellRanger to
identify cells and investigate
quality and quantity

In the previous sections, we described detailed protocols to

isolate CD4+ T cell populations from murine tissues such as spleen,

LN or skin. Next, we provided advice on cell sorting and sample

multiplexing using hashtag oligos (e.g. TotalSeqC), followed by

single droplet barcoding and library preparation steps using 5’

reagent kits. Sequencing of our three individual libraries (GEX,

CSP and VDJ) will generate FastQ files ready for analysis using

CellRanger, a software tool developed for single-cell sequencing-
FIGURE 5

Schematic Overview of the CellRangerMulti Pipeline for combining 5’ Single
The 5’ Chromium Next GEM Single Cell Immune Profiling cell hashing assay
individual samples (=hashtags). Afterwards, CellRangerMulti can be used to a
with Biorender.
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based datasets generated with chemistry from 10X Genomics. In the

following paragraphs, we will describe the use of CellRangerMulti to

extract individual samples and generate output files that allow a first

glimpse on data quality and quantity.
Use of CellRangerMulti to enable a
combined analysis of all individual samples

CellRangerMulti is a method for the combined processing

scRNA samples by the use of specific multiplexing antibodies and

officially supports the analysis of 3’ multiplexed data. The 3’ and 5’

assays capture different ends of the transcript in the final library,

and we used the 5’ chemistry to generate GEX, CSP and VDJ

libraries. Therefore, this type of analysis requires editing of the

CellRangerMulti pipeline to be compatible with our datasets. Our

pooled libraries contain four samples: splenic Treg cells

(TotalSeqC1), mLN Treg cells (TotalSeqC2), iLN Treg cells

(TotalSeqC3) and skin CD3+ T cells (TotalSeqC4). In the first

demultiplexing step, we use CellRangerMulti to assign cells to

individual samples, a workflow described in Figure 5. First, we
Cell Gene Expression Analysis with Cell Hashtag and VDJ T Cell Analysis.
workflow starts with a demultiplexing step to assign pooled cells to
nalyze individual samples and combine TCR with the GEX data. Created
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Fro
BOX 1 Terminal input to run CellRangerMulti and assign cells.

Info: In this manuscript, commands to be entered in the terminal are prepended by the “$” symbol.

# run multi pipeline (combine GEX Library with Cell Surface Library)

$ cellranger multi\

–id=ddmmyy_multi\

–csv=./configmulti.csv

# configmulti.csv

$ cat configmulti.csv

[gene-expression]

reference,/path_to/refdata-gex-mm10-2020-A
Cmo-set,/path_to/cmo-set.csv
force-cells,

check-library-compatibility,false

[libraries]

fastq_id,fastqs,feature_types

[samples]

sample_id,cmo_ids

spleen,HTO_C0301

mLN,HTO_C0302

iLN, HTO_C0303

skin,HTO_C0304

# cmo-set.csv

$ cat cmo-set.csv

id,name,read,pattern,sequence,feature_type

C1,HTO_C0301,R2,5PNNNNNNNNNN(BC)NNNNNNNNN,ACCCACCAGTAAGAC,Antibody Capture

C2,HTO_C0302,R2,5PNNNNNNNNNN(BC)NNNNNNNNN,GGTCGAGAGCATTCA,Antibody Capture

C3,HTO_C0303,R2,5PNNNNNNNNNN(BC)NNNNNNNNN,CTTGCCGCATGTCAT,Antibody Capture

C4,HTO_C0304,R2,5PNNNNNNNNNN(BC)NNNNNNNNN,AAAGCATTCTTCACG,Antibody Capture

# Command to change to the directory where the CellRanger executable file lives and put it in your $PATH:

$ export PATH=/path_to/cellranger-7.0.1:$PATH
$ export PATH=${PWD}:$PATH

# Command to put other tools bundled with CellRanger in your path:

$ source/path_to/cellranger-7.0.1/sourceme.bash

# Make a new directory

mkdir bamtofastq

# Run bamtofastq

# You will need the path to the individual sample_alignments.bam. In addition, 10X recommends setting the # -–reads-per-

fastq= argument higher than the total number of reads recorded.

bamtofastq –-reads-per-fastq=2200000000/path_to/sample_alignments.bam/path_to_outputfolder/bamtofastq/name_of_new_folder
# after bam to fastq, identify the FASTQ directory corresponding to GEX:

cd/path_to_outputfolder/bamtofastq/name_of_new_folder

ls –ltsh

# Use samtools to identify the GEX file

source/path_to/cellranger-7.0.1/sourceme.bash

samtools view -H/path_to sample_alignments.bam

# Look for the @CO library info in the bottom

# Run CellRangerMulti final analysis again for each sample (include VDJ Library)

cellranger multi\

–id=ddmmyy_multifinal_organ1\

(Continued)
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need to create a library comma-separated values (CSV) file which

declares the input FASTQ data for the libraries that make up a cell

multiplexing experiment (Box 1). Second, we need to create a cell

hashtag reference. It declares the molecule structure and unique cell

hashtag sequence of each hashtag (=TotalSeq) antibody present in

the experiment. Each line of the CSV declares one unique

cell hashtag.

The CellRangerMulti pipeline first extracts and corrects the cell

barcode and UMI from the CSP library using the same methods as

gene expression read processing. It then matches the cell hashtag

read against the list of features declared in the cell hashtag reference.

This is all described in specific sections of the config CSV file which

requires the column [gene expression], [libraries] and [samples].

The [gene expression] section specifies the path to the reference

transcriptome and the cell hashtag reference. The [libraries] section

shows the path to the GEX FASTQs (GEX library) and cell

multiplexing FASTQs (CSP library). The [sample] section

includes a list of all samples and the corresponding hashtag. After

creating these files, we run CellRangerMulti and assign cells to

samples. By doing so, we also create BAM files of the individual

samples in the pool. Those files are located in the individual

directories for each sample. Since CellRangerMulti requires

FASTQ files as the input, we convert the BAM files to individual

FASTQ files. This can be done with the bamtofastq software tool

which is bundled with CellRanger. The output of bamtofastq will

display two directories per sample. After using samtools, which is

also a part of the CellRanger bundle, we can distinguish the gene

expression FASTQ from the cell hashtag FASTQ. In a final step, the

T-cell receptor library can now be combined with the gene

expression data. To do so, we run the CellRangerMulti again for

every individual sample. We create a new final config CSV file for

every individual sample and include the [vdj] section which

describes the path to a VDJ reference. Each run produces output

files which can then be used for further analysis with R.
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Using metrics provided by CellRanger to
evaluate quality and quantity of cells

In addition to creating outputs files which can be used for

further analysis with R, CellRanger produces a web summary file in

the output folder of the specified analysis directory. It is a good

starting point for determining sample quality and quantity before

starting with the analysis using R (as described in the next

paragraphs in detail). Also, web summaries can be used to

determine sample complexity and sequencing need (e.g. how

many reads are still required per sample to have good coverage

and even sequencing depth distribution between all samples).

Therefore, CellRanger is a useful tool for investigating

important sample parameters on a first glimpse. In general, we

need to distinguish between an output from CellRangerCount and

CellRangerMulti. When performing single cell RNA experiments, it

can be useful to first run CellRangerCount. This pipeline aligns

sequencing reads from the FASTQ files to a reference

transcriptome. Then, different filtering steps, barcode counting,

and UMI counting allow to determine clusters and perform gene

expression analysis. To discriminate CellRanger count from

CellRangerMulti, outputs are shown in Figure 6A. The t-SNE plot

derived from CellRangerCount (Figure 6B) gives an overview of the

heterogeneity of the sample, which, in our case, contains cells from

the different lymphoid and peripheral organs (spleen, mLN, iLN,

skin). However, CellRangerCount cannot assign cells to the organ of

origin, since multiplexing info from the CSP library is not

processed. The cells in the t-SNE plot are colored by cluster and

show cell-associated barcodes. The clustering analysis is based on

grouping cells with similar gene expression profiles and allows a

first glimpse of data complexity and quality. In our case, with

CD25+ or CD4+ T cells from the different lymphoid and peripheral

organs (spleen, mLN, iLN, skin), CellRangerCount generates a t-

SNE with many different clusters, not too surprising because it
Continued

–csv=./configmultifinal.csv

# display the content of configmultifinal.csv

$ cat configmultifinal.csv

[gene-expression]

reference,/path_to/refdata-gex-mm10-2020-A
force-cells,5000

check-library-compatibility,false

[vdj]

reference,/path_to/refdata-cellranger-vdj-GRCm38-alts-ensembl-7.0.0

[libraries]

fastq_id,fastqs,feature_types

bamtofastq,/path_to_FASTQ/, Gene Expression

VDJ_FASTQ,/path_to_FASTQ/, VDJ
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counts all cells from the different organs (Figure 6B). In contrast to

CellRangerCount, CellRangerMulti can break down individual

samples (= organs) using the hashtag oligo information of the

CSP Library. The t-SNE after running CellRangerMulti shows less
Frontiers in Immunology 1262
heterogeneity for the Treg cell populations in spleen, mLN and iLN,

as expected with a very defined cell type (Figure 6C). Within the

lymphoid organs, the clustering is more compressed because we

enriched and sorted for CD25+ Treg cells for this dataset. In
B
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A

FIGURE 6

Interpretation of CellRangerCount and CellRangerMulti Output. Schematic overview of the experimental design (A) and CellRangerCount (B) and
CellRangerMulti (C) output. Metric summaries for the CellRangerCount (D) and CellRangerMulti (E) and Rank Barcode plots (F) for all tissues, spleen
and skin. Figure elements created with BioRender.
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contrast to this, the clustering of the skin sample looks more

heterogenous because it contains a larger subset of cells. If a

complete lack of cluster structure appears in a usually rather

heterogenous sample, this could indicate low sample quality or

loss of single-cell behavior due to massive overloading or

system failures.

In a table, we listed some of the web summary metrics which are

shown when running CellRangerCount (Figure 6D) and

CellRangerMulti (Figure 6E) on our sample dataset. CellRanger

estimates the number of cells which are defined as the number of

barcodes associated with at least one cell. As listed in Figure 3, using

the protocols described in this paper, we should recover around

40% of original cell input as cells that are identified using

CellRanger. However, a difference between the number of cells

when running CellRangerCount compared to CellRangerMulti

appears, which can be explained by the fact that we generally do

not achieve 100% binding of the hashtag antibodies (= TotalSeqC

barcodes) to the cells. Another important parameter displayed by

CellRanger is the median reads per cell, which accounts for the total

number of sequenced reads divided by the number of barcodes

associated with cell-containing partitions. This information is

helpful for planning a re-sequencing of the samples if not enough

reads have been acquired, so that the recommended minimum of

20.000 reads/cell can be achieved. Another metric, median genes

per cell, defines the median number of genes detected per cell-

associated barcode. It also depends on sequencing depth and the

total number of cells, and a low number of genes per cell can

indicate low sequencing depth, low library quality or low

transcriptional diversity of the cells. Another parameter linked to

sample quality is the fraction of reads mapped confidently to the

reference transcriptome. In our dataset, the lowest fraction of reads

mapped to the murine genome is observed for the skin sample

(79.46%), which, however, still is well above the lower threshold of

30% given by the manufacturer. Another quality-related parameter

is the fraction of valid barcodes matching a whitelist. A value lower

than 75%may indicate sequencing issues such as low quality of read

1. Finally, CellRanger computes sequencing saturation, which is an

indicator of library complexity and sequencing depth. Lower

sequencing saturation indicates that much of the library

complexity was not captured by sequencing and that re-

sequencing the sample could potentially increase gene

expression coverage.

The CellRanger output files also contain a barcode rank plot

where all barcodes detected during sequencing are plotted in

decreasing order of UMIs associated with the particular barcode

(Figure 6F). The shown barcode rank plot originates from the

CellRangerCount (all tissues) and CellRangerMulti (spleen, skin)

output. CellRanger uses the number of UMIs detected in each gel

bead in emulsion (GEM) to determine whether the GEM contains a

cell (declared as a cell) or not (declared as background). In a typical

sample, a steep drop-off can be found and indicates good separation

between the cell-associated barcodes and the barcodes associated

with an empty GEMs. As mentioned in manufacturer’s guidelines,

every barcode plank plot has a distinctive shape with steep drop-offs

indicated by blue arrows (Figure 6F). In a very heterogenous

sample, the plot can appear bimodal, but a clear separation
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between the cells and background should always be present. If the

separation is not good and the barcode rank plot shows a round

curved shape, this may indicate low sample quality or loss of single-

cell behavior due to technical failures.
Methods – data processing with R,
Bioconductor and Seurat

In the previous paragraph, we discussed the use of CellRanger to

produce output files which can then be used for further analysis

with R. Now, we describe the pre-processing of scRNA-seq data

using a variety of openly available R packages, which can be found

on CRAN (https://www.R-project.org/) and Bioconductor (8). The

pre-processing steps include quality control (QC) and filtering,

dimensionality reduction, removal of doublets, evaluation of batch

effect correction, which generates the final filtered dataset for

analysis. For data pre-processing and analysis, we provide a

rendered notebook file containing all code and output from the

analysis of our test dataset in the supplement, which we refer to in

the corresponding paragraphs (Supplementary Material or

downloadab l e f rom ht tps : / / g i thub . com/ imbe ima inz /

scRNAseq_scTCRseq_TissueTcells). In this manuscript, we will

mainly discuss the analysis of the data using packages available

on Bioconductor. However, the notebook will also provide the code

for a pipeline using the Seurat package (19) and discuss the features

of this pipeline.
Creating the count matrix from
CellRangerMulti output

scRNA-seq data analysis is performed on a count matrix,

containing the counts (i.e. number of UMI or reads) per gene in

each cell. scRNA-seq data is usually very sparse due to several

factors such as dropout events, low mRNA abundance in the cells,

and a combination of biological and technical variation (20, 21). In

our workflow, the count matrix is constructed from the feature-

barcode matrix information generated by CellRangerMulti. For

scRNA-seq data, CellRanger provides an unfiltered feature-

barcode matrix and a filtered feature-barcode matrix. The

unfiltered feature-barcode matrix contains every barcode from a

fixed list of known barcodes that have at least one count. These can

contain background and cell-associated barcodes. The filtered

feature-barcode matrix, however, only includes detected cell-

associated barcodes. In our experience, unfiltered data contain a

lot of cellular debris and background noise. However, if desired by

the user, there are also R packages like DropletUtils (22) which

provide methods to process the unfiltered count matrix to remove

the unwanted noise. In our workflow, we will present the approach

working on the filtered data and refer users to the DropletUtils

documentation on how to work with unfiltered data. We use the

Read10X() function from the Seurat package (19) to read in the

filtered feature-barcode matrix information (Box 2, Table 6). This

function returns a sparse matrix which stores the count information
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with genes as rows and samples as columns. We further process the

resulting count matrix using the SingleCellExperiment() constructor

from the SingleCellExperiment package (8). We repeat this process

for all samples in the experiment. In addition to the counts, we store

the tissue of origin for each sample as metadata in the respective

SingleCellExperiment object. This information will be essential for

some of the presented downstream analyses steps, especially for

compelling and informative data visualizations. See section “1

Create SingleCellExperiment” in the notebook for the respective

code of this analysis.
Frontiers in Immunology 1464
Gene level annotation

In a processing step before data analysis, we perform a gene-

level annotation based on the input data (Box 3, Table 7). This gene-

level annotation is used to facilitate the downstream applied

analysis steps. During the annotation, the gene identifiers of the

input data are mapped to their respective gene name using the

AnnotationHub package (23). Gene names are usually more widely

used and discernible and hence facilitate many of the downstream

analysis steps, such as marker gene detection and cluster marker
BOX 2 R code for creating SingleCellExperiment objects.

# Function to read in the data

# provide all the filepaths to the count data as a list

# as well as a list of the respective tissues

readDataset <- function(filepath_list, tissue) {

sceRNA <- list()

# iterate over each sample of the input data

for (i in 1:length(filepath_list)) {

# read the count data

counts <- Read10X(filepath_list[[i]])

# generate a SingleCellExperiment object

sce = SingleCellExperiment(assays = list(counts = counts))

# Add the tissue type information as meta data

sce$tissue <- rep(tissue[[i]], ncol(sce))

sceRNA <- c(sceRNA, sce)

}

# return the list of SingleCellExperiment objects

return(sceRNA)

}

# input data is stored in a folder called data

filepaths <- c(“./data/iLN”,

“./data/mLN”,

“./data/skin”,

“./data/spleen”)

sceRNA <-

readDataset(filepaths, tissue = c(“iLN”, “mLN”, “skin”, “spleen”))

# set the names of the objects in the list so that we can easily identify and

# access the different tissues

names(sceRNA) <- c(“iLN”, “mLN”, “skin”, “spleen”)

# Now have a look at the data

sceRNA
TABLE 6 Troubleshooting and Recommendations.

Description Solution

Directory provided does not
exist

It seems like the directory stated does not exist or is not found. Check if the directory location is spelled correctly and directory
hierarchy matches the current working location.

filtered feature-barcode
matrix folder does not
contain features.tsv file

In the used version of CellRanger (v. 7.1) the features.tsv files is called genes.tsv. Please use this file as features file. Please note that you
have to rename the file to features.tsv as the Read10X()expects this filename.

… file not found
The Read10X() function is rather stringent concerning filenames (at least as of v. 4.3.0) and expects the files to be named matrix.mtx,
barcode.tsv and features.tsv. If the files have any other name (e.g. a sample prefix), the function will not find the files. Please rename the
files following the mentioned naming convention.
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identification. Besides the annotation of gene names, we also

determine which genes of the input data map to the

mitochondrial portion of the genome as this is later used for

filtering and quality control. See section “2 Gene level annotation”

in the notebook for the respective code of this step.
Extracting T cells from the data using
linked TCR information

Before we apply quality control procedures to our data, we

would like to filter our dataset for T cells with productive TCR chain

information. For this, we have to use the information of the T-cell

receptor (TCR) stored in the VDJ library. Only cells with TCR

information will be kept in our data. In order to filter our data set

for T cells, we add the information on the TCR chains and the

clonotype of each cell to our SingleCellExperiment objects (Box 4).

In our specific workflow, we also must transform the clonotypes as

we have processed each sample individually using CellRanger. In

order to work with shared clonotypes between tissues, we first apply

a transformation step to assign identical TCR chains the same
Frontiers in Immunology 1565
clonotype id (Box 5). Afterwards, we save the harmonized TCR

chain and clonotype information as meta data in our

SingleCellExperiment objects. We also provide a list of the

transformed TCR chain and clonotype information with the data

of this manuscript for follow-up. If the information of the TCR is

not available, but an analysis of solely T cells is desired, users can

follow this presented workflow up until the cell type annotation

step. After this step, the data can be filtered for cells which were

annotated as T cells and the workflow can be repeated from the

beginning. For more information, please see section “3 Extracting T

cells using T chain receptor information” in the notebook.
Per sample quality control and filtering of
low-quality cells

A well-defined filtering strategy to select for high-quality cells is

highly recommended before analysis. Different quality parameters

and metrics can be used to filter out cells of low quality (24). In this

workflow, we mainly use a combination of three quality parameters:

the library size, the number of features and the percentage of
BOX 3 R code for gene level annotation.

sce <- sceRNA$iLN

# set up the annotation hub

ah <- AnnotationHub()

# extract the indentifiers and names for mouse data

query(ah, c(“musculus”, “Ensembl”, “EnsDb”))

ens.mm.v102 <- ah[[“AH89211”]]

genes(ens.mm.v102)[, 2]

# search for the mitochondrial genes

is.mito <- grepl(“^mt-”, rownames(sce))

chr.loc <- mapIds(

ens.mm.v102,

keys = rownames(sce),

keytype = “GENENAME”,

column = “SEQNAME”

)

is.mito <- which(chr.loc == “MT”)

is.mito
TABLE 7 Troubleshooting and Recommendations.

Description Solution

No genes map to the
mitochondrial genome

It could be that the pattern used to search for mitochondrial genes does not match the pattern of mitochondrial genes in the data. Please
check that these two patterns are identical (usually follow the lines of ‘MT’, ‘mt’, ‘Mt’ or ‘chrM’).

No gene names found/all
gene names are ‘NA’

It could be that the species you are using for the annotation does not match your data. Please check that the correct species is specified.
Another reason could be that the wrong id type was specified. Please check that the id type matches your gene ids.
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BOX 4 R code for extraction of T Cells using TCRs.

addTCRMetaData <- function(sce, tcr_filepath, clonotypes_filepath) {

# Read in the information about the TCRs

tcr <- read.csv(tcr_filepath)

clonotypes <- read.csv(clonotypes_filepath)

# Remove duplicated barcodes as the information is identical.

tcr <- tcr[!duplicated(tcr$barcode)],

# Subset to only barcode and raw clonotype column as we only use those.

tcr <- tcr[, c(“barcode”, “raw_clonotype_id”)]

# Rename column to match to the clonotypes file

names(tcr)[names(tcr) == “raw_clonotype_id”] <- “clonotype_id”

# Extract the TCR chain information from the clonotypes file through matching

# of the clonotypes.

tcr <- merge(tcr, clonotypes[, c(“clonotype_id”, “cdr3s_aa”)])

# Reorder columns, set barcodes as rownames (to match the scRNA data)

# and remove the barcode column as it is no longer necessary.

tcr <- tcr[, c(2, 1, 3)]

rownames(tcr) <- tcr[, 1]

tcr[, 1] <- NULL

# Add the TCR chain and clonotype information as metadata to the data

clonotype <-

tcr$clonotype_id[match(colnames(sce), rownames(tcr))]

sce$clonotype <- clonotype

cdr3s_aa <- tcr$cdr3s_aa[match(colnames(sce), rownames(tcr))]

sce$cdr3s_aa <- cdr3s_aa

# filter out those cells without a clonotype because they are not of interest

# for us

sce <- sce[,!is.na(sce$clonotype)]

return(sce)

}

# Add the information of the TCR chains and the clonotypes to our data

sceRNA$iLN <- addTCRMetaData(

sce = sceRNA$iLN,

tcr_filepath = “./data/iLN/filtered_contig_annotations.csv”,

clonotypes_filepath = “./data/iLN/clonotypes.csv”

)

sceRNA$iLN

sceRNA$mLN <- addTCRMetaData(

sce = sceRNA$mLN,

tcr_filepath = “./data/mLN/filtered_contig_annotations.csv”,

clonotypes_filepath = “./data/mLN/clonotypes.csv”

)

sceRNA$mLN

sceRNA$skin <- addTCRMetaData(

sce = sceRNA$skin,

tcr_filepath = “./data/skin/filtered_contig_annotations.csv”,

clonotypes_filepath = “./data/skin/clonotypes.csv”

)

sceRNA$skin

sceRNA$spleen <- addTCRMetaData(

sce = sceRNA$spleen,

tcr_filepath = “./data/spleen/filtered_contig_annotations.csv”,

clonotypes_filepath = “./data/spleen/clonotypes.csv”

)

sceRNA$spleen
nt
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mitochondrial DNA. All of these can be used to determine the

quality of the cells. The library size is the sum of all counts in one

cell, which should be sufficiently high for each cell. A small/low

library size indicates possible cell death of the respective cell.

However, an unusually large library size could also indicate
Frontiers in Immunology 1767
doublets (i.e., multiple cells sequenced in one droplet). The

number of detected features (in this case, genes) in each

individual cell should as well be sufficiently high to ensure

adequate sequencing of the cells. The last quality parameter, the

percentage of mitochondrial DNA captures the percentage of reads
BOX 5 R code for harmonization of clonotypes.

# set up clonotype data frame

df_clonotypes <- data.frame(

clonotype = sceRNA$iLN$clonotype,

clonotype_n = as.numeric(gsub(“clonotype”, ““, sceRNA$iLN$clonotype)),

cdr3s_aa = sceRNA$iLN$cdr3s_aa

)

df_clonotypes <- df_clonotypes[order(df_clonotypes$clonotype_n)],

filter <-!duplicated(df_clonotypes$clonotype)

df_clonotypes <- df_clonotypes[filter],

# function to transform the clonotypes

addClonotypesToDataFrame <- function(clonotypes_df, sce) {

n_last_clonotype <- max(clonotypes_df$clonotype_n)

for (i in 1:ncol(sce)) {

chain <- sce$cdr3s_aa[[i]]

# if there is no clonotype with the same chain, the clonotype is new

# and should be added to the data frame

if (!any(which(clonotypes_df$cdr3s_aa == chain))) {

n_last_clonotype <- n_last_clonotype + 1

clonotypes_df <- rbind(clonotypes_df,

c(

paste(“clonotype”, n_last_clonotype, sep = ““),

as.numeric(n_last_clonotype),

chain

))

}

}

# transform the clonotype number back to a numeric

clonotypes_df$clonotype_n <-

as.numeric(clonotypes_df$clonotype_n)

return(clonotypes_df)

}

df_clonotypes <-

addClonotypesToDataFrame(df_clonotypes, sceRNA$mLN)

df_clonotypes <-

addClonotypesToDataFrame(df_clonotypes, sceRNA$skin)

df_clonotypes <-

addClonotypesToDataFrame(df_clonotypes, sceRNA$spleen)

# function to change clonotypes for all samples

changeClonotypes <- function(sce, clonotypes_df) {

for (i in 1:ncol(sce)) {

chain <- sce$cdr3s_aa[[i]]

new_clonotype <-

clonotypes_df[which(clonotypes_df$cdr3s_aa == chain)[1]],

sce$clonotype[[i]] <- new_clonotype$clonotype

}

return(sce)

}

sceRNA$mLN <- changeClonotypes(sceRNA$mLN, df_clonotypes)

sceRNA$skin <- changeClonotypes(sceRNA$skin, df_clonotypes)

sceRNA$spleen <- changeClonotypes(sceRNA$spleen, df_clonotypes)
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in a cell that map to the mitochondrial genome. An unusually large

number of reads assigned to mitochondrial genes in a cell indicates

cell death and hence low-quality cells. For the quality control, it is

advisable to operate on a per-sample level instead of applying the

quality control metrics for all samples combined. The individual

samples might have different levels of quality due to being

sequenced or processed individually or different biological

prerequisites such as tissue specific properties. Hence, only one

run of quality control metrics combined on all samples could falsely
Frontiers in Immunology 1868
indicate cells of low quality because of the above-mentioned

characteristics. Furthermore, also samples that were generated in

different batches should be handled separately. The sequencing

properties of the individual batches can greatly differ and hence as

well influence the resulting quality metrics (25). In our workflow,

we use the addPerCellQC() function of the scater package (24),

which follows a data-driven approach for determining adequate

threshold values (Box 6). This function first determines the median

across all cells for the above-mentioned quality control parameters.
BOX 6 R code for quality control and filtering (identical for all samples, showcase iLN).

iLN <- sceRNA$iLN

rowData(iLN)$gene_name <- rownames(iLN)

rowData(iLN)$location <- chr.loc

iLN <- addPerFeatureQC(iLN)

rowData(iLN)

iLN <- addPerCellQC(iLN, subsets = list(Mito = is.mito))

qcstats <- perCellQCMetrics(iLN, subsets = list(Mito = is.mito))

filtered <-

quickPerCellQC(qcstats, percent_subsets = “subsets_Mito_percent”)

filtered

colSums(as.data.frame(filtered))

table(filtered$low_n_features, filtered$high_subsets_Mito_percent)

# Flag the low quality cells as discard

iLN$discard <- filtered$discard

# Plot the percent of mitochondrial RNA for each cell, color the cells by

# whether they should be discarded or not

plotColData(iLN, y = “subsets_Mito_percent”, colour_by = “discard”)

# Plot the library size

plotColData(iLN, y = “sum”, colour_by = “discard”)

# Plot the number of detected genes

plotColData(iLN, y = “detected”, colour_by = “discard”)

# Plot mitochondrial RNA percentage against library size

plotColData(iLN,

x = “sum”,

y = “subsets_Mito_percent”,

colour_by = “discard”) +

labs(x = “Sum of all counts (library size)”,

y = “Percent mitochondrial genes”)

# Plot library size against number of detected genes

plotColData(iLN,

x = “detected”,

y = “sum”,

colour_by = “discard”) +

labs(x = “Number of detected genes”,

y = “Sum of all counts (library size)”)

# Assign the data back to our object

sceRNA$iLN <- iLN

# As this report is only for exploratory analyses we do not filter out any cells

# Otherwise you could do

# sceRNA$iLN <- iLN[,!discard]
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B C

A

FIGURE 7

Summary of quality control metrics. (A) Plots of the library size, number of detected genes and mitochondrial content for each of the samples.
(B) Scatter plots of the library size and mitochondrial content and (C) library size and number of detected genes. Each dot in the plot represents a
cell, blue cells are of high quality, orange cells are of low quality and should be filtered out.
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Following, for each cell the median absolute deviation (MAD) is

calculated. If a quality control parameter of a cell deviates more than

3 MAD from the median in an undesired direction, the cell is

considered an outlier. All cells which are considered outliers in at

least one of the quality parameters are marked as low-quality cells.

After identification of low-quality cells, these cells can either be

removed from the data or just marked as such. The removal ensures

that these cells do not interfere downstream analyses and

interpretation. However, it could also be the case that interesting

subpopulations of cells are marked as low-quality cells because they

exhibit one of the quality control parameters. One of such examples

would be hepatocytes. These cells are highly metabolically active

and hence will have a high number of mitochondrial genes. Hence,

it is important to check for accidental removal of high-quality cells

by plotting the different quality metrics against each other and

evaluating how well the different quality metrics correlate for each

sample. In Figure 7, the different quality metrics of our samples are

displayed. Figure 7A shows the different quality control metrics of

each sample, first the library size, then the number of detected genes

and lastly the number of mitochondrial genes in the data. In

Figure 7B, we plotted for the skin sample the library size against

the percentage of reads mapping to mitochondrial genes, while

Figure 7C plots the number of genes detected against the library

size. Such a multivariate approach by considering different metrics

simultaneously, can lead to better decision on which cells to retain

for further steps and which cells to remove. However, as the

workflow presented in this paper is only of explorative nature, we
Frontiers in Immunology 2070
will not exclude cells of low quality here. For more information,

please see section “4 Per sample Quality Control and filtering of

low-quality cells” in the notebook.
Quality metrics and their correlation with
TCR calling

In our analysis, we were also interested in whether the quality

control metrics differed between cells with TCR and cells without TCR.

Especially the mitochondrial content could be of interest. Hence, we

compared the cells with TCR with those without (Table 8). These data

illustrate that around 70% ormore cells of the samples have TCRs. One

exception being the cells of the skin, where only around 30% of cells

have associated TCRs. We can also see that the percentage of cells with

a high mitochondrial content (i.e low quality cells) is nearly doubled in

the cells without TCR compared to the cells with TCR. This shows that

filtering of cells with associated TCR also seems to work as a way of

quality control and filtering of low-quality cells. Since the VDJ library is

generated from cDNA, results here also depend on the quality of the

cDNA library.
Doublet detection

In a single cell experiment, doublets are artificial observations in

which two cells are sequenced as one cell. Those are especially
TABLE 8 Different summary statistics on the input data such as number of cells per sample, number of cells with and without TCR and percentage of
cells with high mitochondrial content in cells with and without TCR.

Organ
Identified

cells

Cells with
associated

TCR
% cells with high mitochondrial

content
Cells without

TCR

% cells with high
mitochondrial

content

spleen 4,756 3,412 3.66 1,344 6.18

mLN 4,010 3,208 3.11 802 5.11

iLN 3,075 2,509 3.5 566 6.71

skin 3,339 989 7.89 2,350 16.47
BOX 7 R code for doublet detection (identical for all samples, showcase iLN).

iLN <- sceRNA$iLN

# Doublet detection

iLN <- scDblFinder(iLN)

# Print a statistics table

table(iLN$scDblFinder.class)

# Assign the object back to save the information

sceRNA$iLN <- iLN

# Or you can assign the object back without the cells marked as doublets

# sceRNA$iLN <- iLN[, iLN$scDblFinder.class == “singlet”]
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common in droplet-based scRNA-seq protocols and usually arise

from errors in cell sorting or capturing (26, 27). Doublets usually do

not represent meaningful biological states and can influence the

analysis of the data. For example, a mixture of two cells which were

sequenced as one could be characterized as a transitionary state
Frontiers in Immunology 2171
between two cell types or an intermediate population. The general

approach for doublet detection in scRNA-seq data is the use of

expression profiles of the cells. Based on their expression profile,

doublets are computationally inferred from the data. In our

workflow, we use the scDblFinder() function from the
B

C D

A

FIGURE 8

Harmonization of the data. (A) UMAP representation of the data before and after batch-correction using harmony colored by the tissue of the
sample. (B) UMAP representation of the data before and after batch-correction using harmony colored by the clustering results. (C) UMAP
representation of the integrated dataset with the publicly available data before and after batch-correction using harmony colored by the tissue of
the sample. (D) UMAP representation of the integrated dataset with the publicly available data before and after batch-correction using harmony
colored by the clustering results.
BOX 8 R code per-sample Normalization.

sceRNA <- lapply(sceRNA, logNormCounts)
BOX 9 R code feature selection.

all.dec <- lapply(sceRNA, modelGeneVar)

all.hvgs <- lapply(all.dec, getTopHVGs, prop = 0.1)
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BOX 10 R code uncorrected integration.

# normalize counts across the samples

rescaled <- multiBatchNorm(sceRNA)

# extract the individual samples

iLN <- rescaled$iLN

mLN <- rescaled$mLN

skin <- rescaled$skin

spleen <- rescaled$spleen

# combine the selected features

combined.dec <- combineVar(all.dec)

chosen.hvgs <- combined.dec$bio > 0

sum(chosen.hvgs)

# Synchronizing the metadata for cbind()ing.

rowData(iLN) <-

rowData(iLN)[, c(“gene_name”, “location”)]

rowData(mLN) <-

rowData(mLN)[, c(“gene_name”, “location”)]

rowData(skin) <-

rowData(skin)[, c(“gene_name”, “location”)]

rowData(spleen) <-

rowData(spleen)[, c(“gene_name”, “location”)]

# merge individual objects into one final object

sce_merged <- cbind(

iLN,

mLN,

skin,

spleen

)

nt
BOX 11 R code batch correction using harmony.

# Read in the data as seurat object as shown in “1 Create SingleCellExperiment”

seurat <- NormalizeData(seurat)

seurat <- FindVariableFeatures(seurat)

seurat <- ScaleData(seurat)

seurat <- RunPCA(seurat)

DimPlot(seurat, reduction = “pca”)

seurat <- RunHarmony(seurat, group.by.vars = “tissue”, plot_convergence = FALSE)

seurat <- RunUMAP(seurat,

reduction = ‘harmony’,

dims = 1:20)

seurat <- FindNeighbors(seurat,

reduction = “harmony”,

dims = 1:20)

seurat <- FindClusters(seurat, resolution = 0.5)

DimPlot(seurat, reduction = “umap”)

DimPlot(seurat, reduction = “umap”, group.by = “tissue”,

cols = c(“springgreen4”, “darkmagenta”, “tomato4”, “darkblue”))
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corresponding package (28) (Box 7). This function simulates

expression profiles of possible doublets by randomly combining

two cells of the data together before assigning each cell a doublet

score based on its likelihood to be a double. Further details on the

method and computation can be found in the scDblFinder

documentation. Once doublets have been identified in the data,

users can decide to either flag these cells or remove them completely

from the data. In this context, it can be helpful to overlay the

doublet classification over downstream computed clustering results

to evaluate if the considered doublets are forming a distinguished

cluster or display any relevant pattern. During the exploration of the

data, we recommend to simply flag doublet cells but advocate for

removal of the cells once the processed dataset is created. In

Figure 9C, we can see that the identified doublets in our data to

not follow a specific pattern. Overall, the number of detected

doublets was also very low in our samples, less than 5% of all

cells (see Figure 9B). For the doublet detection step, we refer readers

to the provided notebook section “5 Doublet detection in the

individual samples”.
Per-sample normalization

In scRNA-seq data, often differences in the sequencing coverage

between libraries arise (29). The cause for these variations is

typically technical variation in cDNA capture or PCR

amplification efficiency. Since this variability does not depict true

biological signal in the data, it can distort the interpretation of

expression profiles. In order to prevent the influence of the technical

variation on data analysis, the data is normalized (30, 31).

Usually, normalization is applied to the different batches of

the data at hand. The data presented in this paper does not
Frontiers in Immunology 2373
consist of different batches but only of different tissues. However,

treating the different tissues as individual batches and

normalization across tissues at this point would be detrimental

to downstream analysis steps. Hence, we decided to postpone the

across tissue normalization to a later point of the workflow.

Nevertheless, there are intra-sample normalization methods

which should be applied at this point in the analysis. One of

these normalizations is a log-scaling of the expression values, as

implemented in the logNormCounts function of the scran package

(32) (Box 8). This is beneficial for downstream analysis steps such

as dimensionality reduction and clustering, as the expression

values become more comparable without having too extreme

values. For the normalization of the counts see section “6 Per-

Sample Normalization”.
Feature selection

In an exploratory scRNA-seq analysis, characterization of

heterogeneity across individual cells is often one of the major goals.

In order to quantify the differences in gene expression between cells, a

subset of genes is selected such that this set contains useful information

about the biological variation, while removing random noise and

technical differences. This process of feature selection majorly

impacts the performance of downstream analyses and methods. A

commonly used approach of feature selection is the selection of the

most variable genes across the cells (32). The approach is based on the

assumption that the biological variation of the data will manifest as an

increased variation in the affected genes, hence overshadowing

technical noise and irrelevant biological variation (8). In our

workflow, we use the modelGeneVar() function of the scran package
BOX 12 R code PCA.

set.seed(42)

sce_merged <- runPCA(sce_merged,

subset_row = chosen.hvgs,

BSPARAM = BiocSingular::RandomParam())

# Plot scree plot of the variance explained by each PC

percent.var <- attr(reducedDim(sce_merged), “percentVar”)

plot(percent.var,

log = “y”,

xlab = “PC”,

ylab = “Variance explained (%)”)

# calculate UMAP and tSNE representation of the data

set.seed(42)

sce_merged <- runTSNE(sce_merged, dimred = “PCA”)

set.seed(42)

sce_merged <- runUMAP(sce_merged, dimred = “PCA”)
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(32) for the computation of the variation in the genes (Box 9). We then

use the getTopHVGs() function of the same package to extract the top

10% of highly variable genes (HVG) for each sample. These HVGs are

then used as features for downstream steps. For the feature selection for

each sample, see section “7 Feature Selection”.
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FIGURE 9

Dimensionality reduction and clustering results. (A) Scree plot of the varianc
(B) Summary table of detected doublets in each of the tissues. (C) UMAP rep
representation of the data colored by the different tissue types in the input d
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Data integration and merging of samples

So far, we worked on each of our tissue samples individually as

the presented steps yield more meaningful results if applied in a

sample-specific manner. However, methods such as dimensionality
e explained by each of the calculated principal components (PC).
resentation of the data colored by doublet status of each cell. (D) UMAP
ata.
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FIGURE 10

Clustering results and marker gene detection. (A) UMAP colored by the clusters found in the data. (B) Summary table of cluster composition.
(C) UMAP representation of the data colored by the expression of different marker genes. (D) Violin plots showing the expression of different marker
genes in the individual clusters.
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reduction, clustering, marker gene detection and cell type

annotation should be applied on the data set as a whole. This is

why we will merge the individual SingleCellExperiment objects into

one single object. For this, there are generally two approaches

available: merging the samples without batch correction and

merging after applying batch correction (33, 34). Usually, scRNA-

seq data sets do not only contain different samples and tissues but

also different batches. As previously discussed in this manuscript,

there are technical differences between samples of different batches
Frontiers in Immunology 2676
which can influence the results. We would like to filter out these

technical differences to focus on biological variation between

samples. In our workflow, we will present both approaches,

batch-corrected and -uncorrected. In the uncorrected approach,

we first apply the across sample normalization using the

multiBatchNorm() function of the batchelor package (33).

Afterwards, the metadata of the individual samples is

synchron ized be fo re merg ing the ob jec t s in to one

SingleCellExperiment object (Box 10). In the batch-corrected
BOX 13 R code clustering.

# Calculate the clusters

snn.gr <- buildSNNGraph(sce_merged,

k = 25,

use.dimred = “PCA”)

clusters <- igraph::cluster_walktrap(snn.gr)$membership

# See which tissue can be found in which cluster

tab <- table(Cluster = clusters, Batch = sce_merged$tissue)

tab

# Set the cluster as colLabels of the SingleCellExperiment

colLabels(sce_merged) <- factor(clusters)

plotTSNE(sce_merged, colour_by = “label”)

plotUMAP(sce_merged, colour_by = “label”)

# color tSNE by tissue

tsne <- plotTSNE(sce_merged, colour_by = “tissue”)

# set custom colors, because with the original chosen colors of the method,

# the individual tissues are hard to distinguish.

tsne <- tsne + scale_fill_manual(

values = c(

skin = “tomato4”,

spleen = “darkblue”,

iLN = “springgreen4”,

mLN = “darkmagenta”

),

aesthetics = “colour”

)

# plot the tSNE

tsne

# color UMAP by tissue

umap <- plotUMAP(sce_merged, colour_by = “tissue”)

# set custom colors, because with the original chosen colors of the method,

# the individual tissues are hard to distinguish.

umap <- umap + scale_fill_manual(

values = c(

skin = “tomato4”,

spleen = “darkblue”,

iLN = “springgreen4”,

mLN = “darkmagenta”

),

aesthetics = “colour”

)

# plot the UMAP

Umap

# plot tSNE and UMAP colored by doublet identification of cells

plotTSNE(sce_merged, colour_by = “scDblFinder.class”)

plotUMAP(sce_merged, colour_by = “scDblFinder.class”)
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approach, we use the RunHarmony function of the harmony

package (https://CRAN.R-project.org/package=harmony), after

transforming our SingleCellExperiment object to a Seurat object

(Box 11). Here, the data is already merged at read-in and processed

as a whole, following the usual Seurat workflow (19). When

inspecting the data further after merging, we realized that the

batch correction was too stringent on our data and overcorrected

for reasonable and important biological characteristics of the skin

sample (Figures 8A, B). Hence, we will use the uncorrected, merged

SingleCellExperiment. The code for uncorrected as well as batch-

corrected merging of the data is shown in section “8 Data

integration and merging of samples”. To further showcase the

effect of batch correction, we tried to integrate our data with a

publicly available dataset presented in (15). From this dataset, we

used the skin, spleen and LN sample to match the data presented in

this paper. After downloading and reading the data as presented

earlier in this paper, we tried to integrate and harmonize the two

datasets using the harmony package. Figures 8C, D show the results

of the integrated dataset. The code for these steps can be found in
Frontiers in Immunology 2777
the notebook in section “8.3 Integration with publicly

available data”.
Dimensionality reduction using principal
component analysis

In scRNA-seq analyses dimensionality reduction is used to

achieve different objectives in the workflow. First, it greatly

reduces the runtime of the following steps as calculations only

need to be computed for a small number of dimensions compared

to the large number of genes in the input data. Secondly, the

procedure can reduce noise in the data by using average of genes

rather than individual gene expression values. Lastly, it can also

improve plotting of the data as 2/3-dimensional plots are usually

easier to visualize and interpret as higher dimensional

visualizations. A common approach for dimensionality reduction

in scRNA-seq is Principal Component Analysis (PCA) (Box 12). As

the first couple of principal components (PC) capture the largest
BOX 14 R code marker gene detection.

# score the marker genes between the individual pairs of clusters

markerGenes <- scoreMarkers(sce_merged, colLabels(sce_merged))

# extract marker genes for cluster 1, 2 and 9

markerGenes_cluster1 <- as.data.frame(markerGenes[[1]])

markerGenes_cluster2 <- as.data.frame(markerGenes[[2]])

markerGenes_cluster9 <- as.data.frame(markerGenes[[9]])

# generate a data table of the top 20 marker for each of the selected clusters

DT::datatable(head(markerGenes_cluster1[order(markerGenes_cluster1$mean.logFC.detected, decreasing = TRUE)], n =

20))

DT::datatable(head(markerGenes_cluster2[order(markerGenes_cluster2$mean.logFC.detected, decreasing = TRUE)], n =

20))

DT::datatable(head(markerGenes_cluster9[order(markerGenes_cluster9$mean.logFC.detected, decreasing = TRUE)], n =

20))

# plot the expression of the top 6 marker genes for each cluster in every of

# the clusters

plotExpression(

sce_merged,

features = head(rownames(markerGenes_cluster1)),

x = “label”,

colour_by = “label”

)

plotExpression(

sce_merged,

features = head(rownames(markerGenes_cluster2)),

x = “label”,

colour_by = “label”

)

plotExpression(

sce_merged,

features = head(rownames(markerGenes_cluster9)),

x = “label”,

colour_by = “label”

)
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amount of variance in the data, it can be assumed that these PC

represent a considerable amount of biological variation of the data

at hand. This way, the biological signal can be concentrated in a

smaller number of PCs which can help with interpretation and

visualization of the high-dimensional scRNA-seq data. In our
Frontiers in Immunology 2878
analysis we use the runPCA() function from the BiocSingular

package (8), https://doi.org/10.18129/B9.bioc.BiocSingular). The

function calculates the principal components for the given data.

In the shown code, we calculate the PCs based on the HVGs we

determined previously, ensuring a reduced computation time while
B
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A

FIGURE 11

TCR diversity in tissue CD4+ T Cells of an individual animal. (A) Table of number of cells with different combinations of TCR chains in the individual
tissues. (B) Visualization of the TCR diversity in the individual tissues. (C) Table of number of cells with different combinations of TCR chains in the
individual clusters. (D) Pie charts visualizing the clonality of TCR in the clusters. TCR chains found only once per cluster were grouped and colored in
green, while the remaining portion of the pie chart visualizes TCR chains with multiple occurrences.
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at the same time reducing the high-dimensional noise. A critical

choice in the context of PCA is the choice of the number of top PCs

used for downstream analyses. A helpful visualization to decide on

this number is shown in Figure 9A. The figure plots the PCs against

the percentage of variance each PC explains/captures. We see that

there is a notable drop in the amount of variance explained by the

PCs after the 25th PC. Hence, we decided to use the first 25 PCs for

downstream analyses as these capture most of the variance of our

data at hand. For the PCA analysis see section “9 Dimensionality

reduction using Principal Component Analysis” . Once

dimensionality reduction is applied, we can also calculate a t-SNE

or UMAP representation of our data (35, 36). Both visualization

techniques are suitable for high-dimensional datasets such as

scRNA-seq data. The t-stochastic neighborhood embedding (t-

SNE) aims to find a low-dimensionality representation of the data

that preserves the distances between points from the high-

dimensionality space. Uniform manifold approximation and

projection (UMAP, (36)) is another non-linear visualization

technique for high-dimensionality data, similar to t-SNE. It

should be mentioned that both methods are non-deterministic,

meaning that they yield slightly different results each time the

function is run on the data. We can prevent this by using the R

function set.seed() using the same seed each time. In Figures 9C, D

and Figures 10A–C we show the UMAP representation of our data

colored by different properties of the data. We also calculated the t-

SNE representations of our data colored by the same properties, the
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results are shown in the notebook accompanying this manuscript.

For the plotting of the UMAP and t-SNE see Box 13.
Clustering

Clustering is adopted for scRNA-seq data to summarize the

high-dimensional, complex data by dividing the cells into individual

groups based on gene expression profiles. This greatly eases

interpretation and exploration of the data, as the cells are then

represented as discrete groups rather than the complex, high-

dimensional space that is the origin of the data. In its nature,

clustering is an explorative step of the analysis, possibly run in

different iterations. In our workflow, we use the buildSNNGraph()

function of the scran package (32) followed by the cluster_walktrap

() function of the igraph package (Box 13). This function

implements a graph-based clustering approach. Other approaches

are for example Louvain clustering (37), vector quantization like k-

means or hierarchical clustering (8). Once clusters have been

calculated, they can be visualized as UMAP or t-SNE. In

Figure 10A, we color the UMAP by the detected clusters.

Together with Figure 9B, this shows that the skin cells form

individual clusters which are clearly separated from the rest of the

data. The remaining tissue types intermingle in their clusters with

the separation being driven by factors other than tissue type.

Figure 10B also highlights in a table that the skin forms exclusive
BOX 15 R code TCR repertoire analysis.

chains_frequency <- table(sce_merged$cdr3s_aa)

chains_duplicated <- chains_frequency > 1

is_duplicated_chains <- sapply(sce_merged$cdr3s_aa, function(x) chains_duplicated[[x]])

which_chain <- sapply(sce_merged$cdr3s_aa, function(x) if(chains_duplicated[[x]]){

x

}else{NA})

sce_merged$duplicated_chains <- is_duplicated_chains

sce_merged$which_duplicated_chain <- which_chain

clonotype_frequency <- table(sce_merged$clonotype)

clonotype_duplicated <- clonotype_frequency > 1

is_duplicated_clonotype <- sapply(sce_merged$clonotype, function(x) clonotype_duplicated[[x]])

which_clonotype <- sapply(sce_merged$clonotype, function(x) if(clonotype_duplicated[[x]]){

x

}else{NA})

sce_merged$duplicated_clonotype <- is_duplicated_clonotype

sce_merged$which_duplicated_clonotype <- which_clonotype

plotUMAP(sce_merged, color_by = “duplicated_clonotype”, order_by = “duplicated_clonotype”)
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FIGURE 12

UMAP plotted by shared clonotypes. (A) UMAP representation of the data plotted by whether a clonotype is shared between cells of different tissues.
The overlaying numbers represent the clusters of the cells shown in Figure 9A. (B) UMAP representation of the data colored by TCR chains shared
with cells in cluster 9. (C) UMAP representation of the data colored by TCR chains shared with cells in cluster 1. (D) Barplot of the number of shared
clonotypes of cluster 1 (upper) and 9 (lower) with the other remaining clusters. .
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clusters with only incidental, individual cells being part of tissue-

mixed clusters. For more details on clustering, see section “10

Clustering” in the notebook.
Marker gene detection

After clustering the data in the previous workflow step, the

interpretation of the data can be further facilitated by characterizing

marker genes (38). Marker genes are genes that drive the separation

between the individual clusters, and the identification of such genes

helps identifying possible functions and biological meaning of the

individual clusters. The general strategy to determine marker genes of

individual clusters is a pairwise comparison of all the clusters to

calculate scores which quantify the differences in gene expression. In

our analysis we use the scoreMarkers() function from the scran package

(32) for this analysis step (Box 14). The function compares each of the

clusters in pairs. Pairwise comparisons provide the advantage of

providing more information about the markers which is beneficial to

the interpretation. Also, in contrast to the approach of comparing one

cluster against the average of all remaining cells, pairwise comparisons

are more robust against population composition and uneven

subpopulation sizes. The scoreMarkers() function calculates different

effect size summaries to quantify the difference in gene expression

between the clusters. The one we use in our workflow, visualized in

Figure 10D, is the log fold-change, where we use the genes with the

highest log fold-change between clusters as our marker genes for each

cluster. There are also other metrics available in the function. For users

interested in those, we refer to the documentation of the scoreMarkers()

function. For the marker gene detection, see section “11 Marker

gene det
TCR repertoire diversity

TCR V(D)J sequencing coupled with single-cell RNA

sequencing enables profiling of paired TCRa and TCRb chains at
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single-cell resolution with coupled global gene expression in the

same cell (39, 40). This analysis makes it possible to characterize T-

cell clonal expansion in steady state and in disease, as well as

tracking shared T-cell clonotypes between different tissues. In our

analysis, we wanted to use this information to evaluate if there are

shared TCR chains between different tissues as well as different

clusters. We also wanted to evaluate for each tissue and cluster

which chains were only found once compared to chains found

multiple times.

In Figure 11, we displayed several different statistics of the TCR

chains in our data. Figure 11A shows a summary table of the

occurrences of different combinations of TCR chains in the different

tissues. We can see that most cells in our data have at least one

TCRb chain, followed by cells with at least one TCRa chain and

cells with one TCRa and one TCRb. Figure 11B visualizes the

clonality of the TCR chains in the individual tissues. Here, we can

see that most chains of the lymphoid organs only occur once, while

some chains can be found multiple times. The highest TCR diversity

can be found in the skin. Figure 11C shows a similar summary table

as part Figure 11A, this time separated into the individual clusters

calculated for our data set. Here, we can observe similar patterns as

for the distribution of TCRs in the individual tissues. Lastly,

Figure 11D shows pie charts of the clonality of the TCR in the

individual clusters, in which we grouped all the TCR which

occurred only once in the clusters. These are shown in green,

while the remaining proportion of each pie chart is composed of

TCR which have multiple occurrences in a cluster. Here, we can see

that nearly each cluster has TCR chains which can be found more

than once except for cluster 7. In a second step, we also wanted to

analyze if there are TCR chains which were shared by cells of

different tissues (Box 15). In Figure 12A, we plotted the UMAP

representation of our data colored by whether TCR chains are

shared by cells of different tissue origin. We can see that there are a

lot of TCR chains shared between different tissues. In Figures 12B,

C, we colored the UMAP by the occurrence of TCR chains found in

cells of either cluster 9 or cluster 1 (Box 16). In Figure 12B, we can
BOX 16 R code Clonotypes shared between clusters (identical for both, showcase cluster 1).

clonotype_cluster1 <- sce_merged[, colLabels(sce_merged) == “1”]$clonotype

clono_cluster1_other_clusters <- sce_merged$clonotype %in% clonotype_cluster1

sce_merged$clonotype_cluster1_shared <- clono_cluster1_other_clusters

# overlay shared clonotypes on the UMAP

plotUMAP(sce_merged, color_by = “clonotype_cluster1_shared”, order_by = “clonotype_cluster1_shared”)

# plot shared clonotypes as barplot

data <- as.data.frame(table(sce_merged$clonotype_cluster1_shared, colLabels(sce_merged)))

data <- data[data$Var1 == TRUE],

data <- data[!data$Var2 == 1, c(2:3)]

colnames(data) <- c(“Cluster”, “Frequency”)

ggplot(data, aes(x = Cluster, y = Frequency, fill = Cluster, label = Frequency)) +

geom_bar(stat = “identity”) +

geom_text(size = 5, position = position_stack(vjust = 0.5)) +

theme_bw()
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see that there are a lot of TCR chains shared between cluster 9 and 1

which are both composed of exclusively skin cells. However, there

are also TCR shared with cells in cluster 5 and 2. Figure 12C shows

that TCR chains of cluster 1 are also shared with cells in cluster 2, 5

and 8. Figure 12D shows the shared clonotypes of Cluster 1 and 9

between the other clusters. For the marker gene detection, see

section “12 TCR repertoire diversity” in the notebook.
Cell type annotation

Cell type annotation is arguably one of the most critical yet

challenging step of a scRNA-seq analysis (41–43), as the concept
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of a cell type itself and the distinction of different cell types is a

highly discussed topic (44, 45) Transcriptomic profiles of single

cells still make it possible to assign cell types to the individual cells

of a scRNA-seq data set (46). Usually, this is done using an

appropriate reference data set with each cell being assigned a cell

type based on the most similar cell in the reference data. In our

workflow, we will present the methods of SingleR for cell type

annotation (47) (Box 17). Technically, any published and carefully

labeled bulk or single-cell RNA-seq data set can be used as

reference data set. However, the quality of the resulting assigned

cell types heavily depends on the compatibility of the data at hand

and the reference data. Also, the reference data should ideally

contain a variety of cells which comprises all the cell types
BOX 17 R code cell type annotation using a reference data set.

ref_annot_immgen <- ImmGenData()

# Calculate cell type annotations

celltype_immgen_main <- SingleR(test = sce_merged,

ref = ref_annot_immgen,

labels = ref_annot_immgen$label.main,

BPPARAM = BiocParallel::MulticoreParam(6))

celltype_immgen_fine <- SingleR(test = sce_merged,

ref = ref_annot_immgen,

labels = ref_annot_immgen$label.fine,

BPPARAM = BiocParallel::MulticoreParam(6))

# summarize cell type annotation results

table(celltype_immgen_main$labels)

table(celltype_immgen_fine$labels)

# save results as meta data in the SingleCellExperiment object

sce_merged$celltype_immgen_main <- celltype_immgen_main$labels

sce_merged$celltype_immgen_fine <- celltype_immgen_fine$labels

# plot UMAP and tSNE representation colored by the assigned cell types from the

# main labels

plotTSNE(sce_merged,

colour_by = “celltype_immgen_main”,

text_by = “celltype_immgen_main”)

plotUMAP(sce_merged,

colour_by = “celltype_immgen_main”,

text_by = “celltype_immgen_main”)

# plot UMAP and tSNE representation colored by the assigned cell types from the

# fine labels

plotTSNE(sce_merged,

colour_by = “celltype_immgen_fine”,

text_by = “celltype_immgen_fine”)

plotUMAP(sce_merged,

colour_by = “celltype_immgen_fine”,

text_by = “celltype_immgen_fine”)

# plot a heatmap of the degree of matching of the individual cells to the

# available cell type labels in the reference data

plotScoreHeatmap(celltype_immgen_main)

# plot a heatmap of cluster to cell types, showing which cell type can found in

# the individual clusters

tab <- table(Assigned = celltype_immgen_main$pruned.labels,

Cluster = colLabels(sce_merged))

# Adding a pseudo-count of 10 to avoid strong color jumps with just 1 cell.

pheatmap(log2(tab + 10),

color = colorRampPalette(c(“white”, “darkblue”))(101))
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FIGURE 13

Cell type annotation results. (A) UMAP colored by assigned cell types for each cell. (B) Trajectory analysis of the data plotted on the UMAP
(C) Heatmap of cell type distribution across clusters. (D) Heatmap of matching similarity of each cell to the different cell types in the reference.
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expected in the scRNA-seq data at hand. A large variety of suitable

reference data sets can be found in the R package celldex (47). In

our workflow, we use an unpublished, in-house reference data set

consisting of different T-cell subpopulations for cell type

annotation and the visualizations shown in Figure 13. However,

we also present in the HTML report how to use reference data sets
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from the celldex package (Box 17). After a suitable reference data

set has been selected, the cell types can simply be annotated by

calling the SingleR() function with the input data and the reference

data as shown in our workflow. The results can be plotted in a

heatmap as scores of the different labels to cells. An example can

be seen in Figure 13C. Ideally, each cell should have one label with
BOX 18 R code cell type annotation using custom markers.

# set up a list of known marker genes for certain cell types, e.g. Treg cells

treg <- c(“Foxp3”, “Il2”)

# p Treg cells

p_treg <- c(“Rorc”, “Gata3”)

# t Treg cellst_treg <- c(“Ikzf2”)

# Tissue Treg

tissue_treg <- c(“Batf”, “Klrg1”, “Areg”, “Ccr8”, “Il10”)

# Th1 cells

th1 <- c(“Tbx21”, “Ifng”)

# Naive T-cells

naive <- c(“Ccr7”, “Sell”, “Irf4”)

# repeat these two steps for all markers of interest

plotExpression(sce_merged, features = “Foxp3”,

x = “label”, colour_by = “label”)

plotUMAP(sce_merged, color_by = “Foxp3”, order_by = “Foxp3”)
BOX 19 R code trajectory analysis.

by.cluster <- aggregateAcrossCells(sce_merged,

ids = colLabels(sce_merged))

centroids <- reducedDim(by.cluster, “PCA”)

# Set clusters = NULL as we have already aggregated above.

mst <- createClusterMST(centroids, clusters = NULL)

mst

line.data <- reportEdges(by.cluster,

mst = mst,

clusters = NULL,

use.dimred = “UMAP”)

plotUMAP(sce_merged, colour_by = “label”) +

geom_line(data = line.data,

mapping = aes(x = dim1,

y = dim2,

group = edge))

map.tscan <- mapCellsToEdges(sce_merged,

mst = mst,

use.dimred = “PCA”)

tscan.pseudo <- orderCells(map.tscan, mst)

head(tscan.pseudo)

common.pseudo <- averagePseudotime(tscan.pseudo)

plotUMAP(sce_merged, colour_by = I(common.pseudo),

text_by = “label”, text_colour = “red”) +

geom_line(data = line.data, mapping = aes(x = dim1, y = dim2, group = edge))
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a high score compared to all other labels. Figure 13D we plot the

composition of the individual clusters with the available cell types.

We see that most clusters mainly consist of one to two cell types,

with all clusters including Tregs. In Figure 13 we plot the same

results as an overlay over the UMAP representation of our data.

Here as well we can see a nice distribution and clustering of the

individual cell types, with all clusters having Treg cells. As

mentioned above, another approach to cell type annotation is

the use of marker genes (Box 18). In our workflow, we also did cell

type annotation based on known marker genes for specific T cell

subpopulations. In Figure 10C some of the markers are showcased

and we can see the expression of individual selected marker genes

in the UMAP representation of the data. Figure 10C shows violin

expression plots of the marker genes in the individual samples.

Combined with automated reference-based methods, this can

support the interpretation and identification of cell types of the

data at hand. For the cell type annotation see also section “12 Cell

type annotation using reference data and custom markers” in

the notebook.
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Trajectory analysis

A large variety of biological processes can be represented as a

continuum of biological changes in the cellular state. This is especially

true of cell type differentiation which can for example be observed in

different T-cell subpopulations. In our high dimensional scRNA-seq

data, we want to characterize this process of differentiation by finding a

trajectory. Associated with a trajectory is the pseudotime, which is the

position of each cell along the trajectory and could for example

represent the state of differentiation of a cell along a continuous

process. Pseudotime helps us answer questions about the global

population structure of our data. In our workflow, we use a cluster-

based approach for identifying the trajectory in the data (Box 19). The

TSCAN (48) algorithm implemented in the corresponding package first

computes cluster centroids of the determined clusters before forming a

minimum spanning tree (MST). Figure 12B shows the results of our

trajectory analysis. The pseudotime ranges from dark to light colors,

meaning cells with a dark blue color have an early pseudotime than

yellow-colored cells. In the case of the presented data, a trajectory
FIGURE 14

Quality control panels of our iSEE instance. The column data plot 1 on the left plots the library size of each cell in decreasing order. The reduced
dimension plot 1 on the right shows the t-SNE presentation of our data colored by the log-normalized library size of each cell. Dark cells have a
small library size, while yellow cells have a large library size.
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analysis might not yield too many additional insights on the data

because of the overall composition of the data. However, in projects

and datasets where continuous processes are under investigation, a

trajectory analysis might yield additional insight of the data. For the

trajectory analysis, see section “13 Trajectory Analysis” in the notebook.
Methods – interactive data
exploration using iSEE

For most data analysis workflows, one of the most crucial and

time-consuming steps is the data exploration, usually accompanied

by a lot of different data visualizations (49). This is also the case for

scRNA-seq where the data usually is not only complex, but also

large in size. Reiterating data exploration and visualizations steps

can be beneficial to the data analysis and can help to compact and

facilitate data interpretation. An excellent tool for interactive and

iterative data exploration and visualization for scRNA-seq data is

iSEE (50). iSEE provides a flexible framework which is compatible

with a lot of different data types and can be dynamically adapted to

the respective data set at hand. Each instance of iSEE can be

customized to the individual data set by selecting the most

suitable visualization and exploration techniques in form of
Frontiers in Immunology 3686
different panels provided by iSEE (Figures 14–16). As an input to

iSEE, users have to provide a SummarizedExperiment object

(SingleCellExperiment being a derivative class, with features

tailored to single cell assays). This format is commonly returned

by most packages in the Bioconductor ecosystem. In our workflow,

the data is also already saved as a SingleCellExperiment object from

the beginning, so the data presented here can easily and directly be

explored with iSEE. In our workflow, we will present different

panels of iSEE to demonstrate the possibilities of the application.

For this, we present a customized panel layout that can be achieved

using the code shown in “14 Interactive data exploration using

iSEE”. The first two panels we add to our iSEE instance are quality

control-related and plot the library size as well as a t-SNE of the log-

normalized library size (Figure 14). The plots help to identify

clusters of low-quality cells and can also be used to detect quality

control or normalization errors.

Next, we add panels to visualize the marker genes of individual

clusters (Figure 15). The panels consist of a summarization table,

an expression plot of individual marker genes in the clusters as

well as an UMAP of the expression of selected marker genes. All

three panels are interactive and connected, so that users can

evaluate different marker genes. Lastly, we present summaries

on the counts of individual genes in the panels shown in Figure 16.

The panels summarize the expression of the genes in the data as a
FIGURE 15

Marker gene panels of our iSEE instance. The row data Table 1 contains a table of the different marker genes of the individual clusters. The feature
assay plot 1 shows a violin plot of the expression of the selected marker gene of the row data Table 1. Lastly, the reduced dimensions plot 2 shows
the UMAP representation of our data colored by the expression of the selected marker in the row data Table 1.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1241283
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Nedwed et al. 10.3389/fimmu.2023.1241283
table as well as an expression heatmap and can help explore

different genes of interest in the data. As shown here, iSEE

provides several different summary statistics and visualizations

for the data. Besides the showcased panels here, there is a variety

of other different panels available. This can greatly benefit the data

analysis by being an interactive and reproducible way for data

exploration and visualization.
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Regression of leukemia in the absence of disease-modifying therapy remains

poorly understood, although immunological mechanisms are thought to play a

role. Here, we present a unique case of a 17-year-old boy with immune

dysregulation and long-lasting regression of a (pre)leukemic clone in the

absence of disease-modifying therapy. Using molecular and immunological

analyses, we identified bone marrow features associated with disease control

and loss thereof. In addition, our case reveals that detection of certain fusion

genes with hardly any blasts in the bone marrow may be indicative of an

accompanying oncogenic fusion gene, with implications for disease

surveillance- and management in future patients.

KEYWORDS

spontaneous remission, acute myeloid leukemia, childhood, immune-mediated,
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1 Introduction

Over the last two decades, studies in a variety of cancers have shown the potential of

immune-mediated approaches to eradicate malignant cells (1, 2). However, not all cancer

patients, including those with acute myeloid leukemia (AML), have benefited from this

development (3, 4). The development of immunotherapy for this population is mainly

hampered by the lack of tumor-specific antigens and the immunologically ‘cold’ tumor

microenvironment (5, 6). Nonetheless, in rare cases, AML can regress in the absence of

therapy and many reports have suggested that immunological mechanisms play a role (7).

However, detailed immunological analyses at the moment of regression are lacking and

therefore, the contribution of the immune system to such regressions remains unknown.
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Here, we describe the disease course and molecular- and

immunological analyses performed at disease presentation,

regression, and development of overt AML in a 17-year-old boy.

The presented disease course suggests that the concept of

immunoediting, including cancer elimination and immune escape,

is applicable to the development of AML, and provides directions for

future research (8). In addition, the retrospective identification of the

KMT2A::MLLT10 fusion gene at initial presentation, which was

initially not detected by RNA-sequencing, is likely to change

disease management in future patients.
2 Case description

A 17-year-old boy without relevant medical history was referred

to our center because of pancytopenia, hepatosplenomegaly, and

non-remitting fever (≥3 weeks). Two weeks prior to fever onset, the

patient had experienced a mild COVID-19 infection, which had
Frontiers in Immunology 0291
resolved and for which he tested negative before the fever started. A

bone marrow (BM) aspirate showed 21% activated monocytic cells

(out of all BM cells; immunophenotype by flow cytometry: CD11b+,

CD13+, CD14+, CD16+, CD34-, CD64+, HLA-DR+, IREM2+),

neutropenia (<1%), and a prominent lymphocytic infiltrate (70% T

cells, 5% B cells; normal immunophenotype), without evidence of

leukemic infiltration. Furthermore, a BM (trephine) biopsy indicated

hemophagocytosis, in line with the activated monocytic population

that was detected (Figures 1A, B). These findings, in combination

with increased ferritin- (986 mg/l; normal: 25-250 mg/l) and soluble

IL-2 receptor (>55000 pg/ml; normal: 0-3000 pg/ml) blood levels,

were compatible with immune dysregulation as seen in macrophage

activation syndrome and hemophagocytic lymphohistiocytosis

(HLH) (9, 10). Subsequently, a high-resolution CT-scan of the

thorax showed two small nodular lesions with ground-glass opacity

in the lower right lung, but a bronchoalveolar lavage and other

diagnostic tests did not reveal any infectious pathogens (Figure 1C).

