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Editorial on the Research Topic

Hybrid Biomolecular Modeling

Models of biomolecular structure and dynamics are often obtained by combining simulation
or prediction approaches [e.g., comparative modeling, Molecular Dynamics (MD) simulations,
Normal Mode Analysis (NMA), etc.] with experimental approaches [e.g., Nuclear Magnetic
Resonance (NMR), X-ray crystallography, Small-Angle X-ray Scattering (SAXS), Electron
Microscopy (EM), etc.] (Sali et al., 2015) (Figure 1). Such hybrid modeling extends the capabilities
of experimental techniques, by enriching structural information and facilitating dynamics studies
of biomolecules. This e-Book contains articles on methodological developments, applications, and
challenges of hybrid biomolecular modeling that have been collected in the framework of the
Frontiers Research Topic entitled “Hybrid Biomolecular Modeling.”

An example of hybrid modeling is fitting of structures of protein domains obtained by X-
ray crystallography, NMR, or structure prediction into EM density maps of protein complexes
(Kawabata, 2008; Birmanns et al., 2011; Tjioe et al., 2011; Yang et al., 2012). This allows obtaining
high-resolution models of complexes when this cannot be achieved using a single experimental
technique, as is often the case with large and flexible complexes (Cottevieille et al., 2008; Ciferri
et al., 2012; Brown et al., 2014). This problem is addressed in the article by Habeck. The
article is focused on a Bayesian inference approach to integrative biomolecular modeling by
combining X-ray crystallography and cryo-EM data, but Habeck also discusses the computational
challenges of this approach in a more general context of integrating other experimental data such
as cross-linking/mass spectrometry and solid-state NMR data. The proposed approach is based
on probabilistic models for cryo-EM maps and Markov chain Monte Carlo sampling of model
structures from the posterior distribution.

Computational methods have been developed to predict the interactions between the protein
subunits based on their shape complementary, electrostatic interactions, solvation energy, and
statistical potential energy derived from the structural databases. This is known as molecular
docking and one of its main challenges is the design of a reliable scoring function to assess the
model quality. Inspired by the application of X-ray Free-Electron Lasers (XEFL) data in scoring
models of conformational changes of complexes (Tokuhisa et al., 2016), Wang and Liu propose to
use single-particle XFEL data for a more reliable scoring of models obtained by docking methods.

Computational approaches based on NMA or MD simulations have been developed to
explore the conformational space of a model and identify the conformation (in this space) that
best agrees with experimental data (Trabuco et al., 2008; Gorba and Tama, 2010; Jin et al.,
2014). Devaurs et al. address this problem in the context of modeling based on experimental
hydrogen/deuterium exchange (HDX) data. HDR data is often interpreted using an X-ray
crystallography structure or a conformational ensemble obtained by MD simulations, though
their correspondence with the HDR data is often not enough satisfactory. Devaurs et al. propose

4
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FIGURE 1 | Hybrid modeling of biomolecular structures by fitting experimental data (arrows). Other data can also be used (e.g., NMR, cross-linking, FRET, etc.).

to select a single conformation that best fits the HDX data,
from the conformational ensemble obtained with an extensive
coarse-grained conformational sampling (of the given X-ray
crystallography structure) that is biased with the information on
the protein regions that produce the largest discrepancies with
the HDX data.

Prischi and Pastore review an integrative structural modeling
methodology that they have developed to determine the structure
of weakly interacting molecular complexes. It combines NMR,
SAXS, site directed mutagenesis, molecular docking, and MD
simulations, and has been used by the authors and other groups
to gain structural information on several iron-sulfur cluster (ISC)
biogenesis complexes. The authors review these applications and
discuss the advantages and limitations of this methodology as
well as the future directions to improve it.

Woods et al. show a new application of an approach
combining MD simulations, evolutionary sequence analysis,
and Terahertz spectroscopy that they have developed to probe
dynamics and allostery in rhodopsin. They show how the binding
of the chlorophyll derivative, chlorin-e6 (Ce6) allosterically
excites evolutionarily conserved communication pathways in
rhodopsin that connect the ligand-binding site and the rest of the
receptor.

Hsieh et al. present a NMA approach to analyze the dynamics
of Dengue and Zika virus capsids based on their high-resolution
cryo-EM models. They relate the differences identified in the
dynamics of the E proteins in the two capsids to the differences
observed in the two high-resolution models. They discuss the
work that should be done in the future in order to fully
characterize the dynamics of the two viruses.

Intrinsically disordered peptides and proteins present a
challenge to experimental characterization of their functional
conformations. Olson explores simulation techniques that could
be used to build a computational framework for capturing
conformational ensembles of such peptides and proteins.
He explores temperature-based replica exchange methods for
conformational ensemble sampling with implicit solvent models,
as well as, explicit/implicit solvent hybrid replica exchange
methods to capture the conformational ensemble of an
intrinsically disordered peptide derived from the Ebola virus
protein VP35. The author points out that intrinsically disordered
peptides and proteins can be used as benchmarks to develop
accurate methods for modeling conformational transitions.

The permeability of a cell membrane can be increased under
the influence of an electric field of sufficient magnitude, which
is known as membrane electroporation. Wriggers et al. address
the problem of experimental and theoretical investigation of
membrane electroporation. They extend, to the context of
lipid bilayers and solvents, a statistical approach that they
have originally developed for detecting allosteric signatures in
MD simulations of well-structured proteins. This method is
based on transforming time-domain information from MD
trajectories into spatial heat maps that can be visualized on 3D
molecular structures or in the form of interaction networks. The
method is multiscale in the time domain and uses a mutual
information approach for statistical bridging between the fast
(local variables recorded byMD) and slow (global rate of change)
time series. The mutual information method used with proteins
was adapted to lipids and solvents by developing a new approach
to probability density function estimation of random variables,
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which was described in a separate article (Kovacs et al.) in this
e-Book.

We hope that this e-Book will be useful to experimentalists
and method developers and that it will stimulate
further use and development of hybrid biomolecular
modeling methods. We thank all authors, co-authors,
and reviewers for their contribution to this Research

Topic and acknowledge the support from Frontiers Team
members.
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A growing array of experimental techniques allows us to characterize the

three-dimensional structure of large biological assemblies at increasingly higher

resolution. In addition to X-ray crystallography and nuclear magnetic resonance

in solution, new structure determination methods such cryo-electron microscopy

(cryo-EM), crosslinking/mass spectrometry and solid-state NMR have emerged. Often

it is not sufficient to use a single experimental method, but complementary data

need to be collected by using multiple techniques. The integration of all datasets can

only be achieved by computational means. This article describes Inferential structure

determination, a Bayesian approach to integrative modeling of biomolecular complexes

with hybrid structural data. I will introduce probabilistic models for cryo-EM maps and

outline Markov chain Monte Carlo algorithms for sampling model structures from the

posterior distribution. I will focus on rigid and flexible modeling with cryo-EM data and

discuss some of the computational challenges of Bayesian inference in the context of

biomolecular modeling.

Keywords: cryo-EM, modeling, Bayesian inference, Markov chain Monte Carlo, inferential structure determination

1. INTRODUCTION

Thanks to groundbreaking advances in experimental techniques it has become possible to study
the structure of large biological assemblies at increasingly higher resolution. Traditionally, high-
resolution biomolecular structure determination was only possible by X-ray crystallography or
nuclear magnetic resonance (NMR) in solution (Berman et al., 2000). The application of NMR
and X-ray crystallography to larger systems remained challenging due to the sheer size of the
system and/or because it was difficult to find suitable crystallization conditions. More recently,
emerging methods such as cryo-electron microscopy (cryo-EM) (Frank, 2002; Orlova and Saibil,
2004; Chiu et al., 2005), crosslinking/mass spectrometry (Gingras et al., 2007; Rappsilber, 2011)
and solid-state NMR (Yan et al., 2013) have started to provide exciting insights into the structure
of large macromolecular assemblies that was previously very difficult, if not impossible to obtain.
In particular, cryo-EM has reached near-atomic and in some cases even atomic resolution over
the last 5 years (Bai et al., 2015; Fischer et al., 2015; Khatter et al., 2015). The EM databank
(EMDB) (Lawson et al., 2011) stores an increasing number of high-resolution EM reconstructions.
Several biologically essential assemblies that resisted high-resolution studies have recently been
characterized by cryo-EM including spliceosomal complexes (Yan et al., 2015; Agafonov et al., 2016;
Galej et al., 2016; Rauhut et al., 2016; Wan et al., 2016), eukaryotic ribosomes (Anger et al., 2013;
Khatter et al., 2015), and transcription initiation complexes (Plaschka et al., 2015).

Although several powerful experimental techniques are available that allow us to study the
structure of large biomolecular systems, we need computational methods that assist us in
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integrative modeling with diverse structural data (Sali et al.,
2003; Robinson et al., 2007; Ward et al., 2013). The reasons for
developing new computational methods are both of a principled
and practical nature.

Structural models built from hybrid data should be as
objective as possible and ideally not be biased by a human
modeler, therefore automated computational modeling tools are
indispensable (Karaca and Bonvin, 2013; Villa and Lasker, 2014;
Schröder, 2015). The models should be compatible with all of
the available data, whichmight come from different experimental
sources. The modeling software should also be able to integrate
data-independent prior information about the system.

Most existing refinement and modeling software focuses on
structural data of a particular type. For example, a number of
software packages for X-ray structure refinement or modeling
with NMR restraints exist. To use these packages for modeling
with hybrid data is often difficult and involves some sort
of tweaking. We therefore need a versatile software that can
integrate diverse types of structural information (Russel et al.,
2012).

Every software for integrative modeling with hybrid data has
to address the following questions: How much weight should
the various pieces of information be given? How to deal with
datasets that (partially) contradict some of the other datasets?
Obviously, the weights can have a strong impact on the final
structure (Brünger, 1992; Habeck et al., 2006), and it would be
desirable to choose the weights in a data-driven, self-adaptive
fashion. Because the individual datasets themselves typically
provide only ambiguous structural information, we have to fit
the model against all data simultaneously to obtain the least
ambiguous result.What is a good representation of the remaining
uncertainty about the structure? We need to represent the
ambiguity of the structural model adequately.

The software should also be able to integrate data of
varying resolution. A common scenario is that high-resolution
information about the subunits in isolation is available (Esquivel-
Rodríguez and Kihara, 2013), such that modeling the complex
appears to be simple: we just need to put the pieces together.
However, even in this seemingly simple situation several issues
need to be considered.

The formation of the complex is often accompanied by a
conformational change in the subunits (Gerstein et al., 1994).
How much should we deviate from the known structures of
the free subunits in order to fit the data of the complex? If the
data is sparse (e.g., crosslinking or NMR data) or of a medium
resolution, there is the risk of overfitting the data.

Another practical problem is the enormous size of the systems
that can comprise tens of thousands up to millions of atoms. Is
there enough information to determine the position of all atoms?
Or should we rather lower our goal and aim for a coarse-grained,
intermediate resolution model?

At the source of many of these issues is the question of how
to deal with uncertainty in the data and about our model. We
need a mathematical framework to quantitatively represent any
uncertainty in the process that takes us from the input data to
the final model. The framework should allow us to follow the
propagation of the uncertainty about a biomolecular structure as

we combine data from diverse sources and to compute structural
error bars that reflect the degree of uncertainty.

Bayesian probability theory is a unique and objective
mathematical framework for quantitative inference from limited,
diverse and uncertain information (Cox, 1946; Jaynes, 2003;
MacKay, 2003). The essence of the Bayesian approach is that
any probability should be interpreted as incomplete information
about a quantity rather than a frequency of occurrence. Highly
ambiguous and uncertain information results in multi-modal
distributions that are spread out over many parameter values.
Markov chain Monte Carlo (MCMC) methods (Liu, 2001) allow
us to apply the Bayesian formalism in practice even to highly
complex data and models.

More than a decade ago, Bayesian methods have been
introduced for protein structure determination from solution
NMR data (Rieping et al., 2005; Habeck, 2012). In this article,
I will describe recent developments in Bayesian integrative
modeling with hybrid data.

2. METHODS

2.1. Inferential Structure Determination
Inferential structure determination (ISD) is the first strictly
statistical approach to biomolecular modeling (Habeck et al.,
2005a; Rieping et al., 2005). Originally ISD was developed for
solution NMR data on small protein domains (Rieping et al.,
2008; Habeck, 2012). But the basic principle can be applied to
large systems and diverse structural data (Bayrhuber et al., 2008;
Shahid et al., 2012; Habenstein et al., 2015).

At the core of the ISD approach is a probabilistic formulation
of the structure determination problem. We have to distinguish
two principal types of information that guide us in the modeling
of a biomolecular structure: the experimental data D and data-
independent prior information I about biomolecular structures.
All the information is encoded statistically through conditional
probabilities. The probability:

Pr(D|θ , I)

quantifies how probable it is to observe data D if the actual
configuration of the system is θ . Pr(D|θ , I) is called the likelihood
function. The prior probability:

Pr(θ |I)

expresses what we know about reasonable system configurations
θ without observing any data.

Probability calculus allows us to combine both types of
information and to derive a posterior distribution over all
conformational degrees of freedom by invoking Bayes’ theorem
(Jaynes, 2003):

Pr(θ |D, I) =
1

Pr(D|I)
Pr(D|θ , I) Pr(θ |I) .

The posterior Pr(θ |D, I) expresses what we know about the
unknown structure given the experimental data D and our
prior knowledge I. The probability Pr(D|I) (the so-called model
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evidence) can be ignored if we are only interested in estimating
θ , because Pr(D|I) does not depend on θ . However, if we aim
to compare different prior or modeling assumptions, it will be
important to calculate Pr(D|I) (Habeck, 2011; Mechelke and
Habeck, 2012, 2014; Knuth et al., 2015).

Often, we need to introduce additional unknown parameters
to express our prior information or to model the experimental
data. Let’s denote these parameters by ξ ; in statistical parlance, ξ
are nuisance parameters. It is straightforward to infer both θ and
ξ from the experimental data. All we need to do is to introduce a
prior probability for the model parameters ξ and to invoke Bayes’
theorem on the joint parameter space:

Pr(θ , ξ |D, I) =
1

Pr(D|I)
Pr(D|θ , ξ , I) Pr(θ |I) Pr(ξ |I) .

where we assumed that θ and ξ are independent a priori:
Pr(θ , ξ |I) = Pr(θ |I) Pr(ξ |I). It is straightforward to relax this
assumption if necessary.

The posterior probability Pr(θ , ξ |D, I) encodes all available
information about the unknown parameters. In biomolecular
structure determination, the posterior is typically too complex to
do any further analytical calculations. By drawing Monte Carlo
samples from Pr(θ , ξ |D, I) we generate a finite approximation of
the posterior (Liu, 2001). These samples can be used to compute
expectations and variances over the unknown parameters and
thereby estimate the parameters and compute error bars.

2.2. Probabilistic Models for Hybrid Data
Before we can launch an ISD calculation, we need to
choose a likelihood Pr(D|θ , ξ , I) and the priors Pr(θ |I) and
Pr(ξ |I). The application of ISD to multiple datasets Di is
straightforward: Pr(D|θ , ξ , I) =

∏

i Pr(Di|θ , ξ ). Each dataset
is described independently with an appropriate probabilistic
model; all datasets are integrated by simply multiplying all
factors representing the various datasets. Because probabilities
for different datasets are calibrated (they all normalize to one),
there is no issue of weighing the different datasets relative to each
other.

We use a Boltzmann distribution as a prior over the
conformational degrees of freedom:

Pr(θ |I) =
1

Z
exp{−E(θ)} (1)

where E(θ) is a force field. ISD currently supports two force fields:
a quartic repulsion term that lacks any attractive interaction,
and a linearly ramped Lennard-Jones potential (see Habeck,
2011; Mechelke and Habeck, 2012 for more details). The prior
distribution Pr(θ |I) allows us to restrict the conformational
degrees of freedom such that reasonable model structures are
preferred (for example, structures that are free of atom-atom
clashes and have well-packed interfaces). The prior distribution
over the model parameters Pr(ξ |I) is typically of a standard form
and chosen such that sampling with MCMC is straightforward.

2.2.1. Probabilistic Model for EM Maps
The result of a cryo-EM study is a 3D reconstruction of the
structure, which typically comes in the form of a regular cubic

grid with equal grid spacing in all three spatial directions.
To construct a probabilistic model for 3D reconstructions, we
first need a mathematical relation that allows us to compute a
theoretical density map from a given structure θ . ISD’s current
model for density maps is quite simple. The theoretical map is
obtained from an atomic model by placing spherical Gaussians
of the same size and weight at each atom. The theoretical density
at 3D position x is:

ρ(x; θ , σ ) =
∑

k

1

(2πσ 2)3/2
exp

{

−
1

2σ 2
‖x− xk(θ)‖

2

}

(2)

where the index k runs over all atoms that contribute to the
density and xk(θ) is the 3D position of the k-th atom in
the structure parameterized by the conformational degrees of
freedom θ . The theoretical density map can be interpreted as a
blurred version of an atomic map with infinite resolution:

ρ(x; θ , σ ) = gσ ∗ρ(x; θ , 0) with ρ(x; θ , 0) =
∑

k

δ[x−xk(θ)]

where δ is the Dirac delta function, gσ is a Gaussian blur kernel
with bandwidth σ and ∗ denotes a 3D convolution. Model (2)
is admittedly simplistic and valid only for modeling protein
complexes at intermediate to low resolutions. For high-resolution
maps and/or the modeling of protein/nucleic acid complexes the
model should also incorporate atom-wise weights (proportional
to atom mass) as well as scattering and temperature factors.

Let us assume that experimental values ρn are available at
positions xn (n = 1, . . . ,N) which are typically the centers of
voxels that make up a cubic grid. The discrepancy between the
experimental map ρn and the theoretical map ρ(xn; θ , σ ) can be
assessed with a Gaussian distribution. Alternative error models
for density maps have been proposed (Vasishtan and Topf, 2011),
but the Gaussian model is still the most widely used model.

The likelihood function resulting from a Gaussian model is:

Pr(ρ|θ , ξ , I) =

N
∏

n= 1

(

λ

2π

)1/2

exp

{

−
λ

2
[ ρn − αρ(xn; θ , σ ) ]

2

}

=

(

λ

2π

)N/2

exp

{

−
λ

2

∑

n

[ ρn − αρ(xn; θ , σ ) ]
2

}

(3)

where the calibration factor α was introduced. There are three
nuisance parameters ξ = (σ ,α, λ). Typically, the bandwidth
of the blur kernel σ is set to a constant value which depends
on the resolution of the map. For example, the default value
in Chimera (Pettersen et al., 2004) is σ = 0.225× resolution.
For this fixed choice of the bandwidth, σ can be absorbed into
the background information I. However, it is also possible to
estimate σ along with the other nuisance parameters and the
conformational degrees of freedom.
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To estimate the scaling parameter, we have to look at the
conditional posterior distribution:

Pr(α | λ, θ ,D, I) ∝ Pr(α|I)× exp

{

−
λ‖ρ(θ , σ )‖2

2
(

α −

∑

n ρnρ(xn; θ , σ )

‖ρ(θ , σ )‖2

)2}

where ‖ρ‖ =
√

∑

n ρ2
n . The second factor is a Gaussian centered

about the estimator:

α̂(θ , σ ) =

∑

n ρnρ(xn; θ , σ )

‖ρ(θ , σ )‖2
(4)

which is the slope of a straight line relating the calculated volume
ρ(xn; θ , σ ) to the observed density ρn.

The Gaussian model is directly related to the cross-correlation
coefficient, which is often used to compare EMmaps. To see this,
let’s integrate out the unknown scaling factor α. If we ignore the
fact that α should be positive and choose a uniform (improper)
prior over α (i.e., Pr(α|I) = const), we can analytically integrate
out α to obtain a new likelihood that no longer depends on α (this
procedure is also called marginalization in Bayesian statistics,
Habeck et al., 2005a):

Pr(ρ|θ , λ, I) =

∫

dα Pr(ρ|θ ,α, λ, I) Pr(α|I) ∝ λ(N− 1)/2

exp

{

−
λ ‖ρ‖2

2
[1− C2(θ)]

}

(5)

where

C(θ) =

∑

n ρn ρ(xn; θ , σ )

‖ρ‖ ‖ρ(θ , σ )‖

is the cross-correlation between the experimental and the
theoretical map. The effective likelihood function (Equation 5)
attains its maximum when the cross-correlation coefficient is
one. Whenever we assess the goodness of fit between the model
and the experimental map by means of the cross-correlation
coefficient, we implicitly assume that the error of the EM map
follows a Gaussian distribution.

The parameter λ is the inverse variance of the Gaussian
likelihood (Equation 3) and called the precision of the model
(Bernardo and Smith, 2009). It is also possible to estimate
the precision λ of the fit between the experimental and the
theoretical density map. The parameter λ assesses how well the
experimental and theoretical map agree on average. For large
λ, the experimental map is very reliable and imposes a strong
force on the model to adapt itself such that the calculated map
reproduces the observed map as closely as possible. Assuming
Jeffreys’s prior for the precision, i.e., Pr(λ|I) = 1/λ, the
conditional posterior of the precision is a Gamma distribution
(Habeck et al., 2006):

Pr(λ|θ ,α, ρ, I) ∝ λN/2− 1 exp{−λEmap(θ ,α)} (6)

where the least-squares residual

Emap(θ ,α) =
1

2

∑

n

[ ρn − αρ(xn; θ , σ ) ]
2

is the restraint energy resulting from the Gaussian model of
the experimental EM map. The expected value of the precision
given the experimental map ρ and all unknown parameters is the
inverse mean-squared error:

λ̂(θ ,α) ≈
N

2Emap(θ ,α)
. (7)

Estimator (Equation 7) tells us that the precision of the map
increases when the fit between the observed map and the
calculated map improves. This seems reasonable, but there is a
problem.

Typically, EMmaps are surrounded by bordering layers of low
density voxels (ρn ≈ 0). If we classify all voxels into N1 voxels
that contain density of the biomolecular assembly and N0 voxels
that carry only noise or zero density, we have N = N0 + N1. By
increasingN0 (e.g., by zero padding) the goodness of fit Emap does
not change or changes only very little, such that we can artificially
increase the apparent precision of the density map simply by
increasing N0:

λ̂(θ ,α) ≈
N0 + N1

2Emap(θ ,α)
≥

N1

2Emap(θ ,α)
.

To obtain a realistic estimate of λ, we should only fit those voxels
that carry real density.

In principle, the task of classifying voxels into noise and non-
noise voxels is an inference problem in itself: we would have to
introduce a mask that tells us whether a voxel carries true signal
or not. For the sake of simplicity we do not introduce an adaptive
mask that we estimate along with with the model parameters, but
restrict the fitting to voxels that are likely to carry the true signal.
These voxels are identified in a couple of preparatory steps, which
I will outline in the next section.

If we look at the conditional posterior of the conformational
degrees of freedom θ , we find that:

Pr(θ |ξ , ρ, I) ∝ exp{−E(θ)− λEmap(θ ,α)} . (8)

By taking the negative logarithm of the posterior probability, we
obtain a hybrid energy function (Jack and Levitt, 1978; Brünger
and Nilges, 1993; Habeck et al., 2005a):

Ehybrid(θ) = E(θ)+ λEmap(θ ,α) . (9)

The precision acts as a weighting factor for the EMmap (Habeck
et al., 2006). If λ is too large, the forces from the EM term can
bias the final structure (overfitting). Therefore, it is important to
obtain a realistic estimate of λ.
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2.2.2. Preparation of EM Maps
ISD carries out several preparatory steps before modeling
with EM maps starts: thresholding, cropping, decimation, and
masking. These steps improve the speed of fitting and are
necessary to obtain a meaningful estimate of the precision of the
density map.

Typically the user provides a threshold ρmin above which the
density shows the particle. ISD clips the density at ρmin, i.e., all
values greater than the threshold are set to the threshold. After
clipping, the density is shifted by subtracting the threshold such
that the smallest experimental density is zero:

ρn ←

{

ρn − ρmin ; ρn ≥ ρmin

0 ; ρn < ρmin
(10)

After thresholding all ρn ≥ 0. To reduce the map to those
voxels that carry the real signal, a cropping operation is
applied to reduce the 3D grid to a minimum size. Cropping
removes bordering layers which only contain zero-density voxels
analogous to an auto crop in image processing programs.

To represent the assumption that the structure is entirely
covered by the thresholded density map, ISD introduces a box
prior, which confines the system to lie inside the interior of a
cubic box that coincides with the boundary of the 3D map. The
box is parameterized by its lower left and upper right corner
where the lower left corner is located at the origin of the 3D grid
on which the thresholded EM map is evaluated. The box has a
soft boundary which is implemented as a logistic function with
finite steepness γ:

sγ(x) =
1

1+ e−γx
(11)

where typically γ = 1Å−1. The complete prior over the
conformational degrees of freedom is:

Pr(θ |I) ∝ exp{−E(θ)}
∏

k

3
∏

d= 1

sγ(xkd(θ)− ld) sγ(ud − xkd(θ))

(12)
where ld, ud are the spatial coordinates of the lower left / upper
right corner of the bounding box of the EM map and xkd(θ) are
the spatial coordinates of the k-th atom.

The Gaussian likelihood (Equation 3) is only valid for voxels
that carry signal. Let us introduce a binary mask mn ∈ {0, 1}
which indicates for each voxel, if it carries signal (mn = 1) or
noise (mn = 0). The modified Gaussian likelihood is:

Pr(ρ|θ , ξ , I) =

(

λ

2π

)

∑

n mn/2

exp

{

−
λ

2

∑

n

mn[ ρn − α ρ(xn; θ , σ ) ]
2

}

. (13)

As mentioned above, the mask mn should in principle be also
considered an unknown parameter and therefore be estimated
along with the other unknown quantities. However, this is
currently not implemented in ISD and therefore m is part of the
background information I.

Another parameter that we have to consider is the spacing
of the EM map. The Gaussian likelihood assumes that the
discrepancy between the experimental and calculated map
is independent from voxel to voxel and shows no spatial
correlations. However, this assumption is violated when the size
of the voxels becomes too small. By resampling the experimental
map on a finer grid, we could artificially increase the number of
data points, which would result in an increase of the estimated
weight λ. Therefore, EM maps are typically downsampled in ISD
such that the spacing is roughly 2×σ . A more rigorous treatment
that accounts for spatial correlations between neighboring voxels
is currently under development.

2.2.3. Conformational Degrees of Freedom
ISD supports multiple parameterizations for biomolecular
systems. ISD typically decouples internal degrees of freedom
from rigid external degrees of freedom, although modeling based
on Cartesian coordinates is also supported. In case we want to
model the internal flexibility of the subunits of a biomolecular
assembly, ISD uses dihedral angles to parameterize the atom
positions. The external degrees of freedom are three translational
and three rotational degrees of freedom. To parameterize the
rotation matrices, ISD uses a Lie group representation (Gallego
and Yezzi, 2015). It is also possible to model symmetric
assemblies by using virtual copies of the symmetry mates. ISD
supports cyclic, dihedral and helical symmetry. The parameters
of a helical symmetry can be estimated along with the
conformational degrees of freedom.

To sample the conformational degrees of freedom θ , ISD uses
the gradient of the log posterior probability (i.e., the gradient of
the hybrid energy). Typically it is straightforward to compute the
gradient with respect to the Cartesian coordinates. The Cartesian
gradient is mapped onto the conformational degrees of freedom
by virtue of the chain rule. This requires us to evaluate the
Jacobian of the parameterization. In case of dihedral angles, there
is an efficient recursive algorithm that avoids building up the full
Jacobian matrix by traversing the tree of covalent bonds.

2.3. Markov Chain Monte Carlo for
Biomolecular Modeling
The posterior probability Pr(θ , ξ |D, I) encodes everything that
can be said about the conformational degrees of freedom θ

and the nuisance parameters ξ in the light of the experimental
data D and our modeling assumptions I. Because Pr(θ , ξ |D, I)
is a high-dimensional probability distribution that is not suited
for analytical computations, we explore Pr(θ , ξ |D, I) by drawing
random samples from it. Sampling from Pr(θ , ξ |D, I) is based
on Markov chain Monte Carlo (MCMC) (Liu, 2001). An
MCMC algorithm simulates a Markov chain over (θ , ξ ) space
whose stationary distribution is the posterior Pr(θ , ξ |D, I).
After convergence of the Markov chain, the generated θ , ξ are
valid samples from Pr(θ , ξ |D, I). The samples can be used to
compute expected values, variances and other statistics that
characterize the posterior distribution. If we were to construct
a multi-dimensional histogram from the θ , ξ samples, it would
approximate the posterior distribution. The longer we run the
Markov chain, the closer we get to the posterior distribution.
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2.3.1. Gibbs Sampling
Gibbs sampling (Geman andGeman, 1984) is an iterativeMCMC
algorithm that decomposes sampling from Pr(θ , ξ |D, I) into two
successive steps, which are repeated:

θ (t+ 1) ∼ Pr(θ | ξ (t),D, I)

ξ (t+ 1) ∼ Pr(ξ | θ (t+ 1),D, I)
(14)

where t is an iteration index (pseudo time) and the superindex
(t) marks samples generated in the t-th iteration; the notation ∼
means “sampled from.” It can be shown that the Gibbs sampler
(Equation 14) generates valid samples from the joint distribution
Pr(θ , ξ |D, I).

To implement a Gibbs sampler, we need to compute
the conditional posterior distributions Pr(θ | ξ ,D, I) and
Pr(ξ | θ ,D, I). The conditional posterior over the conformational
degrees of freedom involves the hybrid energy (Equation 9):

Pr(θ | ξ ,D, I) ∝ exp
{

−λEmap(θ ,α)− E(θ)
}

. (15)

Sampling of the nuisance parameters is most easily done by
applying a Gibbs sampling strategy to Pr(ξ | θ ,D, I) itself. We
break down the second step in scheme (14) into the generation
of α and λ samples according to:

α(t+ 1) ∼ Pr(α | λ(t), θ (t+ 1),D, I)

λ(t+ 1) ∼ Pr(λ |α(t+ 1), θ (t+ 1),D, I)
(16)

The conditional posteriors for the individual nuisance
parameters, e.g., Pr(λ |α, θ ,D, I), have been discussed in the
previous section. Often these distributions are of a standard form
and can be sampled directly using random number generators.
For example, the conditional posterior of the precision λ is
a Gamma distribution (Equation 6). Efficient algorithms for
generating variates from a Gamma distribution exist (Devroye,
1986).

2.3.2. Hamiltonian Monte Carlo
Sampling the conformational degrees of freedom θ from the
conditional posterior (Equation 9) is the most challenging step
in an ISD calculation. Typically, the conformational degrees of
freedom are highly coupled, and Pr(θ |ξ ,D, I) exhibits multiple
peaks. A powerful variant ofMetropolisMonte Carlo (Metropolis
et al., 1957) is the Hybrid Monte Carlo method, also known
as Hamiltonian Monte Carlo (HMC) (Duane et al., 1987; Neal,
2010). The improvement over the simple Metropolis sampler is
achieved by using a more efficient proposal step. In the standard
version of Metroplis Monte Carlo, new candidate structures
are proposed by randomly perturbing a conformational degree
of freedom. The perturbation is either accepted or rejected
depending on whether it produced an acceptable change in
the hybrid energy or not. This kind of proposal results in a
random walk in conformational space, which explores the space
very inefficiently, because typically we can only apply small
perturbations to the structure without increasing the hybrid
energy by an unacceptable amount.

HMC proposes the candidate structure by running a short
molecular dynamics trajectory where the hybrid energy plays
the role of a force field. This has the advantage that the moves
in structure space are adapted to the shape of the posterior
distribution and that the conformational degrees of freedom
change conjointly rather than one by one. HMC is several orders
of magnitudemore efficient than randomwalkMetropolisMonte
Carlo, but comes at an additional computational cost. To run
the proposal trajectory, one needs to calculate the gradient of
the hybrid energy with respect to the conformational degrees of
freedom. Since ISD uses non-Cartesian parameterizations, the
gradient can be quite involved. Thanks to the chain rule we can
break the computation of the gradient into two steps: First, the
Cartesian gradient is calculated. In a second step, the Cartesian
gradient is projected into the space of the conformational
degrees of freedom. ISD implements this projection for dihedral
angles and the rotational degrees of freedom of a rigid-body
transformation.

2.3.3. Replica-Exchange Simulation
The posterior distribution arising in an application of ISD,
is quite complex and typically shows multiple modes. As we
will see in Section 3.3, the posterior distribution encountered
in integrative modeling with cryo-EM data is often sharply
peaked and exhibits isolated peaks. It is highly challenging to
draw conformational samples from such a posterior distribution.
ISD uses replica-exchange simulations (also known as parallel
tempering) (Swendsen and Wang, 1986; Geyer, 1991) to address
the sampling problem.

There are two factors that contribute to the posterior, the prior
and the likelihood, and both are difficult to simulate in their
own right. Therefore, ISD controls the complexity of each factor
independently by introducing two “temperatures” (Habeck et al.,
2005b). The first parameter, the inverse temperature β ∈ [0, 1],
scales the likelihood:

[

Pr(D|θ , ξ , I)
]β
;

for β = 1 we obviously recover the original likelihood, for β = 0
we completely switch off the data.

The second parameter controls the shape of the
conformational prior. Because the non-bonded interactions
E(θ) span many orders of magnitude, it is highly inefficient
to work with the standard Boltzmann ensemble which scales
down the non-bonded energy when the temperature is increased.
Instead of the Boltzmann ensemble, ISD uses the Tsallis ensemble
to smooth out non-bonded interaction (Habeck et al., 2005b)
and simulates:

[

1+ (q− 1)(E(θ)− Emin)

]−q/(q− 1)

where q ≥ 1 is the so-called Tsallis q and Emin has to be chosen
such that E(θ) > Emin for all structures. For q = 1, we recover
the standard Boltzmann prior (Equation 1).

The choice of the tempering schedule (i.e., the sequence of β

and q) is difficult and crucial. We have to trade-off efficiency vs.
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ergodicity of sampling. With increasing number of temperatures,
the overlap between the replicas increases which results in an
elevated swapping rate. But with increasing number of replicas
the time for round trips increases quadratically, because states
diffuse across different temperatures (i.e., there is no directed
exchange of states that would aim for rapidmixing of states across
different temperatures) (Earl and Deem, 2005). Therefore, we
would rather choose a minimal number of replicas such that the
smallest swapping rate is maintained.

3. RESULTS

In this section, I will illustrate Bayesian integrative modeling with
hybrid data focusing on EMmaps.

3.1. Flexible Fitting with Hamiltonian Monte
Carlo
ISD can fit known structures and structural models into EM
maps. In flexible fitting, we are trying to change the internal
structure of a biomolecule so as to better fit an experimental
EM map. A couple of software packages for flexible fitting has
been published. Normal mode and elastic network methods
(Delarue and Dumas, 2004; Tama et al., 2004; Hinsen et al., 2005;
Schröder et al., 2007; Jolley et al., 2008; Tan et al., 2008) boost
transitions along the principal directions of structural change.
Molecular dynamics (MD) based methods (Orzechowski and
Tama, 2008; Trabuco et al., 2008) combine a density fitting
score with a full-fledged force field. Real-space refinement in
Cartesian and internal coordinates, originally developed for X-
ray crystallographic data, has been adapted to cryo-EM maps
(Fabiola and Chapman, 2005). Rigid-body modeling with Flex-
EM (Topf et al., 2008) freezes secondary structure elements and
keeps just the linker regions flexible. Fragment-based structure
prediction methods such as Rosetta has been combined with
density map refinement (DiMaio et al., 2009).

ISD uses dihedral angles to parameterize the structures of
the subunits of a macromolecular complex. In addition to
the dihedral angles, each subunit has six external degrees of
freedom that describe a rigid transformation of the subunit
(three translational and three rotational degrees of freedom). The
complete list of dihedral angles as well as the translational and
rotational degrees of freedom from all subunits makes up the
conformational degrees of freedom θ .

To study flexible fitting with ISD, let us first look at a specific
example. Adenylate kinase (AK) is a widely used test system to
predict and simulate conformational changes in proteins (see e.g.,
Orzechowski and Tama, 2008; Beckstein et al., 2009; Whitford
et al., 2009). AK adopts two conformational states: an open
state in which no ligands are bound and a closed state. The
overall difference between both states is an RMSD of ∼ 7 Å.
The conformational change can be understood as a rigid-body
movement of three domains relative to each other: CORE, LID,
and NMP-bind. During the conformational change, these three
domains maintain their internal structure (Müller et al., 1996;
Whitford et al., 2009).

I ran local posterior sampling with HMC starting from the
open state (PDB code 4ake) and fitted it into a simulated EM

map of the closed state (PDB code 1ake) at 10 Å resolution.
Figure 1A shows the evolution of the RMSD to the initial and
target structures during flexible fitting. The simulation starts at
an RMSD of about 7 Å and rapidly improves it by optimizing the
agreement with the experimental and theoretical maps. This is
reflected by the evolution of the cross-correlation coefficient (see
Figure 1B), which increases as the RMSD to the target structure
decreases. After less than 200 steps of HMC sampling the fitted
structure has an RMSD < 1 Å to the target structure and a cross-
correlation of almost 100%. During flexible fitting, the structure
of the three domains remains intact. This is reflected by the fact
that the RMSD restricted to those Cα atoms that belong to the
same domain changes only little compared to the change in the
overall RMSD (see Figure 1C). Thus, theHMC sampler preserves
the integrity of the input structure and introduces larger scale
changes only in a few hinge regions.

3.2. Flexible Fitting Benchmark
To systematically validate local flexible fitting of EM maps with
ISD, I applied HMC sampling of the posterior distribution to a
benchmark proposed by Topf et al. (2008) to test their Flex-EM
method. The Flex-EM benchmark comprises various medium
sized proteins and simulated EM maps at different resolutions
ranging from 4 to 14 Å. For each flexible fitting task of the
single-domain subset, I launched an HMC sampler starting
from the initial structure as provided by the benchmark. The
initial structure was obtained by homology modeling based on
a template structure that shows an alternative conformational
state. The task is to deform the homology model such that it
better agrees with a simulated EM map showing a different
conformational state.

Figure 2 shows the results of a flexible fitting benchmark
from Topf et al. (2008). In all cases, ISD improves the fit
of the initial structure quite significantly and achieves cross-
correlation coefficients above 95%. Moreover, the RMSDs of the
final structures fitted with ISD are systematically better than the
fits obtained with Flex-EM.

Although flexible fitting with HMC performs well in
practice, there are still conceptual problems with this approach.
Sampling with HMC does not explore the full posterior
distribution, but stays in the vicinity of the initial structure. A
truly Bayesian approach, however, aims to explore the entire
posterior distribution by using, for example, a full-blown replica
simulation. However, global sampling of the posterior will result
in many alternative fits of the EM map that will show a
large RMSD to the target structure, because the force fields
implemented in ISD cannot distinguish between the target
structure and other globular structures that fit the density
map. A remedy is to not only use the known structure that
is fitted against the EM map as the initial structure, but also
to develop a probabilistic model that allows for deformations
of the known structure. Such a model is currently under
development.

3.3. Global Fitting of Symmetric
Assemblies
Global sampling of the posterior distribution is currently only
possible in ISD, if the internal structure of the subunits is kept
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FIGURE 1 | Flexible fitting of adenylate kinase into a 10 Å map. (A) Evolution of the RMSD to the initial structure (4ake) shown in dark blue and the target

structure (1ake) shown in light blue. (B) Evolution of the cross-correlation coefficient during flexible fitting. (C) RMSD reduced to Cα atoms that are part of the same

rigid domain.

FIGURE 2 | Flexible fitting benchmark. Shown are the RMSD values for the final results of flexible fitting with ISD (light blue) and Flex-EM (dark blue) in comparison

to the RMSD of the initial structure to the target structure (green). (A) Flexible fitting results for 1uwo, 1g5y, 1ccz, 1jxm. (B) Flexible fitting results for 1ake, 1cll, 1c1x.

fixed. The only degrees of freedom are the six external degrees
of freedom parameterizing a global rotation and translation of
each subunit. The sampling problem arising in global fitting of
EM maps is quite severe. To see this, let us first study sampling
from the prior (Equation 12), which is the Boltzmann ensemble
confined by a soft box containing the experimental density
map. Sampling from this prior is a sort of toy version of the
density fitting problem. Instead of fitting the assembly against the
density map, our aim is to generate non-clashing configurations
that lie inside a box which contains the thresholded map.
This is an instance of a 3D packing problem, which is
NP-hard.

Let us look at a specific example: The symmetric chaperonin
GroEL has been studied extensively by cryo-EM, X-ray
crystallography and NMR. A 3D reconstruction of GroEL at
a resolution of 4.1 Å is available (EMD-6422). The original
map spans 2403 voxels. The EMDB entry suggests a user-
defined threshold of ρmin = 3.5 for visualizing the map. After
thresholding (Equation 10) and cropping, the grid has 135 ×
133 × 133 voxels, i.e., only ∼ 17% of the original volume
carries information that is useful for structural modeling. The
3D cropping operation results in a box that spans a volume
of 144.5 × 142.3 × 142.3 Å3. This example illustrates that
thresholding and cropping can achieve a drastic reduction in the
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FIGURE 3 | Major structural clusters of the GroEL 14-mer generated from the prior distribution confined to a box. Subunits are color coded. The lowest

energy clusters are shown on top (structures 1–3). The second lowest energy structures are clusters 4 and 5. Structure 6 is a rare high energy configuration that is

also generated by replica-exchange Monte Carlo.

number of grid points that have to be evaluated during density
fitting.

GroEL exhibits a seven-fold tetrahedral symmetry (D7).
Therefore, our task is to sample configurations of the 14-mer
that fit inside the box and minimize the overlap between atoms
from different subunits. I used a Tsallis replica simulation to
sample structures of the GroEL 14-mer. There are only six
conformational degrees of freedom: three rotational and three
translational degrees of freedom, which determine the position
and orientation of a single GroEL subunit. The positions and
orientations of the other 13 subunits are generated by the action
of the D7 symmetry operator.

Although this is a low-dimensional sampling problem, it turns
out to be surprisingly hard. I needed 59 replicas in the Tsallis
ensemble to achieve an average swap rate of 38%. If the non-
bonded interactions are fully switched on, there are only few
arrangements that fit into the box without producing significant
clashes between atoms from different subunits. As a consequence,
the box prior exhibits a few isolated peaks. The shape of the prior
distribution is reminiscent of a golf-course energy landscape and
quite different from the funnel-shaped energy landscape imposed
by distance restraints.

Clustering of the sampled rigid-body degrees of freedom
yields six groups of symmetric assemblies that fit into the box

(see Figure 3 and Table 1). Each group is defined very precisely
with an ensemble RMSD ranging between 0.13 and 0.23 Å over
the entire 14-mer. The tightness of the clusters shows that there
is only a discrete set of arrangements that fits into the box.
The first three clusters achieve the lowest non-bonded energies
E(θ). The energy of the next two clusters is elevated by 70 units.
Replica-exchange Monte Carlo occasionally also samples a high-
energy structure (cluster 6). The first five clusters show the same
arrangement of the seven-membered ring formed by chains A–
G. The RMSD of these chains to the arrangement in the crystal
structure is below 0.8 Å; only the last cluster shows a higher
RMSD of 4.7 Å. The major difference between the clusters is in
how the rings are arranged relative to each other. In clusters 1,
2, 3, and 6, the two rings are oriented in the same fashion as in
the crystal structure (with the termini facing each other), whereas
clusters 4 and 5 show an inverted orientation.

Posteriors based on distance data such as those arising
in NMR applications exhibit a continuum of high-probability
structures. The Markov chain is guided to the most likely
structures by a funnel-shaped probability landscape. The
distributions arising in EM fitting problems show a very
different landscape with multiple isolated peaks that carry similar
probability mass and therefore all contribute significantly to the
posterior. Rigid-body modeling with EM maps can be viewed as

Frontiers in Molecular Biosciences | www.frontiersin.org March 2017 | Volume 4 | Article 1515

http://www.frontiersin.org/Molecular_Biosciences
http://www.frontiersin.org
http://www.frontiersin.org/Molecular_Biosciences/archive


Habeck Cryo-EM Modeling with ISD

TABLE 1 | Summary of a clustering analysis of the prior ensemble of
GroEL.

Cluster av.
energy

Population
[%]

Ensemble
RMSD

RMSD
(7-mer) [Å]

RMSD
(14-mer) [Å]

1 228.8 22.8 0.2 0.8 7.8

2 234.0 23.1 0.2 0.7 9.0

3 234.1 23.1 0.1 0.7 13.4

4 301.7 19.3 0.2 0.8 71.5

5 301.7 11.5 0.2 0.8 80.2

6 995.5 0.2 0.1 4.7 8.6

Six major clusters have been identified. Listed are their average non-bonded energy, the

RMSD to the average structure within each cluster (precision) and the RMSD (accuracy) to

the crystal structure (PDB code 1oel) for a single ring (chains A–G) and the entire 14-mer

(chains A–N).

a 3D packing problem. In case of GroEL, the packing constraint
from the prior box and the D7 symmetry already determine the
overall structure of the assembly to a large degree without any use
of the density map. But the tests also show that even sampling
from the prior alone can be quite challenging.

The minimum energy assembly sampled from the prior fits
the density map only poorly with a cross-correlation of ∼ 10%.
Refining the assembly in the presence of the map improves the
cross-correlation to 55% and decreases the RMSD of the entire
14-mer to 1.1 Å.

3.4. Multi-Body Modeling of GroEL/ES
In general rigid-body modeling applications, we have to fit
multiple rigid bodies into an EM map. I will use the GroEL/ES
complex to illustrate multi-body fitting with ISD. GroEL/ES is
formed by GroEL and the cochaperonin GroES. GroES interacts
with one of the seven-membered rings formed by GroEL after
a conformational change has been induced in the subunits.
Therefore, the structures of the two GroEL 7-mers are no longer
identical, and we have to fit three rigid bodies: one subunit of
free GroEL (PDB code 1aon, chain A), one subunit of GroEL in
complex with GroES (1aon, chain H), and one subunit of GroES
(1aon, chain O). Each of the three subunits is duplicated by the
action of a 7-fold cyclic symmetry. The symmetry mates are not
represented explicitly, but generated from each of the three rigid
bodies. Forces that act on the symmetry mates are backprojected
onto the subunit. Therefore, we have a total of 18 conformational
degrees of freedom.

I used ISD to fit GroEL/ES into a 23.5 Å map (Ranson et al.,
2001) (EMD-1046). To shortcut the convergence of posterior
sampling, I first ran a replica simulation with a Cα representation
of the subunits and switched off the non-bonded interactions.
With this strategy, the sampler rapidly generates models that
achieve a cross-correlation of 96% (see Figure 4D). Inspection of
the structures shows that there are two clusters which differ only
in the structure of the GroES subunit. The structure of the two
GroEL rings is already very close to the crystal structure (1aon)
with an RMSD of 3.5 ± 0.5 Å over the 14-mer formed by the
GroEL subunits (Figure 4A). The GroES 7-mer arranges in two
versions of the ring: One is the correct structure with an RMSD
of 2.1 ± 0.6 Å to the crystal structure. The second structure
is incorrect with an RMSD of 20.0 ± 0.3 Å. Both structures

are almost equally populated. The correct structure is adopted
by 51.3% of the structures; the population of the incorrect
assembly is 47.7% (see Figure 4B). There is a tiny fraction with a
population of∼1% that shows a third arrangement of the GroES
subunit (RMSD 9.17± 0.51 Å). Figure 4C shows the distribution
of the RMSD over the entire assembly.

In a refinement step, I used a full-atom representation of
the subunits and switched on the non-bonded energy terms.
The RMSD to the crystal structure drops to 1.4 Å without
compromising the fit to the EM map: the cross-correlation
coefficient of the full-atom structure is still 96%.

3.5. Estimation of the Precision of an EM
Map
As outlined in Section 2.2.1, it is challenging to obtain a good
estimate of the precision of an EM map, because an EM map
typically contains many zero-density voxels in addition to the
non-noise voxels, but only voxels carrying a real signal should
contribute to the precision. To identify which voxels carry true
signal, we would have to first solve the fitting problem. Therefore,
both problems, the estimation of a well-fitting structure and
the construction of a good mask, are highly related. Moreover,
the errors (i.e., the discrepancy between the experimental and
calculated maps) are spatially correlated, but the Gaussian
model (3) treats them as completely independent observations,
which also results in an artificial increase in the precision.
The reason for the latter effect is the following: If errors are
correlated, the effective number of data points is smaller than
the number of voxels (Sivia, 2004). According to Equation (7)
the precision of the map is proportional to the number of
voxels for the simple Gaussian model, the precision will therefore
be overestimated, if the errors between neighboring voxels are
correlated.

Let us illustrate the various factors that influence the precision
for a concrete example. Figure 5 shows the distribution of the
discrepancy between the experimental and the calculated density
map for the GroEL/ES map analyzed in the previous section.
The Gaussian likelihood assumes that this distribution has a bell-
shaped curve whose width is determined by the precision λ. The
distribution of the discrepancy ǫn = ρn− ρ(xn; θ , σ ) is shown in
(Figures 5A–D) for various stages of preprocessing. The original
map contains many low-density voxels that lead to a very sharp,
dominating peak at zero in the distribution of ǫn (Figure 5A).
Cropping (Figure 5B) and subsequent decimation (Figure 5C)
chops away many of the zero-density voxels and decreases
the detrimental effect of the low-density voxels. However, the
distribution of ǫn is only captured well by a Gaussian, if we
mask out low-density voxels (see Figure 5D). The effect of the
preprocessing steps on the estimated precision is shown in
Figure 5E. Each of the preparation steps lowers the estimated
precision by orders of magnitude.

