Background: In the last couple of years, viral infections have been leading the globe, considered one of the most widespread and extremely damaging health problems and one of the leading causes of mortality in the modern period. Although several viral infections are discovered, such as SARS CoV-2, Langya Henipavirus, there have only been a limited number of discoveries of possible antiviral drug, and vaccine that have even received authorization for the protection of human health. Recently, another virial infection is infecting worldwide (Monkeypox, and Smallpox), which concerns pharmacists, biochemists, doctors, and healthcare providers about another epidemic. Also, currently no specific treatment is available against Monkeypox. This research gap encouraged us to develop a new molecule to fight against monkeypox and smallpox disease. So, firstly, fifty different curcumin derivatives were collected from natural sources, which are available in the PubChem database, to determine antiviral capabilities against Monkeypox and Smallpox.
Material and method: Preliminarily, the molecular docking experiment of fifty different curcumin derivatives were conducted, and the majority of the substances produced the expected binding affinities. Then, twelve curcumin derivatives were picked up for further analysis based on the maximum docking score. After that, the density functional theory (DFT) was used to determine chemical characterizations such as the highest occupied molecular orbital (HOMO), lowest unoccupied molecular orbital (LUMO), softness, and hardness, etc.
Results: The mentioned derivatives demonstrated docking scores greater than 6.80 kcal/mol, and the most significant binding affinity was at -8.90 kcal/mol, even though 12 molecules had higher binding scores (-8.00 kcal/mol to -8.9 kcal/mol), and better than the standard medications. The molecular dynamic simulation is described by root mean square deviation (RMSD) and root-mean-square fluctuation (RMSF), demonstrating that all the compounds might be stable in the physiological system.
Conclusion: In conclusion, each derivative of curcumin has outstanding absorption, distribution, metabolism, excretion, and toxicity (ADMET) characteristics. Hence, we recommended the aforementioned curcumin derivatives as potential antiviral agents for the treatment of Monkeypox and Smallpox virus, and more in vivo investigations are warranted to substantiate our findings.
Orthopoxvirus is one of the most notorious genus amongst the Poxviridae family. Monkeypox (MP) is a zoonotic disease that has been spreading throughout Africa. The spread is global, and incidence rates are increasing daily. The spread of the virus is rapid due to human-to-human and animals-to-human transmission. World Health Organization (WHO) has declared monkeypox virus (MPV) as a global health emergency. Since treatment options are limited, it is essential to know the modes of transmission and symptoms to stop disease spread. The information from host–virus interactions revealed significantly expressed genes that are important for the progression of the MP infection. In this review, we highlighted the MP virus structure, transmission modes, and available therapeutic options. Furthermore, this review provides insights for the scientific community to extend their research work in this field.
The world is currently dealing with a second viral outbreak, monkeypox, which has the potential to become an epidemic after the COVID-19 pandemic. People who reside in or close to forest might be exposed indirectly or at a low level, resulting in subclinical disease. However, the disease has lately emerged in shipped African wild mice in the United States. Smallpox can cause similar signs and symptoms to monkeypox, such as malaise, fever, flu-like signs, headache, distinctive rash, and back pain. Because Smallpox has been eliminated, similar symptoms in a monkeypox endemic zone should be treated cautiously. Monkeypox is transmitted to humans primarily via interaction with diseased animals. Infection through inoculation via interaction with skin or scratches and mucosal lesions on the animals is conceivable significantly once the skin barrier is disrupted by scratches, bites, or other disturbances or trauma. Even though it is clinically unclear from other pox-like infections, laboratory diagnosis is essential. There is no approved treatment for human monkeypox virus infection, however, smallpox vaccination can defend counter to the disease. Human sensitivity to monkeypox virus infection has grown after mass vaccination was discontinued in the 1980s. Infection may be prevented by reducing interaction with sick patients or animals and reducing respiratory exposure among people who are infected.
The emerging and ongoing outbreak of human monkeypox (hMPX) in 2022 is a serious global threat. An understanding of the evolution of the monkeypox virus (MPXV) at the single-gene level may provide clues for exploring the unique aspects of the current outbreak: rapidly expanding and sustained human-to-human transmission. For the current investigation, alleles of 156 MPXV coding genes (which account for >95% of the genomic sequence) have been gathered from roughly 1,500 isolates, including those responsible for the previous outbreaks. Using a range of molecular evolution approaches, we demonstrated that intra-species homologous recombination has a negligible effect on MPXV evolution. Despite the fact that the majority of the MPXV genes (64.10%) were subjected to negative selection at the whole gene level, 10 MPXV coding genes (MPXVgp004, 010, 012, 014, 044, 098, 138, 178, 188, and 191) were found to have a total of 15 codons or amino acid sites that are known to evolve under positive Darwinian selection. Except for MPXVgp138, almost all of these genes encode proteins that interact with the host. Of these, five ankyrin proteins (MPXVgp004, 010, 012, 178, and 188) and one Bcl-2-like protein (MPXVgp014) are involved in poxviruses’ host range determination. We discovered that the majority (80%) of positive amino acid substitutions emerged several decades ago, indicating that these sites have been under constant selection pressure and that more adaptable alleles have been circulating in the natural reservoir. This finding was also supported by the minimum spanning networks of the gene alleles. The three positive amino acid substitutions (T/A426V in MPXVgp010, A423D in MPXVgp012, and S105L in MPXVgp191) appeared in 2019 or 2022, indicating that they would be crucial for the virus’ eventual adaptation to humans. Protein modeling suggests that positive amino acid substitutions may affect protein functions in a variety of ways. Further study should focus on revealing the biological effects of positive amino acid substitutions in the genes for viral adaptation to humans, virulence, transmission, and so on. Our study advances knowledge of MPXV’s adaptive mechanism and provides insights for exploring factors that are responsible for the unique aspects of the current outbreak.