Therefore, the COVID-19 infection before fever onset and/or a
B

C D

E

A

FIGURE 1

Diagnostic findings. (A, B) H&E section of the trephine biopsy at initial presentation (A) and an illustration of the hemophagocytosis present in this
biopsy, indicated by the white arrow (B). (C) CT scan of the thorax performed at initial presentation, which revealed two nodular lesions in the right
lung. One nodular lesion with a diameter of 9 mm is shown (white arrow; the other lesion was similar and is not shown). (D) Immunohistochemistry
stain of megakaryocytes (CD61, indicated by the purple arrow) in the trephine biopsy collected at 10 days from initial presentation. The clusters with
blue cells, indicated by the red arrows, indicate recovering erythropoiesis. (E) Timeline of the most relevant diagnostic findings.
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possible aspergillus were thought to be the most likely trigger(s) of the

immune dysregulation. In the meantime, the boy was given

erythrocyte- and thrombocyte transfusions and received empirical

antibiotic and antifungal agents.

In the midst of the diagnostic process, a BM aspirate and

trephine biopsy were repeated to follow-up on the initial findings

(initial presentation +10 days). Fortunately, the BM aspirate and

trephine biopsy showed regenerating hematopoiesis (Figure 1D).

Furthermore, the monocytic population decreased in abundance,

while the lymphoid infiltrate remained extensive. Because of these

findings, no treatment for the immune dysregulation was started.

Remarkably, routine bulk RNA-sequencing performed on BM

aspirate material indicated the presence of a MLLT10::UBE4A

fusion gene at initial presentation, albeit only 15 reads were

detected. While the KMT2A::MLLT10 fusion gene is common in

both acute lymphoblastic leukemia (ALL) and AML, this MLLT10::

UBE4A fusion gene had not been reported at that time (11). In

addition, karyotyping revealed a partial deletion of chromosome

17p (TP53) in 1 out of 20 evaluated divisions. However, since there

were no indications of oncogenic potential of the MLLT10::UBE4A

fusion gene, only 1 out of 20 divisions showing a partial 17p-

deletion, no leukemic blasts, and hematopoietic recovery, a wait-

and-see approach was elected. Over the next weeks, the boy’s blood

counts recovered to normal levels and the nodular lesions in his

right lung decreased in size. He was followed up using differential

blood counts every 2-3 months.

Nine months later, symptoms similar to those at initial

presentation, apart from the fever, arose. A BM aspirate revealed

72% blasts (flow cytometry-based) with a monocyte-like

morphology, but with a more immature immunophenotype

compared to initial presentation (CD11b+, CD13+/-, CD14-,

CD15+, CD16-, CD33+, CD34-, CD117-, CD123+, HLA-DR+,

IREM2+/-). BM RNA-sequencing again revealed the MLLT10::

UBE4A fusion gene, but this time in combination with the

KMT2A::MLLT10 fusion gene, and a diagnosis of AML was

made. In addition to these fusion genes, biallelic loss of TP53 due

to a 17p-deletion and a TP53R248W mutation (VAF: 62%), deletions

of 12p (ETV6), 2p (DNMT3A), 11q (including KMT2A exon 10-36),

and 9q, monosomy 1 and 8, and a KRASG12C mutation (VAF: 89%)

were identified by whole-exome sequencing. Retrospectively, a PCR

and targeted sequencing on the trephine biopsy obtained at initial

presentation indicated that the KMT2A::MLLT10 fusion gene and

KRASG12C (VAF: 13%) mutation, respectively, had already been

present at that time. Similarly, the detection of the 17p-deletion at

AML diagnosis suggests that this alteration had already occurred at

initial presentation. The boy received chemotherapy according to

the NOPHO-DBH AML-2012 protocol, achieved complete

remission, and was transplanted because of high-risk genetics one

month ago. A timeline with the most relevant diagnostic findings is

presented in Figure 1E.
3 Results and discussion

This case is unique in several ways and provides valuable

insights for clinical care and research. Retrospectively, the
Frontiers in Immunology 0392
transcriptional orientation of both the UBE4A and the KMT2A

gene suggests that the identified fusion genes were the result of a

single event (Figure 2A). The detection of the one but not the other

fusion gene at initial presentation may be explained by differences

in promotor activity, illustrated by the more than 3-fold higher

number of detected reads for MLLT10::UBE4A in comparison to

KMT2A::MLLT10 at AML diagnosis (182 versus 48 reads,

respectively). In line with the presence of KMT2A::MLLT10 at

ini t ia l presentat ion, downstream targets of KMT2A-

rearrangements such as HOXA9, MEIS1, and PBX3 were

upregulated at that time point in comparison to non-leukemic

controls (4 pediatric patients with treatment-naïve early-stage

rhabdomyosarcoma without malignant BM infiltration ;

Figure 2B). Accordingly, we postulate that a (pre)leukemic clone

was present at that stage, which remained under control for 9

months before it developed into overt AML. Such (pre)leukemic

clones may have a normal immunophenotype, complicating their

detection using flow cytometry in case of low blast percentages. In

future cases where a sole MLLT10::UBE4A fusion gene is detected

with a low percentage or without any blasts, our case suggests that

one should be aware that a concurrent KMT2A::MLLT10 fusion

gene and potentially a (pre)leukemic clone may be present as well.

This is of particular relevance since children with KMT2A::MLLT10

AML often show low blast percentages in the BM (12). If the

KMT2A::MLLT10 fusion gene is confirmed at disease presentation

in cases similar to our patient (e.g., using DNA- and RNA-based

PCR or FISH), frequent BM aspirates should be taken to monitor

the blast percentage. If an elevated number of blasts is detected,

treatment initiation should be considered as AML with defining

genetic abnormalities may now be diagnosed with <20% blasts (12).

Furthermore, because of the extensive T cell infiltrate in the

trephine biopsies collected at initial presentation and 10 days later,

we performed immunogenomic analyses on BM RNA-sequencing

data, which revealed a much higher cytolytic activity (geometric

mean of GZMA, GZMH, GZMM, PRF1, and GNLY) and estimated

abundance of CD8+ T cells (estimated using the Tumor Immune

Dysfunction and Exclusion-framework) at both initial time points

in comparison to when AML was diagnosed, and to non-leukemic

controls (Figures 2C–E) (13, 14). Interestingly, the number of

MLLT10::UBE4A reads and the expression of well-known

KMT2A-related downstream targets decreased at 10 days after

initial presentation, while the hematopoietic system showed signs

of recovery (Figure 1D; 2B, F). Therefore, we speculate that a

specific immune response directed against the (pre)leukemic

clone, in addition to the immune dysregulation affecting all blood

lineages, was present in our patient. It is possible that the observed

immune dysregulation and subsequent regression of the (pre)

leukemic clone were related to the prior COVID-19 infection

(15). Indeed, immune-inflammatory responses triggered by

infectious pathogens may lead to anti-tumor immune responses

via cross-reactivity of pathogen-specific T cells (16, 17).

Furthermore, COVID-19 may also have acted as an oncolytic

virus, resulting in the release of tumor antigens and priming of a

tumor-specific immune response (18). Alternatively, leukemias

themselves may also trigger such immune-inflammatory

responses. For instance, several reports described HLH at disease
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presentation in various hematological malignancies (19, 20).

Another study described a case of a 6-year-old girl with HLH that

developed AML only 2 months after treatment for HLH was started,

further supporting a role for immune-inflammatory processes in

keeping (pre)leukemic clones in check (21). Nonetheless, disease

control was lost over time. Indeed, despite a still substantial T cell

infiltrate, cytolytic activity was markedly reduced at AML diagnosis

(Figures 2C, D). Moreover, the estimated abundance of several

immunosuppressive cell subsets (M2-/M1-like macrophage ratio,

cancer-associated fibroblasts, and myeloid-derived suppressor cells)

was increased at AML diagnosis, suggesting that the BM

microenvironment had become more immunosuppressive over
Frontiers in Immunology 0493
time (Figures 2G–I) (14). Consequently, we speculate that the

additional genetic alterations identified at AML diagnosis led to

immune escape of the (pre)leukemic clone (9, 22).

In conclusion, we present a unique case of long-lasting

regression of a (pre)leukemic clone in the absence of therapy.

Using molecular- and immunological studies, we identified BM

features associated with regression suggesting immune-mediated

disease control of AML. Accordingly, our case creates an impetus to

identify tumor-reactive T cell receptors at the moment of

regression, which we were not able to test due to the absence of

viable material, since novel T cell receptor therapies for AML are

urgently needed for AML. In addition, detection of the MLLT10::
B

C

D E F G H I

A

FIGURE 2

Immune dynamics at play at initial presentation, 10 days later, and at AML diagnosis. (A) Predicted mechanism of the single event leading to both the MLLT10::
UBE4A and the KMT2A::MLLT10 fusion genes. (B) Normalized gene expression (FKPM) of well-known downstream targets of KMT2A-rearrangements at initial
presentation, 10 days later, and at AML diagnosis in bone marrow RNA-sequencing data from our patient, and compared to bone marrow RNA-sequencing
data derived from 4 treatment-naïve children with early-stage rhabdomyosarcoma without malignant bone marrow infiltration (non-leukemic controls). (C)
CD3 stains showing the T cell abundance in the trephine biopsy collected at initial presentation, 10 days later, and at AML diagnosis. (D) Illustration of the
cytolytic activity score (geometric mean of GZMA, GZMH, GZMM, PRF1, GNLY) at the above-mentioned time points. (E) The estimated abundance of CD8+ T
cells at the above-mentioned timepoints. (F) Illustration of the detected reads of the MLLT10::UBE4A gene at initial presentation, 10 days later, and AML
diagnosis. (G–I) The ratio between pro(M1)- and anti(M2)-inflammatory macrophages (G), cancer-associated fibroblasts (CAFs; H), and myeloid-derived
suppressor cells (MDSCs; I) at initial presentation, 10 days later, AML diagnosis, and in the 4 non-leukemic controls.
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UBE4A fusion gene in a patient with a low blast percentage may

indicate that a KMT2A::MLLT10 fusion gene and a pre(leukemic)

clone are present as well, with implications for disease management.
4 Patient perspective

This study was approved by the Institutional Review Board of

the Princess Máxima Center for Pediatr ic Oncology

(PMCLAB2021.207 & PMCLAB2021.238). Both the involved

patient and the non-leukemic controls described in the text

provided written consent for banking and research use of the

specimens, according to the Declaration of Helsinki. Specifically,

the described patient gave consent for publication of his

medical history.
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The Assay for Transposase-Accessible Chromatin using sequencing (ATAC-seq)

is a cutting-edge technology that enables researchers to assess genome-wide

chromatin accessibility and to characterize cell type specific gene-regulatory

programs. Recent technological progress allows for using this technology also

on the single-cell level. In this article, we describe the whole value chain from the

isolation of T cells from murine tissues to a complete bioinformatic analysis

workflow. We start with methods for isolating scATAC-seq-ready CD4+ T cells

from murine tissues such as visceral adipose tissue, skin, colon, and secondary

lymphoid tissues such as the spleen. We describe the preparation of nuclei and

quality control parameters during library preparation. Based on publicly available

sequencing data that was generated using these protocols, we describe a step-

by-step bioinformatic analysis pipeline for data pre-processing and downstream

analysis. Our analysis workflowwill follow the R-based bioinformatics framework

ArchR, which is currently well established for scATAC-seq datasets. All in all, this

work serves as a one-stop shop for generating and analyzing chromatin

accessibility landscapes in T cells.

KEYWORDS

scATAC-seq, T cell isolation, tissue digestion, ArchR, Signac
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Introduction

Chromatin describes DNA which is organized around histones

and which makes up the structure of chromosomes. The

accessibility of certain regions of chromatin is dependent on

DNA methylation and histone modifications such as acetylation,

phosphorylation or methylation (1, 2). The accessibility of

chromatin to regulatory proteins such as transcription factors

(TF) plays a key role in gene regulation. Analyzing chromatin

accessibility in different cell types or disease states can help us gain a

better understanding of the molecular programs that are active in

the respective cell type or disease state, and can help elucidate the

molecular mechanisms underlying the development of a

certain disease.

Assay for Transposase-Accessible Chromatin using sequencing

(ATAC-seq) was first introduced by Buenrostro et al. as a method

for characterizing chromatin accessibility across the genome (3).

ATAC-seq utilizes the hyperactive Tn5 transposase, which inserts

sequencing adapters into regions of accessible chromatin.

Sequencing of these accessible, or biologically active, regions lets

us infer the cells’ identity (3, 4). For the characterization of cells in a

heterogeneous population, single-cell (sc)ATAC-seq was developed.

To this end, single-cells are separated and barcoded, treated with

Tn5 transposase (prior to or after separation, depending on the

technology), followed by library preparation. Different methods

have been developed for achieving single-cell resolution, including

combinatorial cellular indexing (5), nano-well technologies (6) and

microfluidics platforms (7). Given the unique perspective provided

into the regulatory mechanisms at the single-cell level, (sc)ATAC-

seq is a valuable tool for characterizing cells from tissues. scATAC-

seq and scRNA-seq are often used as complementary technologies,

delivering a comprehensive picture of the cell identity that

integrates transcriptome and transcriptional regulation, and

multiomic approaches combining both scATAC and scRNA read-

outs from the same cell are currently on the rise.

Although different technologies for performing scATAC-seq

have been established, they all require the processing of tissue

samples for generating single-cell suspensions, the isolation of

target cells, the preparation of nuclei, the deposition of individual

nuclei in wells or droplets, library preparation and sequencing, and

finally bioinformatic analysis. In this methods article, we provide

guidance for all steps that are required to perform scATAC-seq on

CD4+ T cells from murine tissues (see also Figure 1). First, we will

describe wet-lab protocols for isolating T cells from murine tissues

such as skin, visceral adipose tissue (VAT), colon, or secondary

lymphoid tissues such as the spleen. We will describe processing

steps for pre-enrichment and purification of target cells, isolation of

nuclei and further processing using commercially available droplet-

based microfluidic systems and chemistry. We will provide

recommendations for cost-efficient and resource-saving

sequencing strategies, accompanied by links for the download of

freely accessible example datasets where CD4+ T cells from murine

tissues were isolated, processed and sequenced as described (8).

Then, we will guide the readers through the bioinformatic

processing of samples, from initial quality control steps through

data pre-processing to the analysis of the final, filtered dataset. This
Frontiers in Immunology 0297
typically includes the calculation of gene activity scores, peak calling

and motif enrichment, footprinting, co-accessibility and trajectory

analysis. We will provide a reproducible workflow for recreating our

findings that readers can extend and adapt to their needs, and

provide advice on typical parametrical and procedural errors that

may occur during analysis.
Methods – experimental procedures

The processing of samples for scATAC-seq is the first key step

to producing high-quality data. In our experience, low quality cell

isolation results in high fragmentation of nuclear DNA, translating

into poor library profiles, low sequencing efficiency and bad data

quality. Therefore, we will describe key steps for isolating CD4+ T

cells from murine peripheral organs compatible with droplet-based

microfluidic systems and chemistry from commercial suppliers,

with details on organ removal, tissue digestion procedures and

enzyme formulations, pre-enrichment of target cells, sorting of

viable cells, nuclei isolation, transposition and barcoding

(Figure 2A). Required equipment for experimental procedure and

computing infrastructure is listed in Tables 1, 2, respectively.
Isolation of T cells from murine spleen

To isolate T cells from murine secondary lymphoid tissues such

as spleen, the tissue is harvested, placed in FACS buffer (Table 3)

and stored at 4°C until use. Then, the spleen is placed on a 100 µM

filter unit and is mechanically dissociated using a plunger or

forceps. Following centrifugation (2 min, 1000g, 4°C), red blood

cells are lysed using a commercially available ACK lysis buffer (e.g.

Thermo Fisher #A1049201). The cell suspension is filtered using a

70 µm strainer, resuspended in 500 µl FACS buffer, and cells

are counted.

Afterwards, we add Fc blocking reagent (Miltenyi Biotec #130-

092-575) to prevent unspecific binding of antibodies and beads,

followed by specific labeling using 1 µg PE-conjugated anti-mouse

CD4 (Clone RM4-5, Biolegend #100512) or 1 µg PE-conjugated

anti-mouse CD25 (Clone PC61, Biolegend # 102008) antibodies in

500 µl and stain for 20 min at 4°C. After staining, cells are

centrifuged (2 min, 1000g, 4°C), washed using 1000 µl of FACS

buffer, and resuspended in MACS buffer (Table 4). In the next step,

target cells are bound by anti-PE ultrapure microbeads (Miltenyi

Biotec #130-105-639) for 20 min at 4°C, followed again by two

centrifugation (2 min, 1000g, 4°C) and washing steps using 1000 µl

of FACS buffer. Finally, samples are re-suspended in 500 µl MACS

buffer. A 70µl filter unit is placed on an equilibrated MACS column

(we recommend working at 4°C to prevent cellular degradation)

and the sample is loaded. The column is washed twice with 5 ml

MACS buffer.

Afterwards, the sample is eluted in 500 µL FACS buffer and

stained using fluorescence-labelled antibodies. We recommend a

gating strategy where CD4 or CD25 T cells are enriched to high

purity, and dead cells, unwanted cell types and doublets are

excluded (Figure 2B, upper panel). A small part of the sorted
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population (target cells) can then be re-analyzed before downstream

processing to determine post-sort purity and viability (Figure 2B,

lower panel). If the quality criteria are met, the sample can be

subjected to nuclei preparation and further sample processing, as

described later. For troubleshooting and recommendations see

Box 1.
Isolation of T cells from murine
adipose tissue

To isolate T cells from VAT tissue, gonadal fat pads of male

mice are excised and placed in either a 50 ml conical tube or a

GentleMACS tube (Miltenyi Biotec #130-096-334) containing VAT

digestion buffer (Table 5). The VAT buffer recipe contains a

collagenase subtype to digest the extracellular matrix, DNAse to
Frontiers in Immunology 0398
prevent DNA released from dying cells clogging filters, and BSA to

prevent unspecific digestion of cell surface epitopes.

To support the digestion process, the gonadal fat depots are cut

into small pieces using (sharp) scissors and digested for 45 minutes

at 37°C. Ideally, the sample should be rotated (e.g. using a rotating

device in an incubator), placed in an orbitally shaking waterbath, or

stirred and heated automatically using a GentleMACS Dissociator

(program: 37C_mr_ATDK_1). Then, the sample is incubated with

10 ml of 2 mM EDTA-PBS for 2 minutes, followed by a

centrifugation (5 min, 500g, 20°C). The sample is resuspended in

1000 µl FACS buffer and transferred to a 1.5 ml tube through a 100

µm filter unit. Then, the sample is centrifuged again (2 min, 1000g,

4°C), resuspended in 1000 µl FACS buffer and filtered into a new

tube using a 70 µm filter unit. The sample can now be stained for

sorting, with an example shown in Figure 2C. For troubleshooting

and recommendations see Box 2.
FIGURE 1

Graphical Abstract describing the whole value chain from tissue processing and scATAC-seq library prep through sequencing and data pre-processing to the
analysis of the final, filtered dataset. The Left panel describes tissue processing and library prep: Tissue is enzymatically and mechanically digested (1) and
cells are magnetically enriched for target cells (2) to make cell sorting (3) more efficient. After obtaining a pure target cell population (3), cells are made
permeable for the Tn5 transposase during nuclei preparation (4), followed by incubation with the Tn5 transposase and library preparation (5). The Middle
panel describes sequencing (1) and alignment of fragments, as well as quality control using CellRangerATAC (2). Depending the number of fragments per cell,
samples can be sequenced further to yield the desired sequencing depth. Using fragments.tsv files generated by CellRangerATAC count, data is pre-
processed with ArchR (3). Steps include setting cut-offs for TSS enrichment and the number of fragments per cell and visual evaluation of the fragment size
distribution (3.1), the calculation of doublet scores and removal of doublets (3.2), and, if necessary, batch effect correction (3.3), yielding the final, filtered
dataset (4). The Right panel describes data analysis, comprising the calculation of gene activity scores as a proxy for gene expression (1), marker- and
differential analysis on the peak matrix (2) as well as motif enrichment analysis in marker- and differential peaks (3). Motif scores can further be calculated on
the single-cell level using ChromVAR (4), motif footprinting can be performed (5), co-accessibility of peaks can be assessed (6), and pseudotime analysis can
be performed (7). Created with Biorender using figures and plots generated in this manuscript. .
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FIGURE 2

Overview of sample preparation for scATAC-seq of CD4+ T cells from murine tissues. (A) Procedural overview. Organs are removed, followed by
tissue digest and CD4 T cell enrichment. These are then sorted and processed further for generation of the scATAC-seq library (B–E) Flow
cytometry plots illustrating the gating scheme to isolate T cells from tissues such as spleen, fat, skin and colon. For skin, a pre-sort enriches target
cells, followed by purity sorting. Relative enrichment by each sort in table. Figure elements with Biorender.
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Isolation of T cells from murine
skin tissue

To isolate T cells from skin tissue, hair has to be removed from

the back of the animal with an electric shaver and depilatory cream.

The cream is applied for 2 minutes, followed by vigorous washing

using tap water to remove hair. It is important that excess hair is

completely removed to avoid complications during downstream

filtration steps. After cleaning, the skin is separated from the dorsal

surface, cut into small pieces, and transferred to a GentleMACS

tube (Miltenyi Biotec #130-096-334) containing 10ml of skin

digestion buffer (Table 6).

Then, the sample is digested using the GentleMACS Dissociator

(program: 37_C_Multi_H) or via orbital shaking in a preheated

waterbath (37°C). After 90 minutes of digestion or completion of

the GentleMACS program, the single-cell suspension can be cut

again, centrifuged (10 min, 400g, 4°C), resuspended in 5000 µl

FACS buffer and transferred to a 15 ml tube through a 100 µm filter

unit. Then, the sample is centrifuged again (2 min, 1000g, 4°C),

resuspended in 1000 µl FACS buffer and filtered into a new 1.5 ml

tube using a 70 µm filter unit. The sample can now be stained for

sorting, with an example shown in Figure 2D. To increase sort

efficiency, it might be beneficial to first enrich for CD45+ immune

cells (yield sort) by sorting target cells into FACS buffer, followed by

a second purity sort (4-way purity sort) for target cells. For

troubleshooting and recommendations see Box 3.
Isolation of T cells from murine colon

To isolate T cells from colon tissue, the colon is mechanically

separated from small intestine and placed in FACS buffer.

Remaining fat and mesenteric lymph nodes are removed. The

colon is opened longitudinally, cleared of feces, and transferred to

a new tube with 10 ml of colon pre-digestion buffer (Table 7). The

colon is incubated for 15 min on a bacterial shaker at 225 rpm and

37°C, followed by 30sec of vortex. The solution is passed through a

100 µm filter unit, where the colon remains in the filter and is

transferred to a new tube with 10 ml of fresh colon pre-digestion

buffer. The flowthrough is discarded and contains epithelial cells,

while the lamina propria remains on the filter unit. The colon is

incubated again for 15 min on a bacterial shaker at 225 rpm and 37°

C, followed by 30sec of vortex and filtration.

The colon pieces are transferred to a 50ml tube containing 10ml

of colon digestion buffer (Table 8), and scissors are used to cut the

colon into small pieces. Digestion is performed in a bacterial shaker

for 15 min at 37°C and 225 rpm.

Upon completion of digestion, the colon can be cut again to

increase yield. The cell suspension is now centrifuged (10 min, 400g, 4°

C) and resuspended in RPMI media, followed by two additional

filtration steps with 10ml of RPMI. The sample can then be

resuspended in FACS buffer and either pre-enriched (recommended)

or stained for sorting. For troubleshooting and recommendations see

Box 4.
TABLE 3 FACS buffer.

Formulation for FACS buffer

Ingredient Manufacturer
Final
concentration

Phosphate-buffer saline
10X

Gibco #10010023 or
other

1X

FCS 100% Sigma #F7524 or other 2%

Deionized water NA Up to final volume
TABLE 4 MACS buffer.

Formulation for MACS buffer

Ingredient Manufacturer
Final
concentration

Phosphate-buffer saline
10X

Gibco #10010023 or
other

1X

Bovine Serum Albumin
100%

Sigma #A4503 or
other

0,5% (w/v)

Ethylenediaminetetraacetic
acid

ThermoFisher
#15575020

1 mM

Deionized water NA Up to final volume
TABLE 2 Equipment required for data analysis.

Required computing infrastructure

Tool Requirements/Recommendations

Cell Ranger
ATAC
(v2.0.0)

8-core Intel or AMD processor (24 cores recommended)
64GB RAM (160GB recommended)
10-100GB free disk space per sample (depending on various
factors including sequencing depth, sequencing strategy, number
of nuclei sequenced)
64-bit CentOS/RedHat 7.0 or Ubuntu 14.04

R/Analysis
with and
ArchR

Processor 64-bit processor with x86-compatible architecture
(such as AMD64, Intel 64, x86-64, IA-32e, EM64T, or x64 chips)
1 GB free disk space
8 GB RAM (32 GB recommended)
TABLE 1 Equipment required for experimental procedures.

Major equipment required to perform experimental
procedures

Name Manufacturer

Chromium Controller 10X Genomics

Miltenyi GentleMACS Miltenyi Biotec

High-speed cell sorting system BD Biosciences or other

Tapestation or Bioanalyzer Various

Nextseq 500/550 Illumina
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Preparation of nuclei and library for
scATAC-seq

Cells have been sorted in FACS buffer and stored at 4°C until

use. In our experience, it is important to process the samples quickly

after sorting to decrease the overall fragmentation of the chromatin.

Therefore, shortly after sorting, cells are pelleted by centrifugation

(5min, 300g, 4°C). Supernatant is removed and cells are

resuspended in 100 ml 0.04%BSA-PBS buffer. Cells are centrifuged

again (5min, 300g, 4°C) and supernatant is removed completely.

Then, 45 ml chilled lysis buffer (Table 9) is added, and lysis occurs

for 2 min at 4°C.
Frontiers in Immunology 06101
After precisely 2 min, 50 µl washing buffer (Table 10) is added

and the sample is centrifuged (5min, 300g, 4°C).

The supernatant is removed and 45µl of chilled diluted nuclei

buffer (10X Genomics #2000207) is added. The sample is

centrifuged again (5min, 300g, 4°C) and resuspended in 7 µl

chilled diluted nuclei buffer (10X Genomics). At this point, 1 µl

of nuclei can be counted using acridine orange/propidium iodide.

The nuclei recovery is listed in Figure 3A and ranges from 30.0%

(spleen CD25+) to 4.5% (VAT CD4+), with 12.7% for colon CD4+

and 14.1% for spleen CD4+. From the nuclei suspension, 5 µl are

used in the transposition reaction (Single-cell ATAC Gel Beads

V1.0 or V1.1 and reagents, 10X Genomics #1000175) for one hour

at 37°C. Samples are supplemented with master mix and beads,

loaded on a 10X Chromium Next GEM Chip H (10X Genomics

#1000161) and processed on the 10X Chromium Controller (10X

Genomics #120212), followed by library preparation according to

the manufacturer’s protocol. GEM incubation was performed with

11-12 cycles of PCR based on the number of nuclei in the

transposition reaction. As listed in Figure 3A, the number of PCR

cycles translates directly into the concentration of the library. Upon

completion of library preparation, the fragment length composition

is usually evaluated using electrophoretic separation of the sample.

In Figure 3B, examples for library profiles from scATAC-seq data of
BOX 1 Troubleshooting and Recommendations.

Troubleshooting and Recommendations

Description Solution

Low cell
viability

Analyze buffer ingredients, optimize erythrocyte lysis procedure, keep time spent on isolation of cells as short as possible, work at 4°C

Erythrocyte
contamination

Optimize ACK lysis procedure

Low purity of
CD4 or CD25 T
cells

Use Fc blocking reagent, work at 4°C

Isolation of T
cells from spleen
vs blood

A higher number of peripheral T cells can be isolated from the spleen as compared to the blood of mice. Also taking into consideration the
loss of cells during nuclei preparationaration for scATAC-seq, it is advisable to isolate peripheral T cells from the spleen instead of the blood.

Doublet
exclusion during
sort

When sorting cells from tissues, naturally occurring cell doublets (biological interaction between T cells and other cell types) can be identified
by including markers for these cell types in the sort panel. In our hands, T cell – APC pairs, if not excluded during sorting, are not separated
by nuclei preparation and can be detected in subsequent data analysis. This is true for cells isolated from all tissues.
TABLE 5 VAT digestion buffer.

Formulation for VAT digestion buffer

Ingredient Manufacturer Final concentration

DMEM media Gibco #41965 1X

Collagenase Type II Sigma #C6885 1 mg/ml

Bovine Serum Albumin Sigma #A4503 20 mg/ml

DNAse I Roche #11284932001 20 µg/ml
BOX 2 Troubleshooting and Recommendations.

Troubleshooting and Recommendations

Description Solution

No gonadal fat depots Gonadal fat depots are only present in male mice. Younger animals, starving or sick animals have small or no depots.

Erythrocyte contamination Add ACK lysis step to procedure

Low purity of CD4 or CD25 T cells Use Fc blocking reagent, work at 4°C

No expression of CD4 or CD8 on T cells Optimize processing time and amount of collagenase enzymes
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primary murine CD4+ T cells from spleen and tissues are shown.

The fragment size distribution of a high-quality sample should

show nucleosomal periodicity, with fragment lengths being

enriched in 150bp-steps, which is the circumference of one

nucleosome. If nucleosomal periodicity is lost, this can be an

indication of degenerated chromatin structure. To illustrate this,

we included a sample where either the transposase enzyme was

inactive or the DNA itself was highly degraded, leading to a poor

library profile (Figure 3C). Even so, sequencing this sample will

generate reads that per se are of good quality, yet limited in their

usefulness, as the library will be of low complexity (Figure 4). In

addition, we included a low-quality sample with good library profile

(Skin CD4+) in this comparison, and although the library profile

showed periodicity, the data quality was not sufficient for further

analysis. Therefore, library profiles only indicate that the procedure

itself has been completed and the DNA was intact, but does not

guarantee that all libraries will yield results that can be analyzed and

interpreted. On the other hand, if the library is severely

compromised (e.g. no periodicity at all), we can anticipate that no

meaningful data can be extracted from such samples. For

troubleshooting and recommendations see Box 5.
Methods – sequencing and QC
strategy for scATAC-seq libraries

In Figure 3A, we listed the total number of nuclei loaded onto the

microfluidics systems and the total number of nuclei that were later

identified as cellular event. The recovery rates ranged from 14.0% for

spleen CD25+ to 52.7% for colon CD4+, with a mean recovery of

33.8%. Therefore, we can roughly estimate the number of nuclei that

will be analyzed as about 1/3 of the number of murine tissue T cell

nuclei in our sample. Still, the number of identified nuclei varies,

which makes sequencing in an all-in-one effort rather risky – while,

on the one hand, some samples can be “over-sequenced”, resulting in

high numbers of fragments per cell and good coverage, other samples
Frontiers in Immunology 07102
can be “under-sequenced”, resulting in low numbers of fragments per

cell and rather poor coverage. An uneven number of fragments per

cell across different samples calls for artificial down-sampling of

samples with higher sequencing depth, and therefore the removal of

perfectly good sequencing reads to a level comparable with the

sample of the lowest sequencing depth. Down-sampling can be

achieved by subsetting the fragments.tsv file of the sample with

higher sequencing depth in a way that the median unique

fragments per cell equals the median unique fragments per cell of

the sample with lower sequencing depth (in analogy to the depth

normalization function of cellranger atac aggr). If there is high

variation in the number of fragments per sample, this can result in

a loss of many reads and therefore additional cost. Therefore, we

recommend an alternating sequencing and QC strategy, where we

sequence only 10% of the required reads using a custom protocol for

the NextSeq 500/550 sequencer, followed by estimation of the total

number of nuclei, the average fragments per nucleus, general QC

parameters (see later), and sequencing saturation using Cell Ranger

ATAC (10X Genomics Cell Ranger ATAC 2.0.0). We can then use

these parameters to plan the sequencing effort and estimate the

fraction of each sample in our sequencing pool (if all samples are

sequenced together). This reduces the cost, allows for the detection

and removal of low-quality samples, and increases the overall
TABLE 6 Skin digestion buffer.

Formulation for skin digestion buffer

Ingredient Manufacturer Final concentration

DMEM media Gibco #41965 1X

Collagenase Type II Sigma #C6885 4 mg/ml

Bovine Serum Albumin Sigma #A4503 20 mg/ml

DNAse I Roche #11284932001 20 µg/ml
BOX 3 Troubleshooting and Recommendations.

Troubleshooting and Recommendations

Description Solution

Clogging caused by hair Additional filter steps after skin digestion get rid of hair and avoid clogging. Repeat hair removal if patches of hair remain.
TABLE 7 Colon pre-digestion buffer.

Formulation for colon pre-digestion buffer

Ingredient Manufacturer
Final concentra-
tion

Hank’s Balanced Salt
Solution

ThermoFisher
#14175095

1X

Ethylenediaminetetraacetic
acid

ThermoFisher
#15575020

4 mM
TABLE 8 Colon digestion buffer.

Formulation for colon digestion buffer

Ingredient Manufacturer Final concentration

DMEM media Gibco #41965 1X

Collagenase Type V Sigma #C9263 0,85 mg/ml

Collagenase Type D Roche #11088882001 1,25 mg/ml

DNAse I Roche #11284932001 20 µg/ml

Dispase Gibco #17105 1 mg/ml
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comparability of the datasets. In our laboratory, we sequence 10X

scATAC-seq libraries using a paired-end run with 34-8-16-34

sequencing strategy with a 75-cycle high-output cartridge on a

NextSeq 500/550. In a typical run, Read 1 identifies the i5 index

(cell barcode) with 16 nucleotides and reads 34 nucleotides of the

fragment. On the reverse strand, primer P7 initiates the i7 read

(sample index) with 8 nucleotides and reads 34 nucleotides of the

fragment (Figure 4A).
Quality control of sequencing output files
using FastQC

Running aforementioned libraries on an Illumina sequencing

machine generates binary base call (BCL) files, from which fastq
Frontiers in Immunology 08103
files can be generated using Illumina bcl2fastq (Box 6). bcl2fastq

takes as input a sample sheet (see 10X Genomics scATAC-seq

documentation) stating sample indices present in the loaded library,

demultiplexes Illumina BCL files accordingly, and creates an output

containing fastq files for each sample.

To investigate whether we can estimate library quality, we ran

FastQC (9) on all L001 files generated from four libraries: the

“good-quality” libraries scATAC_1 and scATAC_23, which showed

periodical profiles upon electrophoretic separation (Figure 3B), and

the degenerated samples scATAC_D1 and scATAC_D2, which

showed degradation already in the library profile (Figure 3C). As

expected, the overall run quality reports such as per base or per tile

sequence quality or per sequence quality scores did not vary

between libraries (Figure 4B), and can also be visualized

(Figure 4C, top). In general, QC run on the indices generates

errors in duplication rate and overrepresented sequences, which

can be expected. In contrast to this, the degenerated libraries had

high sequence duplication levels also in their long reads R1:34 and

R2:34, which indicates low library complexity, leading to

uninformative samples. This can also be seen when plotting

sequence duplication levels (Figure 4C, bottom). Data from the

libraries scATAC_D1 and scATAC_D2 did not yield any

biologically meaningful information, and the sequencing was

stopped after results from FastQC and Cell Ranger ATAC

identified these problems.
Running Cell Ranger ATAC count to
estimate re-sequencing needs of libraries

As mentioned before, we sequence a small amount of the library

(typically 10%) and run FastQC and Cell Ranger ATAC count to get

a first glimpse of the library quality, the number of cells and the

number of fragments per cell, sequencing saturation and other

parameters. Cell Ranger ATAC count (Box 7) takes fastq files as

input and aligns fragments to the specified reference genome (in our

case we chose the murine reference mm10, for human data the

human reference genome GRCh38 is available). Amongst other

outputs, a summary html file is created. Based on the number of

fragments per cell, the number of sequenced read pairs, and the

sequencing saturation, an estimate can be made of how much

deeper the sample has to be sequenced. Upon re-sequencing, Cell

Ranger ATAC count can be performed on fastq files from both the

first and the second sequencing run together, and appropriate

sequencing depth and quality of the sample can be confirmed.
BOX 4 Troubleshooting and Recommendations.

Troubleshooting and Recommendations

Description Solution

Fatty cell pellet after digestion After digestion the cell pellet can contain a lot of fat. If so, add an additional filter step with a 70 µm filter unit.

Clogging during cell sorting For cell sorting samples should be filtered again immediately before acquisition and cooled at 4°C to avoid clogging.
TABLE 9 Lysis buffer.

Formulation for nuclei preparation lysis buffer

Ingredient Manufacturer Final concentration

Nuclease-free water Invitrogen 1X

TRIS-HCL pH7.4 Sigma 10mM

NaCL Sigma 10mM

MgCl2 Sigma 3mM

Tween-20 Biorad 0.1%

NP-40 Sigma 0.1%

Digitonin Invitrogen 0.01%

Bovine Serum Albumin Sigma 1%
TABLE 10 Washing buffer.

Formulation for nuclei preparation washing buffer

Ingredient Manufacturer Final concentration

Nuclease-free water Invitrogen 1X

TRIS-HCL pH7.4 Sigma 10mM

NaCL Sigma 10mM

MgCl2 Sigma 3mM

Tween-20 Biorad 0.1%

Bovine Serum Albumin Sigma 1%
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Combining sequencing files
and running Cell Ranger ATAC
count to create output files for
downstream analysis with ArchR

Once the desired sequencing depth is reached, Cell Ranger

ATAC count is run with fastq files from all sequencing runs of a

certain sample as input (see Box 7). Upon alignment to the

reference genome, a tabix sorted text file containing fragment

start- and end position and the corresponding cell barcodes is
Frontiers in Immunology 09104
created, which serves as input for the downstream processing with

ArchR. The fragments.tsv.gz file (~2GB for 5.000 cells with a read

depth of 10.000 reads/cell) only contains fragments which have

passed the following QC criteria: The fragment must be mapped

with a MAPQ > 30 on both reads, it must be non-mitochondrial,

not chimerically mapped, and must map to a primary contig.

Fragments that share the same cell barcode, start- and end

position are further recognized as duplicates generated from the

same template during amplification, and one representative

fragment is kept for each group of duplicates.
A

B

C

FIGURE 3

Overview of recovery and typical profiles for scATAC-seq libraries. (A) Tabular overview of parameters in scATAC-seq experiments. The percentage
of all events indicates the total frequency of target cells (either CD4+ or CD25+ T cells) in all events from the sample. In skin samples, we used a
double-sort approach with a yield sort followed by a purity sort, as described earlier and indicated with an *. (B) Examples for library size profiles for
samples with a good library profile listed in (A). (C) Examples for library size profiles of low-quality samples (faulty transposition or strongly
degenerated DNA). Profiles were generated using a Tapestation with a high sensitivity D1000 Screentape.
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Methods – data pre-processing
with ArchR

In this paragraph, we describe the pre-processing of scATAC-

seq data using ArchR ( (10), v1.0.1), including QC and filtering,
Frontiers in Immunology 10105
dimensionality reduction, removal of doublets, evaluation of batch

effect correction, which generates the final filtered dataset for

analysis. For data pre-processing and analysis with ArchR we

provide the code in a GitHub repository (https://github.com/

imbeimainz/scATACseq_TissueTcells) as well as an html file
A B

C

FIGURE 4

FastQC profiles of good-quality and of degenerated scATAC-seq libraries sequenced using PE-34-8-16-34 strategy. (A) Overview of sequencing
strategy using a PE-34-8-16-34 approach. (B) Statistics of FastQC run on scATAC_1 (MD_1_4_run_1_MD_scATAC_1_S1_ L001_I1_001 (i7:8), …
R1_001 (R1:34), …R2_001 (i5:16), …R3_001 (R2:34)), scATAC_23 and the degraded samples scATAC_D1 and scATAC_D2. Errors listed here as
reported in FastQC documentation. (C) Sequence quality and sequence duplication overview of R1:34 in good-quality samples scATAC1 and
scATAC23, and degraded samples scATAC_D1 and scATAC_D2. Produced by FastQC (version 0.11.9).
frontiersin.org

https://github.com/imbeimainz/scATACseq_TissueTcells
https://github.com/imbeimainz/scATACseq_TissueTcells
https://doi.org/10.3389/fimmu.2023.1232511
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Braband et al. 10.3389/fimmu.2023.1232511

Fro
BOX 5 Troubleshooting and Recommendations.

Troubleshooting and Recommendations

Description Solution

Quality of nuclei
After nuclei preparation, about 5% viable cells should be remaining. This indicates, that the lysis was not too harsh and that nuclei are intact.
If this is not the case, the lysis time can be reduced.

Variability
nuclei/cells

The number of nuclei that are isolated from a certain number of cells is dependent on a variety of factors, including the tissue of origin
(harshness of the digestion protocol), the % of all events (sort time), sort efficiency, the flow rate (pressure), the time window between sorting
and the nuclei preparation, technical variability during processing of nuclei

Variability
identified cells/
loaded nuclei

The percentage of cells identified per loaded nuclei is dependent on several factors including the quality of nuclei loaded (intact vs disrupted
nuclei) the number of nuclei loaded (multiplets), and the precision of nuclei counting, and usually ranges between 20% and 50%.

Processing of
human samples

The isolation of CD4+ T cells from human tissues requires different dissociation protocols, however the nuclei preparationaration as well as
scATAC-seq library preparation is identical.
nt
iers in Immunolog
BOX 6 bcl2fastq.

Terminal input to run bcl2fastq

$ bcl2fastq –use-bases-mask=Y34,I8,Y16,Y34 \

–create-fastq-for-index-reads \

–minimum-trimmed-read-length=8 \

–mask-short-adapter-reads=8 \

–ignore-missing-positions \

–ignore-missing-controls \

–ignore-missing-filter \

–ignore-missing-bcls \

-r 6 -w 6 \

-R /media/raw_data/NextSeq/name_of_the_run \

–output-dir=/media/raw_data/NextSeq/name_of_the_run/fastq \

–sample-sheet=/media/raw_data/NextSeq/name_of_the_run/SampleSheet.csv \

–no-lane-splitting
y frontiers11106
BOX 7 Cell Ranger ATAC count.

Terminal input to run Cell Ranger ATAC count

# download the appropriate reference data from

# https://support.10xgenomics.com/single-cell-atac/software/downloads/latest

# move to the directory you want the output to be written to and prepend cellranger-atac

$ cd ~/directory

$ export PATH=./path/to/cellranger-atac-2.0.0:$PATH

#run cellranger-atac count for several files (fastq files from multiple runs)

$ for x in samplename1 samplename2 samplename3;

do cellranger-atac count \

–localcores=10 \

–id=name_your_sample_"$x" \

–reference=./path/to/reference/data\ #download see 10X documentation

–fastqs=./path/to/fastq/files,./path/to/more/fastq/files \

–sample="$x";

done
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containing all code and output from the analysis of our test dataset

(https://zenodo.org/record/8160122), which we refer to in the

corresponding paragraphs.
Creating the Count Matrix from Cell
Ranger ATAC output

scATAC-seq data analysis is performed on a count matrix,

containing the Tn5 insertion counts per genomic region per cell. As

for any specific region we either get insertions (open chromatin) or

no insertion (closed chromatin or no transposition event), the

scATAC-seq count matrix is very sparse. In ArchR, the count

matrix can be constructed from the fragments.tsv file output by

Cell Ranger ATAC, which is a tabix-sorted text file containing

chromosome, beginning- and end position of each sequenced

fragment along with the corresponding cell barcode. For the

count matrix, the genome is subdivided into 500bp-tiles, and the

insertion counts are listed per cell per tile.

In ArchR, an arrow file is created from the fragments.tsv file of

each sample, to which metadata and sequence-derived data like the

tile matrix are added (Box 8). The arrow file is a HDF5 format file to

which layers of additional information (e.g. gene score matrix, peak

count matrix etc.) can be appended later on. For analysis, arrow files

are combined into an ArchRProject (Box 9). Having the arrow files

as HDF5 makes it possible to access the data on-disk rather than

having to load it into memory, which would be much more

resource-consuming. See sections “2 Create ArrowFiles” and “3

Create ArchRProject”. It is possible at any point during analysis to

convert the ArchRProject to a Seurat object using the

ArchRtoSignac package (https://github.com/swaruplabUCI/

ArchRtoSignac), favoring the interoperability among existing

workflows. Similarly, it is possible to convert such objects into
Frontiers in Immunology 12107
SingleCellExperiment objects, widely adopted throughout the

Bioconductor ecosystem of packages, where users can e.g.

interactively explore their data with iSEE (11) or other software.
Per-cell QC and filtering for
high-quality cells

Stringent filtering for high-quality cells is required prior to

analysis. Quality parameters implemented in ArchR’s quality

control are fragment size distribution, number of unique nuclear

fragments, and signal-to-background ratio. The fragment size

distribution of a high-quality sample should show nucleosomal

periodicity, with fragment lengths being enriched in 150bp-steps,

which is the circumference of one nucleosome (Figure 5C). If

nucleosomal periodicity is lost, this can be an indication of

degenerated chromatin structure. A certain number of unique

nuclear fragments per cell is required for a robust analysis,

therefore a cut-off can be set accordingly. In our analysis, we

discarded cells with less than 1000 unique fragments per cell.

Non-nuclear, i.e. mitochondrial, fragments are enriched in dead

or dying cells. Those fragments are identified by Cell Ranger ATAC

and are excluded from the fragments.tsv file that serves as an input

for ArchR, as are chimerically mapped reads and reads not mapping

to a primary contig. The signal-to-background ratio can be

quantified via the enrichment of fragments at transcription start

sites (TSS) compared to TSS-distal regions. This quality metric is

based on the observation that in viable cells, chromatin is more

accessible at TSS regions due to the large protein complexes that

bind there. Loss of the relative enrichment of fragments at TSS sites

again can indicate degeneration of the chromatin structure. In order

to choose cut-offs fitting all samples to be included in the analysis, it

is advisable to plot the unique nuclear fragments per cell against the
BOX 8 Creating arrow files.

R code for creating arrow files

# Read in fragments files

samples = paste0("MD_scATAC_", c(1,4,5,8,9))

inputFiles = file.path("data", samples, "fragments.tsv.gz")

names(inputFiles) = paste0("scATAC_", c(1,4,5,8,9))

# Create arrow files

# Evaluate different thresholds depending on your data:

# - minTSS: Start with 0 to see all cells, afterwards evaluate which threshold

# works for all of the samples

# - minFrags: Recommended to set >= 1000, otherwise the analysis might not be

# robust enough

# Check different parameters to set with ?createArrowFiles

ArrowFiles = createArrowFiles(

inputFiles = inputFiles,

sampleNames = names(inputFiles),

minTSS = 0,

minFrags = 1000,

addTileMat = TRUE,

addGeneScoreMat = TRUE,

force = TRUE

)
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TSS enrichment for each sample, and to set the cut-offs accordingly,

see section “2 Create Arrow files”, Box 8–11. TSS enrichment vs

unique fragment values of all cellular events in the ArchRProject are

displayed as density scatter plots in Figure 5A, and of each sample

separately in Figure 5B. As all samples contain very similar cell

types (CD25+ T cells for scATAC_8 and CD4+ T cells for the

remaining samples), we expect similar distributions of TSS

enrichment. We can observe comparable profiles for the samples

scATAC_1, scATAC_4, scATAC_5, scATAC_8, and scATAC_9. In

contrast, sample scATAC_23 shows both decreased TSS

enrichment and unique fragments per cell (Figure 5D). If we

combined this sample with the other samples, down-sampling to

the median number of fragments per cell of scATAC_23 would be

required (for instructions on how downsampling can be achieved

see Box 10). However, this would remove a lot of information from

the other samples. Further, the TSS enrichment, as a proxy for the

overall data quality, would still be lower compared to samples

scATAC_1-9. Therefore, at this point, the sample scATAC_23 was

removed from analysis. As displayed before, this sample could not

be distinguished from high-quality samples scATAC_1-9 by

fragment size distribution, showing the expected nucleosomal

periodicity (Figure 3B), or by FastQC (Figure 4B, C).
Dimensionality reduction using an iterative
LSI approach

With scATAC-seq data, there are several challenges when it

comes to dimensionality reduction: Firstly, we have a vast number

of features at hand, from which we need to select the ones with a

higher degree of variability (i.e. carry the information) within the

dataset. Moreover, the transposition events contain the information

that this site is accessible, yet it might be difficult to distinguish a

non-accessible region (a “biological zero”) from a non-sampled

region (a “technical zero”). And finally, the sparsity of the matrix

makes many of the commonly used methods for dimensionality

reduction, e.g. PCA, not directly applicable to the data at hand.

For scATAC-seq data, latent semantic indexing (LSI) is used for

dimensionality reduction, which originally stems from language

processing and which was developed especially for sparse data (12).
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LSI was first used for the analysis of scATAC-seq data by

Cusanovich et al. (5), and is performed on the tile matrix as

follows: 1) The “term frequency”, i.e. the frequency of accessible

tiles, is calculated per single-cell with normalization for sequencing

depth; 2) The resulting values are then divided by the “document

frequency” (i.e. in how many cells of the dataset a certain tile is

accessible) to calculate the term frequency – inverse document

frequency (TF-IDF) matrix. TF-IDF penalizes a term that is present

in many documents. In scATAC-seq data, chromatin regions that

are accessible in many cells and thus do not contribute much to

telling cell types apart are penalized, as are regions that are not

accessible in any of the cells. 3) Singular value decomposition (SVD)

for dimensionality reduction.

Specifically, in ArchR, an iterative LSI approach is implemented

(described in (13) in more detail), which initially does an LSI

transformation based on the most accessible features, and then

performs further iterations based on the most variable features

across the clusters computed in the previous iteration. An issue with

dimensionality reduction is often that the first LSI component

correlates strongly with sequencing depth. This is why e.g. in

Signac (14), the first LSI component is dropped. In ArchR,

dimensions with a correlation to sequencing depth > 0.75 are

excluded automatically. Dimensionality reduction (Box 12) is

showcased in “5 Dimensionality reduction”, and a varying

number of iterations, variable features and the dimensions to use

as a means to minimize the influence of technical variability are

applied in “5.5 Tweak different parameters of LSI dimensionality

reduction”. For troubleshooting and recommendations see Box 13.

Alternative approaches to LSI are presented in the results of Chen

et al., 2019 (15), adopting e.g. some forms of summarization such as

gene activity scores or quantifications into meta-features, followed by

steps commonly used in the analysis of scRNA-seq data.
Clustering using the Louvain
or Leiden algorithm

Per default, ArchR uses the Louvain algorithm (16) for

clustering, which is a heuristic graph-based clustering approach.

In this approach, a k-nearest neighbor (kNN) graph (17) is
BOX 9 Creating the ArchRProject.

R code for creating the ArchRProject

# Define arrow files

ArrowFiles = paste0(("scATAC", c(1,4,5,8,9), ".arrow")

# Create ArchRProject

# It is recommended to set copyArrows = TRUE to maintain an unaltered copy for

# later usage.

proj = ArchRProject(

ArrowFiles = ArrowFiles,

copyArrows = TRUE

)
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FIGURE 5

Unique fragments vs TSS enrichment. (A) TSS enrichment vs log10(unique fragments) of the ArchRProject displayed as scatter plots. Each datapoint
is colored by the number of neighboring datapoints. (B) TSS enrichment vs log10(unique fragments) of each individual sample in the dataset.
Samples scATAC_1, scATAC_4, scATAC_5, scATAC_8, and scATAC_9 show comparable TSS enrichment and unique fragments. Sample scATAC_23
has both a lower mean TSS enrichment, i.e. lower quality, and a lower mean number of unique fragments and was therefore excluded from analysis.
(C) Fragment size distribution displaying nucleosomal periodicity of 150bp. (D) Violin plots of TSS Enrichment and the number of fragments per cell
for all samples after setting the cut-offs for TSS Enrichment and the number of unique fragments per cell.
Fro
BOX 10 Troubleshooting and Recommendations.

Troubleshooting and Recommendations

Description Solution

Choose cut-offs
To get an overview of the quality of your data, plot the TSS enrichment against the number of fragments per cell for each of the samples.
Choose appropriate cut-offs. Optimally, they should be the same for all samples analyzed together

Differing
number of
fragments per
cell

Sequence libraries with low coverage deeper (unless sequencing saturation is too high already) or down-sample unique fragments per cell of
samples which were sequenced too deeply. The latter can be achieved by using cell ranger aggr with depth normalization, or by subsetting the
fragments.tsv file of the sample with higher sequencing depth in a way that the mean number of unique fragments per cell is identical
between samples.
nt
iers in Immunolog
y frontiersin.org14109

https://doi.org/10.3389/fimmu.2023.1232511
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Braband et al. 10.3389/fimmu.2023.1232511
constructed, in which each cell is connected to the k nearest cells in

Euclidean distance in PCA space. The edge weights are refined

based on the Jaccard distance, which evaluates the similarity or

overlap of neighboring cells. The cells are then clustered using the

Louvain algorithm, which is a heuristic clustering approach used for

large datasets, and which performs clustering by optimizing for

modularity (method described in (18)). It is also possible to use the

Leiden algorithm for clustering, which has been shown to be both

faster than the Louvain algorithm and to identify better partitions

(19). This can be done by passing algorithm = 4 to the addClusters()

function (Box 14). Clustering can thereafter be visualized in a

UMAP embedding, as shown in Figure 6 (see also section “5.2
Frontiers in Immunology 15110
Visualization in UMAP embedding”, Box 14). For troubleshooting

and recommendations see Box 15.
Removal of cell doublets and further
filtering steps

In droplet-based single-cell technologies, droplets that received a

single barcoded bead but more than one nucleus are referred to as

“doublets”, which need to be removed prior to data analysis. To this

end, a doublet score can be calculated as in the original ArchR

implementation, which works as follows: Synthetic doublets are
BOX 11 Subset the project to cells making the TSS enrichment cut-off.

R code for subsetting the project to cells making the TSS enrichment cut-off

# Filter for cells passing the TSS enrichent cut-off determined above

proj = proj[proj@cellColData$TSSEnrichment >= 10, ]
fr
BOX 12 Dimensionality reduction.

R code for dimensionality reduction

# LSI dimensionality reduction

proj = addIterativeLSI(

ArchRProj = proj,

useMatrix = "TileMatrix",

name = "IterativeLSI",

iterations = 2,

clusterParams = list(

resolution = 0.2,

sampleCells = 10000,

n.start = 10

),

varFeatures = 25000,

dimsToUse = 1:30,

force = TRUE

)

ont
BOX 13 Troubleshooting and Recommendations.

Troubleshooting and Recommendations

Description Solution

Batch effects after
dimensionality reduction

Increase the number of iterations, decrease the number of variable features, or exclude LSI1

Correlation to sequencing
depth

ArchR automatically filters out LSI components with a strong correlation to sequencing depth; however, other technical noise can
also strongly influence LSI1

dimsToUse parameter
The number of dimensions used for dimensionality reduction impacts how well subsequent clustering results represent cell type
identity. It can therefore be useful to test several dimensionalities
iersin.org
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calculated from the data by combining any combination of two cells,

and are projected onto the UMAP space. Their nearest neighbors are

identified using the kNN algorithm, and enrichment scores are

computed. Enrichment scores can then be overlayed on the UMAP

embedding to facilitate pattern recognition across cells.

Based on the calculated doublet score, a filter ratio can be applied

to drop the specified percentage of cells with the highest doublet

scores. To find an appropriate filter ratio, different considerations can

be made: 1) Depending on the number of nuclei loaded on the chip, a

certain number of cell multiplets is expected (Chromium Next GEM

Single-cell ATAC Reagent Kits v1.1 User Guide CG000209). The
Frontiers in Immunology 16111
filter ratio can be chosen accordingly. 2) As doublets are a mixture of

two cells, they can usually be found between two clusters on the

UMAP. 3) Doublets are expected to have a rather high number of

reads, as they contain reads from two cells. Nevertheless, the number

of reads can also be cell type- or quality-dependent. 4) It further

makes sense to overlay gene scores onto the UMAP to evaluate

whether a cluster has activity in markers from two different cell types,

and to make sure you do not remove an entire cell type. It is generally

advisable to always check whether the biology makes sense. Different

filter ratios can then be applied, and the filter ratio which makes most

sense both technically and biologically should be chosen for filtering.
BOX 14 Clustering and visualization.

R code for clustering and visualization as UMAP

# Clustering using the Louvain algorithm

# The Leiden algorithm can be using instead by passing “algorithm = 4”, which is

# an argument of Seurat’s FindClusters() function, to the addClusters() function

# (requires the leidenalg Python package)

proj = addClusters(

input = proj,

reducedDims = "IterativeLSI",

method = "Seurat",

name = "Clusters",

resolution = 0.8,

force = TRUE

)

# Visualization of clustering as UMAP

proj = addUMAP(

ArchRProj = proj,

reducedDims = "IterativeLSI",

name = "UMAP",

nNeighbors = 30,

minDist = 0.5,

metric = "cosine",

force = TRUE

)

# Color by clusters

p_clusters <- plotEmbedding(

ArchRProj = proj,

colorBy = "cellColData",

name = "Clusters",

embedding = "UMAP",

size = 0.5

)

frontiers
BOX 15 Troubleshooting and Recommendations.

Troubleshooting and Recommendations

Description Solution

Cluster
resolution

Always check whether clustering makes sense biologically. It can be helpful to start with a higher clustering resolution and then decrease, to
make sure you are not losing any cell populations of interest (overlay gene scores). The package “clustree” can additionally be useful for
visualizing how clusters change over increasing resolutions.
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Testing of different filter ratios and filtering of doublets is showcased

in “6 Filter doublets”, and UMAPs colored by cluster are shown in

Figure 7A for the filter ratio of 0.5, 1, and 2. Figure 7B shows the

reduction of cells per cluster upon filtering. Note that filtering out
Frontiers in Immunology 17112
cells using the specified filter ratio removes a certain percentage of

cells with the highest doublet scores. The number of cells filtered from

each sample therefore depends on the total number of cells in

the sample.
A

B

FIGURE 6

Dimensionality reduction, clustering and visualization in UMAP embedding. (A) UMAP colored by samples, with the single samples highlighted (top
row), clusters, doublet enrichment and the number of unique fragments per cell (bottom row, left to right). (B) Imputed gene scores for a selection
of marker genes overlayed on UMAP (top) or as violin plots (bottom).
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Prior to doublet filtering (Box 16), cells that are marked by Cell

Ranger ATAC as gel bead doublet, barcode multiplet, or low-

targeting, should be excluded from the analysis, see section “5.6

Filter out barcodes marked as non-cell by Cell Ranger” and Box 17.

This information is stored in the singlecell.csv file output by Cell

Ranger ATAC count, and the ArchRProject can be subset to only

contain cells that meet these criteria. After doublet filtering, further

filtering steps can be performed similarly, e.g. filtering for cells with

a certain threshold for mitochondrial reads.

Upon removing cel ls from the ArchRProject , LSI

dimensionality reduction, clustering, and UMAP need to be re-

computed. For troubleshooting and recommendations see Box 18.
Frontiers in Immunology 18113
Dataset Integration using HARMONY

When samples that are to be analyzed together have a lot of

technical variability, sometimes the iterative LSI is not enough to get

rid of all non-biological differences. In these cases, a harmonization

tool like HARMONY can be employed (20). HARMONY uses a soft

k-means clustering algorithm that penalizes clusters that are

homogeneous regarding the dataset-origin of the cells they contain,

and thus favors the clustering of cells from different datasets. The

centroids of these clusters are then used for computing cluster-specific

correction factors, which is meant to eliminate dataset-specific

differences, while maintaining biological differences (20). Results
A B

FIGURE 7

Filtering doublets. (A) UMAP colored by clusters, doublet enrichment, and the number of unique fragments per cell (top row). Cells which are filtered
out upon applying different filter ratios are highlighted in the respective UMAP (bottom row). (B) For each cluster, the reduction in cell number upon
applying different filter ratios is plotted.
BOX 16 Filtering doublets.

R code for filtering doublets

# Calculate doublet scores on the ArchRProject

proj = addDoubletScores(

input = proj,

k = 10,

knnMethod = "UMAP",

LSIMethod = 1,

force = TRUE

)

# After trying out different filter ratios, create new ArchRProject and filter doublets with a filterRatio of 0.5

proj = filterDoublets(

proj,

filterRatio = 0.5,

)
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from batch effect-corrected dataset should, however, be treated with

care. Batch effect correction methods like HARMONY, beside the

desired effect of reducing the impact of technical variability on the

clustering, also affect biological effects. This has been shown to lead to

lower reproducibility of cell-type specific markers in batch effect-

corrected datasets, although selecting higher cut-offs for effect size and

p-value partly mitigates this effect (21).

We performed data integration with HARMONY (Box

19), yet we decided not to include this step, since it did not
Frontiers in Immunology 19114
produce the desired effect of the same cell type from different

samples clustering together, as shown in Figure 8. (see also

section “7 Test batch effect correction using HARMONY”).

On the contrary, some cell types (e.g. naïve CD4+ T cells or

tissue Treg precursor cells) seem to be separated by sample

after harmonization. We would like to bring to the attention

of the readers that alternative methods exist, such as MNN, Liger, and

Conos (22, 23). For troubleshooting and recommendations see

Box 20.
BOX 17

R code for filtering out barcodes marked as non-cell by Cell Ranger ATAC

singlecell = list()

for (x in c("1","4","5","8","9")){

filename = paste("data/MD_scATAC_",x,"/singlecell.csv",sep = "")

data = read.csv(filename)

# To match quality information to cells, we need the barcodes to match the

# ones in our ArchRProject. For this we:

# 1) create a vector of "scATAC_x#"

# 2) add vector as a column to the data

# 3) create column containing ArchRProj-style barcodes

bc = c(rep(paste("scATAC_",x,"#",sep = ""),nrow(data)))

data_barcode = cbind(bc,data)

data_fullbc = data_barcode %>% unite("full_barcode", bc:barcode, remove = FALSE, sep = "")

singlecell[[x]] = data_fullbc

}

# Combine the dataframes

singlecell_fullbc = rbindlist(singlecell, use.names = FALSE, fill = FALSE)

# Extract rownames that are also in the ArchRProject

rownames_archr = rownames(proj@cellColData)

subset_singlecell_fullbc = singlecell_fullbc[singlecell_fullbc$full_barcode %in% rownames_archr, ]

# Extract is:cell_barcode column from singlecell.csv and give it barcodes as rownames

df_is_cell_barcode = as.data.frame(subset_singlecell_fullbc$is:cell_barcode)

rownames(df_is_cell_barcode) = subset_singlecell_fullbc$full_barcode

# Order is_cell_barcode the way the ArchRProject is ordered and create filter

is_cell_barcode = df_is_cell_barcode[order(match(rownames(df_is_cell_barcode), rownames_archr)), ]

filter_archr = is_cell_barcode==1

# Filter out barcodes marked as non-cell by Cell Ranger ATAC

proj = proj[filter_archr, ]
frontiers
BOX 18 Troubleshooting and Recommendations.

Troubleshooting and Recommendations

Description Solution

Sample
heterogeneity

When calculating the doublet scores, ArchR prints the R^2 of the UMAP projection, which should be above 0.9. If this is not the case, the
heterogeneity within the samples is too low to accurately call doublets, as the synthetic doublets would then look too similar to the actual
cells the sample contains. In that case, either skip doublet inference or choose knnMethod = “LSI”.

Filter ratio
Test different filter ratios on your dataset, and choose one that makes sense both technically (percentage of multiplets you would expect
according to the number of nuclei loaded) and biologically (cell populations according to gene scores).
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Methods – advanced data analysis
with ArchR

Cell type annotation

There are several options for cell type annotation: 1) Manual,

cluster-based cell type annotation using prior-knowledge marker

genes, 2) data-based cell type annotation using cell type annotation
Frontiers in Immunology 20115
tools such as SingleR (24), and 3) Identifying cell types of interest

using published signatures for the respective cell type.
Manual cell type annotation using gene scores of
prior-knowledge marker genes

Based on the accessibility of gene-encoding regions and their

regulatory elements, a proxy for gene expression can be estimated.

This is done by calculating gene scores. In ArchR, gene scores are
BOX 19 Batch effect correction using HARMONY.

R code for batch effect correction using HARMONY

# Create a new ArchRProject with a reducedDims object named “Harmony”

proj_harmonyTest = addHarmony(

ArchRProj = proj,

reducedDims = "IterativeLSI",

name = "Harmony",

groupBy = "Sample"

)

frontiers
FIGURE 8

Batch effect correction using HARMONY. UMAP without (left) and with (right) harmonization using HARMONY, colored by sample or tissue type (left
panel) and by cell type annotation (right panel).
BOX 20 Troubleshooting and Recommendations.

Troubleshooting and Recommendations

Description Solution

Recommendation Only use batch effect correction when necessary.

Technical vs
biological
variability

If you choose to do batch effect correction, be aware of the fact that while this might reduce the impact of technical variability on the
clustering, it might also take away some of the biological effects. The strength of batch effect correction can be influenced by the parameters
sigma (width of soft k-means clusters), lambda (ridge regression penalty parameter), and theta (diversity clustering penalty parameter). Treat
results from batch effect-corrected datasets with care.

Markers
When extracting cell-type specific markers from batch effect-corrected datasets, make sure to choose an appropriately large cut-off for effect
size and p-value.
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calculated as follows: tiles within the gene window of a certain gene

are identified, and the ones that overlap with another gene region

are excluded. Of the remaining tiles, the distance to the gene is

calculated and an exponential weighing function is applied to also

take into consideration distal regulatory elements. To address the

bias resulting from the fact that large genes tend to have more

accessible regions than smaller genes, the latter get larger weights.

Gene scores can be calculated directly during arrow file creation

or can be added later. Since we found the gene scores particularly

useful during QC and filtering, we generated them directly when

creating the arrow files by setting the parameter addGeneScoreMat

to TRUE, see section “2 Create ArrowFiles”. Due to the sparsity of

scATAC-seq data, gene score plots may appear quite variable.

Therefore, imputation using MAGIC (25) can be used to smooth

gene scores across nearby cells. Imputed gene scores can then be

mapped on the UMAP embedding (Box 21). Figure 9A

demonstrates how imputation facilitates visual interpretation of

the data. Cell types of interest can be identified using gene scores of

prior-knowledge marker genes in combination with sample

information: According to the gene scores of Foxp3 and Batf,

clusters C10 and C11 seem to be lymphoid tissue Treg cells,

whereas clusters C12, C14, C15 are tissue Treg cells from colon,

skin, and VAT, respectively (Figure 9A). Manual cell type

annotation using gene scores is showcased in “2.1 Manual cluster-

based annotation using prior-knowledge marker genes”. For

troubleshooting and recommendations see Box 22.