4. CONCLUSION

This article discusses how ISD incorporates EM maps into a
structure calculation and demonstrates some aspects of Bayesian
integrative modeling with EM data. The Bayesian framework is
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FIGURE 4 | Multi-body modeling of GroEL/ES. Shown is the RMSD between structural models obtained by posterior sampling with ISD and the crystal structure

(PDB code 1aon). (A) RMSD for GroEL subunits for both 7-membered rings (chains A–G and chains H–N) and for the entire 14-mer (chains A–N). (B) RMSD for

GroES (chains O–U) (C) RMSD for the entire 21-mer. (D) Correlation between the overall RMSD (21-mer) and the cross-correlation coefficient.

FIGURE 5 | Estimation of the precision λ of the GroEL/ES map. (A–D) Show the distribution of the “error” (or discrepancy) between the experimental and

calculated maps ρn − ρ(xn; θ , σ ). Error distribution for the full map (A), full map after cropping (B), the downsampled and cropped map (C), the downsampled,

cropped and masked map (D). (E) Estimated precision for the different input maps used in multi-body fitting.

highly suited to address issues in structural modeling with hybrid
data such as how to weighmultiple datasets relative to each other.
The major bottleneck of an inferential structure determination
is conformational sampling. The posterior distribution arising in
EM fitting poses a challenging sampling problem, which can be
overcome with replica-exchange Monte Carlo.

The article does not cover crosslinking/mass spectrometry
and solid-state NMR, which are complementary methods for
characterizing the structure of large assemblies. ISD has also been
used to model biomolecular assemblies from solid-state NMR
data. For example, we have used ISD to compute the structure
of the membrane domain of the trimeric autotransporter adhesin
YadA (Shahid et al., 2012). We modeled a fully flexible subunit
in the presence of a cyclic trimer symmetry. Although the data
are highly ambiguous due to the imprecision of solid-state NMR
restraints and the trimer symmetry, ISD was able to determine
the correct structure of the YadA membrane anchor domain.
Another example is our recent structure of a type 1 pilus FimA
from E. coli (Habenstein et al., 2015). Here solid-state NMR and
scanning electron microscopy data were combined with solution
NMR data to estimate the internal structure of the subunit as
well as the parameters of the helical symmetry of the FimA
pilus. Also modeling with crosslinking data is possible with
ISD, e.g., Carstens et al. (2016) discuss chromosome structure
modeling. However, the use of crosslinking data for modeling
macromolecular complexes still needs to be benchmarked
thoroughly. A common scenario is to combine cryo-EM with

crosslinking data, which also needs to be tested systematically
with ISD. A Bayesian approach to modeling macromolecular
assemblies with crosslinking data has been proposed recently by
Ferber et al. (2016).

Future work will focus on various aspects of modeling with
hybrid data. One goal is to develop a better model for EM maps
that incorporates the various preprocessing steps discussed in
Section 2.2.2. The model will incorporate a mask that will be
estimated along with the other unknown parameters. Moreover,
we will develop a likelihood function that accounts for spatial
correlations between errors in the density map. Another goal
is to support modeling with coarse-grained representations of
biomolecular systems (Tozzini, 2005; Saunders and Voth, 2013).
Especially, for very large systems it will be critical to work with
a multiscale representation to enable exhaustive conformational
sampling. We are already using highly coarse-grained models for
modeling the 3D structure of chromosomes and genomes from
chromosome conformation capture data (Carstens et al., 2016).
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Protein complexes are critical for many molecular functions. Due to intrinsic flexibility

and dynamics of complexes, their structures are more difficult to determine using

conventional experimental methods, in contrast to individual subunits. One of the major

challenges is the crystallization of protein complexes. Using X-ray free electron lasers

(XFELs), it is possible to collect scattering signals from non-crystalline protein complexes,

but data interpretation is more difficult because of unknown orientations. Here, we

propose a hybrid approach to determine protein complex structures by combining XFEL

single particle scattering data with computational docking methods. Using simulations

data, we demonstrate that a small set of single particle scattering data collected at

random orientations can be used to distinguish the native complex structure from the

decoys generated using docking algorithms. The results also indicate that a small set

of single particle scattering data is superior to spherically averaged intensity profile in

distinguishing complex structures. Given the fact that XFEL experimental data are difficult

to acquire and at low abundance, this hybrid approach should find wide applications in

data interpretations.

Keywords: hybrid method, single particle scattering, x-ray free electron laser, docking, molecular complex

INTRODUCTION

In crowded cellular environment, protein molecules often form complexes to fulfill their functions.
Thus, the study of protein complex structures and dynamics is critical for the understanding of
molecular mechanism (Eisenberg et al., 2000; Bader et al., 2003; Krissinel and Henrick, 2007).
Because protein complexes are mostly stabilized by non-covalent interactions, their stability is
under strong influence of solvent conditions, making it difficult to form molecular crystals that
can yield strong diffraction signals. The nuclear magnetic resonance (NMR) spectroscopy has been
widely applied to structure determination of relatively small molecular systems, but the degeneracy
of NMR signals in large protein complexes challenges themodel reconstructions (Bax andGrzesiek,
1993; Mainz et al., 2013; Göbl et al., 2014; Shen and Bax, 2015). Other experimental approaches
that do not require crystallization include small angle X-ray scattering (SAXS) methods that obtain
rotational averaged scattering intensity profile, from which structural information can be extracted
to build low resolution 3D models (Konarev et al., 2006; Liu et al., 2012). Biochemistry techniques,
such as cross-linking, mutagenesis, or single molecule fluorescence experiments can reveal critical
interacting regions at complex interfaces, for example. The SAXS and biochemistry assay data bear
a common problem: the information deficiency, compared to X-ray crystallography or NMR, does
not allow a high resolution 3D structure determination. The data interpretation therefore heavily
depends on computational modeling.
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Recent advances in single particle imaging (SPI) methods
using cryogenic electron microscopy (cryo-EM) or the emerging
X-ray Free Electron Laser (XFEL) provide a new opportunity
to study the molecular complex structure and dynamics (Emma
et al., 2010; Chapman et al., 2011; Seibert et al., 2011; Cheng,
2015; Cheng et al., 2015; Schlichting, 2015). The cryo-EM
single particle imaging technology has achieved significant
breakthroughs, mostly thanks to the development of direct
electron detecting device, model reconstruction algorithms,
and sample handling, and automated data collection (Scheres,
2012; Cheng, 2015; Cheng et al., 2015). The resolution of 3D
reconstruction models from cryo-EM data has been reported to
atomic resolution, and the molecular size can be smaller than 100
kDa (Merk et al., 2016). The XFELs with their unprecedented
peak brilliance realized a new experimental mode, “diffract before
damage,” to overcome the X-ray dosage limitations, making
it possible to collect high resolution X-ray diffraction signals
from non-crystal single molecule samples in principle (Neutze
et al., 2000; Bogan et al., 2008; Seibert et al., 2011; Munke
et al., 2016). Since the commissioning of the world’s first hard
XFEL facility, the Linac Coherent Light Source (LCLS), collective
efforts have been made to push forward the application of
XFEL in structure determination using single particle diffraction
approach, and progress has been achieved toward high resolution
structure determinations (Aquila et al., 2015; Munke et al.,
2016). Nevertheless, both cryo-EM single particle imaging and
XFEL single particle diffraction require tremendous amount of
data measured at orientations that span SO(3) rotation space
to assemble into a finely sampled 3D diffraction volume, from
which 3D structures can be reconstructed. It is still a limiting
step to obtain such experimental datasets, especially for XFEL
single particle diffraction cases (Aquila et al., 2015). Experimental
challenges include sample purification, injection, and alignment
to the X-ray incidence beam etc., making the data collection
very tedious and inefficient. Because of the low hit-rate (the
chance for XFEL pulses hitting on individual clean sample
particle) and the limited XFEL resources all over the world (only
LCLS in SLAC national laboratory and the SACLA in RIKEN
SPring-8 center are currently commissioned), collecting a full
dataset which may include millions of single particle scattering
patterns is still beyond present reach as routine experiments.
Therefore, the data analysis methods in cryo-EM single particle
imaging is not yet practical for XFEL single particle scattering
data interpretation. The computational challenges for XFEL data
analysis are summarized in a recent review (Liu and Spence,
2016).

Computational docking methods have been developed for
protein complex structure prediction based on the structures
of protein subunits. The Critical Assessment of PRedicted
Interactions (CAPRI) contests have been organized and progress
has been reported in the proceedings published after each
evaluation (Janin, 2005; Lensink et al., 2016). One of the major
challenges in protein complex structure prediction is to design
reliable scoring functions for model quality assessment. The
scoring functions for docking usually incorporate the following
terms to rank the predicted models: the shape complementary
between protein subunits, electrostatic interactions, solvation

energy, and statistical potential energy derived from protein
structure databases. Although encourage progress is obtained,
a satisfactory scoring function is still needed (Gray et al., 2003;
Vreven et al., 2015). The aforementioned XFEL single particle
scattering data can be valuable in improving the ranking of
protein complex structures generated using docking method,
even for the cases that the dataset is not sufficient for high
resolution structure determination. As a matter of fact, similar
ideas have been implemented for SAXS data, which can be
incorporated in model evaluation (Mattinen et al., 2002; Zheng
and Doniach, 2002; Förster et al., 2008; Schneidman-Duhovny
et al., 2012; Schindler et al., 2016). In this work, we extend this
approach to XFEL single particle scattering data, inspired by the
application of XFEL data in modeling of protein conformation
changes (Tokuhisa et al., 2016). Using Zdock program(Chen
et al., 2003), structure decoy sets are generated for several selected
protein complexes, and the power of ranking using the original
Zdock score, the SAXS score, and the single particle scattering
score is studied. The simulation results suggest that the XFEL
single particle data has the most information that best distinguish
the correct models from the rest in the decoy sets. The problems
in experimental data based model selection and the challenges in
scoring function calculation are discussed.

METHODS

Single Particle Scattering Pattern
Simulations
The scattering pattern simulation for a given protein structure
is a forward problem, which is straightforward by using the
Fourier transform of the electron density represented with
atomic positions. In this work, the structural form factors
F(q) is calculated using the direct summation of scattered
wavefunctions, i.e.,

F(q) =
∑

j

fj(q)e
iq · rj (1)

where the q is a vector in Fourier space, corresponding to the
momentum transfer of the X-rays, defined as q = 2π(K0 –Ki),
Ki and K0 are the incidence and scattered wave vectors. fi(q)
and rj are the form factor and position of atom j. The atomic
form factor depends on the magnitude of momentum transfer
q= |q|; the values can be looked up in the International Table
for Crystallography. For a forward scattering experiment, the
momentum transfer q can be calculated as

q =
4 π sin θ

λ
(2)

and 2θ is the scattering angle that can be calculated based
on the distance between sample and detector and the pixel
location information, λ is the wavelength of X-rays. Based on the
construction of Ewald sphere, for a given model at any specified
orientation, the structure form factor F(q) at momentum transfer
q that is mapped to the pixel position on 2D detector can
be calculated using Equation (1). Then the squared modulus
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of the structure factors is taken for scattering intensity, i.e.,
I(q)= ||F(q)||2. For experimental data, Poisson noise was added
to simulate the statistics error occurred during photon detection.
On top of this, background noise was simulated by adding
random photons following a Gaussian distribution at desired
noise levels.

The key parameters for the pattern simulations can be
found in Table S1 in the Supplementary Material. Experimental
scattering intensity is proportional to the incidence beam
intensity I0, which can be used to scale the intensity values
recorded with detector. Therefore, I0 in this study has an
immediate impact to the resolutions of scattering signals. In the
simulations presented here, the incidence beam intensity was
not explicitly considered. Instead, I0 was used as a scaling factor
to set the highest measurable resolutions. In the simulations
presented in this paper, we set the highest measurable resolution
shell to be 4Å, where the average number of photons recorded
at each pixel in this resolution is 1. This requires the photon
flux is 1–2 order of magnitudes higher than the current XFELs,
such as the LCLS, whose photon flux is about 1012 photons/
pulse/µm2.

The patterns for the native structures of the complexes
are first simulated at random orientations in SO(3) rotation
space (or a subspace) as the “experimental data”; then
the patterns for the predicted models are generated with
two orientation sampling approaches: (1) using the same
orientations as the “experimental data” to study the ranking
power of the scoring functions under ideal situations; and
(2) using orientations specified by Euler angles spanning
SO(3) rotation space. In the latter case, the orientations will
be determined by computing the cross-correlation between
“experimental patterns” and “model patterns,” therefore the
discretizing step size is important for finding the correctly
matched orientations. All patterns are simulated to 4 Å
resolution.

Protein Complex Generation Using Z-dock
Program
The protein complex structures were generated using the Z-
dock program developed by Weng’s group in University of
Massachusetts. Using Z-dock program, protein complexes were
generated and 1,000 structures with high Z-dock scores were
saved for single particle scattering pattern simulations. The root-
mean-square-deviation (RMSD) values of these predictedmodels
compared to the native (correct) complex structure are also
recorded.

Scoring Function Based on X-ray
Scattering Data
The scoring function for Z-dock program is based on molecular
shape complementary, electrostatic interaction, and solvation
energy etc. Higher scores indicate better chance to be the
correct model. With simulated X-ray scattering data, the chi-
score is used to measure the difference between datasets to
reflect the structural differences. For single particle scattering
data composed of N scattering patterns, having intensity values

inM pixels, the SPI chi-score is defined as:

χ2
spi =

1

N

N
∑

n= 1

1

M

M
∑

m= 1

(

I
(n,m)
model

− I
(n,m)
data

σ
(n,m)
data

)2

(3)

where I(n,m) is the intensity value in n-th pattern at pixel
position m, and σ (n,m) is the associated standard deviation in
the simulation data, σ (n,m) = (I(n,m))1/2according to the Poisson
noise distribution. The subscripts, model and data, refer to the
values corresponding to the structures generated by Z-dock, and
the values corresponding to the correct model (data means the
simulated experimental data; while model means the theoretical
value calculated from the predicted models). Note that the n-
th model pattern must be in the same orientation as the n-th
“experimental” pattern for Equation (3) to be valid. In reality,
orientation is unknown during the chi-score calculation for
real experimental data. Therefore, orientation matching must be
carried out by minimizing the chi-score for each experimental
pattern with respect to all possible orientations of the model. The
Equation (3) becomes:

χ2
spi =

1

N

N
∑

n= 1

min
n′





1

M

M
∑

m= 1

(

I
(n′ ,m)
model

− I
(n,m)
data

σ
(n,m)
data

)2


 (4)

where {n′} is the set of patterns computed for any predicted
model. For finer sampled orientation space using discretized
euler angles, the number of model patterns grows rapidly, so the
pair-wise orientation matching is very time consuming, and we
offer a possible remedy in the following sub-section.

Instead of comparing single particle patterns at matched
orientations, the SAXS profiles can be obtained from
experiments, or from the virtual “SAXS” pattern by summing
the single particle patterns. Specifically, SAXS profile is obtained
by aggregating the single particle scattering data, then averaging
over the angular direction, i.e.,

ISAXS(q) =
1

N

N
∑

n= 1

∫ 2π
φ = 0 I

n(q,φ)dφ
∫ 2π
φ = 0 dφ

=
1

2πN

N
∑

n= 1

∫ 2π

φ = 0
In(q,φ)dφ (5)

In(q,φ) is the intensity value at polar coordinate (q,φ) specified
by the radial component q and the azimuth angle φ for the n-th
pattern. The chi-score can be calculated as:

χ2
SAXS =

1

K

K
∑

k= 1

(

ISAXS,model(qk)− ISAXS, data(qk)

σSAXS, data(qk)

)2

(6)

Orientation Matching
In order to find the orientation that best matches each
“experimental” pattern, it is necessary to generate an orientation
grid that spans SO(3) rotation space by discretizing three Euler
angles. The step size for discretization is critical to the accuracy
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of orientation match. The step size can be estimated by matching
the highest resolutions of 2D scattering patterns.

In order to find the best matched orientations, theoretical
patterns must be simulated for all discretized orientations (after
removing symmetric redundancies if there are any). Then each
“experimental” pattern must be compared to all theoretical
patterns for the theoretical model. The best matched pattern
is identified by finding the lowest chi-scores compared to each
experimental pattern. It is very computational expensive to
evaluate chi-scores for all “experiment-model” pattern pairs
at pixel levels. For example, if each rotational Euler angle is
discretized to n values, to find orientations of m experimental
patterns, there will be n3m evaluations of 2D matrix comparison.
This computational challenging problem can be sorted out in
several approaches, and here we offer two solutions.

First, for the simulation case, as a proof-of-principle, we
artificially confine our rotational degree of freedom within a
subspace of SO(3) defined by the Euler angles (−22.5◦≤ α,β,γ ≤

22.5◦). This does not solve the problem in actual applications
to experimental data, which are certainly not confined to this
subspace, yet this operation allows quick assessment of the effects
of grid size.

The second solution is to reduce the “experimental” pattern
to its angular auto-correlation, which does not depend on the in-
plane rotation angle (Kam, 1977; Liu et al., 2013; Huang and Liu,
2016). The angular auto-correlation function (AC) is defined as:

AC(q,1φ) =

∫ 2π

0
I(q,φ)I(q,φ + 1φ)dφ (7)

where I(q,φ) is the intensity at pixel specified using polar
coordinate (q,φ). This requires a pre-processing of the
“experimental” patterns and the theoretical patterns computed
from predicted models. The AC transformation removes the in-
plane rotation dependence of the scattering pattern, making the
AC function depend on two Euler angles that specify a direction
perpendicular to the scattering pattern. Then the AC functions
are used for pairwise comparison for scoring (i.e., chi-scores
of AC functions are calculated), rather than comparing each
scattering pattern with every reference pattern. It can be shown
that the extra overhead calculation has benefit in reducing the
computational complexity from O(n3M) to O(n2M), where n is
the number of grids for each Euler angle, and M is the number
of experimental patterns. The computational complexity for
overhead computing of AC function is O((n3+M)∗k), where n3,
M are the numbers of theoretical patterns and “experimental”
patterns respectively, k is the number of discretization of in-plane
rotation angle. The advantage is obvious if M>>k.

RESULTS

In this section, using simulation data with the docking decoys,
we will answer four questions: (1) how many single particle
scattering patterns are needed for the scoring function to
converge; (2) how do the scoring functions compare to
each other in terms of ranking the predicted models; (3)
how does the orientation mismatching affect accuracy of

the scoring functions; (4) how to speed up the orientation
matching by using reduced representations of scattering
patterns.

The molecular complex systems are selected from Benchmark
5.0 on Z-dock server (Vreven et al., 2015). The models are
depictured in Figure 1 and major features are summarized in
Table 1. The native structures are available at http://liulab.csrc.
ac.cn/download/zdock/.

The Convergence of Scoring Function
Both the SPI-score and SAXS-score (Equations 3, 6) need a
good number of patterns to reach convergence. The first task is
to determine the lower limit of this number using simulation
data. Experimentally, the SAXS profile can be obtained without
too much technical challenge, and even high throughput data
collection is possible for standard SAXS experiments. We focus
on the convergence of SPI-score in this section, because high
quality single particle scattering patterns are still very difficult to
obtain, even at X-ray free electron laser facilities. This is also one
of the major motivations of this work, through which we hope
to demonstrate that the hybrid approach for data analysis can
improve the performance of both computational modeling and
the XFEL data interpretation using a small set of data.

Regarding the convergence question, the SPI-score was
computed with different numbers of single particle scattering
patterns. The convergence can be monitored by plotting SPI-
score as a function of pattern numbers. The purpose of the
convergence test is to ensure that the scores are consistent
and independent of number of measurement. Figure 2A shows
the convergence of scoring function for 60 decoy structures
of complex#1 (3AAD). Here, the goal is to find the minimum
number of patterns required to yield a reliable scoring function.
To rule out other factors, the orientation for each pattern was
taken as known information, i.e., the exactly matched orientation
was used for comparison. The actual cases where orientation
assignment is required are considered in the following sections.
As shown in Figure 2A, the SPI-scores have large fluctuations
when the number of patterns is small, then converges quickly
when the number approaches 1,000. Similar trends were
observed for other complexes, and for this reason we use 1,000
scattering patterns in the SPI-score calculations through the
study. It is worthwhile to note that the minimum number of
scattering patterns required for a converged SPI-score varies
for each system, depending on complex size, binding mode,
and complex structure. The number 1,000 is a compromised
choice between accuracy and speed. The SPI-scores for different
predicted models are well separated when the SPI-score reach
convergence, indicating that the converged SPI-scores can be
used to assess the quality of the molecular complexes. In
Figure 2B, for each decoy model, we compared the SPI-scores
with 1,000 patterns and those with 2,000 patterns, the two sets of
scores are perfectly lined up around y= x. Therefore, simulation
results indicate that the convergence can be reached when
number of patterns is above 1,000. In other words, the minimum
number of patterns required to reliably scoring the predicted
models is 1,000, which is feasible with current instruments at
XFEL facilities.
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FIGURE 1 | The native structures for the molecular complexes used in this study. Two subunits are colored in blue and red in each complex, where the blue

subunit is fixed and the red subunit moves around the blue subunit to generate complex structures.

TABLE 1 | The characteristics of the molecular complexes.

ID Complex

PDB code

Subunit 1

(S1)

Subunit2

(S2)

No. atom

of S1

No. atom of

S2

No. Residue

of S1

No. Residue

of S2

Difficulty

in Zdock

No. atom

of complex

No. Residue

of complex

1 3AAD_A:D 1EQF_A 1TEY_A 2,164 1,231 243 144 Difficult 3,395 387

2 2B42_B:A 2DCY_A 1T6E_X 2,604 1,443 341 171 Easy 4,047 512

3 1E6J_HL:P 1E6O_HL 1A43_ 3,275 577 397 69 Easy 3,852 466

4 1IRA_Y:X 1G0Y_R 1ILR_1 2,499 1,139 294 138 Difficult 3,638 432

5 1JTG_B:A 3GMU_B 1ZG4_A 2,021 1,234 242 155 Easy 3,255 397

6 3BX7_A:C 3BX8_A 3OSK_A 1,389 897 163 111 Middle 2,286 274

7 2VDB_A:B 3CX9_A 2J5Y_A 4,345 436 528 52 Easy 4,781 580

8 1M10_A:B 1AUQ_ 1M0Z_B 1,601 2,087 184 254 Middle 3,688 438

The complex structures are shown in Figure 1, labeled with the complex ID.

The Comparison of Three Scoring
Functions
The power of ranking for each scoring function can be evaluated
by studying the correlation between the scores and model
differences. The RMSD is one of the most commonly used
measurements for model comparison. In Figure 3, the ranking
power for SPI-score and SAXS-score are summarized for the
complex#1, which belongs to “difficult” docking case. As shown
in Figure 3, the scattering plots clearly show that both SPI-
scores and SAXS-scores are positively correlated with the RMSD

values in general. For the case of complex#1, the correlation
coefficients between SPI-score and RMSD is 0.59, and the
correlation coefficient between SAXS-score and RMSD is smaller,
giving a value of 0.36. To better quantify the ranking power of the
scoring functions, a probability distribution function of RMSD,
P(RMSD,n), was computed for top n selected models. Specifically,
the probability for a model differing from the native structure
by a particular RMSD value was calculated for n models with
lowest scores. The probability distribution functions are plotted
in (Figures 3B,E), where the P(RMSD,n) for n = 25, 100, 1,000
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FIGURE 2 | The convergence of SPI-score for patterns with correct orientations. 60 decoys from complex#1 are used to demonstrate the convergence

progress of SPI-score. (A) the SPI-score is plotted as a function of pattern quantity, each line represent the SPI-score of one predicted decoy model by comparing

model patterns to “experimental” data. (B) The comparison of SPI-scores computed using 1,000 or 2,000 scattering patterns, whose orientations are random.

FIGURE 3 | The ranking power comparison between SPI-score and SAXS-score. (A,D) the scatter plot of scores as a function of RMSD. (B,E) the probability

distribution function of RMSD for the selected models. The three curves correspond to the distribution function of top 25, top 100, and all models. (C,F) The

accumulative probability functions corresponding to the three distributions in (B,E). The green and blue shaded area indicates the gain of ranking power by selecting

subsets of models.

(all) are calculated and compared. Based on the probability
distribution and the correlation coefficients between the scoring
function and the RMSD, it is clear that both SPI-scores and
SAXS-scores are capable of selecting models that have lower
RMSD values with respect to the native structure, while the SPI-
scores have stronger selecting power. The probability of selecting

models with lower RMSD values is increased after model ranking
using either SPI-score or SAXS-score. This increasing trend
is more pronounced for the ranking using SPI-scores. The
probability function is converted to accumulative probability
function by integration, as shown in (Figures 3C,F). On the
other side, the scoring function from the Z-dock can select a few
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best matched models from predicted models, the overall ranking
power is not as good as the SPI or SAXS scoring functions (data
not shown). Thismakes the z-dock scoring function vulnerable to
insufficient model generation. The SPI-score is a more powerful
function not only because it can be used to select the lowest
RMSD models, but also because the model ranking is consistent
with structure differences.

The same analyses were carried out for eight complexes,
as described in Figure 1 and Table 1 (for the other seven
complexes, see Supplementary Material). To quantify the
ranking power, we define a new parameter, the area under
the accumulative probability curve (AUC, area under curve),
similar to the measure of classification power. For each
accumulative probability distribution curve, the area is calculated
by integration. The x-axis, the range of RMSD, can be normalized
to the fraction of the largest RMSD value in the decoy sets.
Therefore, the AUC has a largest possible area of 1.0, as
an extreme case when all models are ranked in the same
order as the RMSD with respect to the native structure.
Under this definition, larger AUC values correspond to more
powerful ranking method. We calculated AUC at three levels
of selection (top 25, top 100, and all models) for each method
(SPI-scoring, SAXS-scoring, and Z-dock scoring), same as
the demonstration example in Figure 3. In Table 2, the AUC
statistics are summarized, suggesting that SPI-score has better
performance in terms of ranking power, compared to SAXS-
score. There is one exception in the case of complex#2, where the
ranking power of SAXS-score is slightly better than that of the
SPI-score.

The Effects of Orientation Mismatching
As mentioned in the previous section, the scoring functions
can be reliably obtained from about 1,000 single particle
scattering patterns, which are feasible to collect with the current
XFEL experimental technologies. However, the results in the
previous section are obtained based on a strong assumption
that the orientations of the models are “exactly” matched
to the orientation of native structure. It is known that
orientation determination is challenging using computational
methods, which utilize cross correlations between patterns by

matching “experimental data” to the “model data” at discretized
orientations.

During the orientation matching, the actual orientation
can be deviated from the computational matched orientation.
The mismatching can happen at two levels, as schematically
illustrated in Figure 4: (1) the discretized orientations for the
“model” patterns are not fine enough to match the “exact”
orientation but rounding up to the nearest orientations of the
“exact” orientation, and this finite discretization is unavoidable
due to the limitation of computing power; (2) the orientations

FIGURE 4 | Orientation mismatching scenarios. Two rotation angles can

be mapped to the points on a sphere, the third angle is the in-plane rotation

indicated using the arrow at each point. The red solid circle and the associate

arrow indicate the orientation of one experimental pattern, the blue circles and

arrows indicate possible orientations. The orientation deviation of solid blue

circle from the correct values (red solid circle) is due to the discretization of

SO(3) rotation space; and the orientation mismatching to the open blue circle

is attributed to large conformational difference. For the models that are similar

to the correct complex structure, the orientations are likely to be identified to

the vicinity of correct orientations (see Figure 5).

TABLE 2 | The performance of scoring functions.

Complex ID Z-dock SAXS SPI

Top 25 Top 100 All Top 25 Top 100 All Top 25 Top 100 All

1 0.53 0.55 0.55 0.71 0.64 0.54 0.74 0.65 0.54

2 0.77 0.78 0.78 0.86 0.83 0.78 0.84 0.83 0.78

3 0.68 0.65 0.57 0.78 0.65 0.56 0.83 0.71 0.56

4 0.54 0.46 0.37 0.76 0.69 0.36 0.77 0.70 0.36

5 0.68 0.57 0.52 0.75 0.63 0.53 0.85 0.65 0.51

6 0.78 0.75 0.62 0.72 0.68 0.51 0.83 0.75 0.51

7 0.69 0.63 0.60 0.82 0.74 0.58 0.88 0.85 0.58

8 0.59 0.56 0.48 0.73 0.64 0.49 0.78 0.67 0.48

The numbers are the AUC values for the selected models using the corresponding scoring functions. The numbers in bold font indicate the highest ranking power for top 25 models.
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for the best “experimental-model” pattern pairs judged by the
chi-score or correlation functions are not matched, meaning
that the matching is messed up by conformational differences.
In this section, we implicitly considered both factors by not
providing orientation information during pattern matching
process. The SPI-score is calculated using the modified formula
(Equation 4).

Using complex#1 (3AAD) as an example again, the orientation
mismatching effects are studied. The matching results are
summarized in Figure 5, which shows the deviation of the
Euler angles from the correct orientation. For models with
smaller RMSD values, most of the recovered orientations
are indeed close to the orientations of “experimental” data,
suggesting that the major orientation mismatching is due to
the discretization of SO(3) rotation space. For the models
with larger RMSD values, the success rate of determining
the pattern orientations are lower, which can be explained as
the consequences of conformational changes that overwhelm
orientation variation effects. The statistics of the orientation
deviation are summarized in Table S2. It is interesting to observe
that the second rotation angle, β, is more accurately recovered
using the reference matching approach than the other two angles.
Using simulation data, we mapped the landscape of SPI-score
due to the orientation differences. The results reveal that the
SPI-score landscape around the β rotation is smoother relatively,
suggesting thatmismatching due to finite discretization of β angle

can be tolerated. In other words, the chance of recovering the
orientation within the vicinity of correct β angle is higher.

Using the subset of SO(3) rotation space, we studied the case
of discretized representations of the orientations using step size
of 3 degrees. The results show that the orientation matching is
reasonable, and the ranking power is similar to the ideal cases
discussed in the previous section. The AUC for top 25 models
is 0.72 vs. 0.74 for the ideal case for complex#1 (see Table 3).
Nevertheless, as the discretization step size increases, the SPI-
score becomes less accurate. As a result, the ranking power of
the SPI-score is reduced. When the orientation sampling is fine
enough (step size of 3 degrees is sufficient in this simulation), the
SPI-score outperforms the SAXS-score, which does not depend
on orientation matching. The optimal discretization of SO(3)
rotation space has to be chosen under the considerations of
(1) the computational cost and (2) the accuracy of orientation
matching. For the latter concern, the discretization step size
should match the resolution of the scattering signals. For low
resolution data, larger discretization step sizes can be tolerated.
This may provide an opportunity of implementing multilevel
model selection method to speed up the overall computing: using
low resolution data to rule out a set of very unlikely models,
and using higher resolutions to narrow down the best matched
models.

In order to quantify the effects of background noise to
the ranking results, the signal-noise-ratio (SNR, defined as

FIGURE 5 | Orientation matching results. The dependency of matching accuracy on the conformational differences, the deviations from correct orientations for

three models: left to right, the RMSD values are 2.2, 10.5, and 15.1 Å. Larger RMSD values correspond to larger deviation from correct orientations.

TABLE 3 | Comparison of three methods for orientation matching.

Scattering pattern Radial profile Correlation pattern

Number of selected models 1,000 100 25 1,000 100 25 1,000 100 25

AUC (RMSD)* 0.54 0.66 0.72 0.54 0.63 0.73 0.54 0.62 0.72

AUC (s-score)# 0.37 0.69 0.80 0.37 0.63 0.74 0.37 0.59 0.73

Computing time (seconds)$ 211.47 1.07 14.30

*The AUC (area under curve) using RMSD as the measure for model difference.
#The AUC (area under curve) using s-score as the measure for model difference.
$Computing time needed for orientation matching for one pattern: for raw patterns, comparing to 4,096 (16ˆ3) patterns; for radial profile, comparing to 256 (16ˆ2) lines; for correlation

function, comparing to 256 (16ˆ2) auto-correlation patterns.

The results are for complex#1, and the reference patterns from models are in subspace of SO(3), with discretized euler angles cover a range of [−22.5◦, 22.5◦ ] using step size of 3◦.
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the ratio between variances of signals and noise) was varied
from 100 to 0.1 logarithm spaced. The results presented in
the previous sections were essentially the same with small
variations in the ranking, although the absolute values of scores
are larger for low SNR (i.e., larger noises for same level of
signals).

Speed Up the Matching of Orientations
The pairwise pattern comparison requires the exhaustive
sampling SO(3) rotation space using three euler angles. The
pairwise 2D pattern comparison is expensive computationally,
limiting the applications of this approach to large dataset. It has
been found that some preprocessing of the raw scattering data
can reduce computational cost for downstream analysis. First,
the in-plane rotation angle can be decoupled from the other two
rotations, by using an angular auto-correlation function (Huang
and Liu, 2016). In this case, the computational complexity can be
reduced significantly by converting the raw scattering patterns
to auto-correlation functions, which are used for comparison
instead of the scattering patterns. We compared the performance
of the new SPI-score based on the auto-correlation functions to
original SPI-score in Table 3. The results show that the ranking
power is maintained to be similar, and the computational time
is reduced by a factor of 14.8. Furthermore, each pattern can be
reduced to a radial profile (1D) by integrating over the azimuth
angle, yielding a curve that is similar to SAXS curve. Because
the scores computed using the radial profile representation are
essentially an average of chi-scores between matched patterns
(i.e., additional information are obtained by minimizing the
differences between experimental data and reference model),
it is different from SAXS curve that is the average of radial
profiles (by assuming random orientation distributions). The
results show that this radial profile, although with compressed
information, can be used for pairwise pattern comparisons. The
score computed from radial profiles after orientation matching
has a ranking power comparable to the SPI-score, as shown in
Table 3. This radial profile representation further reduces the
computing time by another 13.4 folds (∼200 times faster than
using raw pattern comparison). It is worthwhile to point out
that both reduced representations do not need to sample the in-
plane rotation, therefore, significantly reducing computing time
of generating model patterns as well.

DISCUSSIONS

X-Rays Only See Electron Distributions,
Not Sequential Information
X-ray scattering/diffraction is due to the interaction with
electrons, so the subject under probing is the electron density
map. In crystallography, the atomic models are built to the
electron maps by incorporating information of amino acid
sequences. Without considering the sequences, the information
from X-ray scattering is not sufficient to describe full features of
atomic models, especially when the resolution of X-ray scattering
signal is worse than atomic resolution. We observed several cases
that the low SPI-scores correspond to the predicted models with
large RMSD values (see Figures 3A,D). A closer examination
of the corresponding models reveals that the predicted docking
site is correct, but the docking pose (i.e., the orientation of the
docking subunit) is opposite to the correct model. The symmetry
of proteinmolecules can also introduce confusions in the analysis
of X-ray scattering data. For example, in Figure 6, the fixed
subunit molecule has a 2-fold pseudo symmetry, making it hard
to distinguish the native binding modes from its symmetric
counterpart. This explains some observations where the SPI-
score (or SAXS-score) positively correlates to the RMSD values
for models that are similar to the native structure, but the trend
becomes reversed for very large RMSD values (lower SPI-scores
correspond to models with larger RMSD).

An alternative measurement for structural differences is to
treat eachmodel as a point cloud, which ignores the sequence and
connections between these points. Then, the spatial correlations
between two models can be computed by maximizing their
overlaps. The correlation coefficients can be calculated as the
following:

cc =
〈ρ1(r)ρ2(r)〉 − 〈ρ1(r)〉〈ρ2(r)〉

σ1σ2
(8)

where ρ1/2(r)is the electron density of model 1 or 2 at position
r, σ

2
1/2 is the variance of model 1 or 2. We applied the model

alignment method described in SASTBX programs (Liu et al.,
2012). Briefly, the models are shifted such that the centers of mass
coincide with the real space origin, then the relative orientations
of the models are optimized by finding the largest overlaps

FIGURE 6 | The effects of symmetry. The dimer complex has a pseudo-symmetry (blue color), which may reduce the model ranking power of scattering data

based scoring functions. (A) the correct structure for the complex; (B) the model that has similar electron density to (A) after rotation, but differs significantly from (A)

in terms of RMSD.
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between models. The computing is sped up by sampling three
Euler angles with fast fourier transform (FFT) algorithm. In
order to be consistent with RMSD that is a distance measure,
we define a model difference parameter, s-score s = 1.0 – cc,
to gauge the ranking power of SPI-score or SAXS-score. Using
complex complex#1 (3AAD) as an example, the ranking power
for scattering based scoring functions is summarized in Figure 7.
The comparison to Figure 3 suggests that the X-ray scattering
data is more useful in describing electron density maps. In
order to compare structures that have sequential and connection
information, it is necessary to incorporate knowledge of physics
and chemistry. When considering the docking problem, the
biochemical properties at the interface are crucial, so the model
evaluation should include physicochemical terms.

Joint Scoring Function Is Needed to
Outperform Individual Functions
We examined the relation between SPI-scores and the
SAXS-scores by computing the correlation coefficients (See
Table S3 in Supplementary Material). The results suggest positive
correlation between the two scoring functions, with varying
correlation strength (0.12 to 0.81). This variation suggests
that the two scoring functions contain different structural
information. As shown in the Result section, the SPI-score is
better in ranking the models, so it is natural to include the
SPI-score in the joint scoring function.

The built-in scoring function of Z-dock is not sufficient
in ranking the models, but it has its merit by design,
which incorporates physicochemical terms and geometry

complementary properties. The model ranking by each scoring
approach is unlikely to outperform the combined scores. The
optimized IRAD (integration of residue- and atom-based
potentials for docking) function was reported to improve the
model ranking by combining several scoring functions (Vreven
et al., 2011). We re-ranked the models using z-rank program
where IRAD functions are implemented (Pierce and Weng,
2007). However, the model ranking power is increased modestly
in this case, mainly because the Z-dock program has a built-in
scoring function that give comparable ranking power as IRAD
scores.

In order to explore the potential of joint scoring functions,
we experimented one method of combination using SPI-score
and Z-dock score using a voting system: first, the Z-scores are
calculated for each model with either SPI-score or Z-dock score,
then the Z-scores are combined to give an overall ranking.
The experiment for complex model (#1) dataset does not yield
significant improvement. This suggests that it is not trivial to
combine the scores from different evaluation methods, because
hybrid does not mean simple linear combination. Designing
better ways to combine different scoring functions are subjects
of future studies.

Hybrid Approach Can Be Applied to
Incomplete Dataset
Although the idea in this work is about applying experimental
data in SPI or SAXS in the ranking of docking models, the impact
of modeling to the data interpretation is equally significant. As
mentioned, the XFEL facilities are scarce resources, although

FIGURE 7 | The ranking power revisited using electron density map differences. The figure (A–F) caption is the same as Figure 3, except that the model

difference is measured using s-score, instead of RMSD.
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more XFEL facilities will be commissioned in the near future,
there are still some technological challenges to carry out high
throughput single particle scattering experiments. It is not
practical to collect complete datasets for model reconstructions
that are solely based on experimental data yet. If computational
modeling, such as molecular docking or protein structure
prediction, is integrated in the data interpretation, it is possible
to determine structures from a much smaller dataset (∼1,000
patterns in the simulation cases). In other words, the hybrid
approach turns a reverse modeling (from intensity to electron
density map) problem to a ranking problem of the predicted
models. Given the advances in high performance computing,
sampling algorithms will be capable of generating diversemodels,
in which the correct structure is very likely to be included. Then
the model ranking and selection criteria is the key to model
determination.

In a related research field, the cryogenic electron microscopy
(CryoEM), the projection images of molecules are detected.
Several algorithms have been developed to reconstruct detailed
3D structures based on projection images. In general, such
dataset must be composed of a large number of images (at the
order of 10 thousands to 100 thousands), in order to obtain
high resolution structures. For relative low resolution model
reconstruction, it is feasible to obtain an ab initio density map
with <1,000 patterns using the maximum likelihood method
(Ekeberg et al., 2015). A global assignment of orientations is also
reported for simulation data using common line algorithm for
fewer than 1,000 patterns (Singer and Shkolnisky, 2011). The
hybrid approach reported here can potentially be used to select
the models at higher resolutions with similar amount of data,
given the availability of high resolution structures of docking
subunits.

CONCLUSION

The development of XFEL and its application in single
particle imaging requires fast and reliable methods to interpret
experimental data, especially when the dataset is not sufficient
to convert scattering signals to a unique structural model. In
this work, we demonstrated that single particle experimental data
is valuable in ranking the predicted models, and this hybrid
approach can be one solution for structure determination with
limited XFEL data.
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Monitoring hydrogen/deuterium exchange (HDX) undergone by a protein in solution

produces experimental data that translates into valuable information about the protein’s

structure. Data produced by HDX experiments is often interpreted using a crystal

structure of the protein, when available. However, it has been shown that the

correspondence between experimental HDX data and crystal structures is often not

satisfactory. This creates difficulties when trying to perform a structural analysis of

the HDX data. In this paper, we evaluate several strategies to obtain a conformation

providing a good fit to the experimental HDX data, which is a premise of an accurate

structural analysis. We show that performing molecular dynamics simulations can be

inadequate to obtain such conformations, andwe propose a novel methodology involving

a coarse-grained conformational sampling approach instead. By extensively exploring

the intrinsic flexibility of a protein with this approach, we produce a conformational

ensemble from which we extract a single conformation providing a good fit to the

experimental HDX data. We successfully demonstrate the applicability of our method

to four small and medium-sized proteins.

Keywords: protein conformational sampling, coarse-grained conformational sampling, molecular dynamics,

experimental data fitting, hydrogen/deuterium exchange, mass spectrometry, nuclear magnetic resonance

spectroscopy, X-ray crystallography

1. INTRODUCTION

Hydrogen/deuterium exchange (HDX) is a chemical phenomenon in which hydrogen atoms
of molecules are exchanged with deuterium atoms of the solvent (Engen et al., 2011).
Contrary to other structural biology techniques, such as nuclear magnetic resonance (NMR)
spectroscopy or X-ray crystallography, HDX experiments cannot reveal the three-dimensional
structure of a molecule, but they can provide valuable structural information (Huang and
Chen, 2014). This has led to numerous applications for the analysis of protein structure and
conformational changes, as well as protein folding and interactions (Pirrone et al., 2015). As
they monitor HDX over time (see Section 2.1), HDX detected by mass spectrometry (HDX-MS)
experiments also allow studying protein dynamics (Wei et al., 2013). HDX-MS has benefited
from the development of various computational tools (Claesen and Burzykowski, 2016), and has
proven useful in the study of challenging systems, such as molecular complexes or membrane
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proteins (Harrison and Engen, 2016). Additionally, HDX-
MS is having a deep impact in drug discovery and drug
development (Deng et al., 2016), where it has helped characterize
various biopharmaceuticals (Pirrone et al., 2015) and innate
immunity proteins (Schuster et al., 2007; Sfyroera et al., 2015;
Papanastasiou et al., 2017), among others.

Despite the clear benefits of monitoring HDX for structural
analysis, it is sometimes difficult to interpret experimental HDX
data. This data may be reported as protection factors (Jaswal,
2013), often visualized on a protein heat map (Huang and Chen,
2014) built using a structural model reported in the Protein Data
Bank (PDB, RRID:SCR_012820), if available. However, it has
been suggested that the correspondence between these structural
models and experimental HDX data can be inadequate, especially
for models produced by X-ray crystallography (Radou et al.,
2014). This is due to the difference in nature between HDX data
and crystallographic data: only HDX data can reflect the inherent
variability of a specific protein state. As a result, it has been argued
that experimental HDX data should rather be interpreted using
a conformational ensemble produced by a molecular dynamics
(MD) simulation (Best and Vendruscolo, 2006; Radou et al.,
2014). However, this method can also fail at expressing the
variability of a protein state in the same way as experimental
HDX data does. In a previous study, we have observed that a
single conformation extracted from a conformational ensemble
produced by an MD simulation could provide a better fit to
experimental HDX data than the whole ensemble (Devaurs et al.,
2016). Therefore, it is reasonable to try and fit experimental
HDX data using a single protein conformation; this can also be
computationally advantageous.

In this paper, we propose a novel methodology to obtain a
single conformation providing a good fit to the experimental
HDX data collected for a protein, after confirming that crystal
structures and conformations produced by MD simulations
might not be good choices. Our methodology involves a coarse-
grained conformational sampling tool that allows exploring the
flexibility of a protein by generating a conformational ensemble,
starting from the crystal structure of this protein (see Section 3.3).
We evaluate our methodology on four small and medium-sized
proteins that correspond to two scenarios: for three proteins,
both the HDX data and the crystal structure are known to
describe their native state; for one protein, the HDX data and
crystal structure are known to describe two different states (see
Section 3.4). The evaluation results show that our methodology
can successfully produce conformations that provide a good
fit to the experimental HDX data, for these four proteins (see
Section 4).

A critical element of any method aiming to analyze the
correspondence between a protein’s structure and its HDX data
is the definition of an HDX prediction model. Indeed, in such a
method, some HDX data has to be derived from the protein’s
structure; then, one can assess the goodness-of-fit between this
structurally-derived HDX data and the experimentally-observed
HDX data. By comparing different protein conformations, it is
then possible to determine which conformation provides the
best estimates for the experimental HDX data (see Section 3.3).
The challenge here is that, although numerous HDX prediction

models have been proposed, none of them has yet been
widely recognized and adopted by researchers in this field
(see Section 2.2). Furthermore, a recent evaluation study has
shown the limitations of several existing models (Skinner et al.,
2012b). To mitigate this issue, we have integrated in our
methodology the model that performed best in that evaluation
study (see Section 3.1). Our approach compensates for the
current limitations and achieves a successful application of this
HDX prediction model (see Section 5). This is accomplished
by using coarse-grained conformational sampling as a way to
extensively explore the intrinsic flexibility of a given protein.

2. BACKGROUND

2.1. Hydrogen/Deuterium Exchange (HDX)
in Proteins
Hydrogen exchange is a chemical phenomenon in which
hydrogen atoms of proteins are exchanged with hydrogens in
the surrounding solvent (Engen et al., 2011). Intuitively, the
extent to which different parts of a protein are subjected to this
exchange is influenced by their solvent accessibility and by the
protein’s structure (Wei et al., 2013). Therefore, researchers have
worked on quantifying hydrogen exchange, as a way to gain
information on a protein’s structure. This is made possible by the
fact that this exchange takes place with any isotope of hydrogen,
such as deuterium. If a protein, initially kept in a regular water
solution (H2O), is placed in a “heavy water” solution (D2O), the
hydrogen in the protein will exchange with the deuterium in the
solvent. This phenomenon is referred to as hydrogen/deuterium
exchange (HDX).

Using experimental techniques sensitive to differences
between hydrogen isotopes, one can monitor HDX (Englander
et al., 1997; Engen et al., 2011). In the 1970s, nuclear magnetic
resonance (NMR) spectroscopy was the main approach to
measure HDX, leveraging the differences in magnetic properties
of hydrogen and deuterium (Huang and Chen, 2014). However,
HDX-NMR experiments were hindered by practical weaknesses
of NMR, such as the limit on the size of proteins that could
be investigated. In the 1990s, advances in mass spectrometry
(MS) made this technique an interesting alternative to measure
HDX. HDX-MS experiments rely on that the mass of deuterium
is about twice the mass of hydrogen: deuterium uptake (i.e.,
the amount of deuterium incorporated in the protein) thus
corresponds to an increase in mass. Some advantages of HDX-
MS over HDX-NMR are that it requires only small quantities of
protein sample, and that there is no strong limitation on the size
of proteins that can be studied (Jaswal, 2013).

In HDX experiments, only the exchange rates of amide
hydrogens (i.e., hydrogens attached to backbone nitrogens,
referred to as amide nitrogens) are monitored (Engen et al.,
2011); at least this represents what is most often assumed, in a
slightly simplified view of the hydrogen exchange phenomenon.
As a result, HDX experiments can generate at most one
measurement per amino acid residue, for all amino acids of the
protein, except for proline residues and for the N-terminus of
the polypeptide chain (i.e., the first amino acid in the chain)
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because they do not possess an amide N–H group. In HDX-
NMR experiments, results are acquired at the residue level (i.e.,
at the level of amide groups themselves), but obtaining a good
coverage of the protein is very challenging. As explained in what
follows, in HDX-MS experiments, results are most often acquired
at the peptide level (i.e., deuterium uptake ismeasured for various
proteolytic peptides extracted from the protein), and usually yield
a good coverage of the protein. Note that, although we do not
provide details on this, obtaining HDX-MS data at the residue
level is feasible (Rand et al., 2009; Kan et al., 2013).

The hydrogen-exchange rate of a given amino acid can vary up
to several orders of magnitude, depending on various conditions,
such as solution pH and temperature (Brier and Engen, 2008).
Even though this differs among amino acids, exchange rates are
generally the lowest when pH is around 2.5 and temperature is
around 0◦C. The exchange rate of a residue in an unstructured
peptide is only affected by its adjacent amino acids; this
“intrinsic” exchange rate, denoted by kint, can be predicted (Bai
et al., 1993; Connelly et al., 1993). On the other hand, the
exchange rate of a residue in a protein is influenced by additional
factors, such as its solvent accessibility and the protein’s structure;
therefore, this experimentally-observed exchange rate, denoted
by kobs, is slower than kint (Wei et al., 2013). To quantify the
extent to which amide hydrogens are protected from being
exchanged in a protein, one can define the protection factor
of every amino acid i by Pi = kinti / kobsi . In HDX-NMR
experiments, results are often reported as a list of (logarithms of)
protection factors.

On the other hand, HDX-MS experiments produce richer
information. A typical experiment starts by equilibrating a
protein in H2O at room temperature under physiological
conditions (pH 7–8). Then, the protein is diluted with excess D2O
for the HDX to occur. At various time points, a small quantity of
solution is sampled. The HDX reaction is quenched in the sample
by adding acid to lower pH to 2.5, and by cooling it to 0◦C.
Proteins in the sample are then digested using acidic proteases
(such as pepsin) that are active under quenching conditions.
This proteolytic digestion generates numerous peptides, which
are portions of the protein typically 6–20 amino acids in length.
The sample is then introduced into a chromatography system,
to separate the peptides and automatically send them for MS
analysis. This analysis allows identifying the peptides generated
by the proteolytic digestion and quantifying their deuterium
uptake. As the digestion and MS analysis are repeated at
various time points, HDX-MS experimental results are usually
reported as a set of deuterium-uptake kinetic curves for various
peptides (Huang and Chen, 2014).

A crucial technical aspect of HDX-MS experiments is known
as back-exchange. This is the process by which the deuterium
atoms incorporated by the peptides exchange back to hydrogens.
This happens when the sample is prepared for MS analysis
because all the required steps (quenching, enzymatic digestion,
desalting, chromatographic separation) are performed in H2O
solution. On the one hand, back-exchange is beneficial because
it enables fast-exchanging side-chain positions to revert to
hydrogens, which greatly facilitates the MS identification of
peptides by limiting mass changes to amide groups (Wei

et al., 2013). On the other hand, back-exchange can become
detrimental if slower-exchanging amide groups start reverting
to hydrogens, which means losing the information generated
by the experiment (Mayne, 2016). To mitigate this problem,
all experimental steps have to be performed rapidly, at low
temperature.

Unfortunately, back-exchange of amide groups cannot be
totally avoided, which affects several aspects of HDX-MS
experiments. First, depending on the kind of performed analysis,
the measurements produced by the mass spectrometer might
have to be corrected for back-exchange (Engen et al., 2011).
Second, because terminal positions of a polypeptide chain are
more susceptible to back-exchange than other positions, the
analysis of peptide-level deuterium-uptake curves has to account
for it. More specifically, if the HDX experienced by a given
peptide is considered as the average HDX undergone by its
amino acids (as done in Section 3.1), the first two amino acids
in the chain have to be ignored (Konermann et al., 2011; Huang
and Chen, 2014). Indeed, after digestion, the first amino acid
of the peptide becomes an amine-terminus, therefore losing its
deuterium; as a result, the second amino acid usually undergoes
back-exchange as well (Mayne, 2016).

2.2. Hydrogen Exchange Estimated from
Protein Structure
Numerous theoretical models have been suggested to formalize a
relationship between local and/or global structural properties of
a protein and the level of hydrogen exchange it undergoes locally.
However, none of these models has yet been largely accepted
by the scientific community. Several of them have also shown
limitations in a recent evaluation study (Skinner et al., 2012b).
In this section, we mention the ideas that prevailed in the early
days of the research on hydrogen exchange mechanisms, and
introduce various models proposed during the past 10 years.

Early attempts to connect hydrogen-exchange mechanisms
with protein structure, in the 1970s, were based on accessibility or
penetration models. A common view was that solvent-accessible
hydrogens located at the protein’s surface would exchange
rapidly, and that buried hydrogens would exchange more slowly.
In other words, protection from exchange was thought to be
positively correlated with atom burial or, equivalently, negatively
correlated with solvent penetration in the protein matrix.
However, it is now well recognized that atom burial is not the
primary factor in characterizing hydrogen exchange (Konermann
et al., 2011; Skinner et al., 2012b). Indeed, hydrogen-bonded
amide groups at the surface can exchange as slowly as deeply-
buried amide groups. A variant of this early model of hydrogen
exchange based on solvent penetration became popular in the
1980s: hydrogen exchange was thought to be positively correlated
with solvent accessibility surface area (SASA). Although this
correlation is in general relatively weak (Skinner et al., 2012b;
Radou et al., 2014), it has been observed for surface loops of
non-globular proteins (Truhlar et al., 2006). This model has
been used in qualitative studies of hydrogen exchange (Petruk
et al., 2013), sometimes including rigidity properties for increased
accuracy (Sljoka and Wilson, 2013).
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To explain the fact that even solvent-exposed hydrogens
can exchange very slowly, several protein properties have been
investigated. For example, there have been some attempts to
show that hydrogen exchange ismodulated by electrostatic effects
on the relative acidity of amides (Anderson et al., 2008; Avbelj
and Baldwin, 2009; Hernández et al., 2009; LeMaster et al.,
2009). Although this appears to be true in specific cases, in
general, no correlation can be expected between protection from
hydrogen exchange and changes in relative acidity of amides
evaluated via electrostatic calculations (Skinner et al., 2012b).
On the other hand, participation in hydrogen bonds is usually
recognized as a strong determinant of protection from hydrogen
exchange (Skinner et al., 2012b). However, approaches that
consider only hydrogen bonding to explain protection from
exchange, such as those described inMa andNussinov (2011) and
Park et al. (2015), are not expected to generalize well. Therefore,
some attempts have been made to combine several factors, such
as N–H coupling constants and residue fluctuation (Brand et al.,
2007).

The most successful approaches to date have been those
that combine packing density with various properties related to
protein dynamics. On the one hand, some approaches, such as
the COREX family of tools, have attempted to link hydrogen
exchange to large segmental unfolding reactions (Hilser et al.,
2006; Wrabl et al., 2011; Liu et al., 2012). However, a drawback
of COREX is that it heavily relies on SASA for doing so. On the
other hand, other approaches have attempted to link hydrogen
exchange to local interactions (Wu et al., 2009; Gogonea et al.,
2010; Craig et al., 2011). Among them, the approach we have
adopted in our work relies on the combined evaluation of
hydrogen bonding and packing density (Vendruscolo et al., 2003;
Best and Vendruscolo, 2006; Gsponer et al., 2006; Kieseritzky
et al., 2006; Radou et al., 2014). It is based on a phenomenological
equation approximating hydrogen-exchange protection, which
is detailed in Section 3.1. Of note, there has been an attempt
to predict the coefficients of this phenomenological equation
from a protein’s amino acid sequence (Tartaglia et al., 2007).
Other methods have similarly focused on estimating structural
parameters related to hydrogen exchange, directly from protein
sequence (Dovidchenko et al., 2009; Lobanov et al., 2013).

3. MATERIALS AND METHODS

3.1. Phenomenological Approximation of
Hydrogen Exchange
As mentioned in Section 2.1, the levels of hydrogen exchange
observed in different parts of a protein are known to be partly
influenced by its local structure. Several theoretical models have
been proposed to formalize a relationship between a protein’s
conformation and the corresponding hydrogen exchange (see
Section 2.2). However, none of them benefits from a consensus
of the scientific community, and several of them have shown
limitations (Skinner et al., 2012b). Among these models,
we chose the one that seemed the most promising, based
on its performance in a recent comparative study (Skinner
et al., 2012b) and on the number of publications in which it

features (Vendruscolo et al., 2003; Best and Vendruscolo, 2006;
Gsponer et al., 2006; Kieseritzky et al., 2006; Tartaglia et al., 2007;
Radou et al., 2014).

The model we use to estimate hydrogen exchange
from a protein’s conformation relies on the definition of a
phenomenological expression to approximate the protection
factors (cf. Section 2.1) of the protein’s residues (Vendruscolo
et al., 2003). In this theoretical model, it is assumed that
protection from hydrogen exchange results from the presence of
hydrogen bonds involving amide groups and from the packing
density of atoms around these amide groups. More precisely, the
protection factor of residue i in conformation C, Pi(C), is derived
from the phenomenological expression

ln Pi(C) = βh Nh
i (C)+ β

c Nc
i (C) , (1)

where Nh
i (C) is the number of hydrogen bonds formed by

the amide hydrogen of residue i, and Nc
i (C) is the number of

so-called “atom contacts” (which is used to quantify packing
density) involving residue i. Parameters βh and βc were estimated
by fitting experimental hydrogen-exchange data from seven
proteins, which lead to: βh = 2 and βc = 0.35 (Best and
Vendruscolo, 2006).

Instead of being estimated from a single conformation,
hydrogen exchange can also be estimated from a conformational
ensemble. In that case, protection factors are computed as
ensemble averages. Given a set of conformations, S, the
protection factor of residue i with respect to S is derived from

ln Pi(S) =
1

|S|

∑

C∈S

ln Pi(C) . (2)

The way hydrogen bonds and atom contacts are accounted
for has changed over the years, following the evolution of
the theoretical model (Vendruscolo et al., 2003; Best and
Vendruscolo, 2006). Additionally, not all the details of the
methodology have been published. Building on this model, we
define hydrogen bonds and atom contacts in the following way:

• We only consider the hydrogen bonds maintaining secondary
structure elements because they are more important than
other hydrogen bonds in protecting amide groups from
exchange. More specifically, only main-chain oxygens are
considered as potential acceptors, when an amide nitrogen
is regarded as potential donor. We count only the acceptor
oxygens that are within a cutoff distance of 2.4 Å from
the amide hydrogen. Additionally, when estimating Nh

i (C),
oxygens from residues i − 2, . . . , i + 2 are not considered as
potential acceptors. This is justified by the fact that α-helices,
310-helices and β-sheets are formed byN−H···O=Chydrogen
bonds involving residues that are at least three positions apart
in the protein’s sequence.

• The number of contacts, Nc
i (C), is defined as the number of

heavy atoms (i.e., non-hydrogen atoms) in any residue, apart
from residues i− 2, . . . , i+ 2, within a cutoff distance of 6.5 Å
from the amide hydrogen of residue i. Note that these contacts
are not restricted to secondary structure elements.
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The residues’ protection factors derived from Equation (1) can be
directly compared to protection factors obtained from an HDX-
NMR experiment. On the other hand, HDX-MS experiments
produce deuterium-uptake curves of peptides extracted from a
protein. Therefore, a similar kind of data has to be derived from
the protein’s structure to allow for a comparison with HDX-
MS data. For that, we consider that the deuterium uptake of
a residue follows pseudo-first-order kinetics (Brier and Engen,
2008; Konermann et al., 2011; Huang and Chen, 2014). Knowing
that Pi = kinti / kobsi , the fraction of deuterium incorporated by
residue i at time t can be expressed as

di(t) = 1− exp(−kobsi t) = 1− exp(−(kinti /Pi) t) . (3)

As kinti is known (Bai et al., 1993; Connelly et al., 1993), di(t) can
be derived from the protein’s conformation by calculating Pi. The
deuterium uptake of a peptide can be considered as an average
over the residues it contains. Therefore, the fraction of deuterium
incorporated by peptide j at time t is

Dj(t) =
1

nj

nj
∑

i=1

di(t) , (4)

where nj is the number of residues containing an exchangeable
amide hydrogen in peptide j (Radou et al., 2014). Note that,
in addition to the N-terminal amino acid and to prolines, we
systematically exclude from the average the second amino acid
(even if it contains an amide group) because of back-exchange
(see Section 2.1) (Konermann et al., 2011; Huang and Chen,
2014). Using Equation (4), one can obtain deuterium-uptake
curves for various peptides, from any protein conformation.

3.2. Goodness-of-Fit between
Structurally-Derived and Experimental
HDX Data
Using the HDX prediction model presented in Section 3.1, one
can derive HDX data from a protein’s conformation and compare
it to the experimental HDX data. Then, assessing the goodness-
of-fit between structurally-derived and experimentally-observed
HDX data can be done as follows:

• When dealing with HDX-NMR data (i.e., protection factors
of residues), one can obtain a histogram of differences by
computing, for every residue i, the error | lnPderi − lnPobsi |,

where Pderi is the structurally-derived protection factor and

Pobsi is the experimentally-observed protection factor. This
histogram can be aggregated into an average over all residues
(as done in Section 4.1): 1

n

∑n
i=1 | lnP

der
i − ln Pobsi |, where n is

the number of protein residues for which measurements have
been obtained in the HDX-NMR experiment. Alternatively,
one can compute the R2 correlation coefficient between the
series {ln Pderi }ni=1 and {ln Pobsi }ni=1 (as done in Section 4.2).

• With HDX-MS data (i.e., deuterium-uptake curves of
peptides), one can obtain a histogram of differences (as done
in Section 4.3) by computing, for every peptide j, the error
∑

t∈T |D
der
j (t) − Dobs

j (t)|, where T is the list of experimental

time points, Dder
j (t) is the structurally-derived deuterium

uptake at time t, and Dobs
j (t) is the experimentally-observed

deuterium uptake at time t. This histogram can also be
aggregated into an average difference over all peptides (as done
in Section 4.3).

3.3. Conformation Providing the Best Fit to
Experimental HDX Data
The question that remains is: which conformation should
the HDX data be derived from to obtain a good fit to
the experimentally-observed HDX data? Several studies have
shown that conformations reported in the PDB (and more
specifically crystal structures) do not provide good estimates
for experimental HDX data (Radou et al., 2014; Devaurs et al.,
2016). This can be explained by the very nature of HDX data:
as it reflects the inherent flexibility of a molecule, in theory,
it cannot be accurately predicted from a single conformation.
Therefore, it was suggested that hydrogen exchange should be
estimated from an ensemble of conformations extracted from
an MD simulation, to account for the variability of a protein’s
structure (Best and Vendruscolo, 2006). Our previous study
shows that this methodology also has limitations: better estimates
of the experimental HDX data can sometimes be obtained
from a single conformation extracted from a conformational
ensemble produced by an MD simulation than from the whole
ensemble (Devaurs et al., 2016). This shows that, in the context
of the structural analysis of experimental HDX data, it is relevant
to try and fit this data using a single conformation.

In this work, using computational methods that can sample
protein conformations, we aim to obtain a single conformation
that can help analyze the experimental HDX data collected
for a protein. As PDB conformations produced by X-ray
crystallography do not generally provide good estimates for
experimental HDX data, they are usually not the best choice
for a structural analysis of this HDX data. In spite of this,
in our experiments, we systematically evaluate the goodness-
of-fit achieved when comparing experimentally-observed HDX
data against HDX data derived from a PDB conformation.
This provides a baseline against which other methods can be
compared. The two methods we evaluate in this study are MD
simulations and coarse-grained conformational sampling.

3.3.1. MD Simulations
In this study, all MD simulations were performed with the
GROMACS v4.6.5 package (Pronk et al., 2013) using the
GROMOS96 (53a6) force field. A cubic box was defined with at
least 9 Å of liquid layer around the protein (the exact dimensions
were different for each protein), using SPC water model
and periodic boundary conditions. An appropriate number of
sodium (Na+) and chloride (Cl−) counter-ions were added to
neutralize the system, with final concentration of 0.15 mol/L.
The algorithms v-rescale (τt = 0.1 ps) and parrinello-rhaman
(τp = 2 ps) were used for temperature and pressure coupling,
respectively. Cutoff values of 1.2 nm were used both for van der
Waals and Coulomb interactions, with Fast Particle-Mesh Ewald
(PME) electrostatics. For all MD simulations, the production
stage was preceded by (i) three steps of Energy Minimization
(alternating steepest-descent and conjugate gradient) and (ii)
eight steps of Equilibration. The Equilibration stage started with
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position restraints for all heavy atoms (5,000 kJ−1mol−1nm−1)
and a temperature of 310 K, for a period of 300 ps, to allow for the
formation of solvation layers. The temperature was then reduced
to 280 K and the position restraints were gradually reduced.
This process was followed by a gradual increase in temperature
(up to 300 K). Together, these Equilibration steps represent
the first 500 ps of each simulation. During the production
stage, the system was held at constant temperature (300 K)
without restraint. The MD simulations were run on various
high-performance computers, using between 32 and 144 threads,
depending on the size of the protein; the production stage lasted
between 150 and 300 ns (additional protein-specific information
is provided in Section 3.4). Then, we estimated HDX data as
an average over the ensemble of conformations produced by
a simulation. We also derived HDX data from every single
conformation extracted from such a conformational ensemble.

3.3.2. Structured Intuitive Move Selector (SIMS)
In this paper, we propose a new methodology to obtain a better
fit to experimental HDX data, using conformations produced by
a coarse-grained conformational sampling approach. For that,
we use a computational framework, called Structured Intuitive
Move Selector (SIMS), that was developed to explore a protein’s
conformational space (Gipson et al., 2013). This framework
integrates methods known as sampling-based motion-planning
algorithms, initially proposed in the field of robotics to randomly
explore high-dimensional spaces (Hsu et al., 1999; Şucan and
Kavraki, 2010). Using these methods, exploring a protein’s
conformational space consists of incrementally building a graph
whose nodes are conformations and whose edges represent
potential transitions between them (Al-Bluwi et al., 2012; Gipson
et al., 2012). SIMS follows a “coarse-grained” approach, similarly
to MD-like methods using coarse-grained force fields (Davtyan
et al., 2012), Monte-Carlo-based simulations (Sim et al.,
2012; Boomsma et al., 2013), methods using elastic network
models (López-Blanco and Chacón, 2016), or other robotics-
inspired conformational sampling methods (Devaurs et al., 2013,
2015).

In SIMS, the exploration starts from a known conformation
of the protein (usually, a crystal structure available in the PDB)
and aims at producing new conformations by perturbing existing
ones. Conformational sampling involves perturbations of the
protein’s structure, referred to as protein moves. These moves
are common perturbation strategies, such as loop sampling,
rigid-body motion (i.e., fix one loop’s end and move the
other end), random perturbation of backbone dihedral angles,
and overall energy minimization. To implement these moves
and calculate molecular energy, SIMS relies on the Rosetta
modeling software (Das and Baker, 2008; Kaufmann et al.,
2010). Additionally, SIMS involves an energy threshold to filter
the conformations it generates. Note that, by varying this
threshold, SIMS can be made more permissive than a typical MD
simulation, with respect to the energy of the conformations it
generates.

SIMS involves an internal-coordinate representation of
proteins in which bond lengths and bond angles are assumed
to be constant. Additionally, taking into account the planarity

of peptide bonds, the associated torsion angles are restricted to
their trans conformation (i.e., ω = 180◦). In SIMS, a protein’s
conformation is represented by a vector of backbone (ϕ, ψ)
dihedral angles. Side chains are not explicitly modeled in a
conformation, but they are automatically optimized by Rosetta
when a move is performed. As a result, a protein composed of
N + 1 residues is modeled with 2N degrees of freedom. Such
a coarse-grained model has long been shown to provide a good
approximation of a protein’s behavior (Levitt, 1976).

In SIMS, proteins are decomposed into fragments on which
moves are applied. Fragments are specific sets of residues that
can be defined automatically, based on secondary structure,
or that can be chosen by a domain expert. A fragment can
be a protein domain, a single secondary structure element (or
several of them), a single residue, or several (non-necessarily
contiguous) residues. Using these fragments, one can favor the
sampling of specific regions of the protein during conformational
exploration. Indeed, based on how flexible some regions are
expected to be, fragments are assigned probabilities to be
perturbed during conformational sampling (Gipson et al., 2013).
These probabilities can reflect available expert knowledge of
the protein, reported experimental data (such as B factors) or
predicted data resulting from a computational analysis (Fox
et al., 2011). In some of the experiments presented here, we use
discrepancies between experimentally-observed and structurally-
derived HDX data to define these probabilities and therefore
guide conformational exploration.

Our experimental methodology can be summarized as follows:
First, we use SIMS to perform a conformational exploration
starting from the crystal structure of a protein, without using any
sampling bias. From the ensemble of conformations generated
by SIMS, we determine which conformation provides the best
estimates of the HDX data, using Equations (1)–(4). If a good
fit is obtained, no additional run of SIMS is performed. If the
goodness-of-fit is too low, we run SIMS again, using the largest
discrepancies between experimentally-observed and structurally-
derived HDX data as a sampling bias: the protein regions
where these discrepancies are the largest are assigned higher
probabilities to be sampled. We repeat this process a given
number of times, or stop when a conformation providing a good
fit to the HDX data is obtained.

A single run of SIMS lasted 24 h and was performed on four
threads of a 3.6 GHz Intel i7-4790 quad-core CPU. For small
proteins, we ran SIMS only once, but for the largest one, we ran
SIMS five consecutive times (see Section 4 for more details). For
comparison, if the aforementioned MD simulations were run on
the same computer, 24 h of computation would yield only 5–
15 ns of simulation, therefore requiring days to weeks for a whole
simulation, depending on protein size.

3.4. Studied Proteins and Experimental
HDX Data
First, we use two small proteins (CI2 and Im7) to illustrate
the concepts involved in our methodology. As they have been
extensively studied, they represent useful benchmarks. Then, we
analyze two medium-size proteins (SN and C3d) that represent
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more challenging targets for our methodology. Note that we
consider two kinds of HDX data: HDX-NMR for CI2, Im7 and
SN; and HDX-MS for C3d.

3.4.1. Chymotrypsin Inhibitor 2 (CI2)
We consider a truncated form of chymotrypsin inhibitor 2 (CI2)
composed of 64 amino acids (PDB 1TM1), where residue 1
corresponds to residue 20 of the full protein. The main secondary
structure elements of CI2 are the following: residues Val13 to
Asp23 form an α-helix; residues Gln28 to Pro33 and residues
Arg46 to Val51 form two β-strands. As a simple system for
folding studies, CI2 has been the subject of several HDX-NMR
experiments (Itzhaki et al., 1997; Neira et al., 1997). Protection
factors for more than half of CI2’s residues have been reported.
However, as done in other studies (Best and Vendruscolo,
2006), we only use the protection factors associated with local
hydrogen-exchange mechanisms characteristic of CI2’s native
state. Therefore, we only consider the following 14 residues
(whose protection factors are given in parentheses): Leu8 (8.1),
Val9 (9.9), Val13 (7.2), Ala16 (7.1), Lys17 (6.6), Lys18 (8.2), Gln22
(9.5), Ala27 (6.7), Gln28 (8.2), Asp52 (8.5), Asn56 (8.4), Ala58 (9),
Gln59 (10.5), Val63 (7.4). Note that these protection factors are
given as ln P, based on published exchange rates (Itzhaki et al.,
1997). Three trajectories of CI2 were obtained by running MD
simulations with a 150 ns production stage.

3.4.2. Bacterial Immunity Protein Im7
The bacterial immunity protein Im7 is a single-domain α

protein composed of 86 residues (PDB 1AYI). Im7’s native state
comprises four α-helices: residues Glu12 to Lys24 (I), residues
Asp32 to Thr45 (II), residues Thr51 to Tyr56 (III), and residues
Glu66 to Asn79 (IV). Helices I and II form an N-terminal helical
hairpin, and helix IV is located along the open end of this hairpin.
Im7 has been shown to fold through an on-pathway intermediate
whose structure is significantly different from that of its native
state (Gorski et al., 2004). In this non-native state, helices I, II and
IV are conserved, but helix III is not formed. A computational
analysis of this intermediate state has shown that helices I, II,
and IV are not organized as they are in the native state (Gsponer
et al., 2006). This analysis was based on protection factors of
26 residues, obtained via an HDX-NMR experiment aimed at
characterizing Im7’s folding intermediate (Gorski et al., 2004).
Here, we consider the same residues (whose protection factors
are given in parentheses): Asp9 (8), Tyr10 (9.2), Thr11 (10.2),
Val16 (11.5), Gln17 (11.6), Leu18 (11.2), Glu21 (8.5), Glu23 (6),
Leu37 (6.1), Leu38 (7.5), Phe41 (6), Val42 (10.3), Leu53 (3.5),
Ile54 (3.6), Tyr55 (4.4), Tyr56 (5.6), Gly67 (8.1), Val69 (8.8), Ile72
(9), Lys73 (9.5), Glu74 (9), Trp75 (8.8), Arg76 (9.9), Ala77 (9.8),
Ala78 (8), Lys85 (6.8). These protection factors are given as ln P,
based on published exchange rates (Gorski et al., 2004). Three
trajectories were obtained by running MD simulations with a
200 ns production stage.

3.4.3. Staphylococcal Nuclease (SN)
Micrococcal nuclease, or Staphylococcal nuclease (SN), is a
mixed α/β protein composed of 149 amino acids organized

in two domains (PDB 1SNO). The first domain (residues 1–
98) belongs to the oligonucleotide/oligosaccharide-binding-fold
(or OB-fold) superfamily. It consists of a five-stranded β-barrel
with Greek key topology, capped by an α-helix (residues Gly55
to Glu67) located between the third and fourth strands. The
five β-strands are: residues Lys9 to Ala17, residues Thr22 to
Tyr27, residues Gln30 to Leu36, residues Ile72 to Phe76, residues
Gly88 to Ala94. The second domain (residues 99–149) contains
two α-helices: residues Val99 to Arg105, and residues Glu122
to Lys134. SN also contains two minor β-strands. HDX-NMR
experiments have been performed on a double mutant of SN with
similar structure but increased stability, to characterize its native
state (Skinner et al., 2012b). This allowed measuring hydrogen-
exchange rates for most residues and deriving corresponding
protection factors. Here, we use 100 of these protection factors:
residues of the N and C terminals that are missing from
the crystal structure (PDB 1SNO) are not considered. Note
that protection factors were reported as log10 P, instead of
ln P (Skinner et al., 2012b).

3.4.4. Complement Protein C3d
C3d is a fragment of the complement component C3 (Nagar
et al., 1998; Hammel et al., 2007). It is a single-domain α

protein composed of 297 residues (PDB 2GOX), where residue 1
corresponds to residue 991 of the full C3 molecule. C3d contains
twelve α-helices and five 310-helices that are organized into an
α-α barrel where most consecutive helices alternate between the
inside and the outside. Based on previous notations (Nagar et al.,
1998), the core of the barrel consists of the following six parallel
α-helices: α1 (residues Glu22 to Thr41), α3 (residues Thr86 to
Leu102), α5 (residues Lys149 to Ala164), α8 (residues Ser196
to Met209), α10 (residues Gln236 to Leu253), and α12 (residues
Ser278 to Asp295). It is surrounded by another set of six parallel
helices (running anti-parallel to those of the core) comprising
one 310-helix, T1 (residues Ala7 to Leu13), and five α-helices:
α2 (residues Leu49 to Arg70), α4 (residues Ser107 to Lys121), α7
(residues Ser174 to Asn189), α9 (residues Pro215 to Thr223), and
α11 (residues Phe256 to Gln269). In previous work, we performed
an HDX-MS experiment and several MD simulations on C3d, to
characterize its native state (Devaurs et al., 2016). In this paper, as
in our previous study, we use the deuterium-uptake data obtained
for 81 peptides extracted from C3d.

4. RESULTS

We now report the results we have obtained for the four proteins
introduced in Section 3.4. First, a comparative analysis of CI2
and Im7 sheds light on the issues encountered when trying to
fit experimental HDX data with the different methods presented
in Section 3.3. Then, we examine two medium-size proteins: SN
and C3d.

4.1. Chymotrypsin Inhibitor 2 vs. Bacterial
Immunity Protein Im7
Our first set of results aims at highlighting differences and
similarities that exist between two possible scenarios: (i) the
case where the HDX data and the crystal structure describe the
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same state of the protein, and (ii) the case where they describe
two different states. As mentioned in Section 3.4.1, the HDX-
NMR data (i.e., protection factors of residues) obtained for CI2
is characteristic of its native state, whose structure has been
described (PDB 1TM1). On the contrary, the HDX-NMR data
gathered for Im7 is known to characterize a non-native folding
intermediate (see Section 3.4.2) that is structurally different from
Im7’s native state (PDB 1AYI).

The comparison between these two scenarios is illustrated in
Figure 1. The native conformations of CI2 and Im7, as reported
in the PDB, are depicted in green using the ribbon model.
The bar charts show that the HDX data derived from the PDB
conformations (i.e., the crystal structures reported in the PDB)
using Equation (1) does not match well the experimentally-
observed HDX data: the average difference between structurally-
derived and experimentally-observed protection factors (see
Section 3.2) is close to 3. Although this is not surprising in the
case of Im7 (because the HDX data and the crystal structure
describe different states), it is important to note that the HDX
estimates are equally bad in the case of CI2 (even though theHDX
data and the crystal structure describe the same state).

For both CI2 and Im7, we performed three MD simulations.
We observe that, as suggested in Radou et al. (2014), deriving
HDX data from the ensemble of conformations extracted from
each MD simulation leads to a better fit to experimentally-
observed HDX data than if the PDB conformation is used.
However, it also appears that the best fit is usually obtained
with a single conformation selected within these MD ensembles,
which confirms our previous results on C3d (Devaurs et al.,
2016). The bar charts in Figure 1 show the differences between
the experimentally-observed and structurally-derived protection
factors, when deriving these protection factors from the MD
conformation providing the best fit. It is clear that using this MD
conformation yields a better fit to the experimental data than
using the PDB conformation, but not drastically. In the case of
Im7, the limited improvement was expected: ourMD simulations
were meant to sample the native state; they were not long enough
to observe a transition to the folding intermediate. Even in the
case of CI2, we will show that better results can be obtained.

We used SIMS to sample the conformational space of CI2
and Im7, starting the exploration from their PDB conformations,
without any bias. From the sets of conformations generated
by SIMS, we extracted the conformation yielding the best fit
between structurally-derived and experimentally-observed HDX
data. The bar charts in Figure 1 show differences between
experimentally-observed and structurally-derived protection
factors, when deriving them from the SIMS conformation with
the best fit. This conformation yields a significantly better fit to
experimental HDX data than the PDB and MD conformations.
The SIMS conformations for CI2 and Im7 are depicted in red
using the ribbon model in Figure 1. In the case of CI2, the
SIMS conformation is very similar to the PDB conformation:
differences occur mostly in side-chain positions and not in
backbone structure. This was expected because the HDX data and
the crystal structure describe the same state. This also highlights
the strong impact that even small structural variations can have
when estimating protection factors with Equation (1). In the

case of Im7, the SIMS conformation providing the best fit to the
experimental HDX data is significantly different from the PDB
conformation, which confirms that the HDX data and the crystal
structure describe different states.

4.2. Staphylococcal Nuclease
A recent evaluation study of various models for deriving
hydrogen exchange from a protein’s structure involved HDX-
NMR data gathered for SN (see Section 3.4.3) (Skinner et al.,
2012b). The study concludes that, at least for SN, none of
the evaluated models can produce HDX data that fits well
the experimentally-observed HDX data. The best results are
achieved by the model based on Equation (1), with a correlation
coefficient R2 = 0.51 between the structurally-derived and
experimentally-observed protection factors. That study follows
the methodology in Best and Vendruscolo (2006), estimating
the protection factors of SN’s residues using an ensemble of
conformations extracted from an MD simulation. However, that
study does not consider estimating HDX data from the PDB
conformation alone, using Equation (1). Interestingly, using
this PDB conformation, we obtained a correlation coefficient
R2 = 0.69 between the structurally-derived and experimentally-
observed protection factors (see Section 3.2). Note that better
results can be achieved with our novel methodology.

We used SIMS to explore the conformational space of SN,
starting from its PDB conformation, without introducing any
bias. From the ensemble of conformations generated by SIMS,
we extracted the conformation providing estimates of protection
factors that best fit the experimental HDX data. This yields
a correlation coefficient R2 = 0.78 between the structurally-
derived and experimentally-observed protection factors, as
shown in Figure 2. Importantly, the SIMS conformation is
very similar to the PDB conformation: only small structural
differences are observed at the backbone level (see Figure 2).
This confirms that the HDX data and the crystal structure both
describe SN’s native state.

4.3. Complement Protein C3d
In previous work (Devaurs et al., 2016), we performed an
HDX-MS experiment on C3d and obtained deuterium-uptake
curves for 86 peptides. As in that previous study, we restrict
the current analysis to the 81 peptides whose data is the
most reliable. This HDX data is expected to describe the
native state of C3d when present alone in solution. However,
once again, deuterium-uptake curves derived from the PDB
conformation of C3d (PDB 2GOX) using Equations (1)–(4) do
not fit well the experimental data (see Figure 3). The average
difference between the experimentally-observed and structurally-
derived deuterium-uptake curves across all peptides is 1.23
(see Section 3.2). Discrepancies are especially significant in the
region of C3d comprising residues Met191 to Ala242. As shown
in Devaurs et al. (2016), this is not due to structural differences
between the native state of C3d and the conformation observed
during the HDX-MS experiment, but rather to the limitations of
predicting HDX data using crystal structures.

We carried out three MD simulations to sample the variability
of C3d’s native state (Devaurs et al., 2016). Using the ensemble
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FIGURE 1 | Comparison of a case where HDX data and crystal structure describe the same state (CI2) and a case where they describe different states

(Im7). CI2’s HDX data is characteristic of its native state, described in the PDB. Im7’s HDX data characterizes a non-native folding intermediate that structurally differs

from the native state reported in the PDB. All conformations are represented using the ribbon model: conformations reported in the PDB are colored in green;

conformations produced by SIMS that provide the best estimates of the experimental HDX data are colored in red. The bar chart at the bottom shows the average

difference (across residues) between experimentally-observed and structurally-derived HDX data (i.e., protection factors), when deriving this data using conformations

in the PDB (green), conformations produced by MD which best fit the HDX data (blue), or conformations generated by SIMS which best fit the HDX data (red). The bar

charts in the middle show these differences for all residues separately.

of conformations extracted from each simulation allows deriving
deuterium-uptake curves of peptides that fit the experimental
data better than when using the PDB conformation. However, an
important conclusion of our previous study is that: using a single
conformation extracted from theseMD ensembles produces even
better results (Devaurs et al., 2016). The conformation providing
the estimates of deuterium-uptake curves that best fit the
experimental HDX data is referred to as the MD conformation.

It yields a decrease in the average difference (0.89) between
structurally-derived and experimentally-observed HDX data.
Despite the improvement in goodness-of-fit, large discrepancies
remain (see Figure 3), especially in the region [Met191-Ala242]
of C3d (Devaurs et al., 2016).

To sample C3d’s conformational space more extensively, we
carried out the following iterative process with SIMS: using
the PDB conformation as input, we ran SIMS once without
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FIGURE 2 | Analysis of the native state of SN. Conformations of SN are depicted using the ribbon model: the conformation reported in the PDB, in green, and the

conformation generated by SIMS which provides estimates of protection factors that best fit the experimental HDX data, in red. The plot shows the correlation

between the experimentally-observed HDX data and the HDX data derived from the SIMS conformation. The correlation coefficient is 0.78.

introducing any bias; then, we ran SIMS four times, using the
discrepancies between structurally-derived and experimentally-
observed HDX data as a sampling bias. This bias is introduced
in the following way: at the end of each run, we select
the conformation generated by SIMS providing estimates
of deuterium-uptake curves that best fit the experimental
HDX data, and we determine the regions of C3d where
discrepancies are the largest; then, in the following run, these
regions are assigned higher probabilities to be sampled (cf.
Section 3.3.2). This SIMS-based iterative process generated a
conformation providing estimates of deuterium-uptake curves
that fit well the experimental HDX data (see Figure 3). Using
this SIMS conformation, the average difference between the
experimentally-observed and structurally-derived deuterium-
uptake curves across all peptides decreases to 0.6. Importantly,
the SIMS conformation is very similar to the PDB conformation:
all the helices forming the α-α barrel are conserved; only
two short helices have unfolded. The α-α barrel of the SIMS
conformation (radius of gyration: 19 Å) is only slightly wider
than the α-α barrel of the PDB conformation (radius of gyration:
18 Å). This confirms that the HDX data and the crystal structure
both describe C3d’s native state. It also confirms that the native
state of C3d is relatively stable, with little flexibility recorded
by the HDX-MS experiment. Finally, note that using the SIMS
conformation can provide an improved structural analysis of
C3d, by refining the HDX data from the peptide level to the
residue level (Devaurs et al., 2016).

5. DISCUSSION

We chose to include in our methodology the phenomenological
approximation of hydrogen-exchange protection, as expressed

by Equation (1), because it seemed to be the most promising
HDX prediction model. Indeed, it performed best at predicting
experimental HDX data, when compared to several other
models (Skinner et al., 2012b). Even though the goodness-of-
fit achieved with this model was not impressive (Skinner et al.,
2012b), our work demonstrates how it can be used successfully.

Our results clearly show that using the conformation of a
protein as reported in the PDB does not provide good estimates
of experimental HDX data. This confirms what was observed
in previous similar studies (Radou et al., 2014; Devaurs et al.,
2016). This was also indirectly acknowledged when this HDX
prediction model was first proposed (Vendruscolo et al., 2003).
In an attempt to consider structural dynamics, it was suggested
that HDX data should be derived as an average over an ensemble
of conformations produced by an MD simulation (Best and
Vendruscolo, 2006).

We have indeed observed that computing an average over an
MD ensemble provides better estimates of experimental HDX
data than using a single PDB conformation. However, as shown
in our previous work (Devaurs et al., 2016), this study confirms
that using a single conformation carefully extracted from theMD
ensemble usually provides even better estimates. In other words,
the MD conformation that provides the best estimates within
the MD ensemble performs generally better than the whole
ensemble. Note that we do not claim that this MD conformation
constitutes a better representation of a protein’s state than a PDB
conformation or an MD ensemble. In theory, the best estimates
for experimental HDX data would be obtained by computing an
average over an ensemble of conformations best representing a
protein’s state and its inherent flexibility. However, in the same
way as estimates derived from two similar conformations can
significantly differ, estimates derived from two similar ensembles
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FIGURE 3 | Analysis of the native state of C3d. Conformations of C3d are depicted using the ribbon model: the conformation reported in the PDB, in green, and

the conformation generated by SIMS which provides estimates of deuterium-uptake curves that best fit the experimental HDX data, in red. The plot shows differences

between the experimentally-observed and structurally-derived deuterium-uptake curves, for all peptides, when deriving this data from the PDB conformation (green),

the MD conformation (blue) or the SIMS conformation (red). The legend also includes the average differences across all peptides.

can be very different. In practice, it is thus more convenient to
generate many conformations and select the one providing the
best estimates than to find the best conformational ensemble.

The fact that numerous conformations have to be generated
in order to obtain good estimates of experimental HDX data,
and that a PDB conformation is not enough, is also linked to

weaknesses of the HDX prediction model based on Equation
(1). The first limitation of this model is its lack of robustness:
it is very sensitive to small variations in the protein structure.
As well illustrated by the case of CI2, two conformations that
are very similar at the backbone level and present differences
only in their side-chain conformations can produce very different
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HDX estimates. The second limitation of this model is that
it only partially reflects the mechanisms underlying hydrogen
exchange. For example, it does not consider any dynamic aspect
of proteins. Therefore, it could be interesting to develop a
more accurate model by accounting for additional structural
and dynamic properties of proteins (Skinner et al., 2012a). Since
such a model has not been proposed yet, we believe it is best
to compensate for the weaknesses of the current model by
performing conformational sampling.

6. CONCLUSION

When performing a structural analysis of HDX data collected
for a protein, a premise to an accurate analysis is to use a
conformation that matches this data. Several studies, including
ours, show that crystal structures reported in the PDB are not
a good choice because they often provide bad estimates of
experimental HDX data. Because HDX data reflects the inherent
flexibility of a protein, a conformational ensemble should ideally
provide better estimates than a single conformation. However,
our work has shown that this is not always the case with
a conformational ensemble produced by an MD simulation.
Therefore, it is perfectly justified to try and fit experimental HDX
data using a single conformation. In this paper, we have shown
that this can be done using a coarse-grained conformational
sampling tool to explore a protein’s conformational space. The
specific tool we used, called SIMS, yields a conformational
ensemble from which one can extract a conformation providing
a good fit to the experimental HDX data. Note that we do
not claim that a conformation produced by SIMS is a better
representation of a protein’s state than its crystal structure.
Besides the improved accuracy, another advantage of using
SIMS is its efficiency: a conformation providing a good fit to
experimental HDX data can be obtained at a fraction of the
computational cost of running a traditional MD simulation.
Finally, we believe that other conformational sampling methods
could produce similar results, in terms of accuracy and efficiency.
The achievement of our study mostly consists of revealing the
technicalities that must be addressed for such methods to be
successful.

Our methodology relies on the use of an HDX prediction
model defining how to derive HDX data from a protein’s
structure. This model is based on a phenomenological
approximation of the protection factors of a protein’s residues.
Despite its limitations, this model enables our methodology to
successfully produce a conformation fitting the experimental
HDX data. Another interesting benefit of this model is that,
besides the validation of experimental HDX data, in the case of
HDX-MS experiments, it offers the possibility to refine the HDX
data from the peptide level to the residue level (Radou et al.,
2014; Devaurs et al., 2016). This has the potential to enhance
applications of the HDX-MS technique (Pirrone et al., 2015).

As part of our future work, we intend to apply our
methodology to larger proteins, to evaluate its scalability. Since
coarse-grained conformational sampling scales better than MD,
we expect our methodology to be even more beneficial with
large proteins. Additionally, we plan to investigate several useful
applications of this work. First, as demonstrated with Im7, our
method can be used to obtain a structural model of a non-native
state of a protein when only its native state is described in the
PDB and only HDX data is available for this non-native state.
Second, although we applied our method only to cases where
the experimental HDX data was expected to characterize a single
protein conformation because a single conformer was assumed to
be present in solution, it could be applied to more complex cases,
where several conformers are involved. Indeed, if structurally-
derived HDX data better fits experimentally-observed HDX
data when deriving it from a small set of structurally-different
conformations (i.e., two or three, or a handful of conformations)
than when deriving it from a single conformation, we can suspect
that several protein conformers are present together in solution.
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Hybrid methods, which combine and integrate several biochemical and biophysical

techniques, have rapidly caught up in the last twenty years to provide a way to obtain

a fuller description of proteins and molecular complexes with sizes and complexity

otherwise not easily affordable. Here, we review the use of a robust hybrid methodology

based on a mixture of NMR, SAXS, site directed mutagenesis and molecular docking

which we have developed to determine the structure of weakly interacting molecular

complexes. We applied this technique to gain insights into the structure of complexes

formed amongst proteins involved in the molecular machine, which produces the

essential iron-sulfur cluster prosthetic groups. Our results were validated both by X-ray

structures and by other groups who adopted the same approach. We discuss the

advantages and the limitations of our methodology and propose new avenues, which

could improve it.

Keywords: frataxin, NMR,molecular complexes, small angle X-ray scattering, structural biology, iron-sulfur cluster

machinery, hybrid methods

INTRODUCTION

Biophysical approaches that make the combined and integrated use of different methodologies are
named “hybrid techniques.” Their use in Structural Biology has rapidly caught up in the last ca. 20
years (Sunnerhagen et al., 1996; Improta et al., 1998; Putnam et al., 2007; Tuukkanen and Svergun,
2014; Delaforge et al., 2015; Kachala et al., 2015; Milles et al., 2015; Sali et al., 2015; Prischi and
Pastore, 2016; Venditti et al., 2016). A particularly useful application of hybrid techniques is the use
of a combination of high and low resolution techniques which first target the local structure of a
molecule (a domain or a complex component) and then reconstruct the full picture of the assembly
(the so-called cut-and-paste approach) (Grishaev et al., 2005, 2008; Parsons et al., 2008; Deshmukh
et al., 2013). Hybrid methods have, for instance, been successfully introduced to gain structural
insights of complexes with different sizes which would be unaffordable if approached by only one
technique (Wüthrich, 2001). One of the very first examples of hybrid methods was our study based
on a combination of small angle scattering (SAXS) and nuclear magnetic resonance (NMR) to
approach the arrangement of the domains of titin, a giant muscle modular protein containing
more than 300 copies of two all-β sequence motifs, the fibronectin type 3 and the immunoglobulin-
like modules (Improta et al., 1998). More recently, Michael Sattler and co-workers extended the
approach to the study of RNA-protein interactions (Gabel et al., 2006; Madl et al., 2011; Huang
et al., 2014). In 2010, we implemented a robust methodology which brings together NMR, SAXS, in
site directed mutagenesis, ITC and other techniques to study weak complexes. This methodology
has proven particularly effective for proteins of the iron-sulfur (FeS) clusters biogenesis machine,
a highly conserved and essential metabolic pathway (Zheng et al., 1998). These proteins share
important features which make particularly useful the application of hybrid methods to their study:
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all the components of this cellular machine (i) tend to form
transient interactions, making co-purification of the complexes
difficult to impossible; (ii) have different binding affinities from
each other; (iii) compete for the same binding sites; (iv) have
different likelihood to crystallize, which often results in proteins
forming crystals alone and not as part of the complex. In addition,
many of the complexes are, although relatively large for NMR
studies, too small for cryo-electron microscopy studies (Nogales
and Scheres, 2015). As a result, high-resolution structures of most
of these protein complexes are still not available. Here, we review
our approach, discuss its successes and clarify the limitations. We
also suggest ways to circumvent specific problems.

THE PARADIGMATIC EXAMPLE OF THE
IRON-SULFUR CLUSTER BIOGENESIS
COMPONENTS

Present ubiquitously in nearly all life forms, FeS clusters are
protein inorganic prosthetic groups involved in a multitude of
biological functions, such as electron transfer, gene expression
regulation, thiolation, photosynthesis, nitrogen fixation, metal
trafficking, substrate binding, DNA repair/replication and RNA
modification (Johnson et al., 2005; Mettert and Kiley, 2015). FeS
clusters are formed from iron ions and inorganic sulfide. Due
to the toxic nature of these elements, formation of intracellular
FeS clusters does not occur spontaneously, but all organisms
have evolved protein machineries for the production of clusters.
The FeS cluster assembly (ISC) system is a highly conserved
factory found both in prokaryotes and eukaryotes and capable
of providing FeS clusters to a wide range of apo-proteins. In
particular, the eukaryote ISC machine is found in the matrix
space of mitochondria and is distinct from the system that
produces the clusters in the cytosol (Lill, 2009; Rouault, 2015).
In E. coli, which is most studied as a model system because of its
lower complexity, the ISC machine is composed of eight genes
clustered in an operon, iscRSUA-hscBA-fdx-iscX (Takahashi and
Nakamura, 1999; Figure 1). The operon is controlled by IscR, a
transcriptional repressor (Schwartz et al., 2001) followed, in the
order, by genes coding for a cysteine desulfurase (IscS) (Schwartz
et al., 2000), a scaffold protein upon which clusters are built
(IscU) (Agar et al., 2000), an A-type carrier with unclear function
(IscA) (Krebs et al., 2001; Ollagnier-de-Choudens et al., 2001),
a co-chaperone/chaperone system that is thought to facilitate
cluster transfer from IscU to the final acceptor (hscA and
hscB) (Chandramouli and Johnson, 2006), an electron donor
ferredoxin (Fdx) (Yan et al., 2013b) and a protein with unknown
function (IscX or YfhJ) (Pastore et al., 2006). This system
constitutes the so called core assembly machine. The formation
of FeS clusters by the core machine starts with the production of
S0 from L-cysteine by IscS, followed by reduction of S0 to S2− by
Fdx (Yan et al., 2013b) and ends with the incorporation of Fe2+

or Fe3+ and formation of a [2Fe-2S] cluster on IscU (Agar et al.,
2000). It is still unclear how the iron is delivered to the system.

Among these proteins, the crucial ones are IscS (NFS1
in human) and IscU (ISCU in human). IscS is a pyridoxal
5′-phosphate (PLP)-dependent desulfurase. PLP is not

only necessary for the catalysis of L-Cys to L-Ala, but is
also important for structural stabilization. CD spectra of
recombinant IscS without PLP revealed in fact that the protein
is completely unfolded, albeit proteolytically stable and not
prone to aggregation (Prischi et al., 2010b). IscU, a 10 kDa
protein, is predominantly in a monomeric state in solution and
binds to IscS to accept the sulfur, which will form the clusters.
The function of IscS and IscU are regulated by the protein
frataxin (FNX). This is an essential protein highly conserved
both in prokaryotes (where takes the name of CyaY) and
eukaryotes where it is present in mitochondria. FXN was first
identified for its connection to Friedreich’s ataxia (Campuzano
et al., 1996), a progressive neurodegenerative disease caused
by an expansion of a GAA trinucleotide repeat within the
first intron of the FXN gene, which results in reduced levels
of FXN (Campuzano et al., 1996, 1997). Studies on the yeast
frataxin homolog (YFH1) helped to understand that reduced
levels of FXN causes loss of function of FeS cluster containing
enzymes, increased amount of free radicals and iron deposits
in mitochondria (Babcock et al., 1997; Foury and Cazzalini,
1997; Koutnikova et al., 1997; Rötig et al., 1997). Proteins from
the FXN family bind weakly ferrous ions (Kd 4 µM) and ferric
ions (Bou-Abdallah et al., 2004). These features are strongly
conserved: human FXN is able to bind Fe2+ and Fe3+ in a
similar way (Yoon and Cowan, 2003). Ability to weakly bind
iron could be in agreement with the hypothesis that the protein
functions as an iron chaperone, but the way FXR binds iron
is unusual. The FXN fold, which is composed of two α-helices
packed against an anti-parallel β-sheet (Cho et al., 2000), does
not share any similarity with any other known iron binding
proteins, like ferritins, ferredoxins or hemoglobins (Harrison and
Arosio, 1996). It is also unusual that iron coordination occurs
solely through carboxylate residues and no conserved histidine,
cysteine, or tyrosine - residues usually found in iron binding
motifs - are present in frataxins (Nair et al., 2004). Finally, cation
binding is highly unspecific since, in addition to iron, frataxins
bind to diamagnetic Ca2+, Zn2+, Lu3+, and paramagnetic ions
Mn2+, Co2+, Gd3+, Eu3+, and Yb3+ (Nair et al., 2004). Twenty
years have passed since these initial studies which have made
clear that FXN is connected to FeS cluster formation, but the
exact function of FXN remains elusive. Different theories have
been proposed: (i) FXN is the iron chaperone that delivers
Fe2+ or Fe3+ to IscU (Yoon and Cowan, 2003); (ii) FXN acts
as a scavenger that is able to sequester mitochondrial iron
through formation of high-molecular-weight aggregates and
to maintain it in a bioavailable form (Adamec et al., 2000).
We have proposed a third hypothesis which is currently the
most accredited: (iii) FXN acts as an iron sensor that regulates
the amount of FeS cluster formed to match the concentration
of the available acceptors (Adinolfi et al., 2009). Our model,
which proposes a completely new function of FXN, is based
on studies that rely on the demonstration that FXN binds to
the IscS/IscU complex in an iron dependent manner (Prischi
et al., 2010a). To gain information on this ternary complex,
we adopted a hybrid approach, which relied on NMR, SAXS,
site directed mutagenesis, molecular docking and molecular
dynamics simulations.
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FIGURE 1 | Schematic representation of the genetic organization of the bacterial ISC system in operon.