Reference data-based cell type annotation using
SingleR

Cell type annotation can further be performed in a reference

data-based manner using SingleR. SingleR was developed for the

annotation of scRNA-seq data and can be used with built-in

reference datasets, but also accepts custom reference datasets. We

annotated our data using the ImmGen database (26) as well as the

“Th-Express” mouse CD4+ T cell transcriptome atlas (27). As

shown in Figure 9B, annotation with both reference datasets
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identified Treg cells in most of the clusters with an increased

Foxp3 gene score. However, additional clusters, which we did not

identify as Treg cells using gene score-based annotation, were falsely

identified as Treg cell clusters using SingleR. For reference data-

based cell type annotation the choice of reference dataset (i.e. how

well the cell types match the dataset which is to be annotated) is

crucial. It is also important to keep in mind that we are comparing

computed gene scores based on chromatin availability with RNA-

seq data. Cell type annotation using SingleR is showcased in “2.2

Reference data-based annotation using SingleR”.

Alternatives to the cell type annotation using SingleR exist, such

as Seurat’s label transfer approach (28) and scmap (29). Data-based

cell type annotation tools are benchmarked in (30, 31). Moreover, if

users want to refine the results of such automated annotation tools,

manual steps might be required; we refer to the work of Clarke et al.

(2021) for additional guidance (32).

Identifying cell types of interest using published
signatures

For identifying cell types of interest, z-scores for cell type-

specific signatures can be calculated on the peak matrix (see section

below), and overlayed on the UMAP (Figure 9C, Box 23). This can

be done using the addDeviationsMatrix function, which uses

functionality from the ChromVAR package ( (33), see below). We

calculated z-scores for early- and late tissue Treg progenitors, as

well as skin and VAT tissue Treg cell signatures (8) and overlayed

them on the UMAP (Figure 9C), which confirms the classification

we did using gene scores. Cell type annotations based on signature

z-scores is showcased in “4.1.2 Calculate signature scores”.
Identifying marker features

Based on the gene scores, genes that can be leveraged to

discriminate the cell state or type of any subset identified e.g. in a

reduced dimensionality embedding, can be identified for either
BOX 21 Overlaying gene scores on the UMAP embedding.

R code for overlaying gene scores on the UMAP embedding

# Overlay gene scores on UMAP embedding of proj, use MAGIC smoothing

# Define which genes to plot

markerGenes = c("Foxp3","Il2","Rorc","Ikzf2","Batf","Klrg1","Tbx21","Ifng")

# Add impute weights

roj = addImputeWeights(proj)

# Plot

magic_genes = plotEmbedding(

ArchRProj = proj,

colorBy = "GeneScoreMatrix",

name = markerGenes,

embedding = "UMAP",

plotAs = "points",

imputeWeights = getImputeWeights(proj),

size = 0.5

)
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clusters (corresponding to cell types) or additional discrete

covariates (e.g. tissue of origin, genotype, etc.). To this end, the

group of cells is compared to a “background” group using a

Wilcoxon rank-sum test (34) with multiple hypothesis test

correction after Benjamini-Hochberg (35). For the background
Frontiers in Immunology 22117
group, nearest neighbors in Euclidean space are selected after

removing the bias introduced by the number of fragments per cell

and the TSS Enrichment by applying the same relative scale to the

variance of these two dimensions. Thus, the group of cells to

identify marker genes for is compared to the cells that do not
A

B C

FIGURE 9

Cell type annotation. (A) Manual cluster annotation based on gene scores (left panel). Overlay of gene scores of marker genes with imputation (right
panel, top) and without imputation (right panel, bottom) on the UMAP embedding. (B) Cell type annotation using SingleR with two different
reference datasets. (C) Cell type annotation using signatures for specific cell types. Overlay of tissue Treg early progenitor (top left), late progenitor
(bottom left), skin tissue Treg (top right), and colon tissue Treg (bottom right) signature z-scores on the UMAP embedding.
BOX 22 Troubleshooting and Recommendations.

Troubleshooting and Recommendations

Description Solution

Gene-dense
areas

It is important to keep in mind that gene scores are just an estimation of gene expression. Due to the way gene scores are calculated, they
might not be entirely reliable for genes in gene-dense areas.
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BOX 23 Calculating signature z-scores.

R code for calculating signature z-scores and overlaying them on the UMAP embedding

# Calculate signature z-scores (input: GRanges object)

archr_add_peak_signatures = function(proj, signature_list, signature_name){

#signature_list: list of GRanges

#signature_name: name string for the set of signatures

add_df_to_cellcoldata = function(pro, pheno_df, force=FALSE){

stopifnot(identical(rownames(pro@cellColData), rownames(pheno_df)))

cnames = colnames(pheno_df)

for(i in 1:ncol(pheno_df)){

pro = addCellColData(ArchRProj = pro, data=pheno_df[, i], name = cnames[i],

cells = rownames(pro@cellColData), force = force)

}

return(pro)
}

if(length(signature_list)<2){
stop('Currently, only works if at least two signatures are provided')

}

for(i in seq_along(signature_list)){

names(signature_list[[i]]) = NULL

}

proj = addPeakAnnotations(ArchRProj = proj,

regions = signature_list,

name = signature_name,

force = TRUE)

method_use = "chromVAR" #does only work with fixed width peaks

if(any(sapply(signature_list, function(x) length(unique(width(x)))) > 1)){

method_use = 'ArchR'

}

proj = addBgdPeaks(proj, force = T, method=method_use)

proj = addDeviationsMatrix(

ArchRProj = proj,

peakAnnotation = signature_name,

binarize = TRUE,

bgdPeaks = getBgdPeaks(proj, method = method_use),

force = TRUE

)

dr_df = as.data.frame(proj@cellColData)

sig_se = getMatrixFromProject(proj, paste0(signature_name, 'Matrix'))

z_score_mat = t(assays(sig_se)[['z']])

z_score_mat = z_score_mat[match(rownames(dr_df),rownames(z_score_mat)), ]

colnames(z_score_mat) = paste0('z_', colnames(z_score_mat))

stopifnot(identical(rownames(z_score_mat), rownames(dr_df)))

dev_score_mat = t(assays(sig_se)[['deviations']])

dev_score_mat = dev_score_mat[match(rownames(dr_df),rownames(dev_score_mat)), ]

colnames(dev_score_mat) = paste0('dev_', colnames(dev_score_mat))

stopifnot(identical(rownames(dev_score_mat), rownames(dr_df)))

proj = add_df_to_cellcoldata(proj, z_score_mat, force=T)

proj = add_df_to_cellcoldata(proj, dev_score_mat, force=T)

return(proj)
}

signature_list = list(

late_progenitor_tisTreg_sig = late_progenitor_tisTreg_GR,

tisTreg_skin_sig = tisTreg_skin_GR

)

proj_final = archr_add_peak_signatures(proj_final, signature_list, "signatures")

# Overlay signature z-scores on UMAP

p_tisTreg_skin_sig = plotEmbedding(

ArchRProj = proj_final,

(Continued)
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belong to this group themselves, but are the most similar cells in the

dataset in terms of gene scores. This makes the calculated marker

genes very specific for the group in this dataset.

Apart from the gene score matrix, other matrices like the tile

matrix and the peak matrix (which will be introduced in the next

paragraph) can be used as input to identify regions of accessible

chromatin or peaks specific for a group of cells, respectively. See

sections “2.1 Manual cluster-based annotation using prior-

knowledge marker genes” (marker genes), “4.2 Identifying marker

peaks” (marker peaks), and Box 24.

In addition to identifying marker features for a specific group,

differential analysis can be performed on abovementioned matrices

in order to identify differences between two groups, see section “4.3

Pairwise testing between groups” and Box 25.
Creating pseudobulk replicates

Due to the sparse nature of scATAC-seq data, pseudobulk

replicates have to be calculated in order to perform certain

analyses, like peak calling and peak- and motif enrichment

analysis. The creation of pseudobulk replicates is done as

implemented in the original ArchR framework:

Cells are grouped by cluster, and pseudobulk replicates are

created in a sample-aware fashion, if the cluster size and

composition allows for it. It is important to note that pseudobulk

replicates may be created in a sample-agnostic fashion and that cells

may be sampled with replacement if the number of cells from each

sample or the total cell number in a given cluster is lower than

minCells x minReplicates, respectively (Box 26). For

troubleshooting and recommendations see Box 27.
Peak calling using MACS2

On the pseudobulk data created above, we can now perform

peak calling using MACS2 (36). This algorithm handles peak

overlap between pseudobulk samples by iterative peak merging:

Peaks are ordered by significance, and peaks overlapping with the

peak of the highest significance are removed. This process is

repeated until no peaks overlap. Peak calling is showcased in “4

Peak-Calling” and Box 28.

Marker peaks can then be identified in analogy to marker gene

identification as described above, and as shown in section “4.2
Frontiers in Immunology 24119
Identifying Marker Peaks” of the script. A heatmap of the marker

peaks for each cluster is shown in Figure 10A, top, with a

dendrogram indicating the similarity of clusters in terms of

marker peaks, as determined by Wilcoxon rank-sum test. Here

we can nicely see how the cell types across tissue types cluster

together. Differential peaks (see “4.3 Pairwise testing between

groups”) between tissue Treg cells and Treg cells from the spleen

are shown in Figure 10A, bottom.
Motif and deviations enrichment,
integrated with motif footprinting
to identify upstream regulators of
chromatin accessibility

After identifying marker peaks for the individual clusters, as well

as differential peaks between two clusters of interest, we can now look

for transcription factor (TF) motifs that are enriched in these peaks.

This gives us insights into which transcription factors are active in a

certain cell type, and into how different cell types differentially depend

on certain transcription factors. To this end, a TF motif-by-peak

matrix is created using motif annotations. The enrichment of certain

motifs in marker peaks can then be analyzed (Figure 10B, top, Box 29,

and “5.2 Motif enrichment in marker peaks”). Further, TF motifs in

differential peaks can be analyzed (Figure 10B, bottom, Box 30, and

“5.3 Motif enrichment in differential peaks”). Batf and associated AP-

1 subunits are detected as enriched TFmotifs in tissue Treg cells from

different tissues, which nicely recapitulates the finding of Delacher

et al. (37, 38). These are further the TF motifs, which are enriched in

peaks differentially present in tissue Treg cells vs Treg cells from the

spleen (Figure 10B).

ChromVAR is an R package designed to infer TF-associated

chromatin accessibility from scATAC-seq data on a single-cell

basis, while accounting for the insertion bias introduced by the

Tn5 transposase (33). For each cell, we calculated the deviation

of accessibility of each motif compared to the expected motif

accessibility based on all cells using ChromVAR, as well as the z-

score, i.e. number of standard deviations a value deviates from

the mean of the dataset. The deviations enrichment analysis

implemented by ArchR is based on the ChromVAR approach,

with adaptations for the processing of large datasets. The Batf

motif z-score calculated with ChromVAR (Box 31) is shown in

Figure 11B, with in increasing z-score from naïve CD4+ T cells,

via early and late precursors to tissue Treg cells.
Continued

R code for calculating signature z-scores and overlaying them on the UMAP embedding

colorBy = "cellColData",

name = "z_tisTreg_skin_sig",

embedding = "UMAP",

plotAs = "points",

size = 0.5

)
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BOX 24 Identifying marker features.

R code for identifying marker features

# Get marker features

markersGS = getMarkerFeatures(

ArchRProj = proj,

useMatrix = "GeneScoreMatrix",

groupBy = "Clusters",

bias = c("TSSEnrichment", "log10(nFrags)"),

testMethod = "wilcoxon"

)

nt
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BOX 25 Differential analysis.

R code for differential analysis

# Get differential peaks between tisTreg and Treg cell clusters

markerTest = getMarkerFeatures(

ArchRProj = proj,

useMatrix = "PeakMatrix",

groupBy = "Clusters",

testMethod = "wilcoxon",

bias = c("TSSEnrichment", "log10(nFrags)"),

useGroups = tisTreg_cluster,

bgdGroups = tTreg_cluster

)

BOX 26 Computing pseudobulk replicates.

R code for computing pseudobulk replicates

# The key parameter here is groupBy, which defines the groups for which pseudo-bulk replicates should be made

proj = addGroupCoverages(

ArchRProj = proj,

groupBy = "Clusters",

minCells = 40,

maxCells = 500,

minReplicates = 2,

maxReplicates = 5,

sampleRatio = 0.8

)

BOX 27 Troubleshooting and Recommendations.

Troubleshooting and Recommendations

Description Solution

Parameters for the
generation of pseudobulk
replicates

Parameters to tweak here are minCells, maxCells, minReplicates and maxReplicates, setting the min and max number of cells
used for calculating pseudobulk replicates, and the min and max number of replicates calculated per cluster, respectively.

Sample-aware pseudobulk
replicates

If you are interested in differences between samples as well as clusters, choose minCells in a way that allows pseudobulk
replicates to be calculated in a sample-aware fashion.
in.org

https://doi.org/10.3389/fimmu.2023.1232511
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Braband et al. 10.3389/fimmu.2023.1232511
A B

FIGURE 10

Marker peaks and differential peaks with TF motif enrichment. (A) Marker peaks grouped by clusters, with dendrogram indicating the overall similarity
of clusters (top). Volcano plot showing differential peaks between tissue Treg cells and Treg cells from the spleen (bottom) (B) Motif enrichment in
marker peaks grouped by clusters (top). Motifs enriched in tissue Treg cells compared to Treg cells (bottom left) and in Treg cells compared to tissue
Treg cells (bottom right).
Fro
BOX 28 Peak calling.

R code for calling peaks

# You can use the following function to search the path to Macs2

# However, sometimes this might not work and you have to manually add the path

# like it is shown in the second line.

pathToMacs2 = findMacs2()

# If you manually add the path, you have to change this line!

pathToMacs2 = "Path/to/Macs2"

proj = addReproduciblePeakSet(

ArchRProj = proj,

groupBy = "Clusters",

pathToMacs2 = pathToMacs2

)

# add peak matrix to ArchRProject

proj = addPeakMatrix(proj)
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BOX 29 Computing motif enrichment in marker peaks.

R code for computing motif enrichment in marker peaks

# We must first add these motif annotations to our ArchRProject; this

# effectively creates a binary matrix where the presence of a motif in each peak

# is indicated numerically

proj = addMotifAnnotations(ArchRProj = proj, motifSet = "cisbp", name = "Motif")

# We perform motif enrichment on our marker peaks

enrichMotifs = peakAnnoEnrichment(

seMarker = markersPeaks,

ArchRProj = proj,

peakAnnotation = "Motif",

cutOff = "FDR <= 0.1 & Log2FC >= 1"

)

# Plot these motif enrichments across all cell groups

heatmapEM = plotEnrichHeatmap(enrichMotifs,

n = 10,

transpose = TRUE

)

# Visualize

heatmapEM2 = ComplexHeatmap::draw(heatmapEM,

heatmap_legend_side = "bot",

annotation_legend_side = "bot",

row_order = row_order

)

nt
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BOX 30 Computing motif enrichment in differential peaks.

R code for computing motif enrichment in differential peaks between two clusters

# Create SummarizedExperiment object

motifsUp = peakAnnoEnrichment(

seMarker = markerTest,

ArchRProj = proj,

peakAnnotation = "Motif",

cutOff = "FDR <= 0.1 & Log2FC >= 0.5"

)

# Prepare data for plotting with ggplot

# Create a simplified data.frame object containing the motif names, the corrected

# p-values, and the significance rank

df_up = data.frame(TF = rownames(motifsUp), mlog10Padj = assay(motifsUp)[,1])

df_up = df_up[order(df_up$mlog10Padj, decreasing = TRUE),]

df_up$rank = seq_len(nrow(df_up))

# Plot rank-sorted TF motifs and color them by significance of their enrichment

ggUp = ggplot(df_up, aes(rank, mlog10Padj, color = mlog10Padj)) +

geom_point(size = 1) +

ggrepel::geom_label_repel(

data = df_up[rev(seq_len(30)), ], aes(x = rank, y = mlog10Padj, label = TF),

size = 1.5,

nudge_x = 2,

color = "black"

) + theme_ArchR() +

ylab("-log10(P-adj) Motif Enrichment") +

xlab("Rank Sorted TFs Enriched") +

scale_color_gradientn(colors = paletteContinuous(set = "comet")

)
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The prevalence of TF motifs of interest in a certain cell

group can further be evaluated using ArchR’s getFootprints

function (Box 32). Reads in all known binding locations of

the respective TF are combined and insertion counts are plotted

over the distance from the motif center. As can be seen in

Figure 11A, insertion counts increase towards the motif center.

At the motif center itself insertion counts drop, as DNA bases at

the motif center are protected from transposition by TF

binding. Footprinting is performed on the pseudobulk data

generated above to achieve sufficient coverage. Footprint plots

shown in Figure 11A indicate the prevalence of a certain TF

footprint in a certain cluster or cell type. As expected, the

footprint for Batf increases from tissue Treg precursor in the

spleen (C10) to tissue Treg cells in the spleen (C8) to tissue Treg

cells in non-lymphoid tissues (C12, C14, C15).
Analyzing co-accessibility of
genomic regions

To find which peaks are often accessible together, co-

accessibility analysis can be performed on peaks of single cells

across clusters. A typical use case for this approach would be to

identify the regions enriched in regulatory elements (such as

promoters and enhancers) which are likely to operate together.

Since peaks can be very similar within a cell type, co-accessibility

analysis will also find a correlation for peaks specific for a cell type.

Thus, co-accessibility analysis does not allow for identification of

regulatory relationships (see Box 33). Figure 11C, section “8 Co-

accessibility analysis” of the script, Box 34.
Analyzing gene and motif scores
along pseudotime

Trajectory analysis is very useful for analyzing gene expression or

motif enrichment along pseudotime, as a proxy of the “real” time over
Frontiers in Immunology 28123
continuous processes such as development and differentiation. The

trajectory analysis approach implemented in ArchR needs prior

knowledge on developmental stages of the cells. In our case we know

that tissue Treg cells develop from early progenitors via late progenitors

and tissue Treg cell in the spleen to tissue Treg cells in non-lymphoid

tissues (39). Along the user-defined backbone (in our case, the set of

clusters C11, C10, C8, C15), a pseudotime vector is calculated as

follows: 1) the mean coordinates for each cluster are calculated in the

LSI subspace, and the top 5% of cells closest to the mean coordinates

will be kept. 2) A pseudotime vector is calculated from the distance of

each cell from a cluster to the mean coordinates of the cluster that

comes next in the user-defined backbone, and a trajectory is fitted. 3)

For all cells in the user-defined clusters, the nearest point to the

trajectory in Euclidian space is found, and cells are aligned to the

trajectory. Gene scores or motif enrichment can then be plotted along

the trajectory (Box 35, section “9 Trajectory Analysis” of the script). In

Figure 12 we plotted the Batf gene score (A) and motif enrichment (B)

along pseudotime from early and late precursors to tissue Treg cells in

the spleen, to VAT tissue Treg cells. We observe a steady increase of

both the gene score and the motif enrichment over pseudotime, which

is what we would expect, considering that Batf orchestrates the tissue

repair program. Further, heatmaps of gene and TF activity along

pseudotime of the top variable genes or motifs are shown. Trajectory

analysis without prior knowledge can be performed using Slingshot

(40) or Monocle 3 (41–43).
Conclusion

In this article, we provide an end-to-end solution covering every

step from the isolation of high-quality CD4+ T cells from murine

tissues, via scATAC-seq library generation and sequencing, to data pre-

processing and advanced bioinformatic analysis. We draw attention to

possible pitfalls and give recommendations regarding delicate steps.

While our method is focused on the chromatin accessibility for tissue

Treg cells, we can anticipate the omics landscape will expand in the

coming years, obtaining simultaneously multi-omics and spatial
BOX 31 Computing ChromVAR deviations enrichment.

R code for predicting enrichment of TF activity on a per-cell basis using ChromVAR

# Add a set of background peaks; sample peaks based on similarity in GC-content and nFrags across all samples using the

Mahalanobis distance

proj = addBgdPeaks(proj)

# Compute per-cell deviations across all of our motif annotations

proj = addDeviationsMatrix(

ArchRProj = proj,

peakAnnotation = "Motif",

force = TRUE

)
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FIGURE 11

Motif footprinting, chromVAR, and co-accessibility. (A) Batf footprint in tissue Treg precursors (C10), tissue Treg cells from spleen (C8) and tissue
Treg cells from non-lymphoid tissues (C12, C14, C15). (B) TF deviations computed using ChromVAR as ridge plot (top right) and Batf motif z-score as
an overlay on the UMAP embedding (bottom right), next to the Batf gene score. (C) Co-accessibility analysis of Batf.
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BOX 32 Calculating motif footprints.

R code for calculating motif footprints

# Obtain the positions of the relevant motifs

motifPositions = getPositions(proj, name = "Motif")

# This creates a GRangesList object where each TF motif is represented by a separate GRanges object

# We can subset this GRangesList to a few TF motifs that we are interested in

motifs_fp = c("Foxp3", "Batf")

markerMotifs_fp =

unlist(lapply(motifs_fp, function(x)
grep(x, names(motifPositions), value = TRUE)

)

)

# To accurately profile TF footprints, a large number of reads is required.

# Therefore we will use the pseudobulk data stored as group coverages calculated above.

# Compute footprints for the subset of marker motifs defined above:

seFoot = getFootprints(

ArchRProj = proj,

positions = motifPositions[markerMotifs_fp],

groupBy = "Clusters"

)

nt
iers in Immunology frontiers30125
BOX 33 Troubleshooting and Recommendations.

Troubleshooting and Recommendations

Description Solution

Correlation/
regulatory
relationship

Besides peaks being co-accessible as result of a regulatory relationship, peaks are also often co-accessible in one cell type compared to other
cell types. The latter case simply is correlation, not causation, therefore co-accessibility analysis does not allow for the identification of
regulatory relationships.
BOX 34 Co-accessibility analysis.

R code for co-accessibility analysis

# Calculate co-accessibility

proj_final = addCoAccessibility(

ArchRProj = proj_final,

reducedDims = "IterativeLSI"

)

# Retrieve co-accessibility information via the getCoAccessibility() function

cA = getCoAccessibility(

ArchRProj = proj_final,

corCutOff = 0.5,

resolution = 1000,

returnLoops = TRUE

)

# Plot browser tracks of co-accessibility for our marker genes

markerGenes = "Batf"

p_cA = plotBrowserTrack(

ArchRProj = proj_final,

groupBy = "Clusters",

geneSymbol = markerGenes,

upstream = 50000,

downstream = 50000,

loops = getCoAccessibility(proj_final)

)
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BOX 35 Trajectory analysis.

R code for trajectory analysis

# Create user-defined trajectory backbone

Treg_trajectory_VAT = c("C11", "C10", "C8", "C15")

# Create the trajectory

proj_final = addTrajectory(

ArchRProj = proj_final,

name = "Treg_trajectory_VAT",

groupBy = "Clusters",

trajectory = Treg_trajectory_VAT,

embedding = "UMAP",

force = TRUE

)

# Exclude cells with NA values because these are not part of the trajectory

proj_final$Treg_trajectory_VAT[!is.na(proj_final$Treg_trajectory_VAT)]

# Overlay pseudotime values on UMAP embedding

Treg_trajectory_VAT_p = plotTrajectory(proj_final,

trajectory = "Treg_trajectory_VAT",

colorBy = "cellColData",

name = "Treg_trajectory_VAT",

plotAs = "points"

)

# Plot gene scores and motif enrichment along Treg trajectory

Treg_traj_VAT_p_Batf = plotTrajectory(proj_final,

trajectory = "Treg_trajectory_VAT",

colorBy = "GeneScoreMatrix",

name = "Batf",

continuousSet = "horizonExtra",

plotAs = "points"

)

Treg_traj_VAT_p_Batf = plotTrajectory(proj_final,

trajectory = "Treg_trajectory_VAT",

colorBy = "MotifMatrix",

name = "Batf_790",

continuousSet = "horizonExtra",

plotAs = "points"

)

# Visualize changes in features (MotifMatrix, GeneScoreMatrix) across

# pseudo-time using heatmaps.

# varCutOff (variance quantile cut-off) can be adjusted to set the top variable

# features across the trajectory

# Treg pseudotime GeneScoreMatrix:

Treg_trajGSM = getTrajectory(ArchRProj = proj,

name = "Treg_trajectory_VAT",

useMatrix = "GeneScoreMatrix",

log2Norm = FALSE

)

# Plot:

Treg_trajGSM_p = plotTrajectoryHeatmap(Treg_trajGSM,

pal = paletteContinuous(set = "horizonExtra"),

varCutOff = 0.9

)
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profiles for the system under investigation. Moreover, our

bioinformatics workflow can smoothly be reproduced, expanded, and

adapted to other scenarios, empowering researchers to perform

comprehensive and complex workflows.
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FIGURE 12

Trajectory analysis. (A) from left to right: UMAP colored by clusters; trajectory from C11 early progenitors via C10 late progenitors and C8 tissue Treg
cell in the spleen to C15 VAT tissue Treg cells; Batf gene score is shown over pseudotime; heatmap of top variable features over pseudotime
(B) Analogous to (A), motif enrichment is shown over pseudotime.
frontiersin.org

https://github.com/imbeimainz/scATACseq_TissueTcells
https://github.com/imbeimainz/scATACseq_TissueTcells
https://zenodo.org/record/8160122
https://doi.org/10.3389/fimmu.2023.1232511
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Braband et al. 10.3389/fimmu.2023.1232511
References
1. Cedar H, Bergman Y. Linking DNA methylation and histone modification:
patterns and paradigms. Nat Rev Genet (2009) 10(5):295–304. doi: 10.1038/nrg2540

2. Bannister AJ, Kouzarides T. Regulation of chromatin by histone modifications.
Cell Res (2011) 21(3):381–95. doi: 10.1038/cr.2011.22

3. Buenrostro JD, Giresi PG, Zaba LC, Chang HY, Greenleaf WJ. Transposition of
native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-
binding proteins and nucleosome position. Nat Methods (2013) 10(12):1213–8. doi:
10.1038/nmeth.2688

4. Buenrostro JD, Wu B, Chang HY, Greenleaf WJ. ATAC-seq: A method for
assaying chromatin accessibility genome-wide. Curr Protoc Mol Biol (2015) 109:21 9 1–
9 9. doi: 10.1002/0471142727.mb2129s109

5. Cusanovich DA, Daza R, Adey A, Pliner HA, Christiansen L, Gunderson KL, et al.
Multiplex single cell profiling of chromatin accessibility by combinatorial cellular
indexing. Science. (2015) 348(6237):910–4. doi: 10.1126/science.aab1601

6. Mezger A, Klemm S, Mann I, Brower K, Mir A, Bostick M, et al. High-throughput
chromatin accessibility profiling at single-cell resolution. Nat Commun (2018) 9
(1):3647. doi: 10.1038/s41467-018-05887-x

7. Buenrostro JD, Wu B, Litzenburger UM, Ruff D, Gonzales ML, Snyder MP, et al.
Single-cell chromatin accessibility reveals principles of regulatory variation. Nature.
(2015) 523(7561):486–90. doi: 10.1038/nature14590

8. Delacher M, Simon M, Sanderink L, Hotz-Wagenblatt A, Wuttke M, Schambeck K,
et al. Single-cell chromatin accessibility landscape identifies tissue repair program in human
regulatory T cells. Immunity. (2021) 54(4):702–20 e17. doi: 10.1016/j.immuni.2021.03.007

9. Andrews S. FASTQC. A quality control tool for high throughput sequence data. (2010).

10. Granja JM, Corces MR, Pierce SE, Bagdatli ST, Choudhry H, Chang HY, et al.
ArchR is a scalable software package for integrative single-cell chromatin accessibility
analysis. Nat Genet (2021) 53(3):403–11. doi: 10.1038/s41588-021-00790-6

11. Rue-Albrecht K, Marini F, Soneson C, Lun ATL. iSEE: Interactive
summarizedExperiment explorer. F1000Res. (2018) 7:741. doi: 10.12688/f1000research.14966.1

12. Papadimitriou CH, Tamaki H, Raghavan P, Vempala S. (1998). Latent semantic
indexing: A probabilistic analysis, in: Proceedings of the seventeenth ACM SIGACT-
SIGMOD-SIGART symposium on Principles of database systems, Seattle, Washington,
USA. pp. 159–68, Association for Computing Machinery.

13. Granja JM, Klemm S, McGinnis LM, Kathiria AS, Mezger A, Corces MR, et al.
Single-cell multiomic analysis identifies regulatory programs in mixed-phenotype acute
leukemia. Nat Biotechnol (2019) 37(12):1458–65. doi: 10.1038/s41587-019-0332-7

14. Stuart T, Srivastava A, Madad S, Lareau CA, Satija R. Single-cell chromatin state
analysis with Signac. Nat Methods (2021) 18(11):1333–41. doi: 10.1038/s41592-021-01282-5

15. Chen H, Lareau C, Andreani T, Vinyard ME, Garcia SP, Clement K, et al.
Assessment of computational methods for the analysis of single-cell ATAC-seq data.
Genome Biol (2019) 20(1):241. doi: 10.1186/s13059-019-1854-5

16. Vincent D Blondel J-LG. Renaud Lambiotte and Etienne Lefebvre. Fast
unfolding of communities in large networks. IOBscience (2008) 2008, P10008. doi:
10.1088/1742-5468/2008/10/P10008

17. Evelyn Fix and JL, Hodges J. Discriminatory analysis. Nonparametric discrimination:
Consistency properties. Int Stat Rev (1989) 57(3):238–47. doi: 10.2307/1403797

18. Waltman L, van Eck NJ. A smart local moving algorithm for large-scale modularity-
based community detection. Eur Phys J B (2013) 86, 471. doi: 10.1140/epjb/e2013-40829-0

19. Traag VA, Waltman L, van Eck NJ. From Louvain to Leiden: guaranteeing well-
connected communities. Sci Rep (2019) 9(1):5233. doi: 10.1038/s41598-019-41695-z

20. Korsunsky I, Millard N, Fan J, Slowikowski K, Zhang F, Wei K, et al. Fast,
sensitive and accurate integration of single-cell data with Harmony. Nat Methods
(2019) 16(12):1289–96. doi: 10.1038/s41592-019-0619-0

21. Andrews TS, Hemberg M. False signals induced by single-cell imputation.
F1000Res. (2018) 7:1740. doi: 10.12688/f1000research.16613.1

22. Luecken MD, Buttner M, Chaichoompu K, Danese A, Interlandi M, Mueller MF,
et al. Benchmarking atlas-level data integration in single-cell genomics. Nat Methods
(2022) 19(1):41–50. doi: 10.1038/s41592-021-01336-8

23. Tran HTN, Ang KS, Chevrier M, Zhang X, Lee NYS, Goh M, et al. A benchmark
of batch-effect correction methods for single-cell RNA sequencing data. Genome Biol
(2020) 21(1):12. doi: 10.1186/s13059-019-1850-9
Frontiers in Immunology 33128
24. Aran D, Looney AP, Liu L, Wu E, Fong V, Hsu A, et al. Reference-based analysis
of lung single-cell sequencing reveals a transitional profibrotic macrophage. Nat
Immunol (2019) 20(2):163–72. doi: 10.1038/s41590-018-0276-y

25. van Dijk D, Sharma R, Nainys J, Yim K, Kathail P, Carr AJ, et al. Recovering gene
interactions from single-cell data using data diffusion. Cell. (2018) 174(3):716–29 e27.
doi: 10.1016/j.cell.2018.05.061

26. Heng TS, Painter MW. Immunological Genome Project C. The Immunological
Genome Project: Networks of gene expression in immune cells. Nat Immunol (2008) 9
(10):1091–4. doi: 10.1038/ni1008-1091

27. Stubbington MJ, Mahata B, Svensson V, Deonarine A, Nissen JK, Betz AG, et al.
An atlas of mouse CD4(+) T cell transcriptomes. Biol Direct. (2015) 10:14. doi: 10.1186/
s13062-015-0045-x

28. Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, Mauck WM3rd, et al.
Comprehensive integration of single-cell data. Cell. (2019) 177(7):1888–902.e21. doi:
10.1016/j.cell.2019.05.031

29. Kiselev VY, Yiu A, Hemberg M. scmap: projection of single-cell RNA-seq data
across data sets. Nat Methods (2018) 15(5):359–62. doi: 10.1038/nmeth.4644

30. Abdelaal T, Michielsen L, Cats D, Hoogduin D, Mei H, Reinders MJT, et al. A
comparison of automatic cell identification methods for single-cell RNA sequencing
data. Genome Biol (2019) 20(1):194. doi: 10.1186/s13059-019-1795-z

31. Huang Q, Liu Y, Du Y, Garmire LX. Evaluation of cell type annotation R
packages on single-cell RNA-seq data. Genomics Proteomics Bioinf (2021) 19(2):267–
81. doi: 10.1016/j.gpb.2020.07.004

32. Clarke ZA, Andrews TS, Atif J, Pouyabahar D, Innes BT, MacParland SA, et al.
Tutorial: guidelines for annotating single-cell transcriptomic maps using automated and
manual methods. Nat Protoc (2021) 16(6):2749–64. doi: 10.1038/s41596-021-00534-0

33. Schep AN, Wu B, Buenrostro JD, Greenleaf WJ. chromVAR: inferring
transcription-factor-associated accessibility from single-cell epigenomic data. Nat
Methods (2017) 14(10):975–8. doi: 10.1038/nmeth.4401

34. Wilcoxon F. Individual comparisons by ranking methods. Biometrics Bull (1945)
1(6):80–3. doi: 10.2307/3001968

35. Yoav Benjamini YH. Controlling the false discovery rate: A practical and
powerful approach to multiple testing. R Stat Soc (1995) 57, 289–300. doi: 10.1111/
j.2517-6161.1995.tb02031.x

36. Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, et al. Model-
based analysis of chIP-seq (MACS). Genome Biol (2008) 9(9):R137. doi: 10.1186/gb-
2008-9-9-r137

37. Delacher M, Imbusch CD, Weichenhan D, Breiling A, Hotz-Wagenblatt A,
Trager U, et al. Genome-wide DNA-methylation landscape defines specialization of
regulatory T cells in tissues. Nat Immunol (2017) 18(10):1160–72. doi: 10.1038/ni.3799

38. Delacher M, Imbusch CD, Hotz-Wagenblatt A, Mallm JP, Bauer K, Simon M,
et al. Precursors for nonlymphoid-tissue treg cells reside in secondary lymphoid organs
and are programmed by the transcription factor BATF. Immunity. (2020) 52(2):295–
312.e11. doi: 10.1016/j.immuni.2019.12.002

39. Braband KL, Kaufmann T, Floess S, Zou M, Huehn J, Delacher M. Stepwise
acquisition of unique epigenetic signatures during differentiation of tissue Treg cells.
Front Immunol (2022) 13:1082055. doi: 10.3389/fimmu.2022.1082055

40. Street K, Risso D, Fletcher RB, Das D, Ngai J, Yosef N, et al. Slingshot: cell lineage
and pseudotime inference for single-cell transcriptomics. BMC Genomics (2018) 19
(1):477. doi: 10.1186/s12864-018-4772-0

41. Trapnell C, Cacchiarelli D, Grimsby J, Pokharel P, Li S, Morse M, et al. The
dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering
of single cells. Nat Biotechnol (2014) 32(4):381–6. doi: 10.1038/nbt.2859

42. Qiu X, Mao Q, Tang Y, Wang L, Chawla R, Pliner HA, et al. Reversed graph
embedding resolves complex single-cell trajectories. Nat Methods (2017) 14(10):979–
82. doi: 10.1038/nmeth.4402

43. Cao J, Spielmann M, Qiu X, Huang X, Ibrahim DM, Hill AJ, et al. The single-cell
transcriptional landscape of mammalian organogenesis.Nature. (2019) 566(7745):496–
502. doi: 10.1038/s41586-019-0969-x
frontiersin.org

https://doi.org/10.1038/nrg2540
https://doi.org/10.1038/cr.2011.22
https://doi.org/10.1038/nmeth.2688
https://doi.org/10.1002/0471142727.mb2129s109
https://doi.org/10.1126/science.aab1601
https://doi.org/10.1038/s41467-018-05887-x
https://doi.org/10.1038/nature14590
https://doi.org/10.1016/j.immuni.2021.03.007
https://doi.org/10.1038/s41588-021-00790-6
https://doi.org/10.12688/f1000research.14966.1
https://doi.org/10.1038/s41587-019-0332-7
https://doi.org/10.1038/s41592-021-01282-5
https://doi.org/10.1186/s13059-019-1854-5
https://doi.org/10.1088/1742-5468/2008/10/P10008
https://doi.org/10.2307/1403797
https://doi.org/10.1140/epjb/e2013-40829-0
https://doi.org/10.1038/s41598-019-41695-z
https://doi.org/10.1038/s41592-019-0619-0
https://doi.org/10.12688/f1000research.16613.1
https://doi.org/10.1038/s41592-021-01336-8
https://doi.org/10.1186/s13059-019-1850-9
https://doi.org/10.1038/s41590-018-0276-y
https://doi.org/10.1016/j.cell.2018.05.061
https://doi.org/10.1038/ni1008-1091
https://doi.org/10.1186/s13062-015-0045-x
https://doi.org/10.1186/s13062-015-0045-x
https://doi.org/10.1016/j.cell.2019.05.031
https://doi.org/10.1038/nmeth.4644
https://doi.org/10.1186/s13059-019-1795-z
https://doi.org/10.1016/j.gpb.2020.07.004
https://doi.org/10.1038/s41596-021-00534-0
https://doi.org/10.1038/nmeth.4401
https://doi.org/10.2307/3001968
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
https://doi.org/10.1186/gb-2008-9-9-r137
https://doi.org/10.1186/gb-2008-9-9-r137
https://doi.org/10.1038/ni.3799
https://doi.org/10.1016/j.immuni.2019.12.002
https://doi.org/10.3389/fimmu.2022.1082055
https://doi.org/10.1186/s12864-018-4772-0
https://doi.org/10.1038/nbt.2859
https://doi.org/10.1038/nmeth.4402
https://doi.org/10.1038/s41586-019-0969-x
https://doi.org/10.3389/fimmu.2023.1232511
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Frontiers in Immunology

OPEN ACCESS

EDITED BY

Hakim Echchannaoui,
Johannes Gutenberg University Mainz,
Germany

REVIEWED BY

Michael Delacher,
Johannes Gutenberg University Mainz,
Germany
Laura Margaret Snell,
Indiana University School of Medicine,
United States

*CORRESPONDENCE

Ulf Dittmer

Ulf.Dittmer@uk-essen.de

†These authors have contributed
equally to this work and share
first authorship

‡These authors have contributed
equally to this work and share
last authorship

RECEIVED 02 August 2023

ACCEPTED 16 October 2023

PUBLISHED 25 October 2023

CITATION

Malyshkina A, Brüggemann A, Paschen A
and Dittmer U (2023) Cytotoxic CD4+ T
cells in chronic viral infections and cancer.
Front. Immunol. 14:1271236.
doi: 10.3389/fimmu.2023.1271236

COPYRIGHT

© 2023 Malyshkina, Brüggemann, Paschen
and Dittmer. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Review

PUBLISHED 25 October 2023

DOI 10.3389/fimmu.2023.1271236
Cytotoxic CD4+ T cells in
chronic viral infections
and cancer

Anna Malyshkina1†, Alicia Brüggemann2†, Annette Paschen2‡

and Ulf Dittmer1*‡

1Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany,
2Department of Dermatology, Venereology, and Allergology, University Hospital Essen, University of
Duisburg-Essen, Essen, Germany
CD4+ T cells play an important role in immune responses against pathogens and

cancer cells. Although their main task is to provide help to other effector immune

cells, a growing number of infections and cancer entities have been described in

which CD4+ T cells exhibit direct effector functions against infected or

transformed cells. The most important cell type in this context are cytotoxic

CD4+ T cells (CD4+ CTL). In infectious diseases anti-viral CD4+ CTL are mainly

found in chronic viral infections. Here, they often compensate for incomplete or

exhausted CD8+ CTL responses. The induction of CD4+ CTL is counter-

regulated by Tregs, most likely because they can be dangerous inducers of

immunopathology. In viral infections, CD4+ CTL often kill via the Fas/FasL

pathway, but they can also facilitate the exocytosis pathway of killing. Thus,

they are very important effectors to keep persistent virus in check and guarantee

host survival. In contrast to viral infections CD4+ CTL attracted attention as direct

anti-tumor effectors in solid cancers only recently. Anti-tumor CD4+ CTL are

defined by the expression of cytolytic markers and have been detected within the

lymphocyte infiltrates of different human cancers. They kill tumor cells in an

antigen-specific MHC class II-restricted manner not only by cytolysis but also by

release of IFNg. Thus, CD4+ CTL are interesting tools for cure approaches in

chronic viral infections and cancer, but their potential to induce

immunopathology has to be carefully taken into consideration.
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1 Introduction

CD4+ T cells are essential players in immune defense and control of viral infections and

cancer. These cells play a crucial role in providing cytokine signals and creating optimal

conditions that facilitate the proper functioning of other immune cells such as macrophages,

B cells and cytotoxic CD8+ T cells. Several distinct subsets of CD4+ T cells with diverse

functions have been identified, including T helper (Th) cells 1 and 2, pro-inflammatory Th17
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cells, follicular helper T cells, regulatory T cells (Tregs), and others,

each characterized by their specific properties. However, in recent

years, there has been a growing recognition of the direct protective

effector role that CD4+ T cells can play in immune responses.

Cytotoxic CD4+ T lymphocytes (CTL) were identified as an

unconventional subset of CD4+ cells possessing cytotoxic

capabilities that were thought to mainly attribute to CD8+ T cells.

First reports recognizing CD4+ T cells with cytotoxic potential

appeared more than four decades ago (1), however, they were

thought to be an artefact due to long-term culturing (2).

Subsequent evidence has disproven this initial suggestion,

demonstrating that antigen-specific CD4+ T cells exhibit direct

cytotoxicity restricted by MHC class II molecules (3, 4). Since

then, studies reporting on CD4+ CTL in both humans and animal

species steadily increased in the context of viral infections and,

recently, also in cancer.

Differentiation into effector CD4+ CTL involves the recognition

of peptide antigens presented by MHC class II molecules on antigen

presenting cells (APC) to naïve CD4+ T cells. In addition to this

priming signal, naïve CD4+ T cells need at least two more signals for

activation by APC: costimulatory molecules and pro-inflammatory

cytokines (5). After antigen presentation, expression of the

transcription factor Eomesodermin (Eomes) seems to be crucial

for the development of cytotoxic T cells in vivo (6). Additionally, T-

bet in cooperation with Eomes was suggested to modulate the

cytotoxic program in CD4+ T cells (7, 8). T-bet and Blimp-1,

induced by type I interferon and IL-2 signaling, were required for

the generation of CD4+ CTL in influenza model (9, 10). However,

other researchers also utilizing the influenza virus infection showed

that Eomes, but not T-bet plays an important role in CD4+ CTL

differentiation (11). Most likely both T-bet and Eomes are involved

in CD4+ CTL fate, depending on their maturation stage. In fact,

several studies demonstrated Eomes and T-bet co-expression in

tumor-reactive CD4+ CTL, thereby emphasizing the link between

cytotoxic and Th1 differentiation programs (7, 8, 12). Notably, a

study by Śledzińska et al. in different tumor models demonstrated

that cytotoxic features of tumor-reactive CD4+ Th1 cells can

develop also independently of Eomes (13). In this study,

depletion of Treg by anti-CTLA-4 treatment allowed for IL-2-

dependent expression of Granzyme B in T-bet+ Eomes- CD4+ T

cells that was controlled by the transcriptional regulator Blimp-1.

This suggest that initiation of the cytotoxic program in CD4+ T cells

might be dependent on the immunological micromilieu and the

pattern of their stimulation. Not only the presence of certain

transcription factors is essential, but the absence of the others is

also required. For instance, the T helper transcription factor,

ThPOK, initially prompts the development of CD4+ Th fate and

hinders thymocytes from maturing into CD8+ CTL (14). On the

other hand, the Runx family member, Runx3, abrogates CD4

expression and supports cytotoxic lineage development (15).

Although Runx3 was initially described to drive the cytotoxic

program of CD8+ T cells, it has recently been demonstrated to be

involved also in the development of CD4+ CTL (16). Not

surprisingly, researchers showed that CD4+ CTL could be defined

by the lack of the master regulator ThPOK, even though they

originated from ThPOK+ progenitor cells (17, 18).
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It is still a matter of debate whether CD4+ CTLs are a distinct

phenotype or a CD4+ T cell subpopulation. Although researchers

have tried to identify markers uniformly defining CD4+ CTL as well

as their functional features, the characterization of these cytotoxic

effectors remains challenging. In the past decades, CD4+ T cells

have been distinguished into subsets solely based on the type of

cytokines they produced (19–28). Considering the fact that the

defined CD4+ T cell subsets are plastic and able to convert into

other subsets, it has been proposed to define CD4+ T cell subsets

based on both, their effector functions and phenotype (29, 30).

More likely CD4+ T cells with cytotoxic activities develop from

several differentiation pathways. Studies show that they can

differentiate directly from naïve CD4+ T cells (10, 31). However,

more often cytotoxic activities are acquired by already mature CD4+

T cells. Reports describe CD4+ cells with cytotoxic capacity arising

from Th2 (32), Th17 (33), and even Tregs cells (34, 35),

demonstrating the plasticity of CD4+ T cells. Nevertheless, the

most common CD4+ CTL progenitor is a Th1-like subset

expressing IFNg alone or in combination with other cytokines

and effector molecules (36–39). An early study by Qui et al.

demonstrated that treatment of mice with agonistic anti-CD134

(OX40) and anti-CD137 (4-1BB) antibodies induced differentiation

of naïve CD4+ T cells, both virus- and self-antigen specific, into

cytotoxic effectors with Th1-associated cytokine production. The

costimulation-induced Eomes expression and in addition IL-2 was

required for the induction of cytotoxic features. Importantly, those

costimulation-induced cytotoxic Th1 effectors showed anti-tumor

activity in a murine melanoma model, confirming their cytotoxic

activity in vivo (40).

What are the target cells for CD4+ CTL? Reports show that

tumor cells and virus-infected cells can express MHC II and become

targets for CD4+ CTL killing. B cells are infected by several chronic

viruses and they constitutively express MHC II, since they are

potential APC. But not only APC can become CD4+ CTL targets.

Several factors can induce MHC II expression on cells that do not

express these molecules under normal conditions. For instance,

viral or bacterial infections can induce MHC II expression in lung

epithelial cells via IFNg signaling (41, 42). Additionally, epithelia or
tumor cells were shown to express MHC II following irradiation or

IFNg treatment (43–46) and even constitutive MHC II expression in

cancer cells has been described (see section 3.1). Subsequently, these

cells become subject to CD4+ CTL-mediated killing. Moreover,

several viruses evolved mechanisms to downregulate MHC I on

infected host cells to evade CD8+-mediated killing (47, 48). As

compensation, the infected host cells present viral antigens on

MHC II, which allows elimination via MHC II-dependent

pathways by CD4+ CTL. However, the frequency of these events

in vivo is the matter of future investigations.

The direct cytotoxic mechanisms of effector CD4+ T cells are

similar to those that are used by professional cytotoxic CD8+ T and

NK cells. CD4+ CTL mainly utilize two effector mechanisms:

granule-mediated exocytosis and death receptor-mediated

pathways. The granule-mediated mechanism is exocytosis of

specialized granules containing Perforin and Granzymes into

target cells (39). Eomes, which was shown to drive expression of

Perforin and Granzymes in CD8+ T cells, also plays a role in CD4+
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T cell cytotoxicity (35). Death receptor-mediated pathways include

Fas/FasL- or TRAIL-mediated apoptosis. Interaction of ligands,

expressed on the effector CD4+ T cells, binds to its receptor on the

target cells leading to recruitment of the death-inducing signaling

complex and subsequently to apoptotic cell death (6, 49). Cytotoxic

mechanisms of CD4+ CTL killing not only differ between virus

infections or types of malignancy, but may be influenced by

immunological factors even within one model system. For

instance, IL-2 concentrations and the antigen dose controlled the

switch between Perforin- or FasL-mediated cytotoxicity in the

influenza virus model (10). In the FV model we also observed

both FasL-mediated and exocytosis-mediated killing by CD4+ CTL,

which was regulated by virus dose, infection phase, and application

of immunotherapies (35, 50, 51).

CD4+ CTL often arise when CD8+ CTL are exhausted to partly

compensate for their function. CD8+ CTL exhaustion occurs in

many viral infections and malignancies, and is thoroughly

described. CD4+ T cell exhaustion is less well studied, although

some studies report on the exhaustion of conventional CD4+ T cells

(Th1 or Th2 cells) during persistent infections (52–54). Very little is

known about CD4+ CTL exhaustion. Using the FV model we

showed that cytotoxic CD4+ T cells appear during chronic

infection and keep persistent virus in check. They do this in the

context of very profound CD8+ T cell exhaustion and Treg

expansion (51, 55, 56). So there is obviously limited CD4+ CTL

exhaustion during chronic FV infection. However, these CD4+ CTL

kill via the Fas/FasL pathway and do not produce large amounts of

cytotoxic molecules (50, 51). Similar to CD8+ CTL the exocytosis

pathway of killing in CD4+ CTL is under suppression by Tregs

during chronic infection. So CD4+ CTL are partially exhausted in

persistent infections, but they can circumvent this by utilizing an

alternative pathway for target cell lysis. Moreover, various studies

indicated that CD4+ CTL responses in comparison to CD8+-

mediated killing are more transient (57, 58). The differentiation of

CD4+ T cells to CTL relies on constant antigen presentation,

whether from a virus or a tumor, and ceases once the antigen

level is reduced (57). Therefore, CD4+ CTL are most commonly

reported from chronic or latent viral infections and tumor diseases,

which is the focus of this review.
2 CD4+ CTL in chronic virus infections
and virus-induced cancers

CD4+ T cells with a cytotoxic phenotype are only present as a

small fraction under healthy physiological conditions. Their

development is most likely restricted because they are potentially

harmful as inducers of immunopathology. Their antigen

recognition is not as precise as that of CD8+ CTL which increases

the risk of unwanted cell killing. Even though the proportion of

CD4+ CTL may increase in elderly individuals at least partly due to

clonal expansion following repeated viral exposure (59, 60), the

majority of studies on CD4+ CTL, as well as their initial

investigation in vivo, originated from the realm of viral infections.

Multiple researchers reported CD4+ CTL activity in acute influenza

(9, 11, 61), ectromelia (62), vaccinia virus infection (63, 64). Such
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cells were also found in patients infected with mosquito-transmitted

dengue (65) and West Nile (39) viruses. Recently, CD4+ CTL were

described in individuals infected with SARS-CoV-2 (66). However,

most reports come from chronic viral infections and CD4+ CTL

have been identified in the blood of humans with cytomegalovirus

(67), human immunodeficiency virus (HIV) (37, 68–71), and

hepatitis viruses (72). CD4+ CTL from HIV-infected patients can

kill HIV-infected target cells in vitro (73) and most importantly,

cytotoxic CD4+ T cell responses are associated with disease outcome

in HIV-infected patients (71, 74). This underscores an important

physiological role for CD4+ CTL in controlling pathogens. CD4+

CTL have also been found in animal models of chronic viral

infections, for instance, murine lymphocytic choriomeningitis

virus (75), Friend virus (50), and simian immunodeficiency virus

(76). The findings in these models and relevant human infections

are summarized in this review.
2.1 Hepatitis viruses

Viral hepatitis is a significant global health issue, impacting

hundreds of millions of individuals worldwide. Chronic hepatitis B,

C, and D infections are strongly associated with liver cancer (77–

79), as all three viruses infect hepatocytes. They are the reason that

hepatocellular carcinoma (HCC) is the most frequently diagnosed

malignancy in many regions worldwide (80). Despite notable

advancements in treatment options against HBV (81), HCV (82),

and HDV (83) in recent years, chronic viral hepatitis remain a wide-

spread medical issue. Viral hepatitis, characterized by the

persistence of the virus in the liver, is considered to be an

immune-mediated disease, implying that the immune system

plays a crucial role in the development and progression of

chronic viral hepatitis (84), but also in virus control and

resolvement of infection (85). However, our understanding of the

mechanisms that regulate antiviral immunity during the chronic

stage of hepatitis viruses remains insufficient.

It is widely accepted that CD4+ Th cells are protective during

HBV and HCV infections (86–89). At the same time the role of

CD4+ CTL during hepatitis infection continues to be a topic of

investigation. It has been shown that hepatocytes infected with

hepatitis viruses express MHC Class II molecules on their surface

(90) and acquire antigen presenting cell function (91). Thus, they

could potentially be targeted by CD4+ CTL for killing. Indeed, CD4+

CTL, defined as Perforin-expressing CD4+ T cells, were detected in

chronic viral hepatitis, especially in HDV infection (72) (Figure 1).

Phenotypically, such CD4+ CTL exhibited a terminally

differentiated effector phenotype (CD28−, CD27−) similar to that

described for CD4+ CTL in other chronic viral infections (37). Even

though direct cytotoxic killing of hepatocytes was not investigated

ex vivo, authors provide indirect evidence that Perforin-expressing

CD4+ CTL do kill infected cells and may accelerate fibrogenesis and

hepatitis (92). Therefore, despite the fact that further studies are

required to more precisely define the role of CD4+ CTL in viral

hepatitis, this subset is very likely involved in immune-mediated

pathology. For example, CD4+ CTL are known to mediated liver

disease upon secondary infections with dengue virus (93). The
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authors of this study showed that dengue virus capsid-specific CD4+

CTL were responsible for liver cell killing through Fas/FasL

interaction and also killed APC through Perforin expression (93).

Thus, it is not surprising that MHC II-expressing hepatocytes

infected with viruses may become targets of CD4+ CTL killing.

Indeed, in the cohort of viral hepatitis patients there was a striking

correlation between CD4 Perforin expression and aspartate

aminotransferase levels that serves as a marker of hepatocyte

damage (72).

On the other hand, the loss of CD4+ CTL in patients with HBV-

mediated HCC was correlated with a higher mortality rate and a

reduced survival time (94). Moreover, in tumor biopsies from the

liver, CD107a degranulation marker (a surrogate marker for

exocytosis in cytotoxic cells) on CD4+ CTL was significantly

reduced in patients with an advanced cancer stage. This cytotoxic

activity of CD4+ T cells was shown to be controlled by local Tregs

(94). In a mouse model the beneficial therapeutic activity of CD4+

CTL was reported in a vaccination approach against HCC (95). In

this study, tumor formation was controlled by vaccine-induced

CD4+ T cells and this control was abrogated by anti-CD4 antibody

administration. This preclinical model may suggest that CD4+ CTL

inducing therapy in humans should be considered for

further investigation.
2.2 Retroviruses

First evidence for the existence of CD4+ T cells with direct anti-

viral effector functions came from studies of chronic retroviral
Frontiers in Immunology 04132
infections in monkeys in the ‘90s (96). Since then, CD4+ CTL have

been described in simian immunodeficiency virus (SIV) infection of

rhesus macaques. Here, viremia increase, caused by CD8+ T cell

depletion in SIV-infected macaques, was efficiently controlled due

to a combination of antibody responses and expansion of

circulating CD45RA− CD28+ CD95+ CCR7− Granzyme B

(GzmB)+ SIV-specific CD4+ CTL (76). Similarly, Gag- and Nef-

specific CD4+ T cell responses were found in CD8-depleted

macaques during virus control (97). Another group demonstrated

cytotoxicity of an SIV Gag-specific CD4+ T cell clone that had the

capability to control viral replication (98). The main surface marker

to characterize such CD4+ CTL in SIV-infected rhesus macaques

was found to be CD29 (99, 100). CD29hi GzmBhi T-Bet+ gag-

specific CD4+ T cells were also capable of shrinking the SIV

reservoir during ART (99). SIV as well as HIV infects

macrophages as well as CD4+ T cells and those constitutively

express MHC II as APCs (101). In addition, activated CD4+ T

cells start to express MHC II, and HLA-DR is even used as common

activation marker for human CD4+ T cells (102). Thus, both cell

types that propagate viral infection are potential targets for

CD4+ CTL.

Similar to SIV, CD4+ CTL were found to be beneficial for people

living with HIV. Despite the fact that CD4+ T cells are the main

targets of HIV, including the crucial role of CD4+ T follicular helper

cells in reservoir formation and maintenance (103, 104), studies

support the vital role of CD4+ CTL in HIV control (70, 105). CD4+

CTL limit HIV pathogenesis in elite controllers (106). In acute HIV

infection CD4+ CTL were characterized as GzmA+, IFN g+, and
CD40L+ and were associated with the reduction in viral loads (71).
FIGURE 1

Schematic representation of the cytotoxic pathways exerted by CD4+ CTL in different chronic virus infections. For every virus infection, the blue
silhouette represents the model in which CD4+ CTL were described (i.e., human, primate and mouse model). Figure highlights the main effector
molecules secreted by CD4+ CTL in response to each virus (IFNg, perforin, granzymes, CD107a, or FasL). Created with BioRender.com.
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In another study similar observations were made and the phenotype

of CD4+ CTL during acute HIV infection were described as

Perforin+, GzmB+, and Eomes+ (70). Additionally, ex vivo studies

revealed that virus-specific CD4+ CTL can kill HIV-infected

macrophages and T cells (73). Moreover, an HIV vaccine

candidate induced CD4+ CTL with lytic functions (107, 108).

These lines of evidence suggest that CD4+ CTL play an important

role in HIV control and therefore could be targeted as effectors in

vaccine development and treatment interventions.

At the same time, inducing strong CD4+ T cell activation is a

debatable issue in the field of HIV vaccination. It can be a double-

edged sword since these cells may be favorable virus targets. In fact,

it has been reported that GzmB+ cells harbored more HIV than

GzmB- cells in gut CD4+ T cells stimulated with enteric bacteria in

the lamina propria aggregate culture model (109, 110).

Nevertheless, the Thai HIV phase III prime-boost vaccination

trial with ALVAC and AIDSVAX reported successful induction of

HIV-specific CD4+ CTL (111). This vaccination regimen, combined

a recombinant canarypox vector vaccine (ALVAC) and a

recombinant glycoprotein 120 subunit vaccine (AIDSVAX),

exhibited a moderate level of protection against HIV-1 infection

partly correlating with the induction of polyfunctional effector

CD4+ T cell responses (112, 113). Although stimulation of CD4+

CTL responses in HIV infection remains controversial, recent

studies suggest that CD4+ CTL can compensate for reduced CD8+

T cell cytolytic activity against HIV in the setting of CD8+ T cell

exhaustion (114), HIV-mediated downregulation of HLA I

molecules (115), or CD8-associated HIV mutational escape (116).

Therefore, while HIV-specific CD4+ CTL may be targeted by the

virus and experience depletion during the early stages of infection,

the remaining cells might play an important role in controlling viral

loads (105).

2.2.1 Friend virus
Friend virus (FV) was isolated from leukemic mice by Charlotte

Friend (117) and has since been used for identifying genes that

control susceptibility to retroviral infection. FV is a retroviral

complex comprising Friend murine leukemia virus (F-MuLV), a

replication competent helper virus that is nonpathogenic in adult

mice, and spleen focus-forming virus (SFFV), a replication-

defective virus responsible for pathogenesis (118). SFFV cannot

produce its own particles because of large deletions in the gag gene

and it spreads by being packaged in F-MuLV-encoded particles

produced in cells co-infected by both viruses. Pathology in

susceptible adult mice is characterized by a polyclonal

proliferation and subsequent transformation of erythroid

precursor cells, which results in gross splenomegaly. Resistant

mice do not develop FV-induced disease because of their efficient

immune response, but they are unable to completely clear virus-

infected cells and therefore develop a life-long chronic infection.

Although FV is also a retrovirus it has its own chapter here, because

it is the retrovirus model system in which CD4+ CTL were studied

in most detail among all retroviruses.

During the acute phase of FV infection, the primary and crucial

role of CD4+ T cells is their helper function for the antibody

responses and effector CD8+ T cells (55, 119, 120). The frequency
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of GzmB+ CD4+ T cells is extremely low during acute infection. We

could previously show that during this stage of infection Tregs as

well as CD8+ T cells negatively control the CD4+ CTL response

against FV-infected cells as well as FV-transformed cells (51, 121),

while the molecular mechanism of this suppression remains

unknown. This cellular control is probably important to prevent

CD4+ CTL induced immunopathology, which indeed occurs when

GzmB+ CD4+ T cells are experimentally expanded by

immunotherapy during an acute FV infection (122). However,

when chronic FV develops, CD8+ T cells become functionally

exhausted thereby allowing viral immune escape and the

establishment of chronicity (123). Exhausted CD8+ T cells show a

profoundly reduced killing capacity and have only limited anti-viral

activity. We already showed in the late ‘90s that CD4+ CTL then

take over in keeping virus replication in check (124). They do not

induce pathology during chronic infection because antigen loads

are low and CD4+ CTL numbers are too. The main reservoir of

chronic FV is B cells, which are MHC II+ and therefore good targets

for CD4+ CTL killing (125). The experimental proof that FV-

specific CD4+ T cells develop cytotoxic activity during the chronic

phase of FV infection against MHC II-expressing targets came from

in vitro CTL assays (126) and subsequent in vivo CTL studies (50).

The observed cytotoxic activity was FasL-dependent, while the

exocytosis pathway and Granzyme production appeared to be

suppressed by Tregs also in the context of chronic FV infection

(50, 51). We have previously demonstrated that Tregs become

highly activated and expand during an ongoing FV infection (51,

55, 56), so they constantly influence CD4+ T cell cytotoxicity. The

established in vivo CD4+ CTL assay was used to quantify their

killing capacity and defined which viral epitopes they recognize (50,

127). As expected, their killing potential was lower than that of FV-

specific CD8+ CTL (128). Hence, these cytotoxic FasL+ CD4+ T cells

can keep persistent FV in check and prevent viral rebound, but they

are not capable of eliminating the viral reservoir.

Interestingly, also GzmB+ CD4+ T cells can be induced under

certain conditions in the FV model. The cytotoxic activity of CD4+

T cells can be modulated by immunostimulatory therapies. The

administration of agonistic antibodies that target the co-stimulatory

molecule CD137 has been shown to trigger GzmB-dependent

cytotoxic pathways in CD4+ T cells and makes them refractory to

Treg-mediated suppression (50, 129, 130). We used this therapy to

induce GzmB+ CD4+ CLT in chronically FV-infected mice, which

were able to significantly reduce the viral reservoir size and even

postponed viral rebound from the reservoir in the setting of a

terminated anti-retroviral therapy (in press). Thus, CD4+ CTL

might be interesting effector cells for shock and kill approaches in

HIV cure studies.
2.3 Lymphocytic choriomeningitis virus

Another well-known murine model of persistent viral infection

is the lymphocytic choriomeningitis virus (LCMV) infection.

LCMV is a member of the Arenaviridae family and is commonly

found in rodents, particularly mice. LCMV has been extensively

studied to understand the mechanisms of persistent viral infections
frontiersin.org
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and immune responses. The virus infects a broad spectrum of

cellular targets, including dendritic cells (131), macrophages (132),

endothelial cells (133), epithelial cells (134), fibroblasts (135), and

neurons (136). As professional APC, dendritic cells, and

macrophages constitutively express MHS class II molecules on

their surface and therefore can serve as CD4+ CTL targets. CD4+-

mediated killing of target cells in LCMV-infected mice was reported

in b2-microglobulin-deficient (b2m−) mice (137). Mice lacking

b2m do not effectively express MHC class I complexes, resulting

in a deficiency of CD8+ T cell responses (138). In this setting,

LCMV-infected animals do not develop CD8+ cytotoxicity, but

instead generate MHC class II-mediated CD4+ CTL (139, 140).

These LCMV-specific CD4+ CTL express FasL and utilized the Fas-

dependent killing pathway (141). However, other group showed

that in LCMV infection both the FasL- and a Perforin-dependent

pathway can contribute to CD4+ CTL killing (75). That again

demonstrates that impaired CD8+ CTL responses are

compensated in vivo by cytotoxic CD4+ T cells.

Other authors compared the in vivo killing mediated by CD4+

versus CD8+ T cells utilizing an in vivo CTL assay during LCMV

infection (142). They detected substantial CD4+ CTL-mediated

killing of target cells loaded with the immunodominant peptide

LCMV-GP64–80 (143) in mice infected with LCMV that was

measured at 16 hours after target cell infusion. This killing

appeared less efficient as compared to the remarkably fast CD8-

mediated in vivo killing of target cells, however researchers

concluded that CD4+ and CD8+ CTL responses were similar in

magnitude and were only slower due to the FasL-dependent

pathway of CD4+ T cell killing (144). Additionally, a careful

transcriptional investigation helped to discover a new marker for

CD4+ CTL in LCMV infection (145). These cytotoxic cells express

Eomes and GzmK together with uniquely high expression of the

signaling lymphocytic activation molecule family member 7

(SLAMF7), a surface protein that was already described to

characterize CD4+ T cells with cytotoxic potential in tumor (146)

and autoimmune diseases (147).

Interestingly, experimental induction of CD4+ T cells during

chronic LCMV caused lethal immunopathology in mice (148).

Administration of vaccines to selectively induce CD4+ T cell

responses resulted in severe generalized inflammation, a cytokine

storm, and mortality. Furthermore, adoptive transfer of LCMV-

specific CD4+ T cells following acute infection induced lethal

inflammation (149). These results demonstrate the fine balance

between anti-viral immunity and immunopathology for CD4+ CTL

that has to be taken into account when designing immunotherapies

or vaccines to induce such cells.
2.4 Herpesviruses

Viruses of the Herpesviridae family affect the majority of the

human population. They establish lifelong infections, however are

largely asymptomatic in healthy individuals, while causing severe

disease in the immunocompromised hosts (150). CD4+ CTL were

described in mouse and human herpesvirus infections. CD4+ T cells

with cytotoxic effector functions were found in murine
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cytomegalovirus (MCMV) (151) and chronic infection of mice

with g-herpesvirus 68 (152, 153). Accordingly, CD4+ CTL were

isolated from peripheral blood mononuclear cells of humans

infected with human cytomegalovirus (HCMV) (36, 154). Other

authors demonstrated HCMV-specific effector CD4+ T cells that

expressed GzmA, GzmB, and Perforin with antiviral activity (67).

Moreover, HCMV-pp65-specific CD4+ CTL were described in the

cohort of older adults (155). CD4+ CTL have been observed in

individuals infected with human herpesvirus-6B, suggesting their

role in the long-term control of the disease (156).

The presence of CD4+ T cells exhibiting cytotoxic potential has

also been identified in patients and mice infected with Epstein-Barr

virus (EBV) (157). EBV is highly immunogenic virus which can be

associated with the emergence of various types of cancer affecting B

cells and epithelial cells (158). In individuals with infectious

mononucleosis, blood samples reveal the presence of CD4+ T

cells that express GzmB with potential anti-viral activity (159).