THE DEVELOPMENT OF A HYBRID
METHOD

The rationale of our hybrid method develops through the
following logic steps (Figure 2):

Step 1: Identifying the ISC Interactome
The network of interactions between IscS, IscU, and CyaY was
probed by NMR spectroscopy. We exploited the well-known
concept that the spectrum of a molecule is very sensitive to
the chemical environment. Protein-protein interaction cause
changes in the chemical environment of the reporter nucleus.
This means that titration of a protein with another molecule
results in shifts in the position of some or all resonances in
the spectrum or Chemical Shift Perturbation (CSP) (Roberts,
1993; Zuiderweg, 2002), which can then be used to map the
regions involved in the interaction. Typically, we titrated a 15N
labeled component of the isc operon with another un-labeled
protein. However, the resonance line widths depend inversely
on the tumbling time (Bloembergen et al., 1948) and, thus, the
larger the complex, the broader are the line widths up to spectral
disappearance. Many of the ISC components have sizes well
within the limits of NMR observation except for IscS, which
is an obligate dimer of 90 kDa, and the chaperone HscA. This
meant that we could alternatively titrate the low size proteins
(i.e., adding unlabeled protein A into 15N labeled protein B and,
viceversa, unlabeled protein B into 15N labeled protein A) and
map the interacting site on both proteins. The case was quite
different when adding the 90 kDa IscS to a smaller component.
In this case the result would strongly depend on the regime of
exchange of the complex.

The most common NMR experiment used to measure
CSP is the two-dimensional 15N heteronuclear single-quantum
coherence NMR ([1H,15N]-HSQC NMR), a method that allows
the detection of correlations between 15N nucleus and 1H

nucleus which are covalently bound. Titration of IscS into 15N
labeled IscU caused complete disappearance of IscU signal from
the [1H,15N]-HSQC NMR spectra at a 1:0.7 IscU:IscS molar
ratio (Prischi et al., 2010b) without previous CSP. Absence of
detectable CSP for these titrations and disappearance of the IscU
signal indicates binding but also suggests that the process is under
an intermediate-to-slow exchange regime in the NMR time range
(Figures 3A–C). The exchange regime is the rate kex at which
a nucleus switches from one conformation to another (in this
case a “free state” to a “bound state”). The NMR linewidths
depend on the populations of each state, the relative values of
the exchange rate kex and the chemical shift difference ∆ν. In
the slow exchange regime (kex << |∆ν|), signals from both
states are observed at their distinct chemical shifts, intensities
and linewidths; if the regime is fast (kex >> |∆ν|), a single peaks
will be observed at the chemical shift between free and bound
conformations weighed according to the populations; if it is in
an intermediate regime (kex ≈ |∆ν|), a single peak is observed
between the two states but due to the presence at the same time
of the free state and the bound state, the resulting resonance is
broadened (Kleckner and Foster, 2011). In our case IscU alone
corresponds to the “free state”, while the IscU-IscS complex is
the “bound state”. Since the spectra are completely unperturbed
until we reach a 1:1 ratio IscU:IscS, we can deduce that this is
not in a fast exchange regime in the NMR time range and we
can deduce that the process is an intermediate-to-slow exchange
regime. We would expect then to see peaks for both the free
state and the bound one. However, the high molecular weight of
the complex causes that the bound state is outside the limit of
NMR observation and we do not observe it. This did not allow
us to map the interaction surface of IscU on IscS, a problem
often observed in the NMR studies of complexes. We also did not
observe CSPwhen titrating directly IscU and CyaY in the absence
of IscS but in this case the spectra of the two proteins, individually
labeled in turn, where completely unaffected. This meant no
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FIGURE 2 | Pipeline of the hybrid methodology described in this

review. At the beginning we only know that proteins interact but do not know

anything about their mutual orientation. NMR allowed us to map the surface of

interaction of the lower molecular weight proteins. The surface involved in

interaction on IscS was identified by a combination of mutations and SAXS

experiments.

direct interaction in contrast with studies carried out on the
human and yeast proteins, where a direct interaction between the
scaffold protein and FXN was observed (Yoon and Cowan, 2003;
Correia et al., 2009; Leidgens et al., 2010), suggesting a different
behavior of the bacterial proteins. The difference could perhaps
be ascribed to the lack of the N-terminal extension which, in
eukaryotes, is part of the mitochondrial signal and absent in
prokaryotes. Finally, when titrated with IscS, the spectrum of
CyaY remains visible and shows clear CSP, which allowed us
to map the interaction on a specific surface (Figures 3D–F).
CyaY interacts with IscS using a negatively charged surface area
localized on α1, β1 and α1β1 and β1β2 loops (Adinolfi et al.,
2009). Interestingly, this negatively charged surface is the same
involved in iron binding (Yoon and Cowan, 2003; Bou-Abdallah
et al., 2004; Nair et al., 2004). We then tested for competition
between CyaY and IscU binding on IscS by [1H,15N]-HSQC
NMR spectra titrating 15N labeled IscU with up to an equimolar
amount of unlabeled IscS with unlabeled CyaY. Presence of
competition should cause dissociation of 15N labeled IscU from

IscS, resulting in the reappearance or increase of the NMR signal,
in a way proportional to the amount of competitor added. We
did not observe competition with IscU (Adinolfi et al., 2009;
Prischi et al., 2010a). We could thus conclude that both CyaY and
IscU bind to IscS, but not each other and obtain the surface of
interaction on CyaY from NMR only.

CSP data did rule out the presence of a direct interaction
or competition between CyaY and IscU, but this did not
automatically exclude binding between the two when in the
presence of IscS. We titrated 2H, 15N double-labeled CyaY with
unlabeled IscU and IscS up to a 1:1:1 molar ratio. 2H labeling
reduces spin-spin relaxation, a parameter inversely proportional
to the linewidths of the resonance in the spectrum. This results
in narrower linewidths and thus provide higher resolution
(Gardner and Kay, 1998). We observed a new set of spectral
perturbations, which we attributed to a direct contact of the
residues involved with IscU. Once mapped onto CyaY structure,
these residues clustered on the anti-parallel β-sheet surface of
CyaY (Figure 4A). In particular, the conserved Trp61 in CyaY
was found to be involved in the interaction with IscU. These
data are in agreement with studies on human FXN, where it
was shown that the exposed side chain of Trp155 (equivalent
to CyaY Trp61) is indispensable for FXN-ISU binding (Correia
et al., 2009; Leidgens et al., 2010).

To map the surface of interaction on IscS we used site
directed mutagenesis. We designed mutations of IscS targeting
solvent exposed residues. We aimed to abolish interaction with
ISC components, while keeping IscS stable and functional. We
titrated 15N labeled IscU and CyaY with five different IscS
mutants, i.e., IscS_R220E/R223E/R225E, IscS_I314E/M315E,
IscS_K101E/K105E, IscS_E334S/R340S and IscS_R39E/W45E
(Prischi et al., 2010a). IscS_R220E/R223E/R225E triple-mutant,
in which a positively charged patch formed mainly by arginines
close to the dimer interface was inverted in charge, does not
bind CyaY (Figure 4B; Prischi et al., 2010a). This strongly
supported the assumption that binding between these proteins
is driven by electrostatic interactions and is in agreement with
our competition studies. Differently, in IscS_I314E_M315E we
inserted two charged residues into an uncharged/hydrophobic
patch. This mutant has a reduced affinity for IscU, which, due
to a change in the exchange regime, caused chemical shift
perturbation of the 15N-labeled IscU HSQC spectrum. This not
only allowed us to identify IscS interacting surface, but also to
identify the IscU residues involved in IscS binding (Figure 4A;
Prischi et al., 2010a). All other IscS mutants behaved like the wild
type in titration experiments and provided us with solid controls
(Prischi et al., 2010a).

Step 2: Restrained Docking Simulation
To gain a visual impression and understand the relative
orientation of proteins in the complex, we generated models
of the central ISC machine using NMR restrained molecular
docking simulations. We used the docking software HADDOCK
(Dominguez et al., 2003). HADDOCK can incorporate NMR or
other distance restraints and implement them as “ambiguous
interaction restraints” (AIRs). The software forces the protein
interfaces to come together without imposing a particular
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FIGURE 3 | Comparison among close-ups from HSQC spectra of 15N uniformly labeled IscU. (A) From left to right, IscU alone; (B) IscU in the presence of

unlabeled IscS at a molar ratio of 1:0.5; (C) The same as in (B) but at a molar ration of 1:1. No detectable CSP of IscU peaks and concomitant disappearance of the

IscU spectra when saturated with IscS suggest that the process is under an intermediate-to-slow exchange regime in the NMR time range. For comparison, The

spectra were all recorded at 25◦C and 600 MHz and visualized using the same signal to noise ratio. (D) CyaY alone; (E) CyaY in the presence of unlabeled IscS at a

molar ration of 1:0.5; (F) The same as in (E) but at a 1:1 molar ratio. The spectra were all recorded at 25◦C and 600 MHz and visualized using the same signal to

noise ratio.

orientation. Using the AIRs that we determined experimentally
during Step 1, we obtained different families of complexes, which
differed by details but all reported IscU bound on the opposite
tips of the IscS dimer, roughly close to the N-terminus. CyaY
was instead consistently located near the cavity that contains the
active site of IscS, spatially close but not overlapping with IscU.
While these results could have been sufficient for having a first
rough model of the IscS-IscU-CyaY complex, we felt that further
validation was needed to confirm independently the relative
positions of the three proteins.

Step 3: Validation through SAXS Data
The generated models were then experimentally verified and
re-scored using SAXS data. SAXS is a solution technique that
allows to study the shape, conformation and assembly state
of proteins and, more in general, macromolecular complexes
(Mertens and Svergun, 2010). Despite being a low-resolution

technique, SAXS is well suited for the study of flexible systems
and intrinsically disordered proteins (Wang et al., 2011), which
are major limitation in X-ray crystallography and cryo-EM. It
also allows the study of proteins in solution in nearly-native
conditions. SAXS experiments are not time consuming. Recent
hardware improvements allow high-throughput studies (Round
et al., 2008). A monochromatic X-ray beam is scattered by
the protein sample in solution. At low (below 0.1 Å−1) and
medium momentum transfer (s) (between 0.1 Å−1 and 0.25/0.3
Å−1) scattering angle, we obtain different information about the
system (Figure 5A). Above 0.3 Å−1 the noise masks the signal
and above 0.5 Å−1 data are collected at wide angle. This technique
is not called SAXS anymore, but WAXS (Wide Angle X-ray
Scattering) (Graewert and Svergun, 2013). At low s it is possible to
extrapolate the radius of gyration Rg, which provide information
about the size of the protein (Grant et al., 2015; Kikhney and
Svergun, 2015). In order to obtain a reliable Rg, it is important to
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FIGURE 4 | Ribbon representation of CyaY and IscS-IscU interactions. (A) IscU is shown in pink, while IscS monomers are colored in pale cyan and light green

with side chains of residues mutated indicated explicitly: R220E/R223E/R225E (red). PLP in IscS active site is shown in black. Side chains of CyaY residues exhibiting

CSP are explicitly shown: residues interacting with IscS are in red (Trp14, Leu15, Glu19, Asp22, Asp23, Trp24, Asp25, Asp27, Ser28, Asp29, Ile30, Asp31, Cys32,

Glu33, Ile34, Leu39, Thr42, Phe43, Glu44, and Gly46), while residues interacting with IscU are in green (Thr40, Ile41, Lys48, Ile50, Asp52, Arg53, Glu55, Trp61,

Leu62, Ala63, Thr64, Gln66, Gly68, Tyr69, and His70). (B) Electrostatic surface of unbound Iscs. The circle indicates the position of the positively charged residues

involved in binding.

have a precise measurement of the sample concentration before
SAXS measurements. Medium s provides information about the
shape of the protein. More precisely it is possible to obtain the
Dmax, which provides measurement of the maximum dimension
of the protein (Svergun, 1992).

From these measurements it is possible to build a low-
resolution envelop, which represents the shape of the protein
studied. The shape is reliable only when the system under
study is monodisperse. In fact, it is always possible to obtain
envelops from SAXS data, but poly-disperse samples do not
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FIGURE 5 | SAXS profiles of the complexes. (A) The X-ray scattering

patterns from IscS (1), IscU (2), CyaY (3) binary complexes IscS/IscU (4) and

IscS/CyaY (5) and ternary complex IscS/CyaY/IscU (6). Plots display the

logarithm of the scattering intensity as a function of momentum transfer (s). At

the bottom it is highlighted with a blue box the low s region of the SAXS curve,

in red the medium and in green the high. The experimental data are displayed

as dots with error bars, the scattering from typical ab initio models computed

by DAMMMMIF as full lines and the calculated curves from the high-resolution

(for proteins alone) and rigid body models (for complexes) computed by

CRYSOSOL/SASREF as dashed lines. The successive curves are displayed

down by one logarithmic unit for clarity (figure adapted from Prischi et al.,

2010a). (B) Table summarizing SAXS data. Rg is the radius of gyration; Dmax

is the maximum size of the particle; MMSAXS is the molecular mass calculated

from SAXS data; MMexp experimental molecular mass of the solute and χab

and χ rb values for the fit curves from ab initio models and from high resolution

models (for proteins alone) and rigid body modeling (for complexes) using

CRYSOL/SASREF, respectively.

generate envelops that represent the real shape of the protein.
For example, in the study of PERK N-terminal domain, the
protein was in a dynamic equilibrium between a dimer and a
tetramer (Carrara et al., 2015). In this case it is not possible to
obtain protein shape information, but SAXS is still informative.
It had to be assumed that the resulting shape was a weighted
average of dimer and tetramer shapes. The factor of weight had
to be obtained from independent techniques, such as analytical
ultracentrifuge (AUC), from which the relative populations
of PERK dimer and tetramer in solution were estimated.

The SAXS curve was then back-calculated using PERK dimer
and tetramer crystal structures, weighted according to their
relative abundance in solution, and fitted on experimental data.
Agreement between experimental and back-calculated SAXS
curves provided a confirmation that the PERK oligomeric
structures were not a crystallographic artifact, but representative
of the oligomeric state of PERK in solution (Carrara et al.,
2015).

Luckily, IscS, IscU, and CyaY are all mono-disperse in
solution. It was thus possible to obtain reliable information about
their shapes from SAXS only. We collected SAXS data for each of
the individual components, as well as for the binary (IscS-IscU,
IscS-CyaY) and tertiary (IscS-IscU-CyaY) complexes (Prischi
et al., 2010a). As previously mentioned, due to the dynamic
nature of the Fe-S cluster machinery, the binding affinities of
IscU and CyaY for IscS are relatively low: KdIscU-IscS = 1.3
± 0.2 µM and KdCyaY-IscS = 18.5 ± 2.4 µM (Prischi et al.,
2010a). We were able to isolate IscU-IscS complex using Size-
Exclusion Chromatography (SEC) (Prischi et al., 2010b), but
not CyaY-IscS and IscS-IscU-CyaY. In these cases we directly
mixed proteins in solution prior data collection. Knowledge of
relative Kd allowed us to estimate the optimal proteins ratios
in order to maximize formation of the (Prischi et al., 2010a). It
is worth mentioning that, despite not being available when we
collected our data, a new methodology, particularly useful when
collecting SAXS data on protein complexes, is Size-Exclusion
Chromatography in line with SAXS (SEC–SAXS) (Mathew et al.,
2004). SEC-SAXS is useful for separating pure systems that are
under monomer-oligomer equilibrium or to further purify the
sample before SAXS data are collected (particularly indicated
for low stability protein which tend to form soluble aggregates).
SEC–SAXS is available as a continuous-flow sample delivery
option at BioCAT (Advanced Photon Source, U.S.A.) (Mathew
et al., 2004), SWING (Soleil, France) (David and Perez, 2009),
the SAXS beam line at the Australian Synchrotron, BM29 (ESRF,
France), BL23A1 (NSRRC, Taiwan), B21 (Diamond, U.K.) and
P12 (DESY, Hamburg) (Blanchet et al., 2015). SEC-SAXS has
however limitations and it shouldn’t be used as a purification step
(Jeffries et al., 2016).

Ab initio envelops were generated using the software
DAMMIF (Franke and Svergun, 2009). The high-resolution PDB
structures 1P3W (Cupp-Vickery et al., 2003) for IscS and 1SOY
(Nair et al., 2004) for CyaY were fitted into the SAXS envelops
by rigid body modeling. Two different structures were used for
IscU: one solved by NMR (PDB ID 1Q48) (Ramelot et al., 2004)
and one by X-ray crystallography (PDB ID 2Z7E) (Shimomura
et al., 2008). The two structures have a similar overall secondary
structure content, but while in the NMR structure the first 25
residues are in a random coil conformation, the crystal structure
is more compact and the N-Terminus forms a α-helix which
makes contacts with α3 and the α5α6 loop. The quality of
fitting of a 3D structure on a SAXS envelop can be visually
ascertained, and can be more accurately estimated using the
χ2 (Svergun, 1999). χ2 tells us how well the back-calculated
scattering intensity from a 3D structure fits the experimental
SAXS data. Fitting of the isolated CyaY and IscS resulted
excellent, with a χ2 of respectively 1.01 and 1.09 and an estimated
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molarmass of respectively 12 kDa± 4 kDa (expected 12.231 kDa)
and 85 kDa ± 10 kDa (expected 90.180 kDa) (Figures 5A,B). Of
the two structures, 1Q48 fitted better the SAXS data collected
for the isolated IscU in agreement with the dynamic nature of
isolated IscU in solution (Kim et al., 2009; Prischi et al., 2010b),
with a χ2 of 1.03 and an estimated molar mass of 13 kDa ±

4 kDa (expected 13.849 kDa) (Figures 5A,B). It is also strongly
recommended to check the residuals of the difference between
experimental and back calculated SAXS data (i.e., whether these
are random and not systematic).

Step 4: Experimental Validation of the
Models
The software DAMMIF (Franke and Svergun, 2009) was used
to generate envelops from SAXS data. DAMMIF, a fast version
of DAMMIN (Svergun, 1999), carries out an ab initio shape
determination by simulated annealing using a single phase
Dummy Atom Model (DAM). The DAM is represented by
a tightly packed group of beads, which mimic, but do not
resemble, real atoms. Each bead has a known scattering pattern
and the software puts beads together so that the accumulated
scattering resembles the experimental data. The software used to
generates back-calculated curves and fit them on experimental
data is the CRYSOL software (Svergun et al., 1995). CRYSOL
requires a 3D structure/object as an input and then, taking into
account the contribution for each atom, it evaluates the scattering
intensity.

Despite having a 10–20 Å resolution (2π/smax), the SAXS
envelops of the binary and tertiary complexes resulted evidently
different from those of the single components. We first tested
whether SAXS data were sufficient to generate meaningful
binary and tertiary complexes using the SASREF software
(Petoukhov and Svergun, 2005). SASREF tries to build the
quaternary structure of a complex using the structures of the
subunits and the solution scattering data. It is particularly
useful because it can work with multiple data set(s), which
allows working with SAXS data from sub-complexes and
creating contrast series. SASREF build the complex structure
without steric clashes using a simulated annealing protocol,
which minimize differences between the experimental scattering
data and the back-calculated SAXS curve of the model being
built.

We inputted in SASREF the SAXS data and the high-
resolution structures of the single components but the
complexes obtained with this approach did not generate
reliable models, since they were not in agreement with our
binding studies. Instead, we docked our HADDOCK structures
into SAXS envelops. HADDOCK models were used to generate
back-calculated SAXS curves, which were fitted on experimental
data. Based on χ2, we selected the best fitting model, which was
an experimentally verified model of FeS machinery complexes.
Selecting the "best fitting model" could be problematic if two
similar HADDOCK models have small orientation differences,
which are clearly not distinguishable at SAXS resolution. In this
context, HADDOCK is particularly well suited, because it first
generates a maximum of 1,000 structures and then groups them

according to their relative RMSD. By aligning these generated
models using the interface residues of the first molecule,
the RMSD (more correctly called interface-ligand RMSD) is
calculated for the interface residues (less than 10 Å distance
from the first molecule) of the second molecule (Dominguez
et al., 2003). In our case, all structures HADDOCK grouped
within the same group had RMSD < 7.5 Å. For each group,
we used the structures with overall lower energy (evaluated
by HADDOCK). Analysis of the binary complexes confirmed
that CyaY sits near the IscS dimer interface and the active site,
while IscU is located on the periphery of the IscS dimer and is
aligned with the long axis of IscS. Accordingly, the IscS-IscU
(Rg = 35 Å, Dmax = 121 Å) envelop is more elongated than the

IscS alone (Rg = 31 Å, Dmax = 109 Å), while the IscS-CyaY
envelop is more globular (Prischi et al., 2010a; Yan et al., 2013b;
Figure 4B).

Step 5: Comparison with X-Ray Crystal
Protein Complexes
A limitation of this procedure is the absence of a tool to
predict/model major structural changes upon formation of
a complex. HADDOCK can simulate small conformational
changes during the molecular dynamics refinement, but the final
model strongly depends on the initial 3D structures provided:
HADDOCK assumes a key-in-the-lock model. If a protein has
significantly different structures in the free and bound states,
HADDOCK (like any other protein docking software) will fail
to generate a reliable model. For the IscS-IscU complex, we
found that the model generated from HADDOCK did not
fit the SAXS envelop as well as the single components did.
However, a crystal structure of the IscS-IscU complex (PDB
ID 3LVL) (Shi et al., 2010) became available while we were
carrying out our studies. This structure is in perfect agreement
with our NMR and mutant binding data and fits the SAXS
envelop better than the HADDOCK model. This is due to
IscU going through a structural rearrangement upon binding,
with a formation of a α-helix in the N-terminus, similar to
the one seen in 2Z7E (Shimomura et al., 2008). IscU has an
optimal orientation for FeS cluster formation, with the surface
containing three conserved cysteines pointing toward Cys328
in IscS loop (Shi et al., 2010). The distance between IscS
active site and IscU is around 12 Å, suggesting the presence
of major conformational changes happening during FeS cluster
formation.

We then used 3LVL (Shi et al., 2010) for modeling the tertiary
complex, IscS-IscU-CyaY. Interestingly, the model confirmed
that, despite not being able to interact between each other
directly, CyaY and IscU can interact once bound to IscS. This
structure helped us to explain an inhibitory effect of CyaY
on FeS cluster formation: enzymatic studies had showed that
the tertiary complex is “less dynamic” than the binary ones
with CyaY creating an additional anchoring point between
IscS and IscU (Prischi et al., 2010a). This is in agreement
with the observation that CyaY binding increases the affinity
of IscU for IscS thus reducing the dissociation rates of the
complex (the koff for the disassembly of the IscS/IscU complex
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is 0.8 s−1 in the absence of CyaY, vs. 0.006 s−1 in the presence of
CyaY).

A STEP FORWARDS: MOLECULAR
DYNAMIC SIMULATIONS

From our studies it emerged that the dynamic nature of the
ISC proteins is a key factor in their functions. To feature this
dynamical behavior, we thus complemented our previous data
with extensive (400 ns) molecular dynamic (MD) simulations (di
Maio et al., 2017) of the IscS-IscU complex, both in the presence
and in the absence of CyaY. We showed that the binary IscS-IscU
complex is stably folded in line with our SAXS evidence (Prischi
et al., 2010a), but IscU adopts a likely functionally relevant pivotal
motion around the interface with IscS. This means that, despite
being firmly attached to IscS, IscU maintains some degree of
flexibility upon complex formation, which can be connected to
their low binding affinity and the need of IscU to deliver FeS
cluster to protein acceptors. At the same time, the pivotal motions
observed in the MD simulations suggest that IscS-IscU interface
is “fluid,” with IscU side chains at the interface being trapped in
several local minima. This was confirmed by NMR experiments
(di Maio et al., 2017).

During the trajectory, the IscS catalytic loop containing
Cys328 moves spontaneously and shifts from amostly 310-helical
structure to a β-turn/310-helix equilibrium, bringing Cys328

from 12 Å to 9 Å from the FeS cluster binding site on IscU (di
Maio et al., 2017). This is in agreement with the IscS-IscU X-
ray structure of the A. fulgidus (PDB ID 4EB5) (Marinoni et al.,
2012), which brilliantly captured the delivery stage of FeS cluster
from IscS to IscU. In 4EB5, the FeS cluster is bound to the Cys of
the IscS catalytic loop and is about 6 Å away from the IscU FeS
cluster binding site (Marinoni et al., 2012).

In agreement with our previous studies (Prischi et al., 2010a),
the simulations showed that the tertiary complex IscS-IscU-CyaY
is more stable and that CyaY reduces the structural fluctuations
of the IscS-IscU complex (di Maio et al., 2017). The most
striking feature of the complex is the absence of motions of
the IscS catalytic loops (one for each protomer) over the same
timescale, due to CyaY steric hindrance and a salt bridge between
CyaY Arg53 and IscS Glu334. This model brings us back to the
beginning of this review, where we described the possible roles of
FXN. The model we generated recapitulated in an elegant way
our enzymatic data and provides a mechanistic explanation of
how CyaY slows down FeS cluster formation (Adinolfi et al.,
2009; Prischi et al., 2010a).

EXTENSION OF THE METHODOLOGY TO
OTHER ISC COMPLEXES

The approach described here has now been adopted by others
(Kim et al., 2014, 2015) also to elucidate other ISC complexes,

FIGURE 6 | Ribbon representation of Fdx, YfhJ, and IscS interaction. IscS monomers are colored in pale cyan and light green with side chains of residues

mutated indicated explicitly: R112E/R116E (orange), R220E/R223E/R225E (red). PLP in IscS active site is shown in black. Side chains of holo-Fdx residues exhibiting

CSP (Ile54, Val55, Gln68, Glu69, Asp70, Asp71, Met72, Leu73, Asp74, Lys75, Ala76, Trp77, Gly78, Leu79, Glu80, Glu82) are explicitly shown in red. Fdx is loaded

with a [2Fe-2S] cluster. YfhJ is colored in light blue and side chains of residues exhibiting CSP (Leu3, Lys4, Glu10, Ile11, Glu13, Ala14, Asp17, Leu58, Trp61, Leu62,

Asp63, Glu64) are explicitly shown in blue.
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TABLE 1 | Hybrid method breakdown.

PROS CONS

NMR • Proteins are in solution;

• Detects presence of protein interaction;

• Allows identification of residues involved in protein interaction;

• Solve structure of small complexes (<30 kDa) at atomic

resolution;

• Allows to measure protein dynamics in solution

• According to the exchange regime in the NMR time range it is

not always possible to identify residues involved in interactions

→ Site Directed Mutagenesis can be used to modify affinity and

hence the exchange regime;

• When the system crystallizes→ X-Ray Crystallography and

SAXS can be a valid alternative approach.

X-Ray Crystallography • Solves structure of a protein complex at atomic resolution. • Not all proteins or protein complexes crystallize.

SAXS • Proteins are in solution;

• Detects presence of protein interaction;

• Generate low resolution (10-20Å) models of proteins and protein

complexes;

• Requires 3D structures solved by NMR or X-Ray Crystallography;

• Unreliable protein complexes models built based only on SAXS

data → Docking software (HADDOCK) can be used to generate

models;

• Provides shape of the protein or protein complexes in solution;

• Generates reliable protein envelops only for monodisperse

samples.

• Detect conformational changes.

Site directed mutagenesis • Allows to lower proteins affinities;

• Allows to abolish protein interactions.

• May require the production of several different mutant clones in

order to find residues involved in protein interaction;

• Does not provide overall structural information.

ITC & Fluorescence

Spectroscopy

• Detects presence of protein interaction;

• Measure affinities of protein complexes; →Allows to predict

proteins exchange regime in the NMR time range.

• Requires Site Directed Mutagenesis in order to identify residues

involved in protein interactions;

• Does not provide overall structural information.

Protein-Protein Docking

simulation (HADDOCK)

• Generate 3D structures of protein complexes by forcing the

protein interfaces to come together without imposing a

particular orientation.

• Requires 3D structures solved by NMR or X-Ray Crystallography;

• Reliable only in presence of experimental interaction restraints

→NMR and Site Directed Mutagenesis can be used to identify

residues involved in protein interaction.

Molecular Dynamics

simulations

• Allows to measure and observe dynamical features of proteins

and proteins complexes.

• Requires a 3D structure or an experimentally verified model.

Flowchart of the pros and cons of the different techniques part of the hybrid method adopted for the study of Iron-sulfur cluster machinery.

increasing the robustness of the methodology. A study of the
complex between IscS and YfhJ was published (Kim et al., 2014).
YfhJ behaves similarly to CyaY as it is able to bind both Fe (II) and
Fe (III) using an electrostatic negative surface, which is the same
area involved in IscS binding (Figure 6; Pastore et al., 2006). YfhJ
also competes for the same site of CyaY on IscS in agreement with
previous mutation studies (Shi et al., 2010).

We have ourselves recently applied this hybrid method to
model the IscS complex with Fdx, a FeS cluster dependent protein
which is known to provide electrons to cellular reactions. Fdx
is not-functional and devoid of tertiary structure in the absence
of the cluster (Yan et al., 2013a). As for IscU, the spectrum of
labeled Fdx disappears completely upon addition of unlabeled
IscS. To circumvent the problem, we titrated 2H, 15N double-
labeled holo-Fdx with IscS using [2H,15N]-SOFAST HMQC
NMR experiments (Yan et al., 2013b). This experiment requires
a shorter acquisition time compared to HSQC and is thus more
suitable for unstable samples. We could then identify the residues
of Fdx involved in IscS binding cluster, which reside near a
uniform acidic patch on the α2-α3 loop (Figure 6; Yan et al.,
2013b).

NMR competition studies revealed that Fdx and CyaY
compete for the same site of IscS (Yan et al., 2013b). A Fdx-
IscS SAXS verified model showed that Fdx sits in a position
similar to that of CyaY near the active site. This was utterly
validated by creating a new IscS mutant (IscS_R112E/R116E),
which interferes with Fdx binding (Yan et al., 2013b). Assuming
that the two proteins exploit their functions in different times
during the cluster biogenesis, competition could represent a
fascinating regulation mechanism. Superimposition of the Fdx-
IscS and IscS-IscU models reveals that the Fdx C-terminus
(which contains two key residues for electron transfer reactions,
Tyr101 and His105) points toward the interface between IscS and
IscU. This nicely explains how, after production of S0 from L-
cysteine by IscS, Fdx could reduce S0 to S2− (Yan et al., 2013b,
2015).

To add surprise to surprise, we have more recently shown that
also the co-chaperone HscB binds to IscS in the same binding
pocket, a result further validated by cross-linking experiments
(Puglisi et al., 2016). This implies a picture in which IscS acts
as a central platform on which several of the other bacterial
ISC proteins bind and typically form 1:1 complexes (Pastore
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et al., 2006; Adinolfi et al., 2009; Prischi et al., 2010a; Yan et al.,
2013b). It remains for us to understand why and how several
different components of the same pathway compete for the
same site. We suggested that this is a regulatory significance,
which could operate through allosteric responses and involve
the binding sites on each of the protomers present in the IscS
dimer.

CONCLUSIONS

In conclusions, we have in this review gone through a
methodology (Table 1), which has allowed us to gain information
on a 110 kDa complex with hybrid techniques. The method
can in principle be applied also to larger complexes. The most
successful cases are anyway those which involve an appreciable
charge of shape of the complex, leading to a clear difference
of the SAXS envelop between the isolated components and the
complex. Limitations are currently dictated by the number of
restraints available and by their distance tolerance: restraints
which can allow a tolerance of more than 11 Å, as it is the
case for cross-linking studies, are informative but only if several
distances are available. It would also be useful to develop
HADDOCK and other software to deal with the specific problems

of hybrid methods. Some attempts along this line have already
been made but more effort would be welcome in the future.
It appears particularly useful, in a future perspective, to flank
NMR and SAXS studies to other techniques, such as fluorescence,
isothermal calorimetry, AUC and cross-linking to obtain more
complete and complementary information. As a word of caution
though, very good care should anyway be paid to the validation of
the results. False positives can be easily obtained if assuming the
presence of the wrong species in solution. It remains nevertheless
clear that hybrid methods have open a new perspective to the
size and complexity of the complexes which can be studied
by Structural Biology and, more importantly to the possibility
of tackle not only stable and rigid assemblies but also weakly
interacting dynamical machines.
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Retinal is the light-absorbing chromophore that is responsible for the activation of

visual pigments and light-driven ion pumps. Evolutionary changes in the intermolecular

interactions of the retinal with specific amino acids allow for adaptation of the spectral

characteristics, referred to as spectral tuning. However, it has been proposed that a

specific species of dragon fish has bypassed the adaptive evolutionary process of

spectral tuning and replaced it with a single evolutionary event: photosensitization of

rhodopsin by chlorophyll derivatives. Here, by using a combination of experimental

measurements and computational modeling to probe retinal-receptor interactions in

rhodopsin, we show how the binding of the chlorophyll derivative, chlorin-e6 (Ce6) in

the intracellular domain (ICD) of the receptor allosterically excites G-protein coupled

receptor class A (GPCR-A) conserved long-range correlated fluctuations that connect

distant parts of the receptor. These long-range correlated motions are associated with

regulating the dynamics and intermolecular interactions of specific amino acids in the

retinal ligand-binding pocket that have been associated with shifts in the absorbance

peak maximum (λmax) and hence, spectral sensitivity of the visual system. Moreover,

the binding of Ce6 affects the overall global properties of the receptor. Specifically, we

find that Ce6-induced dynamics alter the thermal stability of rhodopsin by adjusting

hydrogen-bonding interactions near the receptor active-site that consequently also

influences the intrinsic conformational equilibrium of the receptor. Due to the conservation

of the ICD residues amongst different receptors in this class and the fact that all GPCR-A

receptors share a common mechanism of activation, it is possible that the allosteric

associations excited in rhodopsin with Ce6 binding are a common feature in all class

A GPCRs.

Keywords: Terahertz spectroscopy, protein allostery, small-molecule allosteric agonist, Chlorine Compounds,
protein dynamics

INTRODUCTION

The dimmest habitats on earth appear at night and in the depths of the ocean (Warrant, 2004). The
greatest challenge for vision in these habitats is capture of photons, and the way these photons are
post-processed. The primary photoreceptor in eyes, rhodopsin, is a major target for adaptation to
different light conditions. Rhodopsin as the prototypical member of the GPCR-A family adopts an
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overall organization of seven transmembrane (TM) helices that
form a bundle. Within the GPCR family there is a large
sub-group of opsins, representing opsin sequences in different
photoreceptor cell types and organisms. All opsins covalently
bind retinal, a vitamin A derivative, at the interface between the
transmembrane (TM) and extracellular domains (ECDs). Visual
signal transduction is initiated by photon-induced isomerization
of 11-cis retinal to all-trans retinal. This event is sensed by
the TM domain which undergoes a conformational change
that results in the activated state, Metarhodopsin II (Meta-II)
via Meta-I. Meta-II—unlike dark state rhodopsin—binds and
activates the G protein, transducin Gt, ultimately leading to
receptor hyperpolarization. Signal desensitization is initiated by
phosphorylation of the C-terminus of rhodopsin by rhodopsin
kinase, followed by binding of arrestin, preventing further
binding of Gt to rhodopsin. In vitro, Meta-II decays to opsin
and free retinal, the half-life of which depends on the lipid
environment (Farrens and Khorana, 1995). In addition, a storage
form of rhodopsin, Meta-III, emerges in parallel with Meta-II,
from the Meta-I state. The Meta-III state of rhodopsin—unlike
Meta-II—has a protonated retinal Schiff base and decays into
opsin and free retinal on significantly longer time scales (Heck
et al., 2003b,a; Vogel et al., 2003, 2004; Stehle et al., 2014).

One mechanism of adaptation to dim habitats is spectral
tuning. Spectral tuning refers to adjustment of the absorbance
maxima in the spectra of the photoreceptors. Spectral tuning can
be hard-wired by genetic variation of the rhodopsin sequences
changing the interactions between the retinal and the protein
(“opsin shift”) (Nathans, 1990). This allows adaptation to the
wavelengths that are maximally transmitted under different
environmental conditions, such as sun-light in the shade,
sun-light penetrating water, moon-light or bioluminescence
generated by deep-sea fish (Douglas et al., 1998; Fishkin et al.,
2004). Genetic adaptation is also the mechanism by which
cone and rod opsins absorb at different wavelengths (Douglas
et al., 1999). However, spectral tuning can also be achieved
by interaction of the rhodopsins with small molecules. In
xanthorhodopsin, a bacteriorhodopsin-like proton pump in the
halophilic eubacterium Salinibacter ruber, a carotenoid is bound
in addition to retinal (Balashov et al., 2005). Light energy
absorbed by the carotenoid is transferred to the retinal with
a quantum efficiency of ∼40% (Balashov et al., 2005) and
light is funneled to the retinal similar to the photosynthetic
light harvesting complex. In the deep-sea fish Malacosteus
niger (dragon fish), porphyrin/chlorophyll derivatives, including
chlorin e6 (Ce6), may act as photosensitizers rendering its
rhodopsin sensitive to wavelengths that other deep-sea fish
respond to as a result of genetic adaptations of their retinal
binding pockets or retinal replacement (Douglas et al., 1998,
1999; Isayama et al., 2006). An investigation of different
chlorophyll derivatives in rod outer segments on bleaching
rates of the chromophore by red light highlighted Ce6 as
the molecule with the strongest photosensitizing effect on
bovine rhodopsin (Washington et al., 2004). The hypothesis
of a binding pocket for Ce6 and energy transfer to retinal
resembling that of light harvesting in photosynthesis was
proposed (Washington et al., 2004; Isayama et al., 2006). The

photosensitizing effects of chlorophyll-derivatives observed in
salamander and deep-sea fish can be reproduced qualitatively
using bovine rhodopsin, in vitro (Washington et al., 2004).
Furthermore, electroretinogram recordings in mice injected with
Ce6 suggested that the sensitivity of rhodopsin can be broadened
to blue and red light in the presence of Ce6 (Washington et al.,
2007). Indeed, the photosensitizing effect of Ce6 and other
porphyrin compounds in vision has been reported as a side-effect
during photodynamic therapy (Kimura, 1987).

To understand by what Ce6 binding enhances bleaching
rates of rhodopsin in red light, we used a novel approach
which we recently developed to probe dynamics and allostery
in rhodopsin (Woods et al., 2016): through a combination of
molecular dynamics simulations, evolutionary sequence analysis
and Terahertz (THz) spectroscopy we show that Ce6 binding
excites evolutionarily conserved communication pathways in
rhodopsin that establish connections between the ligand-binding
site and the rest of the receptor.

RESULTS

Experimental Detection of the
Conformational Ensemble Dynamics and
Intermolecular Changes in Rhodopsin
When Bound with the Allosteric Modulator
Ce6
Global Fluctuations of Dark-State Rhodopsin Bound

with Ce6
The <100 cm−1 region of the infrared spectrum is sensitive
to global, internal fluctuations that describe the intrinsic
dynamics of the receptor. These globally, correlated thermal
fluctuations provide a mechanism for sampling the ensemble
of conformations that comprise the free energy landscape of
possible receptor conformations (Frauenfelder et al., 1991).
Hence, the modes detected in the experimental THz spectrum
in this region provide direct information about the sampling
of conformational substates in rhodopsin. An inspection of the
low frequency modes of dark-state rhodopsin in the <100 cm−1

spectral region in Figure 1A in the presence and absence of
Ce6 reveals that the region of the spectrum above 50 cm−1

is dramatically altered when contrasting the two states of the
receptors. For instance, in the Ce6-bound receptor in Figure 1B

there is a prominent peak at 80 cm−1 and a general increase in
the absorption peak intensity at a frequency above 50 cm−1 when
contrasted with the dark-state receptor that is not bound with
Ce6 (Figure 1 and Woods et al., 2016). The differences in the
spectra of the two receptors suggest that binding of Ce6 alters
the conformational ensemble dynamics in rhodopsin.

In our previous work on the inactive-receptor in the unbound
state (Woods et al., 2016), we have found there is an equilibrium
of both inactive and active-state protein conformational
fluctuations in the dark-state protein. This conformational
heterogeneity in the inactive receptor indicates that rhodopsin
samples a diverse set of functional structures even before any
activation event has taken place. In particular, the heterogeneity
of global structural fluctuations detected experimentally is
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FIGURE 1 | Experimental THz spectrum of dark-state rhodopsin in the unbound state (black line) and when bound with Ce6 (purple line) in the (A) 240–100 cm−1

spectral region and in the (B) 100–20 cm−1, spectral region. Experimental THz spectrum of Meta-II in the unbound state (black line) and when bound with Ce6 (purple

line) in the (C) 240–100 cm−1 spectral region and in the (D) 100–20 cm−1 spectral region.

intimately tied with multiple pre-existing allosteric associations
in the inactive receptor. Peaks at approximately 75 and 55 cm−1

in the experimental spectrum of the unbound receptor were
identified as rhodopsin global fluctuations in an inactive-type
conformation. Specifically, the peak at 55 cm−1 was found to be
associated with a retinal (polyene chain) torsional fluctuation that
is coupled with a protein, global backbone torsion, whereas the
peak at 75 cm−1 is associated with a retinal torsional oscillation
that is coupled with collective out-of-plane protein side-chain
fluctuations (Woods et al., 2016). In addition to the inactive-
state conformational fluctuations, we also uncovered a weaker
band at approximately 40 cm−1 in the experimental spectrum
that was later found to be associated with transient interactions
of receptor amino acid side-chains that supported a more active-
like rhodopsin conformation. These retinal-induced transient
interactions of the more active-like receptor conformation were
hypothesized to serve as a necessary precursor in the mechanism
that eventually leads to the active-state receptor. Therefore, the
enhancement of the ∼75 cm−1 mode in the Ce6-bound receptor

suggests that Ce6 stabilizes a specific conformational state of
rhodopsin—the ground state.

Ce6-Induced Intra- and Inter-Protein Interaction

Networks in Dark-State Rhodopsin
In the 100–250 cm−1 region of the experimental spectrum
we detect motions in rhodopsin that reveal more localized
intermolecular interactions (Woods, 2014b) such as interhelical
contacts as well as helical interactions with the solvent. In general,
peaks in the experimental spectrum in the 100–160 cm−1 are
related to protein intra- and intermolecular interactions. For
example in Figure 1A, the peaks at approximately 150 and 140
cm−1 in the dark-state spectrum of the unbound receptor were
found to be associated with interhelical and solvent-induced
H-bonding interactions in our earlier study (Woods et al.,
2016), while peaks ≥170 cm−1 are predominately associated
with solvent-solvent interactions of water molecules in the
receptor hydration shell. A comparison of dark-state rhodopsin
in the unbound and unbound state in Figure 1A suggests that
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binding of Ce6 alters the inter- and intra-protein interactions in
rhodopsin but has amuch stronger effect on an extensive network
of solvent H-bonds that stabilize the ground state of the receptor
(Woods, 2014a).

MD simulation of Ce6-Induced
Long-Range Correlated Fluctuations and
the Effect on Dark-State Rhodopsin Global
Motions
Allostery in proteins enables the activity of one site in a
protein to modulate function at another spatially distinct region
(Hawkins and McLeish, 2006; Fenwick et al., 2011; Motlagh
et al., 2014). Recent experimental and computation investigations
on a number of proteins and enzymes have demonstrated
that allosteric signal transmission is mediated by protein local
structural fluctuations (Whitten et al., 2005; Daily and Gray,
2007; Pandini et al., 2013). To assess if Ce6 allosterically affects
retinal-protein interactions in rhodopsin, we carried out MD

simulations of dark-state bound rhodopsin in the presence
and absence of Ce6. We find that Ce6 binds only weakly
on the cytoplasmic surface (Supplementary text, Ce6–ligand
binding affinity and Figures S2, S3) of the receptor. Experimental
fluorescence measurements of Ce6 binding to rhodopsin also
reveal micromolar binding affinity (unpublished results). Despite
the weak binding, Ce6 has a strong effect on the long-range
correlated fluctuations of the bound state when contrasted
with the unbound receptor. This can be deduced from our
analysis of the MD simulation induced localized structural
fluctuations (LSFs) and the consequent collective dynamics in
the receptor that arise from the addition of Ce6 to rhodopsin.
For instance, Figure 2 reveals the development of long-range
correlated fluctuations in dark-state rhodopsin with Ce6 that
significantly involve contributions from the intracellular loops
close to where Ce6 binding takes place. Particularly, Ce6-induced
long-range correlated fluctuations involving intracellular loop
2 (CL2) and extracellular loop 2 (EL2) are coupled with a
structurally conserved collection of aromatic and polar residues
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FIGURE 2 | (A) A 2-D network mapping of the LSFs from the MD simulation of dark-state rhodopsin when bound to Ce6 and (B) a cartoon representation of

rhodopsin showing the mapping of the LSFs from (A) onto the protein 3-D structure.
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at the extracellular end of H4 (Pro170, Pro171, Tyr175, Ser176,
Arg177, and Tyr178) leading from the ligand-binding pocket to
the EC domain. This group of GPCR-A wide conserved long-
distance fluctuations modulates the H-bonding environment
of residues and solvent molecules lining the retinal ligand-
binding pocket (Figure 2B). Specifically, side-chain fluctuations
of residues such as Glu122, Trp126, and Phe261 in Ce6
rhodopsin have increased (H-bonding) interactions with the
retinal β-ionone ring due to the CL2–EL2 correlation when
contrasted with unbound receptor (Figure S1b). The Ce6-
induced correlated fluctuations reorient Glu122 so that the there
is a rearrangement of the H-bonding network surrounding the
ring such that it stabilizes the retinal in a defined conformation
(Figure 2 and Figure S4). In our previous work (Woods et al.,
2016) we have conjectured that the ability of the retinal to
assume multiple conformational states is intertwined with the
formation of multiple, distinct signaling pathways in both the
inactive and active receptor. In line with what was observed in
the experimental detection of the global modes of the dark-state
receptor in Figure 1, we find from the MD analysis of the Ce6-
induced structural fluctuations in rhodopsin, that binding of the
allosteric modulator assists in stabilizing the receptor in a specific
conformation, namely the ground state because of the modified
electrostatic interactions in the vicinity of the retinal ring that
accompany Ce6-binding. This conclusion is further supported by
a mapping of the low-frequency torsional dynamics of the retinal
from the dark-state MD simulations of rhodopsin in both the
unbound and bound states. The absence of the 40 cm−1 mode
in the MD retinal torsional spectrum of Ce6-bound rhodopsin
in Figure 3A clearly shows that Ce6 stabilizes only a subset of
the receptor conformations. Both the 80 and 65 cm−1 represent
the effect of retinal torsional dynamics from interactions with
the inactive-like conformation of rhodopsin, whereas the 40
cm−1 mode reflects the influence on the retinal from protein
interactions in a more active-like conformation (Woods et al.,
2016).

Ce6-induced long-distance induced fluctuations involving
CL1 and CL3 are instrumental in altering the interhelical packing
within the receptor core. Correlated fluctuations involving
these two loops modulate the dynamics of TM1and TM2
(Figure 2) and subsequently destabilize a conserved cluster of
water molecules near Gly90 in helix 2 that maintain the shape
of the ligand-binding pocket. In particular, the Ce6-induced
distortion of the binding pocket weakens interactions in the
ligand-binding region that stabilize residues forming the receptor
hydrophobic core such as Gly114, Ala117, Thr118, and Gly120–
Glu122 and concurrently, also disrupts a conserved network
(Angel et al., 2009) of water molecules near Gly90 in helix 2 that
stabilizes the Glu113 salt bridge of the protonated Schiff base
(PSB). These Ce6-induced changes within the receptor ligand-
binding pocket allow Glu113 to move further away from the
PSB. This perturbation of the PSB H-bonding network increases
the amplitude of the dynamic structural fluctuations of the
counterion and affects the thermal stability of the entire receptor.
The reduced electrostatic interactions from residues surrounding
the PSB, resulting from the movement of Glu113 away from the
PSB, decreases the energy gap between the ground and excited

FIGURE 3 | The torsional spectrum of the retinal from rhodopsin MD

simulations in (A) the dark-state (blue line) and in the dark-state when bound

to Ce6 (green line) and (B) in Meta-II (cyan line) and Meta-II when bound to

Ce6 (purple line). The peaks at 15 and 25 cm−1 in (B) are related to torsional

fluctuations of the C-20 methyl group near the terminus of the polyene chain

and a collective chain-twisting oscillation, respectively in Meta-II whereas the

peak close to 60 cm−1 in (B) is associated with a chain torsion coupled with a

retinal ring bending motion of a more inactive-type rhodopsin structure. In all

cases, the torsion of the retinal is defined by the angle created by the C5-,

C9-, and C13- methyl groups.

state of the receptor (Rajamani et al., 2011). The reduction of
the energy difference between the two states also reduces the
barrier for activation; hence, it reduces receptor thermal stability
(Figure S4). Numerous previous studies on rhodopsin (Lin et al.,
1998; Rajamani et al., 2011; Imamoto and Shichida, 2014) have
also shown that the reduction in the energy difference between
the ground and excited state reduces the thermal stability of
the receptor and is also directly correlated with the red-shift of
the λmax of the receptor. Although, it is important to point out
that previous thermal denaturing studies (Balem et al., 2009)
on inactive-state rhodopsin found an increase in the helical
content of the receptor when bound to Ce6. In other words,
the helical regions of the receptor are stabilized in the dark-state
receptor when bound to Ce6 (when contrasted with the unbound
receptor). These results are in direct contrast to both the MD
simulation studies and (THz) experimental studies carried out
in this investigation. Although, the disparity in interpretations
could be a consequence of what the distinctive experimental
methods measure. The melting data is primarily sensitive to
changes in the helical content of the receptor, whereas the THz
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data (≤100 cm−1) is sensitive to the global changes in the
receptor as a whole. The initial findings from this investigation
suggest that the principal changes in thermal stability arise from
modifications around the ligand-binding site in the Ce6-bound
receptor and these alterations influence the global stability of the
receptor.