CD4+ T cells isolated from tonsils, the hotspot of EBV infection,

demonstrated cytotoxic potential in vitro (160). Cytotoxicity of

EBV-specific CD4+ T cells was shown indirectly through the

expansion of lytic cells from peripheral blood mononuclear cells,

acquired from EBV-seropositive donors. The lytic activity was

demonstrated to be facilitated through different pathways: the

secretion of the cytotoxic molecules Perforin and Granzyme (161,

162) or via the Fas/FasL pathway (163). Moreover, lytic activity of

EBNA1-specific CD4+ T cells against virus-transformed tumor cells

was observed in all EBV-mediated malignancies, including Burkitt

lymphoma (BL). BL cell lines serve as targets for the cytotoxic

activity of CD4+ T cells specific against EBNA1 (164). In a mouse

model, BL were eliminated in the absence of any CD8+ T

lymphocytes, however no direct lytic CD4+ CTL activity could be

detected in that model (165).

EBV is not only linked to the malignancies, but is associated

with the development of autoimmune diseases, such as systemic

lupus erythematosus (166), myasthenia gravis (167), multiple

sclerosis (168), rheumatoid arthritis (169), celiac disease (170),

and Sjögren’s syndrome (SS) (171). The development of SS has

been linked to EBV infection, as salivary gland biopsies taken from

SS patients demonstrate elevated levels of EBV DNA compared to

healthy salivary glands. This suggests viral reactivation and an

impaired immune system’s ability to control EBV latency (172).

Interestingly, EBV-specific T cells show cross-reactivity to

endogenous peptides from tears and saliva (173). While EBV is

commonly found in salivary gland epithelial cells of healthy

individuals, SS patients exhibit increased levels of HLA-DR

expression in their salivary gland epithelial cells (172). This allows

them to present EBV antigens to T cells and become targets of CD4+

CTL-mediated killing, which contributes to tissue damage. Indeed,

a study investigating the cytotoxic immune response in ectopic

lymphoid structures with persistent EBV infection in SS salivary

glands revealed an increase in CD4+ GzmB+ CTL that was a risk

factor for organ lesions (174). In contrast, CD8+ GzmB+

lymphocytes were impaired and did not correlate with the

damage of the salivary glands. Moreover, a positive correlation

has been observed between elevated levels of CD4+ CTL in the

peripheral blood and their increased infiltration into the salivary
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glands, which is associated with disease progression and severity

(175). Thus, CD4+ CTL might play an important role in the

pathogenesis of EBV-induced disease.

Taken together, anti-viral CD4+ CTL are found in almost every

chronic viral infection. They seem to compensate for CD8+ CTL

responses when they are poorly induced or become exhausted.

Their induction and differentiation are counter-regulated by Tregs,

most likely because they can be dangerous inducers of

immunopathology. CD4+ CTL often kill via the Fas/FasL

pathway, but they can also facilitate the exocytosis pathway of

killing. They are able to keep persistent virus in check, but especially

their FasL pathway of killing is not sufficient to eliminate chronic

viruses. CD4+ CTL are interesting tools for cure approaches in

chronic viral infections, but their potential to induce

immunopathology has to be carefully taken into account.
3 CD4+ CTL in solid cancers

Although CD4+ CTL have been recognized for decades in viral

infections, they only recently attracted attention as direct anti-

tumor effectors in solid cancers (176). Here we summarize

preclinical and clinical data indicating killing of MHC class II-

positive tumor cells by CD4+ CTL and highlighting the therapeutic

potential of this T cell subset.

First evidences for direct anti-tumor activity of CD4+ CTL were

provided by two studies in the murine melanoma model B16 in

2010 (43, 44). Tumor-bearing lymphopenic mice received adoptive

therapy with CD4+ T cells expressing a transgenic T cell receptor

(tgTCR) specific for the melanoma antigen TRP-1. The transferred

T cells eliminated large tumors and mediated durable regression.

Subsequent analyses showed production of IFNg and GzmB- and

Perforin-dependent killing of tumor cells by tgTCR CD4+ T cells in

a MHC class II-dependent manner (43, 44). Combining T cell

transfer with anti-CTLA-4 treatment enhanced the anti-tumor

activity of CD4+ CTL (44). A third study later on demonstrated

that melanoma control by TRP-1 tgTCR CD4+ CTL could also be

improved when T cells were co-administered with an agonist

antibody binding the costimulatory OX40 molecule (8).

Interestingly, evidence for the therapeutic efficacy of adoptively

transferred CD4+ T cells in the clinical setting was provided in

melanoma already in 2008. Durable remission of metastases was

achieved upon treatment of a patient with ex vivo expanded

autologous CD4+ T cell clones specific for the MHC Class II-

restricted tumor antigen NY-ESO-1 (177). Those T cells secreted

IFNg upon antigen-specific activation and were detected over several

months in the peripheral blood of the patient. Several years later, the

Rosenberg team reported about a patient with metastatic

cholangiocarcinoma who received treatment with ex vivo expanded

autologous tumor infiltrating lymphocytes (TILs), containing CD4+

T cells specific for a MHC Class II-restricted mutant tumor antigen

(neoantigen) (178). Partial regression of target lesions and disease

stabilization were achieved by transfer of a TIL product, which

contained around 25% of neoantigen-specific CD4+ T cells.

Remarkably, upon disease progression the patient was retreated

with TILs. In this case the TIL product contained >95% of
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neoantigen-specific CD4+ T cells, which again mediated disease

regression (178). In a following study, patients with different

cancers were treated with autologous CD4+ T cells purified from

peripheral blood and engineered to express a TCR specific for the

shared MHC Class II-restricted tumor antigen MAGE3. The tgTCR

CD4+ T cells induced objective clinical responses, including a

complete remission and partial regressions (179).

These cell therapy studies clearly demonstrated the clinical

relevance of tumor antigen-specific CD4+ T cells in treatment of

different cancers (177–179). Although data on cytolytic anti-tumor

activity of the transferred CD4+ T cells was not provided, release of

the effector cytokine IFNg was demonstrated. Notably, in contrast

to cytolytic granules, which act only locally at the T cell-tumor cell

interface, IFNg spreads into the tumor microenvironment (180).

The cytokine triggers activation of the JAK1/2-STAT1 signaling

pathways in bystander tumor cells, which can have cytostatic and

cytotoxic effects (181, 182). Recent studies in different murine

tumor models demonstrated that the long-distance IFNg effects

critically contribute to tumor control (183–185), and that control is

lost when tumor cells acquire resistance to IFNg, as we observed

also in the clinical setting (182, 186). Thus, CD4+ CTL could kill

their targets directly via cytolysis but also indirectly by IFNg-
dependent mechanisms. In fact, this has been demonstrated by a

recent preclinical study in which mice with different tumor

transplants, including melanoma, received adoptive therapy with

chimeric antigen receptor (CAR)-modified CD4+ T cells. The

transferred CAR-CD4+ T cells killed cancer cells via Perforin-

and IFNg-dependent mechanisms but could not eliminate IFNg-
resistant tumors (187).

Meanwhile, evidence for the presence of IFNg-producing CD4+

CTL in solid human cancers have been generated by single cell RNA

sequencing and flow cytometry analyses of tumors and tumor

infiltrates. Based on the expression of Granzymes, Perforin,

Granulysin and other cytolysis-associated markers, CD4+ CTL

have been detected in bladder cancer, colorectal cancer, lung

cancer, melanoma, and other tumors (146, 188–194). A study by

Oh et al. in bladder cancer highlighted the presence of distinct

subsets of CD4+ T CTL in the tumor microenvironment, expressing

different combinations of cytolytic genes (GZMA, GZMB, GZMK,

PRF1) . Approximately 50% of those CD4+ CTL were

polyfunctional, showing concomitant expression of the effector

cytokines IFNg and TNFa (191). Important to note, MHC Class

II-dependent CD4+ CTL were subjected to inhibition by tumor-

resident Tregs (191).

Intense characterization of tumor antigen-specific CD4+ CTL

was carried out also in melanoma. Cachot et al. applied antigen

peptide-loaded multimers for isolation and subsequent

characterization of NY-ESO-specific CD4+ CTL. Via this strategy,

MHC Class II-restricted CD4+ CTL were detected ex vivo not only

in tumors but also in tumor-infiltrated lymph nodes and peripheral

blood of melanoma patients (146). Oliveira et al. analyzed in depth

the antigen specificity and functional phenotype of tumor-resident

CD4+ melanoma TILs. They found MHC class II-restricted

neoantigen-specific cytotoxic CD4+ T cells largely exhausted and

coexisting with MHC class II-restricted neoantigen-specific

Treg (194).
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So far, the indicated studies generated exciting data about the

therapeutic potential and presence of CD4+ CTL in tumor

infiltrates. But further intense investigations are needed to

understand the molecular characteristics and development of

tumor-specific CD4+ CTL in solid cancers in order to boost their

anti-tumor activity. In this regard it should be mentioned that both,

the bladder cancer and melanoma study showed elevated expression

of SLAMF7 on tumor antigen-specific CD4+ CTL (146, 191) and

that targeting SLAMF7 with agonistic antibodies enhanced the

cytotoxic activity of CD4+ T cells (146). Thus, it is tempting to

speculate that combining SLAMF7 agonists with personalized

vaccines could be a promising strategy to specifically amplify

cytotoxic anti-tumor CD4+ T cell responses.
3.1 Direct targeting of MHC class II-
positive tumor cells by CD4+ CTL

Due to the fact that CD4+ CTL attracted attention in solid

cancers only recently, there is still limited but growing data about

their cytotoxic activity against tumor cells. So far, CD4+ T cell-

mediated killing of either MHC Class II-matched or autologous

tumor cells has been demonstrated inmelanoma, bladder cancer and

glioblastoma (12, 146, 191, 195, 196). Kitano et al. were the first to

described cytolysis of human melanoma cells by NY-ESO-specific

CD4+ T cells, that they found induced or enhanced in peripheral

blood of patients treated with the anti-CTLA-4 blocking antibody

ipilimumab. Those T cells expressed Perforin and GzmB and

efficiently killed autologous melanoma cells in an MHC Class II-

dependent manner (12). To achieve MHC Class II antigen

presentation tumor cells were either transduced with CIITA the

transcriptional activator of genes encoding theMHCClass II antigen

presentation machinery (146, 197), or pretreated with IFNg, known
as potent inducer of MHC Class II expression (12).

Important to note, a sizable fraction of melanomas shows IFNg-
independent constitutive MHC class II surface expression (194, 195,

198–200), which in general is considered a specific feature of

professional APC as dendritic cells, macrophages or B cells. So far,

the mechanisms driving constitutive MHC class II expression in

melanoma are poorly understood. Recently, we demonstrated that

JAK1/2 signaling is involved in both IFNg-induced and IFNg-
independent constitutive MHC Class II expression (195). The

pathways triggering aberrant JAK1/2 activation in the absence of

interferons remain to be determined. In line with this regulation,

patient-derived JAK1/2-deficient melanoma cells displayed a stable

MHC Class II-negative phenotype, resistant to CD4+ CTL (195).

Interestingly, prior studies showed that ERK signaling negatively

regulates constitutive but also IFNg-induced CIITA expression (201,

202), suggesting that oncogenic Ras-RAF-MEK-ERK pathway

activation in tumor cells counteracts MHC class II antigen

presentation. So far, constitutive MHC class II expression has mainly

been studied inmelanoma, but seems to be present also in other cancers

like glioma and lung cancer (195, 199, 203, 204), indicating a broader

relevance of the MHC class II-positive tumor cell immunophenotype.

According to its role in CD4+ CTL activation, melanoma cell-

intrinsic expression of MHC class II molecules has been associated
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with improved patient prognosis and response to immunotherapy

with immune checkpoint blocking antibodies (200, 205). Similar

data has been obtained for lung adenocarcinoma (206), but is

lacking for most other tumors. This should encourage research to

deepen our understanding on MHC class II regulation in different

cancers as a basis for its therapeutic manipulation and killing of

tumor cells by cytotoxic CD4+ CTL. As MHC class II-positive

tumor cells can stimulate also tumor antigen-specific Treg (194), it

is might be necessary to combine therapeutic MHC class II

upregulation on cancer cells with Treg depleting strategies.
3.2 Virus-induced CD4+ CTL for therapy of
solid cancers

As CD4+ CTL have been intensively studied in the context of viral

infections, this led to the idea of exploiting those cells also in therapy

on solid cancers. The concept is based on the observation that virus-

specific T cells have been detected among the infiltrates of different

cancers. For instance, TILs isolated from both lymph node and

subcutaneous tumors of melanoma patients contained CD8+ T cells

with specificity for viral antigen epitopes originating from CMV, EBV

or influenza A (207). CD8+ T cells specific for epitopes from those

viruses were present also among TILs from glioblastoma, colorectal

and lung cancer (208, 209). In line with the clinical observations, a

preclinical study in B16 melanoma demonstrated that virus-specific

CD8+ T cells infiltrated cutaneous tumors not only upon acute

infection with CMV or poxvirus, but were resident in lesions after

poxvirus elimination and during the chronic state of CMV infection

as well (210). The therapeutic potential of tumor-resident virus-

specific memory T cells has already been demonstrated in different

murine tumor transplant models. Activation of virus-induced T cells

by intralesional injection of viral antigen peptides delayed tumor

growth (209, 211) (Figure 2A). Alternatively, immunocojugates have

been proposed for delivery of viral epitopes into tumors (Figure 2A).

In this case, viral peptides were coupled to antibodies targeting a cell

surface protein expressed on tumor cells. Upon immunoconjugate

binding the surface complex was internalized and viral peptides were

shuttled to the ER for loading onto MHC molecules. In a xenograft

tumor model, systemic application of the immunoconjugates

mediated recruitment of adoptively transferred virus-specific T cells

into the tumor and combined administration of immunoconjugates

with immune checkpoint blocking antibody suppressed tumor

growth (212). Although the aforementioned studies focused on

CD8+ T cells, it is expected that tumor infiltrates contain also

virus-specific CD4+ CTL that could be exploited for therapy of

solid cancers by applying similar therapeutic strategies.

Notably, activation of tumor-resident virus-specific T cells might

even be applicable to cancer patients who not yet encountered an

infection with the specific pathogen. Analyses of the CD4+ T cell

repertoire from adults detected HIV-1-, HSV- and CMV-specific

CD4+ T cells in blood from unexposed individuals (213).

Surprisingly, these CD4+ T cells showed features of memory T cells

even without direct antigen contact, namely expression of memory-

associated genes, clonal expansion and rapid cytokine production.

Further analyses on HIV-1-specific CD4+ T cells from unexposed
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individuals revealed TCR cross-reactivity towards similar

environmental microbial peptides (213). Although this study did

not specifically focus on cytotoxic CD4+ T cells, it provided important

insights into cross-reactivity of virus-specific CD4+ T cells towards

similar MHC class II-presented peptides.

Currently, T cell cross-reactivity towards viral and tumor

antigens is under intense investigation, as referenced in (214)

(Figure 2B). A recent study demonstrated very broad specificity of

a MHC Class II-restricted CD4 TCR isolated form TILs of a

glioblastoma patient. Those T cells recognized different peptides

derived from pathogenic bacteria, commensal gut microbiota and

also glioblastoma-associated tumor antigens (215).

Overall, these finding suggest that redirecting pathogen-specific

CD4+ CTL towards tumor cells could be a promising mean to

enhance the efficacy of immunotherapies. However, further

investigations are needed to define the antigen cross-reactivity of

CD4+ CTL, to develop approaches that recruit pathogen-specific,

cytotoxic CD4+ T cells into tumors with low immunogenicity and to

unleash strong cytotoxic T cell responses against tumor cells in vivo

without causing severe immune-related adverse events.
4 Conclusion

Many reports on CD4+ CTL in chronic viral infections, virus-

induced cancers, and virus-independent malignancies established the

knowledge that CD4+ T cells not only serve as helper cells but also
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possess direct cytolytic activities, mainly in anMHC II-restricted way.

Given that CD4+ CTL often play protective roles in antiviral or

antitumor immunity, their molecular pathways of antigen control

need to be investigated in detail and their possible detrimental effects

should be studied when they are targeted for immunotherapy.

Therefore, it is essential to define their mechanisms of cell

differentiation and function as well as to describe their distinctive

phenotypical markers. In order to modulate CD4+ CTL activity and

improve antiviral and antitumor immunity, single-cell resolution

approaches should be intensified to further deepen the

characterization of this unique T cell subset in the future.
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FIGURE 2

Strategies to exploit virus-induced cytotoxic CD4+ T cells in therapy of solid cancers. (A) Proposed model for reactivation of virus-specific CD4+ CTL
based on endogenous and exogenous loading of viral-antigen peptides onto tumor MHC Class II molecules to mimic local re-infection with a
previously encountered pathogen. 1. Synthesis of immunogenic peptides from chosen virus; 2a. Intratumoral injection of viral-peptide vaccine; 2b.
Conjugation of immunogenic viral peptides to an antibody targeting a specific integral tumor membrane protein for internalization upon
engagement. 3. Binding of the immunoconjugate to its target; 4. Engagement-triggered internalization of the immunoconjugate complex into the
endosomal compartment; 5. Release of antibody from the complex and dissociation of the peptide from the antibody; 6. Loading of released viral
peptide onto MHC Class II molecules; 7. Transport of the peptide-MHC complex to the cell surface for presentation to CD4+ T cells. The proposed
endogenous loading model (2b-7) is based on work by Sefrin et al. (212). (B) Cross-recognition of MHC Class II-presented tumor antigen peptides by
virus-induced CD4+ CTL based on sequence similarity. Potential killing-modes of CD4+ CTL are depicted. Created with BioRender.com.
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Adenosine (Ado) is a well-known immunosuppressive agent that may be released

or generated extracellularly by cells, via degrading ATP by the sequential actions

of the ectonucleotides CD39 and CD73. During inflammation Ado is produced by

leukocytes and tissue cells by different means to initiate the healing phase. Ado

downregulates the activation and the effector functions of different leukocyte

(sub-) populations and stimulates proliferation of fibroblasts for re-establishment

of intact tissues. Therefore, the anti-inflammatory actions of Ado are already

intrinsically triggered during each episode of inflammation. These tissue-

regenerating and inflammation-tempering purposes of Ado can become

counterproductive. In chronic inflammation, it is possible that Ado-driven anti-

inflammatory actions sustain the inflammation and prevent the final clearance of

the tissues from possible pathogens. These chronic infections are characterized

by increased tissue damage, remodeling and accumulating DNA damage, and are

thus prone for tumor formation. Developing tumors may further enhance

immunosuppressive actions by producing Ado by themselves, or by “hijacking”

CD39+/CD73+ cells that had already developed during chronic inflammation.

This review describes different and mostly convergent mechanisms of how Ado-

induced immune suppression, initially induced in inflammation, can lead to

tumor formation and outgrowth.

KEYWORDS

adenosine, tumor, chronic inflammation, immunosuppression, hypoxia
1 Introduction

A connection between inflammation and cancer was already reported in 1863 by

Rudolf Virchow (1). Recent epidemiological studies have highlighted the interplay between

cancer and inflammation, whether it is triggered by infection or not. Two major hypotheses

have been proposed to explain the potential association between inflammation and cancer.

One hypothesis implicates that sustained and pathogenic inflammation intrinsically

promotes genetic instability during cancer pathogenesis. In another hypothesis, a

defective host immunity, which is unable to clear pathogens, leads to chronic

inflammation that finally facilitates cancer development (2, 3). These two interconnected

pathways result in immunosuppression, thereby providing a favorable tissue environment

for tumor development.
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Immunosuppression is ubiquitously present in healthy and

diseased individuals. It is a critical mechanism for maintaining

self-tolerance and for the resolution of acute inflammation. At later

stages of a ceasing inflammation, immunosuppression facilitates

tissue remodeling and repair. On the contrary, immunosuppression

is also a mechanism by which pathogens and tumor cells escape

immune surveillance to survive and to proliferate.

Adenosine (Ado), besides being a neurotransmitter, has been

thoroughly investigated for its immunosuppressive functions. Ado

is generated from the sequential hydrolysis of adenosine

triphosphate (ATP) by the ectonucleotidases CD39 and CD73, or

by release through pores. Cells which express CD39 and CD73 exert

suppressive function through the production of Ado. For instance,

regulatory T cells (Tregs) constitutively express CD73, and their

suppressive capacity in several inflammatory models depends on

the production of Ado. In the immune system Ado is capable of

suppressing dendritic cells, T cells, B cells and monocytes in a way

that these cells are impeded in different immune stimulatory

functions. This immunosuppressive activity of Ado is mainly

mediated by A2A and A2B Ado receptors, however, A1 and A3

receptors for Ado are also defined but their cellular signaling and

contribution to immune suppression is less clear.

Ado may have implications for the development of tumors from

chronic inflammations. Due to its regulatory functions during

inflammation, Ado may at first maintain an ongoing immune

reaction by preventing the immune system from finally clearing

pathogens or harmful agents from the body, thus helping to turn an

acute into a chronic inflammation. Such a lingering inflammation

provides a tissue environment that fosters DNA damage and

neoplasia, eventually leading to tumor formation. The developing

tumors start growing, and an already adenosine-harboring and thus

immune suppressed tissue, is less capable of preventing the

outgrowth of tumors. Moreover, some tumors even express the

Ado producing enzymes CD39 and CD73 themselves, or are able to

recruit further Ado-producing cells to create a tumor permissive

environment. Although not many data on the detailed mechanisms

are available yet, a role for Ado produced in inflamed tissues for

later tumor development is conceivable, given its strong immune

suppressive properties.

2 How is tumor growth, chronic
inflammation and Ado connected
at all?

2.1 Molecular mechanisms

Many factors and molecular means are involved in cancer

initiation, among them are inflammation and infection. Between

15% and 20% of all neoplasms are thought to be initiated by

infections, chronic inflammation or autoimmune inflammatory

disease (4, 5). Among them are colorectal carcinoma, occurring

with high prevalence in persons suffering from Inflammatory bowel

diseases, such as Crohn’s disease and chronic ulcerative colitis, (6,

7), gastric cancer that is induced by Helicobacter pylori-infections

(8), and human papillomavirus-related cervical cancer (9).
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Moreover, patients have an increased risk of pancreatic cancer

when suffering from chronic pancreatitis (10), and lung cancer is

enhanced by chronic lung infections, such as tuberculosis (11).

An inflammatorymicroenvironment is believed to raise mutation

rates and to promote the proliferation of mutated cells. Inflammatory

cells generate reactive oxygen species (ROS) and reactive nitrogen

intermediates, causing DNA damage and genomic instability

(Figure 1). For example, ROS has been shown to directly deactivate

mismatch repair enzymes (3, 12). And once the mismatch repair

system is compromised, inflammation-driven mutagenesis

intensifies, leading to the inactivation of crucial tumor suppressors

like transforming growth factor b (TGFb) receptor type 2 (Tgfbr2)

and Bcl-2 Associated X protein (Bax) (3). p53 mutations that are also

likely to result from oxidative damage during inflammation, have

been detected in both, cancer cells and non-dysplastic inflamed

epithelium, in colitis associated cancer, further substantiating the

notion that chronic inflammation induces genomic changes (13).

In more general terms chronic inflammation may act as potent

co-factor for tumor development, as the colonic irritant dextran

sodium sulfate (DSS) may lead to DNA damage and the development

of colonic adenomas when given during chronic inflammation (14).

In contrast, DSS alone is only a weak carcinogen and is not able to

induce tumors in “healthy” subjects by itself (15).

Another link between inflammation and oncogenic mutations

involves the upregulation of AID (activation-induced cytidine

deaminase), an enzyme that induces cytosine deamination in

DNA during immunoglobulin gene class switching (16). AID is

overexpressed in various cancers, and it is induced by inflammatory

cytokines through NF-kB-dependent mechanisms or TGFb (16).

AID promotes genomic instability and increases mutation

occurrence during the error-prone joining of DNA breaks,

impacting critical cancer genes like Tp53, c-Myc, and Bcl-6 (3).

AID contributes to the development of lymphomas, gastric cancers,

and liver cancers (16, 17). Other suggested mechanisms of

inflammation-induced mutagenesis involve effects on non-

homologous recombination and NF-kB-mediated inactivation

of p53-dependent genome surveillance (3). Additionally,

inflammation has been connected to epigenetic reprogramming

through Jmjd3 (Jumonji domain-containing protein D3), an NF-kB
target gene (18).
2.2 The role of leukocytes and adenosine

Although all of these aforementioned tumors originate from

different tissues, and are associated with different types of infection,

and may employ different molecular pathways for tumor

development, a common denominator may be the recruitment of

immune cells during the onset of the Inflammation and/or the

following tumor growth.

The consecutive infiltration of the tissues by immune cells is

initially designed to battle bacteria, viruses or other harmful agents.

To this end, the onset of an inflammatory episode helps to clear the

body from the infection, and later, immune cells help to downregulate

inflammation and to promote healing and the re-establishment of

intact tissues. For these later tasks, immune cells are capable of
frontiersin.org
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producing immunosuppressive mediators and growth factors, which

are meant to repair tissue damage and to stimulate proliferation of

otherwise quiescent cells that are adjacent to the site of infection.

One of these factors is the broadly expressed suppressive

mediator Ado. It can be released by cells, or it is extracellularly

produced by actions of the two ectonucleotidases CD39 and CD73.

These enzymes are expressed on various types of immune cells, e.g.

T cells, dendritic cells, B cells and neutrophils, with a preference for

immune suppressive cells, such as regulatory T cells, immature

dendritic cells and suppressive B cells (19). As for their function,

CD39 dephosphorylates proinflammatory extracellular ATP that is
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released by dying, injured or alarmed cells, a situation that occurs

during inflammation, to Ado diphosphate (ADP) and Ado

monophosphate (AMP). In a second step, AMP can be degraded

to Ado, which has, as opposed to ATP, potent anti-inflammatory

potential. Ado engages four G protein-coupled adenosine receptors

(ARs), e.g. A1, A2A, A2B and A3, and activates downstream

signaling pathways, modulating various cellular functions

according to different cell types and receptor expression patterns

(20). A2A and A2B are predominantly involved in the

immunosuppressive function of Ado (21), and became the focus

of many studies.
FIGURE 1

Inflammation can foster tumor development. During inflammation Immune cells produce factors such as ROS, cytokines and Ado that stimulate cell
growth and battle pathogens. But these factors have also mutagenic potential and once premalignant cells have developed, the immunosuppressive
actions will be augmented by either direct production of Ado, expression of CD73+, or by recruitment of CD73+ cells, enabling the tumor to create a
favorable growth environment. Ado, adenosine; DC, Dendritic cell; MF, macrophage; ROS, reactive oxygen species; Treg, regulatory T cells.
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Thus, an inherent immunosuppressive and even pro-

proliferative function of immune cells, owed to their capability to

produce Ado, or to react to it, is already present during

inflammatory episodes, and tumors, early on during development

of cancer, may take advantage of this to escape immunologic

control. In a broader sense, actions of Ado during chronic

inflammation is tumorigenic whilst anti-inflammatory Ado can

maintain neoplasms and growth (Figure 2). The specific time

sequence of Ado-related signaling can confer differential effects

on tumorigenesis or cancer progression via several mechanisms on

distinct cell types as we will further discuss.
3 Functions of Ado during
inflammation and tumor development

3.1 Direct pro-inflammatory effects of Ado

It has been delineated in many publications that during

infection the incoming innate immune cells, and later, cells from

the adaptive immune system, may have a great impact for

“preparing the soil for tumor growth”. That is, continuous

inflammation with cell death, tissue destruction and enhanced cell

proliferation may foster an environment in which gene editing,

modification of DNA and proliferative pathways (e.g. NF-kB, and
Wnt signaling), common to inflammation and cancerous cells, may

lead to tumor development (22–24). In this regard some reports

show direct proinflammatory actions of Ado.

In a model of DSS-induced colitis blockade of A2B Ado

receptors by the antagonist ATL-801 reduced the severity of

colitis, along with lower levels of IL6 (25). Similarly, PSB1115, an

antagonist for A2B Ado receptors, suppressed the inflammation of

the intestine in a neonatal rat model of enterocolitis (26). These

studies were further supported by the observation that genetic

deletion of A2B Ado receptors ameliorated colonic inflammation

induced by DSS or 2,4,6-trinitrobenzene sulfonic acid (TNBS) (25).

Moreover, also A1 Ado receptors may act proinflammatory by

directly stimulating neutrophil adherence to endothelium and

inducing chemotaxis towards inflammatory tissues (27). Thus, by

showing that antagonists to A2B and A1 Ado receptors are able to

suppress inflammation, one can conclude that Ado itself has

proinflammatory functions, which may promote tumorigenesis at

later stages of the disease, involving mechanisms as outlined before.
3.2 Effects of Ado on leukocytes in tumor
and inflammation

3.2.1 Macrophages
Macrophages are heterogenous myeloid cells originating from

monocyte precursors in the blood that differentiate in the presence

of cytokines and growth factors in the tissues they have infiltrated

(28). Macrophages are present during chronic inflammation, during

the development of malignant tumors and the progression of tumor

growth (29). Classically activated M1 phenotype macrophages

exhibit a pro-inflammatory phenotype and are present at sites of
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chronic inflammation during the early stages of cancer. The exact

role of macrophages in early stages of cancer is controversial, since

previous studies claimed that macrophages contribute to generating

a milieu that promotes neoplasia by releasing copious amounts of

mutagenic free radicals that promote cell transformation (30, 31).

During the maintenance of inflammation, uncontrolled

macrophage responses can become pathogenic and lead to disease

progression and chronic inflammation (32). However, other studies

added data supporting that M1 macrophages have inflammatory,

but more predominantly, tumor-destructive phenotypes, as they

eradicate only neo-transformed cells instead of normal cells (33–

35). Moreover, they antagonize the tumor-promoting actions of

suppressive cells (36).

By contrast, alternatively activated M2 macrophages display an

anti-inflammatory phenotype, and comprise the main population

when macrophages infiltrating established tumors. The

term tumor-associated macrophages (TAMs) is frequently

synonymously used. The polarization of TAMs, controlled by

cancer cells, is not fixed to distinct M1 or M2 subpopulations, but

a rather hybrid activation state of pro- and anti-inflammatory

phenotype that can be found in developing cancers (28).

Therefore, as cancer progresses, the malignant cells may hijack

the polarization of macrophages which were initially recruited by an

inflammatory response, by secreting M2-differentiating cytokines

and chemokines, e.g. interleukin10 (IL10), CC chemokine ligand

(CCL)2/3/4/5/7/8, CXC chemokine ligand (CXCL)12, vascular

endothelial growth factor (VEGF), and Platelet-derived growth

factor (PDGF). As a result, the M2-like macrophage population

increases and appears to be the main population in later

tumors (37).

In these processes, Ado has various inhibitory effects on

macrophages, as it blocks their colony stimulating factor (M-

CSF)-dependent proliferation (38), suppresses their phagocytic

function (39), and dampens M1 macrophage activation mediated

by A2A receptors (40). In addition, Ado promotes alternative-

macrophage activation, as shown by the increased expression of

several M2-macrophage markers, including arginase 1, tissue

inhibitor of matrix metalloproteinase 1 and macrophage

galactose-type C lectin 1. This is mainly mediated by the

engagement of A2B Ado receptors and to a lesser extent by A2A

receptors (41). Recent studies suggest a role of tumor-derived

exosomes in promoting A2B Ado receptor-mediated polarization

of macrophages toward an M2-like phenotype by carrying

enzymatically active CD39/CD73 and Ado. The macrophages

reprogrammed by tumor- derived exosomes secrete elevated

concentration of pro-angiogenic factors (e.g. Angiopoietin-1,

Endothelin-1, Platelet Factor 4 and Serpin E1) and subsequently

stimulate growth of endothelial cells (42). Ado, generated by

cervical cancer cells, stimulate the migration of myeloid cells to

cancer tissues, in which they differentiate to CD39 and CD73-

expressing M2-polarized macrophages. Thus, the M2-like

macrophages contribute to raising extracellular concentrations of

Ado and form a self-amplifying immunosuppressive mechanism

(43). In the aggregate, these effects show synergistic actions of Ado

and tumor derived factors, facilitating the conversion of

proinflammatory M1 macrophages, which may initially be
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recruited by inflamed tissues, into tumor-permissive M2

subtypes (Table 1).

3.2.2 Dendritic cells
Dendritic cells (DCs) are myeloid cells that bridge innate

immunity and adaptive immunity, by presenting antigen and

activating T cells during infection and tumor pathogenesis

(59). Thus, they are key players that are present in the tissues

and lymphoid organs when the transitions from acute

to chronic inflammation and finally to tumor generation

takes place.

Ado, by engagement of A2B receptors (60), modifies DC

maturation, as shown by reducing expression of MHC class II

and CD86, as well as by reduction of tumor necrosis factor a
(TNFa) and IL12 secretion, and by increased IL10 production (44,

61). Consequently, specific inhibition of A2B Ado receptors

improves DC activation by increasing the production interferon g
(IFNg) and the IFNg-inducible chemokine CXCL10. It leads to

enhanced recruitment of activated T cells that express CXCR3, the

receptor for CXCL10, thereby reducing the growth of MB49

bladder- and 4T1 mammary carcinomas (62). A2A Ado receptors
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have direct suppressive effects on the function of tumor associated

macrophages and DCs. This is facilitated by reducing IL-12

secretion and increasing IL-10 expression, leading to indirect

suppression of T- and natural killer (NK) cells. In accordance

with this, myeloid-specific deletion of A2A Ado receptors in mice

led to enhanced effector function of DCs, T cells and NK cells,

preventing them from developing primary and metastatic

tumors (63).

Moreover, also A2B Ado receptors are active in DCs, as their

engagement modifies the differentiation of DCs towards a

phenotype lacking expression of the DC marker CD1a. Instead,

these DCs display increased VEGF production and high levels of

tolerogenic molecules, e.g. VEGF, IL-8, IL-6, IL-10, cyclooxygenase-

2, TGFb, and IDO (indoleamine 2,3-dioxygenase). These Ado-

induced DCs possess impaired allostimulatory functions and

support tumor vascularization, resulting in accelerated tumor

growth in mice (44). This resembles the action(s) of Ado in the

polarization of macrophages towards M2 phenotype, and since both

macrophages and DCs are derived from monocytes, they may share

similar intrinsic mechanisms, which are triggered by Ado

receptors (Table 1).
A

B

FIGURE 2

Schematic view of how Ado levels are involved in regulating inflammation and stimulating tumor growth. (A) After insult and pathogen invasion, immune
response is started. Soon thereafter Ado is produced by leukocytes, for example regulatory T cells and tissue cells, to dampen the immune reaction and
to start the healing phase of an infection. The infection ceases and the tissue is regenerated with help of Ado and other immune suppressive mediators.
(B) In the course of an infection, the immune suppressive effects of Ado together with an ongoing immune response may be too strong to be cleared at
an instant. A chronic inflammation may ensue with high levels of Ado. Ado is creating an immunosuppressive tissue environment and at the same time
inflammation induces mutagenesis, eventually leading to development of tumors. Once established, tumors may recruit Ado producing cells or generate
Ado by themselves, maintaining an immunosuppressive environment, to escape immune surveillance. Ado: adenosine.
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3.2.3 T cells
3.2.3.1 CD8+ T cells

Antitumor CD8+ T cells express both A2A and A2B Ado

receptors and exert anti-tumor effect mainly through the

production of IFNg. Several independent studies using Ado

receptor gene-targeted mouse models or selective Ado receptor

inhibitors (45, 64–67) have established that Ado, mediated by A2A

and/or A2B Ado receptors, inhibits the anti-tumor activity of CD8+

T cells, supporting metastasis and neoangiogenesis in cancerous

tissues. In detail, A2A Ado receptor signaling in CD8+ T cells

dampens T cell receptor signaling by inhibiting activation of

Notch1 (68). It suppresses effector functions of tumor infiltrating

CD8+ T cells by increased protein kinase A (PKA) activation,

leading to impairment of the mTORC1 (mammalian target of

rapamycin complex 1) pathway (69). Thereby, Ado disrupts T cell

activation, proliferation and cytokine production (70). A2A Ado

receptor engagement also suppress T cell effector functions by

upregulating the expression of immune-checkpoint molecules,

including TIM3 (T cell immunoglobulin and mucin domain-

containing protein 3) and PD-1 on CD8+ effector T cells (71). Of

note, CD39+CD8+ T cells in chronic viral infections displayed high

expression of PD1 and cytotoxic T-lymphocyte–associated antigen

4 (CTLA4) (72). Gene expression arrays as well as analysis of

surface molecules revealed an exhausted phenotype of T cells.

However, whether this impacts the function is less clear, but the

strong correlation of CD39 expression with an exhausted phenotype

of T cells observed in chronic inflammation corroborates our notion

that chronic infection and tumor development may be bridged

by Ado.
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As for the regulation of Ado production, it is plausible that

enhanced expression of CD39 and(or) of CD73 by T cells (as well as

on tissue cells), contributes to generation of Ado in tissues of tumor

and chronic infections, and thus the activation of A2A/A2B

signaling through paracrine and/or autocrine mechanisms is

responsible for inducing dysfunction in T cells. Despite the broad

inhibitory effect of Ado on T cells, A2A signaling was also reported

to protect T cells from activation-induced cell death (73) and to be

important for the differentiation of T cells with memory phenotype

(74, 75). These two effects may contribute to the transition from

acute to chronic inflammation, because Ado may impede the

termination of an acute inflammation by (i) preventing the

activation-induced cell death of activated T cells, and (ii) by

inducing enhanced differentiation of memory T cells. This may

keep the inflammation ongoing as memory T cells are long lived

and fast reactive as compared to naïve T cells.

3.2.3.2 CD4+ T cells

Ado suppresses the effector functions of both, CD8+ and CD4+

T cells (76). Extensive studies using Ado receptor subtype-selective

agonists and antagonists demonstrate that Ado attenuates

inflammatory cytokine production in CD4+ T cells, primarily via

the A2A receptor. In murine CD4+ T cells, TCR signaling increased

the expression of A2A but not of A2B receptor mRNA. Accordingly,

A2A receptor-selective agonists ATL146e and CGS21680 (CGS)

exhibited a prominent inhibition of the release of IFN-g (77) that is
mediated by cAMP accumulation. Furthermore, Ado was found to

substantially inhibit the production of IFN-g and IL-2 in human

melanoma-specific CD4+ T helper (Th) 1 cells, mediated via cAMP-

activating PKA type I, as revealed by the application of CGS and the

A2A Ado receptor-selective antagonist ZM241385 (47). In vivo,

CGS administration reduced expansion of alloantigen specific Th1

cells, and the inhibition was abrogated by IL-2 therapy (78).

Additionally, A2A Ado receptor mRNA expression in Th2

effector T cells increased following TCR stimulation. A2A Ado

receptor stimulation suppressed the development of TCR-

stimulated naïve T cells into Th2 cells, as indicated by decreased

IL-4 secretion after CGS treatment in TCR-stimulated effector Th2

cells (48).

The effect of Ado on Th17 cells is controversial. Ado favors

Th17 differentiation by acting via A2B receptors on DCs and

stimulating production of IL-6 (79, 80).

In an autoimmune uveitis model, a nonselective Ado receptor

agonist, applied shortly prior to onset of the disease inhibits the Th1

response and enhances the Th17 responses. In contrast, in an early

stage of the already ongoing diseases injection of the same amount

of Ado receptor agonist inhibits both Th1 and Th17 responses (81).

Furthermore, A2A Ado receptor activation in naïve CD4+ T cells

skews their differentiation away from Th1 effector cells toward the

expansion of immune-suppressive regulatory T cells (Tregs), a

subset of CD4+ T cells highly expressing CD25 and the forkhead

transcription factor Foxp3, which play a vital role in immune

suppression (36, 82).

Accumulation of Tregs in tumor microenvironment is frequent,

as Tregs comprise the majority of tumor-infiltrating lymphocytes
TABLE 1 Effects of adenosine on the function of different cells.

Cell Type Adenosine-mediated effect on cells Ref.

Macrophages Dampens M1 proliferation and activity by A2A;
Favours tumor-promoting M2 polarization

(40–
42)

Dendritic
cells

Inhibits DC maturation and activation; Induces
expression of inhibitory molecule; Favours tolerogenic
DC differentiation

(21,
44)

CD8+ T cells Suppresses activation, proliferation and cytokine
production; Upregulates co-inhibitory molecules

(45,
46)

CD4+ T cells Suppresses cytokine production and expansion of Th1
and Th2

(47,
48)

Tregs Promotes Tregs expansion, production of immuno-
suppressive cytokines as well as expression of co-
inhibitory receptors

(36,
49,
50)

Natural
Killer cells

Hinders NK cell maturation, proliferation and
cytotoxic function

(51)

Neutrophils Suppresses adhesion, migration and effector functions (52,
53)

B cells Blocks BCR and TLR4 signalling and impairs the
activation and survival of B cells

(54)

Fibroblasts Promotes proliferation; Stimulates production of
matrix proteins and collagen

(55–
57)

Keratinocytes Increases proliferation (58)
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(TILs) at later stages of tumor progression in murine and human

tumors (83, 84). Although Tregs possess different means for

immune suppression, they are capable of synthesizing Ado by

expressing high levels of the ectoenzymes CD39 and CD73, which

provide a major source for Treg derived Ado. For example, Ado

has been shown to be a major mediator of Treg-mediated

immune suppression, which is critical for the downregulation of

inflammatory reactions and for preventing immune reactions going

overboard. That has been shown in models of inflammatory

skin diseases, whereby Tregs devoid of Ado-producing CD73 are

impaired in their immunosuppressive function (85). Consequently,

tumor associated Tregs clearly promote tumor growth by Ado

production. That has been established in several human tumors

and in murine cancer models. (86–88). Of interest, Ado, via A2A

Ado receptors, also feeds back on Tregs in a way as it promotes Treg

cell expansion, the production of immunosuppressive cytokines

(including TGFb and IL10) and the expression of co-inhibitory

receptors including PD-1, CTLA4 and Lymphocyte Activation

Gene 3 (LAG3) (49, 50). Thus, Tregs and Ado may enter a self-

sustaining cycle, starting in chronic inflammation and continuing

during tumor growth (Table 1).

3.2.4 Other leukocyte subpopulations
As Ado receptors are almost ubiquitously expressed by all types

of immune cells, NK cells, neutrophilic granulocytes (neutrophils)

as well as B cells are also susceptible to Ado. But their contribution

to tumor development during inflammation is rather undefined and

the role of Ado is quite often simply to suppress the immune

function of these cells to help tumors grow. For the sake of

completeness, however, the function of those different subtypes

will be briefly described in the following.

Natural killer (NK), together with the effector CD8+ T cells are

effector lymphocytes of the innate immune system and the adaptive

immune system, respectively. NK cells form the first line of defense

against various viral infections and tumors (89) and Ado plays a vital

role in modulation of its effector function. Earlier studies found that

adenosine inhibited NK cell function by interfering granule

exocytosis (90) and by reducing the ability of NK cells to adhere to

neoplastic cells (91). In particular, A2A Ado receptors are abundantly

expressed by NK cells, and A2A receptor activation decreased NK cell

maturation and cytotoxic functions in vitro (51), suppressed pro-

inflammatory cytokines and inhibited granzyme B, perforin and FAS-

Ligand mediated tumor cell lysis by NK cells (51, 92, 93).

In neutrophils, different Ado receptors serve various functions

during inflammation. A3 Ado receptor signaling has been reported

to be the key Ado receptor that facilitate neutrophil chemotaxis by

controlling their trans-endothelial migration (57). In contrast, A2A

Ado receptor activation was reported to suppress adhesion and

migration of neutrophils, as well as their effector functions (52, 53).

And finally, A2B receptors, which are also expressed by neutrophils,

contribute to the maintenance of vascular integrity and attenuate

neutrophil leakage into the inflamed tissue, as A2B Ado receptor

knockout mice subjected to hypoxia exhibit increased tissue

infiltration of neutrophils (94).

In B cells, Ado blocks the downstream NF-kB signaling of the B

cell receptor and toll-like receptor 4 (TLR4) in an A2A-receptor/
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cAMP-dependent manner, thus impairing the activation and

survival of these cells (54). Moreover, CD39high B cells from

human peripheral blood possess enzymatically active regulatory

effects which vigorously produce Ado and mediate suppression of

effector T cells by acting on A2A Ado receptors. Meanwhile, Ado

generated by suppressive B cells activates the A1 and A2A Ado

receptors on adjacent B cells, which generates an autocrine

signaling, and in turn, enlarges the proliferation and functionality

of these regulatory CD39high B cells (95). However, although

B cells are not noticed as major tumor infiltrating population,

their capabilities to produce Ado and their presence during

inflammatory reactions may add to an immunosuppressive and

yet tumor permissive tissue environment (Table 1).
3.3 Effect of Adenosine on
non-immune cells

In the further course of an inflammation, after the infection has

been cleared, Ado has to support the re-establishment of tissue

integrity and wound healing by promoting proliferation of tissue

cells, such as fibroblasts and keratinocytes. To this effect it has been

shown that agonists of the A2A and A2B Ado receptors stimulate

production of matrix proteins in fibroblasts and affect

differentiation into cells, which are critical for wound healing

(55–57). This can even be therapeutically exploited, as topical

application of an A2A Ado receptor agonist improves wound

healing (96) and increases angiogenesis (97) by the production of

VEGF (98) and the down-regulation of thrombospondin-1 (99),

which acts as inhibitor of angiogenesis.

Ado has been shown to promote collagen production of

fibroblasts, leading to scleroderma-like symptoms (57). According

to mouse data, this is mediated by A2A Ado receptors, as A2A Ado

receptor deficient fibroblasts failed to produce collagen in response

to Ado. Scleroderma is considered as chronic inflammatory disease

(100, 101) and in its course scleroderma patients have a higher risk

for colorectal-, breast- and lung cancer (102, 103).

More evidence of an interconnection of Ado in chronic

inflammation and tumor growth can be derived from a study in

humans suffering from a genetic defect in the Ado inactivating

enzyme Adenosine Deaminase (ADA). These patients have a higher

chance of developing Dermatofibrosarcoma protuberans (DFSP), a

rare malignant skin tumor (104).

In addition to fibroblasts, also keratinocytes can react to

stimulation by Ado with proliferation. Evidence is provided by

investigations showing that keratinocytes undergo increased

proliferation after engagement of A2A Ado receptors and an

altered expression pattern of A2A Ado receptors is thought to

play a role in the development of psoriasis (58). Psoriasis is a

sever chronic inflammation of the skin, which is furthermore

connected to an increased occurrence of keratinocyte cancer (105).

In mice, direct tumorigenic actions of Ado can be investigated

much more precisely, as mouse lines with genetic defects tailored to

ablate molecules involved in Ado-mediated signaling, can be

produced. As for mesenchymal, i.e. fibroblast-derived, tumors it

has been shown that the general carcinogenesis is impaired in mice
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lacking the major Ado producing ectoenzyme CD73 (106) and that

ablation of the A2A Ado receptor or injection of its antagonist

caffeine, suppressed the carcinogen-induced tumorigenesis (107). In

mice there are many more studies on how Ado and respective

antagonists can prevent tumor growth, but this is beyond the scope

of this review and details can be found in our previous review (108).
4 Hypoxia as a common denominator
between Adenosine, inflammation and
tumor growth

Findings have shown that the extracellular concentration of Ado

in extracellular fluids of solid carcinomas may reach to 10-4 M (10 to

20-fold higher than normal concentration) (109). The accumulation

of Ado in tumormicroenvironments is probably due to a reduction in

oxygen levels (hypoxia), which is common in cancer. It results

from the fast growth of an expanding carcinoma outcompeting

the development of a supportive vascular bed (110). For example,

the hypoxic fraction in squamous cell carcinomas of the cervix and

head and neck can be as high as 20-32% (111) and a connection to

Ado can be delineated by results obtained with hypoxic cultures of

3LL Lewis lung carcinoma cells that have been shown to generate

elevated levels of extracellular Ado (112). Notably, the extracellular

Ado levels in tumors can be supplemented by the ectoenzymes CD39

and CD73 that additionally mediate production of Ado. The

respective genes are induced by hypoxic situations (113, 114) and

in the pathways the hypoxia-inducible factor1 alpha (HIF1a) is

involved. It upregulates CD73 activity and subsequently increases

synthesis of Ado (115, 116). Vice versa, blockade of CD73 or

respective Ado receptors is able to promote normoxia in some
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cancer models (117, 118), suggesting a feedback mechanism

that further strengthens a proposed Ado-hypoxia interconnection

(Figure 3).

In terms of hypoxia, the tumor microenvironment can be

considered as a chronic low-grade inflammation. These hypoxic

tissue conditions are common in inflammation as well as during

tumor growth, and a relation to “adenosinerg” signaling became

evident early on, as conditions of low oxygen or inflammation favor

the release of extracellular ATP/ADP (119, 120). This assumption

has now been broadened by ample evidence showing that Ado

metabolism and gene expression are tightly linked with oxygen

signaling (121–125).

On a molecular level the relation between oxygen shortness and

Ado became clear, after studies of Synnestvedt et al. (126) identified

a binding site for HIF1a, the major signaling molecules in hypoxia,

in the hypoxia response element promoter of the CD73 gene. In

support of this, it was shown that CD73-deficient mice, i.e. mice

impaired in producing extracellular Ado, suffer substantial vascular

leakage and increased accumulation of lymphocytes when exposed

to low oxygen (127). CD39, another surface molecule involved in

Ado production, is induced in hypoxia by the transcription factor

specificity protein 1 (Sp1) (123), which belongs to a hypoxia-

induced gen set and has been shown to play a protective role in

regulation of CD39 during cardiac and hepatic ischemia (128, 129).

And finally, yet another enzyme involved in Ado turnover is

affected by HIFs: the adenosine kinase. This enzyme converts Ado

to Adenosine-monophosphate and is blocked by HIFs, which leads

to a shift towards more Ado (as compared to Adenosine-

monophosphate) in cells (130).

In addition to the production of Ado by enzymes such as

ectonucleotidases, Ado concentrations are also directly

influenced by HIFs, as HIF affects the transport of Ado by
FIGURE 3

Hypoxia as a common denominator in Ado-induced mechanisms of tumor growth. Hypoxia, i.e. a reduced availability of oxygen, is a key event in
inflammation. Mainly via HIF1a, it stimulates Ado production and differentiation of M2 macrophages. These events exert immune suppressive actions
and hamper immunity of the body. Consequently, development of tumors from infected tissues can escape immune surveillance and growing
cancers maintain hypoxia, which in turn stabilizes the immune suppressive actions of Ado. Ado: adenosine; HIF1a: hypoxia-inducible factor 1 a.
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equilibrative nucleoside transporters (ENTs) and its G-protein-

coupled receptors. For example, ENT1 and ENT2 (131, 132),

two transporters that mediate uptake of Ado into cells, are

downregulated by HIFs and therefore extracellular Ado will be

increased. Finally, HIFs also affect the receptors for Ado, as for the

A2A Ado receptor, it has been shown to be a target gene of HIF2a in

human lung endothelial cells (133), while the A2B Ado receptor has

been identified as a target gene of HIF1a (134, 135).

More experimental evidence supports the hypothesis that Ado

promotes angiogenesis by stimulating VEGF production through

engagement of A2A receptors (29). Synergistic up-regulation of

VEGF expression is induced by Ado via A2A Ado receptors,

together with endotoxin (98, 136) and(or) other toll-like receptors

agonists (137, 138). As VEGF is a target of HIF1, several studies

support that A2A Ado receptor activation stimulates VEGF

production by inducing massive HIF1 expression in macrophages

(98, 139), both of which are main events in response to hypoxia.

Hypoxia also appears to be a key driver in recruiting and

modifying macrophages in tumor tissues. Hypoxia attracts

macrophages by chemokines, HIF1/2 and endothelin-2 (140), and

increases their angiogenic activity (141) by inducing high levels of

pro-angiogenic factors such as VEGF and TNFa (142). The

transition of M1 to M2 phenotype, is an effective method to

permit the resolution of inflammation. However, M2

macrophages have a tumor permissive phenotype by contributing

to various aspects of metastasis (as outlined in the previous

chapter). They promote angiogenesis and cell proliferation,

induce the local suppression of lymphocyte-mediated anti-tumor

immunity and facilitate matrix deposition and remodeling (143).

In a nutshell, one can envision interconnected feedback loops of

inflammation, Ado, hypoxia and tumor development. The primary

role of Ado during inflammation is to harness over boarding

immune activation and cells may sense an inflammatory

environment by hypoxic conditions. In this feedback loop

hypoxia leads to enhanced production of Ado that typically

ameliorates inflammation. As a consequence, normoxic

conditions will be reestablished and in the following normoxic

conditions will lead to downregulation of Ado production.

However, production of Ado and Ado-mediated immune

regulation takes time and/or may be not very effective as

leukocytes and tissue cells differentially express Ado receptors.

Therefore, inflammation may not be fully terminated by Ado and

a lingering (i.e. chronic) inflammation maintains a hypoxic

environment, keeping Ado concentrations elevated. Now, a self-

sustaining loop is keeping two immunosuppressive mechanisms

(i.e. Ado and Hypoxia) active and neoplasm-inducing conditions

will arise.

Once a tumor grows, hypoxia is maintained by the tumor itself,

independent from the inflammation. This may further stimulate

Ado production, but as the tumor causes hypoxia and not the

infiltrating leukocytes, the regulatory feedback loop between
Frontiers in Immunology 09151
Hypoxia, Ado and inflammation is disrupted. The tumor can now

profit from the suppressive tissue environment and escape

immune surveillance.
5 Conclusion

In the course of an inflammation the potent immune suppressor

Ado is produced by cells to prevent overshooting inflammation and

to induce healing of the tissue. At the same time inflammation causes

massive mutations and stimulates extensive cell proliferation that

requires active immune surveillance to prevent induction of tumors.

If this commonly accepted and fine-tuned immunosuppression by

Ado is out of balance, for example by chronic and prolonged

inflammation, immune suppressive actions of Ado may

outcompete the beneficial “healing” and tissue remodeling

capacities of Ado, and inflammation-driven mutations may easily

lead to tumors that can escape the immune surveillance, which is

suppressed by Ado.
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Glossary

ADA adenosine deaminase

Ado adenosine

ADP adenosien diphosphate

AID activation-induced cytidine deaminase

AMP adenosine monophosphate

ARs adenosine receptors

ATP adenosine triphosphate

Bax Bcl-2 associated X protein

Bcl-6 B-cell lymphoma 6

CCL CC chemokine ligand

CGS CGS21680

CTLA-4 cytotoxic T-lymphocyte-associated antigen 4

CXCL CXC chemokine ligand

CXCR CXC chemokine receptor

DC dendritic cell

DFSP aermatofibrosarcoma protuberans

DSS dextran sodium sulfate

ENTs nucleoside transporters

HIF hypoxia-inducible factor

IDO indoleamine 2,3-dioxygenase

IFNg interferon g

IL interleukin

Jmjd3 Jumonji domain-containing protein D3

LAG3 Lymphocyte Activation Gene 3

mTORC1 mammalian target of rapamycin complex 1

NK natural killer

PD-1 programmed death-1

PD-L2 programmed death-ligand 2

PDGF Platelet-derived growth factor

PKA protein kinase A

ROS reactive oxygen species

Sp1 specificity protein 1

TAMs tumor-associated macrophages

Tgfbr2 TGF-b receptor type 2

TGFb Transforming growth factor b

TIM3 T cell immunoglobulin and mucin domain-containing protein 3

TNBS 2,4,6-trinitrobenzene sulfonic acid

TNF tumor necrosis factor

(Continued)
F
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Tregs regulatory T cells

VEGF vascular endothelial growth factor
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Macrophages and
platelets in liver fibrosis and
hepatocellular carcinoma
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During fibrosis, (myo)fibroblasts deposit large amounts of extracellular matrix

proteins, thereby replacing healthy functional tissue. In liver fibrosis, this leads to

the loss of hepatocyte function, portal hypertension, variceal bleeding, and

increased susceptibility to infection. At an early stage, liver fibrosis is a dynamic

and reversible process, however, from the cirrhotic stage, there is significant

progression to hepatocellular carcinoma. Both liver-resident macrophages

(Kupffer cells) and monocyte-derived macrophages are important drivers of

fibrosis progression, but can also induce its regression once triggers of chronic

inflammation are eliminated. In liver cancer, they are attracted to the tumor site

to become tumor-associated macrophages (TAMs) polarized towards a M2-

anti-inflammatory/tumor-promoting phenotype. Besides their role in

thrombosis and hemostasis, platelets can also stimulate fibrosis and tumor

development by secreting profibrogenic factors and regulating the innate

immune response, e.g., by interacting with monocytes and macrophages.

Here, we review recent literature on the role of macrophages and platelets

and their interplay in liver fibrosis and hepatocellular carcinoma.
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Liver physiology in health and disease

The liver is a highly diversified organ and as such is involved in numerous key

metabolic processes e.g., of lipids, proteins, complex carbohydrates, glucose and

xenobiotics (1–4). Moreover, the liver plays an important role in immune regulation (5)

and hemostasis. Apart from most coagulation factors (6), hepatocytes synthesize

thrombopoietin (TPO), the master regulator in platelet production and maintenance (7).

While chronic liver diseases leading to advanced fibrosis and cirrhosis are associated with

bleeding disorders and thrombocytopenia due to splenomegaly and hepatocyte synthetic
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failure, hypercoagulability and thrombosis add to the picture, which

illustrates the impact that disbalances within the liver can have on

the tightly controlled effector cascades in hemostasis (8, 9).

The liver receives blood from the portal vein as well as from the

hepatic artery and comes into close contact with nutrients,

microbial metabolites, and antigens, which originate from the

intestine (10). By default, the liver’s immune milieu has been

primed for tolerance during early childhood, usually suppressing

immune reactions against gut-derived antigens that are sensed as

harmless or beneficial to the body (11–13). Exogenous stimuli can

overcome the tolerance promoting role of liver (innate) immune

and sinusoidal endothelial cells, leading to chronic liver diseases

(CLDs). These CLDs, when left untreated, can progress to fibrosis,

cirrhosis and hepatocellular carcinoma (HCC) which account for

two million deaths per year and a much higher morbidity (14).

Triggers that can drive CLDs are persistent viral hepatitis B and

C, alcohol abuse leading to alcohol-associated liver disease (ALD),

autoimmune hepatitis including (autoimmune) biliary diseases,

genetic liver diseases or drug-induced liver injury. Moreover,

today the most common CLD is metabolic dysfunction-associated

steatotic liver disease (MASLD), formerly known as nonalcoholic

fatty liver disease, with a global prevalence of about 20-40% (15, 16).

The definition was recently amended to include at least one of four

cardiometabolic risk factors associated with steatohepatitis, namely

obesity, type 2 diabetes, hypertension and dyslipidemia

(triglycerides/cholesterol) (17). Furthermore, additional ‘second

hits’ determine the severity of MASLD, including an association

with increased alcohol consumption, now defined as MetALD (16).

MASLD can be further differentiated into metabolic dysfunction-

associated steatohepatitis (MASH), formerly non-alcoholic

steatohepatitis, characterized by chronic inflammation, including

hepatocyte damage (lipoapoptosis and ballooning), that promote

progressive liver fibrosis (18). MASH is found in up to 20% of

MASLD patients and incurs a high risk of cirrhosis development,

where 9-25% of the patients show a cirrhotic liver within 5-10 years

(19). Importantly, in CLD with underlying cirrhosis vs. its absence,

the risk for developing HCC is increased up to 200-fold, with an

incidence of 1-6% once cirrhosis has developed (20). Here, we will

give a short overview about the pathomechanisms of liver fibrosis as

they relate to the role of macrophages and platelets, and especially

their interactions in liver fibrosis. While this research has just

begun, it promises to not only yield novel insights into the

pathogenesis of fibrosis progression but also reveal new drivers of

HCC development that may lead to advanced antifibrotic or HCC-

directed therapies.
Pathophysiology of liver fibrosis

Fibrosis defines a pathological wound healing response, and

fibrosis progression results from ‘wounds that do not heal’ (18, 21–

24). Here, activated (myo)fibroblasts express and deposit excessive

amounts of extracellular matrix (ECM) proteins, most prominently

interstitial collagens type I, III and VI, and basement membrane

collagen type IV, but also hundreds of other collagenous and non-

collagenous proteins, glycosaminoglycans and proteoglycans. This
Frontiers in Immunology 02157
excess ECM finally replaces healthy, functionally important cells

and changes the tissue’s vascular architecture, in the body’s attempt

to maintain organ integrity at the expense of function (25–27). In

the liver, this leads to progressive loss of hepatocyte function,

prehepatic (portal) hypertension with complications like

esophageal variceal bleeding, ascites, susceptibility to infection

and hepatic encephalopathy due to loss of detoxification of

general and intestinal (microbial) metabolites (28, 29). The ECM

composition is altered in active fibrosis and the process itself is

highly dynamic, showing both upregulated formation (fibrogenesis)

and degradation (fibrolysis) of ECM components, usually in favor

of fibrogenesis (30). In general, the ECM is a scaffold to which cells

bind to and interact with each other. It also directs cellular

signaling, polarization and differentiation by engaging specific

ECM receptors and by binding cytokines or hormones that are

released from these ECM stores into the circulation upon ECM

remodeling, leading to the concept of defining the ECM as an

‘endocrine organ’ (31).

Interestingly, activated (myo)fibroblasts, the major cellular

producers of excessive ECM and thus scar tissue, are induced in

the liver and other organs during inflammation, and expand when

inflammation becomes chronic (Figure 1) (32). The dominant

source of (myo)fibroblasts varies, dependent on the etiology and

pathophysiology of fibrosis and, e.g., murine models employed.

While for the murine model induced by the hepatotoxin CCl4,

activated hepatic stellate cells (HSC), which serve as sinusoidal

pericytes residing in the hepatic parenchyma, become the main

ECM-producing cells, portal fibroblasts are the dominant ECM

producer in cholestatic fibrosis models (33–35). In both fibrosis

scenarios, these two cell types are the source of >90% of all

(myo)fibroblasts, while there is only a minor contribution of

fibrocytes, cells likely originating from circulating monocytes that

are recruited to injured organs (36). These findings are relevant

when developing antifibrotic therapies since the cellular origin of

the activated (myo)fibroblasts can have an impact on the treatment

response. As an example, pharmacological stimulation of soluble

guanylate cyclase or inhibition of fibroblast activation protein is

effective in CCl4-induced liver fibrosis dominated by activated

HSCs, but ineffective in the bile duct ligation model, dominated

by activated portal (myo)fibroblasts (33, 37), while the opposite was

observed when liver fibrotic mice were treated with an antagonist to

the endothelin A receptor, an integrin avb6 antagonist, or a TGFb2
inhibiting antisense oligonucleotide (38–40).

Irrespective of the prominent fibrogenic cell type, inflammation

is usually necessary for fibrosis initiation. An example is lipotoxicity

in hepatocytes, a hallmark of MASH. Lipid overloading and

especially the inability of the hepatocytes to handle the excess

lipids by safe storing in lipid droplets or to safely degrade the

excess lipid via, e.g., the mitochondria or peroxysomes, enhances

mitochondrial and hepatocellular oxidative stress and dysfunction

(41) which is linked to endoplasmatic reticulum (ER) stress induced

via the unfolded protein response (42). Impaired autophagy,

increased mitophagy and accumulation of toxic oxidized lipids,

including epoxides, glycerophospholipids and sphingolipids further

promote hepatocyte injury and apoptosis (43–46). The thus injured

and necroapoptotic hepatocytes secrete danger signals like damage-
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associated molecular patterns (DAMPS) as high mobility group

protein 1 (HMBG1) (47), mitochondrial remnants (48), or

exosomes that contain immune regulatory micro RNAs and

chemokines like CCL2 and CXCL1 (46). These metabolites and

signaling molecules can directly activate HSCs or portal fibroblasts,

but also activate and attract immune cells, especially macrophages/

Kupffer cells (49) that further increase local inflammation and

shape the fibrotic response. During steady state, liver sinusoidal

endothelial cells (LSECs) are highly fenestrated and endocytotically

active. They control and induce quiescence of the adjacent HSCs

that serve as sinusoidal pericytes (50, 51). With a disrupted

intestinal barrier, LSECs encounter an increased amount of gut-

derived pathogen-associated molecular patterns (PAMPS), which

leads to their transformation, involving, e.g., heat shock protein

(Hsp) 90 acetylation and subsequent reduction of homeostatic

nitric oxide production (52). When this occurs, LSECs promote

sinusoidal capillarization, express inflammatory cytokines like

TNF-a, CCL2, and CCL5, thereby recruiting inflammatory

immune cells, further stimulating (myo)fibroblast transactivation,

thus losing their usual ability to control HSC activation (51, 53).

These select examples show how chronic inflammation in the

liver, triggered by viral, metabolic, toxic and intestine-derived

stimuli can initiate a vicious cycle creating a continuing

wounding response, therefore tilting the tight balance of pro-and

antifibrotic mechanisms that occur in acute wound healing towards

a constant activation of (myo)fibroblasts, with excess ECM

deposition and finally liver cirrhosis and failure (18, 28, 54).
Frontiers in Immunology 03158
Pathophysiology of liver cancer

Globally, primary liver cancer (hepatocellular carcinoma, HCC,

75-85%; cholangiocarcinoma, CCC, 10-15%, some rare entities like

fibrolamellar carcinoma) is the third leading cause of cancer-related

death and the sixth most commonly diagnosed cancer (55). 70-90%

of all primary liver cancers develop in the context of CLD and

cirrhosis (56). Most CLD patients show no or few clinical symptoms

or anomalies in the pre-cirrhotic stage, resulting in late-stage

diagnosis and poor prognosis, exemplified in a population-based

cohort study, where 75% of the patients had no or minor

complications of cirrhosis at entry (57). In this context, several

population-based studies assessed a prevalence of significant

fibrosis, i.e., stage 2-4 as determined by biopsy, in 1.8-12.6% of

the general population, the range being explained mainly by the

prevalence of viral hepatitis, the exposure to aflatoxin, MASH or

alcohol abuse (55, 58), and as being related to the quality of the

health care system (59–62). This illustrates the need for earlier

diagnosis and effective therapies to prevent progression to cirrhosis

and HCC. Since advanced fibrosis is the major risk factor for HCC

development, the risk factors that promote fibrosis are also

important cofactors for HCC development.

In MASH, the hypercaloric diet promotes hepatocyte oxidative

stress. The resulting H2O2 and ROS production can directly activate

HSCs, transform latent ECM-bound TGFb1 into its biologically

active form, thereby driving their transformation into fibrogenic

(myo)fibroblasts (63–66). H2O2 also acts as proinflammatory
FIGURE 1

Mechanism of liver fibrosis. Under normal conditions, HSCs and portal or perivascular fibroblasts, the primary effector cells, are in a quiescent state
and support steady-state ECM production. Various triggers can act as primary causes inducing chronic liver damage, e.g., exposure to toxins,
chronic hepatitis B- or C infection, or metabolic and oxidative stress in MASH. These triggers induce hepatocyte damage that starts a pro-
inflammatory response, usually initiated by monocytes and macrophages, but also T cells. Besides these primary hits triggering inflammation,
secondary hits like unhealthy nutrition, microbiota, or genetic predispositions can contribute to, enhance, and prolong the fibrogenic response.
During inflammation, TGFb, secreted by, e.g., macrophages and damaged hepatocytes, induces HSC and (portal) fibroblast activation, leading to
increased proliferation, migration, and subsequent excessive ECM production and deposition, resulting in fibrosis and (vascular) architectural
remodeling. Fibrogenesis is usually accompanied by suppressed fibrolysis, exemplified by an increased expression of TIMP-1 and -2 that inhibit ECM
removal by blocking MMP function. Several primary and secondary hits that are driving chronic liver inflammation can be addressed causally, for
example via potent antiviral therapy for hepatitis B or C, lifestyle intervention for MASH, or abstinence for alcohol-associated liver disease. However,
once these diseases have progressed to cirrhosis, direct antifibrotic therapies are needed to induce fibrosis regression. ECM, extracellular matrix;
HSC, hepatic stellate cell; MF, (myo)fibroblast; MMP, matrix metalloproteinases; MASH, metabolic dysfunction-associated steatohepatitis ROS,
reactive oxygen species; TGFb, transforming growth factor beta; TIMP, tissue inhibitor of metalloproteinases; TLR4, toll-like receptor 4.
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molecule leading to Kupffer cell activation, inducing an

inflammatory response that further drives fibrosis, which can

result in a closed loop of chronic inflammation, hepatocyte necro-

apoptosis (lipo-apoptosis), further enhancing ROS-production and

fibrogenesis (49, 63, 64).