The deformation of the retinal ligand-binding pocket due
to the Ce6-induced correlated fluctuations of CL1 and CL3 is
further stabilized by the rearrangement of conserved network
of water molecules in EL2. An analysis of the CL1-CL3 Ce6-
induced correlated dynamics in Figure 2 also reveals alterations
in solvent-protein interactions that include the water molecules
shared between the side-chains of Glu181 and Ser186 that
directly connect the dynamics of the EL2with the retinal binding-
pocket (Figure S5). The CL1-CL3 coordinated dynamics shift
Glu181 further away from Ser186 by means of the introduction
of an additional water molecule into the retinal binding pocket
that also links the backbone atoms of Glu181 and Ser186 (while
retaining the water coordinated side-chain linkage of the two
residues). This results in the overall rearrangement of EL2
through the correlated dynamics of helix 3 via the conserved
Cys110-Cys187 disulfide bond. The correlated movement shifts
Ile189 (as well as the entire β4 loop of EL2) in the direction
of the receptor N-terminus. The end result of the altered Ce6-
induced dynamics of dark-state rhodopsin is a more open ligand-
binding pocket that is created by the larger separation between
the retinal and extracellular region of the receptor. The increased
distance between Ile189 and the retinal disrupts the H-bonding
network of the PSB but in doing so, would also likely lead to
a decrease in receptor thermal stability (associated with higher
levels of dark-noise) as well as increase the rate of hydrolysis
of the PSB. In fact, earlier experimental studies (Imamoto and
Shichida, 2014; Yanagawa et al., 2015) focusing on the thermal
activation rate of rhodopsin have revealed a direct correlation
between the thermal stability of the dark-state of the receptor
and that of the lifetime of the active-state intermediate Meta-
II. In this regard, both Glu122 and Ile189 were identified as
two residues that play a crucial role in suppressing thermal
fluctuations in the retinal-binding pocket in rhodopsin, which
ultimately imparts the low dark noise characteristic of the
receptor.

It is also interesting to return to the experimental detection of
the global modes of the dark-state receptor (Figure 1A) and to
consider the observed changes in the conformational ensemble
dynamics that were detected with Ce6-binding. Previous
experimental studies probing the conformational stability of Ce6
in (dark-state) rhodopsin have indicated that Ce6 stabilizes the
helices of the receptor. This earlier work is in line with the
experimentally detected population shift in the conformational
ensemble dynamics of the Ce6-bound receptor (when contrasted
with the unbound receptor) that we have detected in this
investigation on rhodopsin (Figure 1A). But interestingly, is
in direct contrast to the identified changes in the ligand-
binding pocket dynamics of the bound receptor that we have
uncovered from MD simulation. In the latter case, the Ce6-
induced dynamics appears to create a closer potential energy
surface between the ground and excited state (Ala-Laurila et al.,

2004; Hofmann and Palczewski, 2015) of the retinal in Ce6-
rhodopsin. This reduction in the energy difference between the
two states would, in principal, create a thermally unstable ground
state that consequently would shift the equilibrium toward the
excited-state of the receptor. The disparity in interpretations that
arise when examining the local dynamics of the retinal-binding
pocket with approaches that map the global characteristics of the
receptor suggests that induced long-range structural fluctuations
may also play an important role in the Ce6mechanism of spectral
tuning in rhodopsin.

Experimental Detection of the Induced
Changes in Global Dynamics and the
Allosterically Coupled Motions Associated
with Activation in Meta-II Rhodopsin When
Bound by Ce6
Global Dynamics and Thermal Stability in Meta-II-Ce6
The global motions of Meta-II rhodopsin in the presence of Ce6
are dramatically altered as compared to dark rhodopsin with and
without Ce6 in Figure 1D. In contrast to the dark-state unbound
spectrum in Figure 1B, there are no clearly resolved vibrational
bands in the <100 cm−1 region of the experimental spectrum.
Based on previous work on rhodopsin (Woods et al., 2016),
this likely indicates that the major protein modes excited after
isomerization are red-shifted to very low frequencies. Despite
the lack of spectral features, one can still deduce information
about the stability of the receptor states based on the general
shape of the spectrum. For instance, it is apparent that the
Ce6-bound Meta-II state in Figure 1C is far more oscillatory
above 70 cm−1 when contrasted with the unbound Meta-II state.
The oscillatory nature of the Meta-II-Ce6 spectrum indicates
that there is instability in the internal modes of the receptor.
Moreover, the increased instability detected in the global modes
of the Ce6-bound receptor also implies a general decrease in the
thermal stability of the Ce6-bound activated-state of the receptor.

Experimental Detection of Alterations in the Allosteric

Interaction Network Associated with Activation in

Meta-II-Ce6
An inspection of the higher frequency spectra of the Meta-II
states of rhodopsin in Figure 1C strongly suggests that there
are major modifications in the interhelical interactions in Meta-
II-Ce6 when compared with the unbound active-state receptor.
For example, the absence of the ∼140 and 150 cm−1 modes
in the Ce6 receptor bound spectrum suggests that both the
interhelical packing and the solvent-protein interactions in the
bound receptor are dramatically altered in Meta-II-Ce6. Both
modes (at 140 and 150 cm−1) are strongly influenced by retinal
torsional dynamics associated with both the β-ionone ring
and the polyene chain, indicating that the coupling between
the retinal ligand and its immediate protein environment is
considerably changed in the Ce6-activated state. In our earlier
study (Woods et al., 2016) of Meta-II rhodopsin we determined
that the vibrational modes at approximately 110, 120, and 130
cm−1 are spectral markers of the water-mediated pathway of
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activation in Meta-II that connects the dynamics in the ligand-
binding pocket with the G-protein binding site in the ICD.
The vibrational modes represent anharmonic, solvent-mediated
fluctuations of protein backbone and side-chain atoms that form
allosteric sites in Meta-II. The water-mediated allosteric sites
create a coherent, defined pathway of signal propagation in
Meta-II that connect the dynamics of the retinal taking place
in the ligand-binding pocket with intermolecular interactions
taking place in the receptor intracellular domain. The fact that
both spectra in Figure 1C have prominent vibrational bands at
about 110, 120, and 130 cm−1 implies that activation in the
Ce6 bound receptor still takes place, but based on the other
prominent differences in the spectrum of the distinct Meta-II
states, it is likely that the activation mechanism in Meta-II-Ce6
is somehow altered. One clue of how the pathway of activation in
Meta-II-Ce6 may differ from Meta-II can be discerned from the
solvent—solvent interaction region of the experimental spectrum
(>170 cm−1) in Figure 1C. A comparison of the spectra makes
it readily apparent that solvent interaction network in Meta-II is
disrupted with Ce6 binding. The dramatic drop in intensity in
Meta-II-Ce6 in the 200–240 cm−1 spectral region suggests that
the addition of the allosteric modulator (Ce6) disrupts the solvent
H-bonding network that both stabilizes and aids in the efficiency
of the active Meta-II intermediate binding with the G-protein.
Although interestingly, in the same solvent-interaction region,
there is a new peak in the Meta-II-Ce6 spectrum centered at
190 cm−1 that possibly hints at a new set of solvent interactions
that support an alternative pathway of activation in the Ce6
bound receptor. In previous THz studies on globular proteins
(Woods, 2010, 2014a) we have identified an equivalent peak at
approximately 190 cm−1 in the protein-solvent coupling region
of the experimental spectrum that describes interaction dynamics
directly tied with the formation of long-range communication
channels in the protein. Particularly, in the previous instances we
found that the anharmonic dynamics of the solvent molecules
within the hydration shell coupled with protein motions to
promote long-range coherence pathways in the protein three-
dimensional structure.

MD simulation of Meta-II bound with Ce6
Localized Structural Fluctuations in Meta-II-Ce6 and

the Disruption of the Active-State Activation Pathway
A network representation of the Meta-II LSFs from the MD
simulations of Ce6-bound and -unbound rhodopsin structures
are shown in Figures 4A,B and a mapping of the LSF
components onto the two Meta-II structures is shown in
Figures 4C,D. One of the distinguishing features that we detect
in the Meta-II-Ce6 LSF when contrasted with unbound Meta-
II is a disruption in the structural overlap of interactions that
creates an activation pathway from the ligand-binding region
to the cytoplasmic surface. Specifically, in the Meta-II-Ce6 LSF
in Figure 4B we find that there is a disconnect between the
network of interactions linking rearrangements taking place
in the CWxP motif (in the retinal-binding pocket) with a
conserved intracellular pathway of intermolecular associations
consisting of: a conserved network of internal water molecules
(Nygaard et al., 2010), conserved residues in TM1 and TM2,

and residues comprising the NPxxY motif in helix 7. This
conserved pathway dynamically connects residues from the
protein interior (in contact with the retinal) with residues in
the cytoplasmic surface that are crucial for GT binding. In
Figure 4 and Figure S6, a comparison of the unbound and bound
receptor structures from the MD simulation reveals that key
water molecules involved with the activation pathway have been
displaced in the Meta-II-Ce6 structure. The water-mediated H-
bonding connection between Ala260 and Asn302 is disrupted in
Meta-II-Ce6 and consequently, the connection between Trp265
in helix 6 and Asn302 in helix 7 is weakened. The modification
in the conserved water-mediated network in Meta-II-Ce6 effects
the rearrangement of H-bonding associations at the intracellular
side of the receptor that form the G-protein binding site in the
active state. Specifically, the rupture of the Ala260–Asn302 water-
mediated H-bond linkage diminishes the correlation between
the rotation “toggle” switch of the CWxP motif comprised of
conserved residues Tyr268, Trp265, and Phe261 on helix 6 and
the structural changes that take within the intracellular core of
the receptor involving Met257, Tyr306, and Tyr223 that lead
the “breaking” of the ionic-lock between Arg135 on helix 3 and
Glu247 on helix 6. The ionic-lock connects the intracellular side
of TM3 and TM6 in the active state and breaking of the lock is
a crucial step in forming the G-protein binding site. In the MD
simulations carried out in this study, we find evidence that the
ionic-lock is not fully stabilized in the open form (broken) in the
active-state of the Ce6-bound receptor (Figure S7).

Ce6-Induced Correlated Fluctuations and the

Creation of an Altered Activation Pathway in

Meta-II-Ce6
The reason for the disruption in the activation pathway becomes
more apparent when analyzing the induced interactions and
correlated motions that accompany Ce6 binding in Meta-II-Ce6.
In Figure 5, we find that Ce6-induced correlated fluctuations
introduce new LSFs in the vicinity of the receptor ligand-binding
pocket. An illustration is provided in a comparison of the
correlated dynamics in both receptors involving helix 4 near the
ligand-binding pocket in Figures 4C,D. In the unbound, active-
state receptor there is a strong correlation between residues
in helix 4 with residues residing in the N-terminus region
of the receptor. The helix 4–N-terminus correlated motion is
associated with stabilizing the activation pathway that connects
the dynamics taking place within the retinal pocket with the
dynamics occurring in the cytoplasmic side of the receptor. For
instance, in a previous computational study on squid rhodopsin
it was revealed that Ala167 (in helix4) in addition to Ala304
(helix 7) and internal water molecules in the intracellular
region of helix 7 are instrumental in creating a maximally
connected H-bonding pathway that links the active-state retinal
binding pocket with the cytoplasmic region (Bondar et al.,
2011).

The absence of the (helix 4 - N-terminus) long-range
connection in Meta-II-Ce6 suggests that the Ce6 bound receptor
may support an alternate pathway for activation. For instance,
in Figure 4A we observe that the binding of Ce6 excites new
collective fluctuations in Meta-II that involve residues in CL3
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FIGURE 4 | A 2-D mapping of the LSFs of (A) Meta-II and (B) Meta-II-Ce6 from the MD simulations of rhodopsin and the corresponding mapping of the LSFs onto a

cartoon representation of the 3-D structure of (C) Meta-II and (D) Meta-II-Ce6.
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FIGURE 5 | C-α representation of the dominant PCA mode (PCA1) and the corresponding per residue RMSD from the MD simulation of (A) Meta-II and (B)
Meta-II-Ce6 where the areas in blue show regions with less (translational) mobility and the areas in red show regions with more (translational) mobility.

near the Ce6-binding site that are coupled with collective
fluctuations of residues in both EL2 and EL3. The Ce6-induced
dynamical fluctuations have a prominent effect on the shape
of the ligand-binding pocket and consequently, the allosteric
interactions that determine the signal communication pathway
from the ligand-binding site to the rest of the protein. Specifically,
a comparison of the LSFs of the unbound and bound active-state
receptor in Figures 4A,B reveals that Ce6-induced fluctuations
disrupt long-range correlations between EL1 and residues that
constitute the hydrophobic core of the receptor, particularly
Ala117, Thr118, and Gly120–Glu122. In the unbound receptor,
this long-range correlation is associated with maintaining the
shape of ligand binding pocket (Figures 4A,C). The disruption
EL1–receptor core correlated dynamics inMeta-II-Ce6 promotes
a deformation of the ligand binding region that consequently
allows residues surrounding β-ionone ring, such as Glu122 and
Pro215 on helix 5, to shift closer to the retinal as well as
to the extracellular side of helix 6. This shift simultaneously

alters a stable network of polar interactions within the core of
the receptor that connects the ligand-binding site (involving
helices 3, 5, and 6) with the rest of the protein. Explicitly, the
shift of helix 5 ligand-binding residues promotes a shift in the
hydrophobic interactions involving Gly121 and Leu125 on helix
3 and Phe261 on helix 6. The adjustment of the hydrophobic
packing interaction allows the intracellular side of the helix (helix
3) to move closer to helix 6. Further, the helix 3 shift is connected
with a correlated fluctuation involving the motion of residues
Phe261, Trp265, and Tyr268 on helix 6 with that of EL2, such
that the movement of these residues promotes an overall tilt
of the IC side of H6 and as a consequence also reduces the
distance between TM3 and TM6 (Figure 6). The outcome is
interhelical packing changes in the core of the molecule that
shift TM2 and TM8 upward in the direction of the C-terminus
of the receptor and tilts TM7 inward toward the hydrophobic
core. Consequently, the altered ligand-binding cavity shape also
supports a 7TM structure with a weakened but still associated
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FIGURE 6 | Overlap of a cartoon representation of the 3-D structure of Meta-II

(cyan) and Meta-II-Ce6 (gray) from the MD simulations of Meta-II.

Arg135–Glu247 “ionic-lock” (Figure S7) and a ligand-binding
site with increased distance from EL2. In fact, the amplitude of
the dynamical oscillations of the β4 loop of EL2 is far greater
in the Ce6-bound receptor when compared with unbound Meta-
II. This suggests that the increased distance between the binding
pocket and the ECD inMeta-II-Ce6 provides an environment for
the ligand that possess far less protection from hydrolysis and
therefore a reduction in overall receptor stability when contrasted
with the unbound receptor. Hence, the effect of the loss of long-
range interaction connecting core residues with EL1 in Meta-
II-Ce6 is the deformation of the ligand-binding pocket such
that it modifies the intra-protein interactions that determine the
shape of the G-protein binding site. And it also alters the contact
interactions between the ligand-binding site and EL2 that are
instrumental in forming the activation pathway in Meta-II.

The Ce6-induced deformation of the Meta-II ligand-binding
pocket also supports a new set of associations that creates
an alternative pathway for signal propagation when compared
with the unbound receptor (Figure 4). The induced long-range
correlated fluctuation extending from the ECD to ICD connect
the dynamics taking place in the N-terminus of the receptor
with fluctuations in EL3 and residues in helix 7. From an
analysis of the Ce6-induced collective dynamics in Figure 4D, we
find that the long-range interactions create large-scale torsional
fluctuations in a cluster of hydroxyl residues in EL3 that separate

helices 6 and 7. The residues with the largest contribution to
the induced EL3 dynamics include Thr277, Ser281, and Pro285.
The substantial increase in the magnitude of EL3 fluctuations
subsequently alters the amplitude of rotational fluctuations of
residues in helices 6 and 7 that line the retinal-binding pocket.
These particular residues have previously been identified as
having an important role in signal propagation and activation
in rhodopsin and include Trp265, Pro267 - Ala271, Pro291, and
Ala295. The large-scale induced-torsional fluctuations of these
activation residues are instrumental in linking the dynamics of
the ligand-binding site with the conserved pathway of residues
forming the NPxxY motif. Their amplified motion compensates
for the disruption in the intricate network of intermolecular
interactions that form the activation pathway in Meta-II and in
its place creates an anharmonic connection of associations that
translate changes taking place in retinal binding region with the
structural changes taking place in the ICD.

Together, the changes in the localized interactions induced
by Ce6-binding result in conformational structural changes in
Meta-II that promote and altered NPxxY motif and an altered
activation pathway. Specifically, the binding of the allosteric
modulator Ce6 supports a series of long-range interactions
that result in structural differences in the TM3/TM6 distance
of the active receptor as well as packing interactions between
TM1/TM2/TM7 helices (Figure 6) when compared with the
unbound receptor. These modifications support a narrowed GT

binding site that is likely less efficient in binding the G-protein
and adopts a more structurally dynamic ligand-binding cavity
that would have a direct effect on the thermal stability of the
active-state receptor.

DISCUSSION

Implications of Ce6 Effects on Rhodopsin
for Deep-Sea Ocean Vision and Spectral
Tuning
It has been proposed that Ce6 plays a role in modifying the
receptor-chromophore interactions in rhodopsin that adapts
the Malacosteus niger (M. niger) dragon fish visual system
(Douglas et al., 1998, 1999, 2016; Kenaley et al., 2014). Ce6-
induced modification in intra- and inter-protein interactions
permit the M. niger species to emit far-red light from suborbital
photophores, in addition to the blue bioluminescence that
is normally emitted by deep-sea dragon fish. The suspected
mechanism of the enhancement of long-wavelength sensitivity
in the dragon fish is via spectral tuning (Kenaley et al.,
2014). Spectral tuning is a molecular mechanism that shifts the
optical properties of the retinal that regulate the absorbance
maximum of the absorption of light. This can happen through
evolutionary processes in which case, it involves a combination
of adaptation and positive selection of key residues that directly
interact with the retinal. Or alternatively, the tuning mechanism
can be induced by adding small molecules that externally
modulate opsin-retinal interactions (Washington et al., 2004,
2007; Isayama et al., 2006; Balem et al., 2009). Thus, the
interaction of specific amino acids of the rod-opsin protein with
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the chromophore ultimately determines the peak absorbance
(λmax) and therefore, also the spectral sensitivity of the pigment.
It is well known that rhodopsin evolved from cone opsins
(Imamoto and Shichida, 2014). Ancestral pigments were cone
pigments and rod pigments evolved later in response to the
necessity to function in dim light conditions. Rod opsins have
a prolonged active-state. This is achieved by having high thermal
stability, which promotes both slow thermal exchange and slow
recovery. The advantage is that this allows for a longer signaling
state, which both amplifies the response signal and also increases
the overall sensitivity of the photoreceptor cell. Cone cells on the
other hand, produce an active-state that is thermally unstable. In
this respect, they also have a much faster signaling state and a
faster rate of regeneration when contrasted with rod cells. These
particular characteristics are best suited for operating in daylight
conditions where the photoreceptor cells are under pressure to
function under successive light stimuli.

We have previously proposed that Ce6 binding in rhodopsin
takes place in the ICD of the receptor (Balem et al., 2009).
The MD simulations and molecular docking predictions carried
out in this investigation support this supposition. Thus, under
this assumption, the Ce6-induced modulation of rhodopsin
protein-ligand interactions would have to occur through an
allosteric mechanism. However, the inferred mechanism of the
Ce6-induced changes of rhodopsin functional dynamics from
this study in many ways resonates more like an account of
the evolutionary pattern of mutational changes that eventually
transitioned ancestral cone cells into rod cells (Nathans,
1990; Lin et al., 1998; Rajamani et al., 2011; Imamoto and
Shichida, 2014). In other words, the detected Ce6 modulation
of rhodopsin functional properties mirrors the mechanism
of spectral tuning brought about by mutational changes of
specific amino acids in visual phototransduction evolution.
For example, the observed “tuning” sites for Ce6-induced
intermolecular and structural changes that we have detected
in our experiments on bovine rhodopsin bound with Ce6
can be succinctly explained by contrasting them with the
effects of well-known, critical mutational differences in the
sequences of the two types of visual pigments. An illustration

is given in Figure 7 were we have assembled an alignment
of three different receptor sequences that include bovine
rhodopsin, long-wavelength bovine opsin (i.e., red cone opsin),
and M. niger rhodopsin. In the aligned sequences, bovine
rhodopsin represents a characteristic rod opsin, whereas the
long-wavelength and M. niger sequences represent a cone opsin
and a red-shifted rod opsin respectively. The aligned sequences
clearly highlight some of the most distinguishable differences
of rhodopsin when compared with the other two spectrally
shifted opsins (Figure 7). The alignment also provides further
insight into the nature of the observed induced dynamical and
structural changes that lead to differences in the detected spectral
properties of Ce6-bound and unbound rhodopsin. But more
importantly, it offers a deeper understanding about the evolution
of critical long-range interactions involved in the transmission of
the excitation signal from the binding site of the chromophore to
the cytoplasmic surface. These long-range interactions in visual
pigments have been extensively tuned over time to improve the
sensitivity and stability of the more evolved rod receptors and
their pathway of adaptation is tied with essential global changes
in the molecular structure of the receptor that have been tailored
to stabilize them.

Two of the most recognized critical residue changes in rod
cells vs. that of cone cells are found at position 122 and
189 (in rhodopsin numbering) in the receptor sequences. The
substitution of Ile for Glu at position 122 is known to be
associated with a dramatic increase (blue-shift) in the wavelength
of the photosensitivity of various cone cells when contrasted
with rod cells (Lin et al., 1998; Lewis et al., 2006; Imamoto
and Shichida, 2014). Similarly the substitution of Pro or Met
for Ile at position 189 is related with increasing both the decay
rate of the signaling state (Figures S9c, S10e,f) as well as the
reconstitution rate of the chromophore in cone opsins (Janz
et al., 2003; Imamoto and Shichida, 2014; Yanagawa et al., 2015).
Despite this general knowledge, there is still the remaining
challenge of developing an overall sense of how these single point
mutations impact major properties of the receptor. For instance,
in particular cases local perturbations of proteins have been
shown to produce global changes that have an inclusive effect

FIGURE 7 | Sequence alignment of bovine rhodopsin (OPSD_BOVIN), long-wavelength bovine rhodopsin (OPSR_BOVIN), and M. Niger rhodopsin

(Rhodopsin_OS_Malacosteus_niger) rendered with Taylor coloring.
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on protein function and/or stability. In rhodopsin we identify
three such spots, where substitution of select residues have
a significant destabilizing effect on both the global functional
properties of the receptor and the nature of the signaling
pathway of activation. It is particularly through these sites that
Ce6 modulates the functional dynamics of the visual pigments
through long-range, evolutionary-conserved interactions that
establish communication between the chromophore and the rest
of the receptor (Figure S6).

Mechanisms of Allostery in Rhodopsin and
the Generality to Other Visual Receptors
We have uncovered three specific allosteric sites in our
investigation of Ce6-bound rhodopsin that are utilized to
modulate the functional properties of the receptor. These sites
are activated by Ce6 in the ICD of the receptor and are
associated with moderating the coupling mechanism of the
different structural components in the receptor that are necessary
for signal activation and propagation in rhodopsin (Wolf and
Grünewald, 2015). Particularly, through these allosteric sites,
Ce6 modifies the signaling properties of rhodopsin by acting
on distinct structural constraints that rearrange in response to
activation and have a direct role in signal propagation.

Coupling between the Ligand-Binding Site
and the ECD in Ce6-Bound Rhodopsin
One such allosteric site is Ala269 in rhodopsin. Ce6-induced
interactions involving Ala269 have a direct role in altering the
activation pathway inMeta-II rhodopsin (Figure 7) due to its role
in stabilizing the ligand-binding site (Tsukamoto et al., 2010). For
instance, Ce6 binding promotes reduced interactions between
Ala269 and the β-ionone ring of the agonist. This change in
residue-agonist binding affects the thermal stability of the entire
receptor. Themechanism of the diminished receptor stability was
deduced from an analysis of the Ce6-induced collective dynamics
in Meta-II (Figures 4C,D). From the analysis we found that the
Ce6-induced long-range interactions in rhodopsin create packing
defects in the retinal-binding pocket that are allosterically
transmitted to structurally conserved hydroxyl residues in EL3.
The result is Ce6-induced, large-scale fluctuations in EL3 that
directly modify the amplitude of the dynamics of residues in
helices 6 and 7 that surround the retinal ligand. Thus, it is the
increase in dynamics of these particular residues (in helix 6 and
7) that have a direct impact on the coupling mechanism that
links signaling components (residues) in the ligand-binding site
with those in the ECD. Their coupling is directly correlated with
the basal activity of the receptor. The Ce6-induced dynamics in
both dark-state and Meta-II rhodopsin foster a more structurally
dynamic ligand-binding pocket that reduces the thermal stability
of the receptor. We find evidence of the diminished stability in
both our experimental (Figure 1D) and MD simulation analyses
(Figure 5B) of Meta-II-Ce6.

Analogously, in the sequence alignment of the visual pigments
in Figure 7 we notice a substitution of Thr269Ala in the cone
pigment when compared with both rhodopsin sequences. The
replacement of threonine for alanine at position 269 in the

receptor structure would account for less stability in the ligand
pocket of the cone pigment due to the introduction of a bulky
side-chain that would disrupt the packing interactions of the β-
ionone ring with the ligand-binding residue (Supplementary text,
MD simulation of Meta-II mutations, Figures S9b,f, S10c,d, S11,
S12).

Previous studies on rhodopsin have noted a relationship
between ligand-binding pocket structural flexibility, the thermal
stability of the receptor, and the receptor active state lifetime
(Janz et al., 2003; Ala-Laurila et al., 2004; Yanagawa et al., 2015).
They conjectured that the higher thermal stability of rhodopsin
when contrasted with cone cells represents an evolutionarily
adapted trade-off of photoreceptor speed for a high detection
threshold. The residue difference (at position 269) in the
sequence alignment of the cone sequence vs. that of the rod
cells parallels the Ce6-induced changes that we have observed in
dark-state and Meta-II rhodopsin. In both instances, instability
in the ligand-bonding pocket is directly correlated with the
thermal stability of the receptor. Furthermore, in on our own
previous investigation on rhodopsin we have clearly established
a correlation between the flexibility of the agonist ring with
receptor conformational stability. Therefore, Ce6-binding in
rhodopsin alters the coupling mechanism between the ECD and
ligand-binding site, and accordingly also strongly modifies the
thermal stability of the receptor. Unfortunately, it is not possible
to precisely measure the Meta-II decay rates in the presence
of Ce6 because Ce6 quenches tryptophan fluorescence (Balem
et al., 2009) but there is compelling evidence from the analysis
of the residual fluorescence that Meta-II does decay faster in the
presence of Ce6 (Balem et al., 2009).

Coupling between Ligand-Binding Site and
the IC Region in Ce6-Bound Rhodopsin
Phe261 is another allosteric site that has been uncovered in
our analyses of Ce6-bound rhodopsin. Phe261 (helix 6) is a
highly conserved residue in the GPCR-A family. It, along with
Gly121 (helix 3), forms a hydrophobic micro-domain in the
interior of rhodopsin that rearranges during activation. The
rearrangement of hydrophobic interactions between helix 3 and
helix 6 are essential in translating retinal conformational changes
that take place during activation into helical rearrangements in
the intracellular region of the receptor that are propagated to
the cytoplasmic surface. The mechanism of signal propagation
from the ligand-binding site to the cytoplasmic region involves
an intricate network of conserved H-bonding interactions that
tightly couple the ligand-binding site with the IC region of
the receptor (Fritze et al., 2003; Brown et al., 2009). This
allosteric network of H-bonding interactions has been found in
other class-A receptors, although the extent of coupling between
the distinct components of the network varies amongst the
different receptors. In our analyses on Ce6-bound rhodopsin,
we find that the allosterically coupled motions leading from the
ligand-binding site to the G-protein binding site is disrupted
by the loss of conserved water molecules that comprise part
of the NPxxY motif. Specifically, the Ce6-induced interactions
in Meta-II lead to the loss of the conserved water molecule
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shared between Met257, Phe261, and Asn302 (Figure S6), which
ultimately leads to hydrophobic packing defects in the protein
interior and a less stable signaling pathway. The result is a
weaker coupling between the allosteric components and a coarser
translation of ligand-binding changes to the G-protein side of the
receptor.

In the sequence alignment of the visual pigments in Figure 7,
we observe a major change in the amino acid residue at
position 261 in rhodopsin when compared with both the cone
pigment and the M. niger rhodopsin sequence. Particularly, the
substitution of Tyr261Phe in the cone pigment is known to
lead to a much “looser” coupling between the ligand-binding
site and the intracellular connections that lead to the G-
protein binding region (Supplementary text, MD simulation of
Meta-II mutations, Figures S9d,h, S10g). The replacement of
tyrosine for phenylalanine at position 261 modifies the allosteric
network of the cone pigment in a similar manner to what
has been observed in the Ce6-induced disturbances of the
intracellular signaling regions of rhodopsin (Figure 4, Figure
S9g). It is well known that cone pigments maintain a more
heterogeneous active-state after activation and less efficient G-
protein activation when compared with rhodopsin (Imamoto
and Shichida, 2014). The Tyr261Phe substitution has also been
credited with a 10 nm blue-shift of the λmax between cone and
rod pigments (Chan et al., 1992), suggesting that the residue
change is somehow connected with the modulation of the
signaling network from the ligand-binding site. The stability
and homogeneity of the active-state of rhodopsin is unique in
the class-A receptors. The low basal activity and high photon
detection efficiency of the receptor is attributed to the succinct
coupling of the allosteric network of signaling components of the
active-state.

Coupling between the G-Protein Binding
Site and Retinal Ligand-Binding Site in
Ce6-Bound Rhodopsin
We have also identified Met163 as an allosteric site in rhodopsin
that has a central role in forming the G-protein binding site
in the active-state protein. In our LSF analysis of the active-
state of rhodopsin (Figures 4B,D) we found that long-range
interactions between residues near Met163 and the N-terminus
of the receptor are central in stabilizing the signaling network of
interactions in Meta-II. Subsequently, in our analysis of Meta-
II Ce6-induced long-range interactions (involving Met163) we
determined that the Ce6-induced disrupted connection between
helix 4 and the N-terminus allowed for the deformation of
the ligand-binding pocket such that it modified the intra-
protein interactions that determine the shape of the G-protein
binding surface site (Figure 6). The disruption in the long-range
interactions in Meta-II-Ce6 also accounted for the alteration in
the contact interactions between the ligand-binding site and EL2
that are instrumental in forming the signaling pathway in the
active-state in visual pigments.

Overall, we find that binding of Ce6 weakens conserved
interactions that allosterically link the dynamics in the ligand-
binding pocket with conformational fluctuations taking place

at the receptor G-protein binding site. The decoupling of the
distinct regions of the allosteric network result in a mixture
of photo-intermediate conformations in the active-state of
the receptor. For instance, interhelical distance fluctuations
in the IC region of Meta-II-Ce6, due to instabilities in the
conformational coupling of the structural elements of the
receptor (Figure S7), alter the population of conformations in the
active-state ensemble. An examination of the retinal torsional
dynamics (Figure 3B) and the conformational ensemble
dynamics (Figure S8) from the MD simulation of Meta-II reveals
the interconversion between two dominant conformations in
the active-state receptor when bound to Ce6. The dominant
conformation (Meta-IIi) has reduced distance between the IC
region of helices 3 and 6 and an increased distance between
the ligand-binding site and EL2, relative to the initial X-ray
crystal structure of Meta-II used for the MD simulations.
The secondary conformation (Meta-IIii) deviates only slightly
from the initial Meta-II structure. The Meta-IIi conformation
would presumably have a higher propensity for chromophore
hydrolysis in the active-state and a conformation that is less
efficient for GT activation compared with Meta-IIii. Thus, the
two photo-intermediate structures are associated with distinct
intracellular signaling pathways that have ramifications on both
the maximum GT activity of the bound receptor as well as overall
receptor thermal stability. In support of this conclusion, we have
found in previous studies that the presence of Ce6 does indeed
reduce GT activation in a concentration dependent fashion
(Balem et al., 2009).

Referring again to the sequence alignment of the visual
pigments in Figure 7 we observe that the cone pigment has a
tryptophan in position 163, whereas both rhodopsin sequences
possess a methionine. The Trp163Met substitution in the cone
pigment sequence introduces an amino acid with a large aromatic
side-chain in a key position that would significantly alter the
close packing interactions of helices 3–5 that support the active-
state receptor structure (Supplementary text, MD simulation
of Meta-II mutations, Figures S9a,e, S10a,b). Furthermore, the
residue exchange would also considerably weaken crucial long-
range allosteric connections between the ligand-binding site and
IC residues (Figures S9a,e) associated with G-protein binding
(when contrasted with Meta-II of the rod cell sequences).
The effect would be a substantially weaker coupling between
the allosteric components of the signaling pathway and a
shift in the population of photo-intermediate states toward a
conformation that overwhelming supports a reduced affinity
for both the G-protein and the chromophore (retinal). It is
widely recognized that cone pigments have a higher rate of
thermal activation and much faster decay of the photo-activated
pigment compared with rod pigments. The decay of Meta-
II is the rate-limiting step for the termination of the light
response in visual pigments and hence, one of the key factors
that distinguishes rod cells from cone cells. For this reason,
it has been conjectured that the differences in the two types
of visual pigments are attributed to a few strategic amino
acid changes that were acquired during the evolution of rod
cells for dim light sensitivity. The long-lived GT activation
state with high efficiency is typical of rhodopsins, implying
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that rhodopsin acquired these specific characteristics over time
to explicitly refine its function for single-photon detection
sensitivity.

Ce6-induced Modulation of Conserved
Allosteric Sites in Rhodopsin-Like
(GPCR-A) Receptors and New Strategies
for Drug Design of GPCR Allosteric
Modulators
Developing a clear understanding of how specific ligand
modulators moderate topographically distinct allosteric sites in
receptor families is one of the essential steps for the successful
design of small-molecule allosteric drugs. The evolution of
protein allosteric sites involves pairwise interactions that are
responsible for the propagation of conformational changes
from the ligand-binding site to a distal functional site. In
visual receptors, these allosteric sites are linked with protein
coevolved residue pairs (residues with evolutionary correlated
mutational patterns) that have been selected for their regulatory
properties and conformational ensemble dynamics that are
directly involved with fine-tuning spectral sensitivity. In this
work, we propose that the small-molecule allosteric modulator
Ce6 binds specifically in the CP domain of rhodopsin. It acts
by not only moderating the spectral sensitivity of rhodopsin,
but on a higher level by modulating GPCR-A-wide conserved
allosteric sites that facilitate coupling of receptor structural
and functional domains (Figure 8, Figures S13, S14, and
Supplementary text, Ce6 modulation of GPCR-A conserved
allosteric sites in rhodopsin). Principally, we find that Ce6
binding in rhodopsin allosterically alters the receptor structure
by mediating conserved long-range conformational fluctuations
that modulate access to the retinal ligand-binding pocket. Why
is this significant? Every currently known GPCR transmits a
ligand-binding signal originating in the EC and/or TM domain
to the CP domain via conformational fluctuations that take
place in the TM domain. The CP domain is the site where the
G-protein recognizes the active conformation of the receptors,
and unlike other 7TM regions, the CP interface of the various
GPCR-A receptors is relatively conserved. Therefore, these
conserved residue positions at the CP interface form part of a
signaling mechanism that allows the distinct receptors to bind
and activate G-proteins by utilizing a common construction of
coevolutionary residue pair interactions that form an allosteric
regulatory network to the rest of the receptor. We conjecture
that Ce6 modulates these same GPCR-A shared allosteric
regulatory networks. For this reason, Ce6 may offer an initial
stepping-stone for comprehending and creating small-molecule
allosteric modulators that offer precise control of GPCR signaling
pathways.

CONCLUSIONS

In this investigation, we identify long-range conserved
interactions in rhodopsin that are excited by the binding of
an allosteric modulator (Ce6) in the cytoplasmic domain of the
receptor. The excited structural fluctuations modify fundamental

signaling processes that control receptor long-range interactions
and are common in all Class-A GPCRs. In this specific case, we
find that Ce6 stabilizes specific receptor conformations that alter
the coupling mechanism between the distinct domains of the
receptor and hence modify the GPCR signaling components that
define rhodopsin function. These results provide deeper insight
into the evolutionary coupled interactions in Class-A GPCRs
that modulate the mechanism for coupling the ligand-binding
site with both the ECD and G-protein binding sites and offers
a foothold for elucidating how GPCR signaling pathways may
be manipulated for allosteric drug discovery and design. Ce6
provides a clear illustration of a how small-molecule ligand
modulator, associated with moderating the allosteric interaction
networks and signaling pathways linked with spectral sensitivity
in visual receptors, may also provide valuable insight into
the (molecular) mechanisms that enhance or inhibit selective
receptor pathways connected with evolutionary principles of
allosteric regulation.

MATERIALS AND METHODS

Sample Preparation
Rhodopsin samples were purified in detergentmicelles composed
of dodecyl maltoside (DM). The choice of DM as a detergent
is justified because the conformational changes in rhodopsin in
DM are virtually identical to those seen in liposomes (Kusnetzow
et al., 2006). Rhodopsin samples were obtained through transient
transfection or from stable cell lines. Transient transfection
of COS-1 cells was carried out as described (Oprian et al.,
1987), with the exception that the cells were harvested 72 h
after transfection. Tetracycline inducible HEK293S stable cell
lines were established as described previously (Reeves et al.,
2002). Both types of cells were solubilized with 1% (w/v) DM
for 1 h and the proteins were purified by 1D4 immuno-affinity
chromatography in 0.05% DM as described (Hwa et al., 1999).
Briefly, after solubilization of the cells, the suspension was
centrifuged for 30min at 35,000 rpm and 4◦C. The supernatant
was mixed with 1D4 Sepharose beads (approximate binding
capacity of 1 µg rhodopsin/ µl of resin) for at least 6 h at 4◦C.
The resin was then washed with 50 bed volumes of 0.05% (w/v)
DM in PBS followed by 10 bed volumes of 0.05% (w/v) DM in
2mM Na2HPO4/NaH2PO4 (pH 6.0). WT and mutant proteins
were eluted with 70µM C-terminal nonapeptide (TETSQVAPA)
in 0.05% (w/v) DM in 2mM Na2HPO4/NaH2PO4 (pH 6.0).
The initial concentration of the sample was determined by UV
absorbance and subsequently diluted to a concentration
of 200µm in preparation for the THz spectroscopy
experiments.

Ce6 was obtained from Frontier Scientific, Logan, UT. Ce6
was added to rhodopsin samples from a 100mM DMSO stock
solution or its dilutions, to a final concentration of 200µm.

The rhodopsin samples used in the THz spectroscopy
experiments were prepared by allotting 20 µL of the prepared
sample onto a custom ordered diamond transmission window
(Specac Co., United Kingdom). Excess water from the solution
was initially removed by applying a low, steady flow of N2 gas
over the sample droplet for approximately 3min. The resulting
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FIGURE 8 | Network representation of the MSA of the rhodopsin-like family of proteins. Nodes represent a specific amino acid and gray edges represent the lines

between the nodes. The rainbow coloring of the nodes characterizes the degree to which a given amino acid takes part in the MI network (denoting coevolution

propensity). Red nodes have a high MI value and blue nodes a low MI value. The size of the nodes in this case corresponds to the conservation of the amino acid from

the MSA. The colored edges highlight the associations between specific nodes. For more details refer to Supplementary Text, Ce6 modulation of GPCR-A conserved

allosteric sites in rhodopsin. The reference structure for the MSA is bovine rhodopsin (opsd_bovin) with pdb ID 1u19.

sample was subsequently rehydrated by equilibrating the dried-
off sample in a vacuum sealed container with the vapor pressure
of a saturated salt solution at 20◦C for a minimum of 3 days.
A relative humidity (RH) of 97% was obtained from the vapor
pressure of a saturated K2SO4 solution (Wexler and Hasegawa,

1954). The prepared rhodopsin sample was subsequently placed
in a sealed transmission cell consisting of two diamond window
substrates and a saturated salt solution was placed at the bottom
of the cell to ensure that hydration was maintained throughout
the experiment.
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Illumination of the samples in all experiments was carried out
with a Fiber-Lite DC 950 regulated illuminator by Dolan-Jenner
industries.

THz Spectroscopy Experiments
The dark-state rhodopsin experiments were performed under
dim-red light conditions and photo-isomerization was triggered
with visual light excitation. The THz spectroscopy experiments
were carried out on a Jasco FTIR - 6000 series spectrometer. The
protein sample spectra were collected with a liquid helium cooled
bolometer in the 15–250 cm−1 spectral range. The 15–100 cm−1

THz spectra were collected with a 25-micron beam splitter while
the data in the 100–250 cm−1 spectral region was collected with
a 12-micron beam splitter. For each transmission measurement
a 25mm diameter region of the protein sample was illuminated
with the THz beam to determine the absorbance. In the spectral
measurements presented, each scan consists of 16 averaged scans
and the infrared data was collected with a spectral resolution of
4 cm−1.

Molecular Dynamic Simulations
MD Simulation of Dark-State Rhodopsin and Meta-II
Each MD simulation consisted of a starting x-ray crystal
structure taken from the PDB database. PDB structure 1 µ19
was used for the inactive (dark) state of rhodopsin and 3pxo
was used for Meta II. In all simulations, the receptor was
embedded in a hydrated lipid bilayer with all atoms represented
explicitly. Specifically, the dark-state receptor and any resolved
water molecules from the crystal structure were embedded
in an equilibrated palmitoyloleoyl-phosphatidylcholine (POPC)
bilayer consisting of 110 lipid molecules, and additional 7400
water molecules, and 100mM NaCl (to neutralize the net charge
of the system). The membrane system was built with the use
of the g_membed tool in Gromacs. All titratable groups in the
receptor were considered to be charged (Fahmy et al., 1993).
The exceptions were Asp83 and Glu122, which were both neutral
in both the dark-state and Meta II MD simulations. Also for
the dark-state MD simulation, the Schiff base was protonated
whereas Glu113 was deprotonated. For the Meta II simulation
both the Schiff base and Glu113 were set to neutral. The active
state receptor combined with the structural waters from the
crystal structure was prepared in a similar manner to that
of the dark-state. MD simulations were performed at 300K
using the Gromacs package (www.gromacs.org) version 5.0. The
GROMOS96 43a2 force field parameters were utilized for the
protein and the Berger lipid parameters were used for the lipid
component of the membrane protein (Berger et al., 1997). The
SPC water model was used for hydration and the ground-state
retinal parameters (Bondar et al., 2011) for both the 11-cis and
all-trans retinal chromophore were obtained from the Bondar
group.

In the rhodopsin simulations, energy minimizations were
initially carried out to reduce the number of unfavorable contacts
between added solvent molecules and the receptor using a
steepest descent method to a convergence tolerance of 0.001
kJ mol−1. The energy minimization was followed by a MD
run with constraints for 200 ps in which an isotropic force

constant of 100 kJ mol−1 nm−1 was used on the protein and
lipid atoms. During the restrained dynamics simulation, the
temperature and pressure of the system were kept constant
by weak coupling to a modified velocity rescaled Berendsen
temperature (Berendsen et al., 1984) and pressure baths and
in all cases the protein, lipid, water, and ions were coupled
to the temperature and pressure baths separately. The output
conformation from theMD simulation with constraints was used
as the starting conformation for an initial 200 ns equilibriumMD
simulation.

Six subsequent simulations were conducted where
randomized conformations from the last 10 ns of the equilibrium
simulations were used as starting point conformations for
each distinct simulation. These subsequent simulations were
carried out for an additional 500 ns and were eventually used
to assess the picosecond time scale fluctuations in the receptor
systems. The final simulations were carried out with a 1 fs time
step where the bonds between the hydrogen and the other
heavier atoms were restrained to their equilibrium values with
the linear constraints (LINCS) algorithm (Hess et al., 1997).
Particle mesh Ewald (PME) method (Essmann et al., 1995) was
used to calculate the long-range electrostatic interactions in the
simulation and was used with a real-space cutoff of 1.0 nm, a
fourth order B-spline interpolation and a minimum grid spacing
of 0.14 nm.

MD simulations of Meta-II mutants (single and double
mutations) were carried out by creating a residue mutation(s)
with DUET (http://biosig.unimelb.edu.au/duet/), a web server
for studying missense mutations in proteins. Minimization and
production run MD simulations on the mutated receptors were
carried out in a manner analogous to that described for WT
rhodopsin.

Trajectory snapshots, each containing a record of the atom
positions and velocities at a particular instant in time, were saved
every 100 fs during the production simulations.

Modeling and Docking Studies
Ce6 docking studies on dark-state rhodopsin and Meta-II were
performed using the AutoDock 3.0 program (Goodsell et al.,
1996). Modeling and docking studies of the Gt C-terminal
high affinity peptide were performed using the MODELER
(Sali et al., 1995; Fiser and Sali, 2003) and ClusPro docking
software (Comeau et al., 2004), respectively. SwissDock (http://
swissdock.vital-it.ch/) web services (Grosdidier et al., 2011a,b)
were used as a secondary verification method to determine the
binding sites of Ce6 on rhodopsin. In this case, we assumed
a blind docking estimate of the binding modes comprising the
most favorable energies in the docking calculations. The highest
populated cluster of Ce6-rhodopsin predicted a conformation
with Ce6 bound to rhodopsin near the retinal-binding site,
whereas the lowest energy cluster favored a ligand orientation
in the cytoplasmic region with binding specifically favored close
to residues in CL2. The output of the docking results were
visualized with the UCSF Chimera (http://www.cgl.ucsf.edu/
chimera/) molecular modeling system (Pettersen et al., 2004).
Subsequent MD simulations for dark-state rhodopsin with Ce6
and Meta-II-Ce6 were carried out in an analogous manner
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to what has been described for the unbound receptors in the
previous section. The simulations comprising Ce6 at the CP
interface were the only conformations found to stably bind the
allosteric ligand (Ce6) with a consistent binding site. Ce6 binds
weakly in the CP region of inactive-state rhodopsin with an
itinerant path limited to regions near the receptor C-terminus.
In Meta-II, Ce6 has a clear, preferred binding site involving
residues comprising CL2. The simulations containing Ce6 bound
to regions near the receptor retinal-binding site found the ligand
migrating away from the receptor within the first 10 ns in all
MD simulations conducted and were not considered further for
analyses conducted in this study. Using the RMSD based on the
distances between structures, the g_cluster algorithim in gromacs
was used to determine the range of accessible conformations
in the Meta-II-Ce6 simulations (Palczewski et al., 2000; Menon
et al., 2001; Ahuja et al., 2009).

Principal Component Analysis (PCA)
Principal component analysis or PCA is generally employed
to detect correlations in large data sets. In MD simulations,
the method can be utilized to reveal the most important
motions in proteins. In this study, principal component analyses
(PCAs) were carried out by diagonalzing the covariance
matrix Cij=〈(xi−〈xi〉)(xj−〈xj〉)〉, where x denotes protein atomic

positions in the 3N-dimensional conformational space and the
angular brackets represent the averages over the MD trajectory.
Translational and rotational motions were removed by a least
squares fitting to a reference structure. The eigenvectors of
C were determined by diagonalization with an orthonormal
transformation matrix. The resulting eigenvectors from the
transformation were used to determine the PCA modes with
eigenvalues (λ) equivalent to the variance in the direction of
the corresponding eigenvector. The MD trajectory was projected
onto the principal modes to determine the principal components.
The eigenvalues λi of the principal components denote the mean
square fluctuation of the principal component i and are arranged
so that λ1 ≥ λ2 ≥ . . . ≥ λ3N . Using this arrangement, the
trajectories were filtered along the first principal component to
analyze the collective dynamics taking place within the protein.
The cosine content of the PCA modes presented were found to
be less than 0.001.

Determining Rhodopsin-Ce6 Ligand
Binding Affinity from MD Simulation with
an Alchemical Pathway Method
The ligand-binding affinity calculations were performed with
Gromacs. The dissociation of the ligand from the receptor
to determine the free energy of binding was determined by
decoupling the van der Waal and Coulombic interactions of
the ligand from the receptor by using an alchemical pathway
(Boyce et al., 2009). Specifically, the alchemical pathway begins
from the most accessible ligand-receptor conformation from
the production run (unrestrained) MD simulation described
previously. Subsequently, a harmonic restraint is added to the
ligand to “pull” it away from the receptor ligand-binding site
over a series of restrained conformational intermediates. The

set of restraints used for pulling the ligand away from the
receptor are described by one distance, two angles, and three
dihedral harmonic potentials. Particularly, the distance restraint
is defined by bonded terms between the ligand and the protein.
In (dark-state) rhodopsin the distant restraint is described by
the hydrogen-bond shared between the Pro347 backbone oxygen
and hydrogen atom on one of the ligand pyrrole rings. For
Meta-II the distance restraint is defined by a hydrogen-bonding
interaction between the Arg147 side-chain and the nitrogen atom
on the Ce6 pyrroline ring. The ligand restraints were comprised
of 13 distributed λ values (or windows) of 0.0, 0.01, 0.025, 0.05,
0.075, 0.1, 0.15, 0.2, 0.25, 0.3, 0.5, 0.75, and 1.0. Initially, all the
intermediate states were equilibrated. Each window was energy
minimized using the steepest descent algorithm. The receptor-
ligand system was subsequently simulated for an additional 1.0
ns in the canonical ensemble with harmonic position restraints
applied to the heavy atoms (of the receptor and ligand) with
a force constant of 1000 kJ mol−1 nm−2. Langevin dynamics
(Goga et al., 2012) was used to set the reference temperature
of the system to 300K. Then, a 1 ns position restrained run in
the isothermal–isobaric ensemble was conducted by using the
Berendsen coupling algorithm for a target pressure of 1 atm.
Finally, the production runs were carried out using Langevin
dynamics for 30 ns. In all simulations, the particle mesh Ewald
(PME) algorithm was used for electrostatic interactions with
a real space cutoff of 1.2 nm, a spline order of 6, a relative
tolerance of 10−6, and a Fourier spacing of 0.10 nm. The
Verlet cutoff scheme was used with a van der Waals cut-off of
1.2 nm and a tolerance of 0.005 kJ mol−1 ps−1. A long-range
dispersion correction for energy and pressure was employed
and an additional long-range dispersion correction (EXP-LR)
(Shirts and Chodera, 2008) was also utilized to compensate
for using a van der Waals cutoff in a non-isotropic receptor-
ligand system. Free energies were computed with the Bennett
Acceptance Ratio (BAR) using the g_bar tool in Gromacs. The
final free energy value was determined from the mean of all
the free energy values from the separate simulations and the
error computed from the standard deviation of the separate
runs.

Localized Structural Fluctuations (LSFs)
Localized structural fluctuations (LSFs) are local relaxations
that reflect specific intramolecular and intermolecular induced
protein fluctuations. LSFs have also been hypothesized to form
the basis of allosteric signal propagation in proteins (Daily
and Gray, 2007). The localized structural fluctuations from the
MD simulations carried out on rhodopsin were calculated with
the method of Pandini et al. (2013) that utilizes a structural
alphabet (SA) to define protein local structural fluctuations that
are described by a set of 25 canonical states composed of four-
residue protein fragments. The four-residue fragments define
the most probable protein local, conformational fluctuations in
the protein 3-D structure. Structural correlations between local
conformational changes of two protein fragments were calculated
as a positional mutual information (MI) matrix between two
column positions in the SA alignment.
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Multiple Sequence Alignment (MSA),
Residue Conservation, and Coevolution
Analysis
Multiple sequence alignment (MSA) is a powerful computational
tool for uncovering the long-term evolutionary record of a
protein family. The interdependence of evolutionary history
or coevolution, which can be obtained from MSAs, is also
used in this study to predict intermolecular communication
between residue pairs and therefore, allosteric coupling that is
related to protein functionality. The Class A Rhodopsin-like
MSA data set was retrieved from the GPCR database (http://
gpcrdb.org/). The reference sequence and structure were set as
opsd_bovin with the PDB code 1 µ19. The conservation and co-
evolutionary analyses on the rhodopsin-like family of sequences
were carried out with the MISTIC server (http://mistic.leloir.org.
ar/index.php). The mutual information score as implemented in
MISTIC is calculated between pairs of columns in the MSA. The
frequency for each amino acid pair is calculated using sequence
weighting along with low count corrections and compared with
the expected frequency. It is assumed that mutations between
amino acids are uncorrelated. The MI score is calculated as a
weighted sum of the log ratios between the observed and expected
amino acid pair frequencies. The MI scores were translated into
MI z-scores by comparing theMI values for each pair of positions
with a distribution of prediction scores obtained from a large
set of randomized MSAs (Buslje et al., 2009). The z-score is
then calculated as the number of standard deviations that the
observed MI value falls above the mean value obtained from
the randomized MSAs. A z-score threshold of 6.5 describes a

sensitivity of 0.4 and a specificity of 0.95. MISTIC lists every MI
value between two residues with a value ≥6.5.

Visualization of Networks
Only the top 500 MI network links and nodes from the MSA
were visualized. The position of residues in the two-dimensional
MSA networks was computed with a combination of classical
scaling and stress minimization (Brandes and Pich, 2009). And
the network groupings were based on community detection
resulting from modularity maximization (Newman, 2006). The
network layout and grouping were calculated using the software
tool Visone (http://visone.info/).
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Key steps in the life cycle of a virus, such as the fusion event as the virus infects a host

cell and its maturation process, relate to an intricate interplay between the structure and

the dynamics of its constituent proteins, especially those that define its capsid, much

akin to an envelope that protects its genomic material. We present a comprehensive,

comparative analysis of such interplay for the capsids of two viruses from the flaviviridae

family, Dengue (DENV) and Zika (ZIKV). We use for that purpose our own software

suite, DD-NMA, which is based on normal mode analysis. We describe the elements

of DD-NMA that are relevant to the analysis of large systems, such as virus capsids. In

particular, we introduce our implementation of simplified elastic networks and justify their

parametrization. Using DD-NMA, we illustrate the importance of packing interactions

within the virus capsids on the dynamics of the E proteins of DENV and ZIKV. We

identify differences between the computed atomic fluctuations of the E proteins in DENV

and ZIKV and relate those differences to changes observed in their high resolution

structures. We conclude with a discussion on additional analyses that are needed to

fully characterize the dynamics of the two viruses.

Keywords: proteins, normal modes, elastic network models, viruses, Dengue, Zika

1. INTRODUCTION

A major goal of molecular biology is to understand at the atomic level the functions of
macromolecules and/or biological nano-machines, which are believed to be intimately related to the
dynamics of their three-dimensional structures and especially their collective degrees of freedom
(Koehl, 2014; Bahar et al., 2015). Our current understanding of the dynamics of macromolecules
is, however, largely incomplete. This arises because only a few experimental techniques are capable
of collecting time-resolved structural data, and those that can collect those data are usually limited
to a narrow time window (Fromme, 2015). Similarly, state-of-the-art computational methods are
limited in scope (usually in themicrosecond time-scale), because of limitations in computing power
(Fengand et al., 2015).

An alternate and promising approach to molecular dynamics is to infer dynamics from static
structures corresponding to locally stable states (Mahajan and Sanejouand, 2015), together with
reliable coarse-graining approaches to bridge the time-scale gap (Saunders and Voth, 2013; López-
Blanco and Chacón, 2016). Cartesian Normal Modes, for example, represent a class of movements
around a local energy minimum that are both straightforward to calculate and biologically relevant

79

http://www.frontiersin.org/Molecular_Biosciences
http://www.frontiersin.org/Molecular_Biosciences/editorialboard
http://www.frontiersin.org/Molecular_Biosciences/editorialboard
http://www.frontiersin.org/Molecular_Biosciences/editorialboard
http://www.frontiersin.org/Molecular_Biosciences/editorialboard
https://doi.org/10.3389/fmolb.2016.00085
http://crossmark.crossref.org/dialog/?doi=10.3389/fmolb.2016.00085&domain=pdf&date_stamp=2016-12-27
http://www.frontiersin.org/Molecular_Biosciences
http://www.frontiersin.org
http://www.frontiersin.org/Molecular_Biosciences/archive
https://creativecommons.org/licenses/by/4.0/
mailto:koehl@cs.ucdavis.edu
https://doi.org/10.3389/fmolb.2016.00085
http://journal.frontiersin.org/article/10.3389/fmolb.2016.00085/abstract
http://loop.frontiersin.org/people/168521/overview
http://loop.frontiersin.org/people/167995/overview
http://loop.frontiersin.org/people/132216/overview


Hsieh et al. Normal Modes of Viral Capsids

(Noguti and Go, 1982; Brooks et al., 1983; Levitt et al., 1985).
The low-frequency part of the spectrum of normal modes is
often associated with functional transitions, for instance, between
two known states of the same macromolecule such as its apo
(ligand-free) or holo (bound) form. The Elastic Network Model
(ENM), introduced by Tirion in 1996, offers a particularly
simple and efficient way to calculate these modes, allowing fast
access to the collective dynamics of large complexes with no
minimization issues as it enforces that the crystal structure is
already at the energy minimum (Tirion, 1996). This model was
later expanded as the Gaussian Network Model (Bahar et al.,
1997) and the Anisotropic Network Model (Hinsen, 1998; Tama
et al., 2000; Atilgan et al., 2001), which were shown to describe
conformational changes remarkably well (Tama and Sanejouand,
2001; Delarue and Sanejouand, 2002; Zheng and Doniach, 2003;
Mahajan and Sanejouand, 2015).

During the past few years, several web-servers performing
on-line Normal Mode Analysis (NMA) have been set up and
described: ElNemo (Suhre and Sanejouand, 2004), ENCoM
(Frappier et al., 2015), Webnm@ (Tiwari et al., 2014), ANM 2.0
(Eyal et al., 2015), AD-ENM (Zheng and Doniach, 2003), NMSim
(Kruger et al., 2012). We have extended and updated our own
server, NOMAD-REF (Lindahl et al., 2006), with a new and user-
friendlier interface, including a better visual representation of
the results while at the same time enlarging the performances
of the core calculation of Normal Modes in the framework
of the ENM representation. New features include (i) a wider
array of coarse-graining levels prior to the actual building of the
ENM, and (ii) variants of the ENM that are based on a cutoff-
free Delaunay tessellation of the set of atoms of the molecule
of interest. With these features we depart from the original
Elastic Network Model (Tirion, 1996), but keep most of its
salient features, as the construction of the original Tirion Elastic
Model remains available. We found for example that the Elastic
Network coming from a Delaunay tessellation correctly handles
PDB models with isolated domains and/or dangling ends (Xia
et al., 2014). In addition, the performance of the calculation of
Normal Modes has been improved to a point where it can deal
with 100,000 atoms routinely, making it possible, for instance,
to deal with entire virus capsids without having to resort to
a symmetry-specific implementation (Simonson and Perahia,
1992; van Vlijmen and Karplus, 2005; Peeters and Taormina,
2009).

In the present paper, we show an application of some of
the tools implemented in DD-NMA, the updated version of
NOMAD-REF, to study the dynamics of viruses of the flaviviridae
family, namely of Dengue virus and Zika virus.

Dengue virus (DENV) is a positive-sense RNA virus
responsible for dengue fever, a tropical infectious disease whose
incidence has increased drastically over the last decades, for
which no prophylactic treatments are known (with the exception
of eliminating the vector, i.e., mosquitoes). Today, about 3.9
billion people, or 50% of the world’s population, live in areas
where there is a risk of dengue transmission (Brady et al., 2012).
Dengue is endemic in at least 128 countries in Asia, the Pacific,
the Americas, Africa, and the Caribbean (Brady et al., 2012).
The World Health Organization (WHO) estimates that close to

390 million infections occur yearly, of which 96 million manifest
clinically (Bhatt et al., 2013). DENV is recognized as a potential
threat to public health in the USA (Morens and Fauci, 2008). Of
similar concerns are the recent outbreaks of ZIKA virus (ZIKV),
another flaviviridae virus similar to DENV. The current ZIKV
epidemic in the Americas is linked to a sudden increase in the
reported cases of congenital microcephaly and Guillain Barré
syndrome. This led the World Health Organization (WHO)
in February 2016 to declare a “public health emergency of
international concern" (WHO, 2016). As no treatments currently
exist for the consequences of infections with those two viruses,
and as their incidence is only expected to increase, basic research
on their infection mechanisms becomes highly significant.

Flaviviridae genomes encode for ten different proteins, three
structural proteins that form the virus particle, and seven non-
structural (NS) proteins that are involved in its replication (for
recent review see Meng et al., 2015). Structures of all four
serotypes of DENV (Perera and Kuhn, 2008 and references
therein; Zhang et al., 2012; Kostyuchenko et al., 2013, 2014;
Fibriansah et al., 2015) and recently two structures of the same
ZIKV strain have been published (Kostyuchenko et al., 2016;
Sirohi et al., 2016). Those structures show the same global
architecture, with their capsids having icosahedral symmetry
consisting of 60 units, with each unit containing three copies
of the E protein and three copies of protein M. The E protein
is known to play a central role in many parts of the virus
life cycle (Perera and Kuhn, 2008). A perhaps surprising idea
that has emerged from years of studies of viruses is that their
biology is deeply encoded in the dynamics of these proteins.
Significant structural dynamics has been shown to occur during
infection cycles, both at the level of individual proteins and at the
quaternary structure level of the viral particle. These dynamics
can be blocked by antibody binding (Lok et al., 2008; Teoh
et al., 2012; Fibriansah et al., 2015). In addition, while the overall
geometry of the viral capsid is identical in all those viruses and
only small differences are observed at a finer structural scale,
significant differences in stability are observed between those
viruses. For example, while infection with DENV is significantly
affected by temperature, infection with ZIKV remains constant
at even relatively high temperatures (Kostyuchenko et al., 2016).
To better understand differences between those two viruses, we
investigate the dynamics of their capsid E proteins. We study
those proteins independently, as well as the impact of packing
imposed by the icosahedral arrangement of the virus capsid. We
explore whether the differences observed, if any, are consistent
with the differences observed between the structures of the
capsids of DENV and ZIKV and their biological activities.

The paper is organized as follows. In the next section, we
describe normal mode analysis (NMA) in the context of the
Elastic Network Model. We provide an overview of the theory
and discuss the different options for choosing its parameters,
namely the choice of coarse-graining level, the choice of the
elastic force constants, and the cutoff for selecting the pairs
of atoms that belong to the ENM. In the following section,
we provide a description of the algorithms used to implement
NMA within our new server DD-NMA, with a special focus on
scalability to large molecular systems. In the Results section, we
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discuss the applications of DD-NMA to study the dynamics of
DENV and ZIKV, focusing on the differences and similarities of
the dynamics of their capsid E protein. We conclude the paper
with a brief discussion on future developments of normal mode
analysis applied to viral structures.

2. NORMAL MODE ANALYSIS

2.1. Normal Mode Analysis Based on the
Tirion Elastic Network Model
The Elastic Network Model (ENM) was originally introduced by
Tirion (1996). It is a model that captures the geometry of the
molecule of interest in the form of a network of inter-atomic
connections, linked together with elastic springs. Two categories
of normal mode analyses based on ENMs are widely used today,
namely, the Gaussian Network Model (GNM) (Bahar et al.,
1997; Haliloglu et al., 1997) and the anisotropic network model
(ANM) (Tirion, 1996; Atilgan et al., 2001). Here we follow the
latter model, in which the energy of the molecule is equated to
the harmonic energy associated with these springs. This defines
a quadratic energy on the inter-atomic distances. Let M be a
biomolecule containing N atoms, with atom i characterized by
its position Xi = (xi, yi, zi). The whole molecule is then described
by a 3N position vector X. For two atoms i and j of M, we set
rij = |Xi−Xj| and r

0
ij = |X0

i −X0
j | to be their Euclidean distances

in any conformation X and in the ground-state conformation
X0 (usually the X-ray structure), respectively. The total potential
VENM of the biomolecule is then set to:

VENM(X) =
1

2

N
∑

i=1

∑

j>i

kij(rij − r0ij)
22(Rc − r0ij) (1)

where Rc is a cutoff distance, kij is the force constant of the
“spring" formed by the pair of atoms i and j, and 2(x) is the
Heaviside unit step function, i.e.,2(x) = 0 if x < 0 and2(x) = 1
otherwise. Both Rc and kij are discussed in detail below.

In the normal mode framework, the potential VENM is then
approximated with a second-order Taylor expansion in the
neighborhood of the ground state X0:

VENM(X) ≈ VENM(X0)+∇VENM(X0)T(X − X0)

+
1

2
(X − X0)TH(X − X0) (2)

where ∇VENM and H are the gradient and Hessian of VENM ,
respectively. Note that based on Equation 1, VENM(X0) = 0 and
∇VENM(X0) is the null vector (i.e., X0 is a global minimum of
VENM by definition). The ENM energy is then simply

VENM(X) ≈
1

2
(X − X0)TH(X − X0) (3)

The 3 × 3 submatrix Hij of the Hessian H corresponding to two
atoms i and j that are in contact is given by:

Hij = −
kij

(r0ij)
2
(Xi − Xj)(Xi − Xj)

T

= −
kij

(r0ij)
2





(xi − xj)
2 (xi − xj)(yi − yj) (xi − xj)(zi − zj)

(yi − yj)(xi − xj) (yi − yj)
2 (yi − yj)(zi − zj)

(zi − zj)(xi − xj) (zi − zj)(yi − yj) (zi − zj)
2





(4)

and the 3×3 submatrixHii on the diagonal ofH is then given by:

Hii = −
∑

j=1,N

Hij (5)

In Cartesian coordinates, the equations of motion defined by the
potential VENM are derived from Newton’s equation:

d2X

dt2
= −H(X − X0) (6)

Writing the solution to this equation as a linear sum of intrinsic
motions (the “normal modes" of the system),

Xj =

3N
∑

k=k0

Ajkαkcos(ωkt + δk) (7)

we get a standard eigenvalue problem,

HA = MA� (8)

The eigenfrequencies ω are given by the elements of the
diagonal matrix �, namely ω2

i = �(i, i). The eigenvectors
are the columns of the matrix A, and the amplitudes and
phases, αk and δk, are determined by initial conditions. The
matrix M is a diagonal matrix containing the masses of the
atoms. We note that the first six eigenvalues in � are equal
to 0, as they correspond to global translations and rotations
of the biomolecule. To characterize the internal motions of
the biomolecule, the sum in Equation 8 runs then from
k0 = 7 up to 3N, the number of degrees of freedom of the
system.

2.2. Parametrization: Choosing the
Representation of the Molecule
The first requirement when building an ENM is to define the set
of atoms on which it is based. Although all atoms could be used, it
appears natural to lower the dimensionality of the system, namely
“coarse-graining,” when large biomolecules are considered, or in
the context of a harmonic approximation to its energy as is the
case in ENM (Tozzini, 2005). Coarse-grained models have long
been used for studying protein folding and aggregation. They
enable the exploration of large length scales and time scales that
are usually inaccessible to all-atom models in explicit solvent
(Saunders and Voth, 2013; Kmiecik et al., 2016). Combined
with enhanced configuration search methods, these simplified
models with various levels of granularity offer the possibility
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to determine equilibrium structures and to compare folding
kinetics and thermodynamics quantities with the corresponding
values obtained by experimental techniques. In their pioneer
work from 1976, Levitt and Warshel (1976) developed the
foundation of coarse-graining for protein folding. They were
able to fold the 58-residue BPTI protein within 6.5 Å from its
experimental structure using a two-bead representation for each
residue in the protein. This representation included the Cα and
the centroid of the side chain to define a residue. They used
an effective implicit solvent force field such that the atoms of
the solvent need not be considered explicitly, and successive
minimizations and normal mode thermalization to fold BPTI.
Since then, various levels of granularity have been developed,
from lattice representations to multi-bead representations, and
from single atom to multiple-atom residue-level representations
(Kmiecik et al., 2016). The positions of those beads are either
defined by known atoms (usually the Cα), or by fitting to
capture the dynamics of the full molecular systems (Zhang
et al., 2008, 2011; Li et al., 2016). For all the analyses of
virus structures considered in this paper, we used the Cα-only
representation.

2.3. Parametrization: Choosing the Spring
Force Constants
In the original ENM introduced by Tirion, the elastic constants
kij are set to be the same for all pairs of atoms. In other models,
kij vary for different pairs of atoms. For example, Ming and Wall
(2005) employed an enhanced ENM in which the interactions
of neighboring Cα atoms on the backbone were strengthened
to reproduce the correct bimodal distribution of density-of-
states from an all-atom model. Kondrashov et al. (2006) used a
strategy in which they classified residue interactions into several
categories corresponding to different physical properties. The
elastic constants can also be adjusted to have the fluctuations
of the atoms of the molecule computed from the equations of
motions given by Equation (7) to match the atomic fluctuations
captured experimentally and usually reported as B-factors.
Many methods have been developed for that purpose (see for
example Xia et al., 2013, 2014 and references therein). Among
those methods, the one proposed by Erman (2006) is worth
discussing. Erman developed an iterative algorithm to update
the Kirchhoff matrix of a Gaussian Network Model, in which
the connections of neighboring Cα atoms on the backbone
of the protein of interest are fixed, and the strengths of the
interactions between pairs of residues are varied until a good
fit between experimental B-factors and computed fluctuations
is obtained. While this approach generates a really good fit
between those two representations of fluctuations, a significant
number of the optimized spring force constants are found to
be negative. While such negative values are not forbidden, they
do hint at the possibility of overfitting. This is in accordance
with (Fuglebakk et al., 2013), who recently suggested that such
a refinement procedure leads to overfitting, and not to a better
dynamic model for the molecule. As such, in this study we assign
the same value for all kij, following the initial ENM of Tirion
(1996).

2.4. Parametrization: The Cutoff Parameter
Rc
In standard implementations, the cutoff distance Rc and the
force constant k are set constant for all pairs of residues. Their
values, however, differ between the two models. For example,
the cutoff distance Rc for GNM is usually set in the range of
7 to 8 Å (Kundu et al., 2002) while in ANM larger values
are usually considered in the range from 13 to 15 Å (Eyal
et al., 2006). There are, however, no guidelines as to which
values are best and sometimes different implementations lead to
contradicting optimal values. To circumvent these discrepancies,
several authors have proposed to include all pairs of residues
in a protein and to assign different force constants to their
corresponding springs that relate to their lengths at rest (see for
example Hinsen, 1998; Kovacs et al., 2004; Yang et al., 2009).
In these methods, the use of a plain cutoff distance is avoided.
The number of pairs of atoms considered, however, is large and
scales as N2, where N is either the total number of atoms in
the biomolecule considered, or its number of residues. Such a
quadratic behavior makes these methods unfit for studying large
systems. To study the capsids of DENV and ZIKA, we have
considered a traditional cutoff ENM, with the cutoff set to 14 Å,
unless specifically noted.

3. MATERIALS AND METHODS

We have used our own software package, DD-NMA, to perform
all the analyses discussed in the Results section. In the following,
we highlight some of the elements of DD-NMA that are relevant
to the analysis of large systems. We note that DD-NMA is
available as a web-based service at http://lorentz.dynstr.pasteur.
fr/suny/index.php?id0=delaunaynma#welcome.

3.1. An Efficient Algorithm to Diagonalize
the Hessian of the Elastic Potential VENM
The Hessian matrix of VENM is a 3N × 3N symmetric, real-
valued matrix whose elements are described by Equation (4).
The theory described above calls for diagonalizing this matrix,
as its eigenvalues and eigenvectors provide the frequencies and
directions, respectively, of the normal modes of the molecular
systems under study. While many methods exist for solving such
an eigenvalue problem, see Golub and van der Vorst (2000),
many of those methods break down when N becomes large,
both in terms of computing time and memory requirements.
The Hessian matrix is highly sparse as only a subset of all
atom pairs are usually considered (see previous section for
a discussion of this point), but this is not enough to offset
the computing requirements as the matrix A of eigenvectors
is usually not sparse. However, in her original paper, Tirion
(1996) had recognized that the lowest frequency normal modes
can capture most of the dynamics of the protein of interest.
This observation has since been supported by further evidence
that the lowest-frequency normal modes generated from ENM
conform with conformational changes observed by X-ray and
NMR experiments (Kim et al., 2002; Maragakis and Karplus,
2005; Kurkcuoglu et al., 2009) as well as with the results of MD
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simulations (Rueda et al., 2007; Orellana et al., 2010; Leioatts
et al., 2012). While it is unclear as to how many of those
low frequency normal modes need to be considered (Petrone
and Pande, 2006), it remains that only a small fraction of the
eigenvalues and eigenvectors of the Hessian matrix need to
be computed, which leads to the opportunity to use powerful
iterative algorithms for computing those quantities. The most
successful family of such algorithms is based on the efficient
Krylov subspace method, as it allows for targeting only a subset
of the eigenvalue spectrum of a matrix. We provide below the
rationale behind this method to compute the eigenvalues with
lowest magnitude of the Hessian matrix.

An intuitive method for finding the largest eigenvalue of a
given N × N matrix A is the power iteration. Starting with an
initial random vector x, this method calculates Ax, A2x, A3x,. . .
iteratively, storing and normalizing the result into x at every
iteration. The corresponding sequence of Rayleigh quotient Ri

Ri =
xTAix

xTx
(9)

converges to the largest eigenvalue of A, while x itself converges
to the corresponding eigenvector. However, much potentially
useful computation is wasted by using only the final result. This
suggests that, instead, the so-called Krylov matrix is to be formed:

Kn =
[

x Ax A2x . . . An−1x
]

(10)

The columns of this matrix are not orthogonal, but an
orthogonal basis can be constructed via a stabilized Gram–
Schmidt orthogonalization. The resulting vectors are a basis of
the Krylov subspace, Kn. The vectors of this basis give good
approximations of the eigenvectors corresponding to the n largest
eigenvalues of A. In a similar manner, the smallest eigenvalues of
A can be computed by applying this strategy to either A−1, or by
applying a spectral shift, i.e., by computing the largest eigenvalues
of A− λmaxI, where λmax is the largest eigenvalue of A.

We use the ARPACK implementation of a variant of this
approach, the implicitly restarted Arnoldi iteration method
(Lehoucq et al., 1998).

3.2. Atomic Fluctuations Computed From
Normal Modes
From the normal modes of the ENM, it is possible to compute the
mean square fluctuations of the positions of the atoms according
to:

< 1X2
i >=

kBT

mi

m
∑

k=7

A2
ik

ω2
k

(11)

where 1Xi and mi are the displacement vector and mass of
vertex i, respectively, kB is the Boltzmann’s constant, T is the
temperature considered, Aij is the i-th component of the j
eigenvector Aj of the Hessian, and ωi is its associated eigenvalue.
The summation should run over all the modes of the system
(excluding the six modes for rigid body transformations); it is
truncated here to the firstm = 100modes, as those low frequency
modes are usually responsible of most of the atomic fluctuations
(see above).

3.3. Correlated Motions Within a
Biomolecule
The Boltzmann distribution for the approximate potential of the
ENM (see Equation 3) is described by a multivariate Gaussian
distribution with a covariance matrix proportional to the inverse
of the Hessian H. Because of the six rigid motions captured by
the six normal modes with 0 frequencies, the inverse of H is in
fact not properly defined. We can, however, compute a pseudo-
inverse by ignoring those zero energy modes; this pseudo-inverse
can be regarded as a covariance matrix of internal deformation:

C =

M
∑

k=7

1

ω2
k

AkA
T
k (12)

FIGURE 1 | The capsid of ZIKV. (A) Cartoon representation of the capsid of ZIKV (PDB file 5IZ7). The capsid includes 180 copies of protein E. The three E proteins

from each asymmetric unit are colored green, orange, and blue. (B) The elastic network of the capsid of ZIKV, constructed from the Cα only, with a cutoff Rc = 14 Å.

(C) Inside view of the elastic network, obtained by cutting the full elastic network along the plane shown as a line on (B). Note that it is possible to identify rafts, as

illustrated with one raft being contoured with a dashed rectangle (see text for details). All three panels were generated using Pymol (http://www.pymol.org).
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where ωk and Ak are the k − th eigenvalues and eigenvectors,
respectively. Note that C is a 3N × 3N matrix. The summation
extends from k = 7, the first non-zero mode, to M, the highest
mode considered (up to 3N). To obtain a scalar quantification of
the correlation of the motions of two atoms i and j, a correlation
matrix P is computed, following Ichiye and Karplus (1991):

Pij =
tr(Cij)

√

tr(Cii)tr(Cjj)
(13)

The values Pij range from −1 to +1, with a negative correlation
value indicating an anticorrelated motion, and a positive
correlation value identifying a correlated pattern of dynamics
between the two atoms considered. These values are stored
into a cross-correlation matrices CCM that is used to visualize
correlations of motion within the molecule under study.

4. RESULTS AND DISCUSSION

DENV and ZIKV are both members of the flaviviridae family.
DENV serotype 1 and ZIKV (which are the focus of this
study) share 53% sequence identity (Kostyuchenko et al.,
2016). Their particles share a common fold, with their capsids
having icosahedral symmetry. Those capsids are formed of 60
asymmetrical units, with each unit containing three copies of E
protein (495 and 504 residues in DENV and ZIKV, respectively)
and three copies of the membrane protein M (74 and 75 residues
in DENV and ZIKV, respectively). The high resolution cryo-EM
structures of all four serotypes of DENV, as well as the structure
of one strain of ZIKV, are available in the Protein Data Bank
(Zhang et al., 2012; Kostyuchenko et al., 2013, 2014; Fibriansah
et al., 2015; Kostyuchenko et al., 2016; Sirohi et al., 2016). Here we
focus on the structure of the mature form of serotype 1 of DENV,
with PDB code 4CCT (Kostyuchenko et al., 2013), and of the
equivalent mature form of ZIKV, as given by one of the recently
published structures, with PDB code 5IZ7 (Kostyuchenko et al.,
2016). Those two structures were shown to be very similar,

with only small differences that will be discussed in light of
their dynamics. A cartoon representation of ZIKV is given in
Figure 1A. The DENV capsid shows the same architecture.

The PDB file for 4CCT only contains Cα atoms. For
consistency, we used Cα only representations of 4CCT and 5IZ7.
We isolated from those two files all the Cα atoms of the viral
capsid. For both viruses, we considered E protein in four different
environments: isolated,MONO, (corresponding to chain A in the
asymmetric unit of 4CCT and chain B of the asymmetric unit of
5IZ7), within the asymmetric unit, UNIT, within a raft, RAFT,
and within the whole capsid structure, FULL. The corresponding
complexes MONO, UNIT, RAFT, and FULL contain 495, 1707,
3414, and 102420 residues for 4CCT, respectively, and 504, 1737,
3474, and 104220 residues for 5IZ7, respectively. We generated
elastic networks for all those eight complexes using a cutoff
procedure, with the cutoff set to 14 Å. Figures 1B,C illustrate the
elastic network for the FULL complex for ZIKV (5IZ7). We note
that this elastic network follows the surface of the capsid virus and
does not include any edges that cross the interior of the capsid;
this is a direct consequence of the cutoff that is used. The inside
of the geometric structure formed by the elastic network reveals

the presence of rafts (one such raft is shown inside a rectangle
in Figure 1C), namely three dimers of E protein lying parallel
to each other. Once the elastic networks were established, we
computed the hundred lowest normal modes for each of them,
using the procedure detailed in the Methods section.

We emphasize that the elastic networks for the full capsids

were computed using the empty protein shells, following

previous studies of viral particles using ENM and their normal
modes (Tama and Brooks III, 2002, 2005; Kim et al., 2003;
Chennubotla et al., 2005; Rader et al., 2005; Polles et al., 2013).

This setting is expected to be satisfactory as the stability of

the empty capsid is guaranteed by the geometric construction
of the ENM, which makes up for the missing stabilizing

interactions of the coat proteins and RNA. We note that
the latter were not resolved in the cryo-EM structures we

considered.

FIGURE 2 | Comparing the low frequencies of the normal modes of DENV and ZIKA. The frequencies of the first hundred normal modes of DENV (red circle,

o) and ZIKV (blue cross, x) are plotted against the normal mode index (#), for the E protein by itself (left), for a raft (middle), and for the full capsid (right). The

frequencies are in arbitrary units, as the force constants are also in arbitrary units. Note the decrease in the amplitude of those frequencies as the size of the complex

increases. The insert in the right panel shows an enlargement for the first 50 normal modes; it highlights the degeneracy of the normal modes for a full capsid.
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4.1. Characterizing the Low Frequency
Normal modes of DENV and ZIKV
In Figure 2 we compare the frequencies of the first hundred
normal modes of the MONO, RAFT, and FULL complexes of
DENV and ZIKV. As expected, the first six frequencies are found
equal to zero, for all complexes considered, as those frequencies
correspond to the rigid motions (three translations and three
rotations). The larger the protein complex, the more the spectra
of frequencies of the normal modes are shifted toward lower
frequencies, indicating the presence of more collective motions
in protein oligomers. The spectra of frequencies for the full
capsids reveal the presence of degeneracy, namely repeating
frequencies, that correspond to symmetries in the capsid. All
the differences observed in the three complexes are conserved
between DENV and ZIKV. We note also the nearly perfect
match between the normal mode frequency spectra of the two
viruses.

4.2. Correlated Dynamics of E Proteins in
the Capsids of DENV and ZIKV
In Figures 3, 4 we assess the extent to which packing influences
the dynamics of the E protein of DENV and ZIKV, respectively.
For both viruses, the cross correlation matrices (CCM) for E
protein vary significantly between the MONO, UNIT, and FULL
complexes. The CCM for the E protein alone reveals significant
positive correlations within each of the three domains I, II,
and III. Domains II and III exhibit both positive and negative
correlations in their atomic fluctuations, while the motions
of domain I are only weakly correlated to the motions of
domain II and III. When the dynamics of the E protein are
studied in the context of the asymmetric unit, the same positive
correlations are observed within each of the three domains. The
interactions between the domains change significantly, however.
In the UNIT complex, the dynamics of domain II are strongly
anticorrelated to the dynamics of domain III, while domain

FIGURE 3 | Correlated motions in the DENV E protein. Cross Correlation Matrices (CCM) obtained from the 94 first non-zero modes for the E protein alone

(MONO, A), the E protein in the asymmetric unit (UNIT, B), and the E protein in the whole capsid (FULL, C). Those plot show correlations between the motions of Cα

atoms in each complex considered. Both axes of a matrix are the amino acid residue index. Each cell in a matrix shows the correlation between the motions of two

residues (Cα atoms) in the protein on a range from −1 (anticorrelated, blue) to 1 (correlated, red), with 0 conferring no correlation. (D) The E protein is shown in

cartoon mode. The color code for the structure in (C) as well as for the X and Y axes of the CCM plots in (A) to follows the standard designation of the E protein

domains I (red), II (yellow), and III (blue). The transmembrane domain is shown in purple. Panel (D) was generated using Pymol.
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FIGURE 4 | Correlated motions in the ZIKV E protein. Cross Correlation Matrices (CCM) obtained from the 94 first non-zero modes for the E protein alone

(MONO, A), the E protein in the asymmetric unit (UNIT, B), and the E protein in the whole capsid (FULL, C). (D) The E protein is shown in cartoon mode. Colors and

layout follow the same schemes as in Figure 3.

I is correlated positively with domain III. In the full viral
capsid, the internal dynamics of the E protein remain mostly
as observed in the asymmetric unit. The only difference is the
addition of a global positive correlation over the full protein
that comes from concerted dynamics within the capsid. In all
three oligomeric states, the transmembrane domain shows weak
positive correlation with domain II.

All the differences in dynamics observed between isolated
E proteins and E proteins in the whole capsid are conserved
between DENV and ZIKV.

4.3. Correlated Dynamics of Rafts of E
Proteins in the Capsids of DENV and ZIKV
Figures 3, 4 reveal the effects of packing in the viral capsid
on the dynamics of one E protein. We performed a similar
analysis on a larger structure of the capsid, namely a raft. A
raft is formed from six E proteins forming 3 dimers arranged
in a parallel manner, resulting from the combination of two
asymmetrical units (see Figure 5E). The whole capsid contains
30 such rafts. In Figures 5A–C, we assess the extent to which

packing influences the dynamics of such rafts for both DENV and
ZIKV. In the CCM for the raft alone (Figures 5A,B for DENV
and ZIKV, respectively) we clearly identify the six E proteins
along the diagonal. Each of those E proteins exhibits dynamics
correlation patterns equivalent to those observed in the E protein
when it is in the asymmetrical unit. The interactions between
the E proteins are consistent with the structure of the raft. The
first E proteins of the two asymmetrical units, proteins E1A
and E1B, show strong positively correlated dynamics. Those two
proteins form a dimer in the raft. In contrast, proteins E2A and
E3A in Unit A, and proteins E2B and E3B in Unit B have a
pattern of interactions that include both positively correlated
and negatively correlated motions, depending on their domains:
for example, domains III have negative correlations between
the two proteins, while domains II are positively correlated
between the two proteins. The pair of proteins (E2A, E3A)
shows weak correlated dynamics with the pair of proteins
(E2B, E3B), with a chessboard pattern (i.e., positive correlations
between E2A and E2B, and negative correlations between E3A
and E3B).
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FIGURE 5 | Correlated motions in the a E protein raft. Cross Correlation Matrices (CCM) obtained from the 94 first non-zero modes for a E protein raft alone

(UNIT), and a raft in the whole capsid (FULL) for DENV (A,C), and for ZIKV (B,D). X axes and Y axes are residue indices. The positions of the six E proteins are

marked, with labels and color codes defined on the structure in (E). (E) Cartoon model for the raft. Note that a raft includes two asymmetric units, labeled Unit A and

Unit B. The first E protein of each unit, E1A and E1B form a dimer. Panel (E) was generated using Pymol.
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The CCMs for a raft included in the whole capsid
(Figures 5C,D for DENV and ZIKV, respectively) reveal different
patterns than those described for the raft alone, highlighting
again the impact of packing in the virus environment. There is
a high level of positive correlation of motions within each of the

units A and B. The proteins E1A and E1B that form a dimer at
the center of the raft are mostly interacting with themselves in the
raft alone, while they show strong levels of positive correlations
with all three E proteins of the opposing unit in the raft when
considered within the whole capsid. In contrast, the pairs of

FIGURE 6 | Atomic fluctuations in the DENV and ZIKV E proteins. The atomic displacement fluctuations obtained from the 94 first non-zero modes for the E

protein alone (MONO, A,B), the E protein in the asymmetric unit (UNIT, C,D), and the E protein in the whole capsid (FULL, E,F) are plotted as a function of the residue

number for both DENV (PDB file 4CCT) and ZIKV (PDB file 5IZ7). The Y axis represents normalized displacements (see text for details). The color code follows the

standard designation of the E protein domains for domains I (red) and III (blue), while domain II has been colored green to enhance visibility.
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proteins (E2A, E3A) and (E2B, E3B) present significantly lower
correlation when considered in the whole capsid compared to
the raft alone. Such a behavior would favor concentration of
concerted internal motions in a few E protein dimers at the center
of the rafts in the whole viral capsid instead of a more uniform
spread of concerted motions.

Similar to the findings for the dynamics of the E proteins, the
differences in dynamics observed between isolated rafts and rafts
in the whole capsid are conserved between DENV and ZIKV.

4.4. Atomic Fluctuations within the E
Proteins of the Capsids of DENV and ZIKV
The normalized squared atomic fluctuations for each Cα atom
in the E protein of DENV and ZIKV were calculated as the
sum of their displacements along the first 94 non-zero modes,
weighted by the reciprocal of the eigenvalues, as given by
Equation (11). For both viruses, the calculation was performed
in three states for the E protein, namely the MONO, UNIT,
and FULL complexes described above. The absolute values of
the amplitudes of the fluctuations computed using Equation (11)
are somewhat arbitrary, as they depend on the parametrization
of the elastic network, namely on the cutoff values Rc and the
strength of the force constants kij. While it is possible to select
those parameters such that a good fit is obtained between the
computed fluctuations and experimental B-factors, we prefer not
to, following the advice of Fuglebakk et al. (2013) that warned
on possible overfitting problems. Instead, we just normalize the
computed fluctuations for an atom i using:

< 1NX
2
i > =

< 1X2
i > −min(< 1X2 >)

max(< 1X2 >)−min(< 1X2 >)
(14)

where the min and max values are computed over all Cα atoms
of the molecule considered. To enable comparison, we computed

the min and max values from the fluctuations observed in the E
protein alone, and applied those to normalize the fluctuations of
all three states considered, i.e., MONO, UNIT, and FULL. Results
for DENV and ZIKV are shown in Figure 6.

Not unexpectedly, the amplitude of the atomic fluctuations
within the E protein decreases as the protein is more constrained,
from a (normalized) range between 0 and 1 in the E protein
alone (Figures 6A,B), to a range between 0 and 0.01 in the full
capsid (Figures 6E,F). Of significance is the change in dynamics
observed in the kl-loop between domains I and II (the DI-DII
hinge, residues 280–290) between the stand alone E protein and
the capsid. In the former, this loop region is predicted to be rigid,
while in the latter it is found to be significantly more dynamic.
This hinge is thought to be important to flip the domain DII to
expose the fusion loop during the fusion event (Modis et al., 2003;
Zhang et al., 2004; Kostyuchenko et al., 2016). In contrast, the
HI-loop in the putative receptor binding domain DIII (residues
230–240) is found to bemore dynamic in the E protein alone than
in the whole capsid. DENV and ZIKV show the same dynamical
behavior in both loops (the kl- and HI-loops).

The two plots showing the atomic fluctuations computed from

normal modes in the E proteins are globally similar between

DENV and ZIKV in all oligomeric states (Figure 6). There are,
however, some localized differences that are worth discussing.

There is a putative increase in dynamics in the region 150–160 in

ZIKV compared to DENV that is most marked in the E protein
monomer, but still present it its oligomeric states. This region

corresponds to the Glycan loop, which contains a glycosylation
site (Asn154 in ZIKV and Asn153 in DENV). It was found to
be the region with the biggest structural differences (up to 6 Å)
in the cryo-EM structures of ZIKV and DENV (Sirohi et al.,
2016). Our calculations were performed in the absence of the
sugar moities on the Asparagine. We believe however that our
results highlight an intrinsic difference in the dynamics of the

FIGURE 7 | Comparison of normalized experimental and computed atomic fluctuations in the DENV and ZIKV E proteins. The computed atomic

displacement fluctuations were obtained from the 94 first non-zero modes of the whole capsid shell. The experimental fluctuations are taken from the cryo-EM

structures of DENV (4CCT, Kostyuchenko et al., 2013) and ZIKV (5IZ7, Kostyuchenko et al., 2016) The color code for the computed atomic fluctuation is: E protein

domain I, red, II, green, III, blue, and transmembrane domain, purple.
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Glycan loops of DENV and ZIKV that is worth exploring further.
In contrast to the Glycan loop, the region 340–350 is found to
be less dynamic in ZIKV than in DENV in all oligomeric states
of their E proteins. This region corresponds to the C strand and
CD loop in domain III. Based on the differences in the structures
of the DENV and ZIKV capsids, Kostyuchenko et al. (2016)
hypothesized that the presence of an additional amino acid in
the C strand in ZIKV was responsible for a rearrangement of
the structure locally that is possibly responsible for the increased
thermal stability of ZIKV. Our results indeed suggest a more rigid
C strand in ZIKV compared to DENV. The exact relationship
between this decrease in atomic fluctuations and thermal stability
is unknown.

All results on dynamics presented above are based on atomic
fluctuations and dynamic correlations computed from normal
mode analyses. In Figure 7 we compare those normalized
computed atomic fluctuations for the Cα atoms of the E protein
in the full capsid structure with the corresponding normalized
experimental B-factors extracted from the PDB files 4CCT and

FIGURE 8 | Running time for DDNMA. The running time of the normal

mode computation is plotted against the initial number of atoms (A), and the

initial number of edges in the corresponding elastic network, EN (B). The

timings are computed on a single Intel Core I7 processor running at 4.0 GHz

with 8 GB of RAM.

5IZ7 for DENV and ZIKV, respectively. Overall, the profiles show
qualitative similarities over the full range of residues in E protein.
The correlation coefficients between the experimental B-factors
for DENV and ZIKV and the computed atomic fluctuations are
0.58 and 0.45, respectively. Those values aremodest.We note that
it would be possible to obtain significantly better correlations if
the elastic constants kij assigned to the links of the networks were
fitted to improve the match between B-factors and computed
fluctuations. We also notice differences in relative amplitudes
of the experimental and computed atomic fluctuations; these
differences exist, however, between the experimental B factors
for the two viruses and they could not be interpreted when
analyzing the differences between the corresponding structures
(Sirohi et al., 2016; Kostyuchenko et al., 2016).

4.5. Computing Time
The main task performed by DD-NMA when computing the
normal modes of an elastic network is the diagonalization of
the Hessian. For large systems, it is not feasible to perform
the full diagonalization, both because of its time and memory
complexities (both of order O(N3), where N is the number
of atoms). Instead, only partial diagonalization is performed,
with only the eigenvalues with the lowest amplitudes (usually
100) being computed. The method implemented is based on an
iterative procedure. As discussed in the Material and Methods
section, this procedure is efficient, of order O(Mk + Nk2 + k3),
where M is the number of non-zero elements in the sparse
representation of the Hessian matrix, and k the number of
eigenvalues that are computed. The first term corresponds to
the matrix vector multiplications needed at each iteration, the
second term relates to the Gram-Schmidt orthogonalization
required to build the Krylov basis, and the last term is the
cost of diagonalizing the matrix representing this basis. To test
if we observe this expected behavior on real systems, we have
experimented with systems of varying size. We have applied
DD-NMA on parts of the capsids of DENV, with increasing
number of asymmetrical units included, from one to sixty. For
all systems, we extracted the Cα atoms, computed an all-atom
elastic network with a cutoff of 14Å, and computed the 100 lowest
frequency normal modes with DD-NMA. All those experiments
were performed on a iMAC Apple computer with a 4.0 GHz Intel
Core I7 processor, with 8 GB of memory. The computing times
for DD-NMAare plotted against the initial numbers of atoms and
edges in the all-atom elastic networks in Figure 8.

The number of non-zero elements in the Hessian matrix
is directly proportional to the number of edges in the elastic
network and implicitly proportional to the number of atoms in
the protein, assuming constant density of atoms. Interestingly,
the curves cpu time vs. number of atoms and vs. number of
edges show three different regimes. For a relatively small number
of atoms (below 20,000), and for a medium number of atoms
(between 20,000 and 40,000), the cpu time is found to vary
linearly, as expected, but with different slopes. The different
slopes come from the relative weights of the two terms Mk and
Nk2 in the time complexity. For larger number of atoms, the
behavior of the cpu time is found to be more erratic, with a
slower rate of increase. We suspect that this behavior is due to
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cache issue. The time complexity of computing the product of
the Hessian with a vector using the sparse representation of the
Hessian is more complex than just being proportional to M, the
number of non-zero elements of the Hessian H. Indeed, for very
large matrices, it depends on their storage patterns. We have not
tried to optimize this storage, which is most likely the reason
for the erratic behavior. It does hint to possible improvement in
the computation of the normal modes, by first re-ordering the
Hessian using for example METIS (Karypis and Kumar, 1999).

We note that it takes approximately 30 min to compute the
first hundred normal modes for amolecular systemwith hundred
thousand atoms, on a single core, on a desktop computer. While
this is not fast per se, it is still manageable. We do note that part
of the codes for computing the eigenvalues of the Hessian can be
parallelized; we are currently working on such an improvement.

5. SUMMARY AND CONCLUSIONS

Understanding the dynamics of viral capsids is of fundamental
interest for modeling the key steps of viral life cycles. In
this paper, we have described an implementation of normal
mode analysis based on elastic network models that enables
such analyses. This implementation is based on the known
foundations in the domain (Tirion, 1996) and does not deviate
significantly from other available implementations (Zheng and
Doniach, 2003; Suhre and Sanejouand, 2004; Kruger et al., 2012;
Tiwari et al., 2014; Eyal et al., 2015; Frappier et al., 2015). We
discuss in details its parametrization, namely the choice of the
coarse graining of the molecular system, the choice of the method
for computing the elastic network, and the assignment of force
constants to the resulting springs, and justify the choices we have
implemented. We emphasize the need for efficient and robust
algorithms for computing the normal modes of elastic networks,
in particular when those networks include a very large number of
nodes -in the hundred of thousands-, such as those derived for
virus capsids. We have illustrated the application of our method
to study the dynamics of the viral capsids of DENV serotype 1 and
ZIKV. We have characterized the impact of the packing imposed
by the capsids on their E proteins that play essential roles in
receptor binding and fusion to the membrane of the host cells.
We have identified differences in the atomic fluctuations of these
proteins between DENV serotype 1 and ZIKV that are consistent
with the structural differences observed using high resolution
cryo-EM experimental structures (Kostyuchenko et al., 2016;
Sirohi et al., 2016). In the future, we will consider two types of
extensions of this first study that relate to the method itself as
well as to its specific application to studying DENV and ZIKV.

First, we recognize that the need for a reasonable
computational cost, when applying a method such as normal
mode analysis to a large molecular system such as a virus capsid,
implies that some sort of coarse graining is applied to such a
system. Many options exist to reduce the dimensionality of the
problem by selecting subsets of atoms, “beads,” to represent the
system (Kmiecik et al., 2016). The positions of those beads are
either defined by known atoms (usually the Cα), or by fitting
to capture the dynamics of the full molecular system (Zhang

et al., 2008, 2011; Li et al., 2016). The main difficulty in coarse-
graining, however, is to design potential energy functions or
force fields that retain the physics of the all-atom explicit solvent
system in terms of structure, thermodynamics and dynamics
(Riniker et al., 2012). While significant efforts have been made to
guarantee that a coarse-grained model and its potential capture
the complexity of the all-atom molecular system (Riniker et al.,
2012; Saunders and Voth, 2013; Na et al., 2015; Zhang, 2015), we
note that much less has been done to generate a true multi-scale
representation of this system, i.e., to define a hierarchy of
coarse-grained models with a coupling between those models.
Our intention is to generate such a hierarchy; for this purpose,
we will rely on the concept of renormalization group (RG) that
is well known in physics (Wilson, 1975). We have implemented
in DD-NMA a beta-version of such a method that performs
iterative decimation of an elastic network. We will test this
method on viral capsids once we have adapted the code to deal
with hundreds of thousands of atoms.

Once the representation of themolecular system is chosen, the
elastic network is defined as a set of links, with a link between two
residues only if the distance between their Cα atoms is smaller
than a given cutoff. As an alternative to this cutoffmodel, Xia et al.
(2014) proposed to use all edges of the Delaunay triangulation
of the selected atoms as an alternate elastic network. We believe
that the use of Delaunay triangulation to define the ENM extends
the range of applicability of NMA to the realm of less globular
proteins. We will proceed in this direction and test this alternate
definition of ENM to study the dynamics of viruses.