Moreover, apart from chronic inflammation that links fibrosis and

HCC, the altered ECM in advanced fibrosis itself can facilitate further

fibrosis progression, HCC/CCC evolution, and metastasis. The ECM

determines the immune environment in cancer to serve as substrate to

which immune cells, especially dendritic cells, macrophages and T cells

bind and by which they are functionally modulated through, e.g.,

sensing ECM stiffness via integrin-receptor mediated ECM signals (67–

71). Also, HCC shows cancer-specific ECM remodeling with distinct

disease-related ECM signatures that exhibit prognostic value (72, 73).

Moreover, increased ECM stiffness can induce exosome secretion by

tumor cells that was shown to promote cancer growth via paracrine

Notch signaling, remodeling of the tumor microenvironment (74) as

well as the activation of Yes-associated protein (YAP) and the YAP/

TEA domain transcription factor 4 (TEAD4) complex in cancer cells

(75, 76).
The role of mesenchymal cells in the
HCC/CCC microenvironment

Detailed mechanisms and drivers of HCC and CCC in the non-

fibrotic and especially in the fibrotic liver are major current research

areas, with a clear view towards clinical translation (77, 78). As in

other cancers, the malignant transformation of hepatocytes, bile

duct epithelia and hepatic progenitor cells is a multifactorial and

multistep process, driven by complex and deregulated signaling

pathways and cell-cell interactions, involving the tumor

microenvironment (TME). The TME includes LSECs, cancer

associated fibroblasts (CAFs) that are related to activated HSCs

and (myo)fibroblasts (68, 79), and especially immune cells, mainly

myeloid and T cell subsets (80). Recent examples highlighting the

important role of non-immune cells in modulating HCC/CCC

growth and dedifferentiation are findings that e.g., quiescent

HSC-derived hepatocyte growth factor promotes epithelial cancer

growth (81), or that Musashi RNA binding protein 2 (MSI2)

downstream signaling in (myo)fibroblasts leads to IL-6 and IL-11

secretion, cytokines that stimulate cancer cell proliferation (82). In

addition, activated HSCs secrete extracellular vesicles containing

hexokinase 1 that are engulfed by neighboring HCC cells, leading to

accelerated glycolysis and the promotion of HCC progression (83).

In LSECs, simvastatin-loaded nanoparticles alleviated sinusoidal

capillarization, restored quiescence of activated HSCs by

stimulation of Krüppel-like factor 2/NO signaling in LSECs, and

upregulated CXCL16 expression resulting in the recruitment of

natural killer T cells (NKT), which suppressed HCC progression

(84). These few examples illustrate how a disrupted tissue

homeostasis induces a tumor-promoting TME not only by

directly modifying the immune cell environment, but also by

altering the non-immune cell TME, mainly represented by CAFs

(HSCs/(myo)fibroblasts) and LSECs.
Frontiers in Immunology 04159
Macrophage subsets in the liver

Macrophages are innate immune cells, present in every organ of

the body (85) and are the most abundant immune cell population in

the liver (86). They ensure tissue integrity by phagocytosis of

cellular debris, waste products and apoptotic cells (87–89), and

act as first line defense against pathogens. Macrophages express

various pattern recognition receptors (PRRs) like Toll-like receptors

(TLRs) or NOD-like receptors (NLRs). Their activation by PAMPs

leads to activations of nuclear factor-kB (NF-kB), interferon

regulatory factors (IRFs) and mitogen-activated protein kinase

(MAPKs) and the expression of downstream effector cytokines

and chemokines, orchestrating an inflammatory response (90, 91).

Within the liver, two different macrophage subsets of different

origin can be distinguished. First, Kupffer cells are tissue resident

macrophages with self-renewing capacity, originating from the yolk

sack (92). They sense gut-derived antigens, which the liver is

constantly exposed to, and play a major role in maintaining tissue

homeostasis by inducing tolerance to the many (harmless) nutrient-

or microbial-derived antigens that pass through the liver

immediately after intestinal digestion and resorption, for example

via secretion of IL-10 and by favoring the expansion of tolerogenic

T regulatory cells (Treg) (93). Second, during infection or in

situations when the natural default tolerance of the liver is

overrun, monocyte-derived macrophages (MoM) are recruited to

the site of inflammation, where they trigger an initially protective

inflammatory response, followed by their differentiation into pro-

inflammatory macrophages.

In general, MoM (and to a lesser degree Kupffer cells) show high

plasticity. Mills et al. coined the term ‘M1 vs. M2 macrophage

polarization’ based on their findings that macrophages of C57BL/6

mice (Th1 T cell predominant, classically activated, pro-

inflammatory M1-type macrophages) were more easily stimulated

to produce NO in comparison to Th2 T cell predominant mouse

strains (BALB/c, alternatively activated M2-type macrophages)

(94). In vitro, the M1 phenotype is induced via LPS and IFN-g
resulting in pro-inflammatory activity including pathogen clearing.

In vitro, the M2 phenotype is induced by IL-4 and IL-13 and was

initially characterized as anti-inflammatory, playing a prominent

role in tissue repair (95) (Figure 2). However, the picture is more

complex, with e.g., at least four M2-subtypes, some of them with

pro-inflammatory characteristics (96, 97). Newer techniques,

especially single-cell RNA sequencing, identified even more

different Kupffer cell and MoM populations in mice and humans

(98–100). A distinct subpopulation defined as scar-associated

TREM2+ CD9+ macrophages was described, originating from

MoM, that acts pro-fibrotic by promoting HSC collagen

production and proliferation (101). Others described TREM2+

macrophages as lipid-associated macrophages (102, 103) that

were shown to be less responsive to TLR4 signaling then Kupffer

cells (104). Fabre and colleagues went one step further in

characterizing the scar-associated macrophages in pulmonary and

hepatic fibrosis of both mice and men using single-cell RNA

datasets to identify a subpopulation of macrophages that, in

addition to TREM2 and CD9, expressed osteopontin (SPP1),
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osteoactivin (GPNMB), fatty acid binding protein 5 (FABP5) and

CD63. Interestingly, this subpopulation was found to be enriched at

scarring sites (105). Therefore, major efforts are currently directed

to better define profibrotic vs. fibrolytic (pro-resolution) liver

macrophages and specific subpopulations to identify novel

therapeutic targets and strategies for antifibrotic treatment (24,

49, 106–109).
The role of macrophages in fibrosis
initiation, progression, and resolution

Pleiotropic effects of macrophages in fibrosis initiation,

progression or resolution have been described. Macrophage

depletion in the CCl4 model of progressive parenchymal liver

fibrosis led to a decrease of activated (myo)fibroblasts and

attenuated collagen accumulation, while depletion after

discontinuation of CCl4 prevented the otherwise spontaneous

fibrosis resolution (110). Later ‘pro-resolution’ macrophages with

an expression profile of both M1- and M2-type macrophages were

implicated in fibrosis regression (111) (Figure 2). Finally, the study

of several knockout mice for M2-type macrophage and Th2 cell

signaling as well as the use of therapeutic IL-4Ra antisense

oligonucleotides confirmed that even M2-type macrophage

signaling can be pro-fibrotic during active liver inflammation,

whereas it can promote fibrolysis during spontaneous fibrosis

regression after cessation of the inflammatory stimulus (106).
Frontiers in Immunology 05160
During acute inflammation, activated Kupffer cells and MoM

express pro-inflammatory cytokines like IL-1b, TNFa, and IL-6,

but also chemokines like CCL2, CXCL1-3 (112–114), leading to

further recruitment of MoM and neutrophils, which enhances the

initial inflammatory response. Activated macrophages, especially in

later stages of inflammation, as well as activated platelets secrete

(active) TGFb1 in response to injury (115), which is a key fibrogenic
cytokine driving fibrogenic HSC and (myo)fibroblast activation

(116, 117) via the Smad2-4 transcription factor to enhance ECM

production (118). In addition, platelet-derived growth factor

(PDGF-BB), which is mainly if not exclusively secreted by

platelets, strongly stimulates HSC and (myo)fibroblast

proliferation, further promoting the fibrogenic response (119,

120). The importance of recruitment of MoM, orchestrated by

CCL2 but also other chemokines, partly derived from neutrophils

and other myeloid cells or even activated HSCs, to pave the way for

progressive fibrotic disease was recently shown, since early anti-

CCR2 siRNA treatment ameliorated parenchymal, CCl4-induced

liver fibrosis (121).

Many different endogenous and exogenous stimuli can trigger

the proinflammatory M1 phenotype. For example, complement

factor C5a stimulates pro-inflammatory pathways via C5aR1 on

macrophages, and C5aR1ko knockout mice showed a M1- to M2-

type macrophage transition and reduced fibrosis in a MASH mouse

model (122). HMBG1 secretion from injured hepatocytes induced

NLRP3 inflammasome activation in macrophages (123), and

fibrinogen-like protein 2 (Fgl2), which was upregulated in liver
FIGURE 2

Triggers of macrophage polarization and the resulting phenotypes: Tissue-infiltrating monocytes as well as tissue-resident Kupffer cells are the
sources of liver macrophages. In vitro, monocytes/macrophages can be polarized towards a M1-type (classically activated macrophages) via IFN-g,
LPS, or IL-12, or towards M2-type via IL-4 and IL-13 (alternatively activated macrophages). The M1-type is rather associated with high(er)
phagocytotic activity and the production of pro-inflammatory cytokines that can induce ECM breakdown and a prominent anti-cancer response,
This M1 phenotype can switch to a low or anti-inflammatory M2-type that suppresses inflammation but at the same time promotes fibrogenesis,
e.g., by release of TGFb1, and cancer growth by generating a tolerogenic cancer microenvironment. While the major in vitro phenotypes only
exemplify the extremes of macrophage polarization, in vivo macrophages show high plasticity and therefore can exhibit both M1-type and M2-type
characteristics at the same time. Thus, in liver fibrosis of different etiologies both M1-and M2-type macrophages can induce and shape liver
inflammation, while a subset that is defined as “pro-resolution macrophages” shows both M1- and M2-type characteristics, acting both anti-
inflammatory and fibrolytic, as also shown by their transcriptomic profiles. One therapeutic strategy, already showing promise in preclinical studies is
the targeted modulation of macrophage functional phenotypes to overcome liver fibrosis and/or cancer. Examples of possible phenotype ‘switches’
are CSFR1, macrophage colony- stimulating factor receptor 1; GLP-1, glucagon-like peptide 1; IFN-g, interferon-g; IL-4RA, interleukin-4 receptor a;
IL-13RA, interleukin-13 receptor a; LPS, lipopolysaccharide; LY6C, lymphocyte antigen 6C; STAT6, signal transducer and activator of transcription 6.
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tissues of cirrhotic patients with underlying hepatitis C infection,

promoted M1 polarization (124). Furthermore, autophagy triggered

a M2-type, whereas LPS stimulation favored a M1-type macrophage

polarization and blocked autophagy (125). Painting the same

picture, deficient chaperone-mediated autophagy in macrophages

was shown to intensify inflammation in MASH (126). Notably,

while the shift from the classical proinflammatory M1-type to M2-

type macrophages in chronic inflammation attenuated

inflammation, it promoted the fibrotic response in MASH (127).

In MASH as in other CLDs, the fluctuating course of periods of

acute inflammation followed by a M2-type reparative response may

underly fibrosis progression in ‘wounds that do not heal’ (18, 128).

Major effectors of both fibrogenesis and fibrolysis are

macrophage-derived matrix metalloproteinases like MMP-9,

MMP-12 (111) and MMP-13 (129) that lead to collagen

degradation that can either pave the way for architectural tissue

remodeling towards fibrosis (130), or lead to collagen degradation

and the induction of (myo)fibroblast apoptosis (131). Fibrosis

resolution is often induced if the underlying major trigger of

chronic (M2-type) inflammation is removed but is usually slow

or inefficient in advanced human fibrosis and cirrhosis. Moreover, if

the underlying trigger continues, the ongoing remodeling of the

ECM, induced by secreted MMPs (132) or proteases like cathepsin S

(133), can lead to an excessive secondary accumulation and altered

composition of the ECM (134). This contributes not only to fibrosis

progression but also to cancer initiation, progression and

metastasis, including integrin-mediated stress signaling (15, 21,

67, 128, 135–137).
The role of tumor-associated
macrophages in HCC

Tumor-associated macrophages (TAMs) are major cell types

infiltrating most TMEs, accounting for 20-40% of immune cells in

HCC (138). They act as important drivers of cancer initiation and

progression (139). In the liver, tissue-resident Kupffer cells as well as

MoM can differentiate to TAMs (140–142), and especially MoM are

chemoattracted to the tumor site via the CCR2-CCL2 axis (143).

Within the TME, TAMs are turned to a M2 anti-inflammatory and

tumor-promoting phenotype by cancer cells in various ways. For

example, HCC cells secrete exosomes that contain miRNA-21-5p,

which induces M2-type polarization (144), or they overexpress the

transferrin receptor, necessary for ferrous iron uptake, and the

resulting lower iron concentration in TAMs favors their M2-type

polarization (145). Furthermore, metabolic byproducts of cancer

cells like lactic acid or succinate drive the TAM phenotype via

induction of hypoxia-inducible factor 1a (HIF1a) signaling, that

increases TAM expression of e.g., vascular endothelial growth factor

(VEGF), arginase 1, found in inflammatory zone (Fizz1) and

macrophage galactose-type lectin-1 (Gal-1) (146, 147).

The expression profile and mediator secretion of TAMs is

highly immunosuppressive and strongly supports the outgrowth

of pre-neoplastic lesions, tumor development and metastasis,
Frontiers in Immunology 06161
mainly by inhibition of cytotoxic CD8+ T cell responses directed

to the cancer cells (148, 149).

Thus, TAMs secrete cytokines like IL-8 or IL-10 that stimulate

tumor proliferation (150–152), Gal-1 that activates the pro-

cancerous mTor-Akt pathway and induces limited autophagy in

cancer cells that both promote HCC growth (153). TAMs and the

cancer cells are the major producers of VEGF that triggers neo-

angiogenesis, supporting the tumor’s nutrient supply (154) and

facilitating metastasis. TAMs upregulate carbonic anhydrase XII

expression, which secures their survival in the acidic

microenvironment but also triggers production of CCL8, VEGFA

and MMP9, further supporting neo-angiogenesis, epithelial-

mesenchymal transition and metastasis of cancer cells (155, 156).

Of interest, TAMs also interact with cancer-associated

fibroblasts (CAFs). CAFs are characterized as activated (myo)

fibroblasts, another often abundant, heterogeneous class of cells in

the TME. Single-cell RNA techniques could unravel that the

interaction of TAMs and CAFs leads to ECM remodeling and the

generation of a desmoplastic shell, which hinders lymphocytes to

infiltrate the tumor cores (157). The interaction was also found in

single-cell RNA datasets in HCC patients, where osteopontin,

produced by TAMs, bound to latent TGFb1 produced by CAFs,

illustrating the close interaction of both cell types that potentially

can lead to TME remodeling (158). TAM-secreted osteopontin can

also directly impede CD8+ cytotoxic T cell function via CD44

signaling on T cells, promoting T cell exhaustion phenotypes (159).

A recent study could show that osteopontin (encoded by the SPP1

gene) expression of TAMs indeed holds prognostic value. The

authors analyzed human cancer single-cell RNA datasets,

revealing that the ratio of CXCL9:SPP1 mirrors the properties of

immune cell infiltration and an anti-tumor immune response in

many solid cancer types. Of note, the CXCL9:SPP1 ratio was

not overlapping with classical M1- and M2-type markers (160).

Finally, programmed death ligand 1 (PD-L1) was found to be

mostly expressed on TAMs in the TME, suppressing T cell

activity (161, 162) and indoleamine 2, 3-dioxygenase (IDO)

expressing TAMs suppressed T cell expansion, while supporting

Treg proliferation (163).

One highly interesting example of TAM modulation that

already entered clinical trials targets Clever-1 (common lymphatic

endothelial and vascular endothelial receptor-1), which is

prominently expressed on monocytes and macrophages.

Preclinical studies showed that human monocytes expressing high

levels of Clever-1 impaired Th1 T cell activation, which was

reversed via siRNA knockdown or a blocking antibody (164) and

that targeting Clever-1 in TAMs via macrophage-specific genetic

knockout or via antibody blockade retarded the growth of LLC1

Lewis lung carcinoma cells in vivo, by inducing a robust CD8 T cell

response (165). A phase II clinical trial testing Clever-1 inhibition

using a humanized anti-Clever-1 antibody in 10 distinct, advanced

solid tumor types (e.g., melanoma, pancreatic, liver cancer) already

showed promising results (166, 167). Finally, Clever-1 on TAMs

was recently shown to be responsible for epidermal growth factor

(EGF) clearance, a highly relevant tumor promoter (168).
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Physiologic role of platelets

Platelets are small anucleate cell fragments (2-4 µm diameter in

humans) that, together with red blood cells, represent the most

abundant cells in circulation. The role of platelets was described for

the first time in the 19th century by Bizzozero, who observed that

platelets were the component of the blood to adhere to damaged blood

vessel walls in vivo and in vitro (169, 170). Platelets have an average life

span of 8-10 days in humans and approximately 5 days in mice (171,

172). Thus, platelet turnover is high and their production

(thrombopoiesis) by bone marrow megakaryocytes (MKs) is a

strictly regulated process (173). Megakaryocytes differentiate from

hematopoietic stem cells, and once mature, extend dynamic

protrusions, called proplatelets, into bone marrow sinusoids which

are then further fragmented to platelets by the shear forces present in

vessels (174, 175).

Once released into the bloodstream, platelets primarily function as

regulators of hemostasis, circulating and continuously scanning the

vascular environment. Platelet activation and thrombus formation

occur at sites of vessel injury in a coordinated process that involves

tethering, rolling, activation, and firm adhesion. Following endothelial

damage, thrombogenic subendothelial ECM proteins like collagen and

vonWillebrand factor (VWF) get exposed to the blood. VWF binds to

collagen fibers and captures platelets from the circulation through the

platelet receptor complex glycoprotein (GP) Ib/IX/V (176). This

interaction with immobilized VWF enables platelets to bind to the

exposed collagen via the GPVI receptor (177). GPVI is associated with

the Fc receptor (FcR) g-chain, which bears an immunoreceptor

tyrosine-based activation motif (ITAM) for signal transduction

enabling platelet activation (178). These first steps of platelet

activation trigger downstream signaling pathways which lead to

increased cytosolic Ca2+ levels, cytoskeletal rearrangements,

degranulation, and integrin activation. Three types of granules can be

distinguished within platelets: a-granules, dense or d- granules, and
lysosomes (179, 180). The release of a- and dense granule content

enriches the local environment with a multitude of bioactive molecules.

Dense granules contain mainly non-protein compounds including

calcium, ATP, ADP, serotonin (5-HT), and epinephrine, which can

activate platelets in an autocrine way through surface receptors to

further strengthen platelet activation (181). On the other hand, a-
granules contain more than 300 different proteins involved in

coagulation, platelet adhesion, inflammation, wound healing, and

angiogenesis (182). Finally, platelet activation shifts several b1 and b3
integrins to their high-affinity, ligand-binding state, among them

integrin aIIbb3 (GPIIb/IIIa). Activated aIIbb3 binds to fibrinogen,

supporting platelet-platelet aggregation and adhesion to

subendothelial ECM proteins (183), but also enables binding to other

soluble plasma proteins, including VWF and fibronectin, thereby

facilitating stable platelet aggregation and thrombus formation (184).

The role of platelets
beyond hemostasis

In the previous paragraph, we introduced the role of platelets in

hemostasis, however, these small anucleate cells are also involved in
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other pathophysiological processes. Platelets have been observed to

play a role in angiogenesis, inflammation, bacterial and viral

infection, cancer, tissue regeneration, and fibrosis (185). Platelets

can interact with and stimulate cells of the innate and adaptive

immune system, mainly monocytes/macrophages, neutrophils, and

lymphocytes, thus shaping the immune response.
Platelet-monocyte/
macrophage interaction

Monocytes and macrophages are key regulators of innate and

adaptive immunity. During homeostasis and especially inflammation,

monocytes can enter tissues and differentiate into macrophages that,

depending on signals from the respective microenvironment, acquire

different functional phenotypes. Monocytes and macrophages act as

sentinel cells that maintain tissue integrity and eliminate damaged cells

and pathogens to restore homeostasis (87–89). In prolonged

inflammation or infection, they also promote adaptive immune

responses aimed at resolution, but may switch towards an anti-

inflammatory, but profibrotic and/or cancer promoting phenotype,

as described in a previous chapter (95–97). Activated platelets can

recruit and interact with monocytes and macrophages, stimulating

mutual activation and the release of cytokines. The major direct

interaction between platelets and monocytes/macrophages is

achieved through P-selectin (CD62P), which is exposed on the

platelet surface following the fusion of the a-granule membrane with

the platelet surface membrane upon platelet activation. The interaction

of P-selectin with monocyte P-selectin ligand 1 (PSGL-1, CD162) is the

first step in platelet–monocyte aggregation (186, 187). This interaction

is further strengthened by monocyte membrane-activated complex 1

(Mac-1, integrin aMb2, CD11b/CD18) which can bind to P-selectin

(188), GPIba (189), and other platelet receptors, including junctional

adhesion molecule 3 (JAM-3) (190) and intercellular adhesion

molecule 2 (ICAM-2) (191), or bridging proteins such as fibrinogen

(bound to the integrin aIIbb3) (192). Mac-1 interaction with the platelet

receptor GPIb occurs through its I domain which is homologous to the

VWF A1 domain. During this adhesive process, receptor engagement

of PSGL-1 and Mac-1 together with platelet-derived inflammatory

compounds induces monocyte activation (193, 194). Platelets can also

use their surface receptors CD40L and TREM-like transcript 1 protein

(TLT-1) to interact with CD40 (195) and monocyte triggering receptor

expressed on myeloid cell 1 (TREM-1) on monocytes (196, 197).

Monocytes can also be recruited indirectly by platelets: Monocyte

chemotactic protein-1 (MCP-1, CC chemokine ligand 2 [CCL2]) is one

of the major chemotactic molecules generated within the vessel wall,

interacting with CC chemokine receptor 2 (CCR2) on monocytes and

macrophages (198, 199) (Figure 3). Activated platelets can also

modulate MCP-1 and ICAM-1 expression on endothelial cells via an

NF-kB–dependent mechanism (200).

Moreover, platelets release CXC motif chemokine ligand 1

(CXCL1), platelet factor 4 (PF4, CXCL4) and CC-chemokine

ligand 5 (CCL5, RANTES) (182, 201). RANTES can increase PF4

binding to the monocyte surface, where it enhances monocyte arrest

on endothelial cells (202), predominantly mediated by CCR1, a
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monocyte receptor for RANTES (203). RANTES can form

heterodimers with neutrophil HNP1 (human neutrophil peptide

1, alpha-defensin), stimulating monocyte adhesion through CCR5

(204). Disruption of the HNP1–RANTES interaction attenuated

monocyte and macrophage recruitment in a mouse model of

myocardial infarction (204). PF4 released from activated platelets

induces monocyte phagocytosis and triggers respiratory bursts

(205) through phosphoinositol-3-kinase PI3K, spleen tyrosine

kinase Syk, and p38 mitogen activated (MAP) kinase activation

(206). PF4 also induces extracellular signal kinase 1 and 2 (ERK1/2)

phosphorylation, which mediates monocyte survival and

differentiation as well as Janus kinase (JNK) signaling, which

leads to the production and release of cytokines and chemokines,

such as CC-motif ligand 3 and 4 (CCL3 and CCL4) in vitro (206).

Overall, the outcome of platelet-monocyte/macrophage interactions

is highly complex and not yet completely understood, especially

since platelets are known to induce opposing effects in macrophages

depending on the underlying pathophysiological context and

experimental model employed (185, 207) (Figure 3).
Platelets in liver disease

Platelet function is tightly connected with the liver (208): the

liver is important for the production of thrombopoietin (TPO)
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(209), the main growth factor controlling thrombopoiesis and

coagulation factors, which are involved in hemostasis (6). The

liver also clears aged platelets and liver Kupffer cells have recently

been identified as major effector cells in this context (210). Patients

with acute or chronic liver diseases frequently present with complex

alterations in the hemostatic system (211) including reduced levels

of coagulation factors and changes in platelet count (212, 213).

Thrombocytopenia correlates with the severity of liver dysfunction,

fibrosis, portal hypertension, and splenomegaly (214–216). Some

patients with liver disease also display platelet functional defects

(217). For this reason, the role of platelets in the progression of liver

disease is being analyzed more systematically, and depending on the

(patho)physiological context, platelets seem to exert either

beneficial or detrimental functions.
Platelets in liver fibrosis

As previously discussed, in the context of fibrosis, the liver

shows a qualitatively abnormal and excessive deposition of scar

tissue, dominated by the prominent fibril forming type I and type

III collagens but also numerous other ECM molecules, through

activated hepatic stellate cells (HSCs) and portal fibroblasts, which

progressively impairs the normal liver architecture and

functionality (18, 24, 25, 27–29). Notably, platelets can play
FIGURE 3

Interactions between platelets and macrophages. Interactions occur via direct contact between platelet cell surface receptors GPIb, P-Selectin,
integrin aIIbb3, CD40L, and TLT-1 with macrophage receptors like Mac-1 or TREM-1 or through soluble mediators like CCL2 (MCP-1), CXCL4 (PF4),
CCL5 (RANTES) and sCD40L. These interactions can result in the activation of the platelet, macrophage, or both. P-sel – P-selectin, sP-sel – soluble
P-selectin, PSGL-1 – P-selectin glycoprotein ligand, GPIb – glycoprotein Ib, Mac-1 – integrin aMb2, aIIbb3, – Integrin aIIbb3, TREM-1 – Triggering
receptor expressed on myeloid cells 1, TLT-1 - TREM-like transcript 1, CCL2 – CC-chemokine ligand 2, CXCL4 – (CXC motif) ligand 4, CCL5 – CC-
chemokine ligand 5, sCD40L – soluble CD40 ligand. Created with BioRender.com.
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opposing roles in liver fibrosis as they have both pro- and anti-

fibrotic effects.
The antifibrotic and regenerative role
of platelets

Clinical evidence showed that a higher platelet count is

associated with less fibrosis and that platelet transfusion can

ameliorate liver functionality in chronic liver diseases (218–220).

Thrombocytopenic mice developed more severe fibrosis when

subjected to liver injury by bile duct ligation (221). ATP and

hepatocyte growth factor (HGF) from platelet granules may have

antifibrotic effects (221, 222). Experiments in vitro revealed that a

HSCs-platelet co-culture resulted in platelet activation and HGF

release, with subsequent downregulation of type I collagen

transcript levels in HSC (221). A beneficial effect of platelets was

shown in the carbon tetrachloride (CCl4) mouse model of liver

fibrosis, where treatment with platelet-rich plasma resulted in an

attenuation of liver fibrosis (223, 224). Reduced liver fibrosis and

increased liver regeneration were also seen upon administration of a

TPO receptor agonist in a mouse model of CCl4-induced liver

fibrosis (225). Platelet-mediated hepatic regeneration depends on

the interaction with sinusoidal endothelial cells, Kupffer cells and

hepatocytes (226). In vitro studies show that platelets promote

endothelial production of interleukin-6 (IL-6) and VEGF, inhibiting

apoptosis and stimulating hepatocyte proliferation (226–228).

Platelet accumulation in the liver is mainly mediated by direct

interaction with Kupffer cells (224, 229). Following this interaction,

Kupffer cells produce tumor necrosis factor-a (TNF-a) and IL-6,

cytokines critical to liver regeneration (230, 231). Platelets also

become activated and move through the sinusoidal endothelium

and enter the space of Disse where they directly influence

hepatocytes (229). Platelets release hepatocyte growth factor

(HGF), VEGF, and insulin-like growth factor-1 stimulating

hepatocyte survival and differentiation (231).
The profibrotic role of platelets

On the other hand, there is evidence for a profibrotic role of

activated platelets. Liver fibrosis results in platelet activation and

aggregation in the liver tissue, close to the fibrotic areas of patients

with progressive HCV and MASH-associated fibrosis (120, 232).

After activation, platelets release different mediators which are

known key drivers of fibrogenesis. These include platelet-derived

growth factors, especially PDGF-AB and –BB, and transforming

growth factor b1 (TGFb1) (120, 233). PDGF-B is a potent mitogen

and chemotactic factor for activated HSC and (myo)fibroblast.

Yoshida et al. observed that mitogenic PDGF-B, in liver fibrosis,

was exclusively produced by activated platelets, and a monoclonal

blocking antibody against PDGF-B as well as anti-platelet therapy

with low-dose aspirin reduced circulating PDGF-B levels and

significantly ameliorated liver fibrosis in two mouse models of

advanced biliary fibrosis (120). Accordingly, platelet-specific
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depletion of TGFb1 decreased CCl4-induced liver fibrosis by

reducing profibrotic signaling and collagen synthesis in HSCs

(234). Profibrotic effects of platelets were also attributed to VWF

(235), serotonin (5-HT), and platelet-derived Sphingosine-1-

phosphate (S1P), which activates HSCs to increase collagen

secretion and transform into (myo)fibroblasts (236, 237). PF4

could also be involved in the modulation of liver fibrosis, since its

genetic deletion in CCl4-induced murine liver fibrosis, reduced

histological liver damage and fibrosis-related transcript levels, and

resulted in the reduction of immune cell infiltration in the liver

(232). Additionally, it was reported that PF4, released from

platelets, drives the differentiation of a profibrotic macrophage

population marked by the expression of Spp1, Fn1 and Arg1. Loss

of PF4 in mice abolished profibrotic Spp1-mediated macrophage

differentiation and ameliorated fibrosis after both heart and kidney

injury (238). Positive results from the use of antiplatelet therapies

were confirmed in two epidemiological studies of liver fibrosis

patients with or without aspirin therapy (239, 240). Using

different mouse models of MASH, an extensive study showed that

antiplatelet therapy (aspirin/clopidogrel, ticagrelor) reduced

inflammation and liver fibrosis. The authors demonstrated that

liver resident macrophages (Kupffer cells) are important for platelet

accumulation in the liver, and that platelet GPIba appears to be

primarily involved in the interaction of platelets with Kupffer cells

and the maintenance of MASH. Moreover, Kupffer cell depletion

via clodronate liposomes resulted in a significant decrease in

intrahepatic platelet numbers, confirming that Kupffer cells

recruit platelets to the liver in the setting of MASH (241). Taken

together, the role of platelets in liver fibrosis is still not fully

understood, since it appears to be dependent on disease etiology

and stage, which requires further investigation. The use of different

animal models, timing, and conditions could help solve the Janus-

faced behavior of platelets observed and help to shed light on their

role in fibrosis progression or regression.
Platelets in cancer and HCC

A relevant role for platelets in cancer was suggested more than

100 years ago when occult carcinomas were identified by the

patients’ excessive blood clotting leading to venous thrombosis

and embolism (242). Further clinical evidence supported platelets

as active players in all steps of tumorigenesis including tumor

growth, extravasation, and metastasis (243). Cancer-associated

thrombosis is a leading cause of death in cancer patients (244).

Accordingly, cancer patients often display elevated platelet counts

and/or altered platelet function (245), and thrombocytosis has been

associated with an unfavorable prognosis at the time of cancer

diagnosis (246, 247). In HCC, thrombocytosis positively correlates

with large tumor size, recurrence, and poor response to

chemotherapy (248, 249). Increased platelet size (mean platelet

volume, MPV), has also been associated with HCC progression

(250). Postoperative high platelet-to-lymphocyte ratio (PLR) can

predict HCC recurrence and decrease overall survival after surgical

liver resection (251). Notably, an elevated platelet count is related to
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an increased risk of developing extrahepatic metastasis (249),

possibly because of platelet-induced tumor cell growth and

migration (252). However, for HCC, the relationship between

platelet count and tumor development is more complicated, as

both thrombocytosis and thrombocytopenia have been described as

risk factors for HCC development and poor prognosis (248, 250).

This is likely due to the high prevalence of cirrhosis, a key cofactor

of HCC evolution that causes splenomegaly and resultant

thrombocytopenia (28, 253). Still, in patients with cirrhosis

caused by fatty liver disease, a low platelet count was recently

included as a reliable marker to predict HCC development (254). In

general, thrombocytopenia is used to identify patients with more

advanced (cirrhotic) liver disease at risk of developing HCC (255,

256) and to predict mortality of patients with cirrhosis or HCC

(257), while thrombocytosis may predict more rapid cancer

progression in patients with noncirrhotic HCC (28, 250–253).
Platelet interaction with cancer cells
and the TME

Platelets and tumor cells interact directly or indirectly through

the release of soluble mediators. These interactions can result in the

alteration of platelet physiology that further supports tumor growth

(258). Tumor cells can recruit platelets into hepatic tumor tissue

through the release of tumor cell-derived chemokine (CX3C motif)

ligand 1 (CX3CL1) (259) and cancer cells can express molecules

such as podoplanin and thrombin, which interact with platelet C-

type lectin-like receptor 2 (CLEC-2) and protease-activated
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receptors (PARs) to activate and aggregate platelets (260–263).

Cancer cell-derived IgGs activate platelets by binding to platelet

FcgRIIa (264). Additionally, soluble factors such as ADP, released

by tumor cells, can also activate platelets, probably via P2Y12/P2Y1

(265). Cancer-induced platelet activation is thought to be one of the

reasons why increased thrombosis is observed in cancer patients

(244). Activated platelets contribute to cancer growth and

metastasis (266).

In human HCC biopsies, activated platelets are found close to

tumor cells (259, 267, 268) and adhere via their activated aIIbb3,
GPIb-IX-V, and, P-selectin receptors (268, 269). Through these

interactions, platelets become activated and secrete factors such as

platelet-derived PDGF-BB, TGFb1, serotonin, and VEGF that

support tumor progression and angiogenesis (270–272)

(Figure 4). Here, platelet TGFb1 is a general driver of cancer cell

epithelial-to-mesenchymal transition (EMT) via activation of the

Smad2/3 and NF-kB pathways (273, 274), and of HCC growth both

in vitro and in vivo, where it also suppresses cancer cell Krueppel-

like factor 6 (KLF6) expression (275). An in vitro study also showed

that platelet-derived serotonin could induce the proliferation of

three different HCC cell lines (Huh7, HepG2, and Hep3B) (276). In

this line, another study reported that intra-platelet serotonin

content was correlated to early disease recurrence after liver

resection of HCC (277). Besides interacting with cancer cells,

platelets recruit leukocytes and interact with LSECs and HSCs

(120, 278, 279) affecting the TME. Platelets induce the release of

IL-6 from LSECs which enhances hepatocyte proliferation (227).

Further, VEGF, which is stored in platelet a-granules increases

LSEC fenestration (280). Platelets can also contribute to the
FIGURE 4

Role of platelets in HCC. Platelets are recruited to the tumor site by interacting with liver resident macrophages (Kupffer cells) and by cancer cells
through the release of CX3CL1 and IgG, resulting in platelet activation. Activated platelets release soluble mediators: TGFb, PDGF-BB, VEGF, and
serotonin (5-HT) which contribute to HSC activation, macrophage M2-type polarization into immune suppressive tumor-associated macrophages
(TAMs) and thus tumor growth. Platelets can also mediate anti-tumor responses by activating CD8+ T cells through releasing CD40L. Created with
BioRender.com.
frontiersin.org

https://www.BioRender.com
https://doi.org/10.3389/fimmu.2023.1277808
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Casari et al. 10.3389/fimmu.2023.1277808
formation of an immune suppressive milieu in the TME (243) by

secreting chemokines that recruit M2-type macrophages into the

TME. As mentioned before, platelets can recruit monocytes into the

tissue, for example via CCL2 and its receptor CCR2 on monocytes

(198, 199). In vitro, human platelet-derived serotonin inhibited

TNFa production in stimulated monocytes and macrophages

primed for anti-inflammatory signaling (281, 282), and platelets

downregulated TNFa production, abrogating the capacity of

macrophages to kill tumor cells (283). Platelet-derived

microparticles (extracellular vesicles, EVs) also change

macrophage polarization. Microparticles generated from platelets

contain RANTES, macrophage migration inhibitory factor (MIF),

CXCL-12, and IFN-g that promote the differentiation of monocytes

into a M1 macrophage phenotype (284). In contrast, Vasina and

colleagues showed that platelet-derived microparticles promoted a

macrophage M2-type anti-inflammatory/pro-tumoral phenotype,

associated with increased expression of chemokine receptors CCR5

and CXCR4 but not CCR2 (285). Another study showed that

platelet EV internalization by primary human macrophages

changed the macrophage transcriptome, reduced mRNAs

encoding for TNFa, CCL4, and CSF1 while upregulating IL-10,

consistent with a M2 phenotype (286). Exosomes originating from

platelets can also promote the M2 phenotype by inhibiting the

activation of the NLRP3 inflammasome (287). The anti-platelet

drug clopidogrel enhanced an anti-tumoral hepatic M1macrophage

phenotype (271, 288). CD40L, TGFb, and programmed death

ligand 1 (PD-L1) are important immune mediators secreted by

platelets that interfere with immune cell activation, modulate

macrophage polarization, and enable cancer cells to escape from

immune destruction (288, 289). These findings suggest that platelets

play an important role in mediating the macrophage´s immune

response, contributing to their polarization into TAMs in HCC and

other solid cancers. However, further research is necessary to fully

understand the mechanisms underlying the crosstalk between

platelets and TAMs (Figure 4).
Use of antiplatelet therapies to
treat HCC

Recently, the use of antiplatelet therapies to treat HCC has

gained interest. The administration of aspirin and clopidogrel

attenuated development and increased overall survival in a

transgenic mouse model of chronic, noncirrhotic, hepatitis B

virus (HBV) induced HCC (290). Somewhat paradoxically, this

was associated with a reduced intrahepatic accumulation of HBV-

specific cytotoxic CD8+ T cells, but explained by attenuated

hepatocyte damage by these CD8+ T cells (291). Consistent with

the observed antiplatelet effect, clinical studies suggested an

association between the use of aspirin and a reduced HCC risk in

patients with viral hepatitis (292–294). Platelets are also involved in

the promotion of MASH, both in the above-discussed mouse model

and correlative human data (241). Additional human studies
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supported the positive effect of anti-platelet therapy, particularly

aspirin, on HCC development in both patients with chronic liver

disease and in the general population (292, 295–297). In contrast, a

recent study found that platelets inhibited the growth of HCC and

liver tumor metastasis in MASLD through the purinergic receptor

P2Y12-dependent release of platelet CD40L, which was in part

directed through cysteinyl leukotrienes (298) (Figure 4). Indeed,

blocking the production of cysteinyl leukotrienes using zileuton,

partially inhibited the upregulation of plasma CD40L. CD40L leads

to CD8+ T cell activation via the CD40 receptor, establishing an

anti-tumor response. The authors argued that in their study HCC

and MASH were already established, in contrast to other studies

that focused on HBV or MASH progression and HCC induction

(241, 290, 291, 298). In conclusion, these studies suggest that

platelets can contribute to cancer growth and progression in

multiple ways, depending, e.g., on their spatiotemporal activation

during inflammation, fibrogenesis, and HCC evolution,

highlighting the complex roles that platelets can play. Future well-

designed studies are needed to further investigate the mechanisms

involved in platelet–cancer cell–macrophage interactions.
Conclusion and outlook

Over the past decades, chronic liver diseases have risen to one of

the leading causes of morbidity and mortality worldwide. Recent

research has generated increasing evidence that hepatic

macrophages and platelets play a key role in liver homeostasis

and that their dysregulation promotes chronic liver diseases, by

modulating inflammation and driving fibrosis or cancer

progression. Novel approaches are being developed to target

hepatic macrophages, most of them focusing on four different

strategies: 1) reducing the activation of MoMs and Kupffer cells,

2) preventing the influx of MoMs into the liver, 3) reprogramming

the macrophage phenotype towards an antifibrotic/pro-resolution

phenotype, and 4) inducing a pro-inflammatory and anti-tumoral

M1-type macrophage. Recent studies unraveled a profound

heterogeneity in the hepatic macrophage population, with distinct

gene signatures and functions in liver fibrosis and liver cancer (299).

Further research will help to gain a better understanding of the

different hepatic macrophage subtypes in mice and humans, and a

better definition of their disease-promoting phenotype and the key

disease-related ‘macrophage switches’ will allow the development of

new macrophage-targeted therapies.

Like macrophages, platelets can also have opposing functions in

patients with chronic liver disease since both low and high platelet

counts have been related to a poor prognosis in patients with HCC

(300). Several studies using rodent models of chronic liver diseases

and HCC demonstrated that antiplatelet therapy, e.g., aspirin and

clopidogrel, can ameliorate liver injury and disease outcomes.

However, future research will be important to better clarify the

functional role of platelets in liver disease in relation to disease

stage, such as early vs late stages, and acute vs chronic disease. Until
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now, there is no recommendation for the use of antiplatelet therapy

in patients with liver disease since its use requires careful

monitoring due to possible bleeding complications, especially in

patients with cirrhosis. Here, further studies with more specific

antiplatelet agents, like GPVI, PAR4, or PI3K inhibitors may reduce

possible bleeding complications (301). Platelets can influence

macrophage differentiation and polarization through direct cell-

cell interaction and the release of growth factors, cytokines,

chemokines, and other mediators, affecting their pro-

inflammatory, anti-tumor, and profibrotic phenotype, offering

platelet-targeted treatment approaches (288). Finally, platelets

may also be used as a therapeutic delivery system, supporting

optimized tumor therapy (302). Such platelet-targeted strategy,

especially when combined with a macrophage-targeted approach,

could reduce adverse effects and enhance therapeutic efficacy in

liver fibrosis and cancer (303). In conclusion, shedding light on the

interplay between macrophages and platelets, and possibly other

immune cells involved, may open new avenues to develop effective

therapies for liver fibrosis and HCC.
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Modulation of cytomegalovirus
immune evasion identifies
direct antigen presentation
as the predominant mode
of CD8 T-cell priming during
immune reconstitution
after hematopoietic
cell transplantation
Rafaela Holtappels1, Julia K. Büttner1, Kirsten Freitag1,
Matthias J. Reddehase1† and Niels A. Lemmermann1,2*†

1Institute for Virology and Research Center for Immunotherapy (FZI) at the University Medical Center
of the Johannes Gutenberg University Mainz, Mainz, Germany, 2Institute of Virology, Medical Faculty,
University of Bonn, Bonn, Germany
Cytomegalovirus (CMV) infection is the most critical infectious complication in

recipients of hematopoietic cell transplantation (HCT) in the period between a

therapeutic hematoablative treatment and the hematopoietic reconstitution of

the immune system. Clinical investigation as well as the mouse model

of experimental HCT have consistently shown that timely reconstitution of

antiviral CD8 T cells is critical for preventing CMV disease in HCT recipients.

Reconstitution of cells of the T-cell lineage generates naïve CD8 T cells with

random specificities among which CMV-specific cells need to be primed by

presentation of viral antigen for antigen-specific clonal expansion and

generation of protective antiviral effector CD8 T cells. For CD8 T-cell priming

two pathways are discussed: “direct antigen presentation” by infected

professional antigen-presenting cells (pAPCs) and “antigen cross-presentation”

by uninfected pAPCs that take up antigenic material derived from infected tissue

cells. Current view in CMV immunology favors the cross-priming hypothesis with

the argument that viral immune evasion proteins, known to interfere with the

MHC class-I pathway of direct antigen presentation by infected cells, would

inhibit the CD8 T-cell response. While the mode of antigen presentation in the

mouse model of CMV infection has been studied in the immunocompetent host

under genetic or experimental conditions excluding either pathway of antigen

presentation, we are not aware of any study addressing the medically relevant

question of how newly generated naïve CD8 T cells become primed in the phase

of lympho-hematopoietic reconstitution after HCT. Here we used the well-

established mouse model of experimental HCT and infection with murine CMV

(mCMV) and pursued the recently described approach of up- or down-
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modulating direct antigen presentation by using recombinant viruses lacking or

overexpressing the central immune evasion protein m152 of mCMV, respectively.

Our data reveal that the magnitude of the CD8 T-cell response directly reflects

the level of direct antigen presentation.
KEYWORDS

antigen cross-presentation, CD8 T-cell priming, direct antigen presentation, effector-
memory T cells (TEM), immune evasion, latent infection, memory CD8 T cells,
memory inflation
Introduction

Cytomegaloviruses (CMVs) belong to the b-subfamily of the

herpes virus family [for an overview, see (1)]. As a common feature

of herpes viruses, productive infection is cleared by mechanisms of

innate and adaptive immunity in the immunocompetent host, with

no overt disease. Importantly, the intact viral genome is maintained

in certain cell types, which differ between different herpes virus

species, in a latent state, referred to as latent infection or “latency”,

from which reactivation to recurrent productive infection can occur

[for a classical review, see (2), for focus on CMVs, see (3–12)].

Medical interest in human cytomegalovirus (hCMV) infection

results from its clinical relevance by causing CMV disease with

multiple organ involvement and an often lethal functional organ

failure in immunocompromised patients as well as in

immunologically immature fetuses in the special case of

congenital infection [for overviews, see (13–16)]. Here we focus

on the CMV risk group of hematopoietic cell transplantation

(HCT) recipients who are transiently immunocompromised due

to hematoablative therapy of hematological malignancies, until

ongoing reconstitution of the immune system is completed [for a

clinical overview, see (17)]. In this “window of risk”, reactivation of

latent CMV either in the transplanted hematopoietic cells or in the

recipient’s organs can lead to disseminated cytopathogenic tissue

infection, with interstitial pneumonia being the most critical

manifestation of CMV disease, especially in recipients of HCT

both in clinical infection (18–20) as well as in the mouse

model (21).

Consistent with early observations in clinical trials (22), the

mouse model using murine CMV (mCMV) for experimental

infection (23) has identified timely reconstitution, priming, and

clonal expansion of high-avidity CMV-specific CD8 T cells as being

essential for preventing CMV disease in HCT recipients [for recent

reviews, see (24, 25)]. Clinical research is restricted by ethical rules.

Therefore, the mouse model has become the preferred approach for

experimental studies on the mechanisms of CMV disease and

immune control, using viral mutants specifically tailored to the

research question (23, 26).

To our knowledge, the mechanism by which naïve CMV-

specific CD8 T cells are activated has not yet been studied in the
02175
specific context of HCT under conditions that differ from those

de s c r ibed for r eg iona l l ymph nodes (RLN) o f the

immunocompetent host (27, 28). An obvious aspect to be

considered is the fact that professional antigen-presenting cells

(pAPCs), including dendritic cells (DCs), belong to the myeloid

hematopoietic lineage and have to be reconstituted after HCT

before they can present antigen to reconstituted naïve CD8 T cells.

For both hCMV and mCMV, two routes of antigen presentation

for antigen-specific priming of naïve CD8 T cells are under

discussion: “direct antigen presentation” by infected pAPCs

following the canonical MHC/HLA class-I pathway of antigen

processing and presentation (29, 30), and “antigen cross-

presentation” by uninfected pAPCs that take up antigenic

material derived from infected cells, mostly in the context of cell

death [for reviews, see (31, 32)]. Importantly, all infected cells,

including non-hematopoietic parenchymal or connective tissue

cells, can be antigen sources for feeding the cross-presentation

pathway. Both pathways lead to the presentation of antigenic

peptide-loaded MHC/HLA class I (pMHC-I) complexes on the

cell surface for recognition by the T-cell receptor of CD8 T cells.

It is the current majority opinion in CMV immunology that the

initiation of the CD8 T-cell response is primarily by antigen cross-

presentation (33–38). This view seems to be corroborated by the

molecular explanation that the virus interferes with direct antigen

presentation by expressing immune evasion proteins, which inhibit

the transport of recently-loaded pMHC-I complexes to the cell

surface and thereby prevent recognition by virus-specific CD8 T

cells [(39), reviewed in (40)]. In line with this, it has been shown

that antigen cross-presentation by uninfected DCs can counteract

viral immune evasion (41). Furthermore, high virus production at

an early stage after HCT, when CD8 T-cell reconstitution is at its

beginning and not yet sufficient to prevent viral spread, should

provide large amounts of viral antigens to supply the cross-

presentation pathway and thereby aid cross-priming.

Here, we used our recently published approach to identify the

nature of priming by comparing the reconstitution of the antiviral

response of CD8 T cells to wild-type (WT) virus mCMV-WT and

recombinant viruses, in which inhibition of pMHC-I cell surface

expression is either diminished or enhanced compared to WT

conditions (28). As we have reviewed previously (40), mCMV
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codes for three proteins that regulate pMHC-I cell surface

transport. While the positive regulator m04/gp34 and the negative

regulator m06/gp48 compete for pMHC-I cargo and antagonize

each other in their function, m152/gp40 largely inhibits antigen

presentation by trapping pMHC-I in a cis-Golgi compartment. We

thus focused on comparing the antiviral CD8 T-cell response toWT

virus with recombinant viruses mCMV-Dm152 and mCMV-

m152.IE+E in which the central immune evasion gene m152 is

deleted or overexpressed, respectively.

Our here presented data are consistent with direct antigen

presentation being the major priming pathway for mCMV-

specific CD8 T cells in the phase of hematopoietic reconstitution

after HCT.
Materials and methods

Mouse strains and viruses

BALB/c (haplotype KdDdLd) and BALB/c-H-2dm2 (haplotype

KdDdØ (42)) mice were bred and housed under specified-pathogen-

free conditions by the Translational Animal Research Center

(TARC) at the University Medical Center of the Johannes

Gutenberg-University Mainz, Germany.

Virus derived from BAC plasmid pSM3fr (43) was used as

“wild-type” virus, mCMV-WT. BAC-derived recombinant viruses

mCMV-Dm152 (44) and mCMV-m152.IE+E (28) have been

described previously.
Experimental HCT and infection

Syngeneic HCT with BALB/c mice as hematopoietic cell (HC)

donors and recipients or allogeneic HCTwith BALB/c mice as donors

and BALB/c-H-2dm2 mice as recipients were performed as described

in greater detail previously (45). Briefly, hematoablative conditioning

of 8 to 10-week-old female mice was achieved by total-body g-
irradiation with a single dose of 6.5 Gy. HCT was performed ~2

hours later by intravenous infusion of 5x106 femoral and tibial donor

bone marrow cells. At ~2 hours after HCT, intra-plantar infection of

the recipients was performed with 1x105 plaque-forming units (PFU)

of the respective viruses.
Quantification of viral genomes and
organ load

To determine viral genome load in lung tissue, DNA of infected

mice was isolated from the postcaval lobe with the DNeasy tissue kit

(catalog no. 69504; QIAGEN, Hilden, Germany) according to the

manufacturer’s instructions. Viral and cellular genomes were

quantitated in absolute numbers by M55-specific and pthrp-specific

qPCRs normalized to a log10-titration of standard plasmid

pDrive_gB_PTHrP_Tdy (46).

Virus titers, quantitating productive infection in organs of

interest, were performed with organ homogenates by a virus
Frontiers in Immunology 03176
plaque assay performed under conditions of “centrifugal

enhancement of infectivity” [(45), and references therein].
Cytofluorometric analyses of splenic and
pulmonary infiltrate T cells

Single-cell suspensions were prepared from spleen and lungs as

described (21, 45). In the case of splenocytes, mice were tested

individually. In the case of lung infiltrate cells, cohort analyses were

performed with cell pools due to limited cell yield.

Unspecific staining was blocked with unconjugated anti-FcgRII/
III antibody (anti-CD16/CD32, clone 93; catalog no. 14-0161;

eBioscience, San Diego, CA, USA), and cells were specifically

stained with the following antibodies for multi-color

cytofluorometric (CFM) analyses: FITC-conjugated anti-CD8a

(clone 53-6.7, catalog no. 553031; BD Biosciences, Franklin Lakes,

NJ, USA), PE-conjugated anti-KLRG1 (clone 2F1, catalog no. 12-

5893; eBioscience), and PE-Cy7-conjugated anti-CD62L (clone

MEL-14, catalog no. 731715; Beckman Coulter, Brea, CA, USA).

IE1-epitope-specific CD8 T cells were identified by staining with

APC-conjugated peptide-folded MHC-I dextramer H-2Ld/

YPHFMPTNL (m123/IE1) (Immudex, Copenhagen, Denmark).

A lymphocyte live gate was routinely set in the forward vs.

sideward scatter (FSC vs. SSC) plot. All CFM analyses were

performed with flow cytometer FC500 and CXP analysis software

(Beckman Coulter).
ELISpot assay

An interferon gamma (IFNg) enzyme-linked immunospot

(ELISpot) assay was performed for quantification of IFNg-secreting
CD8 T cells after sensitization by peptide-loaded stimulator cells.

Frequencies of mCMV-specific CD8 T cells were determined by

incubation of graded numbers of immunomagnetically-purified total

CD8 T cells with P815 (H-2d) stimulator cells that were exogenously

loaded with synthetic peptides at a saturating concentration of 10-7M

[(27, 47) and references therein]. Spots were counted automatically

based on standardized criteria using Immunospot S4 Pro Analyzer

(CTL, Shaker Heights, OH, USA) and CTL-Immunospot

software V5.1.36.
Statistical analyses

To evaluate statistical significance of differences between two

independent sets of data, the unpaired t-test (two-sided) with

Welch’s correction of unequal variances was used. Differences are

considered statistically significant at levels of significance marked by

asterisks: (*) P < 0.05, (**) P < 0.01, and (***) P < 0.001.

In ELISpot analyses, frequencies of epitope-specific IFNg-
secreting CD8 T cells and the corresponding 95% confidence

intervals were calculated by intercept-free linear regression

analysis. Frequencies are considered significantly different if the

95% confidence intervals do not overlap.
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For analyzing the dynamics of epitope-specific CD8 T-cell

populations, a trend analysis was performed by linear regression.

Rising and declining trends are reflected by positive and negative

slopes of regression lines, respectively. Trends are considered

statistically significant for P-values of < 0.05, confirming linearity,

and 95% confidence intervals for the slope that do not include a

slope of zero. Calculations were performed with Graph Pad Prism

10 (Graph Pad Software, San Diego, CA, USA).
Results

CD8 T-cell response in the spleen
in the time course of
hematopoietic reconstitution

It was the aim of our study to identify the predominant route of

mCMV antigen presentation in the specific context of

hematopoietic reconstitution after experimental HCT. We took

the approach of modulating the level of presented antigenic

peptide by presence or absence of the key immune evasion

protein m152, which traps pMHC-I complexes in a cis-Golgi

compartment [(48–50), reviewed in (40)]. For this, we infected

HCT recipients either with WT virus mCMV-WT or with the m152

gene deletion mutant mCMV-Dm152, resulting in low and high cell

surface expression of pMHC-I complexes, respectively (Figure 1).

The time course of CD8 T-cell reconstitution in the spleen after

syngeneic HCT revealed a comparable reconstitution of total CD8 T

cells in mice infected with the immune evasion gene deletion

mutant mCMV-Dm152 compared to WT virus (Figure 2A, left

panel). This makes sense, because total CD8 T cells represent the

broad and random TCR-specificity repertoire, whereas modulation

of mCMV immune evasion primarily affects the priming and clonal

expansion of CD8 T cells specific for viral peptides. In accordance

with this reasoning, a more efficient response of antiviral CD8 T

cells specific for a viral peptide, here shown for the

immunodominant IE1 peptide presented by the MHC-I molecule

Ld (51–53), was seen as a trend at 6 weeks after infection with the

mutant virus. This trend reached statistical significance at later

times, until the frequencies of IE1-specific cells converged again at a

late stage (Figure 2A, right panel).
Inverse correlation between CD8 T-cell
response and viral load in the spleen in the
phase of productive infection after HCT

If “direct antigen presentation” applies to the priming of naïve

CD8 T cells in our system, the magnitude of the CD8 T-cell

response should reflect the cell surface level of pMHC-I

complexes on infected cells determined by immune evasion gene

expression, and correlate inversely with viral load. In contrast, if

“antigen cross-presentation” applies, the magnitude of the CD8 T-

cell response should be independent of immune evasion gene
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expression in infected cells and should rather reflect the viral load

that determines the amount of antigenic material available for

uptake by cross-presenting DCs. As we have shown in a previous

report on the HCT model (54), CD11c+ DCs of donor-genotype are

successfully reconstituted, including the CD8+ cDC1 subset that is

capable of antigen cross-presentation (55–57).

The time course of clearance of productive infection in the spleen

after experimental syngeneic HCT has already been published and

showed that virus production ceases between weeks 8 and 12 after

HCT and infection [Supplementary Figure 1, modified from (53)].

On this basis, CD8 T-cell response and viral load in the spleen of

HCT recipients were determined at 8 weeks, shortly before the end of

the productive phase of infection, that is, at a time when viral

antigenic material was still available from current and preceding

viral replication for a potential cross-presentation.

After infection with WT virus, a low IE1-specific CD8 T-cell

response corresponded to a high viral load, whereas after infection

with mutant virus mCMV-Dm152, a high response corresponded to

a low viral load (Figures 2B, C). Differentiated by CD8 T-cell

activation subsets (58) (recall Figure 1), cells of inflationary T

effector-memory cell (iTEM) phenotype KLRG1+CD62L-, which

reflects more recent sensitization by antigen (59), benefited most

from deletion of m152 (Figures 2B, D). Notably, recent work has

shown that KLRG1-CD62L+ T central memory cells (TCM)

contribute most to the control of infection upon adoptive transfer

due to their high proliferation potential (60). Although TCM did

not profit from deletion of m152 relative to the other subsets

(Figure 2D), their absolute number was increased due to the

overall increase in the number of IE1-specific CD8 T cells in

absence of immune evasion (Figure 2C, center panel).

In essence, the magnitude of the antiviral CD8 T-cell response

positively correlated with antigen presentation on infected cells and

negatively correlated with the amount of antigenic material

available for a potential cross-presentation.
Reduction in direct antigen presentation
due to enhanced immune evasion is
associated with a further decrease in the
CD8 T-cell response

Up to this point, we have shown that abrogation of immune

evasion by deletion of m152 leads to an enhanced CD8 T-cell

response due to improved direct antigen presentation. Following

this logic, one must postulate that in the reverse case of enhanced

immune evasion by overexpression of m152, a reduced CD8 T-cell

response should result, because direct antigen presentation is

further inhibited compared to infection with WT virus.

We have recently described the new recombinant virus mCMV-

m152.IE+E (28), with which m152 is expressed from its authentic

genomic position as an Early (E) phase protein and, in addition,

expressed ectopically as an Immediate-Early (IE) phase protein.

This leads to an overexpression of m152 combined with an earlier

onset of immune evasion in infected cells (28).
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Consistent with enhanced immune evasion, infection with the

“super-evasion” virus mCMV-m152.IE+E resulted in an increased

viral replication associated with a reduced CD8 T-cell response

compared to WT virus and reciprocal to the data with mCMV-

Dm152 at the end of the productive phase in the spleen at 8 weeks

after syngeneic HCT (Figure 3A). In the latent phase at 24 weeks

after syngeneic HCT, the latent viral genome loads of WT virus and

mCMV-m152.IE+E in the spleen had almost equalized and were

significantly higher by a factor of ~10 compared to the immune

evasion gene deletion mutant mCMV-Dm152 (Figure 3B, left

panel). Imprinted by the CD8 T-cell response during productive

infection, the frequencies of viral epitope-specific CD8 T cells
Frontiers in Immunology 05178
during latent infection remained in the rank order of mCMV-

Dm152 >> mCMV-WT > mCMV-m152.IE+E, which is most

pronounced for the known immunodominant epitopes IE1 and

m164 in the H-2d haplotype (53, 61, 62) (Figure 3B, right panel).

It should be noted that differences between epitopes do not

necessarily indicate differences in the mode of priming, but merely

reflect differences in clonal expansion. In particular, minor

differences between experimental groups do not reach statistical

significance after a few proliferation cycles of CD8 T cells specific

for subdominant epitopes such as M105 and m145, but can reach

statistical significance after several proliferation cycles of CD8 T

cells specific for immunodominant epitopes such as IE1 and m164.
FIGURE 1

Sketch of the experimental design. Syngeneic hematopoietic cell transplantation (HCT) is performed by transferring hematopoietic cells (HCs) of
BALB/c donor mice intravenously into immunocompromised BALB/c recipient mice. (Flash symbol) total-body g-irradiation with a dose of 6.5 Gy.
One group of recipients is infected with mCMV-WT (WT, red virus symbol), and the other group with immune evasion gene deletion mutant mCMV-
Dm152 (Dm152, light green virus symbol). At defined times after HCT, the magnitude of the CD8 T-cell response is determined for the pool of
memory CD8 T cells as well as for subsets thereof, and correlated with viral replication. (iTEM) inflationary T effector-memory cells; (cTEM)
conventional T effector-memory cells. (TCM) T central memory cells. These subsets are distinguished by the KLRG1 and CD62L cell surface marker
expression, as indicated. (pAPC) Professional antigen-presenting cell. The level of direct antigen presentation by infected pAPCs is modulated by
presence and absence of the key immune evasion protein m152 of mCMV, that is, low and high after infection with mCMV-WT and mCMV-Dm152,
respectively. The receptor symbol on pAPCs represents a pMHC-I complex, that is, an MHC class-I molecule presenting an antigenic peptide. (Naïve
CD8) Antigen-unexperienced CD8 T cells sensitized by recognition of a pMHC-I complex. The receptor symbol represents the cognate T-cell
receptor, TCR.
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The same principle has also been shown for the two

immunodominant epitopes, where the difference between the WT

virus and an immune evasion gene deletion mutant only became

statistically significant over time of clonal expansion (27).

Altogether, the approach to up- or down-modulate immune

evasion in infected cells confirmed direct antigen presentation as

the predominant pathway of antigen presentation.
Frontiers in Immunology 06179
Impact of immune evasion on the
establishment of viral latency in the lungs

The lungs represent the most relevant organ site of CMV

pathogenesis, specifically in the phase of hematopoietic

reconstitution, both after clinical HCT (17–20) as well as after

experimental HCT in the mouse model (21, 52). We therefore
B C

D

A

FIGURE 2

(A) Time course of the virus-specific CD8 T-cell response in the spleen. Measurements were performed at the indicated time points after syngeneic
HCT and infection with either mCMV-WT (WT), expressing immune evasion proteins, or mCMV-Dm152 (Dm152), lacking the expression of the key
immune evasion protein of mCMV. (Left panel) Frequencies of total CD8 T cells. (Right panel) Frequencies of CD8 T cells specific for the
immunodominant viral peptide IE1. Symbols represent HCT recipient mice (n=3-5 per group and time point) tested individually by CFM analysis.
Horizontal bars indicate the median values. (B–D) Inverse correlation of the CD8 T-cell response and viral replication. Measurements refer to the
spleen at 8 weeks after syngeneic HCT and infection, comparing mCMV-WT (WT) and mCMV-Dm152 (Dm152). (B) CFM analyses for the relative
quantitation of CD8 T cells specific for the immunodominant antigenic peptide IE1. Shown are color-coded 2D fluorescence density plots for the
cell surface marker combinations indicated, with red and blue color representing highest and lowest cell numbers, respectively. (FSC) forward
scatter; (IE1-TCR) cells expressing a TCR specific for the IE1 peptide. (Upper panels) Splenocytes present in the lymphocyte live gate were analyzed
for the expression of the CD8a molecule. Gates are set on CD8+ cells. (Center panels). Gated CD8+ cells were analyzed for the expression of IE1-
TCR. Gates were set on CD8+IE1-TCR+ cells. (Lower panels) Gated CD8+IE1-TCR+ cells were further analyzed for the expression of the activation
markers KLRG1 and CD62L, defining the subsets iTEM, cTEM, and TCM, as indicated. Shown are representative examples for both viruses, referring
to the respective mouse with the median percentage of CD8+IE1-TCR+ cells in subfigure C, center panel. (C) Relative quantities of total CD8+ T cells
(left panel), CD8+IE1-TCR+ T cells (center panel), and the corresponding viral genome loads (right panel). (D) Subset composition of the CD8+IE1-
TCR+ cells. Dots represent individual mice (n= 4-5 per experimental group) and horizontal bars indicate the median values. Throughout, significance
of differences was determined based on log-transformed data (for viral genome load) or on linear data (for CD8 T-cell frequencies) by Welch´s
unpaired t test (two-sided) correcting for unequal variances. Levels of significance are marked by asterisks: (*) P < 0.05; (**) P < 0.01; (n.s.)
not significant.
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turned to the analysis of immune evasion-regulated viral infection

of the lungs and the CD8 T-cell response in pulmonary infiltrates in

the phase of productive infection and during latent infection with

the immune evasion gene deletion mutant mCMV-Dm152

compared to WT virus (Figure 4).

Levels of infectious virus (Figure 4, upper panel) were compared

to viral genome load (Figure 4, lower panel) to define the time when

productive infection was cleared and latent infection established in

the lungs. Already at the beginning of the time-course analysis at 4

weeks after HCT, mCMV-Dm152 was more efficiently controlled
Frontiers in Immunology 07180
than the WT virus, both in terms of reduction of productive infection

as well as of viral DNA load. To be on the safe side, we defined the

time after which latent infection was established as 14 weeks after

HCT. In accordance with the definition of viral latency (2), infectious

virus was absent beyond that time, whereas viral genome was

maintained until the end of the observation period. Of note, the

load of latent viral DNA was lower for the mutant virus throughout,

indicating more efficient control by antiviral CD8 T cells during the

resolution of acute infection based on enhanced direct antigen

presentation by infected cells in the absence of immune evasion.
B

A

FIGURE 3

Inverse correlation between viral genome load and CD8 T-cell response magnitude in the spleen after deletion or overexpression of the key
immune evasion protein m152. (A) Analyses performed in the spleen at 8 weeks after syngeneic HCT and infection with mCMV-WT (WT), the super-
evasion virus mCMV-m152.IE+E (m152.IE+E), and the immune evasion gene deletion mutant mCMV-Dm152 (Dm152). (Left panel) Viral genome
loads. (Right panel) Frequencies of IE1-TCR+CD8+ T cells determined by CFM analysis. (B) Analyses performed in the latent phase of infection at 24
weeks. (Left panel) Latent viral genome loads. (Right panel) Frequencies of CD8 T cells specific for the viral epitopes indicated, determined for a
cohort of mice (n=5) by an IFNg-based ELISpot assay. Ø, no peptide added. Bars represent cohort average CD8 T-cell frequencies and error bars
represent the 95% confidence intervals. Throughout, dots represent individual mice (n=5 per experimental group) and horizontal bars indicate the
median values. Significance of differences was determined based on log-transformed data (for viral genome load) or on linear data (for CD8 T-cell
frequencies) by Welch´s unpaired t test (two-sided) correcting for unequal variances. Levels of significance are marked by asterisks: (*) P < 0.05; (**)
P < 0.01; (***) P < 0.001; (n.s.) not significant.
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The CD8 T-cell response during latent
infection of the lungs depends on direct
antigen presentation by infected cells of
recipient-genotype

Depending on how complete the hematoablative treatment has

eradicated cells of the bone marrow and the immune system,

recipients of clinical HCT establish complete or mixed chimerism,

in which all or only a fraction of hematopoietic cells are of donor-

genotype, respectively (63, 64).