Our analyses of the dynamics of DENV and ZIKV capsids
were based on naked, empty shells. There are many opportunities
to extend this work. We are interested in generating plausible
paths between different conformations of the virus capsids,
such as the “breathing" induced by increase of temperature
(Fibriansah et al., 2013), and the changes observed during the
maturation of the virus. We will develop new methods to find
such plausible paths in very large systems such as viral capsids,
where “plausible" refers to a path with minimal frustration, also
defined as the MinimumAction Path (MAP) (Olender and Elber,
1996; Eastman et al., 2001; Franklin et al., 2007; Vanden-Eijnden
and Heymann, 2008; Zhou et al., 2008; Chandrasekaran et al.,
2016). Finally, we plan to study the impact of glycolsylation of
the E protein and/or antibody binding on the virus capsids onto
their dynamical properties.
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Intrinsically disordered proteins that populate the so-called “Dark Proteome” offer

challenging benchmarks of atomistic simulation methods to accurately model

conformational transitions on a multidimensional energy landscape. This work explores

the application of parallel tempering with implicit solvent models as a computational

framework to capture the conformational ensemble of an intrinsically disordered peptide

derived from the Ebola virus protein VP35. A recent X-ray crystallographic study reported

a protein-peptide interface where the VP35 peptide underwent a folding transition from

a disordered form to a helix-β-turn-helix topological fold upon molecular association with

the Ebola protein NP. An assessment is provided of the accuracy of two generalized Born

solvent models (GBMV2 and GBSW2) using the CHARMM force field and applied with

temperature-based replica exchange dynamics to calculate the disorder propensity of the

peptide and its probability density of states in a continuum solvent. A further comparison

is presented of applying an explicit/implicit solvent hybrid replica exchange simulation

of the peptide to determine the effect of modeling water interactions at the all-atom

resolution.

Keywords: molecular dynamics, free-energy landscape, intrinsically disordered proteins, explicit/implicit solvent

model replica-exchange simulation

INTRODUCTION

The large conformational heterogeneity and rapid dynamic transitions of intrinsically disordered
peptides and proteins (IDPs) present a challenge to experimental boundaries in characterizing
their functional form on rugged energy landscapes (Wright and Dyson, 1999, 2005). From a
biological perspective, the broad interest in IDPs draws principally from their fundamental role in
the regulation and function of cellular protein networks. Recent experimental studies have begun to
unravel the interplay between “ordered chaos” of IDPs and their kinetic transition to a topological
funnel of folded states (Arai et al., 2015). The contemporary view of this dynamic process is one
that occurs by either an “induced-fit” of the IDP upon molecular association with a protein target
or by target “fly casting” of a prefolded state in the disordered conformational ensemble of the IDP
(see, e.g., Shoemaker et al., 2000; Arai et al., 2015).

Complementary to experimental studies are computer simulations which offer a powerful set of
tools to understand IDPs at the all-atom level and their inherent plasticity to navigate a disordered
network of microstates (see, e.g., Zhang and Chen, 2014; Chebaro et al., 2015; Bhowmick et al.,
2016; Lee and Chen, 2016). Among the simulation methods, the generalized ensemble sampling
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Olson Modeling the Dark Proteome

technique of temperature-based replica exchange (T-ReX;
Sugitaa and Okamoto, 1999; Ishikawa et al., 2001), also
known as parallel tempering, has become an increasingly
popular approach for exploring the energy landscape of
proteins. Algorithms combined with T-ReX to generate protein
configurations vary in their theoretical formulations and
range from canonical molecular dynamics (MD) simulations
to nontraditional methods that accelerate conformational
sampling. Of the latter, examples includes coarse replica-
exchange molecular dynamics (Peter et al., 2016), accelerated
molecular dynamics (see, e.g., Miao et al., 2015), Hamiltonian
switch Metropolis Monte Carlo (Mittal et al., 2014), all-atom
multicanonical molecular dynamics (Higo et al., 2011) and self-
guided Langevin dynamics (SGLD; Wu and Brooks, 2003),
among others.

A computational strategy of reducing the complexity of all-
atom simulations of proteins is the replacement of explicit
water interactions with a continuum description of treating
implicitly the bulk physical properties of solvation effects. The
most common implicit solvent method for protein dynamics
simulations is the generalized Born (GB) approximation.
GB models are computationally faster than explicit solvent
calculations and differ in their accuracy of reproducing Poisson-
Boltzmann solvation energies for single protein conformations
(see, e.g., Feig et al., 2004b). Application of GB solvent models
to studies of IDPs has been reported by several laboratories
(see, e.g., Ganguly and Chen, 2009; Click et al., 2010; Chebaro
et al., 2015; Ganguly and Chen, 2015). To date the simulation
results lack consensus on the accuracy of GB solvent models as
a computational framework to capture the fold propensities of
IDPs and their probability density of states on a conformational
landscape. Particularly missing among the reported studies
are comparative assessments of GB models of IDPs with
those modeled by explicit all-atom solvent replica exchange
simulations.

Given the current interests in characterizing the “Dark
Proteome” which consists of “invisible” conformational states
within the human, viral and microbial protein fold universe
(Perdigão et al., 2015; Bhowmick et al., 2016), this work
presents temperature-based replica exchange simulations of
modeling an IDP derived from an Ebola virus protein. Ebola
viruses are nonsegmented negative sense RNA viruses that
cause severe hemorrhagic fever (Sanchez et al., 2006). An X-
ray crystallographic structure was reported by Amarasinghe and
coworkers (Leung et al., 2015) of the Ebola nucleoprotein NP in
complex with a 28-residue peptide extracted from Ebola VP35
(peptide designated as NPBP). The NP-VP35 viral assembly is
essential for virus replication and offers a protein target for
therapeutic development. Experimental data reveals the NPBP
peptide binds NP with high affinity and specificity, and acts by
blocking NP oligomerization. The peptide undergoes a folding
transition from a disordered form free in solution to a helix-β-
turn-helix fold upon molecular association with NP (Leung et al.,
2015).

Two different generalized ensemble sampling methods are
applied based on combining T-ReX with the SGLD simulation
method (Lee and Olson, 2010) and two different GB solvent

models are examined to assess their accuracy in modeling the
probability density of states of the NPBP peptide. One of the
sampling methods is the conventional application of T-ReX
with a static set of temperatures to explore the conformational
landscape. The other technique is an adaptive T-ReX where the
replica clients dynamically walk in temperature space in search
of the optimal population density on a modeled energy function
(Katzgraber et al., 2006; Trebst et al., 2006; Lee and Olson, 2011;
Olson and Lee, 2014; Olson et al., 2016). The GBmodels analyzed
are GBMV2 (generalized Bornmolecular volume; Lee et al., 2002,
2003) and the GBSW2 (generalized Born smoothing window;
Im et al., 2003). The models differ in their dielectric-boundary
descriptions with one of them constructed from an analytical
formulation of the molecular volume (Lee et al., 2003).

The final simulation model applied to the NPBP peptide is an
explicit/implicit solvent hybrid T-ReX/MD method (Chaudhury
et al., 2012). The application of this simulation model is to
investigate the effect of solvent resolution on the helix propensity
and the search of conformational transitions. The idea behind the
hybrid model is reducing the number of replica clients needed
in explicit solvent simulations by replacing the contribution of
explicit solvent energies in the Metropolis exchanges (Metropolis
et al., 1953) with those of the GBMV2 solvent approximation.
The hybrid model allows the same number of replica clients
to be applied as in the GB solvent T-ReX/SGLD simulations
of the NPBP peptide while retaining a higher resolution
in conformational sampling on an explicit solvent landscape
(Chaudhury et al., 2012; Olson and Lee, 2013).

COMPUTATIONAL METHODS

This section provides a brief outline of the computational
methods applied in this work of modeling the NPBP peptide
taken from the PDB 4YPI (Figure 1). Summarized are the
sampling techniques and protocols as well as metrics to evaluate
the simulation trajectories.

Replica Exchange Schemes
A general approach for conformational sampling is the
application of T-ReX (see, e.g., Ishikawa et al., 2001). Unlike
the well-established method of MD simulations at a single
sampling temperature, T-ReX is a generalized ensemble method
of applying multiple parallel simulations in which each replica is
executed at a different temperature. In traditional applications of
T-ReX, the temperatures T1, T2, ..., Tn, where n is the number
of replica clients, are predetermined by a static (fixed) set of
values that span a desired range. It is common to model the set
of temperatures by a geometrically spaced sequence (Predescu
et al., 2004) using n− 1 intervals from theminimum temperature
denoted as T1 = Tmin to the maximum Tn = Tmax

Ti + 1 = Ti(Tmax/Tmin )

[

1
n−1

]

, (1)

where Ti is the temperature of the ith replica client illustrated in
Figure 1.

An alternative to Equation (1) is an adaptive replica
exchange method of allowing the clients to dynamically walk in
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FIGURE 1 | Computational strategies of modeling the Ebola virus VP35 peptide (PDB: 4YPI) in its unbound form using temperature-based replica

exchange (T-ReX) simulation methods. The methods include: (1) GBMV2 solvent model applied with a traditional (static) set of temperatures spanning a range

from a minimum temperature (T1) to the upper extreme (Tn), where n is the number thermal windows (ensemble computing clients); (2) GBMV2 using an adaptive

(dynamically walking) set of temperatures between T1and Tn; (3) GBSW2 solvent model applied by adaptive sampling; and (4) TIP3P/GBMV2 hybrid replica exchange

method. Energies (Ei ) used in the replica exchanges are described in the text. Molecular figures were drawn with PyMOL (www.pymol.org).

temperature space (Katzgraber et al., 2006; Trebst et al., 2006;
Lee and Olson, 2011; Olson and Lee, 2014; Olson et al., 2016).
In implementing the adaptive algorithm, each client is tagged as
either “cold” or “hot” depending on the last temperature extreme
it visited (Lee and Olson, 2011). Tracing of the clients is made
by constructing histograms over temperature space, ncold (T) and
nhot (T), where each bin accumulates the number of cold and
hot clients visiting each temperature window. The fraction cold,
fcold (T), of a client window at temperature T is the number of
cold clients visiting that temperature divided by the total number
of cold and hot client visits:

fcold (T) =
ncold (T)

ncold (T) + nhot (T)
. (2)

Using the fcold (T) term, a thermal current is defined (Lee and
Olson, 2011)

j = D (T) η (T)
dfcold (T)

dT
, (3)

where D (T) is the diffusivity and η (T) is the probability that
any client will reside at temperature T. The current j can be
maximized by adjusting the temperatures such that fcold (Ti)

increases linearly as a function of temperature index, i. Here
in this work, a continuous function is constructed from the

computed values of fcold (Ti) at the current set of temperatures,
Ti, and new temperatures are searched for where fcold (Ti) =

i/(N−1). To prevent all of the windows from clustering around
the same temperature and depleting exchanges at the extremes, a
constraint is applied where no neighboring temperatures can be
more than two geometric spacing units apart,

Ti + 1

T
≤

(

Tmax

Tmin

)

[

2
N−1

]

(4)

with the lower and upper values of Ti set to Tmin and Tmax,
respectively.

The exchange of temperatures between neighboring replica
clients, a and b, is determined by the Metropolis energy criteria
(Metropolis et al., 1953)

p
(

a ↔ b
)

= min
[

1, e(βa−βb)(Eb−Ea)
]

, (5)

where βa = 1/kBTa, kB is Boltzmann’s constant,Ta is the
temperature of replica client a, and Ea is the potential energy of
client a.

SGLD Simulation Models
For generating trajectories of the NPBP peptide, two methods
were combined with T-ReX. The first is based on the SGLD
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simulation method developed by Wu and Brooks (2003). The
SGLD equation of motion is given by

ṗi = fi − γipi + Ri + λgi, (6)

where ṗi defines the rate of change of the momentum of particle
i, fi is the force acting on the particle, γi is the friction constant,
Ri defines the random force and gi is a memory function, which
is scaled by an ad hoc guiding factor λ. The memory function gi
is defined by the moving average of momentum over an interval
of time, L:

gi =
〈

pi
〉

L
, (7)

where 〈. . .〉L denotes a local average. The time interval is further
defined as L = tL/δt, where tL is the local averaging time and δt
the time step along the simulation trajectory. It should be noted
that because of the ad hoc force in Equation (6), the sampling
algorithm deviates from a canonical ensemble (Lee and Olson,
2010; Wu and Brooks, 2011; Wu et al., 2012, 2016). For this
work, the deviation is anticipated to be small for modeling a
mini-protein (Lee and Olson, 2010), nevertheless the population
distributions can be reweighted to remove the applied bias (Wu
and Brooks, 2011).

In the SGLD simulations, solvent was represented by either
the implicit solvent model GBMV2 (Lee et al., 2002, 2003) or
GBSW2 (Im et al., 2003). The most noted difference between the
two models is representation of the solvent excluded volume and
the treatment of the dielectric interface. The GBMV2 parameters
were selected to smooth the molecular volume by setting βs

= −12 and P3 = 0.65 (Yeh et al., 2008). The hydrophobic
cavitation term was modeled by applying a phenomenological
surface tension coefficient set to a value of 0.015 kcal/mol/Å2.
For applying GBSW2, themodel was parameterized to fit the Lee-
Richards molecular-surface Poisson results and required w= 0.2
Å, a0 = 1.2045, and a1 = 0.1866. The hydrophobic cavitation-
energy tension term was set to 0.030 kcal/(molÅ2).

The utilities and programming libraries of the Multiscale
Modeling Tools for Structural Biology (MMTSB; Feig et al.,
2004a) were used to carry out the T-ReX/SGLD simulations. The
CHARMM simulation program (version c35b2) was applied as a
modeling platform (Brooks et al., 2009). Simulations were carried
out using 24 replica clients and the frequency of exchanges was
set to every 1 ps of simulation. Temperatures were set at Tmin =

300K and Tmax = 475 K. Because the implicit solvent models
GBMV2 and GBSW2 were originally developed for and have
been extensively benchmarked with the CHARMM22 force field,
this force field was applied with the CMAP backbone dihedral
cross-term extension (Mackerell et al., 2004). An integration time
step of 2 fs was used and parameters for SGLD consisted of the
friction constant set to γ of 1 ps−1 for all heavy atoms, the guiding
factor λ to a value of 1, and the averaging time tL was set to 1
ps. These values were taken from previous studies of the SGLD
model (Lee and Olson, 2010, 2011; Olson and Lee, 2014). Non-
bonded interaction cutoff parameters for electrostatics and vdW
terms were set at a radius of 22 Å with a 2-Å potential switching
function. Covalent bonds between the heavy atoms and hydrogen

atoms were constrained by the SHAKE algorithm (Ryckaert et al.,
1977). The NPBP peptide was modeled for 200 ns of simulation
time per thermal window, generating an ensemble of 4.8 µs.

Hybrid Simulation Model
The alternative method applied for generating trajectories of the
NPBP peptide is an explicit/implicit solvent hybrid T-ReX/MD
simulation (Chaudhury et al., 2012). In a typical explicit solvent
T-ReX simulation the energies are given by

Eexplicit = U
prot
all-atom

+ U
prot−solv
all-atom

+ Usolv−solv
all-atom

, (8)

where the first term describes the protein potential energy for
a CHARMM-based molecular mechanics force field, the second
term is the explicit protein-solvent interactions followed by
the explicit solvent-solvent interactions. The all-atom solvent-
solvent energy term requires significant number of replica-
exchange clients to achieve adequate Metropolis updates
(Chaudhury et al., 2012). In the hybrid T-ReX method, the
dynamics of each replica moves on an explicit solvent landscape.
During a Metropolis update, all waters are removed from a
replica and the solvent energy term of the replica is calculated
using the grid-based GBMV2 solvent model

Eimplicit = U
prot
all-atom

+ 1G
prot−solv
GBMV2 , (9)

where 1G
prot−solv
GBMV2 is the free-energy term due to the implicit

solvent contribution. After completion of the Metropolis
exchanges, the explicit waters in each replica are replaced to their
configurations prior to removal and the simulation continues
according to Equation (8).

The NAMD code (Phillips et al., 2005) was applied for the
200-ns T-ReX/MD simulation with the CHARMM22+CMAP
force field. The simulation cubic box size was set to 53.19 Å3

and the number of waters was 4796. For modeling the waters
the TIP3P potential was applied (Jorgensen et al., 1983). Nose’-
Hoover thermostat was applied with a temperature coupling
constant of 50 kcal/s2. Given that the computational expense
of the hybrid model relative to implicit solvent calculations is
greater, the NAMD simulation parameters differ slightly from
the T-ReX/SGLD simulations in that a smaller cutoff distance
of 12 Å was applied with a switching distance of 8 Å. The
integration time step remained identical to that used with the
SGLD simulations and the SHAKE algorithm was similarly
applied. Particle mesh Ewald was applied and combined with
periodic boundary conditions.

Evaluation Metrics
To examine the trajectories generated by the simulations, the
weighted histogram analysis method (WHAM; Ferrenberg and
Swendsen, 1989; Kumar et al., 1992; Gallicchio et al., 2005) was
applied to the data sets. The 2D density of states, � (q1, q2),
for a molecular system, where q1 and q2 are a set of reaction
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coordinates of interest, is given by

�
(

q1, q2
)

=

R
∑

i = 1
Ni

(

q1, q2
)

R
∑

j = 1
ni exp

(

fi − βiE
)

, (10)

where nj is the number of data points in the jth simulation and
βj and Tj are Boltzmann’s constant and temperature of the jth
simulation, respectively. The function Ni(q1, q2) is the histogram
of (q1, q2) calculated from the ith simulation, and fj is the
scaled free energy obtained by solving the following equations
self-consistently,

Pβ

(

q1, q2
)

=

R
∑

i = 1
Ni

(

q1, q2
)

exp (−βE)

R
∑

j = 1
ni exp

(

fi − βiE
)

(11)

and

exp
(

−fi
)

=
∑

q1 ,q2

�
(

q1, q2
)

exp (−βE), (12)

where Pβ(q1, q2) is the probability density at the inverse
temperature β. From a density profile, a potential of mean
force is determined from the relationship WT

(

q1, q2
)

=

−RT log Pβ

(

q1, q2
)

, where R is the universal gas constant. For
calculations presented here, q1 = fractional helicity (fH) of the
peptide determined from DSSP (Kabsch and Sander, 1983) and
q2 = radius of gyration (Rg).

The trajectories were further analyzed by a Q score for the
peptide. Q is the number of side-chain contacts in a generated
conformation divided by the total number equivalent contacts in
the X-ray crystal structure of NPBP. Values were computed for
side-chain center-of-mass pairs (i,j), such that j > i and whose
distances are less than a cutoff of 4.2 Å. A sigmoidal function was
applied (implemented in MMTSB) to effectively include residue
pairs that are slightly further apart with a reduced weight. In
addition to a Q score, pairwise Cα root-mean-square-deviation
(RMSD) from the starting X-ray structure was computed for each
peptide conformation in a generated ensemble of structures.

RESULTS AND DISCUSSION

Bound and Free NPBP
Figure 2 illustrates the X-ray crystallographic structure of the
NPBP peptide extracted from the Ebola virus VP35 in association
with the Ebola NP protein (Leung et al., 2015). The binding
of NPBP occupies a functionally critical site on NP required
for RNA synthesis. The peptide conformation is stabilized
by a network of electrostatic interactions dominated by NP
residues Arg240, Lys248, and Asp252. Using the DSSP secondary
structure algorithm, NPBP (annotated as residues 20–47) shows
segments Trp28 to Thr35 and Val40 to Asp42 as distinct helical

conformations. The overall fH is 0.4 and the bound form exhibits
an Rg of 10.5 Å.

Experimental characterization of the secondary structure of
the NPBP peptide free in solution by circular dichroism (CD)
spectroscopy is reported to show the peptide as intrinsically
disordered (Leung et al., 2015). When added to a solution of
50% trifluoroethanol (TFE), the NPBP peptide transitions from
a coil to helical structures of ∼30–40% helicity, thus suggesting
a strong underlying secondary-structure propensity. Predictions
of secondary-structure without bias of the crystallographic
structure estimate the NPBP peptide to encompass a consensus
fH ∼0.3 with probabilities >0.9 for helical formation in the
sequence segment of Gly27 to Met34 (see, e.g., Kieslich et al.,
2016).

Implicit Solvent T-ReX Simulations
To examine the accuracy of implicit solvent models to
counterbalance the network of electrostatic interactions of the
viral assembly interface that contribute to the stabilization of
the NPBP helical fold and produce a conformational landscape
with a predisposed helix propensity in bulk water, replica-
exchange simulations were performed using different simulation
strategies. The conformational sampling approach of SGLD
was explored with two different GB solvent models and two
different temperature-based replica-exchange methods. The first
simulation model result shown in Figure 2B is the SGLD-
GBMV2 with a static (fixed) set of temperatures in defining the
replica-exchange protocol. The 2D profileWT

(

fH, Rg

)

computed
at T = 300K using WHAM of the full ensemble shows a large
manifold of conformational substates with a helix distribution of
fH ∼0–0.5. Several representative structures extracted from the
basins are illustrated in Figure 2E. The conformational density
takes place in Rg space of ∼8–11 Å and at the lower end of
the population distribution non-structured states are observed to
occupy a large range of Rg values and show the canonical feature
of disorder.

Given the broad population distribution produced by a static
set of temperatures in the T-ReX simulations, it is important to
test whether the simulation model provided optimal sampling of
the basins. To address this issue, an adaptive replica-exchange
SGLD-GBMV2 simulation model was applied whereby allowing
the clients to walk in temperature space to optimize the efficiency
of exchanges between nearest-neighbor thermal windows at
potential energy barriers separating conformational basins (Lee
and Olson, 2011; Olson and Lee, 2014; Olson et al., 2016). The
2D profile from the adaptive T-ReX is illustrated in Figure 2C

for T = 300K and the result is shown to retain the manifold
of transient states similar to those sampled by the static T-ReX
method, yet a population shift is observed toward an fH ∼0.5 at
the cost of reducing the density of unstructured conformations.
The theoretical goal of the adaptive method is to enhance
sampling of conformational transitions for a modeled potential
energy surface. Early success of the method applied to a sharp
phase transition of unfolding-folding of the protein SH3 showed
better agreement with the experimental melting temperature
than the traditional static approach (Lee and Olson, 2011). In
addition, the adaptive method captured with greater accuracy the
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FIGURE 2 | Simulation results of sampling the Ebola virus VP35 NPBP peptide using GB-based solvent models combined with replica exchange

methods. (A) X-ray crystallographic structure of the NPBP peptide bound to the Ebola NP (displayed as a molecular surface). (B) Probability density profile

WT

(

fH, Rg
)

computed at T = 300K and taken from the conformational ensemble modeled by the GBMV2 static T-ReX simulation method. The order parameters are

fractional helicity and radius of gyration. (C) Probability density profile at T = 300K from the adaptive T-ReX method with the GBMV2 solvent model. (D) Adaptive

T-ReX with GBSW2 solvent model at the identical temperature. (E) Representative conformations extracted at T = 300K from the simulations and are annotated at

the indicated basins.

native state of SH3 extracted from the conformational ensemble.
Given these earlier outcomes, and while the NPBP certainly
lacks the folding cooperativity of SH3, the result suggests for
the CHARMM22+CMAP/GBMV2 potential energy surface a
NPBP “native” state of helix propensity near the value observed
experimentally for the crystallographic bound conformation.
Although the simulation shows a high rate of transitions among
different basins, the overall population weight is inconsistent
with the CD analysis in free solution. Because the potential
energy surface is identical between the static and adaptive T-ReX
methods, the less-efficient sampling approach will eventually
converge to find a comparableWT

(

fH, Rg

)

.
To determine the bias of the GBMV2 solvent approximation

on WT

(

fH, Rg

)

, adaptive T-ReX simulations were performed
with a different implicit solvent model based on the GBSW2
approximation. Of the GB-based solvent models developed for
protein dynamics, GBMV2 is one of the most accurate models
in reproducing Poisson-Boltzmann theory with a Lee-Richards
molecular surface (Feig et al., 2004b). The basis of GBMV2 is an
analytical formulation of the molecular volume (Lee et al., 2003),
while the less accurate but computationally much faster GBSW2
model is based on a smooth dielectric-boundary formulation
constructed by applying a superposition of atomic-centered
polynomials (Im et al., 2003). The dissimilarities between the

two models in conformational sampling are clearly illustrated
in Figure 2D. Application of GBSW2 significantly reduces the
number of high-probability conformational excursions and leads
to a folding funnel at fH ∼0.5. While the “optimized” fH from
the two different implicit solvent models is surprisingly similar,
the limited disorder from the GBSW2 model in its current
parameterization makes this solvent approximation less suitable
for modeling IDPs (for an alternative parameterization of GBSW,
see, e.g., Chen, 2010).

Figure 3 shows the probabilities of observing Rg as a function
of three sampling temperatures taken from the ensemble. The
GBMV2 model produced more compact states of NPBP than
the crystallographic bound form, while GBSW2 yielded Rg
values near the bound conformation. The observed difference
between the solvent models can be partly attributed to the
distinction in molecular surface representations, where different
weights are applied to the surface-tension term that describes the
hydrophobic free energy. In general, MD simulations of unfolded
states are more compact and tend to favor helical structures than
those found experimentally (Piana et al., 2014). By example, an
experimental Rg for a unfolded 28 amino acids is estimated to be

13 Å (Kohn et al., 2004).
Also shown in Figure 3 are the probability profiles of Cα-

RMSD and the fraction of side-chain contacts similar to the
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FIGURE 3 | Calculated probability profiles for sampling values of radius of gyration and Cα-RMSD from the starting bound conformation of the NPBP

peptide. Plot lines colored blue represent quantities extracted at T = 300K from the generated conformational ensembles, red represent values at 390K and green at

475 K. From the top figure to bottom, simulation results are static T-ReX/GBMV2, adaptive T-ReX/GBMV2, and adaptive T-ReX/GBSW2.

starting conformation of NPBP. The ensemble average over
contacts is denoted as <Q> and values <0.6 are considered
unrelated to the starting structure. When combined with the
analysis of the 2D profiles, the probabilities provide an interesting
picture of the rare event of recognizing (via fly casting) a peptide
conformation in the ensemble that is similar to the NPBP bound
form. For the GBMV2 model and considering only the last 50
ns of simulation time, the lowest RMSD is 2.9 Å with Q = 0.6,
and is clustered in the outer periphery of the highly-populated
basin labeled as III in Figure 2C. This sparse cluster of low-
RMSD states emerges with an fH of 0.5 and Rg approaching

10 Å.
It is also important to understand the configurational stability

of IDPs from the simulations and their fold propensities. The
thermal unfolding profiles for NPBP are shown in Figure 4A.
Consistent with the reduced number of transient states and

their populations among the GB models, GBSW2 retains
helicity over a greater thermal range. The aggregation of
replica clients in the range of 360 K–425K for the adaptive
method (GBMV2 and GBSW2) is the effect of enhanced
sampling of unfolding-folding transition points that stabilize
helix formation. The statistical errors in the histograms
for all model simulations are approximately fH ±0.1 along
the temperature profiles. Simulation convergence and the
dominance of helix formation in NPBP can be further tested
by conducting T-ReX simulations starting from a random
coil state rather than the folded conformation. Although
these additional simulations were executed only to 100 ns
using the adaptive method, Figure 4B shows convergence to
a folded state of helical conformations and establishes the
strong helix propensity of applying CHARMM22+CMAP/GB
descriptions.
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FIGURE 4 | Thermal unfolding profiles computed from the simulations

of the Ebola VP35 NPBP peptide. (A) Profiles calculated from the starting

folded conformation using the three simulation models of the static

T-ReX/GBMV2 (blue colored line), adaptive T-ReX/GBMV2 (red colored line),

and adaptive T-ReX/GBSW2 (green colored line). (B) Profiles calculated from

the adaptive T-ReX simulations of starting from an unstructured (coil) peptide

fold.

Explicit/Implicit Solvent Hybrid T-ReX/MD
Simulation
The overweighting of secondary structure biases from the
GBMV2 and GBSW2 solvent models is comparable to
other studies of using different GB solvent models and
parameterizations (Ganguly and Chen, 2009; Click et al., 2010;
Chebaro et al., 2015). As a further test of the impact of the
GBMV2 solvent model and its mean-field resolution of smearing
out the details of the solvent on sampling conformational
transitions of NPBP, the final simulation model tested is the
explicit/implicit solvent hybrid T-ReX/MD method. This model
generates peptide configurations on an explicit solvent (TIP3P)
landscape while using the same number of replica clients as in
the implicit solvent calculations. The latter is achieved by using
the GBMV2 model in the Metropolis exchanges rather than
explicit solvent. While the goal is to evaluate the simulation
model in terms of a conformational landscape rather than
unconstrained folding free energies to high accuracy, it is worth
noting that replacement of energies in the Metropolis updates

from an all-atom representation to a mean-field approximation
can produce errors in the detailed balance required of a canonical
ensemble (Chaudhury et al., 2012).

Figure 5 shows WT

(

fH, Rg

)

at T = 300K from the WHAM
calculation of the hybrid simulation model ensemble and
the thermal unfolding profile. Several important observations
can be made in comparison to the static GBMV2 model
which best corresponds to the non-adaptive hybrid model. The
most important distinction between the results is the striking
difference in the favorable free energies and the network that
shuttles conformations among the helical basins. While both
sampling methods show sufficient plasticity among the states, the
hybrid model shows a more quantifiable free-energy minimum
at fH = 0.26 vs. 0.37 for the static GBMV2, and yields good
agreement with secondary-structure predictions. The distinction
in the potentials of mean force among the models is illustrated
by considering a transition between an unstructured state and
the free-energy minimum. For the static GBMV2, the transition
(fH = 0; Rg = 11 Å) → (fH = 0.37; Rg = 8 Å) yields 1G =

−0.1 kcal/mol, whereas for the adaptive model the transition
from the same disordered state → (fH = 0.47; Rg = 9 Å) 1G =

−1.0 kcal/mol, and for the hybrid model the transition → (fH
= 0.26; Rg = 9 Å) yields 1G = −1.7 kcal/mol. Even though
the static model exhibits a low-energy reversible transition to
unstructured states and would appear to be in better agreement
with the CD experiments (Leung et al., 2015), enhanced sampling
of Pβ

(

fH, Rg

)

by the adaptive method for this solvent description
revealed a more costly transition to the densely populated fH ∼

0.5.
The lowest RMSD conformer for the hybrid model via the last

50 ns is 3.3 Å with Q = 0.6 and Rg = 9.4 Å. This conformer
is illustrated in Figure 5B as the first structure depicted for the
basin labeled III. The conformation is formed from a helical
hairpin of residues Ser26-Met34 and Val40-Phe44. The top-
rank conformer based on potential energies for the free-energy
minimum at fH = 0.26 is illustrated as the first structure for basin
I. This structure shows a 5-residue helix of Trp28-Met34. Among
the highly populated basins, a distinction between the simulation
models is the cluster at fH =∼0.6, where the hybrid model shows
an improved free energy of population. Unlike the other basins,
this basin lacks a direct low-energy pathway along the manifold
of clusters.

A statistical average of the ensemble for the hybrid model
computed from the multiple temperatures of the T-ReX
simulation is illustrated in Figure 5C along with a comparison
with the static GBMV2 model. Despite the differences in the
potentials of mean force between the models, a simple statistical
average without reweighting based on free energies shows
remarkably similar fH values at 300 K. Because of the lack of
instantaneous relaxation of the explicit waters in contrast to
GB approximations, the hybrid model shows a reduction in
excursions of unfolded states at the upper Rg boundaries. Like
many MD simulations of unfolded states with explicit solvent
(Piana et al., 2014), a residual secondary-structure propensity is
observed at 475 K.

The more compact favorable states observed in the
explicit/implicit solvent hybrid model than that corresponding
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FIGURE 5 | Simulation results of sampling the Ebola virus VP35 NPBP peptide using the explicit/implicit solvent hybrid T-ReX/MD method. (A)

Probability density profile WT

(

fH, Rg
)

computed at T = 300K from sampling fractional helicity and radius of gyration. (B) Representative conformations extracted

from the simulations are illustrated for selected basins. (C) Thermal unfolding profiles of the peptide computed using the explicit/implicit solvent hybrid T-ReX/MD

method (light colored symbols) compared to the static T-ReX/SGLD method using GBMV2 (blue colored symbols). A representative structure is shown from the

explicit solvent calculation.

to the bound NPBP conformation is unlikely due entirely to
the GB model, but rather the additive force field (Piana et al.,
2014). As noted above, the CHARMM22+CMAP force field
was selected because of extensive benchmarks in reported
studies of the GBMV2 and GBSW2 solvent descriptions to
successfully model natively folded structures of proteins (see
e.g., Yeh et al., 2008; Lee and Olson, 2010). While there are no
reported studies of applying either GBMV2 or GBSW2 with the
more refined CHARMM36m force field and its parameterization
for TIP4P-based explicit solvent simulations (Huang et al.,
2017), switching to this description may help reconcile the
underestimated Rg values with those experimentally determined
for unfolded states and reduce the overall weight and stabilization
of secondary-structure propensities.

CONCLUSIONS

The current initiative to develop an atomistic understanding
of “invisible” conformational states of the human/viral/bacterial
proteomes requires an accurate computational framework
for modeling conformational transitions within a disordered
ensemble and their population density. The work presented
here examined the application of temperature-based replica
exchange simulations with different sampling methods and

solvent descriptions of modeling an intrinsically disorder 28-
residue peptide from the Ebola virus protein VP35. The X-
ray crystallographic determination of the VP35 peptide bound
to Ebola NP reports a helix-β-turn-helix fold of roughly 40%
helical structure, whereas from CD experiments in free solution
the peptide is unstructured. The simulations of the unbound
peptide showed the selection of a GB solvent model combined
with a replica-exchange sampling protocol can have a significant
effect on the distribution of sampled populations. Overall, the
tested GB models tend to favor a free-energy minimum of
roughly 50% helical content for the peptide. The effect of an
adaptive temperature-based replica exchange protocol compared
to a traditional approach of a static set of temperatures was
found to reduce the amount of unstructured states and shifted
the ensemble to helical conformations with an extended peptide
folding stabilization. A comparison with an explicit/implicit
solvent hybrid MD-based replica exchange simulation showed
that conformational sampling on an explicit solvent landscape
leads to a free-energy minimum of ∼20% helicity, yet the overall
conformational network underlying transient states resembles
more of a helix-fold propensity in a solvent mixture of TFE-water
rather than bulk water. The simulation results can be summarized
as a benchmark for the testing of more refined CHARMM-
based force fields and different GB model parameterizations.
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The ultimate goal is to capture greater heterogeneity in
conformational probabilities and reduce the over-stabilization of
helix propensities in modeling intrinsically disordered peptides.
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We extend the multiscale spatiotemporal heat map strategies originally developed for
interpreting molecular dynamics simulations of well-structured proteins to liquids such
as lipid bilayers and solvents. Our analysis informs the experimental and theoretical
investigation of electroporation, that is, the externally imposed breaching of the cell
membrane under the influence of an electric field of sufficient magnitude. To understand
the nanoscale architecture of electroporation, we transform time domain data of the
coarse-grained interaction networks of lipids and solvents into spatial heat maps of
the most relevant constituent molecules. The application takes advantage of our earlier
graph-based activity functions by accounting for the contact-forming and -breaking
activity of the lipids in the bilayer. Our novel analysis of lipid interaction networks under
periodic boundary conditions shows that the disruption of the bilayer, as measured by the
breaking activity, is associated with the externally imposed pore formation. Moreover, the
breaking activity can be used for statistically ranking the importance of individual lipids
and solvent molecules through a bridging between fast and slow degrees of freedom.
The heat map approach highlighted a small number of important lipids and solvent
molecules, which allowed us to efficiently search the trajectories for any functionally
relevant mechanisms. Our algorithms are freely disseminated with the open-source
package TimeScapes.

Keywords: molecular dynamics, trajectory analysis, multiple time scales, mutual information, distance geometry,

contact network

1. INTRODUCTION

Membrane electroporation is a biomedical technique that artificially increases the permeability
of cell membranes by applying short electric pulses (Neumann et al., 1982). Electroporation by
an external electric field is attributed to the opening of discrete nanometer-sized pores in cell
membranes: In some plasma and biomedical experiments, pulsed fields have high power (of the
order of megavolts permeter) but short duration (of the order of nanoseconds) (Kohler et al., 2015),
conditions that are easily accessible to atomistic molecular dynamics (MD) simulations. Other
electroporative applications such as the electroinsertion of xenoproteins or electrofusion of cells
are performed in experiments at much lower voltages and over longer time scales; in these cases,
statistical theories may bridge between single-event poration times derived from MD simulations
and slower experimental kinetics (Böckmann et al., 2008).
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Direct experimental observations of electropore formation in
biological membranes are not possible because of their small size
and short duration. MD simulations of single-pore formation
under an external electric field have consequently been of
considerable interest for some time (Vernier and Ziegler, 2007;
Böckmann et al., 2008; Ziegler and Vernier, 2008; Tokman et al.,
2013; Kohler et al., 2015). Polar water molecules are known to
play a key driving role in electroporation (Figure 1); however, no
signature for pore initiation has yet been identified (Vernier and
Ziegler, 2007; Ziegler and Vernier, 2008; Kohler et al., 2015), and
Kohler et al. (2015) argued that a statistical framework would be
needed for further development.

We have recently developed such a statistical approach
for detecting allosteric signatures in protein MD simulations.
TimeScapes is a Python-based program package that can be used
to efficiently detect and characterize significant conformational
changes in simulated biomolecular systems (Wriggers et al.,
2009). We recently added a new functionality to TimeScapes
that transforms time-domain information from MD trajectories
into spatial heat maps (Kovacs and Wriggers, 2016) that can
be visualized on 3D molecular structures or in the form of
interaction networks. The method is multiscale in the time
domain in that it uses statistical bridging between the fast,
local variables recorded by MD and the slow, global rate of
change of the simulated system that is characterized by a so-
called activity function. In our work “activity” denotes a non-
negative scalar function of time that quantifies the structural
variability of the system (as introduced by Wriggers et al.,
2009 and described in Kovacs and Wriggers, 2016). As simple
example of an activity function is the RMS fluctuation in a
sliding window. Low activity corresponds to quiescent periods
of relative structural stability, whereas high activity corresponds
to significant structural transitions between adjacent quiescent
basins (Wriggers et al., 2009). Once the slow, global activity is
quantified, the bridging between fast and slow time series can
then be performed using either the Pearson cross-correlation or
a nonlinear mutual information solver called Fast Information
Matching (FIM).

In our recent work, we noted a potential weakness of FIM
owing to the uniform Parzen window approach used in density
estimation, which does not adapt well to activities that are zero-
valued for some part of the simulation (Kovacs and Wriggers,
2016). In protein applications, we prefer the use of the sliding
window RMS fluctuation activity that yields proper density
histograms even for small systems and thereby avoids this issue.
However, in the liquid (lipid or aqueous solvent) applications
considered in this study, there is no stable structure that can be
used as a reference for RMS fluctuation calculation. Instead, the
distance geometry of intermolecular contacts is used; specifically,
we use one of the two graph-based activities TimeScapes provides
for contact networks. These graph-based activities (shown in
Figure 1 and further explained below) scale quadratically with
the system size and rely on a spatial coarse-graining of the
structure to reduce the computational complexity, resulting in
potentially zero-valued activity functions unamenable to FIM
analysis. The present generalization of our heat map analysis to
lipids and solvents therefore required us to develop an adaptive

bandwidth allocation for the mutual information solver, which
was performed separately by Kovacs et al. (2017). The resulting
Balanced Adaptive Density Estimation (BADE) code for mutual
information calculations is more accurate and efficient and can
replace the previously used FIM code (Kovacs and Wriggers,
2016) in future versions of our TimeScapes package.

The “Methods” section briefly describes the theory of heat
map prediction with TimeScapes and the adaptations that are
necessary to generalize the protein-based approach to lipid
and solvent dynamics. We also describe MD protocols for
the electroporation simulations conducted in this study. The
“Results” section first establishes activity functions that are
suitable for characterizing membrane pore formation before
providing examples of lipid pore formation heat maps. We
explore dependencies on critical parameters of the algorithm and
show heat maps of the surrounding water-ion solutions. The
“Conclusions” section presents the benefits and limitations of the
current framework and discusses areas for future development.

2. METHODS

2.1. Transforming Distance Geometry Time
Series into Spatial Heat Maps
In this paper, we study the time-dependent distance geometry
between water, ion, or lipid pairs. Let {Xi,j(t)} denote pairwise
distances between such “residues” (a term commonly used in
MD for covalently bonded molecules that are separated by a
topology or force field), where i and j are suitably chosen indices.
For residues that have more than one atom, such as water
molecules or lipids, pairwise distances are defined by the position
of characteristic atoms (e.g., water oxygens or lipid phosphorus
atoms). The time-dependent distance geometry Xi,j(t) comprises
“fast” variables, that is, they exhibit fluctuations on time scales
of the order of the frame length of the discrete MD trajectory.
Furthermore, let a(t) denote a scalar, non-negative “slow” activity
function that describes the variability of the simulated system as
a function of time, as described above. Finally, let I(f , g) denote
a statistical measure of dependence of two discrete random
variables f and g (such as Pearson cross-correlation or mutual
information). The coefficient

RX,a(i, j) = I

(∣

∣

∣

∣

dXi,j(t)

dt

∣

∣

∣

∣

, a(t)

)

(1)

then provides an estimate of the spatial importance of local
changes in the residue network for the global activity. In this
work we are using absolute time-differentials of the fast variables
for the statistical dependence analysis with the activity; this way
both fast and slow timeseries correspond to a non-negative rate
of change and are compatible. RX,a(i, j) values can then be used
to rank all members of the family {Xi,j(t)}; this, after appropriate
mapping to spatial features i (see below), yields a heat map of the
importance of fast, local variables for slow, global activities. Our
transformation of time series data to spatial images can be applied
to various imaging modalities X(t). However, in this study, we
restrict our discussion to the abovementioned pairwise residue
distances, because the distance geometry provides a suitable
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FIGURE 1 | Sequence of events during electropore formation. Only water (top and bottom) and the coarse-grained 11Å cutoff graph (red) of lipid phosphorus
atoms are shown for clarity. Frames of trajectory 1 (see text) are shown at simulation times t = 20.0, 22.0, 22.3, and 22.6 ns. All molecular graphics figures in the
present paper were created using the VMD program (Humphrey et al., 1996).

characterization of interactions in the absence of a global frame
of reference.

2.2. Lipid Heat Map Application Workflow
in TimeScapes
Figure 2 shows an overview of the necessary analysis steps in
our TimeScapes package (Wriggers et al., 2009). Before using
TimeScapes, it is necessary to trim a trajectory to a time window
of interest and to set the stride (trajectory time step). We selected
time windows based on the timing of pore formation, which
differed between the trajectories in this study. The end times
were chosen by visual inspection when the pore size reached
approximately 20% of the unit cell dimensions. The start times
were chosen such that the window contained only the lead-up
events immediately prior to pore formation, with full solvent
perforation of the bilayer commencing at the 60% mark of the
window. As a result, the poration process was normalized across
the trajectory windows.

The heat maps are robust under variations in stride; however,
the fastest variables captured in the analysis are limited by this
choice. In our work, we selected strides of 1 and 10 ps that
provided sufficient sampling of the time-dependent distance
geometry.

Next, a user may have to modify the selection functions
for representative atoms based on the atom and residue names
defined by the force field (Figure 2). This step is necessary for
the coarse-graining of the interaction networks (Figure 1). In
this study, we added functions for selecting the lipid phosphorus
atoms and water oxygens, which involved a straightforward edit
of the available Python templates in the mod_pwk.py source
file.

Few parameters must be set to run the required TimeScapes
tools (Figure 2). An important choice is the temporal smoothing
parameter that determines the temporal level of detail captured
by the activity function a(t). This parameter affects both the

FIGURE 2 | Workflow of using TimeScapes for the lipid heat map

analysis as described in the “Methods” section.

detection of events and the bandwidth of the activity function
estimation, as described in Wriggers et al. (2009). As a rule
of thumb, we recommend values of approximately 5% of the
trajectory window length (actual numbers are provided in the
figure captions below). The “Results” section shows an evaluation
of the parameter space for ensuring that the resulting lipid heat
maps are robust.

The global activity of the system a(t), which is required for
heat map analysis, can be computed from changes in a distance
cutoff-based adjacency graph or from a so-called Generalized
Masked Delaunay graph (Wriggers et al., 2009). In this work,
we chose a cutoff graph (Figure 1) of lipid phosphorous
atom distances because it decomposes structural changes into
separate contact-forming and -breaking activity of adjacent lipids
(Figures 3, 4). The Generalized Masked Delaunay graph (not
discussed here) is less affected by distances and is thus less
capable of differentiating between forming and breaking events
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FIGURE 3 | Quantitative characterization of pore formation in ion-free

trajectory 1. The periodic unit cell dimensions (top, center) and (bottom)
cutoff graph forming (green) and breaking (red) activities are shown as a
function of simulation time. The graph cutoff parameters were 11 and 13Å,
and the smoothing parameter was 200ps. The violet markers indicate the
times of the four snapshots shown in Figure 1.

FIGURE 4 | Quantitative characterization of pore formation in

ion-containing trajectory 2. The periodic unit cell dimensions (top, center)
and (bottom) cutoff graph forming (green) and breaking (red) activities are
shown as a function of simulation time. The graph cutoff parameters were 11
and 13Å, and the smoothing parameter was 50ps.

(Wriggers et al., 2009). TimeScapes also supports the calculation
of RMS-fluctuation-based activity of Cartesian coordinates in
a Gaussian-weighed sliding window. However, this approach
requires a global frame of reference for least-squares fitting,
such as a protein structure, which is not available in our

liquid systems. Consequently, among the three activity functions
available in TimeScapes, we only use the cutoff graph that can be
computed using the terrain.py tool (with the user-provided
phosphorus selection function). This graph requires the setting of
two distance cutoff values for the event detection buffer. As a rule
of thumb, the cutoff values should reflect the nearest-neighbor
distances in the coarse grained model (i.e., lipid phosphorus
atoms; Figure 1).

Finally, after computing the activity function using
terrain.py, the program tagging.py uses it to compute
the positive symmetric matrix RX,a(i, j) of the ranking coefficients
between the time series Xi,j(t) and a(t) (Figure 2). This matrix
quantifies the statistical dependence of every residue pair (i, j)
with the activity function a(t). As discussed in Kovacs and
Wriggers (2016), the matrices RX,a(i, j) show a banded structure
owing to the global nature of the statistical relationship between
the activity and the concomitant change in distances from a
particular residue to neighboring residues (Shaw et al., 2010).
The banded structure of this matrix allows us to compress the
columns of RX,a(i, j) to their average RX,a(i), so we can visualize
the pairwise heat maps in three dimensions. We note that unlike
in the earlier heat map projection to relatively stable protein
structures (Kovacs and Wriggers, 2016), the heat maps in the
present paper are projected to lipid or solvent molecules that
undergo diffusive motion throughout the trajectory. Because
we are essentially drawing an image on a moving canvas, it is
valuable to visualize the results on a time-dependent trajectory
instead of static structures.

The adaptation of TimeScapes to lipid systems in this study
also required some updating of the source code, mainly to deal
with the periodic boundaries and to read the unit cell box
dimensions. The updated code will be released with version 1.5
at our web site, http://timescapes.biomachina.org.

2.3. Molecular Dynamics Simulations of
Electroporation
Atomic-scale MD simulations of a symmetric phospholipid
bilayer were performed using the GROMACS 4.6.6 software
package (van der Spoel et al., 2005) on the Turing High
Performance Computing cluster at Old Dominion University
(Old Dominion University, 2017). A system containing only
lipids and approximately 12,000 water molecules was created
using the MemBuilder tool (Ghahremanpour et al., 2014). Four
trajectories were generated for this paper. Trajectory 1 contained
no ions. For trajectories 2–4 the built-in GROMACS function
genion was used to replace bulk water molecules with Ca2+

and Cl−. This generated an ionic solution comprising 20 calcium
ions, 40 chloride ions, and approximately 12,000 watermolecules.
The CHARMM36 force field and TIP3P water model were used.
The charge and size for both calcium and chloride ions were
rescaled in accordance with Kohagen et al. (2014) to improve
the ion-water interactions and to avoid unrealistic ion clustering.
The simulation volume for both systems contained 128 (64
per leaflet) lipid molecules—1-palmitoyl-2-oleoyl-sn-glycero-3-
phosphatidylcholine (POPC)—with initial box dimensions of
approximately 7 × 7 × 12 nm. The system was equilibrated for
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1,500 ns to allow calcium-phospholipid binding (Vernier et al.,
2009) and to stabilize the area per lipid. All simulations were
performed under the NPT ensemble. A temperature of 310K
was maintained using a velocity rescaling algorithm (Bussi et al.,
2007). A pressure of 1 bar was maintained using a Berendsen
barostat (Berendsen et al., 1984) with relaxation time of 1 ps and
compressibility of 4.5× 10−5 bar−1 applied semi-isotropically in
both normal and in-plane directions relative to the membrane.
Bond lengths were constrained using the LINCS algorithm (Hess
et al., 1997) for lipids and SETTLE (Miyamoto and Kollman,
1992) for water. Short-range electrostatic and Lennard-Jones
interactions were cut off at 1.0 nm. Long-range electrostatics were
calculated using the PME algorithm (Essmann et al., 1995), and
boundary conditions were used to mitigate system size effects.
The integration time step was 2 fs. An electric field of 400MV/m
was applied along the z-axis normal to the (x,y) bilayer plane.
Under these conditions, pores form within approximately 3–
20 ns. Trajectory 1 was run for 23.5 ns with a stride (trajectory
saving time) of 10 ps. For systems containing calcium, three
independent trials of lengths 5.3, 23.4, and 16.5 ns were run
with a stride of 1 ps by assigning a randomized velocity to
each atom after system equilibration. The trajectory windows
selected to normalize the pore formation times (see above) were
frames 2001–2256, 1150–3900, 19350–22100, and 13550–15300
for trajectories 1–4, respectively. The selection of these windows
had the added benefit that any initial periodic box deformation
of the system was already discounted (applying an electric field
normal to the plane of a lipid bilayer under the NPT ensemble
causes a reduction in the bilayer thickness and a corresponding
change in the box dimensions, preceding and independent of
pore formation).

3. RESULTS

3.1. Activity Functions Relevant for Pore
Formation
As described in the “Methods” section, one of the prerequisites
of the heat map analysis is the use of an activity function that
characterizes the global change of the system. This work focuses
on pore formation that introduces an anisotropic pressure in the
system and by virtue of the NPT ensemble yields a compression
of the periodic unit cell in the z-direction and an associated
elongation in the x- and y-directions. The unit cell dimensions
can therefore be used as a geometric marker for pore formation,
as shown in the top and center plots of Figures 3, 4 for ion-
free trajectory 1 and for one of the ion systems, trajectory 2,
respectively. The data for trajectories 3 and 4were similar to those
of trajectory 2 and are omitted for brevity. The four simulation
times in Figure 3 can be compared visually to the corresponding
snapshots in Figure 1.)