As we have shown in a previous report on latent infection

established after sex-mismatched HCT in the mouse model (65),

recipient-genotype CD11c+ DCs become largely replaced by donor-

genotype CD11c+ DCs, whereas donor-genotype CD11b+

macrophages account for only half of the population. In the

lungs, latent mCMV genomes do not localize to cells expressing

the fractalkine receptor CX3CR1 (66), which excludes both CD11b+

CX3CR1+ macrophages and CD11c+CX3CR1+ DCs as sites of

mCMV latency and direct antigen presentation. Non-

hematopoietic parenchymal or connective tissue cells are

exclusively of recipient-genotype.

By using different genetic approaches, own previous work (54)

and work by the group of A. Oxenius (67) have independently
Frontiers in Immunology 08181
shown that viral antigen presentation during latency of WT virus

depends on direct antigen presentation by latently infected non-

hematopoietic tissue cells of recipient-genotype. At that time, the

latently infected cell type for mCMVwas still unknown. Meanwhile,

endothelial cells (58, 65, 68) and PDGFRa+
fibroblasts (69), both

non-hematopoietic cell types, were identified as cellular sites of

mCMV latency.

To test if direct antigen presentation by latently infected non-

hematopoietic tissue cells also applies to latent infection with

mCMV-Dm152, we compared CD8 T-cell responses in H-2dcd

syngeneic chimeras, in which donor and recipient cells differ only

epigenetically, with H-2dcdm2 allogeneic chimeras, in which only

donor-derived pAPCs express the MHC class-I molecule Ld that

presents the antigenic IE1 peptide (for the principle, see Figure 5A).

The result was clear and showed that the pool sizes of IE1 epitope-

specific total CD8 T cells and the three activation subsets thereof

were largely reduced during latent infection with mCMV-WT as

well as with mCMV-Dm152 when cells of recipient-genotype did

not express the presenting MHC-I molecule Ld (Figure 5B). In

conclusion so far, regardless of whether or not direct antigen

presentation was enhanced, the CD8 T-cell response during latent

infection depended on cells of recipient-genotype and thus not on

reconstituted hematopoietic-lineage pAPCs.
FIGURE 4

Time course of productive infection and the corresponding viral genome load in the lungs after syngeneic HCT. (Upper panel) Virus titers in the
lungs, measured as plaque-forming units (PFU) that quantitate productive infection. (Lower panel) Viral DNA load in the lungs, normalized to cellular
genomes. Symbols represent data from mice tested individually (n=5 per experimental group and time point). Short horizontal bars indicate the
median values. Significance of differences between the two viruses (indicated by brackets) was determined for each time, based on the log-
transformed data by Welch´s unpaired t test (two-sided) correcting for unequal variances. Levels of significance are marked by asterisks: (*) P < 0.05;
(**) P < 0.01; (***) P < 0.001; (n.s.) not significant. (DL) detection limit of the virus plaque assay.
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Modulation of CD8 T-cell memory inflation
in the lungs by viral immune evasion

It is becoming increasingly clear that latent CMV genomes are

not completely silenced at all genomic loci and at all times.

Instead, episodes of local epigenetic viral gene desilencing lead

to transient events of transcription (70–73) that do not follow the

coordinated productive cycle gene expression cascade of

immediate-early (IE), early (E), and late (L) phase transcription

(74–76), and that therefore do not lead to a recurrence of

infectious virus. Linking this insight to the CD8 T-cell response

during latent infection, it has been a major contribution of our

group to have shown stochastic and transient expression also of

viral genes that encode antigenic peptides (58, 77, 78) driving a
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more or less continuous expansion of the viral epitope-specific

CD8 T-cell pool over time. This phenomenon is known as

“memory inflation (MI)” [for reviews, see (77, 79–81)], but in

both the H-2d (61, 82) and the H-2b (83, 84) haplotype, MI applies

only to few of the known antigenic viral peptides. MI is primarily

based on the expansion of KLRG1+CD62L- iTEM (58), which were

originally named “short-lived effector cells” (SLECs) (85), but

were found to differ from terminally-differentiated effector cells by

their proliferative capacity and dependence of their tissue

maintenance on IL15 (86).

When comparing the time course of the CD8 T-cell response to

the prototypical MI-inducing epitope IE1 (82) after syngeneic HCT

for mCMV-WT and mCMV-Dm152, a fundamental difference

became apparent (Figures 6A, B). Infection with WT virus led to
B

A

FIGURE 5

The viral epitope-specific CD8 T-cell response during latent infection largely depends on direct antigen presentation by recipient-genotype cells.
(A) Sketch of the experimental design. After HCT, recipients become chimeras, because the progeny of the transplanted hematopoietic stem- and
progenitor cells are of donor-genotype, while non-hematopoietic parenchymal or connective tissue cells in the recipient’s organs are not replaced
and are therefore of recipient-genotype. (Left) In syngeneic chimeras H-2dcd, donor-derived professional antigen presenting cells (pAPC), which are
of myeloid hematopoietic lineage, as well as tissue cells (TC) of the recipients all express the MHC class-I molecule Ld that presents the antigenic
peptide IE1. (Right) In allogeneic chimeras H-2dcdm2, all cells of the HCT recipients lack expression of Ld and thus cannot present the IE1 peptide. For
explanation of further symbols, see the Legend to Figure 1. (B) Frequency and subset composition of IE1-TCR+CD8+ T cells in lung infiltrates
determined during the latent phase at 24 weeks after HCT and infection with viruses mCMV-WT (WT) and mCMV-Dm152 (Dm152). Cells were
isolated from pulmonary infiltrates of infected HCT recipients (n=5 per experimental group and time of analysis) and pooled due to limited cell yield
for a cohort analysis. Bars represent cohort average values.
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a low response during productive infection due to low direct antigen

presentation, followed by iTEM-based MI aided by high latent viral

genome load (recall Figure 4) associated with frequent episodes of

restimulation during latency. Just opposite to this, infection with the

m152 gene deletion mutant led to an initially high response due to
Frontiers in Immunology 10183
high direct antigen presentation, followed by a steady decline in the

number of iTEM due to low latent viral genome load (recall

Figure 4) that limits restimulation during latency. Inflation and

deflation of iTEM are statistically confirmed by a linear regression

analysis revealing a positive and a negative trend after infection with
B

C

A

FIGURE 6

Long-term course of the IE1 epitope-specific CD8 T-cell frequencies in pulmonary infiltrates differentiated by activation subsets. (A) CFM analyses
shown exemplarily for recipients of syngeneic HCT in the phase of productive infection at 8 weeks (left panels) and during latent infection at 32
weeks (right panels) with mCMV-WT (WT) and mCMV-Dm152 (Dm152). Lung infiltrate cells were pooled from HCT recipients (n=3 per experimental
group and time) and tested as cohorts. For further details of the CFM analysis and gating strategy, see the Legend of Figure 2. (SSC) sideward scatter.
(B) Time course, differentiated by activation subsets iTEM, cTEM, and TCM. Data represent cohort average values. (C). Trend analysis of IE1-
TCR+CD8+ T-cell population dynamics. The analysis corresponds to the data shown in (B). Data for all indicated time points (n=3 mice per time
point, that is, 15 mice in the time course) were subjected to linear regression analysis for determining the statistical significance of declining and
increasing numbers of IE1-TCR+ total CD8 T cells (left panel) and of IE1-TCR+ iTEM (right panel) after infection with mCMV-Dm152 (Dm152) and
mCMV-WT (WT), respectively. Dotted curves represent the 95% confidence areas of the regression lines. Slopes and their 95% confidence intervals
(CI) are indicated. Linearity is accepted for P < 0.05. Negative or positive trends are confirmed when the respective 95% CI of the slopes do not
include the slope of zero (null hypothesis of no trend).
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mCMV-WT and mCMV-Dm152, respectively (Figure 6C).

Surprisingly, loss of iTEM did not result in a notable gain of

cTEM (Figure 6B), although conversion of iTEM to cTEM by loss

of KLRG1 expression was expected. We did not pursue this finding

further and can therefore only speculate that iTEM do not

quantitatively convert to cTEM but get lost.

Throughout the time course, IE1 epitope-specific TCM were

not notably involved in the composition of the CD8 T-cell pool in

pulmonary infiltrates, which is consistent with the fact that TCM,

expressing the lymphoid homing receptor CD62L, do not home to

non-lymphoid tissues but first need to convert to CD62L- TEM

(87). Consistent with this, an own recent study localized IE1

epitope-specific TEM, but not TCM, to the extravascular

compartment of the lungs (88).

Altogether, our data prove that the pool of viral epitope-specific

CD8 T cells in pulmonary infiltrates is predominantly generated by

direct antigen presentation during both productive and

latent infection.
Discussion

The current majority opinion that priming of an mCMV-

specific CD8 T-cell response is by antigen cross-presentation is

based on the view that viral interference with the MHC-I pathway

of antigen presentation would completely inhibit the display of

pMHC-I complexes at the cell surface of infected cells (89). In

support of this, it was shown in an elegant approach that cross-

presentation can indeed prime the epitope-specificity repertoire of

the CD8 T-cell response to mCMV with unaltered epitope

hierarchy when direct antigen presentation is experimentally

precluded (35). It is important to note, however, that the epitope-

specificity repertoire is likewise primed with unaltered epitope

hierarchy when antigen cross-presentation is genetically

precluded, as shown with the mutant mouse strain C57BL/6-

Unc93b13d/3d (28). As a consequence, the epitope-specificity of

the observed CD8 T-cell response gives no indication of whether

direct presentation or cross-presentation applies.

One reasonable explanation for our finding of direct priming

could be that the assumption of a complete prevention of direct

antigen presentation by the immune evasion proteins must be

corrected. As we have reviewed recently, “immune evasion” is a

misleading term, because the number of pMHC-I complexes that

reach the cell surface despite interference by the immune evasion

proteins is still high enough for recognition by high-avidity CD8 T

cells (90). In addition, it is long known that IFNg counteracts

immune evasion (91, 92) by enhancing MHC class-I synthesis (93)

and by enhancing proteasomal processing of antigenic proteins by

induction of the immunoproteasome (94). This is generally the case,

but has been reported to apply specifically also to the mCMV IE1-

peptide (95). Of note, immune evasion is less efficient in mCMV-

infected macrophages that also can serve as pAPCs for direct

antigen presentation (96).
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Themode of antigen presentation during viral latency, which is the

basis for MI, is easier to define. Since the cells are no longer

productively infected, the antigenic material available for uptake and

cross-presentation by uninfected pAPCs is severely limited.

Accordingly, MI is driven by direct antigen presentation. In mCMV

latency, the latently infected cell types have been identified as non-

hematopoietic tissue cells, specifically, as far as is known today, types of

endothelial cells and a specific subtype of fibroblasts (58, 65, 68, 69).

During latency, antigenic peptides are generated by transient

and stochastic episodes of viral gene de-silencing, which do not

follow the regulated cascade of transcription of the productive viral

cycle, and which therefore do not result in virus production (58).

Notably, the stochastic nature of antigen-specifying transcription is

also reflected by stochastic clonal expansion of viral epitope-specific

CD8 T cells during MI (97). It is long known that not all viral

antigenic peptides elicit MI (82, 83, 98). While gene expression

during latency is a primary condition, antigen processing is another

critical restriction point for MI to occur (99). Furthermore,

antigenic peptides that do not depend on the immunoproteasome

have an advantage (100).

Our data (Figure 6) show that absence of the key immune

evasion protein m152 in mice latently-infected with the Dm152

mutant does not aid MI. At first glance, this is surprising given the

fact that MI is driven by direct antigen presentation and that

deletion of m152 enhances direct antigen presentation. The

answer to this riddle is provided by the stochastic nature of

transcriptional de-silencing during latency. As Griessl et al. (58)

have shown, viral epitope-encoding genes and the immune evasion

gene m152 are rarely co-expressed in the same cell, so that m152 has

no pMHC-I target with which it can interfere. As a consequence,

viral immune evasion can play no direct role in MI, although it has

an impact imprinted already during the productive phase of

infection by determining the latent viral genome load that defines

the probability for antigen-encoding episodes of transcription that

drive MI during viral latency (58, 77, 101).

It was the original aim of this study to define the mode of

antigen presentation under the specific conditions of CD8 T-cell

reconstitution in comparison to a preceding study of the acute CD8

T-cell response within an RLN draining a local site of infection of

immunonocompetent mice (28). Notably, the results differ

substantially. While the response of CD8 T cells arising from

lympho-hematopoietic reconstitution after HCT directly reflects

antigen presentation by infected APCs in the rank order of mCMV-

Dm152 >> mCMV-WT > mCMV-m152.IE+E (this report) the

ranking in the RLN of immunocompetent mice was found to be

mCMV-WT > mCMV-m152.IE+E ≈ mCMV-Dm152 (28).

The surpris ing aspect of pr iming in the RLN of

immunocompetent mice was the finding that the best CD8 T-cell

response was elicited by mCMV-WT, which is characterized by an

intermediate strength of immune evasion, whereas the opposite

extremes of enhanced and nearly abrogated immune evasion both

resulted in only a weak response. This paradox was explained by a

negative feedback regulation exerted by the CD8 T cells that were
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just generated by direct antigen presentation (28). The proposed

negative feedback has a structural correlate in that CD8 T cells

primed in the peripheral interfollicular T-cell zone of an RLN

migrate back to a cortical region just underneath the subcapsular

sinus, where they can attack infected pAPCs (102) and thereby limit

further direct antigen presentation. An elimination of infected

pAPCs by the primed CD8 T cells also explains our previous

finding that infected cells are barely detectable in the RLN cortex

in immunocompetent mice, whereas numerous infected cells

localize to the RLN cortex in immunosuppressed mice (27).

Based on all this evidence, we put forward the hypothesis that

the intact architecture of an RLN in immunocompetent mice in

combination with a limited number of infected RLN-resident

pAPCs is crucial for negative feedback regulation to occur. This

may explain why negative feedback regulation is ineffective under

conditions of CD8 T-cell reconstitution and disseminated infection,

which leads to high numbers of infected RLN-resident pAPCs that

survive the attack by CD8 T cells in numbers still sufficient for

driving clonal expansion.
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Clearance of productive infection in the spleen after experimental syngeneic
HCT. The time course of productive infection of the spleen by a recombinant

virus equivalent to mCMV-WT shows clearance between weeks 8 and 12 after
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plaque forming units. Data are reproduced from reference (53), modified to
focus on defining the time of clearance of productive infection and

establishment of latent infection.
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Colorectal cancer (CRC) is a complex and heterogeneous disease characterized

by dysregulated interactions between tumor cells and the immune system. The

tumor microenvironment plays a pivotal role in cancer initiation as well as

progression, with myeloid immune cells such as dendritic cell and macrophage

subsets playing diverse roles in cancer immunity. On one hand, they exert anti-

tumor effects, but they can also contribute to tumor growth. The AOM/DSS

colitis-associated cancer mouse model has emerged as a valuable tool to

investigate inflammation-driven CRC. To understand the role of different

leukocyte populations in tumor development, the preparation of single cell

suspensions from tumors has become standard procedure for many types of

cancer in recent years. However, in the case of AOM/DSS-induced colorectal

tumors, this is still challenging and rarely described. For one, to be able to

properly distinguish tumor-associated immune cells, separate processing of

cancerous and surrounding colon tissue is essential. In addition, cell yield, due

to the low tumor mass, viability, as well as preservation of cell surface epitopes

are important for successful flow cytometric profiling of tumor-infiltrating

leukocytes. Here we present a fast, simple, and economical step-by-step

protocol for isolating colorectal tumor-associated leukocytes from AOM/DSS-

treated mice. Furthermore, we demonstrate the feasibility of this protocol for

high-dimensional flow cytometric identification of the different tumor-infiltrating

leukocyte populations, with a specific focus on myeloid cell subsets.
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Introduction

Colorectal cancer

Colorectal cancer (CRC) is the third most prevalent cancer

worldwide, accounting for approximately 10% of all cancer cases.

Current standard-of-care therapies like chemotherapy, radiotherapy,

and surgical resection have been mainstays in managing the disease

but improve survival in only up to 20% of patients. Despite advances

in the detection and treatment of CRC in recent years, CRC has

remained a major challenge in clinical practice and there is a growing

interest in understanding the role of the immune system in

combating CRC. This malignant tumor of the intestinal tract can

arise spontaneously (sporadic CRC) or as a result of chronic

inflammation, known as colitis-associated colorectal cancer (CAC).

Patients with inflammatory bowel diseases (IBD) such as Ulcerative

colitis or Crohn´s disease are at a significantly higher risk to develop

CRC (1).

The tumor tissue represents an intricate system consisting not

only of malignant cells, but also of surrounding stroma and, in

particular, a complex tumor immune cell infiltrate. This includes

cells of the innate immune system like dendritic cells (DC),

macrophages (Mph), neutrophils, and myeloid-derived suppressor

cells (MDSC), as well as adaptive immune cells (T and B cells) (1, 2).

These diverse cell types contribute to the inflammatory status of the

tumor tissue and communicate with each other directly via cell-cell

contact or indirectly through cytokine and chemokine production

to shape tumor growth. In particular, improved prognosis of CRC

and shorter patient overall survival are associated with high and low

levels of anti-tumor T cell activity, respectively. Interestingly, while

the activity of tumor-specific T cells decreases as the tumor

progresses, the density of innate immune cells and of B cells

increases, suggesting potent immunosuppressive mechanisms in

the tumor microenvironment (TME) (3, 4). Therefore,

understanding the multifaceted interactions between CRC and the

immune system holds great potential for innovative therapies and

improved outcomes.
Intestinal immune system: a double-edged
sword in CRC development

The intestinal immune system plays an important role in the

development and progression of CRC (1). Antigen presenting cells

(APC) constitute a heterogeneous population of cells acting as sentinels

of the immune system. The main types of APC are DC, Mph, and B

cells. DC are broadly classified as plasmacytoid DC (pDC) and

conventional DC (cDC), each with specialized functions. pDC are

characterized by their ability to produce large amounts of type I

interferon (IFN-I) upon viral infection (5), yet their role in anti-

tumor immunity remains to be fully explored. However,

intratumoral pDC appear to exhibit impaired IFN-I production and

immunosuppressive properties. cDC are the most potent type of APC

and their ability to capture, process, and present antigens to naïve T

cells makes them unique initiators and regulators of tumor-specific

adaptive immune responses (6). Mph on the other hand are pivotal to
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maintain mucosal tissue homeostasis in situ, but tumor-associated

Mph (TAM) can also promote chronic inflammation and tumor

growth (7, 8). Beyond secreting IgA to maintain homeostasis with the

microbiota in the gut lumen, and tumor-specific IgG1 antibodies, B

cells present tumor antigens via MHCI or MHCII to T cells,

enhancing their anti-tumor effector function (9). Notably, all of

these three APC populations represent double-edged swords when

it comes to CRC development, because the TME constitutes a special

immunosuppressive milieu facilitating tumor immune evasion.
Myeloid APC: orchestrators of anti-
tumor immunity

Myeloid APC populations that shape tissue homeostasis and

orchestrate adaptive immune responses via the secretion of soluble

mediators comprise Mph and cDC. Mph primarily maintain tissue

homeostasis in situ and represent a crucial immune cell population

and key regulators within the TME. They demonstrate a remarkable

plasticity and can display diverse phenotypes depending on the

microenvironmental cues. TAM are the most common myeloid cell

type in the TME and are recruited to the tumor tissue by

chemokines released from cancer cells. So called M1-like Mph,

identified by expression of Nos2, exhibit an anti-tumor phenotype

and secrete pro-inflammatory cytokines, such as IL-12 and TNF-a.
These cytokines promote T cell activation and anti-tumor

immunity, making M1-like Mph critical for the early stages of the

immune response against CRC. On the other hand, M2-like Mph

characterized by Arg1 expression display an immunosuppressive

phenotype and release anti-inflammatory cytokines such as IL-10

and TGF-b (10). They also contribute to tissue remodeling,

angiogenesis, and the resolution of inflammation. Thus, in the

context of cancer, M2-like Mph can promote tumor growth and

progression by creating an immunosuppressive microenvironment

and facilitating tumor invasion and metastasis. In contrast to other

solid tumors, TAM infiltration in CRC failed to predict outcome

(11) or correlate with a better prognosis (12). Notably, clear division

into M1- and M2-like Mph subsets by the use of genes such as Nos2

or Arg1 often fails in the context of cancer, especially colorectal

cancer (13, 14). Therefore, it is of great interest to identify new

marker genes which allow classification of TAM into pro-

tumorigenic and anti-tumorigenic.

cDC, on the other hand, are unique initiators and regulators of

adaptive immune responses, including potent anti-tumor immunity

as well as tumor immune evasion (15, 16). In this context, CD8+/

CD103+ cDC1 excel at inducing cellular immunity against

intracellular pathogens and tumors due to their efficient cross-

presentation of exogenous antigens on MHCI molecules to activate

naïve CD8+ T cells and their ability to prime T helper (Th) 1 cell

responses. cDC1 have evolved unique biological properties, including

using the lectin Clec9A/DNRG1 to take up dead cells, and transport

cell-associated material into endocytic compartments specialized for

cross-presentation (17). Instead, CD11b+ cDC2 are crucial for

inducing CD4+ T cell-mediated immunity, i.e., in cancer (18). In

addition, CD4+ T cells can engage with cDC1 via CD40L/CD40

signaling ‘licensing’ them to cross-prime CD8+ T cells (19, 20). cDC,
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however, do not only initiate and polarize immune responses to a

given (pathogenic) threat, but they are also responsible for

maintaining immune (self-) tolerance. A shift in this balance

towards excessive immune reactivity or an unwarranted tolerogenic

function can lead to chronic inflammation (and autoimmunity) or

facilitate unchecked tumor development.

Indeed, secretion of soluble tumor-derived factors that create a

suppressive TME resulting in cDC and Mph dysfunction have long

been described as key mechanisms of cancer immune evasion (21,

22). Specifically, the TME contains a network of regulatory factors

that can inhibit cDC infiltration and subdue their anti-tumor

activity. The former includes reduced CCL4, CCL5, and XCL1

chemokine as well as Flt3L expression limiting cDC recruitment

and differentiation, respectively. The latter involves IL-6 and IL-10

overexpression, which enforces immune-regulatory transcriptional

programs and limits cDC differentiation and maturation. Although

the original hypothesis stated that Mph are involved in anti-tumor

immunity, there is substantial evidence that TAM can enhance

tumor progression (23). Mph chemotaxis is regulated by CCL2,

which is overexpressed in CRC. Despite extensive research, the

exact cellular and molecular mechanisms underlying these complex

processes orchestrating Mph and cDC function during tumor

immune surveillance and escape remain elusive.
Tumor-infiltrating lymphocytes: crucial
effector cells controlling tumor growth

As outlined above, naïve T cells are instructed by cDC in tumor-

draining lymph nodes and activated effector T cells that subsequently

infiltrate the tumor are reactivated by resident APC, in particular

Mph in situ (24). Notably, adaptive immune responses to CRC are

modulated by the TME, including TME-conditioned migratory cDC,

and the locations and interactions of immune cells in the colorectal

TME leading to dysregulation of these cell populations are complex

and heterogeneous (25). In general, Th1 and cytotoxic T cell

responses correlate with better outcomes of patients, whereas Th17

and regulatory T (Treg) cell responses have been associated with

worse prognosis (26). Protection is mediated by the anti-proliferative,

pro-apoptotic, and anti-angiogenic actions of IFN-g, as well as

through enhanced recruitment of cytotoxic CD8+ T cells. On the

other hand, IL-17A stimulates tumor development and progression

directly as well as indirectly by inducing secretion of IL-6 by APC

(27). IL-17A also promotes angiogenesis via production of vascular

endothelial growth factor (VEGF) (28). In contrast, IL-17F has a

tumor suppressive effect in CRC, possibly by inhibiting tumor

angiogenesis, and Il17a- and Il17f-deficient mice develop fewer and

more tumors, respectively, compared to littermate controls in the

AOM/DSS model (29). Finally, Treg cells, in particular

CD4+CD25+Foxp3+ Treg cells, play critical roles in establishing and

maintaining an immunosuppressive TME to inhibit anti-tumor

immunity. On one hand, these Treg cells express inhibitory

receptors such as CTLA-4, Tim-3, and PD-1 that exert their

suppressive function on both cDC and Mph. In addition, Treg cells

secrete the immunosuppressive cytokines IL-10 and TGF-b to induce

APC and effector T cell dysfunction (30). However, IL-10 represents a
Frontiers in Immunology 03191
pleiotropic cytokine and whether it is a tumor-promoting or

-inhibiting agent is context dependent and still requires

further investigation.

B cells are also an important part of the tumor immune cell

infiltrate in CRC, and their contribution to tumor initiation,

development, and immune surveillance is complex with both pro-

and anti-tumorigenic effects. Recent studies implicate a fundamental

role of B cells in shaping anti-tumor responses through several

mechanisms. While IgA+ plasma cells in general regulate bacterial

populations in the gut lumen, for example by providing a protective

barrier between commensals and the epithelium, plasma cell-derived

tumor-specific IgG1 antibodies mediate cell cytotoxicity, and

phagocytosis of tumor cells. On the other hand, IgA+ plasma cells

turned out to be a source of IL-10 and PD-L1, causing suppression of

anti-tumor Th1 cells and CTL (31). In addition, B cells present

tumor-specific antigens via MHCII to Th cells inducing their anti-

tumor effector function and they also regulate the immune response

within the TME through the release of cytokines, such as IFN-g, IL-
12, or IL-10 (32, 33). B cells constitute a significant proportion of the

immune cell infiltrate in CRC where CCR6+ B cells are actively

recruited to the TME (34). CRC patients show substantial alterations

in their B cell compartment, with increasing numbers of IL-10

producing B cells in advanced tumors and metastasis (35).

Otherwise, CRC patients with tumors heavily infiltrated by CD20+

B cells showed significantly improved disease-specific survival,

suggesting an anti-tumor role for B cells. These B cells are strongly

associated with CD8+ cytotoxic T cells, which are pivotal in antigen-

specific immunity against tumors (4).
AOM/DSS model of inflammation-
associated cancer

Although major improvements in CRC screening and treatment

have been made in recent years, improved strategies to combat CRC

remain an important clinical need. The Azoxymethane (AOM)/

Dextran sodium sulfate (DSS) model is a powerful, reproducible

tool to better understand the mechanisms underlying genesis and

progression of CAC (36). The combination of AOM (tumor-inducing

agent) with the inflammatory agent DSS (tumor-promoting agent)

triggers CAC tumor development within 10 weeks. AOM is a

procarcinogen that is metabolized in a cytochrome P450-dependent

manner in the liver, which results in its activation. Active metabolites

are released into the intestine by excretion via the bile. In the gut,

contributions from the intestinal flora promote further activation of

AOM derivatives to methyldiazonium, which in turn mediates

colonotropic mutagenicity (36). DSS, a heparin-like polysaccharide

that inflicts damage to the colonic epithelium, triggers colitis that

mimics some of the features of IBD, including bloody diarrhea,

intestinal inflammation, weight loss, and shortening of the colon,

and is thought to promote tumor formation. Tumors induced in mice

exposed to AOM/DSS accurately recapitulate the pathogenesis

observed in human CAC. They often begin with polypoid growth

and occur very frequently in the distal part of the colon, which is also

the predominant site in patients (37), although AOM/DSS-induced

tumors lack mucosal invasiveness and have a very low tendency to
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metastasize (38). Accordingly, the mice develop only adenomas,

representing early disease, whereas the carcinomas in human CAC

are late disease. Thus, the AOM/DSS-model allows for the analysis of

tumors to study the impact of the TME on subversion of anti-

tumor immunity.
Objective and purpose of this protocol

Preparation of single cell suspensions from AOM/DSS-induced

colorectal tumors is challenging and has rarely been described.

Here, we provide a simple protocol for the isolation of CD45+

leukocytes, especially myeloid cells, from colorectal tumors induced

by AOM/DSS treatment in mice. This protocol not only addresses

the issues of cell viability and preservation of cell surface epitopes,

but also emphasizes fast cell extraction. We have further validated

the feasibility of this protocol for high-dimensional flow cytometric

analysis, with a particular focus on comprehensive identification of

myeloid cell subsets. With this protocol, we aim to provide

researchers and clinicians with a robust and easy to follow

method to dissect the intricate immune landscape of AOM/DSS-

induced colorectal tumors. A deeper understanding of the role of

different leukocyte populations, in particular myeloid APC, in CAC

forms the basis for the development of novel therapeutic strategies

for this complex and heterogeneous disease.
Material and equipment

Methods

Induction of inflammation-associated
colorectal tumor growth in mice

To induce CAC, on day 0, cohorts of 6-8 week-old, sex-matched

wild type C57BL/6 mice are injected intraperitoneal (i.p.) with the

procarcinogen Azoxymethane (AOM in PBS, 10mg AOM per kg

body weight) (Table 1). From day 5 to 10, mice receive one cycle of

2.5% Dextran Sodium Sulfate (DSS, 40-50kDa) in autoclaved

drinking water (Tables 1, 2). As DSS degrades over time, it is

recommended to replace the DSS solution on day 7. The addition of

DSS facilitates tumor initiation to some extent and further

promotes tumor growth by driving intestinal inflammation

(Figure 1), resulting in transient weight loss. Acute, chronic, and

relapsing models of intestinal inflammation can be achieved by

modifying the concentration as well as the frequency of DSS

administration (37). From day 10, the completion of the DSS

cycle, until the end of the experiment, the mice are provided with

regular autoclaved drinking water. Each mouse needs to be

monitored for body weight, general condition, clinical

abnormalities, and any sign of discomfort in accordance with the

specific ethical regulations at the investigator´s site. Most animals

display a temporary weight loss of 10% at the peak of a DSS cycle

and should be fully recovered within 3-4 days. Weight loss greater

than or equal to 20% of initial body weight is a termination criterion

and the animal should be euthanized (according to institutional
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guidelines). Next to weight loss, mice frequently display soft stool or

even bloody diarrhea during DSS treatment. Clinical signs of

inflammation can be assessed endoscopically on day 14 using an

appropriate grading system such as the MEICS score (39). Mice are

euthanized on day 60 of the AOM/DSS protocol for tumor analysis,

when the animals no longer show signs of inflammation. Due to the

inherent high variation in tumor burden, we recommend including

at least 8 mice per test group in an experiment.
Isolation of AOM/DSS-induced
tumor tissue

Set up fine forceps and scissors, two petri dishes filled with cold

PBS, 1.5mL tubes, laminated graph paper, camera (Tables 1, 3). To

collect the tumors, mice are euthanized on day 60 of the AOM/DSS
TABLE 1 List of used reagents.

Reagent Manufacturer Catalogue
number

Fetal Calf Serum (FCS) Sigma F7524

Phosphate Buffered Saline (PBS)
without calcium and magnesium

Sigma D8537

Ethylendiamintetraacetat
(EDTA) (0.5M)

Sigma E5134-500G

Collagenase IV Worthington LS0004186

Deoxyribonuclease I (DNaseI) Roche 10104159001

Rotihistofix (4% formaldehyde
(FA), pH7)

Carl Roth GmbH
+ Co.KG

P087.2

Trypan blue Gibco 15250-061

Azoxymethane (AOM) Sigma-Aldrich A5486

Dextran sulfate sodium (DSS) salt,
colitis grade

MPbio 160110
TABLE 2 Buffer composition.

Name of buffer Ingredients Final concentration

Digestion mix

RPMI
(with glutamine)

Collagenase IV 200U/mL

0.5 U/mL DNase I 0.5U/mL

PBS/EDTA solution
PBS

EDTA 2mM

FACS buffer

PBS

FCS 3%

EDTA 2mM

DSS solution
Autoclaved water

DSS 2.5%
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protocol, and the colon is isolated from the abdominal cavity

(Figure 2A). Fat must be removed by holding the colon in place

with one hand and very gently pulling the fat off with a fine forceps.

Afterwards, the colon is opened longitudinally with a scissor, ideally

with blunted tips to prevent ripping of the intestinal wall. Each

colon is washed in a petri dish filled with cold PBS by quickly but

gently moving the colon back and forth through the PBS with

tweezers to remove fecal matter. Subsequently, the opened colon is

transferred into a fresh PBS-filled petri dish to examine it for

tumors under a microscope (Figure 2B, upper panel). The colon

tissue should be carefully stretched using fine forceps and

thoroughly scored for tumors from the distal to the proximal end.

Tumors appear as round, dense structures (Figure 2B, lower panel).

After the tumors have been identified, the colon tissue is hold in

place with one hand and each tumor is meticulously excised with

fine scissors (Figure 2C), transferred into a 1.5mL tube filled with

100µL cold PBS, and immediately placed on ice. Repeat until all

tumors from one mouse are collected in one tube (in our hands,

tumor incidence for C57BL/6 mice is 3-12 tumors per mouse). For

tumor area measurement, place the tumors on laminated graph

paper and take pictures, preferably at high resolution (for

calculation of tumor area, see results section ‘Quantification of

tumor burden and size’).
Single-cell suspension of colon tumors

Set up 1.5mL tubes, 1mL digestion mix (RPMI containing

200U/mL collagenase IV and 0.5U/mL DNase I) per mouse, fine

scissors, PBS, EDTA (500mM), 70µm cell strainers, 50mL tubes,

PBS containing 2mM EDTA, and FACS buffer (PBS + 3% FCS)

(Tables 1–3). The colon tumors collected per mouse are transferred

into a new 1.5mL tube filled with 300µL of digestion mix (RPMI

containing 200U/mL collagenase IV and 0.5U/mL DNase I). Cut

the tumor tissue into very small pieces in the digestion mix (briefly

clean the scissors in PBS between samples to avoid contamination

of the samples). Expect one minute of cutting as a reference value,
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but note that more tumors may require a longer cutting time. Be

conscious that dissociating the tissue for too long can lead to

congealment of the digested tissue and greatly reduce cell yield.

Therefore, closely monitor the cell suspension and stop cutting

when the pieces of tumor tissue are not getting finer but starting to

coagulate. Subsequently, 700µL of the digestion mix (RPMI

containing 200U/mL collagenase IV and 0.5U/mL DNase I) is

added to each tube containing the finely cut tumor tissue and

incubated on a thermal shaker for 45min at 37°C at 1200rpm. Next,

add 20µL 500mM EDTA solution per 1mL digestion solution (final

concentration of 10mM) and incubate for 5min at room

temperature to separate cell clusters. Then pass the cell

suspension through a 70µm cell strainer into a 50mL tube and

wash the strainer once with 10mL PBS/2mM EDTA. Finally,

centrifuge the cells for 5min at 400g (4°C), discard the

supernatant, and resuspend the cell pellet in 1mL FACS buffer for

counting (Table 1).

Besides in the tumor tissue, it is also possible to determine

leukocyte cell populations in the colon. Since the enzymatic

digestion described here is not applicable to colon tissue, the use

of a different protocol is required. Recently, guidelines for the

digestion and flow cytometry analysis of intestinal tissue have

been published (40).
Flow cytometric staining and analysis of
tumor-infiltrating myeloid and lymphocyte
cell populations

Set up 96-well V-bottom plates, Fc-block, FACS buffer (PBS +

3% FCS), antibodies, viability stain, 4% formaldehyde (FA) buffered

and diluted in PBS to 2% (Tables 1–3). Prepare an antibody cocktail

for analysis of tumor-associated leukocytes by diluting fluorescently

conjugated antibodies specific for F4/80, CD90.2, CD45, Ly6C,

CD11b, XCR1, PDCA1 (CD317), Ly6G, MHCII, CD103, CD64,

SIRP1a, CD19, TCRb, CD11c, and fixable viability stain (FSV) in

FACS buffer (dilutions are listed in Table 4). Store in the dark at 4°C
FIGURE 1

Flow chart of AOM/DSS-induced CRC in mice. Age- and sex-matched littermates are injected intraperitoneally (i.p.) with AOM (10µg/g body weight)
on day 0. From day 5 to day 10 mice receive 2,5% (w/v) dextran sulfate sodium (DSS) solved in autoclaved drinking water ad libitum, which is
refreshed on day 7. Afterwards, the animals receive normal water for the rest of the experiment. Mice are sacrificed on day 14 for evaluation of
inflammation, or on day 60 for analysis of CAC. Figure created with Biorender.com.
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until use. Single cell suspensions of tumor cells are transferred at

2x106 cells/well into a 96-well V-bottom plate, pelleted (centrifuge

5min at 300g, 4°C), and resuspended in 40µL Fc-block (diluted 1:20

in FACS buffer) for 15min at 4°C to prevent non-specific Fc-

receptor mediated antibody binding. Thus, antibodies against

CD16 and/or CD32 have to be incubated prior to the Fc-block.
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After Fc-blocking, the blocking solution is diluted by adding 100µl

FACS buffer. Now centrifuge the cells for 5min at 300g and 4°C.

Discard the supernatant and resuspend the cells in 40µl antibody

cocktail and incubate for 20min in the dark at 4°C. Cells are washed

two times with 200µl FACS buffer and resuspended in 100µl of 2%

FA in PBS and incubated for 15min at room temperature for

fixation. Fixation is stopped by adding 100µl PBS, centrifuge the

cells (5min at 300g, 4°C) and add 200µl FACS buffer to wash the

cells. Centrifuge again (5min at 300g, 4°C) and resuspend the cells

in 100µl FACS buffer and keep them on ice or in the fridge at 4°C in

the dark until measurement.

For data acquisition and manual analysis of spectral flow

cytometry data, cells were acquired on the FACS Symphony™ of

the Core Facility Flow Cytometry (CFFC) at the Research Center for

Immunotherapy (Forschungszentrum für Immuntherapie, FZI) of

the Medical Center of the Johannes Gutenberg-University Mainz.

The configuration of the system can be found here: https://

www.cffc.uni-mainz.de/symphony/. For acquisition, cells are

stored in FACS buffer. Subsequent data analysis was performed

using FlowJo v10.8.1 software.
Results

Tumor area measurement

Tumors induced by the AOM/DSS protocol can display

considerable differences in number between individual mice, which

significantly affects absolute cell numbers in downstream analyses.

Therefore, we recommend to normalize the total tumor cell count to
FIGURE 2

Isolation of tumors from colon tissue. (A) Image of a murine colon with the different parts marked. (B) Longitudinally opened colon tissue in a PBS-
filled petri dish with a tumor highlighted (red circle, upper middle panel) and the same biopsy as it appears through a microscope with the same
tumor circled in red (upper right panel). (C) Illustration of the procedure in which the colon tissue is pushed through the fingers of one hand and the
tumors (red arrowhead, lower middle panel) are excised with fine scissors (higher magnification, lower right panel).
TABLE 3 Overview of equipment and consumables.

Equipment Manufacturer
Catalogue
number

1.5mL tubes Sarstedt AG 72.690.001

50mL tubes Greiner bio-one 227261

70µm cell strainer Falcon 10082019

96-well plate (V shape) Thermo Scientific 163320

BD FACSSymphony™ BD Biosciences

Centrifuge “Z 446 K”
Hermle
Labor Technik

6.268 644

Forceps & Scissors HSB Hammbacher
HSB-390-10
(51807020)

Neubauer chamber Superior Marienfeld 0640010

Petri dishes Corning™ 15458784

Pipetboy Fisher Scientific 11701258

Stereomicroscope
Leica M80

Leica

Thermo shaker MKR13 DITABIS AG HA02.1
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the total tumor area, before calculating the absolute cell number of the

individual leukocyte populations. This section provides a simple and

straightforward approach to calculate the tumor area of AOM/DSS-

induced tumors in mice. After sacrificing the mice on day 60 of the

AOM/DSS protocol (Figure 1), isolated tumors are placed on

laminated graph paper for subsequent quantification of tumor

development. Digital tumor area measurement is performed using

Fiji software (Version 2.14.0/1.54f) (41) (Figure 3). To ensure the most

accurate area measurement possible, it is advisable to take the pictures

with a high-resolution camera. After opening the image file in Fiji,

change the image type to 8-bit Color by selecting ‘Image’, ‘Type’ and

then ‘8-bit Color’. Next, calculate the average number of pixels per mm

by choosing the ‘Straight’ selection and drawing along the length of one

side of a mm square on the graph paper. Select ‘Analyze’ in the toolbar

and ‘Measure’ from the pull-down menu. Repeat this step multiple

times to ensure correct measurement of pixels. Then, select ‘Results’

and ‘Summarize’ to get the mean length of pixels measured for one

mm. Subsequently, select ‘Analyze’ and ‘Set Scale’ to feed the program

with the exact number of pixels per mm. Enter the previously

calculated mean ‘Distance in pixels’ and set the ‘Known distance’ to

one and the ‘Unit of length’ to mm. It is crucial to reset the scale for

each image since the pixels per mm can vary from image to image and

affect the area measurement. Finally, select the ‘Freehand’ option and

precisely draw a line around the perimeter of each tumor (Figure 3).

Then select ‘Analyze’ and ‘Measure’ to calculate the area of the tumors.

Divide the total cell count for all tumors of each mouse by their

respective combined tumor area and use the subsequent ratio (tumor

cells/mm2) to calculate the absolute cell number of the individual

leukocyte populations from their frequencies.
Quantification of tumor burden and size

The number and size of tumors can be quantified by

macroscopic inspection and measurement using laminated graph
TABLE 4 List of dyes and antibodies used for flow cytometry.

Antibody/

Dye
Conjugate

Host/

Isotype
Clone Supplier Dilution

Catalog

Number

CD45pan BV510
Rat

IgG2b
30-F11 Biolegend 1:200 103138

Ly6C BV570
Rat

IgG2c, k
HK1.4 Biolegend 1:500 128030

CD11b BV605
Rat

IgG2b, k
M1/70

BD

Biosciences
1:250 563015

XCR1 BV650
Mouse

IgG2b, k
ZET Biolegend 1:500 148220

PDCA1/CD317 BV711
Rat

IgG2b, k
927

BD

Biosciences
1:500 747604

Ly6G BV750
Rat

IgG2a, k
1A8

BD

Biosciences
1:250 747072

MHCII BV786
Rat

IgG2b, k
M5/

114.15.2

BD

Biosciences
1:250 742894

CD103 Alexa 488
Hamster

IgG
2E7 Biolegend 1:100 121408

CD64 PerCP-710
Mouse

IgG1, k
X54-

5/7.1
ThermoFisher 1:500

46-

0641-82

SIRP1a PE-Cy7
Rat

IgG1, k
P84 Biolegend 1:500 144008

CD19 PE-Cy5
Rat

IgG2a, k
6D5 Biolegend 1:800 115510

CD11c APC-R700
Hamster

IgG2
N418

BD

Biosciences
1:500 565872

F4/80 BUV737
Rat

IgG2a, k
T45-

2342

BD

Biosciences
1:500 749283

CD90.2 Pacific Blue
Rat

IgG2a
53-2.1 Biolegend 1:1000 140306

FSV780 APC-Cy7
BD

Biosciences
1:1000 565388

Fc Block (Anti-

mouse

CD16/CD32)

Rat

IgG2b, k
2.4G2

BD

Biosciences
1:20 553142

True-Stain

Monocyte Blocker

BD

Biosciences
1:50 426103

Brilliant Stain

Buffer Plus

BD

Biosciences
1:12,5 566385
FIGURE 3

Representative example of digital tumor area measurement using Fiji software. Selection of the freehand option and drawing a line around the edges
of the tumor (Tumor #1, yellow line). Tumor size is measured by choosing `Analyze´ and subsequently `Measure´. The measurements of the sizes
appear in a separate window called `Results´. See text for details.
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paper. As described above, tumors isolated on day 60 of the AOM/

DSS model are placed on laminated graph paper for subsequent

tumor area determination (see ‘Tumor area measurement’ for

precise instruction). The comparison of tumors from different

(wild type) mice can reveal a strong heterogeneity in number and

size (Figure 4A). Therefore, quantification of tumor formation is

very important, especially when comparing mice with different

genotypes, as the significance of tumor counting alone is limited.

For example, mouse #3 and #5 both have a low total tumor count of

3 (Figure 4C), but when comparing the tumor area, mouse #5 has a

tumor area three times larger than mouse #3 (Figure 4D). Hence, by

classifying tumor sizes into multiple categories (e.g., 3mm, 3-6mm,

6mm), it is possible to obtain more meaningful information about

tumor burden (Figure 4B). This represents a valuable readout of

tumor development, since increasing tumor size in patients with

colorectal cancer correlates positively with cancer stage, and the 5-

year overall survival decreases significantly with increasing tumor

size (42). Furthermore, in mice, tumor number and tumor size can

be used to identify factors that regulate tumor initiation and

progression. Variations in average tumor size can provide clues to

factors involved in tumor progression. On the other hand, changes

in the average number of tumors per animal should reflect factors

that influence tumor initiation (43).
High-dimensional flow cytometry of
tumor-associated leukocytes

For the flow cytometric analysis of tumor-infiltrating and

-associated leukocytes (Figure 5A), we first gate on all cells to

exclude any debris (Figure 5A, black frame). Next, doublets are

excluded before gating on live cells and then CD45+ leukocytes

(Figure 5A, violet frame). Separating live cells and subsequent

leukocyte gating allows to calculate the total cell count of each
Frontiers in Immunology 08196
population based on the live cells counted after digestion. To get a

general idea of the number and distribution of lymphocytes,

CD90.2 and CD19 are included as markers for T cells and B cells,

respectively. Of note, some innate lymphoid cells (ILC) can also

express the surface marker CD90.2. Double negative cells for

CD90.2 and CD19 comprise all myeloid cells and are further

subdivided into CD11c+ (which are all also MHCII+) and CD11c-

cells (Figure 5A, violet frame).

Proceeding with the CD11c+MHCII+ double-positive myeloid

cells (Figure 5A, red frame), first pDC are defined by the expression

of CD317. The CD317− cells are then subdivided into CD11c+ Mph,

which are CD64+F4/80+, CD64+F4/80− monocyte-derived DC

(moDC) and CD64−F4/80− cDC. Among DC, cDC subsets are

identified based on their expression of CD103 and CD11b (cDC1:

CD103+CD11b−, cDC2: CD103+CD11b+ and CD103−CD11b+, and

cDC1/cDC2: CD103−CD11b−). The alternative markers, SIRPa and

XCR1, commonly used to distinguish cDC1 and cDC2, prove less

reliable to identify the different cDC subsets in the tumors, as seen

in the histograms (Figure 5A, brown frame). We also include Ly6C

in the antibody cocktail to demonstrate that moDC display a

heterogeneous expression of this marker (Figure 5A, green frame).

From the CD11c− leukocytes (Figure 5A, blue frame), cells are

first positively selected for the expression of CD11b. Among these

cells we are able to identify CD11c− Mph according to their CD64

and F4/80 expression. Finally, the remaining F4/80− cells are

subdivided into Ly6G+L6Cint neutrophils (Nph), Ly6C−Ly6G−

recirculating, and Ly6C+Ly6G− inflammatory monocytes.

Among all living cells in colitis-associated tumors 41.9%( ±

8.59%) are leukocytes. Statistical analysis of these leukocytes

(Figure 5B) reveals that neutrophils (Nph) represent the biggest

cell population [47.5%( ± 18.2%)], followed by CD90+ T cells

[13.6% ± 4.29%)] and B cells [9.27%( ± 11.2%)]. As far as Mph

are concerned, the CD11c+ [1.2%( ± 0.57%)] and the CD11c−

[1.71%( ± 1.24%)] populations are comparable in relative size.
A B C D

FIGURE 4

AOM/DSS protocol leads to heterogeneous tumor formation in wild type mice. (A) Representative images of isolated colon tumors from three
different wild type mice at day 60 after AOM/DSS treatment. Color-coded boxes indicate the classification of tumor size as depicted in (B). (B) Size
distribution of AOM/DSS-induced tumors from six different wild type mice was determined ex vivo on day 60. Bar diagrams indicate the
quantification of tumor development per mouse, based on tumor size in mm2 (area) and the number of tumors per size group. (C) Total tumor
count and (D) total tumor area in mm2 per mouse corresponding to the mice listed in (B).
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Within the DC compartment, moDC [0.9%( ± 0.36%)] represent

the largest population, followed by cDC [0.67%( ± 0.33%)]. pDC are

barely detectable at a total population size of 0.04% ( ± 0.02%).

Amongst monocytes, the frequency of inflammatory monocytes

[5.7%( ± 3.99%)] is more than four times that of recirculating

monocytes [0.94%( ± 0.7%)] (Figure 5B).
Discussion

Here, we provide a fast and simple step-by-step protocol to isolate

colorectal tumors induced by the AOM/DSS model in mice and to

characterize the leukocyte, particularly myeloid, tumor cell infiltrate

using high-dimensional flow cytometry. Initial isolation of the tumors

is easy to perform by cutting carefully around the cancerous tissue.

The subsequent gentle enzymatic digestion of the tumor tissue we

describe to produce a single cell suspension ensures a high yield of

living CD45+ leukocytes [41.9%( ± 8.59%)]. The procedure is simple

and easy to follow without requiring the use of pricey kits and

equipment, which often affect epitopes essential for leukocyte subset

identification, or laborious density gradient centrifugation. Notably,

we have not yet been able to detect any cleaved epitopes on myeloid

cells using this digestion method. It therefore allows a comprehensive

and reproducible flow cytometric analysis of the distribution of the

different myeloid cell populations, including DC, Mph and Nph, in

tumors of the murine AOM/DSS model. Beyond the high-

dimensional flow cytometry analysis presented here, the total

leukocytes or specific myeloid subpopulations extracted and

purified with this protocol can be used for unbiased single-cell

RNA sequencing and proteomics. Tumor-infiltrating leukocytes are

a very heterogeneous population and consequently their detailed

phenotypic analysis by flow cytometry requires an extensive panel of

cell type-specific antibodies and fluorochromes. We established a 16-

surface marker antibody panel to first separate B and T lymphocytes

from myeloid cells and then further distinguish between the different

DC (cDC, pDC, moDC) and Mph (CD11c+ and CD11c-) subsets,

Nph and monocytes. It is worth noting that our chosen T cell marker

CD90.2 can also be expressed by a subpopulation of ILC and is not an

exclusive T lymphocyte marker. However, this protocol is designed to

allow easy adjustment of the flow cytometry antibodies to customize

the staining panel.

DC, including cDC and pDC, are sentinels of the immune system

and cDC represent its professional APC. Our analysis of the cancerous

tissue shows that cDC constitute around 0.67%( ± 0.33%) of all

leukocytes. They play a decisive role in priming tumor-specific T

cells in the draining lymph nodes and thus contribute to induction of

anti-tumor immunity. Intestinal cDC can be divided into two main

populations based on their XCR1 and SIRPa (CD172a) expression,

respectively. XCR1-expressing cDC1 are CD103+CD11b- and are

known for their role in combating intracellular pathogens and

tumors. They polarize CD8+ T cells and are specialized in cross-

presentation, a process in which exogenous antigens are processed and

presented on MHCI molecules, and cDC1 are therefore important for

self-tolerance in steady state. Furthermore, they play an essential role in

the induction of tumor specific CD8+ cytotoxic T cells (2). cDC2 are

more heterogeneous, with two main cDC2 populations existing in the
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intestine. Both can be identified by their expression of SIRPa and

CD11b, but they differ regarding their expression of CD103. In terms of

gene expression, intestinal CD11b+CD103+ cells belong to cDC2 and

are known to be involved in CD4+ Th17 or Treg cell differentiation (2).

CD11b+CD103- cDC2 play an important role in the induction of CD4+

Th1, Th2, and Th17 cells and are less capable to induce Treg cells (3).

Although intestinal cDC subsets are commonly classified using XCR1

and SIRPa, our analysis revealed that tumor-infiltrating cDC are rather

heterogeneous with respect to the expression of these markers. We

therefore propose that tumor-infiltrating cDC1 and cDC2 are more

clearly described using CD11b and CD103. By their unique expression

of CD317 (PDCA-1) we identified a minor population [0.04%( ±

0.02%)] of all leukocytes) of pDC in the tumor tissue. Despite its small

size, the role of pDC in cancer cell killing can be crucial because they

have the ability to cross-prime naïve CD8+ T cells by transferring

antigen to cDC (4, 5). However, it was also shown that pDC can act

tolerogenic by inhibiting tumor-directed immune responses, thus

leading to tumor progression (44).

Moreover, our staining panel enables the identification of

moDC among the CD11c+MHCII+ cells. They are CD64+F4/80–

and represent around 0.9% ( ± 0.36%) of all infiltrating tumor

leukocytes. Here, our analysis reveals that moDC are heterogeneous

for Ly6C expression and are more clearly identified using CD64 and

F4/80. MoDC are mainly generated in peripheral tissues under

inflammatory conditions and are resident in non-lymphoid tissues

like the skin, the lung, and the intestine. They are implicated in the

generation of Treg cells, thus acting immunosuppressive in cancer

(4). Indeed, it was already shown that a low moDC count in the

blood of CRC patients correlates positively with reduced

metastasis (45).

Another notable CD11c+MHCII+ myeloid cell population are

F4/80+CD64+ Mph (around 1.2%( ± 0.57%) of all infiltrating

leukocytes). Intestinal Mph are essential in establishing and

maintaining gut homeostasis as they produce a variety of

cytokines and other mediators to maintain proliferation of

epithelial cells (15). Traditionally, Mph are classified in pro-

inflammatory (M1-like) or anti-inflammatory (M2-like) cells (23,

46). Nevertheless, in colon cancer Mph cannot be easily classified as

M1 or M2 and rather display a remarkable dichotomy. Recently,

C1q and SPP1 emerged as suitable surface markers to distinguish

Mph subsets in colorectal cancer (13). Tumor angiogenesis, cell

migration, extracellular-matrix receptor interaction, and tumor

vasculature pathways are enriched in SPP1+ Mph, whereas

complement activation and antigen processing and presentation

pathways are enriched in C1q+ Mph (13). Furthermore, only C1q+

Mph could be identified in the colon mucosa of ulcerative colitis

patients and healthy individuals (47), whereas SPP1+ Mph were

largely absent in non-cancer tissues, suggesting a unique function in

the CRC tumor environment (13). Of note, patients with C1qhigh

and SPP1low Mph gene signatures had the best prognosis, whereas

the opposite was seen in patients with C1qlow and SPP1high Mph

gene signatures (13). Therefore, it would be interesting to include

C1q and SPP1 in future experiments allowing a more detailed

analysis of the different Mph subsets, since they seem to play an

essential role especially in CRC and are linked to the

overall survivability.
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A

B

FIGURE 5

High-dimensional FACS analysis of tumor-associated leukocytes. (A) Gating strategy of merged tumor samples to identify the cellular composition of
tumor-infiltrating leukocytes in AOM/DSS-induced CRC at day 60. Initial gating steps are organized into the identification of live single cells and the
leukocytes therein. The subsequent analysis is divided into CD11c+ and CD11c− myeloid cells. (B) Pie chart of the relative cellular composition among
leukocytes, based on individual samples as gated in (A). pDC (plasmacytoid DC), Mph (macrophages), moDC (monocyte-derived DC), cDC
(conventional DC), Nph (neutrophils) rec. monocytes (recirculating monocytes), infl. monocytes (inflammatory monocytes).
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In addition, we also detect a CD64+F4/80+ Mph population

among the CD11c– cells. These Mph highly express CX3CR1, are

enriched in the muscularis, and are thought to be key players in

regulating gastrointestinal motility through direct communication

with enteric neurons (48). While muscularis Mph are indispensable

for intestinal homeostasis and disease and can secrete IL-1, IL-4,

and TNF, which leads to enteric glia cell activation (49), their role in

CRC remains elusive.

The most prominent immune cell population in our data set are

CD11b+Ly6CintLy6G+ Nph (47.5%( ± 18.2%)). It is already known

that Nph play a dual role in CRC (50). Originally, it was thought that

Nph mediate an anti-tumorigenic effect, but then it has been revealed

that so-called tumor-associated Nph have a tumor-supportive

function (50). The plasticity between tumor- suppressive (N1

phenotype) and -supportive (N2 phenotype) Nph is regulated by

TGF-b and INF-g signaling. Moreover, the Nph-to-lymphocyte ratio

is a well-defined predictive marker for CRC patients, as a high ratio is

associated with poor outcome following hepatic resection for liver

metastases (51). From a technical perspective, Nph are a sensitive cell

population with high turnover, making it difficult to study these cells

ex vivo. Therefore, rapid cell extraction is imperative, one of the main

advantages of the protocol described here. Another CD11c– myeloid

cell population identified by their expression of CD11b and Ly6C that

plays an important role in CRC are monocytes. According to their

expression of Ly6C, it is possible to distinguish between recirculating

(Ly6Cneg) and inflammatory (Ly6C+) monocytes. Like the Nph-to-

lymphocyte ratio also the monocyte-to-lymphocyte ratio is a

prognostic factor in CRC patients. Monocytes are recruited as

inflammatory cells to directly kill malignant cells and are able to

induce cancer cell apoptosis (52).

In conclusion, we present a user-friendly protocol that enables

rapid extraction and subsequent high-dimensional flow cytometric

analysis of tumor-associated leukocytes from AOM/DSS-induced

colorectal cancer in mice. Although this protocol focuses on flow

cytometric analysis, purified cells can also be used for further

analyses, such as unbiased single-cell RNA sequencing or

mass spectrometry.
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The occurrence of immune-
related adverse events is an
independent risk factor both for
serum HBsAg increase and HBV
reactivation in HBsAg-positive
cancer patients receiving PD-1
inhibitor combinational therapy
Yingfu Zeng1,2†, Jiwei Huang3†, Jiahui Pang1, Shufang Pan1,
Yuankai Wu1, Yusheng Jie1, Xinhua Li1*‡ and Yutian Chong1*‡

1Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University,
Guangzhou, China, 2Guangdong Provincial Key Laboratory of Liver Disease Research, The Third
Affiliated Hospital of Sun Yat-sen University, Guangzhou, China, 3Department of Pharmacy, The Third
Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
Background: Previous studies have suggested the potential of PD-1/PD-L1

inhibitors in the treatment of chronic HBV infection. However, since phase III

clinical trials have not yet been announced, additional clinical insights may be

obtained by observing changes in serum hepatitis B surface antigen (HBsAg) and

HBV-DNA levels in cancer patients undergoing PD-1 inhibitor therapy.

Objective: To explore the effects of PD-1 inhibitor combinational therapy on

serum HBsAg and HBV-DNA levels, investigate the incidence of HBsAg loss, HBV

reactivation (HBVr), and immune-related adverse events (irAEs), and identify the

risk factors associated with significant HBsAg fluctuations and HBVr.

Methods: A retrospective study including 1195 HBsAg-positive cancer patients

who received PD-1 inhibitors between July 2019 and June 2023 was conducted,

and 180 patients were enrolled in this study. Serum HBsAg levels before and after

PD-1 inhibitor administration were compared across different subgroups. The

Pearson c2 or Fisher exact test was performed to investigate the relationships

between categorical variables. Univariable and multivariable analysis were

performed to identify the risk factors associated with significant HBsAg

fluctuations and HBVr.

Results: With the concurrent use of antiviral agents, serum HBsAg levels

decreased (Z=-3.966, P < 0.0001) in 129 patients and increased (t=-2.047,

P=0.043) in 51 patients. Additionally, 7 patients (3.89%) achieved serum HBsAg

loss. Virus replication was suppressed in most of the enrolled patients. When

divided patients into different subgroups, significant HBsAg decreases after PD-1

inhibitor administration were discovered in lower baseline HBsAg group (Z=-

2.277, P=0.023), HBeAg-seronegative group (Z=-2.200, P=0.028), non-irAEs

occurrence group (Z=-2.007, P=0.045) and liver cancer group (Z=-1.987,

P=0.047). Of note, 11 patients and 36 patients experienced HBVr (6.11%) and
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irAEs (20%), respectively, which could lead to discontinuation or delayed use of

PD-1 inhibitors. After multivariable analysis, HBeAg-seropositive (OR, 7.236 [95%

CI, 1.757-29.793], P=0.01) and the occurrence of irAEs (OR, 4.077 [95% CI, 1.252-

13.273], P=0.02) were identified as the independent risk factors for significant

HBsAg increase, the occurrence of irAEs (OR, 5.560 [95% CI, 1.252-13.273],

P=0.01) was identified as the only independent risk factor for HBVr.

Conclusion: PD-1 inhibitors combinedwith nucleos(t)ide analogues (NAs)may exert

therapeutic potential for chronic HBV infection in cancer patients. However,

attention also should be paid to the risk of significant elevation in HBsAg levels,

HBVr, and irAEs associated with PD-1 inhibitor combinational therapy.
KEYWORDS

cancer, PD-1 inhibitor, HBsAg loss, HBsAg increase, HBV reactivation, immune-related
adverse events, risk factor identification
Introduction

Immune checkpoint inhibitors (ICIs) have shown dramatic

improvement in clinical outcomes compared with standard

therapy for a range of cancer types in recent years, it enhances

antitumor immunity by targeting intrinsic down regulators of

immunity, such as programmed cell death 1 (PD-1) or its ligand,

programmed cell death ligand 1 (PD-L1) (1). Except for the critical

roles of CD8+ T cells in anti-tumor immunity upon PD-1/PD-L1

blockades (2), CD4+ T cells are also demonstrated to be required for

efficacious anti-tumor responses, such as the percentages of naive

CD4+ T cells secreting certain cytokines including IFN-g and TNF-

a before receiving nivolumab, were significantly higher in patients

with better response to anti-PD-1 therapy (3). Similar to cancer

patients, T cells are also described as”exhausted” or functionally

impaired and unable to proliferate or secrete antiviral cytokines

(IFN-g) in chronic hepatitis B (CHB) (4), and emerging evidences

suggest that the same checkpoint pathways may play a crucial role

during acute (5) and chronic (6) hepatitis B virus (HBV) infection.

Failure to eliminate covalently closed circular DNA (cccDNA),

which is the nuclear reservoir of the virus, is a major barrier to the

cure of chronic HBV infection. It seems plausible that the induction

of functional HBV‐specific T cells is a good approach for HBV

clearance since virus-specific T cells are capable of removing

cccDNA‐carrying cells in about 90% of infected patients (7).

Consistent with this concept, previous studies have shown that

the blockade of PD-1/PD-L1 may improve HBV-specific T-cell

function in vitro (8–10). Besides, a phase Ib study in 2019 has

noticed that 20 of the 22 patients (90.91%) who received nivolumab

have a reduction in serum hepatitis B surface antigen (HBsAg), and

nivolumab is well-tolerated in hepatitis B e antigen (HBeAg)-

seronegative CHB patients (11). And in 2022, a phase IIb clinical

trial (NCT04465890) of ASC22 (Envafolimab), a PD-L1 inhibitor,

in patients with CHB reported that 7 patients with baseline HBsAg
02203
≤ 500 IU/ml experienced HBsAg reduction > 0.5 log10 IU/ml under

ASC22 and NAs, 3 patients even had HBsAg seroclearance

(undetectable, < 0.05 IU/ml). However, more immune-related

adverse events (irAEs) occurred in the ASC22 group (12).

Hitherto, the implementation of phase III clinical trials of PD-1

or PD-L1 inhibitors in the treatment of CHB is yet to be announced.

Despite the exhilarating and promising study results, previous

studies also have shown that PD-1 inhibitor monotherapy or

combined with other ICIs (immune checkpoint inhibitors) pose a

risk of HBV reactivation (HBVr) (13, 14), lack of prophylaxis

antiviral treatment (15, 16), undetectable HBV-DNA (16), and

combined with hepatic artery intubation chemotherapy (HAIC)

(17) were identified as independent risk factor for HBVr. In

addition to the impressive anti-tumor effects of ICIs, a spectrum

of unique side effects referred to as irAEs have been reported (18).

The mechanism of this may be that ICIs enhance the activity of T

cells against antigens expressed in tumors and healthy tissues, and

increase pre-existing levels of autoantibodies and inflammatory

factors (1). It’s indicated that an overall incidence of irAEs ranges

between 27%-78% in phase III trials of anti-PD-1/PD-L1 agents in

cancer patients (19, 20). Aside from the possible permanent effects

on the endocrine system, most of the irAEs are reversible. Deaths

from irAEs are rare, however, deaths due to myocarditis,

pneumonitis, colitis, and neurologic events, among others, can

occur (1).

To improve objective responsive rate (ORR), ICI monotherapy

was less received by cancer patients, and combination therapies

including different types of ICIs, targeted agents, chemotherapy,

and interventional therapies (21–24) were commonly used.

However, the incidence of HBVr in cancer patients with ongoing

PD-1 inhibitor combination therapies remains unclear, and more

research is needed to validate the relationship between PD-1

inhibitors and immune-mediated clearance of HBV or serum

HBsAg clearance in this context. Besides, whether there is a
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certain correlation between the occurrence of irAEs and changes in

HBV serologic markers also needs to be clarified. In our study, each

enrolled patient needed to be carefully investigated by two clinicians

whether they had experienced irAEs before the first or second study

endpoint, which were described in the study design, and concurrent

use of NAs was required. This study aims to observe the changes in

serum HBsAg and HBV-DNA levels in HBsAg-positive cancer

patients, particularly significant increases or decreases in HBsAg

levels. Meanwhile, investigating the incidence of HBsAg loss, irAEs,

HBVr, and identifying the risk factors associated with HBsAg

fluctuations and HBVr in cancer patients.
Materials and methods

Patients

This retrospective study was conducted with the approval of the

institutional review board and was conducted following the

Declaration of Helsinki. The requirement for written informed

consent was waived because of the retrospective nature of this

study. 1195 HBsAg-positive Cancer patients who were treated with

PD-1 combinational therapy between July 2019 and June 2023 were

identified. Data were collected through a manual review of patient

electronic medical records, and laboratory and imaging results

database by 2 reviewers. Patients who met the following criteria

were included: (1) age ≥ 18 years old; (2) patients had cancer

confirmed by pathological biopsy or two imaging techniques;

(3) seropositive for HBsAg, regularly received antiviral agents and

intravenous used at least one cycle of PD-1 inhibitor. According to

APASL clinical practice guidelines on hepatitis B reactivation (25),

taking NAs for at least one week before receiving PD-1 inhibitors was

considered prior use of antiviral agents in this study. Patients were

excluded if any of the following occurred during treatment: (1) HAV/

HCV/HEV infection; (2) antibodies positive to human

immunodeficiency virus (HIV); (3) lack of data on HBsAg

quantification before and/or after administration of PD-1 inhibitors.
Data collection

Demographic data including age and sex were collected.

Additional clinical information regarding liver cirrhosis, HBeAg

status, serumHBsAg and HBV-DNA levels at baseline (before PD-1

inhibitor initiation) and after PD-1 inhibitor administration, cycles

of PD-1 inhibitor, PD-1 inhibitor type (nivolumab, pembrolizumab,

sintilimab, toripalimab, tislelizumab, and camrelizumab). The

occurrence of irAEs before significant HBsAg changes or HBVr

was recorded according to Version 5 of the Common Terminology

Criteria for Adverse Events (CTCAE) (26). Prior use of antiviral

therapy, antiviral agents (entecavir, tenofovir, tenofovir alafenamide

fumarate), combined antineoplastic therapies including

chemotherapy, hepatic artery intubation chemotherapy (HAIC),

transcatheter arterial chemoembolization (TACE), targeted agents
Frontiers in Immunology 03204
(apatinib, lenvatinib, regorafenib, anlotinib, sorafenib, donafenib),

and radiotherapy were obtained. Oncologic factors recorded

including cancer type, and ECOG (Eastern Cooperative Oncology

Group) score.
Study design

After the PD-1 inhibitor therapy, eligible patients were divided

into two groups based on changes in serum HBsAg levels: the

HBsAg decreased group and the HBsAg increased group. The first

endpoint was a significant change in serum HBsAg levels, defined as

an increase or decrease of more than 0.5 log10-fold in serum HBsAg

levels after PD-1 inhibition. Hence, quantification of serum HBsAg

needed to be performed at least twice in this study. Most of the

serum HBsAg were measured by chemoluminescence technique in

the clinical laboratory of our center using an automatic

chemiluminescence immunoanalyzer (I 3000; Maccura, SiChuan,

China) with a detection range of 0-250 IU/ml. For patients whose

serum HBsAg levels were more than 250 IU/ml, the concentrations

of serum HBsAg were determined by an electrochemiluminescence

immunoanalyzer (COBAS E601; Roche Diagnostics, Basel,

Switzerland) with a lower limit of 10-20 IU/ml.

The secondary endpoint was the incidence of HBV reactivation

(HBVr). According to the AASLD 2018 hepatitis B guidance, the

occurrence of HBVr was defined as (27): for HBsAg- positive

patients (1) a 2-log (100-fold) increase in HBV-DNA compared

with the baseline levels; (2) HBV-DNA ≥ 3 log (1000-fold) IU/ml in

a patient with previously undetectable levels (given that HBV-DNA

levels fluctuate); or (3) HBV-DNA ≥ 4 log (10,000-fold) IU/ml

if the baseline level was not available. For HBsAg-negative, anti-

HBc-positive patients: reverse HBsAg seroconversion occurs

(reappearance of HBsAg). HBV-DNA was quantified by real-time

polymerase chain reaction (PCR) diagnostic kit (COBAS

AmpliPrep/TaqMan; Roche Diagnostics, Basel, Switzerland) with

a lower limit threshold of 10 or 20 IU/ml or real-time fluorescence

quantitative PCR with a lower limit threshold of 100 IU/ml.
Statistical analysis

Normally distributed quantitative data were expressed as mean

± standard deviation, and non-normally distributed quantitative

data were reported as median (range or interquartile range).

Continuous variables were compared using a two-tailed Student’s

t-test or Mann-Whitney U test depending on the distribution. The

Pearson c2 or Fisher exact test was performed to investigate the

relationships between categorical variables. The correlation between

pretreatment factors and significant HBsAg decrease or increase

and HBVr were evaluated by logistic regression analysis. Factors in

the univariable analysis with P < 0.2 were included in the

multivariable analysis, a two-tailed P ≤ 0.05 was considered

significant. Statistical analysis was performed with SPSS software

version 23.0 (SPSS Inc., Chicago, IL, USA).
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Results

Patient’s characteristics

185 patients met the inclusion criteria without considering

whether they received antiviral therapy or not, only 5 patients

didn’t receive antiviral agents during PD-1 inhibitor combinational

therapy for unknown reasons. Ultimately, 180 patients who

received antiviral treatment were included in the final analysis,

the enrollment process was shown in the flowchart (Figure 1). The

baseline demographic and clinical characteristics of eligible patients

are described in Table 1. As it presented, more patients in the

HBsAg increased group were HBeAg-seropositive (21.43% VS

5.74%, P=0.02). Furthermore, there were differences in antiviral

regimens between the HBsAg decreased group and the HBsAg

increased group (P=0.03).

Patients were predominantly male (n=166, 92.22%), diagnosed

with liver cancer (n=165, 91.67%), HBeAg seronegative (n=164,

91.11%), had the background of liver cirrhosis (n=139, 77.22%), and

with the mean age of 54.81 ± 10.81 years old. Besides, 15 patients

with other types of cancer also were included. Most of the enrolled

patients (n=140, 77.78%) started antiviral therapy before PD-1

inhibitor initiation and entecavir (ETV) was selected by over half

of the patients (n=98, 54.44%). Among all the patients, only 5

patients (2.78%) received PD-1 inhibitor monotherapy, while most

(n=175, 97.22%) adopted PD-1 inhibitor combinational therapy, for

instance, combined with chemotherapy (n=18, 10.00%), targeted

agents (n=152, 84.44%), TACE or HAIC (n=106, 58.89%) and

radiotherapy (n=15, 8.33%), to improve the survival rate of

patients. Sintilimab (n=95, 52.78%) was a commonly used PD-1

inhibitor by cancer patients in this study.
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Changes in HBsAg levels after the
administration of PD-1 inhibitor under
different clinical conditions

After reviewing the quantitative HBsAg data of patients before

and after the initiation of PD-1 inhibitors, an overall decrease in

serum HBsAg levels (log10 IU/ml) was observed [2.07 (0.87) VS 1.88

(1.07)] among all enrolled patients (Z=-2.067, P=0.039). Specifically,

129 patients exhibited a decrease [2.22 (0.62) VS 1.85 (1.01)] in serum

HBsAg levels (Z=-3.966, P < 0.0001), while 51 patients showed an

increase (1.44 ± 1.05 VS 1.84 ± 0.92) in serum HBsAg levels (t=-

2.047, P=0.043) under the treatment of PD-1 inhibitors and NAs, as

shown in Figure 2A. Notably, 40 patients within the HBsAg decreased

group and 16 patients within the HBsAg increased group experienced

a change in HBsAg levels exceeding 0.5 log10-fold following

administration of PD-1 inhibitors.

To investigate the changes of HBsAg under different clinical

conditions, multiple subgroups were conducted in the present study.

It showed that significant HBsAg decreases were observed in lower

baseline HBsAg group (Z=-2.277, P=0.023) (Figure 2B), HBeAg-

seronegative group (Z=-2.200, P=0.028) (Figure 2C), non-irAEs

occurrence group (Z=-2.007, P=0.045) (Figure 2D) and liver cancer

group (Z=-1.987, P=0.047) (Figure 2E), while no difference of HBsAg

changes was found when patients were divided into groups according

to the types of NAs, baseline HBV-DNA levels, liver cirrhosis, prior

use of antiviral therapy, the cycles of PD-1 inhibitors, and the types of

PD-1 inhibitors (Supplementary Figure 1).
The incidence of serum HBsAg loss in
cancer patients

HBsAg loss, defined as a change from positive at baseline to

negative at any postbaseline visit within the targeted time window,

occurred in 7 patients (7/180, 3.89%), as shown in Table 2. All of

these patients were male, HBeAg seronegative, and had low baseline

HBsAg levels (0.19 to 57.20 IU/ml). 6 patients were diagnosed with

liver cancer and liver cirrhosis, and all received antiviral treatment

before PD-1 inhibitor. Except for patient 2, who had gastric cancer

with no background of liver cirrhosis and without the prior use of

antiviral agents. It took 9.29 to 42.86 weeks to achieve HBsAg loss in

these patients, only patient 3 experienced HBsAg seroconversion,

during which anti-HBs reached 26.30 IU/ml.
The incidence of HBV reactivation under
PD-1 inhibitor combinational therapy

With concurrent use of NAs, HBV-DNA levels were kept

undetectable, remained stable at a low level, or decreased in most

of the enrolled cancer patients (167/180, 92.78%) in this study.

However, there were 11 patients (11/180, 6.11%) developed HBVr

within 4.57 to 81.29 weeks under PD-1 inhibitor therapy. The details

of these HBV-reactivated patients are listed in Supplementary

Table 1. HBV-DNA levels of 9 patients increased by at least 100-

fold compared to baseline, and the highest HBV-DNA level was

2.54×108 IU/ml at the diagnosis of HBVr. Of note, two patients
FIGURE 1

Flowchart showing the process of selecting patients.
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achieved serum HBsAg loss after receiving antiviral agents and PD-1

inhibitors, however, serum HBsAg returned to positive afterward

when the PD-1 inhibitor was still being used.

Of all the 11 patients, 7 cases experienced HBVr during PD-1

inhibitor therapy, while HBVr occurred 4.14 to 16 weeks after the last

dose of PD-1 inhibitors in the other 4 cases. 3 out of 11 cases were

diagnosed with HBV-associated hepatitis, and 2 of them discontinued

PD-1 inhibitors due to hepatitis flare and HBV-related acute-on-

chronic liver failure (ACLF), respectively. Moreover, we noticed that

5 cases experienced irAEs before HBVr, and 2 of them discontinued

PD-1 inhibitors as a result of immunotherapy intolerance. In

addition, some patients had withdrawn immunotherapy owing to

cancer progression (n=1) and personal willingness (n=3). With the

concurrent use of NAs, HBV-DNA levels of 3 cases achieved

undetectable, and 7 cases remained detectable in the latest viral

quantification, the patient’s condition with HBV-related ACLF

worsened and gave up treatment eventually.
The occurrence of immune-related
adverse events, and safety evaluation of
PD-1 inhibitors

As confirmed by two physicians, there were 36 (20.00%)

patients who had experienced at least one irAEs of any grade
TABLE 1 Baseline demographic and clinical characteristics of patients
under PD-1 inhibitor combinational therapy.

HBsAg
decreased
group (n=129)

HBsAg
increased
group (n=51)

P
Value

Age (≤55/>55) 66/63 26/25 0.98

Sex (male/female) 120/9 46/5 0.54

Cancer type Liver cancer (n=119) Liver cancer (n=46)

Gastric cancer (n=5) Esophagus
cancer (n=2)

Biliary duct
cancer (n=2)

Lung cancer (n=1)

Lung cancer (n=2) Thymus
cancer (n=1)

Follicular
Lymphoma (n=1)

Urothelia
cancer (n=1)

ECOG score
(0/≥1)

63/66 21/30 0.35

Liver cirrhosis
(yes/no)

101/28 38/13 0.59

Baseline HBsAg
level (IU/ml)
(≤500/>500)

111/18 44/7 0.97

Baseline HBV-
DNA level (IU/ml)
(≤500/>500)

88/41 37/14 0.57

HBeAg status
(seronegative,
seropositive)

122/7 42/9 0.02

Cycles of PD-1
inhibitor
(median, range)

4 (1-23) 5 (1-16)
0.28

PD-1
inhibitor type

0.24

Camrelizumab 27 18

Sintilimab 69 26

Toripalimab 3 1

Tislelizumab 13 2

PD-1
inhibitor switched*

17 4

Prior use of
antiviral therapy
(yes/no)

100/29 40/11 0.89

Antiviral regimen 0.03

ETV 71 27

TDF 23 18

TAF 24 5

NAs switched* 11 1

Combined with
targeted agent

0.76

(Continued)
TABLE 1 Continued

HBsAg
decreased
group (n=129)

HBsAg
increased
group (n=51)

P
Value

Sorafenib 7 1

Lenvatinib 41 16

Anlotinib 6 5

Apatinib 9 6

Regorafenib 8 3

Donafenib 18 4

Targeted
agent switched*

19 9

Combined with
chemotherapy
(yes/no)

13/116 5/46 0.96

Combined with
TACE/HAIC
(yes/no)

75/54 31/20 0.75

Combined with
radiotherapy
(yes/no)

12/117 3/48 0.56
front
ECOG, Eastern Cooperative Oncology Group; HBeAg, hepatitis B envelop antigen; HBsAg,
hepatitis B surface antigen; PD-1, programmed cell death protein-1; ETV, Entecavir; TDF,
Tenofovir disoprox fumarate; TAF, Tenofovir alafenamide fumarate; NAs, Nucleos(t)ide
analogues; HAIC, hepatic arterial infusion chemotherapy; TACE, transcatheter
arterial chemoembolization.
Baseline HBsAg (≤500/>500 IU/ml) and HBV-DNA level (≤500/>500 IU/ml) were referenced
from previous studies (12, 17).
PD-1 inhibitor/NAs/targeted agent switched*, the patient switched the type of PD-1 inhibitor/
NAs/targeted agent during the observation period.
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during PD-1 inhibitor combinational therapy, and 13 patients

(7.22%) developed grade 3/4 adverse events. As shown in

Supplementary Table 2, the most common adverse event in the

present study was rash (n=12, 6.67%), and then followed by

hepatitis (n=9, 5.00%), fever (n=4, 2.22%) and hypothyroidism

(n=4, 2.22%). The most common grade 3/4 adverse event was

hepatitis (n=9, 5.00%). 20 patients received glucocorticoids after the

occurrence of irAEs according to clinical guidelines. However, 3

patients didn’t improve due to acute liver failure (ALF), ACLF and

acute myocarditis, respectively. During treatment, 11 patients

discontinued PD-1 inhibitors permanently due to irAEs, one

patient discontinued PD-1 inhibitors due to irAEs and cancer

progression. In addition, irAEs didn’t disturb the administration

of PD-1 inhibitors in 12 patients but delayed in the rest 12 patients.

To investigate whether the safety of PD-1 inhibitor combinational

therapy was related to the baseline HBV-DNA and HBsAg levels, we

regrouped patients with reference to previous studies (12, 17), and

found that patients with baseline HBV-DNA > 500 IU/ml had a higher

percentage of discontinuation of PD-1 inhibitors due to irAEs (OR

1.688 [95% CI, 0.460-6.195], P=0.048). However, there was no

difference in the incidence of all-grade irAEs, 3/4 irAEs, HBVr, and

HBV-related hepatitis between high and low groups based on baseline

HBV-DNA or HBsAg levels as shown in Table 3.
Frontiers in Immunology 06207
Risk factors associated with significant
serum HBsAg fluctuation and
HBV reactivation

Considering that there may be minor detection errors or

fluctuations in serum HBsAg quantification, we established

criteria for defining clinically significant fluctuations in HBsAg

levels by referring to a previous study (12). The results of the risk

factor analysis are presented in Tables 4–6.

In the univariable analysis, HBeAg-seropositive (OR, 4.222

[95% CI, 1.180-15.112], P=0.04), and exposure to steroids during

treatment (OR, 3.872 [95% CI, 1.092-13.725]; P=0.049) were

significant risk factors for HBsAg increase, the occurrence of

irAEs (OR, 3.710 [95% CI, 1.064-12.937], P=0.045) was a

significant risk factor for HBVr. In the multivariable analysis,

HBeAg-seropositive (OR, 7.236 [95% CI, 1.757-29.793], P=0.01)

and the occurrence of irAEs (OR, 4.077 [95% CI, 1.252-13.273];

P=0.02) were identified as the independent risk factor for HBsAg

increase, the occurrence of irAEs (OR, 5.560 [95% CI, 1.252-

13.273], P=0.01) was identified as the only independent risk

factor for HBVr. Of note, no significant risk factors were

discovered to be associated with significant HBsAg decrease both

in univariable and multivariable analysis.
A B

D EC

FIGURE 2

Comparison of serum HBsAg levels before and after PD-1 inhibitor administration in cancer patients under different clinical conditions. (A)
Comparison of serum HBsAg levels among all enrolled patients, HBsAg decreased group and HBsAg increased group. (B) Comparison of serum
HBsAg levels in patients with baseline HBsAg ≤ 500 IU/ml and baseline HBsAg > 500 IU/ml. (C) Comparison of serum HBsAg levels in HBeAg-
seronegative group and HBeAg-seropositive group. (D) Comparison of serum HBsAg levels in non-irAEs occurrence group and irAEs occurrence
group. (E) Comparison of serum HBsAg levels in liver cancer group and non-liver cancer group. * P < 0.05; *** P < 0.001; ns, not
statistically significant.
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Discussion

It’s well known that a HBV-DNA decline directly reflects a

reduction of viral replication, while HBsAg decline signifies a

reduction of transcriptional activity of intranuclear cccDNA and

integrated DNA sequences (28). The clearance of HBsAg is

regarded as the closest correlate of cure and the ultimate goal of

CHB therapy (29). However, only a few clinical trials (11, 12) have

attempted to clarify the potential of PD-1/PD-L1 inhibitors in the

treatment of CHB. Retrospectively observing changes in HBsAg and

HBV-DNA levels in HBsAg-positive cancer patients undergoing

PD-1 inhibitor combination therapy may yield more relevant

clinical information.

In the present study, we noticed that viral replication could be

effectively inhibited in 92.78% (167/180) of enrolled patients, and

overall serum HBsAg levels decreased under PD-1 inhibitor and

antiviral therapy (P=0.04), which was consistent with the study of

Zeng et al. (30), it revealed that HBV targeting gRNA/cas9 induced

a decrease in the expression of HBsAg in vitro, combined anti-HBV

and anti-PD-1 CRISPR/Cas9 exhibited a stronger antiviral effect

than either treatment alone. In another WHV study of woodchucks

receiving entecavir, anti-PD-L1 mAb prevented viral rebound

following withdrawal of entecavir (31). Taken together, it

indicated that PD-1 inhibitor combined with NAs played a

certain role in inhibiting viral replication and inducing HBsAg

decrease. Upon PD-1 blockade, patients with baseline HBsAg ≤ 500

IU/ml were found to have a statistically significant decrease
Frontiers in Immunology 07208
(P=0.02) in serum HBsAg in this study, which was in line with a

previous study (32), it demonstrated that HBV-specific T cell

functions were better preserved in CHB patients with lower

serum HBsAg levels, and PD-L1 blockade improved HBV-specific

CD4+ T cell function only in HBslo patients (serum HBsAg < 500

IU/ml). Meanwhile, we noticed that there were 7 patients (7/180,

3.89%) who achieved HBsAg loss, the rate of which was similar to a

previous clinical trial (1/24, 4.17%) on CHB (11). However, a recent

retrospective study reported that HBsAg seroclearance occurred in

only 2 patients (0.39%) out of 511 HBsAg-positive cancer patients

undergoing ICIs (13). The discrepancy among studies may be

related to the limited patients included in our study, or cancer

patients who failed to monitor serum HBsAg regularly in

other studies.

It has been reported that the cumulative HBsAg loss rate of

HBeAg-positive patients after 7 years of TDF treatment is higher

than HBeAg-negative patients (11.8% VS 0.3%) (33), which makes

CHB patients, especially HBeAg-negative patients, have to take

medication for life. On the contrary, HBeAg-negative patients were

prone to experience a decrease in HBsAg levels (P=0.03) in our

study, and patients who achieved HBsAg loss were all HBeAg-

negative, which may be attributed to the enhancement of HBV-

specific T cell function by PD-1 inhibitors (8–10), In addition, the

HBsAg levels decreased in the liver cancer group (P=0.047) when

compared with the non-liver cancer group (P=0.36), which may be

owing to patients with HBV-related liver cancer pay more attention

to the regular follow-up of HBV serologic markers, making it easier
TABLE 2 Clinical characteristics of patients with serum HBsAg loss during PD-1 inhibitor combinational therapy.

Patient Patient 1 Patient 2 Patient 3 Patient 4 Patient 5 Patient 6 Patient 7

Age 61 48 57 70 62 50 52

Gender (male, female) male male male male male male male

Cancer type Liver cancer Gastric cancer Liver cancer Liver cancer Gastric cancer Liver cancer Liver cancer

Liver cirrhosis (yes/no) Yes No Yes Yes Yes Yes Yes

HBeAg status (seronegative/seropositive) Seronegative Seronegative Seronegative Seronegative Seronegative Seronegative Seronegative

Baseline HBsAg (IU/ml) 0.19 0.25 57.20 1.14 0.35 0.77 1.97

Baseline HBV-DNA (IU/ml) Not detected <100 <20 <100 <100 <20 <100

Prior use of antiviral therapy (yes/no) Yes No Yes Yes Yes Yes Yes

Cycles of PD-1 inhibitor 9 5 11 14 4 2 2

Weeks to achieve HBsAg loss (since PD-1
inhibitor initiation)

26.00 18.86 27.71 42.86 11.43 12.14 9.29

PD-1 inhibitor type Tislelizumab Sintilimab Camrelizumab Sintilimab Sintilimab Tislelizumab
Sintilimab

Sintilimab

Antiviral treatment regimen ETV ETV TDF TAF TDF ETV TDF, TAF

Combined therapy Lenvatinib Chemotherapy Apatinib
Oncolytic
virotherapy

Donafenib Chemotherapy Donafenib
TACE

Chemotherapy
Lenvatinib

HBV reactivation (yes/no) No No No No No No No

HBsAg seroconversion (yes/no) No No Yes No No No No
HBeAg, hepatitis B e antigen; HBsAg, hepatitis B surface antigen; PD-1, programmed cell death protein-1; TACE, transcatheter arterial chemoembolization; ETV, Entecavir; TDF, Tenofovir
disoprox fumarate; HBsAg seroconversion, defined as anti-HBs changing from negative at baseline to positive at any postbaseline visit with HBsAg loss occurring within the targeted
time window.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1330644
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zeng et al. 10.3389/fimmu.2024.1330644
to observe changes in serum HBsAg levels. Another undeniable fact

was that most of the patients included in this study were HBeAg-

negative (164/180, 91.11%) and had liver cancer (165/180, 91.67%),

resulting in a more significant statistical difference in these patients.

Consistent with other studies, HBVr (11/180, 6.11%) was also

discovered in this study. However, the incidence of HBVr varied
Frontiers in Immunology 08209
greatly (0-30.05%) in different studies (34). The discrepancy may lie

in the differences in the proportion of patients who received PD-1

inhibitor monotherapy versus combination therapy. Additionally,

unlike the present study, other studies also included HBsAg-

negative cancer patients. Even though no correlation was found

between HBVr and combined lines of therapies in both univariate
TABLE 3 Safety comparison of PD-1 Inhibitor combinational therapy under different grouping conditions.

Grouped by baseline HBV-DNA (≤500 or >500
IU/ml)

Grouped by baseline HBsAg (≤500 or >500 IU/ml)

Low group
(n=125)

High
group
(n=55)

OR
(95% CI)

P Value Low group
(n=155)

High
group
(n=25)

OR
(95% CI)

P Value

irAEs

All grades 22 (17.60%) 14 (25.45%) 0.626
(0.292-1.340)

0.23 28 (18.06%) 8 (32.00%) 0.469
(0.184-1.193)

0.11

Grade 3/4 9 (7.20%) 4 (7.27%) 0.989
(0.291-3.361)

1.00 10 (6.45%) 3 (12.00%) 0.506
(0.129-1.982)

0.40

HBV reactivation 9 (7.20%) 2 (3.63%) 2.056
(0.429-9.846)

0.51 9 (5.81%) 2 (8.00%) 0.709
(0.144-3.490)

0.65

HBV-
associated hepatitis

2 (1.60%) 1 (1.81%) 0.878
(0.078-9.891)

1.00 2 (1.29%) 1 (4.00%) 0.314
(0.027-3.595)

0.36

PD-1 inhibitor disruption due to irAEs

Discontinuation 5 (4.00%) 7 (12.73%) 0.286
(0.086-0.944)

0.048 9 (5.81%) 3 (12.00%) 0.452
(0.114-1.799)

0.22

Delay 10 (8.00%) 2 (3.64%) 2.304
(0.488-10.886)

0.35 9 (5.81%) 3 (12.00%) 0.452
(0.114-1.799)

0.22
HBsAg, hepatitis B surface antigen; HBV, hepatitis B virus; OR, odds ratio; irAEs, immune-related adverse events; PD-1, programmed cell death protein-1.
TABLE 4 Analysis of risk factors associated with significant serum HBsAg decrease during PD-1 inhibitor combinational therapy.

Characteristics
Univariate analysis Multivariate analysis

OR 95% CI p value OR 95% CI p value

Age ≤ 55 0.641 0.315-1.302 0.22

Male Gender 3.844 0.485-30.464 0.07

Liver cancer (VS other) 1.156 0.310-4.315 1.00

ECOG score <1 1.752 0.861-3.565 0.12

Liver cirrhosis 1.889 0.732-4.877 0.18

HBeAg-seropositive 0.792 0.214-2.929 1.00

Baseline HBsAg level ≤500 (IU/ml) 2.299 0.651-8.119 0.19

Baseline HBV-DNA level ≤500 (IU/ml) 0.860 0.404-1.830 0.70

Prior use of antiviral therapy 0.980 0.422-2.275 0.96

Cycles of PD-1 inhibitor >5 1.531 0.754-3.111 0.24

Combined lines of therapy* <2 0.639 0.308-1.327 0.23

Occurrence of irAEs 1.215 0.518-2.850 0.65

Exposure to steroids 1.085 0.333-3.533 1.00
Eastern Cooperative Oncology Group; HBeAg, hepatitis B envelop antigen; HBsAg, hepatitis B surface antigen; PD-1, programmed cell death protein-1; irAEs, immune-related adverse events.
Combined lines of therapy*, PD-1 inhibitors combined with any one or more than one type of antineoplastic therapy.
The P value of univariate analysis was calculated through Chi-square test or Fisher exact tests; Multivariate analysis was performed through the binary logistic regression.
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and multivariate analysis in this study, PD-1 inhibitor itself,

chemotherapy, targeted agent, TACE (35), HAIC (17), and

radiotherapy (36) had all been reported to pose a risk of HBVr in

cancer patients. Of note, two patients first experienced HBsAg loss,

followed by a re-positivity of HBsAg. This suggests that the stability

of HBsAg loss induced by PD-1 inhibitors may be unstable or
Frontiers in Immunology 09210
susceptible to other combination therapies. Besides, one patient

experienced PD-1 inhibitor discontinuation due to HBV-related

ACLF and had a poor prognosis, which reflected that HBVr posed

unique challenges to the oncologic population including the

possibility of treatment delays or discontinuation of systemic

therapies that may affect overall survival. However, with
TABLE 5 Analysis of risk factors associated with significant serum HBsAg increase during PD-1 inhibitor combinational therapy.

Characteristics
Univariate analysis Multivariate analysis

OR 95% CI p value OR 95% CI p value

Age ≤ 55 0.723 0.257-2.033 0.54

Male Gender 0.455 0.091-2.283 0.29

Liver cancer (VS other) 0.603 0.123-2.944 0.63

ECOG score <1 0.489 0.163-1.470 0.20

Liver cirrhosis 0.874 0.266-2.871 0.76

HBeAg-seropositive 4.222 1.180-15.112 0.04 7.236 1.757-29.793 0.01

Baseline HBsAg level ≤500 (IU/ml) 3.058 0.389-24.091 0.13

Baseline HBV-DNA level ≤500 (IU/ml) 0.690 0.237-2.004 0.57

Prior use of antiviral therapy 0.844 0.257-2.775 0.76

Cycles of PD-1 inhibitor >5 1.215 0.431-3.426 0.71

Combined lines of therapy* <2 0.767 0.266-2.209 0.62

Occurrence of irAEs 2.680 0.904-7.945 0.10 4.077 1.252-13.273 0.02

Exposure to steroids 3.872 1.092-13.725 0.049
Eastern Cooperative Oncology Group; HBeAg, hepatitis B envelop antigen; HBsAg, hepatitis B surface antigen; PD-1, programmed cell death protein-1; irAEs, immune-related adverse events.
Combined lines of therapy*, PD-1 inhibitors combined with any one or more than one type of antineoplastic therapy.
The P value of univariate analysis was calculated through Chi-square test or Fisher exact tests; Multivariate analysis was performed through the binary logistic regression.
TABLE 6 Analysis of risk factors associated with HBV reactivation during PD-1 inhibitor combinational therapy.

Characteristics
Univariate analysis Multivariate analysis

OR 95% CI p value OR 95% CI p value

Age ≤ 55 0.337 0.086-1.314 0.10

Male Gender 0.283 0.054-1.489 0.16

Liver cancer (VS other) 0.903 0.108-7.579 1.00

ECOG score <1 1.400 0.411-4.765 0.59

Liver cirrhosis 3.101 0.385-24.970 0.46

HBeAg-seropositive 1.027 0.123-8.578 1.00

Baseline HBsAg level ≤500 (IU/ml) 0.709 0.144-3.490 0.65

Baseline HBV-DNA level ≤500 (IU/ml) 2.038 0.426-9.761 0.51

Prior use of antiviral therapy 3.000 0.372-24.171 0.46

Cycles of PD-1 inhibitor >5 1.873 0.549-6.384 0.35

Combined lines of therapy* <2 0.716 0.202-2.539 0.76

Occurrence of irAEs 3.710 1.064-12.937 0.045 5.560 1.592-19.420 0.01

Exposure to steroids 2.281 0.451-11.543 0.28
Eastern Cooperative Oncology Group; HBeAg, hepatitis B envelop antigen; HBsAg, hepatitis B surface antigen; PD-1, programmed cell death protein-1; irAEs, immune-related adverse events.
Combined lines of therapy*, PD-1 inhibitors combined with any one or more than one type of antineoplastic therapy.
The P value of univariate analysis was calculated through Chi-square test or Fisher exact tests; Multivariate analysis was performed through the binary logistic regression.
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additional awareness, screening, and appropriate antiviral

prophylactic, most cases of HBVr can be prevented and well

managed (37).

To the best of our knowledge, the present study first identified

the occurrence of irAEs as the only independent risk factor for

HBVr, while failed to find any factors associated with HBVr that

had been reported in other studies including male sex, younger age,

HBeAg-seropositive, the presence of cirrhosis (38, 39) and PD-1

inhibitor combined with HAIC (17), etc. The reason for this

discrepancy may be attributed to an imbalanced gender

distribution in our study, as well as the older age, predominantly

HBeAg-seronegative status, and presence of liver cirrhosis among

patients with HBVr in the present study. Additionally, a larger

proportion of patients received HAIC in the previous study.

Furthermore, researchers rarely considered the possible causal

relationship between irAEs and HBVr. The possible mechanism

of HBVr triggered by PD-1 inhibitor might be that: i) blocking the

PD-1/PD-L1 axis may lead to the destruction of hepatocytes and the

release of previously latent virus into circulation (40). ii) PD-1

blockade may promote the proliferation of T regulatory cells

(Tregs) (41) and myeloid-derived suppressor cells (MDSCs) (42),

increasing immuno-suppression and then the reactivation of HBV;

iii) MDSC levels were considered as a novel biomarker for related

immune dysfunction, such as irAEs (43), and inflammatory Treg

reprogramming was suggested a feature of immunotherapy-

induced irAEs (44), this may explain that irAEs occurrence was a

risk factor for HBVr.

What also can’t be ignored in the present study was that serum

HBsAg levels increased (P=0.043) in 51 cancer patients, HBeAg-

seropositive and the occurrence of irAEs were identified as the

independent risk factors for significant HBsAg increase. The

underlying mechanism for this may be: i) T cells, B cells, NK

cells, and DCs were associated with the clearance of serum HBsAg

(45), impairing these immune cells through cytotoxic drugs, which

were used in combinational therapies such as chemotherapy, TACE

and HAIC, may lead to the increase of HBsAg; ii) The HBeAg-

seropositive patients included in this study were mostly in the

immune clearance phase, a typical feature of this phase was the

occurrence of spontaneous flares, which were often preceded by an

increase in the HBV-DNA level (46), and a positive correlation

between pHBsAg (the percentage of immunohistochemical HBsAg)

and serum levels of HBV-DNA and HBsAg were observed by

another study (47), especially in HBeAg-seropositive group. iii) as

the suppression of excessive functions of Tregs and MDSC may be

one of the proposed immune mechanisms for HBsAg seroclearance

(45), the involvement of these cells in irAEs may lead to an increase

in HBsAg levels. However, a negative correlation between the Treg

frequency and irAEs was discovered by preclinical models of irAEs

(48), and the frequency of peripheral Tregs between irAEs group

and non-irAEs group showed no significant differences in patients

with advanced metastatic melanoma who were receiving PD-1

inhibitors (44), which implied the controversial role that Tregs

played in irAEs. Therefore, more detailed studies should be

conducted to explore the immune mechanisms underlying HBVr

or HBsAg increase under PD-1 inhibitor therapy, as well as to

elucidate the paradoxical role of Tregs in irAEs.
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With the increasing use of ICIs, cancer patients are at risk of a

series of irAEs that can present at any time, including after cessation

of immune checkpoint blockade therapy, and may wax and

wane over time (1). In this study, 20% (36/180) of patients

experienced all-grade irAEs and 7.22% (13/180) of patients

developed severe irAEs (grade 3/4), which resulted in delayed and

discontinued use of PD-1 inhibitors. Inconsistent with previous

studies (19, 20), our study showed a lower prevalence of irAEs in

cancer patients. This may be related to the difficulty of evaluating

profiles of irAEs and obtaining accurate data on incidence or

prevalence, due to selection criteria, relatively small sample sizes,

strict diagnosis standards, and limited duration of follow-ups. In

addition, we noticed that HBsAg levels were decreased (P=0.045) in

the non-irAEs group compared to the irAEs group, which indirectly

supported that the occurrence of irAEs was a risk factor for elevated

serum HBsAg levels. Interestingly, we also noticed that patients with

baseline HBV-DNA > 500 IU/ml had a higher rate of discontinuation

of PD-1 inhibitors (P=0.048) due to irAEs. This may be partially

attributed to the higher irAEs incidence in patients with baseline

HBV-DNA > 500 IU/ml in this study, meanwhile, the patient’s

acceptance and tolerance of irAEs also should be considered.

Although studies (11, 21, 22, 49) have shown that PD-1/PD-L1

inhibitors are relatively safe and effective for cancer patients, we

should still be cautious of the irAEs they may cause. Given the high

immunogenicity and long half-life of PD-1 or PD-L1 therapeutic

blocking mAbs, they are more likely to cause higher levels of irAEs

and are difficult to be timely removed (50). Recently, Zhai et al. (51)

have demonstrated a newly screened cyclic peptide C8, which can be

removed in a shorter period of time to reverse the irAEs due to its

reasonable half-life, could work as a blocker for PD-1 and reactivate

CD8+ T cells to treat cancers. It may have the potential as a drug

candidate not only for cancer immunotherapy but also for treating

chronic hepatitis B in the future.
Conclusion

Under the concurrent use of NAs, we observed an overall decrease

in the levels of serum HBsAg in cancer patients receiving PD-1

inhibitor combinational therapy, with a small number of patients

achieving HBsAg loss, and the viral replication of most patients can

also be effectively inhibited. It suggested that PD-1 inhibitors combined

with NAs may have therapeutic effects on chronic HBV infection, and

may contribute to the clinical cure of hepatitis B. However, due to the

influence of the PD-1 inhibitor itself or other combined antineoplastic

therapies, the state of HBsAg loss in some patients cannot be

stably maintained.

Except that HBeAg-positive was identified independent risk

factor for significant HBsAg increase, our study first identified the

occurrence of irAEs as the independent risk factor both for

significant HBsAg increase and HBVr, and patients may

discontinue PD-1 inhibitors as a result of HBVr or irAEs. This

may provide some risk implications for researchers conducting

clinical trials using PD-1 or PD-L1 inhibitors to treat CHB, and

clinicians need to pay more attention to the safety of PD-

1 inhibitors.
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Limitations

However, there are several limitations in this study. First,

most of the cancer patients with HBV infection are excluded for

lacking the awareness of monitoring serum HBsAg or HBV-DNA

regularly, which may lead to selection bias, more eligible patients

should be enrolled in future studies. Second, more well-designed,

large-scale prospective and retrospective studies on cancer patients

with HBV infection are needed before any definitive conclusions

can be reached. Third, there were few patients with other types of

cancer included in this study, more patients diagnosed with other

types of cancer should be enrolled in future studies. Fourth,

although the quantitation of serum HBsAg and HBV-DNA levels,

particularly serum HBsAg levels, were mostly performed using

the same quantitative methods before and after PD-1 inhibitor

administration in this study, it is essential for the quantitative

methods of serum HBV-DNA and HBsAg to remain consistent

throughout the treatment.
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Comparison of serum HBsAg levels before and after PD-1 inhibitor
administration in cancer patients under different clinical conditions. (A)
Comparison of serum HBsAg levels in patients received different antiviral

agents. (B-D) Comparison of serum HBsAg levels in patients with different
baseline HBV-DNA levels. (E) Comparison of serum HBsAg levels in liver

cirrhosis group and non-liver cirrhosis group. (F) Comparison of serum
HBsAg levels in patients with and without prior use of antiviral therapy. (G)
Comparison of serum HBsAg levels in patients received PD-1 inhibitors ≤ 5
cycles and > 5 cycles. (H) Comparison of serum HBsAg levels in patients

under different types of PD-1 inhibitor therapy. ns, not statistically significant;

ETV, Entecavir; TDF, Tenofovir disoprox fumarate; TAF, Tenofovir
alafenamide fumarate. Due to limited cases, serum HBsAg levels were not

compared in patients under Toripalimab therapy and NAs switched therapy.
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Artificial intelligence and
neoantigens: paving the path for
precision cancer immunotherapy
Alla Bulashevska1, Zsófia Nacsa1, Franziska Lang2,
Markus Braun1, Martin Machyna1, Mustafa Diken2,
Liam Childs1 and Renate König1*

1Host-Pathogen-Interactions, Paul-Ehrlich-Institut, Langen, Germany, 2TRON - Translational
Oncology at the University Medical Center of the Johannes Gutenberg University gGmbH,
Mainz, Germany
Cancer immunotherapy has witnessed rapid advancement in recent years, with a

particular focus on neoantigens as promising targets for personalized treatments.

The convergence of immunogenomics, bioinformatics, and artificial intelligence

(AI) has propelled the development of innovative neoantigen discovery tools and

pipelines. These tools have revolutionized our ability to identify tumor-specific

antigens, providing the foundation for precision cancer immunotherapy. AI-

driven algorithms can process extensive amounts of data, identify patterns, and

make predictions that were once challenging to achieve. However, the

integration of AI comes with its own set of challenges, leaving space for

further research. With particular focus on the computational approaches, in

this article we have explored the current landscape of neoantigen prediction, the

fundamental concepts behind, the challenges and their potential solutions

providing a comprehensive overview of this rapidly evolving field.
KEYWORDS

neoantigen prediction, artificial intelligence, immunopeptidomics, cancer
immunotherapy, precision medicine
1 Introduction

Recently, there has been an increasing number of reports on promising treatment

paradigms based on reactivation of the immune system against cancer cells. Cancer

immunotherapies aim to counteract the tactics employed by tumors that deactivate the

immune system. Nevertheless, solely reactivating the immune system is not enough for the

thorough elimination of tumors. It is essential that the reactivated immune system can

distinguish malignant cells from their healthy counterparts.

The immune recognition of tumor tissues primarily relies on tumor antigens. Short

antigenic peptides derived from tumor antigens are presented on the surface of the tumor

cell by major histocompatibility complex (MHC) molecules serving as targets for the

antitumor immune response. In humans, the MHC-I and MHC-II proteins are encoded by
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Human Leukocyte Antigen (HLA) genes, which are polymorphic in

the human population. Given that the tumor antigens are the major

target for antitumor T cells, they play a pivotal role in effective

tumor elimination. Tumor antigens are typically categorized as

tumor-associated antigens (TAA) and tumor-specific antigens

(TSA). TAAs include antigens derived from genes overexpressed

in cancer cells due to their malignant transformation, and comprise

a class of normal self-proteins that are minimally expressed by

healthy tissues. TAAs are generally weakly immunogenic due to

central immune tolerance mechanisms. In contrast, TSAs are

expressed exclusively on tumor cells. Most TSAs are neoantigens

resulting from somatic mutations, such as insertion or deletions

(INDELs), single nucleotide variants (SNVs), frameshifts and gene

fusions (1). Since these neoantigens are products of tumor-specific

irregularities, they are less susceptible to central immune tolerance,

making them suitable candidates for therapeutic targeting.

Neoantigen cancer vaccines have emerged as a novel clinical

approach to treat cancer (2). The purpose of a personalized

anticancer vaccine is to direct T cells towards tumor eradication

by leveraging neoantigens while preserving healthy tissue. There are

two broad categories of immunotherapy treatments. Vaccinating

against cancer induces long-lasting de novo antitumor immunity

and is termed active immunotherapy (3, 4). Adoptive cell therapy

(ACT) approaches, such as adoptive transfer of tumor-infiltrating

lymphocytes (TILs), transgenic T cells, or chimeric antigen receptor

T cells are based on the in vitro generation of tumor-specific T cells

with subsequent infusion to the patient (passive immunotherapy).

Currently, there is a variety of clinical trials, testing neoantigen-

based anticancer vaccines either independently or in conjunction

with other immunotherapies, checkpoint inhibitors or novel drugs

under investigation. Numerous articles comprehensively review the

field of mutation-derived neoantigen cancer vaccines. For detailed

insights into preclinical and clinical studies, we recommend the

review of Aurisicchio et al. (5). The review paper of Shemesh et al.

(6) presents the clinical trial landscape of personalized therapeutic

cancer vaccines, highlighting their opportunities and emerging

challenges. Further insights into the challenges associated with

targeting cancer neoantigens are outlined in the work of Chen
Frontiers in Immunology 02216
et al. (7). Designing neoantigen cancer vaccines, trials, and trial

outcomes are described in Biswas et al.’s work (8).

Detection of neoantigens is crucial for developing personalized

cancer immunotherapies. Currently artificial intelligence (AI) is widely

used to assess the factors that shape tumor immunogenicity. The use

of AI for neoantigen prediction enhances the accuracy, efficiency, and

personalized nature of cancer immunotherapy development by

effectively analyzing and interpreting complex genomic data.

However, the identification of putative neoantigens from genomic

data still remains a challenge. To address this, specialized software

tools have been developed for specific sub-tasks such as HLA typing

and in silico prediction of peptide binding affinity to MHC molecules.

Complex pipelines that encompass multiple analytical tasks have also

been created. Current strategies for the identification of neoantigens

are extensively reviewed in multiple articles (9–11).

For the successful implementation of AI vast amount of data is

required. Genomic data comes in various forms, such as DNA

sequences, RNA expression profiles. AI models can be trained to

handle diverse data types, allowing for a more comprehensive, fast

analysis of the factors influencing neoantigen formation. Significant

amounts of high-throughput biomedical data, including omics and

immunological data, have been accumulated in public databases, and

can be transformed into novel insights. These data can be used for

training a model with AI - based computational algorithm to properly

interpret the data and learn from it in order to make accurate

decisions based on the input information provided (Figure 1).

Additionally, AI models can help to identify novel neoantigens by

recognizing patterns and associations in the molecular and cellular

profiling data that may be challenging with the traditional methods.

Most state-of-the-art computational approaches for ranking and

selecting candidate neoantigens predominantly rely on prediction

methods, rooted in conventional machine learning (ML) algorithms,

including artificial neural networks (ANNs), and modern AI

architectures, trained on large experimental datasets.

Artificial Neural Networks are computational models inspired by

biological neural networks. They learn the relationship between the

inputs and outputs using samples from the training dataset (e.g., peptide

sequences) and make predictions for the new samples. ANN’s are
FIGURE 1

Schematic overview of AI algorithm training on public databases. A group of subjects, specific for the condition of interest is chosen for the
experimental procedures. After completing the experimental pipelines, the generated data is stored in a public database. AI algorithms can then be
trained on these datasets.
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optimized by adjusting their parameters (weights and biases) based on

the difference between the predicted values and actual values, utilizing

the error-correction-learning rule known as back propagation.

Deep Learning (DL), a subset of machine learning and artificial

intelligence stemming from ANNs, has gained increasing attention

over the past years. The most commonly applied architectures

include deep neural networks (DNNs) and convolutional neural

networks (CNNs). DNNs consist of an input layer, multiple hidden
Frontiers in Immunology 03217
layers, and an output layer with nodes in adjacent layers fully

interconnected. CNNs primarily feature convolutional and pooling

layers, often followed by fully connected layers. For an in-depth

understanding of deep learning principles and concepts, we

recommend the book of Goodfellow et al. (12). For definitions of

AI and DL-related terms, please refer to our AI glossary (Table 1).

Notable applications of deep learning in biomedicine, including

medical imaging and drug discovery, are comprehensively covered
TABLE 1 – AI glossary.

Terms Definitions

Artificial Intelligence (AI)
Field of computer science developing approaches possessing intelligent capabilities for learning, reasoning,
planning, prediction, problem-solving and decision making.

Artificial Neural Network (ANN) Models of computation inspired by human brain and consisting of a collection of interconnected neurons.

Attention module
Assigns weights to individual parts of the input and learns to assign higher weights, attention values, to those
inputs that make a greater contribution to the prediction.

Back propagation
Algorithm used for training of ANN i.e. updating its parameters by applying the chain rule of differentiation
starting from the network output and propagating the gradients backward.

Bidirectional Encoder Representations from
Transformers (BERT)

A large scale model pre-trained on large amounts of unannotated data, which can be fine-tuned to the final
model using another smaller task-specific dataset.

Bidirectional Recurrent Neural Network (BiRNN)
Labels each element of the input sequence based on the element’s past and future contexts by concatenating
the outputs of two RNNs, one processing the sequence from left to right, the other one from right to left.

Binary classification Classification task where each input sample should be categorized into two exclusive categories.

Capsule Neural Network (CapsNet)
Type of ANN attempting to better model hierarchical relationships and mimic biological neural organization
more closely.

Convolutional Neural Network (CNN)
Employs convolutional layers which function as feature detectors learning filters (sets of weights) applied to all
parts of the input in parallel.

Deep Learning (DL)
Type of ML imitating the way how brain gains knowledge, employing highly nonlinear neural network models
to learn representations or features of the data for the prediction task at hand.

Embedding
Multidimensional numeric vector or intermediate CNN output which can be considered as encoding or
representation of the input data.

Ensemble Learning
Technique to combine multiple machine learning algorithms to generate more accurate prediction than a
single model.

Explainable AI/Explainability
AI approaches having the goal to make decision logic and reasoning of AI algorithms trusted and easily
understood by humans.

Fine-tuning Additional training of existing, pre-trained model on a new context- or task- specific data.

Gated Recurrent Unit (GRU) Variation of LSTM without memory unit. Works better for smaller datasets.

Generalization refers to how well the trained model performs on data it has never seen before.

Generative Pre-trained Transformer (GPT) Large language model (LLM) developed by OpenAI. LLMs can have billions of parameters.

Learning or Optimization the process of adjusting a model to get the best performance possible on the training data.

Long Short-Term Memory (LSTM)
Evolution of RNN capable to learn which information from the past (previous words of the sentence) should
be used for the current output and which can simply be forgotten.

Machine Learning (ML)
Process of construction a model based on sample data or experience, known as training data, capable to make
predictions or decisions about the future previously unseen samples.

Multiple Instance Learning
Learning paradigm which allows the training of a classifier from ambiguously labeled data. In particular, rather
than providing the learning algorithm with input/label pairs, labels are assigned to sets or bags of inputs.

Natural Language Processing (NLP)
Subfield of AI focusing on the ability of computers to read and analyze large volumes of unstructured language
data (e.g., text).

Neuron (Perceptron)
Computational unit. Computes a weighted sum of its inputs and applies a nonlinear activation function to
calculate its output.

(Continued)
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in Wainberg et al. (13), while Wen et al. (14) delve into DL methods

in proteomics.

Deep learning requires all input and output variables to be numeric.

One important aspect of DL is data preprocessing or input encoding,

which transforms raw data, such as peptide or protein sequences, into a

suitable format for learning. Designing novel representation methods

for protein sequence data is an active research direction. For example,

the DeepLigand (15) approach treats each peptide sequence as a

sentence, and each amino acid as a word, using the deep language

model ELMo (16) to embed peptides into vector representations for

tasks like peptide-MHC binding affinity prediction.

In addition to DNN and CNN, other DL architectures, such as

gated recurrent unit (GRU) and long short-term memory (LSTM)

neural networks, have proven effective for the peptide sequence-

based prediction tasks. These methods can model dependences

between amino acid residues within peptides of varying lengths

without artificial lengthening or shortening, and they tend to be

substantially faster than standard neural networks.

Recent advances in Natural Language Processing (NLP) have

demonstrated the effectiveness of complex models, such as

Transformers, including BERT (Bidirectional Encoder Representations

from Transformers) (17), and GPT (Generative Pretrained

Transformer) (Radford et al., 2018)1, in learning rich contextual word

representations. They can be trained to understand semantics from text

without labels (self-supervised learning) (18). Similar techniques have

also been applied to learn features from a large corpus of protein

sequence data from public datasets (19, 20).

Another important characteristic of DL is transfer learning,

which involves initializing training with representations learned

from a previous task. Instead of training a new network from

scratch, pretrained models can be downloaded and further trained
1 Radford A, Narasimhan K, Salimans T, Sutskever I. Improving Language

Understanding. (2018) 4. OpenAI.com.
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for a new task by adding additional layers or fine-tuned using the

new data. Examples include BERTMHC (21), MHCRoBERTa (22)

which use transformers and transfer learning for peptide-MHC

binding prediction. The authors found that leveraging self-

supervised pretraining on large protein sequence corpora can lead

to improved performance, particularly when training data is limited.

Achieving optimal prediction accuracy requires the tuning of

model settings, or hyperparameters, e.g. determining how fast the

weights of NN should be adjusted during training. Hyperparameter

search techniques use validation examples that are held out from

training. We provide the reader with a helpful background for

understanding approaches assessing the performance of AI systems

and establishing the trust in it.

Numerous publications have explored the application of AI in

cancer research, precision medicine (23), cancer immunotherapy

(24), and neoantigen identification (25). To gauge the potential of

AI-driven software solutions, several benchmarking studies have

been conducted. Evaluating and comparing tools is an essential part

for their future application in the medical field and everyday clinical

practice, as no single approach is universally applicable and having

a dependable predictor or genotyper is vital. Despite the continually

improving performance, critical questions regarding the application

of AI technology in cancer immunotherapy remain. In this review,

we summarize the core neoantigen calling pipeline, the recent

research progress, and discuss the potential of artificial

intelligence-enabled neoantigen identification, along with its

current limitations and challenges.
2 Computational hunting
for neoantigens

The core computational pipeline established for the process of

identification and selection of genomically encoded antigens that

are of immunological significance includes the following steps (25):
TABLE 1 Continued

Terms Definitions

Overfitting
Occurs when a model learned patterns that are specific to the training data but irrelevant when it comes to
new data.

Parameters
A set of numerical values in an AI model (e.g. weights of neural connections in ANN) that are determined
by training.

Recurrent Neural Network (RNN)
Type of ANN introduced for sequential data processing. Each node in the RNN functions as a memory cell, in
which the output is transmitted back to the RNN neuron rather than only passing it to the next node.

Self-supervised Learning
supervised learning without human-annotated labels. The labels are still involved but they’re generated from
the input data.

Supervised Learning
Consists of learning to map input data to known targets (also called annotations), given a set of examples
(often annotated by humans).

Transfer Learning
The process of using pre-trained model and quickly retrain it for the new task, or add additional layers on top,
rather than training a new model from scratch.

Transformer
NLP model trained on a large data set of sentences for the task of inferring missing words that fit both in
terms of grammar and semantics taking into account the surrounding context.

Unsupervised Learning Finding interesting patterns or transformations of the input data without the help of any annotations.
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Fron
Whole exome or genome sequencing (WES or WGS) data of

tumor and matched normal DNA samples

Somatic mutation calling

Conversion of detected coding DNA somatic mutations to

corresponding mutated peptide sequences

HLA-allele typing

Peptide prioritization, neoantigen calling

o Prediction of peptide-MHC binding affinity

o Prediction of T cell receptor (TCR) recognition, TCR binding

affinity and T cell response

o Immunogenicity prediction

o Expression analysis of putative neoantigens, using e.g. RNA-

seq data
The effective pattern recognition by AI allows for the

development of personalized cancer treatments by considering the

unique genomic profile of each patient’s tumor. As standard

practice, neoantigens are predicted from the mutated peptides by

assessing their ability to trigger an immune response. The

development of AI-based prediction tools allows immunologists

to streamline the search for neoantigen candidates that require

experimental validation (Figure 2).

In the following, we provide an overview of the most common

computational methods used in the neoantigen identification

pipeline and outline the challenges associated with the process.
2.1 Somatic mutation calling

The process of somatic mutation calling is well-established and

includes several critical steps, such as quality control of sequencing

reads, alignment to the reference genome, base quality recalibration

and INDEL realignment, comparison of healthy and tumor

alignments. For quality control of sequencing reads in a WES (or

WGS) dataset, FastQC (26) is commonly used, and BWA (27) is a

widely employed aligner. Base quality recalibration and INDEL

realignment around clusters of putative somatic mutations are both

integral tools of Genome Analysis Toolkit (GATK) (28). There are

numerous somatic mutation callers available, including MuTect

(29), Abra (30), Strelka (31), and VarScan (32). For best practices in

variant calling in clinical sequencing, readers are referred to the

work of Koboldt (33). A comprehensive overview of the variant

calling tools and their pros and cons is provided in the paper of

Cai et al. (25).

Various databases can be used for variant annotation, such

as CancerHotspots (34), and the Catalogue Of Somatic Mutations

In Cancer COSMIC (35). The Variant Interpretation for Cancer

Consortium (VICC) has standardized the curation, representation,

and interpretation of clinically-relevant evidence associated with

genomic variation in cancers. VICC guidelines (36) can be used to

classify variants in known cancer genes (37).
tiers in Immunology 05219
2.2 False-positive mutation calls

There is a possibility that an identified mutation may yield a

false-positive result potentially leading to the treatment of a patient

with a drug targeting a nonexistent somatic mutation. To mitigate

clinical efficacy risk, mutation calls from DNA sequencing should

be cross-verified with the results of replicate sequencing runs.

Moreover, utilizing extra sequencing data, like RNA-seq from the

same tumor sample, to identify somatic mutations and check for

overlaps reduces false positives. Yet, it may raise the risk of false

negatives due to transient gene expression and variable read

coverage (38). Combining multiple somatic mutation callers has

been observed to significantly reduce the false positive rate (39, 40).
2.3 Identified mutation is a SNP

There is a possibility that an identified mutation exists in both

tumor and healthy (germline) cells, representing a single nucleotide

polymorphism (SNP) rather than a somatic mutation. Deep

sequencing of germline DNA samples is essential to identify

potential SNPs with high sensitivity.
2.4 False-negative mutation calls

There is a possibility that variant callingmay fail to detect a somatic

mutation that could produce a highly immunogenic neoantigen. While

this omission does not harm the patient directly, it can result in a

missed candidate neoantigen for the vaccine. To minimize this risk,

deep sequencing of DNA samples (typically ~200x) is recommended to

ensure high coverage across the entire protein-coding region. Unlike

germline testing, which typically requires a minimum of 30x coverage

with balanced reads, the identification of somatic variants in tumor

specimens demands significantly higher read depths. This necessity

arises from the presence of tissue heterogeneity, encompassing

malignant cells, supporting stromal cells, inflammatory cells, and

contaminant tissue. Additionally, intra-tumoral heterogeneity,

represented by various tumor subclones, and considerations of

tumor viability further underscore the need for elevated coverage. In

instances of low tumor cellularity in tissue specimens, achieving an

average coverage of at least 1000x may be essential to confidently detect

heterogeneous variants. Additionally, the option to include multiple

targets (e.g., up to 20 candidate neoantigens) in an individual drug

product should limit the impact of missed mutations.
2.5 Sources of cancer neoantigens beyond
single-nucleotide variants

Emerging evidence suggests the existence of alternative sources

of cancer neoantigens, such as alternative splicing variants (41),

post-translational modifications (42), and transposable elements
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(1), and gene fusions (43). These alternative sources may serve as

attractive novel targets for immunotherapy (44). Nevertheless,

addressing the tumor-specificity still remains a challenge.
3 HLA-allele typing

HLA typing of the individual patient samples, specifically the

accurate identification of the individual set of HLA alleles (HLA

allotypes), is essential. Peptide-MHC affinity strongly depends on

HLA alleles, resulting in distinct immune responses among

individuals (45). Genotyping the class I genes HLA-A, -B and -C,
Frontiers in Immunology 06220
as well as the class II genes HLA-DRB1, -DQB1, and -DPB1

presents a non-trivial task.

Sequence-based typing (SBT) based on Sanger sequencing can

be used for HLA typing. However, due to certain limitations, such

as the need for additional sequencing to identify cis/trans

polymorphism, the concordance rate of Sanger sequencing-based

HLA genotyping is approximately 84% among different laboratories

(46). Commercial software, such as uTYPE (Life Technologies.

Brown Deer, WI), Assign-SBT (Conexio, San Francisco, CA) (47),

and SBTEngine (GenDx, Utrecht, Netherlands) (48), along with

some open-source tools, e.g. SOAPTyping (49) are capable of

producing predictions from Sanger sequencing data. However,
FIGURE 2

Steps of neoantigen selection from patient data. A set of diagnostic procedures are completed on patient derived samples. Ideally all of the above-
mentioned patient data (WES, WGS, HLA typing, RNA-seq) are available before proceeding. After a candidate peptide selection is generated from the
patient data, the AI model of preference is applied. The AI model will compute a ranked peptide list from the candidate peptides. Careful design of
personalized vaccine is available, based on the peptide rankings.
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they are increasingly being replaced by NGS-based methods. High-

throughput WES and RNA-seq sequencing data also serve as a

foundation for HLA typing. Most HLA genotyping tools take NGS

sequencing data as the input and output HLA types. The algorithms

employed by the tools primarily differ in how they map sequencing

reads to a panel of reference HLA allele sequences and the strategy

they use to subsequently score candidate alleles (50).

OptiType (51) is a HLA genotyping algorithm based on integer

linear programming, capable of producing accurate 4-digit HLA

genotyping predictions (for example, A01:01) from NGS data. To

maximize the number of explained reads by simultaneously

considering all major and minor HLA-I loci when predicting 4-

digit HLA genotypes, this process involves aligning sequences from

whole exome/genome/transcriptome sequencing data with a known

MHC class I allele reference. Many tools for HLA typing are freely

available for academic use, such as seq2HLA, ATHLATES,

HLAminer, SOAP-HLA-2.2. A comprehensive list is provided in
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Table 2. Figure 3 depicts a generalised workflow for NGS-based

HLA genotyping.
3.1 Benchmarking of HLA genotyping tools

There are multiple studies benchmarking HLA genotyping

tools. Matey-Hernandez et al. (67) found that HLA typing tools

based on WES and RNA-seq data exhibit prediction power almost

equivalent to gold standards like PCR. Li X. et al. (45) focused on

TCGA (68) cohorts, revealing superior performance of HLA class I

over class II, with POLYSOLVER (60), OptiType (51) and xHLA

(63) demonstrating high accuracy in HLA class I calling, and an

ensemble HLA calling from the top-3 tools outperformed individual

ones. Claeys et al.’s (69) study assessed 13 MHC class I and/or class

II HLA callers, highlighting OptiType and arcasHLA (66) for

MHC-I calling accuracy and HLA-HD (62) for MHC-II calling
TABLE 2 – HLA-allele typing.

HLA-allele typing

Algorithm Year Input URL

seq2HLA
2012
(52)

RNA-seq https://github.com/TRON-Bioinformatics/seq2HLA

HLAminer
2012
(53)

WES/WGS/RNA-seq/Long Reads http://www.bcgsc.ca/platform/bioinfo/software/hlaminer

ATHLATES
2013
(54)

WES https://github.com/cliu32/athlates

SOAP-HLA
2013
(55)

Target capture sequencing/WGS http://soap.genomics.org.cn/SOAP-HLA.html

HLAforest
2014
(56)

RNA-seq https://code.google.com/p/hlaforest/

OptiType
2014
(51)

WES/WGS/RNA-seq https://github.com/FRED-2/OptiType

PHLAT
2014
(57)

WES/WGS/RNA-seq https://sites.google.com/site/phlatfortype

hla-genotyper
2014
(58)

WES/WGS/RNA-seq https://pypi.org/project/hla-genotyper/

HLAreporter
2015
(59)

WES http://paed.hku.hk/genome/

POLYSOLVER
2015
(60)

WES http://www.broadinstitute.org/cancer/cga/polysolver

HLA-VBSeq
2015
(61)

WGS/WES http://nagasakilab.csml.org/hla

HLA-HD
2017
(62)

WES/WGS/RNA-seq/Long reads https://www.genome.med.kyoto-u.ac.jp/HLA-HD/

xHLA
2017
(63)

WGS/WES https://github.com/humanlongevity/HLA

Kourami
2018
(64)

WGS/WES https://github.com/Kingsford-Group/kourami

HLA*LA (HLA*PRG)
2019
(65)

WGS/WES https://genomeinformatics.github.io/HLA-PRG-LA/

ArcasHLA
2020
(66)

RNA-seq https://github.com/RabadanLab/arcasHLA
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accuracy. The study concludes that the optimal HLA genotyping

strategy from NGS data depends on factors like data type, dataset

size, and computational resources, recommending OptiType and

HLA-HD if resources permit (69).
4 Peptide-MHC binding prediction

T cells recognize peptides presented on MHC molecules of

tumor cell. These molecules come in two main classes: peptide-

MHC class I complexes, found on nucleated cells and recognized by

CD8 + T cells, and peptide-MHC class II complexes, displayed on

antigen-presenting cells like dendritic cells, activating CD4 + T cells.

The diverse peptide repertoire is influenced by allele-specific amino

acid preferences of MHC molecules. Due to individual variations in

MHC alleles, the presented repertoire varies across people, with
Frontiers in Immunology 08222
certain alleles being more common. The peptide-MHC interaction

determines neoepitope presentation, impacting the level and type of

T cell responses generated. While experimental MHC binding

assays involve synthesizing and testing peptides, this is laborious

and expensive on a large scale. Consequently, various

computational algorithms and tools have been developed to

predict peptide-MHC binding or assess binding affinity between

mutated peptides and the patient’s MHC alleles (70).

It is important to note that other biologic processes can impact

antigen presentation and immunogenicity of a particular

neoantigen beyond MHC binding. Other factors, such as delivery

of antigen to antigen presenting cells, antigen cleavage and

processing by immunoproteasomes, peptide-MHC complex

stability, are also important determinants of immunogenicity (7).

Early prediction tools relying on techniques as position-specific

scoring matrices (PSSM) or sequence-scoring functions, such as
FIGURE 3

NGS-based HLA genotyping. Sequence data generated by sequencing technologies is mapped against the reference allele repository (IPD-IMGT).
Corresponding to the HLA genotyping algorithm used either the raw reads or assembled contigs are aligned.
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SYFPEITHI (71), RANKPEP (72), PickPocket-1.1 (73),

MixMHCpred (74), encountered difficulties in recognizing

correlated effects. These effects manifest when an amino acid’s

binding is influenced by the other amino acids in the peptide.

The limitations of earlier tools in recognizing such correlated effects

emphasize the suitability of neural networks as methods adept at

considering these complex interactions (75).

Over the last decade, MS-based MHC peptidomics has become

the dominant source of information about MHC binding

specificities, with the ability to analyze ligands at greater depths

than in vitro binding assays. Compilation of MHC ligandome data –

the entirety of HLA presented peptides has been advanced by mass

spectrometry (MS) based immunopeptidomics, in which the whole

immunopeptidome of the cell is harvested and then eluted ligands

(EL) are identified using MS. First application of direct neoepitope

candidate identification using MS in native human tumors was

presented in the paper of Bassani-Sternberg et al. (76). The authors

assembled the ligandomes from human melanomas to a depth of

95,500 ligands. Eleven ligands were derived from candidate

neoantigens, and four were proven to be immunogenic in T cell

validation assays. MS profiling of HLA-associated peptidomes in

mono-allelic cells enabled more accurate MHC-I epitope prediction

in the study of Abelin et al. (77). MS immunopeptidomics is also

able to identify protein hotspots, or regions within a protein prone

to proteasomal cleavage and ligand production (78). Freudenmann

et al. (79) constructed their own dataset and identified thousands of

peptides bound to 16 different HLA class-I alleles to assess critical

factors needed to epitope presentation.

However, in EL MS workflows typically pan- or locus-specific

antibodies are used for immunoprecipitation (IP) during the

purification of peptide–MHC complexes. This results in

inherently poly-specific or Multi Allelic (MA) data, which

comprises peptides that align with multiple cognate MHC

binding motifs (80). For example, any of the six different MHC-I

proteins present in a cell might be responsible for a peptide

observation. These data need to be deconvoluted, i.e. transformed

to Single Allelic (SA) or single peptide-MHC annotations, to be

employed for the training of MHC-specific binding predictors. The

method NNAlign_MA (81) resolved this limitation by

incorporating into the prediction algorithm training procedure a

strategy called pseudolabeling, which clustered EL sequences with

ambiguous cognate MHCs into single MHC specificities.

Various AI-based tools have been developed to predict peptide-

MHC binding using a range of neural network architectures and

strategies in an attempt to improve predictive performance and

generalizability of their models. They work on multiple data types

including peptide sequences and mass spectrometry profiles.

One major issue impeding the generalizability of ML models is

the lack of binding affinity data for rare MHC alleles. This can be

addressed using various approaches such as using the sequence

homology of rare MHC alleles with common MHC alleles to infer

potential ligand preferences as NetMHCpan (82, 83) does. Also,

NNAlign_MA was deployed in NetMHCpan to deconvolute

ligandomes from MS datasets (80).

Another way is to use transfer learning by pre-training models

on more common MHC classes and fine-tuning the models on the
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data for rare MHC classes. This approach is used by tools such as

MHCnuggets (84), ImmunoBERT (85) and MHCRoBERTa (22).

ImmunoBERT used transfer learning from the Tasks Assessing

Protein Embeddings (TAPE) (86). The TAPE model was trained on

a dataset of over 31 million protein sequences from the Pfam

database. The authors of MHCRoBERTa used self-supervised

training with label-agnostic protein sequences from UniProtKB

(87) and Swiss-prot databases, and then fine-tuned the training

with data from the Immune Epitope Database and Analysis

Resource (IEDB) (88).

Many tools use approaches adopted from other domains. From

the image processing domain comes the convolutional neural

network which can learn multiple intrinsic features of the peptide

sequence that can be used to predict binding affinity. Examples of

these tools include ConvMHC (89), HLA-CNN (90) and DeepMHC

(91). MHCSeqNet (92) uses techniques from the natural language

processing domain by treating epitope peptide sequences as

sentences composed from amino acids as individual words.

Some tools use ensemble learning, a technique that combines

the output of several models using a weighted or uniform

consensus. The concept behind the consensus methods is that

prediction performance can be further improved by integrating

the outputs from several individual tools using a weighted scheme.

This includes tools such as MHCflurry (93) and NetMHCcons (94).

MHCflurry is supporting only a fixed set of alleles (95).

Others tools provide or require additional data. Tools such as

HABIT (96) provides an interpretation of the impact of amino acid

variants alongside the binding affinity prediction. EDGE (97) and

MARIA (98) require transcript abundances and flanking sequence

in addition to the peptide sequence and MHC allele.

A class of tool use mass spectrometry and immunopeptidomics

data as input data instead of peptide sequence data. This class of

tool includes HLAthena (99) which shows 1.5-fold enhanced

accuracy compared to sequence based tools and SHERPA (100).

An overview of tools used for MHC binding prediction is shown

in Table 3.