In addition to the geometric characterization of the poration
process, we also computed the time-dependent cutoff graph
(Figure 1) that decomposes structural changes in the lipid
bilayer into separate contact-forming and -breaking events. The
resulting lipid-forming and -breaking activities are plotted at the
bottom of Figures 3, 4. All four trajectories showed sustained

breaking activity during pore formation that is not equally
compensated for by the forming of lipid contacts. Consequently,
we used the lipid-breaking activity (red graphs) as a measure of
pore formation in our subsequent heat map analysis. The unit
cell deformation was then used as an independent measure for
validation.

3.2. Gallery of Lipid Pore Formation Heat
Maps
The lipid heat maps shown in Figure 5 visualize the importance
of individual lipids for the contact-breaking activity associated
with pore formation. This figure shows mutual information
heat maps of trajectories 1–4 for both sides of the bilayer (as
viewed in the +z and −z directions). In many, but not all,
heat maps, we observe hot spots that are clearly associated
with the emerging pore (most notably in views 1+, 2+, 4+,
and 4−). Some cases also show outliers that are not associated
with the pore (1−, 2−, 3+, and 3−). The heat maps are very
valuable because they allow a user to focus on the relatively
small number of statistically significant lipids. However, a
detailed inspection of the trajectories does not reveal a consistent
mechanism of action of these lipids. The outliers have their
head groups exposed to the solvent, and they are important
for a general destabilization of the bilayer that facilitates pore
formation; however, there is no indication that the outliers
participate in the actual poration event. The highlighted lipids
that line the pore exhibit a disruption of their contact network;
however, an inspection suggests that this appears to be a
passive response to the tunneling of water molecules across the
membrane.

3.3. Validation
We conducted a number of alternative heat map calculations
to test the robustness of our approach and to validate the
results shown in Figure 5. Figure 6 shows the results when
replacing mutual information Figures 6a,c with the Pearson
cross-correlation Figures 6b,d and when replacing the graph-
based lipid activity Figures 6a,b with the box dimensions
Figures 6c,d in the trajectory 4 heat map. The Pearson cross-
correlation is a simple, linear measure of statistical dependence.
As implemented in tagging.py, negative correlations serve
to measure the noise floor and are afterwards set to zero (only
positive correlations between rates of change make physical
sense, so negative correlations are deemed noise). However,
the mutual information captures all non-linear dependencies
(including negative linear correlations). Therefore, the resulting
mutual information heat maps are smoother, whereas Pearson
cross-correlation heat maps show higher dynamic range.
Despite these differences, the two measures show comparable
features.

Remarkably, heat maps are also largely unaffected by the type
of activity function used (Figure 6). As shown in Figures 3. 4,
the red lipid-breaking activity graphs can be quite different from
the box dimension graphs; however, the trajectory 4 heat map
shows the same features in either case. This demonstrates that our
contact-breaking activity is indeed a suitable measure for pore
formation. Minor discrepancies in the heat maps in Figure 6 are
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FIGURE 5 | Lipid heat maps indicating the statistical importance of

individual lipids for the pore formation (as represented by the lipid

contact breaking activity). The mutual information analysis for the lipid
bilayer was conducted using tagging.py with the BADE solver described in
Kovacs et al. (2017). The temporal smoothing parameter was 200 (trajectory
1) and 50ps (trajectories 2–4). The front (+z direction) and rear (-z direction)
views of the heat maps generated from the four trajectories are shown.
Solvent molecules are omitted for clarity. Lipid heat maps in the present paper
were rendered using QuickSurf mode in VMD (Humphrey et al., 1996) with a
linear red-white-blue color scale (from high to low mutual information values).
The pores and their symmetry mates were centered in the unit cell with image
dimensions cropped to cell size. The 3D structures used for the rendering of
the heat maps correspond to the last frame of the trajectory windows (see
Section “2.3”).

expected because the box dimensions probe for the size of the
water tunnel, whereas the breaking activities probe for lipids that
weaken the bilayer.

FIGURE 6 | Lipid pore formation heat map validation. The heat maps for
trajectory 4 (+z direction view) generated with mutual information (a,c) or
Pearson cross correlation (b,d) against activity data from the cutoff graph
(a,b), z dimension of the unit cell (c), or x dimension of the unit cell (d) are
shown. The parameters are otherwise the same as those in Figure 5. When
considering the box dimensions, we note that the Pearson correlation expects
(positively) co-correlated features (see text). Therefore, we have used the x
dimension of the unit cell (identical to the y dimension); on the other hand, in
the mutual information case, this distinction did not matter, and we used the z
dimension for the analysis.

3.4. Evaluation of Parameter Space
As discussed earlier (Figure 2), the user must select several
program parameters for the analysis, and it is worthwhile to
investigate how sensitive the results are to such subjective choices.

We have used the box dimension as a benchmark for
estimating the proper contact graph smoothing parameter in
Figure 7. Although the lipid-breaking activity shows slightly
different results, the overall appearance should be comparable.
In Figure 7, we used three smoothing parameters: 20, 50,
and 100 ps. All three cases had highlighted lipids at the
pore; however, the smoothing parameter of 50 ps gave the
closest match with the box dimension heat map, and that
of 100 ps was a close second. This is in good agreement
with our earlier rule of thumb, namely, to start the analysis
with a smoothing of approximately 5% of the window
width.

Figure 8 shows the dependence of the heat map on the
distance cutoff values for the contact graph. As a rule of thumb,
the cutoff values should reflect the nearest-neighbor distances in
the coarse grained model (two values bracket a buffer zone for
recrossing suppression, and the lower value is most important
whereas the upper value is typically set 1–2Å higher). For lipids,
a visual inspection of the lipid phosphorus atoms suggests that
a lower cutoff of 11Å would be appropriate (Figure 1). Figure 8
shows heat maps for cutoff values of 9–15Å (with a 2Å buffer).
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FIGURE 7 | Dependency of lipid heat maps on temporal smoothing

parameter used in terrain.py and tagging.py. The heat maps for
trajectory 4 (+z direction view) generated with mutual information against
activity data from z dimension of the unit cell (a), or the cutoff graph (b–d) with
smoothing parameters 20 (b), 50 (c), and 100ps (d) are shown. The
parameters are otherwise the same as those in Figure 5.

FIGURE 8 | Dependency of lipid heat maps on graph distance cutoff

used in terrain.py. The heat maps for trajectory 4 (+z direction view)
generated with mutual information against the cutoff graph with buffers of
9–11 (a), 11–13 (b), 13–15 (c), and 15–17Å (d) are shown. The parameters
are otherwise the same as those in Figure 2.

The 9Å value misses many of the lipid phosphorus contacts;
however, results above 11Å appear reasonably stable. Therefore,
we used 11Å for most of the analyses in this study.

3.5. Solvent Pore Formation Heat Maps
We also investigated whether we see any evidence that the global
lipid dynamics, as described by the activity function, drives the
solvent dynamics. Toward this end, we also generated a heat
map for solvent molecules that were coarse-grained to one atom
per molecule. Because we project the heat map on a moving
canvas of rapidly diffusing solvent molecules, Figure 9 shows the
results for trajectory 1 as a function of time. Figure 9 reveals
both a temporal focusing of the solvent heat map on the pore
formation time and a spatial focusing on the membrane-solvent
interface (although there is no preferential association of the
heat map with the emerging pore). The highlighted solvent
molecules are clearly located at the lipid-solvent interface at
22.0 and 22.3 ns; however, before and after pore formation
(20.0 and 22.6 ns) they are dispersed throughout the membrane
by their diffusive motion. The spatio-temporal focusing shows
the importance of the general weakening of interactions that
precedes (or precipitates) the solvent perforation of the lipid
bilayer (Figures 3, 4). Inspecting the heat map further shows that
the identity and origin of the tunneling water molecules in the
pore is not determined by their position before the intrusion
occurs; therefore, at 22.0 and 22.3 ns there is no accumulation
of heat-map highlighted waters in the pore beyond the level that
is generally observed at the interface. The dispersed heat map at
20.0 ns shows that water molecules in the pore can be from the
interface or from the bulk. Sometimes, interfacial water can be
seen climbing past the interface region, and then, ballistic water
sails in from the bulk and replaces it.

Water and ions have one disadvantage, namely, that any
coarse-graining on a per-molecule basis to compute the time-
dependent distance geometry Xi,j(t) is rather limited. For
approximately 12,000 solvent molecules, we were able to achieve
manageable analysis times (of the order of days) by using a
15Å distance cutoff for significant interactions (as an argument
passed to tagging.py) to reduce the number of pairwise water
interactions.

4. CONCLUSIONS

Over the last several years, we have developed a statistical strategy
for transforming MD simulation time series into spatial heat
maps. The original purpose of this approach was to detect
allosteric communication patterns in proteins, such as hinge
bending and amino acid contact-forming and -breaking during
folding and unfolding. Although this approach worked well
for this purpose (Kovacs and Wriggers, 2016), one obvious
limitation that impeded wider adoption was the exclusive focus
on proteins. In this work, we have applied the algorithms
for the first time to lipid and solvent interaction networks.
This was motivated by our interest in the mechanism of the
electroporation of cell membranes. This work has also prompted
us to develop a faster and more robust mutual information
solver that is described in the accompanying paper. Other
generalizations of our heat map approach, such as to nucleic acids
and mixed protein-membrane systems, are the subject of future
work.
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FIGURE 9 | Solvent heat map of trajectory 1 generated with mutual information against activity data from the lipid cutoff graph with smoothing

parameter 200ps. The lipids are omitted for clarity. The snapshots were taken at the same simulation times as in Figure 1, t = 20.0, 22.0, 22.3, and 22.6 ns. The
solvent heat map was rendered using VDW mode in VMD (Humphrey et al., 1996) with a linear red-white-blue color scale (from high to low values).

The generalization of our numerical algorithm to aqueous
solvents has revealed one limitation of our contact graph
approach, namely, the quadratic scaling of the coarse-grained
interaction network. This was not a problem for small
proteins in the past work or for the 128 lipids in this
study; however, the water molecules require at least one
representative atom and cannot be coarse-grained further. (Force
fields that group several water atoms together, such as the
Martini force field, do exist, but the adequate modeling of
intruding water fingers during electroporation requires full
atomic detail). The mapping of pairwise interactions RX,a(i, j)
before linear compression is the main performance bottleneck.
We note that our choice of relative distance geometry Xi,j(t)
is rooted in the lack of a fixed reference in the liquid systems
considered in this study. In the future, it would be desirable
to find a reference-free but linearly scaling equivalent Xi(t)
that is suitable for statistical comparison with the activity
function.

In the application to electroporation simulations, our heat
map approach highlighted a small number of important lipids.
This allowed us to efficiently search the trajectories for any
mechanisms or patterns. While this is ongoing research and
the causality remains unclear, the preliminary results obtained
thus far suggest that pore lining lipids do not actively cause
pore formation; instead, they rather passively follow the water
perforation, which occurs first, as was proposed earlier by
Tokman et al. (2013). This interpretation agrees with the result of
our solvent heat map that showed only nonspecific interactions
at the solvent-lipid interface but no sign of lipids driving the
solvent at the pore location. Past efforts to identify a driving
mechanism have always led to initial intruding water fingers—
the phospholipids fall down their potential energy hill into
the membrane interior after the water molecules (Vernier and
Ziegler, 2007; Ziegler and Vernier, 2008; Kohler et al., 2015).

Even if the water molecules (but not lipids) play a driving
role, a useful signature for pore initiation (nucleation) could
exist among the lipid molecules. Perhaps promisingly, we found
several lipids that were not associated with the growing pore but
that indirectly contributed before (and during) pore formation
through a weakening of the bilayer. Because the lipids are
interchangeable and the results differ between trajectories, these
“supporting events” seemingly occurred at random. However,
our statistics could be limited by our choice of global activity
functions, and more localized activity functions (that would
reflect more specific degrees of freedom) could reveal a hidden
nucleationmechanism of poration that has has eluded us thus far.

In summary, the proposed methodology provides new
analyses for electroporation studies by transforming the temporal
time series of simulations into spatial features. Additional future
practical applications of this framework could include protein-
lipid systems and studies of the effect of lipid- and water-
soluble agents, in which allosteric mechanisms could be directly
visualized on the embedded structures, as was the case in earlier
applications to protein folding and hinge detection (Kovacs
and Wriggers, 2016). All tools developed for this study will
be documented and released in version 1.5 of the TimeScapes
package that is freely available on our web site, http://timescapes.
biomachina.org.
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A Balanced Approach to Adaptive
Probability Density Estimation
Julio A. Kovacs*, Cailee Helmick and Willy Wriggers

Department of Mechanical and Aerospace Engineering, Old Dominion University, Norfolk, VA, USA

Our development of a Fast (Mutual) Information Matching (FIM) of molecular dynamics

time series data led us to the general problem of how to accurately estimate the

probability density function of a random variable, especially in cases of very uneven

samples. Here, we propose a novel Balanced Adaptive Density Estimation (BADE)

method that effectively optimizes the amount of smoothing at each point. To do this,

BADE relies on an efficient nearest-neighbor search which results in good scaling for

large data sizes. Our tests on simulated data show that BADE exhibits equal or better

accuracy than existing methods, and visual tests on univariate and bivariate experimental

data show that the results are also aesthetically pleasing. This is due in part to the use of a

visual criterion for setting the smoothing level of the density estimate. Our results suggest

that BADE offers an attractive new take on the fundamental density estimation problem

in statistics. We have applied it on molecular dynamics simulations of membrane pore

formation. We also expect BADE to be generally useful for low-dimensional applications

in other statistical application domains such as bioinformatics, signal processing and

econometrics.

Keywords: adaptive density estimation, covariance ellipsoid, covariance smoothing, optimal number of nearest

neighbors, R∗-tree, visual criterion

1. INTRODUCTION

One of the most popular non-parametric density estimation methods is kernel density estimation
(KDE), whereby the density is estimated by means of a sum of kernel functions centered at the
sample points (Silverman, 1986; Wand and Jones, 1995):

f̂ (x) =
1

M

M
∑

j = 1

KH(x− xj), (1)

where KH(x) = det(H)−1/2K(H−1/2 · x), K : R
d → R being the d-variate kernel and M the data

size. One of the most commonly used kernels is the Gaussian: K(x) = Cd exp(−‖x‖2/2), with Cd a
normalizing constant that depends on the dimension d. The d × d matrix H, called the bandwidth
matrix, could either be fixed, or it could depend on the sample point xj (“sample point estimator”)
or on the test point x (“balloon-type estimator”).

Originally, we adopted a fixed-bandwidth KDE approach in our recent application to Fast
(Mutual) Information Matching (FIM) of molecular dynamics time series data (Kovacs and
Wriggers, 2016). The fixed-bandwidth approach is well mature and there exist a wide range
of methods for bandwidth selection (see e.g., Jones et al., 1996 for a survey). Among these,
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the method by Sheather and Jones (1991) could be regarded as
the de facto standard in the univariate case (Jones et al., 1996).
Our application to molecular dynamics time series relies on
non-negative activity functions (Kovacs and Wriggers, 2016). As
discussed in more detail by Wriggers et al. (2017), the graph-
based activity functions we typically use are zero during quiescent
time periods of the simulation, leading to an uneven distribution
of activity values with a strong peak at zero that is not amenable
to fixed-bandwidth KDE approaches. In protein simulations we
have therefore recommended to use a rms-fluctuation-based
activity that gives a more even histogram (Kovacs and Wriggers,
2016). Unfortunately this is not an option for the membrane
simulations in the accompanying paper (Wriggers et al., 2017),
so we require a variable-bandwidth approach that can handle
graph-based activity functions in that application.

The situation in regard to the variable-bandwidth KDE
methods is less well developed. In fact, it has not been easy
to make significant performance improvements by allowing the
bandwidth to vary from point to point (Farmen and Marron,
1999). Several approaches have been proposed, with varying
degrees of success across different types of data sets. One of the
earliest approaches was that of Breiman, Meisel and Purcell, who
used bandwidths proportional to the distance from each sample
point to its kth nearest neighbor (Breiman et al., 1977). So, for
dimensions d > 1 the j-dependent bandwidth matrices are scalar
(i.e., multiples of the identity matrix). Later, Abramson (1982)
proposed a square-root law, whereby the bandwidth at each point
is taken to be inversely proportional to the square root of the
density. Since the actual density is not known, a “pilot density”
is needed, which is usually computed using a fixed-bandwidth
method. Like the previous approach, in d > 1 it produces
bandwidth matrices that are scalar.

One of the earliest alternative approaches to improve the
performance of variable bandwidth estimators was proposed by
Sain and Scott (1996): the binned kernel estimator, in which
the support of the density is divided in m equal parts. Each
of these subintervals yields a value of the bandwidth, which is
then used for the kernels centered at points belonging to the
corresponding subinterval. This method was extended to the
multivariate setting by Sain (2002). Hazelton (2003) refined this
approach (in the univariate case) by using cubic splines instead of
piecewise-constant functions to model the bandwidths, showing
improvements in the quality of the density estimates. However,
these approaches are very slow, as they involve an optimization
problem over many variables. Brewer (2000) showed improved
results relative to Sain and Scott (1996) by using a Bayesian
approach based on likelihood cross-validation, which works
specially well for small sample sizes, and adds a local smoothing
step to enhance the visual appeal of the density estimates. This
method was extended by Zougab et al. (2014) to the multivariate
case, in which the bandwidth matrices are not restricted to being
diagonal. Like Brewer’s approach, it works very well for small
sample sizes, but the complexity scales quadratically with the
sample size.

Attempts at alleviating the mentioned limitations include
a class of methods that use convex combinations (i.e., linear
combinations with non-negative coefficients adding up to 1) or

mixtures of densities of certain types. Vapnik and Mukherjee
(2000) used a mixture of Gaussian densities in which the
coefficients are optimized by matching the sample’s cumulative
distribution function (CDF) with the CDF estimator. The
Gaussian densities are isotropic (i.e., having scalar covariance
matrices). Song et al. (2008) assume the density to be a convex
combination of several prototype densities, and optimizes the
coefficients by matching the mean estimators. The prototype
densities are Gaussians with diagonal covariance matrices. Ganti
and Gray (2011) proposed a density estimator in which the
kernel functions are convex combinations of isotropic Gaussians
of various widths. The expected outcome is that this would
produce a richer set of function shapes which would compensate
the limitation arising from using isotropic Gaussians. However,
the quality of the resulting density estimates (judged by visual
inspection) is questionable.

Several other interesting ideas have also been put forward.
For instance, Katkovnik and Shmulevich (2002) described a
univariate balloon-type estimator based on the “intersection
of confidence intervals” (ICI) rule (i.e., shrinking sequences
of intervals), for which, at each test point x, a fixed,
arbitrary sequence of increasing bandwidth values is scanned
until the ICI criterion is met, yielding the bandwidth for
that point. Wu et al. (2007) used a cluster analysis of the
set of nearest neighbors to derive the bandwidths at each
sample point. The analysis is restricted to isotropic (scalar)
bandwidth matrices. Shimazaki and Shinomoto (2010) used
a “local MISE” criterion, which includes a window factor
in the integral defining the mean squared integrated error
(MISE) to derive local bandwidths in the univariate case. The
“Rodeo” approach (Liu et al., 2007) is specially suited for high-
dimensional data. The density is assumed to be the product
of a non-parametric factor and a parametric one, which is
known either completely or up to finitely many parameters.
Bandwidth matrices are restricted to being diagonal, and a
sparsity condition has to be imposed for the problem to be
tractable.

Motivated by the various limitations of previous methods,
here we propose a novel approach, which we call “BADE”
(for Balanced Adaptive Density Estimation) that offers several
desirable features: good scaling for large data sizes (sublinear
complexity in M for d = 1 and 2); not restricted to diagonal
bandwidth matrices; free of data-dependent parameters (the
user does not need to make any choices). In fact, we are no
longer dealing with bandwidth matrices per se, although there
is a connection with kernel estimation through the “effective”
number of neighbors (Section 2.1).

2. BALANCED ADAPTIVE DENSITY
ESTIMATION

Let P = {p1, . . . , pM} ⊂ R
d be a sample of size M drawn

independently from an unknown d-dimensional distribution
having probability density function f : R

d → R. Let 6P be
the covariance matrix of P, which we use as an estimate of the
covariance matrix of the true distribution. This matrix will be
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used later to give us an idea of the global size and shape of the
whole sample.

Unlike most of the previous approaches, we do not use a
kernel-based estimation approach. Instead, the basic idea is the
following: for each probe point x ∈ R

d where we want to estimate
the density, we determine the set Nk(x) of its k nearest neighbors
among P, and compute its covariance matrix:

6k(x) = Cov(Nk(x)), (2)

which gives us a basic description of the size and shape of the set
of sample points near x, bymeans of the “covariance ellipsoid” (or
“inertia ellipsoid”) defined by the eigenvectors and eigenvalues of
this matrix. The volume (modulo a constant) of that ellipsoid is
Vk(x) =

√

det6k(x). (Recall that the determinant is the product
of the eigenvalues, which are the squares of the corresponding
principal axes of the ellipsoid.) Then, our first version for the
density estimate at x is:

f̂ (x) = C ·
k

MVk(x)
, (3)

where C is a scaling constant. In practice, the density estimate is
computed, omitting C, on a grid covering the sample P, and then

C is determined so that the integral of f̂ is 1.
Of course, this expression is very reminiscent of the original

proposal of Loftsgaarden and Quesenberry (1965), just with
the volume of the ellipsoid in place of the volume of the
sphere of radius equal to the distance from x to the kth
nearest sample point. It is well known that Loftsgaarden and
Quesenberry’s method produce heavy tails and spiky density
estimates (Silverman, 1986). The spikiness is due to the use of the
simple kth nearest neighbor, which is highly variable. The use of
Vk(x) drastically decreases this variability, since this ellipsoid—
being the covariance ellipsoid of a set of k neighbors— is much
more stable than a domain (whether spherical or ellipsoidal)
whose size is based simply on the distance to the kth neighbor.
Note that this ellipsoid does not, in general, contain the set of
neighbors on which it is based.

2.1. Fixing Heavy Tails
The basic idea described above still suffers from a number
of drawbacks. First, as with the method of Loftsgaarden and
Quesenberry (1965), this basic idea produces heavy tails—since
the set of nearest neighbors remains virtually constant as the
point xmoves away (and exactly constant in the univariate case).
This can be remedied by introducing a decay factor, giving an
“effective” k:

ke(x) = k · exp
[

−
1

2
(x− µk(x)) · 6k(x)

−1 · (x− µk(x))
T
]

, (4)

where µk(x) = Mean(Nk(x)). This factor follows a decay rate
corresponding to the distribution of the k nearest neighbors of x,
and is useful in the “interior” of the set P as well as the “exterior.”
Thus, our second version for the density estimate is

f̂ (x) = C ·
ke(x)

MVk(x)
. (5)

We note that due to the exponential decay of ke(x), this estimator
is integrable. Incidentally, we can write Equation (5) as follows
(using the kernel notation as in Equation 1):

f̂ (x) =
C

M
· k ·K6k(x)(x−µk(x)) ≈

C

M
·

k
∑

l = 1

K6k(x)(x−prl ), (6)

where {prl | 1 ≤ l ≤ k} = Nk(x). Thus, the estimator given by
Equation (5) is approximately like a balloon-type Gaussian kernel
estimator, but based only on the k nearest neighbors of the probe
point x, instead of all the sample points.

2.2. Determination of k
A second drawback of our basic idea is: what should k be?
Loftsgaarden and Quesenberry (1965) take it as independent of x,
depending only on the sample sizeM. We can improve on this by
choosing k in such a way that the volume Vk(x) of the covariance
ellipsoid be a certain function of f (x). Two common choices, in a
sense antipodal to each other, are:

1. Volume = const. This would yield a k that is approximately
proportional to the density.

2. Volume = const/f . This would yield a k that is approximately
constant.

We found that neither of these extremes produces good density
estimates: a constant volume is essentially like a histogram: it will
not resolve sharp enough peaks, and will yield zero in regions
where the sample points are widely spread; a constant k will tend
to be too large in region of low density, and too small in regions
of high density.

However, the geometric mean of both offers a good
compromise: Volume = const/

√

f . (This is why we named our
approach “balanced.”) Hence, we have the equation

Vk(x) = const/
√

f (x). (7)

For f (x) we can use, in this equation, the estimate f (x) ≈

C1k/Vk(x). This allows us to solve the equation for Vk(x):

Vk(x) =
C2

k
, (8)

where C2 (which depends on M but not on x) subsumes the
various constants. Figure 1 depicts the situation graphically:
when k is small, the left-hand side of the equation (i.e., Vk(x))
is small, while the right-hand side (C2/k) is large, and vice versa.
The point where the two curves cross gives the optimal k for this
x. Solving this equation is easy: keep increasing k by 1 until the
inequality

Vk(x) · k < C2 (9)

no longer holds. This can be efficiently implemented in code
by means of incremental nearest neighbor methods (Hjaltason
and Samet, 1999), in which the cost of retrieving each additional
neighbor is essentially O(1) (see “Complexity,” below).
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FIGURE 1 | Graphical illustration of the determination of the optimal

number of nearest neighbors, k, to be used at each test point x (this

particular plot corresponds to the univariate Old Faithfual data set, at

x0 = 3.59). The intersection of both curves provides the solution to

Equation (8).

FIGURE 2 | Comparison between timings obtained by three methods

applied to 2-dimensional data sets. The data sets were artificially

generated to simulate a bimodal distribution, shown in Figure 3A for

M = 1, 000. See the section on Complexity for more details.

2.3. Determination of C2
The constant C2 in Equation (8) depends on M, d, and f . As
pointed out in the introduction, one of our goals was to devise
a method that does not depend on parameters that have to
be adjusted for each particular data set. Our method satisfies
this condition (as we’ll describe in a moment) except for the
dependence on the dimension d, which has to be worked out for
each d. (We worked out the values for d = 1 and 2 since these are
the ones that most interest us for our applications.)

In d > 1 the data needs to be rescaled so that each coordinate
have unit variance. This is important not only for the derivation
of the expression of the constants, but also for the correct
functioning of the nearest neighbor search: if the rescaling were
not done, then the neighbor search would be as if using ellipsoids
instead of spheres for its distance queries. (We preferred this
transformation rather than sphering—making the covariance
matrix the identity—since the latter changes the correlations,
being a skewed transformation.) In these conditions, we factor

the volume of the covariance ellipsoid of the whole sample
(square root expression in this equation) out of C2:

C2 = H0

√

det6P. (10)

It turns out that H0 does not depend on f , but only on
M and d. We verified this by means of a “visual criterion.”
The reason we chose this type of criterion, instead of a more
objective one such as MISE, is that good MISE performance
does not guarantee visually appealing density estimates (Farmen
and Marron, 1999), which is one of our goals. One such visual
criterion was proposed byMarron and Tsybakov (1995), in which
the distance between the graphs of both functions is evaluated,
instead of the vertical distance. Here we needed a different type
of criterion to determine H0: we ourselves examined by eye the
density estimates resulting from an array of values of M and
H0, for various simulated densities. For each M and density,
we looked for the minimum value of H0 that yielded a density
estimate that did not look undersmoothed. Even though this
visual criterion might seem rather ad hoc, it actually yielded
surprisingly good linear relationships in log/log scale on the
H0/M plane. The fitted lines, which were independent of the
particular density, correspond to the following power laws:

H0 =

{

0.028M4/5 for d = 1,

0.162M2/5 for d = 2.
(11)

It is interesting to note that the expression for d = 2 is nearly

equal to the square root of that for d = 1:
√
0.028M4/5 =

0.167M2/5. This is reassuring and adds confidence to our visual
criterion, in addition to providing an obvious conjecture about
the expression for H0 for d > 2 (which we haven’t tested).

Amore theoretical justification of the expression forH0 would
probably be related to how the human visual system processes
information. One possible approach could be the addition of a
regularization term that would emulate visual perception. An
intriguing link to the standard MISE theory in kernel density
estimation is that the optimal bandwidth, in the 1-dimensional
case, is proportional toM−1/5, which is H0/M (Wand and Jones,
1995).

We emphasize that this visual criterion was used only as a
premise to determine the optimal dependence (on M) of the
coefficient C2. This optimal dependence is determined once and
for all—the user does not need make any choices. However, the
user could, with discretion, vary the coefficients in the formula
for H0 (Equation 11), to obtain density estimates with greater or
lesser amount of smoothing than that provided by the values in
Equation (11). As a rule of thumb, our visual tests (not shown)
suggest to keep the variation within a factor 2 from the stated
values.

2.4. Covariance Smoothing
To further improve the visual appeal of the density estimate
given by Equation (5), we added an optional smoothing step
to our method. The smoothing procedure was inspired by that
of Brewer (2000), who averages the inverse variances of two
neighboring sample points on either side of each sample point,
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FIGURE 3 | (A) Example of a data set used for the timing comparison shown in Figure 2. Here M = 1, 000. (B) Corresponding contour plot of the density estimate,

which includes the covariance-smoothing step.

FIGURE 4 | Test densities (Gaussian mixtures) used in our univariate simulation study. (A) H3 (Kurtotic unimodal); (B) H4 (Skewed bimodal); (C) H5 (Trimodal).

producing estimates that are relatively free from unnecessary
minor fluctuations. Since our approach is grid-based, we need a
more sophisticated procedure, as averaging inverse variances of
neighboring grid points would not be correct, since the spacing
is arbitrary. We need to weight the contributions of all the grid
points according to their respective covariance matrices and
locations relative to the test point. Denoting the grid points
by xj (j = 1, . . . ,G), where G is the size of the grid, and
the corresponding covariance matrices (Equation 2) by 6(xj)
(omitting for clarity the subindex that indicated the number
of nearest neighbors used), we define the smoothed precision
matrices by:

6̂−1
i =

∑G
j = 1 wi,j 6(xj)

−1

∑G
j = 1 wi,j

, (12)

where the weights (influence of point j on point i) are given by

wi,j =
1

√

det6(xj)
· exp

[

−
1

2
(xi − xj) · 6(xj)

−1 · (xi − xj)
T
]

.

(13)
Thus, the contribution of each covariancematrix is in accordance
with the value of the Gaussian function defined by it, at each of
the grid points. This equation shows that the smoothing can be
considered local, in the sense that points xj where 6(xj) is large
(where the density is low) or which are far from xi contribute
little, and only points that are close to xi and with a small

6(xj) will contribute significantly to 6̂i. (Note: “large” or “small”
applied to a matrix mean that the volume of its ellipsoid—or
equivalently, its determinant, or the product of its eigenvalues—
is large or small.)

Since both the smoothing step just described and the main
step (Equation 5) are local, we see that ourmethod does not suffer
from the non-locality issues that affect, for instance, one version
of Abramson’s square-rootmethod (basically, extreme tail sample
points affect the density estimate elsewhere too much; see Terrell
and Scott, 1992; Hall et al., 1995 for details).

Finally, we also need the smoothed version of the “effective”
k values (Equation 4). They are computed similarly to
Equation (12):

k̂e,i =

∑G
j = 1 wi,j ke,j

∑G
j = 1 wi,j

. (14)

Then, the smoothed version of the density estimate is given by

f̂ (xi) = C ·
k̂e,i

√

det 6̂i

, (15)

where the constant C is determined by the condition of f̂
integrating to 1.
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FIGURE 5 | ISE statistics for the three univariate test densities (H3, H4, H5), compaing our method (BADE, in orange) and VB3 (Hazelton, 2003, in gray).

Also shown are results for larger values of the sample size M, not considered by Hazelton.

2.5. Complexity
We analyze separately the two steps of our method: the main
estimator (Equation 5) and the (optional) covariance-smoothing
step (Section 2.4).

The first, main step requires the incremental retrieval, for
each test point x, of successive nearest neighbors. In two and
higher dimensions, the R∗-tree data structure (Beckmann et al.,
1990) provides an effective means to implement such a retrieval
procedure (Hjaltason and Samet, 1999). This procedure makes
use of “priority queues” or heaps, one of its most efficient
implementations being the pairing heap (Fredman et al., 1986),
in which the cost of an insertion operation is O(1). Using this

implementation, the cost of finding k nearest neighbors among
M data points in 2 dimensions turns out to be O(k logM)
(Hjaltason and Samet, 1999). (The complexity analysis gets more
complicated in higher dimensions; see Hjaltason and Samet
(1999) for details. In dimension 1, determining the sequence of
nearest neighbors is a simple logarithmic-time procedure which
does not require the use of any special data structure.) The
number k will vary from point to point, but always k ≤ M, and
so the per-point cost would be ≤ O(M logM). However, this
is not a typical situation, as the average k will usually be much
less than M. If fact, more realistic estimates for the average k
are of the order O(M1/2) (Loftsgaarden and Quesenberry, 1965;
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FIGURE 6 | Density estimates for the univariate Old Faithful data set,

comparing our method (BADE) with LS (Brewer, 2000), CAKE (Ganti

and Gray, 2011), and VB3 (Hazelton, 2003). The second and third rows

show, respectively, the optimal effective number of nearest neighbors, and the

standard deviation of the set of the k nearest neighbors, at each point of a

regular grid of size 100. The marks on the x axis indicate the sample points.

Silverman, 1986). Hence, the total cost of the main step can be
approximated by

T1 =

{

O(G logM) for d = 1,

O(GM1/2 logM) for d = 2.
(16)

where G is the size of the grid. We note that an incremental
implementation of the nearest-neighbor search is essential to
achieve this low complexity. Algorithms that are not incremental
need to recompute the whole set of nearest neighbors each
time one more is needed, with a significant deterioration in the
efficiency.

Figure 2 shows a comparison between timings obtained by
three methods applied to 2-dimensional data sets of a wide range
of sizes, from M = 20 to 108. The data sets were artificially
generated to simulate a bimodal distribution, shown in Figure 3A
for M = 1, 000, with the corresponding density estimate shown
in Figure 3B. The three methods were: (a) FIM (using a fixed
bandwidth) (Kovacs and Wriggers, 2016); (b) BADE-RST using
the R∗-tree to retrieve nearest neighbors; (c) BADE-naive using
a naive way to retrieve nearest neighbors (i.e., by sorting the
data points according to their distances to each probe point). We
can see that FIM and BADE-RST have very similar asymptotics.
In fact, FIM has a complexity of O(M) (Kovacs and Wriggers,
2016), which is slightly worse than that of BADE-RST, although

FIGURE 7 | Density estimates for the suicide data set, comparing our

method (BADE) with LS (Brewer, 2000) and CAKE (Ganti and Gray,

2011). The second and third rows show, respectively, the optimal effective

number of nearest neighbors, and the standard deviation of the set of the k

nearest neighbors, at each point of a regular grid of size 100. The marks on

the x axis indicate the sample points.

the constant is smaller for FIM. However, FIM only computes
the mutual information, not the whole density function as BADE
does, which introduces the factor G in Equation (16).

As for the second step (covariance smoothing), Equations (12)
and (14) tell us that the cost will be

T2 = O(G2), (17)

where the constant can be made quite small by summing each
Gaussian function only over the ellipsoid where it has significant
values (usually a small fraction of the total volume).

3. RESULTS

In order to evaluate the accuracy of BADE, we performed
statistics of the ISE (Integrated Squared Error) for simulated
samples taken from known distributions (Figures 4, 5 for the
univariate case; Figures 9, 10 for the bivariate case). The ISE of

an estimator f̂ is defined as

ISE =

∫

(

f̂ (x)− f (x)
)2
dx ≈ 1x1 · · ·1xd ·

G
∑

j = 1

(

f̂ (xj)− f (xj)
)2
.

(18)
Also, we considered some real data sets to compare the density
estimates of BADE with those of previous methods (Figures 6–8
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for the univariate case; Figures 11, 12 for the bivariate case). The
BADE results were computed using Equation (15), i.e., including
the covariance-smoothing step.

3.1. Univariate Case
3.1.1. Simulated Examples

The three univariate simulated densities, all Gaussian mixtures,
on which we tested our method are shown in Figure 4. They are
densities 3, 4, and 5 used by Hazelton (2003), so we will refer to
them in this paper as H3, H4, and H5:

FIGURE 8 | Density estimates for the Hidalgo stamp data set,

comparing our method (BADE) with LS (Brewer, 2000). The second and

third rows show, respectively, the optimal effective number of nearest

neighbors, and the standard deviation of the set of the k nearest neighbors, at

each point of a regular grid of size 100. The marks on the x axis indicate the

sample points; notice the equispacing due to rounding.

1. H3 (Kurtotic unimodal, equal to density #4 in Marron and
Wand, 1992): 2

3N(0, 1) +
1
3N(0,

1
10 ). (We denote the normal

distribution with mean µ and standard deviation σ by
N(µ, σ ).)

2. H4 (Asymmetric bimodal, similar to density #8 in Marron
and Wand, 1992): 45N(0, 1)+

1
5N(2,

1
5 ).

3. H5 (Symmetric trimodal, similar to density #9 inMarron and
Wand, 1992): 9

20N(−
7
4 , 1)+

9
20N(

7
4 , 1)+

1
10N(0,

1
5 ). (Note the

typo in Table 1 of Hazelton’s paper in the equation for this
density).

We compared the ISE statistics of our method, for each
of the above three densities, with those of Hazelton (2003).
They are displayed, in logarithmic scale, in Figure 5. We also
considered larger sample sizes M, up to 10,000. For each
density and sample size, 500 simulated samples were produced.
We can observe that in most cases the ISE values of our
method (BADE) are lower that those of Hazelton’s method
(VB3). The exceptions are H4 with M = 100 and 200, for
which they are virtually the same. In some cases we note
larger variability in BADE’s ISE values than in VB3’s. This is
presumably due to a lesser degree of smoothing in BADE than
in VB3.

Even though the differences in accuracy seem to be small in
some cases, even a small consistent difference can be considered
significant in this problem, as it has been difficult to make
performance improvements in density estimation even when
moving from fixed-bandwidth to variable-bandwidth methods
(Terrell and Scott, 1992).

3.1.2. Real Examples

We tested our method on three univariate real data sets.
Although not related to our intended application domain of
molecular dynamics, the three data sets are widely used in the
relevant statistics literature so that we can compare results easily
with those from other methods:

1. Univariate Old Faithful: lengths, in minutes, of 107 eruptions
of the Old Faithful geyser (Silverman, 1986).

2. Suicide: lengths, in days, of 86 treatment spells of control
patients in a suicide study (Silverman, 1986).

FIGURE 9 | Test densities (Gaussian mixtures) used in our bivariate simulation study. (A) F2 (bimodal); (B) F3 (trimodal); (C) F4 (dumbbell unimodal).
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FIGURE 10 | ISE statistics for the three bivariate test densities (F2, F3, F4), comparing our method (BADE, in orange) and BABM (Zougab et al., 2014, in

gray). Also shown are results for larger values of the sample size M, not considered by Zougab et al. Their results are shown by gray rhombi representing the mean

plus and minus 1 standard deviation, which are the only data they reported.

3. Hidalgo stamp: paper thickness, in mm, of 485 stamps from
the 1872 Hidalgo stamp issue (Izenman and Sommer, 1988).
This data set is also available in the locfit package of the R
software (Loader, 2013).

Results for the Old Faithful data set are shown in Figure 6,

where the density estimate from our method, BADE, is compared

to three others: LS (Brewer, 2000), CAKE (Ganti and Gray,
2011), and VB3 (Hazelton, 2003). We can see that the left peak

matches quite well among the four methods, except that CAKE’s

estimate is somewhat shifted and has a wide shoulder, and LS’s

estimate has a lower value at this peak. As for the right peak,

again CAKE’s position is quite shifted to the right, and BADE’s
estimate shows a splitting in two submodes, which is visible
just slightly in the other estimates. Finally, we observe that the
other methods produce heavier tails than BADE (BADE will
always produce “light,” exponential tails due to the “effective”
k (Equation 4). This ke as a function of x is shown in the
second row of the figure, before the covariance-smoothing step.)
The third row of the figure shows the standard deviation σk(x)
(the one-dimensional analog of Vk(x)) of the set Nk(x) of k
nearest neighbors of x. Notice the balanced feature of themethod:
regions of higher k correspond to regions of lower σk, and vice
versa.
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FIGURE 11 | Density estimates for the bivariate Old Faithful data set, comparing our method (BADE) with CAKE (Ganti and Gray, 2011). (A) CAKE

estimate. (B) BADE estimate. (C) BADE estimate shown as a contour plot, along with the sample points. (D) Effective k values (i.e., ke) on a grid of size 100× 100. (E)

Vk on the same grid. Both ke and Vk are the ones before applying the covariance smoothing step.

The density estimates for the suicide data set are shown
in Figure 7. We see a very good agreement among the three
methods: BADE, LS (Brewer, 2000), and CAKE (Ganti and Gray,
2011). BADE shows a small satellite mode of the main peak,
where LS and CAKE exhibit a small shoulder instead. On the
other hand, CAKE is significantly more sensitive than BADE
and LS to the sample points around x = 250, x = 320, and
x = 600, while BADE and LS show only a small mode at around
x = 250 and then they taper off. In this case we can see that that
the exponential decay of ke is slow as x grows, due to the large
separation of the sample points at the right end, and hence the
large σk values in that region.

The Hidalgo stamp comparison between BADE and LS is
shown in Figure 8. In contrast with the Old Faithful example,
here BADE’s estimate looks more smoothed than LS’s, but
otherwise the position and number of modes is the same for both
methods. This is interesting in connection with the results of the
analysis carried out by Brewer (2000), whose LS method was the
only one, among the ones considered in his comparison with
previous methods, that revealed exactly five modes.

3.2. Bivariate case
3.2.1. Simulated Examples

The three bivariate simulated densities, all Gaussian mixtures, on
which we tested our method are shown in Figure 9. They are

densities F2, F3, and F4 used by Zougab et al. (2014), and we will
refer to them by the same names:

1. F2 (bimodal, similar to density H of Wand and Jones, 1993):
1
2N[(1, 1),61]+

1
2N[(−1,−1),62],

where 61 =
( 1 1/2
1/2 1

)

and 62 =
( 1 −1/2
−1/2 1

)

.

2. F3 (trimodal, equal to density K of Wand and Jones, 1993):
3
7N[(−1, 0),61]+

3
7N[(1, 2/

√
3),62]+

1
7N[(1,−2/

√
3),63],

where 61 =
( 9/25 63/250
63/250 49/100

)

and 62 = 63 =
( 9/25 0

0 9/25

)

.

3. F4 (“dumbbell” unimodal):
4
11N[(−2, 2),61]+

3
11N[(0, 0),62]+

4
11N[(2,−2),63],

where 61 = 63 =
(

1 0
0 1

)

and 62 =
(

0.8 −0.72
−0.72 0.8

)

.

Results of ISE statistics comparing our method with that of

Zougab et al. (2014) are displayed in Figure 10. Zougab et
al.’s results were taken directly from their paper, but since

they report just the mean and standard deviation of the

ISE values, we show those two parameters as rhombi, whose
horizontal line corresponds to the mean, and whose top
and bottom vertices correspond to ±1 standard deviation
from the mean. We also considered larger sample sizes, up
to 10,000. For each density and sample size, 100 simulated
samples were produced. We can observe that in most cases
the ISE values of our method (BADE) are lower that those of
Zougab et al.’s method (BABM). The exceptions are F3 with
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FIGURE 12 | Density estimates for the UNICEF data set, comparing our method (BADE) with BABM (Zougab et al., 2014). (A) BABM estimate. (B) BADE

estimate. (C) BADE estimate shown as a contour plot, along with the sample points. (D) Effective k values (i.e., ke) on a grid of size 100× 100. (E) Vk on the same

grid. Both ke and Vk are the ones before applying the covariance smoothing step.

M = 50 and F4 with M = 200, for which they are very
similar.

3.2.2. Real Examples

We tested our method on two bivariate real data sets, and
compared the results with those from other methods. Again
we chose data from outside our intended application in
molecular dynamics to better compare with the available statistics
literature:

1. Bivariate Old Faithful: length of eruptions vs. interval
between consecutive eruptions, for 272 observations of the
Old Faithful geyser (Härdle, 1991). These data are also
available on the Internet, as extra material to Wasserman’s
book (Wasserman, 2004).

2. UNICEF: under-5 mortality (number of children who died
under age 5 per 1,000 live births) vs. the average life expectancy
(in years) at birth, for 73 countries with Gross National
Income less than US$1,000 per annum per capita. These data
are available from the UNICEF and also in the ks package of
the R software (Duong, 2016).

Results for the bivariate Old Faithful data set are shown in
Figure 11, where the density estimate from our method, BADE,
is compared to that from CAKE (Ganti and Gray, 2011). (In
this figure, we show the scaled coordinates in order to match
CAKE’s plot.) Both estimates show two main peaks; however,

CAKE’s estimate (Figure 11A) has, in addition, many other
peaks that are not present in BADE’s estimate, which is a
clean bimodal density (Figures 11B,C). Figures 11D,E show,
respectively, the effective number of nearest neighbors, ke, and
the area of the covariance ellipse, Vk (before the covariance-
smoothing step). As in the univariate case, we see that regions
of large ke correspond to regions of small Vk, and vice
versa.

The density estimates for the UNICEF data set, computed
with our method and BABM (Zougab et al., 2014), are
shown in Figure 12. Even though there is a good overall
agreement between the two, BADE’s estimate is apparently
less smoothed than BABM’s, resulting, in particular, in a
shifted position of the mode toward the upper-left of the
plot. In fact, BABM’s estimate is virtually the same as that
obtained using a fixed global bandwidth matrix (Zougab
et al., 2014, Figure 3). Figures 12D,E show again the
inverse relationship between ke and Vk (before covariance
smoothing).

4. CONCLUSION

We have implemented a novel adaptive density-estimation
approach suitable for our statistical evaluation of membrane
simulations in Wriggers et al. (2017).
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Unlike most well known density estimation methods, ours is
not based on kernels. Rather, it estimates the density at a given
point directly, using the information about the sets of k nearest
neighbors, finding the optimal k in an adaptive way, by balancing
it with the size of the “covariance ellipsoid” of the set of nearest
neighbors. Thus, the calculation does not involve solving costly
optimization problems, and is free of data-dependent parameters.
(However, in the optional smoothing step, one could vary the
coefficients in Equation (11), to obtain density estimates with
greater or lesser amount of smoothing).

We note that, specially in the context of fixed-bandwidth
kernels, the covariance matrix could be considered a parameter
which depends on the data. However, since in our approach it is
not a fixed value, but rather a function of the point, we do not
call it a parameter. Rather, the parameters are the coefficients in
Equation (11), which are fixed (except for the optional smoothing
variation) and do not depend on the data.

BADE is well suited for large data sizes. Methods that center
a kernel function at each sample point become very expensive
as the data size grows. Instead, BADE relies only on nearest-
neighbor information, whose average required number k̄(M) is
such that k̄(M)/M → 0 as M → ∞, where M is the sample size
(Loftsgaarden andQuesenberry, 1965). Thus, themain step scales
very well with data size (sublinearly in one and two dimensions,
Equation 16). On the contrary, methods such as that of Zougab
et al. (2014) (with which we compared ours) scale quadratically
with the data size and are thus restricted to smaller data sets.

Our method is free of restrictions on the bandwidth matrices,
such as diagonal or scalar. In fact, we are no longer dealing with
“bandwidth” matrices, but covariance matrices of sets of nearest
neighbors.

BADE has been defined for data of any dimension; however,
we have worked out the constants and made tests only for
dimensions 1 and 2. It is most efficient in low dimensions,
due to the need to compute nearest neighbors. For this, it
takes advantage of the R∗-tree data structure (Beckmann et al.,
1990), which is, to the best of our knowledge, the most efficient
one for nearest-neighbor search in low dimensions. In higher
dimensions the R∗-tree data structure becomes less efficient
due to the increasing relative volume of the “corners” of the
hyperrectangles, and so better adapted data structures would be
preferable in this case (see Hjaltason and Samet, 1999 for details).

Our method was validated, both in the univariate and the
bivariate settings, by ISE analyses on some simulated densities.
These analyses consisted in generating a number of simulated
samples (500 for the univariate case, 100 for the bivariate case)
and measuring the integrated square error (ISE) between the
density estimated from each sample and the actual density

function. The ISE statistics were compared with similar results
from previous approaches that were among the best available. In
most cases we obtained lower errors, and in the remaining few
cases the performance was virtually identical.

The apparent synergy between objective (low ISE) and
subjective (visual appeal) criteria in our algorithm is a curious
phenomenon that has also been observed by other researchers.
Farmen and Marron (1999) pointed out that “visual error
appears to be quite informative about performance,” whereas
Brewer (2000) stated that “subjective feeling about density
estimates” produces “estimates relatively free from unnecessary
minor fluctuations.” Although the earlier work provides a
rationale for including subjective criteria in our work, an open
research question is whether aesthetics and objective error are
covariant. Farmen and Marron have attempted to quantify visual
appeal (Farmen and Marron, 1999) but they found that “good
performance in MISE does not guarantee visually appealing
curve estimates.” In contrast, Hazelton (2003) states that “gains
in ISE may understate the improvements in visual appeal,” which
seems to imply at least a weak dependence. A more systematic
investigation of the objective value of subjective criteria could be
the subject of future work.

The optional covariance-smoothing step in BADE yields very
visually appealing density estimates, as our real-data examples
show, but is not strictly necessary if all that’s needed is a density
estimate to perform further calculations. For instance, one of the
applications for which we need bivariate density estimates is the
computation of Mutual Information. In this case we don’t need
visually appealing functions, and thus we can save significant
compute time.

At this time the algorithm is implemented as a C program. It
will be freely disseminated as a part of release 1.5 of our software
package TimeScapes (Kovacs and Wriggers, 2016). The web site
for our software is http://timescapes.biomachina.org.
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