Other tools focus on visualizing and comparing different MHC

molecule binding specificities to aid the understanding of main

binding properties An example of such as tool is MHC Motif Atlas

(128, 129) which contains 1,013,733 ligands interacting with 135

MHC-I and 88 MHC-II molecules, including information about

binding motifs, peptide length distributions, motifs of

phosphorylated ligands, multiple specificities and enables users to

download curated datasets of MHC ligands, MHC sequences and

MHC X-ray crystallography structures.
4.1 Identification of MHC class II
neoantigens is challenging

Predicting MHC class II binding poses an extra challenge

compared to class I due to limited training data and the complex

nature of HLA-II ligands. In humans, HLA class II is encoded by

three different loci (HLA-DR, -DQ, and -DP) with numerous allelic

variants and polymorphisms clustered around the peptide-binding

groove, resulting in a wide range of distinct peptide binding
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TABLE 3 – Peptide-MHC binding affinity prediction.

Peptide-MHC binding affinity prediction

Algorithm Year Strategy MHC URL

NetMHC-4.0
2016
(101)

Gapped sequence alignment
using ANN

MHC-I https://services.healthtech.dtu.dk/services/NetMHC-4.0/

MixMHCpred 1.0
2017
(74)

Fully unsupervised and
semi-supervised ML

MHC-I
Only updated version is available at:
https://github.com/GfellerLab/MixMHCpred

ConvMHC
2017
(89)

DCNN MHC-I https://github.com/aidanbio/convmhc

HLA-CNN
2017
(90)

DCNN MHC-I https://github.com/uci-cbcl/HLA-bind

NetMHCpan-4.0
2017
(83)

ANN MHC-I https://services.healthtech.dtu.dk/services/NetMHCpan-4.0/

DeepMHC
2017
(91)

DCNN MHC-I http://mleg.cse.sc.edu/deepMHC/

MHCflurry
2018
(93)

ANN MHC-I
Only updated version is available at:
https://github.com/openvax/mhcflurry

AI-MHC
2018
(102)

DCNN
MHC-I
MHC-II

https://baras.pathology.jhu.edu/AI-MHC/index.html

MHCSeqNet
2019
(92)

DCNN MHC-I https://github.com/cmbcu/MHCSeqNet

EDGE
2019
(97)

DCNN MHC-I Not available

MARIA
2019
(98)

RNN MHC-II https://maria.stanford.edu/

DeepHLApan
2019
(103)

GRU combined
with attention

MHC-I http://biopharm.zju.edu.cn/deephlapan

CNN-NF
2019
(104)

DCNN MHC-I https://github.com/zty2009/MHC-I

DeepLigand
2019
(15)

Deep language model
(ELMo) pre-trained on
natural ligands, combined
with deep residual network

MHC-I https://github.com/gifford-lab/DeepLigand

PUFFIN
2019
(105)

Deep residual network-
based approach that
quantifies uncertainty
in prediction

MHC-I
MHC-II

https://github.com/gifford-lab/PUFFIN

NeonMHC2
2019
(106)

Ensemble of CNNs MHC-II https://neonmhc2.org/

MHCherryPan
2019
(107)

LSTM, CNN MHC-I Not available

DeepSeqPan
2019
(108)

DCNN MHC-I https://github.com/pcpLiu/DeepSeqPan

DeepSeqPanII
2019
(109)

RNN combined
with attention

MHC-II https://github.com/pcpLiu/DeepSeqPanII

ACME
2019
(110)

Attention-based CNNs MHC-I https://github.com/HYsxe/ACME

MHCnuggets
2020
(84)

LSTM networks and GRUs
MHC-I
MHC-II

https://github.com/KarchinLab/mhcnuggets

USMPep
2020
(111)

Learned embedding layer;
AWD LSTM with one
hidden layer

MHC-I
MHC-II

https://github.com/nstrodt/USMPep

(Continued)
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TABLE 3 Continued

Peptide-MHC binding affinity prediction

Algorithm Year Strategy MHC URL

IConMHC
2020
(112)

DCNN MHC-I Not available

MHCAttnNet
2020
(113)

Attention-based deep
neural model, MHC alleles
classes I and II

MHC-I
MHC-II

https://github.com/gopuvenkat/MHCAttnNet

MHCflurry 2.0
2020
(95)

ANN MHC-I https://github.com/openvax/mhcflurry

NetMHCpan 4.1
2020
(80)

ANN MHC-I https://services.healthtech.dtu.dk/services/NetMHCpan-4.1/

BERTMHC
2021
(21)

BERT-based architecture
and multiple
instance learning

MHC-II
https://bertmhc.privacy.nlehd.de/, https://github.com/
s6juncheng/BERTMHC

DeepAttentionPan
2021
(114)

DL pan-specific model with
improved
attention mechanism

MHC-I https://github.com/jjin49/DeepAttentionPan

DeepNetBim
2021
(115)

DL model based on
network analysis by
harnessing binding and
immunogenicity
information

MHC-I https://github.com/Li-Lab-SJTU/DeepNetBim

SHERPA
2021
(100)

Composite model
incorporating binding
affinity, monoallelic and
multiallelic data constructed
with gradient boosting
decision trees

MHC-I Not available

MATHLA
2021
(116)

Bidirectional LSTM and
multiple head
attention mechanism

MHC-I https://github.com/MATHLAtools/

ImmunoBERT
2021
(85)

BERT-based architecture MHC-I https://github.com/hcgasser/ImmunoBERT

MHCRoBERTa
2022
(22)

Pan-specific prediction
through transfer learning
with label-agnostic
protein sequences

MHC-I https://github.com/FuxuWang/MHCRoBERTa

FIONA
2022
(117)

Flexible Immunogenicity
Optimization
NN Architecture

MHC-II http://therarna.cn/fiona.html

HLApollo
2022
(118)

Transformer model with
diverse negative coverage,
deconvolution and protein
language features

MHC-I Not available

HLAB
2022
(119)

BiLSTM feature learning
from ProtBert-
encoded proteins

MHC-I http://www.healthinformaticslab.org/supp/resources.php

DeepNeo
2023
(120)

DCNN
MHC-I
MHC-II

https://deepneo.net/

IEPAPI
2023
(121)

Transformer-based feature
extraction, incorporating
antigen presentation
and immunogenicity

MHC-I https://github.com/ddd9898/IEPAPI
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specificities. This complexity of HLA-II ligands results in binders

with longer and more heterogeneous peptide sequences and varying

peptide length distributions, making their prediction more

challenging (106, 130). A comprehensive trans-allelic model for

prediction of peptide-MHC-II interactions for all three human

MHC-II loci was proposed by Degoot et al. (131). The authors

investigated contributions of certain binding pockets to the binding

energy and found that binding pocket P5 of HLA-DP contributes

strongly to the binding energy. Most HLA class II prediction

algorithms have primarily targeted HLA-DR molecules, given the

extensive data available for them (127). On the other hand, HLA-

DQ molecules are more complex to study experimentally.

NetMHCIIpan-3.2 (132) and NetMHCIIpan-4.0 (80) predict

antigen presentation for any HLA class II molecule. For HLA-DQ

and DP heterodimers, both a- and b-chain sequences are needed.

Nilsson et al. (127) used a DQ-specific antibody during purification

to obtain immunopeptidome data for 14 different HLA-DQ

molecules from 16 homozygous B Lymphoblastoid Cell Lines

(BLCLs) using liquid chromatography coupled with mass

spectrometry (LC-MS/MS) to train NetMHCIIpan-4.2.

Benchmarked against MixMHC2pred-2.0 (122), on independent

DQ data consisting of EL data from 15 donor samples enriched with

random negative peptides, NetMHCIIpan-4.2 excelled in motif

deconvolution and identifying DQ ligands. BERTMHC is an

transformer-based peptide-MHC class II interaction prediction

method (21). The pretrained BERT from TAPE repository was

used to model the input amino acid sequences. Additionally,

multiple instance learning was employed to account for the

limitation that mass spectrometry data often cannot precisely

identify the exact MHC molecule to which a peptide was bound.

Four methods (MHCnuggets (133), AI-MHC (102), PUFFIN

(105), and USMPep (111)) can make predictions for both MHC

classes. A majority of the responses to neoantigens in preclinical

and clinical setting are MHC class II restricted (134). Therefore,

improvement of algorithms on MHC class II binding interactions is
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crucial, since it will significantly enhance the selection of MHC-

class II restricted neoantigens.
4.2 Challenges of mass spectrometry
limiting MHC ligandome datasets

MS data has inherent biases such as overrepresentation of

“flyable” peptides and neglect of cysteine-containing peptides,

limiting the detectable set of ligands (80). Some MHC molecules,

such as HLA-C and HLA-DQ, have limited ligand datasets (80).

The performance of AI-based approaches used for predictions relies

on quality and diversity of the training data. Therefore,high-quality

data sets covering a broad range of HLA alleles, are crucial. Future

work exploiting antibodies with improved specificities or using

engineered cell lines with tagged HLA molecules might help to

resolve this.
4.3 Benchmarking of peptide-MHC binding
prediction tools

Benchmarking peptide-MHC binding predictors is not

straightforward due to differences in the MHC alleles, peptide

sizes, and non-standardized outputs of the methods. In 2014, the

Immune Epitope Database automated benchmark was established

to address the need for an unbiased evaluation of the MHC-I

binding predictors (135). They assembled a blind test which ensures

that the data will be new to all of the participating tools (135, 136).

Based on the criteria established by the benchmark a peptide is

deemed a binder if it was experimentally reported to qualitatively

bind to an MHC, or its half-life (T1/2) bound to the MHC is

reported to be longer than 120 min, or its IC50 is reported to be

lower than 500 nM (135). Peptides that do not meet any of those

criteria are considered non-binders (137).
TABLE 3 Continued

Peptide-MHC binding affinity prediction

Algorithm Year Strategy MHC URL

MixMHC2pred 2.0
2023
(122)

Deep motif deconvolution
with MoDec, fully
connected NNs

MHC-II http://mixmhc2pred.gfellerlab.org/

CapsNet-MHC
2023
(123)

Capsule neural networks MHC-I https://github.com/s7776d/CapsNet-MHC

DeepMHCI
2023
(124)

Anchor position-aware
deep interaction model

MHC-I https://github.com/ZhuLab-Fudan/DeepMHCI

MixMHCpred 2.2
2023
(125)

Fully unsupervised and
semi-supervised ML

MHC-I https://github.com/GfellerLab/MixMHCpred

TLimmuno2
2023
(126)

MHC class II antigen
immunogenicity through
transfer learning

MHC-II https://github.com/XSLiuLab/TLimmuno2

NetMHCIIpan-4.2
2023
(127)

ANN MHC-II https://services.healthtech.dtu.dk/services/NetMHCIIpan-4.2/
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Trevizani et al. (137) investigated predictor rankings using a

benchmark. They found that due to the benchmark’s data update

rate, a new method had to wait at least four years to be compared

with existing ones. The top-performing tools consist of

NetMHCcons-1.1, NetMHCpan-4.0, ANN 3.4 (138) (updated to

ANN 4.0 (101) in 2016), NetMHCpan-3.0 (82) and NetMHCpan-

2.8 (139), with statistically indistinguishable scores. The authors

also determined that using percentile-ranked results from original

metrics provided reliable rankings across different data sets.

Another comprehensive performance assessment of 15 in silico

tools for MHC class I peptide binding prediction, including 6

scoring function-based, 7 ML-based and 2 consensus methods,

was described in Mei et al. (140). Extensive benchmarking tests

showed that MixMHCpred (141) performs best across most HLA-I

allotypes, while NetMHCpan and NetMHCcons achieve the overall

best performance among ML-based and consensus-based tools.
5 T cell receptor recognition

T cell receptors (TCRs) play a pivotal role in surveillance and

response to disease by recognizing peptide-MHC (pMHC)

complexes. However, not all neoantigen candidates elicit an

immune response from T cells even though they are expressed

and presented on the cell surface (11). Understanding the rules

governing how T cells recognize cognate antigen-MHC complexes

remains a challenge in systems immunology.

The TCR is a heterodimeric protein comprising an a- and b-
chain. Peptide specificity is primarily defined by the

complementarity-determining region 3 (CDR3) loops. The

diversity of the CDR3s results from genomic recombination of

the variable (V), diversity (D), and joining (J) genes (142). The

majority of previous studies have focused on the b-chain alone due

to its higher diversity, resulting from the V-, D-, J genes together

(142). In contrast, the a-chain results from V- and J recombination

which leads to lower diversity and less interest. However recent

research has highlighted the importance of both a- and b-chain
CDR3s in TCR specificity (143, 144).

T cell receptor sequencing (TCR-Seq) is an NGS approach

allowing scientists to study clonal expansion by selectively

amplifying and sequencing antigen-specific CDR3 regions of the

T cell receptor. However, TCR-Seq data analytics is challenging as

tumor-specific T cell responses constitute a small proportion of the

overall pool of in vivo T cell responses with irrelevant specificities

(145). New analytical tools have been developed to parse and draw

meaningful sequence concepts or motifs from the TCR-Seq data

(146). The TCRdb database contains more than 277 million TCR

sequences from over 8265 TCR-Seq samples across hundreds of

tissues, clinical conditions and cell types (147).

Assessing the interactions between neoepitopes and TCRs is

essential for designing immunotherapies. For instance, identifying

compatible TCRs in the patient’s circulation can help inform the

selection of neoantigen vaccine candidates. Various experimental

approaches, such as tetramer analysis (148), TetTCR-seq (149) and

T-scan (150), have been developed to detect pairing of TCR–pMHC

complexes. However, in vitro experiments associated with the
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testing of a large number of putative candidates demand

experimental time and costs.

TCRdist (143) represents an unsupervised distance-based

method exploiting the similarity between TCRs to produce

clusters of TCR sequences that likely recognize the same antigen,

and predicting binding for a given epitope sequence. The methods

like TCRex (151) and DeepTCR (152) trained antigen-specific TCR

models and would have problems to generalize to unseen peptides.

In response, the scientific community has turned to ML and AI-

based approaches to develop computational solutions for TCRs and

peptide–MHC and TCR–peptide interaction prediction.

NetTCR (153) facilitates sequence-based prediction of TCR

binding to pMHC complexes using CNNs. CNN is an

appropriate model to handle unaligned peptide and TCR

sequences differing in length. The model was trained on the IEDB

data, containing TCR b-chain CDR3 sequences and corresponding

peptide targets presented by most common MHC-I HLA-A*02:01

allele. Negative data examples were supplied for the learning by

generating wrong combinations of TCRs and peptides, and

additional negatives constructed from the TCRs of healthy

donors. For NetTCR-2.0 (142) is a “shallow” CNN model, similar

to NetTCR (153), it was exploited, but trained on paired TCR a and

b chain sequence data. Nonbinding peptide-CDR3b pairs derived

from 10X Genomics (154) Chromium Single Cell Immune Profiling

of four donors were used as negative data set. The model has the

potential to infer not only which TCRs are specific for a given

peptide, but also which peptide is specific for a given TCR. This

work also underlined the need for technologies for high-throughput

paired sequencing of TCRs with known pMHC targets. The current

optimal way to pair TCR a- and b- chain is through single-cell TCR

sequencing (scTCR-Seq) (155). The authors of NetTCR-2.1 (156)

provide lessons and guidance on how to develop models for TCR

specificity predictions, how to best define negative data, and why it

is recommended to apply similarity-based modeling, and include a

performance evaluation as a function of “distance” to the training

data when validating predictive power of ML-based approaches.

Most of the peptides in the published databases originate from

viruses but not from tumor-associated antigens and there are only a

few CDR3a sequences in databases available. Therefore, AI-driven

approaches with improved generalization ability are needed, which

do not show significant performance drop when evaluated on

peptide sequences not used during model training. This challenge

can be addressed by approaches based on transfer learning and

NLP, capable to benefit from unsupervised pre-training.

As an example for the application of a newly emerging DL

approach, Lu et al. (157) used transfer learning to develop pMTnet,

a model predicting the TCR binding specificity of class I pMHCs.

Utilizing the “Atchley factor” (158) they encoded TCR CDR3b
sequences with five numeric values per amino acid, providing

comprehensive biochemical characterization. These “Atchley

matrices” were input into a stacked auto-encoder, an effective

unsupervised learning algorithm. During training, the auto-

encoder reconstructed input data, generating a 30-neuron

numeric vector that encapsulates the inherent structure of the

original CDR3s. The embedding of pMHCs closely followed the

NetMHCpan algorithm. Fixed numeric encodings of TCRs and
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pMHCs were integrated into a DL network with a single neuron as

the final layer for pairing prediction. To train this model, Lu et al.

(157) employed a differential learning schema, using known

interactions as positive data and introducing true and

mismatched pairs for negative data, resulting in ten times more

negative data by randomly mismatching TCRs and pMHCs. This

approach allowed them to capitalize on a substantial volume of

related TCR and pMHC data without explicit pairing information,

showcasing the effectiveness of transfer learning.

For their NLP-based approach BERTrand (159) the authors

constructed a hypothetical human TCR-peptide repertoire pre-

training set comprising peptides from MHC-I MS peptide

presentation experiments and TCRs from healthy donors, and

this hypothetical TCR-peptide repertoire was used to perform

masked language modeling (MLM), pre-training of the BERT

model. Then the pre-trained BERT model was fine-tuned to

predict TCR-peptide binding using the dataset of known TCR

binders with their cognate epitopes and negative decoy examples

generated by random pairing of reference TCRs with peptides.

ERGO (pEptide tcR matchinG predictiOn) (160) and ERGO-II

(161) utilize unsupervised TCR pre-training and use a pre-trained

LSTM neural network architecture.
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Further published tools for TCR-pMHC binding prediction are

shown in our Table 4.
5.1 Limitations of current data sets for
TCR–peptide binding prediction

Current datasets for TCR-peptide binding prediction present

challenges for the development of accurate and generalizable

models. As discussed in the perspective article of Hudson et al.

(171), the current data sets cover only a limited fraction of the

universe of possible TCR–antigen binding pairs. These datasets also

inadequately represent the universe of self and pathogenic epitopes

and of the varied MHC contexts in which they may be presented.

Furthermore, a significant proportion of known antigens reported

as binding a TCR are of viral origin, limiting their relevance to

human health.

Current sources of publicly available data for AI-based methods

to predict the interaction between TCR and pMHC complexes

include manually curated catalogs of pathology-associated TCR

sequences such as McPAS-TCR (172), Immune Epitope Database

IEDB (88), VDJdb (173), and TBAdb (174) databases. Additionally,
TABLE 4 – TCR-pMHC binding prediction.

TCR-pMHC binding prediction

Algorithm Year Strategy URL

TCRdist 2017 (143) Distance-based clustering of similar TCRs https://github.com/phbradley/tcr-dist

TCRex 2019 (151) Random Forest algorithm based on epitope-specific TCR data https://tcrex.biodatamining.be

ERGO-I 2020 (160)
Embeds TCR and peptide by LSTM and autoencoder followed by
fully connected NNs for pattern learning

https://github.com/louzounlab/ERGO

ERGO-II 2021 (161) Extends embedding of ERGO-I https://github.com/louzounlab/ERGO

DLpTCR 2021 (162) Ensemble DL framework from FCN, CNN and ResNet http://jianglab.org.cn/DLpTCR/

NetTCR-2.0 2021 (142) DCNN https://services.healthtech.dtu.dk/service.php?NetTCR-2.1

TCRAI 2021 (163)
Binary classification including embedding layers and convolutional
networks to predict TCR-pMHC–specific binding

https://github.com/regeneron-mpds/TCRAI

TCRGP 2021 (164)
Gaussian process classification, utilize CDR sequences from both
TCRa and TCRb chains, single-cell RNA-sequencing analysis of
HCC-patients

https://github.com/emmijokinen/TCRGP

pMTnet 2021 (157) LSTM and autoencoder followed by fully connected NNs https://github.com/tianshilu/pMTnet

ImRex 2021 (165)
DCNN using interaction maps representing TCR CDR3 and
epitope sequences

https://github.com/pmoris/ImRex

TITAN 2021 (166) Attention-based NNs pretrained with BindingDB https://github.com/PaccMann/TITAN

DeepTCR 2021 (152) DCNN https://github.com/sidhomj/DeepTCR

AttnTAP 2022 (167) Attention-based dual-input DL framework https://github.com/Bioinformatics7181/AttnTAP/

ATM-TCR 2022 (168) Attention-based NNs https://github.com/Lee-CBG/ATM-TCR

epiTCR 2023 (169) Random Forest https://github.com/ddiem-ri-4D/epiTCR

DeepMHCI 2023 (124) Anchor position-aware deep interaction model https://github.com/ZhuLab-Fudan/DeepMHCI

iTCep 2023 (170)
DL framework using fusion features derived from a feature-level
fusion strategy

http://biostatistics.online/iTCep/, https://github.com/
kbvstmd/iTCep/

BERTrand 2023 (159) BERT model augmented with hypothetical random TCR pairing https://github.com/SFGLab/bertrand
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positive data samples generated by Klinger et al. (175), known as the

MIRA set, are publicly available in the NetTCR-2.0 repository

(176). For successful training and development, balanced training

data is required. However, the publicly available datasets of TCR-

pMHC sequences almost exclusively contain examples of positive

binding pairs. Only the published 10X Genomics dataset contains

both positive and negative data points. The choice of negative data

is a critical factor when developing a binary classification model.

NetTCR and pMTnet chose 10X Genomics Immune Profiling data,

which contains validated non-binding complexes. Swapped

negatives are randomly generated negative data, generated by

other prediction tools (TCRGP (164), ERGO-I, ERGO-II, TITAN

(166)), by mispairing positive validated TCR–peptide pairs.

However, this approach risks to introduce false non-bindings into

the ground truth.

In the future, as high-throughput technologies such as T-scan

and 10X Immune Profiling are becoming more prevalent, it is

expected that more training data for TCR-pMHC pairing will be

available, providing a more accurate representation of the entire

space of potential epitopes for training. Frank et al. (177) provide an

overview of TCR sequencing platforms and the T cell repertoire

analysis methods.
5.2 TCR binding predictors fail to
generalize to unseen peptides

While many TCR-pMHC binding prediction methods perform

well with test sets containing peptides from the training set, the

ability to generalize to unseen peptides is crucial for neoantigen-

based cancer vaccine development. Grazioli et al. (178) investigated

the impact of various training/test splitting techniques on models’

test performance. They introduced Tchard, a sample collection with

positive samples from the databases IEDB, VDJdb, McPAS-TCR,

and the MIRA, along with negative samples from randomization

and 10X Genomics assays. After ensuring that testing samples were

not present in the training dataset, they found that modern DL

methods may struggle with generalization to unseen peptides. Deng

et al. (179) addressed this by comparing the performance of

different TCR-pMHC prediction tools on various datasets.

Regardless of model complexity, all tools, including TITAN,

NetTCR-2.0, ERGO, DLpTCR and ImRex, faced challenges

predicting unseen peptide examples. These challenges emphasize

the necessity for ongoing research to enhance the generalization of

TCR-pMHC binding predictors across a wider range of peptides.
6 Criteria for epitope selection

Only a small fraction of predicted neoepitopes can be

experimentally validated in vitro as true neoepitopes (180).

Several general criteria are currently employed in the field to

narrow down and prioritize the candidate epitopes. These criteria

guide the selection of epitopes to induce specific “on target”

immunogenic response while overcoming self-tolerance.
Frontiers in Immunology 15229
6.1 MHC binding affinity

Mutant peptides must be presented by MHC-I or MHC-II in

order to be recognized by T cells. Most neoantigen prioritization

pipelines typically use the output values of the MHC-I or MHC-II

binding prediction methods as the primary ranking parameter. The

generally used MHC binding affinity threshold type is IC50 (half

maximum inhibition concentration) measured in nM. The lower

value shows stronger binding affinity. Usual thresholds are IC50 ≤

50nM (strong) and IC50 ≤ 500nM (low). Another threshold type is

percentile rank (%-rank) which allows to better compare scores

between MHC molecules. Usually %-rank ≤ 0.5 is strong affinity

and %-rank ≤ 2 shows lower affinity. NetMHCpan-4.1 differentiates

%-rank prediction based on either LC-MS eluted ligands (EL) or

binding affinity (BA). The third type is Score, as in SYFPEITHI (71).

They typically do not recommend any threshold. Here, the higher

binding score shows increased chances of binding.

It is important to note that these commonly used threshold

values for identifying potential binders can be excessively strict in

many cases (76) that can result in missing potential binders. To

improve the sensitivity and accuracy of 13 already existing

prediction tools Bonsack et al. (181) calculated new thresholds,

recommended for each of them. They also developed MHCcombine

(182) to facilitate the application of their prediction-improving

recommendations and also to simultaneously compare the outputs

of the selected predictors.
6.2 TCR binding affinity

As mentioned before, the T cell recognition and activation is a

vital part of the immune response. In order to trigger immune

response T cells need to recognize the peptides presented by the

MHC molecules. Addressing the T cell activation outcome still

remains challenging however generally can be determined based on

the biochemical parameters of the pMHC-TCR interaction (11).

The mostly used parameter is TCR-pMHC binding affinity. Gálvez

et al. (183) aimed to uncover the shaping forces behind the TCR

binding affinity with 12 phenotypic models and as a result they

provide valuable insight and observations in the field of TCR

binding affinity. As described in the review by Schaap-Johansen

et al. (11) a number of structure-based methods have been

developed lately which can greatly improve the overall TCR

binding predictions by reducing the false positive predictions.
6.3 Agretopicity

The differential agretopicity index (DAI) has been proposed as a

neoantigen quality metric (184). DAI is a property of the epitope

and defined as the numerical difference between the NetMHC (138)

scores of the WT peptides and their mutated counterparts (184). In

an study of 6,324 patients across 27 cancer types, Rech et al. (185)

found that high DAI neoantigens correlated with patient survival.

The work of Ghorani et al. (186) also supported the hypothesis that
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DAI is a determinant of cancer peptide immunogenicity, by

investigating the association between mean DAI, survival, and

measures of immune activity.
6.4 Binding stability

Assuming that a more stable epitope presentation on the MHC

increases the likelihood of T cell recognition, peptide stability,

measured as the half-life of the binding interaction in units of

hours, has been postulated to correlate with immunogenicity. Tools

such as NetMHCstabpan (187) are often used in epitope selection

pipelines to assess binding stability. Borden et al. (188) used a

model-based approach to find the neoantigen properties that have

predictive value of immunogenicity. The binding stability of the

pMHC class I complex, along with the dissociation constant and the

expression (mRNA and variant allele frequency) were the

characteristics that were of predictive value. These findings were

in consistence with previous studies (189). The authors integrated

binding stability together with other factors such as neoantigen

expression level and dissociation constant into an immunogenicity

score called NeoScore (188).
6.5 Differential expression between tumor
and healthy tissue

In contrast to pathogens seen as foreign invaders, most epitopes

presented on the cancer cell surface are self-peptides unrecognized

by tumor immunosurveillance. Neoepitopes, typically absent in

benign tissues, may escape tolerance and become immunogenic.

Databases such as TissGDB (190), GTEx (191), TCGA (68), THPA

(192, 193) can be consulted to compare gene expression between

healthy and tumor tissues, identifying cancer-specific

signatures (194).
6.6 Dissimilarity to the self-proteome

As observed in the literature, sequence dissimilarity to non-

mutated proteome was predictive of peptide immunogenicity (195,

196). Devlin et al. (197) demonstrated that structural dissimilarity

between the wildtype and mutated peptide in non-anchor positions

can influence T cell recognition and immunogenicity.
6.7 Expression of a peptide source gene
in thymocytes

Medullary thymic epithelial cells (mTEC) contribute to the

development of T cell tolerance by facilitating the recognition of

“self” and expressing tissue-restricted antigens (TRA) (198). This

allows developing T cells to assess the self-reactivity of their antigen

receptors before leaving the thymus (198). The expression of a

peptide source gene in mTEC is considered as a negative
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characteristic for epitope selection, as it may decrease the chances

of immunogenicity due to the central tolerance.
6.8 Hydrophobicity

As described in the methods of TESLA consortium, the number

of hydrophobic residues in the neoantigen can be divided by the

total number of residues to create a “hydrophobicity fraction” (189).

Additionally, the grand average of hydropathicity index (GRAVY)

is used to estimate the hydrophobicity of a given amino acid string

and is calculated as the average of the hydrophobicity of the

individual residues forming the peptide (199). Immunogenic

pMHC were significantly less hydrophobic than non-

immunogenic pMHC (199).
6.9 Clonality

Clonality refers to the fraction of the tumor containing the

neoantigen of interest and of particular importance for

prioritization. The presence of a variant expressed by a small,

sub-clonal population of the tumor makes it less attractive

candidate for tumor therapy (200). In the review of Lang et al.

(201) the impact of clonality on neoantigen recognition is discussed.

Depending on whether the neoantigen is truncal clonal, truncal

clonal but lost in a metastasis (by deletion or gene silencing), clonal

in a certain metastasis (or specific for a certain subclone within a

single metastasis), neoepitope-specific T cells would target either all

tumor cells, all tumor cells of selected lesions, or merely a single

tumor subclone (201). The tools PyClone (202) and its improved

version PyClone-VI (203) provide a numerical estimation of cancer

cell fraction using observed alternate allele frequencies, copy

number, and loss of heterozygosity (LOH) information.

Other characteristics associated with immune response, such as

the variant allele frequency of mutations, the number of predicted

neoepitopes per mutation, peptide proteasomal cleavage

probability, potential for TAP transport in the endoplasmic

reticulum, tumor heterogeneity and HLA loss of heterozygosity

(LOH), are used to further rank candidate neoantigens (200).
7 Integrated software for neoantigen
detection and prioritization

Several integrated software and comprehensive pipelines have

been developed for tumor-specific neoantigen detection. The

purpose of these tools is to make the prediction and prioritization

of neoantigen candidates accessible. Here, we describe some of the

notable tools and frameworks and their approaches.

For seamless vaccine design there have been several end-to-end

pipelines developed. One of the frequently used end-to-end pipelines is

FRED2 (FRamework for Epitope Detection), a Python-based

immunoinformatic framework (204). Among the included tools

there are several HLA genotyping tools (e.g.: OptiType), as well as
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peptide-MHC binding predictors (e.g.: NetMHCpan, NetMHCIIpan),

and also the proteasomal cleavage predictor NetChop (205) is

integrated. FRED2 ensures straightforward workflow and provides

analysis tools to epitope detection and vaccine design (204). Another

end-to-end pipeline is pVACtools, which produces an end-to-end

solution for neoantigen characterization (206). To aid the vaccine

design, pVACtools supports the identification of altered peptides and

prioritizes them by incorporating various data sources, such as clonality

of the mutation, mutant allele expression and peptide binding affinities.

Among the tools integrated inside pVACtools there are binding

predictors (e.g.: MHCflurry), databases (e.g.: IEDB), and a

proteasomal cleavage predictor (NetChop). To extract neoepitopes

from tumor sequencing data such as VCF files and expression files

generated from RNA-seq, MuPeXI (Mutant peptide extractor and

informer) provides a prioritization suggestion based on a combined

score named priority score (207). It generates an output file with the list

of mutated peptides and all the information needed (expression level,

similarities to self-peptides, mutant allele frequency) to select the

peptides for vaccine design (207). For HLA binding prediction

NetMHCpan is integrated. It is a web-based tool, and also available

as a command-line tool. TIminer is also a computational framework

that provides complex immunogenomic analysis including HLA typing

(Optitype), neoantigen prediction (NetMHCpan), characterization of

immune infiltrates and quantification of tumor immunogenicity (208).

Another solution for peptide design includes prioritization

algorithms. One such predictor is PRIME (predictor of
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immunogenic epitopes) (209). It captures molecular properties of

both antigen presentation and TCR recognition. PRIME reveals

experimentally validated biophysical determinants of TCR

recognition and also establishes correlations with T cell potency.

MixMHCpred is integrated for predictions of antigen presentation

and TCR recognition. Beside the above-mentioned features, it

improves the overall prioritization of neoepitopes. Another

notable prioritization algorithm is DeepImmuno (210), a CNN

based tool that predicts the epitope immunogenicity for CD8+ cells

of 9-10-mer peptides. The prediction can run from the command

line or from their web interface. The easy-to-use web interface has

MHCflurry integrated to not only predict the immunogenicity of

the specific HLA-peptide pairs, but the binding affinity score as well.

DeepImmuno includes an independent generative adversarial

network model, which can generate immunogenic peptide with

the possibility of training your own model.

Most of the tools can predict neoepitopes from SNVs, some also

incorporate INDELs (pVACseq (211), MuPeXI (207), TSNAD

(212), CloudNeo (213), Epidisco (214), pTuneos (215),

antigen.garnish (195), NeoPredPipe (216), NeoEpiScope (217),

OpenVax (218)). A few focus solely on INDELs (ScanNeo (219))

or gene fusions (NeoFuse (220), INTEGRATE-neo (221)), while

others allow users to input the variants as peptides (EDGE (97),

DeepHLApan (103)).

A summary of various integrated pipelines and software tools

for neoantigen discovery is provided in Table 5.
TABLE 5 – Integrated software for neoantigen prediction and prioritization.

Intagrated software for neoantigen prediction and prioritization

Tool name Year Short description URL

FRED2
2016
(204)

FRamework for Epitope Detection, provides a
string-of-beads poly-peptide for vaccine

http://fred-2.github.io

MuPeXI
2017
(207)

Mutant peptide extractor and informer, provides
a list of peptides

https://services.healthtech.dtu.dk/services/MuPeXI-1.1/

TIminer
2017
(208)

Tumor Immunology miner, predicted neoantigen
as output

https://icbi.i-med.ac.at/software/timiner/timiner.shtml

TSNAD
2017
(212)

Tumor-Specific Neoantigen Detector https://github.com/jiujiezz/tsnad

CloudNeo
2017
(213)

Cloud pipeline, computes HLA type
and neoantigens

https://github.com/TheJacksonLaboratory/CloudNeo

INTEGRATE-neo
2017
(221)

Gene fusion prediction and neoantigen
computation from gene fusions

https://github.com/ChrisMaherLab/INTEGRATE-Neo

Epidisco
2017
(214)

Highly-configurable genomic pipeline supporting
variant calling, epitope discovery, and
vaccine generation

https://github.com/hammerlab/epidisco

Neopepsee
2018
(222)

Provides a rich annotation of candidate peptides
with immunogenicity-related values

https://sourceforge.net/projects/neopepsee/

pTuneous
2019
(215)

Prioritizing SNV-based candidate neoepitopes https://github.com/bm2-lab/pTuneos

antigen.garnish
2019
(195)

Open-source R package for neoantigen
quality analysis

https://github.com/andrewrech/antigen.garnish

(Continued)
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TABLE 5 Continued

Intagrated software for neoantigen prediction and prioritization

Tool name Year Short description URL

NeoPredPipe
2019
(216)

High-throughput neoantigen prediction and
recognition potential pipeline

https://github.com/MathOnco/NeoPredPipe

ScanNeo
2019
(219)

Identifying INDEL-derived neoantigens using
RNA-seq data

https://github.com/ylab-hi/ScanNeo

DeepHLApan
2019
(103)

Neoantigen prediction including HLA-peptide
binding and immunogenicity

https://github.com/jiujiezz/deephlapan, http://
biopharm.zju.edu.cn/deephlapan

NeoFuse
2020
(220)

Predicting fusion neoantigens from RNA
sequencing data

https://icbi.i-med.ac.at/software/NeoFuse/NeoFuse.shtml

Neoepiscope
2020
(217)

Uses assembled haplotype output of HapCUT2
to enumerate neoepitopes arising from more
than one somatic mutation

https://github.com/pdxgx/neoepiscope

OpenVax
2020
(218)

Identifying somatic variants, predicting
neoantigens, and selecting the contents of
personalized cancer vaccines

https://github.com/openvax/neoantigen-vaccine-pipeline

pVACtools
2020
(206)

Prioritizing neoantigens from VCF, FASTA file,
resulting from gene fusions, generate DNA-
vector neoantigen sequence

http://www.pvactools.org

INeo-Epp
2020
(223)

Random forest classifier for T cell immunogenic
HLA-I presenting antigen epitopes
and neoantigens

http://www.biostatistics.online/ineo-epp/neoantigen.php

neoANT-HILL
2020
(224)

Toolkit for the identification of
potential neoantigens

https://github.com/neoanthill/neoANT-HILL

DeepAntigen
2020
(225)

Neoantigen prioritization based on 3D genome
information and deep sparse learning

https://yishi.sjtu.edu.cn/deepAntigen/

TruNeo
2020
(226)

Predicts neoantigens based on multiple biological
factors such as peptide-MHC binding,
proteasomal cleavage and TAP transport
efficiency predictions

https://github.com/yucebio/TruNeo

NeoFox
2021
(227)

A tool that provides a comprehensive description
of neoantigen candidates by proposed features.
Annotate neoantigen candidates with 16
neoantigen features.

https://github.com/TRON-Bioinformatics/neofox

TSNAD v2.0
2021
(228)

Tumor-Specific Neoantigen Detector,
providing neoantigens

https://github.com/jiujiezz/tsnad, http://biopharm.zju.edu.cn/tsnad/

PRIME
2021
(209)

Predictor of immunogenic epitopes,
prioritization pipeline

http://prime.gfellerlab.org/, https://github.com/GfellerLab/PRIME

DeepImmuno
2021
(210)

DL-empowered prediction of
immunogenic peptides

https://github.com/frankligy/DeepImmuno

ProGeo-Neo v2.0
2022
(229)

Mining tumor specific antigens from WGS/WES
genomic and RNA-seq data, verifying peptide-
MHCs by MaxQuant with mass spectrometry
proteomics data searched against customized
protein database

https://github.com/kbvstmd/ProGeo-neo2.0

Seq2Neo
2022
(230)

Pipeline for cancer neoantigen
immunogenicity prediction

https://github.com/XSLiuLab/Seq2Neo

PGNneo
2023
(231)

Proteogenomics-Based Neoantigen prediction
Pipeline in Noncoding Regions

https://github.com/tanxiaoxiu/PGNneo

LENS
2023
(232)

Neoantigen prediction based on SNVs, INDELs,
fusion events, splice variants, cancer-testis
antigens, overexpressed self-antigens

https://gitlab.com/landscape-of-effective-neoantigens-software

GeNeo
2023
(233)

Toolbox on Galaxy server maintained at the
University of Connecticut

https://neo.engr.uconn.edu/
F
rontiers in Immunology
 18232
 frontiersin.org

https://github.com/MathOnco/NeoPredPipe
https://github.com/ylab-hi/ScanNeo
https://github.com/jiujiezz/deephlapan
http://biopharm.zju.edu.cn/deephlapan
http://biopharm.zju.edu.cn/deephlapan
https://icbi.i-med.ac.at/software/NeoFuse/NeoFuse.shtml
https://github.com/pdxgx/neoepiscope
https://github.com/openvax/neoantigen-vaccine-pipeline
http://www.pvactools.org
http://www.biostatistics.online/ineo-epp/neoantigen.php
https://github.com/neoanthill/neoANT-HILL
https://yishi.sjtu.edu.cn/deepAntigen/
https://github.com/yucebio/TruNeo
https://github.com/TRON-Bioinformatics/neofox
https://github.com/jiujiezz/tsnad
http://biopharm.zju.edu.cn/tsnad/
http://prime.gfellerlab.org/
https://github.com/GfellerLab/PRIME
https://github.com/frankligy/DeepImmuno
https://github.com/kbvstmd/ProGeo-neo2.0
https://github.com/XSLiuLab/Seq2Neo
https://github.com/tanxiaoxiu/PGNneo
https://gitlab.com/landscape-of-effective-neoantigens-software
https://neo.engr.uconn.edu/
https://doi.org/10.3389/fimmu.2024.1394003
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Bulashevska et al. 10.3389/fimmu.2024.1394003
8 Tumor neoantigen data collection

The training of novel and improved algorithms requires

continuous accumulation of verified tumor neoantigen data. Several

studies have curated cancer antigen data, and constructed publicly

available cancer antigen resources. These databases support the

community in understanding the landscape of antigen presentation

and provide necessary information for the development of

neoantigen prediction tools. In addition to the well-curated data

sets, several so-called in silico neoantigen databases that omit the

experimental validation step have been built by taking advantage of

existing neoantigen prediction software.

There are several well-curated datasets. One of the widely used,

well-known resource is the Immune Epitope Database and Analysis

Resource (IEDB) (88). It is a freely available comprehensive

repository for diverse immunological data. This database contains

experimental data from various host organisms about peptidic and

non-peptidic epitopes, MHC ligand (Class I and II), T cell and B cell

assays with a chance to gain insight into the possible disease context

such as allergy, autoimmune or infectious diseases (234, 235). The

database exists since 2003 and due to its enormous data content

with over 1,600,000 epitopes and availability, this database is

integrated in many other databases we have mentioned. However,

IEDB’s data sets of verified T cell epitopes primarily consists of

epitopes from bacteria or viruses and were not obtained by

standardized experimental methodologies in the context of

cancer. Furthermore, CEDAR (236) is the cancer epitope focused

companion site of IEDB. This freely available database is similarily

built to its companion and houses over 1,290,000 epitopes. Here, B

cell, T cell and MHC ligand assay results are available in various

hosts focusing on cancer types and stages.

Further curated databases include NeoPeptide (237), dbPepNeo

(238), dbPepNeo 2.0 (239), TANTIGEN (240) and NEPdb (241).

NeoPeptide focuses on cataloguing neoantigens from somatic

mutations across different cancer types from clinical trials and in

vitro experiments. At the time of its creation in 2019 it already

contained 36,000 antigens and over 180,000 epitopes which has

been expanded since (10). It provides details on various neoantigen

characteristic such as mutation site, sequence and MHC restriction.

The dbPepNeo databases include curated information about

neoantigen data validated by mass spectrometry or immunoassays

in human tumors. While version 1 focuses on validated MHC-I

antigens in various tumor types, in version 2 the included

neoepitope candidates increased to over 840,000 while also

adding MHC-II data. Both versions help the user by categorizing

all neoantigen’s confidence based on the strength of the

experimental validation. TANTIGEN focuses on cancer antigens

whose HLA binding is experimentally validated from tumor tissues.

Over 1,000 tumor peptides from close to 300 proteins are

catalogued based on which the T cell epitopes and HLA ligands

are easy-to-list. However, it does not include peptides shown to be

ineffective and lacks any association with clinical data. NEPdb was

constructed via curating published literature with a semi-automatic

pipeline by parsing and filtering abstracts with NLP toolkit. It

includes curated data of 173 MHC-I and MHC-II neoepitopes
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and over 17,000 non-immunogenic peptides from 23 tumor types.

The validation focuses both on in vitro and in vivo T cell assays.

Also, there are databases on verified binding and presentation.

This category includes caAtlas (242), SPENCER (243), IEAtlas

(244), HLA Ligand Atlas (245) and CARMEN (246). caAtlas is a

database that contains information about mass spectrometry results

of 9 cancer types and non-tumor samples. The data focuses both on

MHC-I and MHC-II molecules and comprises around 140,000

modified peptides. SPENCER focuses on small peptides in cancer

patients that are encoded by non-coding RNAs. The database

contains mass spectrometry data of 15 cancer types from over

1,700 patients resulting in the identification of near 30,000 small

peptides encoded by non-coding RNA in tumors. IEAtlas collects

the immunopeptidome data of mass spectrometry datasets to find

epitopes that bind MHC-I/II from non-coding regions. Currently

over 245,000 such epitopes are identified from 15 tumor types and

30 non-tumor tissues. the database HLA Ligand Atlas provides a

collection of natural HLA ligands presented on benign tissues.

Natural HLA ligand information could be important for further

tool development.

Besides the experimentally verified databases there are also a

number of in silico predicted neoantigen databases with an

enormous variety of potential neoantigens. TSNAdb v1 (247)

collected information about millions of potential neoantigens

from somatic mutation data. The predictions of version 1.0 are

based on the HLA data of 16 tumor types collected from TCGA (68)

and TCIA (248) and are generated by NetMHCpan. TSNAdb v2.0

(249) upgrades its toolkit to use DeepHLApan, MHCflurry and

NetMHCpan and predicted neoantigens not only from SNVs but

from INDELs and fusions. The altered criteria in v2.0 decreased the

false-positive predictions resulting in almost 400,000 SNV-derived,

around 140,000 INDEL derived and over 11,000 fusion-derived

predicted neoantigens. TSNAdb includes HLA binding info for

both mutant and wild-type peptides thus, facilitating the assessment

of the DAI (247). TRON Cell Line Portal (TCLP) (250) catalogues

MHC types and predicted neoepitopes amongst other publicly

available data of 1,082 cancer cell lines. The data focuses on both

MHC-I/II neoantigens in a cell-line-specific manner.

The set of verified neo-epitopes is still limited, and we envisage

that larger neo-epitope datasets will lead to additional refinements

in immunogenicity predictions. For a summarized overview of the

above-mentioned neoantigen databases, see Table 6, for a summary

on immunology related databases and datasets see, Table 7.
9 Benchmark for
neoantigen prediction

In 2016, the Tumor Neoantigen Selection Alliance (TESLA) was

established as a collaborative effort to identify the most effective

predictive algorithms for targeting neoantigens through large scale

validation. Supported by the Parker Institute for Cancer

Immunotherapy and the Cancer Research Institute (CRI) (189,

258), TESLA involved 35 public and private research teams

worldwide. Each team employed its own unique neoantigen
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prediction algorithms to identify and prioritize neoantigens. The

initial focus was on advanced melanoma, colorectal cancer and

non-small cell lung cancer (NSCLC). Genomic data from the same

six patient samples (3 melanoma, 3 NSCLC) was provided by the

Alliance. The immunogenicity of candidate neoantigens was

validated through MHC-restricted T cells in subject-matched

peripheral blood mononuclear cells (PBMC). This study

highlighted the significant differences in the prediction

methodologies among the groups. No single methodology

identified every neoantigen, nor a large majority of neoantigens,

indicating the need for a standardized approach.

Besides testing the already existing predicting algorithms, the

other goal of the TESLA was to identify key parameters shaping
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tumor epitope immunogenicity. The Alliance determined that

approximately 50% of immunogenic epitopes are characterized by

strong MHC binding affinity, prolonged half-life, high expression,

and either low agretopicity or high foreignness. A model based on

these five peptide features associated with presentation and

recognition was developed and tested against independent cohorts

of cancer samples. TESLA data is available (259) to qualified

investigators and provides opportunities to benchmark the

performance of neoantigen workflows.

Using the TESLA dataset, Buckley et al. (260) evaluated

performance of seven publicly available methods - IEDB model

(261), NetTepi (262), iPred (263), Repitope (264), PRIME (209),

DeepImmuno (210) and Gao (265) - predicting whether an MHC-
TABLE 6 – Neoantigen databases.

Neoantigen databases

Database name Year Short description URL

TSNAdb
2018
(247)

Predicted and validated neoantigens based on
pan-cancer immunogenomics analyses

https://pgx.zju.edu.cn/tsnadb1/

NeoPeptide
2019
(237)

Catalog of epitopes derived from neoantigens
captured from literatures and
immunological resources

https://github.com/lyotvincent/NeoPeptide

dbPepNeo
2020
(238)

Collection of experimentally
validated neoantigens

http://www.biostatistics.online/dbPepNeo/

NEPdb
2021
(241)

T cell Experimentally-Validated Neoantigens and
Pan-Cancer Predicted Neoepitopes

http://nep.whu.edu.cn/

TANTIGEN 2.0
2021
(240)

Database of T cell epitopes and HLA ligands http://projects.met-hilab.org/tadb

HLA ligand atlas
2021
(245)

Benign reference of HLA-presented peptides https://hla-ligand-atlas.org

caAtlas
2021
(242)

An immunopeptidome atlas of human cancer http://www.zhang-lab.org/caatlas/

dbPepNeo2.0
2022
(239)

Database for Human Tumor Neoantigen
Peptides from Mass Spectrometry and
TCR Recognition

http://www.biostatistics.online/dbPepNeo2

TSNAdb v2.0
2022
(249)

Predicted and validated tumor-specific
neoantigen database

https://pgx.zju.edu.cn/tsnadb

CAD
2022
(251)

Cancer Antigens Database http://cad.bio-it.cn/

SPENCER
2022
(243)

Database for small peptides encoded by
noncoding RNAs

http://spencer.renlab.org

IEAtlas
2023
(244)

Atlas of HLA-presented immune epitopes
derived from non-coding regions

http://bio-bigdata.hrbmu.edu.cn/IEAtlas

CARMEN
2023
(246)

Database generated from 80 different
immunopeptidomics mass spectrometry datasets
collected between 2015-2022

Not available

CEDAR
2023
(236)

Cancer Epitope Database and Analysis Resource https://cedar.iedb.org/

Neodb
2023
(252)

The webserver contains neoantigen prediction
tools; curated, experimentally validated
immunogenic neoantigen dataset; Driver
mutation derived potential neoantigens;
immunogenicity prediction tool

https://liuxslab.com/Neodb/
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presented peptide might invoke a T cell response (i.e. whether a

peptide is immunogenic). Filtering the TESLA dataset, originally

comprising cancer peptides from 13 class I alleles, to retain

alleles for which all models are applicable, and excluding

peptides observed in any model’s training data, resulted in 27

immunogenic and 372 non-immunogenic peptides (lengths 9 or

10 aminoacids) that were experimentally tested against seven

HLAs. They observed high numbers of false positives for all

model. In this benchmark, PRIME identified 26 neoantigen from

the total 27, successfully reaching the highest number of identified

TESLA neoantigens.
10 Challenges and potential solutions
to gain widespread adoption of AI
applications for neoantigens discovery

Learning from a large set of data and identifying patterns of

interest is the greatest strength of AI. The integration of AI

applications in cancer immunotherapy and personalized medicine

holds great promise, however, also comes with various technical

and implementation challenges. Figure 4 summarizes the

introduced bottlenecks of AI-based neoantigens discovery along

with their potential solutions.
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10.1 Challenges related to data

10.1.1 Insufficient amount of available well-
curated data

Data scarceness, data accuracy, and problem complexity contribute

to challenges with models training. Available experimental datasets are

limited in volume, diversity and standardization. Additionally, there is

a lack of experimental data of binding affinity and antigen presentation

for many HLA alleles. Furthermore, for many datasets consistent

biological definitions are not considered or differ between studies, e.g.

distinguishing between pre-existing and de novo T cell responses upon

neoantigen vaccination.

Problem complexity is imposed by the huge MHC–peptide–

TCR combination space, the length variations of TCRs, and inter-

and intra-patient variability of TCRs or MHCs. Running AI

training procedures on a limited or disparate data may result in

overfitting and biased outcomes, compromising the reliability of

future predictions.

10.1.2 The lack of experimentally verified
negative data and the issue of data imbalance

EL/MS experimental approach reports only the presence of a

peptide at the cell’s surface, but cannot identify the absence of a

peptide from the individuals’ immunopeptidome. The prediction of

peptide-MHC binding is a quintessential classification problem. For
TABLE 7 – Immunology-related databases and datasets.

Immunology-related databases and datasets

Database name Year Short description URL

IMGT
2015
(253)

International Immunogenetics
Information System

https://www.ebi.ac.uk/ipd/imgt/hla/index.html

TCLP
2015
(250)

TRON Cell Line Portal http://celllines.tron-mainz.de

MIRA
2015
(175)

Antigen-Specific T cell Receptors https://github.com/mnielLab/NetTCR-2.0/tree/main/data

McPAS-TCR
2017
(172)

Manually curated catalogue of pathology-
associated TCR sequences

http://friedmanlab.weizmann.ac.il/McPAS-TCR/

TCIA
2017
(254)

Cancer Immunome Atlas, links tumor genotypes
with immunophenotypes, providing an index for
immunotherapy response

https://tcia.at/home

SysteMHC Atlas
2018
(255)

Data Repository for
Immunopeptidomic Analyses

https://systemhcatlas.org

VDJdb
2018
(256)

Database of T cell receptor sequences with
known antigen specificity

https://vdjdb.cdr3.net/

IEDB
2019
(88)

Immune Epitope Database https://www.iedb.org

TBAdb, PIRD
2020
(174)

Pan immune repertoire database https://db.cngb.org/pird/

TCRdb
2021
(147)

Database for T cell receptor sequences with
powerful search function

http://bioinfo.life.hust.edu.cn/TCRdb

UcTCRdb
2023
(257)

T cell receptor sequence database with online
analysis functions

http://uctcrdb.cn/
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binary classification, there should be a sufficient number of

observations in both positive and negative classes. Otherwise, the

imbalance will lead to a bias of the classifier trained on these data

and therefore, the creation of artificial negative examples (decoys) is

required. However, insufficient consideration of the source of the

negative examples can lead to further biases (266). Recently a

homology-based method Neglog was proposed (267) to infer

more negative data from very limited experimentally verified

Negatome (i.e., pairs of proteins that do not interact). Neglog

outperformed pure random sampling, and independent test on

negative data is indispensable for bias control, which is usually

neglected by existing studies (267). Negative data sampling also

needs to be properly addressed for computational prediction of

peptide-MHC and TCR–peptide binding.

10.1.3 The influence of dataset homology
Another problem is data similarity. Datasets contain many

epitopes that are either identical or very similar to each other,

which results in data redundancy. If not properly managed,

redundancy can lead to overfitting. By performing homology

reduction procedures, some of the tools take redundancy into

account. The influence of dataset homology on protein secondary

structure prediction was investigated by Chen et al. (268), and a

rigorous evaluation strategy was proposed.

10.1.4 The lack of sample size determination
How much training data is required for AI application? The

minimum dataset size required for effective training of AI models

remains unclear in the biomedical sector. The rule “the more data,

the better” is not realistic in the biomedical sector which faces

technological limitations in acquiring data. Theoretical

investigations concerning sample size planning for classification

models (269) and sample size estimation for effective modelling

of classification problems (270) are available and should

be contemplated.
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10.1.5 Algorithmic and model-driven solutions to
data challenges

There are approaches in the biomedical and general domain

aiming to balance the dataset used for AI training. Data reweighting

helps to compensate under-represented subgroups by duplicating

the minority class data. Data perturbation increases the diversity of

the dataset by adding “noise” to existing samples. Data

augmentation is a process of generating synthetic data exploiting

algorithms such as generative adversarial networks (GANs). GANs

consist of two main components trained simultaneously using

adversarial training: a generator model generating samples similar

to real data, and the discriminator model attempting to distinguish

between real and generated samples. We already mentioned

DeepImmuno (210) using GANs to generate immunogenic

peptides. Federated learning is another approach to work with

limited data sources or skewed distribution in the dataset. In

federated learning, a central machine aggregates learning from

other devices referred to as clients, collaboratively training a

model while ensuring that their data remains decentralized. The

idea to generate a global model via exchanging parameters (e.g. the

weights and biases of a deep neural network) between the local

nodes without explicitly exchanging data samples was motivated by

the issues such as data privacy and data access rights.
10.2 Challenges related to models

10.2.1 The problem of overfitting and lack
of generalizability

Memorizing the training examples without learning any

generalizable patterns by the model is a problem called

overfitting. If a predictor overfits to the training data, its actual

prediction accuracy on a new data will be worse than the one

reported (271). Increasing the complexity of AI model (e.g.

increasing the number of layers of ANN and thus the number of
FIGURE 4

Challenges and potential solutions to promote widespread clinical use of AI applications for neoantigens discovery. We distinguish challenges that
must be addressed for successful AI integration into clinical praxis as related to data, models, AI architecture and technical integration. For each
group of challenges we list various algorithmic, experimental and organizational approaches carrying the potential to overcome the
respective challenges.
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parameters) can result in overfitting and consequently in poor

generalizability of the model. To address this issue, various

methods can be employed. Early stopping technique prevents

overfitting by stopping the training process at the moment the

test error starts to increase. Resampling methods such as Bagging or

Bootstrap, in particular the optimism-adjusted bootstrap (OAD)

(272), aim to increase the generalization capability of the model by

training multiple base learners on randomly sampled portions of

data and then aggregating the learners. Regularization improves the

model’s generalization capability by setting the weights of features

in the model closer to zero, reducing the influence of insignificant

features. Dropout is a kind of regularization technique employed in

deep learning, working by randomly dropping neurons out of the

network during the training with the aim to prevent any neuron

from becoming too influential. Cross-validation divides the dataset

into multiple equal parts and evaluates the model’s performance by

using each segment as a test set in turn. Performance validation and

interpretation, identification and correction of biases, are essential

for more reliable, accurate, and generalizable AI models.

10.2.2 Performance metrics demonstrating the
quality of a model are not standardized

To assess the prediction performance of AI algorithms,

numerous performance metrices are alternatively used. These

include accuracy (Acc), sensitivity (Sn), specificity (Sp), F1 score,

the Matthews Correlation Coefficient (MCC), the area under the

receiver operating characteristic (ROC) curve (AUC), and Positive

Predictive Value (PPV). The findings of in silico studies are

presented in a heterogeneous manner and are difficult to

compare. The suitability of performance metrics may also depend

on the data situation at hand. For example, when diagnosing

classification model performance on highly imbalanced datasets,

ROC-AUC can underrepresent the minority class and be therefore

misleading, while precision–recall area under the curve (PR-AUC),

which summarizes model precision and recall, represents the

balance of classes within the testing dataset more accurately (273).
10.3 The challenge of interpretability: AI
models operate as a “black box”

“Has artificial intelligence become alchemy?” (274) Another

important obstacle experienced by AI applications is the lack of

understanding the methodology and the human inability in

explaining the precise steps leading to predictions. How the

models make the predictions and what the models learn from the

input data remains largely unknown. The AI is in its golden era and

the advances and possibilities are almost endless. However, to trust

model predictions completely, it is vital to understand the processes

that transforms inputs into outputs. There have been several

attempts to improve the interpretability of ML models. Vig et al.

(275) used the transformers attention mechanism to show that

some of the transformer’s nodes were able to learn biological

properties of proteins (e.g. secondary structure, binding sites etc.).

In the context of peptide presentation by MHC class I proteins

it will be important to identify the most influential parts of the input
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amino acid sequences contributing to the output. To tackle this

challenge, the authors of ImmunoBERT (85) presented application

of two interpretability techniques developed in the field of computer

vision, SHapley Additive exPlanations (SHAP) (276) and Local

Interpretable Model-agnostic Explanations (LIME) (277), for

interpreting BERT architecture predictions. Using the tool

Captum (278), one can apply a wide range of feature attribution

algorithms to attribute the predictions of a DL-based image

classifier to their corresponding image features. Adoption of such

algorithms to the analysis of sequence information would provide

new insights in the field.
10.4 Difficulty in integration of
AI applications

10.4.1 Benchmarking the different AI or ML tools
AI or ML tools are excessively difficult to benchmark in the

clinical setting despite the fact that they can be trained with existing

databases on patient data. One clinical study with a prediction tool

cannot be directly compared to another clinical study that uses

another tool, since the patients and the neoantigens are different.

10.4.2 Reproducibility and reusability of
AI models

To improve transparency and reproducibility, guidelines have

been established for developing and reporting ML predictive models

in biomedical research (279). These guidelines promote consistent

reporting of model specifications, including potential limitations of

the model such as assumed input and output data format, pitfalls in

interpreting the model, potential bias of the data used in modeling,

generalizability of the data. In addition, sharing of well documented

code for the model together with transparent descriptions of the

optimized hyperparameters and hardware specifications is another

aspect that would ensure that AI algorithms are transparent and

reproducible. Collaborative initiatives for generation of joint

guidelines and consensus recommendations, as well as translation

them into standardized protocols will play a crucial role in driving

the widespread adoption of AI-based solutions.

10.4.3 AI is computationally intensive
Successful application of AI requires proper computational

infrastructure, including specialized hardware such as graphics

processing units (GPUs), as well as optimized software for

reduced computational needs (e.g. Q SLAM Technology), and

solutions for integrated management of data and resources.
10.5 The ethical and legal implications of
using AI

Algorithms do not accept responsibility or legal liability for their

decisions and errors. Careful development, testing, and evaluation is

required before integrating AI systems for patient care (280, 281).

These challenges must be addressed to fully harness the potential of

AI in cancer immunotherapy and personalized medicine.
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11 Discussion

AI has already proven to be useful in everyday life from refining

the text of manuscripts to troubleshooting codes (282). However,

the risks are higher when applying AI to human health. The

implementation of AI in general clinical practice can be a

sensitive topic. Medical professionals spend decades learning,

practicing, improving and the gained experience along the way is

extremely valuable. Comparing AI that has unknown or

unexplainable processes to the medical professional when it

comes to diagnosis and decision making related to possible

therapy or necessary surgery, is a rather delicate topic for

discussion (283).

Nonetheless, it is undeniable that AI technology is currently

needed in the medical field. One such field where AI´s involvement

is certainly required is cancer immunotherapies. In the past

decades, immunotherapy has become increasingly important as a

new form of cancer therapy. For the development of cancer

vaccines, quick and efficient processing of large data is required.

One challenge is to identify tumor-specific antigens, the majority of

which are unique for individual patients. Combining tumor

sequencing data with the use of predictive algorithms based on

machine learning and artificial intelligence allows clinical

investigators to accelerate identification of therapeutically

relevant neoantigens.

We reviewed multiple tools and a broad selection of prediction

servers for neoantigen detection based on advanced AI

methodologies. These tools are still far from widespread use in

clinical practice as it can be difficult for users to choose the best

server. There is a lack of reference data that should serve as an open

benchmark to compare the approaches and validate the

concordance of predictions among different tools. We encourage

the standardization of techniques and harmonized protocols for

sequencing, mutation detection, immunogenicity testing, and

neoantigen candidate prioritization.

Our work highlights the barriers of applicability and clinical

adoption of AI approaches. The insufficiency of experimental data

for training and associated with it the lack of generalizability of AI-

based models represents the major challenge. Novel approaches

capable to overcome the critical role of data limitations are required

for further development of in silico methods. Transfer learning has

become increasingly relevant in this regard. AI models that can

efficiently use all of the limited available data and transfer

knowledge from other sources are extremely valuable.

Carefulness must be applied to the issue of performance

guarantees both for training the model and for assessing how it

will perform when deployed. Standard statistical and ML methods

should be employed, such as bootstrap or a Bayesian method to

assess prediction confidence intervals, to quantify the uncertainty of

AI model in the output, and analyzing the sensitivity of the model’s

output to certain parameters. Often the target and loss function

used for training may not match the target and loss function

important for the users. Bridging this training-application gap can

be addressed by grounding methods, i.e. supplementing the model’s

training with context-specific information, improving its ability to

function effectively in disparate real-life situations.
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A mechanistic explanation of the relationship between the

peptide sequence, HLA allele and binding affinity remains an

open topic of investigation. AI-based tools provide a potential

solution in two ways: 1) Deep learning approaches can learn

features automatically from unstructured data, bypassing the need

to discover a mechanistic explanation. 2) Explainable AI

techniques, such as attention mechanism, may be able to provide

clues about aspects of the relationship that require further

investigation. The two possibilities are not mutually exclusive and

if early efforts focus on producing accurate and generalizable black-

box models, then later efforts should attempt to use explainable AI

techniques to understand the reasoning the model uses to make its

predictions. As we navigate the path forward in personalized cancer

immunotherapy, several questions remain. How can we expand the

collection of well-curated neoantigen data, particularly for rare

cancer types? What additional factors beyond peptide properties,

such as protein structure and post-translational modifications,

should be considered for neoantigen prediction? How can we

enhance the interpretability of AI models, making them more

transparent and accountable? These questions, among others,

represent exciting avenues for future research and innovation.

By depositing the results of experiments and clinical trials in

public databases, investigators will assist in making neoantigen

prediction models more generalizable. Companies should agree to

mutually exchange information beneficial to all parties in a

benchmarking group and share the results within the group. As

clinical studies will continually evolve to become more inclusive,

harmonized and easily accessible, the aforementioned challenges of

clinical integration of AI will also be bridged.

This review focuses specifically on AI and neoantigens, however,

the use of AI approaches to predict cancer immunotherapy efficacy

(284) and patient’s response to immunotherapy (285) is also worth

mentioning. AI can utilize complex images such as histopathological

slides and follow-up CT scans, extract information from multi-omics

data (genomics, transcriptomics, epigenomics, proteomics,

radiomics), integrating it with clinical data (medical history,

laboratory tests, demographic information) to distinguish

immunotherapy responders from non-responders. One of the

major challenges in immunotherapy is to determine which patients

are likely to benefit from the therapy. Tumor mutational burden

(TMB) was proposed as biomarker and approved by the FDA to

select patients eligible to receive pembrolizumab. The review of

Addala et al. (285) discusses cancer-intrinsic and cancer-extrinsic

features that can be analysed. Besides TMB, genomic intratumor

heterogeneity (ITH) can also be used as cancer-intrinsic feature for

outcome prediction, as it was linked to treatment resistance,

recurrence and reduced patient survival. Advances in single-cell

analysis technologies enable further insights into genomic ITH,

neoantigen formation and presentation at single-cell level. Cancer-

extrinsic features encompass the cellular composition of the tumor

microenvironment (TME). AI deconvolution tools, e.g.

CIBERSORTx (286), provide estimates of the immune cell

proportions in the TME. The complex model capable to integrate

multiple factors including tumor purity, TME composition, tumor

evolution, genomic ITH and immunogenic neoantigen load would be

of great importance. The parameters that govern the immunogenicity
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still remain largely unknown. The review of Xie et al. (287) outlines

further barriers that must be overcome to enable effective anti-cancer

immunotherapies. Tumors can escape from immunological

surveillance through a number of mechanisms, including the loss

of neoantigens induced e.g. by transcriptional repression or

epigenetic silencing, disruption of neoantigen peptides presentation,

and immunosuppressive TME. To compensate for the loss of

targetable neoantigens, personalized neoantigen-specific

immunotherapy should target multiple neoantigens (288). In the

work of Xie et al. (287) additional compensatory strategies to address

the issue of immune evasion of tumor cells are discussed.

The recent publication of Donisi et al. (289) also considers the

mechanisms behind the resistance to immune therapeutic agents, in

particular, the tumor immune microenvironment (TIME), a part of

the TME, or microbiome influencing immune cells in the TME etc.,

and reviews multi-omics and AI approaches, e.g. those for

dissecting the TME or inferring novel microbiome-linked

biomarkers (289).

In conclusion, the field of neoantigen prediction is at the

forefront of personalized cancer immunotherapy. The

collaborative efforts of researchers, computational biologists, and

immunologists have brought us closer to harnessing the full

potential of neoantigens for precision medicine. With continued

advancements in software, databases, and AI, we are on the cusp of

a new era in cancer treatment, one that holds the promise of tailored

immunotherapies that target the unique molecular signatures of

each patient’s tumor. As both academic and industrial endeavors

keep on to tackle the challenges outlined in this article, the future of

personalized cancer immunotherapy appears brighter than ever.
Author contributions

AB: Conceptualization, Investigation, Writing – original draft,

Writing – review & editing. ZN: Conceptualization, Investigation,

Visualization, Writing – original draft, Writing – review & editing.

FL: Writing – review & editing. MB: Writing – review & editing.
Frontiers in Immunology 25239
MM: Writing – review & editing. MD: Funding acquisition,

Writing – review & editing. LC: Writing – review & editing. RK:

Conceptualization, Funding acquisition, Supervision, Writing –

original draft, Writing – review & editing.
Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. Funded by

the Deutsche Forschungsgemeinschaft (DFG, German Research

Foundation) – Project-ID 318346496 – SFB 1292/2 TP04 to RK;

Project ID 318346496, SFB1292/2 TP17 to MD and by Federal

Government German Ministry of Health (BMG) BMG-RENUBIA

ZMI5-2521FSB412 to RK.
Acknowledgments

Wewould like to thank Silvia Vogl and Dóra Spekhardt for their
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